Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 *  linux/fs/super.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  super.c contains code to handle: - mount structures
   7 *                                   - super-block tables
   8 *                                   - filesystem drivers list
   9 *                                   - mount system call
  10 *                                   - umount system call
  11 *                                   - ustat system call
  12 *
  13 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  14 *
  15 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  16 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  17 *  Added options to /proc/mounts:
  18 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  19 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  20 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  21 */
  22
  23#include <linux/export.h>
  24#include <linux/slab.h>
 
  25#include <linux/blkdev.h>
  26#include <linux/mount.h>
  27#include <linux/security.h>
  28#include <linux/writeback.h>		/* for the emergency remount stuff */
  29#include <linux/idr.h>
  30#include <linux/mutex.h>
  31#include <linux/backing-dev.h>
  32#include <linux/rculist_bl.h>
  33#include <linux/cleancache.h>
  34#include <linux/fsnotify.h>
  35#include <linux/lockdep.h>
  36#include "internal.h"
  37
  38
  39static LIST_HEAD(super_blocks);
  40static DEFINE_SPINLOCK(sb_lock);
  41
  42static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  43	"sb_writers",
  44	"sb_pagefaults",
  45	"sb_internal",
  46};
  47
  48/*
  49 * One thing we have to be careful of with a per-sb shrinker is that we don't
  50 * drop the last active reference to the superblock from within the shrinker.
  51 * If that happens we could trigger unregistering the shrinker from within the
  52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  53 * take a passive reference to the superblock to avoid this from occurring.
  54 */
  55static unsigned long super_cache_scan(struct shrinker *shrink,
  56				      struct shrink_control *sc)
  57{
  58	struct super_block *sb;
  59	long	fs_objects = 0;
  60	long	total_objects;
  61	long	freed = 0;
  62	long	dentries;
  63	long	inodes;
  64
  65	sb = container_of(shrink, struct super_block, s_shrink);
  66
  67	/*
  68	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
  69	 * to recurse into the FS that called us in clear_inode() and friends..
  70	 */
  71	if (!(sc->gfp_mask & __GFP_FS))
  72		return SHRINK_STOP;
  73
  74	if (!trylock_super(sb))
  75		return SHRINK_STOP;
  76
  77	if (sb->s_op->nr_cached_objects)
  78		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
  79
  80	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
  81	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
  82	total_objects = dentries + inodes + fs_objects + 1;
  83	if (!total_objects)
  84		total_objects = 1;
  85
  86	/* proportion the scan between the caches */
  87	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
  88	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
  89	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
  90
  91	/*
  92	 * prune the dcache first as the icache is pinned by it, then
  93	 * prune the icache, followed by the filesystem specific caches
  94	 *
  95	 * Ensure that we always scan at least one object - memcg kmem
  96	 * accounting uses this to fully empty the caches.
  97	 */
  98	sc->nr_to_scan = dentries + 1;
  99	freed = prune_dcache_sb(sb, sc);
 100	sc->nr_to_scan = inodes + 1;
 101	freed += prune_icache_sb(sb, sc);
 102
 103	if (fs_objects) {
 104		sc->nr_to_scan = fs_objects + 1;
 105		freed += sb->s_op->free_cached_objects(sb, sc);
 106	}
 107
 108	up_read(&sb->s_umount);
 109	return freed;
 110}
 111
 112static unsigned long super_cache_count(struct shrinker *shrink,
 113				       struct shrink_control *sc)
 114{
 115	struct super_block *sb;
 116	long	total_objects = 0;
 117
 118	sb = container_of(shrink, struct super_block, s_shrink);
 119
 120	/*
 121	 * Don't call trylock_super as it is a potential
 122	 * scalability bottleneck. The counts could get updated
 123	 * between super_cache_count and super_cache_scan anyway.
 124	 * Call to super_cache_count with shrinker_rwsem held
 125	 * ensures the safety of call to list_lru_shrink_count() and
 126	 * s_op->nr_cached_objects().
 127	 */
 128	if (sb->s_op && sb->s_op->nr_cached_objects)
 129		total_objects = sb->s_op->nr_cached_objects(sb, sc);
 
 
 
 
 
 
 130
 131	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 132	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 
 
 
 
 
 133
 134	total_objects = vfs_pressure_ratio(total_objects);
 
 135	return total_objects;
 136}
 137
 138static void destroy_super_work(struct work_struct *work)
 
 
 
 
 
 
 
 139{
 140	struct super_block *s = container_of(work, struct super_block,
 141							destroy_work);
 142	int i;
 143
 144	for (i = 0; i < SB_FREEZE_LEVELS; i++)
 145		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 146	kfree(s);
 147}
 
 
 
 
 
 
 
 
 
 
 
 148
 149static void destroy_super_rcu(struct rcu_head *head)
 150{
 151	struct super_block *s = container_of(head, struct super_block, rcu);
 152	INIT_WORK(&s->destroy_work, destroy_super_work);
 153	schedule_work(&s->destroy_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154}
 155
 156/**
 157 *	destroy_super	-	frees a superblock
 158 *	@s: superblock to free
 159 *
 160 *	Frees a superblock.
 161 */
 162static void destroy_super(struct super_block *s)
 163{
 164	list_lru_destroy(&s->s_dentry_lru);
 165	list_lru_destroy(&s->s_inode_lru);
 
 166	security_sb_free(s);
 167	WARN_ON(!list_empty(&s->s_mounts));
 168	kfree(s->s_subtype);
 169	kfree(s->s_options);
 170	call_rcu(&s->rcu, destroy_super_rcu);
 171}
 172
 173/**
 174 *	alloc_super	-	create new superblock
 175 *	@type:	filesystem type superblock should belong to
 176 *	@flags: the mount flags
 177 *
 178 *	Allocates and initializes a new &struct super_block.  alloc_super()
 179 *	returns a pointer new superblock or %NULL if allocation had failed.
 180 */
 181static struct super_block *alloc_super(struct file_system_type *type, int flags)
 182{
 183	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 184	static const struct super_operations default_op;
 185	int i;
 186
 187	if (!s)
 188		return NULL;
 189
 190	INIT_LIST_HEAD(&s->s_mounts);
 191
 192	if (security_sb_alloc(s))
 193		goto fail;
 194
 195	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 196		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 197					sb_writers_name[i],
 198					&type->s_writers_key[i]))
 199			goto fail;
 200	}
 201	init_waitqueue_head(&s->s_writers.wait_unfrozen);
 202	s->s_bdi = &noop_backing_dev_info;
 203	s->s_flags = flags;
 204	INIT_HLIST_NODE(&s->s_instances);
 205	INIT_HLIST_BL_HEAD(&s->s_anon);
 206	mutex_init(&s->s_sync_lock);
 207	INIT_LIST_HEAD(&s->s_inodes);
 208	spin_lock_init(&s->s_inode_list_lock);
 209
 210	if (list_lru_init_memcg(&s->s_dentry_lru))
 211		goto fail;
 212	if (list_lru_init_memcg(&s->s_inode_lru))
 213		goto fail;
 214
 215	init_rwsem(&s->s_umount);
 216	lockdep_set_class(&s->s_umount, &type->s_umount_key);
 217	/*
 218	 * sget() can have s_umount recursion.
 219	 *
 220	 * When it cannot find a suitable sb, it allocates a new
 221	 * one (this one), and tries again to find a suitable old
 222	 * one.
 223	 *
 224	 * In case that succeeds, it will acquire the s_umount
 225	 * lock of the old one. Since these are clearly distrinct
 226	 * locks, and this object isn't exposed yet, there's no
 227	 * risk of deadlocks.
 228	 *
 229	 * Annotate this by putting this lock in a different
 230	 * subclass.
 231	 */
 232	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 233	s->s_count = 1;
 234	atomic_set(&s->s_active, 1);
 235	mutex_init(&s->s_vfs_rename_mutex);
 236	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 237	mutex_init(&s->s_dquot.dqio_mutex);
 238	mutex_init(&s->s_dquot.dqonoff_mutex);
 239	s->s_maxbytes = MAX_NON_LFS;
 240	s->s_op = &default_op;
 241	s->s_time_gran = 1000000000;
 242	s->cleancache_poolid = CLEANCACHE_NO_POOL;
 243
 244	s->s_shrink.seeks = DEFAULT_SEEKS;
 245	s->s_shrink.scan_objects = super_cache_scan;
 246	s->s_shrink.count_objects = super_cache_count;
 247	s->s_shrink.batch = 1024;
 248	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
 249	return s;
 250
 251fail:
 252	destroy_super(s);
 253	return NULL;
 254}
 255
 256/* Superblock refcounting  */
 257
 258/*
 259 * Drop a superblock's refcount.  The caller must hold sb_lock.
 260 */
 261static void __put_super(struct super_block *sb)
 262{
 263	if (!--sb->s_count) {
 264		list_del_init(&sb->s_list);
 265		destroy_super(sb);
 266	}
 267}
 268
 269/**
 270 *	put_super	-	drop a temporary reference to superblock
 271 *	@sb: superblock in question
 272 *
 273 *	Drops a temporary reference, frees superblock if there's no
 274 *	references left.
 275 */
 276static void put_super(struct super_block *sb)
 277{
 278	spin_lock(&sb_lock);
 279	__put_super(sb);
 280	spin_unlock(&sb_lock);
 281}
 282
 283
 284/**
 285 *	deactivate_locked_super	-	drop an active reference to superblock
 286 *	@s: superblock to deactivate
 287 *
 288 *	Drops an active reference to superblock, converting it into a temprory
 289 *	one if there is no other active references left.  In that case we
 290 *	tell fs driver to shut it down and drop the temporary reference we
 291 *	had just acquired.
 292 *
 293 *	Caller holds exclusive lock on superblock; that lock is released.
 294 */
 295void deactivate_locked_super(struct super_block *s)
 296{
 297	struct file_system_type *fs = s->s_type;
 298	if (atomic_dec_and_test(&s->s_active)) {
 299		cleancache_invalidate_fs(s);
 300		unregister_shrinker(&s->s_shrink);
 301		fs->kill_sb(s);
 302
 
 
 
