Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2   Copyright (C) 2002 Richard Henderson
   3   Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
   4
   5    This program is free software; you can redistribute it and/or modify
   6    it under the terms of the GNU General Public License as published by
   7    the Free Software Foundation; either version 2 of the License, or
   8    (at your option) any later version.
   9
  10    This program is distributed in the hope that it will be useful,
  11    but WITHOUT ANY WARRANTY; without even the implied warranty of
  12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13    GNU General Public License for more details.
  14
  15    You should have received a copy of the GNU General Public License
  16    along with this program; if not, write to the Free Software
  17    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  18*/
  19#include <linux/export.h>
  20#include <linux/moduleloader.h>
  21#include <linux/trace_events.h>
  22#include <linux/init.h>
  23#include <linux/kallsyms.h>
  24#include <linux/file.h>
  25#include <linux/fs.h>
  26#include <linux/sysfs.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/vmalloc.h>
  30#include <linux/elf.h>
  31#include <linux/proc_fs.h>
  32#include <linux/security.h>
  33#include <linux/seq_file.h>
  34#include <linux/syscalls.h>
  35#include <linux/fcntl.h>
  36#include <linux/rcupdate.h>
  37#include <linux/capability.h>
  38#include <linux/cpu.h>
  39#include <linux/moduleparam.h>
  40#include <linux/errno.h>
  41#include <linux/err.h>
  42#include <linux/vermagic.h>
  43#include <linux/notifier.h>
  44#include <linux/sched.h>
 
  45#include <linux/device.h>
  46#include <linux/string.h>
  47#include <linux/mutex.h>
  48#include <linux/rculist.h>
  49#include <asm/uaccess.h>
  50#include <asm/cacheflush.h>
  51#include <asm/mmu_context.h>
  52#include <linux/license.h>
  53#include <asm/sections.h>
  54#include <linux/tracepoint.h>
  55#include <linux/ftrace.h>
  56#include <linux/livepatch.h>
  57#include <linux/async.h>
  58#include <linux/percpu.h>
  59#include <linux/kmemleak.h>
  60#include <linux/jump_label.h>
  61#include <linux/pfn.h>
  62#include <linux/bsearch.h>
  63#include <uapi/linux/module.h>
  64#include "module-internal.h"
  65
  66#define CREATE_TRACE_POINTS
  67#include <trace/events/module.h>
  68
 
 
 
 
 
 
  69#ifndef ARCH_SHF_SMALL
  70#define ARCH_SHF_SMALL 0
  71#endif
  72
  73/*
  74 * Modules' sections will be aligned on page boundaries
  75 * to ensure complete separation of code and data, but
  76 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
  77 */
  78#ifdef CONFIG_DEBUG_SET_MODULE_RONX
  79# define debug_align(X) ALIGN(X, PAGE_SIZE)
  80#else
  81# define debug_align(X) (X)
  82#endif
  83
 
 
 
 
 
 
 
 
 
  84/* If this is set, the section belongs in the init part of the module */
  85#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
  86
  87/*
  88 * Mutex protects:
  89 * 1) List of modules (also safely readable with preempt_disable),
  90 * 2) module_use links,
  91 * 3) module_addr_min/module_addr_max.
  92 * (delete and add uses RCU list operations). */
  93DEFINE_MUTEX(module_mutex);
  94EXPORT_SYMBOL_GPL(module_mutex);
  95static LIST_HEAD(modules);
  96
  97#ifdef CONFIG_MODULES_TREE_LOOKUP
  98
  99/*
 100 * Use a latched RB-tree for __module_address(); this allows us to use
 101 * RCU-sched lookups of the address from any context.
 102 *
 103 * This is conditional on PERF_EVENTS || TRACING because those can really hit
 104 * __module_address() hard by doing a lot of stack unwinding; potentially from
 105 * NMI context.
 106 */
 107
 108static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
 109{
 110	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 111
 112	return (unsigned long)layout->base;
 113}
 114
 115static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
 116{
 117	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 118
 119	return (unsigned long)layout->size;
 120}
 121
 122static __always_inline bool
 123mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
 124{
 125	return __mod_tree_val(a) < __mod_tree_val(b);
 126}
 127
 128static __always_inline int
 129mod_tree_comp(void *key, struct latch_tree_node *n)
 130{
 131	unsigned long val = (unsigned long)key;
 132	unsigned long start, end;
 133
 134	start = __mod_tree_val(n);
 135	if (val < start)
 136		return -1;
 137
 138	end = start + __mod_tree_size(n);
 139	if (val >= end)
 140		return 1;
 141
 142	return 0;
 143}
 144
 145static const struct latch_tree_ops mod_tree_ops = {
 146	.less = mod_tree_less,
 147	.comp = mod_tree_comp,
 148};
 149
 150static struct mod_tree_root {
 151	struct latch_tree_root root;
 152	unsigned long addr_min;
 153	unsigned long addr_max;
 154} mod_tree __cacheline_aligned = {
 155	.addr_min = -1UL,
 156};
 157
 158#define module_addr_min mod_tree.addr_min
 159#define module_addr_max mod_tree.addr_max
 160
 161static noinline void __mod_tree_insert(struct mod_tree_node *node)
 162{
 163	latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
 164}
 165
 166static void __mod_tree_remove(struct mod_tree_node *node)
 167{
 168	latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
 169}
 170
 171/*
 172 * These modifications: insert, remove_init and remove; are serialized by the
 173 * module_mutex.
 174 */
 175static void mod_tree_insert(struct module *mod)
 176{
 177	mod->core_layout.mtn.mod = mod;
 178	mod->init_layout.mtn.mod = mod;
 179
 180	__mod_tree_insert(&mod->core_layout.mtn);
 181	if (mod->init_layout.size)
 182		__mod_tree_insert(&mod->init_layout.mtn);
 183}
 184
 185static void mod_tree_remove_init(struct module *mod)
 186{
 187	if (mod->init_layout.size)
 188		__mod_tree_remove(&mod->init_layout.mtn);
 189}
 190
 191static void mod_tree_remove(struct module *mod)
 192{
 193	__mod_tree_remove(&mod->core_layout.mtn);
 194	mod_tree_remove_init(mod);
 195}
 196
 197static struct module *mod_find(unsigned long addr)
 198{
 199	struct latch_tree_node *ltn;
 200
 201	ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
 202	if (!ltn)
 203		return NULL;
 204
 205	return container_of(ltn, struct mod_tree_node, node)->mod;
 206}
 207
 208#else /* MODULES_TREE_LOOKUP */
 209
 210static unsigned long module_addr_min = -1UL, module_addr_max = 0;
 211
 212static void mod_tree_insert(struct module *mod) { }
 213static void mod_tree_remove_init(struct module *mod) { }
 214static void mod_tree_remove(struct module *mod) { }
 215
 216static struct module *mod_find(unsigned long addr)
 217{
 218	struct module *mod;
 219
 220	list_for_each_entry_rcu(mod, &modules, list) {
 221		if (within_module(addr, mod))
 222			return mod;
 223	}
 224
 225	return NULL;
 226}
 227
 228#endif /* MODULES_TREE_LOOKUP */
 229
 230/*
 231 * Bounds of module text, for speeding up __module_address.
 232 * Protected by module_mutex.
 233 */
 234static void __mod_update_bounds(void *base, unsigned int size)
 235{
 236	unsigned long min = (unsigned long)base;
 237	unsigned long max = min + size;
 238
 239	if (min < module_addr_min)
 240		module_addr_min = min;
 241	if (max > module_addr_max)
 242		module_addr_max = max;
 243}
 244
 245static void mod_update_bounds(struct module *mod)
 246{
 247	__mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
 248	if (mod->init_layout.size)
 249		__mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
 250}
 251
 252#ifdef CONFIG_KGDB_KDB
 253struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
 254#endif /* CONFIG_KGDB_KDB */
 255
 256static void module_assert_mutex(void)
 257{
 258	lockdep_assert_held(&module_mutex);
 259}
 260
 261static void module_assert_mutex_or_preempt(void)
 262{
 263#ifdef CONFIG_LOCKDEP
 264	if (unlikely(!debug_locks))
 265		return;
 266
 267	WARN_ON(!rcu_read_lock_sched_held() &&
 268		!lockdep_is_held(&module_mutex));
 269#endif
 270}
 271
 272static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
 273#ifndef CONFIG_MODULE_SIG_FORCE
 274module_param(sig_enforce, bool_enable_only, 0644);
 275#endif /* !CONFIG_MODULE_SIG_FORCE */
 276
 277/* Block module loading/unloading? */
 278int modules_disabled = 0;
 279core_param(nomodule, modules_disabled, bint, 0);
 280
 281/* Waiting for a module to finish initializing? */
 282static DECLARE_WAIT_QUEUE_HEAD(module_wq);
 283
 284static BLOCKING_NOTIFIER_HEAD(module_notify_list);
 285
 286int register_module_notifier(struct notifier_block *nb)
 
 
 
 
 287{
 288	return blocking_notifier_chain_register(&module_notify_list, nb);
 289}
 290EXPORT_SYMBOL(register_module_notifier);
 291
 292int unregister_module_notifier(struct notifier_block *nb)
 293{
 294	return blocking_notifier_chain_unregister(&module_notify_list, nb);
 295}
 296EXPORT_SYMBOL(unregister_module_notifier);
 297
 298struct load_info {
 299	Elf_Ehdr *hdr;
 300	unsigned long len;
 301	Elf_Shdr *sechdrs;
 302	char *secstrings, *strtab;
 
 303	unsigned long symoffs, stroffs;
 304	struct _ddebug *debug;
 305	unsigned int num_debug;
 306	bool sig_ok;
 307#ifdef CONFIG_KALLSYMS
 308	unsigned long mod_kallsyms_init_off;
 309#endif
 310	struct {
 311		unsigned int sym, str, mod, vers, info, pcpu;
 312	} index;
 313};
 314
 315/* We require a truly strong try_module_get(): 0 means failure due to
 316   ongoing or failed initialization etc. */
 317static inline int strong_try_module_get(struct module *mod)
 318{
 319	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
 320	if (mod && mod->state == MODULE_STATE_COMING)
 321		return -EBUSY;
 322	if (try_module_get(mod))
 323		return 0;
 324	else
 325		return -ENOENT;
 326}
 327
 328static inline void add_taint_module(struct module *mod, unsigned flag,
 329				    enum lockdep_ok lockdep_ok)
 330{
 331	add_taint(flag, lockdep_ok);
 332	mod->taints |= (1U << flag);
 333}
 334
 335/*
 336 * A thread that wants to hold a reference to a module only while it
 337 * is running can call this to safely exit.  nfsd and lockd use this.
 338 */
 339void __module_put_and_exit(struct module *mod, long code)
 340{
 341	module_put(mod);
 342	do_exit(code);
 343}
 344EXPORT_SYMBOL(__module_put_and_exit);
 345
 346/* Find a module section: 0 means not found. */
 347static unsigned int find_sec(const struct load_info *info, const char *name)
 348{
 349	unsigned int i;
 350
 351	for (i = 1; i < info->hdr->e_shnum; i++) {
 352		Elf_Shdr *shdr = &info->sechdrs[i];
 353		/* Alloc bit cleared means "ignore it." */
 354		if ((shdr->sh_flags & SHF_ALLOC)
 355		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
 356			return i;
 357	}
 358	return 0;
 359}
 360
 361/* Find a module section, or NULL. */
 362static void *section_addr(const struct load_info *info, const char *name)
 363{
 364	/* Section 0 has sh_addr 0. */
 365	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
 366}
 367
 368/* Find a module section, or NULL.  Fill in number of "objects" in section. */
 369static void *section_objs(const struct load_info *info,
 370			  const char *name,
 371			  size_t object_size,
 372			  unsigned int *num)
 373{
 374	unsigned int sec = find_sec(info, name);
 375
 376	/* Section 0 has sh_addr 0 and sh_size 0. */
 377	*num = info->sechdrs[sec].sh_size / object_size;
 378	return (void *)info->sechdrs[sec].sh_addr;
 379}
 380
 381/* Provided by the linker */
 382extern const struct kernel_symbol __start___ksymtab[];
 383extern const struct kernel_symbol __stop___ksymtab[];
 384extern const struct kernel_symbol __start___ksymtab_gpl[];
 385extern const struct kernel_symbol __stop___ksymtab_gpl[];
 386extern const struct kernel_symbol __start___ksymtab_gpl_future[];
 387extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
 388extern const unsigned long __start___kcrctab[];
 389extern const unsigned long __start___kcrctab_gpl[];
 390extern const unsigned long __start___kcrctab_gpl_future[];
 391#ifdef CONFIG_UNUSED_SYMBOLS
 392extern const struct kernel_symbol __start___ksymtab_unused[];
 393extern const struct kernel_symbol __stop___ksymtab_unused[];
 394extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
 395extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
 396extern const unsigned long __start___kcrctab_unused[];
 397extern const unsigned long __start___kcrctab_unused_gpl[];
 398#endif
 399
 400#ifndef CONFIG_MODVERSIONS
 401#define symversion(base, idx) NULL
 402#else
 403#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
 404#endif
 405
 406static bool each_symbol_in_section(const struct symsearch *arr,
 407				   unsigned int arrsize,
 408				   struct module *owner,
 409				   bool (*fn)(const struct symsearch *syms,
 410					      struct module *owner,
 411					      void *data),
 412				   void *data)
 413{
 414	unsigned int j;
 415
 416	for (j = 0; j < arrsize; j++) {
 417		if (fn(&arr[j], owner, data))
 418			return true;
 419	}
 420
 421	return false;
 422}
 423
 424/* Returns true as soon as fn returns true, otherwise false. */
 425bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
 426				    struct module *owner,
 427				    void *data),
 428			 void *data)
 429{
 430	struct module *mod;
 431	static const struct symsearch arr[] = {
 432		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
 433		  NOT_GPL_ONLY, false },
 434		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
 435		  __start___kcrctab_gpl,
 436		  GPL_ONLY, false },
 437		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
 438		  __start___kcrctab_gpl_future,
 439		  WILL_BE_GPL_ONLY, false },
 440#ifdef CONFIG_UNUSED_SYMBOLS
 441		{ __start___ksymtab_unused, __stop___ksymtab_unused,
 442		  __start___kcrctab_unused,
 443		  NOT_GPL_ONLY, true },
 444		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
 445		  __start___kcrctab_unused_gpl,
 446		  GPL_ONLY, true },
 447#endif
 448	};
 449
 450	module_assert_mutex_or_preempt();
 451
 452	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
 453		return true;
 454
 455	list_for_each_entry_rcu(mod, &modules, list) {
 456		struct symsearch arr[] = {
 457			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
 458			  NOT_GPL_ONLY, false },
 459			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
 460			  mod->gpl_crcs,
 461			  GPL_ONLY, false },
 462			{ mod->gpl_future_syms,
 463			  mod->gpl_future_syms + mod->num_gpl_future_syms,
 464			  mod->gpl_future_crcs,
 465			  WILL_BE_GPL_ONLY, false },
 466#ifdef CONFIG_UNUSED_SYMBOLS
 467			{ mod->unused_syms,
 468			  mod->unused_syms + mod->num_unused_syms,
 469			  mod->unused_crcs,
 470			  NOT_GPL_ONLY, true },
 471			{ mod->unused_gpl_syms,
 472			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
 473			  mod->unused_gpl_crcs,
 474			  GPL_ONLY, true },
 475#endif
 476		};
 477
 478		if (mod->state == MODULE_STATE_UNFORMED)
 479			continue;
 480
 481		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
 482			return true;
 483	}
 484	return false;
 485}
 486EXPORT_SYMBOL_GPL(each_symbol_section);
 487
 488struct find_symbol_arg {
 489	/* Input */
 490	const char *name;
 491	bool gplok;
 492	bool warn;
 493
 494	/* Output */
 495	struct module *owner;
 496	const unsigned long *crc;
 497	const struct kernel_symbol *sym;
 498};
 499
 500static bool check_symbol(const struct symsearch *syms,
 501				 struct module *owner,
 502				 unsigned int symnum, void *data)
 503{
 504	struct find_symbol_arg *fsa = data;
 505
 506	if (!fsa->gplok) {
 507		if (syms->licence == GPL_ONLY)
 508			return false;
 509		if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
 510			pr_warn("Symbol %s is being used by a non-GPL module, "
 511				"which will not be allowed in the future\n",
 512				fsa->name);
 
 
 
 513		}
 514	}
 515
 516#ifdef CONFIG_UNUSED_SYMBOLS
 517	if (syms->unused && fsa->warn) {
 518		pr_warn("Symbol %s is marked as UNUSED, however this module is "
 519			"using it.\n", fsa->name);
 520		pr_warn("This symbol will go away in the future.\n");
 521		pr_warn("Please evaluate if this is the right api to use and "
 522			"if it really is, submit a report to the linux kernel "
 523			"mailing list together with submitting your code for "
 524			"inclusion.\n");
 
 
 525	}
 526#endif
 527
 528	fsa->owner = owner;
 529	fsa->crc = symversion(syms->crcs, symnum);
 530	fsa->sym = &syms->start[symnum];
 531	return true;
 532}
 533
 534static int cmp_name(const void *va, const void *vb)
 535{
 536	const char *a;
 537	const struct kernel_symbol *b;
 538	a = va; b = vb;
 539	return strcmp(a, b->name);
 540}
 541
 542static bool find_symbol_in_section(const struct symsearch *syms,
 543				   struct module *owner,
 544				   void *data)
 545{
 546	struct find_symbol_arg *fsa = data;
 547	struct kernel_symbol *sym;
 548
 549	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
 550			sizeof(struct kernel_symbol), cmp_name);
 551
 552	if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
 553		return true;
 554
 555	return false;
 556}
 557
 558/* Find a symbol and return it, along with, (optional) crc and
 559 * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
 560const struct kernel_symbol *find_symbol(const char *name,
 561					struct module **owner,
 562					const unsigned long **crc,
 563					bool gplok,
 564					bool warn)
 565{
 566	struct find_symbol_arg fsa;
 567
 568	fsa.name = name;
 569	fsa.gplok = gplok;
 570	fsa.warn = warn;
 571
 572	if (each_symbol_section(find_symbol_in_section, &fsa)) {
 573		if (owner)
 574			*owner = fsa.owner;
 575		if (crc)
 576			*crc = fsa.crc;
 577		return fsa.sym;
 578	}
 579
 580	pr_debug("Failed to find symbol %s\n", name);
 581	return NULL;
 582}
 583EXPORT_SYMBOL_GPL(find_symbol);
 584
 585/*
 586 * Search for module by name: must hold module_mutex (or preempt disabled
 587 * for read-only access).
 588 */
 589static struct module *find_module_all(const char *name, size_t len,
 590				      bool even_unformed)
 591{
 592	struct module *mod;
 593
 594	module_assert_mutex_or_preempt();
 595
 596	list_for_each_entry(mod, &modules, list) {
 597		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
 598			continue;
 599		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
 600			return mod;
 601	}
 602	return NULL;
 603}
 604
 605struct module *find_module(const char *name)
 606{
 607	module_assert_mutex();
 608	return find_module_all(name, strlen(name), false);
 609}
 610EXPORT_SYMBOL_GPL(find_module);
 611
 612#ifdef CONFIG_SMP
 613
 614static inline void __percpu *mod_percpu(struct module *mod)
 615{
 616	return mod->percpu;
 617}
 618
 619static int percpu_modalloc(struct module *mod, struct load_info *info)
 
 620{
 621	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
 622	unsigned long align = pcpusec->sh_addralign;
 623
 624	if (!pcpusec->sh_size)
 625		return 0;
 626
 627	if (align > PAGE_SIZE) {
 628		pr_warn("%s: per-cpu alignment %li > %li\n",
 629			mod->name, align, PAGE_SIZE);
 630		align = PAGE_SIZE;
 631	}
 632
 633	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
 634	if (!mod->percpu) {
 635		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
 636			mod->name, (unsigned long)pcpusec->sh_size);
 
 637		return -ENOMEM;
 638	}
 639	mod->percpu_size = pcpusec->sh_size;
 640	return 0;
 641}
 642
 643static void percpu_modfree(struct module *mod)
 644{
 645	free_percpu(mod->percpu);
 646}
 647
 648static unsigned int find_pcpusec(struct load_info *info)
 649{
 650	return find_sec(info, ".data..percpu");
 651}
 652
 653static void percpu_modcopy(struct module *mod,
 654			   const void *from, unsigned long size)
 655{
 656	int cpu;
 657
 658	for_each_possible_cpu(cpu)
 659		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
 660}
 661
 662/**
 663 * is_module_percpu_address - test whether address is from module static percpu
 664 * @addr: address to test
 665 *
 666 * Test whether @addr belongs to module static percpu area.
 667 *
 668 * RETURNS:
 669 * %true if @addr is from module static percpu area
 670 */
 671bool is_module_percpu_address(unsigned long addr)
 672{
 673	struct module *mod;
 674	unsigned int cpu;
 675
 676	preempt_disable();
 677
 678	list_for_each_entry_rcu(mod, &modules, list) {
 679		if (mod->state == MODULE_STATE_UNFORMED)
 680			continue;
 681		if (!mod->percpu_size)
 682			continue;
 683		for_each_possible_cpu(cpu) {
 684			void *start = per_cpu_ptr(mod->percpu, cpu);
 685
 686			if ((void *)addr >= start &&
 687			    (void *)addr < start + mod->percpu_size) {
 688				preempt_enable();
 689				return true;
 690			}
 691		}
 692	}
 693
 694	preempt_enable();
 695	return false;
 696}
 697
 698#else /* ... !CONFIG_SMP */
 699
 700static inline void __percpu *mod_percpu(struct module *mod)
 701{
 702	return NULL;
 703}
 704static int percpu_modalloc(struct module *mod, struct load_info *info)
 
 705{
 706	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
 707	if (info->sechdrs[info->index.pcpu].sh_size != 0)
 708		return -ENOMEM;
 709	return 0;
 710}
 711static inline void percpu_modfree(struct module *mod)
 712{
 713}
 714static unsigned int find_pcpusec(struct load_info *info)
 715{
 716	return 0;
 717}
 718static inline void percpu_modcopy(struct module *mod,
 719				  const void *from, unsigned long size)
 720{
 721	/* pcpusec should be 0, and size of that section should be 0. */
 722	BUG_ON(size != 0);
 723}
 724bool is_module_percpu_address(unsigned long addr)
 725{
 726	return false;
 727}
 728
 729#endif /* CONFIG_SMP */
 730
 731#define MODINFO_ATTR(field)	\
 732static void setup_modinfo_##field(struct module *mod, const char *s)  \
 733{                                                                     \
 734	mod->field = kstrdup(s, GFP_KERNEL);                          \
 735}                                                                     \
 736static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
 737			struct module_kobject *mk, char *buffer)      \
 738{                                                                     \
 739	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
 740}                                                                     \
 741static int modinfo_##field##_exists(struct module *mod)               \
 742{                                                                     \
 743	return mod->field != NULL;                                    \
 744}                                                                     \
 745static void free_modinfo_##field(struct module *mod)                  \
 746{                                                                     \
 747	kfree(mod->field);                                            \
 748	mod->field = NULL;                                            \
 749}                                                                     \
 750static struct module_attribute modinfo_##field = {                    \
 751	.attr = { .name = __stringify(field), .mode = 0444 },         \
 752	.show = show_modinfo_##field,                                 \
 753	.setup = setup_modinfo_##field,                               \
 754	.test = modinfo_##field##_exists,                             \
 755	.free = free_modinfo_##field,                                 \
 756};
 757
 758MODINFO_ATTR(version);
 759MODINFO_ATTR(srcversion);
 760
 761static char last_unloaded_module[MODULE_NAME_LEN+1];
 762
 763#ifdef CONFIG_MODULE_UNLOAD
 764
 765EXPORT_TRACEPOINT_SYMBOL(module_get);
 766
 767/* MODULE_REF_BASE is the base reference count by kmodule loader. */
 768#define MODULE_REF_BASE	1
 769
 770/* Init the unload section of the module. */
 771static int module_unload_init(struct module *mod)
 772{
 773	/*
 774	 * Initialize reference counter to MODULE_REF_BASE.
 775	 * refcnt == 0 means module is going.
 776	 */
 777	atomic_set(&mod->refcnt, MODULE_REF_BASE);
 778
 779	INIT_LIST_HEAD(&mod->source_list);
 780	INIT_LIST_HEAD(&mod->target_list);
 781
 782	/* Hold reference count during initialization. */
 783	atomic_inc(&mod->refcnt);
 
 
 784
 785	return 0;
 786}
 787
 788/* Does a already use b? */
 789static int already_uses(struct module *a, struct module *b)
 790{
 791	struct module_use *use;
 792
 793	list_for_each_entry(use, &b->source_list, source_list) {
 794		if (use->source == a) {
 795			pr_debug("%s uses %s!\n", a->name, b->name);
 796			return 1;
 797		}
 798	}
 799	pr_debug("%s does not use %s!\n", a->name, b->name);
 800	return 0;
 801}
 802
 803/*
 804 * Module a uses b
 805 *  - we add 'a' as a "source", 'b' as a "target" of module use
 806 *  - the module_use is added to the list of 'b' sources (so
 807 *    'b' can walk the list to see who sourced them), and of 'a'
 808 *    targets (so 'a' can see what modules it targets).
 809 */
 810static int add_module_usage(struct module *a, struct module *b)
 811{
 812	struct module_use *use;
 813
 814	pr_debug("Allocating new usage for %s.\n", a->name);
 815	use = kmalloc(sizeof(*use), GFP_ATOMIC);
 816	if (!use) {
 817		pr_warn("%s: out of memory loading\n", a->name);
 818		return -ENOMEM;
 819	}
 820
 821	use->source = a;
 822	use->target = b;
 823	list_add(&use->source_list, &b->source_list);
 824	list_add(&use->target_list, &a->target_list);
 825	return 0;
 826}
 827
 828/* Module a uses b: caller needs module_mutex() */
 829int ref_module(struct module *a, struct module *b)
 830{
 831	int err;
 832
 833	if (b == NULL || already_uses(a, b))
 834		return 0;
 835
 836	/* If module isn't available, we fail. */
 837	err = strong_try_module_get(b);
 838	if (err)
 839		return err;
 840
 841	err = add_module_usage(a, b);
 842	if (err) {
 843		module_put(b);
 844		return err;
 845	}
 846	return 0;
 847}
 848EXPORT_SYMBOL_GPL(ref_module);
 849
 850/* Clear the unload stuff of the module. */
 851static void module_unload_free(struct module *mod)
 852{
 853	struct module_use *use, *tmp;
 854
 855	mutex_lock(&module_mutex);
 856	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
 857		struct module *i = use->target;
 858		pr_debug("%s unusing %s\n", mod->name, i->name);
 859		module_put(i);
 860		list_del(&use->source_list);
 861		list_del(&use->target_list);
 862		kfree(use);
 863	}
 864	mutex_unlock(&module_mutex);
 
 
 865}
 866
 867#ifdef CONFIG_MODULE_FORCE_UNLOAD
 868static inline int try_force_unload(unsigned int flags)
 869{
 870	int ret = (flags & O_TRUNC);
 871	if (ret)
 872		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
 873	return ret;
 874}
 875#else
 876static inline int try_force_unload(unsigned int flags)
 877{
 878	return 0;
 879}
 880#endif /* CONFIG_MODULE_FORCE_UNLOAD */
 881
 882/* Try to release refcount of module, 0 means success. */
 883static int try_release_module_ref(struct module *mod)
 884{
 885	int ret;
 886
 887	/* Try to decrement refcnt which we set at loading */
 888	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
 889	BUG_ON(ret < 0);
 890	if (ret)
 891		/* Someone can put this right now, recover with checking */
 892		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
 893
 894	return ret;
 895}
 896
 897static int try_stop_module(struct module *mod, int flags, int *forced)
 
 898{
 
 
 899	/* If it's not unused, quit unless we're forcing. */
 900	if (try_release_module_ref(mod) != 0) {
 901		*forced = try_force_unload(flags);
 902		if (!(*forced))
 903			return -EWOULDBLOCK;
 904	}
 905
 906	/* Mark it as dying. */
 907	mod->state = MODULE_STATE_GOING;
 908
 909	return 0;
 910}
 911
 912/**
 913 * module_refcount - return the refcount or -1 if unloading
 914 *
 915 * @mod:	the module we're checking
 916 *
 917 * Returns:
 918 *	-1 if the module is in the process of unloading
 919 *	otherwise the number of references in the kernel to the module
 920 */
 921int module_refcount(struct module *mod)
 
 
 
 
 
 922{
 923	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924}
 925EXPORT_SYMBOL(module_refcount);
 926
 927/* This exists whether we can unload or not */
 928static void free_module(struct module *mod);
 929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 930SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
 931		unsigned int, flags)
 932{
 933	struct module *mod;
 934	char name[MODULE_NAME_LEN];
 935	int ret, forced = 0;
 936
 937	if (!capable(CAP_SYS_MODULE) || modules_disabled)
 938		return -EPERM;
 939
 940	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
 941		return -EFAULT;
 942	name[MODULE_NAME_LEN-1] = '\0';
 943
 944	if (mutex_lock_interruptible(&module_mutex) != 0)
 945		return -EINTR;
 946
 947	mod = find_module(name);
 948	if (!mod) {
 949		ret = -ENOENT;
 950		goto out;
 951	}
 952
 953	if (!list_empty(&mod->source_list)) {
 954		/* Other modules depend on us: get rid of them first. */
 955		ret = -EWOULDBLOCK;
 956		goto out;
 957	}
 958
 959	/* Doing init or already dying? */
 960	if (mod->state != MODULE_STATE_LIVE) {
 961		/* FIXME: if (force), slam module count damn the torpedoes */
 962		pr_debug("%s already dying\n", mod->name);
 
