Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v4.6
 
   1/*
   2   Copyright (C) 2002 Richard Henderson
   3   Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
 
 
 
   4
   5    This program is free software; you can redistribute it and/or modify
   6    it under the terms of the GNU General Public License as published by
   7    the Free Software Foundation; either version 2 of the License, or
   8    (at your option) any later version.
   9
  10    This program is distributed in the hope that it will be useful,
  11    but WITHOUT ANY WARRANTY; without even the implied warranty of
  12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13    GNU General Public License for more details.
  14
  15    You should have received a copy of the GNU General Public License
  16    along with this program; if not, write to the Free Software
  17    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  18*/
  19#include <linux/export.h>
 
  20#include <linux/moduleloader.h>
 
  21#include <linux/trace_events.h>
  22#include <linux/init.h>
  23#include <linux/kallsyms.h>
 
  24#include <linux/file.h>
  25#include <linux/fs.h>
  26#include <linux/sysfs.h>
  27#include <linux/kernel.h>
 
  28#include <linux/slab.h>
  29#include <linux/vmalloc.h>
  30#include <linux/elf.h>
  31#include <linux/proc_fs.h>
  32#include <linux/security.h>
  33#include <linux/seq_file.h>
  34#include <linux/syscalls.h>
  35#include <linux/fcntl.h>
  36#include <linux/rcupdate.h>
  37#include <linux/capability.h>
  38#include <linux/cpu.h>
  39#include <linux/moduleparam.h>
  40#include <linux/errno.h>
  41#include <linux/err.h>
  42#include <linux/vermagic.h>
  43#include <linux/notifier.h>
  44#include <linux/sched.h>
  45#include <linux/device.h>
  46#include <linux/string.h>
  47#include <linux/mutex.h>
  48#include <linux/rculist.h>
  49#include <asm/uaccess.h>
  50#include <asm/cacheflush.h>
 
  51#include <asm/mmu_context.h>
  52#include <linux/license.h>
  53#include <asm/sections.h>
  54#include <linux/tracepoint.h>
  55#include <linux/ftrace.h>
  56#include <linux/livepatch.h>
  57#include <linux/async.h>
  58#include <linux/percpu.h>
  59#include <linux/kmemleak.h>
  60#include <linux/jump_label.h>
  61#include <linux/pfn.h>
  62#include <linux/bsearch.h>
 
 
  63#include <uapi/linux/module.h>
  64#include "module-internal.h"
  65
  66#define CREATE_TRACE_POINTS
  67#include <trace/events/module.h>
  68
  69#ifndef ARCH_SHF_SMALL
  70#define ARCH_SHF_SMALL 0
  71#endif
  72
  73/*
  74 * Modules' sections will be aligned on page boundaries
  75 * to ensure complete separation of code and data, but
  76 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
  77 */
  78#ifdef CONFIG_DEBUG_SET_MODULE_RONX
  79# define debug_align(X) ALIGN(X, PAGE_SIZE)
  80#else
  81# define debug_align(X) (X)
  82#endif
  83
  84/* If this is set, the section belongs in the init part of the module */
  85#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
  86
  87/*
  88 * Mutex protects:
  89 * 1) List of modules (also safely readable with preempt_disable),
  90 * 2) module_use links,
  91 * 3) module_addr_min/module_addr_max.
  92 * (delete and add uses RCU list operations). */
  93DEFINE_MUTEX(module_mutex);
  94EXPORT_SYMBOL_GPL(module_mutex);
  95static LIST_HEAD(modules);
  96
 
 
 
 
 
  97#ifdef CONFIG_MODULES_TREE_LOOKUP
  98
  99/*
 100 * Use a latched RB-tree for __module_address(); this allows us to use
 101 * RCU-sched lookups of the address from any context.
 102 *
 103 * This is conditional on PERF_EVENTS || TRACING because those can really hit
 104 * __module_address() hard by doing a lot of stack unwinding; potentially from
 105 * NMI context.
 106 */
 107
 108static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
 109{
 110	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 111
 112	return (unsigned long)layout->base;
 113}
 114
 115static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
 116{
 117	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 118
 119	return (unsigned long)layout->size;
 120}
 121
 122static __always_inline bool
 123mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
 124{
 125	return __mod_tree_val(a) < __mod_tree_val(b);
 126}
 127
 128static __always_inline int
 129mod_tree_comp(void *key, struct latch_tree_node *n)
 130{
 131	unsigned long val = (unsigned long)key;
 132	unsigned long start, end;
 133
 134	start = __mod_tree_val(n);
 135	if (val < start)
 136		return -1;
 137
 138	end = start + __mod_tree_size(n);
 139	if (val >= end)
 140		return 1;
 141
 142	return 0;
 143}
 144
 145static const struct latch_tree_ops mod_tree_ops = {
 146	.less = mod_tree_less,
 147	.comp = mod_tree_comp,
 148};
 149
 150static struct mod_tree_root {
 151	struct latch_tree_root root;
 152	unsigned long addr_min;
 153	unsigned long addr_max;
 154} mod_tree __cacheline_aligned = {
 155	.addr_min = -1UL,
 156};
 157
 158#define module_addr_min mod_tree.addr_min
 159#define module_addr_max mod_tree.addr_max
 160
 161static noinline void __mod_tree_insert(struct mod_tree_node *node)
 162{
 163	latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
 164}
 165
 166static void __mod_tree_remove(struct mod_tree_node *node)
 167{
 168	latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
 169}
 170
 171/*
 172 * These modifications: insert, remove_init and remove; are serialized by the
 173 * module_mutex.
 174 */
 175static void mod_tree_insert(struct module *mod)
 176{
 177	mod->core_layout.mtn.mod = mod;
 178	mod->init_layout.mtn.mod = mod;
 179
 180	__mod_tree_insert(&mod->core_layout.mtn);
 181	if (mod->init_layout.size)
 182		__mod_tree_insert(&mod->init_layout.mtn);
 183}
 184
 185static void mod_tree_remove_init(struct module *mod)
 186{
 187	if (mod->init_layout.size)
 188		__mod_tree_remove(&mod->init_layout.mtn);
 189}
 190
 191static void mod_tree_remove(struct module *mod)
 192{
 193	__mod_tree_remove(&mod->core_layout.mtn);
 194	mod_tree_remove_init(mod);
 195}
 196
 197static struct module *mod_find(unsigned long addr)
 198{
 199	struct latch_tree_node *ltn;
 200
 201	ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
 202	if (!ltn)
 203		return NULL;
 204
 205	return container_of(ltn, struct mod_tree_node, node)->mod;
 206}
 207
 208#else /* MODULES_TREE_LOOKUP */
 209
 210static unsigned long module_addr_min = -1UL, module_addr_max = 0;
 211
 212static void mod_tree_insert(struct module *mod) { }
 213static void mod_tree_remove_init(struct module *mod) { }
 214static void mod_tree_remove(struct module *mod) { }
 215
 216static struct module *mod_find(unsigned long addr)
 217{
 218	struct module *mod;
 219
 220	list_for_each_entry_rcu(mod, &modules, list) {
 
 221		if (within_module(addr, mod))
 222			return mod;
 223	}
 224
 225	return NULL;
 226}
 227
 228#endif /* MODULES_TREE_LOOKUP */
 229
 230/*
 231 * Bounds of module text, for speeding up __module_address.
 232 * Protected by module_mutex.
 233 */
 234static void __mod_update_bounds(void *base, unsigned int size)
 235{
 236	unsigned long min = (unsigned long)base;
 237	unsigned long max = min + size;
 238
 239	if (min < module_addr_min)
 240		module_addr_min = min;
 241	if (max > module_addr_max)
 242		module_addr_max = max;
 243}
 244
 245static void mod_update_bounds(struct module *mod)
 246{
 247	__mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
 248	if (mod->init_layout.size)
 249		__mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
 250}
 251
 252#ifdef CONFIG_KGDB_KDB
 253struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
 254#endif /* CONFIG_KGDB_KDB */
 255
 256static void module_assert_mutex(void)
 257{
 258	lockdep_assert_held(&module_mutex);
 259}
 260
 261static void module_assert_mutex_or_preempt(void)
 262{
 263#ifdef CONFIG_LOCKDEP
 264	if (unlikely(!debug_locks))
 265		return;
 266
 267	WARN_ON(!rcu_read_lock_sched_held() &&
 268		!lockdep_is_held(&module_mutex));
 269#endif
 270}
 271
 
 272static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
 273#ifndef CONFIG_MODULE_SIG_FORCE
 274module_param(sig_enforce, bool_enable_only, 0644);
 275#endif /* !CONFIG_MODULE_SIG_FORCE */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 276
 277/* Block module loading/unloading? */
 278int modules_disabled = 0;
 279core_param(nomodule, modules_disabled, bint, 0);
 280
 281/* Waiting for a module to finish initializing? */
 282static DECLARE_WAIT_QUEUE_HEAD(module_wq);
 283
 284static BLOCKING_NOTIFIER_HEAD(module_notify_list);
 285
 286int register_module_notifier(struct notifier_block *nb)
 287{
 288	return blocking_notifier_chain_register(&module_notify_list, nb);
 289}
 290EXPORT_SYMBOL(register_module_notifier);
 291
 292int unregister_module_notifier(struct notifier_block *nb)
 293{
 294	return blocking_notifier_chain_unregister(&module_notify_list, nb);
 295}
 296EXPORT_SYMBOL(unregister_module_notifier);
 297
 298struct load_info {
 299	Elf_Ehdr *hdr;
 300	unsigned long len;
 301	Elf_Shdr *sechdrs;
 302	char *secstrings, *strtab;
 303	unsigned long symoffs, stroffs;
 304	struct _ddebug *debug;
 305	unsigned int num_debug;
 306	bool sig_ok;
 307#ifdef CONFIG_KALLSYMS
 308	unsigned long mod_kallsyms_init_off;
 309#endif
 310	struct {
 311		unsigned int sym, str, mod, vers, info, pcpu;
 312	} index;
 313};
 314
 315/* We require a truly strong try_module_get(): 0 means failure due to
 316   ongoing or failed initialization etc. */
 317static inline int strong_try_module_get(struct module *mod)
 318{
 319	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
 320	if (mod && mod->state == MODULE_STATE_COMING)
 321		return -EBUSY;
 322	if (try_module_get(mod))
 323		return 0;
 324	else
 325		return -ENOENT;
 326}
 327
 328static inline void add_taint_module(struct module *mod, unsigned flag,
 329				    enum lockdep_ok lockdep_ok)
 330{
 331	add_taint(flag, lockdep_ok);
 332	mod->taints |= (1U << flag);
 333}
 334
 335/*
 336 * A thread that wants to hold a reference to a module only while it
 337 * is running can call this to safely exit.  nfsd and lockd use this.
 338 */
 339void __module_put_and_exit(struct module *mod, long code)
 340{
 341	module_put(mod);
 342	do_exit(code);
 343}
 344EXPORT_SYMBOL(__module_put_and_exit);
 345
 346/* Find a module section: 0 means not found. */
 347static unsigned int find_sec(const struct load_info *info, const char *name)
 348{
 349	unsigned int i;
 350
 351	for (i = 1; i < info->hdr->e_shnum; i++) {
 352		Elf_Shdr *shdr = &info->sechdrs[i];
 353		/* Alloc bit cleared means "ignore it." */
 354		if ((shdr->sh_flags & SHF_ALLOC)
 355		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
 356			return i;
 357	}
 358	return 0;
 359}
 360
 361/* Find a module section, or NULL. */
 362static void *section_addr(const struct load_info *info, const char *name)
 363{
 364	/* Section 0 has sh_addr 0. */
 365	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
 366}
 367
 368/* Find a module section, or NULL.  Fill in number of "objects" in section. */
 369static void *section_objs(const struct load_info *info,
 370			  const char *name,
 371			  size_t object_size,
 372			  unsigned int *num)
 373{
 374	unsigned int sec = find_sec(info, name);
 375
 376	/* Section 0 has sh_addr 0 and sh_size 0. */
 377	*num = info->sechdrs[sec].sh_size / object_size;
 378	return (void *)info->sechdrs[sec].sh_addr;
 379}
 380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 381/* Provided by the linker */
 382extern const struct kernel_symbol __start___ksymtab[];
 383extern const struct kernel_symbol __stop___ksymtab[];
 384extern const struct kernel_symbol __start___ksymtab_gpl[];
 385extern const struct kernel_symbol __stop___ksymtab_gpl[];
 386extern const struct kernel_symbol __start___ksymtab_gpl_future[];
 387extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
 388extern const unsigned long __start___kcrctab[];
 389extern const unsigned long __start___kcrctab_gpl[];
 390extern const unsigned long __start___kcrctab_gpl_future[];
 391#ifdef CONFIG_UNUSED_SYMBOLS
 392extern const struct kernel_symbol __start___ksymtab_unused[];
 393extern const struct kernel_symbol __stop___ksymtab_unused[];
 394extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
 395extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
 396extern const unsigned long __start___kcrctab_unused[];
 397extern const unsigned long __start___kcrctab_unused_gpl[];
 398#endif
 399
 400#ifndef CONFIG_MODVERSIONS
 401#define symversion(base, idx) NULL
 402#else
 403#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
 404#endif
 405
 406static bool each_symbol_in_section(const struct symsearch *arr,
 407				   unsigned int arrsize,
 408				   struct module *owner,
 409				   bool (*fn)(const struct symsearch *syms,
 410					      struct module *owner,
 411					      void *data),
 412				   void *data)
 413{
 414	unsigned int j;
 415
 416	for (j = 0; j < arrsize; j++) {
 417		if (fn(&arr[j], owner, data))
 418			return true;
 419	}
 420
 421	return false;
 422}
 423
 424/* Returns true as soon as fn returns true, otherwise false. */
 425bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
 426				    struct module *owner,
 427				    void *data),
 428			 void *data)
 429{
 430	struct module *mod;
 431	static const struct symsearch arr[] = {
 432		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
 433		  NOT_GPL_ONLY, false },
 434		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
 435		  __start___kcrctab_gpl,
 436		  GPL_ONLY, false },
 437		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
 438		  __start___kcrctab_gpl_future,
 439		  WILL_BE_GPL_ONLY, false },
 440#ifdef CONFIG_UNUSED_SYMBOLS
 441		{ __start___ksymtab_unused, __stop___ksymtab_unused,
 442		  __start___kcrctab_unused,
 443		  NOT_GPL_ONLY, true },
 444		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
 445		  __start___kcrctab_unused_gpl,
 446		  GPL_ONLY, true },
 447#endif
 448	};
 449
 450	module_assert_mutex_or_preempt();
 451
 452	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
 453		return true;
 454
 455	list_for_each_entry_rcu(mod, &modules, list) {
 456		struct symsearch arr[] = {
 457			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
 458			  NOT_GPL_ONLY, false },
 459			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
 460			  mod->gpl_crcs,
 461			  GPL_ONLY, false },
 462			{ mod->gpl_future_syms,
 463			  mod->gpl_future_syms + mod->num_gpl_future_syms,
 464			  mod->gpl_future_crcs,
 465			  WILL_BE_GPL_ONLY, false },
 466#ifdef CONFIG_UNUSED_SYMBOLS
 467			{ mod->unused_syms,
 468			  mod->unused_syms + mod->num_unused_syms,
 469			  mod->unused_crcs,
 470			  NOT_GPL_ONLY, true },
 471			{ mod->unused_gpl_syms,
 472			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
 473			  mod->unused_gpl_crcs,
 474			  GPL_ONLY, true },
 475#endif
 476		};
 477
 478		if (mod->state == MODULE_STATE_UNFORMED)
 479			continue;
 480
 481		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
 482			return true;
 483	}
 484	return false;
 485}
 486EXPORT_SYMBOL_GPL(each_symbol_section);
 487
 488struct find_symbol_arg {
 489	/* Input */
 490	const char *name;
 491	bool gplok;
 492	bool warn;
 493
 494	/* Output */
 495	struct module *owner;
 496	const unsigned long *crc;
 497	const struct kernel_symbol *sym;
 
 498};
 499
 500static bool check_symbol(const struct symsearch *syms,
 501				 struct module *owner,
 502				 unsigned int symnum, void *data)
 503{
 504	struct find_symbol_arg *fsa = data;
 505
 506	if (!fsa->gplok) {
 507		if (syms->licence == GPL_ONLY)
 508			return false;
 509		if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
 510			pr_warn("Symbol %s is being used by a non-GPL module, "
 511				"which will not be allowed in the future\n",
 512				fsa->name);
 513		}
 514	}
 515
 516#ifdef CONFIG_UNUSED_SYMBOLS
 517	if (syms->unused && fsa->warn) {
 518		pr_warn("Symbol %s is marked as UNUSED, however this module is "
 519			"using it.\n", fsa->name);
 520		pr_warn("This symbol will go away in the future.\n");
 521		pr_warn("Please evaluate if this is the right api to use and "
 522			"if it really is, submit a report to the linux kernel "
 523			"mailing list together with submitting your code for "
 524			"inclusion.\n");
 525	}
 526#endif
 527
 528	fsa->owner = owner;
 529	fsa->crc = symversion(syms->crcs, symnum);
 530	fsa->sym = &syms->start[symnum];
 
 531	return true;
 532}
 533
 534static int cmp_name(const void *va, const void *vb)
 535{
 536	const char *a;
 537	const struct kernel_symbol *b;
 538	a = va; b = vb;
 539	return strcmp(a, b->name);
 
 540}
 541
 542static bool find_symbol_in_section(const struct symsearch *syms,
 543				   struct module *owner,
 544				   void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545{
 546	struct find_symbol_arg *fsa = data;
 547	struct kernel_symbol *sym;
 548
 549	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
 550			sizeof(struct kernel_symbol), cmp_name);
 551
 552	if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
 
 553		return true;
 554
 555	return false;
 556}
 557
 558/* Find a symbol and return it, along with, (optional) crc and
 559 * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
 560const struct kernel_symbol *find_symbol(const char *name,
 561					struct module **owner,
 562					const unsigned long **crc,
 563					bool gplok,
 564					bool warn)
 565{
 566	struct find_symbol_arg fsa;
 567
 568	fsa.name = name;
 569	fsa.gplok = gplok;
 570	fsa.warn = warn;
 571
 572	if (each_symbol_section(find_symbol_in_section, &fsa)) {
 573		if (owner)
 574			*owner = fsa.owner;
 575		if (crc)
 576			*crc = fsa.crc;
 577		return fsa.sym;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578	}
 579
 580	pr_debug("Failed to find symbol %s\n", name);
 581	return NULL;
 582}
 583EXPORT_SYMBOL_GPL(find_symbol);
 584
 585/*
 586 * Search for module by name: must hold module_mutex (or preempt disabled
 587 * for read-only access).
 588 */
 589static struct module *find_module_all(const char *name, size_t len,
 590				      bool even_unformed)
 591{
 592	struct module *mod;
 593
 594	module_assert_mutex_or_preempt();
 595
 596	list_for_each_entry(mod, &modules, list) {
 
 597		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
 598			continue;
 599		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
 600			return mod;
 601	}
 602	return NULL;
 603}
 604
 605struct module *find_module(const char *name)
 606{
 607	module_assert_mutex();
 608	return find_module_all(name, strlen(name), false);
 609}
 610EXPORT_SYMBOL_GPL(find_module);
 611
 612#ifdef CONFIG_SMP
 613
 614static inline void __percpu *mod_percpu(struct module *mod)
 615{
 616	return mod->percpu;
 617}
 618
 619static int percpu_modalloc(struct module *mod, struct load_info *info)
 620{
 621	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
 622	unsigned long align = pcpusec->sh_addralign;
 623
 624	if (!pcpusec->sh_size)
 625		return 0;
 626
 627	if (align > PAGE_SIZE) {
 628		pr_warn("%s: per-cpu alignment %li > %li\n",
 629			mod->name, align, PAGE_SIZE);
 630		align = PAGE_SIZE;
 631	}
 632
 633	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
 634	if (!mod->percpu) {
 635		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
 636			mod->name, (unsigned long)pcpusec->sh_size);
 637		return -ENOMEM;
 638	}
 639	mod->percpu_size = pcpusec->sh_size;
 640	return 0;
 641}
 642
 643static void percpu_modfree(struct module *mod)
 644{
 645	free_percpu(mod->percpu);
 646}
 647
 648static unsigned int find_pcpusec(struct load_info *info)
 649{
 650	return find_sec(info, ".data..percpu");
 651}
 652
 653static void percpu_modcopy(struct module *mod,
 654			   const void *from, unsigned long size)
 655{
 656	int cpu;
 657
 658	for_each_possible_cpu(cpu)
 659		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
 660}
 661
 662/**
 663 * is_module_percpu_address - test whether address is from module static percpu
 664 * @addr: address to test
 665 *
 666 * Test whether @addr belongs to module static percpu area.
 667 *
 668 * RETURNS:
 669 * %true if @addr is from module static percpu area
 670 */
 671bool is_module_percpu_address(unsigned long addr)
 672{
 673	struct module *mod;
 674	unsigned int cpu;
 675
 676	preempt_disable();
 677
 678	list_for_each_entry_rcu(mod, &modules, list) {
 679		if (mod->state == MODULE_STATE_UNFORMED)
 680			continue;
 681		if (!mod->percpu_size)
 682			continue;
 683		for_each_possible_cpu(cpu) {
 684			void *start = per_cpu_ptr(mod->percpu, cpu);
 
 685
 686			if ((void *)addr >= start &&
 687			    (void *)addr < start + mod->percpu_size) {
 
 
 
 
 
 688				preempt_enable();
 689				return true;
 690			}
 691		}
 692	}
 693
 694	preempt_enable();
 695	return false;
 696}
 697
 
 
 
 
 
 
 
 
 
 
 
 
 
 698#else /* ... !CONFIG_SMP */
 699
 700static inline void __percpu *mod_percpu(struct module *mod)
 701{
 702	return NULL;
 703}
 704static int percpu_modalloc(struct module *mod, struct load_info *info)
 705{
 706	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
 707	if (info->sechdrs[info->index.pcpu].sh_size != 0)
 708		return -ENOMEM;
 709	return 0;
 710}
 711static inline void percpu_modfree(struct module *mod)
 712{
 713}
 714static unsigned int find_pcpusec(struct load_info *info)
 715{
 716	return 0;
 717}
 718static inline void percpu_modcopy(struct module *mod,
 719				  const void *from, unsigned long size)
 720{
 721	/* pcpusec should be 0, and size of that section should be 0. */
 722	BUG_ON(size != 0);
 723}
 724bool is_module_percpu_address(unsigned long addr)
 725{
 726	return false;
 727}
 728
 
 
 
 
 
 729#endif /* CONFIG_SMP */
 730
 731#define MODINFO_ATTR(field)	\
 732static void setup_modinfo_##field(struct module *mod, const char *s)  \
 733{                                                                     \
 734	mod->field = kstrdup(s, GFP_KERNEL);                          \
 735}                                                                     \
 736static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
 737			struct module_kobject *mk, char *buffer)      \
 738{                                                                     \
 739	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
 740}                                                                     \
 741static int modinfo_##field##_exists(struct module *mod)               \
 742{                                                                     \
 743	return mod->field != NULL;                                    \
 744}                                                                     \
 745static void free_modinfo_##field(struct module *mod)                  \
 746{                                                                     \
 747	kfree(mod->field);                                            \
 748	mod->field = NULL;                                            \
 749}                                                                     \
 750static struct module_attribute modinfo_##field = {                    \
 751	.attr = { .name = __stringify(field), .mode = 0444 },         \
 752	.show = show_modinfo_##field,                                 \
 753	.setup = setup_modinfo_##field,                               \
 754	.test = modinfo_##field##_exists,                             \
 755	.free = free_modinfo_##field,                                 \
 756};
 757
 758MODINFO_ATTR(version);
 759MODINFO_ATTR(srcversion);
 760
 761static char last_unloaded_module[MODULE_NAME_LEN+1];
 762
 763#ifdef CONFIG_MODULE_UNLOAD
 764
 765EXPORT_TRACEPOINT_SYMBOL(module_get);
 766
 767/* MODULE_REF_BASE is the base reference count by kmodule loader. */
 768#define MODULE_REF_BASE	1
 769
 770/* Init the unload section of the module. */
 771static int module_unload_init(struct module *mod)
 772{
 773	/*
 774	 * Initialize reference counter to MODULE_REF_BASE.
 775	 * refcnt == 0 means module is going.
 776	 */
 777	atomic_set(&mod->refcnt, MODULE_REF_BASE);
 778
 779	INIT_LIST_HEAD(&mod->source_list);
 780	INIT_LIST_HEAD(&mod->target_list);
 781
 782	/* Hold reference count during initialization. */
 783	atomic_inc(&mod->refcnt);
 784
 785	return 0;
 786}
 787
 788/* Does a already use b? */
 789static int already_uses(struct module *a, struct module *b)
 790{
 791	struct module_use *use;
 792
 793	list_for_each_entry(use, &b->source_list, source_list) {
 794		if (use->source == a) {
 795			pr_debug("%s uses %s!\n", a->name, b->name);
 796			return 1;
 797		}
 798	}
 799	pr_debug("%s does not use %s!\n", a->name, b->name);
 800	return 0;
 801}
 802
 803/*
 804 * Module a uses b
 805 *  - we add 'a' as a "source", 'b' as a "target" of module use
 806 *  - the module_use is added to the list of 'b' sources (so
 807 *    'b' can walk the list to see who sourced them), and of 'a'
 808 *    targets (so 'a' can see what modules it targets).
 809 */
 810static int add_module_usage(struct module *a, struct module *b)
 811{
 812	struct module_use *use;
 813
 814	pr_debug("Allocating new usage for %s.\n", a->name);
 815	use = kmalloc(sizeof(*use), GFP_ATOMIC);
 816	if (!use) {
 817		pr_warn("%s: out of memory loading\n", a->name);
 818		return -ENOMEM;
 819	}
 820
 821	use->source = a;
 822	use->target = b;
 823	list_add(&use->source_list, &b->source_list);
 824	list_add(&use->target_list, &a->target_list);
 825	return 0;
 826}
 827
 828/* Module a uses b: caller needs module_mutex() */
 829int ref_module(struct module *a, struct module *b)
 830{
 831	int err;
 832
 833	if (b == NULL || already_uses(a, b))
 834		return 0;
 835
 836	/* If module isn't available, we fail. */
 837	err = strong_try_module_get(b);
 838	if (err)
 839		return err;
 840
 841	err = add_module_usage(a, b);
 842	if (err) {
 843		module_put(b);
 844		return err;
 845	}
 846	return 0;
 847}
 848EXPORT_SYMBOL_GPL(ref_module);
 849
 850/* Clear the unload stuff of the module. */
 851static void module_unload_free(struct module *mod)
 852{
 853	struct module_use *use, *tmp;
 854
 855	mutex_lock(&module_mutex);
 856	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
 857		struct module *i = use->target;
 858		pr_debug("%s unusing %s\n", mod->name, i->name);
 859		module_put(i);
 860		list_del(&use->source_list);
 861		list_del(&use->target_list);
 862		kfree(use);
 863	}
 864	mutex_unlock(&module_mutex);
 865}
 866
 867#ifdef CONFIG_MODULE_FORCE_UNLOAD
 868static inline int try_force_unload(unsigned int flags)
 869{
 870	int ret = (flags & O_TRUNC);
 871	if (ret)
 872		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
 873	return ret;
 874}
 875#else
 876static inline int try_force_unload(unsigned int flags)
 877{
 878	return 0;
 879}
 880#endif /* CONFIG_MODULE_FORCE_UNLOAD */
 881
 882/* Try to release refcount of module, 0 means success. */
 883static int try_release_module_ref(struct module *mod)
 884{
 885	int ret;
 886
 887	/* Try to decrement refcnt which we set at loading */
 888	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
 889	BUG_ON(ret < 0);
 890	if (ret)
 891		/* Someone can put this right now, recover with checking */
 892		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
 893
 894	return ret;
 895}
 896
 897static int try_stop_module(struct module *mod, int flags, int *forced)
 898{
 899	/* If it's not unused, quit unless we're forcing. */
 900	if (try_release_module_ref(mod) != 0) {
 901		*forced = try_force_unload(flags);
 902		if (!(*forced))
 903			return -EWOULDBLOCK;
 904	}
 905
 906	/* Mark it as dying. */
 907	mod->state = MODULE_STATE_GOING;
 908
 909	return 0;
 910}
 911
 912/**
 913 * module_refcount - return the refcount or -1 if unloading
 914 *
 915 * @mod:	the module we're checking
 916 *
 917 * Returns:
 918 *	-1 if the module is in the process of unloading
 919 *	otherwise the number of references in the kernel to the module
 920 */
 921int module_refcount(struct module *mod)
 922{
 923	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
 924}
 925EXPORT_SYMBOL(module_refcount);
 926
 927/* This exists whether we can unload or not */
 928static void free_module(struct module *mod);
 929
 930SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
 931		unsigned int, flags)
 932{
 933	struct module *mod;
 934	char name[MODULE_NAME_LEN];
 935	int ret, forced = 0;
 936
 937	if (!capable(CAP_SYS_MODULE) || modules_disabled)
 938		return -EPERM;
 939
 940	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
 941		return -EFAULT;
 942	name[MODULE_NAME_LEN-1] = '\0';
 943
 
 
 944	if (mutex_lock_interruptible(&module_mutex) != 0)
 945		return -EINTR;
 946
 947	mod = find_module(name);
 948	if (!mod) {
 949		ret = -ENOENT;
 950		goto out;
 951	}
 952
 953	if (!list_empty(&mod->source_list)) {
 954		/* Other modules depend on us: get rid of them first. */
 955		ret = -EWOULDBLOCK;
 956		goto out;
 957	}
 958
 959	/* Doing init or already dying? */
 960	if (mod->state != MODULE_STATE_LIVE) {
 961		/* FIXME: if (force), slam module count damn the torpedoes */
 962		pr_debug("%s already dying\n", mod->name);
 963		ret = -EBUSY;
 964		goto out;
 965	}
 966
 967	/* If it has an init func, it must have an exit func to unload */
 968	if (mod->init && !mod->exit) {
 969		forced = try_force_unload(flags);
 970		if (!forced) {
 971			/* This module can't be removed */
 972			ret = -EBUSY;
 973			goto out;
 974		}
 975	}
 976
 977	/* Stop the machine so refcounts can't move and disable module. */
 978	ret = try_stop_module(mod, flags, &forced);
 979	if (ret != 0)
 980		goto out;
 981
 982	mutex_unlock(&module_mutex);
 983	/* Final destruction now no one is using it. */
 984	if (mod->exit != NULL)
 985		mod->exit();
 986	blocking_notifier_call_chain(&module_notify_list,
 987				     MODULE_STATE_GOING, mod);
 988	klp_module_going(mod);
 989	ftrace_release_mod(mod);
 990
 991	async_synchronize_full();
 992
 993	/* Store the name of the last unloaded module for diagnostic purposes */
 994	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
 995
 996	free_module(mod);
 
 
 997	return 0;
 998out:
 999	mutex_unlock(&module_mutex);
1000	return ret;
1001}
1002
1003static inline void print_unload_info(struct seq_file *m, struct module *mod)
1004{
1005	struct module_use *use;
1006	int printed_something = 0;
1007
1008	seq_printf(m, " %i ", module_refcount(mod));
1009
1010	/*
1011	 * Always include a trailing , so userspace can differentiate
1012	 * between this and the old multi-field proc format.
1013	 */
1014	list_for_each_entry(use, &mod->source_list, source_list) {
1015		printed_something = 1;
1016		seq_printf(m, "%s,", use->source->name);
1017	}
1018
1019	if (mod->init != NULL && mod->exit == NULL) {
1020		printed_something = 1;
1021		seq_puts(m, "[permanent],");
1022	}
1023
1024	if (!printed_something)
1025		seq_puts(m, "-");
1026}
1027
1028void __symbol_put(const char *symbol)
1029{
1030	struct module *owner;
 
 
 
1031
1032	preempt_disable();
1033	if (!find_symbol(symbol, &owner, NULL, true, false))
1034		BUG();
1035	module_put(owner);
1036	preempt_enable();
1037}
1038EXPORT_SYMBOL(__symbol_put);
1039
1040/* Note this assumes addr is a function, which it currently always is. */
1041void symbol_put_addr(void *addr)
1042{
1043	struct module *modaddr;
1044	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1045
1046	if (core_kernel_text(a))
1047		return;
1048
1049	/*
1050	 * Even though we hold a reference on the module; we still need to
1051	 * disable preemption in order to safely traverse the data structure.
1052	 */
1053	preempt_disable();
1054	modaddr = __module_text_address(a);
1055	BUG_ON(!modaddr);
1056	module_put(modaddr);
1057	preempt_enable();
1058}
1059EXPORT_SYMBOL_GPL(symbol_put_addr);
1060
1061static ssize_t show_refcnt(struct module_attribute *mattr,
1062			   struct module_kobject *mk, char *buffer)
1063{
1064	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1065}
1066
1067static struct module_attribute modinfo_refcnt =
1068	__ATTR(refcnt, 0444, show_refcnt, NULL);
1069
1070void __module_get(struct module *module)
1071{
1072	if (module) {
1073		preempt_disable();
1074		atomic_inc(&module->refcnt);
1075		trace_module_get(module, _RET_IP_);
1076		preempt_enable();
1077	}
1078}
1079EXPORT_SYMBOL(__module_get);
1080
1081bool try_module_get(struct module *module)
1082{
1083	bool ret = true;
1084
1085	if (module) {
1086		preempt_disable();
1087		/* Note: here, we can fail to get a reference */
1088		if (likely(module_is_live(module) &&
1089			   atomic_inc_not_zero(&module->refcnt) != 0))
1090			trace_module_get(module, _RET_IP_);
1091		else
1092			ret = false;
1093
1094		preempt_enable();
1095	}
1096	return ret;
1097}
1098EXPORT_SYMBOL(try_module_get);
1099
1100void module_put(struct module *module)
1101{
1102	int ret;
1103
1104	if (module) {
1105		preempt_disable();
1106		ret = atomic_dec_if_positive(&module->refcnt);
1107		WARN_ON(ret < 0);	/* Failed to put refcount */
1108		trace_module_put(module, _RET_IP_);
1109		preempt_enable();
1110	}
1111}
1112EXPORT_SYMBOL(module_put);
1113
1114#else /* !CONFIG_MODULE_UNLOAD */
1115static inline void print_unload_info(struct seq_file *m, struct module *mod)
1116{
1117	/* We don't know the usage count, or what modules are using. */
1118	seq_puts(m, " - -");
1119}
1120
1121static inline void module_unload_free(struct module *mod)
1122{
1123}
1124
1125int ref_module(struct module *a, struct module *b)
1126{
1127	return strong_try_module_get(b);
1128}
1129EXPORT_SYMBOL_GPL(ref_module);
1130
1131static inline int module_unload_init(struct module *mod)
1132{
1133	return 0;
1134}
1135#endif /* CONFIG_MODULE_UNLOAD */
1136
1137static size_t module_flags_taint(struct module *mod, char *buf)
1138{
1139	size_t l = 0;
 
