Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  linux/fs/super.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  super.c contains code to handle: - mount structures
   7 *                                   - super-block tables
   8 *                                   - filesystem drivers list
   9 *                                   - mount system call
  10 *                                   - umount system call
  11 *                                   - ustat system call
  12 *
  13 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  14 *
  15 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  16 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  17 *  Added options to /proc/mounts:
  18 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  19 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  20 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  21 */
  22
  23#include <linux/export.h>
  24#include <linux/slab.h>
  25#include <linux/blkdev.h>
  26#include <linux/mount.h>
  27#include <linux/security.h>
  28#include <linux/writeback.h>		/* for the emergency remount stuff */
  29#include <linux/idr.h>
  30#include <linux/mutex.h>
  31#include <linux/backing-dev.h>
  32#include <linux/rculist_bl.h>
  33#include <linux/cleancache.h>
 
  34#include <linux/fsnotify.h>
  35#include <linux/lockdep.h>
 
 
 
  36#include "internal.h"
  37
 
  38
  39static LIST_HEAD(super_blocks);
  40static DEFINE_SPINLOCK(sb_lock);
  41
  42static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  43	"sb_writers",
  44	"sb_pagefaults",
  45	"sb_internal",
  46};
  47
  48/*
  49 * One thing we have to be careful of with a per-sb shrinker is that we don't
  50 * drop the last active reference to the superblock from within the shrinker.
  51 * If that happens we could trigger unregistering the shrinker from within the
  52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  53 * take a passive reference to the superblock to avoid this from occurring.
  54 */
  55static unsigned long super_cache_scan(struct shrinker *shrink,
  56				      struct shrink_control *sc)
  57{
  58	struct super_block *sb;
  59	long	fs_objects = 0;
  60	long	total_objects;
  61	long	freed = 0;
  62	long	dentries;
  63	long	inodes;
  64
  65	sb = container_of(shrink, struct super_block, s_shrink);
  66
  67	/*
  68	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
  69	 * to recurse into the FS that called us in clear_inode() and friends..
  70	 */
  71	if (!(sc->gfp_mask & __GFP_FS))
  72		return SHRINK_STOP;
  73
  74	if (!trylock_super(sb))
  75		return SHRINK_STOP;
  76
  77	if (sb->s_op->nr_cached_objects)
  78		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
  79
  80	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
  81	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
  82	total_objects = dentries + inodes + fs_objects + 1;
  83	if (!total_objects)
  84		total_objects = 1;
  85
  86	/* proportion the scan between the caches */
  87	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
  88	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
  89	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
  90
  91	/*
  92	 * prune the dcache first as the icache is pinned by it, then
  93	 * prune the icache, followed by the filesystem specific caches
  94	 *
  95	 * Ensure that we always scan at least one object - memcg kmem
  96	 * accounting uses this to fully empty the caches.
  97	 */
  98	sc->nr_to_scan = dentries + 1;
  99	freed = prune_dcache_sb(sb, sc);
 100	sc->nr_to_scan = inodes + 1;
 101	freed += prune_icache_sb(sb, sc);
 102
 103	if (fs_objects) {
 104		sc->nr_to_scan = fs_objects + 1;
 105		freed += sb->s_op->free_cached_objects(sb, sc);
 106	}
 107
 108	up_read(&sb->s_umount);
 109	return freed;
 110}
 111
 112static unsigned long super_cache_count(struct shrinker *shrink,
 113				       struct shrink_control *sc)
 114{
 115	struct super_block *sb;
 116	long	total_objects = 0;
 117
 118	sb = container_of(shrink, struct super_block, s_shrink);
 119
 120	/*
 121	 * Don't call trylock_super as it is a potential
 122	 * scalability bottleneck. The counts could get updated
 123	 * between super_cache_count and super_cache_scan anyway.
 124	 * Call to super_cache_count with shrinker_rwsem held
 125	 * ensures the safety of call to list_lru_shrink_count() and
 126	 * s_op->nr_cached_objects().
 
 
 
 
 
 
 127	 */
 
 
 
 
 128	if (sb->s_op && sb->s_op->nr_cached_objects)
 129		total_objects = sb->s_op->nr_cached_objects(sb, sc);
 130
 131	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 132	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 133
 
 
 
 134	total_objects = vfs_pressure_ratio(total_objects);
 135	return total_objects;
 136}
 137
 138static void destroy_super_work(struct work_struct *work)
 139{
 140	struct super_block *s = container_of(work, struct super_block,
 141							destroy_work);
 142	int i;
 143
 144	for (i = 0; i < SB_FREEZE_LEVELS; i++)
 145		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 146	kfree(s);
 147}
 148
 149static void destroy_super_rcu(struct rcu_head *head)
 150{
 151	struct super_block *s = container_of(head, struct super_block, rcu);
 152	INIT_WORK(&s->destroy_work, destroy_super_work);
 153	schedule_work(&s->destroy_work);
 154}
 155
 156/**
 157 *	destroy_super	-	frees a superblock
 158 *	@s: superblock to free
 159 *
 160 *	Frees a superblock.
 161 */
 162static void destroy_super(struct super_block *s)
 163{
 
 
 
 164	list_lru_destroy(&s->s_dentry_lru);
 165	list_lru_destroy(&s->s_inode_lru);
 166	security_sb_free(s);
 167	WARN_ON(!list_empty(&s->s_mounts));
 168	kfree(s->s_subtype);
 169	kfree(s->s_options);
 170	call_rcu(&s->rcu, destroy_super_rcu);
 
 171}
 172
 173/**
 174 *	alloc_super	-	create new superblock
 175 *	@type:	filesystem type superblock should belong to
 176 *	@flags: the mount flags
 
 177 *
 178 *	Allocates and initializes a new &struct super_block.  alloc_super()
 179 *	returns a pointer new superblock or %NULL if allocation had failed.
 180 */
 181static struct super_block *alloc_super(struct file_system_type *type, int flags)
 
 182{
 183	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 184	static const struct super_operations default_op;
 185	int i;
 186
 187	if (!s)
 188		return NULL;
 189
 190	INIT_LIST_HEAD(&s->s_mounts);
 191
 192	if (security_sb_alloc(s))
 193		goto fail;
 194
 195	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 196		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 197					sb_writers_name[i],
 198					&type->s_writers_key[i]))
 199			goto fail;
 200	}
 201	init_waitqueue_head(&s->s_writers.wait_unfrozen);
 202	s->s_bdi = &noop_backing_dev_info;
 203	s->s_flags = flags;
 204	INIT_HLIST_NODE(&s->s_instances);
 205	INIT_HLIST_BL_HEAD(&s->s_anon);
 206	mutex_init(&s->s_sync_lock);
 207	INIT_LIST_HEAD(&s->s_inodes);
 208	spin_lock_init(&s->s_inode_list_lock);
 209
 210	if (list_lru_init_memcg(&s->s_dentry_lru))
 211		goto fail;
 212	if (list_lru_init_memcg(&s->s_inode_lru))
 213		goto fail;
 214
 215	init_rwsem(&s->s_umount);
 216	lockdep_set_class(&s->s_umount, &type->s_umount_key);
 217	/*
 218	 * sget() can have s_umount recursion.
 219	 *
 220	 * When it cannot find a suitable sb, it allocates a new
 221	 * one (this one), and tries again to find a suitable old
 222	 * one.
 223	 *
 224	 * In case that succeeds, it will acquire the s_umount
 225	 * lock of the old one. Since these are clearly distrinct
 226	 * locks, and this object isn't exposed yet, there's no
 227	 * risk of deadlocks.
 228	 *
 229	 * Annotate this by putting this lock in a different
 230	 * subclass.
 231	 */
 232	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 233	s->s_count = 1;
 234	atomic_set(&s->s_active, 1);
 235	mutex_init(&s->s_vfs_rename_mutex);
 236	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 237	mutex_init(&s->s_dquot.dqio_mutex);
 238	mutex_init(&s->s_dquot.dqonoff_mutex);
 239	s->s_maxbytes = MAX_NON_LFS;
 240	s->s_op = &default_op;
 241	s->s_time_gran = 1000000000;
 
 
 242	s->cleancache_poolid = CLEANCACHE_NO_POOL;
 243
 244	s->s_shrink.seeks = DEFAULT_SEEKS;
 245	s->s_shrink.scan_objects = super_cache_scan;
 246	s->s_shrink.count_objects = super_cache_count;
 247	s->s_shrink.batch = 1024;
 248	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
 
 
 
 
 
 
 249	return s;
 250
 251fail:
 252	destroy_super(s);
 253	return NULL;
 254}
 255
 256/* Superblock refcounting  */
 257
 258/*
 259 * Drop a superblock's refcount.  The caller must hold sb_lock.
 260 */
 261static void __put_super(struct super_block *sb)
 262{
 263	if (!--sb->s_count) {
 264		list_del_init(&sb->s_list);
 265		destroy_super(sb);
 
 
 
 
 
 
 
 266	}
 267}
 268
 269/**
 270 *	put_super	-	drop a temporary reference to superblock
 271 *	@sb: superblock in question
 272 *
 273 *	Drops a temporary reference, frees superblock if there's no
 274 *	references left.
 275 */
 276static void put_super(struct super_block *sb)
 277{
 278	spin_lock(&sb_lock);
 279	__put_super(sb);
 280	spin_unlock(&sb_lock);
 281}
 282
 283
 284/**
 285 *	deactivate_locked_super	-	drop an active reference to superblock
 286 *	@s: superblock to deactivate
 287 *
 288 *	Drops an active reference to superblock, converting it into a temprory
 289 *	one if there is no other active references left.  In that case we
 290 *	tell fs driver to shut it down and drop the temporary reference we
 291 *	had just acquired.
 292 *
 293 *	Caller holds exclusive lock on superblock; that lock is released.
 294 */
 295void deactivate_locked_super(struct super_block *s)
 296{
 297	struct file_system_type *fs = s->s_type;
 298	if (atomic_dec_and_test(&s->s_active)) {
 299		cleancache_invalidate_fs(s);
 300		unregister_shrinker(&s->s_shrink);
 301		fs->kill_sb(s);
 302
 303		/*
 304		 * Since list_lru_destroy() may sleep, we cannot call it from
 305		 * put_super(), where we hold the sb_lock. Therefore we destroy
 306		 * the lru lists right now.
 307		 */
 308		list_lru_destroy(&s->s_dentry_lru);
 309		list_lru_destroy(&s->s_inode_lru);
 310
 311		put_filesystem(fs);
 312		put_super(s);
 313	} else {
 314		up_write(&s->s_umount);
 315	}
 316}
 317
 318EXPORT_SYMBOL(deactivate_locked_super);
 319
 320/**
 321 *	deactivate_super	-	drop an active reference to superblock
 322 *	@s: superblock to deactivate
 323 *
 324 *	Variant of deactivate_locked_super(), except that superblock is *not*
 325 *	locked by caller.  If we are going to drop the final active reference,
 326 *	lock will be acquired prior to that.
 327 */
 328void deactivate_super(struct super_block *s)
 329{
 330        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 331		down_write(&s->s_umount);
 332		deactivate_locked_super(s);
 333	}
 334}
 335
 336EXPORT_SYMBOL(deactivate_super);
 337
 338/**
 339 *	grab_super - acquire an active reference
 340 *	@s: reference we are trying to make active
 341 *
 342 *	Tries to acquire an active reference.  grab_super() is used when we
 343 * 	had just found a superblock in super_blocks or fs_type->fs_supers
 344 *	and want to turn it into a full-blown active reference.  grab_super()
 345 *	is called with sb_lock held and drops it.  Returns 1 in case of
 346 *	success, 0 if we had failed (superblock contents was already dead or
 347 *	dying when grab_super() had been called).  Note that this is only
 348 *	called for superblocks not in rundown mode (== ones still on ->fs_supers
 349 *	of their type), so increment of ->s_count is OK here.
 350 */
 351static int grab_super(struct super_block *s) __releases(sb_lock)
 352{
 353	s->s_count++;
 354	spin_unlock(&sb_lock);
 355	down_write(&s->s_umount);
 356	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
 357		put_super(s);
 358		return 1;
 359	}
 360	up_write(&s->s_umount);
 361	put_super(s);
 362	return 0;
 363}
 364
 365/*
 366 *	trylock_super - try to grab ->s_umount shared
 367 *	@sb: reference we are trying to grab
 368 *
 369 *	Try to prevent fs shutdown.  This is used in places where we
 370 *	cannot take an active reference but we need to ensure that the
 371 *	filesystem is not shut down while we are working on it. It returns
 372 *	false if we cannot acquire s_umount or if we lose the race and
 373 *	filesystem already got into shutdown, and returns true with the s_umount
 374 *	lock held in read mode in case of success. On successful return,
 375 *	the caller must drop the s_umount lock when done.
 376 *
 377 *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 378 *	The reason why it's safe is that we are OK with doing trylock instead
 379 *	of down_read().  There's a couple of places that are OK with that, but
 380 *	it's very much not a general-purpose interface.
 381 */
 382bool trylock_super(struct super_block *sb)
 383{
 384	if (down_read_trylock(&sb->s_umount)) {
 385		if (!hlist_unhashed(&sb->s_instances) &&
 386		    sb->s_root && (sb->s_flags & MS_BORN))
 387			return true;
 388		up_read(&sb->s_umount);
 389	}
 390
 391	return false;
 392}
 393
 394/**
 395 *	generic_shutdown_super	-	common helper for ->kill_sb()
 396 *	@sb: superblock to kill
 397 *
 398 *	generic_shutdown_super() does all fs-independent work on superblock
 399 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 400 *	that need destruction out of superblock, call generic_shutdown_super()
 401 *	and release aforementioned objects.  Note: dentries and inodes _are_
 402 *	taken care of and do not need specific handling.
 403 *
 404 *	Upon calling this function, the filesystem may no longer alter or
 405 *	rearrange the set of dentries belonging to this super_block, nor may it
 406 *	change the attachments of dentries to inodes.
 407 */
 408void generic_shutdown_super(struct super_block *sb)
 409{
 410	const struct super_operations *sop = sb->s_op;
 411
 412	if (sb->s_root) {
 413		shrink_dcache_for_umount(sb);
 414		sync_filesystem(sb);
 415		sb->s_flags &= ~MS_ACTIVE;
 416
 417		fsnotify_unmount_inodes(sb);
 418		cgroup_writeback_umount();
 419
 
