Loading...
1/*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/pagemap.h>
23#include <linux/splice.h>
24#include <linux/memcontrol.h>
25#include <linux/mm_inline.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
28#include <linux/export.h>
29#include <linux/syscalls.h>
30#include <linux/uio.h>
31#include <linux/security.h>
32#include <linux/gfp.h>
33#include <linux/socket.h>
34#include <linux/compat.h>
35#include "internal.h"
36
37/*
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
42 */
43static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
45{
46 struct page *page = buf->page;
47 struct address_space *mapping;
48
49 lock_page(page);
50
51 mapping = page_mapping(page);
52 if (mapping) {
53 WARN_ON(!PageUptodate(page));
54
55 /*
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
61 * ensues.
62 */
63 wait_on_page_writeback(page);
64
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
67 goto out_unlock;
68
69 /*
70 * If we succeeded in removing the mapping, set LRU flag
71 * and return good.
72 */
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
75 return 0;
76 }
77 }
78
79 /*
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
82 */
83out_unlock:
84 unlock_page(page);
85 return 1;
86}
87
88static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
90{
91 put_page(buf->page);
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
93}
94
95/*
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
98 */
99static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
101{
102 struct page *page = buf->page;
103 int err;
104
105 if (!PageUptodate(page)) {
106 lock_page(page);
107
108 /*
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
111 */
112 if (!page->mapping) {
113 err = -ENODATA;
114 goto error;
115 }
116
117 /*
118 * Uh oh, read-error from disk.
119 */
120 if (!PageUptodate(page)) {
121 err = -EIO;
122 goto error;
123 }
124
125 /*
126 * Page is ok afterall, we are done.
127 */
128 unlock_page(page);
129 }
130
131 return 0;
132error:
133 unlock_page(page);
134 return err;
135}
136
137const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 .can_merge = 0,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143};
144
145static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147{
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153}
154
155static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .confirm = generic_pipe_buf_confirm,
158 .release = page_cache_pipe_buf_release,
159 .steal = user_page_pipe_buf_steal,
160 .get = generic_pipe_buf_get,
161};
162
163static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164{
165 smp_mb();
166 if (waitqueue_active(&pipe->wait))
167 wake_up_interruptible(&pipe->wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169}
170
171/**
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
175 *
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
180 *
181 */
182ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
184{
185 unsigned int spd_pages = spd->nr_pages;
186 int ret, do_wakeup, page_nr;
187
188 if (!spd_pages)
189 return 0;
190
191 ret = 0;
192 do_wakeup = 0;
193 page_nr = 0;
194
195 pipe_lock(pipe);
196
197 for (;;) {
198 if (!pipe->readers) {
199 send_sig(SIGPIPE, current, 0);
200 if (!ret)
201 ret = -EPIPE;
202 break;
203 }
204
205 if (pipe->nrbufs < pipe->buffers) {
206 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
207 struct pipe_buffer *buf = pipe->bufs + newbuf;
208
209 buf->page = spd->pages[page_nr];
210 buf->offset = spd->partial[page_nr].offset;
211 buf->len = spd->partial[page_nr].len;
212 buf->private = spd->partial[page_nr].private;
213 buf->ops = spd->ops;
214 if (spd->flags & SPLICE_F_GIFT)
215 buf->flags |= PIPE_BUF_FLAG_GIFT;
216
217 pipe->nrbufs++;
218 page_nr++;
219 ret += buf->len;
220
221 if (pipe->files)
222 do_wakeup = 1;
223
224 if (!--spd->nr_pages)
225 break;
226 if (pipe->nrbufs < pipe->buffers)
227 continue;
228
229 break;
230 }
231
232 if (spd->flags & SPLICE_F_NONBLOCK) {
233 if (!ret)
234 ret = -EAGAIN;
235 break;
236 }
237
238 if (signal_pending(current)) {
239 if (!ret)
240 ret = -ERESTARTSYS;
241 break;
242 }
243
244 if (do_wakeup) {
245 smp_mb();
246 if (waitqueue_active(&pipe->wait))
247 wake_up_interruptible_sync(&pipe->wait);
248 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
249 do_wakeup = 0;
250 }
251
252 pipe->waiting_writers++;
253 pipe_wait(pipe);
254 pipe->waiting_writers--;
255 }
256
257 pipe_unlock(pipe);
258
259 if (do_wakeup)
260 wakeup_pipe_readers(pipe);
261
262 while (page_nr < spd_pages)
263 spd->spd_release(spd, page_nr++);
264
265 return ret;
266}
267EXPORT_SYMBOL_GPL(splice_to_pipe);
268
269void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
270{
271 put_page(spd->pages[i]);
272}
273
274/*
275 * Check if we need to grow the arrays holding pages and partial page
276 * descriptions.