 
 
 
 
 
1140
1141	if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1142		buf[l++] = 'P';
1143	if (mod->taints & (1 << TAINT_OOT_MODULE))
1144		buf[l++] = 'O';
1145	if (mod->taints & (1 << TAINT_FORCED_MODULE))
1146		buf[l++] = 'F';
1147	if (mod->taints & (1 << TAINT_CRAP))
1148		buf[l++] = 'C';
1149	if (mod->taints & (1 << TAINT_UNSIGNED_MODULE))
1150		buf[l++] = 'E';
1151	/*
1152	 * TAINT_FORCED_RMMOD: could be added.
1153	 * TAINT_CPU_OUT_OF_SPEC, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1154	 * apply to modules.
1155	 */
1156	return l;
1157}
1158
1159static ssize_t show_initstate(struct module_attribute *mattr,
1160			      struct module_kobject *mk, char *buffer)
1161{
1162	const char *state = "unknown";
1163
1164	switch (mk->mod->state) {
1165	case MODULE_STATE_LIVE:
1166		state = "live";
1167		break;
1168	case MODULE_STATE_COMING:
1169		state = "coming";
1170		break;
1171	case MODULE_STATE_GOING:
1172		state = "going";
1173		break;
1174	default:
1175		BUG();
1176	}
1177	return sprintf(buffer, "%s\n", state);
1178}
1179
1180static struct module_attribute modinfo_initstate =
1181	__ATTR(initstate, 0444, show_initstate, NULL);
1182
1183static ssize_t store_uevent(struct module_attribute *mattr,
1184			    struct module_kobject *mk,
1185			    const char *buffer, size_t count)
1186{
1187	enum kobject_action action;
1188
1189	if (kobject_action_type(buffer, count, &action) == 0)
1190		kobject_uevent(&mk->kobj, action);
1191	return count;
1192}
1193
1194struct module_attribute module_uevent =
1195	__ATTR(uevent, 0200, NULL, store_uevent);
1196
1197static ssize_t show_coresize(struct module_attribute *mattr,
1198			     struct module_kobject *mk, char *buffer)
1199{
1200	return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1201}
1202
1203static struct module_attribute modinfo_coresize =
1204	__ATTR(coresize, 0444, show_coresize, NULL);
1205
1206static ssize_t show_initsize(struct module_attribute *mattr,
1207			     struct module_kobject *mk, char *buffer)
1208{
1209	return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1210}
1211
1212static struct module_attribute modinfo_initsize =
1213	__ATTR(initsize, 0444, show_initsize, NULL);
1214
1215static ssize_t show_taint(struct module_attribute *mattr,
1216			  struct module_kobject *mk, char *buffer)
1217{
1218	size_t l;
1219
1220	l = module_flags_taint(mk->mod, buffer);
1221	buffer[l++] = '\n';
1222	return l;
1223}
1224
1225static struct module_attribute modinfo_taint =
1226	__ATTR(taint, 0444, show_taint, NULL);
1227
1228static struct module_attribute *modinfo_attrs[] = {
1229	&module_uevent,
1230	&modinfo_version,
1231	&modinfo_srcversion,
1232	&modinfo_initstate,
1233	&modinfo_coresize,
1234	&modinfo_initsize,
1235	&modinfo_taint,
1236#ifdef CONFIG_MODULE_UNLOAD
1237	&modinfo_refcnt,
1238#endif
1239	NULL,
1240};
1241
1242static const char vermagic[] = VERMAGIC_STRING;
1243
1244static int try_to_force_load(struct module *mod, const char *reason)
1245{
1246#ifdef CONFIG_MODULE_FORCE_LOAD
1247	if (!test_taint(TAINT_FORCED_MODULE))
1248		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1249	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1250	return 0;
1251#else
1252	return -ENOEXEC;
1253#endif
1254}
1255
1256#ifdef CONFIG_MODVERSIONS
1257/* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1258static unsigned long maybe_relocated(unsigned long crc,
1259				     const struct module *crc_owner)
1260{
1261#ifdef ARCH_RELOCATES_KCRCTAB
1262	if (crc_owner == NULL)
1263		return crc - (unsigned long)reloc_start;
1264#endif
1265	return crc;
1266}
1267
1268static int check_version(Elf_Shdr *sechdrs,
1269			 unsigned int versindex,
1270			 const char *symname,
1271			 struct module *mod,
1272			 const unsigned long *crc,
1273			 const struct module *crc_owner)
1274{
 
 
1275	unsigned int i, num_versions;
1276	struct modversion_info *versions;
1277
1278	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1279	if (!crc)
1280		return 1;
1281
1282	/* No versions at all?  modprobe --force does this. */
1283	if (versindex == 0)
1284		return try_to_force_load(mod, symname) == 0;
1285
1286	versions = (void *) sechdrs[versindex].sh_addr;
1287	num_versions = sechdrs[versindex].sh_size
1288		/ sizeof(struct modversion_info);
1289
1290	for (i = 0; i < num_versions; i++) {
 
 
1291		if (strcmp(versions[i].name, symname) != 0)
1292			continue;
1293
1294		if (versions[i].crc == maybe_relocated(*crc, crc_owner))
 
 
 
 
1295			return 1;
1296		pr_debug("Found checksum %lX vs module %lX\n",
1297		       maybe_relocated(*crc, crc_owner), versions[i].crc);
1298		goto bad_version;
1299	}
1300
1301	pr_warn("%s: no symbol version for %s\n", mod->name, symname);
1302	return 0;
 
1303
1304bad_version:
1305	pr_warn("%s: disagrees about version of symbol %s\n",
1306	       mod->name, symname);
1307	return 0;
1308}
1309
1310static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1311					  unsigned int versindex,
1312					  struct module *mod)
1313{
1314	const unsigned long *crc;
 
 
 
1315
1316	/*
1317	 * Since this should be found in kernel (which can't be removed), no
1318	 * locking is necessary -- use preempt_disable() to placate lockdep.
1319	 */
1320	preempt_disable();
1321	if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1322			 &crc, true, false)) {
1323		preempt_enable();
1324		BUG();
1325	}
1326	preempt_enable();
1327	return check_version(sechdrs, versindex,
1328			     VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1329			     NULL);
1330}
1331
1332/* First part is kernel version, which we ignore if module has crcs. */
1333static inline int same_magic(const char *amagic, const char *bmagic,
1334			     bool has_crcs)
1335{
1336	if (has_crcs) {
1337		amagic += strcspn(amagic, " ");
1338		bmagic += strcspn(bmagic, " ");
1339	}
1340	return strcmp(amagic, bmagic) == 0;
1341}
1342#else
1343static inline int check_version(Elf_Shdr *sechdrs,
1344				unsigned int versindex,
1345				const char *symname,
1346				struct module *mod,
1347				const unsigned long *crc,
1348				const struct module *crc_owner)
1349{
1350	return 1;
1351}
1352
1353static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1354					  unsigned int versindex,
1355					  struct module *mod)
1356{
1357	return 1;
1358}
1359
1360static inline int same_magic(const char *amagic, const char *bmagic,
1361			     bool has_crcs)
1362{
1363	return strcmp(amagic, bmagic) == 0;
1364}
1365#endif /* CONFIG_MODVERSIONS */
1366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1367/* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1368static const struct kernel_symbol *resolve_symbol(struct module *mod,
1369						  const struct load_info *info,
1370						  const char *name,
1371						  char ownername[])
1372{
1373	struct module *owner;
1374	const struct kernel_symbol *sym;
1375	const unsigned long *crc;
 
 
1376	int err;
1377
1378	/*
1379	 * The module_mutex should not be a heavily contended lock;
1380	 * if we get the occasional sleep here, we'll go an extra iteration
1381	 * in the wait_event_interruptible(), which is harmless.
1382	 */
1383	sched_annotate_sleep();
1384	mutex_lock(&module_mutex);
1385	sym = find_symbol(name, &owner, &crc,
1386			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1387	if (!sym)
1388		goto unlock;
1389
1390	if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1391			   owner)) {
1392		sym = ERR_PTR(-EINVAL);
 
 
1393		goto getname;
1394	}
1395
1396	err = ref_module(mod, owner);
 
 
 
 
 
1397	if (err) {
1398		sym = ERR_PTR(err);
 
 
 
 
 
 
1399		goto getname;
1400	}
1401
1402getname:
1403	/* We must make copy under the lock if we failed to get ref. */
1404	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1405unlock:
1406	mutex_unlock(&module_mutex);
1407	return sym;
1408}
1409
1410static const struct kernel_symbol *
1411resolve_symbol_wait(struct module *mod,
1412		    const struct load_info *info,
1413		    const char *name)
1414{
1415	const struct kernel_symbol *ksym;
1416	char owner[MODULE_NAME_LEN];
1417
1418	if (wait_event_interruptible_timeout(module_wq,
1419			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1420			|| PTR_ERR(ksym) != -EBUSY,
1421					     30 * HZ) <= 0) {
1422		pr_warn("%s: gave up waiting for init of module %s.\n",
1423			mod->name, owner);
1424	}
1425	return ksym;
1426}
1427
 
 
 
 
 
 
 
1428/*
1429 * /sys/module/foo/sections stuff
1430 * J. Corbet <corbet@lwn.net>
1431 */
1432#ifdef CONFIG_SYSFS
1433
1434#ifdef CONFIG_KALLSYMS
1435static inline bool sect_empty(const Elf_Shdr *sect)
1436{
1437	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1438}
1439
1440struct module_sect_attr {
1441	struct module_attribute mattr;
1442	char *name;
1443	unsigned long address;
1444};
1445
1446struct module_sect_attrs {
1447	struct attribute_group grp;
1448	unsigned int nsections;
1449	struct module_sect_attr attrs[0];
1450};
1451
1452static ssize_t module_sect_show(struct module_attribute *mattr,
1453				struct module_kobject *mk, char *buf)
 
 
1454{
1455	struct module_sect_attr *sattr =
1456		container_of(mattr, struct module_sect_attr, mattr);
1457	return sprintf(buf, "0x%pK\n", (void *)sattr->address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458}
1459
1460static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1461{
1462	unsigned int section;
1463
1464	for (section = 0; section < sect_attrs->nsections; section++)
1465		kfree(sect_attrs->attrs[section].name);
1466	kfree(sect_attrs);
1467}
1468
1469static void add_sect_attrs(struct module *mod, const struct load_info *info)
1470{
1471	unsigned int nloaded = 0, i, size[2];
1472	struct module_sect_attrs *sect_attrs;
1473	struct module_sect_attr *sattr;
1474	struct attribute **gattr;
1475
1476	/* Count loaded sections and allocate structures */
1477	for (i = 0; i < info->hdr->e_shnum; i++)
1478		if (!sect_empty(&info->sechdrs[i]))
1479			nloaded++;
1480	size[0] = ALIGN(sizeof(*sect_attrs)
1481			+ nloaded * sizeof(sect_attrs->attrs[0]),
1482			sizeof(sect_attrs->grp.attrs[0]));
1483	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1484	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1485	if (sect_attrs == NULL)
1486		return;
1487
1488	/* Setup section attributes. */
1489	sect_attrs->grp.name = "sections";
1490	sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1491
1492	sect_attrs->nsections = 0;
1493	sattr = &sect_attrs->attrs[0];
1494	gattr = &sect_attrs->grp.attrs[0];
1495	for (i = 0; i < info->hdr->e_shnum; i++) {
1496		Elf_Shdr *sec = &info->sechdrs[i];
1497		if (sect_empty(sec))
1498			continue;
 
1499		sattr->address = sec->sh_addr;
1500		sattr->name = kstrdup(info->secstrings + sec->sh_name,
1501					GFP_KERNEL);
1502		if (sattr->name == NULL)
1503			goto out;
1504		sect_attrs->nsections++;
1505		sysfs_attr_init(&sattr->mattr.attr);
1506		sattr->mattr.show = module_sect_show;
1507		sattr->mattr.store = NULL;
1508		sattr->mattr.attr.name = sattr->name;
1509		sattr->mattr.attr.mode = S_IRUGO;
1510		*(gattr++) = &(sattr++)->mattr.attr;
1511	}
1512	*gattr = NULL;
1513
1514	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1515		goto out;
1516
1517	mod->sect_attrs = sect_attrs;
1518	return;
1519  out:
1520	free_sect_attrs(sect_attrs);
1521}
1522
1523static void remove_sect_attrs(struct module *mod)
1524{
1525	if (mod->sect_attrs) {
1526		sysfs_remove_group(&mod->mkobj.kobj,
1527				   &mod->sect_attrs->grp);
1528		/* We are positive that no one is using any sect attrs
1529		 * at this point.  Deallocate immediately. */
 
 
1530		free_sect_attrs(mod->sect_attrs);
1531		mod->sect_attrs = NULL;
1532	}
1533}
1534
1535/*
1536 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1537 */
1538
1539struct module_notes_attrs {
1540	struct kobject *dir;
1541	unsigned int notes;
1542	struct bin_attribute attrs[0];
1543};
1544
1545static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1546				 struct bin_attribute *bin_attr,
1547				 char *buf, loff_t pos, size_t count)
1548{
1549	/*
1550	 * The caller checked the pos and count against our size.
1551	 */
1552	memcpy(buf, bin_attr->private + pos, count);
1553	return count;
1554}
1555
1556static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1557			     unsigned int i)
1558{
1559	if (notes_attrs->dir) {
1560		while (i-- > 0)
1561			sysfs_remove_bin_file(notes_attrs->dir,
1562					      &notes_attrs->attrs[i]);
1563		kobject_put(notes_attrs->dir);
1564	}
1565	kfree(notes_attrs);
1566}
1567
1568static void add_notes_attrs(struct module *mod, const struct load_info *info)
1569{
1570	unsigned int notes, loaded, i;
1571	struct module_notes_attrs *notes_attrs;
1572	struct bin_attribute *nattr;
1573
1574	/* failed to create section attributes, so can't create notes */
1575	if (!mod->sect_attrs)
1576		return;
1577
1578	/* Count notes sections and allocate structures.  */
1579	notes = 0;
1580	for (i = 0; i < info->hdr->e_shnum; i++)
1581		if (!sect_empty(&info->sechdrs[i]) &&
1582		    (info->sechdrs[i].sh_type == SHT_NOTE))
1583			++notes;
1584
1585	if (notes == 0)
1586		return;
1587
1588	notes_attrs = kzalloc(sizeof(*notes_attrs)
1589			      + notes * sizeof(notes_attrs->attrs[0]),
1590			      GFP_KERNEL);
1591	if (notes_attrs == NULL)
1592		return;
1593
1594	notes_attrs->notes = notes;
1595	nattr = &notes_attrs->attrs[0];
1596	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1597		if (sect_empty(&info->sechdrs[i]))
1598			continue;
1599		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1600			sysfs_bin_attr_init(nattr);
1601			nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1602			nattr->attr.mode = S_IRUGO;
1603			nattr->size = info->sechdrs[i].sh_size;
1604			nattr->private = (void *) info->sechdrs[i].sh_addr;
1605			nattr->read = module_notes_read;
1606			++nattr;
1607		}
1608		++loaded;
1609	}
1610
1611	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1612	if (!notes_attrs->dir)
1613		goto out;
1614
1615	for (i = 0; i < notes; ++i)
1616		if (sysfs_create_bin_file(notes_attrs->dir,
1617					  &notes_attrs->attrs[i]))
1618			goto out;
1619
1620	mod->notes_attrs = notes_attrs;
1621	return;
1622
1623  out:
1624	free_notes_attrs(notes_attrs, i);
1625}
1626
1627static void remove_notes_attrs(struct module *mod)
1628{
1629	if (mod->notes_attrs)
1630		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1631}
1632
1633#else
1634
1635static inline void add_sect_attrs(struct module *mod,
1636				  const struct load_info *info)
1637{
1638}
1639
1640static inline void remove_sect_attrs(struct module *mod)
1641{
1642}
1643
1644static inline void add_notes_attrs(struct module *mod,
1645				   const struct load_info *info)
1646{
1647}
1648
1649static inline void remove_notes_attrs(struct module *mod)
1650{
1651}
1652#endif /* CONFIG_KALLSYMS */
1653
1654static void add_usage_links(struct module *mod)
1655{
1656#ifdef CONFIG_MODULE_UNLOAD
1657	struct module_use *use;
1658	int nowarn;
1659
1660	mutex_lock(&module_mutex);
1661	list_for_each_entry(use, &mod->target_list, target_list) {
1662		nowarn = sysfs_create_link(use->target->holders_dir,
1663					   &mod->mkobj.kobj, mod->name);
1664	}
1665	mutex_unlock(&module_mutex);
1666#endif
1667}
1668
1669static void del_usage_links(struct module *mod)
1670{
 
1671#ifdef CONFIG_MODULE_UNLOAD
1672	struct module_use *use;
1673
1674	mutex_lock(&module_mutex);
1675	list_for_each_entry(use, &mod->target_list, target_list)
1676		sysfs_remove_link(use->target->holders_dir, mod->name);
 
 
 
 
1677	mutex_unlock(&module_mutex);
 
 
1678#endif
 
1679}
1680
 
 
1681static int module_add_modinfo_attrs(struct module *mod)
1682{
1683	struct module_attribute *attr;
1684	struct module_attribute *temp_attr;
1685	int error = 0;
1686	int i;
1687
1688	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1689					(ARRAY_SIZE(modinfo_attrs) + 1)),
1690					GFP_KERNEL);
1691	if (!mod->modinfo_attrs)
1692		return -ENOMEM;
1693
1694	temp_attr = mod->modinfo_attrs;
1695	for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1696		if (!attr->test ||
1697		    (attr->test && attr->test(mod))) {
1698			memcpy(temp_attr, attr, sizeof(*temp_attr));
1699			sysfs_attr_init(&temp_attr->attr);
1700			error = sysfs_create_file(&mod->mkobj.kobj,
1701					&temp_attr->attr);
 
 
1702			++temp_attr;
1703		}
1704	}
 
 
 
 
 
 
 
 
1705	return error;
1706}
1707
1708static void module_remove_modinfo_attrs(struct module *mod)
1709{
1710	struct module_attribute *attr;
1711	int i;
1712
1713	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
 
 
1714		/* pick a field to test for end of list */
1715		if (!attr->attr.name)
1716			break;
1717		sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1718		if (attr->free)
1719			attr->free(mod);
1720	}
1721	kfree(mod->modinfo_attrs);
1722}
1723
1724static void mod_kobject_put(struct module *mod)
1725{
1726	DECLARE_COMPLETION_ONSTACK(c);
1727	mod->mkobj.kobj_completion = &c;
1728	kobject_put(&mod->mkobj.kobj);
1729	wait_for_completion(&c);
1730}
1731
1732static int mod_sysfs_init(struct module *mod)
1733{
1734	int err;
1735	struct kobject *kobj;
1736
1737	if (!module_sysfs_initialized) {
1738		pr_err("%s: module sysfs not initialized\n", mod->name);
1739		err = -EINVAL;
1740		goto out;
1741	}
1742
1743	kobj = kset_find_obj(module_kset, mod->name);
1744	if (kobj) {
1745		pr_err("%s: module is already loaded\n", mod->name);
1746		kobject_put(kobj);
1747		err = -EINVAL;
1748		goto out;
1749	}
1750
1751	mod->mkobj.mod = mod;
1752
1753	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1754	mod->mkobj.kobj.kset = module_kset;
1755	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1756				   "%s", mod->name);
1757	if (err)
1758		mod_kobject_put(mod);
1759
1760	/* delay uevent until full sysfs population */
1761out:
1762	return err;
1763}
1764
1765static int mod_sysfs_setup(struct module *mod,
1766			   const struct load_info *info,
1767			   struct kernel_param *kparam,
1768			   unsigned int num_params)
1769{
1770	int err;
1771
1772	err = mod_sysfs_init(mod);
1773	if (err)
1774		goto out;
1775
1776	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1777	if (!mod->holders_dir) {
1778		err = -ENOMEM;
1779		goto out_unreg;
1780	}
1781
1782	err = module_param_sysfs_setup(mod, kparam, num_params);
1783	if (err)
1784		goto out_unreg_holders;
1785
1786	err = module_add_modinfo_attrs(mod);
1787	if (err)
1788		goto out_unreg_param;
1789
1790	add_usage_links(mod);
 
 
 
1791	add_sect_attrs(mod, info);
1792	add_notes_attrs(mod, info);
1793
1794	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1795	return 0;
1796
 
 
1797out_unreg_param:
1798	module_param_sysfs_remove(mod);
1799out_unreg_holders:
1800	kobject_put(mod->holders_dir);
1801out_unreg:
1802	mod_kobject_put(mod);
1803out:
1804	return err;
1805}
1806
1807static void mod_sysfs_fini(struct module *mod)
1808{
1809	remove_notes_attrs(mod);
1810	remove_sect_attrs(mod);
1811	mod_kobject_put(mod);
1812}
1813
1814static void init_param_lock(struct module *mod)
1815{
1816	mutex_init(&mod->param_lock);
1817}
1818#else /* !CONFIG_SYSFS */
1819
1820static int mod_sysfs_setup(struct module *mod,
1821			   const struct load_info *info,
1822			   struct kernel_param *kparam,
1823			   unsigned int num_params)
1824{
1825	return 0;
1826}
1827
1828static void mod_sysfs_fini(struct module *mod)
1829{
1830}
1831
1832static void module_remove_modinfo_attrs(struct module *mod)
1833{
1834}
1835
1836static void del_usage_links(struct module *mod)
1837{
1838}
1839
1840static void init_param_lock(struct module *mod)
1841{
1842}
1843#endif /* CONFIG_SYSFS */
1844
1845static void mod_sysfs_teardown(struct module *mod)
1846{
1847	del_usage_links(mod);
1848	module_remove_modinfo_attrs(mod);
1849	module_param_sysfs_remove(mod);
1850	kobject_put(mod->mkobj.drivers_dir);
1851	kobject_put(mod->holders_dir);
1852	mod_sysfs_fini(mod);
1853}
1854
1855#ifdef CONFIG_DEBUG_SET_MODULE_RONX
1856/*
1857 * LKM RO/NX protection: protect module's text/ro-data
1858 * from modification and any data from execution.
1859 *
1860 * General layout of module is:
1861 *          [text] [read-only-data] [writable data]
1862 * text_size -----^                ^               ^
1863 * ro_size ------------------------|               |
1864 * size -------------------------------------------|
 
1865 *
1866 * These values are always page-aligned (as is base)
1867 */
 
 
 
 
 
 
 
 
1868static void frob_text(const struct module_layout *layout,
1869		      int (*set_memory)(unsigned long start, int num_pages))
1870{
1871	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1872	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1873	set_memory((unsigned long)layout->base,
1874		   layout->text_size >> PAGE_SHIFT);
1875}
1876
 
 
 
 
 
 
 
 
 
 
1877static void frob_rodata(const struct module_layout *layout,
1878			int (*set_memory)(unsigned long start, int num_pages))
1879{
1880	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1881	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1882	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1883	set_memory((unsigned long)layout->base + layout->text_size,
1884		   (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1885}
1886
1887static void frob_writable_data(const struct module_layout *layout,
1888			       int (*set_memory)(unsigned long start, int num_pages))
1889{
1890	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1891	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1892	BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1893	set_memory((unsigned long)layout->base + layout->ro_size,
1894		   (layout->size - layout->ro_size) >> PAGE_SHIFT);
1895}
1896
1897/* livepatching wants to disable read-only so it can frob module. */
1898void module_disable_ro(const struct module *mod)
1899{
1900	frob_text(&mod->core_layout, set_memory_rw);
1901	frob_rodata(&mod->core_layout, set_memory_rw);
1902	frob_text(&mod->init_layout, set_memory_rw);
1903	frob_rodata(&mod->init_layout, set_memory_rw);
 
1904}
1905
1906void module_enable_ro(const struct module *mod)
1907{
 
 
 
 
 
1908	frob_text(&mod->core_layout, set_memory_ro);
 
1909	frob_rodata(&mod->core_layout, set_memory_ro);
1910	frob_text(&mod->init_layout, set_memory_ro);
1911	frob_rodata(&mod->init_layout, set_memory_ro);
 
 
 
1912}
1913
1914static void module_enable_nx(const struct module *mod)
1915{
1916	frob_rodata(&mod->core_layout, set_memory_nx);
 
1917	frob_writable_data(&mod->core_layout, set_memory_nx);
1918	frob_rodata(&mod->init_layout, set_memory_nx);
1919	frob_writable_data(&mod->init_layout, set_memory_nx);
1920}
1921
1922static void module_disable_nx(const struct module *mod)
 
1923{
1924	frob_rodata(&mod->core_layout, set_memory_x);
1925	frob_writable_data(&mod->core_layout, set_memory_x);
1926	frob_rodata(&mod->init_layout, set_memory_x);
1927	frob_writable_data(&mod->init_layout, set_memory_x);
1928}
1929
1930/* Iterate through all modules and set each module's text as RW */
1931void set_all_modules_text_rw(void)
1932{
1933	struct module *mod;
 
 
 
1934
1935	mutex_lock(&module_mutex);
1936	list_for_each_entry_rcu(mod, &modules, list) {
1937		if (mod->state == MODULE_STATE_UNFORMED)
1938			continue;
1939
1940		frob_text(&mod->core_layout, set_memory_rw);
1941		frob_text(&mod->init_layout, set_memory_rw);
1942	}
1943	mutex_unlock(&module_mutex);
 
 
 
1944}
 
1945
1946/* Iterate through all modules and set each module's text as RO */
1947void set_all_modules_text_ro(void)
 
 
 
 
 
1948{
1949	struct module *mod;
 
1950
1951	mutex_lock(&module_mutex);
1952	list_for_each_entry_rcu(mod, &modules, list) {
1953		if (mod->state == MODULE_STATE_UNFORMED)
1954			continue;
1955
1956		frob_text(&mod->core_layout, set_memory_ro);
1957		frob_text(&mod->init_layout, set_memory_ro);
 
 
 
 
 
 
 
 
1958	}
1959	mutex_unlock(&module_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1960}
1961
1962static void disable_ro_nx(const struct module_layout *layout)
1963{
1964	frob_text(layout, set_memory_rw);
1965	frob_rodata(layout, set_memory_rw);
1966	frob_rodata(layout, set_memory_x);
1967	frob_writable_data(layout, set_memory_x);
 
 
 
 
1968}
1969
1970#else
1971static void disable_ro_nx(const struct module_layout *layout) { }
1972static void module_enable_nx(const struct module *mod) { }
1973static void module_disable_nx(const struct module *mod) { }
1974#endif
1975
1976void __weak module_memfree(void *module_region)
1977{
 
 
 
 
 
1978	vfree(module_region);
1979}
1980
1981void __weak module_arch_cleanup(struct module *mod)
1982{
1983}
1984
1985void __weak module_arch_freeing_init(struct module *mod)
1986{
1987}
1988
 
 
1989/* Free a module, remove from lists, etc. */
1990static void free_module(struct module *mod)
1991{
1992	trace_module_free(mod);
1993
1994	mod_sysfs_teardown(mod);
1995
1996	/* We leave it in list to prevent duplicate loads, but make sure
1997	 * that noone uses it while it's being deconstructed. */
 
 
1998	mutex_lock(&module_mutex);
1999	mod->state = MODULE_STATE_UNFORMED;
2000	mutex_unlock(&module_mutex);
2001
2002	/* Remove dynamic debug info */
2003	ddebug_remove_module(mod->name);
2004
2005	/* Arch-specific cleanup. */
2006	module_arch_cleanup(mod);
2007
2008	/* Module unload stuff */
2009	module_unload_free(mod);
2010
2011	/* Free any allocated parameters. */
2012	destroy_params(mod->kp, mod->num_kp);
2013
 
 
 
2014	/* Now we can delete it from the lists */
2015	mutex_lock(&module_mutex);
2016	/* Unlink carefully: kallsyms could be walking list. */
2017	list_del_rcu(&mod->list);
2018	mod_tree_remove(mod);
2019	/* Remove this module from bug list, this uses list_del_rcu */
2020	module_bug_cleanup(mod);
2021	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2022	synchronize_sched();
2023	mutex_unlock(&module_mutex);
2024
 
 
 
2025	/* This may be empty, but that's OK */
2026	disable_ro_nx(&mod->init_layout);
2027	module_arch_freeing_init(mod);
2028	module_memfree(mod->init_layout.base);
2029	kfree(mod->args);
2030	percpu_modfree(mod);
2031
2032	/* Free lock-classes; relies on the preceding sync_rcu(). */
2033	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2034
2035	/* Finally, free the core (containing the module structure) */
2036	disable_ro_nx(&mod->core_layout);
2037	module_memfree(mod->core_layout.base);
2038
2039#ifdef CONFIG_MPU
2040	update_protections(current->mm);
2041#endif
2042}
2043
2044void *__symbol_get(const char *symbol)
2045{
2046	struct module *owner;
2047	const struct kernel_symbol *sym;
 
 
 
2048
2049	preempt_disable();
2050	sym = find_symbol(symbol, &owner, NULL, true, true);
2051	if (sym && strong_try_module_get(owner))
2052		sym = NULL;
 
2053	preempt_enable();
2054
2055	return sym ? (void *)sym->value : NULL;
2056}
2057EXPORT_SYMBOL_GPL(__symbol_get);
2058
2059/*
2060 * Ensure that an exported symbol [global namespace] does not already exist
2061 * in the kernel or in some other module's exported symbol table.
2062 *
2063 * You must hold the module_mutex.
2064 */
2065static int verify_export_symbols(struct module *mod)
2066{
2067	unsigned int i;
2068	struct module *owner;
2069	const struct kernel_symbol *s;
2070	struct {
2071		const struct kernel_symbol *sym;
2072		unsigned int num;
2073	} arr[] = {
2074		{ mod->syms, mod->num_syms },
2075		{ mod->gpl_syms, mod->num_gpl_syms },
2076		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
2077#ifdef CONFIG_UNUSED_SYMBOLS
2078		{ mod->unused_syms, mod->num_unused_syms },
2079		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2080#endif
2081	};
2082
2083	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2084		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2085			if (find_symbol(s->name, &owner, NULL, true, false)) {
 
 
 
 
2086				pr_err("%s: exports duplicate symbol %s"
2087				       " (owned by %s)\n",
2088				       mod->name, s->name, module_name(owner));
 
2089				return -ENOEXEC;
2090			}
2091		}
2092	}
2093	return 0;
2094}
2095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2096/* Change all symbols so that st_value encodes the pointer directly. */
2097static int simplify_symbols(struct module *mod, const struct load_info *info)
2098{
2099	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2100	Elf_Sym *sym = (void *)symsec->sh_addr;
2101	unsigned long secbase;
2102	unsigned int i;
2103	int ret = 0;
2104	const struct kernel_symbol *ksym;
2105
2106	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2107		const char *name = info->strtab + sym[i].st_name;
2108
2109		switch (sym[i].st_shndx) {
2110		case SHN_COMMON:
2111			/* Ignore common symbols */
2112			if (!strncmp(name, "__gnu_lto", 9))
2113				break;
2114
2115			/* We compiled with -fno-common.  These are not
2116			   supposed to happen.  */
 
 
2117			pr_debug("Common symbol: %s\n", name);
2118			pr_warn("%s: please compile with -fno-common\n",
2119			       mod->name);
2120			ret = -ENOEXEC;
2121			break;
2122
2123		case SHN_ABS:
2124			/* Don't need to do anything */
2125			pr_debug("Absolute symbol: 0x%08lx\n",
2126			       (long)sym[i].st_value);
2127			break;
2128
 
 
 
 
2129		case SHN_UNDEF:
2130			ksym = resolve_symbol_wait(mod, info, name);
2131			/* Ok if resolved.  */
2132			if (ksym && !IS_ERR(ksym)) {
2133				sym[i].st_value = ksym->value;
2134				break;
2135			}
2136
2137			/* Ok if weak.  */
2138			if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
 
 
2139				break;
2140
2141			pr_warn("%s: Unknown symbol %s (err %li)\n",
2142				mod->name, name, PTR_ERR(ksym));
2143			ret = PTR_ERR(ksym) ?: -ENOENT;
 
 
2144			break;
2145
2146		default:
2147			/* Divert to percpu allocation if a percpu var. */
2148			if (sym[i].st_shndx == info->index.pcpu)
2149				secbase = (unsigned long)mod_percpu(mod);
2150			else
2151				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2152			sym[i].st_value += secbase;
2153			break;
2154		}
2155	}
2156
2157	return ret;
2158}
2159
2160static int apply_relocations(struct module *mod, const struct load_info *info)
2161{
2162	unsigned int i;
2163	int err = 0;
2164
2165	/* Now do relocations. */
2166	for (i = 1; i < info->hdr->e_shnum; i++) {
2167		unsigned int infosec = info->sechdrs[i].sh_info;
2168
2169		/* Not a valid relocation section? */
2170		if (infosec >= info->hdr->e_shnum)
2171			continue;
2172
2173		/* Don't bother with non-allocated sections */
2174		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2175			continue;
2176
2177		if (info->sechdrs[i].sh_type == SHT_REL)
 