 420		evict_inodes(sb);
 
 
 
 421
 422		if (sb->s_dio_done_wq) {
 423			destroy_workqueue(sb->s_dio_done_wq);
 424			sb->s_dio_done_wq = NULL;
 425		}
 426
 427		if (sop->put_super)
 428			sop->put_super(sb);
 429
 430		if (!list_empty(&sb->s_inodes)) {
 431			printk("VFS: Busy inodes after unmount of %s. "
 432			   "Self-destruct in 5 seconds.  Have a nice day...\n",
 433			   sb->s_id);
 434		}
 435	}
 436	spin_lock(&sb_lock);
 437	/* should be initialized for __put_super_and_need_restart() */
 438	hlist_del_init(&sb->s_instances);
 439	spin_unlock(&sb_lock);
 440	up_write(&sb->s_umount);
 
 
 
 
 441}
 442
 443EXPORT_SYMBOL(generic_shutdown_super);
 444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445/**
 446 *	sget	-	find or create a superblock
 447 *	@type:	filesystem type superblock should belong to
 448 *	@test:	comparison callback
 449 *	@set:	setup callback
 450 *	@flags:	mount flags
 451 *	@data:	argument to each of them
 452 */
 453struct super_block *sget(struct file_system_type *type,
 454			int (*test)(struct super_block *,void *),
 455			int (*set)(struct super_block *,void *),
 456			int flags,
 457			void *data)
 458{
 
 459	struct super_block *s = NULL;
 460	struct super_block *old;
 461	int err;
 462
 
 
 
 
 
 
 
 463retry:
 464	spin_lock(&sb_lock);
 465	if (test) {
 466		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 467			if (!test(old, data))
 468				continue;
 
 
 
 
 
 469			if (!grab_super(old))
 470				goto retry;
 471			if (s) {
 472				up_write(&s->s_umount);
 473				destroy_super(s);
 474				s = NULL;
 475			}
 476			return old;
 477		}
 478	}
 479	if (!s) {
 480		spin_unlock(&sb_lock);
 481		s = alloc_super(type, flags);
 482		if (!s)
 483			return ERR_PTR(-ENOMEM);
 484		goto retry;
 485	}
 486		
 487	err = set(s, data);
 488	if (err) {
 489		spin_unlock(&sb_lock);
 490		up_write(&s->s_umount);
 491		destroy_super(s);
 492		return ERR_PTR(err);
 493	}
 494	s->s_type = type;
 495	strlcpy(s->s_id, type->name, sizeof(s->s_id));
 496	list_add_tail(&s->s_list, &super_blocks);
 497	hlist_add_head(&s->s_instances, &type->fs_supers);
 498	spin_unlock(&sb_lock);
 499	get_filesystem(type);
 500	register_shrinker(&s->s_shrink);
 501	return s;
 502}
 503
 504EXPORT_SYMBOL(sget);
 505
 506void drop_super(struct super_block *sb)
 507{
 508	up_read(&sb->s_umount);
 509	put_super(sb);
 510}
 511
 512EXPORT_SYMBOL(drop_super);
 513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514/**
 515 *	iterate_supers - call function for all active superblocks
 516 *	@f: function to call
 517 *	@arg: argument to pass to it
 518 *
 519 *	Scans the superblock list and calls given function, passing it
 520 *	locked superblock and given argument.
 521 */
 522void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 523{
 524	struct super_block *sb, *p = NULL;
 525
 526	spin_lock(&sb_lock);
 527	list_for_each_entry(sb, &super_blocks, s_list) {
 528		if (hlist_unhashed(&sb->s_instances))
 529			continue;
 530		sb->s_count++;
 531		spin_unlock(&sb_lock);
 532
 533		down_read(&sb->s_umount);
 534		if (sb->s_root && (sb->s_flags & MS_BORN))
 535			f(sb, arg);
 536		up_read(&sb->s_umount);
 537
 538		spin_lock(&sb_lock);
 539		if (p)
 540			__put_super(p);
 541		p = sb;
 542	}
 543	if (p)
 544		__put_super(p);
 545	spin_unlock(&sb_lock);
 546}
 547
 548/**
 549 *	iterate_supers_type - call function for superblocks of given type
 550 *	@type: fs type
 551 *	@f: function to call
 552 *	@arg: argument to pass to it
 553 *
 554 *	Scans the superblock list and calls given function, passing it
 555 *	locked superblock and given argument.
 556 */
 557void iterate_supers_type(struct file_system_type *type,
 558	void (*f)(struct super_block *, void *), void *arg)
 559{
 560	struct super_block *sb, *p = NULL;
 561
 562	spin_lock(&sb_lock);
 563	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 564		sb->s_count++;
 565		spin_unlock(&sb_lock);
 566
 567		down_read(&sb->s_umount);
 568		if (sb->s_root && (sb->s_flags & MS_BORN))
 569			f(sb, arg);
 570		up_read(&sb->s_umount);
 571
 572		spin_lock(&sb_lock);
 573		if (p)
 574			__put_super(p);
 575		p = sb;
 576	}
 577	if (p)
 578		__put_super(p);
 579	spin_unlock(&sb_lock);
 580}
 581
 582EXPORT_SYMBOL(iterate_supers_type);
 583
 584/**
 585 *	get_super - get the superblock of a device
 586 *	@bdev: device to get the superblock for
 587 *	
 588 *	Scans the superblock list and finds the superblock of the file system
 589 *	mounted on the device given. %NULL is returned if no match is found.
 590 */
 591
 592struct super_block *get_super(struct block_device *bdev)
 593{
 594	struct super_block *sb;
 595
 596	if (!bdev)
 597		return NULL;
 598
 599	spin_lock(&sb_lock);
 600rescan:
 601	list_for_each_entry(sb, &super_blocks, s_list) {
 602		if (hlist_unhashed(&sb->s_instances))
 603			continue;
 604		if (sb->s_bdev == bdev) {
 605			sb->s_count++;
 606			spin_unlock(&sb_lock);
 607			down_read(&sb->s_umount);
 608			/* still alive? */
 609			if (sb->s_root && (sb->s_flags & MS_BORN))
 610				return sb;
 611			up_read(&sb->s_umount);
 612			/* nope, got unmounted */
 613			spin_lock(&sb_lock);
 614			__put_super(sb);
 615			goto rescan;
 616		}
 617	}
 618	spin_unlock(&sb_lock);
 619	return NULL;
 620}
 621
 622EXPORT_SYMBOL(get_super);
 623
 624/**
 625 *	get_super_thawed - get thawed superblock of a device
 626 *	@bdev: device to get the superblock for
 627 *
 628 *	Scans the superblock list and finds the superblock of the file system
 629 *	mounted on the device. The superblock is returned once it is thawed
 630 *	(or immediately if it was not frozen). %NULL is returned if no match
 631 *	is found.
 632 */
 633struct super_block *get_super_thawed(struct block_device *bdev)
 634{
 635	while (1) {
 636		struct super_block *s = get_super(bdev);
 637		if (!s || s->s_writers.frozen == SB_UNFROZEN)
 638			return s;
 639		up_read(&s->s_umount);
 640		wait_event(s->s_writers.wait_unfrozen,
 641			   s->s_writers.frozen == SB_UNFROZEN);
 642		put_super(s);
 643	}
 644}
 645EXPORT_SYMBOL(get_super_thawed);
 646
 647/**
 648 * get_active_super - get an active reference to the superblock of a device
 649 * @bdev: device to get the superblock for
 650 *
 651 * Scans the superblock list and finds the superblock of the file system
 652 * mounted on the device given.  Returns the superblock with an active
 653 * reference or %NULL if none was found.
 654 */
 655struct super_block *get_active_super(struct block_device *bdev)
 656{
 657	struct super_block *sb;
 658
 659	if (!bdev)
 660		return NULL;
 661
 662restart:
 663	spin_lock(&sb_lock);
 664	list_for_each_entry(sb, &super_blocks, s_list) {
 665		if (hlist_unhashed(&sb->s_instances))
 666			continue;
 667		if (sb->s_bdev == bdev) {
 668			if (!grab_super(sb))
 669				goto restart;
 670			up_write(&sb->s_umount);
 671			return sb;
 672		}
 673	}
 674	spin_unlock(&sb_lock);
 675	return NULL;
 676}
 677 
 678struct super_block *user_get_super(dev_t dev)
 679{
 680	struct super_block *sb;
 681
 682	spin_lock(&sb_lock);
 683rescan:
 684	list_for_each_entry(sb, &super_blocks, s_list) {
 685		if (hlist_unhashed(&sb->s_instances))
 686			continue;
 687		if (sb->s_dev ==  dev) {
 688			sb->s_count++;
 689			spin_unlock(&sb_lock);
 690			down_read(&sb->s_umount);
 
 
 
 691			/* still alive? */
 692			if (sb->s_root && (sb->s_flags & MS_BORN))
 693				return sb;
 694			up_read(&sb->s_umount);
 
 
 
 695			/* nope, got unmounted */
 696			spin_lock(&sb_lock);
 697			__put_super(sb);
 698			goto rescan;
 699		}
 700	}
 701	spin_unlock(&sb_lock);
 702	return NULL;
 703}
 704
 705/**
 706 *	do_remount_sb - asks filesystem to change mount options.
 707 *	@sb:	superblock in question
 708 *	@flags:	numeric part of options
 709 *	@data:	the rest of options
 710 *      @force: whether or not to force the change
 711 *
 712 *	Alters the mount options of a mounted file system.
 713 */
 714int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
 715{
 
 716	int retval;
 717	int remount_ro;
 
 718
 
 
 719	if (sb->s_writers.frozen != SB_UNFROZEN)
 720		return -EBUSY;
 721
 
 
 
 
 
 722#ifdef CONFIG_BLOCK
 723	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
 724		return -EACCES;
 
 725#endif
 726
 727	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 
 728
 729	if (remount_ro) {
 730		if (!hlist_empty(&sb->s_pins)) {
 731			up_write(&sb->s_umount);
 732			group_pin_kill(&sb->s_pins);
 733			down_write(&sb->s_umount);
 734			if (!sb->s_root)
 735				return 0;
 736			if (sb->s_writers.frozen != SB_UNFROZEN)
 737				return -EBUSY;
 738			remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 739		}
 740	}
 741	shrink_dcache_sb(sb);
 742
 743	/* If we are remounting RDONLY and current sb is read/write,
 744	   make sure there are no rw files opened */
 
 745	if (remount_ro) {
 746		if (force) {
 747			sb->s_readonly_remount = 1;
 748			smp_wmb();
 749		} else {
 750			retval = sb_prepare_remount_readonly(sb);
 751			if (retval)
 752				return retval;
 753		}
 754	}
 755
 756	if (sb->s_op->remount_fs) {
 757		retval = sb->s_op->remount_fs(sb, &flags, data);
 758		if (retval) {
 759			if (!force)
 760				goto cancel_readonly;
 761			/* If forced remount, go ahead despite any errors */
 762			WARN(1, "forced remount of a %s fs returned %i\n",
 763			     sb->s_type->name, retval);
 764		}
 765	}
 766	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
 