 963		ret = -EBUSY;
 964		goto out;
 965	}
 966
 967	/* If it has an init func, it must have an exit func to unload */
 968	if (mod->init && !mod->exit) {
 969		forced = try_force_unload(flags);
 970		if (!forced) {
 971			/* This module can't be removed */
 972			ret = -EBUSY;
 973			goto out;
 974		}
 975	}
 976
 
 
 
 977	/* Stop the machine so refcounts can't move and disable module. */
 978	ret = try_stop_module(mod, flags, &forced);
 979	if (ret != 0)
 980		goto out;
 981
 
 
 
 
 982	mutex_unlock(&module_mutex);
 983	/* Final destruction now no one is using it. */
 984	if (mod->exit != NULL)
 985		mod->exit();
 986	blocking_notifier_call_chain(&module_notify_list,
 987				     MODULE_STATE_GOING, mod);
 988	klp_module_going(mod);
 989	ftrace_release_mod(mod);
 990
 991	async_synchronize_full();
 992
 993	/* Store the name of the last unloaded module for diagnostic purposes */
 994	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
 995
 996	free_module(mod);
 997	return 0;
 998out:
 999	mutex_unlock(&module_mutex);
1000	return ret;
1001}
1002
1003static inline void print_unload_info(struct seq_file *m, struct module *mod)
1004{
1005	struct module_use *use;
1006	int printed_something = 0;
1007
1008	seq_printf(m, " %i ", module_refcount(mod));
1009
1010	/*
1011	 * Always include a trailing , so userspace can differentiate
1012	 * between this and the old multi-field proc format.
1013	 */
1014	list_for_each_entry(use, &mod->source_list, source_list) {
1015		printed_something = 1;
1016		seq_printf(m, "%s,", use->source->name);
1017	}
1018
1019	if (mod->init != NULL && mod->exit == NULL) {
1020		printed_something = 1;
1021		seq_puts(m, "[permanent],");
1022	}
1023
1024	if (!printed_something)
1025		seq_puts(m, "-");
1026}
1027
1028void __symbol_put(const char *symbol)
1029{
1030	struct module *owner;
1031
1032	preempt_disable();
1033	if (!find_symbol(symbol, &owner, NULL, true, false))
1034		BUG();
1035	module_put(owner);
1036	preempt_enable();
1037}
1038EXPORT_SYMBOL(__symbol_put);
1039
1040/* Note this assumes addr is a function, which it currently always is. */
1041void symbol_put_addr(void *addr)
1042{
1043	struct module *modaddr;
1044	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1045
1046	if (core_kernel_text(a))
1047		return;
1048
1049	/*
1050	 * Even though we hold a reference on the module; we still need to
1051	 * disable preemption in order to safely traverse the data structure.
1052	 */
1053	preempt_disable();
1054	modaddr = __module_text_address(a);
1055	BUG_ON(!modaddr);
1056	module_put(modaddr);
1057	preempt_enable();
1058}
1059EXPORT_SYMBOL_GPL(symbol_put_addr);
1060
1061static ssize_t show_refcnt(struct module_attribute *mattr,
1062			   struct module_kobject *mk, char *buffer)
1063{
1064	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1065}
1066
1067static struct module_attribute modinfo_refcnt =
1068	__ATTR(refcnt, 0444, show_refcnt, NULL);
1069
1070void __module_get(struct module *module)
1071{
1072	if (module) {
1073		preempt_disable();
1074		atomic_inc(&module->refcnt);
1075		trace_module_get(module, _RET_IP_);
1076		preempt_enable();
1077	}
1078}
1079EXPORT_SYMBOL(__module_get);
1080
1081bool try_module_get(struct module *module)
1082{
1083	bool ret = true;
1084
1085	if (module) {
1086		preempt_disable();
1087		/* Note: here, we can fail to get a reference */
1088		if (likely(module_is_live(module) &&
1089			   atomic_inc_not_zero(&module->refcnt) != 0))
1090			trace_module_get(module, _RET_IP_);
1091		else
1092			ret = false;
1093
1094		preempt_enable();
1095	}
1096	return ret;
1097}
1098EXPORT_SYMBOL(try_module_get);
1099
1100void module_put(struct module *module)
1101{
1102	int ret;
1103
1104	if (module) {
1105		preempt_disable();
1106		ret = atomic_dec_if_positive(&module->refcnt);
1107		WARN_ON(ret < 0);	/* Failed to put refcount */
 
1108		trace_module_put(module, _RET_IP_);
 
 
 
1109		preempt_enable();
1110	}
1111}
1112EXPORT_SYMBOL(module_put);
1113
1114#else /* !CONFIG_MODULE_UNLOAD */
1115static inline void print_unload_info(struct seq_file *m, struct module *mod)
1116{
1117	/* We don't know the usage count, or what modules are using. */
1118	seq_puts(m, " - -");
1119}
1120
1121static inline void module_unload_free(struct module *mod)
1122{
1123}
1124
1125int ref_module(struct module *a, struct module *b)
1126{
1127	return strong_try_module_get(b);
1128}
1129EXPORT_SYMBOL_GPL(ref_module);
1130
1131static inline int module_unload_init(struct module *mod)
1132{
1133	return 0;
1134}
1135#endif /* CONFIG_MODULE_UNLOAD */
1136
1137static size_t module_flags_taint(struct module *mod, char *buf)
1138{
1139	size_t l = 0;
1140
1141	if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1142		buf[l++] = 'P';
1143	if (mod->taints & (1 << TAINT_OOT_MODULE))
1144		buf[l++] = 'O';
1145	if (mod->taints & (1 << TAINT_FORCED_MODULE))
1146		buf[l++] = 'F';
1147	if (mod->taints & (1 << TAINT_CRAP))
1148		buf[l++] = 'C';
1149	if (mod->taints & (1 << TAINT_UNSIGNED_MODULE))
1150		buf[l++] = 'E';
1151	/*
1152	 * TAINT_FORCED_RMMOD: could be added.
1153	 * TAINT_CPU_OUT_OF_SPEC, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1154	 * apply to modules.
1155	 */
1156	return l;
1157}
1158
1159static ssize_t show_initstate(struct module_attribute *mattr,
1160			      struct module_kobject *mk, char *buffer)
1161{
1162	const char *state = "unknown";
1163
1164	switch (mk->mod->state) {
1165	case MODULE_STATE_LIVE:
1166		state = "live";
1167		break;
1168	case MODULE_STATE_COMING:
1169		state = "coming";
1170		break;
1171	case MODULE_STATE_GOING:
1172		state = "going";
1173		break;
1174	default:
1175		BUG();
1176	}
1177	return sprintf(buffer, "%s\n", state);
1178}
1179
1180static struct module_attribute modinfo_initstate =
1181	__ATTR(initstate, 0444, show_initstate, NULL);
 
 
1182
1183static ssize_t store_uevent(struct module_attribute *mattr,
1184			    struct module_kobject *mk,
1185			    const char *buffer, size_t count)
1186{
1187	enum kobject_action action;
1188
1189	if (kobject_action_type(buffer, count, &action) == 0)
1190		kobject_uevent(&mk->kobj, action);
1191	return count;
1192}
1193
1194struct module_attribute module_uevent =
1195	__ATTR(uevent, 0200, NULL, store_uevent);
1196
1197static ssize_t show_coresize(struct module_attribute *mattr,
1198			     struct module_kobject *mk, char *buffer)
1199{
1200	return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1201}
1202
1203static struct module_attribute modinfo_coresize =
1204	__ATTR(coresize, 0444, show_coresize, NULL);
1205
1206static ssize_t show_initsize(struct module_attribute *mattr,
1207			     struct module_kobject *mk, char *buffer)
1208{
1209	return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1210}
1211
1212static struct module_attribute modinfo_initsize =
1213	__ATTR(initsize, 0444, show_initsize, NULL);
1214
1215static ssize_t show_taint(struct module_attribute *mattr,
1216			  struct module_kobject *mk, char *buffer)
1217{
1218	size_t l;
1219
1220	l = module_flags_taint(mk->mod, buffer);
1221	buffer[l++] = '\n';
1222	return l;
1223}
1224
1225static struct module_attribute modinfo_taint =
1226	__ATTR(taint, 0444, show_taint, NULL);
1227
1228static struct module_attribute *modinfo_attrs[] = {
1229	&module_uevent,
1230	&modinfo_version,
1231	&modinfo_srcversion,
1232	&modinfo_initstate,
1233	&modinfo_coresize,
1234	&modinfo_initsize,
1235	&modinfo_taint,
1236#ifdef CONFIG_MODULE_UNLOAD
1237	&modinfo_refcnt,
1238#endif
1239	NULL,
1240};
1241
1242static const char vermagic[] = VERMAGIC_STRING;
1243
1244static int try_to_force_load(struct module *mod, const char *reason)
1245{
1246#ifdef CONFIG_MODULE_FORCE_LOAD
1247	if (!test_taint(TAINT_FORCED_MODULE))
1248		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1249	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
 
1250	return 0;
1251#else
1252	return -ENOEXEC;
1253#endif
1254}
1255
1256#ifdef CONFIG_MODVERSIONS
1257/* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1258static unsigned long maybe_relocated(unsigned long crc,
1259				     const struct module *crc_owner)
1260{
1261#ifdef ARCH_RELOCATES_KCRCTAB
1262	if (crc_owner == NULL)
1263		return crc - (unsigned long)reloc_start;
1264#endif
1265	return crc;
1266}
1267
1268static int check_version(Elf_Shdr *sechdrs,
1269			 unsigned int versindex,
1270			 const char *symname,
1271			 struct module *mod,
1272			 const unsigned long *crc,
1273			 const struct module *crc_owner)
1274{
1275	unsigned int i, num_versions;
1276	struct modversion_info *versions;
1277
1278	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1279	if (!crc)
1280		return 1;
1281
1282	/* No versions at all?  modprobe --force does this. */
1283	if (versindex == 0)
1284		return try_to_force_load(mod, symname) == 0;
1285
1286	versions = (void *) sechdrs[versindex].sh_addr;
1287	num_versions = sechdrs[versindex].sh_size
1288		/ sizeof(struct modversion_info);
1289
1290	for (i = 0; i < num_versions; i++) {
1291		if (strcmp(versions[i].name, symname) != 0)
1292			continue;
1293
1294		if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1295			return 1;
1296		pr_debug("Found checksum %lX vs module %lX\n",
1297		       maybe_relocated(*crc, crc_owner), versions[i].crc);
1298		goto bad_version;
1299	}
1300
1301	pr_warn("%s: no symbol version for %s\n", mod->name, symname);
 
1302	return 0;
1303
1304bad_version:
1305	pr_warn("%s: disagrees about version of symbol %s\n",
1306	       mod->name, symname);
1307	return 0;
1308}
1309
1310static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1311					  unsigned int versindex,
1312					  struct module *mod)
1313{
1314	const unsigned long *crc;
1315
1316	/*
1317	 * Since this should be found in kernel (which can't be removed), no
1318	 * locking is necessary -- use preempt_disable() to placate lockdep.
1319	 */
1320	preempt_disable();
1321	if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1322			 &crc, true, false)) {
1323		preempt_enable();
1324		BUG();
1325	}
1326	preempt_enable();
1327	return check_version(sechdrs, versindex,
1328			     VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1329			     NULL);
1330}
1331
1332/* First part is kernel version, which we ignore if module has crcs. */
1333static inline int same_magic(const char *amagic, const char *bmagic,
1334			     bool has_crcs)
1335{
1336	if (has_crcs) {
1337		amagic += strcspn(amagic, " ");
1338		bmagic += strcspn(bmagic, " ");
1339	}
1340	return strcmp(amagic, bmagic) == 0;
1341}
1342#else
1343static inline int check_version(Elf_Shdr *sechdrs,
1344				unsigned int versindex,
1345				const char *symname,
1346				struct module *mod,
1347				const unsigned long *crc,
1348				const struct module *crc_owner)
1349{
1350	return 1;
1351}
1352
1353static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1354					  unsigned int versindex,
1355					  struct module *mod)
1356{
1357	return 1;
1358}
1359
1360static inline int same_magic(const char *amagic, const char *bmagic,
1361			     bool has_crcs)
1362{
1363	return strcmp(amagic, bmagic) == 0;
1364}
1365#endif /* CONFIG_MODVERSIONS */
1366
1367/* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1368static const struct kernel_symbol *resolve_symbol(struct module *mod,
1369						  const struct load_info *info,
1370						  const char *name,
1371						  char ownername[])
1372{
1373	struct module *owner;
1374	const struct kernel_symbol *sym;
1375	const unsigned long *crc;
1376	int err;
1377
1378	/*
1379	 * The module_mutex should not be a heavily contended lock;
1380	 * if we get the occasional sleep here, we'll go an extra iteration
1381	 * in the wait_event_interruptible(), which is harmless.
1382	 */
1383	sched_annotate_sleep();
1384	mutex_lock(&module_mutex);
1385	sym = find_symbol(name, &owner, &crc,
1386			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1387	if (!sym)
1388		goto unlock;
1389
1390	if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1391			   owner)) {
1392		sym = ERR_PTR(-EINVAL);
1393		goto getname;
1394	}
1395
1396	err = ref_module(mod, owner);
1397	if (err) {
1398		sym = ERR_PTR(err);
1399		goto getname;
1400	}
1401
1402getname:
1403	/* We must make copy under the lock if we failed to get ref. */
1404	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1405unlock:
1406	mutex_unlock(&module_mutex);
1407	return sym;
1408}
1409
1410static const struct kernel_symbol *
1411resolve_symbol_wait(struct module *mod,
1412		    const struct load_info *info,
1413		    const char *name)
1414{
1415	const struct kernel_symbol *ksym;
1416	char owner[MODULE_NAME_LEN];
1417
1418	if (wait_event_interruptible_timeout(module_wq,
1419			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1420			|| PTR_ERR(ksym) != -EBUSY,
1421					     30 * HZ) <= 0) {
1422		pr_warn("%s: gave up waiting for init of module %s.\n",
1423			mod->name, owner);
1424	}
1425	return ksym;
1426}
1427
1428/*
1429 * /sys/module/foo/sections stuff
1430 * J. Corbet <corbet@lwn.net>
1431 */
1432#ifdef CONFIG_SYSFS
1433
1434#ifdef CONFIG_KALLSYMS
1435static inline bool sect_empty(const Elf_Shdr *sect)
1436{
1437	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1438}
1439
1440struct module_sect_attr {
 
1441	struct module_attribute mattr;
1442	char *name;
1443	unsigned long address;
1444};
1445
1446struct module_sect_attrs {
 
1447	struct attribute_group grp;
1448	unsigned int nsections;
1449	struct module_sect_attr attrs[0];
1450};
1451
1452static ssize_t module_sect_show(struct module_attribute *mattr,
1453				struct module_kobject *mk, char *buf)
1454{
1455	struct module_sect_attr *sattr =
1456		container_of(mattr, struct module_sect_attr, mattr);
1457	return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1458}
1459
1460static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1461{
1462	unsigned int section;
1463
1464	for (section = 0; section < sect_attrs->nsections; section++)
1465		kfree(sect_attrs->attrs[section].name);
1466	kfree(sect_attrs);
1467}
1468
1469static void add_sect_attrs(struct module *mod, const struct load_info *info)
1470{
1471	unsigned int nloaded = 0, i, size[2];
1472	struct module_sect_attrs *sect_attrs;
1473	struct module_sect_attr *sattr;
1474	struct attribute **gattr;
1475
1476	/* Count loaded sections and allocate structures */
1477	for (i = 0; i < info->hdr->e_shnum; i++)
1478		if (!sect_empty(&info->sechdrs[i]))
1479			nloaded++;
1480	size[0] = ALIGN(sizeof(*sect_attrs)
1481			+ nloaded * sizeof(sect_attrs->attrs[0]),
1482			sizeof(sect_attrs->grp.attrs[0]));
1483	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1484	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1485	if (sect_attrs == NULL)
1486		return;
1487
1488	/* Setup section attributes. */
1489	sect_attrs->grp.name = "sections";
1490	sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1491
1492	sect_attrs->nsections = 0;
1493	sattr = &sect_attrs->attrs[0];
1494	gattr = &sect_attrs->grp.attrs[0];
1495	for (i = 0; i < info->hdr->e_shnum; i++) {
1496		Elf_Shdr *sec = &info->sechdrs[i];
1497		if (sect_empty(sec))
1498			continue;
1499		sattr->address = sec->sh_addr;
1500		sattr->name = kstrdup(info->secstrings + sec->sh_name,
1501					GFP_KERNEL);
1502		if (sattr->name == NULL)
1503			goto out;
1504		sect_attrs->nsections++;
1505		sysfs_attr_init(&sattr->mattr.attr);
1506		sattr->mattr.show = module_sect_show;
1507		sattr->mattr.store = NULL;
1508		sattr->mattr.attr.name = sattr->name;
1509		sattr->mattr.attr.mode = S_IRUGO;
1510		*(gattr++) = &(sattr++)->mattr.attr;
1511	}
1512	*gattr = NULL;
1513
1514	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1515		goto out;
1516
1517	mod->sect_attrs = sect_attrs;
1518	return;
1519  out:
1520	free_sect_attrs(sect_attrs);
1521}
1522
1523static void remove_sect_attrs(struct module *mod)
1524{
1525	if (mod->sect_attrs) {
1526		sysfs_remove_group(&mod->mkobj.kobj,
1527				   &mod->sect_attrs->grp);
1528		/* We are positive that no one is using any sect attrs
1529		 * at this point.  Deallocate immediately. */
1530		free_sect_attrs(mod->sect_attrs);
1531		mod->sect_attrs = NULL;
1532	}
1533}
1534
1535/*
1536 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1537 */
1538
1539struct module_notes_attrs {
1540	struct kobject *dir;
1541	unsigned int notes;
1542	struct bin_attribute attrs[0];
1543};
1544
1545static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1546				 struct bin_attribute *bin_attr,
1547				 char *buf, loff_t pos, size_t count)
1548{
1549	/*
1550	 * The caller checked the pos and count against our size.
1551	 */
1552	memcpy(buf, bin_attr->private + pos, count);
1553	return count;
1554}
1555
1556static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1557			     unsigned int i)
1558{
1559	if (notes_attrs->dir) {
1560		while (i-- > 0)
1561			sysfs_remove_bin_file(notes_attrs->dir,
1562					      &notes_attrs->attrs[i]);
1563		kobject_put(notes_attrs->dir);
1564	}
1565	kfree(notes_attrs);
1566}
1567
1568static void add_notes_attrs(struct module *mod, const struct load_info *info)
1569{
1570	unsigned int notes, loaded, i;
1571	struct module_notes_attrs *notes_attrs;
1572	struct bin_attribute *nattr;
1573
1574	/* failed to create section attributes, so can't create notes */
1575	if (!mod->sect_attrs)
1576		return;
1577
1578	/* Count notes sections and allocate structures.  */
1579	notes = 0;
1580	for (i = 0; i < info->hdr->e_shnum; i++)
1581		if (!sect_empty(&info->sechdrs[i]) &&
1582		    (info->sechdrs[i].sh_type == SHT_NOTE))
1583			++notes;
1584
1585	if (notes == 0)
1586		return;
1587
1588	notes_attrs = kzalloc(sizeof(*notes_attrs)
1589			      + notes * sizeof(notes_attrs->attrs[0]),
1590			      GFP_KERNEL);
1591	if (notes_attrs == NULL)
1592		return;
1593
1594	notes_attrs->notes = notes;
1595	nattr = &notes_attrs->attrs[0];
1596	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1597		if (sect_empty(&info->sechdrs[i]))
1598			continue;
1599		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1600			sysfs_bin_attr_init(nattr);
1601			nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1602			nattr->attr.mode = S_IRUGO;
1603			nattr->size = info->sechdrs[i].sh_size;
1604			nattr->private = (void *) info->sechdrs[i].sh_addr;
1605			nattr->read = module_notes_read;
1606			++nattr;
1607		}
1608		++loaded;
1609	}
1610
1611	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1612	if (!notes_attrs->dir)
1613		goto out;
1614
1615	for (i = 0; i < notes; ++i)
1616		if (sysfs_create_bin_file(notes_attrs->dir,
1617					  &notes_attrs->attrs[i]))
1618			goto out;
1619
1620	mod->notes_attrs = notes_attrs;
1621	return;
1622
1623  out:
1624	free_notes_attrs(notes_attrs, i);
1625}
1626
1627static void remove_notes_attrs(struct module *mod)
1628{
1629	if (mod->notes_attrs)
1630		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1631}
1632
1633#else
1634
1635static inline void add_sect_attrs(struct module *mod,
1636				  const struct load_info *info)
1637{
1638}
1639
1640static inline void remove_sect_attrs(struct module *mod)
1641{
1642}
1643
1644static inline void add_notes_attrs(struct module *mod,
1645				   const struct load_info *info)
1646{
1647}
1648
1649static inline void remove_notes_attrs(struct module *mod)
1650{
1651}
1652#endif /* CONFIG_KALLSYMS */
1653
1654static void add_usage_links(struct module *mod)
1655{
1656#ifdef CONFIG_MODULE_UNLOAD
1657	struct module_use *use;
1658	int nowarn;
1659
1660	mutex_lock(&module_mutex);
1661	list_for_each_entry(use, &mod->target_list, target_list) {
1662		nowarn = sysfs_create_link(use->target->holders_dir,
1663					   &mod->mkobj.kobj, mod->name);
1664	}
1665	mutex_unlock(&module_mutex);
1666#endif
1667}
1668
1669static void del_usage_links(struct module *mod)
1670{
1671#ifdef CONFIG_MODULE_UNLOAD
1672	struct module_use *use;
1673
1674	mutex_lock(&module_mutex);
1675	list_for_each_entry(use, &mod->target_list, target_list)
1676		sysfs_remove_link(use->target->holders_dir, mod->name);
1677	mutex_unlock(&module_mutex);
1678#endif
1679}
1680
1681static int module_add_modinfo_attrs(struct module *mod)
1682{
1683	struct module_attribute *attr;
1684	struct module_attribute *temp_attr;
1685	int error = 0;
1686	int i;
1687
1688	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1689					(ARRAY_SIZE(modinfo_attrs) + 1)),
1690					GFP_KERNEL);
1691	if (!mod->modinfo_attrs)
1692		return -ENOMEM;
1693
1694	temp_attr = mod->modinfo_attrs;
1695	for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1696		if (!attr->test ||
1697		    (attr->test && attr->test(mod))) {
1698			memcpy(temp_attr, attr, sizeof(*temp_attr));
1699			sysfs_attr_init(&temp_attr->attr);
1700			error = sysfs_create_file(&mod->mkobj.kobj,
1701					&temp_attr->attr);
1702			++temp_attr;
1703		}
1704	}
1705	return error;
1706}
1707
1708static void module_remove_modinfo_attrs(struct module *mod)
1709{
1710	struct module_attribute *attr;
1711	int i;
1712
1713	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1714		/* pick a field to test for end of list */
1715		if (!attr->attr.name)
1716			break;
1717		sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1718		if (attr->free)
1719			attr->free(mod);
1720	}
1721	kfree(mod->modinfo_attrs);
1722}
1723
1724static void mod_kobject_put(struct module *mod)
1725{
1726	DECLARE_COMPLETION_ONSTACK(c);
1727	mod->mkobj.kobj_completion = &c;
1728	kobject_put(&mod->mkobj.kobj);
1729	wait_for_completion(&c);
1730}
1731
1732static int mod_sysfs_init(struct module *mod)
1733{
1734	int err;
1735	struct kobject *kobj;
1736
1737	if (!module_sysfs_initialized) {
1738		pr_err("%s: module sysfs not initialized\n", mod->name);
 
1739		err = -EINVAL;
1740		goto out;
1741	}
1742
1743	kobj = kset_find_obj(module_kset, mod->name);
1744	if (kobj) {
1745		pr_err("%s: module is already loaded\n", mod->name);
1746		kobject_put(kobj);
1747		err = -EINVAL;
1748		goto out;
1749	}
1750
1751	mod->mkobj.mod = mod;
1752
1753	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1754	mod->mkobj.kobj.kset = module_kset;
1755	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1756				   "%s", mod->name);
1757	if (err)
1758		mod_kobject_put(mod);
1759
1760	/* delay uevent until full sysfs population */
1761out:
1762	return err;
1763}
1764
1765static int mod_sysfs_setup(struct module *mod,
1766			   const struct load_info *info,
1767			   struct kernel_param *kparam,
1768			   unsigned int num_params)
1769{
1770	int err;
1771
1772	err = mod_sysfs_init(mod);
1773	if (err)
1774		goto out;
1775
1776	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1777	if (!mod->holders_dir) {
1778		err = -ENOMEM;
1779		goto out_unreg;
1780	}
1781
1782	err = module_param_sysfs_setup(mod, kparam, num_params);
1783	if (err)
1784		goto out_unreg_holders;
1785
1786	err = module_add_modinfo_attrs(mod);
1787	if (err)
1788		goto out_unreg_param;
1789
1790	add_usage_links(mod);
1791	add_sect_attrs(mod, info);
1792	add_notes_attrs(mod, info);
1793
1794	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1795	return 0;
1796
1797out_unreg_param:
1798	module_param_sysfs_remove(mod);
1799out_unreg_holders:
1800	kobject_put(mod->holders_dir);
1801out_unreg:
1802	mod_kobject_put(mod);
1803out:
1804	return err;
1805}
1806
1807static void mod_sysfs_fini(struct module *mod)
1808{
1809	remove_notes_attrs(mod);
1810	remove_sect_attrs(mod);
1811	mod_kobject_put(mod);
1812}
1813
1814static void init_param_lock(struct module *mod)
1815{
1816	mutex_init(&mod->param_lock);
1817}
1818#else /* !CONFIG_SYSFS */
1819
1820static int mod_sysfs_setup(struct module *mod,
1821			   const struct load_info *info,
1822			   struct kernel_param *kparam,
1823			   unsigned int num_params)
1824{
1825	return 0;
1826}
1827
1828static void mod_sysfs_fini(struct module *mod)
1829{
1830}
1831
1832static void module_remove_modinfo_attrs(struct module *mod)
1833{
1834}
1835
1836static void del_usage_links(struct module *mod)
1837{
1838}
1839
1840static void init_param_lock(struct module *mod)
1841{
1842}
1843#endif /* CONFIG_SYSFS */
1844
1845static void mod_sysfs_teardown(struct module *mod)
1846{
1847	del_usage_links(mod);
1848	module_remove_modinfo_attrs(mod);
1849	module_param_sysfs_remove(mod);
1850	kobject_put(mod->mkobj.drivers_dir);
1851	kobject_put(mod->holders_dir);
1852	mod_sysfs_fini(mod);
1853}
1854
 
 
 
 
 
 
 
 
 
 
 
 
1855#ifdef CONFIG_DEBUG_SET_MODULE_RONX
1856/*
1857 * LKM RO/NX protection: protect module's text/ro-data
1858 * from modification and any data from execution.
1859 *
1860 * General layout of module is:
1861 *          [text] [read-only-data] [writable data]
1862 * text_size -----^                ^               ^
1863 * ro_size ------------------------|               |
1864 * size -------------------------------------------|
1865 *
1866 * These values are always page-aligned (as is base)
1867 */
1868static void frob_text(const struct module_layout *layout,
1869		      int (*set_memory)(unsigned long start, int num_pages))
1870{
1871	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1872	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1873	set_memory((unsigned long)layout->base,
1874		   layout->text_size >> PAGE_SHIFT);
1875}
1876
1877static void frob_rodata(const struct module_layout *layout,
1878			int (*set_memory)(unsigned long start, int num_pages))
1879{
1880	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1881	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1882	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1883	set_memory((unsigned long)layout->base + layout->text_size,
1884		   (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1885}
1886
1887static void frob_writable_data(const struct module_layout *layout,
1888			       int (*set_memory)(unsigned long start, int num_pages))
 
 
1889{
1890	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1891	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1892	BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1893	set_memory((unsigned long)layout->base + layout->ro_size,
1894		   (layout->size - layout->ro_size) >> PAGE_SHIFT);
1895}
1896
1897/* livepatching wants to disable read-only so it can frob module. */
1898void module_disable_ro(const struct module *mod)
1899{
1900	frob_text(&mod->core_layout, set_memory_rw);
1901	frob_rodata(&mod->core_layout, set_memory_rw);
1902	frob_text(&mod->init_layout, set_memory_rw);
1903	frob_rodata(&mod->init_layout, set_memory_rw);
1904}
1905
1906void module_enable_ro(const struct module *mod)
1907{
1908	frob_text(&mod->core_layout, set_memory_ro);
1909	frob_rodata(&mod->core_layout, set_memory_ro);
1910	frob_text(&mod->init_layout, set_memory_ro);
1911	frob_rodata(&mod->init_layout, set_memory_ro);
 
 
 
 
 
1912}
1913
1914static void module_enable_nx(const struct module *mod)
1915{
1916	frob_rodata(&mod->core_layout, set_memory_nx);
1917	frob_writable_data(&mod->core_layout, set_memory_nx);
1918	frob_rodata(&mod->init_layout, set_memory_nx);
1919	frob_writable_data(&mod->init_layout, set_memory_nx);
 
 
1920}
1921
1922static void module_disable_nx(const struct module *mod)
1923{
1924	frob_rodata(&mod->core_layout, set_memory_x);
1925	frob_writable_data(&mod->core_layout, set_memory_x);
1926	frob_rodata(&mod->init_layout, set_memory_x);
1927	frob_writable_data(&mod->init_layout, set_memory_x);
 
 
1928}
1929
1930/* Iterate through all modules and set each module's text as RW */
1931void set_all_modules_text_rw(void)
1932{
1933	struct module *mod;
1934
1935	mutex_lock(&module_mutex);
1936	list_for_each_entry_rcu(mod, &modules, list) {
1937		if (mod->state == MODULE_STATE_UNFORMED)
1938			continue;
1939
1940		frob_text(&mod->core_layout, set_memory_rw);
1941		frob_text(&mod->init_layout, set_memory_rw);
 
