Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 *  linux/fs/super.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  super.c contains code to handle: - mount structures
   7 *                                   - super-block tables
   8 *                                   - filesystem drivers list
   9 *                                   - mount system call
  10 *                                   - umount system call
  11 *                                   - ustat system call
  12 *
  13 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  14 *
  15 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  16 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  17 *  Added options to /proc/mounts:
  18 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  19 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  20 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  21 */
  22
  23#include <linux/export.h>
  24#include <linux/slab.h>
 
  25#include <linux/blkdev.h>
  26#include <linux/mount.h>
  27#include <linux/security.h>
  28#include <linux/writeback.h>		/* for the emergency remount stuff */
  29#include <linux/idr.h>
  30#include <linux/mutex.h>
  31#include <linux/backing-dev.h>
  32#include <linux/rculist_bl.h>
  33#include <linux/cleancache.h>
  34#include <linux/fsnotify.h>
  35#include <linux/lockdep.h>
  36#include "internal.h"
  37
  38
  39static LIST_HEAD(super_blocks);
  40static DEFINE_SPINLOCK(sb_lock);
  41
  42static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  43	"sb_writers",
  44	"sb_pagefaults",
  45	"sb_internal",
  46};
  47
  48/*
  49 * One thing we have to be careful of with a per-sb shrinker is that we don't
  50 * drop the last active reference to the superblock from within the shrinker.
  51 * If that happens we could trigger unregistering the shrinker from within the
  52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  53 * take a passive reference to the superblock to avoid this from occurring.
  54 */
  55static unsigned long super_cache_scan(struct shrinker *shrink,
  56				      struct shrink_control *sc)
  57{
  58	struct super_block *sb;
  59	long	fs_objects = 0;
  60	long	total_objects;
  61	long	freed = 0;
  62	long	dentries;
  63	long	inodes;
  64
  65	sb = container_of(shrink, struct super_block, s_shrink);
  66
  67	/*
  68	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
  69	 * to recurse into the FS that called us in clear_inode() and friends..
  70	 */
  71	if (!(sc->gfp_mask & __GFP_FS))
  72		return SHRINK_STOP;
  73
  74	if (!trylock_super(sb))
  75		return SHRINK_STOP;
  76
  77	if (sb->s_op->nr_cached_objects)
  78		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
  79
  80	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
  81	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
  82	total_objects = dentries + inodes + fs_objects + 1;
  83	if (!total_objects)
  84		total_objects = 1;
  85
  86	/* proportion the scan between the caches */
  87	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
  88	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
  89	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
  90
  91	/*
  92	 * prune the dcache first as the icache is pinned by it, then
  93	 * prune the icache, followed by the filesystem specific caches
  94	 *
  95	 * Ensure that we always scan at least one object - memcg kmem
  96	 * accounting uses this to fully empty the caches.
  97	 */
  98	sc->nr_to_scan = dentries + 1;
  99	freed = prune_dcache_sb(sb, sc);
 100	sc->nr_to_scan = inodes + 1;
 101	freed += prune_icache_sb(sb, sc);
 102
 103	if (fs_objects) {
 104		sc->nr_to_scan = fs_objects + 1;
 105		freed += sb->s_op->free_cached_objects(sb, sc);
 106	}
 107
 108	up_read(&sb->s_umount);
 109	return freed;
 110}
 111
 112static unsigned long super_cache_count(struct shrinker *shrink,
 113				       struct shrink_control *sc)
 114{
 115	struct super_block *sb;
 116	long	total_objects = 0;
 117
 118	sb = container_of(shrink, struct super_block, s_shrink);
 
 119
 120	/*
 121	 * Don't call trylock_super as it is a potential
 122	 * scalability bottleneck. The counts could get updated
 123	 * between super_cache_count and super_cache_scan anyway.
 124	 * Call to super_cache_count with shrinker_rwsem held
 125	 * ensures the safety of call to list_lru_shrink_count() and
 126	 * s_op->nr_cached_objects().
 127	 */
 128	if (sb->s_op && sb->s_op->nr_cached_objects)
 129		total_objects = sb->s_op->nr_cached_objects(sb, sc);
 130
 131	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 132	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 133
 134	total_objects = vfs_pressure_ratio(total_objects);
 135	return total_objects;
 136}
 137
 138static void destroy_super_work(struct work_struct *work)
 139{
 140	struct super_block *s = container_of(work, struct super_block,
 141							destroy_work);
 142	int i;
 143
 144	for (i = 0; i < SB_FREEZE_LEVELS; i++)
 145		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 146	kfree(s);
 147}
 
 
 
 
 
 
 
 
 148
 149static void destroy_super_rcu(struct rcu_head *head)
 150{
 151	struct super_block *s = container_of(head, struct super_block, rcu);
 152	INIT_WORK(&s->destroy_work, destroy_super_work);
 153	schedule_work(&s->destroy_work);
 154}
 
 155
 156/**
 157 *	destroy_super	-	frees a superblock
 158 *	@s: superblock to free
 159 *
 160 *	Frees a superblock.
 161 */
 162static void destroy_super(struct super_block *s)
 163{
 164	list_lru_destroy(&s->s_dentry_lru);
 165	list_lru_destroy(&s->s_inode_lru);
 166	security_sb_free(s);
 167	WARN_ON(!list_empty(&s->s_mounts));
 168	kfree(s->s_subtype);
 169	kfree(s->s_options);
 170	call_rcu(&s->rcu, destroy_super_rcu);
 171}
 172
 173/**
 174 *	alloc_super	-	create new superblock
 175 *	@type:	filesystem type superblock should belong to
 176 *	@flags: the mount flags
 177 *
 178 *	Allocates and initializes a new &struct super_block.  alloc_super()
 179 *	returns a pointer new superblock or %NULL if allocation had failed.
 180 */
 181static struct super_block *alloc_super(struct file_system_type *type, int flags)
 182{
 183	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 184	static const struct super_operations default_op;
 185	int i;
 186
 187	if (!s)
 188		return NULL;
 189
 190	INIT_LIST_HEAD(&s->s_mounts);
 191
 192	if (security_sb_alloc(s))
 193		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 194
 195	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 196		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 197					sb_writers_name[i],
 198					&type->s_writers_key[i]))
 199			goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200	}
 201	init_waitqueue_head(&s->s_writers.wait_unfrozen);
 202	s->s_bdi = &noop_backing_dev_info;
 203	s->s_flags = flags;
 204	INIT_HLIST_NODE(&s->s_instances);
 205	INIT_HLIST_BL_HEAD(&s->s_anon);
 206	mutex_init(&s->s_sync_lock);
 207	INIT_LIST_HEAD(&s->s_inodes);
 208	spin_lock_init(&s->s_inode_list_lock);
 209
 210	if (list_lru_init_memcg(&s->s_dentry_lru))
 211		goto fail;
 212	if (list_lru_init_memcg(&s->s_inode_lru))
 213		goto fail;
 214
 215	init_rwsem(&s->s_umount);
 216	lockdep_set_class(&s->s_umount, &type->s_umount_key);
 217	/*
 218	 * sget() can have s_umount recursion.
 219	 *
 220	 * When it cannot find a suitable sb, it allocates a new
 221	 * one (this one), and tries again to find a suitable old
 222	 * one.
 223	 *
 224	 * In case that succeeds, it will acquire the s_umount
 225	 * lock of the old one. Since these are clearly distrinct
 226	 * locks, and this object isn't exposed yet, there's no
 227	 * risk of deadlocks.
 228	 *
 229	 * Annotate this by putting this lock in a different
 230	 * subclass.
 231	 */
 232	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 233	s->s_count = 1;
 234	atomic_set(&s->s_active, 1);
 235	mutex_init(&s->s_vfs_rename_mutex);
 236	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 237	mutex_init(&s->s_dquot.dqio_mutex);
 238	mutex_init(&s->s_dquot.dqonoff_mutex);
 239	s->s_maxbytes = MAX_NON_LFS;
 240	s->s_op = &default_op;
 241	s->s_time_gran = 1000000000;
 242	s->cleancache_poolid = CLEANCACHE_NO_POOL;
 243
 244	s->s_shrink.seeks = DEFAULT_SEEKS;
 245	s->s_shrink.scan_objects = super_cache_scan;
 246	s->s_shrink.count_objects = super_cache_count;
 247	s->s_shrink.batch = 1024;
 248	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
 249	return s;
 
 250
 251fail:
 252	destroy_super(s);
 253	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 254}
 255
 256/* Superblock refcounting  */
 257
 258/*
 259 * Drop a superblock's refcount.  The caller must hold sb_lock.
 260 */
 261static void __put_super(struct super_block *sb)
 262{
 263	if (!--sb->s_count) {
 264		list_del_init(&sb->s_list);
 265		destroy_super(sb);
 266	}
 267}
 268
 269/**
 270 *	put_super	-	drop a temporary reference to superblock
 271 *	@sb: superblock in question
 272 *
 273 *	Drops a temporary reference, frees superblock if there's no
 274 *	references left.
 275 */
 276static void put_super(struct super_block *sb)
 277{
 278	spin_lock(&sb_lock);
 279	__put_super(sb);
 280	spin_unlock(&sb_lock);
 281}
 282
 283
 284/**
 285 *	deactivate_locked_super	-	drop an active reference to superblock
 286 *	@s: superblock to deactivate
 287 *
 288 *	Drops an active reference to superblock, converting it into a temprory
 289 *	one if there is no other active references left.  In that case we
 290 *	tell fs driver to shut it down and drop the temporary reference we
 291 *	had just acquired.
 292 *
 293 *	Caller holds exclusive lock on superblock; that lock is released.
 294 */
 295void deactivate_locked_super(struct super_block *s)
 296{
 297	struct file_system_type *fs = s->s_type;
 298	if (atomic_dec_and_test(&s->s_active)) {
 299		cleancache_invalidate_fs(s);
 300		unregister_shrinker(&s->s_shrink);
 301		fs->kill_sb(s);
 302
 
 
 