 
 767	/* Needs to be ordered wrt mnt_is_readonly() */
 768	smp_wmb();
 769	sb->s_readonly_remount = 0;
 770
 771	/*
 772	 * Some filesystems modify their metadata via some other path than the
 773	 * bdev buffer cache (eg. use a private mapping, or directories in
 774	 * pagecache, etc). Also file data modifications go via their own
 775	 * mappings. So If we try to mount readonly then copy the filesystem
 776	 * from bdev, we could get stale data, so invalidate it to give a best
 777	 * effort at coherency.
 778	 */
 779	if (remount_ro && sb->s_bdev)
 780		invalidate_bdev(sb->s_bdev);
 781	return 0;
 782
 783cancel_readonly:
 784	sb->s_readonly_remount = 0;
 785	return retval;
 786}
 787
 788static void do_emergency_remount(struct work_struct *work)
 789{
 790	struct super_block *sb, *p = NULL;
 791
 792	spin_lock(&sb_lock);
 793	list_for_each_entry(sb, &super_blocks, s_list) {
 794		if (hlist_unhashed(&sb->s_instances))
 795			continue;
 796		sb->s_count++;
 797		spin_unlock(&sb_lock);
 798		down_write(&sb->s_umount);
 799		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
 800		    !(sb->s_flags & MS_RDONLY)) {
 801			/*
 802			 * What lock protects sb->s_flags??
 803			 */
 804			do_remount_sb(sb, MS_RDONLY, NULL, 1);
 805		}
 806		up_write(&sb->s_umount);
 807		spin_lock(&sb_lock);
 808		if (p)
 809			__put_super(p);
 810		p = sb;
 811	}
 812	if (p)
 813		__put_super(p);
 814	spin_unlock(&sb_lock);
 
 
 
 815	kfree(work);
 816	printk("Emergency Remount complete\n");
 817}
 818
 819void emergency_remount(void)
 820{
 821	struct work_struct *work;
 822
 823	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 824	if (work) {
 825		INIT_WORK(work, do_emergency_remount);
 826		schedule_work(work);
 827	}
 828}
 829
 830/*
 831 * Unnamed block devices are dummy devices used by virtual
 832 * filesystems which don't use real block-devices.  -- jrs
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833 */
 
 
 
 
 
 
 
 
 
 
 834
 835static DEFINE_IDA(unnamed_dev_ida);
 836static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
 837/* Many userspace utilities consider an FSID of 0 invalid.
 838 * Always return at least 1 from get_anon_bdev.
 839 */
 840static int unnamed_dev_start = 1;
 841
 
 
 
 
 
 
 
 
 
 
 
 842int get_anon_bdev(dev_t *p)
 843{
 844	int dev;
 845	int error;
 846
 847 retry:
 848	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
 849		return -ENOMEM;
 850	spin_lock(&unnamed_dev_lock);
 851	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
 852	if (!error)
 853		unnamed_dev_start = dev + 1;
 854	spin_unlock(&unnamed_dev_lock);
 855	if (error == -EAGAIN)
 856		/* We raced and lost with another CPU. */
 857		goto retry;
 858	else if (error)
 859		return -EAGAIN;
 860
 861	if (dev >= (1 << MINORBITS)) {
 862		spin_lock(&unnamed_dev_lock);
 863		ida_remove(&unnamed_dev_ida, dev);
 864		if (unnamed_dev_start > dev)
 865			unnamed_dev_start = dev;
 866		spin_unlock(&unnamed_dev_lock);
 867		return -EMFILE;
 868	}
 869	*p = MKDEV(0, dev & MINORMASK);
 870	return 0;
 871}
 872EXPORT_SYMBOL(get_anon_bdev);
 873
 874void free_anon_bdev(dev_t dev)
 875{
 876	int slot = MINOR(dev);
 877	spin_lock(&unnamed_dev_lock);
 878	ida_remove(&unnamed_dev_ida, slot);
 879	if (slot < unnamed_dev_start)
 880		unnamed_dev_start = slot;
 881	spin_unlock(&unnamed_dev_lock);
 882}
 883EXPORT_SYMBOL(free_anon_bdev);
 884
 885int set_anon_super(struct super_block *s, void *data)
 886{
 887	return get_anon_bdev(&s->s_dev);
 888}
 889
 890EXPORT_SYMBOL(set_anon_super);
 891
 892void kill_anon_super(struct super_block *sb)
 893{
 894	dev_t dev = sb->s_dev;
 895	generic_shutdown_super(sb);
 896	free_anon_bdev(dev);
 897}
 898
 899EXPORT_SYMBOL(kill_anon_super);
 900
 901void kill_litter_super(struct super_block *sb)
 902{
 903	if (sb->s_root)
 904		d_genocide(sb->s_root);
 905	kill_anon_super(sb);
 906}
 907
 908EXPORT_SYMBOL(kill_litter_super);
 909
 910static int ns_test_super(struct super_block *sb, void *data)
 911{
 912	return sb->s_fs_info == data;
 913}
 
 914
 915static int ns_set_super(struct super_block *sb, void *data)
 916{
 917	sb->s_fs_info = data;
 918	return set_anon_super(sb, NULL);
 919}
 920
 921struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
 922	void *data, int (*fill_super)(struct super_block *, void *, int))
 923{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924	struct super_block *sb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925
 926	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
 927	if (IS_ERR(sb))
 928		return ERR_CAST(sb);
 929
 930	if (!sb->s_root) {
 931		int err;
 932		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
 933		if (err) {
 934			deactivate_locked_super(sb);
 935			return ERR_PTR(err);
 936		}
 937
 938		sb->s_flags |= MS_ACTIVE;
 
 
 
 
 
 
 
 
 
 
 
 939	}
 940
 941	return dget(sb->s_root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 942}
 
 943
 944EXPORT_SYMBOL(mount_ns);
 
 
 
 
 
 
 
 
 945
 946#ifdef CONFIG_BLOCK
 
 947static int set_bdev_super(struct super_block *s, void *data)
 948{
 949	s->s_bdev = data;
 950	s->s_dev = s->s_bdev->bd_dev;
 
 951
 952	/*
 953	 * We set the bdi here to the queue backing, file systems can
 954	 * overwrite this in ->fill_super()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 955	 */
 956	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 957	return 0;
 958}
 
 959
 960static int test_bdev_super(struct super_block *s, void *data)
 961{
 962	return (void *)s->s_bdev == data;
 963}
 964
 965struct dentry *mount_bdev(struct file_system_type *fs_type,
 966	int flags, const char *dev_name, void *data,
 967	int (*fill_super)(struct super_block *, void *, int))
 968{
 969	struct block_device *bdev;
 970	struct super_block *s;
 971	fmode_t mode = FMODE_READ | FMODE_EXCL;
 972	int error = 0;
 973
 974	if (!(flags & MS_RDONLY))
 975		mode |= FMODE_WRITE;
 976
 977	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
 978	if (IS_ERR(bdev))
 979		return ERR_CAST(bdev);
 980
 981	/*
 982	 * once the super is inserted into the list by sget, s_umount
 983	 * will protect the lockfs code from trying to start a snapshot
 984	 * while we are mounting
 985	 */
 986	mutex_lock(&bdev->bd_fsfreeze_mutex);
 987	if (bdev->bd_fsfreeze_count > 0) {
 988		mutex_unlock(&bdev->bd_fsfreeze_mutex);
 989		error = -EBUSY;
 990		goto error_bdev;
 991	}
 992	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
 993		 bdev);
 994	mutex_unlock(&bdev->bd_fsfreeze_mutex);
 995	if (IS_ERR(s))
 996		goto error_s;
 997
 998	if (s->s_root) {
 999		if ((flags ^ s->s_flags) & MS_RDONLY) {
1000			deactivate_locked_super(s);
1001			error = -EBUSY;
1002			goto error_bdev;
1003		}
1004
1005		/*
1006		 * s_umount nests inside bd_mutex during
1007		 * __invalidate_device().  blkdev_put() acquires
1008		 * bd_mutex and can't be called under s_umount.  Drop
1009		 * s_umount temporarily.  This is safe as we're
1010		 * holding an active reference.
1011		 */
1012		up_write(&s->s_umount);
1013		blkdev_put(bdev, mode);
1014		down_write(&s->s_umount);
1015	} else {
1016		s->s_mode = mode;
1017		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1018		sb_set_blocksize(s, block_size(bdev));
1019		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1020		if (error) {
1021			deactivate_locked_super(s);
1022			goto error;
1023		}
1024
1025		s->s_flags |= MS_ACTIVE;
1026		bdev->bd_super = s;
1027	}
1028
1029	return dget(s->s_root);
1030
1031error_s:
1032	error = PTR_ERR(s);
1033error_bdev:
1034	blkdev_put(bdev, mode);
1035error:
1036	return ERR_PTR(error);
1037}
1038EXPORT_SYMBOL(mount_bdev);
1039
1040void kill_block_super(struct super_block *sb)
1041{
1042	struct block_device *bdev = sb->s_bdev;
1043	fmode_t mode = sb->s_mode;
1044
1045	bdev->bd_super = NULL;
1046	generic_shutdown_super(sb);
1047	sync_blockdev(bdev);
1048	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1049	blkdev_put(bdev, mode | FMODE_EXCL);
1050}
1051
1052EXPORT_SYMBOL(kill_block_super);
1053#endif
1054
1055struct dentry *mount_nodev(struct file_system_type *fs_type,
1056	int flags, void *data,
1057	int (*fill_super)(struct super_block *, void *, int))
1058{
1059	int error;
1060	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1061
1062	if (IS_ERR(s))
1063		return ERR_CAST(s);
1064
1065	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1066	if (error) {
1067		deactivate_locked_super(s);
1068		return ERR_PTR(error);
1069	}
1070	s->s_flags |= MS_ACTIVE;
1071	return dget(s->s_root);
1072}
1073EXPORT_SYMBOL(mount_nodev);
1074
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075static int compare_single(struct super_block *s, void *p)
1076{
1077	return 1;
1078}
1079
1080struct dentry *mount_single(struct file_system_type *fs_type,
1081	int flags, void *data,
1082	int (*fill_super)(struct super_block *, void *, int))
1083{
1084	struct super_block *s;
1085	int error;
1086
1087	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1088	if (IS_ERR(s))
1089		return ERR_CAST(s);
1090	if (!s->s_root) {
1091		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1092		if (error) {
1093			deactivate_locked_super(s);
1094			return ERR_PTR(error);
1095		}
1096		s->s_flags |= MS_ACTIVE;
1097	} else {
1098		do_remount_sb(s, flags, data, 0);
 
 
 
 
1099	}
1100	return dget(s->s_root);
1101}
1102EXPORT_SYMBOL(mount_single);
1103
1104struct dentry *
1105mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
 
 
 
 
 
 
 
1106{
1107	struct dentry *root;
1108	struct super_block *sb;
1109	char *secdata = NULL;
1110	int error = -ENOMEM;
 
 
1111
1112	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1113		secdata = alloc_secdata();
1114		if (!secdata)
1115			goto out;
1116
1117		error = security_sb_copy_data(data, secdata);
1118		if (error)
1119			goto out_free_secdata;
1120	}
1121
1122	root = type->mount(type, flags, name, data);
1123	if (IS_ERR(root)) {
1124		error = PTR_ERR(root);
1125		goto out_free_secdata;
1126	}
1127	sb = root->d_sb;
1128	BUG_ON(!sb);
1129	WARN_ON(!sb->s_bdi);
1130	sb->s_flags |= MS_BORN;
1131
1132	error = security_sb_kern_mount(sb, flags, secdata);
1133	if (error)
1134		goto out_sb;
 
 
 
 
 
 
 
 
 
 
 
1135
1136	/*
1137	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1138	 * but s_maxbytes was an unsigned long long for many releases. Throw
1139	 * this warning for a little while to try and catch filesystems that
1140	 * violate this rule.
1141	 */
1142	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1143		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1144
1145	up_write(&sb->s_umount);
1146	free_secdata(secdata);
1147	return root;
1148out_sb:
1149	dput(root);
1150	deactivate_locked_super(sb);
1151out_free_secdata:
1152	free_secdata(secdata);
1153out:
1154	return ERR_PTR(error);
1155}
 