 
 
 
 
1942	}
1943	mutex_unlock(&module_mutex);
1944}
1945
1946/* Iterate through all modules and set each module's text as RO */
1947void set_all_modules_text_ro(void)
1948{
1949	struct module *mod;
1950
1951	mutex_lock(&module_mutex);
1952	list_for_each_entry_rcu(mod, &modules, list) {
1953		if (mod->state == MODULE_STATE_UNFORMED)
1954			continue;
1955
1956		frob_text(&mod->core_layout, set_memory_ro);
1957		frob_text(&mod->init_layout, set_memory_ro);
 
 
 
 
 
1958	}
1959	mutex_unlock(&module_mutex);
1960}
1961
1962static void disable_ro_nx(const struct module_layout *layout)
1963{
1964	frob_text(layout, set_memory_rw);
1965	frob_rodata(layout, set_memory_rw);
1966	frob_rodata(layout, set_memory_x);
1967	frob_writable_data(layout, set_memory_x);
1968}
1969
1970#else
1971static void disable_ro_nx(const struct module_layout *layout) { }
1972static void module_enable_nx(const struct module *mod) { }
1973static void module_disable_nx(const struct module *mod) { }
1974#endif
1975
1976void __weak module_memfree(void *module_region)
1977{
1978	vfree(module_region);
1979}
1980
1981void __weak module_arch_cleanup(struct module *mod)
1982{
1983}
1984
1985void __weak module_arch_freeing_init(struct module *mod)
1986{
1987}
1988
1989/* Free a module, remove from lists, etc. */
1990static void free_module(struct module *mod)
1991{
1992	trace_module_free(mod);
1993
1994	mod_sysfs_teardown(mod);
1995
1996	/* We leave it in list to prevent duplicate loads, but make sure
1997	 * that noone uses it while it's being deconstructed. */
1998	mutex_lock(&module_mutex);
1999	mod->state = MODULE_STATE_UNFORMED;
2000	mutex_unlock(&module_mutex);
 
2001
2002	/* Remove dynamic debug info */
2003	ddebug_remove_module(mod->name);
2004
2005	/* Arch-specific cleanup. */
2006	module_arch_cleanup(mod);
2007
2008	/* Module unload stuff */
2009	module_unload_free(mod);
2010
2011	/* Free any allocated parameters. */
2012	destroy_params(mod->kp, mod->num_kp);
2013
2014	/* Now we can delete it from the lists */
2015	mutex_lock(&module_mutex);
2016	/* Unlink carefully: kallsyms could be walking list. */
2017	list_del_rcu(&mod->list);
2018	mod_tree_remove(mod);
2019	/* Remove this module from bug list, this uses list_del_rcu */
2020	module_bug_cleanup(mod);
2021	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2022	synchronize_sched();
2023	mutex_unlock(&module_mutex);
2024
2025	/* This may be empty, but that's OK */
2026	disable_ro_nx(&mod->init_layout);
2027	module_arch_freeing_init(mod);
2028	module_memfree(mod->init_layout.base);
2029	kfree(mod->args);
2030	percpu_modfree(mod);
2031
2032	/* Free lock-classes; relies on the preceding sync_rcu(). */
2033	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2034
2035	/* Finally, free the core (containing the module structure) */
2036	disable_ro_nx(&mod->core_layout);
2037	module_memfree(mod->core_layout.base);
2038
2039#ifdef CONFIG_MPU
2040	update_protections(current->mm);
2041#endif
2042}
2043
2044void *__symbol_get(const char *symbol)
2045{
2046	struct module *owner;
2047	const struct kernel_symbol *sym;
2048
2049	preempt_disable();
2050	sym = find_symbol(symbol, &owner, NULL, true, true);
2051	if (sym && strong_try_module_get(owner))
2052		sym = NULL;
2053	preempt_enable();
2054
2055	return sym ? (void *)sym->value : NULL;
2056}
2057EXPORT_SYMBOL_GPL(__symbol_get);
2058
2059/*
2060 * Ensure that an exported symbol [global namespace] does not already exist
2061 * in the kernel or in some other module's exported symbol table.
2062 *
2063 * You must hold the module_mutex.
2064 */
2065static int verify_export_symbols(struct module *mod)
2066{
2067	unsigned int i;
2068	struct module *owner;
2069	const struct kernel_symbol *s;
2070	struct {
2071		const struct kernel_symbol *sym;
2072		unsigned int num;
2073	} arr[] = {
2074		{ mod->syms, mod->num_syms },
2075		{ mod->gpl_syms, mod->num_gpl_syms },
2076		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
2077#ifdef CONFIG_UNUSED_SYMBOLS
2078		{ mod->unused_syms, mod->num_unused_syms },
2079		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2080#endif
2081	};
2082
2083	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2084		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2085			if (find_symbol(s->name, &owner, NULL, true, false)) {
2086				pr_err("%s: exports duplicate symbol %s"
 
2087				       " (owned by %s)\n",
2088				       mod->name, s->name, module_name(owner));
2089				return -ENOEXEC;
2090			}
2091		}
2092	}
2093	return 0;
2094}
2095
2096/* Change all symbols so that st_value encodes the pointer directly. */
2097static int simplify_symbols(struct module *mod, const struct load_info *info)
2098{
2099	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2100	Elf_Sym *sym = (void *)symsec->sh_addr;
2101	unsigned long secbase;
2102	unsigned int i;
2103	int ret = 0;
2104	const struct kernel_symbol *ksym;
2105
2106	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2107		const char *name = info->strtab + sym[i].st_name;
2108
2109		switch (sym[i].st_shndx) {
2110		case SHN_COMMON:
2111			/* Ignore common symbols */
2112			if (!strncmp(name, "__gnu_lto", 9))
2113				break;
2114
2115			/* We compiled with -fno-common.  These are not
2116			   supposed to happen.  */
2117			pr_debug("Common symbol: %s\n", name);
2118			pr_warn("%s: please compile with -fno-common\n",
2119			       mod->name);
2120			ret = -ENOEXEC;
2121			break;
2122
2123		case SHN_ABS:
2124			/* Don't need to do anything */
2125			pr_debug("Absolute symbol: 0x%08lx\n",
2126			       (long)sym[i].st_value);
2127			break;
2128
2129		case SHN_UNDEF:
2130			ksym = resolve_symbol_wait(mod, info, name);
2131			/* Ok if resolved.  */
2132			if (ksym && !IS_ERR(ksym)) {
2133				sym[i].st_value = ksym->value;
2134				break;
2135			}
2136
2137			/* Ok if weak.  */
2138			if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2139				break;
2140
2141			pr_warn("%s: Unknown symbol %s (err %li)\n",
2142				mod->name, name, PTR_ERR(ksym));
2143			ret = PTR_ERR(ksym) ?: -ENOENT;
2144			break;
2145
2146		default:
2147			/* Divert to percpu allocation if a percpu var. */
2148			if (sym[i].st_shndx == info->index.pcpu)
2149				secbase = (unsigned long)mod_percpu(mod);
2150			else
2151				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2152			sym[i].st_value += secbase;
2153			break;
2154		}
2155	}
2156
2157	return ret;
2158}
2159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2160static int apply_relocations(struct module *mod, const struct load_info *info)
2161{
2162	unsigned int i;
2163	int err = 0;
2164
2165	/* Now do relocations. */
2166	for (i = 1; i < info->hdr->e_shnum; i++) {
2167		unsigned int infosec = info->sechdrs[i].sh_info;
2168
2169		/* Not a valid relocation section? */
2170		if (infosec >= info->hdr->e_shnum)
2171			continue;
2172
2173		/* Don't bother with non-allocated sections */
2174		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2175			continue;
2176
2177		if (info->sechdrs[i].sh_type == SHT_REL)
2178			err = apply_relocate(info->sechdrs, info->strtab,
2179					     info->index.sym, i, mod);
2180		else if (info->sechdrs[i].sh_type == SHT_RELA)
2181			err = apply_relocate_add(info->sechdrs, info->strtab,
2182						 info->index.sym, i, mod);
2183		if (err < 0)
2184			break;
2185	}
2186	return err;
2187}
2188
2189/* Additional bytes needed by arch in front of individual sections */
2190unsigned int __weak arch_mod_section_prepend(struct module *mod,
2191					     unsigned int section)
2192{
2193	/* default implementation just returns zero */
2194	return 0;
2195}
2196
2197/* Update size with this section: return offset. */
2198static long get_offset(struct module *mod, unsigned int *size,
2199		       Elf_Shdr *sechdr, unsigned int section)
2200{
2201	long ret;
2202
2203	*size += arch_mod_section_prepend(mod, section);
2204	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2205	*size = ret + sechdr->sh_size;
2206	return ret;
2207}
2208
2209/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2210   might -- code, read-only data, read-write data, small data.  Tally
2211   sizes, and place the offsets into sh_entsize fields: high bit means it
2212   belongs in init. */
2213static void layout_sections(struct module *mod, struct load_info *info)
2214{
2215	static unsigned long const masks[][2] = {
2216		/* NOTE: all executable code must be the first section
2217		 * in this array; otherwise modify the text_size
2218		 * finder in the two loops below */
2219		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2220		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2221		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2222		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2223	};
2224	unsigned int m, i;
2225
2226	for (i = 0; i < info->hdr->e_shnum; i++)
2227		info->sechdrs[i].sh_entsize = ~0UL;
2228
2229	pr_debug("Core section allocation order:\n");
2230	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2231		for (i = 0; i < info->hdr->e_shnum; ++i) {
2232			Elf_Shdr *s = &info->sechdrs[i];
2233			const char *sname = info->secstrings + s->sh_name;
2234
2235			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2236			    || (s->sh_flags & masks[m][1])
2237			    || s->sh_entsize != ~0UL
2238			    || strstarts(sname, ".init"))
2239				continue;
2240			s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2241			pr_debug("\t%s\n", sname);
2242		}
2243		switch (m) {
2244		case 0: /* executable */
2245			mod->core_layout.size = debug_align(mod->core_layout.size);
2246			mod->core_layout.text_size = mod->core_layout.size;
2247			break;
2248		case 1: /* RO: text and ro-data */
2249			mod->core_layout.size = debug_align(mod->core_layout.size);
2250			mod->core_layout.ro_size = mod->core_layout.size;
2251			break;
2252		case 3: /* whole core */
2253			mod->core_layout.size = debug_align(mod->core_layout.size);
2254			break;
2255		}
2256	}
2257
2258	pr_debug("Init section allocation order:\n");
2259	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2260		for (i = 0; i < info->hdr->e_shnum; ++i) {
2261			Elf_Shdr *s = &info->sechdrs[i];
2262			const char *sname = info->secstrings + s->sh_name;
2263
2264			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2265			    || (s->sh_flags & masks[m][1])
2266			    || s->sh_entsize != ~0UL
2267			    || !strstarts(sname, ".init"))
2268				continue;
2269			s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2270					 | INIT_OFFSET_MASK);
2271			pr_debug("\t%s\n", sname);
2272		}
2273		switch (m) {
2274		case 0: /* executable */
2275			mod->init_layout.size = debug_align(mod->init_layout.size);
2276			mod->init_layout.text_size = mod->init_layout.size;
2277			break;
2278		case 1: /* RO: text and ro-data */
2279			mod->init_layout.size = debug_align(mod->init_layout.size);
2280			mod->init_layout.ro_size = mod->init_layout.size;
2281			break;
2282		case 3: /* whole init */
2283			mod->init_layout.size = debug_align(mod->init_layout.size);
2284			break;
2285		}
2286	}
2287}
2288
2289static void set_license(struct module *mod, const char *license)
2290{
2291	if (!license)
2292		license = "unspecified";
2293
2294	if (!license_is_gpl_compatible(license)) {
2295		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2296			pr_warn("%s: module license '%s' taints kernel.\n",
2297				mod->name, license);
2298		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2299				 LOCKDEP_NOW_UNRELIABLE);
2300	}
2301}
2302
2303/* Parse tag=value strings from .modinfo section */
2304static char *next_string(char *string, unsigned long *secsize)
2305{
2306	/* Skip non-zero chars */
2307	while (string[0]) {
2308		string++;
2309		if ((*secsize)-- <= 1)
2310			return NULL;
2311	}
2312
2313	/* Skip any zero padding. */
2314	while (!string[0]) {
2315		string++;
2316		if ((*secsize)-- <= 1)
2317			return NULL;
2318	}
2319	return string;
2320}
2321
2322static char *get_modinfo(struct load_info *info, const char *tag)
2323{
2324	char *p;
2325	unsigned int taglen = strlen(tag);
2326	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2327	unsigned long size = infosec->sh_size;
2328
2329	for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2330		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2331			return p + taglen + 1;
2332	}
2333	return NULL;
2334}
2335
2336static void setup_modinfo(struct module *mod, struct load_info *info)
2337{
2338	struct module_attribute *attr;
2339	int i;
2340
2341	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2342		if (attr->setup)
2343			attr->setup(mod, get_modinfo(info, attr->attr.name));
2344	}
2345}
2346
2347static void free_modinfo(struct module *mod)
2348{
2349	struct module_attribute *attr;
2350	int i;
2351
2352	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2353		if (attr->free)
2354			attr->free(mod);
2355	}
2356}
2357
2358#ifdef CONFIG_KALLSYMS
2359
2360/* lookup symbol in given range of kernel_symbols */
2361static const struct kernel_symbol *lookup_symbol(const char *name,
2362	const struct kernel_symbol *start,
2363	const struct kernel_symbol *stop)
2364{
2365	return bsearch(name, start, stop - start,
2366			sizeof(struct kernel_symbol), cmp_name);
2367}
2368
2369static int is_exported(const char *name, unsigned long value,
2370		       const struct module *mod)
2371{
2372	const struct kernel_symbol *ks;
2373	if (!mod)
2374		ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2375	else
2376		ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2377	return ks != NULL && ks->value == value;
2378}
2379
2380/* As per nm */
2381static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2382{
2383	const Elf_Shdr *sechdrs = info->sechdrs;
2384
2385	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2386		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2387			return 'v';
2388		else
2389			return 'w';
2390	}
2391	if (sym->st_shndx == SHN_UNDEF)
2392		return 'U';
2393	if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2394		return 'a';
2395	if (sym->st_shndx >= SHN_LORESERVE)
2396		return '?';
2397	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2398		return 't';
2399	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2400	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2401		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2402			return 'r';
2403		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2404			return 'g';
2405		else
2406			return 'd';
2407	}
2408	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2409		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2410			return 's';
2411		else
2412			return 'b';
2413	}
2414	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2415		      ".debug")) {
2416		return 'n';
2417	}
2418	return '?';
2419}
2420
2421static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2422			unsigned int shnum, unsigned int pcpundx)
2423{
2424	const Elf_Shdr *sec;
2425
2426	if (src->st_shndx == SHN_UNDEF
2427	    || src->st_shndx >= shnum
2428	    || !src->st_name)
2429		return false;
2430
2431#ifdef CONFIG_KALLSYMS_ALL
2432	if (src->st_shndx == pcpundx)
2433		return true;
2434#endif
2435
2436	sec = sechdrs + src->st_shndx;
2437	if (!(sec->sh_flags & SHF_ALLOC)
2438#ifndef CONFIG_KALLSYMS_ALL
2439	    || !(sec->sh_flags & SHF_EXECINSTR)
2440#endif
2441	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2442		return false;
2443
2444	return true;
2445}
2446
2447/*
2448 * We only allocate and copy the strings needed by the parts of symtab
2449 * we keep.  This is simple, but has the effect of making multiple
2450 * copies of duplicates.  We could be more sophisticated, see
2451 * linux-kernel thread starting with
2452 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2453 */
2454static void layout_symtab(struct module *mod, struct load_info *info)
2455{
2456	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2457	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2458	const Elf_Sym *src;
2459	unsigned int i, nsrc, ndst, strtab_size = 0;
2460
2461	/* Put symbol section at end of init part of module. */
2462	symsect->sh_flags |= SHF_ALLOC;
2463	symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2464					 info->index.sym) | INIT_OFFSET_MASK;
2465	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2466
2467	src = (void *)info->hdr + symsect->sh_offset;
2468	nsrc = symsect->sh_size / sizeof(*src);
2469
2470	/* Compute total space required for the core symbols' strtab. */
2471	for (ndst = i = 0; i < nsrc; i++) {
2472		if (i == 0 ||
2473		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2474				   info->index.pcpu)) {
2475			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2476			ndst++;
2477		}
2478	}
2479
2480	/* Append room for core symbols at end of core part. */
2481	info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2482	info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2483	mod->core_layout.size += strtab_size;
2484	mod->core_layout.size = debug_align(mod->core_layout.size);
2485
2486	/* Put string table section at end of init part of module. */
2487	strsect->sh_flags |= SHF_ALLOC;
2488	strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2489					 info->index.str) | INIT_OFFSET_MASK;
2490	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2491
2492	/* We'll tack temporary mod_kallsyms on the end. */
2493	mod->init_layout.size = ALIGN(mod->init_layout.size,
2494				      __alignof__(struct mod_kallsyms));
2495	info->mod_kallsyms_init_off = mod->init_layout.size;
2496	mod->init_layout.size += sizeof(struct mod_kallsyms);
2497	mod->init_layout.size = debug_align(mod->init_layout.size);
2498}
2499
2500/*
2501 * We use the full symtab and strtab which layout_symtab arranged to
2502 * be appended to the init section.  Later we switch to the cut-down
2503 * core-only ones.
2504 */
2505static void add_kallsyms(struct module *mod, const struct load_info *info)
2506{
2507	unsigned int i, ndst;
2508	const Elf_Sym *src;
2509	Elf_Sym *dst;
2510	char *s;
2511	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2512
2513	/* Set up to point into init section. */
2514	mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2515
2516	mod->kallsyms->symtab = (void *)symsec->sh_addr;
2517	mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2518	/* Make sure we get permanent strtab: don't use info->strtab. */
2519	mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2520
2521	/* Set types up while we still have access to sections. */
2522	for (i = 0; i < mod->kallsyms->num_symtab; i++)
2523		mod->kallsyms->symtab[i].st_info
2524			= elf_type(&mod->kallsyms->symtab[i], info);
2525
2526	/* Now populate the cut down core kallsyms for after init. */
2527	mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2528	mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2529	src = mod->kallsyms->symtab;
2530	for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2531		if (i == 0 ||
2532		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2533				   info->index.pcpu)) {
2534			dst[ndst] = src[i];
2535			dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2536			s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2537				     KSYM_NAME_LEN) + 1;
2538		}
2539	}
2540	mod->core_kallsyms.num_symtab = ndst;
 
2541}
2542#else
2543static inline void layout_symtab(struct module *mod, struct load_info *info)
2544{
2545}
2546
2547static void add_kallsyms(struct module *mod, const struct load_info *info)
2548{
2549}
2550#endif /* CONFIG_KALLSYMS */
2551
2552static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2553{
2554	if (!debug)
2555		return;
2556#ifdef CONFIG_DYNAMIC_DEBUG
2557	if (ddebug_add_module(debug, num, debug->modname))
2558		pr_err("dynamic debug error adding module: %s\n",
2559			debug->modname);
2560#endif
2561}
2562
2563static void dynamic_debug_remove(struct _ddebug *debug)
2564{
2565	if (debug)
2566		ddebug_remove_module(debug->modname);
2567}
2568
2569void * __weak module_alloc(unsigned long size)
2570{
2571	return vmalloc_exec(size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2572}
2573
2574#ifdef CONFIG_DEBUG_KMEMLEAK
2575static void kmemleak_load_module(const struct module *mod,
2576				 const struct load_info *info)
2577{
2578	unsigned int i;
2579
2580	/* only scan the sections containing data */
2581	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2582
2583	for (i = 1; i < info->hdr->e_shnum; i++) {
2584		/* Scan all writable sections that's not executable */
2585		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2586		    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2587		    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2588			continue;
2589
2590		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2591				   info->sechdrs[i].sh_size, GFP_KERNEL);
2592	}
2593}
2594#else
2595static inline void kmemleak_load_module(const struct module *mod,
2596					const struct load_info *info)
2597{
2598}
2599#endif
2600
2601#ifdef CONFIG_MODULE_SIG
2602static int module_sig_check(struct load_info *info)
2603{
2604	int err = -ENOKEY;
2605	const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2606	const void *mod = info->hdr;
2607
2608	if (info->len > markerlen &&
2609	    memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2610		/* We truncate the module to discard the signature */
2611		info->len -= markerlen;
2612		err = mod_verify_sig(mod, &info->len);
2613	}
2614
2615	if (!err) {
2616		info->sig_ok = true;
2617		return 0;
2618	}
2619
2620	/* Not having a signature is only an error if we're strict. */
2621	if (err == -ENOKEY && !sig_enforce)
2622		err = 0;
2623
2624	return err;
2625}
2626#else /* !CONFIG_MODULE_SIG */
2627static int module_sig_check(struct load_info *info)
2628{
2629	return 0;
2630}
2631#endif /* !CONFIG_MODULE_SIG */
2632
2633/* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2634static int elf_header_check(struct load_info *info)
2635{
2636	if (info->len < sizeof(*(info->hdr)))
2637		return -ENOEXEC;
2638
2639	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2640	    || info->hdr->e_type != ET_REL
2641	    || !elf_check_arch(info->hdr)
2642	    || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2643		return -ENOEXEC;
2644
2645	if (info->hdr->e_shoff >= info->len
2646	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2647		info->len - info->hdr->e_shoff))
2648		return -ENOEXEC;
2649
2650	return 0;
2651}
2652
2653#define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2654
2655static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2656{
2657	do {
2658		unsigned long n = min(len, COPY_CHUNK_SIZE);
2659
2660		if (copy_from_user(dst, usrc, n) != 0)
2661			return -EFAULT;
2662		cond_resched();
2663		dst += n;
2664		usrc += n;
2665		len -= n;
2666	} while (len);
2667	return 0;
2668}
2669
2670/* Sets info->hdr and info->len. */
2671static int copy_module_from_user(const void __user *umod, unsigned long len,
2672				  struct load_info *info)
 
2673{
2674	int err;
 
2675
2676	info->len = len;
2677	if (info->len < sizeof(*(info->hdr)))
2678		return -ENOEXEC;
2679
2680	err = security_kernel_read_file(NULL, READING_MODULE);
2681	if (err)
2682		return err;
2683
2684	/* Suck in entire file: we'll want most of it. */
2685	info->hdr = __vmalloc(info->len,
2686			GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN, PAGE_KERNEL);
2687	if (!info->hdr)
2688		return -ENOMEM;
2689
2690	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2691		vfree(info->hdr);
2692		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2693	}
2694
 
 
2695	return 0;
 
 
 
 
2696}
2697
2698static void free_copy(struct load_info *info)
2699{
2700	vfree(info->hdr);
2701}
2702
2703static int rewrite_section_headers(struct load_info *info, int flags)
2704{
2705	unsigned int i;
2706
2707	/* This should always be true, but let's be sure. */
2708	info->sechdrs[0].sh_addr = 0;
2709
2710	for (i = 1; i < info->hdr->e_shnum; i++) {
2711		Elf_Shdr *shdr = &info->sechdrs[i];
2712		if (shdr->sh_type != SHT_NOBITS
2713		    && info->len < shdr->sh_offset + shdr->sh_size) {
2714			pr_err("Module len %lu truncated\n", info->len);
 
2715			return -ENOEXEC;
2716		}
2717
2718		/* Mark all sections sh_addr with their address in the
2719		   temporary image. */
2720		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2721
2722#ifndef CONFIG_MODULE_UNLOAD
2723		/* Don't load .exit sections */
2724		if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2725			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2726#endif
2727	}
2728
2729	/* Track but don't keep modinfo and version sections. */
2730	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2731		info->index.vers = 0; /* Pretend no __versions section! */
2732	else
2733		info->index.vers = find_sec(info, "__versions");
2734	info->index.info = find_sec(info, ".modinfo");
2735	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2736	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2737	return 0;
2738}
2739
2740/*
2741 * Set up our basic convenience variables (pointers to section headers,
2742 * search for module section index etc), and do some basic section
2743 * verification.
2744 *
2745 * Return the temporary module pointer (we'll replace it with the final
2746 * one when we move the module sections around).
2747 */
2748static struct module *setup_load_info(struct load_info *info, int flags)
2749{
2750	unsigned int i;
2751	int err;
2752	struct module *mod;
2753
2754	/* Set up the convenience variables */
2755	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2756	info->secstrings = (void *)info->hdr
2757		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2758
2759	err = rewrite_section_headers(info, flags);
2760	if (err)
2761		return ERR_PTR(err);
2762
2763	/* Find internal symbols and strings. */
2764	for (i = 1; i < info->hdr->e_shnum; i++) {
2765		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2766			info->index.sym = i;
2767			info->index.str = info->sechdrs[i].sh_link;
2768			info->strtab = (char *)info->hdr
2769				+ info->sechdrs[info->index.str].sh_offset;
2770			break;
2771		}
2772	}
2773
2774	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2775	if (!info->index.mod) {
2776		pr_warn("No module found in object\n");
2777		return ERR_PTR(-ENOEXEC);
2778	}
2779	/* This is temporary: point mod into copy of data. */
2780	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2781
2782	if (info->index.sym == 0) {
2783		pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
 
2784		return ERR_PTR(-ENOEXEC);
2785	}
2786
2787	info->index.pcpu = find_pcpusec(info);
2788
2789	/* Check module struct version now, before we try to use module. */
2790	if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2791		return ERR_PTR(-ENOEXEC);
2792
2793	return mod;
2794}
2795
2796static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2797{
2798	const char *modmagic = get_modinfo(info, "vermagic");
2799	int err;
2800
2801	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2802		modmagic = NULL;
2803
2804	/* This is allowed: modprobe --force will invalidate it. */
2805	if (!modmagic) {
2806		err = try_to_force_load(mod, "bad vermagic");
2807		if (err)
2808			return err;
2809	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2810		pr_err("%s: version magic '%s' should be '%s'\n",
2811		       mod->name, modmagic, vermagic);
2812		return -ENOEXEC;
2813	}
2814
2815	if (!get_modinfo(info, "intree"))
2816		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2817
2818	if (get_modinfo(info, "staging")) {
2819		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2820		pr_warn("%s: module is from the staging directory, the quality "
2821			"is unknown, you have been warned.\n", mod->name);
 
2822	}
2823
2824	/* Set up license info based on the info section */
2825	set_license(mod, get_modinfo(info, "license"));
2826
2827	return 0;
2828}
2829
2830static int find_module_sections(struct module *mod, struct load_info *info)
2831{
2832	mod->kp = section_objs(info, "__param",
2833			       sizeof(*mod->kp), &mod->num_kp);
2834	mod->syms = section_objs(info, "__ksymtab",
2835				 sizeof(*mod->syms), &mod->num_syms);
2836	mod->crcs = section_addr(info, "__kcrctab");
2837	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2838				     sizeof(*mod->gpl_syms),
2839				     &mod->num_gpl_syms);
2840	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2841	mod->gpl_future_syms = section_objs(info,
2842					    "__ksymtab_gpl_future",
2843					    sizeof(*mod->gpl_future_syms),
2844					    &mod->num_gpl_future_syms);
2845	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2846
2847#ifdef CONFIG_UNUSED_SYMBOLS
2848	mod->unused_syms = section_objs(info, "__ksymtab_unused",
2849					sizeof(*mod->unused_syms),
2850					&mod->num_unused_syms);
2851	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2852	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2853					    sizeof(*mod->unused_gpl_syms),
2854					    &mod->num_unused_gpl_syms);
2855	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2856#endif
2857#ifdef CONFIG_CONSTRUCTORS
2858	mod->ctors = section_objs(info, ".ctors",
2859				  sizeof(*mod->ctors), &mod->num_ctors);
2860	if (!mod->ctors)
2861		mod->ctors = section_objs(info, ".init_array",
2862				sizeof(*mod->ctors), &mod->num_ctors);
2863	else if (find_sec(info, ".init_array")) {
2864		/*
2865		 * This shouldn't happen with same compiler and binutils
2866		 * building all parts of the module.
2867		 */
2868		pr_warn("%s: has both .ctors and .init_array.\n",
2869		       mod->name);
2870		return -EINVAL;
2871	}
2872#endif
2873
2874#ifdef CONFIG_TRACEPOINTS
2875	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2876					     sizeof(*mod->tracepoints_ptrs),
2877					     &mod->num_tracepoints);
2878#endif
2879#ifdef HAVE_JUMP_LABEL
2880	mod->jump_entries = section_objs(info, "__jump_table",
2881					sizeof(*mod->jump_entries),
2882					&mod->num_jump_entries);
2883#endif
2884#ifdef CONFIG_EVENT_TRACING
2885	mod->trace_events = section_objs(info, "_ftrace_events",
2886					 sizeof(*mod->trace_events),
2887					 &mod->num_trace_events);
2888	mod->trace_enums = section_objs(info, "_ftrace_enum_map",
2889					sizeof(*mod->trace_enums),
2890					&mod->num_trace_enums);
 
 
 
2891#endif
2892#ifdef CONFIG_TRACING
2893	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2894					 sizeof(*mod->trace_bprintk_fmt_start),
2895					 &mod->num_trace_bprintk_fmt);
 
 
 
 
 
 
 
2896#endif
2897#ifdef CONFIG_FTRACE_MCOUNT_RECORD
2898	/* sechdrs[0].sh_size is always zero */
2899	mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2900					     sizeof(*mod->ftrace_callsites),
2901					     &mod->num_ftrace_callsites);
2902#endif
2903
2904	mod->extable = section_objs(info, "__ex_table",
2905				    sizeof(*mod->extable), &mod->num_exentries);
2906
2907	if (section_addr(info, "__obsparm"))
2908		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
 