 303		/*
 304		 * Since list_lru_destroy() may sleep, we cannot call it from
 305		 * put_super(), where we hold the sb_lock. Therefore we destroy
 306		 * the lru lists right now.
 307		 */
 308		list_lru_destroy(&s->s_dentry_lru);
 309		list_lru_destroy(&s->s_inode_lru);
 310
 311		put_filesystem(fs);
 312		put_super(s);
 313	} else {
 314		up_write(&s->s_umount);
 315	}
 316}
 317
 318EXPORT_SYMBOL(deactivate_locked_super);
 319
 320/**
 321 *	deactivate_super	-	drop an active reference to superblock
 322 *	@s: superblock to deactivate
 323 *
 324 *	Variant of deactivate_locked_super(), except that superblock is *not*
 325 *	locked by caller.  If we are going to drop the final active reference,
 326 *	lock will be acquired prior to that.
 327 */
 328void deactivate_super(struct super_block *s)
 329{
 330        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 331		down_write(&s->s_umount);
 332		deactivate_locked_super(s);
 333	}
 334}
 335
 336EXPORT_SYMBOL(deactivate_super);
 337
 338/**
 339 *	grab_super - acquire an active reference
 340 *	@s: reference we are trying to make active
 341 *
 342 *	Tries to acquire an active reference.  grab_super() is used when we
 343 * 	had just found a superblock in super_blocks or fs_type->fs_supers
 344 *	and want to turn it into a full-blown active reference.  grab_super()
 345 *	is called with sb_lock held and drops it.  Returns 1 in case of
 346 *	success, 0 if we had failed (superblock contents was already dead or
 347 *	dying when grab_super() had been called).  Note that this is only
 348 *	called for superblocks not in rundown mode (== ones still on ->fs_supers
 349 *	of their type), so increment of ->s_count is OK here.
 350 */
 351static int grab_super(struct super_block *s) __releases(sb_lock)
 352{
 
 
 
 
 
 353	s->s_count++;
 354	spin_unlock(&sb_lock);
 
 355	down_write(&s->s_umount);
 356	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
 357		put_super(s);
 358		return 1;
 359	}
 360	up_write(&s->s_umount);
 361	put_super(s);
 362	return 0;
 363}
 364
 365/*
 366 *	trylock_super - try to grab ->s_umount shared
 367 *	@sb: reference we are trying to grab
 368 *
 369 *	Try to prevent fs shutdown.  This is used in places where we
 370 *	cannot take an active reference but we need to ensure that the
 371 *	filesystem is not shut down while we are working on it. It returns
 372 *	false if we cannot acquire s_umount or if we lose the race and
 373 *	filesystem already got into shutdown, and returns true with the s_umount
 374 *	lock held in read mode in case of success. On successful return,
 375 *	the caller must drop the s_umount lock when done.
 376 *
 377 *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 378 *	The reason why it's safe is that we are OK with doing trylock instead
 379 *	of down_read().  There's a couple of places that are OK with that, but
 380 *	it's very much not a general-purpose interface.
 381 */
 382bool trylock_super(struct super_block *sb)
 383{
 
 
 
 
 
 
 
 
 
 384	if (down_read_trylock(&sb->s_umount)) {
 385		if (!hlist_unhashed(&sb->s_instances) &&
 386		    sb->s_root && (sb->s_flags & MS_BORN))
 387			return true;
 388		up_read(&sb->s_umount);
 389	}
 390
 
 391	return false;
 392}
 393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394/**
 395 *	generic_shutdown_super	-	common helper for ->kill_sb()
 396 *	@sb: superblock to kill
 397 *
 398 *	generic_shutdown_super() does all fs-independent work on superblock
 399 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 400 *	that need destruction out of superblock, call generic_shutdown_super()
 401 *	and release aforementioned objects.  Note: dentries and inodes _are_
 402 *	taken care of and do not need specific handling.
 403 *
 404 *	Upon calling this function, the filesystem may no longer alter or
 405 *	rearrange the set of dentries belonging to this super_block, nor may it
 406 *	change the attachments of dentries to inodes.
 407 */
 408void generic_shutdown_super(struct super_block *sb)
 409{
 410	const struct super_operations *sop = sb->s_op;
 411
 412	if (sb->s_root) {
 413		shrink_dcache_for_umount(sb);
 414		sync_filesystem(sb);
 415		sb->s_flags &= ~MS_ACTIVE;
 416
 417		fsnotify_unmount_inodes(sb);
 418		cgroup_writeback_umount();
 419
 420		evict_inodes(sb);
 421
 422		if (sb->s_dio_done_wq) {
 423			destroy_workqueue(sb->s_dio_done_wq);
 424			sb->s_dio_done_wq = NULL;
 425		}
 426
 427		if (sop->put_super)
 428			sop->put_super(sb);
 429
 430		if (!list_empty(&sb->s_inodes)) {
 431			printk("VFS: Busy inodes after unmount of %s. "
 432			   "Self-destruct in 5 seconds.  Have a nice day...\n",
 433			   sb->s_id);
 434		}
 435	}
 436	spin_lock(&sb_lock);
 437	/* should be initialized for __put_super_and_need_restart() */
 438	hlist_del_init(&sb->s_instances);
 439	spin_unlock(&sb_lock);
 440	up_write(&sb->s_umount);
 441}
 442
 443EXPORT_SYMBOL(generic_shutdown_super);
 444
 445/**
 446 *	sget	-	find or create a superblock
 447 *	@type:	filesystem type superblock should belong to
 448 *	@test:	comparison callback
 449 *	@set:	setup callback
 450 *	@flags:	mount flags
 451 *	@data:	argument to each of them
 452 */
 453struct super_block *sget(struct file_system_type *type,
 454			int (*test)(struct super_block *,void *),
 455			int (*set)(struct super_block *,void *),
 456			int flags,
 457			void *data)
 458{
 459	struct super_block *s = NULL;
 460	struct super_block *old;
 461	int err;
 462
 463retry:
 464	spin_lock(&sb_lock);
 465	if (test) {
 466		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 467			if (!test(old, data))
 468				continue;
 469			if (!grab_super(old))
 470				goto retry;
 471			if (s) {
 472				up_write(&s->s_umount);
 473				destroy_super(s);
 474				s = NULL;
 475			}
 
 
 
 
 
 476			return old;
 477		}
 478	}
 479	if (!s) {
 480		spin_unlock(&sb_lock);
 481		s = alloc_super(type, flags);
 482		if (!s)
 483			return ERR_PTR(-ENOMEM);
 484		goto retry;
 485	}
 486		
 487	err = set(s, data);
 488	if (err) {
 489		spin_unlock(&sb_lock);
 490		up_write(&s->s_umount);
 491		destroy_super(s);
 492		return ERR_PTR(err);
 493	}
 494	s->s_type = type;
 495	strlcpy(s->s_id, type->name, sizeof(s->s_id));
 496	list_add_tail(&s->s_list, &super_blocks);
 497	hlist_add_head(&s->s_instances, &type->fs_supers);
 498	spin_unlock(&sb_lock);
 499	get_filesystem(type);
 500	register_shrinker(&s->s_shrink);
 501	return s;
 502}
 503
 504EXPORT_SYMBOL(sget);
 505
 506void drop_super(struct super_block *sb)
 507{
 508	up_read(&sb->s_umount);
 509	put_super(sb);
 510}
 511
 512EXPORT_SYMBOL(drop_super);
 513
 514/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515 *	iterate_supers - call function for all active superblocks
 516 *	@f: function to call
 517 *	@arg: argument to pass to it
 518 *
 519 *	Scans the superblock list and calls given function, passing it
 520 *	locked superblock and given argument.
 521 */
 522void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 523{
 524	struct super_block *sb, *p = NULL;
 525
 526	spin_lock(&sb_lock);
 527	list_for_each_entry(sb, &super_blocks, s_list) {
 528		if (hlist_unhashed(&sb->s_instances))
 529			continue;
 530		sb->s_count++;
 531		spin_unlock(&sb_lock);
 532
 533		down_read(&sb->s_umount);
 534		if (sb->s_root && (sb->s_flags & MS_BORN))
 535			f(sb, arg);
 536		up_read(&sb->s_umount);
 537
 538		spin_lock(&sb_lock);
 539		if (p)
 540			__put_super(p);
 541		p = sb;
 542	}
 543	if (p)
 544		__put_super(p);
 545	spin_unlock(&sb_lock);
 546}
 547
 548/**
 549 *	iterate_supers_type - call function for superblocks of given type
 550 *	@type: fs type
 551 *	@f: function to call
 552 *	@arg: argument to pass to it
 553 *
 554 *	Scans the superblock list and calls given function, passing it
 555 *	locked superblock and given argument.
 556 */
 557void iterate_supers_type(struct file_system_type *type,
 558	void (*f)(struct super_block *, void *), void *arg)
 559{
 560	struct super_block *sb, *p = NULL;
 561
 562	spin_lock(&sb_lock);
 563	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 564		sb->s_count++;
 565		spin_unlock(&sb_lock);
 566
 567		down_read(&sb->s_umount);
 568		if (sb->s_root && (sb->s_flags & MS_BORN))
 569			f(sb, arg);
 570		up_read(&sb->s_umount);
 571
 572		spin_lock(&sb_lock);
 573		if (p)
 574			__put_super(p);
 575		p = sb;
 576	}
 577	if (p)
 578		__put_super(p);
 579	spin_unlock(&sb_lock);
 580}
 581
 582EXPORT_SYMBOL(iterate_supers_type);
 583
 584/**
 585 *	get_super - get the superblock of a device
 586 *	@bdev: device to get the superblock for
 587 *	
 588 *	Scans the superblock list and finds the superblock of the file system
 589 *	mounted on the device given. %NULL is returned if no match is found.
 590 */
 591
 592struct super_block *get_super(struct block_device *bdev)
 593{
 594	struct super_block *sb;
 595
 596	if (!bdev)
 597		return NULL;
 598
 599	spin_lock(&sb_lock);
 600rescan:
 601	list_for_each_entry(sb, &super_blocks, s_list) {
 602		if (hlist_unhashed(&sb->s_instances))
 603			continue;
 604		if (sb->s_bdev == bdev) {
 605			sb->s_count++;
 606			spin_unlock(&sb_lock);
 607			down_read(&sb->s_umount);
 608			/* still alive? */
 609			if (sb->s_root && (sb->s_flags & MS_BORN))
 610				return sb;
 611			up_read(&sb->s_umount);
 612			/* nope, got unmounted */
 613			spin_lock(&sb_lock);
 614			__put_super(sb);
 615			goto rescan;
 616		}
 617	}
 618	spin_unlock(&sb_lock);
 619	return NULL;
 620}
 621
 622EXPORT_SYMBOL(get_super);
 623
 624/**
 625 *	get_super_thawed - get thawed superblock of a device
 626 *	@bdev: device to get the superblock for
 627 *
 628 *	Scans the superblock list and finds the superblock of the file system
 629 *	mounted on the device. The superblock is returned once it is thawed
 630 *	(or immediately if it was not frozen). %NULL is returned if no match
 631 *	is found.
 632 */
 633struct super_block *get_super_thawed(struct block_device *bdev)
 634{
 635	while (1) {
 636		struct super_block *s = get_super(bdev);
 637		if (!s || s->s_writers.frozen == SB_UNFROZEN)
 638			return s;
 639		up_read(&s->s_umount);
 640		wait_event(s->s_writers.wait_unfrozen,
 641			   s->s_writers.frozen == SB_UNFROZEN);
 642		put_super(s);
 643	}
 644}
 645EXPORT_SYMBOL(get_super_thawed);
 646
 647/**
 648 * get_active_super - get an active reference to the superblock of a device
 649 * @bdev: device to get the superblock for
 650 *
 651 * Scans the superblock list and finds the superblock of the file system
 652 * mounted on the device given.  Returns the superblock with an active
 653 * reference or %NULL if none was found.
 654 */
 655struct super_block *get_active_super(struct block_device *bdev)
 656{
 657	struct super_block *sb;
 658
 659	if (!bdev)
 660		return NULL;
 661
 662restart:
 663	spin_lock(&sb_lock);
 664	list_for_each_entry(sb, &super_blocks, s_list) {
 665		if (hlist_unhashed(&sb->s_instances))
 666			continue;
 667		if (sb->s_bdev == bdev) {
 668			if (!grab_super(sb))
 