277 */
278int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
279{
280 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
281
282 spd->nr_pages_max = buffers;
283 if (buffers <= PIPE_DEF_BUFFERS)
284 return 0;
285
286 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
287 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
288
289 if (spd->pages && spd->partial)
290 return 0;
291
292 kfree(spd->pages);
293 kfree(spd->partial);
294 return -ENOMEM;
295}
296
297void splice_shrink_spd(struct splice_pipe_desc *spd)
298{
299 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
300 return;
301
302 kfree(spd->pages);
303 kfree(spd->partial);
304}
305
306static int
307__generic_file_splice_read(struct file *in, loff_t *ppos,
308 struct pipe_inode_info *pipe, size_t len,
309 unsigned int flags)
310{
311 struct address_space *mapping = in->f_mapping;
312 unsigned int loff, nr_pages, req_pages;
313 struct page *pages[PIPE_DEF_BUFFERS];
314 struct partial_page partial[PIPE_DEF_BUFFERS];
315 struct page *page;
316 pgoff_t index, end_index;
317 loff_t isize;
318 int error, page_nr;
319 struct splice_pipe_desc spd = {
320 .pages = pages,
321 .partial = partial,
322 .nr_pages_max = PIPE_DEF_BUFFERS,
323 .flags = flags,
324 .ops = &page_cache_pipe_buf_ops,
325 .spd_release = spd_release_page,
326 };
327
328 if (splice_grow_spd(pipe, &spd))
329 return -ENOMEM;
330
331 index = *ppos >> PAGE_SHIFT;
332 loff = *ppos & ~PAGE_MASK;
333 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
334 nr_pages = min(req_pages, spd.nr_pages_max);
335
336 /*
337 * Lookup the (hopefully) full range of pages we need.
338 */
339 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
340 index += spd.nr_pages;
341
342 /*
343 * If find_get_pages_contig() returned fewer pages than we needed,
344 * readahead/allocate the rest and fill in the holes.
345 */
346 if (spd.nr_pages < nr_pages)
347 page_cache_sync_readahead(mapping, &in->f_ra, in,
348 index, req_pages - spd.nr_pages);
349
350 error = 0;
351 while (spd.nr_pages < nr_pages) {
352 /*
353 * Page could be there, find_get_pages_contig() breaks on
354 * the first hole.
355 */
356 page = find_get_page(mapping, index);
357 if (!page) {
358 /*
359 * page didn't exist, allocate one.
360 */
361 page = page_cache_alloc_cold(mapping);
362 if (!page)
363 break;
364
365 error = add_to_page_cache_lru(page, mapping, index,
366 mapping_gfp_constraint(mapping, GFP_KERNEL));
367 if (unlikely(error)) {
368 put_page(page);
369 if (error == -EEXIST)
370 continue;
371 break;
372 }
373 /*
374 * add_to_page_cache() locks the page, unlock it
375 * to avoid convoluting the logic below even more.
376 */
377 unlock_page(page);
378 }
379
380 spd.pages[spd.nr_pages++] = page;
381 index++;
382 }
383
384 /*
385 * Now loop over the map and see if we need to start IO on any
386 * pages, fill in the partial map, etc.
387 */
388 index = *ppos >> PAGE_SHIFT;
389 nr_pages = spd.nr_pages;
390 spd.nr_pages = 0;
391 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
392 unsigned int this_len;
393
394 if (!len)
395 break;
396
397 /*
398 * this_len is the max we'll use from this page
399 */
400 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
401 page = spd.pages[page_nr];
402
403 if (PageReadahead(page))
404 page_cache_async_readahead(mapping, &in->f_ra, in,
405 page, index, req_pages - page_nr);
406
407 /*
408 * If the page isn't uptodate, we may need to start io on it
409 */
410 if (!PageUptodate(page)) {
411 lock_page(page);
412
413 /*
414 * Page was truncated, or invalidated by the
415 * filesystem. Redo the find/create, but this time the
416 * page is kept locked, so there's no chance of another
417 * race with truncate/invalidate.
418 */
419 if (!page->mapping) {
420 unlock_page(page);
421retry_lookup:
422 page = find_or_create_page(mapping, index,
423 mapping_gfp_mask(mapping));
424
425 if (!page) {
426 error = -ENOMEM;
427 break;
428 }
429 put_page(spd.pages[page_nr]);
430 spd.pages[page_nr] = page;
431 }
432 /*
433 * page was already under io and is now done, great
434 */
435 if (PageUptodate(page)) {
436 unlock_page(page);
437 goto fill_it;
438 }
439
440 /*
441 * need to read in the page
442 */
443 error = mapping->a_ops->readpage(in, page);
444 if (unlikely(error)) {
445 /*
446 * Re-lookup the page
447 */
448 if (error == AOP_TRUNCATED_PAGE)
449 goto retry_lookup;
450
451 break;
452 }
453 }
454fill_it:
455 /*
456 * i_size must be checked after PageUptodate.