1156
1157/*
1158 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1159 * instead.
1160 */
1161void __sb_end_write(struct super_block *sb, int level)
1162{
1163	percpu_up_read(sb->s_writers.rw_sem + level-1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164}
1165EXPORT_SYMBOL(__sb_end_write);
1166
1167/*
1168 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1169 * instead.
1170 */
1171int __sb_start_write(struct super_block *sb, int level, bool wait)
1172{
1173	bool force_trylock = false;
1174	int ret = 1;
1175
1176#ifdef CONFIG_LOCKDEP
1177	/*
1178	 * We want lockdep to tell us about possible deadlocks with freezing
1179	 * but it's it bit tricky to properly instrument it. Getting a freeze
1180	 * protection works as getting a read lock but there are subtle
1181	 * problems. XFS for example gets freeze protection on internal level
1182	 * twice in some cases, which is OK only because we already hold a
1183	 * freeze protection also on higher level. Due to these cases we have
1184	 * to use wait == F (trylock mode) which must not fail.
1185	 */
1186	if (wait) {
1187		int i;
1188
1189		for (i = 0; i < level - 1; i++)
1190			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1191				force_trylock = true;
1192				break;
1193			}
1194	}
1195#endif
1196	if (wait && !force_trylock)
1197		percpu_down_read(sb->s_writers.rw_sem + level-1);
1198	else
1199		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1200
1201	WARN_ON(force_trylock && !ret);
1202	return ret;
1203}
1204EXPORT_SYMBOL(__sb_start_write);
1205
1206/**
1207 * sb_wait_write - wait until all writers to given file system finish
1208 * @sb: the super for which we wait
1209 * @level: type of writers we wait for (normal vs page fault)
1210 *
1211 * This function waits until there are no writers of given type to given file
1212 * system.
1213 */
1214static void sb_wait_write(struct super_block *sb, int level)
1215{
1216	percpu_down_write(sb->s_writers.rw_sem + level-1);
1217	/*
1218	 * We are going to return to userspace and forget about this lock, the
1219	 * ownership goes to the caller of thaw_super() which does unlock.
1220	 *
1221	 * FIXME: we should do this before return from freeze_super() after we
1222	 * called sync_filesystem(sb) and s_op->freeze_fs(sb), and thaw_super()
1223	 * should re-acquire these locks before s_op->unfreeze_fs(sb). However
1224	 * this leads to lockdep false-positives, so currently we do the early
1225	 * release right after acquire.
1226	 */
1227	percpu_rwsem_release(sb->s_writers.rw_sem + level-1, 0, _THIS_IP_);
1228}
1229
1230static void sb_freeze_unlock(struct super_block *sb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1231{
1232	int level;
1233
1234	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1235		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
 
 
 
 
 
1236
1237	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1238		percpu_up_write(sb->s_writers.rw_sem + level);
1239}
1240
1241/**
1242 * freeze_super - lock the filesystem and force it into a consistent state
1243 * @sb: the super to lock
1244 *
1245 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1246 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1247 * -EBUSY.
1248 *
1249 * During this function, sb->s_writers.frozen goes through these values:
1250 *
1251 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1252 *
1253 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1254 * writes should be blocked, though page faults are still allowed. We wait for
1255 * all writes to complete and then proceed to the next stage.
1256 *
1257 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1258 * but internal fs threads can still modify the filesystem (although they
1259 * should not dirty new pages or inodes), writeback can run etc. After waiting
1260 * for all running page faults we sync the filesystem which will clean all
1261 * dirty pages and inodes (no new dirty pages or inodes can be created when
1262 * sync is running).
1263 *
1264 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1265 * modification are blocked (e.g. XFS preallocation truncation on inode
1266 * reclaim). This is usually implemented by blocking new transactions for
1267 * filesystems that have them and need this additional guard. After all
1268 * internal writers are finished we call ->freeze_fs() to finish filesystem
1269 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1270 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1271 *
1272 * sb->s_writers.frozen is protected by sb->s_umount.
1273 */
1274int freeze_super(struct super_block *sb)
1275{
1276	int ret;
1277
1278	atomic_inc(&sb->s_active);
1279	down_write(&sb->s_umount);
1280	if (sb->s_writers.frozen != SB_UNFROZEN) {
1281		deactivate_locked_super(sb);
1282		return -EBUSY;
1283	}
1284
1285	if (!(sb->s_flags & MS_BORN)) {
1286		up_write(&sb->s_umount);
1287		return 0;	/* sic - it's "nothing to do" */
1288	}
1289
1290	if (sb->s_flags & MS_RDONLY) {
1291		/* Nothing to do really... */
1292		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1293		up_write(&sb->s_umount);
1294		return 0;
1295	}
1296
1297	sb->s_writers.frozen = SB_FREEZE_WRITE;
1298	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1299	up_write(&sb->s_umount);
1300	sb_wait_write(sb, SB_FREEZE_WRITE);
1301	down_write(&sb->s_umount);
1302
1303	/* Now we go and block page faults... */
1304	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1305	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1306
1307	/* All writers are done so after syncing there won't be dirty data */
1308	sync_filesystem(sb);
1309
1310	/* Now wait for internal filesystem counter */
1311	sb->s_writers.frozen = SB_FREEZE_FS;
1312	sb_wait_write(sb, SB_FREEZE_FS);
1313
1314	if (sb->s_op->freeze_fs) {
1315		ret = sb->s_op->freeze_fs(sb);
1316		if (ret) {
1317			printk(KERN_ERR
1318				"VFS:Filesystem freeze failed\n");
1319			sb->s_writers.frozen = SB_UNFROZEN;
1320			sb_freeze_unlock(sb);
1321			wake_up(&sb->s_writers.wait_unfrozen);
1322			deactivate_locked_super(sb);
1323			return ret;
1324		}
1325	}
1326	/*
1327	 * This is just for debugging purposes so that fs can warn if it
1328	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1329	 */
1330	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
 
1331	up_write(&sb->s_umount);
1332	return 0;
1333}
1334EXPORT_SYMBOL(freeze_super);
1335
1336/**
1337 * thaw_super -- unlock filesystem
1338 * @sb: the super to thaw
1339 *
1340 * Unlocks the filesystem and marks it writeable again after freeze_super().
1341 */
1342int thaw_super(struct super_block *sb)
1343{
1344	int error;
1345
1346	down_write(&sb->s_umount);
1347	if (sb->s_writers.frozen == SB_UNFROZEN) {
1348		up_write(&sb->s_umount);
1349		return -EINVAL;
1350	}
1351
1352	if (sb->s_flags & MS_RDONLY) {
1353		sb->s_writers.frozen = SB_UNFROZEN;
1354		goto out;
1355	}
1356
 
 
1357	if (sb->s_op->unfreeze_fs) {
1358		error = sb->s_op->unfreeze_fs(sb);
1359		if (error) {
1360			printk(KERN_ERR
1361				"VFS:Filesystem thaw failed\n");
 
1362			up_write(&sb->s_umount);
1363			return error;
1364		}
1365	}
1366
1367	sb->s_writers.frozen = SB_UNFROZEN;
1368	sb_freeze_unlock(sb);
1369out:
1370	wake_up(&sb->s_writers.wait_unfrozen);
1371	deactivate_locked_super(sb);
1372	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1373}
1374EXPORT_SYMBOL(thaw_super);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/super.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  super.c contains code to handle: - mount structures
   8 *                                   - super-block tables
   9 *                                   - filesystem drivers list
  10 *                                   - mount system call
  11 *                                   - umount system call
  12 *                                   - ustat system call
  13 *
  14 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  15 *
  16 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  17 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  18 *  Added options to /proc/mounts:
  19 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  20 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  21 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  22 */
  23
  24#include <linux/export.h>
  25#include <linux/slab.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>		/* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/cleancache.h>
  35#include <linux/fscrypt.h>
  36#include <linux/fsnotify.h>
  37#include <linux/lockdep.h>
  38#include <linux/user_namespace.h>
  39#include <linux/fs_context.h>
  40#include <uapi/linux/mount.h>
  41#include "internal.h"
  42
  43static int thaw_super_locked(struct super_block *sb);
  44
  45static LIST_HEAD(super_blocks);
  46static DEFINE_SPINLOCK(sb_lock);
  47
  48static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  49	"sb_writers",
  50	"sb_pagefaults",
  51	"sb_internal",
  52};
  53
  54/*
  55 * One thing we have to be careful of with a per-sb shrinker is that we don't
  56 * drop the last active reference to the superblock from within the shrinker.
  57 * If that happens we could trigger unregistering the shrinker from within the
  58 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  59 * take a passive reference to the superblock to avoid this from occurring.
  60 */
  61static unsigned long super_cache_scan(struct shrinker *shrink,
  62				      struct shrink_control *sc)
  63{
  64	struct super_block *sb;
  65	long	fs_objects = 0;
  66	long	total_objects;
  67	long	freed = 0;
  68	long	dentries;
  69	long	inodes;
  70
  71	sb = container_of(shrink, struct super_block, s_shrink);
  72
  73	/*
  74	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
  75	 * to recurse into the FS that called us in clear_inode() and friends..
  76	 */
  77	if (!(sc->gfp_mask & __GFP_FS))
  78		return SHRINK_STOP;
  79
  80	if (!trylock_super(sb))
  81		return SHRINK_STOP;
  82
  83	if (sb->s_op->nr_cached_objects)
  84		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
  85
  86	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
  87	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
  88	total_objects = dentries + inodes + fs_objects + 1;
  89	if (!total_objects)
  90		total_objects = 1;
  91
  92	/* proportion the scan between the caches */
  93	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
  94	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
  95	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
  96
  97	/*
  98	 * prune the dcache first as the icache is pinned by it, then
  99	 * prune the icache, followed by the filesystem specific caches
 100	 *
 101	 * Ensure that we always scan at least one object - memcg kmem
 102	 * accounting uses this to fully empty the caches.
 103	 */
 104	sc->nr_to_scan = dentries + 1;
 105	freed = prune_dcache_sb(sb, sc);
 106	sc->nr_to_scan = inodes + 1;
 107	freed += prune_icache_sb(sb, sc);
 108
 109	if (fs_objects) {
 110		sc->nr_to_scan = fs_objects + 1;
 111		freed += sb->s_op->free_cached_objects(sb, sc);
 112	}
 113
 114	up_read(&sb->s_umount);
 115	return freed;
 116}
 117
 118static unsigned long super_cache_count(struct shrinker *shrink,
 119				       struct shrink_control *sc)
 120{
 121	struct super_block *sb;
 122	long	total_objects = 0;
 123
 124	sb = container_of(shrink, struct super_block, s_shrink);
 125
 126	/*
 127	 * We don't call trylock_super() here as it is a scalability bottleneck,
 128	 * so we're exposed to partial setup state. The shrinker rwsem does not
 129	 * protect filesystem operations backing list_lru_shrink_count() or
 130	 * s_op->nr_cached_objects(). Counts can change between
 131	 * super_cache_count and super_cache_scan, so we really don't need locks
 132	 * here.
 133	 *
 134	 * However, if we are currently mounting the superblock, the underlying
 135	 * filesystem might be in a state of partial construction and hence it
 136	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
 137	 * avoid this situation, so do the same here. The memory barrier is
 138	 * matched with the one in mount_fs() as we don't hold locks here.
 139	 */
 140	if (!(sb->s_flags & SB_BORN))
 141		return 0;
 142	smp_rmb();
 143
 144	if (sb->s_op && sb->s_op->nr_cached_objects)
 145		total_objects = sb->s_op->nr_cached_objects(sb, sc);
 146
 147	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 148	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 149
 150	if (!total_objects)
 151		return SHRINK_EMPTY;
 152
 153	total_objects = vfs_pressure_ratio(total_objects);
 154	return total_objects;
 155}
 156
 157static void destroy_super_work(struct work_struct *work)
 158{
 159	struct super_block *s = container_of(work, struct super_block,
 160							destroy_work);
 161	int i;
 162
 163	for (i = 0; i < SB_FREEZE_LEVELS; i++)
 164		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 165	kfree(s);
 166}
 167
 168static void destroy_super_rcu(struct rcu_head *head)
 169{
 170	struct super_block *s = container_of(head, struct super_block, rcu);
 171	INIT_WORK(&s->destroy_work, destroy_super_work);
 172	schedule_work(&s->destroy_work);
 173}
 174
 175/* Free a superblock that has never been seen by anyone */
 176static void destroy_unused_super(struct super_block *s)
 
 
 
 
 