 
 669				goto restart;
 670			up_write(&sb->s_umount);
 671			return sb;
 672		}
 673	}
 674	spin_unlock(&sb_lock);
 675	return NULL;
 676}
 677 
 678struct super_block *user_get_super(dev_t dev)
 679{
 680	struct super_block *sb;
 681
 682	spin_lock(&sb_lock);
 683rescan:
 684	list_for_each_entry(sb, &super_blocks, s_list) {
 685		if (hlist_unhashed(&sb->s_instances))
 686			continue;
 687		if (sb->s_dev ==  dev) {
 688			sb->s_count++;
 689			spin_unlock(&sb_lock);
 690			down_read(&sb->s_umount);
 691			/* still alive? */
 692			if (sb->s_root && (sb->s_flags & MS_BORN))
 693				return sb;
 694			up_read(&sb->s_umount);
 695			/* nope, got unmounted */
 696			spin_lock(&sb_lock);
 697			__put_super(sb);
 698			goto rescan;
 699		}
 700	}
 701	spin_unlock(&sb_lock);
 702	return NULL;
 703}
 704
 705/**
 706 *	do_remount_sb - asks filesystem to change mount options.
 707 *	@sb:	superblock in question
 708 *	@flags:	numeric part of options
 709 *	@data:	the rest of options
 710 *      @force: whether or not to force the change
 711 *
 712 *	Alters the mount options of a mounted file system.
 713 */
 714int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
 715{
 716	int retval;
 717	int remount_ro;
 718
 719	if (sb->s_writers.frozen != SB_UNFROZEN)
 720		return -EBUSY;
 721
 722#ifdef CONFIG_BLOCK
 723	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
 724		return -EACCES;
 725#endif
 726
 727	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 728
 729	if (remount_ro) {
 730		if (!hlist_empty(&sb->s_pins)) {
 731			up_write(&sb->s_umount);
 732			group_pin_kill(&sb->s_pins);
 733			down_write(&sb->s_umount);
 734			if (!sb->s_root)
 735				return 0;
 736			if (sb->s_writers.frozen != SB_UNFROZEN)
 737				return -EBUSY;
 738			remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 739		}
 740	}
 741	shrink_dcache_sb(sb);
 
 
 
 742
 743	/* If we are remounting RDONLY and current sb is read/write,
 744	   make sure there are no rw files opened */
 745	if (remount_ro) {
 746		if (force) {
 747			sb->s_readonly_remount = 1;
 748			smp_wmb();
 749		} else {
 750			retval = sb_prepare_remount_readonly(sb);
 751			if (retval)
 752				return retval;
 753		}
 754	}
 755
 756	if (sb->s_op->remount_fs) {
 757		retval = sb->s_op->remount_fs(sb, &flags, data);
 758		if (retval) {
 759			if (!force)
 760				goto cancel_readonly;
 761			/* If forced remount, go ahead despite any errors */
 762			WARN(1, "forced remount of a %s fs returned %i\n",
 763			     sb->s_type->name, retval);
 764		}
 765	}
 766	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
 767	/* Needs to be ordered wrt mnt_is_readonly() */
 768	smp_wmb();
 769	sb->s_readonly_remount = 0;
 770
 771	/*
 772	 * Some filesystems modify their metadata via some other path than the
 773	 * bdev buffer cache (eg. use a private mapping, or directories in
 774	 * pagecache, etc). Also file data modifications go via their own
 775	 * mappings. So If we try to mount readonly then copy the filesystem
 776	 * from bdev, we could get stale data, so invalidate it to give a best
 777	 * effort at coherency.
 778	 */
 779	if (remount_ro && sb->s_bdev)
 780		invalidate_bdev(sb->s_bdev);
 781	return 0;
 782
 783cancel_readonly:
 784	sb->s_readonly_remount = 0;
 785	return retval;
 786}
 787
 788static void do_emergency_remount(struct work_struct *work)
 789{
 790	struct super_block *sb, *p = NULL;
 791
 792	spin_lock(&sb_lock);
 793	list_for_each_entry(sb, &super_blocks, s_list) {
 794		if (hlist_unhashed(&sb->s_instances))
 795			continue;
 796		sb->s_count++;
 797		spin_unlock(&sb_lock);
 798		down_write(&sb->s_umount);
 799		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
 800		    !(sb->s_flags & MS_RDONLY)) {
 801			/*
 802			 * What lock protects sb->s_flags??
 803			 */
 804			do_remount_sb(sb, MS_RDONLY, NULL, 1);
 805		}
 806		up_write(&sb->s_umount);
 807		spin_lock(&sb_lock);
 808		if (p)
 809			__put_super(p);
 810		p = sb;
 811	}
 812	if (p)
 813		__put_super(p);
 814	spin_unlock(&sb_lock);
 815	kfree(work);
 816	printk("Emergency Remount complete\n");
 817}
 818
 819void emergency_remount(void)
 820{
 821	struct work_struct *work;
 822
 823	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 824	if (work) {
 825		INIT_WORK(work, do_emergency_remount);
 826		schedule_work(work);
 827	}
 828}
 829
 830/*
 831 * Unnamed block devices are dummy devices used by virtual
 832 * filesystems which don't use real block-devices.  -- jrs
 833 */
 834
 835static DEFINE_IDA(unnamed_dev_ida);
 836static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
 837/* Many userspace utilities consider an FSID of 0 invalid.
 838 * Always return at least 1 from get_anon_bdev.
 839 */
 840static int unnamed_dev_start = 1;
 841
 842int get_anon_bdev(dev_t *p)
 843{
 844	int dev;
 845	int error;
 846
 847 retry:
 848	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
 849		return -ENOMEM;
 850	spin_lock(&unnamed_dev_lock);
 851	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
 852	if (!error)
 853		unnamed_dev_start = dev + 1;
 854	spin_unlock(&unnamed_dev_lock);
 855	if (error == -EAGAIN)
 856		/* We raced and lost with another CPU. */
 857		goto retry;
 858	else if (error)
 859		return -EAGAIN;
 860
 861	if (dev >= (1 << MINORBITS)) {
 862		spin_lock(&unnamed_dev_lock);
 863		ida_remove(&unnamed_dev_ida, dev);
 864		if (unnamed_dev_start > dev)
 865			unnamed_dev_start = dev;
 866		spin_unlock(&unnamed_dev_lock);
 867		return -EMFILE;
 868	}
 869	*p = MKDEV(0, dev & MINORMASK);
 870	return 0;
 871}
 872EXPORT_SYMBOL(get_anon_bdev);
 873
 874void free_anon_bdev(dev_t dev)
 875{
 876	int slot = MINOR(dev);
 877	spin_lock(&unnamed_dev_lock);
 878	ida_remove(&unnamed_dev_ida, slot);
 879	if (slot < unnamed_dev_start)
 880		unnamed_dev_start = slot;
 881	spin_unlock(&unnamed_dev_lock);
 882}
 883EXPORT_SYMBOL(free_anon_bdev);
 884
 885int set_anon_super(struct super_block *s, void *data)
 886{
 887	return get_anon_bdev(&s->s_dev);
 
 
 
 888}
 889
 890EXPORT_SYMBOL(set_anon_super);
 891
 892void kill_anon_super(struct super_block *sb)
 893{
 894	dev_t dev = sb->s_dev;
 895	generic_shutdown_super(sb);
 896	free_anon_bdev(dev);
 897}
 898
 899EXPORT_SYMBOL(kill_anon_super);
 900
 901void kill_litter_super(struct super_block *sb)
 902{
 903	if (sb->s_root)
 904		d_genocide(sb->s_root);
 905	kill_anon_super(sb);
 906}
 907
 908EXPORT_SYMBOL(kill_litter_super);
 909
 910static int ns_test_super(struct super_block *sb, void *data)
 911{
 912	return sb->s_fs_info == data;
 913}
 914
 915static int ns_set_super(struct super_block *sb, void *data)
 916{
 917	sb->s_fs_info = data;
 918	return set_anon_super(sb, NULL);
 919}
 920
 921struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
 922	void *data, int (*fill_super)(struct super_block *, void *, int))
 923{
 924	struct super_block *sb;
 925
 926	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
 927	if (IS_ERR(sb))
 928		return ERR_CAST(sb);
 929
 930	if (!sb->s_root) {
 931		int err;
 