2909
2910	info->debug = section_objs(info, "__verbose",
2911				   sizeof(*info->debug), &info->num_debug);
2912
2913	return 0;
2914}
2915
2916static int move_module(struct module *mod, struct load_info *info)
2917{
2918	int i;
2919	void *ptr;
2920
2921	/* Do the allocs. */
2922	ptr = module_alloc(mod->core_layout.size);
2923	/*
2924	 * The pointer to this block is stored in the module structure
2925	 * which is inside the block. Just mark it as not being a
2926	 * leak.
2927	 */
2928	kmemleak_not_leak(ptr);
2929	if (!ptr)
2930		return -ENOMEM;
2931
2932	memset(ptr, 0, mod->core_layout.size);
2933	mod->core_layout.base = ptr;
2934
2935	if (mod->init_layout.size) {
2936		ptr = module_alloc(mod->init_layout.size);
2937		/*
2938		 * The pointer to this block is stored in the module structure
2939		 * which is inside the block. This block doesn't need to be
2940		 * scanned as it contains data and code that will be freed
2941		 * after the module is initialized.
2942		 */
2943		kmemleak_ignore(ptr);
2944		if (!ptr) {
2945			module_memfree(mod->core_layout.base);
2946			return -ENOMEM;
2947		}
2948		memset(ptr, 0, mod->init_layout.size);
2949		mod->init_layout.base = ptr;
2950	} else
2951		mod->init_layout.base = NULL;
2952
2953	/* Transfer each section which specifies SHF_ALLOC */
2954	pr_debug("final section addresses:\n");
2955	for (i = 0; i < info->hdr->e_shnum; i++) {
2956		void *dest;
2957		Elf_Shdr *shdr = &info->sechdrs[i];
2958
2959		if (!(shdr->sh_flags & SHF_ALLOC))
2960			continue;
2961
2962		if (shdr->sh_entsize & INIT_OFFSET_MASK)
2963			dest = mod->init_layout.base
2964				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2965		else
2966			dest = mod->core_layout.base + shdr->sh_entsize;
2967
2968		if (shdr->sh_type != SHT_NOBITS)
2969			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2970		/* Update sh_addr to point to copy in image. */
2971		shdr->sh_addr = (unsigned long)dest;
2972		pr_debug("\t0x%lx %s\n",
2973			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2974	}
2975
2976	return 0;
2977}
2978
2979static int check_module_license_and_versions(struct module *mod)
2980{
2981	/*
2982	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2983	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2984	 * using GPL-only symbols it needs.
2985	 */
2986	if (strcmp(mod->name, "ndiswrapper") == 0)
2987		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2988
2989	/* driverloader was caught wrongly pretending to be under GPL */
2990	if (strcmp(mod->name, "driverloader") == 0)
2991		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2992				 LOCKDEP_NOW_UNRELIABLE);
2993
2994	/* lve claims to be GPL but upstream won't provide source */
2995	if (strcmp(mod->name, "lve") == 0)
2996		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2997				 LOCKDEP_NOW_UNRELIABLE);
2998
2999#ifdef CONFIG_MODVERSIONS
3000	if ((mod->num_syms && !mod->crcs)
3001	    || (mod->num_gpl_syms && !mod->gpl_crcs)
3002	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3003#ifdef CONFIG_UNUSED_SYMBOLS
3004	    || (mod->num_unused_syms && !mod->unused_crcs)
3005	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3006#endif
3007		) {
3008		return try_to_force_load(mod,
3009					 "no versions for exported symbols");
3010	}
3011#endif
3012	return 0;
3013}
3014
3015static void flush_module_icache(const struct module *mod)
3016{
3017	mm_segment_t old_fs;
3018
3019	/* flush the icache in correct context */
3020	old_fs = get_fs();
3021	set_fs(KERNEL_DS);
3022
3023	/*
3024	 * Flush the instruction cache, since we've played with text.
3025	 * Do it before processing of module parameters, so the module
3026	 * can provide parameter accessor functions of its own.
3027	 */
3028	if (mod->init_layout.base)
3029		flush_icache_range((unsigned long)mod->init_layout.base,
3030				   (unsigned long)mod->init_layout.base
3031				   + mod->init_layout.size);
3032	flush_icache_range((unsigned long)mod->core_layout.base,
3033			   (unsigned long)mod->core_layout.base + mod->core_layout.size);
3034
3035	set_fs(old_fs);
3036}
3037
3038int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3039				     Elf_Shdr *sechdrs,
3040				     char *secstrings,
3041				     struct module *mod)
3042{
3043	return 0;
3044}
3045
3046static struct module *layout_and_allocate(struct load_info *info, int flags)
3047{
3048	/* Module within temporary copy. */
3049	struct module *mod;
 
3050	int err;
3051
3052	mod = setup_load_info(info, flags);
3053	if (IS_ERR(mod))
3054		return mod;
3055
3056	err = check_modinfo(mod, info, flags);
3057	if (err)
3058		return ERR_PTR(err);
3059
3060	/* Allow arches to frob section contents and sizes.  */
3061	err = module_frob_arch_sections(info->hdr, info->sechdrs,
3062					info->secstrings, mod);
3063	if (err < 0)
3064		return ERR_PTR(err);
3065
3066	/* We will do a special allocation for per-cpu sections later. */
3067	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
 
 
 
 
 
 
 
3068
3069	/* Determine total sizes, and put offsets in sh_entsize.  For now
3070	   this is done generically; there doesn't appear to be any
3071	   special cases for the architectures. */
3072	layout_sections(mod, info);
 
 
 
 
 
 
 
3073	layout_symtab(mod, info);
3074
3075	/* Allocate and move to the final place */
3076	err = move_module(mod, info);
3077	if (err)
3078		return ERR_PTR(err);
3079
3080	/* Module has been copied to its final place now: return it. */
3081	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3082	kmemleak_load_module(mod, info);
3083	return mod;
 
 
 
 
 
 
 
3084}
3085
3086/* mod is no longer valid after this! */
3087static void module_deallocate(struct module *mod, struct load_info *info)
3088{
 
3089	percpu_modfree(mod);
3090	module_arch_freeing_init(mod);
3091	module_memfree(mod->init_layout.base);
3092	module_memfree(mod->core_layout.base);
3093}
3094
3095int __weak module_finalize(const Elf_Ehdr *hdr,
3096			   const Elf_Shdr *sechdrs,
3097			   struct module *me)
3098{
3099	return 0;
3100}
3101
3102static int post_relocation(struct module *mod, const struct load_info *info)
3103{
3104	/* Sort exception table now relocations are done. */
3105	sort_extable(mod->extable, mod->extable + mod->num_exentries);
3106
3107	/* Copy relocated percpu area over. */
3108	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3109		       info->sechdrs[info->index.pcpu].sh_size);
3110
3111	/* Setup kallsyms-specific fields. */
3112	add_kallsyms(mod, info);
3113
3114	/* Arch-specific module finalizing. */
3115	return module_finalize(info->hdr, info->sechdrs, mod);
3116}
3117
3118/* Is this module of this name done loading?  No locks held. */
3119static bool finished_loading(const char *name)
3120{
3121	struct module *mod;
3122	bool ret;
3123
3124	/*
3125	 * The module_mutex should not be a heavily contended lock;
3126	 * if we get the occasional sleep here, we'll go an extra iteration
3127	 * in the wait_event_interruptible(), which is harmless.
3128	 */
3129	sched_annotate_sleep();
3130	mutex_lock(&module_mutex);
3131	mod = find_module_all(name, strlen(name), true);
3132	ret = !mod || mod->state == MODULE_STATE_LIVE
3133		|| mod->state == MODULE_STATE_GOING;
3134	mutex_unlock(&module_mutex);
3135
3136	return ret;
3137}
3138
3139/* Call module constructors. */
3140static void do_mod_ctors(struct module *mod)
3141{
3142#ifdef CONFIG_CONSTRUCTORS
3143	unsigned long i;
3144
3145	for (i = 0; i < mod->num_ctors; i++)
3146		mod->ctors[i]();
3147#endif
3148}
3149
3150/* For freeing module_init on success, in case kallsyms traversing */
3151struct mod_initfree {
3152	struct rcu_head rcu;
3153	void *module_init;
3154};
3155
3156static void do_free_init(struct rcu_head *head)
3157{
3158	struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3159	module_memfree(m->module_init);
3160	kfree(m);
3161}
3162
3163/*
3164 * This is where the real work happens.
3165 *
3166 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3167 * helper command 'lx-symbols'.
3168 */
3169static noinline int do_init_module(struct module *mod)
3170{
3171	int ret = 0;
3172	struct mod_initfree *freeinit;
3173
3174	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3175	if (!freeinit) {
3176		ret = -ENOMEM;
3177		goto fail;
3178	}
3179	freeinit->module_init = mod->init_layout.base;
3180
3181	/*
3182	 * We want to find out whether @mod uses async during init.  Clear
3183	 * PF_USED_ASYNC.  async_schedule*() will set it.
3184	 */
3185	current->flags &= ~PF_USED_ASYNC;
3186
3187	do_mod_ctors(mod);
3188	/* Start the module */
3189	if (mod->init != NULL)
3190		ret = do_one_initcall(mod->init);
3191	if (ret < 0) {
3192		goto fail_free_freeinit;
3193	}
3194	if (ret > 0) {
3195		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3196			"follow 0/-E convention\n"
3197			"%s: loading module anyway...\n",
3198			__func__, mod->name, ret, __func__);
3199		dump_stack();
3200	}
3201
3202	/* Now it's a first class citizen! */
3203	mod->state = MODULE_STATE_LIVE;
3204	blocking_notifier_call_chain(&module_notify_list,
3205				     MODULE_STATE_LIVE, mod);
3206
3207	/*
3208	 * We need to finish all async code before the module init sequence
3209	 * is done.  This has potential to deadlock.  For example, a newly
3210	 * detected block device can trigger request_module() of the
3211	 * default iosched from async probing task.  Once userland helper
3212	 * reaches here, async_synchronize_full() will wait on the async
3213	 * task waiting on request_module() and deadlock.
3214	 *
3215	 * This deadlock is avoided by perfomring async_synchronize_full()
3216	 * iff module init queued any async jobs.  This isn't a full
3217	 * solution as it will deadlock the same if module loading from
3218	 * async jobs nests more than once; however, due to the various
3219	 * constraints, this hack seems to be the best option for now.
3220	 * Please refer to the following thread for details.
3221	 *
3222	 * http://thread.gmane.org/gmane.linux.kernel/1420814
3223	 */
3224	if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3225		async_synchronize_full();
3226
3227	mutex_lock(&module_mutex);
3228	/* Drop initial reference. */
3229	module_put(mod);
3230	trim_init_extable(mod);
3231#ifdef CONFIG_KALLSYMS
3232	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3233	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3234#endif
3235	mod_tree_remove_init(mod);
3236	disable_ro_nx(&mod->init_layout);
3237	module_arch_freeing_init(mod);
3238	mod->init_layout.base = NULL;
3239	mod->init_layout.size = 0;
3240	mod->init_layout.ro_size = 0;
3241	mod->init_layout.text_size = 0;
3242	/*
3243	 * We want to free module_init, but be aware that kallsyms may be
3244	 * walking this with preempt disabled.  In all the failure paths, we
3245	 * call synchronize_sched(), but we don't want to slow down the success
3246	 * path, so use actual RCU here.
3247	 */
3248	call_rcu_sched(&freeinit->rcu, do_free_init);
3249	mutex_unlock(&module_mutex);
3250	wake_up_all(&module_wq);
3251
3252	return 0;
3253
3254fail_free_freeinit:
3255	kfree(freeinit);
3256fail:
3257	/* Try to protect us from buggy refcounters. */
3258	mod->state = MODULE_STATE_GOING;
3259	synchronize_sched();
3260	module_put(mod);
3261	blocking_notifier_call_chain(&module_notify_list,
3262				     MODULE_STATE_GOING, mod);
3263	klp_module_going(mod);
3264	ftrace_release_mod(mod);
3265	free_module(mod);
3266	wake_up_all(&module_wq);
3267	return ret;
3268}
3269
3270static int may_init_module(void)
3271{
3272	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3273		return -EPERM;
3274
3275	return 0;
3276}
3277
3278/*
3279 * We try to place it in the list now to make sure it's unique before
3280 * we dedicate too many resources.  In particular, temporary percpu
3281 * memory exhaustion.
3282 */
3283static int add_unformed_module(struct module *mod)
3284{
3285	int err;
3286	struct module *old;
3287
3288	mod->state = MODULE_STATE_UNFORMED;
3289
3290again:
3291	mutex_lock(&module_mutex);
3292	old = find_module_all(mod->name, strlen(mod->name), true);
3293	if (old != NULL) {
3294		if (old->state == MODULE_STATE_COMING
3295		    || old->state == MODULE_STATE_UNFORMED) {
3296			/* Wait in case it fails to load. */
3297			mutex_unlock(&module_mutex);
3298			err = wait_event_interruptible(module_wq,
3299					       finished_loading(mod->name));
3300			if (err)
3301				goto out_unlocked;
3302			goto again;
3303		}
3304		err = -EEXIST;
3305		goto out;
3306	}
3307	mod_update_bounds(mod);
3308	list_add_rcu(&mod->list, &modules);
3309	mod_tree_insert(mod);
3310	err = 0;
3311
3312out:
3313	mutex_unlock(&module_mutex);
3314out_unlocked:
3315	return err;
3316}
3317
3318static int complete_formation(struct module *mod, struct load_info *info)
3319{
3320	int err;
3321
3322	mutex_lock(&module_mutex);
3323
3324	/* Find duplicate symbols (must be called under lock). */
3325	err = verify_export_symbols(mod);
3326	if (err < 0)
3327		goto out;
3328
3329	/* This relies on module_mutex for list integrity. */
3330	module_bug_finalize(info->hdr, info->sechdrs, mod);
3331
3332	/* Set RO and NX regions */
3333	module_enable_ro(mod);
3334	module_enable_nx(mod);
3335
3336	/* Mark state as coming so strong_try_module_get() ignores us,
3337	 * but kallsyms etc. can see us. */
3338	mod->state = MODULE_STATE_COMING;
3339	mutex_unlock(&module_mutex);
3340
3341	return 0;
3342
3343out:
3344	mutex_unlock(&module_mutex);
3345	return err;
3346}
3347
3348static int prepare_coming_module(struct module *mod)
3349{
3350	int err;
3351
3352	ftrace_module_enable(mod);
3353	err = klp_module_coming(mod);
3354	if (err)
3355		return err;
3356
3357	blocking_notifier_call_chain(&module_notify_list,
3358				     MODULE_STATE_COMING, mod);
3359	return 0;
3360}
3361
3362static int unknown_module_param_cb(char *param, char *val, const char *modname,
3363				   void *arg)
3364{
3365	struct module *mod = arg;
3366	int ret;
3367
3368	if (strcmp(param, "async_probe") == 0) {
3369		mod->async_probe_requested = true;
3370		return 0;
3371	}
3372
3373	/* Check for magic 'dyndbg' arg */
3374	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3375	if (ret != 0)
3376		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3377	return 0;
3378}
3379
3380/* Allocate and load the module: note that size of section 0 is always
3381   zero, and we rely on this for optional sections. */
3382static int load_module(struct load_info *info, const char __user *uargs,
3383		       int flags)
 
3384{
 
3385	struct module *mod;
3386	long err;
3387	char *after_dashes;
3388
3389	err = module_sig_check(info);
3390	if (err)
3391		goto free_copy;
3392
3393	err = elf_header_check(info);
 
3394	if (err)
3395		goto free_copy;
3396
3397	/* Figure out module layout, and allocate all the memory. */
3398	mod = layout_and_allocate(info, flags);
3399	if (IS_ERR(mod)) {
3400		err = PTR_ERR(mod);
3401		goto free_copy;
3402	}
3403
3404	/* Reserve our place in the list. */
3405	err = add_unformed_module(mod);
3406	if (err)
3407		goto free_module;
3408
3409#ifdef CONFIG_MODULE_SIG
3410	mod->sig_ok = info->sig_ok;
3411	if (!mod->sig_ok) {
3412		pr_notice_once("%s: module verification failed: signature "
3413			       "and/or required key missing - tainting "
3414			       "kernel\n", mod->name);
3415		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3416	}
3417#endif
3418
3419	/* To avoid stressing percpu allocator, do this once we're unique. */
3420	err = percpu_modalloc(mod, info);
3421	if (err)
3422		goto unlink_mod;
3423
3424	/* Now module is in final location, initialize linked lists, etc. */
3425	err = module_unload_init(mod);
3426	if (err)
3427		goto unlink_mod;
3428
3429	init_param_lock(mod);
3430
3431	/* Now we've got everything in the final locations, we can
3432	 * find optional sections. */
3433	err = find_module_sections(mod, info);
3434	if (err)
3435		goto free_unload;
3436
3437	err = check_module_license_and_versions(mod);
3438	if (err)
3439		goto free_unload;
3440
3441	/* Set up MODINFO_ATTR fields */
3442	setup_modinfo(mod, info);
3443
3444	/* Fix up syms, so that st_value is a pointer to location. */
3445	err = simplify_symbols(mod, info);
3446	if (err < 0)
3447		goto free_modinfo;
3448
3449	err = apply_relocations(mod, info);
3450	if (err < 0)
3451		goto free_modinfo;
3452
3453	err = post_relocation(mod, info);
3454	if (err < 0)
3455		goto free_modinfo;
3456
3457	flush_module_icache(mod);
3458
3459	/* Now copy in args */
3460	mod->args = strndup_user(uargs, ~0UL >> 1);
3461	if (IS_ERR(mod->args)) {
3462		err = PTR_ERR(mod->args);
3463		goto free_arch_cleanup;
3464	}
3465
3466	dynamic_debug_setup(info->debug, info->num_debug);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3467
3468	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3469	ftrace_module_init(mod);
 
3470
3471	/* Finally it's fully formed, ready to start executing. */
3472	err = complete_formation(mod, info);
3473	if (err)
3474		goto ddebug_cleanup;
3475
3476	err = prepare_coming_module(mod);
3477	if (err)
3478		goto bug_cleanup;
3479
3480	/* Module is ready to execute: parsing args may do that. */
3481	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3482				  -32768, 32767, mod,
3483				  unknown_module_param_cb);
3484	if (IS_ERR(after_dashes)) {
3485		err = PTR_ERR(after_dashes);
3486		goto coming_cleanup;
3487	} else if (after_dashes) {
3488		pr_warn("%s: parameters '%s' after `--' ignored\n",
3489		       mod->name, after_dashes);
3490	}
3491
3492	/* Link in to syfs. */
3493	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3494	if (err < 0)
3495		goto coming_cleanup;
3496
3497	/* Get rid of temporary copy. */
3498	free_copy(info);
 
3499
3500	/* Done! */
3501	trace_module_load(mod);
 
3502
3503	return do_init_module(mod);
3504
3505 coming_cleanup:
3506	blocking_notifier_call_chain(&module_notify_list,
3507				     MODULE_STATE_GOING, mod);
3508	klp_module_going(mod);
3509
3510 bug_cleanup:
3511	/* module_bug_cleanup needs module_mutex protection */
3512	mutex_lock(&module_mutex);
 
 
3513	module_bug_cleanup(mod);
3514	mutex_unlock(&module_mutex);
3515
3516	/* we can't deallocate the module until we clear memory protection */
3517	module_disable_ro(mod);
3518	module_disable_nx(mod);
3519
3520 ddebug_cleanup:
3521	dynamic_debug_remove(info->debug);
3522	synchronize_sched();
3523	kfree(mod->args);
3524 free_arch_cleanup:
3525	module_arch_cleanup(mod);
3526 free_modinfo:
3527	free_modinfo(mod);
3528 free_unload:
3529	module_unload_free(mod);
3530 unlink_mod:
3531	mutex_lock(&module_mutex);
3532	/* Unlink carefully: kallsyms could be walking list. */
3533	list_del_rcu(&mod->list);
3534	mod_tree_remove(mod);
3535	wake_up_all(&module_wq);
3536	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3537	synchronize_sched();
3538	mutex_unlock(&module_mutex);
3539 free_module:
3540	/*
3541	 * Ftrace needs to clean up what it initialized.
3542	 * This does nothing if ftrace_module_init() wasn't called,
3543	 * but it must be called outside of module_mutex.
3544	 */
3545	ftrace_release_mod(mod);
3546	/* Free lock-classes; relies on the preceding sync_rcu() */
3547	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3548
3549	module_deallocate(mod, info);
3550 free_copy:
3551	free_copy(info);
3552	return err;
3553}
3554
 
 
 
 
 
 
 
 
 
 
 
 
3555SYSCALL_DEFINE3(init_module, void __user *, umod,
3556		unsigned long, len, const char __user *, uargs)
3557{
3558	int err;
3559	struct load_info info = { };
3560
3561	err = may_init_module();
3562	if (err)
3563		return err;
3564
3565	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3566	       umod, len, uargs);
 
 
3567
3568	err = copy_module_from_user(umod, len, &info);
3569	if (err)
3570		return err;
3571
3572	return load_module(&info, uargs, 0);
3573}
 
 
 
 
 
 
 
 
 
3574
3575SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3576{
3577	struct load_info info = { };
3578	loff_t size;
3579	void *hdr;
3580	int err;
3581
3582	err = may_init_module();
3583	if (err)
3584		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3585
3586	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
 
 
 
 
3587
3588	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3589		      |MODULE_INIT_IGNORE_VERMAGIC))
3590		return -EINVAL;
3591
3592	err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3593				       READING_MODULE);
3594	if (err)
3595		return err;
3596	info.hdr = hdr;
3597	info.len = size;
 
 
 
 
 
 
 
 
 
 
3598
3599	return load_module(&info, uargs, flags);
3600}
3601
3602static inline int within(unsigned long addr, void *start, unsigned long size)
3603{
3604	return ((void *)addr >= start && (void *)addr < start + size);
3605}
3606
3607#ifdef CONFIG_KALLSYMS
3608/*
3609 * This ignores the intensely annoying "mapping symbols" found
3610 * in ARM ELF files: $a, $t and $d.
3611 */
3612static inline int is_arm_mapping_symbol(const char *str)
3613{
3614	if (str[0] == '.' && str[1] == 'L')
3615		return true;
3616	return str[0] == '$' && strchr("axtd", str[1])
3617	       && (str[2] == '\0' || str[2] == '.');
3618}
3619
3620static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3621{
3622	return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3623}
3624
3625static const char *get_ksymbol(struct module *mod,
3626			       unsigned long addr,
3627			       unsigned long *size,
3628			       unsigned long *offset)
3629{
3630	unsigned int i, best = 0;
3631	unsigned long nextval;
3632	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3633
3634	/* At worse, next value is at end of module */
3635	if (within_module_init(addr, mod))
3636		nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3637	else
3638		nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3639
3640	/* Scan for closest preceding symbol, and next symbol. (ELF
3641	   starts real symbols at 1). */
3642	for (i = 1; i < kallsyms->num_symtab; i++) {
3643		if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3644			continue;
3645
3646		/* We ignore unnamed symbols: they're uninformative
3647		 * and inserted at a whim. */
3648		if (*symname(kallsyms, i) == '\0'
3649		    || is_arm_mapping_symbol(symname(kallsyms, i)))
3650			continue;
3651
3652		if (kallsyms->symtab[i].st_value <= addr
3653		    && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3654			best = i;
3655		if (kallsyms->symtab[i].st_value > addr
3656		    && kallsyms->symtab[i].st_value < nextval)
3657			nextval = kallsyms->symtab[i].st_value;
 
 
3658	}
3659
3660	if (!best)
3661		return NULL;
3662
3663	if (size)
3664		*size = nextval - kallsyms->symtab[best].st_value;
3665	if (offset)
3666		*offset = addr - kallsyms->symtab[best].st_value;
3667	return symname(kallsyms, best);
3668}
3669
3670/* For kallsyms to ask for address resolution.  NULL means not found.  Careful
3671 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3672const char *module_address_lookup(unsigned long addr,
3673			    unsigned long *size,
3674			    unsigned long *offset,
3675			    char **modname,
3676			    char *namebuf)
3677{
3678	const char *ret = NULL;
3679	struct module *mod;
 
3680
3681	preempt_disable();
3682	mod = __module_address(addr);
3683	if (mod) {
3684		if (modname)
3685			*modname = mod->name;
3686		ret = get_ksymbol(mod, addr, size, offset);
 
 
 
3687	}
3688	/* Make a copy in here where it's safe */
3689	if (ret) {
3690		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3691		ret = namebuf;
3692	}
3693	preempt_enable();
3694
3695	return ret;
3696}
3697
3698int lookup_module_symbol_name(unsigned long addr, char *symname)
3699{
3700	struct module *mod;
3701
3702	preempt_disable();
3703	list_for_each_entry_rcu(mod, &modules, list) {
3704		if (mod->state == MODULE_STATE_UNFORMED)
3705			continue;
3706		if (within_module(addr, mod)) {
3707			const char *sym;
3708
3709			sym = get_ksymbol(mod, addr, NULL, NULL);
3710			if (!sym)
3711				goto out;
3712			strlcpy(symname, sym, KSYM_NAME_LEN);
3713			preempt_enable();
3714			return 0;
3715		}
3716	}
3717out:
3718	preempt_enable();
3719	return -ERANGE;
3720}
3721
3722int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3723			unsigned long *offset, char *modname, char *name)
3724{
3725	struct module *mod;
3726
3727	preempt_disable();
3728	list_for_each_entry_rcu(mod, &modules, list) {
3729		if (mod->state == MODULE_STATE_UNFORMED)
3730			continue;
3731		if (within_module(addr, mod)) {
3732			const char *sym;
3733
3734			sym = get_ksymbol(mod, addr, size, offset);
3735			if (!sym)
3736				goto out;
3737			if (modname)
3738				strlcpy(modname, mod->name, MODULE_NAME_LEN);
3739			if (name)
3740				strlcpy(name, sym, KSYM_NAME_LEN);
3741			preempt_enable();
3742			return 0;
3743		}
3744	}
3745out:
3746	preempt_enable();
3747	return -ERANGE;
3748}
3749
3750int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3751			char *name, char *module_name, int *exported)
3752{
3753	struct module *mod;
3754
3755	preempt_disable();
3756	list_for_each_entry_rcu(mod, &modules, list) {
3757		struct mod_kallsyms *kallsyms;
3758
3759		if (mod->state == MODULE_STATE_UNFORMED)
3760			continue;
3761		kallsyms = rcu_dereference_sched(mod->kallsyms);
3762		if (symnum < kallsyms->num_symtab) {
3763			*value = kallsyms->symtab[symnum].st_value;
3764			*type = kallsyms->symtab[symnum].st_info;
3765			strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
3766			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3767			*exported = is_exported(name, *value, mod);
3768			preempt_enable();
3769			return 0;
3770		}
3771		symnum -= kallsyms->num_symtab;
3772	}
3773	preempt_enable();
3774	return -ERANGE;
3775}
3776
3777static unsigned long mod_find_symname(struct module *mod, const char *name)
3778{
3779	unsigned int i;
3780	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3781
3782	for (i = 0; i < kallsyms->num_symtab; i++)
3783		if (strcmp(name, symname(kallsyms, i)) == 0 &&
3784		    kallsyms->symtab[i].st_info != 'U')
3785			return kallsyms->symtab[i].st_value;
3786	return 0;
3787}
3788
3789/* Look for this name: can be of form module:name. */
3790unsigned long module_kallsyms_lookup_name(const char *name)
3791{
3792	struct module *mod;
3793	char *colon;
3794	unsigned long ret = 0;
3795
3796	/* Don't lock: we're in enough trouble already. */
3797	preempt_disable();
3798	if ((colon = strchr(name, ':')) != NULL) {
3799		if ((mod = find_module_all(name, colon - name, false)) != NULL)
 
3800			ret = mod_find_symname(mod, colon+1);
 
3801	} else {
3802		list_for_each_entry_rcu(mod, &modules, list) {
3803			if (mod->state == MODULE_STATE_UNFORMED)
3804				continue;
3805			if ((ret = mod_find_symname(mod, name)) != 0)
3806				break;
3807		}
3808	}
3809	preempt_enable();
3810	return ret;
3811}
3812
3813int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3814					     struct module *, unsigned long),
3815				   void *data)
3816{
3817	struct module *mod;
3818	unsigned int i;
3819	int ret;
3820
3821	module_assert_mutex();
3822
3823	list_for_each_entry(mod, &modules, list) {
3824		/* We hold module_mutex: no need for rcu_dereference_sched */
3825		struct mod_kallsyms *kallsyms = mod->kallsyms;
3826
3827		if (mod->state == MODULE_STATE_UNFORMED)
3828			continue;
3829		for (i = 0; i < kallsyms->num_symtab; i++) {
3830			ret = fn(data, symname(kallsyms, i),
3831				 mod, kallsyms->symtab[i].st_value);
3832			if (ret != 0)
3833				return ret;
3834		}
3835	}
3836	return 0;
3837}
3838#endif /* CONFIG_KALLSYMS */
3839
3840static char *module_flags(struct module *mod, char *buf)
3841{
3842	int bx = 0;
3843
3844	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3845	if (mod->taints ||
3846	    mod->state == MODULE_STATE_GOING ||
3847	    mod->state == MODULE_STATE_COMING) {
3848		buf[bx++] = '(';
3849		bx += module_flags_taint(mod, buf + bx);
 
 
 
 
 
 
 
 
 
 
 