 177{
 178	if (!s)
 179		return;
 180	up_write(&s->s_umount);
 181	list_lru_destroy(&s->s_dentry_lru);
 182	list_lru_destroy(&s->s_inode_lru);
 183	security_sb_free(s);
 184	put_user_ns(s->s_user_ns);
 185	kfree(s->s_subtype);
 186	free_prealloced_shrinker(&s->s_shrink);
 187	/* no delays needed */
 188	destroy_super_work(&s->destroy_work);
 189}
 190
 191/**
 192 *	alloc_super	-	create new superblock
 193 *	@type:	filesystem type superblock should belong to
 194 *	@flags: the mount flags
 195 *	@user_ns: User namespace for the super_block
 196 *
 197 *	Allocates and initializes a new &struct super_block.  alloc_super()
 198 *	returns a pointer new superblock or %NULL if allocation had failed.
 199 */
 200static struct super_block *alloc_super(struct file_system_type *type, int flags,
 201				       struct user_namespace *user_ns)
 202{
 203	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 204	static const struct super_operations default_op;
 205	int i;
 206
 207	if (!s)
 208		return NULL;
 209
 210	INIT_LIST_HEAD(&s->s_mounts);
 211	s->s_user_ns = get_user_ns(user_ns);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212	init_rwsem(&s->s_umount);
 213	lockdep_set_class(&s->s_umount, &type->s_umount_key);
 214	/*
 215	 * sget() can have s_umount recursion.
 216	 *
 217	 * When it cannot find a suitable sb, it allocates a new
 218	 * one (this one), and tries again to find a suitable old
 219	 * one.
 220	 *
 221	 * In case that succeeds, it will acquire the s_umount
 222	 * lock of the old one. Since these are clearly distrinct
 223	 * locks, and this object isn't exposed yet, there's no
 224	 * risk of deadlocks.
 225	 *
 226	 * Annotate this by putting this lock in a different
 227	 * subclass.
 228	 */
 229	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 230
 231	if (security_sb_alloc(s))
 232		goto fail;
 233
 234	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 235		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 236					sb_writers_name[i],
 237					&type->s_writers_key[i]))
 238			goto fail;
 239	}
 240	init_waitqueue_head(&s->s_writers.wait_unfrozen);
 241	s->s_bdi = &noop_backing_dev_info;
 242	s->s_flags = flags;
 243	if (s->s_user_ns != &init_user_ns)
 244		s->s_iflags |= SB_I_NODEV;
 245	INIT_HLIST_NODE(&s->s_instances);
 246	INIT_HLIST_BL_HEAD(&s->s_roots);
 247	mutex_init(&s->s_sync_lock);
 248	INIT_LIST_HEAD(&s->s_inodes);
 249	spin_lock_init(&s->s_inode_list_lock);
 250	INIT_LIST_HEAD(&s->s_inodes_wb);
 251	spin_lock_init(&s->s_inode_wblist_lock);
 252
 253	s->s_count = 1;
 254	atomic_set(&s->s_active, 1);
 255	mutex_init(&s->s_vfs_rename_mutex);
 256	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 257	init_rwsem(&s->s_dquot.dqio_sem);
 
 258	s->s_maxbytes = MAX_NON_LFS;
 259	s->s_op = &default_op;
 260	s->s_time_gran = 1000000000;
 261	s->s_time_min = TIME64_MIN;
 262	s->s_time_max = TIME64_MAX;
 263	s->cleancache_poolid = CLEANCACHE_NO_POOL;
 264
 265	s->s_shrink.seeks = DEFAULT_SEEKS;
 266	s->s_shrink.scan_objects = super_cache_scan;
 267	s->s_shrink.count_objects = super_cache_count;
 268	s->s_shrink.batch = 1024;
 269	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
 270	if (prealloc_shrinker(&s->s_shrink))
 271		goto fail;
 272	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
 273		goto fail;
 274	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
 275		goto fail;
 276	return s;
 277
 278fail:
 279	destroy_unused_super(s);
 280	return NULL;
 281}
 282
 283/* Superblock refcounting  */
 284
 285/*
 286 * Drop a superblock's refcount.  The caller must hold sb_lock.
 287 */
 288static void __put_super(struct super_block *s)
 289{
 290	if (!--s->s_count) {
 291		list_del_init(&s->s_list);
 292		WARN_ON(s->s_dentry_lru.node);
 293		WARN_ON(s->s_inode_lru.node);
 294		WARN_ON(!list_empty(&s->s_mounts));
 295		security_sb_free(s);
 296		fscrypt_sb_free(s);
 297		put_user_ns(s->s_user_ns);
 298		kfree(s->s_subtype);
 299		call_rcu(&s->rcu, destroy_super_rcu);
 300	}
 301}
 302
 303/**
 304 *	put_super	-	drop a temporary reference to superblock
 305 *	@sb: superblock in question
 306 *
 307 *	Drops a temporary reference, frees superblock if there's no
 308 *	references left.
 309 */
 310void put_super(struct super_block *sb)
 311{
 312	spin_lock(&sb_lock);
 313	__put_super(sb);
 314	spin_unlock(&sb_lock);
 315}
 316
 317
 318/**
 319 *	deactivate_locked_super	-	drop an active reference to superblock
 320 *	@s: superblock to deactivate
 321 *
 322 *	Drops an active reference to superblock, converting it into a temporary
 323 *	one if there is no other active references left.  In that case we
 324 *	tell fs driver to shut it down and drop the temporary reference we
 325 *	had just acquired.
 326 *
 327 *	Caller holds exclusive lock on superblock; that lock is released.
 328 */
 329void deactivate_locked_super(struct super_block *s)
 330{
 331	struct file_system_type *fs = s->s_type;
 332	if (atomic_dec_and_test(&s->s_active)) {
 333		cleancache_invalidate_fs(s);
 334		unregister_shrinker(&s->s_shrink);
 335		fs->kill_sb(s);
 336
 337		/*
 338		 * Since list_lru_destroy() may sleep, we cannot call it from
 339		 * put_super(), where we hold the sb_lock. Therefore we destroy
 340		 * the lru lists right now.
 341		 */
 342		list_lru_destroy(&s->s_dentry_lru);
 343		list_lru_destroy(&s->s_inode_lru);
 344
 345		put_filesystem(fs);
 346		put_super(s);
 347	} else {
 348		up_write(&s->s_umount);
 349	}
 350}
 351
 352EXPORT_SYMBOL(deactivate_locked_super);
 353
 354/**
 355 *	deactivate_super	-	drop an active reference to superblock
 356 *	@s: superblock to deactivate
 357 *
 358 *	Variant of deactivate_locked_super(), except that superblock is *not*
 359 *	locked by caller.  If we are going to drop the final active reference,
 360 *	lock will be acquired prior to that.
 361 */
 362void deactivate_super(struct super_block *s)
 363{
 364	if (!atomic_add_unless(&s->s_active, -1, 1)) {
 365		down_write(&s->s_umount);
 366		deactivate_locked_super(s);
 367	}
 368}
 369
 370EXPORT_SYMBOL(deactivate_super);
 371
 372/**
 373 *	grab_super - acquire an active reference
 374 *	@s: reference we are trying to make active
 375 *
 376 *	Tries to acquire an active reference.  grab_super() is used when we
 377 * 	had just found a superblock in super_blocks or fs_type->fs_supers
 378 *	and want to turn it into a full-blown active reference.  grab_super()
 379 *	is called with sb_lock held and drops it.  Returns 1 in case of
 380 *	success, 0 if we had failed (superblock contents was already dead or
 381 *	dying when grab_super() had been called).  Note that this is only
 382 *	called for superblocks not in rundown mode (== ones still on ->fs_supers
 383 *	of their type), so increment of ->s_count is OK here.
 384 */
 385static int grab_super(struct super_block *s) __releases(sb_lock)
 386{
 387	s->s_count++;
 388	spin_unlock(&sb_lock);
 389	down_write(&s->s_umount);
 390	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
 391		put_super(s);
 392		return 1;
 393	}
 394	up_write(&s->s_umount);
 395	put_super(s);
 396	return 0;
 397}
 398
 399/*
 400 *	trylock_super - try to grab ->s_umount shared
 401 *	@sb: reference we are trying to grab
 402 *
 403 *	Try to prevent fs shutdown.  This is used in places where we
 404 *	cannot take an active reference but we need to ensure that the
 405 *	filesystem is not shut down while we are working on it. It returns
 406 *	false if we cannot acquire s_umount or if we lose the race and
 407 *	filesystem already got into shutdown, and returns true with the s_umount
 408 *	lock held in read mode in case of success. On successful return,
 409 *	the caller must drop the s_umount lock when done.
 410 *
 411 *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 412 *	The reason why it's safe is that we are OK with doing trylock instead
 413 *	of down_read().  There's a couple of places that are OK with that, but
 414 *	it's very much not a general-purpose interface.
 415 */
 416bool trylock_super(struct super_block *sb)
 417{
 418	if (down_read_trylock(&sb->s_umount)) {
 419		if (!hlist_unhashed(&sb->s_instances) &&
 420		    sb->s_root && (sb->s_flags & SB_BORN))
 421			return true;
 422		up_read(&sb->s_umount);
 423	}
 424
 425	return false;
 426}
 427
 428/**
 429 *	generic_shutdown_super	-	common helper for ->kill_sb()
 430 *	@sb: superblock to kill
 431 *
 432 *	generic_shutdown_super() does all fs-independent work on superblock
 433 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 434 *	that need destruction out of superblock, call generic_shutdown_super()
 435 *	and release aforementioned objects.  Note: dentries and inodes _are_
 436 *	taken care of and do not need specific handling.
 437 *
 438 *	Upon calling this function, the filesystem may no longer alter or
 439 *	rearrange the set of dentries belonging to this super_block, nor may it
 440 *	change the attachments of dentries to inodes.
 441 */
 442void generic_shutdown_super(struct super_block *sb)
 443{
 444	const struct super_operations *sop = sb->s_op;
 445
 446	if (sb->s_root) {
 447		shrink_dcache_for_umount(sb);
 448		sync_filesystem(sb);
 449		sb->s_flags &= ~SB_ACTIVE;
 450
 
 451		cgroup_writeback_umount();
 452
 453		/* evict all inodes with zero refcount */
 454		evict_inodes(sb);
 455		/* only nonzero refcount inodes can have marks */
 456		fsnotify_sb_delete(sb);
 457		security_sb_delete(sb);
 458
 459		if (sb->s_dio_done_wq) {
 460			destroy_workqueue(sb->s_dio_done_wq);
 461			sb->s_dio_done_wq = NULL;
 462		}
 463
 464		if (sop->put_super)
 465			sop->put_super(sb);
 466
 467		if (!list_empty(&sb->s_inodes)) {
 468			printk("VFS: Busy inodes after unmount of %s. "
 469			   "Self-destruct in 5 seconds.  Have a nice day...\n",
 470			   sb->s_id);
 471		}
 472	}
 473	spin_lock(&sb_lock);
 474	/* should be initialized for __put_super_and_need_restart() */
 475	hlist_del_init(&sb->s_instances);
 476	spin_unlock(&sb_lock);
 477	up_write(&sb->s_umount);
 478	if (sb->s_bdi != &noop_backing_dev_info) {
 479		bdi_put(sb->s_bdi);
 480		sb->s_bdi = &noop_backing_dev_info;
 481	}
 482}
 483
 484EXPORT_SYMBOL(generic_shutdown_super);
 485
 486bool mount_capable(struct fs_context *fc)
 487{
 488	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
 489		return capable(CAP_SYS_ADMIN);
 490	else
 491		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
 492}
 493
 494/**
 495 * sget_fc - Find or create a superblock
 496 * @fc:	Filesystem context.
 497 * @test: Comparison callback
 498 * @set: Setup callback
 499 *
 500 * Find or create a superblock using the parameters stored in the filesystem
 501 * context and the two callback functions.
 502 *
 503 * If an extant superblock is matched, then that will be returned with an
 504 * elevated reference count that the caller must transfer or discard.
 505 *
 506 * If no match is made, a new superblock will be allocated and basic
 507 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
 508 * the set() callback will be invoked), the superblock will be published and it
 509 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
 510 * as yet unset.
 511 */
 512struct super_block *sget_fc(struct fs_context *fc,
 513			    int (*test)(struct super_block *, struct fs_context *),
 514			    int (*set)(struct super_block *, struct fs_context *))
 515{
 516	struct super_block *s = NULL;
 517	struct super_block *old;
 518	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
 519	int err;
 520
 521retry:
 522	spin_lock(&sb_lock);
 523	if (test) {
 524		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
 525			if (test(old, fc))
 526				goto share_extant_sb;
 527		}
 528	}
 529	if (!s) {
 530		spin_unlock(&sb_lock);
 531		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
 532		if (!s)
 533			return ERR_PTR(-ENOMEM);
 534		goto retry;
 535	}
 536
 537	s->s_fs_info = fc->s_fs_info;
 538	err = set(s, fc);
 539	if (err) {
 540		s->s_fs_info = NULL;
 541		spin_unlock(&sb_lock);
 542		destroy_unused_super(s);
 543		return ERR_PTR(err);
 544	}
 545	fc->s_fs_info = NULL;
 546	s->s_type = fc->fs_type;
 547	s->s_iflags |= fc->s_iflags;
 548	strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
 549	list_add_tail(&s->s_list, &super_blocks);
 550	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
 551	spin_unlock(&sb_lock);
 552	get_filesystem(s->s_type);
 553	register_shrinker_prepared(&s->s_shrink);
 554	return s;
 555
 556share_extant_sb:
 557	if (user_ns != old->s_user_ns) {
 558		spin_unlock(&sb_lock);
 559		destroy_unused_super(s);
 560		return ERR_PTR(-EBUSY);
 561	}
 562	if (!grab_super(old))
 563		goto retry;
 564	destroy_unused_super(s);
 565	return old;
 566}
 567EXPORT_SYMBOL(sget_fc);
 568
 569/**
 570 *	sget	-	find or create a superblock
 571 *	@type:	  filesystem type superblock should belong to
 572 *	@test:	  comparison callback
 573 *	@set:	  setup callback
 574 *	@flags:	  mount flags
 575 *	@data:	  argument to each of them
 576 */
 577struct super_block *sget(struct file_system_type *type,
 578			int (*test)(struct super_block *,void *),
 579			int (*set)(struct super_block *,void *),
 580			int flags,
 581			void *data)
 582{
 583	struct user_namespace *user_ns = current_user_ns();
 584	struct super_block *s = NULL;
 585	struct super_block *old;
 586	int err;
 587
 588	/* We don't yet pass the user namespace of the parent
 589	 * mount through to here so always use &init_user_ns
 590	 * until that changes.
 591	 */
 592	if (flags & SB_SUBMOUNT)
 593		user_ns = &init_user_ns;
 594
 595retry:
 596	spin_lock(&sb_lock);
 597	if (test) {
 598		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 599			if (!test(old, data))
 600				continue;
 601			if (user_ns != old->s_user_ns) {
 602				spin_unlock(&sb_lock);
 603				destroy_unused_super(s);
 604				return ERR_PTR(-EBUSY);
 605			}
 606			if (!grab_super(old))
 607				goto retry;
 608			destroy_unused_super(s);
 