 932		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
 933		if (err) {
 934			deactivate_locked_super(sb);
 935			return ERR_PTR(err);
 936		}
 937
 938		sb->s_flags |= MS_ACTIVE;
 939	}
 940
 941	return dget(sb->s_root);
 942}
 943
 944EXPORT_SYMBOL(mount_ns);
 945
 946#ifdef CONFIG_BLOCK
 947static int set_bdev_super(struct super_block *s, void *data)
 948{
 949	s->s_bdev = data;
 950	s->s_dev = s->s_bdev->bd_dev;
 951
 952	/*
 953	 * We set the bdi here to the queue backing, file systems can
 954	 * overwrite this in ->fill_super()
 955	 */
 956	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
 957	return 0;
 958}
 959
 960static int test_bdev_super(struct super_block *s, void *data)
 961{
 962	return (void *)s->s_bdev == data;
 963}
 964
 965struct dentry *mount_bdev(struct file_system_type *fs_type,
 966	int flags, const char *dev_name, void *data,
 967	int (*fill_super)(struct super_block *, void *, int))
 968{
 969	struct block_device *bdev;
 970	struct super_block *s;
 971	fmode_t mode = FMODE_READ | FMODE_EXCL;
 972	int error = 0;
 973
 974	if (!(flags & MS_RDONLY))
 975		mode |= FMODE_WRITE;
 976
 977	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
 978	if (IS_ERR(bdev))
 979		return ERR_CAST(bdev);
 980
 981	/*
 982	 * once the super is inserted into the list by sget, s_umount
 983	 * will protect the lockfs code from trying to start a snapshot
 984	 * while we are mounting
 985	 */
 986	mutex_lock(&bdev->bd_fsfreeze_mutex);
 987	if (bdev->bd_fsfreeze_count > 0) {
 988		mutex_unlock(&bdev->bd_fsfreeze_mutex);
 989		error = -EBUSY;
 990		goto error_bdev;
 991	}
 992	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
 993		 bdev);
 994	mutex_unlock(&bdev->bd_fsfreeze_mutex);
 995	if (IS_ERR(s))
 996		goto error_s;
 997
 998	if (s->s_root) {
 999		if ((flags ^ s->s_flags) & MS_RDONLY) {
1000			deactivate_locked_super(s);
1001			error = -EBUSY;
1002			goto error_bdev;
1003		}
1004
1005		/*
1006		 * s_umount nests inside bd_mutex during
1007		 * __invalidate_device().  blkdev_put() acquires
1008		 * bd_mutex and can't be called under s_umount.  Drop
1009		 * s_umount temporarily.  This is safe as we're
1010		 * holding an active reference.
1011		 */
1012		up_write(&s->s_umount);
1013		blkdev_put(bdev, mode);
1014		down_write(&s->s_umount);
1015	} else {
 
 
 
1016		s->s_mode = mode;
1017		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1018		sb_set_blocksize(s, block_size(bdev));
1019		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1020		if (error) {
1021			deactivate_locked_super(s);
1022			goto error;
1023		}
1024
1025		s->s_flags |= MS_ACTIVE;
1026		bdev->bd_super = s;
1027	}
1028
1029	return dget(s->s_root);
1030
1031error_s:
1032	error = PTR_ERR(s);
1033error_bdev:
1034	blkdev_put(bdev, mode);
1035error:
1036	return ERR_PTR(error);
1037}
1038EXPORT_SYMBOL(mount_bdev);
1039
1040void kill_block_super(struct super_block *sb)
1041{
1042	struct block_device *bdev = sb->s_bdev;
1043	fmode_t mode = sb->s_mode;
1044
1045	bdev->bd_super = NULL;
1046	generic_shutdown_super(sb);
1047	sync_blockdev(bdev);
1048	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1049	blkdev_put(bdev, mode | FMODE_EXCL);
1050}
1051
1052EXPORT_SYMBOL(kill_block_super);
1053#endif
1054
1055struct dentry *mount_nodev(struct file_system_type *fs_type,
1056	int flags, void *data,
1057	int (*fill_super)(struct super_block *, void *, int))
1058{
1059	int error;
1060	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1061
1062	if (IS_ERR(s))
1063		return ERR_CAST(s);
1064
 
 
1065	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1066	if (error) {
1067		deactivate_locked_super(s);
1068		return ERR_PTR(error);
1069	}
1070	s->s_flags |= MS_ACTIVE;
1071	return dget(s->s_root);
1072}
1073EXPORT_SYMBOL(mount_nodev);
1074
1075static int compare_single(struct super_block *s, void *p)
1076{
1077	return 1;
1078}
1079
1080struct dentry *mount_single(struct file_system_type *fs_type,
1081	int flags, void *data,
1082	int (*fill_super)(struct super_block *, void *, int))
1083{
1084	struct super_block *s;
1085	int error;
1086
1087	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1088	if (IS_ERR(s))
1089		return ERR_CAST(s);
1090	if (!s->s_root) {
 
1091		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1092		if (error) {
1093			deactivate_locked_super(s);
1094			return ERR_PTR(error);
1095		}
1096		s->s_flags |= MS_ACTIVE;
1097	} else {
1098		do_remount_sb(s, flags, data, 0);
1099	}
1100	return dget(s->s_root);
1101}
1102EXPORT_SYMBOL(mount_single);
1103
1104struct dentry *
1105mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1106{
1107	struct dentry *root;
1108	struct super_block *sb;
1109	char *secdata = NULL;
1110	int error = -ENOMEM;
1111
1112	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1113		secdata = alloc_secdata();
1114		if (!secdata)
1115			goto out;
1116
1117		error = security_sb_copy_data(data, secdata);
1118		if (error)
1119			goto out_free_secdata;
1120	}
1121
1122	root = type->mount(type, flags, name, data);
1123	if (IS_ERR(root)) {
1124		error = PTR_ERR(root);
1125		goto out_free_secdata;
1126	}
1127	sb = root->d_sb;
1128	BUG_ON(!sb);
1129	WARN_ON(!sb->s_bdi);
 
1130	sb->s_flags |= MS_BORN;
1131
1132	error = security_sb_kern_mount(sb, flags, secdata);
1133	if (error)
1134		goto out_sb;
1135
1136	/*
1137	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1138	 * but s_maxbytes was an unsigned long long for many releases. Throw
1139	 * this warning for a little while to try and catch filesystems that
1140	 * violate this rule.
1141	 */
1142	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1143		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1144
1145	up_write(&sb->s_umount);
1146	free_secdata(secdata);
1147	return root;
1148out_sb:
1149	dput(root);
1150	deactivate_locked_super(sb);
1151out_free_secdata:
1152	free_secdata(secdata);
1153out:
1154	return ERR_PTR(error);
1155}
1156
1157/*
1158 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1159 * instead.
1160 */
1161void __sb_end_write(struct super_block *sb, int level)
1162{
1163	percpu_up_read(sb->s_writers.rw_sem + level-1);
1164}
1165EXPORT_SYMBOL(__sb_end_write);
1166
1167/*
1168 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1169 * instead.
1170 */
1171int __sb_start_write(struct super_block *sb, int level, bool wait)
1172{
1173	bool force_trylock = false;
1174	int ret = 1;
1175
1176#ifdef CONFIG_LOCKDEP
1177	/*
1178	 * We want lockdep to tell us about possible deadlocks with freezing
1179	 * but it's it bit tricky to properly instrument it. Getting a freeze
1180	 * protection works as getting a read lock but there are subtle
1181	 * problems. XFS for example gets freeze protection on internal level
1182	 * twice in some cases, which is OK only because we already hold a
1183	 * freeze protection also on higher level. Due to these cases we have
1184	 * to use wait == F (trylock mode) which must not fail.
1185	 */
1186	if (wait) {
1187		int i;
1188
1189		for (i = 0; i < level - 1; i++)
1190			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1191				force_trylock = true;
1192				break;
1193			}
1194	}
1195#endif
1196	if (wait && !force_trylock)
1197		percpu_down_read(sb->s_writers.rw_sem + level-1);
1198	else
1199		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1200
1201	WARN_ON(force_trylock && !ret);
1202	return ret;
1203}
1204EXPORT_SYMBOL(__sb_start_write);
1205
1206/**
1207 * sb_wait_write - wait until all writers to given file system finish
1208 * @sb: the super for which we wait
1209 * @level: type of writers we wait for (normal vs page fault)
1210 *
1211 * This function waits until there are no writers of given type to given file
1212 * system.
1213 */
1214static void sb_wait_write(struct super_block *sb, int level)
1215{
1216	percpu_down_write(sb->s_writers.rw_sem + level-1);
1217	/*
1218	 * We are going to return to userspace and forget about this lock, the
1219	 * ownership goes to the caller of thaw_super() which does unlock.
1220	 *
1221	 * FIXME: we should do this before return from freeze_super() after we
1222	 * called sync_filesystem(sb) and s_op->freeze_fs(sb), and thaw_super()
1223	 * should re-acquire these locks before s_op->unfreeze_fs(sb). However
1224	 * this leads to lockdep false-positives, so currently we do the early
1225	 * release right after acquire.
1226	 */
1227	percpu_rwsem_release(sb->s_writers.rw_sem + level-1, 0, _THIS_IP_);
1228}
1229
1230static void sb_freeze_unlock(struct super_block *sb)
1231{
1232	int level;
1233
1234	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1235		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1236
1237	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1238		percpu_up_write(sb->s_writers.rw_sem + level);
1239}
1240
1241/**
1242 * freeze_super - lock the filesystem and force it into a consistent state
1243 * @sb: the super to lock
1244 *
1245 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1246 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1247 * -EBUSY.
1248 *
1249 * During this function, sb->s_writers.frozen goes through these values:
1250 *
1251 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1252 *
1253 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1254 * writes should be blocked, though page faults are still allowed. We wait for
1255 * all writes to complete and then proceed to the next stage.
1256 *
1257 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1258 * but internal fs threads can still modify the filesystem (although they
1259 * should not dirty new pages or inodes), writeback can run etc. After waiting
1260 * for all running page faults we sync the filesystem which will clean all
1261 * dirty pages and inodes (no new dirty pages or inodes can be created when
1262 * sync is running).
1263 *
1264 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1265 * modification are blocked (e.g. XFS preallocation truncation on inode
1266 * reclaim). This is usually implemented by blocking new transactions for
1267 * filesystems that have them and need this additional guard. After all
1268 * internal writers are finished we call ->freeze_fs() to finish filesystem
1269 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1270 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1271 *
1272 * sb->s_writers.frozen is protected by sb->s_umount.
1273 */
1274int freeze_super(struct super_block *sb)
1275{
1276	int ret;
1277
1278	atomic_inc(&sb->s_active);
1279	down_write(&sb->s_umount);
1280	if (sb->s_writers.frozen != SB_UNFROZEN) {
1281		deactivate_locked_super(sb);
1282		return -EBUSY;
1283	}
1284
1285	if (!(sb->s_flags & MS_BORN)) {
1286		up_write(&sb->s_umount);
1287		return 0;	/* sic - it's "nothing to do" */
1288	}
1289
1290	if (sb->s_flags & MS_RDONLY) {
1291		/* Nothing to do really... */
1292		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1293		up_write(&sb->s_umount);
1294		return 0;
1295	}
1296
1297	sb->s_writers.frozen = SB_FREEZE_WRITE;
1298	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1299	up_write(&sb->s_umount);
1300	sb_wait_write(sb, SB_FREEZE_WRITE);
1301	down_write(&sb->s_umount);
1302
1303	/* Now we go and block page faults... */
1304	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1305	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1306
1307	/* All writers are done so after syncing there won't be dirty data */
1308	sync_filesystem(sb);
1309
1310	/* Now wait for internal filesystem counter */
1311	sb->s_writers.frozen = SB_FREEZE_FS;
1312	sb_wait_write(sb, SB_FREEZE_FS);
1313
 