 303		/*
 304		 * Since list_lru_destroy() may sleep, we cannot call it from
 305		 * put_super(), where we hold the sb_lock. Therefore we destroy
 306		 * the lru lists right now.
 307		 */
 308		list_lru_destroy(&s->s_dentry_lru);
 309		list_lru_destroy(&s->s_inode_lru);
 310
 311		put_filesystem(fs);
 312		put_super(s);
 313	} else {
 314		up_write(&s->s_umount);
 315	}
 316}
 317
 318EXPORT_SYMBOL(deactivate_locked_super);
 319
 320/**
 321 *	deactivate_super	-	drop an active reference to superblock
 322 *	@s: superblock to deactivate
 323 *
 324 *	Variant of deactivate_locked_super(), except that superblock is *not*
 325 *	locked by caller.  If we are going to drop the final active reference,
 326 *	lock will be acquired prior to that.
 327 */
 328void deactivate_super(struct super_block *s)
 329{
 330        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 331		down_write(&s->s_umount);
 332		deactivate_locked_super(s);
 333	}
 334}
 335
 336EXPORT_SYMBOL(deactivate_super);
 337
 338/**
 339 *	grab_super - acquire an active reference
 340 *	@s: reference we are trying to make active
 341 *
 342 *	Tries to acquire an active reference.  grab_super() is used when we
 343 * 	had just found a superblock in super_blocks or fs_type->fs_supers
 344 *	and want to turn it into a full-blown active reference.  grab_super()
 345 *	is called with sb_lock held and drops it.  Returns 1 in case of
 346 *	success, 0 if we had failed (superblock contents was already dead or
 347 *	dying when grab_super() had been called).  Note that this is only
 348 *	called for superblocks not in rundown mode (== ones still on ->fs_supers
 349 *	of their type), so increment of ->s_count is OK here.
 350 */
 351static int grab_super(struct super_block *s) __releases(sb_lock)
 352{
 
 
 
 
 
 353	s->s_count++;
 354	spin_unlock(&sb_lock);
 
 355	down_write(&s->s_umount);
 356	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
 357		put_super(s);
 358		return 1;
 359	}
 360	up_write(&s->s_umount);
 361	put_super(s);
 362	return 0;
 363}
 364
 365/*
 366 *	trylock_super - try to grab ->s_umount shared
 367 *	@sb: reference we are trying to grab
 368 *
 369 *	Try to prevent fs shutdown.  This is used in places where we
 370 *	cannot take an active reference but we need to ensure that the
 371 *	filesystem is not shut down while we are working on it. It returns
 372 *	false if we cannot acquire s_umount or if we lose the race and
 373 *	filesystem already got into shutdown, and returns true with the s_umount
 374 *	lock held in read mode in case of success. On successful return,
 375 *	the caller must drop the s_umount lock when done.
 376 *
 377 *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 378 *	The reason why it's safe is that we are OK with doing trylock instead
 379 *	of down_read().  There's a couple of places that are OK with that, but
 380 *	it's very much not a general-purpose interface.
 381 */
 382bool trylock_super(struct super_block *sb)
 383{
 
 
 
 
 
 
 
 
 
 384	if (down_read_trylock(&sb->s_umount)) {
 385		if (!hlist_unhashed(&sb->s_instances) &&
 386		    sb->s_root && (sb->s_flags & MS_BORN))
 387			return true;
 388		up_read(&sb->s_umount);
 389	}
 390
 
 391	return false;
 392}
 393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394/**
 395 *	generic_shutdown_super	-	common helper for ->kill_sb()
 396 *	@sb: superblock to kill
 397 *
 398 *	generic_shutdown_super() does all fs-independent work on superblock
 399 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 400 *	that need destruction out of superblock, call generic_shutdown_super()
 401 *	and release aforementioned objects.  Note: dentries and inodes _are_
 402 *	taken care of and do not need specific handling.
 403 *
 404 *	Upon calling this function, the filesystem may no longer alter or
 405 *	rearrange the set of dentries belonging to this super_block, nor may it
 406 *	change the attachments of dentries to inodes.
 407 */
 408void generic_shutdown_super(struct super_block *sb)
 409{
 410	const struct super_operations *sop = sb->s_op;
 411
 412	if (sb->s_root) {
 413		shrink_dcache_for_umount(sb);
 414		sync_filesystem(sb);
 415		sb->s_flags &= ~MS_ACTIVE;
 416
 417		fsnotify_unmount_inodes(sb);
 418		cgroup_writeback_umount();
 419
 420		evict_inodes(sb);
 421
 422		if (sb->s_dio_done_wq) {
 423			destroy_workqueue(sb->s_dio_done_wq);
 424			sb->s_dio_done_wq = NULL;
 425		}
 426
 427		if (sop->put_super)
 428			sop->put_super(sb);
 429
 430		if (!list_empty(&sb->s_inodes)) {
 431			printk("VFS: Busy inodes after unmount of %s. "
 432			   "Self-destruct in 5 seconds.  Have a nice day...\n",
 433			   sb->s_id);
 434		}
 435	}
 436	spin_lock(&sb_lock);
 437	/* should be initialized for __put_super_and_need_restart() */
 438	hlist_del_init(&sb->s_instances);
 439	spin_unlock(&sb_lock);
 440	up_write(&sb->s_umount);
 441}
 442
 443EXPORT_SYMBOL(generic_shutdown_super);
 444
 445/**
 446 *	sget	-	find or create a superblock
 447 *	@type:	filesystem type superblock should belong to
 448 *	@test:	comparison callback
 449 *	@set:	setup callback
 450 *	@flags:	mount flags
 451 *	@data:	argument to each of them
 452 */
 453struct super_block *sget(struct file_system_type *type,
 454			int (*test)(struct super_block *,void *),
 455			int (*set)(struct super_block *,void *),
 456			int flags,
 457			void *data)
 458{
 459	struct super_block *s = NULL;
 
 460	struct super_block *old;
 461	int err;
 462
 463retry:
 464	spin_lock(&sb_lock);
 465	if (test) {
 466		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 467			if (!test(old, data))
 468				continue;
 469			if (!grab_super(old))
 470				goto retry;
 471			if (s) {
 472				up_write(&s->s_umount);
 473				destroy_super(s);
 474				s = NULL;
 475			}
 
 
 
 
 
 476			return old;
 477		}
 478	}
 479	if (!s) {
 480		spin_unlock(&sb_lock);
 481		s = alloc_super(type, flags);
 482		if (!s)
 483			return ERR_PTR(-ENOMEM);
 484		goto retry;
 485	}
 486		
 487	err = set(s, data);
 488	if (err) {
 489		spin_unlock(&sb_lock);
 490		up_write(&s->s_umount);
 491		destroy_super(s);
 492		return ERR_PTR(err);
 493	}
 494	s->s_type = type;
 495	strlcpy(s->s_id, type->name, sizeof(s->s_id));
 496	list_add_tail(&s->s_list, &super_blocks);
 497	hlist_add_head(&s->s_instances, &type->fs_supers);
 498	spin_unlock(&sb_lock);
 499	get_filesystem(type);
 500	register_shrinker(&s->s_shrink);
 501	return s;
 502}
 503
 504EXPORT_SYMBOL(sget);
 505
 506void drop_super(struct super_block *sb)
 507{
 508	up_read(&sb->s_umount);
 509	put_super(sb);
 510}
 511
 512EXPORT_SYMBOL(drop_super);
 513
 514/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515 *	iterate_supers - call function for all active superblocks
 516 *	@f: function to call
 517 *	@arg: argument to pass to it
 518 *
 519 *	Scans the superblock list and calls given function, passing it
 520 *	locked superblock and given argument.
 521 */
 522void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 523{
 524	struct super_block *sb, *p = NULL;
 525
 526	spin_lock(&sb_lock);
 527	list_for_each_entry(sb, &super_blocks, s_list) {
 528		if (hlist_unhashed(&sb->s_instances))
 529			continue;
 530		sb->s_count++;
 531		spin_unlock(&sb_lock);
 532
 533		down_read(&sb->s_umount);
 534		if (sb->s_root && (sb->s_flags & MS_BORN))
 535			f(sb, arg);
 536		up_read(&sb->s_umount);
 537
 538		spin_lock(&sb_lock);
 539		if (p)
 540			__put_super(p);
 541		p = sb;
 542	}
 543	if (p)
 544		__put_super(p);
 545	spin_unlock(&sb_lock);
 546}
 547
 548/**
 549 *	iterate_supers_type - call function for superblocks of given type
 550 *	@type: fs type
 551 *	@f: function to call
 552 *	@arg: argument to pass to it
 553 *
 554 *	Scans the superblock list and calls given function, passing it
 555 *	locked superblock and given argument.
 556 */
 557void iterate_supers_type(struct file_system_type *type,
 558	void (*f)(struct super_block *, void *), void *arg)
 559{
 560	struct super_block *sb, *p = NULL;
 
 561
 562	spin_lock(&sb_lock);
 563	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 564		sb->s_count++;
 565		spin_unlock(&sb_lock);
 566
 567		down_read(&sb->s_umount);
 568		if (sb->s_root && (sb->s_flags & MS_BORN))
 569			f(sb, arg);
 570		up_read(&sb->s_umount);
 571
 572		spin_lock(&sb_lock);
 573		if (p)
 574			__put_super(p);
 575		p = sb;
 576	}
 577	if (p)
 578		__put_super(p);
 579	spin_unlock(&sb_lock);
 580}
 581
 582EXPORT_SYMBOL(iterate_supers_type);
 583
 584/**
 585 *	get_super - get the superblock of a device
 586 *	@bdev: device to get the superblock for
 587 *	
 588 *	Scans the superblock list and finds the superblock of the file system
 589 *	mounted on the device given. %NULL is returned if no match is found.
 590 */
 591
 592struct super_block *get_super(struct block_device *bdev)
 593{
 594	struct super_block *sb;
 595
 596	if (!bdev)
 597		return NULL;
 598
 599	spin_lock(&sb_lock);
 600rescan:
 601	list_for_each_entry(sb, &super_blocks, s_list) {
 602		if (hlist_unhashed(&sb->s_instances))
 603			continue;
 604		if (sb->s_bdev == bdev) {
 605			sb->s_count++;
 606			spin_unlock(&sb_lock);
 607			down_read(&sb->s_umount);
 608			/* still alive? */
 609			if (sb->s_root && (sb->s_flags & MS_BORN))
 610				return sb;
 611			up_read(&sb->s_umount);
 612			/* nope, got unmounted */
 613			spin_lock(&sb_lock);
 614			__put_super(sb);
 615			goto rescan;
 616		}
 617	}
 618	spin_unlock(&sb_lock);
 619	return NULL;
 620}
 621
 622EXPORT_SYMBOL(get_super);
 623
 624/**
 625 *	get_super_thawed - get thawed superblock of a device
 626 *	@bdev: device to get the superblock for
 627 *
 628 *	Scans the superblock list and finds the superblock of the file system
 629 *	mounted on the device. The superblock is returned once it is thawed
 630 *	(or immediately if it was not frozen). %NULL is returned if no match
 631 *	is found.
 632 */
 633struct super_block *get_super_thawed(struct block_device *bdev)
 634{
 635	while (1) {
 636		struct super_block *s = get_super(bdev);
 637		if (!s || s->s_writers.frozen == SB_UNFROZEN)
 638			return s;
 639		up_read(&s->s_umount);
 640		wait_event(s->s_writers.wait_unfrozen,
 641			   s->s_writers.frozen == SB_UNFROZEN);
 642		put_super(s);
 643	}
 644}
 645EXPORT_SYMBOL(get_super_thawed);
 646
 647/**
 648 * get_active_super - get an active reference to the superblock of a device
 649 * @bdev: device to get the superblock for
 650 *
 651 * Scans the superblock list and finds the superblock of the file system
 652 * mounted on the device given.  Returns the superblock with an active
 653 * reference or %NULL if none was found.
 654 */
 655struct super_block *get_active_super(struct block_device *bdev)
 656{
 657	struct super_block *sb;
 658
 659	if (!bdev)
 660		return NULL;
 661
 662restart:
 663	spin_lock(&sb_lock);
 664	list_for_each_entry(sb, &super_blocks, s_list) {
 665		if (hlist_unhashed(&sb->s_instances))
 666			continue;
 667		if (sb->s_bdev == bdev) {
 668			if (!grab_super(sb))
 