 
 
 
 
 
2178			err = apply_relocate(info->sechdrs, info->strtab,
2179					     info->index.sym, i, mod);
2180		else if (info->sechdrs[i].sh_type == SHT_RELA)
2181			err = apply_relocate_add(info->sechdrs, info->strtab,
2182						 info->index.sym, i, mod);
2183		if (err < 0)
2184			break;
2185	}
2186	return err;
2187}
2188
2189/* Additional bytes needed by arch in front of individual sections */
2190unsigned int __weak arch_mod_section_prepend(struct module *mod,
2191					     unsigned int section)
2192{
2193	/* default implementation just returns zero */
2194	return 0;
2195}
2196
2197/* Update size with this section: return offset. */
2198static long get_offset(struct module *mod, unsigned int *size,
2199		       Elf_Shdr *sechdr, unsigned int section)
2200{
2201	long ret;
2202
2203	*size += arch_mod_section_prepend(mod, section);
2204	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2205	*size = ret + sechdr->sh_size;
2206	return ret;
2207}
2208
2209/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2210   might -- code, read-only data, read-write data, small data.  Tally
2211   sizes, and place the offsets into sh_entsize fields: high bit means it
2212   belongs in init. */
 
 
 
 
 
 
 
 
 
 
 
2213static void layout_sections(struct module *mod, struct load_info *info)
2214{
2215	static unsigned long const masks[][2] = {
2216		/* NOTE: all executable code must be the first section
 
2217		 * in this array; otherwise modify the text_size
2218		 * finder in the two loops below */
 
2219		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2220		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
 
2221		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2222		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2223	};
2224	unsigned int m, i;
2225
2226	for (i = 0; i < info->hdr->e_shnum; i++)
2227		info->sechdrs[i].sh_entsize = ~0UL;
2228
2229	pr_debug("Core section allocation order:\n");
2230	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2231		for (i = 0; i < info->hdr->e_shnum; ++i) {
2232			Elf_Shdr *s = &info->sechdrs[i];
2233			const char *sname = info->secstrings + s->sh_name;
2234
2235			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2236			    || (s->sh_flags & masks[m][1])
2237			    || s->sh_entsize != ~0UL
2238			    || strstarts(sname, ".init"))
2239				continue;
2240			s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2241			pr_debug("\t%s\n", sname);
2242		}
2243		switch (m) {
2244		case 0: /* executable */
2245			mod->core_layout.size = debug_align(mod->core_layout.size);
2246			mod->core_layout.text_size = mod->core_layout.size;
2247			break;
2248		case 1: /* RO: text and ro-data */
2249			mod->core_layout.size = debug_align(mod->core_layout.size);
2250			mod->core_layout.ro_size = mod->core_layout.size;
2251			break;
2252		case 3: /* whole core */
 
 
 
 
2253			mod->core_layout.size = debug_align(mod->core_layout.size);
2254			break;
2255		}
2256	}
2257
2258	pr_debug("Init section allocation order:\n");
2259	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2260		for (i = 0; i < info->hdr->e_shnum; ++i) {
2261			Elf_Shdr *s = &info->sechdrs[i];
2262			const char *sname = info->secstrings + s->sh_name;
2263
2264			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2265			    || (s->sh_flags & masks[m][1])
2266			    || s->sh_entsize != ~0UL
2267			    || !strstarts(sname, ".init"))
2268				continue;
2269			s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2270					 | INIT_OFFSET_MASK);
2271			pr_debug("\t%s\n", sname);
2272		}
2273		switch (m) {
2274		case 0: /* executable */
2275			mod->init_layout.size = debug_align(mod->init_layout.size);
2276			mod->init_layout.text_size = mod->init_layout.size;
2277			break;
2278		case 1: /* RO: text and ro-data */
2279			mod->init_layout.size = debug_align(mod->init_layout.size);
2280			mod->init_layout.ro_size = mod->init_layout.size;
2281			break;
2282		case 3: /* whole init */
 
 
 
 
 
 
 
2283			mod->init_layout.size = debug_align(mod->init_layout.size);
2284			break;
2285		}
2286	}
2287}
2288
2289static void set_license(struct module *mod, const char *license)
2290{
2291	if (!license)
2292		license = "unspecified";
2293
2294	if (!license_is_gpl_compatible(license)) {
2295		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2296			pr_warn("%s: module license '%s' taints kernel.\n",
2297				mod->name, license);
2298		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2299				 LOCKDEP_NOW_UNRELIABLE);
2300	}
2301}
2302
2303/* Parse tag=value strings from .modinfo section */
2304static char *next_string(char *string, unsigned long *secsize)
2305{
2306	/* Skip non-zero chars */
2307	while (string[0]) {
2308		string++;
2309		if ((*secsize)-- <= 1)
2310			return NULL;
2311	}
2312
2313	/* Skip any zero padding. */
2314	while (!string[0]) {
2315		string++;
2316		if ((*secsize)-- <= 1)
2317			return NULL;
2318	}
2319	return string;
2320}
2321
2322static char *get_modinfo(struct load_info *info, const char *tag)
 
2323{
2324	char *p;
2325	unsigned int taglen = strlen(tag);
2326	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2327	unsigned long size = infosec->sh_size;
2328
2329	for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
 
 
 
 
 
 
 
 
 
 
 
2330		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2331			return p + taglen + 1;
2332	}
2333	return NULL;
2334}
2335
 
 
 
 
 
2336static void setup_modinfo(struct module *mod, struct load_info *info)
2337{
2338	struct module_attribute *attr;
2339	int i;
2340
2341	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2342		if (attr->setup)
2343			attr->setup(mod, get_modinfo(info, attr->attr.name));
2344	}
2345}
2346
2347static void free_modinfo(struct module *mod)
2348{
2349	struct module_attribute *attr;
2350	int i;
2351
2352	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2353		if (attr->free)
2354			attr->free(mod);
2355	}
2356}
2357
2358#ifdef CONFIG_KALLSYMS
2359
2360/* lookup symbol in given range of kernel_symbols */
2361static const struct kernel_symbol *lookup_symbol(const char *name,
2362	const struct kernel_symbol *start,
2363	const struct kernel_symbol *stop)
2364{
2365	return bsearch(name, start, stop - start,
2366			sizeof(struct kernel_symbol), cmp_name);
2367}
2368
2369static int is_exported(const char *name, unsigned long value,
2370		       const struct module *mod)
2371{
2372	const struct kernel_symbol *ks;
2373	if (!mod)
2374		ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2375	else
2376		ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2377	return ks != NULL && ks->value == value;
 
2378}
2379
2380/* As per nm */
2381static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2382{
2383	const Elf_Shdr *sechdrs = info->sechdrs;
2384
2385	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2386		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2387			return 'v';
2388		else
2389			return 'w';
2390	}
2391	if (sym->st_shndx == SHN_UNDEF)
2392		return 'U';
2393	if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2394		return 'a';
2395	if (sym->st_shndx >= SHN_LORESERVE)
2396		return '?';
2397	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2398		return 't';
2399	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2400	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2401		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2402			return 'r';
2403		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2404			return 'g';
2405		else
2406			return 'd';
2407	}
2408	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2409		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2410			return 's';
2411		else
2412			return 'b';
2413	}
2414	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2415		      ".debug")) {
2416		return 'n';
2417	}
2418	return '?';
2419}
2420
2421static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2422			unsigned int shnum, unsigned int pcpundx)
2423{
2424	const Elf_Shdr *sec;
2425
2426	if (src->st_shndx == SHN_UNDEF
2427	    || src->st_shndx >= shnum
2428	    || !src->st_name)
2429		return false;
2430
2431#ifdef CONFIG_KALLSYMS_ALL
2432	if (src->st_shndx == pcpundx)
2433		return true;
2434#endif
2435
2436	sec = sechdrs + src->st_shndx;
2437	if (!(sec->sh_flags & SHF_ALLOC)
2438#ifndef CONFIG_KALLSYMS_ALL
2439	    || !(sec->sh_flags & SHF_EXECINSTR)
2440#endif
2441	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2442		return false;
2443
2444	return true;
2445}
2446
2447/*
2448 * We only allocate and copy the strings needed by the parts of symtab
2449 * we keep.  This is simple, but has the effect of making multiple
2450 * copies of duplicates.  We could be more sophisticated, see
2451 * linux-kernel thread starting with
2452 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2453 */
2454static void layout_symtab(struct module *mod, struct load_info *info)
2455{
2456	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2457	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2458	const Elf_Sym *src;
2459	unsigned int i, nsrc, ndst, strtab_size = 0;
2460
2461	/* Put symbol section at end of init part of module. */
2462	symsect->sh_flags |= SHF_ALLOC;
2463	symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2464					 info->index.sym) | INIT_OFFSET_MASK;
2465	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2466
2467	src = (void *)info->hdr + symsect->sh_offset;
2468	nsrc = symsect->sh_size / sizeof(*src);
2469
2470	/* Compute total space required for the core symbols' strtab. */
2471	for (ndst = i = 0; i < nsrc; i++) {
2472		if (i == 0 ||
2473		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2474				   info->index.pcpu)) {
2475			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2476			ndst++;
2477		}
2478	}
2479
2480	/* Append room for core symbols at end of core part. */
2481	info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2482	info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2483	mod->core_layout.size += strtab_size;
 
 
2484	mod->core_layout.size = debug_align(mod->core_layout.size);
2485
2486	/* Put string table section at end of init part of module. */
2487	strsect->sh_flags |= SHF_ALLOC;
2488	strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2489					 info->index.str) | INIT_OFFSET_MASK;
2490	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2491
2492	/* We'll tack temporary mod_kallsyms on the end. */
2493	mod->init_layout.size = ALIGN(mod->init_layout.size,
2494				      __alignof__(struct mod_kallsyms));
2495	info->mod_kallsyms_init_off = mod->init_layout.size;
2496	mod->init_layout.size += sizeof(struct mod_kallsyms);
 
 
2497	mod->init_layout.size = debug_align(mod->init_layout.size);
2498}
2499
2500/*
2501 * We use the full symtab and strtab which layout_symtab arranged to
2502 * be appended to the init section.  Later we switch to the cut-down
2503 * core-only ones.
2504 */
2505static void add_kallsyms(struct module *mod, const struct load_info *info)
2506{
2507	unsigned int i, ndst;
2508	const Elf_Sym *src;
2509	Elf_Sym *dst;
2510	char *s;
2511	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2512
2513	/* Set up to point into init section. */
2514	mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2515
2516	mod->kallsyms->symtab = (void *)symsec->sh_addr;
2517	mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2518	/* Make sure we get permanent strtab: don't use info->strtab. */
2519	mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
 
2520
2521	/* Set types up while we still have access to sections. */
2522	for (i = 0; i < mod->kallsyms->num_symtab; i++)
2523		mod->kallsyms->symtab[i].st_info
2524			= elf_type(&mod->kallsyms->symtab[i], info);
2525
2526	/* Now populate the cut down core kallsyms for after init. */
2527	mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2528	mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
 
2529	src = mod->kallsyms->symtab;
2530	for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2531		if (i == 0 ||
 
2532		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2533				   info->index.pcpu)) {
 
 
2534			dst[ndst] = src[i];
2535			dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2536			s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2537				     KSYM_NAME_LEN) + 1;
2538		}
2539	}
2540	mod->core_kallsyms.num_symtab = ndst;
2541}
2542#else
2543static inline void layout_symtab(struct module *mod, struct load_info *info)
2544{
2545}
2546
2547static void add_kallsyms(struct module *mod, const struct load_info *info)
2548{
2549}
2550#endif /* CONFIG_KALLSYMS */
2551
2552static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2553{
2554	if (!debug)
2555		return;
2556#ifdef CONFIG_DYNAMIC_DEBUG
2557	if (ddebug_add_module(debug, num, debug->modname))
2558		pr_err("dynamic debug error adding module: %s\n",
2559			debug->modname);
2560#endif
2561}
2562
2563static void dynamic_debug_remove(struct _ddebug *debug)
2564{
2565	if (debug)
2566		ddebug_remove_module(debug->modname);
2567}
2568
2569void * __weak module_alloc(unsigned long size)
2570{
2571	return vmalloc_exec(size);
 
 
 
 
 
 
 
 
 
 
 
 
2572}
2573
2574#ifdef CONFIG_DEBUG_KMEMLEAK
2575static void kmemleak_load_module(const struct module *mod,
2576				 const struct load_info *info)
2577{
2578	unsigned int i;
2579
2580	/* only scan the sections containing data */
2581	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2582
2583	for (i = 1; i < info->hdr->e_shnum; i++) {
2584		/* Scan all writable sections that's not executable */
2585		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2586		    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2587		    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2588			continue;
2589
2590		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2591				   info->sechdrs[i].sh_size, GFP_KERNEL);
2592	}
2593}
2594#else
2595static inline void kmemleak_load_module(const struct module *mod,
2596					const struct load_info *info)
2597{
2598}
2599#endif
2600
2601#ifdef CONFIG_MODULE_SIG
2602static int module_sig_check(struct load_info *info)
2603{
2604	int err = -ENOKEY;
2605	const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
 
2606	const void *mod = info->hdr;
2607
2608	if (info->len > markerlen &&
 
 
 
 
 
2609	    memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2610		/* We truncate the module to discard the signature */
2611		info->len -= markerlen;
2612		err = mod_verify_sig(mod, &info->len);
 
 
 
 
2613	}
2614
2615	if (!err) {
2616		info->sig_ok = true;
2617		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2618	}
2619
2620	/* Not having a signature is only an error if we're strict. */
2621	if (err == -ENOKEY && !sig_enforce)
2622		err = 0;
 
2623
2624	return err;
2625}
2626#else /* !CONFIG_MODULE_SIG */
2627static int module_sig_check(struct load_info *info)
2628{
2629	return 0;
2630}
2631#endif /* !CONFIG_MODULE_SIG */
2632
2633/* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2634static int elf_header_check(struct load_info *info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2635{
 
 
 
 
2636	if (info->len < sizeof(*(info->hdr)))
2637		return -ENOEXEC;
2638
2639	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2640	    || info->hdr->e_type != ET_REL
2641	    || !elf_check_arch(info->hdr)
2642	    || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2643		return -ENOEXEC;
2644
 
 
 
 
 
2645	if (info->hdr->e_shoff >= info->len
2646	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2647		info->len - info->hdr->e_shoff))
2648		return -ENOEXEC;
2649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2650	return 0;
2651}
2652
2653#define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2654
2655static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2656{
2657	do {
2658		unsigned long n = min(len, COPY_CHUNK_SIZE);
2659
2660		if (copy_from_user(dst, usrc, n) != 0)
2661			return -EFAULT;
2662		cond_resched();
2663		dst += n;
2664		usrc += n;
2665		len -= n;
2666	} while (len);
2667	return 0;
2668}
2669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2670/* Sets info->hdr and info->len. */
2671static int copy_module_from_user(const void __user *umod, unsigned long len,
2672				  struct load_info *info)
2673{
2674	int err;
2675
2676	info->len = len;
2677	if (info->len < sizeof(*(info->hdr)))
2678		return -ENOEXEC;
2679
2680	err = security_kernel_read_file(NULL, READING_MODULE);
2681	if (err)
2682		return err;
2683
2684	/* Suck in entire file: we'll want most of it. */
2685	info->hdr = __vmalloc(info->len,
2686			GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN, PAGE_KERNEL);
2687	if (!info->hdr)
2688		return -ENOMEM;
2689
2690	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2691		vfree(info->hdr);
2692		return -EFAULT;
2693	}
2694
2695	return 0;
 
 
 
 
 
 
2696}
2697
2698static void free_copy(struct load_info *info)
2699{
2700	vfree(info->hdr);
2701}
2702
2703static int rewrite_section_headers(struct load_info *info, int flags)
2704{
2705	unsigned int i;
2706
2707	/* This should always be true, but let's be sure. */
2708	info->sechdrs[0].sh_addr = 0;
2709
2710	for (i = 1; i < info->hdr->e_shnum; i++) {
2711		Elf_Shdr *shdr = &info->sechdrs[i];
2712		if (shdr->sh_type != SHT_NOBITS
2713		    && info->len < shdr->sh_offset + shdr->sh_size) {
2714			pr_err("Module len %lu truncated\n", info->len);
2715			return -ENOEXEC;
2716		}
2717
2718		/* Mark all sections sh_addr with their address in the
2719		   temporary image. */
 
 
2720		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2721
2722#ifndef CONFIG_MODULE_UNLOAD
2723		/* Don't load .exit sections */
2724		if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2725			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2726#endif
2727	}
2728
2729	/* Track but don't keep modinfo and version sections. */
2730	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2731		info->index.vers = 0; /* Pretend no __versions section! */
2732	else
2733		info->index.vers = find_sec(info, "__versions");
2734	info->index.info = find_sec(info, ".modinfo");
2735	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2736	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
 
 
2737	return 0;
2738}
2739
2740/*
2741 * Set up our basic convenience variables (pointers to section headers,
2742 * search for module section index etc), and do some basic section
2743 * verification.
2744 *
2745 * Return the temporary module pointer (we'll replace it with the final
2746 * one when we move the module sections around).
2747 */
2748static struct module *setup_load_info(struct load_info *info, int flags)
2749{
2750	unsigned int i;
2751	int err;
2752	struct module *mod;
2753
2754	/* Set up the convenience variables */
2755	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2756	info->secstrings = (void *)info->hdr
2757		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2758
2759	err = rewrite_section_headers(info, flags);
2760	if (err)
2761		return ERR_PTR(err);
 
2762
2763	/* Find internal symbols and strings. */
2764	for (i = 1; i < info->hdr->e_shnum; i++) {
2765		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2766			info->index.sym = i;
2767			info->index.str = info->sechdrs[i].sh_link;
2768			info->strtab = (char *)info->hdr
2769				+ info->sechdrs[info->index.str].sh_offset;
2770			break;
2771		}
2772	}
2773
 
 
 
 
 
 
2774	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2775	if (!info->index.mod) {
2776		pr_warn("No module found in object\n");
2777		return ERR_PTR(-ENOEXEC);
 
2778	}
2779	/* This is temporary: point mod into copy of data. */
2780	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2781
2782	if (info->index.sym == 0) {
2783		pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
2784		return ERR_PTR(-ENOEXEC);
2785	}
 
 
2786
2787	info->index.pcpu = find_pcpusec(info);
 
 
 
2788
2789	/* Check module struct version now, before we try to use module. */
2790	if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2791		return ERR_PTR(-ENOEXEC);
2792
2793	return mod;
2794}
2795
2796static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2797{
2798	const char *modmagic = get_modinfo(info, "vermagic");
2799	int err;
2800
2801	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2802		modmagic = NULL;
2803
2804	/* This is allowed: modprobe --force will invalidate it. */
2805	if (!modmagic) {
2806		err = try_to_force_load(mod, "bad vermagic");
2807		if (err)
2808			return err;
2809	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2810		pr_err("%s: version magic '%s' should be '%s'\n",
2811		       mod->name, modmagic, vermagic);
2812		return -ENOEXEC;
2813	}
2814
2815	if (!get_modinfo(info, "intree"))
 
 
 
2816		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
 
 
 
2817
2818	if (get_modinfo(info, "staging")) {
2819		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2820		pr_warn("%s: module is from the staging directory, the quality "
2821			"is unknown, you have been warned.\n", mod->name);
2822	}
2823
 
 
 
 
2824	/* Set up license info based on the info section */
2825	set_license(mod, get_modinfo(info, "license"));
2826
2827	return 0;
2828}
2829
2830static int find_module_sections(struct module *mod, struct load_info *info)
2831{
2832	mod->kp = section_objs(info, "__param",
2833			       sizeof(*mod->kp), &mod->num_kp);
2834	mod->syms = section_objs(info, "__ksymtab",
2835				 sizeof(*mod->syms), &mod->num_syms);
2836	mod->crcs = section_addr(info, "__kcrctab");
2837	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2838				     sizeof(*mod->gpl_syms),
2839				     &mod->num_gpl_syms);
2840	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2841	mod->gpl_future_syms = section_objs(info,
2842					    "__ksymtab_gpl_future",
2843					    sizeof(*mod->gpl_future_syms),
2844					    &mod->num_gpl_future_syms);
2845	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2846
2847#ifdef CONFIG_UNUSED_SYMBOLS
2848	mod->unused_syms = section_objs(info, "__ksymtab_unused",
2849					sizeof(*mod->unused_syms),
2850					&mod->num_unused_syms);
2851	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2852	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2853					    sizeof(*mod->unused_gpl_syms),
2854					    &mod->num_unused_gpl_syms);
2855	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2856#endif
2857#ifdef CONFIG_CONSTRUCTORS
2858	mod->ctors = section_objs(info, ".ctors",
2859				  sizeof(*mod->ctors), &mod->num_ctors);
2860	if (!mod->ctors)
2861		mod->ctors = section_objs(info, ".init_array",
2862				sizeof(*mod->ctors), &mod->num_ctors);
2863	else if (find_sec(info, ".init_array")) {
2864		/*
2865		 * This shouldn't happen with same compiler and binutils
2866		 * building all parts of the module.
2867		 */
2868		pr_warn("%s: has both .ctors and .init_array.\n",
2869		       mod->name);
2870		return -EINVAL;
2871	}
2872#endif
2873
 
 
 
2874#ifdef CONFIG_TRACEPOINTS
2875	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2876					     sizeof(*mod->tracepoints_ptrs),
2877					     &mod->num_tracepoints);
2878#endif
2879#ifdef HAVE_JUMP_LABEL
 
 
 
 
 
 
 
 
 
 
 
 
 
2880	mod->jump_entries = section_objs(info, "__jump_table",
2881					sizeof(*mod->jump_entries),
2882					&mod->num_jump_entries);
2883#endif
2884#ifdef CONFIG_EVENT_TRACING
2885	mod->trace_events = section_objs(info, "_ftrace_events",
2886					 sizeof(*mod->trace_events),
2887					 &mod->num_trace_events);
2888	mod->trace_enums = section_objs(info, "_ftrace_enum_map",
2889					sizeof(*mod->trace_enums),
2890					&mod->num_trace_enums);
2891#endif
2892#ifdef CONFIG_TRACING
2893	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2894					 sizeof(*mod->trace_bprintk_fmt_start),
2895					 &mod->num_trace_bprintk_fmt);
2896#endif
2897#ifdef CONFIG_FTRACE_MCOUNT_RECORD
2898	/* sechdrs[0].sh_size is always zero */
2899	mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2900					     sizeof(*mod->ftrace_callsites),
2901					     &mod->num_ftrace_callsites);
2902#endif
2903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2904	mod->extable = section_objs(info, "__ex_table",
2905				    sizeof(*mod->extable), &mod->num_exentries);
2906
2907	if (section_addr(info, "__obsparm"))
2908		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2909
2910	info->debug = section_objs(info, "__verbose",
2911				   sizeof(*info->debug), &info->num_debug);
2912
2913	return 0;
2914}
2915
2916static int move_module(struct module *mod, struct load_info *info)
2917{
2918	int i;
2919	void *ptr;
2920
2921	/* Do the allocs. */
2922	ptr = module_alloc(mod->core_layout.size);
2923	/*
2924	 * The pointer to this block is stored in the module structure
2925	 * which is inside the block. Just mark it as not being a
2926	 * leak.
2927	 */
2928	kmemleak_not_leak(ptr);
2929	if (!ptr)
2930		return -ENOMEM;
2931
2932	memset(ptr, 0, mod->core_layout.size);
2933	mod->core_layout.base = ptr;
2934
2935	if (mod->init_layout.size) {
2936		ptr = module_alloc(mod->init_layout.size);
2937		/*
2938		 * The pointer to this block is stored in the module structure
2939		 * which is inside the block. This block doesn't need to be
2940		 * scanned as it contains data and code that will be freed
2941		 * after the module is initialized.
2942		 */
2943		kmemleak_ignore(ptr);
2944		if (!ptr) {
2945			module_memfree(mod->core_layout.base);
2946			return -ENOMEM;
2947		}
2948		memset(ptr, 0, mod->init_layout.size);
2949		mod->init_layout.base = ptr;
2950	} else
2951		mod->init_layout.base = NULL;
2952
2953	/* Transfer each section which specifies SHF_ALLOC */
2954	pr_debug("final section addresses:\n");
2955	for (i = 0; i < info->hdr->e_shnum; i++) {
2956		void *dest;
2957		Elf_Shdr *shdr = &info->sechdrs[i];
2958
2959		if (!(shdr->sh_flags & SHF_ALLOC))
2960			continue;
2961
2962		if (shdr->sh_entsize & INIT_OFFSET_MASK)
2963			dest = mod->init_layout.base
2964				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2965		else
2966			dest = mod->core_layout.base + shdr->sh_entsize;
2967
2968		if (shdr->sh_type != SHT_NOBITS)
2969			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2970		/* Update sh_addr to point to copy in image. */
2971		shdr->sh_addr = (unsigned long)dest;
2972		pr_debug("\t0x%lx %s\n",
2973			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2974	}
2975
2976	return 0;
2977}
2978
2979static int check_module_license_and_versions(struct module *mod)
2980{
 
 
2981	/*
2982	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2983	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2984	 * using GPL-only symbols it needs.
2985	 */
2986	if (strcmp(mod->name, "ndiswrapper") == 0)
2987		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2988
2989	/* driverloader was caught wrongly pretending to be under GPL */
2990	if (strcmp(mod->name, "driverloader") == 0)
2991		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2992				 LOCKDEP_NOW_UNRELIABLE);
2993
2994	/* lve claims to be GPL but upstream won't provide source */
2995	if (strcmp(mod->name, "lve") == 0)
2996		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2997				 LOCKDEP_NOW_UNRELIABLE);
2998
 
 
 
2999#ifdef CONFIG_MODVERSIONS
3000	if ((mod->num_syms && !mod->crcs)
3001	    || (mod->num_gpl_syms && !mod->gpl_crcs)
3002	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3003#ifdef CONFIG_UNUSED_SYMBOLS
3004	    || (mod->num_unused_syms && !mod->unused_crcs)
3005	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3006#endif
3007		) {
3008		return try_to_force_load(mod,
3009					 "no versions for exported symbols");
3010	}
3011#endif
3012	return 0;
3013}
3014
3015static void flush_module_icache(const struct module *mod)
3016{
3017	mm_segment_t old_fs;
3018
3019	/* flush the icache in correct context */
3020	old_fs = get_fs();
3021	set_fs(KERNEL_DS);
3022
3023	/*
3024	 * Flush the instruction cache, since we've played with text.
3025	 * Do it before processing of module parameters, so the module
3026	 * can provide parameter accessor functions of its own.
3027	 */
3028	if (mod->init_layout.base)
3029		flush_icache_range((unsigned long)mod->init_layout.base,
3030				   (unsigned long)mod->init_layout.base
3031				   + mod->init_layout.size);
3032	flush_icache_range((unsigned long)mod->core_layout.base,
3033			   (unsigned long)mod->core_layout.base + mod->core_layout.size);
3034
3035	set_fs(old_fs);
3036}
3037
3038int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3039				     Elf_Shdr *sechdrs,
3040				     char *secstrings,
3041				     struct module *mod)
3042{
3043	return 0;
3044}
3045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3046static struct module *layout_and_allocate(struct load_info *info, int flags)
3047{
3048	/* Module within temporary copy. */
3049	struct module *mod;
 
3050	int err;
3051
3052	mod = setup_load_info(info, flags);
3053	if (IS_ERR(mod))
3054		return mod;
3055
3056	err = check_modinfo(mod, info, flags);
3057	if (err)
3058		return ERR_PTR(err);
3059
3060	/* Allow arches to frob section contents and sizes.  */
3061	err = module_frob_arch_sections(info->hdr, info->sechdrs,
3062					info->secstrings, mod);
 
 
 
 
 
3063	if (err < 0)
3064		return ERR_PTR(err);
3065
3066	/* We will do a special allocation for per-cpu sections later. */
3067	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3068
3069	/* Determine total sizes, and put offsets in sh_entsize.  For now
3070	   this is done generically; there doesn't appear to be any
3071	   special cases for the architectures. */
3072	layout_sections(mod, info);
3073	layout_symtab(mod, info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3074
3075	/* Allocate and move to the final place */
3076	err = move_module(mod, info);
3077	if (err)
3078		return ERR_PTR(err);
3079
3080	/* Module has been copied to its final place now: return it. */
3081	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3082	kmemleak_load_module(mod, info);
3083	return mod;
3084}
3085
3086/* mod is no longer valid after this! */
3087static void module_deallocate(struct module *mod, struct load_info *info)
3088{
3089	percpu_modfree(mod);
3090	module_arch_freeing_init(mod);
3091	module_memfree(mod->init_layout.base);
3092	module_memfree(mod->core_layout.base);
3093}
3094
3095int __weak module_finalize(const Elf_Ehdr *hdr,
3096			   const Elf_Shdr *sechdrs,
3097			   struct module *me)
3098{
3099	return 0;
3100}
3101
3102static int post_relocation(struct module *mod, const struct load_info *info)
3103{
3104	/* Sort exception table now relocations are done. */
3105	sort_extable(mod->extable, mod->extable + mod->num_exentries);
3106
3107	/* Copy relocated percpu area over. */
3108	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3109		       info->sechdrs[info->index.pcpu].sh_size);
3110
3111	/* Setup kallsyms-specific fields. */
3112	add_kallsyms(mod, info);
3113
3114	/* Arch-specific module finalizing. */
3115	return module_finalize(info->hdr, info->sechdrs, mod);
3116}
3117
3118/* Is this module of this name done loading?  No locks held. */
3119static bool finished_loading(const char *name)
3120{
3121	struct module *mod;
3122	bool ret;
3123
3124	/*
3125	 * The module_mutex should not be a heavily contended lock;
3126	 * if we get the occasional sleep here, we'll go an extra iteration
3127	 * in the wait_event_interruptible(), which is harmless.
3128	 */
3129	sched_annotate_sleep();
3130	mutex_lock(&module_mutex);
3131	mod = find_module_all(name, strlen(name), true);
3132	ret = !mod || mod->state == MODULE_STATE_LIVE
3133		|| mod->state == MODULE_STATE_GOING;
3134	mutex_unlock(&module_mutex);
3135
3136	return ret;
3137}
3138
3139/* Call module constructors. */
3140static void do_mod_ctors(struct module *mod)
3141{
3142#ifdef CONFIG_CONSTRUCTORS
3143	unsigned long i;
3144
3145	for (i = 0; i < mod->num_ctors; i++)
3146		mod->ctors[i]();
3147#endif
3148}
3149
3150/* For freeing module_init on success, in case kallsyms traversing */
3151struct mod_initfree {
3152	struct rcu_head rcu;
3153	void *module_init;
3154};
3155
3156static void do_free_init(struct rcu_head *head)
3157{
3158	struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3159	module_memfree(m->module_init);
3160	kfree(m);
 
 
 
 
 
 
 
 
 
3161}
3162
3163/*
3164 * This is where the real work happens.
3165 *
3166 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3167 * helper command 'lx-symbols'.
3168 */
3169static noinline int do_init_module(struct module *mod)
3170{
3171	int ret = 0;
3172	struct mod_initfree *freeinit;
3173
3174	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3175	if (!freeinit) {
3176		ret = -ENOMEM;
3177		goto fail;
3178	}
3179	freeinit->module_init = mod->init_layout.base;
3180
3181	/*
3182	 * We want to find out whether @mod uses async during init.  Clear
3183	 * PF_USED_ASYNC.  async_schedule*() will set it.
3184	 */
3185	current->flags &= ~PF_USED_ASYNC;
3186
3187	do_mod_ctors(mod);
3188	/* Start the module */
3189	if (mod->init != NULL)
3190		ret = do_one_initcall(mod->init);
3191	if (ret < 0) {
3192		goto fail_free_freeinit;
3193	}
3194	if (ret > 0) {
3195		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3196			"follow 0/-E convention\n"
3197			"%s: loading module anyway...\n",
3198			__func__, mod->name, ret, __func__);
3199		dump_stack();
3200	}
3201
3202	/* Now it's a first class citizen! */
3203	mod->state = MODULE_STATE_LIVE;
3204	blocking_notifier_call_chain(&module_notify_list,
3205				     MODULE_STATE_LIVE, mod);
3206
 
 
 
3207	/*
3208	 * We need to finish all async code before the module init sequence
3209	 * is done.  This has potential to deadlock.  For example, a newly
3210	 * detected block device can trigger request_module() of the
3211	 * default iosched from async probing task.  Once userland helper
3212	 * reaches here, async_synchronize_full() will wait on the async
3213	 * task waiting on request_module() and deadlock.
3214	 *
3215	 * This deadlock is avoided by perfomring async_synchronize_full()
3216	 * iff module init queued any async jobs.  This isn't a full
3217	 * solution as it will deadlock the same if module loading from
3218	 * async jobs nests more than once; however, due to the various
3219	 * constraints, this hack seems to be the best option for now.
3220	 * Please refer to the following thread for details.
3221	 *
3222	 * http://thread.gmane.org/gmane.linux.kernel/1420814
3223	 */
3224	if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3225		async_synchronize_full();
3226
 
 
3227	mutex_lock(&module_mutex);
3228	/* Drop initial reference. */
3229	module_put(mod);
3230	trim_init_extable(mod);
3231#ifdef CONFIG_KALLSYMS
3232	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3233	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3234#endif
 
3235	mod_tree_remove_init(mod);
3236	disable_ro_nx(&mod->init_layout);
3237	module_arch_freeing_init(mod);
3238	mod->init_layout.base = NULL;
3239	mod->init_layout.size = 0;
3240	mod->init_layout.ro_size = 0;
 
3241	mod->init_layout.text_size = 0;
 
 
 
 
3242	/*
3243	 * We want to free module_init, but be aware that kallsyms may be
3244	 * walking this with preempt disabled.  In all the failure paths, we
3245	 * call synchronize_sched(), but we don't want to slow down the success
3246	 * path, so use actual RCU here.
 