1314	if (sb->s_op->freeze_fs) {
1315		ret = sb->s_op->freeze_fs(sb);
1316		if (ret) {
1317			printk(KERN_ERR
1318				"VFS:Filesystem freeze failed\n");
1319			sb->s_writers.frozen = SB_UNFROZEN;
1320			sb_freeze_unlock(sb);
1321			wake_up(&sb->s_writers.wait_unfrozen);
1322			deactivate_locked_super(sb);
1323			return ret;
1324		}
1325	}
1326	/*
1327	 * This is just for debugging purposes so that fs can warn if it
1328	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1329	 */
1330	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1331	up_write(&sb->s_umount);
1332	return 0;
1333}
1334EXPORT_SYMBOL(freeze_super);
1335
1336/**
1337 * thaw_super -- unlock filesystem
1338 * @sb: the super to thaw
1339 *
1340 * Unlocks the filesystem and marks it writeable again after freeze_super().
1341 */
1342int thaw_super(struct super_block *sb)
1343{
1344	int error;
1345
1346	down_write(&sb->s_umount);
1347	if (sb->s_writers.frozen == SB_UNFROZEN) {
1348		up_write(&sb->s_umount);
1349		return -EINVAL;
1350	}
1351
1352	if (sb->s_flags & MS_RDONLY) {
1353		sb->s_writers.frozen = SB_UNFROZEN;
1354		goto out;
1355	}
1356
1357	if (sb->s_op->unfreeze_fs) {
1358		error = sb->s_op->unfreeze_fs(sb);
1359		if (error) {
1360			printk(KERN_ERR
1361				"VFS:Filesystem thaw failed\n");
 
1362			up_write(&sb->s_umount);
1363			return error;
1364		}
1365	}
1366
1367	sb->s_writers.frozen = SB_UNFROZEN;
1368	sb_freeze_unlock(sb);
1369out:
1370	wake_up(&sb->s_writers.wait_unfrozen);
 
 
1371	deactivate_locked_super(sb);
 
1372	return 0;
1373}
1374EXPORT_SYMBOL(thaw_super);
v3.1
   1/*
   2 *  linux/fs/super.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  super.c contains code to handle: - mount structures
   7 *                                   - super-block tables
   8 *                                   - filesystem drivers list
   9 *                                   - mount system call
  10 *                                   - umount system call
  11 *                                   - ustat system call
  12 *
  13 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  14 *
  15 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  16 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  17 *  Added options to /proc/mounts:
  18 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  19 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  20 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/slab.h>
  25#include <linux/acct.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>		/* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/cleancache.h>
 
 
  35#include "internal.h"
  36
  37
  38LIST_HEAD(super_blocks);
  39DEFINE_SPINLOCK(sb_lock);
 
 
 
 
 
 
  40
  41/*
  42 * One thing we have to be careful of with a per-sb shrinker is that we don't
  43 * drop the last active reference to the superblock from within the shrinker.
  44 * If that happens we could trigger unregistering the shrinker from within the
  45 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  46 * take a passive reference to the superblock to avoid this from occurring.
  47 */
  48static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
 
  49{
  50	struct super_block *sb;
  51	int	fs_objects = 0;
  52	int	total_objects;
 
 
 
  53
  54	sb = container_of(shrink, struct super_block, s_shrink);
  55
  56	/*
  57	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
  58	 * to recurse into the FS that called us in clear_inode() and friends..
  59	 */
  60	if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
  61		return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62
  63	if (!grab_super_passive(sb))
  64		return -1;
  65
 
 
 
 
 
 
 
 
  66	if (sb->s_op && sb->s_op->nr_cached_objects)
  67		fs_objects = sb->s_op->nr_cached_objects(sb);
  68
  69	total_objects = sb->s_nr_dentry_unused +
  70			sb->s_nr_inodes_unused + fs_objects + 1;
 
 
 
 
  71
  72	if (sc->nr_to_scan) {
  73		int	dentries;
  74		int	inodes;
  75
  76		/* proportion the scan between the caches */
  77		dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
  78							total_objects;
  79		inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
  80							total_objects;
  81		if (fs_objects)
  82			fs_objects = (sc->nr_to_scan * fs_objects) /
  83							total_objects;
  84		/*
  85		 * prune the dcache first as the icache is pinned by it, then
  86		 * prune the icache, followed by the filesystem specific caches
  87		 */
  88		prune_dcache_sb(sb, dentries);
  89		prune_icache_sb(sb, inodes);
  90
  91		if (fs_objects && sb->s_op->free_cached_objects) {
  92			sb->s_op->free_cached_objects(sb, fs_objects);
  93			fs_objects = sb->s_op->nr_cached_objects(sb);
  94		}
  95		total_objects = sb->s_nr_dentry_unused +
  96				sb->s_nr_inodes_unused + fs_objects;
  97	}
  98
  99	total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
 100	drop_super(sb);
 101	return total_objects;
 
 
 
 
 
 
 
 
 
 
 
 
 102}
 103
 104/**
 105 *	alloc_super	-	create new superblock
 106 *	@type:	filesystem type superblock should belong to
 
 107 *
 108 *	Allocates and initializes a new &struct super_block.  alloc_super()
 109 *	returns a pointer new superblock or %NULL if allocation had failed.
 110 */
 111static struct super_block *alloc_super(struct file_system_type *type)
 112{
 113	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 114	static const struct super_operations default_op;
 
 
 
 
 115
 116	if (s) {
 117		if (security_sb_alloc(s)) {
 118			kfree(s);
 119			s = NULL;
 120			goto out;
 121		}
 122#ifdef CONFIG_SMP
 123		s->s_files = alloc_percpu(struct list_head);
 124		if (!s->s_files) {
 125			security_sb_free(s);
 126			kfree(s);
 127			s = NULL;
 128			goto out;
 129		} else {
 130			int i;
 131
 132			for_each_possible_cpu(i)
 133				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
 134		}
 135#else
 136		INIT_LIST_HEAD(&s->s_files);
 137#endif
 138		s->s_bdi = &default_backing_dev_info;
 139		INIT_LIST_HEAD(&s->s_instances);
 140		INIT_HLIST_BL_HEAD(&s->s_anon);
 141		INIT_LIST_HEAD(&s->s_inodes);
 142		INIT_LIST_HEAD(&s->s_dentry_lru);
 143		INIT_LIST_HEAD(&s->s_inode_lru);
 144		spin_lock_init(&s->s_inode_lru_lock);
 145		init_rwsem(&s->s_umount);
 146		mutex_init(&s->s_lock);
 147		lockdep_set_class(&s->s_umount, &type->s_umount_key);
 148		/*
 149		 * The locking rules for s_lock are up to the
 150		 * filesystem. For example ext3fs has different
 151		 * lock ordering than usbfs:
 152		 */
 153		lockdep_set_class(&s->s_lock, &type->s_lock_key);
 154		/*
 155		 * sget() can have s_umount recursion.
 156		 *
 157		 * When it cannot find a suitable sb, it allocates a new
 158		 * one (this one), and tries again to find a suitable old
 159		 * one.
 160		 *
 161		 * In case that succeeds, it will acquire the s_umount
 162		 * lock of the old one. Since these are clearly distrinct
 163		 * locks, and this object isn't exposed yet, there's no
 164		 * risk of deadlocks.
 165		 *
 166		 * Annotate this by putting this lock in a different
 167		 * subclass.
 168		 */
 169		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 170		s->s_count = 1;
 171		atomic_set(&s->s_active, 1);
 172		mutex_init(&s->s_vfs_rename_mutex);
 173		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 174		mutex_init(&s->s_dquot.dqio_mutex);
 175		mutex_init(&s->s_dquot.dqonoff_mutex);
 176		init_rwsem(&s->s_dquot.dqptr_sem);
 177		init_waitqueue_head(&s->s_wait_unfrozen);
 178		s->s_maxbytes = MAX_NON_LFS;
 179		s->s_op = &default_op;
 180		s->s_time_gran = 1000000000;
 181		s->cleancache_poolid = -1;
 182
 183		s->s_shrink.seeks = DEFAULT_SEEKS;
 184		s->s_shrink.shrink = prune_super;
 185		s->s_shrink.batch = 1024;
 186	}
 187out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188	return s;
 189}
 190
 191/**
 192 *	destroy_super	-	frees a superblock
 193 *	@s: superblock to free
 194 *
 195 *	Frees a superblock.
 196 */
 197static inline void destroy_super(struct super_block *s)
 198{
 199#ifdef CONFIG_SMP
 200	free_percpu(s->s_files);
 201#endif
 202	security_sb_free(s);
 203	kfree(s->s_subtype);
 204	kfree(s->s_options);
 205	kfree(s);
 206}
 207
 208/* Superblock refcounting  */
 209
 210/*
 211 * Drop a superblock's refcount.  The caller must hold sb_lock.
 212 */
 213void __put_super(struct super_block *sb)
 214{
 215	if (!--sb->s_count) {
 216		list_del_init(&sb->s_list);
 217		destroy_super(sb);
 218	}
 219}
 220
 221/**
 222 *	put_super	-	drop a temporary reference to superblock
 223 *	@sb: superblock in question
 224 *
 225 *	Drops a temporary reference, frees superblock if there's no
 226 *	references left.
 227 */
 228void put_super(struct super_block *sb)
 229{
 230	spin_lock(&sb_lock);
 231	__put_super(sb);
 232	spin_unlock(&sb_lock);
 233}
 234
 235
 236/**
 237 *	deactivate_locked_super	-	drop an active reference to superblock
 238 *	@s: superblock to deactivate
 239 *
 240 *	Drops an active reference to superblock, converting it into a temprory
 241 *	one if there is no other active references left.  In that case we
 242 *	tell fs driver to shut it down and drop the temporary reference we
 243 *	had just acquired.
 244 *
 245 *	Caller holds exclusive lock on superblock; that lock is released.
 246 */
 247void deactivate_locked_super(struct super_block *s)
 248{
 249	struct file_system_type *fs = s->s_type;
 250	if (atomic_dec_and_test(&s->s_active)) {
 251		cleancache_flush_fs(s);
 
 252		fs->kill_sb(s);
 253
 254		/* caches are now gone, we can safely kill the shrinker now */
 255		unregister_shrinker(&s->s_shrink);
 256
 257		/*
 258		 * We need to call rcu_barrier so all the delayed rcu free
 259		 * inodes are flushed before we release the fs module.
 