457 */
458 isize = i_size_read(mapping->host);
459 end_index = (isize - 1) >> PAGE_SHIFT;
460 if (unlikely(!isize || index > end_index))
461 break;
462
463 /*
464 * if this is the last page, see if we need to shrink
465 * the length and stop
466 */
467 if (end_index == index) {
468 unsigned int plen;
469
470 /*
471 * max good bytes in this page
472 */
473 plen = ((isize - 1) & ~PAGE_MASK) + 1;
474 if (plen <= loff)
475 break;
476
477 /*
478 * force quit after adding this page
479 */
480 this_len = min(this_len, plen - loff);
481 len = this_len;
482 }
483
484 spd.partial[page_nr].offset = loff;
485 spd.partial[page_nr].len = this_len;
486 len -= this_len;
487 loff = 0;
488 spd.nr_pages++;
489 index++;
490 }
491
492 /*
493 * Release any pages at the end, if we quit early. 'page_nr' is how far
494 * we got, 'nr_pages' is how many pages are in the map.
495 */
496 while (page_nr < nr_pages)
497 put_page(spd.pages[page_nr++]);
498 in->f_ra.prev_pos = (loff_t)index << PAGE_SHIFT;
499
500 if (spd.nr_pages)
501 error = splice_to_pipe(pipe, &spd);
502
503 splice_shrink_spd(&spd);
504 return error;
505}
506
507/**
508 * generic_file_splice_read - splice data from file to a pipe
509 * @in: file to splice from
510 * @ppos: position in @in
511 * @pipe: pipe to splice to
512 * @len: number of bytes to splice
513 * @flags: splice modifier flags
514 *
515 * Description:
516 * Will read pages from given file and fill them into a pipe. Can be
517 * used as long as the address_space operations for the source implements
518 * a readpage() hook.
519 *
520 */
521ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
522 struct pipe_inode_info *pipe, size_t len,
523 unsigned int flags)
524{
525 loff_t isize, left;
526 int ret;
527
528 if (IS_DAX(in->f_mapping->host))
529 return default_file_splice_read(in, ppos, pipe, len, flags);
530
531 isize = i_size_read(in->f_mapping->host);
532 if (unlikely(*ppos >= isize))
533 return 0;
534
535 left = isize - *ppos;
536 if (unlikely(left < len))
537 len = left;
538
539 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
540 if (ret > 0) {
541 *ppos += ret;
542 file_accessed(in);
543 }
544
545 return ret;
546}
547EXPORT_SYMBOL(generic_file_splice_read);
548
549static const struct pipe_buf_operations default_pipe_buf_ops = {
550 .can_merge = 0,
551 .confirm = generic_pipe_buf_confirm,
552 .release = generic_pipe_buf_release,
553 .steal = generic_pipe_buf_steal,
554 .get = generic_pipe_buf_get,
555};
556
557static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
558 struct pipe_buffer *buf)
559{
560 return 1;
561}
562
563/* Pipe buffer operations for a socket and similar. */
564const struct pipe_buf_operations nosteal_pipe_buf_ops = {
565 .can_merge = 0,
566 .confirm = generic_pipe_buf_confirm,
567 .release = generic_pipe_buf_release,
568 .steal = generic_pipe_buf_nosteal,
569 .get = generic_pipe_buf_get,
570};
571EXPORT_SYMBOL(nosteal_pipe_buf_ops);
572
573static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
574 unsigned long vlen, loff_t offset)
575{
576 mm_segment_t old_fs;
577 loff_t pos = offset;
578 ssize_t res;
579
580 old_fs = get_fs();
581 set_fs(get_ds());
582 /* The cast to a user pointer is valid due to the set_fs() */
583 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
584 set_fs(old_fs);
585
586 return res;
587}
588
589ssize_t kernel_write(struct file *file, const char *buf, size_t count,
590 loff_t pos)
591{
592 mm_segment_t old_fs;
593 ssize_t res;
594
595 old_fs = get_fs();
596 set_fs(get_ds());
597 /* The cast to a user pointer is valid due to the set_fs() */
598 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
599 set_fs(old_fs);
600
601 return res;
602}
603EXPORT_SYMBOL(kernel_write);
604
605ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
606 struct pipe_inode_info *pipe, size_t len,
607 unsigned int flags)
608{
609 unsigned int nr_pages;
610 unsigned int nr_freed;
611 size_t offset;
612 struct page *pages[PIPE_DEF_BUFFERS];
613 struct partial_page partial[PIPE_DEF_BUFFERS];
614 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
615 ssize_t res;