 
 669				goto restart;
 670			up_write(&sb->s_umount);
 671			return sb;
 672		}
 673	}
 674	spin_unlock(&sb_lock);
 675	return NULL;
 676}
 677 
 678struct super_block *user_get_super(dev_t dev)
 679{
 680	struct super_block *sb;
 681
 682	spin_lock(&sb_lock);
 683rescan:
 684	list_for_each_entry(sb, &super_blocks, s_list) {
 685		if (hlist_unhashed(&sb->s_instances))
 686			continue;
 687		if (sb->s_dev ==  dev) {
 688			sb->s_count++;
 689			spin_unlock(&sb_lock);
 690			down_read(&sb->s_umount);
 691			/* still alive? */
 692			if (sb->s_root && (sb->s_flags & MS_BORN))
 693				return sb;
 694			up_read(&sb->s_umount);
 695			/* nope, got unmounted */
 696			spin_lock(&sb_lock);
 697			__put_super(sb);
 698			goto rescan;
 699		}
 700	}
 701	spin_unlock(&sb_lock);
 702	return NULL;
 703}
 704
 705/**
 706 *	do_remount_sb - asks filesystem to change mount options.
 707 *	@sb:	superblock in question
 708 *	@flags:	numeric part of options
 709 *	@data:	the rest of options
 710 *      @force: whether or not to force the change
 711 *
 712 *	Alters the mount options of a mounted file system.
 713 */
 714int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
 715{
 716	int retval;
 717	int remount_ro;
 718
 719	if (sb->s_writers.frozen != SB_UNFROZEN)
 720		return -EBUSY;
 721
 722#ifdef CONFIG_BLOCK
 723	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
 724		return -EACCES;
 725#endif
 726
 727	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 728
 729	if (remount_ro) {
 730		if (!hlist_empty(&sb->s_pins)) {
 731			up_write(&sb->s_umount);
 732			group_pin_kill(&sb->s_pins);
 733			down_write(&sb->s_umount);
 734			if (!sb->s_root)
 735				return 0;
 736			if (sb->s_writers.frozen != SB_UNFROZEN)
 737				return -EBUSY;
 738			remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 739		}
 740	}
 741	shrink_dcache_sb(sb);
 
 
 
 742
 743	/* If we are remounting RDONLY and current sb is read/write,
 744	   make sure there are no rw files opened */
 745	if (remount_ro) {
 746		if (force) {
 747			sb->s_readonly_remount = 1;
 748			smp_wmb();
 749		} else {
 750			retval = sb_prepare_remount_readonly(sb);
 751			if (retval)
 752				return retval;
 753		}
 754	}
 755
 756	if (sb->s_op->remount_fs) {
 757		retval = sb->s_op->remount_fs(sb, &flags, data);
 758		if (retval) {
 759			if (!force)
 760				goto cancel_readonly;
 761			/* If forced remount, go ahead despite any errors */
 762			WARN(1, "forced remount of a %s fs returned %i\n",
 763			     sb->s_type->name, retval);
 764		}
 765	}
 766	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
 767	/* Needs to be ordered wrt mnt_is_readonly() */
 768	smp_wmb();
 769	sb->s_readonly_remount = 0;
 770
 771	/*
 772	 * Some filesystems modify their metadata via some other path than the
 773	 * bdev buffer cache (eg. use a private mapping, or directories in
 774	 * pagecache, etc). Also file data modifications go via their own
 775	 * mappings. So If we try to mount readonly then copy the filesystem
 776	 * from bdev, we could get stale data, so invalidate it to give a best
 777	 * effort at coherency.
 778	 */
 779	if (remount_ro && sb->s_bdev)
 780		invalidate_bdev(sb->s_bdev);
 781	return 0;
 782
 783cancel_readonly:
 784	sb->s_readonly_remount = 0;
 785	return retval;
 786}
 787
 788static void do_emergency_remount(struct work_struct *work)
 789{
 790	struct super_block *sb, *p = NULL;
 791
 792	spin_lock(&sb_lock);
 793	list_for_each_entry(sb, &super_blocks, s_list) {
 794		if (hlist_unhashed(&sb->s_instances))
 795			continue;
 796		sb->s_count++;
 797		spin_unlock(&sb_lock);
 798		down_write(&sb->s_umount);
 799		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
 800		    !(sb->s_flags & MS_RDONLY)) {
 801			/*
 802			 * What lock protects sb->s_flags??
 803			 */
 804			do_remount_sb(sb, MS_RDONLY, NULL, 1);
 805		}
 806		up_write(&sb->s_umount);
 807		spin_lock(&sb_lock);
 808		if (p)
 809			__put_super(p);
 810		p = sb;
 811	}
 812	if (p)
 813		__put_super(p);
 814	spin_unlock(&sb_lock);
 815	kfree(work);
 816	printk("Emergency Remount complete\n");
 817}
 818
 819void emergency_remount(void)
 820{
 821	struct work_struct *work;
 822
 823	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 824	if (work) {
 825		INIT_WORK(work, do_emergency_remount);
 826		schedule_work(work);
 827	}
 828}
 829
 830/*
 831 * Unnamed block devices are dummy devices used by virtual
 832 * filesystems which don't use real block-devices.  -- jrs
 833 */
 834
 835static DEFINE_IDA(unnamed_dev_ida);
 836static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
 837/* Many userspace utilities consider an FSID of 0 invalid.
 838 * Always return at least 1 from get_anon_bdev.
 839 */
 840static int unnamed_dev_start = 1;
 841
 842int get_anon_bdev(dev_t *p)
 843{
 844	int dev;
 845	int error;
 846
 847 retry:
 848	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
 849		return -ENOMEM;
 850	spin_lock(&unnamed_dev_lock);
 851	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
 852	if (!error)
 853		unnamed_dev_start = dev + 1;
 854	spin_unlock(&unnamed_dev_lock);
 855	if (error == -EAGAIN)
 856		/* We raced and lost with another CPU. */
 857		goto retry;
 858	else if (error)
 859		return -EAGAIN;
 860
 861	if (dev >= (1 << MINORBITS)) {
 862		spin_lock(&unnamed_dev_lock);
 863		ida_remove(&unnamed_dev_ida, dev);
 864		if (unnamed_dev_start > dev)
 865			unnamed_dev_start = dev;
 866		spin_unlock(&unnamed_dev_lock);
 867		return -EMFILE;
 868	}
 869	*p = MKDEV(0, dev & MINORMASK);
 870	return 0;
 871}
 872EXPORT_SYMBOL(get_anon_bdev);
 873
 874void free_anon_bdev(dev_t dev)
 875{
 876	int slot = MINOR(dev);
 877	spin_lock(&unnamed_dev_lock);
 878	ida_remove(&unnamed_dev_ida, slot);
 879	if (slot < unnamed_dev_start)
 880		unnamed_dev_start = slot;
 881	spin_unlock(&unnamed_dev_lock);
 882}
 883EXPORT_SYMBOL(free_anon_bdev);
 884
 885int set_anon_super(struct super_block *s, void *data)
 886{
 887	return get_anon_bdev(&s->s_dev);
 
 
 
 888}
 889
 890EXPORT_SYMBOL(set_anon_super);
 891
 892void kill_anon_super(struct super_block *sb)
 893{
 894	dev_t dev = sb->s_dev;
 895	generic_shutdown_super(sb);
 896	free_anon_bdev(dev);
 897}
 898
 899EXPORT_SYMBOL(kill_anon_super);
 900
 901void kill_litter_super(struct super_block *sb)
 902{
 903	if (sb->s_root)
 904		d_genocide(sb->s_root);
 905	kill_anon_super(sb);
 906}
 907
 908EXPORT_SYMBOL(kill_litter_super);
 909
 910static int ns_test_super(struct super_block *sb, void *data)
 911{
 912	return sb->s_fs_info == data;
 913}
 914
 915static int ns_set_super(struct super_block *sb, void *data)
 916{
 917	sb->s_fs_info = data;
 918	return set_anon_super(sb, NULL);
 919}
 920
 921struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
 922	void *data, int (*fill_super)(struct super_block *, void *, int))
 923{
 924	struct super_block *sb;
 925
 926	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
 927	if (IS_ERR(sb))
 928		return ERR_CAST(sb);
 929
 930	if (!sb->s_root) {
 931		int err;
 