 260		 */
 261		rcu_barrier();
 
 
 262		put_filesystem(fs);
 263		put_super(s);
 264	} else {
 265		up_write(&s->s_umount);
 266	}
 267}
 268
 269EXPORT_SYMBOL(deactivate_locked_super);
 270
 271/**
 272 *	deactivate_super	-	drop an active reference to superblock
 273 *	@s: superblock to deactivate
 274 *
 275 *	Variant of deactivate_locked_super(), except that superblock is *not*
 276 *	locked by caller.  If we are going to drop the final active reference,
 277 *	lock will be acquired prior to that.
 278 */
 279void deactivate_super(struct super_block *s)
 280{
 281        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 282		down_write(&s->s_umount);
 283		deactivate_locked_super(s);
 284	}
 285}
 286
 287EXPORT_SYMBOL(deactivate_super);
 288
 289/**
 290 *	grab_super - acquire an active reference
 291 *	@s: reference we are trying to make active
 292 *
 293 *	Tries to acquire an active reference.  grab_super() is used when we
 294 * 	had just found a superblock in super_blocks or fs_type->fs_supers
 295 *	and want to turn it into a full-blown active reference.  grab_super()
 296 *	is called with sb_lock held and drops it.  Returns 1 in case of
 297 *	success, 0 if we had failed (superblock contents was already dead or
 298 *	dying when grab_super() had been called).
 
 
 299 */
 300static int grab_super(struct super_block *s) __releases(sb_lock)
 301{
 302	if (atomic_inc_not_zero(&s->s_active)) {
 303		spin_unlock(&sb_lock);
 304		return 1;
 305	}
 306	/* it's going away */
 307	s->s_count++;
 308	spin_unlock(&sb_lock);
 309	/* wait for it to die */
 310	down_write(&s->s_umount);
 
 
 
 
 311	up_write(&s->s_umount);
 312	put_super(s);
 313	return 0;
 314}
 315
 316/*
 317 *	grab_super_passive - acquire a passive reference
 318 *	@s: reference we are trying to grab
 319 *
 320 *	Tries to acquire a passive reference. This is used in places where we
 321 *	cannot take an active reference but we need to ensure that the
 322 *	superblock does not go away while we are working on it. It returns
 323 *	false if a reference was not gained, and returns true with the s_umount
 324 *	lock held in read mode if a reference is gained. On successful return,
 325 *	the caller must drop the s_umount lock and the passive reference when
 326 *	done.
 
 
 
 
 
 327 */
 328bool grab_super_passive(struct super_block *sb)
 329{
 330	spin_lock(&sb_lock);
 331	if (list_empty(&sb->s_instances)) {
 332		spin_unlock(&sb_lock);
 333		return false;
 334	}
 335
 336	sb->s_count++;
 337	spin_unlock(&sb_lock);
 338
 339	if (down_read_trylock(&sb->s_umount)) {
 340		if (sb->s_root)
 
 341			return true;
 342		up_read(&sb->s_umount);
 343	}
 344
 345	put_super(sb);
 346	return false;
 347}
 348
 349/*
 350 * Superblock locking.  We really ought to get rid of these two.
 351 */
 352void lock_super(struct super_block * sb)
 353{
 354	mutex_lock(&sb->s_lock);
 355}
 356
 357void unlock_super(struct super_block * sb)
 358{
 359	mutex_unlock(&sb->s_lock);
 360}
 361
 362EXPORT_SYMBOL(lock_super);
 363EXPORT_SYMBOL(unlock_super);
 364
 365/**
 366 *	generic_shutdown_super	-	common helper for ->kill_sb()
 367 *	@sb: superblock to kill
 368 *
 369 *	generic_shutdown_super() does all fs-independent work on superblock
 370 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 371 *	that need destruction out of superblock, call generic_shutdown_super()
 372 *	and release aforementioned objects.  Note: dentries and inodes _are_
 373 *	taken care of and do not need specific handling.
 374 *
 375 *	Upon calling this function, the filesystem may no longer alter or
 376 *	rearrange the set of dentries belonging to this super_block, nor may it
 377 *	change the attachments of dentries to inodes.
 378 */
 379void generic_shutdown_super(struct super_block *sb)
 380{
 381	const struct super_operations *sop = sb->s_op;
 382
 383	if (sb->s_root) {
 384		shrink_dcache_for_umount(sb);
 385		sync_filesystem(sb);
 386		sb->s_flags &= ~MS_ACTIVE;
 387
 388		fsnotify_unmount_inodes(&sb->s_inodes);
 
 389
 390		evict_inodes(sb);
 391
 
 
 
 
 
 392		if (sop->put_super)
 393			sop->put_super(sb);
 394
 395		if (!list_empty(&sb->s_inodes)) {
 396			printk("VFS: Busy inodes after unmount of %s. "
 397			   "Self-destruct in 5 seconds.  Have a nice day...\n",
 398			   sb->s_id);
 399		}
 400	}
 401	spin_lock(&sb_lock);
 402	/* should be initialized for __put_super_and_need_restart() */
 403	list_del_init(&sb->s_instances);
 404	spin_unlock(&sb_lock);
 405	up_write(&sb->s_umount);
 406}
 407
 408EXPORT_SYMBOL(generic_shutdown_super);
 409
 410/**
 411 *	sget	-	find or create a superblock
 412 *	@type:	filesystem type superblock should belong to
 413 *	@test:	comparison callback
 414 *	@set:	setup callback
 
 415 *	@data:	argument to each of them
 416 */
 417struct super_block *sget(struct file_system_type *type,
 418			int (*test)(struct super_block *,void *),
 419			int (*set)(struct super_block *,void *),
 
 420			void *data)
 421{
 422	struct super_block *s = NULL;
 423	struct super_block *old;
 424	int err;
 425
 426retry:
 427	spin_lock(&sb_lock);
 428	if (test) {
 429		list_for_each_entry(old, &type->fs_supers, s_instances) {
 430			if (!test(old, data))
 431				continue;
 432			if (!grab_super(old))
 433				goto retry;
 434			if (s) {
 435				up_write(&s->s_umount);
 436				destroy_super(s);
 437				s = NULL;
 438			}
 439			down_write(&old->s_umount);
 440			if (unlikely(!(old->s_flags & MS_BORN))) {
 441				deactivate_locked_super(old);
 442				goto retry;
 443			}
 444			return old;
 445		}
 446	}
 447	if (!s) {
 448		spin_unlock(&sb_lock);
 449		s = alloc_super(type);
 450		if (!s)
 451			return ERR_PTR(-ENOMEM);
 452		goto retry;
 453	}
 454		
 455	err = set(s, data);
 456	if (err) {
 457		spin_unlock(&sb_lock);
 458		up_write(&s->s_umount);
 459		destroy_super(s);
 460		return ERR_PTR(err);
 461	}
 462	s->s_type = type;
 463	strlcpy(s->s_id, type->name, sizeof(s->s_id));
 464	list_add_tail(&s->s_list, &super_blocks);
 465	list_add(&s->s_instances, &type->fs_supers);
 466	spin_unlock(&sb_lock);
 467	get_filesystem(type);
 468	register_shrinker(&s->s_shrink);
 469	return s;
 470}
 471
 472EXPORT_SYMBOL(sget);
 473
 474void drop_super(struct super_block *sb)
 475{
 476	up_read(&sb->s_umount);
 477	put_super(sb);
 478}
 479
 480EXPORT_SYMBOL(drop_super);
 481
 482/**
 483 * sync_supers - helper for periodic superblock writeback
 484 *
 485 * Call the write_super method if present on all dirty superblocks in
 486 * the system.  This is for the periodic writeback used by most older
 487 * filesystems.  For data integrity superblock writeback use
 488 * sync_filesystems() instead.
 489 *
 490 * Note: check the dirty flag before waiting, so we don't
 491 * hold up the sync while mounting a device. (The newly
 492 * mounted device won't need syncing.)
 493 */
 494void sync_supers(void)
 495{
 496	struct super_block *sb, *p = NULL;
 497
 498	spin_lock(&sb_lock);
 499	list_for_each_entry(sb, &super_blocks, s_list) {
 500		if (list_empty(&sb->s_instances))
 501			continue;
 502		if (sb->s_op->write_super && sb->s_dirt) {
 503			sb->s_count++;
 504			spin_unlock(&sb_lock);
 505
 506			down_read(&sb->s_umount);
 507			if (sb->s_root && sb->s_dirt)
 508				sb->s_op->write_super(sb);
 509			up_read(&sb->s_umount);
 510
 511			spin_lock(&sb_lock);
 512			if (p)
 513				__put_super(p);
 514			p = sb;
 515		}
 516	}
 517	if (p)
 518		__put_super(p);
 519	spin_unlock(&sb_lock);
 520}
 521
 522/**
 523 *	iterate_supers - call function for all active superblocks
 524 *	@f: function to call
 525 *	@arg: argument to pass to it
 526 *
 527 *	Scans the superblock list and calls given function, passing it
 528 *	locked superblock and given argument.
 529 */
 530void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 531{
 532	struct super_block *sb, *p = NULL;
 533
 534	spin_lock(&sb_lock);
 535	list_for_each_entry(sb, &super_blocks, s_list) {
 536		if (list_empty(&sb->s_instances))
 537			continue;
 538		sb->s_count++;
 539		spin_unlock(&sb_lock);
 540
 541		down_read(&sb->s_umount);
 542		if (sb->s_root)
 543			f(sb, arg);
 544		up_read(&sb->s_umount);
 545
 546		spin_lock(&sb_lock);
 547		if (p)
 548			__put_super(p);
 549		p = sb;
 550	}
 551	if (p)
 552		__put_super(p);
 553	spin_unlock(&sb_lock);
 554}
 555
 556/**
 557 *	iterate_supers_type - call function for superblocks of given type
 558 *	@type: fs type
 559 *	@f: function to call
 560 *	@arg: argument to pass to it
 561 *
 562 *	Scans the superblock list and calls given function, passing it
 563 *	locked superblock and given argument.
 564 */
 565void iterate_supers_type(struct file_system_type *type,
 566	void (*f)(struct super_block *, void *), void *arg)
 567{
 568	struct super_block *sb, *p = NULL;
 569
 570	spin_lock(&sb_lock);
 571	list_for_each_entry(sb, &type->fs_supers, s_instances) {
 572		sb->s_count++;
 573		spin_unlock(&sb_lock);
 574
 575		down_read(&sb->s_umount);
 576		if (sb->s_root)
 577			f(sb, arg);
 578		up_read(&sb->s_umount);
 579
 580		spin_lock(&sb_lock);
 581		if (p)
 582			__put_super(p);
 583		p = sb;
 584	}
 585	if (p)
 586		__put_super(p);
 587	spin_unlock(&sb_lock);
 588}
 589
 590EXPORT_SYMBOL(iterate_supers_type);
 591
 592/**
 593 *	get_super - get the superblock of a device
 594 *	@bdev: device to get the superblock for
 595 *	
 596 *	Scans the superblock list and finds the superblock of the file system
 597 *	mounted on the device given. %NULL is returned if no match is found.
 598 */
 599
 600struct super_block *get_super(struct block_device *bdev)
 601{
 602	struct super_block *sb;
 603
 604	if (!bdev)
 605		return NULL;
 606
 607	spin_lock(&sb_lock);
 608rescan:
 609	list_for_each_entry(sb, &super_blocks, s_list) {
 610		if (list_empty(&sb->s_instances))
 611			continue;
 612		if (sb->s_bdev == bdev) {
 613			sb->s_count++;
 614			spin_unlock(&sb_lock);
 615			down_read(&sb->s_umount);
 616			/* still alive? */
 617			if (sb->s_root)
 618				return sb;
 619			up_read(&sb->s_umount);
 620			/* nope, got unmounted */
 621			spin_lock(&sb_lock);
 622			__put_super(sb);
 623			goto rescan;
 624		}
 625	}
 626	spin_unlock(&sb_lock);
 627	return NULL;
 628}
 629
 630EXPORT_SYMBOL(get_super);
 631
 632/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 633 * get_active_super - get an active reference to the superblock of a device
 634 * @bdev: device to get the superblock for
 635 *
 636 * Scans the superblock list and finds the superblock of the file system
 637 * mounted on the device given.  Returns the superblock with an active
 638 * reference or %NULL if none was found.
 639 */
 640struct super_block *get_active_super(struct block_device *bdev)
 641{
 642	struct super_block *sb;
 643
 644	if (!bdev)
 645		return NULL;
 646
 647restart:
 648	spin_lock(&sb_lock);
 649	list_for_each_entry(sb, &super_blocks, s_list) {
 650		if (list_empty(&sb->s_instances))
 651			continue;
 652		if (sb->s_bdev == bdev) {
 653			if (grab_super(sb)) /* drops sb_lock */
 654				return sb;
 655			else
 656				goto restart;
 