 
 
 
 
 
 
3247	 */
3248	call_rcu_sched(&freeinit->rcu, do_free_init);
 
 
3249	mutex_unlock(&module_mutex);
3250	wake_up_all(&module_wq);
3251
3252	return 0;
3253
3254fail_free_freeinit:
3255	kfree(freeinit);
3256fail:
3257	/* Try to protect us from buggy refcounters. */
3258	mod->state = MODULE_STATE_GOING;
3259	synchronize_sched();
3260	module_put(mod);
3261	blocking_notifier_call_chain(&module_notify_list,
3262				     MODULE_STATE_GOING, mod);
3263	klp_module_going(mod);
3264	ftrace_release_mod(mod);
3265	free_module(mod);
3266	wake_up_all(&module_wq);
3267	return ret;
3268}
3269
3270static int may_init_module(void)
3271{
3272	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3273		return -EPERM;
3274
3275	return 0;
3276}
3277
3278/*
3279 * We try to place it in the list now to make sure it's unique before
3280 * we dedicate too many resources.  In particular, temporary percpu
3281 * memory exhaustion.
3282 */
3283static int add_unformed_module(struct module *mod)
3284{
3285	int err;
3286	struct module *old;
3287
3288	mod->state = MODULE_STATE_UNFORMED;
3289
3290again:
3291	mutex_lock(&module_mutex);
3292	old = find_module_all(mod->name, strlen(mod->name), true);
3293	if (old != NULL) {
3294		if (old->state == MODULE_STATE_COMING
3295		    || old->state == MODULE_STATE_UNFORMED) {
3296			/* Wait in case it fails to load. */
3297			mutex_unlock(&module_mutex);
3298			err = wait_event_interruptible(module_wq,
3299					       finished_loading(mod->name));
3300			if (err)
3301				goto out_unlocked;
3302			goto again;
3303		}
3304		err = -EEXIST;
3305		goto out;
3306	}
3307	mod_update_bounds(mod);
3308	list_add_rcu(&mod->list, &modules);
3309	mod_tree_insert(mod);
3310	err = 0;
3311
3312out:
3313	mutex_unlock(&module_mutex);
3314out_unlocked:
3315	return err;
3316}
3317
3318static int complete_formation(struct module *mod, struct load_info *info)
3319{
3320	int err;
3321
3322	mutex_lock(&module_mutex);
3323
3324	/* Find duplicate symbols (must be called under lock). */
3325	err = verify_export_symbols(mod);
3326	if (err < 0)
3327		goto out;
3328
3329	/* This relies on module_mutex for list integrity. */
3330	module_bug_finalize(info->hdr, info->sechdrs, mod);
3331
3332	/* Set RO and NX regions */
3333	module_enable_ro(mod);
3334	module_enable_nx(mod);
 
3335
3336	/* Mark state as coming so strong_try_module_get() ignores us,
3337	 * but kallsyms etc. can see us. */
 
 
3338	mod->state = MODULE_STATE_COMING;
3339	mutex_unlock(&module_mutex);
3340
3341	return 0;
3342
3343out:
3344	mutex_unlock(&module_mutex);
3345	return err;
3346}
3347
3348static int prepare_coming_module(struct module *mod)
3349{
3350	int err;
3351
3352	ftrace_module_enable(mod);
3353	err = klp_module_coming(mod);
3354	if (err)
3355		return err;
3356
3357	blocking_notifier_call_chain(&module_notify_list,
3358				     MODULE_STATE_COMING, mod);
3359	return 0;
 
 
 
 
3360}
3361
3362static int unknown_module_param_cb(char *param, char *val, const char *modname,
3363				   void *arg)
3364{
3365	struct module *mod = arg;
3366	int ret;
3367
3368	if (strcmp(param, "async_probe") == 0) {
3369		mod->async_probe_requested = true;
3370		return 0;
3371	}
3372
3373	/* Check for magic 'dyndbg' arg */
3374	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3375	if (ret != 0)
3376		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3377	return 0;
3378}
3379
3380/* Allocate and load the module: note that size of section 0 is always
3381   zero, and we rely on this for optional sections. */
 
 
 
 
3382static int load_module(struct load_info *info, const char __user *uargs,
3383		       int flags)
3384{
3385	struct module *mod;
3386	long err;
3387	char *after_dashes;
3388
3389	err = module_sig_check(info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3390	if (err)
3391		goto free_copy;
3392
3393	err = elf_header_check(info);
 
 
 
 
 
 
 
 
 
 
3394	if (err)
3395		goto free_copy;
3396
 
 
 
 
 
 
3397	/* Figure out module layout, and allocate all the memory. */
3398	mod = layout_and_allocate(info, flags);
3399	if (IS_ERR(mod)) {
3400		err = PTR_ERR(mod);
3401		goto free_copy;
3402	}
3403
 
 
3404	/* Reserve our place in the list. */
3405	err = add_unformed_module(mod);
3406	if (err)
3407		goto free_module;
3408
3409#ifdef CONFIG_MODULE_SIG
3410	mod->sig_ok = info->sig_ok;
3411	if (!mod->sig_ok) {
3412		pr_notice_once("%s: module verification failed: signature "
3413			       "and/or required key missing - tainting "
3414			       "kernel\n", mod->name);
3415		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3416	}
3417#endif
3418
3419	/* To avoid stressing percpu allocator, do this once we're unique. */
3420	err = percpu_modalloc(mod, info);
3421	if (err)
3422		goto unlink_mod;
3423
3424	/* Now module is in final location, initialize linked lists, etc. */
3425	err = module_unload_init(mod);
3426	if (err)
3427		goto unlink_mod;
3428
3429	init_param_lock(mod);
3430
3431	/* Now we've got everything in the final locations, we can
3432	 * find optional sections. */
 
 
3433	err = find_module_sections(mod, info);
3434	if (err)
3435		goto free_unload;
3436
3437	err = check_module_license_and_versions(mod);
3438	if (err)
3439		goto free_unload;
3440
3441	/* Set up MODINFO_ATTR fields */
3442	setup_modinfo(mod, info);
3443
3444	/* Fix up syms, so that st_value is a pointer to location. */
3445	err = simplify_symbols(mod, info);
3446	if (err < 0)
3447		goto free_modinfo;
3448
3449	err = apply_relocations(mod, info);
3450	if (err < 0)
3451		goto free_modinfo;
3452
3453	err = post_relocation(mod, info);
3454	if (err < 0)
3455		goto free_modinfo;
3456
3457	flush_module_icache(mod);
3458
 
 
 
3459	/* Now copy in args */
3460	mod->args = strndup_user(uargs, ~0UL >> 1);
3461	if (IS_ERR(mod->args)) {
3462		err = PTR_ERR(mod->args);
3463		goto free_arch_cleanup;
3464	}
3465
3466	dynamic_debug_setup(info->debug, info->num_debug);
 
3467
3468	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3469	ftrace_module_init(mod);
3470
3471	/* Finally it's fully formed, ready to start executing. */
3472	err = complete_formation(mod, info);
3473	if (err)
3474		goto ddebug_cleanup;
3475
3476	err = prepare_coming_module(mod);
3477	if (err)
3478		goto bug_cleanup;
3479
3480	/* Module is ready to execute: parsing args may do that. */
3481	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3482				  -32768, 32767, mod,
3483				  unknown_module_param_cb);
3484	if (IS_ERR(after_dashes)) {
3485		err = PTR_ERR(after_dashes);
3486		goto coming_cleanup;
3487	} else if (after_dashes) {
3488		pr_warn("%s: parameters '%s' after `--' ignored\n",
3489		       mod->name, after_dashes);
3490	}
3491
3492	/* Link in to syfs. */
3493	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3494	if (err < 0)
3495		goto coming_cleanup;
3496
 
 
 
 
 
 
3497	/* Get rid of temporary copy. */
3498	free_copy(info);
3499
3500	/* Done! */
3501	trace_module_load(mod);
3502
3503	return do_init_module(mod);
3504
 
 
3505 coming_cleanup:
 
 
3506	blocking_notifier_call_chain(&module_notify_list,
3507				     MODULE_STATE_GOING, mod);
3508	klp_module_going(mod);
3509
3510 bug_cleanup:
 
3511	/* module_bug_cleanup needs module_mutex protection */
3512	mutex_lock(&module_mutex);
3513	module_bug_cleanup(mod);
3514	mutex_unlock(&module_mutex);
3515
3516	/* we can't deallocate the module until we clear memory protection */
3517	module_disable_ro(mod);
3518	module_disable_nx(mod);
3519
3520 ddebug_cleanup:
3521	dynamic_debug_remove(info->debug);
3522	synchronize_sched();
 
3523	kfree(mod->args);
3524 free_arch_cleanup:
 
3525	module_arch_cleanup(mod);
3526 free_modinfo:
3527	free_modinfo(mod);
3528 free_unload:
3529	module_unload_free(mod);
3530 unlink_mod:
3531	mutex_lock(&module_mutex);
3532	/* Unlink carefully: kallsyms could be walking list. */
3533	list_del_rcu(&mod->list);
3534	mod_tree_remove(mod);
3535	wake_up_all(&module_wq);
3536	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3537	synchronize_sched();
3538	mutex_unlock(&module_mutex);
3539 free_module:
3540	/*
3541	 * Ftrace needs to clean up what it initialized.
3542	 * This does nothing if ftrace_module_init() wasn't called,
3543	 * but it must be called outside of module_mutex.
3544	 */
3545	ftrace_release_mod(mod);
3546	/* Free lock-classes; relies on the preceding sync_rcu() */
3547	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3548
3549	module_deallocate(mod, info);
3550 free_copy:
3551	free_copy(info);
3552	return err;
3553}
3554
3555SYSCALL_DEFINE3(init_module, void __user *, umod,
3556		unsigned long, len, const char __user *, uargs)
3557{
3558	int err;
3559	struct load_info info = { };
3560
3561	err = may_init_module();
3562	if (err)
3563		return err;
3564
3565	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3566	       umod, len, uargs);
3567
3568	err = copy_module_from_user(umod, len, &info);
3569	if (err)
3570		return err;
3571
3572	return load_module(&info, uargs, 0);
3573}
3574
3575SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3576{
3577	struct load_info info = { };
3578	loff_t size;
3579	void *hdr;
3580	int err;
3581
3582	err = may_init_module();
3583	if (err)
3584		return err;
3585
3586	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3587
3588	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3589		      |MODULE_INIT_IGNORE_VERMAGIC))
3590		return -EINVAL;
3591
3592	err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3593				       READING_MODULE);
3594	if (err)
3595		return err;
3596	info.hdr = hdr;
3597	info.len = size;
3598
3599	return load_module(&info, uargs, flags);
3600}
3601
3602static inline int within(unsigned long addr, void *start, unsigned long size)
3603{
3604	return ((void *)addr >= start && (void *)addr < start + size);
3605}
3606
3607#ifdef CONFIG_KALLSYMS
3608/*
3609 * This ignores the intensely annoying "mapping symbols" found
3610 * in ARM ELF files: $a, $t and $d.
3611 */
3612static inline int is_arm_mapping_symbol(const char *str)
3613{
3614	if (str[0] == '.' && str[1] == 'L')
3615		return true;
3616	return str[0] == '$' && strchr("axtd", str[1])
3617	       && (str[2] == '\0' || str[2] == '.');
3618}
3619
3620static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3621{
3622	return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3623}
3624
3625static const char *get_ksymbol(struct module *mod,
3626			       unsigned long addr,
3627			       unsigned long *size,
3628			       unsigned long *offset)
 
 
 
 
3629{
3630	unsigned int i, best = 0;
3631	unsigned long nextval;
3632	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3633
3634	/* At worse, next value is at end of module */
3635	if (within_module_init(addr, mod))
3636		nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3637	else
3638		nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3639
3640	/* Scan for closest preceding symbol, and next symbol. (ELF
3641	   starts real symbols at 1). */
 
 
 
 
3642	for (i = 1; i < kallsyms->num_symtab; i++) {
3643		if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
 
 
 
3644			continue;
3645
3646		/* We ignore unnamed symbols: they're uninformative
3647		 * and inserted at a whim. */
3648		if (*symname(kallsyms, i) == '\0'
3649		    || is_arm_mapping_symbol(symname(kallsyms, i)))
 
 
3650			continue;
3651
3652		if (kallsyms->symtab[i].st_value <= addr
3653		    && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3654			best = i;
3655		if (kallsyms->symtab[i].st_value > addr
3656		    && kallsyms->symtab[i].st_value < nextval)
3657			nextval = kallsyms->symtab[i].st_value;
 
3658	}
3659
3660	if (!best)
3661		return NULL;
3662
3663	if (size)
3664		*size = nextval - kallsyms->symtab[best].st_value;
3665	if (offset)
3666		*offset = addr - kallsyms->symtab[best].st_value;
3667	return symname(kallsyms, best);
 
3668}
3669
3670/* For kallsyms to ask for address resolution.  NULL means not found.  Careful
3671 * not to lock to avoid deadlock on oopses, simply disable preemption. */
 
 
 
 
 
 
 
 
3672const char *module_address_lookup(unsigned long addr,
3673			    unsigned long *size,
3674			    unsigned long *offset,
3675			    char **modname,
 
3676			    char *namebuf)
3677{
3678	const char *ret = NULL;
3679	struct module *mod;
3680
3681	preempt_disable();
3682	mod = __module_address(addr);
3683	if (mod) {
3684		if (modname)
3685			*modname = mod->name;
3686		ret = get_ksymbol(mod, addr, size, offset);
 
 
 
 
 
 
 
 
3687	}
3688	/* Make a copy in here where it's safe */
3689	if (ret) {
3690		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3691		ret = namebuf;
3692	}
3693	preempt_enable();
3694
3695	return ret;
3696}
3697
3698int lookup_module_symbol_name(unsigned long addr, char *symname)
3699{
3700	struct module *mod;
3701
3702	preempt_disable();
3703	list_for_each_entry_rcu(mod, &modules, list) {
3704		if (mod->state == MODULE_STATE_UNFORMED)
3705			continue;
3706		if (within_module(addr, mod)) {
3707			const char *sym;
3708
3709			sym = get_ksymbol(mod, addr, NULL, NULL);
3710			if (!sym)
3711				goto out;
 
3712			strlcpy(symname, sym, KSYM_NAME_LEN);
3713			preempt_enable();
3714			return 0;
3715		}
3716	}
3717out:
3718	preempt_enable();
3719	return -ERANGE;
3720}
3721
3722int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3723			unsigned long *offset, char *modname, char *name)
3724{
3725	struct module *mod;
3726
3727	preempt_disable();
3728	list_for_each_entry_rcu(mod, &modules, list) {
3729		if (mod->state == MODULE_STATE_UNFORMED)
3730			continue;
3731		if (within_module(addr, mod)) {
3732			const char *sym;
3733
3734			sym = get_ksymbol(mod, addr, size, offset);
3735			if (!sym)
3736				goto out;
3737			if (modname)
3738				strlcpy(modname, mod->name, MODULE_NAME_LEN);
3739			if (name)
3740				strlcpy(name, sym, KSYM_NAME_LEN);
3741			preempt_enable();
3742			return 0;
3743		}
3744	}
3745out:
3746	preempt_enable();
3747	return -ERANGE;
3748}
3749
3750int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3751			char *name, char *module_name, int *exported)
3752{
3753	struct module *mod;
3754
3755	preempt_disable();
3756	list_for_each_entry_rcu(mod, &modules, list) {
3757		struct mod_kallsyms *kallsyms;
3758
3759		if (mod->state == MODULE_STATE_UNFORMED)
3760			continue;
3761		kallsyms = rcu_dereference_sched(mod->kallsyms);
3762		if (symnum < kallsyms->num_symtab) {
3763			*value = kallsyms->symtab[symnum].st_value;
3764			*type = kallsyms->symtab[symnum].st_info;
3765			strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
 
 
3766			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3767			*exported = is_exported(name, *value, mod);
3768			preempt_enable();
3769			return 0;
3770		}
3771		symnum -= kallsyms->num_symtab;
3772	}
3773	preempt_enable();
3774	return -ERANGE;
3775}
3776
3777static unsigned long mod_find_symname(struct module *mod, const char *name)
 
3778{
3779	unsigned int i;
3780	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3781
3782	for (i = 0; i < kallsyms->num_symtab; i++)
3783		if (strcmp(name, symname(kallsyms, i)) == 0 &&
3784		    kallsyms->symtab[i].st_info != 'U')
3785			return kallsyms->symtab[i].st_value;
 
 
 
3786	return 0;
3787}
3788
3789/* Look for this name: can be of form module:name. */
3790unsigned long module_kallsyms_lookup_name(const char *name)
3791{
3792	struct module *mod;
3793	char *colon;
3794	unsigned long ret = 0;
3795
3796	/* Don't lock: we're in enough trouble already. */
3797	preempt_disable();
3798	if ((colon = strchr(name, ':')) != NULL) {
3799		if ((mod = find_module_all(name, colon - name, false)) != NULL)
3800			ret = mod_find_symname(mod, colon+1);
3801	} else {
3802		list_for_each_entry_rcu(mod, &modules, list) {
3803			if (mod->state == MODULE_STATE_UNFORMED)
3804				continue;
3805			if ((ret = mod_find_symname(mod, name)) != 0)
3806				break;
3807		}
3808	}
3809	preempt_enable();
3810	return ret;
3811}
3812
 
3813int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3814					     struct module *, unsigned long),
3815				   void *data)
3816{
3817	struct module *mod;
3818	unsigned int i;
3819	int ret;
3820
3821	module_assert_mutex();
3822
 
3823	list_for_each_entry(mod, &modules, list) {
3824		/* We hold module_mutex: no need for rcu_dereference_sched */
3825		struct mod_kallsyms *kallsyms = mod->kallsyms;
3826
3827		if (mod->state == MODULE_STATE_UNFORMED)
3828			continue;
3829		for (i = 0; i < kallsyms->num_symtab; i++) {
3830			ret = fn(data, symname(kallsyms, i),
3831				 mod, kallsyms->symtab[i].st_value);
 
 
 
 
 
3832			if (ret != 0)
3833				return ret;
3834		}
3835	}
3836	return 0;
 
 
3837}
 
3838#endif /* CONFIG_KALLSYMS */
3839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3840static char *module_flags(struct module *mod, char *buf)
3841{
3842	int bx = 0;
3843
3844	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3845	if (mod->taints ||
3846	    mod->state == MODULE_STATE_GOING ||
3847	    mod->state == MODULE_STATE_COMING) {
3848		buf[bx++] = '(';
3849		bx += module_flags_taint(mod, buf + bx);
3850		/* Show a - for module-is-being-unloaded */
3851		if (mod->state == MODULE_STATE_GOING)
3852			buf[bx++] = '-';
3853		/* Show a + for module-is-being-loaded */
3854		if (mod->state == MODULE_STATE_COMING)
3855			buf[bx++] = '+';
3856		buf[bx++] = ')';
3857	}
3858	buf[bx] = '\0';
3859
3860	return buf;
3861}
3862
3863#ifdef CONFIG_PROC_FS
3864/* Called by the /proc file system to return a list of modules. */
3865static void *m_start(struct seq_file *m, loff_t *pos)
3866{
3867	mutex_lock(&module_mutex);
3868	return seq_list_start(&modules, *pos);
3869}
3870
3871static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3872{
3873	return seq_list_next(p, &modules, pos);
3874}
3875
3876static void m_stop(struct seq_file *m, void *p)
3877{
3878	mutex_unlock(&module_mutex);
3879}
3880
3881static int m_show(struct seq_file *m, void *p)
3882{
3883	struct module *mod = list_entry(p, struct module, list);
3884	char buf[8];
 
3885
3886	/* We always ignore unformed modules. */
3887	if (mod->state == MODULE_STATE_UNFORMED)
3888		return 0;
3889
3890	seq_printf(m, "%s %u",
3891		   mod->name, mod->init_layout.size + mod->core_layout.size);
3892	print_unload_info(m, mod);
3893
3894	/* Informative for users. */
3895	seq_printf(m, " %s",
3896		   mod->state == MODULE_STATE_GOING ? "Unloading" :
3897		   mod->state == MODULE_STATE_COMING ? "Loading" :
3898		   "Live");
3899	/* Used by oprofile and other similar tools. */
3900	seq_printf(m, " 0x%pK", mod->core_layout.base);
 
3901
3902	/* Taints info */
3903	if (mod->taints)
3904		seq_printf(m, " %s", module_flags(mod, buf));
3905
3906	seq_puts(m, "\n");
3907	return 0;
3908}
3909
3910/* Format: modulename size refcount deps address
3911
3912   Where refcount is a number or -, and deps is a comma-separated list
3913   of depends or -.
3914*/
 
3915static const struct seq_operations modules_op = {
3916	.start	= m_start,
3917	.next	= m_next,
3918	.stop	= m_stop,
3919	.show	= m_show
3920};
3921
 
 
 
 
 
 
 
3922static int modules_open(struct inode *inode, struct file *file)
3923{
3924	return seq_open(file, &modules_op);
 
 
 
 
 
 
 
3925}
3926
3927static const struct file_operations proc_modules_operations = {
3928	.open		= modules_open,
3929	.read		= seq_read,
3930	.llseek		= seq_lseek,
3931	.release	= seq_release,
 
3932};
3933
3934static int __init proc_modules_init(void)
3935{
3936	proc_create("modules", 0, NULL, &proc_modules_operations);
3937	return 0;
3938}
3939module_init(proc_modules_init);
3940#endif
3941
3942/* Given an address, look for it in the module exception tables. */
3943const struct exception_table_entry *search_module_extables(unsigned long addr)
3944{
3945	const struct exception_table_entry *e = NULL;
3946	struct module *mod;
3947
3948	preempt_disable();
3949	list_for_each_entry_rcu(mod, &modules, list) {
3950		if (mod->state == MODULE_STATE_UNFORMED)
3951			continue;
3952		if (mod->num_exentries == 0)
3953			continue;
3954
3955		e = search_extable(mod->extable,
3956				   mod->extable + mod->num_exentries - 1,
3957				   addr);
3958		if (e)
3959			break;
3960	}
 
3961	preempt_enable();
3962
3963	/* Now, if we found one, we are running inside it now, hence
3964	   we cannot unload the module, hence no refcnt needed. */
 
 
3965	return e;
3966}
3967
3968/*
3969 * is_module_address - is this address inside a module?
3970 * @addr: the address to check.
3971 *
3972 * See is_module_text_address() if you simply want to see if the address
3973 * is code (not data).
3974 */
3975bool is_module_address(unsigned long addr)
3976{
3977	bool ret;
3978
3979	preempt_disable();
3980	ret = __module_address(addr) != NULL;
3981	preempt_enable();
3982
3983	return ret;
3984}
3985
3986/*
3987 * __module_address - get the module which contains an address.
3988 * @addr: the address.
3989 *
3990 * Must be called with preempt disabled or module mutex held so that
3991 * module doesn't get freed during this.
3992 */
3993struct module *__module_address(unsigned long addr)
3994{
3995	struct module *mod;
3996
3997	if (addr < module_addr_min || addr > module_addr_max)
3998		return NULL;
3999
4000	module_assert_mutex_or_preempt();
4001
4002	mod = mod_find(addr);
4003	if (mod) {
4004		BUG_ON(!within_module(addr, mod));
4005		if (mod->state == MODULE_STATE_UNFORMED)
4006			mod = NULL;
4007	}
4008	return mod;
4009}
4010EXPORT_SYMBOL_GPL(__module_address);
4011
4012/*
4013 * is_module_text_address - is this address inside module code?
4014 * @addr: the address to check.
4015 *
4016 * See is_module_address() if you simply want to see if the address is
4017 * anywhere in a module.  See kernel_text_address() for testing if an
4018 * address corresponds to kernel or module code.
4019 */
4020bool is_module_text_address(unsigned long addr)
4021{
4022	bool ret;
4023
4024	preempt_disable();
4025	ret = __module_text_address(addr) != NULL;
4026	preempt_enable();
4027
4028	return ret;
4029}
4030
4031/*
4032 * __module_text_address - get the module whose code contains an address.
4033 * @addr: the address.
4034 *
4035 * Must be called with preempt disabled or module mutex held so that
4036 * module doesn't get freed during this.
4037 */
4038struct module *__module_text_address(unsigned long addr)
4039{
4040	struct module *mod = __module_address(addr);
4041	if (mod) {
4042		/* Make sure it's within the text section. */
4043		if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4044		    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4045			mod = NULL;
4046	}
4047	return mod;
4048}
4049EXPORT_SYMBOL_GPL(__module_text_address);
4050
4051/* Don't grab lock, we're oopsing. */
4052void print_modules(void)
4053{
4054	struct module *mod;
4055	char buf[8];
4056
4057	printk(KERN_DEFAULT "Modules linked in:");
4058	/* Most callers should already have preempt disabled, but make sure */
4059	preempt_disable();
4060	list_for_each_entry_rcu(mod, &modules, list) {
4061		if (mod->state == MODULE_STATE_UNFORMED)
4062			continue;
4063		pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4064	}
4065	preempt_enable();
4066	if (last_unloaded_module[0])
4067		pr_cont(" [last unloaded: %s]", last_unloaded_module);
4068	pr_cont("\n");
4069}
4070
4071#ifdef CONFIG_MODVERSIONS
4072/* Generate the signature for all relevant module structures here.
4073 * If these change, we don't want to try to parse the module. */
 
 
4074void module_layout(struct module *mod,
4075		   struct modversion_info *ver,
4076		   struct kernel_param *kp,
4077		   struct kernel_symbol *ks,
4078		   struct tracepoint * const *tp)
4079{
4080}
4081EXPORT_SYMBOL(module_layout);
4082#endif
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2002 Richard Henderson
   4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
   5 */
   6
   7#define INCLUDE_VERMAGIC
   8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9#include <linux/export.h>
  10#include <linux/extable.h>
  11#include <linux/moduleloader.h>
  12#include <linux/module_signature.h>
  13#include <linux/trace_events.h>
  14#include <linux/init.h>
  15#include <linux/kallsyms.h>
  16#include <linux/buildid.h>
  17#include <linux/file.h>
  18#include <linux/fs.h>
  19#include <linux/sysfs.h>
  20#include <linux/kernel.h>
  21#include <linux/kernel_read_file.h>
  22#include <linux/slab.h>
  23#include <linux/vmalloc.h>
  24#include <linux/elf.h>
  25#include <linux/proc_fs.h>
  26#include <linux/security.h>
  27#include <linux/seq_file.h>
  28#include <linux/syscalls.h>
  29#include <linux/fcntl.h>
  30#include <linux/rcupdate.h>
  31#include <linux/capability.h>
  32#include <linux/cpu.h>
  33#include <linux/moduleparam.h>
  34#include <linux/errno.h>
  35#include <linux/err.h>
  36#include <linux/vermagic.h>
  37#include <linux/notifier.h>
  38#include <linux/sched.h>
  39#include <linux/device.h>
  40#include <linux/string.h>
  41#include <linux/mutex.h>
  42#include <linux/rculist.h>
  43#include <linux/uaccess.h>
  44#include <asm/cacheflush.h>
  45#include <linux/set_memory.h>
  46#include <asm/mmu_context.h>
  47#include <linux/license.h>
  48#include <asm/sections.h>
  49#include <linux/tracepoint.h>
  50#include <linux/ftrace.h>
  51#include <linux/livepatch.h>
  52#include <linux/async.h>
  53#include <linux/percpu.h>
  54#include <linux/kmemleak.h>
  55#include <linux/jump_label.h>
  56#include <linux/pfn.h>
  57#include <linux/bsearch.h>
  58#include <linux/dynamic_debug.h>
  59#include <linux/audit.h>
  60#include <uapi/linux/module.h>
  61#include "module-internal.h"
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/module.h>
  65
  66#ifndef ARCH_SHF_SMALL
  67#define ARCH_SHF_SMALL 0
  68#endif
  69
  70/*
  71 * Modules' sections will be aligned on page boundaries
  72 * to ensure complete separation of code and data, but
  73 * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
  74 */
  75#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
  76# define debug_align(X) ALIGN(X, PAGE_SIZE)
  77#else
  78# define debug_align(X) (X)
  79#endif
  80
  81/* If this is set, the section belongs in the init part of the module */
  82#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
  83
  84/*
  85 * Mutex protects:
  86 * 1) List of modules (also safely readable with preempt_disable),
  87 * 2) module_use links,
  88 * 3) module_addr_min/module_addr_max.
  89 * (delete and add uses RCU list operations).
  90 */
  91static DEFINE_MUTEX(module_mutex);
  92static LIST_HEAD(modules);
  93
  94/* Work queue for freeing init sections in success case */
  95static void do_free_init(struct work_struct *w);
  96static DECLARE_WORK(init_free_wq, do_free_init);
  97static LLIST_HEAD(init_free_list);
  98
  99#ifdef CONFIG_MODULES_TREE_LOOKUP
 100
 101/*
 102 * Use a latched RB-tree for __module_address(); this allows us to use
 103 * RCU-sched lookups of the address from any context.
 104 *
 105 * This is conditional on PERF_EVENTS || TRACING because those can really hit
 106 * __module_address() hard by doing a lot of stack unwinding; potentially from
 107 * NMI context.
 108 */
 109
 110static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
 111{
 112	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 113
 114	return (unsigned long)layout->base;
 115}
 116
 117static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
 118{
 119	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 120
 121	return (unsigned long)layout->size;
 122}
 123
 124static __always_inline bool
 125mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
 126{
 127	return __mod_tree_val(a) < __mod_tree_val(b);
 128}
 129
 130static __always_inline int
 131mod_tree_comp(void *key, struct latch_tree_node *n)
 132{
 133	unsigned long val = (unsigned long)key;
 134	unsigned long start, end;
 135
 136	start = __mod_tree_val(n);
 137	if (val < start)
 138		return -1;
 139
 140	end = start + __mod_tree_size(n);
 141	if (val >= end)
 142		return 1;
 143
 144	return 0;
 145}
 146
 147static const struct latch_tree_ops mod_tree_ops = {
 148	.less = mod_tree_less,
 149	.comp = mod_tree_comp,
 150};
 151
 152static struct mod_tree_root {
 153	struct latch_tree_root root;
 154	unsigned long addr_min;
 155	unsigned long addr_max;
 156} mod_tree __cacheline_aligned = {
 157	.addr_min = -1UL,
 158};
 159
 160#define module_addr_min mod_tree.addr_min
 161#define module_addr_max mod_tree.addr_max
 162
 163static noinline void __mod_tree_insert(struct mod_tree_node *node)
 164{
 165	latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
 166}
 167
 168static void __mod_tree_remove(struct mod_tree_node *node)
 169{
 170	latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
 171}
 172
 173/*
 174 * These modifications: insert, remove_init and remove; are serialized by the
 175 * module_mutex.
 176 */
 177static void mod_tree_insert(struct module *mod)
 178{
 179	mod->core_layout.mtn.mod = mod;
 180	mod->init_layout.mtn.mod = mod;
 181
 182	__mod_tree_insert(&mod->core_layout.mtn);
 183	if (mod->init_layout.size)
 184		__mod_tree_insert(&mod->init_layout.mtn);
 185}
 186
 187static void mod_tree_remove_init(struct module *mod)
 188{
 189	if (mod->init_layout.size)
 190		__mod_tree_remove(&mod->init_layout.mtn);
 191}
 192
 193static void mod_tree_remove(struct module *mod)
 194{
 195	__mod_tree_remove(&mod->core_layout.mtn);
 196	mod_tree_remove_init(mod);
 197}
 198
 199static struct module *mod_find(unsigned long addr)
 200{
 201	struct latch_tree_node *ltn;
 202
 203	ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
 204	if (!ltn)
 205		return NULL;
 206
 207	return container_of(ltn, struct mod_tree_node, node)->mod;
 208}
 209
 210#else /* MODULES_TREE_LOOKUP */
 211
 212static unsigned long module_addr_min = -1UL, module_addr_max = 0;
 213
 214static void mod_tree_insert(struct module *mod) { }
 215static void mod_tree_remove_init(struct module *mod) { }
 216static void mod_tree_remove(struct module *mod) { }
 217
 218static struct module *mod_find(unsigned long addr)
 219{
 220	struct module *mod;
 221
 222	list_for_each_entry_rcu(mod, &modules, list,
 223				lockdep_is_held(&module_mutex)) {
 224		if (within_module(addr, mod))
 225			return mod;
 226	}
 227
 228	return NULL;
 229}
 230
 231#endif /* MODULES_TREE_LOOKUP */
 232
 233/*
 234 * Bounds of module text, for speeding up __module_address.
 235 * Protected by module_mutex.
 236 */
 237static void __mod_update_bounds(void *base, unsigned int size)
 238{
 239	unsigned long min = (unsigned long)base;
 240	unsigned long max = min + size;
 241
 242	if (min < module_addr_min)
 243		module_addr_min = min;
 244	if (max > module_addr_max)
 245		module_addr_max = max;
 246}
 247
 248static void mod_update_bounds(struct module *mod)
 249{
 250	__mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
 251	if (mod->init_layout.size)
 252		__mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
 253}
 254
 255#ifdef CONFIG_KGDB_KDB
 256struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
 257#endif /* CONFIG_KGDB_KDB */
 258
 
 
 
 
 
 259static void module_assert_mutex_or_preempt(void)
 260{
 261#ifdef CONFIG_LOCKDEP
 262	if (unlikely(!debug_locks))
 263		return;
 264
 265	WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
 266		!lockdep_is_held(&module_mutex));
 267#endif
 268}
 269
 270#ifdef CONFIG_MODULE_SIG
 271static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
 