 932		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
 933		if (err) {
 934			deactivate_locked_super(sb);
 935			return ERR_PTR(err);
 936		}
 937
 938		sb->s_flags |= MS_ACTIVE;
 939	}
 940
 941	return dget(sb->s_root);
 942}
 943
 944EXPORT_SYMBOL(mount_ns);
 945
 946#ifdef CONFIG_BLOCK
 947static int set_bdev_super(struct super_block *s, void *data)
 948{
 949	s->s_bdev = data;
 950	s->s_dev = s->s_bdev->bd_dev;
 951
 952	/*
 953	 * We set the bdi here to the queue backing, file systems can
 954	 * overwrite this in ->fill_super()
 955	 */
 956	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
 957	return 0;
 958}
 959
 960static int test_bdev_super(struct super_block *s, void *data)
 961{
 962	return (void *)s->s_bdev == data;
 963}
 964
 965struct dentry *mount_bdev(struct file_system_type *fs_type,
 966	int flags, const char *dev_name, void *data,
 967	int (*fill_super)(struct super_block *, void *, int))
 968{
 969	struct block_device *bdev;
 970	struct super_block *s;
 971	fmode_t mode = FMODE_READ | FMODE_EXCL;
 972	int error = 0;
 973
 974	if (!(flags & MS_RDONLY))
 975		mode |= FMODE_WRITE;
 976
 977	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
 978	if (IS_ERR(bdev))
 979		return ERR_CAST(bdev);
 980
 981	/*
 982	 * once the super is inserted into the list by sget, s_umount
 983	 * will protect the lockfs code from trying to start a snapshot
 984	 * while we are mounting
 985	 */
 986	mutex_lock(&bdev->bd_fsfreeze_mutex);
 987	if (bdev->bd_fsfreeze_count > 0) {
 988		mutex_unlock(&bdev->bd_fsfreeze_mutex);
 989		error = -EBUSY;
 990		goto error_bdev;
 991	}
 992	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
 993		 bdev);
 994	mutex_unlock(&bdev->bd_fsfreeze_mutex);
 995	if (IS_ERR(s))
 996		goto error_s;
 997
 998	if (s->s_root) {
 999		if ((flags ^ s->s_flags) & MS_RDONLY) {
1000			deactivate_locked_super(s);
1001			error = -EBUSY;
1002			goto error_bdev;
1003		}
1004
1005		/*
1006		 * s_umount nests inside bd_mutex during
1007		 * __invalidate_device().  blkdev_put() acquires
1008		 * bd_mutex and can't be called under s_umount.  Drop
1009		 * s_umount temporarily.  This is safe as we're
1010		 * holding an active reference.
1011		 */
1012		up_write(&s->s_umount);
1013		blkdev_put(bdev, mode);
1014		down_write(&s->s_umount);
1015	} else {
 
 
 
1016		s->s_mode = mode;
1017		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1018		sb_set_blocksize(s, block_size(bdev));
1019		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1020		if (error) {
1021			deactivate_locked_super(s);
1022			goto error;
1023		}
1024
1025		s->s_flags |= MS_ACTIVE;
1026		bdev->bd_super = s;
1027	}
1028
1029	return dget(s->s_root);
1030
1031error_s:
1032	error = PTR_ERR(s);
1033error_bdev:
1034	blkdev_put(bdev, mode);
1035error:
1036	return ERR_PTR(error);
1037}
1038EXPORT_SYMBOL(mount_bdev);
1039
1040void kill_block_super(struct super_block *sb)
1041{
1042	struct block_device *bdev = sb->s_bdev;
1043	fmode_t mode = sb->s_mode;
1044
1045	bdev->bd_super = NULL;
1046	generic_shutdown_super(sb);
1047	sync_blockdev(bdev);
1048	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1049	blkdev_put(bdev, mode | FMODE_EXCL);
1050}
1051
1052EXPORT_SYMBOL(kill_block_super);
1053#endif
1054
1055struct dentry *mount_nodev(struct file_system_type *fs_type,
1056	int flags, void *data,
1057	int (*fill_super)(struct super_block *, void *, int))
1058{
1059	int error;
1060	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1061
1062	if (IS_ERR(s))
1063		return ERR_CAST(s);
1064
 
 
1065	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1066	if (error) {
1067		deactivate_locked_super(s);
1068		return ERR_PTR(error);
1069	}
1070	s->s_flags |= MS_ACTIVE;
1071	return dget(s->s_root);
1072}
1073EXPORT_SYMBOL(mount_nodev);
1074
1075static int compare_single(struct super_block *s, void *p)
1076{
1077	return 1;
1078}
1079
1080struct dentry *mount_single(struct file_system_type *fs_type,
1081	int flags, void *data,
1082	int (*fill_super)(struct super_block *, void *, int))
1083{
1084	struct super_block *s;
1085	int error;
1086
1087	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1088	if (IS_ERR(s))
1089		return ERR_CAST(s);
1090	if (!s->s_root) {
 
1091		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1092		if (error) {
1093			deactivate_locked_super(s);
1094			return ERR_PTR(error);
1095		}
1096		s->s_flags |= MS_ACTIVE;
1097	} else {
1098		do_remount_sb(s, flags, data, 0);
1099	}
1100	return dget(s->s_root);
1101}
1102EXPORT_SYMBOL(mount_single);
1103
1104struct dentry *
1105mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1106{
1107	struct dentry *root;
1108	struct super_block *sb;
1109	char *secdata = NULL;
1110	int error = -ENOMEM;
1111
1112	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1113		secdata = alloc_secdata();
1114		if (!secdata)
1115			goto out;
1116
1117		error = security_sb_copy_data(data, secdata);
1118		if (error)
1119			goto out_free_secdata;
1120	}
1121
1122	root = type->mount(type, flags, name, data);
1123	if (IS_ERR(root)) {
1124		error = PTR_ERR(root);
1125		goto out_free_secdata;
1126	}
1127	sb = root->d_sb;
1128	BUG_ON(!sb);
1129	WARN_ON(!sb->s_bdi);
 
1130	sb->s_flags |= MS_BORN;
1131
1132	error = security_sb_kern_mount(sb, flags, secdata);
1133	if (error)
1134		goto out_sb;
1135
1136	/*
1137	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1138	 * but s_maxbytes was an unsigned long long for many releases. Throw
1139	 * this warning for a little while to try and catch filesystems that
1140	 * violate this rule.
1141	 */
1142	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1143		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1144
1145	up_write(&sb->s_umount);
1146	free_secdata(secdata);
1147	return root;
1148out_sb:
1149	dput(root);
1150	deactivate_locked_super(sb);
1151out_free_secdata:
1152	free_secdata(secdata);
1153out:
1154	return ERR_PTR(error);
1155}
1156
1157/*
1158 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1159 * instead.
1160 */
1161void __sb_end_write(struct super_block *sb, int level)
1162{
1163	percpu_up_read(sb->s_writers.rw_sem + level-1);
1164}
1165EXPORT_SYMBOL(__sb_end_write);
1166
1167/*
1168 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1169 * instead.
1170 */
1171int __sb_start_write(struct super_block *sb, int level, bool wait)
1172{
1173	bool force_trylock = false;
1174	int ret = 1;
1175
1176#ifdef CONFIG_LOCKDEP
1177	/*
1178	 * We want lockdep to tell us about possible deadlocks with freezing
1179	 * but it's it bit tricky to properly instrument it. Getting a freeze
1180	 * protection works as getting a read lock but there are subtle
1181	 * problems. XFS for example gets freeze protection on internal level
1182	 * twice in some cases, which is OK only because we already hold a
1183	 * freeze protection also on higher level. Due to these cases we have
1184	 * to use wait == F (trylock mode) which must not fail.
1185	 */
1186	if (wait) {
1187		int i;
1188
1189		for (i = 0; i < level - 1; i++)
1190			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1191				force_trylock = true;
1192				break;
1193			}
1194	}
1195#endif
1196	if (wait && !force_trylock)
1197		percpu_down_read(sb->s_writers.rw_sem + level-1);
1198	else
1199		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1200
1201	WARN_ON(force_trylock && !ret);
1202	return ret;
1203}
1204EXPORT_SYMBOL(__sb_start_write);
1205
1206/**
1207 * sb_wait_write - wait until all writers to given file system finish
1208 * @sb: the super for which we wait
1209 * @level: type of writers we wait for (normal vs page fault)
1210 *
1211 * This function waits until there are no writers of given type to given file
1212 * system.
1213 */
1214static void sb_wait_write(struct super_block *sb, int level)
1215{
1216	percpu_down_write(sb->s_writers.rw_sem + level-1);
1217	/*
1218	 * We are going to return to userspace and forget about this lock, the
1219	 * ownership goes to the caller of thaw_super() which does unlock.
1220	 *
1221	 * FIXME: we should do this before return from freeze_super() after we
1222	 * called sync_filesystem(sb) and s_op->freeze_fs(sb), and thaw_super()
1223	 * should re-acquire these locks before s_op->unfreeze_fs(sb). However
1224	 * this leads to lockdep false-positives, so currently we do the early
1225	 * release right after acquire.
1226	 */
1227	percpu_rwsem_release(sb->s_writers.rw_sem + level-1, 0, _THIS_IP_);
1228}
1229
1230static void sb_freeze_unlock(struct super_block *sb)
1231{
1232	int level;
1233
1234	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1235		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1236
1237	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1238		percpu_up_write(sb->s_writers.rw_sem + level);
1239}
1240
1241/**
1242 * freeze_super - lock the filesystem and force it into a consistent state
1243 * @sb: the super to lock
1244 *
1245 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1246 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1247 * -EBUSY.
1248 *
1249 * During this function, sb->s_writers.frozen goes through these values:
1250 *
1251 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1252 *
1253 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1254 * writes should be blocked, though page faults are still allowed. We wait for
1255 * all writes to complete and then proceed to the next stage.
1256 *
1257 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1258 * but internal fs threads can still modify the filesystem (although they
1259 * should not dirty new pages or inodes), writeback can run etc. After waiting
1260 * for all running page faults we sync the filesystem which will clean all
1261 * dirty pages and inodes (no new dirty pages or inodes can be created when
1262 * sync is running).
1263 *
1264 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1265 * modification are blocked (e.g. XFS preallocation truncation on inode
1266 * reclaim). This is usually implemented by blocking new transactions for
1267 * filesystems that have them and need this additional guard. After all
1268 * internal writers are finished we call ->freeze_fs() to finish filesystem
1269 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1270 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1271 *
1272 * sb->s_writers.frozen is protected by sb->s_umount.
1273 */
1274int freeze_super(struct super_block *sb)
1275{
1276	int ret;
1277
1278	atomic_inc(&sb->s_active);
1279	down_write(&sb->s_umount);
1280	if (sb->s_writers.frozen != SB_UNFROZEN) {
1281		deactivate_locked_super(sb);
1282		return -EBUSY;
1283	}
1284
1285	if (!(sb->s_flags & MS_BORN)) {
1286		up_write(&sb->s_umount);
1287		return 0;	/* sic - it's "nothing to do" */
1288	}
1289
1290	if (sb->s_flags & MS_RDONLY) {
1291		/* Nothing to do really... */
1292		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1293		up_write(&sb->s_umount);
1294		return 0;
1295	}
1296
1297	sb->s_writers.frozen = SB_FREEZE_WRITE;
1298	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1299	up_write(&sb->s_umount);
1300	sb_wait_write(sb, SB_FREEZE_WRITE);
1301	down_write(&sb->s_umount);
1302
1303	/* Now we go and block page faults... */
1304	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1305	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1306
1307	/* All writers are done so after syncing there won't be dirty data */
1308	sync_filesystem(sb);
1309
1310	/* Now wait for internal filesystem counter */
1311	sb->s_writers.frozen = SB_FREEZE_FS;
1312	sb_wait_write(sb, SB_FREEZE_FS);
1313
 