 
 657		}
 658	}
 659	spin_unlock(&sb_lock);
 660	return NULL;
 661}
 662 
 663struct super_block *user_get_super(dev_t dev)
 664{
 665	struct super_block *sb;
 666
 667	spin_lock(&sb_lock);
 668rescan:
 669	list_for_each_entry(sb, &super_blocks, s_list) {
 670		if (list_empty(&sb->s_instances))
 671			continue;
 672		if (sb->s_dev ==  dev) {
 673			sb->s_count++;
 674			spin_unlock(&sb_lock);
 675			down_read(&sb->s_umount);
 676			/* still alive? */
 677			if (sb->s_root)
 678				return sb;
 679			up_read(&sb->s_umount);
 680			/* nope, got unmounted */
 681			spin_lock(&sb_lock);
 682			__put_super(sb);
 683			goto rescan;
 684		}
 685	}
 686	spin_unlock(&sb_lock);
 687	return NULL;
 688}
 689
 690/**
 691 *	do_remount_sb - asks filesystem to change mount options.
 692 *	@sb:	superblock in question
 693 *	@flags:	numeric part of options
 694 *	@data:	the rest of options
 695 *      @force: whether or not to force the change
 696 *
 697 *	Alters the mount options of a mounted file system.
 698 */
 699int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
 700{
 701	int retval;
 702	int remount_ro;
 703
 704	if (sb->s_frozen != SB_UNFROZEN)
 705		return -EBUSY;
 706
 707#ifdef CONFIG_BLOCK
 708	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
 709		return -EACCES;
 710#endif
 711
 712	if (flags & MS_RDONLY)
 713		acct_auto_close(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 714	shrink_dcache_sb(sb);
 715	sync_filesystem(sb);
 716
 717	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 718
 719	/* If we are remounting RDONLY and current sb is read/write,
 720	   make sure there are no rw files opened */
 721	if (remount_ro) {
 722		if (force)
 723			mark_files_ro(sb);
 724		else if (!fs_may_remount_ro(sb))
 725			return -EBUSY;
 
 
 
 
 726	}
 727
 728	if (sb->s_op->remount_fs) {
 729		retval = sb->s_op->remount_fs(sb, &flags, data);
 730		if (retval)
 731			return retval;
 
 
 
 
 
 732	}
 733	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
 
 
 
 734
 735	/*
 736	 * Some filesystems modify their metadata via some other path than the
 737	 * bdev buffer cache (eg. use a private mapping, or directories in
 738	 * pagecache, etc). Also file data modifications go via their own
 739	 * mappings. So If we try to mount readonly then copy the filesystem
 740	 * from bdev, we could get stale data, so invalidate it to give a best
 741	 * effort at coherency.
 742	 */
 743	if (remount_ro && sb->s_bdev)
 744		invalidate_bdev(sb->s_bdev);
 745	return 0;
 
 
 
 
 746}
 747
 748static void do_emergency_remount(struct work_struct *work)
 749{
 750	struct super_block *sb, *p = NULL;
 751
 752	spin_lock(&sb_lock);
 753	list_for_each_entry(sb, &super_blocks, s_list) {
 754		if (list_empty(&sb->s_instances))
 755			continue;
 756		sb->s_count++;
 757		spin_unlock(&sb_lock);
 758		down_write(&sb->s_umount);
 759		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
 
 760			/*
 761			 * What lock protects sb->s_flags??
 762			 */
 763			do_remount_sb(sb, MS_RDONLY, NULL, 1);
 764		}
 765		up_write(&sb->s_umount);
 766		spin_lock(&sb_lock);
 767		if (p)
 768			__put_super(p);
 769		p = sb;
 770	}
 771	if (p)
 772		__put_super(p);
 773	spin_unlock(&sb_lock);
 774	kfree(work);
 775	printk("Emergency Remount complete\n");
 776}
 777
 778void emergency_remount(void)
 779{
 780	struct work_struct *work;
 781
 782	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 783	if (work) {
 784		INIT_WORK(work, do_emergency_remount);
 785		schedule_work(work);
 786	}
 787}
 788
 789/*
 790 * Unnamed block devices are dummy devices used by virtual
 791 * filesystems which don't use real block-devices.  -- jrs
 792 */
 793
 794static DEFINE_IDA(unnamed_dev_ida);
 795static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
 796static int unnamed_dev_start = 0; /* don't bother trying below it */
 
 
 