 
 
 
 609			return old;
 610		}
 611	}
 612	if (!s) {
 613		spin_unlock(&sb_lock);
 614		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
 615		if (!s)
 616			return ERR_PTR(-ENOMEM);
 617		goto retry;
 618	}
 619
 620	err = set(s, data);
 621	if (err) {
 622		spin_unlock(&sb_lock);
 623		destroy_unused_super(s);
 
 624		return ERR_PTR(err);
 625	}
 626	s->s_type = type;
 627	strlcpy(s->s_id, type->name, sizeof(s->s_id));
 628	list_add_tail(&s->s_list, &super_blocks);
 629	hlist_add_head(&s->s_instances, &type->fs_supers);
 630	spin_unlock(&sb_lock);
 631	get_filesystem(type);
 632	register_shrinker_prepared(&s->s_shrink);
 633	return s;
 634}
 
 635EXPORT_SYMBOL(sget);
 636
 637void drop_super(struct super_block *sb)
 638{
 639	up_read(&sb->s_umount);
 640	put_super(sb);
 641}
 642
 643EXPORT_SYMBOL(drop_super);
 644
 645void drop_super_exclusive(struct super_block *sb)
 646{
 647	up_write(&sb->s_umount);
 648	put_super(sb);
 649}
 650EXPORT_SYMBOL(drop_super_exclusive);
 651
 652static void __iterate_supers(void (*f)(struct super_block *))
 653{
 654	struct super_block *sb, *p = NULL;
 655
 656	spin_lock(&sb_lock);
 657	list_for_each_entry(sb, &super_blocks, s_list) {
 658		if (hlist_unhashed(&sb->s_instances))
 659			continue;
 660		sb->s_count++;
 661		spin_unlock(&sb_lock);
 662
 663		f(sb);
 664
 665		spin_lock(&sb_lock);
 666		if (p)
 667			__put_super(p);
 668		p = sb;
 669	}
 670	if (p)
 671		__put_super(p);
 672	spin_unlock(&sb_lock);
 673}
 674/**
 675 *	iterate_supers - call function for all active superblocks
 676 *	@f: function to call
 677 *	@arg: argument to pass to it
 678 *
 679 *	Scans the superblock list and calls given function, passing it
 680 *	locked superblock and given argument.
 681 */
 682void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 683{
 684	struct super_block *sb, *p = NULL;
 685
 686	spin_lock(&sb_lock);
 687	list_for_each_entry(sb, &super_blocks, s_list) {
 688		if (hlist_unhashed(&sb->s_instances))
 689			continue;
 690		sb->s_count++;
 691		spin_unlock(&sb_lock);
 692
 693		down_read(&sb->s_umount);
 694		if (sb->s_root && (sb->s_flags & SB_BORN))
 695			f(sb, arg);
 696		up_read(&sb->s_umount);
 697
 698		spin_lock(&sb_lock);
 699		if (p)
 700			__put_super(p);
 701		p = sb;
 702	}
 703	if (p)
 704		__put_super(p);
 705	spin_unlock(&sb_lock);
 706}
 707
 708/**
 709 *	iterate_supers_type - call function for superblocks of given type
 710 *	@type: fs type
 711 *	@f: function to call
 712 *	@arg: argument to pass to it
 713 *
 714 *	Scans the superblock list and calls given function, passing it
 715 *	locked superblock and given argument.
 716 */
 717void iterate_supers_type(struct file_system_type *type,
 718	void (*f)(struct super_block *, void *), void *arg)
 719{
 720	struct super_block *sb, *p = NULL;
 721
 722	spin_lock(&sb_lock);
 723	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 724		sb->s_count++;
 725		spin_unlock(&sb_lock);
 726
 727		down_read(&sb->s_umount);
 728		if (sb->s_root && (sb->s_flags & SB_BORN))
 729			f(sb, arg);
 730		up_read(&sb->s_umount);
 731
 732		spin_lock(&sb_lock);
 733		if (p)
 734			__put_super(p);
 735		p = sb;
 736	}
 737	if (p)
 738		__put_super(p);
 739	spin_unlock(&sb_lock);
 740}
 741
 742EXPORT_SYMBOL(iterate_supers_type);
 743
 744/**
 745 * get_super - get the superblock of a device
 746 * @bdev: device to get the superblock for
 747 *
 748 * Scans the superblock list and finds the superblock of the file system
 749 * mounted on the device given. %NULL is returned if no match is found.
 750 */
 
 751struct super_block *get_super(struct block_device *bdev)
 752{
 753	struct super_block *sb;
 754
 755	if (!bdev)
 756		return NULL;
 757
 758	spin_lock(&sb_lock);
 759rescan:
 760	list_for_each_entry(sb, &super_blocks, s_list) {
 761		if (hlist_unhashed(&sb->s_instances))
 762			continue;
 763		if (sb->s_bdev == bdev) {
 764			sb->s_count++;
 765			spin_unlock(&sb_lock);
 766			down_read(&sb->s_umount);
 767			/* still alive? */
 768			if (sb->s_root && (sb->s_flags & SB_BORN))
 769				return sb;
 770			up_read(&sb->s_umount);
 771			/* nope, got unmounted */
 772			spin_lock(&sb_lock);
 773			__put_super(sb);
 774			goto rescan;
 775		}
 776	}
 777	spin_unlock(&sb_lock);
 778	return NULL;
 779}
 780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 781/**
 782 * get_active_super - get an active reference to the superblock of a device
 783 * @bdev: device to get the superblock for
 784 *
 785 * Scans the superblock list and finds the superblock of the file system
 786 * mounted on the device given.  Returns the superblock with an active
 787 * reference or %NULL if none was found.
 788 */
 789struct super_block *get_active_super(struct block_device *bdev)
 790{
 791	struct super_block *sb;
 792
 793	if (!bdev)
 794		return NULL;
 795
 796restart:
 797	spin_lock(&sb_lock);
 798	list_for_each_entry(sb, &super_blocks, s_list) {
 799		if (hlist_unhashed(&sb->s_instances))
 800			continue;
 801		if (sb->s_bdev == bdev) {
 802			if (!grab_super(sb))
 803				goto restart;
 804			up_write(&sb->s_umount);
 805			return sb;
 806		}
 807	}
 808	spin_unlock(&sb_lock);
 809	return NULL;
 810}
 811
 812struct super_block *user_get_super(dev_t dev, bool excl)
 813{
 814	struct super_block *sb;
 815
 816	spin_lock(&sb_lock);
 817rescan:
 818	list_for_each_entry(sb, &super_blocks, s_list) {
 819		if (hlist_unhashed(&sb->s_instances))
 820			continue;
 821		if (sb->s_dev ==  dev) {
 822			sb->s_count++;
 823			spin_unlock(&sb_lock);
 824			if (excl)
 825				down_write(&sb->s_umount);
 826			else
 827				down_read(&sb->s_umount);
 828			/* still alive? */
 829			if (sb->s_root && (sb->s_flags & SB_BORN))
 830				return sb;
 831			if (excl)
 832				up_write(&sb->s_umount);
 833			else
 834				up_read(&sb->s_umount);
 835			/* nope, got unmounted */
 836			spin_lock(&sb_lock);
 837			__put_super(sb);
 838			goto rescan;
 839		}
 840	}
 841	spin_unlock(&sb_lock);
 842	return NULL;
 843}
 844
 845/**
 846 * reconfigure_super - asks filesystem to change superblock parameters
 847 * @fc: The superblock and configuration
 
 
 
 848 *
 849 * Alters the configuration parameters of a live superblock.
 850 */
 851int reconfigure_super(struct fs_context *fc)
 852{
 853	struct super_block *sb = fc->root->d_sb;
 854	int retval;
 855	bool remount_ro = false;
 856	bool force = fc->sb_flags & SB_FORCE;
 857
 858	if (fc->sb_flags_mask & ~MS_RMT_MASK)
 859		return -EINVAL;
 860	if (sb->s_writers.frozen != SB_UNFROZEN)
 861		return -EBUSY;
 862
 863	retval = security_sb_remount(sb, fc->security);
 864	if (retval)
 865		return retval;
 866
 867	if (fc->sb_flags_mask & SB_RDONLY) {
 868#ifdef CONFIG_BLOCK
 869		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
 870		    bdev_read_only(sb->s_bdev))
 871			return -EACCES;
 872#endif
 873
 874		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
 875	}
 876
 877	if (remount_ro) {
 878		if (!hlist_empty(&sb->s_pins)) {
 879			up_write(&sb->s_umount);
 880			group_pin_kill(&sb->s_pins);
 881			down_write(&sb->s_umount);
 882			if (!sb->s_root)
 883				return 0;
 884			if (sb->s_writers.frozen != SB_UNFROZEN)
 885				return -EBUSY;
 886			remount_ro = !sb_rdonly(sb);
 887		}
 888	}
 889	shrink_dcache_sb(sb);
 890
 891	/* If we are reconfiguring to RDONLY and current sb is read/write,
 892	 * make sure there are no files open for writing.
 893	 */
 894	if (remount_ro) {
 895		if (force) {
 896			sb->s_readonly_remount = 1;
 897			smp_wmb();
 898		} else {
 899			retval = sb_prepare_remount_readonly(sb);
 900			if (retval)
 901				return retval;
 902		}
 903	}
 904
 905	if (fc->ops->reconfigure) {
 906		retval = fc->ops->reconfigure(fc);
 907		if (retval) {
 908			if (!force)
 909				goto cancel_readonly;
 910			/* If forced remount, go ahead despite any errors */
 911			WARN(1, "forced remount of a %s fs returned %i\n",
 912			     sb->s_type->name, retval);
 913		}
 914	}
 915
 916	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
 917				 (fc->sb_flags & fc->sb_flags_mask)));
 918	/* Needs to be ordered wrt mnt_is_readonly() */
 919	smp_wmb();
 920	sb->s_readonly_remount = 0;
 921
 922	/*
 923	 * Some filesystems modify their metadata via some other path than the
 924	 * bdev buffer cache (eg. use a private mapping, or directories in
 925	 * pagecache, etc). Also file data modifications go via their own
 926	 * mappings. So If we try to mount readonly then copy the filesystem
 927	 * from bdev, we could get stale data, so invalidate it to give a best
 928	 * effort at coherency.
 929	 */
 930	if (remount_ro && sb->s_bdev)
 931		invalidate_bdev(sb->s_bdev);
 932	return 0;
 933
 934cancel_readonly:
 935	sb->s_readonly_remount = 0;
 936	return retval;
 937}
 938
 939static void do_emergency_remount_callback(struct super_block *sb)
 940{
 941	down_write(&sb->s_umount);
 942	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
 943	    !sb_rdonly(sb)) {
 944		struct fs_context *fc;
 945
 946		fc = fs_context_for_reconfigure(sb->s_root,
 947					SB_RDONLY | SB_FORCE, SB_RDONLY);
 948		if (!IS_ERR(fc)) {
 949			if (parse_monolithic_mount_data(fc, NULL) == 0)
 950				(void)reconfigure_super(fc);
 951			put_fs_context(fc);
 