3850		/* Show a - for module-is-being-unloaded */
3851		if (mod->state == MODULE_STATE_GOING)
3852			buf[bx++] = '-';
3853		/* Show a + for module-is-being-loaded */
3854		if (mod->state == MODULE_STATE_COMING)
3855			buf[bx++] = '+';
3856		buf[bx++] = ')';
3857	}
3858	buf[bx] = '\0';
3859
3860	return buf;
3861}
3862
3863#ifdef CONFIG_PROC_FS
3864/* Called by the /proc file system to return a list of modules. */
3865static void *m_start(struct seq_file *m, loff_t *pos)
3866{
3867	mutex_lock(&module_mutex);
3868	return seq_list_start(&modules, *pos);
3869}
3870
3871static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3872{
3873	return seq_list_next(p, &modules, pos);
3874}
3875
3876static void m_stop(struct seq_file *m, void *p)
3877{
3878	mutex_unlock(&module_mutex);
3879}
3880
3881static int m_show(struct seq_file *m, void *p)
3882{
3883	struct module *mod = list_entry(p, struct module, list);
3884	char buf[8];
3885
3886	/* We always ignore unformed modules. */
3887	if (mod->state == MODULE_STATE_UNFORMED)
3888		return 0;
3889
3890	seq_printf(m, "%s %u",
3891		   mod->name, mod->init_layout.size + mod->core_layout.size);
3892	print_unload_info(m, mod);
3893
3894	/* Informative for users. */
3895	seq_printf(m, " %s",
3896		   mod->state == MODULE_STATE_GOING ? "Unloading" :
3897		   mod->state == MODULE_STATE_COMING ? "Loading" :
3898		   "Live");
3899	/* Used by oprofile and other similar tools. */
3900	seq_printf(m, " 0x%pK", mod->core_layout.base);
3901
3902	/* Taints info */
3903	if (mod->taints)
3904		seq_printf(m, " %s", module_flags(mod, buf));
3905
3906	seq_puts(m, "\n");
3907	return 0;
3908}
3909
3910/* Format: modulename size refcount deps address
3911
3912   Where refcount is a number or -, and deps is a comma-separated list
3913   of depends or -.
3914*/
3915static const struct seq_operations modules_op = {
3916	.start	= m_start,
3917	.next	= m_next,
3918	.stop	= m_stop,
3919	.show	= m_show
3920};
3921
3922static int modules_open(struct inode *inode, struct file *file)
3923{
3924	return seq_open(file, &modules_op);
3925}
3926
3927static const struct file_operations proc_modules_operations = {
3928	.open		= modules_open,
3929	.read		= seq_read,
3930	.llseek		= seq_lseek,
3931	.release	= seq_release,
3932};
3933
3934static int __init proc_modules_init(void)
3935{
3936	proc_create("modules", 0, NULL, &proc_modules_operations);
3937	return 0;
3938}
3939module_init(proc_modules_init);
3940#endif
3941
3942/* Given an address, look for it in the module exception tables. */
3943const struct exception_table_entry *search_module_extables(unsigned long addr)
3944{
3945	const struct exception_table_entry *e = NULL;
3946	struct module *mod;
3947
3948	preempt_disable();
3949	list_for_each_entry_rcu(mod, &modules, list) {
3950		if (mod->state == MODULE_STATE_UNFORMED)
3951			continue;
3952		if (mod->num_exentries == 0)
3953			continue;
3954
3955		e = search_extable(mod->extable,
3956				   mod->extable + mod->num_exentries - 1,
3957				   addr);
3958		if (e)
3959			break;
3960	}
3961	preempt_enable();
3962
3963	/* Now, if we found one, we are running inside it now, hence
3964	   we cannot unload the module, hence no refcnt needed. */
3965	return e;
3966}
3967
3968/*
3969 * is_module_address - is this address inside a module?
3970 * @addr: the address to check.
3971 *
3972 * See is_module_text_address() if you simply want to see if the address
3973 * is code (not data).
3974 */
3975bool is_module_address(unsigned long addr)
3976{
3977	bool ret;
3978
3979	preempt_disable();
3980	ret = __module_address(addr) != NULL;
3981	preempt_enable();
3982
3983	return ret;
3984}
3985
3986/*
3987 * __module_address - get the module which contains an address.
3988 * @addr: the address.
3989 *
3990 * Must be called with preempt disabled or module mutex held so that
3991 * module doesn't get freed during this.
3992 */
3993struct module *__module_address(unsigned long addr)
3994{
3995	struct module *mod;
3996
3997	if (addr < module_addr_min || addr > module_addr_max)
3998		return NULL;
3999
4000	module_assert_mutex_or_preempt();
4001
4002	mod = mod_find(addr);
4003	if (mod) {
4004		BUG_ON(!within_module(addr, mod));
4005		if (mod->state == MODULE_STATE_UNFORMED)
4006			mod = NULL;
4007	}
4008	return mod;
4009}
4010EXPORT_SYMBOL_GPL(__module_address);
4011
4012/*
4013 * is_module_text_address - is this address inside module code?
4014 * @addr: the address to check.
4015 *
4016 * See is_module_address() if you simply want to see if the address is
4017 * anywhere in a module.  See kernel_text_address() for testing if an
4018 * address corresponds to kernel or module code.
4019 */
4020bool is_module_text_address(unsigned long addr)
4021{
4022	bool ret;
4023
4024	preempt_disable();
4025	ret = __module_text_address(addr) != NULL;
4026	preempt_enable();
4027
4028	return ret;
4029}
4030
4031/*
4032 * __module_text_address - get the module whose code contains an address.
4033 * @addr: the address.
4034 *
4035 * Must be called with preempt disabled or module mutex held so that
4036 * module doesn't get freed during this.
4037 */
4038struct module *__module_text_address(unsigned long addr)
4039{
4040	struct module *mod = __module_address(addr);
4041	if (mod) {
4042		/* Make sure it's within the text section. */
4043		if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4044		    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4045			mod = NULL;
4046	}
4047	return mod;
4048}
4049EXPORT_SYMBOL_GPL(__module_text_address);
4050
4051/* Don't grab lock, we're oopsing. */
4052void print_modules(void)
4053{
4054	struct module *mod;
4055	char buf[8];
4056
4057	printk(KERN_DEFAULT "Modules linked in:");
4058	/* Most callers should already have preempt disabled, but make sure */
4059	preempt_disable();
4060	list_for_each_entry_rcu(mod, &modules, list) {
4061		if (mod->state == MODULE_STATE_UNFORMED)
4062			continue;
4063		pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4064	}
4065	preempt_enable();
4066	if (last_unloaded_module[0])
4067		pr_cont(" [last unloaded: %s]", last_unloaded_module);
4068	pr_cont("\n");
4069}
4070
4071#ifdef CONFIG_MODVERSIONS
4072/* Generate the signature for all relevant module structures here.
4073 * If these change, we don't want to try to parse the module. */
4074void module_layout(struct module *mod,
4075		   struct modversion_info *ver,
4076		   struct kernel_param *kp,
4077		   struct kernel_symbol *ks,
4078		   struct tracepoint * const *tp)
4079{
4080}
4081EXPORT_SYMBOL(module_layout);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4082#endif
v3.1
   1/*
   2   Copyright (C) 2002 Richard Henderson
   3   Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
   4
   5    This program is free software; you can redistribute it and/or modify
   6    it under the terms of the GNU General Public License as published by
   7    the Free Software Foundation; either version 2 of the License, or
   8    (at your option) any later version.
   9
  10    This program is distributed in the hope that it will be useful,
  11    but WITHOUT ANY WARRANTY; without even the implied warranty of
  12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13    GNU General Public License for more details.
  14
  15    You should have received a copy of the GNU General Public License
  16    along with this program; if not, write to the Free Software
  17    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  18*/
  19#include <linux/module.h>
  20#include <linux/moduleloader.h>
  21#include <linux/ftrace_event.h>
  22#include <linux/init.h>
  23#include <linux/kallsyms.h>
 
  24#include <linux/fs.h>
  25#include <linux/sysfs.h>
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/vmalloc.h>
  29#include <linux/elf.h>
  30#include <linux/proc_fs.h>
 
  31#include <linux/seq_file.h>
  32#include <linux/syscalls.h>
  33#include <linux/fcntl.h>
  34#include <linux/rcupdate.h>
  35#include <linux/capability.h>
  36#include <linux/cpu.h>
  37#include <linux/moduleparam.h>
  38#include <linux/errno.h>
  39#include <linux/err.h>
  40#include <linux/vermagic.h>
  41#include <linux/notifier.h>
  42#include <linux/sched.h>
  43#include <linux/stop_machine.h>
  44#include <linux/device.h>
  45#include <linux/string.h>
  46#include <linux/mutex.h>
  47#include <linux/rculist.h>
  48#include <asm/uaccess.h>
  49#include <asm/cacheflush.h>
  50#include <asm/mmu_context.h>
  51#include <linux/license.h>
  52#include <asm/sections.h>
  53#include <linux/tracepoint.h>
  54#include <linux/ftrace.h>
 
  55#include <linux/async.h>
  56#include <linux/percpu.h>
  57#include <linux/kmemleak.h>
  58#include <linux/jump_label.h>
  59#include <linux/pfn.h>
  60#include <linux/bsearch.h>
 
 
  61
  62#define CREATE_TRACE_POINTS
  63#include <trace/events/module.h>
  64
  65#if 0
  66#define DEBUGP printk
  67#else
  68#define DEBUGP(fmt , a...)
  69#endif
  70
  71#ifndef ARCH_SHF_SMALL
  72#define ARCH_SHF_SMALL 0
  73#endif
  74
  75/*
  76 * Modules' sections will be aligned on page boundaries
  77 * to ensure complete separation of code and data, but
  78 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
  79 */
  80#ifdef CONFIG_DEBUG_SET_MODULE_RONX
  81# define debug_align(X) ALIGN(X, PAGE_SIZE)
  82#else
  83# define debug_align(X) (X)
  84#endif
  85
  86/*
  87 * Given BASE and SIZE this macro calculates the number of pages the
  88 * memory regions occupies
  89 */
  90#define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ?		\
  91		(PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) -	\
  92			 PFN_DOWN((unsigned long)BASE) + 1)	\
  93		: (0UL))
  94
  95/* If this is set, the section belongs in the init part of the module */
  96#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
  97
  98/*
  99 * Mutex protects:
 100 * 1) List of modules (also safely readable with preempt_disable),
 101 * 2) module_use links,
 102 * 3) module_addr_min/module_addr_max.
 103 * (delete uses stop_machine/add uses RCU list operations). */
 104DEFINE_MUTEX(module_mutex);
 105EXPORT_SYMBOL_GPL(module_mutex);
 106static LIST_HEAD(modules);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 107#ifdef CONFIG_KGDB_KDB
 108struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
 109#endif /* CONFIG_KGDB_KDB */
 110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111
 112/* Block module loading/unloading? */
 113int modules_disabled = 0;
 
 114
 115/* Waiting for a module to finish initializing? */
 116static DECLARE_WAIT_QUEUE_HEAD(module_wq);
 117
 118static BLOCKING_NOTIFIER_HEAD(module_notify_list);
 119
 120/* Bounds of module allocation, for speeding __module_address.
 121 * Protected by module_mutex. */
 122static unsigned long module_addr_min = -1UL, module_addr_max = 0;
 123
 124int register_module_notifier(struct notifier_block * nb)
 125{
 126	return blocking_notifier_chain_register(&module_notify_list, nb);
 127}
 128EXPORT_SYMBOL(register_module_notifier);
 129
 130int unregister_module_notifier(struct notifier_block * nb)
 131{
 132	return blocking_notifier_chain_unregister(&module_notify_list, nb);
 133}
 134EXPORT_SYMBOL(unregister_module_notifier);
 135
 136struct load_info {
 137	Elf_Ehdr *hdr;
 138	unsigned long len;
 139	Elf_Shdr *sechdrs;
 140	char *secstrings, *strtab;
 141	unsigned long *strmap;
 142	unsigned long symoffs, stroffs;
 143	struct _ddebug *debug;
 144	unsigned int num_debug;
 
 
 
 
 145	struct {
 146		unsigned int sym, str, mod, vers, info, pcpu;
 147	} index;
 148};
 149
 150/* We require a truly strong try_module_get(): 0 means failure due to
 151   ongoing or failed initialization etc. */
 152static inline int strong_try_module_get(struct module *mod)
 153{
 
 154	if (mod && mod->state == MODULE_STATE_COMING)
 155		return -EBUSY;
 156	if (try_module_get(mod))
 157		return 0;
 158	else
 159		return -ENOENT;
 160}
 161
 162static inline void add_taint_module(struct module *mod, unsigned flag)
 
 163{
 164	add_taint(flag);
 165	mod->taints |= (1U << flag);
 166}
 167
 168/*
 169 * A thread that wants to hold a reference to a module only while it
 170 * is running can call this to safely exit.  nfsd and lockd use this.
 171 */
 172void __module_put_and_exit(struct module *mod, long code)
 173{
 174	module_put(mod);
 175	do_exit(code);
 176}
 177EXPORT_SYMBOL(__module_put_and_exit);
 178
 179/* Find a module section: 0 means not found. */
 180static unsigned int find_sec(const struct load_info *info, const char *name)
 181{
 182	unsigned int i;
 183
 184	for (i = 1; i < info->hdr->e_shnum; i++) {
 185		Elf_Shdr *shdr = &info->sechdrs[i];
 186		/* Alloc bit cleared means "ignore it." */
 187		if ((shdr->sh_flags & SHF_ALLOC)
 188		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
 189			return i;
 190	}
 191	return 0;
 192}
 193
 194/* Find a module section, or NULL. */
 195static void *section_addr(const struct load_info *info, const char *name)
 196{
 197	/* Section 0 has sh_addr 0. */
 198	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
 199}
 200
 201/* Find a module section, or NULL.  Fill in number of "objects" in section. */
 202static void *section_objs(const struct load_info *info,
 203			  const char *name,
 204			  size_t object_size,
 205			  unsigned int *num)
 206{
 207	unsigned int sec = find_sec(info, name);
 208
 209	/* Section 0 has sh_addr 0 and sh_size 0. */
 210	*num = info->sechdrs[sec].sh_size / object_size;
 211	return (void *)info->sechdrs[sec].sh_addr;
 212}
 213
 214/* Provided by the linker */
 215extern const struct kernel_symbol __start___ksymtab[];
 216extern const struct kernel_symbol __stop___ksymtab[];
 217extern const struct kernel_symbol __start___ksymtab_gpl[];
 218extern const struct kernel_symbol __stop___ksymtab_gpl[];
 219extern const struct kernel_symbol __start___ksymtab_gpl_future[];
 220extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
 221extern const unsigned long __start___kcrctab[];
 222extern const unsigned long __start___kcrctab_gpl[];
 223extern const unsigned long __start___kcrctab_gpl_future[];
 224#ifdef CONFIG_UNUSED_SYMBOLS
 225extern const struct kernel_symbol __start___ksymtab_unused[];
 226extern const struct kernel_symbol __stop___ksymtab_unused[];
 227extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
 228extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
 229extern const unsigned long __start___kcrctab_unused[];
 230extern const unsigned long __start___kcrctab_unused_gpl[];
 231#endif
 232
 233#ifndef CONFIG_MODVERSIONS
 234#define symversion(base, idx) NULL
 235#else
 236#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
 237#endif
 238
 239static bool each_symbol_in_section(const struct symsearch *arr,
 240				   unsigned int arrsize,
 241				   struct module *owner,
 242				   bool (*fn)(const struct symsearch *syms,
 243					      struct module *owner,
 244					      void *data),
 245				   void *data)
 246{
 247	unsigned int j;
 248
 249	for (j = 0; j < arrsize; j++) {
 250		if (fn(&arr[j], owner, data))
 251			return true;
 252	}
 253
 254	return false;
 255}
 256
 257/* Returns true as soon as fn returns true, otherwise false. */
 258bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
 259				    struct module *owner,
 260				    void *data),
 261			 void *data)
 262{
 263	struct module *mod;
 264	static const struct symsearch arr[] = {
 265		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
 266		  NOT_GPL_ONLY, false },
 267		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
 268		  __start___kcrctab_gpl,
 269		  GPL_ONLY, false },
 270		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
 271		  __start___kcrctab_gpl_future,
 272		  WILL_BE_GPL_ONLY, false },
 273#ifdef CONFIG_UNUSED_SYMBOLS
 274		{ __start___ksymtab_unused, __stop___ksymtab_unused,
 275		  __start___kcrctab_unused,
 276		  NOT_GPL_ONLY, true },
 277		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
 278		  __start___kcrctab_unused_gpl,
 279		  GPL_ONLY, true },
 280#endif
 281	};
 282
 
 
 283	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
 284		return true;
 285
 286	list_for_each_entry_rcu(mod, &modules, list) {
 287		struct symsearch arr[] = {
 288			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
 289			  NOT_GPL_ONLY, false },
 290			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
 291			  mod->gpl_crcs,
 292			  GPL_ONLY, false },
 293			{ mod->gpl_future_syms,
 294			  mod->gpl_future_syms + mod->num_gpl_future_syms,
 295			  mod->gpl_future_crcs,
 296			  WILL_BE_GPL_ONLY, false },
 297#ifdef CONFIG_UNUSED_SYMBOLS
 298			{ mod->unused_syms,
 299			  mod->unused_syms + mod->num_unused_syms,
 300			  mod->unused_crcs,
 301			  NOT_GPL_ONLY, true },
 302			{ mod->unused_gpl_syms,
 303			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
 304			  mod->unused_gpl_crcs,
 305			  GPL_ONLY, true },
 306#endif
 307		};
 308
 
 
 
 309		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
 310			return true;
 311	}
 312	return false;
 313}
 314EXPORT_SYMBOL_GPL(each_symbol_section);
 315
 316struct find_symbol_arg {
 317	/* Input */
 318	const char *name;
 319	bool gplok;
 320	bool warn;
 321
 322	/* Output */
 323	struct module *owner;
 324	const unsigned long *crc;
 325	const struct kernel_symbol *sym;
 326};
 327
 328static bool check_symbol(const struct symsearch *syms,
 329				 struct module *owner,
 330				 unsigned int symnum, void *data)
 331{
 332	struct find_symbol_arg *fsa = data;
 333
 334	if (!fsa->gplok) {
 335		if (syms->licence == GPL_ONLY)
 336			return false;
 337		if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
 338			printk(KERN_WARNING "Symbol %s is being used "
 339			       "by a non-GPL module, which will not "
 340			       "be allowed in the future\n", fsa->name);
 341			printk(KERN_WARNING "Please see the file "
 342			       "Documentation/feature-removal-schedule.txt "
 343			       "in the kernel source tree for more details.\n");
 344		}
 345	}
 346
 347#ifdef CONFIG_UNUSED_SYMBOLS
 348	if (syms->unused && fsa->warn) {
 349		printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
 350		       "however this module is using it.\n", fsa->name);
 351		printk(KERN_WARNING
 352		       "This symbol will go away in the future.\n");
 353		printk(KERN_WARNING
 354		       "Please evalute if this is the right api to use and if "
 355		       "it really is, submit a report the linux kernel "
 356		       "mailinglist together with submitting your code for "
 357		       "inclusion.\n");
 358	}
 359#endif
 360
 361	fsa->owner = owner;
 362	fsa->crc = symversion(syms->crcs, symnum);
 363	fsa->sym = &syms->start[symnum];
 364	return true;
 365}
 366
 367static int cmp_name(const void *va, const void *vb)
 368{
 369	const char *a;
 370	const struct kernel_symbol *b;
 371	a = va; b = vb;
 372	return strcmp(a, b->name);
 373}
 374
 375static bool find_symbol_in_section(const struct symsearch *syms,
 376				   struct module *owner,
 377				   void *data)
 378{
 379	struct find_symbol_arg *fsa = data;
 380	struct kernel_symbol *sym;
 381
 382	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
 383			sizeof(struct kernel_symbol), cmp_name);
 384
 385	if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
 386		return true;
 387
 388	return false;
 389}
 390
 391/* Find a symbol and return it, along with, (optional) crc and
 392 * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
 393const struct kernel_symbol *find_symbol(const char *name,
 394					struct module **owner,
 395					const unsigned long **crc,
 396					bool gplok,
 397					bool warn)
 398{
 399	struct find_symbol_arg fsa;
 400
 401	fsa.name = name;
 402	fsa.gplok = gplok;
 403	fsa.warn = warn;
 404
 405	if (each_symbol_section(find_symbol_in_section, &fsa)) {
 406		if (owner)
 407			*owner = fsa.owner;
 408		if (crc)
 409			*crc = fsa.crc;
 410		return fsa.sym;
 411	}
 412
 413	DEBUGP("Failed to find symbol %s\n", name);
 414	return NULL;
 415}
 416EXPORT_SYMBOL_GPL(find_symbol);
 417
 418/* Search for module by name: must hold module_mutex. */
 419struct module *find_module(const char *name)
 
 
 
 
 420{
 421	struct module *mod;
 422
 
 
 423	list_for_each_entry(mod, &modules, list) {
 424		if (strcmp(mod->name, name) == 0)
 
 
 425			return mod;
 426	}
 427	return NULL;
 428}
 
 
 
 
 
 
 429EXPORT_SYMBOL_GPL(find_module);
 430
 431#ifdef CONFIG_SMP
 432
 433static inline void __percpu *mod_percpu(struct module *mod)
 434{
 435	return mod->percpu;
 436}
 437
 438static int percpu_modalloc(struct module *mod,
 439			   unsigned long size, unsigned long align)
 440{
 
 
 
 
 
 
 441	if (align > PAGE_SIZE) {
 442		printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
 443		       mod->name, align, PAGE_SIZE);
 444		align = PAGE_SIZE;
 445	}
 446
 447	mod->percpu = __alloc_reserved_percpu(size, align);
 448	if (!mod->percpu) {
 449		printk(KERN_WARNING
 450		       "%s: Could not allocate %lu bytes percpu data\n",
 451		       mod->name, size);
 452		return -ENOMEM;
 453	}
 454	mod->percpu_size = size;
 455	return 0;
 456}
 457
 458static void percpu_modfree(struct module *mod)
 459{
 460	free_percpu(mod->percpu);
 461}
 462
 463static unsigned int find_pcpusec(struct load_info *info)
 464{
 465	return find_sec(info, ".data..percpu");
 466}
 467
 468static void percpu_modcopy(struct module *mod,
 469			   const void *from, unsigned long size)
 470{
 471	int cpu;
 472
 473	for_each_possible_cpu(cpu)
 474		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
 475}
 476
 477/**
 478 * is_module_percpu_address - test whether address is from module static percpu
 479 * @addr: address to test
 480 *
 481 * Test whether @addr belongs to module static percpu area.
 482 *
 483 * RETURNS:
 484 * %true if @addr is from module static percpu area
 485 */
 486bool is_module_percpu_address(unsigned long addr)
 487{
 488	struct module *mod;
 489	unsigned int cpu;
 490
 491	preempt_disable();
 492
 493	list_for_each_entry_rcu(mod, &modules, list) {
 
 
 494		if (!mod->percpu_size)
 495			continue;
 496		for_each_possible_cpu(cpu) {
 497			void *start = per_cpu_ptr(mod->percpu, cpu);
 498
 499			if ((void *)addr >= start &&
 500			    (void *)addr < start + mod->percpu_size) {
 501				preempt_enable();
 502				return true;
 503			}
 504		}
 505	}
 506
 507	preempt_enable();
 508	return false;
 509}
 510
 511#else /* ... !CONFIG_SMP */
 512
 513static inline void __percpu *mod_percpu(struct module *mod)
 514{
 515	return NULL;
 516}
 517static inline int percpu_modalloc(struct module *mod,
 518				  unsigned long size, unsigned long align)
 519{
 520	return -ENOMEM;
 
 
 
 521}
 522static inline void percpu_modfree(struct module *mod)
 523{
 524}
 525static unsigned int find_pcpusec(struct load_info *info)
 526{
 527	return 0;
 528}
 529static inline void percpu_modcopy(struct module *mod,
 530				  const void *from, unsigned long size)
 531{
 532	/* pcpusec should be 0, and size of that section should be 0. */
 533	BUG_ON(size != 0);
 534}
 535bool is_module_percpu_address(unsigned long addr)
 536{
 537	return false;
 538}
 539
 540#endif /* CONFIG_SMP */
 541
 542#define MODINFO_ATTR(field)	\
 543static void setup_modinfo_##field(struct module *mod, const char *s)  \
 544{                                                                     \
 545	mod->field = kstrdup(s, GFP_KERNEL);                          \
 546}                                                                     \
 547static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
 548			struct module_kobject *mk, char *buffer)      \
 549{                                                                     \
 550	return sprintf(buffer, "%s\n", mk->mod->field);               \
 551}                                                                     \
 552static int modinfo_##field##_exists(struct module *mod)               \
 553{                                                                     \
 554	return mod->field != NULL;                                    \
 555}                                                                     \
 556static void free_modinfo_##field(struct module *mod)                  \
 557{                                                                     \
 558	kfree(mod->field);                                            \
 559	mod->field = NULL;                                            \
 560}                                                                     \
 561static struct module_attribute modinfo_##field = {                    \
 562	.attr = { .name = __stringify(field), .mode = 0444 },         \
 563	.show = show_modinfo_##field,                                 \
 564	.setup = setup_modinfo_##field,                               \
 565	.test = modinfo_##field##_exists,                             \
 566	.free = free_modinfo_##field,                                 \
 567};
 568
 569MODINFO_ATTR(version);
 570MODINFO_ATTR(srcversion);
 571
 572static char last_unloaded_module[MODULE_NAME_LEN+1];
 573
 574#ifdef CONFIG_MODULE_UNLOAD
 575
 576EXPORT_TRACEPOINT_SYMBOL(module_get);
 577
 
 
 
 578/* Init the unload section of the module. */
 579static int module_unload_init(struct module *mod)
 580{
 581	mod->refptr = alloc_percpu(struct module_ref);
 582	if (!mod->refptr)
 583		return -ENOMEM;
 
 
 584
 585	INIT_LIST_HEAD(&mod->source_list);
 586	INIT_LIST_HEAD(&mod->target_list);
 587
 588	/* Hold reference count during initialization. */
 589	__this_cpu_write(mod->refptr->incs, 1);
 590	/* Backwards compatibility macros put refcount during init. */
 591	mod->waiter = current;
 592
 593	return 0;
 594}
 595
 596/* Does a already use b? */
 597static int already_uses(struct module *a, struct module *b)
 598{
 599	struct module_use *use;
 600
 601	list_for_each_entry(use, &b->source_list, source_list) {
 602		if (use->source == a) {
 603			DEBUGP("%s uses %s!\n", a->name, b->name);
 604			return 1;
 605		}
 606	}
 607	DEBUGP("%s does not use %s!\n", a->name, b->name);
 608	return 0;
 609}
 610
 611/*
 612 * Module a uses b
 613 *  - we add 'a' as a "source", 'b' as a "target" of module use
 614 *  - the module_use is added to the list of 'b' sources (so
 615 *    'b' can walk the list to see who sourced them), and of 'a'
 616 *    targets (so 'a' can see what modules it targets).
 617 */
 618static int add_module_usage(struct module *a, struct module *b)
 619{
 620	struct module_use *use;
 621
 622	DEBUGP("Allocating new usage for %s.\n", a->name);
 623	use = kmalloc(sizeof(*use), GFP_ATOMIC);
 624	if (!use) {
 625		printk(KERN_WARNING "%s: out of memory loading\n", a->name);
 626		return -ENOMEM;
 627	}
 628
 629	use->source = a;
 630	use->target = b;
 631	list_add(&use->source_list, &b->source_list);
 632	list_add(&use->target_list, &a->target_list);
 633	return 0;
 634}
 635
 636/* Module a uses b: caller needs module_mutex() */
 637int ref_module(struct module *a, struct module *b)
 638{
 639	int err;
 640
 641	if (b == NULL || already_uses(a, b))
 642		return 0;
 643
 644	/* If module isn't available, we fail. */
 645	err = strong_try_module_get(b);
 646	if (err)
 647		return err;
 648
 649	err = add_module_usage(a, b);
 650	if (err) {
 651		module_put(b);
 652		return err;
 653	}
 654	return 0;
 655}
 656EXPORT_SYMBOL_GPL(ref_module);
 657
 658/* Clear the unload stuff of the module. */
 659static void module_unload_free(struct module *mod)
 660{
 661	struct module_use *use, *tmp;
 662
 663	mutex_lock(&module_mutex);
 664	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
 665		struct module *i = use->target;
 666		DEBUGP("%s unusing %s\n", mod->name, i->name);
 667		module_put(i);
 668		list_del(&use->source_list);
 669		list_del(&use->target_list);
 670		kfree(use);
 671	}
 672	mutex_unlock(&module_mutex);
 673
 674	free_percpu(mod->refptr);
 675}
 676
 677#ifdef CONFIG_MODULE_FORCE_UNLOAD
 678static inline int try_force_unload(unsigned int flags)
 679{
 680	int ret = (flags & O_TRUNC);
 681	if (ret)
 682		add_taint(TAINT_FORCED_RMMOD);
 683	return ret;
 684}
 685#else
 686static inline int try_force_unload(unsigned int flags)
 687{
 688	return 0;
 689}
 690#endif /* CONFIG_MODULE_FORCE_UNLOAD */
 691
 692struct stopref
 
 693{
 694	struct module *mod;
 695	int flags;
 696	int *forced;
 697};
 
 
 
 
 
 
 
 698
 699/* Whole machine is stopped with interrupts off when this runs. */
 700static int __try_stop_module(void *_sref)
 701{
 702	struct stopref *sref = _sref;
 703
 704	/* If it's not unused, quit unless we're forcing. */
 705	if (module_refcount(sref->mod) != 0) {
 706		if (!(*sref->forced = try_force_unload(sref->flags)))
 
 707			return -EWOULDBLOCK;
 708	}
 709
 710	/* Mark it as dying. */
 711	sref->mod->state = MODULE_STATE_GOING;
 