 797
 798int get_anon_bdev(dev_t *p)
 799{
 800	int dev;
 801	int error;
 802
 803 retry:
 804	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
 805		return -ENOMEM;
 806	spin_lock(&unnamed_dev_lock);
 807	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
 808	if (!error)
 809		unnamed_dev_start = dev + 1;
 810	spin_unlock(&unnamed_dev_lock);
 811	if (error == -EAGAIN)
 812		/* We raced and lost with another CPU. */
 813		goto retry;
 814	else if (error)
 815		return -EAGAIN;
 816
 817	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
 818		spin_lock(&unnamed_dev_lock);
 819		ida_remove(&unnamed_dev_ida, dev);
 820		if (unnamed_dev_start > dev)
 821			unnamed_dev_start = dev;
 822		spin_unlock(&unnamed_dev_lock);
 823		return -EMFILE;
 824	}
 825	*p = MKDEV(0, dev & MINORMASK);
 826	return 0;
 827}
 828EXPORT_SYMBOL(get_anon_bdev);
 829
 830void free_anon_bdev(dev_t dev)
 831{
 832	int slot = MINOR(dev);
 833	spin_lock(&unnamed_dev_lock);
 834	ida_remove(&unnamed_dev_ida, slot);
 835	if (slot < unnamed_dev_start)
 836		unnamed_dev_start = slot;
 837	spin_unlock(&unnamed_dev_lock);
 838}
 839EXPORT_SYMBOL(free_anon_bdev);
 840
 841int set_anon_super(struct super_block *s, void *data)
 842{
 843	int error = get_anon_bdev(&s->s_dev);
 844	if (!error)
 845		s->s_bdi = &noop_backing_dev_info;
 846	return error;
 847}
 848
 849EXPORT_SYMBOL(set_anon_super);
 850
 851void kill_anon_super(struct super_block *sb)
 852{
 853	dev_t dev = sb->s_dev;
 854	generic_shutdown_super(sb);
 855	free_anon_bdev(dev);
 856}
 857
 858EXPORT_SYMBOL(kill_anon_super);
 859
 860void kill_litter_super(struct super_block *sb)
 861{
 862	if (sb->s_root)
 863		d_genocide(sb->s_root);
 864	kill_anon_super(sb);
 865}
 866
 867EXPORT_SYMBOL(kill_litter_super);
 868
 869static int ns_test_super(struct super_block *sb, void *data)
 870{
 871	return sb->s_fs_info == data;
 872}
 873
 874static int ns_set_super(struct super_block *sb, void *data)
 875{
 876	sb->s_fs_info = data;
 877	return set_anon_super(sb, NULL);
 878}
 879
 880struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
 881	void *data, int (*fill_super)(struct super_block *, void *, int))
 882{
 883	struct super_block *sb;
 884
 885	sb = sget(fs_type, ns_test_super, ns_set_super, data);
 886	if (IS_ERR(sb))
 887		return ERR_CAST(sb);
 888
 889	if (!sb->s_root) {
 890		int err;
 891		sb->s_flags = flags;
 892		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
 893		if (err) {
 894			deactivate_locked_super(sb);
 895			return ERR_PTR(err);
 896		}
 897
 898		sb->s_flags |= MS_ACTIVE;
 899	}
 900
 901	return dget(sb->s_root);
 902}
 903
 904EXPORT_SYMBOL(mount_ns);
 905
 906#ifdef CONFIG_BLOCK
 907static int set_bdev_super(struct super_block *s, void *data)
 908{
 909	s->s_bdev = data;
 910	s->s_dev = s->s_bdev->bd_dev;
 911
 912	/*
 913	 * We set the bdi here to the queue backing, file systems can
 914	 * overwrite this in ->fill_super()
 915	 */
 916	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
 917	return 0;
 918}
 919
 920static int test_bdev_super(struct super_block *s, void *data)
 921{
 922	return (void *)s->s_bdev == data;
 923}
 924
 925struct dentry *mount_bdev(struct file_system_type *fs_type,
 926	int flags, const char *dev_name, void *data,
 927	int (*fill_super)(struct super_block *, void *, int))
 928{
 929	struct block_device *bdev;
 930	struct super_block *s;
 931	fmode_t mode = FMODE_READ | FMODE_EXCL;
 932	int error = 0;
 933
 934	if (!(flags & MS_RDONLY))
 935		mode |= FMODE_WRITE;
 936
 937	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
 938	if (IS_ERR(bdev))
 939		return ERR_CAST(bdev);
 940
 941	/*
 942	 * once the super is inserted into the list by sget, s_umount
 943	 * will protect the lockfs code from trying to start a snapshot
 944	 * while we are mounting
 945	 */
 946	mutex_lock(&bdev->bd_fsfreeze_mutex);
 947	if (bdev->bd_fsfreeze_count > 0) {
 948		mutex_unlock(&bdev->bd_fsfreeze_mutex);
 949		error = -EBUSY;
 950		goto error_bdev;
 951	}
 952	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
 
 953	mutex_unlock(&bdev->bd_fsfreeze_mutex);
 954	if (IS_ERR(s))
 955		goto error_s;
 956
 957	if (s->s_root) {
 958		if ((flags ^ s->s_flags) & MS_RDONLY) {
 959			deactivate_locked_super(s);
 960			error = -EBUSY;
 961			goto error_bdev;
 962		}
 963
 964		/*
 965		 * s_umount nests inside bd_mutex during
 966		 * __invalidate_device().  blkdev_put() acquires
 967		 * bd_mutex and can't be called under s_umount.  Drop
 968		 * s_umount temporarily.  This is safe as we're
 969		 * holding an active reference.
 970		 */
 971		up_write(&s->s_umount);
 972		blkdev_put(bdev, mode);
 973		down_write(&s->s_umount);
 974	} else {
 975		char b[BDEVNAME_SIZE];
 976
 977		s->s_flags = flags | MS_NOSEC;
 978		s->s_mode = mode;
 979		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
 980		sb_set_blocksize(s, block_size(bdev));
 981		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
 982		if (error) {
 983			deactivate_locked_super(s);
 984			goto error;
 985		}
 986
 987		s->s_flags |= MS_ACTIVE;
 988		bdev->bd_super = s;
 989	}
 990
 991	return dget(s->s_root);
 992
 993error_s:
 994	error = PTR_ERR(s);
 995error_bdev:
 996	blkdev_put(bdev, mode);
 997error:
 998	return ERR_PTR(error);
 999}
1000EXPORT_SYMBOL(mount_bdev);
1001
1002void kill_block_super(struct super_block *sb)
1003{
1004	struct block_device *bdev = sb->s_bdev;
1005	fmode_t mode = sb->s_mode;
1006
1007	bdev->bd_super = NULL;
1008	generic_shutdown_super(sb);
1009	sync_blockdev(bdev);
1010	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1011	blkdev_put(bdev, mode | FMODE_EXCL);
1012}
1013
1014EXPORT_SYMBOL(kill_block_super);
1015#endif
1016
1017struct dentry *mount_nodev(struct file_system_type *fs_type,
1018	int flags, void *data,
1019	int (*fill_super)(struct super_block *, void *, int))
1020{
1021	int error;
1022	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
1023
1024	if (IS_ERR(s))
1025		return ERR_CAST(s);
1026
1027	s->s_flags = flags;
1028
1029	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1030	if (error) {
1031		deactivate_locked_super(s);
1032		return ERR_PTR(error);
1033	}
1034	s->s_flags |= MS_ACTIVE;
1035	return dget(s->s_root);
1036}
1037EXPORT_SYMBOL(mount_nodev);
1038
1039static int compare_single(struct super_block *s, void *p)
1040{
1041	return 1;
1042}
1043
1044struct dentry *mount_single(struct file_system_type *fs_type,
1045	int flags, void *data,
1046	int (*fill_super)(struct super_block *, void *, int))
1047{
1048	struct super_block *s;
1049	int error;
1050
1051	s = sget(fs_type, compare_single, set_anon_super, NULL);
1052	if (IS_ERR(s))
1053		return ERR_CAST(s);
1054	if (!s->s_root) {
1055		s->s_flags = flags;
1056		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1057		if (error) {
1058			deactivate_locked_super(s);
1059			return ERR_PTR(error);
1060		}
1061		s->s_flags |= MS_ACTIVE;
1062	} else {
1063		do_remount_sb(s, flags, data, 0);
1064	}
1065	return dget(s->s_root);
1066}
1067EXPORT_SYMBOL(mount_single);
1068
1069struct dentry *
1070mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1071{
1072	struct dentry *root;
1073	struct super_block *sb;
1074	char *secdata = NULL;
1075	int error = -ENOMEM;
1076
1077	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1078		secdata = alloc_secdata();
1079		if (!secdata)
1080			goto out;
1081
1082		error = security_sb_copy_data(data, secdata);
1083		if (error)
1084			goto out_free_secdata;
1085	}
1086
1087	root = type->mount(type, flags, name, data);
1088	if (IS_ERR(root)) {
1089		error = PTR_ERR(root);
1090		goto out_free_secdata;
1091	}
1092	sb = root->d_sb;
1093	BUG_ON(!sb);
1094	WARN_ON(!sb->s_bdi);
1095	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1096	sb->s_flags |= MS_BORN;
1097
1098	error = security_sb_kern_mount(sb, flags, secdata);
1099	if (error)
1100		goto out_sb;
1101
1102	/*
1103	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1104	 * but s_maxbytes was an unsigned long long for many releases. Throw
1105	 * this warning for a little while to try and catch filesystems that
1106	 * violate this rule.
1107	 */
1108	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1109		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1110
1111	up_write(&sb->s_umount);
1112	free_secdata(secdata);
1113	return root;
1114out_sb:
1115	dput(root);
1116	deactivate_locked_super(sb);
1117out_free_secdata:
1118	free_secdata(secdata);
1119out:
1120	return ERR_PTR(error);
1121}
1122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1123/**
1124 * freeze_super - lock the filesystem and force it into a consistent state
1125 * @sb: the super to lock
1126 *
1127 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1128 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1129 * -EBUSY.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130 */
1131int freeze_super(struct super_block *sb)
1132{
1133	int ret;
1134
1135	atomic_inc(&sb->s_active);
1136	down_write(&sb->s_umount);
1137	if (sb->s_frozen) {
1138		deactivate_locked_super(sb);
1139		return -EBUSY;
1140	}
1141
 
 
 
 
 
1142	if (sb->s_flags & MS_RDONLY) {
1143		sb->s_frozen = SB_FREEZE_TRANS;
1144		smp_wmb();
1145		up_write(&sb->s_umount);
1146		return 0;
1147	}
1148
1149	sb->s_frozen = SB_FREEZE_WRITE;
1150	smp_wmb();
 
 
 
 
 
 
 
1151
 
1152	sync_filesystem(sb);
1153
1154	sb->s_frozen = SB_FREEZE_TRANS;
1155	smp_wmb();
 
1156
1157	sync_blockdev(sb->s_bdev);
1158	if (sb->s_op->freeze_fs) {
1159		ret = sb->s_op->freeze_fs(sb);
1160		if (ret) {
1161			printk(KERN_ERR
1162				"VFS:Filesystem freeze failed\n");
1163			sb->s_frozen = SB_UNFROZEN;
 
 
1164			deactivate_locked_super(sb);
1165			return ret;
1166		}
1167	}
 
 
 
 
 
1168	up_write(&sb->s_umount);
1169	return 0;
1170}
1171EXPORT_SYMBOL(freeze_super);
1172
1173/**
1174 * thaw_super -- unlock filesystem
1175 * @sb: the super to thaw
1176 *
1177 * Unlocks the filesystem and marks it writeable again after freeze_super().
1178 */
1179int thaw_super(struct super_block *sb)
1180{
1181	int error;
1182
1183	down_write(&sb->s_umount);
1184	if (sb->s_frozen == SB_UNFROZEN) {
1185		up_write(&sb->s_umount);
1186		return -EINVAL;
1187	}
1188
1189	if (sb->s_flags & MS_RDONLY)
 
1190		goto out;
 
1191
1192	if (sb->s_op->unfreeze_fs) {
1193		error = sb->s_op->unfreeze_fs(sb);
1194		if (error) {
1195			printk(KERN_ERR
1196				"VFS:Filesystem thaw failed\n");
1197			sb->s_frozen = SB_FREEZE_TRANS;
1198			up_write(&sb->s_umount);
1199			return error;
1200		}
1201	}
1202
 
 
1203out:
1204	sb->s_frozen = SB_UNFROZEN;
1205	smp_wmb();
1206	wake_up(&sb->s_wait_unfrozen);
1207	deactivate_locked_super(sb);
1208
1209	return 0;
1210}
1211EXPORT_SYMBOL(thaw_super);