1314	if (sb->s_op->freeze_fs) {
1315		ret = sb->s_op->freeze_fs(sb);
1316		if (ret) {
1317			printk(KERN_ERR
1318				"VFS:Filesystem freeze failed\n");
1319			sb->s_writers.frozen = SB_UNFROZEN;
1320			sb_freeze_unlock(sb);
1321			wake_up(&sb->s_writers.wait_unfrozen);
1322			deactivate_locked_super(sb);
1323			return ret;
1324		}
1325	}
1326	/*
1327	 * This is just for debugging purposes so that fs can warn if it
1328	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1329	 */
1330	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1331	up_write(&sb->s_umount);
1332	return 0;
1333}
1334EXPORT_SYMBOL(freeze_super);
1335
1336/**
1337 * thaw_super -- unlock filesystem
1338 * @sb: the super to thaw
1339 *
1340 * Unlocks the filesystem and marks it writeable again after freeze_super().
1341 */
1342int thaw_super(struct super_block *sb)
1343{
1344	int error;
1345
1346	down_write(&sb->s_umount);
1347	if (sb->s_writers.frozen == SB_UNFROZEN) {
1348		up_write(&sb->s_umount);
1349		return -EINVAL;
1350	}
1351
1352	if (sb->s_flags & MS_RDONLY) {
1353		sb->s_writers.frozen = SB_UNFROZEN;
1354		goto out;
1355	}
1356
1357	if (sb->s_op->unfreeze_fs) {
1358		error = sb->s_op->unfreeze_fs(sb);
1359		if (error) {
1360			printk(KERN_ERR
1361				"VFS:Filesystem thaw failed\n");
 
1362			up_write(&sb->s_umount);
1363			return error;
1364		}
1365	}
1366
1367	sb->s_writers.frozen = SB_UNFROZEN;
1368	sb_freeze_unlock(sb);
1369out:
1370	wake_up(&sb->s_writers.wait_unfrozen);
 
 
1371	deactivate_locked_super(sb);
 
1372	return 0;
1373}
1374EXPORT_SYMBOL(thaw_super);
v3.5.6
   1/*
   2 *  linux/fs/super.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  super.c contains code to handle: - mount structures
   7 *                                   - super-block tables
   8 *                                   - filesystem drivers list
   9 *                                   - mount system call
  10 *                                   - umount system call
  11 *                                   - ustat system call
  12 *
  13 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  14 *
  15 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  16 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  17 *  Added options to /proc/mounts:
  18 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  19 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  20 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  21 */
  22
  23#include <linux/export.h>
  24#include <linux/slab.h>
  25#include <linux/acct.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>		/* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/cleancache.h>
  35#include <linux/fsnotify.h>
 
  36#include "internal.h"
  37
  38
  39LIST_HEAD(super_blocks);
  40DEFINE_SPINLOCK(sb_lock);
 
 
 
 
 
 
  41
  42/*
  43 * One thing we have to be careful of with a per-sb shrinker is that we don't
  44 * drop the last active reference to the superblock from within the shrinker.
  45 * If that happens we could trigger unregistering the shrinker from within the
  46 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  47 * take a passive reference to the superblock to avoid this from occurring.
  48 */
  49static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
 
  50{
  51	struct super_block *sb;
  52	int	fs_objects = 0;
  53	int	total_objects;
 
 
 
  54
  55	sb = container_of(shrink, struct super_block, s_shrink);
  56
  57	/*
  58	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
  59	 * to recurse into the FS that called us in clear_inode() and friends..
  60	 */
  61	if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
  62		return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63
  64	if (!grab_super_passive(sb))
  65		return !sc->nr_to_scan ? 0 : -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66
  67	if (sb->s_op && sb->s_op->nr_cached_objects)
  68		fs_objects = sb->s_op->nr_cached_objects(sb);
 
  69
  70	total_objects = sb->s_nr_dentry_unused +
  71			sb->s_nr_inodes_unused + fs_objects + 1;
 
 
 
  72
  73	if (sc->nr_to_scan) {
  74		int	dentries;
  75		int	inodes;
  76
  77		/* proportion the scan between the caches */
  78		dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
  79							total_objects;
  80		inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
  81							total_objects;
  82		if (fs_objects)
  83			fs_objects = (sc->nr_to_scan * fs_objects) /
  84							total_objects;
  85		/*
  86		 * prune the dcache first as the icache is pinned by it, then
  87		 * prune the icache, followed by the filesystem specific caches
  88		 */
  89		prune_dcache_sb(sb, dentries);
  90		prune_icache_sb(sb, inodes);
  91
  92		if (fs_objects && sb->s_op->free_cached_objects) {
  93			sb->s_op->free_cached_objects(sb, fs_objects);
  94			fs_objects = sb->s_op->nr_cached_objects(sb);
  95		}
  96		total_objects = sb->s_nr_dentry_unused +
  97				sb->s_nr_inodes_unused + fs_objects;
  98	}
  99
 100	total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
 101	drop_super(sb);
 102	return total_objects;
 103}
 104
 105/**
 106 *	alloc_super	-	create new superblock
 107 *	@type:	filesystem type superblock should belong to
 108 *
 109 *	Allocates and initializes a new &struct super_block.  alloc_super()
 110 *	returns a pointer new superblock or %NULL if allocation had failed.
 111 */
 112static struct super_block *alloc_super(struct file_system_type *type)
 113{
 114	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 115	static const struct super_operations default_op;
 
 116
 117	if (s) {
 118		if (security_sb_alloc(s)) {
 119			kfree(s);
 120			s = NULL;
 121			goto out;
 122		}
 123#ifdef CONFIG_SMP
 124		s->s_files = alloc_percpu(struct list_head);
 125		if (!s->s_files) {
 126			security_sb_free(s);
 127			kfree(s);
 128			s = NULL;
 129			goto out;
 130		} else {
 131			int i;
 132
 133			for_each_possible_cpu(i)
 134				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
 135		}
 136#else
 137		INIT_LIST_HEAD(&s->s_files);
 138#endif
 139		s->s_bdi = &default_backing_dev_info;
 140		INIT_HLIST_NODE(&s->s_instances);
 141		INIT_HLIST_BL_HEAD(&s->s_anon);
 142		INIT_LIST_HEAD(&s->s_inodes);
 143		INIT_LIST_HEAD(&s->s_dentry_lru);
 144		INIT_LIST_HEAD(&s->s_inode_lru);
 145		spin_lock_init(&s->s_inode_lru_lock);
 146		INIT_LIST_HEAD(&s->s_mounts);
 147		init_rwsem(&s->s_umount);
 148		mutex_init(&s->s_lock);
 149		lockdep_set_class(&s->s_umount, &type->s_umount_key);
 150		/*
 151		 * The locking rules for s_lock are up to the
 152		 * filesystem. For example ext3fs has different
 153		 * lock ordering than usbfs:
 154		 */
 155		lockdep_set_class(&s->s_lock, &type->s_lock_key);
 156		/*
 157		 * sget() can have s_umount recursion.
 158		 *
 159		 * When it cannot find a suitable sb, it allocates a new
 160		 * one (this one), and tries again to find a suitable old
 161		 * one.
 162		 *
 163		 * In case that succeeds, it will acquire the s_umount
 164		 * lock of the old one. Since these are clearly distrinct
 165		 * locks, and this object isn't exposed yet, there's no
 166		 * risk of deadlocks.
 167		 *
 168		 * Annotate this by putting this lock in a different
 169		 * subclass.
 170		 */
 171		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 172		s->s_count = 1;
 173		atomic_set(&s->s_active, 1);
 174		mutex_init(&s->s_vfs_rename_mutex);
 175		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 176		mutex_init(&s->s_dquot.dqio_mutex);
 177		mutex_init(&s->s_dquot.dqonoff_mutex);
 178		init_rwsem(&s->s_dquot.dqptr_sem);
 179		init_waitqueue_head(&s->s_wait_unfrozen);
 180		s->s_maxbytes = MAX_NON_LFS;
 181		s->s_op = &default_op;
 182		s->s_time_gran = 1000000000;
 183		s->cleancache_poolid = -1;
 184
 185		s->s_shrink.seeks = DEFAULT_SEEKS;
 186		s->s_shrink.shrink = prune_super;
 187		s->s_shrink.batch = 1024;
 188	}
 189out:
 190	return s;
 191}
 192
 193/**
 194 *	destroy_super	-	frees a superblock
 195 *	@s: superblock to free
 196 *
 197 *	Frees a superblock.
 198 */
 199static inline void destroy_super(struct super_block *s)
 200{
 201#ifdef CONFIG_SMP
 202	free_percpu(s->s_files);
 203#endif
 204	security_sb_free(s);
 205	WARN_ON(!list_empty(&s->s_mounts));
 206	kfree(s->s_subtype);
 207	kfree(s->s_options);
 208	kfree(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 209}
 210
 211/* Superblock refcounting  */
 212
 213/*
 214 * Drop a superblock's refcount.  The caller must hold sb_lock.
 215 */
 216static void __put_super(struct super_block *sb)
 217{
 218	if (!--sb->s_count) {
 219		list_del_init(&sb->s_list);
 220		destroy_super(sb);
 221	}
 222}
 223
 224/**
 225 *	put_super	-	drop a temporary reference to superblock
 226 *	@sb: superblock in question
 227 *
 228 *	Drops a temporary reference, frees superblock if there's no
 229 *	references left.
 230 */
 231static void put_super(struct super_block *sb)
 232{
 233	spin_lock(&sb_lock);
 234	__put_super(sb);
 235	spin_unlock(&sb_lock);
 236}
 237
 238
 239/**
 240 *	deactivate_locked_super	-	drop an active reference to superblock
 241 *	@s: superblock to deactivate
 242 *
 243 *	Drops an active reference to superblock, converting it into a temprory
 244 *	one if there is no other active references left.  In that case we
 245 *	tell fs driver to shut it down and drop the temporary reference we
 246 *	had just acquired.
 247 *
 248 *	Caller holds exclusive lock on superblock; that lock is released.
 249 */
 250void deactivate_locked_super(struct super_block *s)
 251{
 252	struct file_system_type *fs = s->s_type;
 253	if (atomic_dec_and_test(&s->s_active)) {
 254		cleancache_invalidate_fs(s);
 
 255		fs->kill_sb(s);
 256
 257		/* caches are now gone, we can safely kill the shrinker now */
 258		unregister_shrinker(&s->s_shrink);
 259
 260		/*
 261		 * We need to call rcu_barrier so all the delayed rcu free
 262		 * inodes are flushed before we release the fs module.
 