 712	return 0;
 713}
 714
 715static int try_stop_module(struct module *mod, int flags, int *forced)
 716{
 717	if (flags & O_NONBLOCK) {
 718		struct stopref sref = { mod, flags, forced };
 719
 720		return stop_machine(__try_stop_module, &sref, NULL);
 721	} else {
 722		/* We don't need to stop the machine for this. */
 723		mod->state = MODULE_STATE_GOING;
 724		synchronize_sched();
 725		return 0;
 726	}
 727}
 728
 729unsigned int module_refcount(struct module *mod)
 730{
 731	unsigned int incs = 0, decs = 0;
 732	int cpu;
 733
 734	for_each_possible_cpu(cpu)
 735		decs += per_cpu_ptr(mod->refptr, cpu)->decs;
 736	/*
 737	 * ensure the incs are added up after the decs.
 738	 * module_put ensures incs are visible before decs with smp_wmb.
 739	 *
 740	 * This 2-count scheme avoids the situation where the refcount
 741	 * for CPU0 is read, then CPU0 increments the module refcount,
 742	 * then CPU1 drops that refcount, then the refcount for CPU1 is
 743	 * read. We would record a decrement but not its corresponding
 744	 * increment so we would see a low count (disaster).
 745	 *
 746	 * Rare situation? But module_refcount can be preempted, and we
 747	 * might be tallying up 4096+ CPUs. So it is not impossible.
 748	 */
 749	smp_rmb();
 750	for_each_possible_cpu(cpu)
 751		incs += per_cpu_ptr(mod->refptr, cpu)->incs;
 752	return incs - decs;
 753}
 754EXPORT_SYMBOL(module_refcount);
 755
 756/* This exists whether we can unload or not */
 757static void free_module(struct module *mod);
 758
 759static void wait_for_zero_refcount(struct module *mod)
 760{
 761	/* Since we might sleep for some time, release the mutex first */
 762	mutex_unlock(&module_mutex);
 763	for (;;) {
 764		DEBUGP("Looking at refcount...\n");
 765		set_current_state(TASK_UNINTERRUPTIBLE);
 766		if (module_refcount(mod) == 0)
 767			break;
 768		schedule();
 769	}
 770	current->state = TASK_RUNNING;
 771	mutex_lock(&module_mutex);
 772}
 773
 774SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
 775		unsigned int, flags)
 776{
 777	struct module *mod;
 778	char name[MODULE_NAME_LEN];
 779	int ret, forced = 0;
 780
 781	if (!capable(CAP_SYS_MODULE) || modules_disabled)
 782		return -EPERM;
 783
 784	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
 785		return -EFAULT;
 786	name[MODULE_NAME_LEN-1] = '\0';
 787
 788	if (mutex_lock_interruptible(&module_mutex) != 0)
 789		return -EINTR;
 790
 791	mod = find_module(name);
 792	if (!mod) {
 793		ret = -ENOENT;
 794		goto out;
 795	}
 796
 797	if (!list_empty(&mod->source_list)) {
 798		/* Other modules depend on us: get rid of them first. */
 799		ret = -EWOULDBLOCK;
 800		goto out;
 801	}
 802
 803	/* Doing init or already dying? */
 804	if (mod->state != MODULE_STATE_LIVE) {
 805		/* FIXME: if (force), slam module count and wake up
 806                   waiter --RR */
 807		DEBUGP("%s already dying\n", mod->name);
 808		ret = -EBUSY;
 809		goto out;
 810	}
 811
 812	/* If it has an init func, it must have an exit func to unload */
 813	if (mod->init && !mod->exit) {
 814		forced = try_force_unload(flags);
 815		if (!forced) {
 816			/* This module can't be removed */
 817			ret = -EBUSY;
 818			goto out;
 819		}
 820	}
 821
 822	/* Set this up before setting mod->state */
 823	mod->waiter = current;
 824
 825	/* Stop the machine so refcounts can't move and disable module. */
 826	ret = try_stop_module(mod, flags, &forced);
 827	if (ret != 0)
 828		goto out;
 829
 830	/* Never wait if forced. */
 831	if (!forced && module_refcount(mod) != 0)
 832		wait_for_zero_refcount(mod);
 833
 834	mutex_unlock(&module_mutex);
 835	/* Final destruction now no one is using it. */
 836	if (mod->exit != NULL)
 837		mod->exit();
 838	blocking_notifier_call_chain(&module_notify_list,
 839				     MODULE_STATE_GOING, mod);
 
 
 
 840	async_synchronize_full();
 841
 842	/* Store the name of the last unloaded module for diagnostic purposes */
 843	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
 844
 845	free_module(mod);
 846	return 0;
 847out:
 848	mutex_unlock(&module_mutex);
 849	return ret;
 850}
 851
 852static inline void print_unload_info(struct seq_file *m, struct module *mod)
 853{
 854	struct module_use *use;
 855	int printed_something = 0;
 856
 857	seq_printf(m, " %u ", module_refcount(mod));
 858
 859	/* Always include a trailing , so userspace can differentiate
 860           between this and the old multi-field proc format. */
 
 
 861	list_for_each_entry(use, &mod->source_list, source_list) {
 862		printed_something = 1;
 863		seq_printf(m, "%s,", use->source->name);
 864	}
 865
 866	if (mod->init != NULL && mod->exit == NULL) {
 867		printed_something = 1;
 868		seq_printf(m, "[permanent],");
 869	}
 870
 871	if (!printed_something)
 872		seq_printf(m, "-");
 873}
 874
 875void __symbol_put(const char *symbol)
 876{
 877	struct module *owner;
 878
 879	preempt_disable();
 880	if (!find_symbol(symbol, &owner, NULL, true, false))
 881		BUG();
 882	module_put(owner);
 883	preempt_enable();
 884}
 885EXPORT_SYMBOL(__symbol_put);
 886
 887/* Note this assumes addr is a function, which it currently always is. */
 888void symbol_put_addr(void *addr)
 889{
 890	struct module *modaddr;
 891	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
 892
 893	if (core_kernel_text(a))
 894		return;
 895
 896	/* module_text_address is safe here: we're supposed to have reference
 897	 * to module from symbol_get, so it can't go away. */
 
 
 
 898	modaddr = __module_text_address(a);
 899	BUG_ON(!modaddr);
 900	module_put(modaddr);
 
 901}
 902EXPORT_SYMBOL_GPL(symbol_put_addr);
 903
 904static ssize_t show_refcnt(struct module_attribute *mattr,
 905			   struct module_kobject *mk, char *buffer)
 906{
 907	return sprintf(buffer, "%u\n", module_refcount(mk->mod));
 908}
 909
 910static struct module_attribute refcnt = {
 911	.attr = { .name = "refcnt", .mode = 0444 },
 912	.show = show_refcnt,
 913};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914
 915void module_put(struct module *module)
 916{
 
 
 917	if (module) {
 918		preempt_disable();
 919		smp_wmb(); /* see comment in module_refcount */
 920		__this_cpu_inc(module->refptr->decs);
 921
 922		trace_module_put(module, _RET_IP_);
 923		/* Maybe they're waiting for us to drop reference? */
 924		if (unlikely(!module_is_live(module)))
 925			wake_up_process(module->waiter);
 926		preempt_enable();
 927	}
 928}
 929EXPORT_SYMBOL(module_put);
 930
 931#else /* !CONFIG_MODULE_UNLOAD */
 932static inline void print_unload_info(struct seq_file *m, struct module *mod)
 933{
 934	/* We don't know the usage count, or what modules are using. */
 935	seq_printf(m, " - -");
 936}
 937
 938static inline void module_unload_free(struct module *mod)
 939{
 940}
 941
 942int ref_module(struct module *a, struct module *b)
 943{
 944	return strong_try_module_get(b);
 945}
 946EXPORT_SYMBOL_GPL(ref_module);
 947
 948static inline int module_unload_init(struct module *mod)
 949{
 950	return 0;
 951}
 952#endif /* CONFIG_MODULE_UNLOAD */
 953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 954static ssize_t show_initstate(struct module_attribute *mattr,
 955			      struct module_kobject *mk, char *buffer)
 956{
 957	const char *state = "unknown";
 958
 959	switch (mk->mod->state) {
 960	case MODULE_STATE_LIVE:
 961		state = "live";
 962		break;
 963	case MODULE_STATE_COMING:
 964		state = "coming";
 965		break;
 966	case MODULE_STATE_GOING:
 967		state = "going";
 968		break;
 
 
 969	}
 970	return sprintf(buffer, "%s\n", state);
 971}
 972
 973static struct module_attribute initstate = {
 974	.attr = { .name = "initstate", .mode = 0444 },
 975	.show = show_initstate,
 976};
 977
 978static ssize_t store_uevent(struct module_attribute *mattr,
 979			    struct module_kobject *mk,
 980			    const char *buffer, size_t count)
 981{
 982	enum kobject_action action;
 983
 984	if (kobject_action_type(buffer, count, &action) == 0)
 985		kobject_uevent(&mk->kobj, action);
 986	return count;
 987}
 988
 989struct module_attribute module_uevent = {
 990	.attr = { .name = "uevent", .mode = 0200 },
 991	.store = store_uevent,
 992};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993
 994static struct module_attribute *modinfo_attrs[] = {
 
 995	&modinfo_version,
 996	&modinfo_srcversion,
 997	&initstate,
 998	&module_uevent,
 
 
 999#ifdef CONFIG_MODULE_UNLOAD
1000	&refcnt,
1001#endif
1002	NULL,
1003};
1004
1005static const char vermagic[] = VERMAGIC_STRING;
1006
1007static int try_to_force_load(struct module *mod, const char *reason)
1008{
1009#ifdef CONFIG_MODULE_FORCE_LOAD
1010	if (!test_taint(TAINT_FORCED_MODULE))
1011		printk(KERN_WARNING "%s: %s: kernel tainted.\n",
1012		       mod->name, reason);
1013	add_taint_module(mod, TAINT_FORCED_MODULE);
1014	return 0;
1015#else
1016	return -ENOEXEC;
1017#endif
1018}
1019
1020#ifdef CONFIG_MODVERSIONS
1021/* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1022static unsigned long maybe_relocated(unsigned long crc,
1023				     const struct module *crc_owner)
1024{
1025#ifdef ARCH_RELOCATES_KCRCTAB
1026	if (crc_owner == NULL)
1027		return crc - (unsigned long)reloc_start;
1028#endif
1029	return crc;
1030}
1031
1032static int check_version(Elf_Shdr *sechdrs,
1033			 unsigned int versindex,
1034			 const char *symname,
1035			 struct module *mod, 
1036			 const unsigned long *crc,
1037			 const struct module *crc_owner)
1038{
1039	unsigned int i, num_versions;
1040	struct modversion_info *versions;
1041
1042	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1043	if (!crc)
1044		return 1;
1045
1046	/* No versions at all?  modprobe --force does this. */
1047	if (versindex == 0)
1048		return try_to_force_load(mod, symname) == 0;
1049
1050	versions = (void *) sechdrs[versindex].sh_addr;
1051	num_versions = sechdrs[versindex].sh_size
1052		/ sizeof(struct modversion_info);
1053
1054	for (i = 0; i < num_versions; i++) {
1055		if (strcmp(versions[i].name, symname) != 0)
1056			continue;
1057
1058		if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1059			return 1;
1060		DEBUGP("Found checksum %lX vs module %lX\n",
1061		       maybe_relocated(*crc, crc_owner), versions[i].crc);
1062		goto bad_version;
1063	}
1064
1065	printk(KERN_WARNING "%s: no symbol version for %s\n",
1066	       mod->name, symname);
1067	return 0;
1068
1069bad_version:
1070	printk("%s: disagrees about version of symbol %s\n",
1071	       mod->name, symname);
1072	return 0;
1073}
1074
1075static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1076					  unsigned int versindex,
1077					  struct module *mod)
1078{
1079	const unsigned long *crc;
1080
1081	/* Since this should be found in kernel (which can't be removed),
1082	 * no locking is necessary. */
1083	if (!find_symbol(MODULE_SYMBOL_PREFIX "module_layout", NULL,
1084			 &crc, true, false))
 
 
 
 
1085		BUG();
1086	return check_version(sechdrs, versindex, "module_layout", mod, crc,
 
 
 
1087			     NULL);
1088}
1089
1090/* First part is kernel version, which we ignore if module has crcs. */
1091static inline int same_magic(const char *amagic, const char *bmagic,
1092			     bool has_crcs)
1093{
1094	if (has_crcs) {
1095		amagic += strcspn(amagic, " ");
1096		bmagic += strcspn(bmagic, " ");
1097	}
1098	return strcmp(amagic, bmagic) == 0;
1099}
1100#else
1101static inline int check_version(Elf_Shdr *sechdrs,
1102				unsigned int versindex,
1103				const char *symname,
1104				struct module *mod, 
1105				const unsigned long *crc,
1106				const struct module *crc_owner)
1107{
1108	return 1;
1109}
1110
1111static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1112					  unsigned int versindex,
1113					  struct module *mod)
1114{
1115	return 1;
1116}
1117
1118static inline int same_magic(const char *amagic, const char *bmagic,
1119			     bool has_crcs)
1120{
1121	return strcmp(amagic, bmagic) == 0;
1122}
1123#endif /* CONFIG_MODVERSIONS */
1124
1125/* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1126static const struct kernel_symbol *resolve_symbol(struct module *mod,
1127						  const struct load_info *info,
1128						  const char *name,
1129						  char ownername[])
1130{
1131	struct module *owner;
1132	const struct kernel_symbol *sym;
1133	const unsigned long *crc;
1134	int err;
1135
 
 
 
 
 
 
1136	mutex_lock(&module_mutex);
1137	sym = find_symbol(name, &owner, &crc,
1138			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1139	if (!sym)
1140		goto unlock;
1141
1142	if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1143			   owner)) {
1144		sym = ERR_PTR(-EINVAL);
1145		goto getname;
1146	}
1147
1148	err = ref_module(mod, owner);
1149	if (err) {
1150		sym = ERR_PTR(err);
1151		goto getname;
1152	}
1153
1154getname:
1155	/* We must make copy under the lock if we failed to get ref. */
1156	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1157unlock:
1158	mutex_unlock(&module_mutex);
1159	return sym;
1160}
1161
1162static const struct kernel_symbol *
1163resolve_symbol_wait(struct module *mod,
1164		    const struct load_info *info,
1165		    const char *name)
1166{
1167	const struct kernel_symbol *ksym;
1168	char owner[MODULE_NAME_LEN];
1169
1170	if (wait_event_interruptible_timeout(module_wq,
1171			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1172			|| PTR_ERR(ksym) != -EBUSY,
1173					     30 * HZ) <= 0) {
1174		printk(KERN_WARNING "%s: gave up waiting for init of module %s.\n",
1175		       mod->name, owner);
1176	}
1177	return ksym;
1178}
1179
1180/*
1181 * /sys/module/foo/sections stuff
1182 * J. Corbet <corbet@lwn.net>
1183 */
1184#ifdef CONFIG_SYSFS
1185
1186#ifdef CONFIG_KALLSYMS
1187static inline bool sect_empty(const Elf_Shdr *sect)
1188{
1189	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1190}
1191
1192struct module_sect_attr
1193{
1194	struct module_attribute mattr;
1195	char *name;
1196	unsigned long address;
1197};
1198
1199struct module_sect_attrs
1200{
1201	struct attribute_group grp;
1202	unsigned int nsections;
1203	struct module_sect_attr attrs[0];
1204};
1205
1206static ssize_t module_sect_show(struct module_attribute *mattr,
1207				struct module_kobject *mk, char *buf)
1208{
1209	struct module_sect_attr *sattr =
1210		container_of(mattr, struct module_sect_attr, mattr);
1211	return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1212}
1213
1214static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1215{
1216	unsigned int section;
1217
1218	for (section = 0; section < sect_attrs->nsections; section++)
1219		kfree(sect_attrs->attrs[section].name);
1220	kfree(sect_attrs);
1221}
1222
1223static void add_sect_attrs(struct module *mod, const struct load_info *info)
1224{
1225	unsigned int nloaded = 0, i, size[2];
1226	struct module_sect_attrs *sect_attrs;
1227	struct module_sect_attr *sattr;
1228	struct attribute **gattr;
1229
1230	/* Count loaded sections and allocate structures */
1231	for (i = 0; i < info->hdr->e_shnum; i++)
1232		if (!sect_empty(&info->sechdrs[i]))
1233			nloaded++;
1234	size[0] = ALIGN(sizeof(*sect_attrs)
1235			+ nloaded * sizeof(sect_attrs->attrs[0]),
1236			sizeof(sect_attrs->grp.attrs[0]));
1237	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1238	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1239	if (sect_attrs == NULL)
1240		return;
1241
1242	/* Setup section attributes. */
1243	sect_attrs->grp.name = "sections";
1244	sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1245
1246	sect_attrs->nsections = 0;
1247	sattr = &sect_attrs->attrs[0];
1248	gattr = &sect_attrs->grp.attrs[0];
1249	for (i = 0; i < info->hdr->e_shnum; i++) {
1250		Elf_Shdr *sec = &info->sechdrs[i];
1251		if (sect_empty(sec))
1252			continue;
1253		sattr->address = sec->sh_addr;
1254		sattr->name = kstrdup(info->secstrings + sec->sh_name,
1255					GFP_KERNEL);
1256		if (sattr->name == NULL)
1257			goto out;
1258		sect_attrs->nsections++;
1259		sysfs_attr_init(&sattr->mattr.attr);
1260		sattr->mattr.show = module_sect_show;
1261		sattr->mattr.store = NULL;
1262		sattr->mattr.attr.name = sattr->name;
1263		sattr->mattr.attr.mode = S_IRUGO;
1264		*(gattr++) = &(sattr++)->mattr.attr;
1265	}
1266	*gattr = NULL;
1267
1268	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1269		goto out;
1270
1271	mod->sect_attrs = sect_attrs;
1272	return;
1273  out:
1274	free_sect_attrs(sect_attrs);
1275}
1276
1277static void remove_sect_attrs(struct module *mod)
1278{
1279	if (mod->sect_attrs) {
1280		sysfs_remove_group(&mod->mkobj.kobj,
1281				   &mod->sect_attrs->grp);
1282		/* We are positive that no one is using any sect attrs
1283		 * at this point.  Deallocate immediately. */
1284		free_sect_attrs(mod->sect_attrs);
1285		mod->sect_attrs = NULL;
1286	}
1287}
1288
1289/*
1290 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1291 */
1292
1293struct module_notes_attrs {
1294	struct kobject *dir;
1295	unsigned int notes;
1296	struct bin_attribute attrs[0];
1297};
1298
1299static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1300				 struct bin_attribute *bin_attr,
1301				 char *buf, loff_t pos, size_t count)
1302{
1303	/*
1304	 * The caller checked the pos and count against our size.
1305	 */
1306	memcpy(buf, bin_attr->private + pos, count);
1307	return count;
1308}
1309
1310static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1311			     unsigned int i)
1312{
1313	if (notes_attrs->dir) {
1314		while (i-- > 0)
1315			sysfs_remove_bin_file(notes_attrs->dir,
1316					      &notes_attrs->attrs[i]);
1317		kobject_put(notes_attrs->dir);
1318	}
1319	kfree(notes_attrs);
1320}
1321
1322static void add_notes_attrs(struct module *mod, const struct load_info *info)
1323{
1324	unsigned int notes, loaded, i;
1325	struct module_notes_attrs *notes_attrs;
1326	struct bin_attribute *nattr;
1327
1328	/* failed to create section attributes, so can't create notes */
1329	if (!mod->sect_attrs)
1330		return;
1331
1332	/* Count notes sections and allocate structures.  */
1333	notes = 0;
1334	for (i = 0; i < info->hdr->e_shnum; i++)
1335		if (!sect_empty(&info->sechdrs[i]) &&
1336		    (info->sechdrs[i].sh_type == SHT_NOTE))
1337			++notes;
1338
1339	if (notes == 0)
1340		return;
1341
1342	notes_attrs = kzalloc(sizeof(*notes_attrs)
1343			      + notes * sizeof(notes_attrs->attrs[0]),
1344			      GFP_KERNEL);
1345	if (notes_attrs == NULL)
1346		return;
1347
1348	notes_attrs->notes = notes;
1349	nattr = &notes_attrs->attrs[0];
1350	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1351		if (sect_empty(&info->sechdrs[i]))
1352			continue;
1353		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1354			sysfs_bin_attr_init(nattr);
1355			nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1356			nattr->attr.mode = S_IRUGO;
1357			nattr->size = info->sechdrs[i].sh_size;
1358			nattr->private = (void *) info->sechdrs[i].sh_addr;
1359			nattr->read = module_notes_read;
1360			++nattr;
1361		}
1362		++loaded;
1363	}
1364
1365	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1366	if (!notes_attrs->dir)
1367		goto out;
1368
1369	for (i = 0; i < notes; ++i)
1370		if (sysfs_create_bin_file(notes_attrs->dir,
1371					  &notes_attrs->attrs[i]))
1372			goto out;
1373
1374	mod->notes_attrs = notes_attrs;
1375	return;
1376
1377  out:
1378	free_notes_attrs(notes_attrs, i);
1379}
1380
1381static void remove_notes_attrs(struct module *mod)
1382{
1383	if (mod->notes_attrs)
1384		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1385}
1386
1387#else
1388
1389static inline void add_sect_attrs(struct module *mod,
1390				  const struct load_info *info)
1391{
1392}
1393
1394static inline void remove_sect_attrs(struct module *mod)
1395{
1396}
1397
1398static inline void add_notes_attrs(struct module *mod,
1399				   const struct load_info *info)
1400{
1401}
1402
1403static inline void remove_notes_attrs(struct module *mod)
1404{
1405}
1406#endif /* CONFIG_KALLSYMS */
1407
1408static void add_usage_links(struct module *mod)
1409{
1410#ifdef CONFIG_MODULE_UNLOAD
1411	struct module_use *use;
1412	int nowarn;
1413
1414	mutex_lock(&module_mutex);
1415	list_for_each_entry(use, &mod->target_list, target_list) {
1416		nowarn = sysfs_create_link(use->target->holders_dir,
1417					   &mod->mkobj.kobj, mod->name);
1418	}
1419	mutex_unlock(&module_mutex);
1420#endif
1421}
1422
1423static void del_usage_links(struct module *mod)
1424{
1425#ifdef CONFIG_MODULE_UNLOAD
1426	struct module_use *use;
1427
1428	mutex_lock(&module_mutex);
1429	list_for_each_entry(use, &mod->target_list, target_list)
1430		sysfs_remove_link(use->target->holders_dir, mod->name);
1431	mutex_unlock(&module_mutex);
1432#endif
1433}
1434
1435static int module_add_modinfo_attrs(struct module *mod)
1436{
1437	struct module_attribute *attr;
1438	struct module_attribute *temp_attr;
1439	int error = 0;
1440	int i;
1441
1442	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1443					(ARRAY_SIZE(modinfo_attrs) + 1)),
1444					GFP_KERNEL);
1445	if (!mod->modinfo_attrs)
1446		return -ENOMEM;
1447
1448	temp_attr = mod->modinfo_attrs;
1449	for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1450		if (!attr->test ||
1451		    (attr->test && attr->test(mod))) {
1452			memcpy(temp_attr, attr, sizeof(*temp_attr));
1453			sysfs_attr_init(&temp_attr->attr);
1454			error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
 
1455			++temp_attr;
1456		}
1457	}
1458	return error;
1459}
1460
1461static void module_remove_modinfo_attrs(struct module *mod)
1462{
1463	struct module_attribute *attr;
1464	int i;
1465
1466	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1467		/* pick a field to test for end of list */
1468		if (!attr->attr.name)
1469			break;
1470		sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1471		if (attr->free)
1472			attr->free(mod);
1473	}
1474	kfree(mod->modinfo_attrs);
1475}
1476
 
 
 
 
 
 
 
 
1477static int mod_sysfs_init(struct module *mod)
1478{
1479	int err;
1480	struct kobject *kobj;
1481
1482	if (!module_sysfs_initialized) {
1483		printk(KERN_ERR "%s: module sysfs not initialized\n",
1484		       mod->name);
1485		err = -EINVAL;
1486		goto out;
1487	}
1488
1489	kobj = kset_find_obj(module_kset, mod->name);
1490	if (kobj) {
1491		printk(KERN_ERR "%s: module is already loaded\n", mod->name);
1492		kobject_put(kobj);
1493		err = -EINVAL;
1494		goto out;
1495	}
1496
1497	mod->mkobj.mod = mod;
1498
1499	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1500	mod->mkobj.kobj.kset = module_kset;
1501	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1502				   "%s", mod->name);
1503	if (err)
1504		kobject_put(&mod->mkobj.kobj);
1505
1506	/* delay uevent until full sysfs population */
1507out:
1508	return err;
1509}
1510
1511static int mod_sysfs_setup(struct module *mod,
1512			   const struct load_info *info,
1513			   struct kernel_param *kparam,
1514			   unsigned int num_params)
1515{
1516	int err;
1517
1518	err = mod_sysfs_init(mod);
1519	if (err)
1520		goto out;
1521
1522	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1523	if (!mod->holders_dir) {
1524		err = -ENOMEM;
1525		goto out_unreg;
1526	}
1527
1528	err = module_param_sysfs_setup(mod, kparam, num_params);
1529	if (err)
1530		goto out_unreg_holders;
1531
1532	err = module_add_modinfo_attrs(mod);
1533	if (err)
1534		goto out_unreg_param;
1535
1536	add_usage_links(mod);
1537	add_sect_attrs(mod, info);
1538	add_notes_attrs(mod, info);
1539
1540	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1541	return 0;
1542
1543out_unreg_param:
1544	module_param_sysfs_remove(mod);
1545out_unreg_holders:
1546	kobject_put(mod->holders_dir);
1547out_unreg:
1548	kobject_put(&mod->mkobj.kobj);
1549out:
1550	return err;
1551}
1552
1553static void mod_sysfs_fini(struct module *mod)
1554{
1555	remove_notes_attrs(mod);
1556	remove_sect_attrs(mod);
1557	kobject_put(&mod->mkobj.kobj);
1558}
1559
 
 
 
 
1560#else /* !CONFIG_SYSFS */
1561
1562static int mod_sysfs_setup(struct module *mod,
1563			   const struct load_info *info,
1564			   struct kernel_param *kparam,
1565			   unsigned int num_params)
1566{
1567	return 0;
1568}
1569
1570static void mod_sysfs_fini(struct module *mod)
1571{
1572}
1573
1574static void module_remove_modinfo_attrs(struct module *mod)
1575{
1576}
1577
1578static void del_usage_links(struct module *mod)
1579{
1580}
1581
 
 
 
1582#endif /* CONFIG_SYSFS */
1583
1584static void mod_sysfs_teardown(struct module *mod)
1585{
1586	del_usage_links(mod);
1587	module_remove_modinfo_attrs(mod);
1588	module_param_sysfs_remove(mod);
1589	kobject_put(mod->mkobj.drivers_dir);
1590	kobject_put(mod->holders_dir);
1591	mod_sysfs_fini(mod);
1592}
1593
1594/*
1595 * unlink the module with the whole machine is stopped with interrupts off
1596 * - this defends against kallsyms not taking locks
1597 */
1598static int __unlink_module(void *_mod)
1599{
1600	struct module *mod = _mod;
1601	list_del(&mod->list);
1602	module_bug_cleanup(mod);
1603	return 0;
1604}
1605
1606#ifdef CONFIG_DEBUG_SET_MODULE_RONX
1607/*
1608 * LKM RO/NX protection: protect module's text/ro-data
1609 * from modification and any data from execution.
 