 272module_param(sig_enforce, bool_enable_only, 0644);
 273
 274void set_module_sig_enforced(void)
 275{
 276	sig_enforce = true;
 277}
 278#else
 279#define sig_enforce false
 280#endif
 281
 282/*
 283 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
 284 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
 285 */
 286bool is_module_sig_enforced(void)
 287{
 288	return sig_enforce;
 289}
 290EXPORT_SYMBOL(is_module_sig_enforced);
 291
 292/* Block module loading/unloading? */
 293int modules_disabled = 0;
 294core_param(nomodule, modules_disabled, bint, 0);
 295
 296/* Waiting for a module to finish initializing? */
 297static DECLARE_WAIT_QUEUE_HEAD(module_wq);
 298
 299static BLOCKING_NOTIFIER_HEAD(module_notify_list);
 300
 301int register_module_notifier(struct notifier_block *nb)
 302{
 303	return blocking_notifier_chain_register(&module_notify_list, nb);
 304}
 305EXPORT_SYMBOL(register_module_notifier);
 306
 307int unregister_module_notifier(struct notifier_block *nb)
 308{
 309	return blocking_notifier_chain_unregister(&module_notify_list, nb);
 310}
 311EXPORT_SYMBOL(unregister_module_notifier);
 312
 313/*
 314 * We require a truly strong try_module_get(): 0 means success.
 315 * Otherwise an error is returned due to ongoing or failed
 316 * initialization etc.
 317 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318static inline int strong_try_module_get(struct module *mod)
 319{
 320	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
 321	if (mod && mod->state == MODULE_STATE_COMING)
 322		return -EBUSY;
 323	if (try_module_get(mod))
 324		return 0;
 325	else
 326		return -ENOENT;
 327}
 328
 329static inline void add_taint_module(struct module *mod, unsigned flag,
 330				    enum lockdep_ok lockdep_ok)
 331{
 332	add_taint(flag, lockdep_ok);
 333	set_bit(flag, &mod->taints);
 334}
 335
 336/*
 337 * A thread that wants to hold a reference to a module only while it
 338 * is running can call this to safely exit.  nfsd and lockd use this.
 339 */
 340void __noreturn __module_put_and_exit(struct module *mod, long code)
 341{
 342	module_put(mod);
 343	do_exit(code);
 344}
 345EXPORT_SYMBOL(__module_put_and_exit);
 346
 347/* Find a module section: 0 means not found. */
 348static unsigned int find_sec(const struct load_info *info, const char *name)
 349{
 350	unsigned int i;
 351
 352	for (i = 1; i < info->hdr->e_shnum; i++) {
 353		Elf_Shdr *shdr = &info->sechdrs[i];
 354		/* Alloc bit cleared means "ignore it." */
 355		if ((shdr->sh_flags & SHF_ALLOC)
 356		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
 357			return i;
 358	}
 359	return 0;
 360}
 361
 362/* Find a module section, or NULL. */
 363static void *section_addr(const struct load_info *info, const char *name)
 364{
 365	/* Section 0 has sh_addr 0. */
 366	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
 367}
 368
 369/* Find a module section, or NULL.  Fill in number of "objects" in section. */
 370static void *section_objs(const struct load_info *info,
 371			  const char *name,
 372			  size_t object_size,
 373			  unsigned int *num)
 374{
 375	unsigned int sec = find_sec(info, name);
 376
 377	/* Section 0 has sh_addr 0 and sh_size 0. */
 378	*num = info->sechdrs[sec].sh_size / object_size;
 379	return (void *)info->sechdrs[sec].sh_addr;
 380}
 381
 382/* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
 383static unsigned int find_any_sec(const struct load_info *info, const char *name)
 384{
 385	unsigned int i;
 386
 387	for (i = 1; i < info->hdr->e_shnum; i++) {
 388		Elf_Shdr *shdr = &info->sechdrs[i];
 389		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
 390			return i;
 391	}
 392	return 0;
 393}
 394
 395/*
 396 * Find a module section, or NULL. Fill in number of "objects" in section.
 397 * Ignores SHF_ALLOC flag.
 398 */
 399static __maybe_unused void *any_section_objs(const struct load_info *info,
 400					     const char *name,
 401					     size_t object_size,
 402					     unsigned int *num)
 403{
 404	unsigned int sec = find_any_sec(info, name);
 405
 406	/* Section 0 has sh_addr 0 and sh_size 0. */
 407	*num = info->sechdrs[sec].sh_size / object_size;
 408	return (void *)info->sechdrs[sec].sh_addr;
 409}
 410
 411/* Provided by the linker */
 412extern const struct kernel_symbol __start___ksymtab[];
 413extern const struct kernel_symbol __stop___ksymtab[];
 414extern const struct kernel_symbol __start___ksymtab_gpl[];
 415extern const struct kernel_symbol __stop___ksymtab_gpl[];
 416extern const s32 __start___kcrctab[];
 417extern const s32 __start___kcrctab_gpl[];
 
 
 
 
 
 
 
 
 
 
 
 418
 419#ifndef CONFIG_MODVERSIONS
 420#define symversion(base, idx) NULL
 421#else
 422#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
 423#endif
 424
 425struct symsearch {
 426	const struct kernel_symbol *start, *stop;
 427	const s32 *crcs;
 428	enum mod_license {
 429		NOT_GPL_ONLY,
 430		GPL_ONLY,
 431	} license;
 432};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 433
 434struct find_symbol_arg {
 435	/* Input */
 436	const char *name;
 437	bool gplok;
 438	bool warn;
 439
 440	/* Output */
 441	struct module *owner;
 442	const s32 *crc;
 443	const struct kernel_symbol *sym;
 444	enum mod_license license;
 445};
 446
 447static bool check_exported_symbol(const struct symsearch *syms,
 448				  struct module *owner,
 449				  unsigned int symnum, void *data)
 450{
 451	struct find_symbol_arg *fsa = data;
 452
 453	if (!fsa->gplok && syms->license == GPL_ONLY)
 454		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455	fsa->owner = owner;
 456	fsa->crc = symversion(syms->crcs, symnum);
 457	fsa->sym = &syms->start[symnum];
 458	fsa->license = syms->license;
 459	return true;
 460}
 461
 462static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
 463{
 464#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 465	return (unsigned long)offset_to_ptr(&sym->value_offset);
 466#else
 467	return sym->value;
 468#endif
 469}
 470
 471static const char *kernel_symbol_name(const struct kernel_symbol *sym)
 472{
 473#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 474	return offset_to_ptr(&sym->name_offset);
 475#else
 476	return sym->name;
 477#endif
 478}
 479
 480static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
 481{
 482#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 483	if (!sym->namespace_offset)
 484		return NULL;
 485	return offset_to_ptr(&sym->namespace_offset);
 486#else
 487	return sym->namespace;
 488#endif
 489}
 490
 491static int cmp_name(const void *name, const void *sym)
 492{
 493	return strcmp(name, kernel_symbol_name(sym));
 494}
 495
 496static bool find_exported_symbol_in_section(const struct symsearch *syms,
 497					    struct module *owner,
 498					    void *data)
 499{
 500	struct find_symbol_arg *fsa = data;
 501	struct kernel_symbol *sym;
 502
 503	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
 504			sizeof(struct kernel_symbol), cmp_name);
 505
 506	if (sym != NULL && check_exported_symbol(syms, owner,
 507						 sym - syms->start, data))
 508		return true;
 509
 510	return false;
 511}
 512
 513/*
 514 * Find an exported symbol and return it, along with, (optional) crc and
 515 * (optional) module which owns it.  Needs preempt disabled or module_mutex.
 516 */
 517static bool find_symbol(struct find_symbol_arg *fsa)
 518{
 519	static const struct symsearch arr[] = {
 520		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
 521		  NOT_GPL_ONLY },
 522		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
 523		  __start___kcrctab_gpl,
 524		  GPL_ONLY },
 525	};
 526	struct module *mod;
 527	unsigned int i;
 528
 529	module_assert_mutex_or_preempt();
 530
 531	for (i = 0; i < ARRAY_SIZE(arr); i++)
 532		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
 533			return true;
 534
 535	list_for_each_entry_rcu(mod, &modules, list,
 536				lockdep_is_held(&module_mutex)) {
 537		struct symsearch arr[] = {
 538			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
 539			  NOT_GPL_ONLY },
 540			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
 541			  mod->gpl_crcs,
 542			  GPL_ONLY },
 543		};
 544
 545		if (mod->state == MODULE_STATE_UNFORMED)
 546			continue;
 547
 548		for (i = 0; i < ARRAY_SIZE(arr); i++)
 549			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
 550				return true;
 551	}
 552
 553	pr_debug("Failed to find symbol %s\n", fsa->name);
 554	return false;
 555}
 
 556
 557/*
 558 * Search for module by name: must hold module_mutex (or preempt disabled
 559 * for read-only access).
 560 */
 561static struct module *find_module_all(const char *name, size_t len,
 562				      bool even_unformed)
 563{
 564	struct module *mod;
 565
 566	module_assert_mutex_or_preempt();
 567
 568	list_for_each_entry_rcu(mod, &modules, list,
 569				lockdep_is_held(&module_mutex)) {
 570		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
 571			continue;
 572		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
 573			return mod;
 574	}
 575	return NULL;
 576}
 577
 578struct module *find_module(const char *name)
 579{
 
 580	return find_module_all(name, strlen(name), false);
 581}
 
 582
 583#ifdef CONFIG_SMP
 584
 585static inline void __percpu *mod_percpu(struct module *mod)
 586{
 587	return mod->percpu;
 588}
 589
 590static int percpu_modalloc(struct module *mod, struct load_info *info)
 591{
 592	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
 593	unsigned long align = pcpusec->sh_addralign;
 594
 595	if (!pcpusec->sh_size)
 596		return 0;
 597
 598	if (align > PAGE_SIZE) {
 599		pr_warn("%s: per-cpu alignment %li > %li\n",
 600			mod->name, align, PAGE_SIZE);
 601		align = PAGE_SIZE;
 602	}
 603
 604	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
 605	if (!mod->percpu) {
 606		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
 607			mod->name, (unsigned long)pcpusec->sh_size);
 608		return -ENOMEM;
 609	}
 610	mod->percpu_size = pcpusec->sh_size;
 611	return 0;
 612}
 613
 614static void percpu_modfree(struct module *mod)
 615{
 616	free_percpu(mod->percpu);
 617}
 618
 619static unsigned int find_pcpusec(struct load_info *info)
 620{
 621	return find_sec(info, ".data..percpu");
 622}
 623
 624static void percpu_modcopy(struct module *mod,
 625			   const void *from, unsigned long size)
 626{
 627	int cpu;
 628
 629	for_each_possible_cpu(cpu)
 630		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
 631}
 632
 633bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
 
 
 
 
 
 
 
 
 
 634{
 635	struct module *mod;
 636	unsigned int cpu;
 637
 638	preempt_disable();
 639
 640	list_for_each_entry_rcu(mod, &modules, list) {
 641		if (mod->state == MODULE_STATE_UNFORMED)
 642			continue;
 643		if (!mod->percpu_size)
 644			continue;
 645		for_each_possible_cpu(cpu) {
 646			void *start = per_cpu_ptr(mod->percpu, cpu);
 647			void *va = (void *)addr;
 648
 649			if (va >= start && va < start + mod->percpu_size) {
 650				if (can_addr) {
 651					*can_addr = (unsigned long) (va - start);
 652					*can_addr += (unsigned long)
 653						per_cpu_ptr(mod->percpu,
 654							    get_boot_cpu_id());
 655				}
 656				preempt_enable();
 657				return true;
 658			}
 659		}
 660	}
 661
 662	preempt_enable();
 663	return false;
 664}
 665
 666/**
 667 * is_module_percpu_address() - test whether address is from module static percpu
 668 * @addr: address to test
 669 *
 670 * Test whether @addr belongs to module static percpu area.
 671 *
 672 * Return: %true if @addr is from module static percpu area
 673 */
 674bool is_module_percpu_address(unsigned long addr)
 675{
 676	return __is_module_percpu_address(addr, NULL);
 677}
 678
 679#else /* ... !CONFIG_SMP */
 680
 681static inline void __percpu *mod_percpu(struct module *mod)
 682{
 683	return NULL;
 684}
 685static int percpu_modalloc(struct module *mod, struct load_info *info)
 686{
 687	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
 688	if (info->sechdrs[info->index.pcpu].sh_size != 0)
 689		return -ENOMEM;
 690	return 0;
 691}
 692static inline void percpu_modfree(struct module *mod)
 693{
 694}
 695static unsigned int find_pcpusec(struct load_info *info)
 696{
 697	return 0;
 698}
 699static inline void percpu_modcopy(struct module *mod,
 700				  const void *from, unsigned long size)
 701{
 702	/* pcpusec should be 0, and size of that section should be 0. */
 703	BUG_ON(size != 0);
 704}
 705bool is_module_percpu_address(unsigned long addr)
 706{
 707	return false;
 708}
 709
 710bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
 711{
 712	return false;
 713}
 714
 715#endif /* CONFIG_SMP */
 716
 717#define MODINFO_ATTR(field)	\
 718static void setup_modinfo_##field(struct module *mod, const char *s)  \
 719{                                                                     \
 720	mod->field = kstrdup(s, GFP_KERNEL);                          \
 721}                                                                     \
 722static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
 723			struct module_kobject *mk, char *buffer)      \
 724{                                                                     \
 725	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
 726}                                                                     \
 727static int modinfo_##field##_exists(struct module *mod)               \
 728{                                                                     \
 729	return mod->field != NULL;                                    \
 730}                                                                     \
 731static void free_modinfo_##field(struct module *mod)                  \
 732{                                                                     \
 733	kfree(mod->field);                                            \
 734	mod->field = NULL;                                            \
 735}                                                                     \
 736static struct module_attribute modinfo_##field = {                    \
 737	.attr = { .name = __stringify(field), .mode = 0444 },         \
 738	.show = show_modinfo_##field,                                 \
 739	.setup = setup_modinfo_##field,                               \
 740	.test = modinfo_##field##_exists,                             \
 741	.free = free_modinfo_##field,                                 \
 742};
 743
 744MODINFO_ATTR(version);
 745MODINFO_ATTR(srcversion);
 746
 747static char last_unloaded_module[MODULE_NAME_LEN+1];
 748
 749#ifdef CONFIG_MODULE_UNLOAD
 750
 751EXPORT_TRACEPOINT_SYMBOL(module_get);
 752
 753/* MODULE_REF_BASE is the base reference count by kmodule loader. */
 754#define MODULE_REF_BASE	1
 755
 756/* Init the unload section of the module. */
 757static int module_unload_init(struct module *mod)
 758{
 759	/*
 760	 * Initialize reference counter to MODULE_REF_BASE.
 761	 * refcnt == 0 means module is going.
 762	 */
 763	atomic_set(&mod->refcnt, MODULE_REF_BASE);
 764
 765	INIT_LIST_HEAD(&mod->source_list);
 766	INIT_LIST_HEAD(&mod->target_list);
 767
 768	/* Hold reference count during initialization. */
 769	atomic_inc(&mod->refcnt);
 770
 771	return 0;
 772}
 773
 774/* Does a already use b? */
 775static int already_uses(struct module *a, struct module *b)
 776{
 777	struct module_use *use;
 778
 779	list_for_each_entry(use, &b->source_list, source_list) {
 780		if (use->source == a) {
 781			pr_debug("%s uses %s!\n", a->name, b->name);
 782			return 1;
 783		}
 784	}
 785	pr_debug("%s does not use %s!\n", a->name, b->name);
 786	return 0;
 787}
 788
 789/*
 790 * Module a uses b
 791 *  - we add 'a' as a "source", 'b' as a "target" of module use
 792 *  - the module_use is added to the list of 'b' sources (so
 793 *    'b' can walk the list to see who sourced them), and of 'a'
 794 *    targets (so 'a' can see what modules it targets).
 795 */
 796static int add_module_usage(struct module *a, struct module *b)
 797{
 798	struct module_use *use;
 799
 800	pr_debug("Allocating new usage for %s.\n", a->name);
 801	use = kmalloc(sizeof(*use), GFP_ATOMIC);
 802	if (!use)
 
 803		return -ENOMEM;
 
 804
 805	use->source = a;
 806	use->target = b;
 807	list_add(&use->source_list, &b->source_list);
 808	list_add(&use->target_list, &a->target_list);
 809	return 0;
 810}
 811
 812/* Module a uses b: caller needs module_mutex() */
 813static int ref_module(struct module *a, struct module *b)
 814{
 815	int err;
 816
 817	if (b == NULL || already_uses(a, b))
 818		return 0;
 819
 820	/* If module isn't available, we fail. */
 821	err = strong_try_module_get(b);
 822	if (err)
 823		return err;
 824
 825	err = add_module_usage(a, b);
 826	if (err) {
 827		module_put(b);
 828		return err;
 829	}
 830	return 0;
 831}
 
 832
 833/* Clear the unload stuff of the module. */
 834static void module_unload_free(struct module *mod)
 835{
 836	struct module_use *use, *tmp;
 837
 838	mutex_lock(&module_mutex);
 839	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
 840		struct module *i = use->target;
 841		pr_debug("%s unusing %s\n", mod->name, i->name);
 842		module_put(i);
 843		list_del(&use->source_list);
 844		list_del(&use->target_list);
 845		kfree(use);
 846	}
 847	mutex_unlock(&module_mutex);
 848}
 849
 850#ifdef CONFIG_MODULE_FORCE_UNLOAD
 851static inline int try_force_unload(unsigned int flags)
 852{
 853	int ret = (flags & O_TRUNC);
 854	if (ret)
 855		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
 856	return ret;
 857}
 858#else
 859static inline int try_force_unload(unsigned int flags)
 860{
 861	return 0;
 862}
 863#endif /* CONFIG_MODULE_FORCE_UNLOAD */
 864
 865/* Try to release refcount of module, 0 means success. */
 866static int try_release_module_ref(struct module *mod)
 867{
 868	int ret;
 869
 870	/* Try to decrement refcnt which we set at loading */
 871	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
 872	BUG_ON(ret < 0);
 873	if (ret)
 874		/* Someone can put this right now, recover with checking */
 875		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
 876
 877	return ret;
 878}
 879
 880static int try_stop_module(struct module *mod, int flags, int *forced)
 881{
 882	/* If it's not unused, quit unless we're forcing. */
 883	if (try_release_module_ref(mod) != 0) {
 884		*forced = try_force_unload(flags);
 885		if (!(*forced))
 886			return -EWOULDBLOCK;
 887	}
 888
 889	/* Mark it as dying. */
 890	mod->state = MODULE_STATE_GOING;
 891
 892	return 0;
 893}
 894
 895/**
 896 * module_refcount() - return the refcount or -1 if unloading
 
 897 * @mod:	the module we're checking
 898 *
 899 * Return:
 900 *	-1 if the module is in the process of unloading
 901 *	otherwise the number of references in the kernel to the module
 902 */
 903int module_refcount(struct module *mod)
 904{
 905	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
 906}
 907EXPORT_SYMBOL(module_refcount);
 908
 909/* This exists whether we can unload or not */
 910static void free_module(struct module *mod);
 911
 912SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
 913		unsigned int, flags)
 914{
 915	struct module *mod;
 916	char name[MODULE_NAME_LEN];
 917	int ret, forced = 0;
 918
 919	if (!capable(CAP_SYS_MODULE) || modules_disabled)
 920		return -EPERM;
 921
 922	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
 923		return -EFAULT;
 924	name[MODULE_NAME_LEN-1] = '\0';
 925
 926	audit_log_kern_module(name);
 927
 928	if (mutex_lock_interruptible(&module_mutex) != 0)
 929		return -EINTR;
 930
 931	mod = find_module(name);
 932	if (!mod) {
 933		ret = -ENOENT;
 934		goto out;
 935	}
 936
 937	if (!list_empty(&mod->source_list)) {
 938		/* Other modules depend on us: get rid of them first. */
 939		ret = -EWOULDBLOCK;
 940		goto out;
 941	}
 942
 943	/* Doing init or already dying? */
 944	if (mod->state != MODULE_STATE_LIVE) {
 945		/* FIXME: if (force), slam module count damn the torpedoes */
 946		pr_debug("%s already dying\n", mod->name);
 947		ret = -EBUSY;
 948		goto out;
 949	}
 950
 951	/* If it has an init func, it must have an exit func to unload */
 952	if (mod->init && !mod->exit) {
 953		forced = try_force_unload(flags);
 954		if (!forced) {
 955			/* This module can't be removed */
 956			ret = -EBUSY;
 957			goto out;
 958		}
 959	}
 960
 961	/* Stop the machine so refcounts can't move and disable module. */
 962	ret = try_stop_module(mod, flags, &forced);
 963	if (ret != 0)
 964		goto out;
 965
 966	mutex_unlock(&module_mutex);
 967	/* Final destruction now no one is using it. */
 968	if (mod->exit != NULL)
 969		mod->exit();
 970	blocking_notifier_call_chain(&module_notify_list,
 971				     MODULE_STATE_GOING, mod);
 972	klp_module_going(mod);
 973	ftrace_release_mod(mod);
 974
 975	async_synchronize_full();
 976
 977	/* Store the name of the last unloaded module for diagnostic purposes */
 978	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
 979
 980	free_module(mod);
 981	/* someone could wait for the module in add_unformed_module() */
 982	wake_up_all(&module_wq);
 983	return 0;
 984out:
 985	mutex_unlock(&module_mutex);
 986	return ret;
 987}
 988
 989static inline void print_unload_info(struct seq_file *m, struct module *mod)
 990{
 991	struct module_use *use;
 992	int printed_something = 0;
 993
 994	seq_printf(m, " %i ", module_refcount(mod));
 995
 996	/*
 997	 * Always include a trailing , so userspace can differentiate
 998	 * between this and the old multi-field proc format.
 999	 */
1000	list_for_each_entry(use, &mod->source_list, source_list) {
1001		printed_something = 1;
1002		seq_printf(m, "%s,", use->source->name);
1003	}
1004
1005	if (mod->init != NULL && mod->exit == NULL) {
1006		printed_something = 1;
1007		seq_puts(m, "[permanent],");
1008	}
1009
1010	if (!printed_something)
1011		seq_puts(m, "-");
1012}
1013
1014void __symbol_put(const char *symbol)
1015{
1016	struct find_symbol_arg fsa = {
1017		.name	= symbol,
1018		.gplok	= true,
1019	};
1020
1021	preempt_disable();
1022	BUG_ON(!find_symbol(&fsa));
1023	module_put(fsa.owner);
 
1024	preempt_enable();
1025}
1026EXPORT_SYMBOL(__symbol_put);
1027
1028/* Note this assumes addr is a function, which it currently always is. */
1029void symbol_put_addr(void *addr)
1030{
1031	struct module *modaddr;
1032	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1033
1034	if (core_kernel_text(a))
1035		return;
1036
1037	/*
1038	 * Even though we hold a reference on the module; we still need to
1039	 * disable preemption in order to safely traverse the data structure.
1040	 */
1041	preempt_disable();
1042	modaddr = __module_text_address(a);
1043	BUG_ON(!modaddr);
1044	module_put(modaddr);
1045	preempt_enable();
1046}
1047EXPORT_SYMBOL_GPL(symbol_put_addr);
1048
1049static ssize_t show_refcnt(struct module_attribute *mattr,
1050			   struct module_kobject *mk, char *buffer)
1051{
1052	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1053}
1054
1055static struct module_attribute modinfo_refcnt =
1056	__ATTR(refcnt, 0444, show_refcnt, NULL);
1057
1058void __module_get(struct module *module)
1059{
1060	if (module) {
1061		preempt_disable();
1062		atomic_inc(&module->refcnt);
1063		trace_module_get(module, _RET_IP_);
1064		preempt_enable();
1065	}
1066}
1067EXPORT_SYMBOL(__module_get);
1068
1069bool try_module_get(struct module *module)
1070{
1071	bool ret = true;
1072
1073	if (module) {
1074		preempt_disable();
1075		/* Note: here, we can fail to get a reference */
1076		if (likely(module_is_live(module) &&
1077			   atomic_inc_not_zero(&module->refcnt) != 0))
1078			trace_module_get(module, _RET_IP_);
1079		else
1080			ret = false;
1081
1082		preempt_enable();
1083	}
1084	return ret;
1085}
1086EXPORT_SYMBOL(try_module_get);
1087
1088void module_put(struct module *module)
1089{
1090	int ret;
1091
1092	if (module) {
1093		preempt_disable();
1094		ret = atomic_dec_if_positive(&module->refcnt);
1095		WARN_ON(ret < 0);	/* Failed to put refcount */
1096		trace_module_put(module, _RET_IP_);
1097		preempt_enable();
1098	}
1099}
1100EXPORT_SYMBOL(module_put);
1101
1102#else /* !CONFIG_MODULE_UNLOAD */
1103static inline void print_unload_info(struct seq_file *m, struct module *mod)
1104{
1105	/* We don't know the usage count, or what modules are using. */
1106	seq_puts(m, " - -");
1107}
1108
1109static inline void module_unload_free(struct module *mod)
1110{
1111}
1112
1113static int ref_module(struct module *a, struct module *b)
1114{
1115	return strong_try_module_get(b);
1116}
 
1117
1118static inline int module_unload_init(struct module *mod)
1119{
1120	return 0;
1121}
1122#endif /* CONFIG_MODULE_UNLOAD */
1123
1124static size_t module_flags_taint(struct module *mod, char *buf)
1125{
1126	size_t l = 0;
1127	int i;
1128
1129	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1130		if (taint_flags[i].module && test_bit(i, &mod->taints))
1131			buf[l++] = taint_flags[i].c_true;
1132	}
1133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1134	return l;
1135}
1136
1137static ssize_t show_initstate(struct module_attribute *mattr,
1138			      struct module_kobject *mk, char *buffer)
1139{
1140	const char *state = "unknown";
1141
1142	switch (mk->mod->state) {
1143	case MODULE_STATE_LIVE:
1144		state = "live";
1145		break;
1146	case MODULE_STATE_COMING:
1147		state = "coming";
1148		break;
1149	case MODULE_STATE_GOING:
1150		state = "going";
1151		break;
1152	default:
1153		BUG();
1154	}
1155	return sprintf(buffer, "%s\n", state);
1156}
1157
1158static struct module_attribute modinfo_initstate =
1159	__ATTR(initstate, 0444, show_initstate, NULL);
1160
1161static ssize_t store_uevent(struct module_attribute *mattr,
1162			    struct module_kobject *mk,
1163			    const char *buffer, size_t count)
1164{
1165	int rc;
1166
1167	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1168	return rc ? rc : count;
 
1169}
1170
1171struct module_attribute module_uevent =
1172	__ATTR(uevent, 0200, NULL, store_uevent);
1173
1174static ssize_t show_coresize(struct module_attribute *mattr,
1175			     struct module_kobject *mk, char *buffer)
1176{
1177	return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1178}
1179
1180static struct module_attribute modinfo_coresize =
1181	__ATTR(coresize, 0444, show_coresize, NULL);
1182
1183static ssize_t show_initsize(struct module_attribute *mattr,
1184			     struct module_kobject *mk, char *buffer)
1185{
1186	return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1187}
1188
1189static struct module_attribute modinfo_initsize =
1190	__ATTR(initsize, 0444, show_initsize, NULL);
1191
1192static ssize_t show_taint(struct module_attribute *mattr,
1193			  struct module_kobject *mk, char *buffer)
1194{
1195	size_t l;
1196
1197	l = module_flags_taint(mk->mod, buffer);
1198	buffer[l++] = '\n';
1199	return l;
1200}
1201
1202static struct module_attribute modinfo_taint =
1203	__ATTR(taint, 0444, show_taint, NULL);
1204
1205static struct module_attribute *modinfo_attrs[] = {
1206	&module_uevent,
1207	&modinfo_version,
1208	&modinfo_srcversion,
1209	&modinfo_initstate,
1210	&modinfo_coresize,
1211	&modinfo_initsize,
1212	&modinfo_taint,
1213#ifdef CONFIG_MODULE_UNLOAD
1214	&modinfo_refcnt,
1215#endif
1216	NULL,
1217};
1218
1219static const char vermagic[] = VERMAGIC_STRING;
1220
1221static int try_to_force_load(struct module *mod, const char *reason)
1222{
1223#ifdef CONFIG_MODULE_FORCE_LOAD
1224	if (!test_taint(TAINT_FORCED_MODULE))
1225		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1226	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1227	return 0;
1228#else
1229	return -ENOEXEC;
1230#endif
1231}
1232
1233#ifdef CONFIG_MODVERSIONS
1234
1235static u32 resolve_rel_crc(const s32 *crc)
 
1236{
1237	return *(u32 *)((void *)crc + *crc);
 
 
 
 
1238}
1239
1240static int check_version(const struct load_info *info,
 
1241			 const char *symname,
1242			 struct module *mod,
1243			 const s32 *crc)
 
1244{
1245	Elf_Shdr *sechdrs = info->sechdrs;
1246	unsigned int versindex = info->index.vers;
1247	unsigned int i, num_versions;
1248	struct modversion_info *versions;
1249
1250	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1251	if (!crc)
1252		return 1;
1253
1254	/* No versions at all?  modprobe --force does this. */
1255	if (versindex == 0)
1256		return try_to_force_load(mod, symname) == 0;
1257
1258	versions = (void *) sechdrs[versindex].sh_addr;
1259	num_versions = sechdrs[versindex].sh_size
1260		/ sizeof(struct modversion_info);
1261
1262	for (i = 0; i < num_versions; i++) {
1263		u32 crcval;
1264
1265		if (strcmp(versions[i].name, symname) != 0)
1266			continue;
1267
1268		if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1269			crcval = resolve_rel_crc(crc);
1270		else
1271			crcval = *crc;
1272		if (versions[i].crc == crcval)
1273			return 1;
1274		pr_debug("Found checksum %X vs module %lX\n",
1275			 crcval, versions[i].crc);
1276		goto bad_version;
1277	}
1278
1279	/* Broken toolchain. Warn once, then let it go.. */
1280	pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1281	return 1;
1282
1283bad_version:
1284	pr_warn("%s: disagrees about version of symbol %s\n",
1285	       info->name, symname);
1286	return 0;
1287}
1288
1289static inline int check_modstruct_version(const struct load_info *info,
 
1290					  struct module *mod)
1291{
1292	struct find_symbol_arg fsa = {
1293		.name	= "module_layout",
1294		.gplok	= true,
1295	};
1296
1297	/*
1298	 * Since this should be found in kernel (which can't be removed), no
1299	 * locking is necessary -- use preempt_disable() to placate lockdep.
1300	 */
1301	preempt_disable();
1302	if (!find_symbol(&fsa)) {
 
1303		preempt_enable();
1304		BUG();
1305	}
1306	preempt_enable();
1307	return check_version(info, "module_layout", mod, fsa.crc);
 
 
1308}
1309
1310/* First part is kernel version, which we ignore if module has crcs. */
1311static inline int same_magic(const char *amagic, const char *bmagic,
1312			     bool has_crcs)
1313{
1314	if (has_crcs) {
1315		amagic += strcspn(amagic, " ");
1316		bmagic += strcspn(bmagic, " ");
1317	}
1318	return strcmp(amagic, bmagic) == 0;
1319}
1320#else
1321static inline int check_version(const struct load_info *info,
 
1322				const char *symname,
1323				struct module *mod,
1324				const s32 *crc)
 
1325{
1326	return 1;
1327}
1328
1329static inline int check_modstruct_version(const struct load_info *info,
 
1330					  struct module *mod)
1331{
1332	return 1;
1333}
1334
1335static inline int same_magic(const char *amagic, const char *bmagic,
1336			     bool has_crcs)
1337{
1338	return strcmp(amagic, bmagic) == 0;
1339}
1340#endif /* CONFIG_MODVERSIONS */
1341
1342static char *get_modinfo(const struct load_info *info, const char *tag);
1343static char *get_next_modinfo(const struct load_info *info, const char *tag,
1344			      char *prev);
1345
1346static int verify_namespace_is_imported(const struct load_info *info,
1347					const struct kernel_symbol *sym,
1348					struct module *mod)
1349{
1350	const char *namespace;
1351	char *imported_namespace;
1352
1353	namespace = kernel_symbol_namespace(sym);
1354	if (namespace && namespace[0]) {
1355		imported_namespace = get_modinfo(info, "import_ns");
1356		while (imported_namespace) {
1357			if (strcmp(namespace, imported_namespace) == 0)
1358				return 0;
1359			imported_namespace = get_next_modinfo(
1360				info, "import_ns", imported_namespace);
1361		}
1362#ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1363		pr_warn(
1364#else
1365		pr_err(
1366#endif
1367			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1368			mod->name, kernel_symbol_name(sym), namespace);
1369#ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1370		return -EINVAL;
1371#endif
1372	}
1373	return 0;
1374}
1375
1376static bool inherit_taint(struct module *mod, struct module *owner)
1377{
1378	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1379		return true;
1380
1381	if (mod->using_gplonly_symbols) {
1382		pr_err("%s: module using GPL-only symbols uses symbols from proprietary module %s.\n",
1383			mod->name, owner->name);
1384		return false;
1385	}
1386
1387	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1388		pr_warn("%s: module uses symbols from proprietary module %s, inheriting taint.\n",
1389			mod->name, owner->name);
1390		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1391	}
1392	return true;
1393}
1394
1395/* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1396static const struct kernel_symbol *resolve_symbol(struct module *mod,
1397						  const struct load_info *info,
1398						  const char *name,
1399						  char ownername[])
1400{
1401	struct find_symbol_arg fsa = {
1402		.name	= name,
1403		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1404		.warn	= true,
1405	};
1406	int err;
1407
1408	/*
1409	 * The module_mutex should not be a heavily contended lock;
1410	 * if we get the occasional sleep here, we'll go an extra iteration
1411	 * in the wait_event_interruptible(), which is harmless.
1412	 */
1413	sched_annotate_sleep();
1414	mutex_lock(&module_mutex);
1415	if (!find_symbol(&fsa))
 