 263		 */
 264		rcu_barrier();
 
 
 265		put_filesystem(fs);
 266		put_super(s);
 267	} else {
 268		up_write(&s->s_umount);
 269	}
 270}
 271
 272EXPORT_SYMBOL(deactivate_locked_super);
 273
 274/**
 275 *	deactivate_super	-	drop an active reference to superblock
 276 *	@s: superblock to deactivate
 277 *
 278 *	Variant of deactivate_locked_super(), except that superblock is *not*
 279 *	locked by caller.  If we are going to drop the final active reference,
 280 *	lock will be acquired prior to that.
 281 */
 282void deactivate_super(struct super_block *s)
 283{
 284        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 285		down_write(&s->s_umount);
 286		deactivate_locked_super(s);
 287	}
 288}
 289
 290EXPORT_SYMBOL(deactivate_super);
 291
 292/**
 293 *	grab_super - acquire an active reference
 294 *	@s: reference we are trying to make active
 295 *
 296 *	Tries to acquire an active reference.  grab_super() is used when we
 297 * 	had just found a superblock in super_blocks or fs_type->fs_supers
 298 *	and want to turn it into a full-blown active reference.  grab_super()
 299 *	is called with sb_lock held and drops it.  Returns 1 in case of
 300 *	success, 0 if we had failed (superblock contents was already dead or
 301 *	dying when grab_super() had been called).
 
 
 302 */
 303static int grab_super(struct super_block *s) __releases(sb_lock)
 304{
 305	if (atomic_inc_not_zero(&s->s_active)) {
 306		spin_unlock(&sb_lock);
 307		return 1;
 308	}
 309	/* it's going away */
 310	s->s_count++;
 311	spin_unlock(&sb_lock);
 312	/* wait for it to die */
 313	down_write(&s->s_umount);
 
 
 
 
 314	up_write(&s->s_umount);
 315	put_super(s);
 316	return 0;
 317}
 318
 319/*
 320 *	grab_super_passive - acquire a passive reference
 321 *	@s: reference we are trying to grab
 322 *
 323 *	Tries to acquire a passive reference. This is used in places where we
 324 *	cannot take an active reference but we need to ensure that the
 325 *	superblock does not go away while we are working on it. It returns
 326 *	false if a reference was not gained, and returns true with the s_umount
 327 *	lock held in read mode if a reference is gained. On successful return,
 328 *	the caller must drop the s_umount lock and the passive reference when
 329 *	done.
 
 
 
 
 
 330 */
 331bool grab_super_passive(struct super_block *sb)
 332{
 333	spin_lock(&sb_lock);
 334	if (hlist_unhashed(&sb->s_instances)) {
 335		spin_unlock(&sb_lock);
 336		return false;
 337	}
 338
 339	sb->s_count++;
 340	spin_unlock(&sb_lock);
 341
 342	if (down_read_trylock(&sb->s_umount)) {
 343		if (sb->s_root && (sb->s_flags & MS_BORN))
 
 344			return true;
 345		up_read(&sb->s_umount);
 346	}
 347
 348	put_super(sb);
 349	return false;
 350}
 351
 352/*
 353 * Superblock locking.  We really ought to get rid of these two.
 354 */
 355void lock_super(struct super_block * sb)
 356{
 357	mutex_lock(&sb->s_lock);
 358}
 359
 360void unlock_super(struct super_block * sb)
 361{
 362	mutex_unlock(&sb->s_lock);
 363}
 364
 365EXPORT_SYMBOL(lock_super);
 366EXPORT_SYMBOL(unlock_super);
 367
 368/**
 369 *	generic_shutdown_super	-	common helper for ->kill_sb()
 370 *	@sb: superblock to kill
 371 *
 372 *	generic_shutdown_super() does all fs-independent work on superblock
 373 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 374 *	that need destruction out of superblock, call generic_shutdown_super()
 375 *	and release aforementioned objects.  Note: dentries and inodes _are_
 376 *	taken care of and do not need specific handling.
 377 *
 378 *	Upon calling this function, the filesystem may no longer alter or
 379 *	rearrange the set of dentries belonging to this super_block, nor may it
 380 *	change the attachments of dentries to inodes.
 381 */
 382void generic_shutdown_super(struct super_block *sb)
 383{
 384	const struct super_operations *sop = sb->s_op;
 385
 386	if (sb->s_root) {
 387		shrink_dcache_for_umount(sb);
 388		sync_filesystem(sb);
 389		sb->s_flags &= ~MS_ACTIVE;
 390
 391		fsnotify_unmount_inodes(&sb->s_inodes);
 
 392
 393		evict_inodes(sb);
 394
 
 
 
 
 
 395		if (sop->put_super)
 396			sop->put_super(sb);
 397
 398		if (!list_empty(&sb->s_inodes)) {
 399			printk("VFS: Busy inodes after unmount of %s. "
 400			   "Self-destruct in 5 seconds.  Have a nice day...\n",
 401			   sb->s_id);
 402		}
 403	}
 404	spin_lock(&sb_lock);
 405	/* should be initialized for __put_super_and_need_restart() */
 406	hlist_del_init(&sb->s_instances);
 407	spin_unlock(&sb_lock);
 408	up_write(&sb->s_umount);
 409}
 410
 411EXPORT_SYMBOL(generic_shutdown_super);
 412
 413/**
 414 *	sget	-	find or create a superblock
 415 *	@type:	filesystem type superblock should belong to
 416 *	@test:	comparison callback
 417 *	@set:	setup callback
 
 418 *	@data:	argument to each of them
 419 */
 420struct super_block *sget(struct file_system_type *type,
 421			int (*test)(struct super_block *,void *),
 422			int (*set)(struct super_block *,void *),
 
 423			void *data)
 424{
 425	struct super_block *s = NULL;
 426	struct hlist_node *node;
 427	struct super_block *old;
 428	int err;
 429
 430retry:
 431	spin_lock(&sb_lock);
 432	if (test) {
 433		hlist_for_each_entry(old, node, &type->fs_supers, s_instances) {
 434			if (!test(old, data))
 435				continue;
 436			if (!grab_super(old))
 437				goto retry;
 438			if (s) {
 439				up_write(&s->s_umount);
 440				destroy_super(s);
 441				s = NULL;
 442			}
 443			down_write(&old->s_umount);
 444			if (unlikely(!(old->s_flags & MS_BORN))) {
 445				deactivate_locked_super(old);
 446				goto retry;
 447			}
 448			return old;
 449		}
 450	}
 451	if (!s) {
 452		spin_unlock(&sb_lock);
 453		s = alloc_super(type);
 454		if (!s)
 455			return ERR_PTR(-ENOMEM);
 456		goto retry;
 457	}
 458		
 459	err = set(s, data);
 460	if (err) {
 461		spin_unlock(&sb_lock);
 462		up_write(&s->s_umount);
 463		destroy_super(s);
 464		return ERR_PTR(err);
 465	}
 466	s->s_type = type;
 467	strlcpy(s->s_id, type->name, sizeof(s->s_id));
 468	list_add_tail(&s->s_list, &super_blocks);
 469	hlist_add_head(&s->s_instances, &type->fs_supers);
 470	spin_unlock(&sb_lock);
 471	get_filesystem(type);
 472	register_shrinker(&s->s_shrink);
 473	return s;
 474}
 475
 476EXPORT_SYMBOL(sget);
 477
 478void drop_super(struct super_block *sb)
 479{
 480	up_read(&sb->s_umount);
 481	put_super(sb);
 482}
 483
 484EXPORT_SYMBOL(drop_super);
 485
 486/**
 487 * sync_supers - helper for periodic superblock writeback
 488 *
 489 * Call the write_super method if present on all dirty superblocks in
 490 * the system.  This is for the periodic writeback used by most older
 491 * filesystems.  For data integrity superblock writeback use
 492 * sync_filesystems() instead.
 493 *
 494 * Note: check the dirty flag before waiting, so we don't
 495 * hold up the sync while mounting a device. (The newly
 496 * mounted device won't need syncing.)
 497 */
 498void sync_supers(void)
 499{
 500	struct super_block *sb, *p = NULL;
 501
 502	spin_lock(&sb_lock);
 503	list_for_each_entry(sb, &super_blocks, s_list) {
 504		if (hlist_unhashed(&sb->s_instances))
 505			continue;
 506		if (sb->s_op->write_super && sb->s_dirt) {
 507			sb->s_count++;
 508			spin_unlock(&sb_lock);
 509
 510			down_read(&sb->s_umount);
 511			if (sb->s_root && sb->s_dirt && (sb->s_flags & MS_BORN))
 512				sb->s_op->write_super(sb);
 513			up_read(&sb->s_umount);
 514
 515			spin_lock(&sb_lock);
 516			if (p)
 517				__put_super(p);
 518			p = sb;
 519		}
 520	}
 521	if (p)
 522		__put_super(p);
 523	spin_unlock(&sb_lock);
 524}
 525
 526/**
 527 *	iterate_supers - call function for all active superblocks
 528 *	@f: function to call
 529 *	@arg: argument to pass to it
 530 *
 531 *	Scans the superblock list and calls given function, passing it
 532 *	locked superblock and given argument.
 533 */
 534void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 535{
 536	struct super_block *sb, *p = NULL;
 537
 538	spin_lock(&sb_lock);
 539	list_for_each_entry(sb, &super_blocks, s_list) {
 540		if (hlist_unhashed(&sb->s_instances))
 541			continue;
 542		sb->s_count++;
 543		spin_unlock(&sb_lock);
 544
 545		down_read(&sb->s_umount);
 546		if (sb->s_root && (sb->s_flags & MS_BORN))
 547			f(sb, arg);
 548		up_read(&sb->s_umount);
 549
 550		spin_lock(&sb_lock);
 551		if (p)
 552			__put_super(p);
 553		p = sb;
 554	}
 555	if (p)
 556		__put_super(p);
 557	spin_unlock(&sb_lock);
 558}
 559
 560/**
 561 *	iterate_supers_type - call function for superblocks of given type
 562 *	@type: fs type
 563 *	@f: function to call
 564 *	@arg: argument to pass to it
 565 *
 566 *	Scans the superblock list and calls given function, passing it
 567 *	locked superblock and given argument.
 568 */
 569void iterate_supers_type(struct file_system_type *type,
 570	void (*f)(struct super_block *, void *), void *arg)
 571{
 572	struct super_block *sb, *p = NULL;
 573	struct hlist_node *node;
 574
 575	spin_lock(&sb_lock);
 576	hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) {
 577		sb->s_count++;
 578		spin_unlock(&sb_lock);
 579
 580		down_read(&sb->s_umount);
 581		if (sb->s_root && (sb->s_flags & MS_BORN))
 582			f(sb, arg);
 583		up_read(&sb->s_umount);
 584
 585		spin_lock(&sb_lock);
 586		if (p)
 587			__put_super(p);
 588		p = sb;
 589	}
 590	if (p)
 591		__put_super(p);
 592	spin_unlock(&sb_lock);
 593}
 594
 595EXPORT_SYMBOL(iterate_supers_type);
 596
 597/**
 598 *	get_super - get the superblock of a device
 599 *	@bdev: device to get the superblock for
 600 *	
 601 *	Scans the superblock list and finds the superblock of the file system
 602 *	mounted on the device given. %NULL is returned if no match is found.
 603 */
 604
 605struct super_block *get_super(struct block_device *bdev)
 606{
 607	struct super_block *sb;
 608
 609	if (!bdev)
 610		return NULL;
 611
 612	spin_lock(&sb_lock);
 613rescan:
 614	list_for_each_entry(sb, &super_blocks, s_list) {
 615		if (hlist_unhashed(&sb->s_instances))
 616			continue;
 617		if (sb->s_bdev == bdev) {
 618			sb->s_count++;
 619			spin_unlock(&sb_lock);
 620			down_read(&sb->s_umount);
 621			/* still alive? */
 622			if (sb->s_root && (sb->s_flags & MS_BORN))
 623				return sb;
 624			up_read(&sb->s_umount);
 625			/* nope, got unmounted */
 626			spin_lock(&sb_lock);
 627			__put_super(sb);
 628			goto rescan;
 629		}
 630	}
 631	spin_unlock(&sb_lock);
 632	return NULL;
 633}
 634
 635EXPORT_SYMBOL(get_super);
 636
 637/**
 638 *	get_super_thawed - get thawed superblock of a device
 639 *	@bdev: device to get the superblock for
 640 *
 641 *	Scans the superblock list and finds the superblock of the file system
 642 *	mounted on the device. The superblock is returned once it is thawed
 643 *	(or immediately if it was not frozen). %NULL is returned if no match
 644 *	is found.
 645 */
 646struct super_block *get_super_thawed(struct block_device *bdev)
 647{
 648	while (1) {
 649		struct super_block *s = get_super(bdev);
 650		if (!s || s->s_frozen == SB_UNFROZEN)
 651			return s;
 652		up_read(&s->s_umount);
 653		vfs_check_frozen(s, SB_FREEZE_WRITE);
 