 
 
 
 952		}
 
 
 
 
 
 953	}
 954	up_write(&sb->s_umount);
 955}
 956
 957static void do_emergency_remount(struct work_struct *work)
 958{
 959	__iterate_supers(do_emergency_remount_callback);
 960	kfree(work);
 961	printk("Emergency Remount complete\n");
 962}
 963
 964void emergency_remount(void)
 965{
 966	struct work_struct *work;
 967
 968	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 969	if (work) {
 970		INIT_WORK(work, do_emergency_remount);
 971		schedule_work(work);
 972	}
 973}
 974
 975static void do_thaw_all_callback(struct super_block *sb)
 976{
 977	down_write(&sb->s_umount);
 978	if (sb->s_root && sb->s_flags & SB_BORN) {
 979		emergency_thaw_bdev(sb);
 980		thaw_super_locked(sb);
 981	} else {
 982		up_write(&sb->s_umount);
 983	}
 984}
 985
 986static void do_thaw_all(struct work_struct *work)
 987{
 988	__iterate_supers(do_thaw_all_callback);
 989	kfree(work);
 990	printk(KERN_WARNING "Emergency Thaw complete\n");
 991}
 992
 993/**
 994 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 995 *
 996 * Used for emergency unfreeze of all filesystems via SysRq
 997 */
 998void emergency_thaw_all(void)
 999{
1000	struct work_struct *work;
1001
1002	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1003	if (work) {
1004		INIT_WORK(work, do_thaw_all);
1005		schedule_work(work);
1006	}
1007}
1008
1009static DEFINE_IDA(unnamed_dev_ida);
 
 
 
 
 
1010
1011/**
1012 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1013 * @p: Pointer to a dev_t.
1014 *
1015 * Filesystems which don't use real block devices can call this function
1016 * to allocate a virtual block device.
1017 *
1018 * Context: Any context.  Frequently called while holding sb_lock.
1019 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1020 * or -ENOMEM if memory allocation failed.
1021 */
1022int get_anon_bdev(dev_t *p)
1023{
1024	int dev;
 
1025
1026	/*
1027	 * Many userspace utilities consider an FSID of 0 invalid.
1028	 * Always return at least 1 from get_anon_bdev.
1029	 */
1030	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1031			GFP_ATOMIC);
1032	if (dev == -ENOSPC)
1033		dev = -EMFILE;
1034	if (dev < 0)
1035		return dev;
 
 
 
1036
1037	*p = MKDEV(0, dev);
 
 
 
 
 
 
 
 
1038	return 0;
1039}
1040EXPORT_SYMBOL(get_anon_bdev);
1041
1042void free_anon_bdev(dev_t dev)
1043{
1044	ida_free(&unnamed_dev_ida, MINOR(dev));
 
 
 
 
 
1045}
1046EXPORT_SYMBOL(free_anon_bdev);
1047
1048int set_anon_super(struct super_block *s, void *data)
1049{
1050	return get_anon_bdev(&s->s_dev);
1051}
 
1052EXPORT_SYMBOL(set_anon_super);
1053
1054void kill_anon_super(struct super_block *sb)
1055{
1056	dev_t dev = sb->s_dev;
1057	generic_shutdown_super(sb);
1058	free_anon_bdev(dev);
1059}
 
1060EXPORT_SYMBOL(kill_anon_super);
1061
1062void kill_litter_super(struct super_block *sb)
1063{
1064	if (sb->s_root)
1065		d_genocide(sb->s_root);
1066	kill_anon_super(sb);
1067}
 
1068EXPORT_SYMBOL(kill_litter_super);
1069
1070int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1071{
1072	return set_anon_super(sb, NULL);
1073}
1074EXPORT_SYMBOL(set_anon_super_fc);
1075
1076static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1077{
1078	return sb->s_fs_info == fc->s_fs_info;
 
1079}
1080
1081static int test_single_super(struct super_block *s, struct fs_context *fc)
 
1082{
1083	return 1;
1084}
1085
1086/**
1087 * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1088 * @fc: The filesystem context holding the parameters
1089 * @keying: How to distinguish superblocks
1090 * @fill_super: Helper to initialise a new superblock
1091 *
1092 * Search for a superblock and create a new one if not found.  The search
1093 * criterion is controlled by @keying.  If the search fails, a new superblock
1094 * is created and @fill_super() is called to initialise it.
1095 *
1096 * @keying can take one of a number of values:
1097 *
1098 * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1099 *     system.  This is typically used for special system filesystems.
1100 *
1101 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1102 *     distinct keys (where the key is in s_fs_info).  Searching for the same
1103 *     key again will turn up the superblock for that key.
1104 *
1105 * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1106 *     unkeyed.  Each call will get a new superblock.
1107 *
1108 * A permissions check is made by sget_fc() unless we're getting a superblock
1109 * for a kernel-internal mount or a submount.
1110 */
1111int vfs_get_super(struct fs_context *fc,
1112		  enum vfs_get_super_keying keying,
1113		  int (*fill_super)(struct super_block *sb,
1114				    struct fs_context *fc))
1115{
1116	int (*test)(struct super_block *, struct fs_context *);
1117	struct super_block *sb;
1118	int err;
1119
1120	switch (keying) {
1121	case vfs_get_single_super:
1122	case vfs_get_single_reconf_super:
1123		test = test_single_super;
1124		break;
1125	case vfs_get_keyed_super:
1126		test = test_keyed_super;
1127		break;
1128	case vfs_get_independent_super:
1129		test = NULL;
1130		break;
1131	default:
1132		BUG();
1133	}
1134
1135	sb = sget_fc(fc, test, set_anon_super_fc);
1136	if (IS_ERR(sb))
1137		return PTR_ERR(sb);
1138
1139	if (!sb->s_root) {
1140		err = fill_super(sb, fc);
1141		if (err)
1142			goto error;
 
 
 
1143
1144		sb->s_flags |= SB_ACTIVE;
1145		fc->root = dget(sb->s_root);
1146	} else {
1147		fc->root = dget(sb->s_root);
1148		if (keying == vfs_get_single_reconf_super) {
1149			err = reconfigure_super(fc);
1150			if (err < 0) {
1151				dput(fc->root);
1152				fc->root = NULL;
1153				goto error;
1154			}
1155		}
1156	}
1157
1158	return 0;
1159
1160error:
1161	deactivate_locked_super(sb);
1162	return err;
1163}
1164EXPORT_SYMBOL(vfs_get_super);
1165
1166int get_tree_nodev(struct fs_context *fc,
1167		  int (*fill_super)(struct super_block *sb,
1168				    struct fs_context *fc))
1169{
1170	return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1171}
1172EXPORT_SYMBOL(get_tree_nodev);
1173
1174int get_tree_single(struct fs_context *fc,
1175		  int (*fill_super)(struct super_block *sb,
1176				    struct fs_context *fc))
1177{
1178	return vfs_get_super(fc, vfs_get_single_super, fill_super);
1179}
1180EXPORT_SYMBOL(get_tree_single);
1181
1182int get_tree_single_reconf(struct fs_context *fc,
1183		  int (*fill_super)(struct super_block *sb,
1184				    struct fs_context *fc))
1185{
1186	return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1187}
1188EXPORT_SYMBOL(get_tree_single_reconf);
1189
1190int get_tree_keyed(struct fs_context *fc,
1191		  int (*fill_super)(struct super_block *sb,
1192				    struct fs_context *fc),
1193		void *key)
1194{
1195	fc->s_fs_info = key;
1196	return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1197}
1198EXPORT_SYMBOL(get_tree_keyed);
1199
1200#ifdef CONFIG_BLOCK
1201
1202static int set_bdev_super(struct super_block *s, void *data)
1203{
1204	s->s_bdev = data;
1205	s->s_dev = s->s_bdev->bd_dev;
1206	s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1207
1208	if (blk_queue_stable_writes(s->s_bdev->bd_disk->queue))
1209		s->s_iflags |= SB_I_STABLE_WRITES;
1210	return 0;
1211}
1212
1213static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1214{
1215	return set_bdev_super(s, fc->sget_key);
1216}
1217
1218static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1219{
1220	return s->s_bdev == fc->sget_key;
1221}
1222
1223/**
1224 * get_tree_bdev - Get a superblock based on a single block device
1225 * @fc: The filesystem context holding the parameters
1226 * @fill_super: Helper to initialise a new superblock
1227 */
1228int get_tree_bdev(struct fs_context *fc,
1229		int (*fill_super)(struct super_block *,
1230				  struct fs_context *))
1231{
1232	struct block_device *bdev;
1233	struct super_block *s;
1234	fmode_t mode = FMODE_READ | FMODE_EXCL;
1235	int error = 0;
1236
1237	if (!(fc->sb_flags & SB_RDONLY))
1238		mode |= FMODE_WRITE;
1239
1240	if (!fc->source)
1241		return invalf(fc, "No source specified");
1242
1243	bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1244	if (IS_ERR(bdev)) {
1245		errorf(fc, "%s: Can't open blockdev", fc->source);
1246		return PTR_ERR(bdev);
1247	}
1248
1249	/* Once the superblock is inserted into the list by sget_fc(), s_umount
1250	 * will protect the lockfs code from trying to start a snapshot while
1251	 * we are mounting
1252	 */
1253	mutex_lock(&bdev->bd_fsfreeze_mutex);
1254	if (bdev->bd_fsfreeze_count > 0) {
1255		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1256		warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1257		blkdev_put(bdev, mode);
1258		return -EBUSY;
1259	}
1260
1261	fc->sb_flags |= SB_NOSEC;
1262	fc->sget_key = bdev;
1263	s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1264	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1265	if (IS_ERR(s)) {
1266		blkdev_put(bdev, mode);
1267		return PTR_ERR(s);
1268	}
1269
1270	if (s->s_root) {
1271		/* Don't summarily change the RO/RW state. */
1272		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1273			warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1274			deactivate_locked_super(s);
1275			blkdev_put(bdev, mode);
1276			return -EBUSY;
1277		}
1278
1279		/*
1280		 * s_umount nests inside open_mutex during
1281		 * __invalidate_device().  blkdev_put() acquires
1282		 * open_mutex and can't be called under s_umount.  Drop
1283		 * s_umount temporarily.  This is safe as we're
1284		 * holding an active reference.
1285		 */
1286		up_write(&s->s_umount);
1287		blkdev_put(bdev, mode);
1288		down_write(&s->s_umount);
1289	} else {
1290		s->s_mode = mode;
1291		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1292		sb_set_blocksize(s, block_size(bdev));
1293		error = fill_super(s, fc);
1294		if (error) {
1295			deactivate_locked_super(s);
1296			return error;
1297		}
1298
1299		s->s_flags |= SB_ACTIVE;
1300		bdev->bd_super = s;
1301	}
1302
1303	BUG_ON(fc->root);
1304	fc->root = dget(s->s_root);
1305	return 0;
1306}
1307EXPORT_SYMBOL(get_tree_bdev);
1308
1309static int test_bdev_super(struct super_block *s, void *data)
1310{
1311	return (void *)s->s_bdev == data;
1312}
1313
1314struct dentry *mount_bdev(struct file_system_type *fs_type,
1315	int flags, const char *dev_name, void *data,
1316	int (*fill_super)(struct super_block *, void *, int))
1317{
1318	struct block_device *bdev;
1319	struct super_block *s;
1320	fmode_t mode = FMODE_READ | FMODE_EXCL;
1321	int error = 0;
1322
1323	if (!(flags & SB_RDONLY))
1324		mode |= FMODE_WRITE;
1325
1326	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1327	if (IS_ERR(bdev))
1328		return ERR_CAST(bdev);
1329
1330	/*
1331	 * once the super is inserted into the list by sget, s_umount
1332	 * will protect the lockfs code from trying to start a snapshot
1333	 * while we are mounting
1334	 */
1335	mutex_lock(&bdev->bd_fsfreeze_mutex);
1336	if (bdev->bd_fsfreeze_count > 0) {
1337		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1338		error = -EBUSY;
1339		goto error_bdev;
1340	}
1341	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1342		 bdev);
1343	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1344	if (IS_ERR(s))
1345		goto error_s;
1346
1347	if (s->s_root) {
1348		if ((flags ^ s->s_flags) & SB_RDONLY) {
1349			deactivate_locked_super(s);
1350			error = -EBUSY;
1351			goto error_bdev;
1352		}
1353
1354		/*
1355		 * s_umount nests inside open_mutex during
1356		 * __invalidate_device().  blkdev_put() acquires
1357		 * open_mutex and can't be called under s_umount.  Drop
1358		 * s_umount temporarily.  This is safe as we're
1359		 * holding an active reference.
1360		 */
1361		up_write(&s->s_umount);
1362		blkdev_put(bdev, mode);
1363		down_write(&s->s_umount);
1364	} else {
1365		s->s_mode = mode;
1366		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1367		sb_set_blocksize(s, block_size(bdev));
1368		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1369		if (error) {
1370			deactivate_locked_super(s);
1371			goto error;
1372		}
1373
1374		s->s_flags |= SB_ACTIVE;
1375		bdev->bd_super = s;
1376	}
1377
1378	return dget(s->s_root);
1379
1380error_s:
1381	error = PTR_ERR(s);
1382error_bdev:
1383	blkdev_put(bdev, mode);
1384error:
1385	return ERR_PTR(error);
1386}
1387EXPORT_SYMBOL(mount_bdev);
1388
1389void kill_block_super(struct super_block *sb)
1390{
1391	struct block_device *bdev = sb->s_bdev;
1392	fmode_t mode = sb->s_mode;
1393
1394	bdev->bd_super = NULL;
1395	generic_shutdown_super(sb);
1396	sync_blockdev(bdev);
1397	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1398	blkdev_put(bdev, mode | FMODE_EXCL);
1399}
1400
1401EXPORT_SYMBOL(kill_block_super);
1402#endif
1403
1404struct dentry *mount_nodev(struct file_system_type *fs_type,
1405	int flags, void *data,
1406	int (*fill_super)(struct super_block *, void *, int))
1407{
1408	int error;
1409	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1410
1411	if (IS_ERR(s))
1412		return ERR_CAST(s);
1413
1414	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1415	if (error) {
1416		deactivate_locked_super(s);
1417		return ERR_PTR(error);
1418	}
1419	s->s_flags |= SB_ACTIVE;
1420	return dget(s->s_root);
1421}
1422EXPORT_SYMBOL(mount_nodev);
1423
1424static int reconfigure_single(struct super_block *s,
1425			      int flags, void *data)
1426{
1427	struct fs_context *fc;
1428	int ret;
1429
1430	/* The caller really need to be passing fc down into mount_single(),
1431	 * then a chunk of this can be removed.  [Bollocks -- AV]
1432	 * Better yet, reconfiguration shouldn't happen, but rather the second
1433	 * mount should be rejected if the parameters are not compatible.
1434	 */
1435	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1436	if (IS_ERR(fc))
1437		return PTR_ERR(fc);
1438
1439	ret = parse_monolithic_mount_data(fc, data);
1440	if (ret < 0)
1441		goto out;
1442
1443	ret = reconfigure_super(fc);
1444out:
1445	put_fs_context(fc);
1446	return ret;
1447}
1448
1449static int compare_single(struct super_block *s, void *p)
1450{
1451	return 1;
1452}
1453
1454struct dentry *mount_single(struct file_system_type *fs_type,
1455	int flags, void *data,
1456	int (*fill_super)(struct super_block *, void *, int))
1457{
1458	struct super_block *s;
1459	int error;
1460
1461	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1462	if (IS_ERR(s))
1463		return ERR_CAST(s);
1464	if (!s->s_root) {
1465		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1466		if (!error)
1467			s->s_flags |= SB_ACTIVE;
 