 
1416		goto unlock;
1417
1418	if (fsa.license == GPL_ONLY)
1419		mod->using_gplonly_symbols = true;
1420
1421	if (!inherit_taint(mod, fsa.owner)) {
1422		fsa.sym = NULL;
1423		goto getname;
1424	}
1425
1426	if (!check_version(info, name, mod, fsa.crc)) {
1427		fsa.sym = ERR_PTR(-EINVAL);
1428		goto getname;
1429	}
1430
1431	err = verify_namespace_is_imported(info, fsa.sym, mod);
1432	if (err) {
1433		fsa.sym = ERR_PTR(err);
1434		goto getname;
1435	}
1436
1437	err = ref_module(mod, fsa.owner);
1438	if (err) {
1439		fsa.sym = ERR_PTR(err);
1440		goto getname;
1441	}
1442
1443getname:
1444	/* We must make copy under the lock if we failed to get ref. */
1445	strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1446unlock:
1447	mutex_unlock(&module_mutex);
1448	return fsa.sym;
1449}
1450
1451static const struct kernel_symbol *
1452resolve_symbol_wait(struct module *mod,
1453		    const struct load_info *info,
1454		    const char *name)
1455{
1456	const struct kernel_symbol *ksym;
1457	char owner[MODULE_NAME_LEN];
1458
1459	if (wait_event_interruptible_timeout(module_wq,
1460			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1461			|| PTR_ERR(ksym) != -EBUSY,
1462					     30 * HZ) <= 0) {
1463		pr_warn("%s: gave up waiting for init of module %s.\n",
1464			mod->name, owner);
1465	}
1466	return ksym;
1467}
1468
1469#ifdef CONFIG_KALLSYMS
1470static inline bool sect_empty(const Elf_Shdr *sect)
1471{
1472	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1473}
1474#endif
1475
1476/*
1477 * /sys/module/foo/sections stuff
1478 * J. Corbet <corbet@lwn.net>
1479 */
1480#ifdef CONFIG_SYSFS
1481
1482#ifdef CONFIG_KALLSYMS
 
 
 
 
 
1483struct module_sect_attr {
1484	struct bin_attribute battr;
 
1485	unsigned long address;
1486};
1487
1488struct module_sect_attrs {
1489	struct attribute_group grp;
1490	unsigned int nsections;
1491	struct module_sect_attr attrs[];
1492};
1493
1494#define MODULE_SECT_READ_SIZE (3 /* "0x", "\n" */ + (BITS_PER_LONG / 4))
1495static ssize_t module_sect_read(struct file *file, struct kobject *kobj,
1496				struct bin_attribute *battr,
1497				char *buf, loff_t pos, size_t count)
1498{
1499	struct module_sect_attr *sattr =
1500		container_of(battr, struct module_sect_attr, battr);
1501	char bounce[MODULE_SECT_READ_SIZE + 1];
1502	size_t wrote;
1503
1504	if (pos != 0)
1505		return -EINVAL;
1506
1507	/*
1508	 * Since we're a binary read handler, we must account for the
1509	 * trailing NUL byte that sprintf will write: if "buf" is
1510	 * too small to hold the NUL, or the NUL is exactly the last
1511	 * byte, the read will look like it got truncated by one byte.
1512	 * Since there is no way to ask sprintf nicely to not write
1513	 * the NUL, we have to use a bounce buffer.
1514	 */
1515	wrote = scnprintf(bounce, sizeof(bounce), "0x%px\n",
1516			 kallsyms_show_value(file->f_cred)
1517				? (void *)sattr->address : NULL);
1518	count = min(count, wrote);
1519	memcpy(buf, bounce, count);
1520
1521	return count;
1522}
1523
1524static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1525{
1526	unsigned int section;
1527
1528	for (section = 0; section < sect_attrs->nsections; section++)
1529		kfree(sect_attrs->attrs[section].battr.attr.name);
1530	kfree(sect_attrs);
1531}
1532
1533static void add_sect_attrs(struct module *mod, const struct load_info *info)
1534{
1535	unsigned int nloaded = 0, i, size[2];
1536	struct module_sect_attrs *sect_attrs;
1537	struct module_sect_attr *sattr;
1538	struct bin_attribute **gattr;
1539
1540	/* Count loaded sections and allocate structures */
1541	for (i = 0; i < info->hdr->e_shnum; i++)
1542		if (!sect_empty(&info->sechdrs[i]))
1543			nloaded++;
1544	size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1545			sizeof(sect_attrs->grp.bin_attrs[0]));
1546	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.bin_attrs[0]);
 
1547	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1548	if (sect_attrs == NULL)
1549		return;
1550
1551	/* Setup section attributes. */
1552	sect_attrs->grp.name = "sections";
1553	sect_attrs->grp.bin_attrs = (void *)sect_attrs + size[0];
1554
1555	sect_attrs->nsections = 0;
1556	sattr = &sect_attrs->attrs[0];
1557	gattr = &sect_attrs->grp.bin_attrs[0];
1558	for (i = 0; i < info->hdr->e_shnum; i++) {
1559		Elf_Shdr *sec = &info->sechdrs[i];
1560		if (sect_empty(sec))
1561			continue;
1562		sysfs_bin_attr_init(&sattr->battr);
1563		sattr->address = sec->sh_addr;
1564		sattr->battr.attr.name =
1565			kstrdup(info->secstrings + sec->sh_name, GFP_KERNEL);
1566		if (sattr->battr.attr.name == NULL)
1567			goto out;
1568		sect_attrs->nsections++;
1569		sattr->battr.read = module_sect_read;
1570		sattr->battr.size = MODULE_SECT_READ_SIZE;
1571		sattr->battr.attr.mode = 0400;
1572		*(gattr++) = &(sattr++)->battr;
 
 
1573	}
1574	*gattr = NULL;
1575
1576	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1577		goto out;
1578
1579	mod->sect_attrs = sect_attrs;
1580	return;
1581  out:
1582	free_sect_attrs(sect_attrs);
1583}
1584
1585static void remove_sect_attrs(struct module *mod)
1586{
1587	if (mod->sect_attrs) {
1588		sysfs_remove_group(&mod->mkobj.kobj,
1589				   &mod->sect_attrs->grp);
1590		/*
1591		 * We are positive that no one is using any sect attrs
1592		 * at this point.  Deallocate immediately.
1593		 */
1594		free_sect_attrs(mod->sect_attrs);
1595		mod->sect_attrs = NULL;
1596	}
1597}
1598
1599/*
1600 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1601 */
1602
1603struct module_notes_attrs {
1604	struct kobject *dir;
1605	unsigned int notes;
1606	struct bin_attribute attrs[];
1607};
1608
1609static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1610				 struct bin_attribute *bin_attr,
1611				 char *buf, loff_t pos, size_t count)
1612{
1613	/*
1614	 * The caller checked the pos and count against our size.
1615	 */
1616	memcpy(buf, bin_attr->private + pos, count);
1617	return count;
1618}
1619
1620static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1621			     unsigned int i)
1622{
1623	if (notes_attrs->dir) {
1624		while (i-- > 0)
1625			sysfs_remove_bin_file(notes_attrs->dir,
1626					      &notes_attrs->attrs[i]);
1627		kobject_put(notes_attrs->dir);
1628	}
1629	kfree(notes_attrs);
1630}
1631
1632static void add_notes_attrs(struct module *mod, const struct load_info *info)
1633{
1634	unsigned int notes, loaded, i;
1635	struct module_notes_attrs *notes_attrs;
1636	struct bin_attribute *nattr;
1637
1638	/* failed to create section attributes, so can't create notes */
1639	if (!mod->sect_attrs)
1640		return;
1641
1642	/* Count notes sections and allocate structures.  */
1643	notes = 0;
1644	for (i = 0; i < info->hdr->e_shnum; i++)
1645		if (!sect_empty(&info->sechdrs[i]) &&
1646		    (info->sechdrs[i].sh_type == SHT_NOTE))
1647			++notes;
1648
1649	if (notes == 0)
1650		return;
1651
1652	notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
 
1653			      GFP_KERNEL);
1654	if (notes_attrs == NULL)
1655		return;
1656
1657	notes_attrs->notes = notes;
1658	nattr = &notes_attrs->attrs[0];
1659	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1660		if (sect_empty(&info->sechdrs[i]))
1661			continue;
1662		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1663			sysfs_bin_attr_init(nattr);
1664			nattr->attr.name = mod->sect_attrs->attrs[loaded].battr.attr.name;
1665			nattr->attr.mode = S_IRUGO;
1666			nattr->size = info->sechdrs[i].sh_size;
1667			nattr->private = (void *) info->sechdrs[i].sh_addr;
1668			nattr->read = module_notes_read;
1669			++nattr;
1670		}
1671		++loaded;
1672	}
1673
1674	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1675	if (!notes_attrs->dir)
1676		goto out;
1677
1678	for (i = 0; i < notes; ++i)
1679		if (sysfs_create_bin_file(notes_attrs->dir,
1680					  &notes_attrs->attrs[i]))
1681			goto out;
1682
1683	mod->notes_attrs = notes_attrs;
1684	return;
1685
1686  out:
1687	free_notes_attrs(notes_attrs, i);
1688}
1689
1690static void remove_notes_attrs(struct module *mod)
1691{
1692	if (mod->notes_attrs)
1693		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1694}
1695
1696#else
1697
1698static inline void add_sect_attrs(struct module *mod,
1699				  const struct load_info *info)
1700{
1701}
1702
1703static inline void remove_sect_attrs(struct module *mod)
1704{
1705}
1706
1707static inline void add_notes_attrs(struct module *mod,
1708				   const struct load_info *info)
1709{
1710}
1711
1712static inline void remove_notes_attrs(struct module *mod)
1713{
1714}
1715#endif /* CONFIG_KALLSYMS */
1716
1717static void del_usage_links(struct module *mod)
1718{
1719#ifdef CONFIG_MODULE_UNLOAD
1720	struct module_use *use;
 
1721
1722	mutex_lock(&module_mutex);
1723	list_for_each_entry(use, &mod->target_list, target_list)
1724		sysfs_remove_link(use->target->holders_dir, mod->name);
 
 
1725	mutex_unlock(&module_mutex);
1726#endif
1727}
1728
1729static int add_usage_links(struct module *mod)
1730{
1731	int ret = 0;
1732#ifdef CONFIG_MODULE_UNLOAD
1733	struct module_use *use;
1734
1735	mutex_lock(&module_mutex);
1736	list_for_each_entry(use, &mod->target_list, target_list) {
1737		ret = sysfs_create_link(use->target->holders_dir,
1738					&mod->mkobj.kobj, mod->name);
1739		if (ret)
1740			break;
1741	}
1742	mutex_unlock(&module_mutex);
1743	if (ret)
1744		del_usage_links(mod);
1745#endif
1746	return ret;
1747}
1748
1749static void module_remove_modinfo_attrs(struct module *mod, int end);
1750
1751static int module_add_modinfo_attrs(struct module *mod)
1752{
1753	struct module_attribute *attr;
1754	struct module_attribute *temp_attr;
1755	int error = 0;
1756	int i;
1757
1758	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1759					(ARRAY_SIZE(modinfo_attrs) + 1)),
1760					GFP_KERNEL);
1761	if (!mod->modinfo_attrs)
1762		return -ENOMEM;
1763
1764	temp_attr = mod->modinfo_attrs;
1765	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1766		if (!attr->test || attr->test(mod)) {
 
1767			memcpy(temp_attr, attr, sizeof(*temp_attr));
1768			sysfs_attr_init(&temp_attr->attr);
1769			error = sysfs_create_file(&mod->mkobj.kobj,
1770					&temp_attr->attr);
1771			if (error)
1772				goto error_out;
1773			++temp_attr;
1774		}
1775	}
1776
1777	return 0;
1778
1779error_out:
1780	if (i > 0)
1781		module_remove_modinfo_attrs(mod, --i);
1782	else
1783		kfree(mod->modinfo_attrs);
1784	return error;
1785}
1786
1787static void module_remove_modinfo_attrs(struct module *mod, int end)
1788{
1789	struct module_attribute *attr;
1790	int i;
1791
1792	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1793		if (end >= 0 && i > end)
1794			break;
1795		/* pick a field to test for end of list */
1796		if (!attr->attr.name)
1797			break;
1798		sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1799		if (attr->free)
1800			attr->free(mod);
1801	}
1802	kfree(mod->modinfo_attrs);
1803}
1804
1805static void mod_kobject_put(struct module *mod)
1806{
1807	DECLARE_COMPLETION_ONSTACK(c);
1808	mod->mkobj.kobj_completion = &c;
1809	kobject_put(&mod->mkobj.kobj);
1810	wait_for_completion(&c);
1811}
1812
1813static int mod_sysfs_init(struct module *mod)
1814{
1815	int err;
1816	struct kobject *kobj;
1817
1818	if (!module_sysfs_initialized) {
1819		pr_err("%s: module sysfs not initialized\n", mod->name);
1820		err = -EINVAL;
1821		goto out;
1822	}
1823
1824	kobj = kset_find_obj(module_kset, mod->name);
1825	if (kobj) {
1826		pr_err("%s: module is already loaded\n", mod->name);
1827		kobject_put(kobj);
1828		err = -EINVAL;
1829		goto out;
1830	}
1831
1832	mod->mkobj.mod = mod;
1833
1834	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1835	mod->mkobj.kobj.kset = module_kset;
1836	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1837				   "%s", mod->name);
1838	if (err)
1839		mod_kobject_put(mod);
1840
 
1841out:
1842	return err;
1843}
1844
1845static int mod_sysfs_setup(struct module *mod,
1846			   const struct load_info *info,
1847			   struct kernel_param *kparam,
1848			   unsigned int num_params)
1849{
1850	int err;
1851
1852	err = mod_sysfs_init(mod);
1853	if (err)
1854		goto out;
1855
1856	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1857	if (!mod->holders_dir) {
1858		err = -ENOMEM;
1859		goto out_unreg;
1860	}
1861
1862	err = module_param_sysfs_setup(mod, kparam, num_params);
1863	if (err)
1864		goto out_unreg_holders;
1865
1866	err = module_add_modinfo_attrs(mod);
1867	if (err)
1868		goto out_unreg_param;
1869
1870	err = add_usage_links(mod);
1871	if (err)
1872		goto out_unreg_modinfo_attrs;
1873
1874	add_sect_attrs(mod, info);
1875	add_notes_attrs(mod, info);
1876
 
1877	return 0;
1878
1879out_unreg_modinfo_attrs:
1880	module_remove_modinfo_attrs(mod, -1);
1881out_unreg_param:
1882	module_param_sysfs_remove(mod);
1883out_unreg_holders:
1884	kobject_put(mod->holders_dir);
1885out_unreg:
1886	mod_kobject_put(mod);
1887out:
1888	return err;
1889}
1890
1891static void mod_sysfs_fini(struct module *mod)
1892{
1893	remove_notes_attrs(mod);
1894	remove_sect_attrs(mod);
1895	mod_kobject_put(mod);
1896}
1897
1898static void init_param_lock(struct module *mod)
1899{
1900	mutex_init(&mod->param_lock);
1901}
1902#else /* !CONFIG_SYSFS */
1903
1904static int mod_sysfs_setup(struct module *mod,
1905			   const struct load_info *info,
1906			   struct kernel_param *kparam,
1907			   unsigned int num_params)
1908{
1909	return 0;
1910}
1911
1912static void mod_sysfs_fini(struct module *mod)
1913{
1914}
1915
1916static void module_remove_modinfo_attrs(struct module *mod, int end)
1917{
1918}
1919
1920static void del_usage_links(struct module *mod)
1921{
1922}
1923
1924static void init_param_lock(struct module *mod)
1925{
1926}
1927#endif /* CONFIG_SYSFS */
1928
1929static void mod_sysfs_teardown(struct module *mod)
1930{
1931	del_usage_links(mod);
1932	module_remove_modinfo_attrs(mod, -1);
1933	module_param_sysfs_remove(mod);
1934	kobject_put(mod->mkobj.drivers_dir);
1935	kobject_put(mod->holders_dir);
1936	mod_sysfs_fini(mod);
1937}
1938
 
1939/*
1940 * LKM RO/NX protection: protect module's text/ro-data
1941 * from modification and any data from execution.
1942 *
1943 * General layout of module is:
1944 *          [text] [read-only-data] [ro-after-init] [writable data]
1945 * text_size -----^                ^               ^               ^
1946 * ro_size ------------------------|               |               |
1947 * ro_after_init_size -----------------------------|               |
1948 * size -----------------------------------------------------------|
1949 *
1950 * These values are always page-aligned (as is base)
1951 */
1952
1953/*
1954 * Since some arches are moving towards PAGE_KERNEL module allocations instead
1955 * of PAGE_KERNEL_EXEC, keep frob_text() and module_enable_x() outside of the
1956 * CONFIG_STRICT_MODULE_RWX block below because they are needed regardless of
1957 * whether we are strict.
1958 */
1959#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
1960static void frob_text(const struct module_layout *layout,
1961		      int (*set_memory)(unsigned long start, int num_pages))
1962{
1963	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1964	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1965	set_memory((unsigned long)layout->base,
1966		   layout->text_size >> PAGE_SHIFT);
1967}
1968
1969static void module_enable_x(const struct module *mod)
1970{
1971	frob_text(&mod->core_layout, set_memory_x);
1972	frob_text(&mod->init_layout, set_memory_x);
1973}
1974#else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
1975static void module_enable_x(const struct module *mod) { }
1976#endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
1977
1978#ifdef CONFIG_STRICT_MODULE_RWX
1979static void frob_rodata(const struct module_layout *layout,
1980			int (*set_memory)(unsigned long start, int num_pages))
1981{
1982	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1983	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1984	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1985	set_memory((unsigned long)layout->base + layout->text_size,
1986		   (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1987}
1988
1989static void frob_ro_after_init(const struct module_layout *layout,
1990				int (*set_memory)(unsigned long start, int num_pages))
1991{
1992	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1993	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1994	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1995	set_memory((unsigned long)layout->base + layout->ro_size,
1996		   (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1997}
1998
1999static void frob_writable_data(const struct module_layout *layout,
2000			       int (*set_memory)(unsigned long start, int num_pages))
2001{
2002	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2003	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2004	BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
2005	set_memory((unsigned long)layout->base + layout->ro_after_init_size,
2006		   (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
2007}
2008
2009static void module_enable_ro(const struct module *mod, bool after_init)
2010{
2011	if (!rodata_enabled)
2012		return;
2013
2014	set_vm_flush_reset_perms(mod->core_layout.base);
2015	set_vm_flush_reset_perms(mod->init_layout.base);
2016	frob_text(&mod->core_layout, set_memory_ro);
2017
2018	frob_rodata(&mod->core_layout, set_memory_ro);
2019	frob_text(&mod->init_layout, set_memory_ro);
2020	frob_rodata(&mod->init_layout, set_memory_ro);
2021
2022	if (after_init)
2023		frob_ro_after_init(&mod->core_layout, set_memory_ro);
2024}
2025
2026static void module_enable_nx(const struct module *mod)
2027{
2028	frob_rodata(&mod->core_layout, set_memory_nx);
2029	frob_ro_after_init(&mod->core_layout, set_memory_nx);
2030	frob_writable_data(&mod->core_layout, set_memory_nx);
2031	frob_rodata(&mod->init_layout, set_memory_nx);
2032	frob_writable_data(&mod->init_layout, set_memory_nx);
2033}
2034
2035static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2036				       char *secstrings, struct module *mod)
2037{
2038	const unsigned long shf_wx = SHF_WRITE|SHF_EXECINSTR;
2039	int i;
 
 
 
2040
2041	for (i = 0; i < hdr->e_shnum; i++) {
2042		if ((sechdrs[i].sh_flags & shf_wx) == shf_wx) {
2043			pr_err("%s: section %s (index %d) has invalid WRITE|EXEC flags\n",
2044				mod->name, secstrings + sechdrs[i].sh_name, i);
2045			return -ENOEXEC;
2046		}
2047	}
2048
2049	return 0;
2050}
 
 
2051
2052#else /* !CONFIG_STRICT_MODULE_RWX */
2053static void module_enable_nx(const struct module *mod) { }
2054static void module_enable_ro(const struct module *mod, bool after_init) {}
2055static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2056				       char *secstrings, struct module *mod)
2057{
2058	return 0;
2059}
2060#endif /*  CONFIG_STRICT_MODULE_RWX */
2061
2062#ifdef CONFIG_LIVEPATCH
2063/*
2064 * Persist Elf information about a module. Copy the Elf header,
2065 * section header table, section string table, and symtab section
2066 * index from info to mod->klp_info.
2067 */
2068static int copy_module_elf(struct module *mod, struct load_info *info)
2069{
2070	unsigned int size, symndx;
2071	int ret;
2072
2073	size = sizeof(*mod->klp_info);
2074	mod->klp_info = kmalloc(size, GFP_KERNEL);
2075	if (mod->klp_info == NULL)
2076		return -ENOMEM;
2077
2078	/* Elf header */
2079	size = sizeof(mod->klp_info->hdr);
2080	memcpy(&mod->klp_info->hdr, info->hdr, size);
2081
2082	/* Elf section header table */
2083	size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2084	mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2085	if (mod->klp_info->sechdrs == NULL) {
2086		ret = -ENOMEM;
2087		goto free_info;
2088	}
2089
2090	/* Elf section name string table */
2091	size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2092	mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2093	if (mod->klp_info->secstrings == NULL) {
2094		ret = -ENOMEM;
2095		goto free_sechdrs;
2096	}
2097
2098	/* Elf symbol section index */
2099	symndx = info->index.sym;
2100	mod->klp_info->symndx = symndx;
2101
2102	/*
2103	 * For livepatch modules, core_kallsyms.symtab is a complete
2104	 * copy of the original symbol table. Adjust sh_addr to point
2105	 * to core_kallsyms.symtab since the copy of the symtab in module
2106	 * init memory is freed at the end of do_init_module().
2107	 */
2108	mod->klp_info->sechdrs[symndx].sh_addr = \
2109		(unsigned long) mod->core_kallsyms.symtab;
2110
2111	return 0;
2112
2113free_sechdrs:
2114	kfree(mod->klp_info->sechdrs);
2115free_info:
2116	kfree(mod->klp_info);
2117	return ret;
2118}
2119
2120static void free_module_elf(struct module *mod)
2121{
2122	kfree(mod->klp_info->sechdrs);
2123	kfree(mod->klp_info->secstrings);
2124	kfree(mod->klp_info);
2125}
2126#else /* !CONFIG_LIVEPATCH */
2127static int copy_module_elf(struct module *mod, struct load_info *info)
2128{
2129	return 0;
2130}
2131
2132static void free_module_elf(struct module *mod)
2133{
2134}
2135#endif /* CONFIG_LIVEPATCH */
 
2136
2137void __weak module_memfree(void *module_region)
2138{
2139	/*
2140	 * This memory may be RO, and freeing RO memory in an interrupt is not
2141	 * supported by vmalloc.
2142	 */
2143	WARN_ON(in_interrupt());
2144	vfree(module_region);
2145}
2146
2147void __weak module_arch_cleanup(struct module *mod)
2148{
2149}
2150
2151void __weak module_arch_freeing_init(struct module *mod)
2152{
2153}
2154
2155static void cfi_cleanup(struct module *mod);
2156
2157/* Free a module, remove from lists, etc. */
2158static void free_module(struct module *mod)
2159{
2160	trace_module_free(mod);
2161
2162	mod_sysfs_teardown(mod);
2163
2164	/*
2165	 * We leave it in list to prevent duplicate loads, but make sure
2166	 * that noone uses it while it's being deconstructed.
2167	 */
2168	mutex_lock(&module_mutex);
2169	mod->state = MODULE_STATE_UNFORMED;
2170	mutex_unlock(&module_mutex);
2171
2172	/* Remove dynamic debug info */
2173	ddebug_remove_module(mod->name);
2174
2175	/* Arch-specific cleanup. */
2176	module_arch_cleanup(mod);
2177
2178	/* Module unload stuff */
2179	module_unload_free(mod);
2180
2181	/* Free any allocated parameters. */
2182	destroy_params(mod->kp, mod->num_kp);
2183
2184	if (is_livepatch_module(mod))
2185		free_module_elf(mod);
2186
2187	/* Now we can delete it from the lists */
2188	mutex_lock(&module_mutex);
2189	/* Unlink carefully: kallsyms could be walking list. */
2190	list_del_rcu(&mod->list);
2191	mod_tree_remove(mod);
2192	/* Remove this module from bug list, this uses list_del_rcu */
2193	module_bug_cleanup(mod);
2194	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2195	synchronize_rcu();
2196	mutex_unlock(&module_mutex);
2197
2198	/* Clean up CFI for the module. */
2199	cfi_cleanup(mod);
2200
2201	/* This may be empty, but that's OK */
 
2202	module_arch_freeing_init(mod);
2203	module_memfree(mod->init_layout.base);
2204	kfree(mod->args);
2205	percpu_modfree(mod);
2206
2207	/* Free lock-classes; relies on the preceding sync_rcu(). */
2208	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2209
2210	/* Finally, free the core (containing the module structure) */
 
2211	module_memfree(mod->core_layout.base);
 
 
 
 
2212}
2213
2214void *__symbol_get(const char *symbol)
2215{
2216	struct find_symbol_arg fsa = {
2217		.name	= symbol,
2218		.gplok	= true,
2219		.warn	= true,
2220	};
2221
2222	preempt_disable();
2223	if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) {
2224		preempt_enable();
2225		return NULL;
2226	}
2227	preempt_enable();
2228	return (void *)kernel_symbol_value(fsa.sym);
 
2229}
2230EXPORT_SYMBOL_GPL(__symbol_get);
2231
2232/*
2233 * Ensure that an exported symbol [global namespace] does not already exist
2234 * in the kernel or in some other module's exported symbol table.
2235 *
2236 * You must hold the module_mutex.
2237 */
2238static int verify_exported_symbols(struct module *mod)
2239{
2240	unsigned int i;
 
2241	const struct kernel_symbol *s;
2242	struct {
2243		const struct kernel_symbol *sym;
2244		unsigned int num;
2245	} arr[] = {
2246		{ mod->syms, mod->num_syms },
2247		{ mod->gpl_syms, mod->num_gpl_syms },
 
 
 
 
 
2248	};
2249
2250	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2251		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2252			struct find_symbol_arg fsa = {
2253				.name	= kernel_symbol_name(s),
2254				.gplok	= true,
2255			};
2256			if (find_symbol(&fsa)) {
2257				pr_err("%s: exports duplicate symbol %s"
2258				       " (owned by %s)\n",
2259				       mod->name, kernel_symbol_name(s),
2260				       module_name(fsa.owner));
2261				return -ENOEXEC;
2262			}
2263		}
2264	}
2265	return 0;
2266}
2267
2268static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
2269{
2270	/*
2271	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
2272	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
2273	 * i386 has a similar problem but may not deserve a fix.
2274	 *
2275	 * If we ever have to ignore many symbols, consider refactoring the code to
2276	 * only warn if referenced by a relocation.
2277	 */
2278	if (emachine == EM_386 || emachine == EM_X86_64)
2279		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
2280	return false;
2281}
2282
2283/* Change all symbols so that st_value encodes the pointer directly. */
2284static int simplify_symbols(struct module *mod, const struct load_info *info)
2285{
2286	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2287	Elf_Sym *sym = (void *)symsec->sh_addr;
2288	unsigned long secbase;
2289	unsigned int i;
2290	int ret = 0;
2291	const struct kernel_symbol *ksym;
2292
2293	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2294		const char *name = info->strtab + sym[i].st_name;
2295
2296		switch (sym[i].st_shndx) {
2297		case SHN_COMMON:
2298			/* Ignore common symbols */
2299			if (!strncmp(name, "__gnu_lto", 9))
2300				break;
2301
2302			/*
2303			 * We compiled with -fno-common.  These are not
2304			 * supposed to happen.
2305			 */
2306			pr_debug("Common symbol: %s\n", name);
2307			pr_warn("%s: please compile with -fno-common\n",
2308			       mod->name);
2309			ret = -ENOEXEC;
2310			break;
2311
2312		case SHN_ABS:
2313			/* Don't need to do anything */
2314			pr_debug("Absolute symbol: 0x%08lx\n",
2315			       (long)sym[i].st_value);
2316			break;
2317
2318		case SHN_LIVEPATCH:
2319			/* Livepatch symbols are resolved by livepatch */
2320			break;
2321
2322		case SHN_UNDEF:
2323			ksym = resolve_symbol_wait(mod, info, name);
2324			/* Ok if resolved.  */
2325			if (ksym && !IS_ERR(ksym)) {
2326				sym[i].st_value = kernel_symbol_value(ksym);
2327				break;
2328			}
2329
2330			/* Ok if weak or ignored.  */
2331			if (!ksym &&
2332			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
2333			     ignore_undef_symbol(info->hdr->e_machine, name)))
2334				break;
2335
 