 654		put_super(s);
 655	}
 656}
 657EXPORT_SYMBOL(get_super_thawed);
 658
 659/**
 660 * get_active_super - get an active reference to the superblock of a device
 661 * @bdev: device to get the superblock for
 662 *
 663 * Scans the superblock list and finds the superblock of the file system
 664 * mounted on the device given.  Returns the superblock with an active
 665 * reference or %NULL if none was found.
 666 */
 667struct super_block *get_active_super(struct block_device *bdev)
 668{
 669	struct super_block *sb;
 670
 671	if (!bdev)
 672		return NULL;
 673
 674restart:
 675	spin_lock(&sb_lock);
 676	list_for_each_entry(sb, &super_blocks, s_list) {
 677		if (hlist_unhashed(&sb->s_instances))
 678			continue;
 679		if (sb->s_bdev == bdev) {
 680			if (grab_super(sb)) /* drops sb_lock */
 681				return sb;
 682			else
 683				goto restart;
 
 
 684		}
 685	}
 686	spin_unlock(&sb_lock);
 687	return NULL;
 688}
 689 
 690struct super_block *user_get_super(dev_t dev)
 691{
 692	struct super_block *sb;
 693
 694	spin_lock(&sb_lock);
 695rescan:
 696	list_for_each_entry(sb, &super_blocks, s_list) {
 697		if (hlist_unhashed(&sb->s_instances))
 698			continue;
 699		if (sb->s_dev ==  dev) {
 700			sb->s_count++;
 701			spin_unlock(&sb_lock);
 702			down_read(&sb->s_umount);
 703			/* still alive? */
 704			if (sb->s_root && (sb->s_flags & MS_BORN))
 705				return sb;
 706			up_read(&sb->s_umount);
 707			/* nope, got unmounted */
 708			spin_lock(&sb_lock);
 709			__put_super(sb);
 710			goto rescan;
 711		}
 712	}
 713	spin_unlock(&sb_lock);
 714	return NULL;
 715}
 716
 717/**
 718 *	do_remount_sb - asks filesystem to change mount options.
 719 *	@sb:	superblock in question
 720 *	@flags:	numeric part of options
 721 *	@data:	the rest of options
 722 *      @force: whether or not to force the change
 723 *
 724 *	Alters the mount options of a mounted file system.
 725 */
 726int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
 727{
 728	int retval;
 729	int remount_ro;
 730
 731	if (sb->s_frozen != SB_UNFROZEN)
 732		return -EBUSY;
 733
 734#ifdef CONFIG_BLOCK
 735	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
 736		return -EACCES;
 737#endif
 738
 739	if (flags & MS_RDONLY)
 740		acct_auto_close(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 741	shrink_dcache_sb(sb);
 742	sync_filesystem(sb);
 743
 744	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 745
 746	/* If we are remounting RDONLY and current sb is read/write,
 747	   make sure there are no rw files opened */
 748	if (remount_ro) {
 749		if (force) {
 750			mark_files_ro(sb);
 
 751		} else {
 752			retval = sb_prepare_remount_readonly(sb);
 753			if (retval)
 754				return retval;
 755		}
 756	}
 757
 758	if (sb->s_op->remount_fs) {
 759		retval = sb->s_op->remount_fs(sb, &flags, data);
 760		if (retval) {
 761			if (!force)
 762				goto cancel_readonly;
 763			/* If forced remount, go ahead despite any errors */
 764			WARN(1, "forced remount of a %s fs returned %i\n",
 765			     sb->s_type->name, retval);
 766		}
 767	}
 768	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
 769	/* Needs to be ordered wrt mnt_is_readonly() */
 770	smp_wmb();
 771	sb->s_readonly_remount = 0;
 772
 773	/*
 774	 * Some filesystems modify their metadata via some other path than the
 775	 * bdev buffer cache (eg. use a private mapping, or directories in
 776	 * pagecache, etc). Also file data modifications go via their own
 777	 * mappings. So If we try to mount readonly then copy the filesystem
 778	 * from bdev, we could get stale data, so invalidate it to give a best
 779	 * effort at coherency.
 780	 */
 781	if (remount_ro && sb->s_bdev)
 782		invalidate_bdev(sb->s_bdev);
 783	return 0;
 784
 785cancel_readonly:
 786	sb->s_readonly_remount = 0;
 787	return retval;
 788}
 789
 790static void do_emergency_remount(struct work_struct *work)
 791{
 792	struct super_block *sb, *p = NULL;
 793
 794	spin_lock(&sb_lock);
 795	list_for_each_entry(sb, &super_blocks, s_list) {
 796		if (hlist_unhashed(&sb->s_instances))
 797			continue;
 798		sb->s_count++;
 799		spin_unlock(&sb_lock);
 800		down_write(&sb->s_umount);
 801		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
 802		    !(sb->s_flags & MS_RDONLY)) {
 803			/*
 804			 * What lock protects sb->s_flags??
 805			 */
 806			do_remount_sb(sb, MS_RDONLY, NULL, 1);
 807		}
 808		up_write(&sb->s_umount);
 809		spin_lock(&sb_lock);
 810		if (p)
 811			__put_super(p);
 812		p = sb;
 813	}
 814	if (p)
 815		__put_super(p);
 816	spin_unlock(&sb_lock);
 817	kfree(work);
 818	printk("Emergency Remount complete\n");
 819}
 820
 821void emergency_remount(void)
 822{
 823	struct work_struct *work;
 824
 825	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 826	if (work) {
 827		INIT_WORK(work, do_emergency_remount);
 828		schedule_work(work);
 829	}
 830}
 831
 832/*
 833 * Unnamed block devices are dummy devices used by virtual
 834 * filesystems which don't use real block-devices.  -- jrs
 835 */
 836
 837static DEFINE_IDA(unnamed_dev_ida);
 838static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
 839static int unnamed_dev_start = 0; /* don't bother trying below it */
 
 
 