 
 
1468	} else {
1469		error = reconfigure_single(s, flags, data);
1470	}
1471	if (unlikely(error)) {
1472		deactivate_locked_super(s);
1473		return ERR_PTR(error);
1474	}
1475	return dget(s->s_root);
1476}
1477EXPORT_SYMBOL(mount_single);
1478
1479/**
1480 * vfs_get_tree - Get the mountable root
1481 * @fc: The superblock configuration context.
1482 *
1483 * The filesystem is invoked to get or create a superblock which can then later
1484 * be used for mounting.  The filesystem places a pointer to the root to be
1485 * used for mounting in @fc->root.
1486 */
1487int vfs_get_tree(struct fs_context *fc)
1488{
 
1489	struct super_block *sb;
1490	int error;
1491
1492	if (fc->root)
1493		return -EBUSY;
1494
1495	/* Get the mountable root in fc->root, with a ref on the root and a ref
1496	 * on the superblock.
1497	 */
1498	error = fc->ops->get_tree(fc);
1499	if (error < 0)
1500		return error;
1501
1502	if (!fc->root) {
1503		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1504		       fc->fs_type->name);
1505		/* We don't know what the locking state of the superblock is -
1506		 * if there is a superblock.
1507		 */
1508		BUG();
1509	}
1510
1511	sb = fc->root->d_sb;
1512	WARN_ON(!sb->s_bdi);
 
1513
1514	/*
1515	 * Write barrier is for super_cache_count(). We place it before setting
1516	 * SB_BORN as the data dependency between the two functions is the
1517	 * superblock structure contents that we just set up, not the SB_BORN
1518	 * flag.
1519	 */
1520	smp_wmb();
1521	sb->s_flags |= SB_BORN;
1522
1523	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1524	if (unlikely(error)) {
1525		fc_drop_locked(fc);
1526		return error;
1527	}
1528
1529	/*
1530	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1531	 * but s_maxbytes was an unsigned long long for many releases. Throw
1532	 * this warning for a little while to try and catch filesystems that
1533	 * violate this rule.
1534	 */
1535	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1536		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1537
1538	return 0;
 
 
 
 
 
 
 
 
 
1539}
1540EXPORT_SYMBOL(vfs_get_tree);
1541
1542/*
1543 * Setup private BDI for given superblock. It gets automatically cleaned up
1544 * in generic_shutdown_super().
1545 */
1546int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1547{
1548	struct backing_dev_info *bdi;
1549	int err;
1550	va_list args;
1551
1552	bdi = bdi_alloc(NUMA_NO_NODE);
1553	if (!bdi)
1554		return -ENOMEM;
1555
1556	va_start(args, fmt);
1557	err = bdi_register_va(bdi, fmt, args);
1558	va_end(args);
1559	if (err) {
1560		bdi_put(bdi);
1561		return err;
1562	}
1563	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1564	sb->s_bdi = bdi;
1565
1566	return 0;
1567}
1568EXPORT_SYMBOL(super_setup_bdi_name);
1569
1570/*
1571 * Setup private BDI for given superblock. I gets automatically cleaned up
1572 * in generic_shutdown_super().
1573 */
1574int super_setup_bdi(struct super_block *sb)
1575{
1576	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
 
1577
1578	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1579				    atomic_long_inc_return(&bdi_seq));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1580}
1581EXPORT_SYMBOL(super_setup_bdi);
1582
1583/**
1584 * sb_wait_write - wait until all writers to given file system finish
1585 * @sb: the super for which we wait
1586 * @level: type of writers we wait for (normal vs page fault)
1587 *
1588 * This function waits until there are no writers of given type to given file
1589 * system.
1590 */
1591static void sb_wait_write(struct super_block *sb, int level)
1592{
1593	percpu_down_write(sb->s_writers.rw_sem + level-1);
 
 
 
 
 
 
 
 
 
 
 
1594}
1595
1596/*
1597 * We are going to return to userspace and forget about these locks, the
1598 * ownership goes to the caller of thaw_super() which does unlock().
1599 */
1600static void lockdep_sb_freeze_release(struct super_block *sb)
1601{
1602	int level;
1603
1604	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1605		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1606}
1607
1608/*
1609 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1610 */
1611static void lockdep_sb_freeze_acquire(struct super_block *sb)
1612{
1613	int level;
1614
1615	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1616		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1617}
1618
1619static void sb_freeze_unlock(struct super_block *sb)
1620{
1621	int level;
1622
1623	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1624		percpu_up_write(sb->s_writers.rw_sem + level);
1625}
1626
1627/**
1628 * freeze_super - lock the filesystem and force it into a consistent state
1629 * @sb: the super to lock
1630 *
1631 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1632 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1633 * -EBUSY.
1634 *
1635 * During this function, sb->s_writers.frozen goes through these values:
1636 *
1637 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1638 *
1639 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1640 * writes should be blocked, though page faults are still allowed. We wait for
1641 * all writes to complete and then proceed to the next stage.
1642 *
1643 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1644 * but internal fs threads can still modify the filesystem (although they
1645 * should not dirty new pages or inodes), writeback can run etc. After waiting
1646 * for all running page faults we sync the filesystem which will clean all
1647 * dirty pages and inodes (no new dirty pages or inodes can be created when
1648 * sync is running).
1649 *
1650 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1651 * modification are blocked (e.g. XFS preallocation truncation on inode
1652 * reclaim). This is usually implemented by blocking new transactions for
1653 * filesystems that have them and need this additional guard. After all
1654 * internal writers are finished we call ->freeze_fs() to finish filesystem
1655 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1656 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1657 *
1658 * sb->s_writers.frozen is protected by sb->s_umount.
1659 */
1660int freeze_super(struct super_block *sb)
1661{
1662	int ret;
1663
1664	atomic_inc(&sb->s_active);
1665	down_write(&sb->s_umount);
1666	if (sb->s_writers.frozen != SB_UNFROZEN) {
1667		deactivate_locked_super(sb);
1668		return -EBUSY;
1669	}
1670
1671	if (!(sb->s_flags & SB_BORN)) {
1672		up_write(&sb->s_umount);
1673		return 0;	/* sic - it's "nothing to do" */
1674	}
1675
1676	if (sb_rdonly(sb)) {
1677		/* Nothing to do really... */
1678		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1679		up_write(&sb->s_umount);
1680		return 0;
1681	}
1682
1683	sb->s_writers.frozen = SB_FREEZE_WRITE;
1684	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1685	up_write(&sb->s_umount);
1686	sb_wait_write(sb, SB_FREEZE_WRITE);
1687	down_write(&sb->s_umount);
1688
1689	/* Now we go and block page faults... */
1690	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1691	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1692
1693	/* All writers are done so after syncing there won't be dirty data */
1694	sync_filesystem(sb);
1695
1696	/* Now wait for internal filesystem counter */
1697	sb->s_writers.frozen = SB_FREEZE_FS;
1698	sb_wait_write(sb, SB_FREEZE_FS);
1699
1700	if (sb->s_op->freeze_fs) {
1701		ret = sb->s_op->freeze_fs(sb);
1702		if (ret) {
1703			printk(KERN_ERR
1704				"VFS:Filesystem freeze failed\n");
1705			sb->s_writers.frozen = SB_UNFROZEN;
1706			sb_freeze_unlock(sb);
1707			wake_up(&sb->s_writers.wait_unfrozen);
1708			deactivate_locked_super(sb);
1709			return ret;
1710		}
1711	}
1712	/*
1713	 * For debugging purposes so that fs can warn if it sees write activity
1714	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1715	 */
1716	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1717	lockdep_sb_freeze_release(sb);
1718	up_write(&sb->s_umount);
1719	return 0;
1720}
1721EXPORT_SYMBOL(freeze_super);
1722
1723static int thaw_super_locked(struct super_block *sb)
 
 
 
 
 
 
1724{
1725	int error;
1726
1727	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
 
1728		up_write(&sb->s_umount);
1729		return -EINVAL;
1730	}
1731
1732	if (sb_rdonly(sb)) {
1733		sb->s_writers.frozen = SB_UNFROZEN;
1734		goto out;
1735	}
1736
1737	lockdep_sb_freeze_acquire(sb);
1738
1739	if (sb->s_op->unfreeze_fs) {
1740		error = sb->s_op->unfreeze_fs(sb);
1741		if (error) {
1742			printk(KERN_ERR
1743				"VFS:Filesystem thaw failed\n");
1744			lockdep_sb_freeze_release(sb);
1745			up_write(&sb->s_umount);
1746			return error;
1747		}
1748	}
1749
1750	sb->s_writers.frozen = SB_UNFROZEN;
1751	sb_freeze_unlock(sb);
1752out:
1753	wake_up(&sb->s_writers.wait_unfrozen);
1754	deactivate_locked_super(sb);
1755	return 0;
1756}
1757
1758/**
1759 * thaw_super -- unlock filesystem
1760 * @sb: the super to thaw
1761 *
1762 * Unlocks the filesystem and marks it writeable again after freeze_super().
1763 */
1764int thaw_super(struct super_block *sb)
1765{
1766	down_write(&sb->s_umount);
1767	return thaw_super_locked(sb);
1768}
1769EXPORT_SYMBOL(thaw_super);