 
2336			ret = PTR_ERR(ksym) ?: -ENOENT;
2337			pr_warn("%s: Unknown symbol %s (err %d)\n",
2338				mod->name, name, ret);
2339			break;
2340
2341		default:
2342			/* Divert to percpu allocation if a percpu var. */
2343			if (sym[i].st_shndx == info->index.pcpu)
2344				secbase = (unsigned long)mod_percpu(mod);
2345			else
2346				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2347			sym[i].st_value += secbase;
2348			break;
2349		}
2350	}
2351
2352	return ret;
2353}
2354
2355static int apply_relocations(struct module *mod, const struct load_info *info)
2356{
2357	unsigned int i;
2358	int err = 0;
2359
2360	/* Now do relocations. */
2361	for (i = 1; i < info->hdr->e_shnum; i++) {
2362		unsigned int infosec = info->sechdrs[i].sh_info;
2363
2364		/* Not a valid relocation section? */
2365		if (infosec >= info->hdr->e_shnum)
2366			continue;
2367
2368		/* Don't bother with non-allocated sections */
2369		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2370			continue;
2371
2372		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2373			err = klp_apply_section_relocs(mod, info->sechdrs,
2374						       info->secstrings,
2375						       info->strtab,
2376						       info->index.sym, i,
2377						       NULL);
2378		else if (info->sechdrs[i].sh_type == SHT_REL)
2379			err = apply_relocate(info->sechdrs, info->strtab,
2380					     info->index.sym, i, mod);
2381		else if (info->sechdrs[i].sh_type == SHT_RELA)
2382			err = apply_relocate_add(info->sechdrs, info->strtab,
2383						 info->index.sym, i, mod);
2384		if (err < 0)
2385			break;
2386	}
2387	return err;
2388}
2389
2390/* Additional bytes needed by arch in front of individual sections */
2391unsigned int __weak arch_mod_section_prepend(struct module *mod,
2392					     unsigned int section)
2393{
2394	/* default implementation just returns zero */
2395	return 0;
2396}
2397
2398/* Update size with this section: return offset. */
2399static long get_offset(struct module *mod, unsigned int *size,
2400		       Elf_Shdr *sechdr, unsigned int section)
2401{
2402	long ret;
2403
2404	*size += arch_mod_section_prepend(mod, section);
2405	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2406	*size = ret + sechdr->sh_size;
2407	return ret;
2408}
2409
2410static bool module_init_layout_section(const char *sname)
2411{
2412#ifndef CONFIG_MODULE_UNLOAD
2413	if (module_exit_section(sname))
2414		return true;
2415#endif
2416	return module_init_section(sname);
2417}
2418
2419/*
2420 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2421 * might -- code, read-only data, read-write data, small data.  Tally
2422 * sizes, and place the offsets into sh_entsize fields: high bit means it
2423 * belongs in init.
2424 */
2425static void layout_sections(struct module *mod, struct load_info *info)
2426{
2427	static unsigned long const masks[][2] = {
2428		/*
2429		 * NOTE: all executable code must be the first section
2430		 * in this array; otherwise modify the text_size
2431		 * finder in the two loops below
2432		 */
2433		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2434		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2435		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2436		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2437		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2438	};
2439	unsigned int m, i;
2440
2441	for (i = 0; i < info->hdr->e_shnum; i++)
2442		info->sechdrs[i].sh_entsize = ~0UL;
2443
2444	pr_debug("Core section allocation order:\n");
2445	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2446		for (i = 0; i < info->hdr->e_shnum; ++i) {
2447			Elf_Shdr *s = &info->sechdrs[i];
2448			const char *sname = info->secstrings + s->sh_name;
2449
2450			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2451			    || (s->sh_flags & masks[m][1])
2452			    || s->sh_entsize != ~0UL
2453			    || module_init_layout_section(sname))
2454				continue;
2455			s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2456			pr_debug("\t%s\n", sname);
2457		}
2458		switch (m) {
2459		case 0: /* executable */
2460			mod->core_layout.size = debug_align(mod->core_layout.size);
2461			mod->core_layout.text_size = mod->core_layout.size;
2462			break;
2463		case 1: /* RO: text and ro-data */
2464			mod->core_layout.size = debug_align(mod->core_layout.size);
2465			mod->core_layout.ro_size = mod->core_layout.size;
2466			break;
2467		case 2: /* RO after init */
2468			mod->core_layout.size = debug_align(mod->core_layout.size);
2469			mod->core_layout.ro_after_init_size = mod->core_layout.size;
2470			break;
2471		case 4: /* whole core */
2472			mod->core_layout.size = debug_align(mod->core_layout.size);
2473			break;
2474		}
2475	}
2476
2477	pr_debug("Init section allocation order:\n");
2478	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2479		for (i = 0; i < info->hdr->e_shnum; ++i) {
2480			Elf_Shdr *s = &info->sechdrs[i];
2481			const char *sname = info->secstrings + s->sh_name;
2482
2483			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2484			    || (s->sh_flags & masks[m][1])
2485			    || s->sh_entsize != ~0UL
2486			    || !module_init_layout_section(sname))
2487				continue;
2488			s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2489					 | INIT_OFFSET_MASK);
2490			pr_debug("\t%s\n", sname);
2491		}
2492		switch (m) {
2493		case 0: /* executable */
2494			mod->init_layout.size = debug_align(mod->init_layout.size);
2495			mod->init_layout.text_size = mod->init_layout.size;
2496			break;
2497		case 1: /* RO: text and ro-data */
2498			mod->init_layout.size = debug_align(mod->init_layout.size);
2499			mod->init_layout.ro_size = mod->init_layout.size;
2500			break;
2501		case 2:
2502			/*
2503			 * RO after init doesn't apply to init_layout (only
2504			 * core_layout), so it just takes the value of ro_size.
2505			 */
2506			mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2507			break;
2508		case 4: /* whole init */
2509			mod->init_layout.size = debug_align(mod->init_layout.size);
2510			break;
2511		}
2512	}
2513}
2514
2515static void set_license(struct module *mod, const char *license)
2516{
2517	if (!license)
2518		license = "unspecified";
2519
2520	if (!license_is_gpl_compatible(license)) {
2521		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2522			pr_warn("%s: module license '%s' taints kernel.\n",
2523				mod->name, license);
2524		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2525				 LOCKDEP_NOW_UNRELIABLE);
2526	}
2527}
2528
2529/* Parse tag=value strings from .modinfo section */
2530static char *next_string(char *string, unsigned long *secsize)
2531{
2532	/* Skip non-zero chars */
2533	while (string[0]) {
2534		string++;
2535		if ((*secsize)-- <= 1)
2536			return NULL;
2537	}
2538
2539	/* Skip any zero padding. */
2540	while (!string[0]) {
2541		string++;
2542		if ((*secsize)-- <= 1)
2543			return NULL;
2544	}
2545	return string;
2546}
2547
2548static char *get_next_modinfo(const struct load_info *info, const char *tag,
2549			      char *prev)
2550{
2551	char *p;
2552	unsigned int taglen = strlen(tag);
2553	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2554	unsigned long size = infosec->sh_size;
2555
2556	/*
2557	 * get_modinfo() calls made before rewrite_section_headers()
2558	 * must use sh_offset, as sh_addr isn't set!
2559	 */
2560	char *modinfo = (char *)info->hdr + infosec->sh_offset;
2561
2562	if (prev) {
2563		size -= prev - modinfo;
2564		modinfo = next_string(prev, &size);
2565	}
2566
2567	for (p = modinfo; p; p = next_string(p, &size)) {
2568		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2569			return p + taglen + 1;
2570	}
2571	return NULL;
2572}
2573
2574static char *get_modinfo(const struct load_info *info, const char *tag)
2575{
2576	return get_next_modinfo(info, tag, NULL);
2577}
2578
2579static void setup_modinfo(struct module *mod, struct load_info *info)
2580{
2581	struct module_attribute *attr;
2582	int i;
2583
2584	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2585		if (attr->setup)
2586			attr->setup(mod, get_modinfo(info, attr->attr.name));
2587	}
2588}
2589
2590static void free_modinfo(struct module *mod)
2591{
2592	struct module_attribute *attr;
2593	int i;
2594
2595	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2596		if (attr->free)
2597			attr->free(mod);
2598	}
2599}
2600
2601#ifdef CONFIG_KALLSYMS
2602
2603/* Lookup exported symbol in given range of kernel_symbols */
2604static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2605							  const struct kernel_symbol *start,
2606							  const struct kernel_symbol *stop)
2607{
2608	return bsearch(name, start, stop - start,
2609			sizeof(struct kernel_symbol), cmp_name);
2610}
2611
2612static int is_exported(const char *name, unsigned long value,
2613		       const struct module *mod)
2614{
2615	const struct kernel_symbol *ks;
2616	if (!mod)
2617		ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2618	else
2619		ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2620
2621	return ks != NULL && kernel_symbol_value(ks) == value;
2622}
2623
2624/* As per nm */
2625static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2626{
2627	const Elf_Shdr *sechdrs = info->sechdrs;
2628
2629	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2630		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2631			return 'v';
2632		else
2633			return 'w';
2634	}
2635	if (sym->st_shndx == SHN_UNDEF)
2636		return 'U';
2637	if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2638		return 'a';
2639	if (sym->st_shndx >= SHN_LORESERVE)
2640		return '?';
2641	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2642		return 't';
2643	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2644	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2645		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2646			return 'r';
2647		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2648			return 'g';
2649		else
2650			return 'd';
2651	}
2652	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2653		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2654			return 's';
2655		else
2656			return 'b';
2657	}
2658	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2659		      ".debug")) {
2660		return 'n';
2661	}
2662	return '?';
2663}
2664
2665static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2666			unsigned int shnum, unsigned int pcpundx)
2667{
2668	const Elf_Shdr *sec;
2669
2670	if (src->st_shndx == SHN_UNDEF
2671	    || src->st_shndx >= shnum
2672	    || !src->st_name)
2673		return false;
2674
2675#ifdef CONFIG_KALLSYMS_ALL
2676	if (src->st_shndx == pcpundx)
2677		return true;
2678#endif
2679
2680	sec = sechdrs + src->st_shndx;
2681	if (!(sec->sh_flags & SHF_ALLOC)
2682#ifndef CONFIG_KALLSYMS_ALL
2683	    || !(sec->sh_flags & SHF_EXECINSTR)
2684#endif
2685	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2686		return false;
2687
2688	return true;
2689}
2690
2691/*
2692 * We only allocate and copy the strings needed by the parts of symtab
2693 * we keep.  This is simple, but has the effect of making multiple
2694 * copies of duplicates.  We could be more sophisticated, see
2695 * linux-kernel thread starting with
2696 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2697 */
2698static void layout_symtab(struct module *mod, struct load_info *info)
2699{
2700	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2701	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2702	const Elf_Sym *src;
2703	unsigned int i, nsrc, ndst, strtab_size = 0;
2704
2705	/* Put symbol section at end of init part of module. */
2706	symsect->sh_flags |= SHF_ALLOC;
2707	symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2708					 info->index.sym) | INIT_OFFSET_MASK;
2709	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2710
2711	src = (void *)info->hdr + symsect->sh_offset;
2712	nsrc = symsect->sh_size / sizeof(*src);
2713
2714	/* Compute total space required for the core symbols' strtab. */
2715	for (ndst = i = 0; i < nsrc; i++) {
2716		if (i == 0 || is_livepatch_module(mod) ||
2717		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2718				   info->index.pcpu)) {
2719			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2720			ndst++;
2721		}
2722	}
2723
2724	/* Append room for core symbols at end of core part. */
2725	info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2726	info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2727	mod->core_layout.size += strtab_size;
2728	info->core_typeoffs = mod->core_layout.size;
2729	mod->core_layout.size += ndst * sizeof(char);
2730	mod->core_layout.size = debug_align(mod->core_layout.size);
2731
2732	/* Put string table section at end of init part of module. */
2733	strsect->sh_flags |= SHF_ALLOC;
2734	strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2735					 info->index.str) | INIT_OFFSET_MASK;
2736	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2737
2738	/* We'll tack temporary mod_kallsyms on the end. */
2739	mod->init_layout.size = ALIGN(mod->init_layout.size,
2740				      __alignof__(struct mod_kallsyms));
2741	info->mod_kallsyms_init_off = mod->init_layout.size;
2742	mod->init_layout.size += sizeof(struct mod_kallsyms);
2743	info->init_typeoffs = mod->init_layout.size;
2744	mod->init_layout.size += nsrc * sizeof(char);
2745	mod->init_layout.size = debug_align(mod->init_layout.size);
2746}
2747
2748/*
2749 * We use the full symtab and strtab which layout_symtab arranged to
2750 * be appended to the init section.  Later we switch to the cut-down
2751 * core-only ones.
2752 */
2753static void add_kallsyms(struct module *mod, const struct load_info *info)
2754{
2755	unsigned int i, ndst;
2756	const Elf_Sym *src;
2757	Elf_Sym *dst;
2758	char *s;
2759	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2760
2761	/* Set up to point into init section. */
2762	mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2763
2764	mod->kallsyms->symtab = (void *)symsec->sh_addr;
2765	mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2766	/* Make sure we get permanent strtab: don't use info->strtab. */
2767	mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2768	mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2769
2770	/*
2771	 * Now populate the cut down core kallsyms for after init
2772	 * and set types up while we still have access to sections.
2773	 */
 
 
2774	mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2775	mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2776	mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2777	src = mod->kallsyms->symtab;
2778	for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2779		mod->kallsyms->typetab[i] = elf_type(src + i, info);
2780		if (i == 0 || is_livepatch_module(mod) ||
2781		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2782				   info->index.pcpu)) {
2783			mod->core_kallsyms.typetab[ndst] =
2784			    mod->kallsyms->typetab[i];
2785			dst[ndst] = src[i];
2786			dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2787			s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2788				     KSYM_NAME_LEN) + 1;
2789		}
2790	}
2791	mod->core_kallsyms.num_symtab = ndst;
2792}
2793#else
2794static inline void layout_symtab(struct module *mod, struct load_info *info)
2795{
2796}
2797
2798static void add_kallsyms(struct module *mod, const struct load_info *info)
2799{
2800}
2801#endif /* CONFIG_KALLSYMS */
2802
2803#if IS_ENABLED(CONFIG_KALLSYMS) && IS_ENABLED(CONFIG_STACKTRACE_BUILD_ID)
2804static void init_build_id(struct module *mod, const struct load_info *info)
2805{
2806	const Elf_Shdr *sechdr;
2807	unsigned int i;
2808
2809	for (i = 0; i < info->hdr->e_shnum; i++) {
2810		sechdr = &info->sechdrs[i];
2811		if (!sect_empty(sechdr) && sechdr->sh_type == SHT_NOTE &&
2812		    !build_id_parse_buf((void *)sechdr->sh_addr, mod->build_id,
2813					sechdr->sh_size))
2814			break;
2815	}
2816}
2817#else
2818static void init_build_id(struct module *mod, const struct load_info *info)
2819{
2820}
2821#endif
2822
2823static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2824{
2825	if (!debug)
2826		return;
2827	ddebug_add_module(debug, num, mod->name);
 
 
 
 
2828}
2829
2830static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2831{
2832	if (debug)
2833		ddebug_remove_module(mod->name);
2834}
2835
2836void * __weak module_alloc(unsigned long size)
2837{
2838	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2839			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2840			NUMA_NO_NODE, __builtin_return_address(0));
2841}
2842
2843bool __weak module_init_section(const char *name)
2844{
2845	return strstarts(name, ".init");
2846}
2847
2848bool __weak module_exit_section(const char *name)
2849{
2850	return strstarts(name, ".exit");
2851}
2852
2853#ifdef CONFIG_DEBUG_KMEMLEAK
2854static void kmemleak_load_module(const struct module *mod,
2855				 const struct load_info *info)
2856{
2857	unsigned int i;
2858
2859	/* only scan the sections containing data */
2860	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2861
2862	for (i = 1; i < info->hdr->e_shnum; i++) {
2863		/* Scan all writable sections that's not executable */
2864		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2865		    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2866		    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2867			continue;
2868
2869		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2870				   info->sechdrs[i].sh_size, GFP_KERNEL);
2871	}
2872}
2873#else
2874static inline void kmemleak_load_module(const struct module *mod,
2875					const struct load_info *info)
2876{
2877}
2878#endif
2879
2880#ifdef CONFIG_MODULE_SIG
2881static int module_sig_check(struct load_info *info, int flags)
2882{
2883	int err = -ENODATA;
2884	const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2885	const char *reason;
2886	const void *mod = info->hdr;
2887
2888	/*
2889	 * Require flags == 0, as a module with version information
2890	 * removed is no longer the module that was signed
2891	 */
2892	if (flags == 0 &&
2893	    info->len > markerlen &&
2894	    memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2895		/* We truncate the module to discard the signature */
2896		info->len -= markerlen;
2897		err = mod_verify_sig(mod, info);
2898		if (!err) {
2899			info->sig_ok = true;
2900			return 0;
2901		}
2902	}
2903
2904	/*
2905	 * We don't permit modules to be loaded into the trusted kernels
2906	 * without a valid signature on them, but if we're not enforcing,
2907	 * certain errors are non-fatal.
2908	 */
2909	switch (err) {
2910	case -ENODATA:
2911		reason = "unsigned module";
2912		break;
2913	case -ENOPKG:
2914		reason = "module with unsupported crypto";
2915		break;
2916	case -ENOKEY:
2917		reason = "module with unavailable key";
2918		break;
2919
2920	default:
2921		/*
2922		 * All other errors are fatal, including lack of memory,
2923		 * unparseable signatures, and signature check failures --
2924		 * even if signatures aren't required.
2925		 */
2926		return err;
2927	}
2928
2929	if (is_module_sig_enforced()) {
2930		pr_notice("Loading of %s is rejected\n", reason);
2931		return -EKEYREJECTED;
2932	}
2933
2934	return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2935}
2936#else /* !CONFIG_MODULE_SIG */
2937static int module_sig_check(struct load_info *info, int flags)
2938{
2939	return 0;
2940}
2941#endif /* !CONFIG_MODULE_SIG */
2942
2943static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
2944{
2945	unsigned long secend;
2946
2947	/*
2948	 * Check for both overflow and offset/size being
2949	 * too large.
2950	 */
2951	secend = shdr->sh_offset + shdr->sh_size;
2952	if (secend < shdr->sh_offset || secend > info->len)
2953		return -ENOEXEC;
2954
2955	return 0;
2956}
2957
2958/*
2959 * Sanity checks against invalid binaries, wrong arch, weird elf version.
2960 *
2961 * Also do basic validity checks against section offsets and sizes, the
2962 * section name string table, and the indices used for it (sh_name).
2963 */
2964static int elf_validity_check(struct load_info *info)
2965{
2966	unsigned int i;
2967	Elf_Shdr *shdr, *strhdr;
2968	int err;
2969
2970	if (info->len < sizeof(*(info->hdr)))
2971		return -ENOEXEC;
2972
2973	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2974	    || info->hdr->e_type != ET_REL
2975	    || !elf_check_arch(info->hdr)
2976	    || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2977		return -ENOEXEC;
2978
2979	/*
2980	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
2981	 * known and small. So e_shnum * sizeof(Elf_Shdr)
2982	 * will not overflow unsigned long on any platform.
2983	 */
2984	if (info->hdr->e_shoff >= info->len
2985	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2986		info->len - info->hdr->e_shoff))
2987		return -ENOEXEC;
2988
2989	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2990
2991	/*
2992	 * Verify if the section name table index is valid.
2993	 */
2994	if (info->hdr->e_shstrndx == SHN_UNDEF
2995	    || info->hdr->e_shstrndx >= info->hdr->e_shnum)
2996		return -ENOEXEC;
2997
2998	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
2999	err = validate_section_offset(info, strhdr);
3000	if (err < 0)
3001		return err;
3002
3003	/*
3004	 * The section name table must be NUL-terminated, as required
3005	 * by the spec. This makes strcmp and pr_* calls that access
3006	 * strings in the section safe.
3007	 */
3008	info->secstrings = (void *)info->hdr + strhdr->sh_offset;
3009	if (info->secstrings[strhdr->sh_size - 1] != '\0')
3010		return -ENOEXEC;
3011
3012	/*
3013	 * The code assumes that section 0 has a length of zero and
3014	 * an addr of zero, so check for it.
3015	 */
3016	if (info->sechdrs[0].sh_type != SHT_NULL
3017	    || info->sechdrs[0].sh_size != 0
3018	    || info->sechdrs[0].sh_addr != 0)
3019		return -ENOEXEC;
3020
3021	for (i = 1; i < info->hdr->e_shnum; i++) {
3022		shdr = &info->sechdrs[i];
3023		switch (shdr->sh_type) {
3024		case SHT_NULL:
3025		case SHT_NOBITS:
3026			continue;
3027		case SHT_SYMTAB:
3028			if (shdr->sh_link == SHN_UNDEF
3029			    || shdr->sh_link >= info->hdr->e_shnum)
3030				return -ENOEXEC;
3031			fallthrough;
3032		default:
3033			err = validate_section_offset(info, shdr);
3034			if (err < 0) {
3035				pr_err("Invalid ELF section in module (section %u type %u)\n",
3036					i, shdr->sh_type);
3037				return err;
3038			}
3039
3040			if (shdr->sh_flags & SHF_ALLOC) {
3041				if (shdr->sh_name >= strhdr->sh_size) {
3042					pr_err("Invalid ELF section name in module (section %u type %u)\n",
3043					       i, shdr->sh_type);
3044					return -ENOEXEC;
3045				}
3046			}
3047			break;
3048		}
3049	}
3050
3051	return 0;
3052}
3053
3054#define COPY_CHUNK_SIZE (16*PAGE_SIZE)
3055
3056static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
3057{
3058	do {
3059		unsigned long n = min(len, COPY_CHUNK_SIZE);
3060
3061		if (copy_from_user(dst, usrc, n) != 0)
3062			return -EFAULT;
3063		cond_resched();
3064		dst += n;
3065		usrc += n;
3066		len -= n;
3067	} while (len);
3068	return 0;
3069}
3070
3071#ifdef CONFIG_LIVEPATCH
3072static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3073{
3074	if (get_modinfo(info, "livepatch")) {
3075		mod->klp = true;
3076		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
3077		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
3078			       mod->name);
3079	}
3080
3081	return 0;
3082}
3083#else /* !CONFIG_LIVEPATCH */
3084static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3085{
3086	if (get_modinfo(info, "livepatch")) {
3087		pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
3088		       mod->name);
3089		return -ENOEXEC;
3090	}
3091
3092	return 0;
3093}
3094#endif /* CONFIG_LIVEPATCH */
3095
3096static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
3097{
3098	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
3099		return;
3100
3101	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
3102		mod->name);
3103}
3104
3105/* Sets info->hdr and info->len. */
3106static int copy_module_from_user(const void __user *umod, unsigned long len,
3107				  struct load_info *info)
3108{
3109	int err;
3110
3111	info->len = len;
3112	if (info->len < sizeof(*(info->hdr)))
3113		return -ENOEXEC;
3114
3115	err = security_kernel_load_data(LOADING_MODULE, true);
3116	if (err)
3117		return err;
3118
3119	/* Suck in entire file: we'll want most of it. */
3120	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
 
3121	if (!info->hdr)
3122		return -ENOMEM;
3123
3124	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
3125		err = -EFAULT;
3126		goto out;
3127	}
3128
3129	err = security_kernel_post_load_data((char *)info->hdr, info->len,
3130					     LOADING_MODULE, "init_module");
3131out:
3132	if (err)
3133		vfree(info->hdr);
3134
3135	return err;
3136}
3137
3138static void free_copy(struct load_info *info)
3139{
3140	vfree(info->hdr);
3141}
3142
3143static int rewrite_section_headers(struct load_info *info, int flags)
3144{
3145	unsigned int i;
3146
3147	/* This should always be true, but let's be sure. */
3148	info->sechdrs[0].sh_addr = 0;
3149
3150	for (i = 1; i < info->hdr->e_shnum; i++) {
3151		Elf_Shdr *shdr = &info->sechdrs[i];
 
 
 
 
 
3152
3153		/*
3154		 * Mark all sections sh_addr with their address in the
3155		 * temporary image.
3156		 */
3157		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3158
 
 
 
 
 
3159	}
3160
3161	/* Track but don't keep modinfo and version sections. */
 
 
 
 
 
 
3162	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3163	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3164
3165	return 0;
3166}
3167
3168/*
3169 * Set up our basic convenience variables (pointers to section headers,
3170 * search for module section index etc), and do some basic section
3171 * verification.
3172 *
3173 * Set info->mod to the temporary copy of the module in info->hdr. The final one
3174 * will be allocated in move_module().
3175 */
3176static int setup_load_info(struct load_info *info, int flags)
3177{
3178	unsigned int i;
 
 
 
 
 
 
 
3179
3180	/* Try to find a name early so we can log errors with a module name */
3181	info->index.info = find_sec(info, ".modinfo");
3182	if (info->index.info)
3183		info->name = get_modinfo(info, "name");
3184
3185	/* Find internal symbols and strings. */
3186	for (i = 1; i < info->hdr->e_shnum; i++) {
3187		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3188			info->index.sym = i;
3189			info->index.str = info->sechdrs[i].sh_link;
3190			info->strtab = (char *)info->hdr
3191				+ info->sechdrs[info->index.str].sh_offset;
3192			break;
3193		}
3194	}
3195
3196	if (info->index.sym == 0) {
3197		pr_warn("%s: module has no symbols (stripped?)\n",
3198			info->name ?: "(missing .modinfo section or name field)");
3199		return -ENOEXEC;
3200	}
3201
3202	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3203	if (!info->index.mod) {
3204		pr_warn("%s: No module found in object\n",
3205			info->name ?: "(missing .modinfo section or name field)");
3206		return -ENOEXEC;
3207	}
3208	/* This is temporary: point mod into copy of data. */
3209	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3210
3211	/*
3212	 * If we didn't load the .modinfo 'name' field earlier, fall back to
3213	 * on-disk struct mod 'name' field.
3214	 */
3215	if (!info->name)
3216		info->name = info->mod->name;
3217
3218	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3219		info->index.vers = 0; /* Pretend no __versions section! */
3220	else
3221		info->index.vers = find_sec(info, "__versions");
3222
3223	info->index.pcpu = find_pcpusec(info);
 
 
3224
3225	return 0;
3226}
3227
3228static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3229{
3230	const char *modmagic = get_modinfo(info, "vermagic");
3231	int err;
3232
3233	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3234		modmagic = NULL;
3235
3236	/* This is allowed: modprobe --force will invalidate it. */
3237	if (!modmagic) {
3238		err = try_to_force_load(mod, "bad vermagic");
3239		if (err)
3240			return err;
3241	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3242		pr_err("%s: version magic '%s' should be '%s'\n",
3243		       info->name, modmagic, vermagic);
3244		return -ENOEXEC;
3245	}
3246
3247	if (!get_modinfo(info, "intree")) {
3248		if (!test_taint(TAINT_OOT_MODULE))
3249			pr_warn("%s: loading out-of-tree module taints kernel.\n",
3250				mod->name);
3251		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3252	}
3253
3254	check_modinfo_retpoline(mod, info);
3255
3256	if (get_modinfo(info, "staging")) {
3257		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3258		pr_warn("%s: module is from the staging directory, the quality "
3259			"is unknown, you have been warned.\n", mod->name);
3260	}
3261
3262	err = check_modinfo_livepatch(mod, info);
3263	if (err)
3264		return err;
3265
3266	/* Set up license info based on the info section */
3267	set_license(mod, get_modinfo(info, "license"));
3268
3269	return 0;
3270}
3271
3272static int find_module_sections(struct module *mod, struct load_info *info)
3273{
3274	mod->kp = section_objs(info, "__param",
3275			       sizeof(*mod->kp), &mod->num_kp);
3276	mod->syms = section_objs(info, "__ksymtab",
3277				 sizeof(*mod->syms), &mod->num_syms);
3278	mod->crcs = section_addr(info, "__kcrctab");
3279	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3280				     sizeof(*mod->gpl_syms),
3281				     &mod->num_gpl_syms);
3282	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3284#ifdef CONFIG_CONSTRUCTORS
3285	mod->ctors = section_objs(info, ".ctors",
3286				  sizeof(*mod->ctors), &mod->num_ctors);
3287	if (!mod->ctors)
3288		mod->ctors = section_objs(info, ".init_array",
3289				sizeof(*mod->ctors), &mod->num_ctors);
3290	else if (find_sec(info, ".init_array")) {
3291		/*
3292		 * This shouldn't happen with same compiler and binutils
3293		 * building all parts of the module.
3294		 */
3295		pr_warn("%s: has both .ctors and .init_array.\n",
3296		       mod->name);
3297		return -EINVAL;
3298	}
3299#endif
3300
3301	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
3302						&mod->noinstr_text_size);
3303
3304#ifdef CONFIG_TRACEPOINTS
3305	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3306					     sizeof(*mod->tracepoints_ptrs),
3307					     &mod->num_tracepoints);
3308#endif
3309#ifdef CONFIG_TREE_SRCU
3310	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3311					     sizeof(*mod->srcu_struct_ptrs),
3312					     &mod->num_srcu_structs);
3313#endif
3314#ifdef CONFIG_BPF_EVENTS
3315	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3316					   sizeof(*mod->bpf_raw_events),
3317					   &mod->num_bpf_raw_events);
3318#endif
3319#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3320	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
3321#endif
3322#ifdef CONFIG_JUMP_LABEL
3323	mod->jump_entries = section_objs(info, "__jump_table",
3324					sizeof(*mod->jump_entries),
3325					&mod->num_jump_entries);
3326#endif
3327#ifdef CONFIG_EVENT_TRACING
3328	mod->trace_events = section_objs(info, "_ftrace_events",
3329					 sizeof(*mod->trace_events),
3330					 &mod->num_trace_events);
3331	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3332					sizeof(*mod->trace_evals),
3333					&mod->num_trace_evals);
3334#endif
3335#ifdef CONFIG_TRACING
3336	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3337					 sizeof(*mod->trace_bprintk_fmt_start),
3338					 &mod->num_trace_bprintk_fmt);
3339#endif
3340#ifdef CONFIG_FTRACE_MCOUNT_RECORD
3341	/* sechdrs[0].sh_size is always zero */
3342	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
3343					     sizeof(*mod->ftrace_callsites),
3344					     &mod->num_ftrace_callsites);
3345#endif
3346#ifdef CONFIG_FUNCTION_ERROR_INJECTION
3347	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3348					    sizeof(*mod->ei_funcs),
3349					    &mod->num_ei_funcs);
3350#endif
3351#ifdef CONFIG_KPROBES
3352	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
3353						&mod->kprobes_text_size);
3354	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
3355						sizeof(unsigned long),
3356						&mod->num_kprobe_blacklist);
3357#endif
3358#ifdef CONFIG_HAVE_STATIC_CALL_INLINE
3359	mod->static_call_sites = section_objs(info, ".static_call_sites",
3360					      sizeof(*mod->static_call_sites),
3361					      &mod->num_static_call_sites);
3362#endif
3363	mod->extable = section_objs(info, "__ex_table",
3364				    sizeof(*mod->extable), &mod->num_exentries);
3365
3366	if (section_addr(info, "__obsparm"))
3367		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3368
3369	info->debug = section_objs(info, "__dyndbg",
3370				   sizeof(*info->debug), &info->num_debug);
3371
3372	return 0;
3373}
3374
3375static int move_module(struct module *mod, struct load_info *info)
3376{
3377	int i;
3378	void *ptr;
3379
3380	/* Do the allocs. */
3381	ptr = module_alloc(mod->core_layout.size);
3382	/*
3383	 * The pointer to this block is stored in the module structure
3384	 * which is inside the block. Just mark it as not being a
3385	 * leak.
3386	 */
3387	kmemleak_not_leak(ptr);
3388	if (!ptr)
3389		return -ENOMEM;
3390
3391	memset(ptr, 0, mod->core_layout.size);
3392	mod->core_layout.base = ptr;
3393
3394	if (mod->init_layout.size) {
3395		ptr = module_alloc(mod->init_layout.size);
3396		/*
3397		 * The pointer to this block is stored in the module structure
3398		 * which is inside the block. This block doesn't need to be
3399		 * scanned as it contains data and code that will be freed
3400		 * after the module is initialized.
3401		 */
3402		kmemleak_ignore(ptr);
3403		if (!ptr) {
3404			module_memfree(mod->core_layout.base);
3405			return -ENOMEM;
3406		}
3407		memset(ptr, 0, mod->init_layout.size);
3408		mod->init_layout.base = ptr;
3409	} else
3410		mod->init_layout.base = NULL;
3411
3412	/* Transfer each section which specifies SHF_ALLOC */
3413	pr_debug("final section addresses:\n");
3414	for (i = 0; i < info->hdr->e_shnum; i++) {
3415		void *dest;
3416		Elf_Shdr *shdr = &info->sechdrs[i];
3417
3418		if (!(shdr->sh_flags & SHF_ALLOC))
3419			continue;
3420
3421		if (shdr->sh_entsize & INIT_OFFSET_MASK)
3422			dest = mod->init_layout.base
3423				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3424		else
3425			dest = mod->core_layout.base + shdr->sh_entsize;
3426
3427		if (shdr->sh_type != SHT_NOBITS)
3428			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3429		/* Update sh_addr to point to copy in image. */
3430		shdr->sh_addr = (unsigned long)dest;
3431		pr_debug("\t0x%lx %s\n",
3432			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3433	}
3434
3435	return 0;
3436}
3437
3438static int check_module_license_and_versions(struct module *mod)
3439{
3440	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3441
3442	/*
3443	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3444	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3445	 * using GPL-only symbols it needs.
3446	 */
3447	if (strcmp(mod->name, "ndiswrapper") == 0)
3448		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3449
3450	/* driverloader was caught wrongly pretending to be under GPL */
3451	if (strcmp(mod->name, "driverloader") == 0)
3452		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3453				 LOCKDEP_NOW_UNRELIABLE);
3454
3455	/* lve claims to be GPL but upstream won't provide source */
3456	if (strcmp(mod->name, "lve") == 0)
3457		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3458				 LOCKDEP_NOW_UNRELIABLE);
3459
3460	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3461		pr_warn("%s: module license taints kernel.\n", mod->name);
3462
3463#ifdef CONFIG_MODVERSIONS
3464	if ((mod->num_syms && !mod->crcs) ||
3465	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
 
 
 
 
 
 
3466		return try_to_force_load(mod,
3467					 "no versions for exported symbols");
3468	}
3469#endif
3470	return 0;
3471}
3472
3473static void flush_module_icache(const struct module *mod)
3474{
 
 
 
 
 
 
3475	/*
3476	 * Flush the instruction cache, since we've played with text.
3477	 * Do it before processing of module parameters, so the module
3478	 * can provide parameter accessor functions of its own.
3479	 */
3480	if (mod->init_layout.base)
3481		flush_icache_range((unsigned long)mod->init_layout.base,
3482				   (unsigned long)mod->init_layout.base
3483				   + mod->init_layout.size);
3484	flush_icache_range((unsigned long)mod->core_layout.base,
3485			   (unsigned long)mod->core_layout.base + mod->core_layout.size);
 
 
3486}
3487
3488int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3489				     Elf_Shdr *sechdrs,
3490				     char *secstrings,
3491				     struct module *mod)
3492{
3493	return 0;
3494}
3495
3496/* module_blacklist is a comma-separated list of module names */
3497static char *module_blacklist;
3498static bool blacklisted(const char *module_name)
3499{
3500	const char *p;
3501	size_t len;
3502
3503	if (!module_blacklist)
3504		return false;
3505
3506	for (p = module_blacklist; *p; p += len) {
3507		len = strcspn(p, ",");
3508		if (strlen(module_name) == len && !memcmp(module_name, p, len))
3509			return true;
3510		if (p[len] == ',')
3511			len++;
3512	}
3513	return false;
3514}
3515core_param(module_blacklist, module_blacklist, charp, 0400);
3516
3517static struct module *layout_and_allocate(struct load_info *info, int flags)
3518{
 
3519	struct module *mod;
3520	unsigned int ndx;
3521	int err;
3522
3523	err = check_modinfo(info->mod, info, flags);
 
 
 
 
3524	if (err)
3525		return ERR_PTR(err);
3526
3527	/* Allow arches to frob section contents and sizes.  */
3528	err = module_frob_arch_sections(info->hdr, info->sechdrs,
3529					info->secstrings, info->mod);
3530	if (err < 0)
3531		return ERR_PTR(err);
3532
3533	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
3534					  info->secstrings, info->mod);
3535	if (err < 0)
3536		return ERR_PTR(err);
3537
3538	/* We will do a special allocation for per-cpu sections later. */
3539	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3540
3541	/*
3542	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3543	 * layout_sections() can put it in the right place.
3544	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3545	 */
3546	ndx = find_sec(info, ".data..ro_after_init");
3547	if (ndx)
3548		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3549	/*
3550	 * Mark the __jump_table section as ro_after_init as well: these data
3551	 * structures are never modified, with the exception of entries that
3552	 * refer to code in the __init section, which are annotated as such
3553	 * at module load time.
3554	 */
3555	ndx = find_sec(info, "__jump_table");
3556	if (ndx)
3557		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3558
3559	/*
3560	 * Determine total sizes, and put offsets in sh_entsize.  For now
3561	 * this is done generically; there doesn't appear to be any
3562	 * special cases for the architectures.
3563	 */
3564	layout_sections(info->mod, info);
3565	layout_symtab(info->mod, info);
3566
3567	/* Allocate and move to the final place */
3568	err = move_module(info->mod, info);
3569	if (err)
3570		return ERR_PTR(err);
3571
3572	/* Module has been copied to its final place now: return it. */
3573	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3574	kmemleak_load_module(mod, info);
3575	return mod;
3576}
3577
3578/* mod is no longer valid after this! */
3579static void module_deallocate(struct module *mod, struct load_info *info)
3580{
3581	percpu_modfree(mod);
3582	module_arch_freeing_init(mod);
3583	module_memfree(mod->init_layout.base);
3584	module_memfree(mod->core_layout.base);
3585}
3586
3587int __weak module_finalize(const Elf_Ehdr *hdr,
3588			   const Elf_Shdr *sechdrs,
3589			   struct module *me)
3590{
3591	return 0;
3592}
3593
3594static int post_relocation(struct module *mod, const struct load_info *info)
3595{
3596	/* Sort exception table now relocations are done. */
3597	sort_extable(mod->extable, mod->extable + mod->num_exentries);
3598
3599	/* Copy relocated percpu area over. */
3600	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3601		       info->sechdrs[info->index.pcpu].sh_size);
3602
3603	/* Setup kallsyms-specific fields. */
3604	add_kallsyms(mod, info);
3605
3606	/* Arch-specific module finalizing. */
3607	return module_finalize(info->hdr, info->sechdrs, mod);
3608}
3609
3610/* Is this module of this name done loading?  No locks held. */
3611static bool finished_loading(const char *name)
3612{
3613	struct module *mod;
3614	bool ret;
3615
3616	/*
3617	 * The module_mutex should not be a heavily contended lock;
3618	 * if we get the occasional sleep here, we'll go an extra iteration
3619	 * in the wait_event_interruptible(), which is harmless.
3620	 */
3621	sched_annotate_sleep();
3622	mutex_lock(&module_mutex);
3623	mod = find_module_all(name, strlen(name), true);
3624	ret = !mod || mod->state == MODULE_STATE_LIVE;
 