 
 
 
 
 
 
 
1610 */
1611void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
 
1612{
1613	unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1614	unsigned long end_pfn = PFN_DOWN((unsigned long)end);
 
 
 
1615
1616	if (end_pfn > begin_pfn)
1617		set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
 
 
 
 
 
 
1618}
1619
1620static void set_section_ro_nx(void *base,
1621			unsigned long text_size,
1622			unsigned long ro_size,
1623			unsigned long total_size)
1624{
1625	/* begin and end PFNs of the current subsection */
1626	unsigned long begin_pfn;
1627	unsigned long end_pfn;
 
 
 
1628
1629	/*
1630	 * Set RO for module text and RO-data:
1631	 * - Always protect first page.
1632	 * - Do not protect last partial page.
1633	 */
1634	if (ro_size > 0)
1635		set_page_attributes(base, base + ro_size, set_memory_ro);
 
1636
1637	/*
1638	 * Set NX permissions for module data:
1639	 * - Do not protect first partial page.
1640	 * - Always protect last page.
1641	 */
1642	if (total_size > text_size) {
1643		begin_pfn = PFN_UP((unsigned long)base + text_size);
1644		end_pfn = PFN_UP((unsigned long)base + total_size);
1645		if (end_pfn > begin_pfn)
1646			set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1647	}
1648}
1649
1650static void unset_module_core_ro_nx(struct module *mod)
1651{
1652	set_page_attributes(mod->module_core + mod->core_text_size,
1653		mod->module_core + mod->core_size,
1654		set_memory_x);
1655	set_page_attributes(mod->module_core,
1656		mod->module_core + mod->core_ro_size,
1657		set_memory_rw);
1658}
1659
1660static void unset_module_init_ro_nx(struct module *mod)
1661{
1662	set_page_attributes(mod->module_init + mod->init_text_size,
1663		mod->module_init + mod->init_size,
1664		set_memory_x);
1665	set_page_attributes(mod->module_init,
1666		mod->module_init + mod->init_ro_size,
1667		set_memory_rw);
1668}
1669
1670/* Iterate through all modules and set each module's text as RW */
1671void set_all_modules_text_rw(void)
1672{
1673	struct module *mod;
1674
1675	mutex_lock(&module_mutex);
1676	list_for_each_entry_rcu(mod, &modules, list) {
1677		if ((mod->module_core) && (mod->core_text_size)) {
1678			set_page_attributes(mod->module_core,
1679						mod->module_core + mod->core_text_size,
1680						set_memory_rw);
1681		}
1682		if ((mod->module_init) && (mod->init_text_size)) {
1683			set_page_attributes(mod->module_init,
1684						mod->module_init + mod->init_text_size,
1685						set_memory_rw);
1686		}
1687	}
1688	mutex_unlock(&module_mutex);
1689}
1690
1691/* Iterate through all modules and set each module's text as RO */
1692void set_all_modules_text_ro(void)
1693{
1694	struct module *mod;
1695
1696	mutex_lock(&module_mutex);
1697	list_for_each_entry_rcu(mod, &modules, list) {
1698		if ((mod->module_core) && (mod->core_text_size)) {
1699			set_page_attributes(mod->module_core,
1700						mod->module_core + mod->core_text_size,
1701						set_memory_ro);
1702		}
1703		if ((mod->module_init) && (mod->init_text_size)) {
1704			set_page_attributes(mod->module_init,
1705						mod->module_init + mod->init_text_size,
1706						set_memory_ro);
1707		}
1708	}
1709	mutex_unlock(&module_mutex);
1710}
 
 
 
 
 
 
 
 
 
1711#else
1712static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
1713static void unset_module_core_ro_nx(struct module *mod) { }
1714static void unset_module_init_ro_nx(struct module *mod) { }
1715#endif
1716
1717void __weak module_free(struct module *mod, void *module_region)
1718{
1719	vfree(module_region);
1720}
1721
1722void __weak module_arch_cleanup(struct module *mod)
1723{
1724}
1725
 
 
 
 
1726/* Free a module, remove from lists, etc. */
1727static void free_module(struct module *mod)
1728{
1729	trace_module_free(mod);
1730
1731	/* Delete from various lists */
 
 
 
1732	mutex_lock(&module_mutex);
1733	stop_machine(__unlink_module, mod, NULL);
1734	mutex_unlock(&module_mutex);
1735	mod_sysfs_teardown(mod);
1736
1737	/* Remove dynamic debug info */
1738	ddebug_remove_module(mod->name);
1739
1740	/* Arch-specific cleanup. */
1741	module_arch_cleanup(mod);
1742
1743	/* Module unload stuff */
1744	module_unload_free(mod);
1745
1746	/* Free any allocated parameters. */
1747	destroy_params(mod->kp, mod->num_kp);
1748
1749	/* This may be NULL, but that's OK */
1750	unset_module_init_ro_nx(mod);
1751	module_free(mod, mod->module_init);
 
 
 
 
 
 
 
 
 
 
 
 
1752	kfree(mod->args);
1753	percpu_modfree(mod);
1754
1755	/* Free lock-classes: */
1756	lockdep_free_key_range(mod->module_core, mod->core_size);
1757
1758	/* Finally, free the core (containing the module structure) */
1759	unset_module_core_ro_nx(mod);
1760	module_free(mod, mod->module_core);
1761
1762#ifdef CONFIG_MPU
1763	update_protections(current->mm);
1764#endif
1765}
1766
1767void *__symbol_get(const char *symbol)
1768{
1769	struct module *owner;
1770	const struct kernel_symbol *sym;
1771
1772	preempt_disable();
1773	sym = find_symbol(symbol, &owner, NULL, true, true);
1774	if (sym && strong_try_module_get(owner))
1775		sym = NULL;
1776	preempt_enable();
1777
1778	return sym ? (void *)sym->value : NULL;
1779}
1780EXPORT_SYMBOL_GPL(__symbol_get);
1781
1782/*
1783 * Ensure that an exported symbol [global namespace] does not already exist
1784 * in the kernel or in some other module's exported symbol table.
1785 *
1786 * You must hold the module_mutex.
1787 */
1788static int verify_export_symbols(struct module *mod)
1789{
1790	unsigned int i;
1791	struct module *owner;
1792	const struct kernel_symbol *s;
1793	struct {
1794		const struct kernel_symbol *sym;
1795		unsigned int num;
1796	} arr[] = {
1797		{ mod->syms, mod->num_syms },
1798		{ mod->gpl_syms, mod->num_gpl_syms },
1799		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
1800#ifdef CONFIG_UNUSED_SYMBOLS
1801		{ mod->unused_syms, mod->num_unused_syms },
1802		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1803#endif
1804	};
1805
1806	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1807		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1808			if (find_symbol(s->name, &owner, NULL, true, false)) {
1809				printk(KERN_ERR
1810				       "%s: exports duplicate symbol %s"
1811				       " (owned by %s)\n",
1812				       mod->name, s->name, module_name(owner));
1813				return -ENOEXEC;
1814			}
1815		}
1816	}
1817	return 0;
1818}
1819
1820/* Change all symbols so that st_value encodes the pointer directly. */
1821static int simplify_symbols(struct module *mod, const struct load_info *info)
1822{
1823	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1824	Elf_Sym *sym = (void *)symsec->sh_addr;
1825	unsigned long secbase;
1826	unsigned int i;
1827	int ret = 0;
1828	const struct kernel_symbol *ksym;
1829
1830	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1831		const char *name = info->strtab + sym[i].st_name;
1832
1833		switch (sym[i].st_shndx) {
1834		case SHN_COMMON:
 
 
 
 
1835			/* We compiled with -fno-common.  These are not
1836			   supposed to happen.  */
1837			DEBUGP("Common symbol: %s\n", name);
1838			printk("%s: please compile with -fno-common\n",
1839			       mod->name);
1840			ret = -ENOEXEC;
1841			break;
1842
1843		case SHN_ABS:
1844			/* Don't need to do anything */
1845			DEBUGP("Absolute symbol: 0x%08lx\n",
1846			       (long)sym[i].st_value);
1847			break;
1848
1849		case SHN_UNDEF:
1850			ksym = resolve_symbol_wait(mod, info, name);
1851			/* Ok if resolved.  */
1852			if (ksym && !IS_ERR(ksym)) {
1853				sym[i].st_value = ksym->value;
1854				break;
1855			}
1856
1857			/* Ok if weak.  */
1858			if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1859				break;
1860
1861			printk(KERN_WARNING "%s: Unknown symbol %s (err %li)\n",
1862			       mod->name, name, PTR_ERR(ksym));
1863			ret = PTR_ERR(ksym) ?: -ENOENT;
1864			break;
1865
1866		default:
1867			/* Divert to percpu allocation if a percpu var. */
1868			if (sym[i].st_shndx == info->index.pcpu)
1869				secbase = (unsigned long)mod_percpu(mod);
1870			else
1871				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1872			sym[i].st_value += secbase;
1873			break;
1874		}
1875	}
1876
1877	return ret;
1878}
1879
1880int __weak apply_relocate(Elf_Shdr *sechdrs,
1881			  const char *strtab,
1882			  unsigned int symindex,
1883			  unsigned int relsec,
1884			  struct module *me)
1885{
1886	pr_err("module %s: REL relocation unsupported\n", me->name);
1887	return -ENOEXEC;
1888}
1889
1890int __weak apply_relocate_add(Elf_Shdr *sechdrs,
1891			      const char *strtab,
1892			      unsigned int symindex,
1893			      unsigned int relsec,
1894			      struct module *me)
1895{
1896	pr_err("module %s: RELA relocation unsupported\n", me->name);
1897	return -ENOEXEC;
1898}
1899
1900static int apply_relocations(struct module *mod, const struct load_info *info)
1901{
1902	unsigned int i;
1903	int err = 0;
1904
1905	/* Now do relocations. */
1906	for (i = 1; i < info->hdr->e_shnum; i++) {
1907		unsigned int infosec = info->sechdrs[i].sh_info;
1908
1909		/* Not a valid relocation section? */
1910		if (infosec >= info->hdr->e_shnum)
1911			continue;
1912
1913		/* Don't bother with non-allocated sections */
1914		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1915			continue;
1916
1917		if (info->sechdrs[i].sh_type == SHT_REL)
1918			err = apply_relocate(info->sechdrs, info->strtab,
1919					     info->index.sym, i, mod);
1920		else if (info->sechdrs[i].sh_type == SHT_RELA)
1921			err = apply_relocate_add(info->sechdrs, info->strtab,
1922						 info->index.sym, i, mod);
1923		if (err < 0)
1924			break;
1925	}
1926	return err;
1927}
1928
1929/* Additional bytes needed by arch in front of individual sections */
1930unsigned int __weak arch_mod_section_prepend(struct module *mod,
1931					     unsigned int section)
1932{
1933	/* default implementation just returns zero */
1934	return 0;
1935}
1936
1937/* Update size with this section: return offset. */
1938static long get_offset(struct module *mod, unsigned int *size,
1939		       Elf_Shdr *sechdr, unsigned int section)
1940{
1941	long ret;
1942
1943	*size += arch_mod_section_prepend(mod, section);
1944	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
1945	*size = ret + sechdr->sh_size;
1946	return ret;
1947}
1948
1949/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1950   might -- code, read-only data, read-write data, small data.  Tally
1951   sizes, and place the offsets into sh_entsize fields: high bit means it
1952   belongs in init. */
1953static void layout_sections(struct module *mod, struct load_info *info)
1954{
1955	static unsigned long const masks[][2] = {
1956		/* NOTE: all executable code must be the first section
1957		 * in this array; otherwise modify the text_size
1958		 * finder in the two loops below */
1959		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1960		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1961		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1962		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1963	};
1964	unsigned int m, i;
1965
1966	for (i = 0; i < info->hdr->e_shnum; i++)
1967		info->sechdrs[i].sh_entsize = ~0UL;
1968
1969	DEBUGP("Core section allocation order:\n");
1970	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1971		for (i = 0; i < info->hdr->e_shnum; ++i) {
1972			Elf_Shdr *s = &info->sechdrs[i];
1973			const char *sname = info->secstrings + s->sh_name;
1974
1975			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1976			    || (s->sh_flags & masks[m][1])
1977			    || s->sh_entsize != ~0UL
1978			    || strstarts(sname, ".init"))
1979				continue;
1980			s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
1981			DEBUGP("\t%s\n", name);
1982		}
1983		switch (m) {
1984		case 0: /* executable */
1985			mod->core_size = debug_align(mod->core_size);
1986			mod->core_text_size = mod->core_size;
1987			break;
1988		case 1: /* RO: text and ro-data */
1989			mod->core_size = debug_align(mod->core_size);
1990			mod->core_ro_size = mod->core_size;
1991			break;
1992		case 3: /* whole core */
1993			mod->core_size = debug_align(mod->core_size);
1994			break;
1995		}
1996	}
1997
1998	DEBUGP("Init section allocation order:\n");
1999	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2000		for (i = 0; i < info->hdr->e_shnum; ++i) {
2001			Elf_Shdr *s = &info->sechdrs[i];
2002			const char *sname = info->secstrings + s->sh_name;
2003
2004			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2005			    || (s->sh_flags & masks[m][1])
2006			    || s->sh_entsize != ~0UL
2007			    || !strstarts(sname, ".init"))
2008				continue;
2009			s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2010					 | INIT_OFFSET_MASK);
2011			DEBUGP("\t%s\n", sname);
2012		}
2013		switch (m) {
2014		case 0: /* executable */
2015			mod->init_size = debug_align(mod->init_size);
2016			mod->init_text_size = mod->init_size;
2017			break;
2018		case 1: /* RO: text and ro-data */
2019			mod->init_size = debug_align(mod->init_size);
2020			mod->init_ro_size = mod->init_size;
2021			break;
2022		case 3: /* whole init */
2023			mod->init_size = debug_align(mod->init_size);
2024			break;
2025		}
2026	}
2027}
2028
2029static void set_license(struct module *mod, const char *license)
2030{
2031	if (!license)
2032		license = "unspecified";
2033
2034	if (!license_is_gpl_compatible(license)) {
2035		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2036			printk(KERN_WARNING "%s: module license '%s' taints "
2037				"kernel.\n", mod->name, license);
2038		add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
 
2039	}
2040}
2041
2042/* Parse tag=value strings from .modinfo section */
2043static char *next_string(char *string, unsigned long *secsize)
2044{
2045	/* Skip non-zero chars */
2046	while (string[0]) {
2047		string++;
2048		if ((*secsize)-- <= 1)
2049			return NULL;
2050	}
2051
2052	/* Skip any zero padding. */
2053	while (!string[0]) {
2054		string++;
2055		if ((*secsize)-- <= 1)
2056			return NULL;
2057	}
2058	return string;
2059}
2060
2061static char *get_modinfo(struct load_info *info, const char *tag)
2062{
2063	char *p;
2064	unsigned int taglen = strlen(tag);
2065	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2066	unsigned long size = infosec->sh_size;
2067
2068	for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2069		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2070			return p + taglen + 1;
2071	}
2072	return NULL;
2073}
2074
2075static void setup_modinfo(struct module *mod, struct load_info *info)
2076{
2077	struct module_attribute *attr;
2078	int i;
2079
2080	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2081		if (attr->setup)
2082			attr->setup(mod, get_modinfo(info, attr->attr.name));
2083	}
2084}
2085
2086static void free_modinfo(struct module *mod)
2087{
2088	struct module_attribute *attr;
2089	int i;
2090
2091	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2092		if (attr->free)
2093			attr->free(mod);
2094	}
2095}
2096
2097#ifdef CONFIG_KALLSYMS
2098
2099/* lookup symbol in given range of kernel_symbols */
2100static const struct kernel_symbol *lookup_symbol(const char *name,
2101	const struct kernel_symbol *start,
2102	const struct kernel_symbol *stop)
2103{
2104	return bsearch(name, start, stop - start,
2105			sizeof(struct kernel_symbol), cmp_name);
2106}
2107
2108static int is_exported(const char *name, unsigned long value,
2109		       const struct module *mod)
2110{
2111	const struct kernel_symbol *ks;
2112	if (!mod)
2113		ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2114	else
2115		ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2116	return ks != NULL && ks->value == value;
2117}
2118
2119/* As per nm */
2120static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2121{
2122	const Elf_Shdr *sechdrs = info->sechdrs;
2123
2124	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2125		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2126			return 'v';
2127		else
2128			return 'w';
2129	}
2130	if (sym->st_shndx == SHN_UNDEF)
2131		return 'U';
2132	if (sym->st_shndx == SHN_ABS)
2133		return 'a';
2134	if (sym->st_shndx >= SHN_LORESERVE)
2135		return '?';
2136	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2137		return 't';
2138	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2139	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2140		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2141			return 'r';
2142		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2143			return 'g';
2144		else
2145			return 'd';
2146	}
2147	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2148		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2149			return 's';
2150		else
2151			return 'b';
2152	}
2153	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2154		      ".debug")) {
2155		return 'n';
2156	}
2157	return '?';
2158}
2159
2160static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2161                           unsigned int shnum)
2162{
2163	const Elf_Shdr *sec;
2164
2165	if (src->st_shndx == SHN_UNDEF
2166	    || src->st_shndx >= shnum
2167	    || !src->st_name)
2168		return false;
2169
 
 
 
 
 
2170	sec = sechdrs + src->st_shndx;
2171	if (!(sec->sh_flags & SHF_ALLOC)
2172#ifndef CONFIG_KALLSYMS_ALL
2173	    || !(sec->sh_flags & SHF_EXECINSTR)
2174#endif
2175	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2176		return false;
2177
2178	return true;
2179}
2180
 
 
 
 
 
 
 
2181static void layout_symtab(struct module *mod, struct load_info *info)
2182{
2183	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2184	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2185	const Elf_Sym *src;
2186	unsigned int i, nsrc, ndst;
2187
2188	/* Put symbol section at end of init part of module. */
2189	symsect->sh_flags |= SHF_ALLOC;
2190	symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2191					 info->index.sym) | INIT_OFFSET_MASK;
2192	DEBUGP("\t%s\n", info->secstrings + symsect->sh_name);
2193
2194	src = (void *)info->hdr + symsect->sh_offset;
2195	nsrc = symsect->sh_size / sizeof(*src);
2196	for (ndst = i = 1; i < nsrc; ++i, ++src)
2197		if (is_core_symbol(src, info->sechdrs, info->hdr->e_shnum)) {
2198			unsigned int j = src->st_name;
2199
2200			while (!__test_and_set_bit(j, info->strmap)
2201			       && info->strtab[j])
2202				++j;
2203			++ndst;
2204		}
 
2205
2206	/* Append room for core symbols at end of core part. */
2207	info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2208	mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
 
 
2209
2210	/* Put string table section at end of init part of module. */
2211	strsect->sh_flags |= SHF_ALLOC;
2212	strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2213					 info->index.str) | INIT_OFFSET_MASK;
2214	DEBUGP("\t%s\n", info->secstrings + strsect->sh_name);
2215
2216	/* Append room for core symbols' strings at end of core part. */
2217	info->stroffs = mod->core_size;
2218	__set_bit(0, info->strmap);
2219	mod->core_size += bitmap_weight(info->strmap, strsect->sh_size);
 
 
2220}
2221
 
 
 
 
 
2222static void add_kallsyms(struct module *mod, const struct load_info *info)
2223{
2224	unsigned int i, ndst;
2225	const Elf_Sym *src;
2226	Elf_Sym *dst;
2227	char *s;
2228	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2229
2230	mod->symtab = (void *)symsec->sh_addr;
2231	mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
 
 
 
2232	/* Make sure we get permanent strtab: don't use info->strtab. */
2233	mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2234
2235	/* Set types up while we still have access to sections. */
2236	for (i = 0; i < mod->num_symtab; i++)
2237		mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2238
2239	mod->core_symtab = dst = mod->module_core + info->symoffs;
2240	src = mod->symtab;
2241	*dst = *src;
2242	for (ndst = i = 1; i < mod->num_symtab; ++i, ++src) {
2243		if (!is_core_symbol(src, info->sechdrs, info->hdr->e_shnum))
2244			continue;
2245		dst[ndst] = *src;
2246		dst[ndst].st_name = bitmap_weight(info->strmap,
2247						  dst[ndst].st_name);
2248		++ndst;
2249	}
2250	mod->core_num_syms = ndst;
2251
2252	mod->core_strtab = s = mod->module_core + info->stroffs;
2253	for (*s = 0, i = 1; i < info->sechdrs[info->index.str].sh_size; ++i)
2254		if (test_bit(i, info->strmap))
2255			*++s = mod->strtab[i];
2256}
2257#else
2258static inline void layout_symtab(struct module *mod, struct load_info *info)
2259{
2260}
2261
2262static void add_kallsyms(struct module *mod, const struct load_info *info)
2263{
2264}
2265#endif /* CONFIG_KALLSYMS */
2266
2267static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2268{
2269	if (!debug)
2270		return;
2271#ifdef CONFIG_DYNAMIC_DEBUG
2272	if (ddebug_add_module(debug, num, debug->modname))
2273		printk(KERN_ERR "dynamic debug error adding module: %s\n",
2274					debug->modname);
2275#endif
2276}
2277
2278static void dynamic_debug_remove(struct _ddebug *debug)
2279{
2280	if (debug)
2281		ddebug_remove_module(debug->modname);
2282}
2283
2284void * __weak module_alloc(unsigned long size)
2285{
2286	return size == 0 ? NULL : vmalloc_exec(size);
2287}
2288
2289static void *module_alloc_update_bounds(unsigned long size)
2290{
2291	void *ret = module_alloc(size);
2292
2293	if (ret) {
2294		mutex_lock(&module_mutex);
2295		/* Update module bounds. */
2296		if ((unsigned long)ret < module_addr_min)
2297			module_addr_min = (unsigned long)ret;
2298		if ((unsigned long)ret + size > module_addr_max)
2299			module_addr_max = (unsigned long)ret + size;
2300		mutex_unlock(&module_mutex);
2301	}
2302	return ret;
2303}
2304
2305#ifdef CONFIG_DEBUG_KMEMLEAK
2306static void kmemleak_load_module(const struct module *mod,
2307				 const struct load_info *info)
2308{
2309	unsigned int i;
2310
2311	/* only scan the sections containing data */
2312	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2313
2314	for (i = 1; i < info->hdr->e_shnum; i++) {
2315		const char *name = info->secstrings + info->sechdrs[i].sh_name;
2316		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC))
2317			continue;
2318		if (!strstarts(name, ".data") && !strstarts(name, ".bss"))
2319			continue;
2320
2321		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2322				   info->sechdrs[i].sh_size, GFP_KERNEL);
2323	}
2324}
2325#else
2326static inline void kmemleak_load_module(const struct module *mod,
2327					const struct load_info *info)
2328{
2329}
2330#endif
2331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2332/* Sets info->hdr and info->len. */
2333static int copy_and_check(struct load_info *info,
2334			  const void __user *umod, unsigned long len,
2335			  const char __user *uargs)
2336{
2337	int err;
2338	Elf_Ehdr *hdr;
2339
2340	if (len < sizeof(*hdr))
 
2341		return -ENOEXEC;
2342
 
 
 
 
2343	/* Suck in entire file: we'll want most of it. */
2344	/* vmalloc barfs on "unusual" numbers.  Check here */
2345	if (len > 64 * 1024 * 1024 || (hdr = vmalloc(len)) == NULL)
 
2346		return -ENOMEM;
2347
2348	if (copy_from_user(hdr, umod, len) != 0) {
2349		err = -EFAULT;
2350		goto free_hdr;
2351	}
2352
2353	/* Sanity checks against insmoding binaries or wrong arch,
2354	   weird elf version */
2355	if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
2356	    || hdr->e_type != ET_REL
2357	    || !elf_check_arch(hdr)
2358	    || hdr->e_shentsize != sizeof(Elf_Shdr)) {
2359		err = -ENOEXEC;
2360		goto free_hdr;
2361	}
2362
2363	if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
2364		err = -ENOEXEC;
2365		goto free_hdr;
2366	}
2367
2368	info->hdr = hdr;
2369	info->len = len;
2370	return 0;
2371
2372free_hdr:
2373	vfree(hdr);
2374	return err;
2375}
2376
2377static void free_copy(struct load_info *info)
2378{
2379	vfree(info->hdr);
2380}
2381
2382static int rewrite_section_headers(struct load_info *info)
2383{
2384	unsigned int i;
2385
2386	/* This should always be true, but let's be sure. */
2387	info->sechdrs[0].sh_addr = 0;
2388
2389	for (i = 1; i < info->hdr->e_shnum; i++) {
2390		Elf_Shdr *shdr = &info->sechdrs[i];
2391		if (shdr->sh_type != SHT_NOBITS
2392		    && info->len < shdr->sh_offset + shdr->sh_size) {
2393			printk(KERN_ERR "Module len %lu truncated\n",
2394			       info->len);
2395			return -ENOEXEC;
2396		}
2397
2398		/* Mark all sections sh_addr with their address in the
2399		   temporary image. */
2400		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2401
2402#ifndef CONFIG_MODULE_UNLOAD
2403		/* Don't load .exit sections */
2404		if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2405			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2406#endif
2407	}
2408
2409	/* Track but don't keep modinfo and version sections. */
2410	info->index.vers = find_sec(info, "__versions");
 
 
 
2411	info->index.info = find_sec(info, ".modinfo");
2412	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2413	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2414	return 0;
2415}
2416
2417/*
2418 * Set up our basic convenience variables (pointers to section headers,
2419 * search for module section index etc), and do some basic section
2420 * verification.
2421 *
2422 * Return the temporary module pointer (we'll replace it with the final
2423 * one when we move the module sections around).
2424 */
2425static struct module *setup_load_info(struct load_info *info)
2426{
2427	unsigned int i;
2428	int err;
2429	struct module *mod;
2430
2431	/* Set up the convenience variables */
2432	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2433	info->secstrings = (void *)info->hdr
2434		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2435
2436	err = rewrite_section_headers(info);
2437	if (err)
2438		return ERR_PTR(err);
2439
2440	/* Find internal symbols and strings. */
2441	for (i = 1; i < info->hdr->e_shnum; i++) {
2442		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2443			info->index.sym = i;
2444			info->index.str = info->sechdrs[i].sh_link;
2445			info->strtab = (char *)info->hdr
2446				+ info->sechdrs[info->index.str].sh_offset;
2447			break;
2448		}
2449	}
2450
2451	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2452	if (!info->index.mod) {
2453		printk(KERN_WARNING "No module found in object\n");
2454		return ERR_PTR(-ENOEXEC);
2455	}
2456	/* This is temporary: point mod into copy of data. */
2457	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2458
2459	if (info->index.sym == 0) {
2460		printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
2461		       mod->name);
2462		return ERR_PTR(-ENOEXEC);
2463	}
2464
2465	info->index.pcpu = find_pcpusec(info);
2466
2467	/* Check module struct version now, before we try to use module. */
2468	if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2469		return ERR_PTR(-ENOEXEC);
2470
2471	return mod;
2472}
2473
2474static int check_modinfo(struct module *mod, struct load_info *info)
2475{
2476	const char *modmagic = get_modinfo(info, "vermagic");
2477	int err;
2478
 
 
 
2479	/* This is allowed: modprobe --force will invalidate it. */
2480	if (!modmagic) {
2481		err = try_to_force_load(mod, "bad vermagic");
2482		if (err)
2483			return err;
2484	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2485		printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
2486		       mod->name, modmagic, vermagic);
2487		return -ENOEXEC;
2488	}
2489
 
 
 
2490	if (get_modinfo(info, "staging")) {
2491		add_taint_module(mod, TAINT_CRAP);
2492		printk(KERN_WARNING "%s: module is from the staging directory,"
2493		       " the quality is unknown, you have been warned.\n",
2494		       mod->name);
2495	}
2496
2497	/* Set up license info based on the info section */
2498	set_license(mod, get_modinfo(info, "license"));
2499
2500	return 0;
2501}
2502
2503static void find_module_sections(struct module *mod, struct load_info *info)
2504{
2505	mod->kp = section_objs(info, "__param",
2506			       sizeof(*mod->kp), &mod->num_kp);
2507	mod->syms = section_objs(info, "__ksymtab",
2508				 sizeof(*mod->syms), &mod->num_syms);
2509	mod->crcs = section_addr(info, "__kcrctab");
2510	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2511				     sizeof(*mod->gpl_syms),
2512				     &mod->num_gpl_syms);
2513	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2514	mod->gpl_future_syms = section_objs(info,
2515					    "__ksymtab_gpl_future",
2516					    sizeof(*mod->gpl_future_syms),
2517					    &mod->num_gpl_future_syms);
2518	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2519
2520#ifdef CONFIG_UNUSED_SYMBOLS
2521	mod->unused_syms = section_objs(info, "__ksymtab_unused",
2522					sizeof(*mod->unused_syms),
2523					&mod->num_unused_syms);
2524	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2525	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2526					    sizeof(*mod->unused_gpl_syms),
2527					    &mod->num_unused_gpl_syms);
2528	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2529#endif
2530#ifdef CONFIG_CONSTRUCTORS
2531	mod->ctors = section_objs(info, ".ctors",
2532				  sizeof(*mod->ctors), &mod->num_ctors);
 
 
 
 
 
 
 
 
 
 
 
 
2533#endif
2534
2535#ifdef CONFIG_TRACEPOINTS
2536	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2537					     sizeof(*mod->tracepoints_ptrs),
2538					     &mod->num_tracepoints);
2539#endif
2540#ifdef HAVE_JUMP_LABEL
2541	mod->jump_entries = section_objs(info, "__jump_table",
2542					sizeof(*mod->jump_entries),
2543					&mod->num_jump_entries);
2544#endif
2545#ifdef CONFIG_EVENT_TRACING
2546	mod->trace_events = section_objs(info, "_ftrace_events",
2547					 sizeof(*mod->trace_events),
2548					 &mod->num_trace_events);
2549	/*
2550	 * This section contains pointers to allocated objects in the trace
2551	 * code and not scanning it leads to false positives.
2552	 */
2553	kmemleak_scan_area(mod->trace_events, sizeof(*mod->trace_events) *
2554			   mod->num_trace_events, GFP_KERNEL);
2555#endif
2556#ifdef CONFIG_TRACING
2557	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2558					 sizeof(*mod->trace_bprintk_fmt_start),
2559					 &mod->num_trace_bprintk_fmt);
2560	/*
2561	 * This section contains pointers to allocated objects in the trace
2562	 * code and not scanning it leads to false positives.
2563	 */
2564	kmemleak_scan_area(mod->trace_bprintk_fmt_start,
2565			   sizeof(*mod->trace_bprintk_fmt_start) *
2566			   mod->num_trace_bprintk_fmt, GFP_KERNEL);
2567#endif
2568#ifdef CONFIG_FTRACE_MCOUNT_RECORD
2569	/* sechdrs[0].sh_size is always zero */
2570	mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2571					     sizeof(*mod->ftrace_callsites),
2572					     &mod->num_ftrace_callsites);
2573#endif
2574
2575	mod->extable = section_objs(info, "__ex_table",
2576				    sizeof(*mod->extable), &mod->num_exentries);
2577
2578	if (section_addr(info, "__obsparm"))
2579		printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
2580		       mod->name);
2581
2582	info->debug = section_objs(info, "__verbose",
2583				   sizeof(*info->debug), &info->num_debug);
 
 
2584}
2585
2586static int move_module(struct module *mod, struct load_info *info)
2587{
2588	int i;
2589	void *ptr;
2590
2591	/* Do the allocs. */
2592	ptr = module_alloc_update_bounds(mod->core_size);
2593	/*
2594	 * The pointer to this block is stored in the module structure
2595	 * which is inside the block. Just mark it as not being a
2596	 * leak.
2597	 */
2598	kmemleak_not_leak(ptr);
2599	if (!ptr)
2600		return -ENOMEM;
2601
2602	memset(ptr, 0, mod->core_size);
2603	mod->module_core = ptr;
2604
2605	ptr = module_alloc_update_bounds(mod->init_size);
2606	/*
2607	 * The pointer to this block is stored in the module structure
2608	 * which is inside the block. This block doesn't need to be
2609	 * scanned as it contains data and code that will be freed
2610	 * after the module is initialized.
2611	 */
2612	kmemleak_ignore(ptr);
2613	if (!ptr && mod->init_size) {
2614		module_free(mod, mod->module_core);
2615		return -ENOMEM;
2616	}
2617	memset(ptr, 0, mod->init_size);
2618	mod->module_init = ptr;
 