 840
 841int get_anon_bdev(dev_t *p)
 842{
 843	int dev;
 844	int error;
 845
 846 retry:
 847	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
 848		return -ENOMEM;
 849	spin_lock(&unnamed_dev_lock);
 850	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
 851	if (!error)
 852		unnamed_dev_start = dev + 1;
 853	spin_unlock(&unnamed_dev_lock);
 854	if (error == -EAGAIN)
 855		/* We raced and lost with another CPU. */
 856		goto retry;
 857	else if (error)
 858		return -EAGAIN;
 859
 860	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
 861		spin_lock(&unnamed_dev_lock);
 862		ida_remove(&unnamed_dev_ida, dev);
 863		if (unnamed_dev_start > dev)
 864			unnamed_dev_start = dev;
 865		spin_unlock(&unnamed_dev_lock);
 866		return -EMFILE;
 867	}
 868	*p = MKDEV(0, dev & MINORMASK);
 869	return 0;
 870}
 871EXPORT_SYMBOL(get_anon_bdev);
 872
 873void free_anon_bdev(dev_t dev)
 874{
 875	int slot = MINOR(dev);
 876	spin_lock(&unnamed_dev_lock);
 877	ida_remove(&unnamed_dev_ida, slot);
 878	if (slot < unnamed_dev_start)
 879		unnamed_dev_start = slot;
 880	spin_unlock(&unnamed_dev_lock);
 881}
 882EXPORT_SYMBOL(free_anon_bdev);
 883
 884int set_anon_super(struct super_block *s, void *data)
 885{
 886	int error = get_anon_bdev(&s->s_dev);
 887	if (!error)
 888		s->s_bdi = &noop_backing_dev_info;
 889	return error;
 890}
 891
 892EXPORT_SYMBOL(set_anon_super);
 893
 894void kill_anon_super(struct super_block *sb)
 895{
 896	dev_t dev = sb->s_dev;
 897	generic_shutdown_super(sb);
 898	free_anon_bdev(dev);
 899}
 900
 901EXPORT_SYMBOL(kill_anon_super);
 902
 903void kill_litter_super(struct super_block *sb)
 904{
 905	if (sb->s_root)
 906		d_genocide(sb->s_root);
 907	kill_anon_super(sb);
 908}
 909
 910EXPORT_SYMBOL(kill_litter_super);
 911
 912static int ns_test_super(struct super_block *sb, void *data)
 913{
 914	return sb->s_fs_info == data;
 915}
 916
 917static int ns_set_super(struct super_block *sb, void *data)
 918{
 919	sb->s_fs_info = data;
 920	return set_anon_super(sb, NULL);
 921}
 922
 923struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
 924	void *data, int (*fill_super)(struct super_block *, void *, int))
 925{
 926	struct super_block *sb;
 927
 928	sb = sget(fs_type, ns_test_super, ns_set_super, data);
 929	if (IS_ERR(sb))
 930		return ERR_CAST(sb);
 931
 932	if (!sb->s_root) {
 933		int err;
 934		sb->s_flags = flags;
 935		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
 936		if (err) {
 937			deactivate_locked_super(sb);
 938			return ERR_PTR(err);
 939		}
 940
 941		sb->s_flags |= MS_ACTIVE;
 942	}
 943
 944	return dget(sb->s_root);
 945}
 946
 947EXPORT_SYMBOL(mount_ns);
 948
 949#ifdef CONFIG_BLOCK
 950static int set_bdev_super(struct super_block *s, void *data)
 951{
 952	s->s_bdev = data;
 953	s->s_dev = s->s_bdev->bd_dev;
 954
 955	/*
 956	 * We set the bdi here to the queue backing, file systems can
 957	 * overwrite this in ->fill_super()
 958	 */
 959	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
 960	return 0;
 961}
 962
 963static int test_bdev_super(struct super_block *s, void *data)
 964{
 965	return (void *)s->s_bdev == data;
 966}
 967
 968struct dentry *mount_bdev(struct file_system_type *fs_type,
 969	int flags, const char *dev_name, void *data,
 970	int (*fill_super)(struct super_block *, void *, int))
 971{
 972	struct block_device *bdev;
 973	struct super_block *s;
 974	fmode_t mode = FMODE_READ | FMODE_EXCL;
 975	int error = 0;
 976
 977	if (!(flags & MS_RDONLY))
 978		mode |= FMODE_WRITE;
 979
 980	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
 981	if (IS_ERR(bdev))
 982		return ERR_CAST(bdev);
 983
 984	/*
 985	 * once the super is inserted into the list by sget, s_umount
 986	 * will protect the lockfs code from trying to start a snapshot
 987	 * while we are mounting
 988	 */
 989	mutex_lock(&bdev->bd_fsfreeze_mutex);
 990	if (bdev->bd_fsfreeze_count > 0) {
 991		mutex_unlock(&bdev->bd_fsfreeze_mutex);
 992		error = -EBUSY;
 993		goto error_bdev;
 994	}
 995	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
 
 996	mutex_unlock(&bdev->bd_fsfreeze_mutex);
 997	if (IS_ERR(s))
 998		goto error_s;
 999
1000	if (s->s_root) {
1001		if ((flags ^ s->s_flags) & MS_RDONLY) {
1002			deactivate_locked_super(s);
1003			error = -EBUSY;
1004			goto error_bdev;
1005		}
1006
1007		/*
1008		 * s_umount nests inside bd_mutex during
1009		 * __invalidate_device().  blkdev_put() acquires
1010		 * bd_mutex and can't be called under s_umount.  Drop
1011		 * s_umount temporarily.  This is safe as we're
1012		 * holding an active reference.
1013		 */
1014		up_write(&s->s_umount);
1015		blkdev_put(bdev, mode);
1016		down_write(&s->s_umount);
1017	} else {
1018		char b[BDEVNAME_SIZE];
1019
1020		s->s_flags = flags | MS_NOSEC;
1021		s->s_mode = mode;
1022		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1023		sb_set_blocksize(s, block_size(bdev));
1024		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1025		if (error) {
1026			deactivate_locked_super(s);
1027			goto error;
1028		}
1029
1030		s->s_flags |= MS_ACTIVE;
1031		bdev->bd_super = s;
1032	}
1033
1034	return dget(s->s_root);
1035
1036error_s:
1037	error = PTR_ERR(s);
1038error_bdev:
1039	blkdev_put(bdev, mode);
1040error:
1041	return ERR_PTR(error);
1042}
1043EXPORT_SYMBOL(mount_bdev);
1044
1045void kill_block_super(struct super_block *sb)
1046{
1047	struct block_device *bdev = sb->s_bdev;
1048	fmode_t mode = sb->s_mode;
1049
1050	bdev->bd_super = NULL;
1051	generic_shutdown_super(sb);
1052	sync_blockdev(bdev);
1053	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1054	blkdev_put(bdev, mode | FMODE_EXCL);
1055}
1056
1057EXPORT_SYMBOL(kill_block_super);
1058#endif
1059
1060struct dentry *mount_nodev(struct file_system_type *fs_type,
1061	int flags, void *data,
1062	int (*fill_super)(struct super_block *, void *, int))
1063{
1064	int error;
1065	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
1066
1067	if (IS_ERR(s))
1068		return ERR_CAST(s);
1069
1070	s->s_flags = flags;
1071
1072	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1073	if (error) {
1074		deactivate_locked_super(s);
1075		return ERR_PTR(error);
1076	}
1077	s->s_flags |= MS_ACTIVE;
1078	return dget(s->s_root);
1079}
1080EXPORT_SYMBOL(mount_nodev);
1081
1082static int compare_single(struct super_block *s, void *p)
1083{
1084	return 1;
1085}
1086
1087struct dentry *mount_single(struct file_system_type *fs_type,
1088	int flags, void *data,
1089	int (*fill_super)(struct super_block *, void *, int))
1090{
1091	struct super_block *s;
1092	int error;
1093
1094	s = sget(fs_type, compare_single, set_anon_super, NULL);
1095	if (IS_ERR(s))
1096		return ERR_CAST(s);
1097	if (!s->s_root) {
1098		s->s_flags = flags;
1099		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1100		if (error) {
1101			deactivate_locked_super(s);
1102			return ERR_PTR(error);
1103		}
1104		s->s_flags |= MS_ACTIVE;
1105	} else {
1106		do_remount_sb(s, flags, data, 0);
1107	}
1108	return dget(s->s_root);
1109}
1110EXPORT_SYMBOL(mount_single);
1111
1112struct dentry *
1113mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1114{
1115	struct dentry *root;
1116	struct super_block *sb;
1117	char *secdata = NULL;
1118	int error = -ENOMEM;
1119
1120	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1121		secdata = alloc_secdata();
1122		if (!secdata)
1123			goto out;
1124
1125		error = security_sb_copy_data(data, secdata);
1126		if (error)
1127			goto out_free_secdata;
1128	}
1129
1130	root = type->mount(type, flags, name, data);
1131	if (IS_ERR(root)) {
1132		error = PTR_ERR(root);
1133		goto out_free_secdata;
1134	}
1135	sb = root->d_sb;
1136	BUG_ON(!sb);
1137	WARN_ON(!sb->s_bdi);
1138	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1139	sb->s_flags |= MS_BORN;
1140
1141	error = security_sb_kern_mount(sb, flags, secdata);
1142	if (error)
1143		goto out_sb;
1144
1145	/*
1146	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1147	 * but s_maxbytes was an unsigned long long for many releases. Throw
1148	 * this warning for a little while to try and catch filesystems that
1149	 * violate this rule.
1150	 */
1151	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1152		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1153
1154	up_write(&sb->s_umount);
1155	free_secdata(secdata);
1156	return root;
1157out_sb:
1158	dput(root);
1159	deactivate_locked_super(sb);
1160out_free_secdata:
1161	free_secdata(secdata);
1162out:
1163	return ERR_PTR(error);
1164}
1165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1166/**
1167 * freeze_super - lock the filesystem and force it into a consistent state
1168 * @sb: the super to lock
1169 *
1170 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1171 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1172 * -EBUSY.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1173 */
1174int freeze_super(struct super_block *sb)
1175{
1176	int ret;
1177
1178	atomic_inc(&sb->s_active);
1179	down_write(&sb->s_umount);
1180	if (sb->s_frozen) {
1181		deactivate_locked_super(sb);
1182		return -EBUSY;
1183	}
1184
1185	if (!(sb->s_flags & MS_BORN)) {
1186		up_write(&sb->s_umount);
1187		return 0;	/* sic - it's "nothing to do" */
1188	}
1189
1190	if (sb->s_flags & MS_RDONLY) {
1191		sb->s_frozen = SB_FREEZE_TRANS;
1192		smp_wmb();
1193		up_write(&sb->s_umount);
1194		return 0;
1195	}
1196
1197	sb->s_frozen = SB_FREEZE_WRITE;
1198	smp_wmb();
 
 
 
 
 
 
 
1199
 
1200	sync_filesystem(sb);
1201
1202	sb->s_frozen = SB_FREEZE_TRANS;
1203	smp_wmb();
 
1204
1205	sync_blockdev(sb->s_bdev);
1206	if (sb->s_op->freeze_fs) {
1207		ret = sb->s_op->freeze_fs(sb);
1208		if (ret) {
1209			printk(KERN_ERR
1210				"VFS:Filesystem freeze failed\n");
1211			sb->s_frozen = SB_UNFROZEN;
1212			smp_wmb();
1213			wake_up(&sb->s_wait_unfrozen);
1214			deactivate_locked_super(sb);
1215			return ret;
1216		}
1217	}
 
 
 
 
 
1218	up_write(&sb->s_umount);
1219	return 0;
1220}
1221EXPORT_SYMBOL(freeze_super);
1222
1223/**
1224 * thaw_super -- unlock filesystem
1225 * @sb: the super to thaw
1226 *
1227 * Unlocks the filesystem and marks it writeable again after freeze_super().
1228 */
1229int thaw_super(struct super_block *sb)
1230{
1231	int error;
1232
1233	down_write(&sb->s_umount);
1234	if (sb->s_frozen == SB_UNFROZEN) {
1235		up_write(&sb->s_umount);
1236		return -EINVAL;
1237	}
1238
1239	if (sb->s_flags & MS_RDONLY)
 
1240		goto out;
 
1241
1242	if (sb->s_op->unfreeze_fs) {
1243		error = sb->s_op->unfreeze_fs(sb);
1244		if (error) {
1245			printk(KERN_ERR
1246				"VFS:Filesystem thaw failed\n");
1247			sb->s_frozen = SB_FREEZE_TRANS;
1248			up_write(&sb->s_umount);
1249			return error;
1250		}
1251	}
1252
 
 
1253out:
1254	sb->s_frozen = SB_UNFROZEN;
1255	smp_wmb();
1256	wake_up(&sb->s_wait_unfrozen);
1257	deactivate_locked_super(sb);
1258
1259	return 0;
1260}
1261EXPORT_SYMBOL(thaw_super);