3625	mutex_unlock(&module_mutex);
3626
3627	return ret;
3628}
3629
3630/* Call module constructors. */
3631static void do_mod_ctors(struct module *mod)
3632{
3633#ifdef CONFIG_CONSTRUCTORS
3634	unsigned long i;
3635
3636	for (i = 0; i < mod->num_ctors; i++)
3637		mod->ctors[i]();
3638#endif
3639}
3640
3641/* For freeing module_init on success, in case kallsyms traversing */
3642struct mod_initfree {
3643	struct llist_node node;
3644	void *module_init;
3645};
3646
3647static void do_free_init(struct work_struct *w)
3648{
3649	struct llist_node *pos, *n, *list;
3650	struct mod_initfree *initfree;
3651
3652	list = llist_del_all(&init_free_list);
3653
3654	synchronize_rcu();
3655
3656	llist_for_each_safe(pos, n, list) {
3657		initfree = container_of(pos, struct mod_initfree, node);
3658		module_memfree(initfree->module_init);
3659		kfree(initfree);
3660	}
3661}
3662
3663/*
3664 * This is where the real work happens.
3665 *
3666 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3667 * helper command 'lx-symbols'.
3668 */
3669static noinline int do_init_module(struct module *mod)
3670{
3671	int ret = 0;
3672	struct mod_initfree *freeinit;
3673
3674	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3675	if (!freeinit) {
3676		ret = -ENOMEM;
3677		goto fail;
3678	}
3679	freeinit->module_init = mod->init_layout.base;
3680
3681	/*
3682	 * We want to find out whether @mod uses async during init.  Clear
3683	 * PF_USED_ASYNC.  async_schedule*() will set it.
3684	 */
3685	current->flags &= ~PF_USED_ASYNC;
3686
3687	do_mod_ctors(mod);
3688	/* Start the module */
3689	if (mod->init != NULL)
3690		ret = do_one_initcall(mod->init);
3691	if (ret < 0) {
3692		goto fail_free_freeinit;
3693	}
3694	if (ret > 0) {
3695		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3696			"follow 0/-E convention\n"
3697			"%s: loading module anyway...\n",
3698			__func__, mod->name, ret, __func__);
3699		dump_stack();
3700	}
3701
3702	/* Now it's a first class citizen! */
3703	mod->state = MODULE_STATE_LIVE;
3704	blocking_notifier_call_chain(&module_notify_list,
3705				     MODULE_STATE_LIVE, mod);
3706
3707	/* Delay uevent until module has finished its init routine */
3708	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3709
3710	/*
3711	 * We need to finish all async code before the module init sequence
3712	 * is done.  This has potential to deadlock.  For example, a newly
3713	 * detected block device can trigger request_module() of the
3714	 * default iosched from async probing task.  Once userland helper
3715	 * reaches here, async_synchronize_full() will wait on the async
3716	 * task waiting on request_module() and deadlock.
3717	 *
3718	 * This deadlock is avoided by perfomring async_synchronize_full()
3719	 * iff module init queued any async jobs.  This isn't a full
3720	 * solution as it will deadlock the same if module loading from
3721	 * async jobs nests more than once; however, due to the various
3722	 * constraints, this hack seems to be the best option for now.
3723	 * Please refer to the following thread for details.
3724	 *
3725	 * http://thread.gmane.org/gmane.linux.kernel/1420814
3726	 */
3727	if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3728		async_synchronize_full();
3729
3730	ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3731			mod->init_layout.size);
3732	mutex_lock(&module_mutex);
3733	/* Drop initial reference. */
3734	module_put(mod);
3735	trim_init_extable(mod);
3736#ifdef CONFIG_KALLSYMS
3737	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3738	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3739#endif
3740	module_enable_ro(mod, true);
3741	mod_tree_remove_init(mod);
 
3742	module_arch_freeing_init(mod);
3743	mod->init_layout.base = NULL;
3744	mod->init_layout.size = 0;
3745	mod->init_layout.ro_size = 0;
3746	mod->init_layout.ro_after_init_size = 0;
3747	mod->init_layout.text_size = 0;
3748#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3749	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
3750	mod->btf_data = NULL;
3751#endif
3752	/*
3753	 * We want to free module_init, but be aware that kallsyms may be
3754	 * walking this with preempt disabled.  In all the failure paths, we
3755	 * call synchronize_rcu(), but we don't want to slow down the success
3756	 * path. module_memfree() cannot be called in an interrupt, so do the
3757	 * work and call synchronize_rcu() in a work queue.
3758	 *
3759	 * Note that module_alloc() on most architectures creates W+X page
3760	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3761	 * code such as mark_rodata_ro() which depends on those mappings to
3762	 * be cleaned up needs to sync with the queued work - ie
3763	 * rcu_barrier()
3764	 */
3765	if (llist_add(&freeinit->node, &init_free_list))
3766		schedule_work(&init_free_wq);
3767
3768	mutex_unlock(&module_mutex);
3769	wake_up_all(&module_wq);
3770
3771	return 0;
3772
3773fail_free_freeinit:
3774	kfree(freeinit);
3775fail:
3776	/* Try to protect us from buggy refcounters. */
3777	mod->state = MODULE_STATE_GOING;
3778	synchronize_rcu();
3779	module_put(mod);
3780	blocking_notifier_call_chain(&module_notify_list,
3781				     MODULE_STATE_GOING, mod);
3782	klp_module_going(mod);
3783	ftrace_release_mod(mod);
3784	free_module(mod);
3785	wake_up_all(&module_wq);
3786	return ret;
3787}
3788
3789static int may_init_module(void)
3790{
3791	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3792		return -EPERM;
3793
3794	return 0;
3795}
3796
3797/*
3798 * We try to place it in the list now to make sure it's unique before
3799 * we dedicate too many resources.  In particular, temporary percpu
3800 * memory exhaustion.
3801 */
3802static int add_unformed_module(struct module *mod)
3803{
3804	int err;
3805	struct module *old;
3806
3807	mod->state = MODULE_STATE_UNFORMED;
3808
3809again:
3810	mutex_lock(&module_mutex);
3811	old = find_module_all(mod->name, strlen(mod->name), true);
3812	if (old != NULL) {
3813		if (old->state != MODULE_STATE_LIVE) {
 
3814			/* Wait in case it fails to load. */
3815			mutex_unlock(&module_mutex);
3816			err = wait_event_interruptible(module_wq,
3817					       finished_loading(mod->name));
3818			if (err)
3819				goto out_unlocked;
3820			goto again;
3821		}
3822		err = -EEXIST;
3823		goto out;
3824	}
3825	mod_update_bounds(mod);
3826	list_add_rcu(&mod->list, &modules);
3827	mod_tree_insert(mod);
3828	err = 0;
3829
3830out:
3831	mutex_unlock(&module_mutex);
3832out_unlocked:
3833	return err;
3834}
3835
3836static int complete_formation(struct module *mod, struct load_info *info)
3837{
3838	int err;
3839
3840	mutex_lock(&module_mutex);
3841
3842	/* Find duplicate symbols (must be called under lock). */
3843	err = verify_exported_symbols(mod);
3844	if (err < 0)
3845		goto out;
3846
3847	/* This relies on module_mutex for list integrity. */
3848	module_bug_finalize(info->hdr, info->sechdrs, mod);
3849
3850	module_enable_ro(mod, false);
 
3851	module_enable_nx(mod);
3852	module_enable_x(mod);
3853
3854	/*
3855	 * Mark state as coming so strong_try_module_get() ignores us,
3856	 * but kallsyms etc. can see us.
3857	 */
3858	mod->state = MODULE_STATE_COMING;
3859	mutex_unlock(&module_mutex);
3860
3861	return 0;
3862
3863out:
3864	mutex_unlock(&module_mutex);
3865	return err;
3866}
3867
3868static int prepare_coming_module(struct module *mod)
3869{
3870	int err;
3871
3872	ftrace_module_enable(mod);
3873	err = klp_module_coming(mod);
3874	if (err)
3875		return err;
3876
3877	err = blocking_notifier_call_chain_robust(&module_notify_list,
3878			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3879	err = notifier_to_errno(err);
3880	if (err)
3881		klp_module_going(mod);
3882
3883	return err;
3884}
3885
3886static int unknown_module_param_cb(char *param, char *val, const char *modname,
3887				   void *arg)
3888{
3889	struct module *mod = arg;
3890	int ret;
3891
3892	if (strcmp(param, "async_probe") == 0) {
3893		mod->async_probe_requested = true;
3894		return 0;
3895	}
3896
3897	/* Check for magic 'dyndbg' arg */
3898	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3899	if (ret != 0)
3900		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3901	return 0;
3902}
3903
3904static void cfi_init(struct module *mod);
3905
3906/*
3907 * Allocate and load the module: note that size of section 0 is always
3908 * zero, and we rely on this for optional sections.
3909 */
3910static int load_module(struct load_info *info, const char __user *uargs,
3911		       int flags)
3912{
3913	struct module *mod;
3914	long err = 0;
3915	char *after_dashes;
3916
3917	/*
3918	 * Do the signature check (if any) first. All that
3919	 * the signature check needs is info->len, it does
3920	 * not need any of the section info. That can be
3921	 * set up later. This will minimize the chances
3922	 * of a corrupt module causing problems before
3923	 * we even get to the signature check.
3924	 *
3925	 * The check will also adjust info->len by stripping
3926	 * off the sig length at the end of the module, making
3927	 * checks against info->len more correct.
3928	 */
3929	err = module_sig_check(info, flags);
3930	if (err)
3931		goto free_copy;
3932
3933	/*
3934	 * Do basic sanity checks against the ELF header and
3935	 * sections.
3936	 */
3937	err = elf_validity_check(info);
3938	if (err) {
3939		pr_err("Module has invalid ELF structures\n");
3940		goto free_copy;
3941	}
3942
3943	/*
3944	 * Everything checks out, so set up the section info
3945	 * in the info structure.
3946	 */
3947	err = setup_load_info(info, flags);
3948	if (err)
3949		goto free_copy;
3950
3951	/*
3952	 * Now that we know we have the correct module name, check
3953	 * if it's blacklisted.
3954	 */
3955	if (blacklisted(info->name)) {
3956		err = -EPERM;
3957		pr_err("Module %s is blacklisted\n", info->name);
3958		goto free_copy;
3959	}
3960
3961	err = rewrite_section_headers(info, flags);
3962	if (err)
3963		goto free_copy;
3964
3965	/* Check module struct version now, before we try to use module. */
3966	if (!check_modstruct_version(info, info->mod)) {
3967		err = -ENOEXEC;
3968		goto free_copy;
3969	}
3970
3971	/* Figure out module layout, and allocate all the memory. */
3972	mod = layout_and_allocate(info, flags);
3973	if (IS_ERR(mod)) {
3974		err = PTR_ERR(mod);
3975		goto free_copy;
3976	}
3977
3978	audit_log_kern_module(mod->name);
3979
3980	/* Reserve our place in the list. */
3981	err = add_unformed_module(mod);
3982	if (err)
3983		goto free_module;
3984
3985#ifdef CONFIG_MODULE_SIG
3986	mod->sig_ok = info->sig_ok;
3987	if (!mod->sig_ok) {
3988		pr_notice_once("%s: module verification failed: signature "
3989			       "and/or required key missing - tainting "
3990			       "kernel\n", mod->name);
3991		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3992	}
3993#endif
3994
3995	/* To avoid stressing percpu allocator, do this once we're unique. */
3996	err = percpu_modalloc(mod, info);
3997	if (err)
3998		goto unlink_mod;
3999
4000	/* Now module is in final location, initialize linked lists, etc. */
4001	err = module_unload_init(mod);
4002	if (err)
4003		goto unlink_mod;
4004
4005	init_param_lock(mod);
4006
4007	/*
4008	 * Now we've got everything in the final locations, we can
4009	 * find optional sections.
4010	 */
4011	err = find_module_sections(mod, info);
4012	if (err)
4013		goto free_unload;
4014
4015	err = check_module_license_and_versions(mod);
4016	if (err)
4017		goto free_unload;
4018
4019	/* Set up MODINFO_ATTR fields */
4020	setup_modinfo(mod, info);
4021
4022	/* Fix up syms, so that st_value is a pointer to location. */
4023	err = simplify_symbols(mod, info);
4024	if (err < 0)
4025		goto free_modinfo;
4026
4027	err = apply_relocations(mod, info);
4028	if (err < 0)
4029		goto free_modinfo;
4030
4031	err = post_relocation(mod, info);
4032	if (err < 0)
4033		goto free_modinfo;
4034
4035	flush_module_icache(mod);
4036
4037	/* Setup CFI for the module. */
4038	cfi_init(mod);
4039
4040	/* Now copy in args */
4041	mod->args = strndup_user(uargs, ~0UL >> 1);
4042	if (IS_ERR(mod->args)) {
4043		err = PTR_ERR(mod->args);
4044		goto free_arch_cleanup;
4045	}
4046
4047	init_build_id(mod, info);
4048	dynamic_debug_setup(mod, info->debug, info->num_debug);
4049
4050	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
4051	ftrace_module_init(mod);
4052
4053	/* Finally it's fully formed, ready to start executing. */
4054	err = complete_formation(mod, info);
4055	if (err)
4056		goto ddebug_cleanup;
4057
4058	err = prepare_coming_module(mod);
4059	if (err)
4060		goto bug_cleanup;
4061
4062	/* Module is ready to execute: parsing args may do that. */
4063	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
4064				  -32768, 32767, mod,
4065				  unknown_module_param_cb);
4066	if (IS_ERR(after_dashes)) {
4067		err = PTR_ERR(after_dashes);
4068		goto coming_cleanup;
4069	} else if (after_dashes) {
4070		pr_warn("%s: parameters '%s' after `--' ignored\n",
4071		       mod->name, after_dashes);
4072	}
4073
4074	/* Link in to sysfs. */
4075	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
4076	if (err < 0)
4077		goto coming_cleanup;
4078
4079	if (is_livepatch_module(mod)) {
4080		err = copy_module_elf(mod, info);
4081		if (err < 0)
4082			goto sysfs_cleanup;
4083	}
4084
4085	/* Get rid of temporary copy. */
4086	free_copy(info);
4087
4088	/* Done! */
4089	trace_module_load(mod);
4090
4091	return do_init_module(mod);
4092
4093 sysfs_cleanup:
4094	mod_sysfs_teardown(mod);
4095 coming_cleanup:
4096	mod->state = MODULE_STATE_GOING;
4097	destroy_params(mod->kp, mod->num_kp);
4098	blocking_notifier_call_chain(&module_notify_list,
4099				     MODULE_STATE_GOING, mod);
4100	klp_module_going(mod);
 
4101 bug_cleanup:
4102	mod->state = MODULE_STATE_GOING;
4103	/* module_bug_cleanup needs module_mutex protection */
4104	mutex_lock(&module_mutex);
4105	module_bug_cleanup(mod);
4106	mutex_unlock(&module_mutex);
4107
 
 
 
 
4108 ddebug_cleanup:
4109	ftrace_release_mod(mod);
4110	dynamic_debug_remove(mod, info->debug);
4111	synchronize_rcu();
4112	kfree(mod->args);
4113 free_arch_cleanup:
4114	cfi_cleanup(mod);
4115	module_arch_cleanup(mod);
4116 free_modinfo:
4117	free_modinfo(mod);
4118 free_unload:
4119	module_unload_free(mod);
4120 unlink_mod:
4121	mutex_lock(&module_mutex);
4122	/* Unlink carefully: kallsyms could be walking list. */
4123	list_del_rcu(&mod->list);
4124	mod_tree_remove(mod);
4125	wake_up_all(&module_wq);
4126	/* Wait for RCU-sched synchronizing before releasing mod->list. */
4127	synchronize_rcu();
4128	mutex_unlock(&module_mutex);
4129 free_module:
 
 
 
 
 
 
4130	/* Free lock-classes; relies on the preceding sync_rcu() */
4131	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
4132
4133	module_deallocate(mod, info);
4134 free_copy:
4135	free_copy(info);
4136	return err;
4137}
4138
4139SYSCALL_DEFINE3(init_module, void __user *, umod,
4140		unsigned long, len, const char __user *, uargs)
4141{
4142	int err;
4143	struct load_info info = { };
4144
4145	err = may_init_module();
4146	if (err)
4147		return err;
4148
4149	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
4150	       umod, len, uargs);
4151
4152	err = copy_module_from_user(umod, len, &info);
4153	if (err)
4154		return err;
4155
4156	return load_module(&info, uargs, 0);
4157}
4158
4159SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
4160{
4161	struct load_info info = { };
4162	void *hdr = NULL;
 
4163	int err;
4164
4165	err = may_init_module();
4166	if (err)
4167		return err;
4168
4169	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4170
4171	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4172		      |MODULE_INIT_IGNORE_VERMAGIC))
4173		return -EINVAL;
4174
4175	err = kernel_read_file_from_fd(fd, 0, &hdr, INT_MAX, NULL,
4176				       READING_MODULE);
4177	if (err < 0)
4178		return err;
4179	info.hdr = hdr;
4180	info.len = err;
4181
4182	return load_module(&info, uargs, flags);
4183}
4184
4185static inline int within(unsigned long addr, void *start, unsigned long size)
4186{
4187	return ((void *)addr >= start && (void *)addr < start + size);
4188}
4189
4190#ifdef CONFIG_KALLSYMS
4191/*
4192 * This ignores the intensely annoying "mapping symbols" found
4193 * in ARM ELF files: $a, $t and $d.
4194 */
4195static inline int is_arm_mapping_symbol(const char *str)
4196{
4197	if (str[0] == '.' && str[1] == 'L')
4198		return true;
4199	return str[0] == '$' && strchr("axtd", str[1])
4200	       && (str[2] == '\0' || str[2] == '.');
4201}
4202
4203static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4204{
4205	return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4206}
4207
4208/*
4209 * Given a module and address, find the corresponding symbol and return its name
4210 * while providing its size and offset if needed.
4211 */
4212static const char *find_kallsyms_symbol(struct module *mod,
4213					unsigned long addr,
4214					unsigned long *size,
4215					unsigned long *offset)
4216{
4217	unsigned int i, best = 0;
4218	unsigned long nextval, bestval;
4219	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4220
4221	/* At worse, next value is at end of module */
4222	if (within_module_init(addr, mod))
4223		nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4224	else
4225		nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4226
4227	bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4228
4229	/*
4230	 * Scan for closest preceding symbol, and next symbol. (ELF
4231	 * starts real symbols at 1).
4232	 */
4233	for (i = 1; i < kallsyms->num_symtab; i++) {
4234		const Elf_Sym *sym = &kallsyms->symtab[i];
4235		unsigned long thisval = kallsyms_symbol_value(sym);
4236
4237		if (sym->st_shndx == SHN_UNDEF)
4238			continue;
4239
4240		/*
4241		 * We ignore unnamed symbols: they're uninformative
4242		 * and inserted at a whim.
4243		 */
4244		if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4245		    || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4246			continue;
4247
4248		if (thisval <= addr && thisval > bestval) {
 
4249			best = i;
4250			bestval = thisval;
4251		}
4252		if (thisval > addr && thisval < nextval)
4253			nextval = thisval;
4254	}
4255
4256	if (!best)
4257		return NULL;
4258
4259	if (size)
4260		*size = nextval - bestval;
4261	if (offset)
4262		*offset = addr - bestval;
4263
4264	return kallsyms_symbol_name(kallsyms, best);
4265}
4266
4267void * __weak dereference_module_function_descriptor(struct module *mod,
4268						     void *ptr)
4269{
4270	return ptr;
4271}
4272
4273/*
4274 * For kallsyms to ask for address resolution.  NULL means not found.  Careful
4275 * not to lock to avoid deadlock on oopses, simply disable preemption.
4276 */
4277const char *module_address_lookup(unsigned long addr,
4278			    unsigned long *size,
4279			    unsigned long *offset,
4280			    char **modname,
4281			    const unsigned char **modbuildid,
4282			    char *namebuf)
4283{
4284	const char *ret = NULL;
4285	struct module *mod;
4286
4287	preempt_disable();
4288	mod = __module_address(addr);
4289	if (mod) {
4290		if (modname)
4291			*modname = mod->name;
4292		if (modbuildid) {
4293#if IS_ENABLED(CONFIG_STACKTRACE_BUILD_ID)
4294			*modbuildid = mod->build_id;
4295#else
4296			*modbuildid = NULL;
4297#endif
4298		}
4299
4300		ret = find_kallsyms_symbol(mod, addr, size, offset);
4301	}
4302	/* Make a copy in here where it's safe */
4303	if (ret) {
4304		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4305		ret = namebuf;
4306	}
4307	preempt_enable();
4308
4309	return ret;
4310}
4311
4312int lookup_module_symbol_name(unsigned long addr, char *symname)
4313{
4314	struct module *mod;
4315
4316	preempt_disable();
4317	list_for_each_entry_rcu(mod, &modules, list) {
4318		if (mod->state == MODULE_STATE_UNFORMED)
4319			continue;
4320		if (within_module(addr, mod)) {
4321			const char *sym;
4322
4323			sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4324			if (!sym)
4325				goto out;
4326
4327			strlcpy(symname, sym, KSYM_NAME_LEN);
4328			preempt_enable();
4329			return 0;
4330		}
4331	}
4332out:
4333	preempt_enable();
4334	return -ERANGE;
4335}
4336
4337int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4338			unsigned long *offset, char *modname, char *name)
4339{
4340	struct module *mod;
4341
4342	preempt_disable();
4343	list_for_each_entry_rcu(mod, &modules, list) {
4344		if (mod->state == MODULE_STATE_UNFORMED)
4345			continue;
4346		if (within_module(addr, mod)) {
4347			const char *sym;
4348
4349			sym = find_kallsyms_symbol(mod, addr, size, offset);
4350			if (!sym)
4351				goto out;
4352			if (modname)
4353				strlcpy(modname, mod->name, MODULE_NAME_LEN);
4354			if (name)
4355				strlcpy(name, sym, KSYM_NAME_LEN);
4356			preempt_enable();
4357			return 0;
4358		}
4359	}
4360out:
4361	preempt_enable();
4362	return -ERANGE;
4363}
4364
4365int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4366			char *name, char *module_name, int *exported)
4367{
4368	struct module *mod;
4369
4370	preempt_disable();
4371	list_for_each_entry_rcu(mod, &modules, list) {
4372		struct mod_kallsyms *kallsyms;
4373
4374		if (mod->state == MODULE_STATE_UNFORMED)
4375			continue;
4376		kallsyms = rcu_dereference_sched(mod->kallsyms);
4377		if (symnum < kallsyms->num_symtab) {
4378			const Elf_Sym *sym = &kallsyms->symtab[symnum];
4379
4380			*value = kallsyms_symbol_value(sym);
4381			*type = kallsyms->typetab[symnum];
4382			strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4383			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4384			*exported = is_exported(name, *value, mod);
4385			preempt_enable();
4386			return 0;
4387		}
4388		symnum -= kallsyms->num_symtab;
4389	}
4390	preempt_enable();
4391	return -ERANGE;
4392}
4393
4394/* Given a module and name of symbol, find and return the symbol's value */
4395static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4396{
4397	unsigned int i;
4398	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4399
4400	for (i = 0; i < kallsyms->num_symtab; i++) {
4401		const Elf_Sym *sym = &kallsyms->symtab[i];
4402
4403		if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4404		    sym->st_shndx != SHN_UNDEF)
4405			return kallsyms_symbol_value(sym);
4406	}
4407	return 0;
4408}
4409
4410/* Look for this name: can be of form module:name. */
4411unsigned long module_kallsyms_lookup_name(const char *name)
4412{
4413	struct module *mod;
4414	char *colon;
4415	unsigned long ret = 0;
4416
4417	/* Don't lock: we're in enough trouble already. */
4418	preempt_disable();
4419	if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4420		if ((mod = find_module_all(name, colon - name, false)) != NULL)
4421			ret = find_kallsyms_symbol_value(mod, colon+1);
4422	} else {
4423		list_for_each_entry_rcu(mod, &modules, list) {
4424			if (mod->state == MODULE_STATE_UNFORMED)
4425				continue;
4426			if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4427				break;
4428		}
4429	}
4430	preempt_enable();
4431	return ret;
4432}
4433
4434#ifdef CONFIG_LIVEPATCH
4435int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4436					     struct module *, unsigned long),
4437				   void *data)
4438{
4439	struct module *mod;
4440	unsigned int i;
4441	int ret = 0;
 
 
4442
4443	mutex_lock(&module_mutex);
4444	list_for_each_entry(mod, &modules, list) {
4445		/* We hold module_mutex: no need for rcu_dereference_sched */
4446		struct mod_kallsyms *kallsyms = mod->kallsyms;
4447
4448		if (mod->state == MODULE_STATE_UNFORMED)
4449			continue;
4450		for (i = 0; i < kallsyms->num_symtab; i++) {
4451			const Elf_Sym *sym = &kallsyms->symtab[i];
4452
4453			if (sym->st_shndx == SHN_UNDEF)
4454				continue;
4455
4456			ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4457				 mod, kallsyms_symbol_value(sym));
4458			if (ret != 0)
4459				goto out;
4460		}
4461	}
4462out:
4463	mutex_unlock(&module_mutex);
4464	return ret;
4465}
4466#endif /* CONFIG_LIVEPATCH */
4467#endif /* CONFIG_KALLSYMS */
4468
4469static void cfi_init(struct module *mod)
4470{
4471#ifdef CONFIG_CFI_CLANG
4472	initcall_t *init;
4473	exitcall_t *exit;
4474
4475	rcu_read_lock_sched();
4476	mod->cfi_check = (cfi_check_fn)
4477		find_kallsyms_symbol_value(mod, "__cfi_check");
4478	init = (initcall_t *)
4479		find_kallsyms_symbol_value(mod, "__cfi_jt_init_module");
4480	exit = (exitcall_t *)
4481		find_kallsyms_symbol_value(mod, "__cfi_jt_cleanup_module");
4482	rcu_read_unlock_sched();
4483
4484	/* Fix init/exit functions to point to the CFI jump table */
4485	if (init)
4486		mod->init = *init;
4487#ifdef CONFIG_MODULE_UNLOAD
4488	if (exit)
4489		mod->exit = *exit;
4490#endif
4491
4492	cfi_module_add(mod, module_addr_min);
4493#endif
4494}
4495
4496static void cfi_cleanup(struct module *mod)
4497{
4498#ifdef CONFIG_CFI_CLANG
4499	cfi_module_remove(mod, module_addr_min);
4500#endif
4501}
4502
4503/* Maximum number of characters written by module_flags() */
4504#define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4505
4506/* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4507static char *module_flags(struct module *mod, char *buf)
4508{
4509	int bx = 0;
4510
4511	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4512	if (mod->taints ||
4513	    mod->state == MODULE_STATE_GOING ||
4514	    mod->state == MODULE_STATE_COMING) {
4515		buf[bx++] = '(';
4516		bx += module_flags_taint(mod, buf + bx);
4517		/* Show a - for module-is-being-unloaded */
4518		if (mod->state == MODULE_STATE_GOING)
4519			buf[bx++] = '-';
4520		/* Show a + for module-is-being-loaded */
4521		if (mod->state == MODULE_STATE_COMING)
4522			buf[bx++] = '+';
4523		buf[bx++] = ')';
4524	}
4525	buf[bx] = '\0';
4526
4527	return buf;
4528}
4529
4530#ifdef CONFIG_PROC_FS
4531/* Called by the /proc file system to return a list of modules. */
4532static void *m_start(struct seq_file *m, loff_t *pos)
4533{
4534	mutex_lock(&module_mutex);
4535	return seq_list_start(&modules, *pos);
4536}
4537
4538static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4539{
4540	return seq_list_next(p, &modules, pos);
4541}
4542
4543static void m_stop(struct seq_file *m, void *p)
4544{
4545	mutex_unlock(&module_mutex);
4546}
4547
4548static int m_show(struct seq_file *m, void *p)
4549{
4550	struct module *mod = list_entry(p, struct module, list);
4551	char buf[MODULE_FLAGS_BUF_SIZE];
4552	void *value;
4553
4554	/* We always ignore unformed modules. */
4555	if (mod->state == MODULE_STATE_UNFORMED)
4556		return 0;
4557
4558	seq_printf(m, "%s %u",
4559		   mod->name, mod->init_layout.size + mod->core_layout.size);
4560	print_unload_info(m, mod);
4561
4562	/* Informative for users. */
4563	seq_printf(m, " %s",
4564		   mod->state == MODULE_STATE_GOING ? "Unloading" :
4565		   mod->state == MODULE_STATE_COMING ? "Loading" :
4566		   "Live");
4567	/* Used by oprofile and other similar tools. */
4568	value = m->private ? NULL : mod->core_layout.base;
4569	seq_printf(m, " 0x%px", value);
4570
4571	/* Taints info */
4572	if (mod->taints)
4573		seq_printf(m, " %s", module_flags(mod, buf));
4574
4575	seq_puts(m, "\n");
4576	return 0;
4577}
4578
4579/*
4580 * Format: modulename size refcount deps address
4581 *
4582 * Where refcount is a number or -, and deps is a comma-separated list
4583 * of depends or -.
4584 */
4585static const struct seq_operations modules_op = {
4586	.start	= m_start,
4587	.next	= m_next,
4588	.stop	= m_stop,
4589	.show	= m_show
4590};
4591
4592/*
4593 * This also sets the "private" pointer to non-NULL if the
4594 * kernel pointers should be hidden (so you can just test
4595 * "m->private" to see if you should keep the values private).
4596 *
4597 * We use the same logic as for /proc/kallsyms.
4598 */
4599static int modules_open(struct inode *inode, struct file *file)
4600{
4601	int err = seq_open(file, &modules_op);
4602
4603	if (!err) {
4604		struct seq_file *m = file->private_data;
4605		m->private = kallsyms_show_value(file->f_cred) ? NULL : (void *)8ul;
4606	}
4607
4608	return err;
4609}
4610
4611static const struct proc_ops modules_proc_ops = {
4612	.proc_flags	= PROC_ENTRY_PERMANENT,
4613	.proc_open	= modules_open,
4614	.proc_read	= seq_read,
4615	.proc_lseek	= seq_lseek,
4616	.proc_release	= seq_release,
4617};
4618
4619static int __init proc_modules_init(void)
4620{
4621	proc_create("modules", 0, NULL, &modules_proc_ops);
4622	return 0;
4623}
4624module_init(proc_modules_init);
4625#endif
4626
4627/* Given an address, look for it in the module exception tables. */
4628const struct exception_table_entry *search_module_extables(unsigned long addr)
4629{
4630	const struct exception_table_entry *e = NULL;
4631	struct module *mod;
4632
4633	preempt_disable();
4634	mod = __module_address(addr);
4635	if (!mod)
4636		goto out;
 
 
4637
4638	if (!mod->num_exentries)
4639		goto out;
4640
4641	e = search_extable(mod->extable,
4642			   mod->num_exentries,
4643			   addr);
4644out:
4645	preempt_enable();
4646
4647	/*
4648	 * Now, if we found one, we are running inside it now, hence
4649	 * we cannot unload the module, hence no refcnt needed.
4650	 */
4651	return e;
4652}
4653
4654/**
4655 * is_module_address() - is this address inside a module?
4656 * @addr: the address to check.
4657 *
4658 * See is_module_text_address() if you simply want to see if the address
4659 * is code (not data).
4660 */
4661bool is_module_address(unsigned long addr)
4662{
4663	bool ret;
4664
4665	preempt_disable();
4666	ret = __module_address(addr) != NULL;
4667	preempt_enable();
4668
4669	return ret;
4670}
4671
4672/**
4673 * __module_address() - get the module which contains an address.
4674 * @addr: the address.
4675 *
4676 * Must be called with preempt disabled or module mutex held so that
4677 * module doesn't get freed during this.
4678 */
4679struct module *__module_address(unsigned long addr)
4680{
4681	struct module *mod;
4682
4683	if (addr < module_addr_min || addr > module_addr_max)
4684		return NULL;
4685
4686	module_assert_mutex_or_preempt();
4687
4688	mod = mod_find(addr);
4689	if (mod) {
4690		BUG_ON(!within_module(addr, mod));
4691		if (mod->state == MODULE_STATE_UNFORMED)
4692			mod = NULL;
4693	}
4694	return mod;
4695}
 
4696
4697/**
4698 * is_module_text_address() - is this address inside module code?
4699 * @addr: the address to check.
4700 *
4701 * See is_module_address() if you simply want to see if the address is
4702 * anywhere in a module.  See kernel_text_address() for testing if an
4703 * address corresponds to kernel or module code.
4704 */
4705bool is_module_text_address(unsigned long addr)
4706{
4707	bool ret;
4708
4709	preempt_disable();
4710	ret = __module_text_address(addr) != NULL;
4711	preempt_enable();
4712
4713	return ret;
4714}
4715
4716/**
4717 * __module_text_address() - get the module whose code contains an address.
4718 * @addr: the address.
4719 *
4720 * Must be called with preempt disabled or module mutex held so that
4721 * module doesn't get freed during this.
4722 */
4723struct module *__module_text_address(unsigned long addr)
4724{
4725	struct module *mod = __module_address(addr);
4726	if (mod) {
4727		/* Make sure it's within the text section. */
4728		if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4729		    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4730			mod = NULL;
4731	}
4732	return mod;
4733}
 
4734
4735/* Don't grab lock, we're oopsing. */
4736void print_modules(void)
4737{
4738	struct module *mod;
4739	char buf[MODULE_FLAGS_BUF_SIZE];
4740
4741	printk(KERN_DEFAULT "Modules linked in:");
4742	/* Most callers should already have preempt disabled, but make sure */
4743	preempt_disable();
4744	list_for_each_entry_rcu(mod, &modules, list) {
4745		if (mod->state == MODULE_STATE_UNFORMED)
4746			continue;
4747		pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4748	}
4749	preempt_enable();
4750	if (last_unloaded_module[0])
4751		pr_cont(" [last unloaded: %s]", last_unloaded_module);
4752	pr_cont("\n");
4753}
4754
4755#ifdef CONFIG_MODVERSIONS
4756/*
4757 * Generate the signature for all relevant module structures here.
4758 * If these change, we don't want to try to parse the module.
4759 */
4760void module_layout(struct module *mod,
4761		   struct modversion_info *ver,
4762		   struct kernel_param *kp,
4763		   struct kernel_symbol *ks,
4764		   struct tracepoint * const *tp)
4765{
4766}
4767EXPORT_SYMBOL(module_layout);
4768#endif