 
 
2619
2620	/* Transfer each section which specifies SHF_ALLOC */
2621	DEBUGP("final section addresses:\n");
2622	for (i = 0; i < info->hdr->e_shnum; i++) {
2623		void *dest;
2624		Elf_Shdr *shdr = &info->sechdrs[i];
2625
2626		if (!(shdr->sh_flags & SHF_ALLOC))
2627			continue;
2628
2629		if (shdr->sh_entsize & INIT_OFFSET_MASK)
2630			dest = mod->module_init
2631				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2632		else
2633			dest = mod->module_core + shdr->sh_entsize;
2634
2635		if (shdr->sh_type != SHT_NOBITS)
2636			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2637		/* Update sh_addr to point to copy in image. */
2638		shdr->sh_addr = (unsigned long)dest;
2639		DEBUGP("\t0x%lx %s\n",
2640		       shdr->sh_addr, info->secstrings + shdr->sh_name);
2641	}
2642
2643	return 0;
2644}
2645
2646static int check_module_license_and_versions(struct module *mod)
2647{
2648	/*
2649	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2650	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2651	 * using GPL-only symbols it needs.
2652	 */
2653	if (strcmp(mod->name, "ndiswrapper") == 0)
2654		add_taint(TAINT_PROPRIETARY_MODULE);
2655
2656	/* driverloader was caught wrongly pretending to be under GPL */
2657	if (strcmp(mod->name, "driverloader") == 0)
2658		add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
 
 
 
 
 
 
2659
2660#ifdef CONFIG_MODVERSIONS
2661	if ((mod->num_syms && !mod->crcs)
2662	    || (mod->num_gpl_syms && !mod->gpl_crcs)
2663	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2664#ifdef CONFIG_UNUSED_SYMBOLS
2665	    || (mod->num_unused_syms && !mod->unused_crcs)
2666	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2667#endif
2668		) {
2669		return try_to_force_load(mod,
2670					 "no versions for exported symbols");
2671	}
2672#endif
2673	return 0;
2674}
2675
2676static void flush_module_icache(const struct module *mod)
2677{
2678	mm_segment_t old_fs;
2679
2680	/* flush the icache in correct context */
2681	old_fs = get_fs();
2682	set_fs(KERNEL_DS);
2683
2684	/*
2685	 * Flush the instruction cache, since we've played with text.
2686	 * Do it before processing of module parameters, so the module
2687	 * can provide parameter accessor functions of its own.
2688	 */
2689	if (mod->module_init)
2690		flush_icache_range((unsigned long)mod->module_init,
2691				   (unsigned long)mod->module_init
2692				   + mod->init_size);
2693	flush_icache_range((unsigned long)mod->module_core,
2694			   (unsigned long)mod->module_core + mod->core_size);
2695
2696	set_fs(old_fs);
2697}
2698
2699int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2700				     Elf_Shdr *sechdrs,
2701				     char *secstrings,
2702				     struct module *mod)
2703{
2704	return 0;
2705}
2706
2707static struct module *layout_and_allocate(struct load_info *info)
2708{
2709	/* Module within temporary copy. */
2710	struct module *mod;
2711	Elf_Shdr *pcpusec;
2712	int err;
2713
2714	mod = setup_load_info(info);
2715	if (IS_ERR(mod))
2716		return mod;
2717
2718	err = check_modinfo(mod, info);
2719	if (err)
2720		return ERR_PTR(err);
2721
2722	/* Allow arches to frob section contents and sizes.  */
2723	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2724					info->secstrings, mod);
2725	if (err < 0)
2726		goto out;
2727
2728	pcpusec = &info->sechdrs[info->index.pcpu];
2729	if (pcpusec->sh_size) {
2730		/* We have a special allocation for this section. */
2731		err = percpu_modalloc(mod,
2732				      pcpusec->sh_size, pcpusec->sh_addralign);
2733		if (err)
2734			goto out;
2735		pcpusec->sh_flags &= ~(unsigned long)SHF_ALLOC;
2736	}
2737
2738	/* Determine total sizes, and put offsets in sh_entsize.  For now
2739	   this is done generically; there doesn't appear to be any
2740	   special cases for the architectures. */
2741	layout_sections(mod, info);
2742
2743	info->strmap = kzalloc(BITS_TO_LONGS(info->sechdrs[info->index.str].sh_size)
2744			 * sizeof(long), GFP_KERNEL);
2745	if (!info->strmap) {
2746		err = -ENOMEM;
2747		goto free_percpu;
2748	}
2749	layout_symtab(mod, info);
2750
2751	/* Allocate and move to the final place */
2752	err = move_module(mod, info);
2753	if (err)
2754		goto free_strmap;
2755
2756	/* Module has been copied to its final place now: return it. */
2757	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2758	kmemleak_load_module(mod, info);
2759	return mod;
2760
2761free_strmap:
2762	kfree(info->strmap);
2763free_percpu:
2764	percpu_modfree(mod);
2765out:
2766	return ERR_PTR(err);
2767}
2768
2769/* mod is no longer valid after this! */
2770static void module_deallocate(struct module *mod, struct load_info *info)
2771{
2772	kfree(info->strmap);
2773	percpu_modfree(mod);
2774	module_free(mod, mod->module_init);
2775	module_free(mod, mod->module_core);
 
2776}
2777
2778int __weak module_finalize(const Elf_Ehdr *hdr,
2779			   const Elf_Shdr *sechdrs,
2780			   struct module *me)
2781{
2782	return 0;
2783}
2784
2785static int post_relocation(struct module *mod, const struct load_info *info)
2786{
2787	/* Sort exception table now relocations are done. */
2788	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2789
2790	/* Copy relocated percpu area over. */
2791	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2792		       info->sechdrs[info->index.pcpu].sh_size);
2793
2794	/* Setup kallsyms-specific fields. */
2795	add_kallsyms(mod, info);
2796
2797	/* Arch-specific module finalizing. */
2798	return module_finalize(info->hdr, info->sechdrs, mod);
2799}
2800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2801/* Allocate and load the module: note that size of section 0 is always
2802   zero, and we rely on this for optional sections. */
2803static struct module *load_module(void __user *umod,
2804				  unsigned long len,
2805				  const char __user *uargs)
2806{
2807	struct load_info info = { NULL, };
2808	struct module *mod;
2809	long err;
 
2810
2811	DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n",
2812	       umod, len, uargs);
 
2813
2814	/* Copy in the blobs from userspace, check they are vaguely sane. */
2815	err = copy_and_check(&info, umod, len, uargs);
2816	if (err)
2817		return ERR_PTR(err);
2818
2819	/* Figure out module layout, and allocate all the memory. */
2820	mod = layout_and_allocate(&info);
2821	if (IS_ERR(mod)) {
2822		err = PTR_ERR(mod);
2823		goto free_copy;
2824	}
2825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2826	/* Now module is in final location, initialize linked lists, etc. */
2827	err = module_unload_init(mod);
2828	if (err)
2829		goto free_module;
 
 
2830
2831	/* Now we've got everything in the final locations, we can
2832	 * find optional sections. */
2833	find_module_sections(mod, &info);
 
 
2834
2835	err = check_module_license_and_versions(mod);
2836	if (err)
2837		goto free_unload;
2838
2839	/* Set up MODINFO_ATTR fields */
2840	setup_modinfo(mod, &info);
2841
2842	/* Fix up syms, so that st_value is a pointer to location. */
2843	err = simplify_symbols(mod, &info);
2844	if (err < 0)
2845		goto free_modinfo;
2846
2847	err = apply_relocations(mod, &info);
2848	if (err < 0)
2849		goto free_modinfo;
2850
2851	err = post_relocation(mod, &info);
2852	if (err < 0)
2853		goto free_modinfo;
2854
2855	flush_module_icache(mod);
2856
2857	/* Now copy in args */
2858	mod->args = strndup_user(uargs, ~0UL >> 1);
2859	if (IS_ERR(mod->args)) {
2860		err = PTR_ERR(mod->args);
2861		goto free_arch_cleanup;
2862	}
2863
2864	/* Mark state as coming so strong_try_module_get() ignores us. */
2865	mod->state = MODULE_STATE_COMING;
2866
2867	/* Now sew it into the lists so we can get lockdep and oops
2868	 * info during argument parsing.  No one should access us, since
2869	 * strong_try_module_get() will fail.
2870	 * lockdep/oops can run asynchronous, so use the RCU list insertion
2871	 * function to insert in a way safe to concurrent readers.
2872	 * The mutex protects against concurrent writers.
2873	 */
2874	mutex_lock(&module_mutex);
2875	if (find_module(mod->name)) {
2876		err = -EEXIST;
2877		goto unlock;
2878	}
2879
2880	/* This has to be done once we're sure module name is unique. */
2881	if (!mod->taints || mod->taints == (1U<<TAINT_CRAP))
2882		dynamic_debug_setup(info.debug, info.num_debug);
2883
2884	/* Find duplicate symbols */
2885	err = verify_export_symbols(mod);
2886	if (err < 0)
2887		goto ddebug;
2888
2889	module_bug_finalize(info.hdr, info.sechdrs, mod);
2890	list_add_rcu(&mod->list, &modules);
2891	mutex_unlock(&module_mutex);
2892
2893	/* Module is ready to execute: parsing args may do that. */
2894	err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, NULL);
2895	if (err < 0)
2896		goto unlink;
 
 
 
 
 
 
 
2897
2898	/* Link in to syfs. */
2899	err = mod_sysfs_setup(mod, &info, mod->kp, mod->num_kp);
2900	if (err < 0)
2901		goto unlink;
2902
2903	/* Get rid of temporary copy and strmap. */
2904	kfree(info.strmap);
2905	free_copy(&info);
2906
2907	/* Done! */
2908	trace_module_load(mod);
2909	return mod;
2910
2911 unlink:
 
 
 
 
 
 
 
 
2912	mutex_lock(&module_mutex);
2913	/* Unlink carefully: kallsyms could be walking list. */
2914	list_del_rcu(&mod->list);
2915	module_bug_cleanup(mod);
 
2916
2917 ddebug:
2918	if (!mod->taints || mod->taints == (1U<<TAINT_CRAP))
2919		dynamic_debug_remove(info.debug);
2920 unlock:
2921	mutex_unlock(&module_mutex);
 
2922	synchronize_sched();
2923	kfree(mod->args);
2924 free_arch_cleanup:
2925	module_arch_cleanup(mod);
2926 free_modinfo:
2927	free_modinfo(mod);
2928 free_unload:
2929	module_unload_free(mod);
 
 
 
 
 
 
 
 
 
2930 free_module:
2931	module_deallocate(mod, &info);
 
 
 
 
 
 
 
 
 
2932 free_copy:
2933	free_copy(&info);
2934	return ERR_PTR(err);
2935}
2936
2937/* Call module constructors. */
2938static void do_mod_ctors(struct module *mod)
2939{
2940#ifdef CONFIG_CONSTRUCTORS
2941	unsigned long i;
2942
2943	for (i = 0; i < mod->num_ctors; i++)
2944		mod->ctors[i]();
2945#endif
2946}
2947
2948/* This is where the real work happens */
2949SYSCALL_DEFINE3(init_module, void __user *, umod,
2950		unsigned long, len, const char __user *, uargs)
2951{
2952	struct module *mod;
2953	int ret = 0;
2954
2955	/* Must have permission */
2956	if (!capable(CAP_SYS_MODULE) || modules_disabled)
2957		return -EPERM;
2958
2959	/* Do all the hard work */
2960	mod = load_module(umod, len, uargs);
2961	if (IS_ERR(mod))
2962		return PTR_ERR(mod);
2963
2964	blocking_notifier_call_chain(&module_notify_list,
2965			MODULE_STATE_COMING, mod);
 
2966
2967	/* Set RO and NX regions for core */
2968	set_section_ro_nx(mod->module_core,
2969				mod->core_text_size,
2970				mod->core_ro_size,
2971				mod->core_size);
2972
2973	/* Set RO and NX regions for init */
2974	set_section_ro_nx(mod->module_init,
2975				mod->init_text_size,
2976				mod->init_ro_size,
2977				mod->init_size);
2978
2979	do_mod_ctors(mod);
2980	/* Start the module */
2981	if (mod->init != NULL)
2982		ret = do_one_initcall(mod->init);
2983	if (ret < 0) {
2984		/* Init routine failed: abort.  Try to protect us from
2985                   buggy refcounters. */
2986		mod->state = MODULE_STATE_GOING;
2987		synchronize_sched();
2988		module_put(mod);
2989		blocking_notifier_call_chain(&module_notify_list,
2990					     MODULE_STATE_GOING, mod);
2991		free_module(mod);
2992		wake_up(&module_wq);
2993		return ret;
2994	}
2995	if (ret > 0) {
2996		printk(KERN_WARNING
2997"%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
2998"%s: loading module anyway...\n",
2999		       __func__, mod->name, ret,
3000		       __func__);
3001		dump_stack();
3002	}
3003
3004	/* Now it's a first class citizen!  Wake up anyone waiting for it. */
3005	mod->state = MODULE_STATE_LIVE;
3006	wake_up(&module_wq);
3007	blocking_notifier_call_chain(&module_notify_list,
3008				     MODULE_STATE_LIVE, mod);
3009
3010	/* We need to finish all async code before the module init sequence is done */
3011	async_synchronize_full();
 
3012
3013	mutex_lock(&module_mutex);
3014	/* Drop initial reference. */
3015	module_put(mod);
3016	trim_init_extable(mod);
3017#ifdef CONFIG_KALLSYMS
3018	mod->num_symtab = mod->core_num_syms;
3019	mod->symtab = mod->core_symtab;
3020	mod->strtab = mod->core_strtab;
3021#endif
3022	unset_module_init_ro_nx(mod);
3023	module_free(mod, mod->module_init);
3024	mod->module_init = NULL;
3025	mod->init_size = 0;
3026	mod->init_ro_size = 0;
3027	mod->init_text_size = 0;
3028	mutex_unlock(&module_mutex);
3029
3030	return 0;
3031}
3032
3033static inline int within(unsigned long addr, void *start, unsigned long size)
3034{
3035	return ((void *)addr >= start && (void *)addr < start + size);
3036}
3037
3038#ifdef CONFIG_KALLSYMS
3039/*
3040 * This ignores the intensely annoying "mapping symbols" found
3041 * in ARM ELF files: $a, $t and $d.
3042 */
3043static inline int is_arm_mapping_symbol(const char *str)
3044{
3045	return str[0] == '$' && strchr("atd", str[1])
 
 
3046	       && (str[2] == '\0' || str[2] == '.');
3047}
3048
 
 
 
 
 
3049static const char *get_ksymbol(struct module *mod,
3050			       unsigned long addr,
3051			       unsigned long *size,
3052			       unsigned long *offset)
3053{
3054	unsigned int i, best = 0;
3055	unsigned long nextval;
 
3056
3057	/* At worse, next value is at end of module */
3058	if (within_module_init(addr, mod))
3059		nextval = (unsigned long)mod->module_init+mod->init_text_size;
3060	else
3061		nextval = (unsigned long)mod->module_core+mod->core_text_size;
3062
3063	/* Scan for closest preceding symbol, and next symbol. (ELF
3064	   starts real symbols at 1). */
3065	for (i = 1; i < mod->num_symtab; i++) {
3066		if (mod->symtab[i].st_shndx == SHN_UNDEF)
3067			continue;
3068
3069		/* We ignore unnamed symbols: they're uninformative
3070		 * and inserted at a whim. */
3071		if (mod->symtab[i].st_value <= addr
3072		    && mod->symtab[i].st_value > mod->symtab[best].st_value
3073		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3074		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
 
 
3075			best = i;
3076		if (mod->symtab[i].st_value > addr
3077		    && mod->symtab[i].st_value < nextval
3078		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3079		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3080			nextval = mod->symtab[i].st_value;
3081	}
3082
3083	if (!best)
3084		return NULL;
3085
3086	if (size)
3087		*size = nextval - mod->symtab[best].st_value;
3088	if (offset)
3089		*offset = addr - mod->symtab[best].st_value;
3090	return mod->strtab + mod->symtab[best].st_name;
3091}
3092
3093/* For kallsyms to ask for address resolution.  NULL means not found.  Careful
3094 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3095const char *module_address_lookup(unsigned long addr,
3096			    unsigned long *size,
3097			    unsigned long *offset,
3098			    char **modname,
3099			    char *namebuf)
3100{
 
3101	struct module *mod;
3102	const char *ret = NULL;
3103
3104	preempt_disable();
3105	list_for_each_entry_rcu(mod, &modules, list) {
3106		if (within_module_init(addr, mod) ||
3107		    within_module_core(addr, mod)) {
3108			if (modname)
3109				*modname = mod->name;
3110			ret = get_ksymbol(mod, addr, size, offset);
3111			break;
3112		}
3113	}
3114	/* Make a copy in here where it's safe */
3115	if (ret) {
3116		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3117		ret = namebuf;
3118	}
3119	preempt_enable();
 
3120	return ret;
3121}
3122
3123int lookup_module_symbol_name(unsigned long addr, char *symname)
3124{
3125	struct module *mod;
3126
3127	preempt_disable();
3128	list_for_each_entry_rcu(mod, &modules, list) {
3129		if (within_module_init(addr, mod) ||
3130		    within_module_core(addr, mod)) {
 
3131			const char *sym;
3132
3133			sym = get_ksymbol(mod, addr, NULL, NULL);
3134			if (!sym)
3135				goto out;
3136			strlcpy(symname, sym, KSYM_NAME_LEN);
3137			preempt_enable();
3138			return 0;
3139		}
3140	}
3141out:
3142	preempt_enable();
3143	return -ERANGE;
3144}
3145
3146int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3147			unsigned long *offset, char *modname, char *name)
3148{
3149	struct module *mod;
3150
3151	preempt_disable();
3152	list_for_each_entry_rcu(mod, &modules, list) {
3153		if (within_module_init(addr, mod) ||
3154		    within_module_core(addr, mod)) {
 
3155			const char *sym;
3156
3157			sym = get_ksymbol(mod, addr, size, offset);
3158			if (!sym)
3159				goto out;
3160			if (modname)
3161				strlcpy(modname, mod->name, MODULE_NAME_LEN);
3162			if (name)
3163				strlcpy(name, sym, KSYM_NAME_LEN);
3164			preempt_enable();
3165			return 0;
3166		}
3167	}
3168out:
3169	preempt_enable();
3170	return -ERANGE;
3171}
3172
3173int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3174			char *name, char *module_name, int *exported)
3175{
3176	struct module *mod;
3177
3178	preempt_disable();
3179	list_for_each_entry_rcu(mod, &modules, list) {
3180		if (symnum < mod->num_symtab) {
3181			*value = mod->symtab[symnum].st_value;
3182			*type = mod->symtab[symnum].st_info;
3183			strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
3184				KSYM_NAME_LEN);
 
 
 
 
3185			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3186			*exported = is_exported(name, *value, mod);
3187			preempt_enable();
3188			return 0;
3189		}
3190		symnum -= mod->num_symtab;
3191	}
3192	preempt_enable();
3193	return -ERANGE;
3194}
3195
3196static unsigned long mod_find_symname(struct module *mod, const char *name)
3197{
3198	unsigned int i;
 
3199
3200	for (i = 0; i < mod->num_symtab; i++)
3201		if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
3202		    mod->symtab[i].st_info != 'U')
3203			return mod->symtab[i].st_value;
3204	return 0;
3205}
3206
3207/* Look for this name: can be of form module:name. */
3208unsigned long module_kallsyms_lookup_name(const char *name)
3209{
3210	struct module *mod;
3211	char *colon;
3212	unsigned long ret = 0;
3213
3214	/* Don't lock: we're in enough trouble already. */
3215	preempt_disable();
3216	if ((colon = strchr(name, ':')) != NULL) {
3217		*colon = '\0';
3218		if ((mod = find_module(name)) != NULL)
3219			ret = mod_find_symname(mod, colon+1);
3220		*colon = ':';
3221	} else {
3222		list_for_each_entry_rcu(mod, &modules, list)
 
 
3223			if ((ret = mod_find_symname(mod, name)) != 0)
3224				break;
 
3225	}
3226	preempt_enable();
3227	return ret;
3228}
3229
3230int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3231					     struct module *, unsigned long),
3232				   void *data)
3233{
3234	struct module *mod;
3235	unsigned int i;
3236	int ret;
3237
 
 
3238	list_for_each_entry(mod, &modules, list) {
3239		for (i = 0; i < mod->num_symtab; i++) {
3240			ret = fn(data, mod->strtab + mod->symtab[i].st_name,
3241				 mod, mod->symtab[i].st_value);
 
 
 
 
 
3242			if (ret != 0)
3243				return ret;
3244		}
3245	}
3246	return 0;
3247}
3248#endif /* CONFIG_KALLSYMS */
3249
3250static char *module_flags(struct module *mod, char *buf)
3251{
3252	int bx = 0;
3253
 
3254	if (mod->taints ||
3255	    mod->state == MODULE_STATE_GOING ||
3256	    mod->state == MODULE_STATE_COMING) {
3257		buf[bx++] = '(';
3258		if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
3259			buf[bx++] = 'P';
3260		if (mod->taints & (1 << TAINT_FORCED_MODULE))
3261			buf[bx++] = 'F';
3262		if (mod->taints & (1 << TAINT_CRAP))
3263			buf[bx++] = 'C';
3264		/*
3265		 * TAINT_FORCED_RMMOD: could be added.
3266		 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
3267		 * apply to modules.
3268		 */
3269
3270		/* Show a - for module-is-being-unloaded */
3271		if (mod->state == MODULE_STATE_GOING)
3272			buf[bx++] = '-';
3273		/* Show a + for module-is-being-loaded */
3274		if (mod->state == MODULE_STATE_COMING)
3275			buf[bx++] = '+';
3276		buf[bx++] = ')';
3277	}
3278	buf[bx] = '\0';
3279
3280	return buf;
3281}
3282
3283#ifdef CONFIG_PROC_FS
3284/* Called by the /proc file system to return a list of modules. */
3285static void *m_start(struct seq_file *m, loff_t *pos)
3286{
3287	mutex_lock(&module_mutex);
3288	return seq_list_start(&modules, *pos);
3289}
3290
3291static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3292{
3293	return seq_list_next(p, &modules, pos);
3294}
3295
3296static void m_stop(struct seq_file *m, void *p)
3297{
3298	mutex_unlock(&module_mutex);
3299}
3300
3301static int m_show(struct seq_file *m, void *p)
3302{
3303	struct module *mod = list_entry(p, struct module, list);
3304	char buf[8];
3305
 
 
 
 
3306	seq_printf(m, "%s %u",
3307		   mod->name, mod->init_size + mod->core_size);
3308	print_unload_info(m, mod);
3309
3310	/* Informative for users. */
3311	seq_printf(m, " %s",
3312		   mod->state == MODULE_STATE_GOING ? "Unloading":
3313		   mod->state == MODULE_STATE_COMING ? "Loading":
3314		   "Live");
3315	/* Used by oprofile and other similar tools. */
3316	seq_printf(m, " 0x%pK", mod->module_core);
3317
3318	/* Taints info */
3319	if (mod->taints)
3320		seq_printf(m, " %s", module_flags(mod, buf));
3321
3322	seq_printf(m, "\n");
3323	return 0;
3324}
3325
3326/* Format: modulename size refcount deps address
3327
3328   Where refcount is a number or -, and deps is a comma-separated list
3329   of depends or -.
3330*/
3331static const struct seq_operations modules_op = {
3332	.start	= m_start,
3333	.next	= m_next,
3334	.stop	= m_stop,
3335	.show	= m_show
3336};
3337
3338static int modules_open(struct inode *inode, struct file *file)
3339{
3340	return seq_open(file, &modules_op);
3341}
3342
3343static const struct file_operations proc_modules_operations = {
3344	.open		= modules_open,
3345	.read		= seq_read,
3346	.llseek		= seq_lseek,
3347	.release	= seq_release,
3348};
3349
3350static int __init proc_modules_init(void)
3351{
3352	proc_create("modules", 0, NULL, &proc_modules_operations);
3353	return 0;
3354}
3355module_init(proc_modules_init);
3356#endif
3357
3358/* Given an address, look for it in the module exception tables. */
3359const struct exception_table_entry *search_module_extables(unsigned long addr)
3360{
3361	const struct exception_table_entry *e = NULL;
3362	struct module *mod;
3363
3364	preempt_disable();
3365	list_for_each_entry_rcu(mod, &modules, list) {
 
 
3366		if (mod->num_exentries == 0)
3367			continue;
3368
3369		e = search_extable(mod->extable,
3370				   mod->extable + mod->num_exentries - 1,
3371				   addr);
3372		if (e)
3373			break;
3374	}
3375	preempt_enable();
3376
3377	/* Now, if we found one, we are running inside it now, hence
3378	   we cannot unload the module, hence no refcnt needed. */
3379	return e;
3380}
3381
3382/*
3383 * is_module_address - is this address inside a module?
3384 * @addr: the address to check.
3385 *
3386 * See is_module_text_address() if you simply want to see if the address
3387 * is code (not data).
3388 */
3389bool is_module_address(unsigned long addr)
3390{
3391	bool ret;
3392
3393	preempt_disable();
3394	ret = __module_address(addr) != NULL;
3395	preempt_enable();
3396
3397	return ret;
3398}
3399
3400/*
3401 * __module_address - get the module which contains an address.
3402 * @addr: the address.
3403 *
3404 * Must be called with preempt disabled or module mutex held so that
3405 * module doesn't get freed during this.
3406 */
3407struct module *__module_address(unsigned long addr)
3408{
3409	struct module *mod;
3410
3411	if (addr < module_addr_min || addr > module_addr_max)
3412		return NULL;
3413
3414	list_for_each_entry_rcu(mod, &modules, list)
3415		if (within_module_core(addr, mod)
3416		    || within_module_init(addr, mod))
3417			return mod;
3418	return NULL;
 
 
 
 
3419}
3420EXPORT_SYMBOL_GPL(__module_address);
3421
3422/*
3423 * is_module_text_address - is this address inside module code?
3424 * @addr: the address to check.
3425 *
3426 * See is_module_address() if you simply want to see if the address is
3427 * anywhere in a module.  See kernel_text_address() for testing if an
3428 * address corresponds to kernel or module code.
3429 */
3430bool is_module_text_address(unsigned long addr)
3431{
3432	bool ret;
3433
3434	preempt_disable();
3435	ret = __module_text_address(addr) != NULL;
3436	preempt_enable();
3437
3438	return ret;
3439}
3440
3441/*
3442 * __module_text_address - get the module whose code contains an address.
3443 * @addr: the address.
3444 *
3445 * Must be called with preempt disabled or module mutex held so that
3446 * module doesn't get freed during this.
3447 */
3448struct module *__module_text_address(unsigned long addr)
3449{
3450	struct module *mod = __module_address(addr);
3451	if (mod) {
3452		/* Make sure it's within the text section. */
3453		if (!within(addr, mod->module_init, mod->init_text_size)
3454		    && !within(addr, mod->module_core, mod->core_text_size))
3455			mod = NULL;
3456	}
3457	return mod;
3458}
3459EXPORT_SYMBOL_GPL(__module_text_address);
3460
3461/* Don't grab lock, we're oopsing. */
3462void print_modules(void)
3463{
3464	struct module *mod;
3465	char buf[8];
3466
3467	printk(KERN_DEFAULT "Modules linked in:");
3468	/* Most callers should already have preempt disabled, but make sure */
3469	preempt_disable();
3470	list_for_each_entry_rcu(mod, &modules, list)
3471		printk(" %s%s", mod->name, module_flags(mod, buf));
 
 
 
3472	preempt_enable();
3473	if (last_unloaded_module[0])
3474		printk(" [last unloaded: %s]", last_unloaded_module);
3475	printk("\n");
3476}
3477
3478#ifdef CONFIG_MODVERSIONS
3479/* Generate the signature for all relevant module structures here.
3480 * If these change, we don't want to try to parse the module. */
3481void module_layout(struct module *mod,
3482		   struct modversion_info *ver,
3483		   struct kernel_param *kp,
3484		   struct kernel_symbol *ks,
3485		   struct tracepoint * const *tp)
3486{
3487}
3488EXPORT_SYMBOL(module_layout);
3489#endif
3490
3491#ifdef CONFIG_TRACEPOINTS
3492void module_update_tracepoints(void)
3493{
3494	struct module *mod;
3495
3496	mutex_lock(&module_mutex);
3497	list_for_each_entry(mod, &modules, list)
3498		if (!mod->taints)
3499			tracepoint_update_probe_range(mod->tracepoints_ptrs,
3500				mod->tracepoints_ptrs + mod->num_tracepoints);
3501	mutex_unlock(&module_mutex);
3502}
3503
3504/*
3505 * Returns 0 if current not found.
3506 * Returns 1 if current found.
3507 */
3508int module_get_iter_tracepoints(struct tracepoint_iter *iter)
3509{
3510	struct module *iter_mod;
3511	int found = 0;
3512
3513	mutex_lock(&module_mutex);
3514	list_for_each_entry(iter_mod, &modules, list) {
3515		if (!iter_mod->taints) {
3516			/*
3517			 * Sorted module list
3518			 */
3519			if (iter_mod < iter->module)
3520				continue;
3521			else if (iter_mod > iter->module)
3522				iter->tracepoint = NULL;
3523			found = tracepoint_get_iter_range(&iter->tracepoint,
3524				iter_mod->tracepoints_ptrs,
3525				iter_mod->tracepoints_ptrs
3526					+ iter_mod->num_tracepoints);
3527			if (found) {
3528				iter->module = iter_mod;
3529				break;
3530			}
3531		}
3532	}
3533	mutex_unlock(&module_mutex);
3534	return found;
3535}
3536#endif