616 size_t this_len;
617 int error;
618 int i;
619 struct splice_pipe_desc spd = {
620 .pages = pages,
621 .partial = partial,
622 .nr_pages_max = PIPE_DEF_BUFFERS,
623 .flags = flags,
624 .ops = &default_pipe_buf_ops,
625 .spd_release = spd_release_page,
626 };
627
628 if (splice_grow_spd(pipe, &spd))
629 return -ENOMEM;
630
631 res = -ENOMEM;
632 vec = __vec;
633 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
634 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
635 if (!vec)
636 goto shrink_ret;
637 }
638
639 offset = *ppos & ~PAGE_MASK;
640 nr_pages = (len + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
641
642 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
643 struct page *page;
644
645 page = alloc_page(GFP_USER);
646 error = -ENOMEM;
647 if (!page)
648 goto err;
649
650 this_len = min_t(size_t, len, PAGE_SIZE - offset);
651 vec[i].iov_base = (void __user *) page_address(page);
652 vec[i].iov_len = this_len;
653 spd.pages[i] = page;
654 spd.nr_pages++;
655 len -= this_len;
656 offset = 0;
657 }
658
659 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
660 if (res < 0) {
661 error = res;
662 goto err;
663 }
664
665 error = 0;
666 if (!res)
667 goto err;
668
669 nr_freed = 0;
670 for (i = 0; i < spd.nr_pages; i++) {
671 this_len = min_t(size_t, vec[i].iov_len, res);
672 spd.partial[i].offset = 0;
673 spd.partial[i].len = this_len;
674 if (!this_len) {
675 __free_page(spd.pages[i]);
676 spd.pages[i] = NULL;
677 nr_freed++;
678 }
679 res -= this_len;
680 }
681 spd.nr_pages -= nr_freed;
682
683 res = splice_to_pipe(pipe, &spd);
684 if (res > 0)
685 *ppos += res;
686
687shrink_ret:
688 if (vec != __vec)
689 kfree(vec);
690 splice_shrink_spd(&spd);
691 return res;
692
693err:
694 for (i = 0; i < spd.nr_pages; i++)
695 __free_page(spd.pages[i]);
696
697 res = error;
698 goto shrink_ret;
699}
700EXPORT_SYMBOL(default_file_splice_read);
701
702/*
703 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
704 * using sendpage(). Return the number of bytes sent.
705 */
706static int pipe_to_sendpage(struct pipe_inode_info *pipe,
707 struct pipe_buffer *buf, struct splice_desc *sd)
708{
709 struct file *file = sd->u.file;
710 loff_t pos = sd->pos;
711 int more;
712
713 if (!likely(file->f_op->sendpage))
714 return -EINVAL;
715
716 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
717
718 if (sd->len < sd->total_len && pipe->nrbufs > 1)
719 more |= MSG_SENDPAGE_NOTLAST;
720
721 return file->f_op->sendpage(file, buf->page, buf->offset,
722 sd->len, &pos, more);
723}
724
725static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
726{
727 smp_mb();
728 if (waitqueue_active(&pipe->wait))
729 wake_up_interruptible(&pipe->wait);
730 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
731}
732
733/**
734 * splice_from_pipe_feed - feed available data from a pipe to a file
735 * @pipe: pipe to splice from
736 * @sd: information to @actor
737 * @actor: handler that splices the data
738 *
739 * Description:
740 * This function loops over the pipe and calls @actor to do the
741 * actual moving of a single struct pipe_buffer to the desired
742 * destination. It returns when there's no more buffers left in
743 * the pipe or if the requested number of bytes (@sd->total_len)
744 * have been copied. It returns a positive number (one) if the
745 * pipe needs to be filled with more data, zero if the required
746 * number of bytes have been copied and -errno on error.
747 *
748 * This, together with splice_from_pipe_{begin,end,next}, may be
749 * used to implement the functionality of __splice_from_pipe() when
750 * locking is required around copying the pipe buffers to the
751 * destination.
752 */
753static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
754 splice_actor *actor)
755{
756 int ret;
757
758 while (pipe->nrbufs) {
759 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
760 const struct pipe_buf_operations *ops = buf->ops;
761
762 sd->len = buf->len;
763 if (sd->len > sd->total_len)
764 sd->len = sd->total_len;
765
766 ret = buf->ops->confirm(pipe, buf);
767 if (unlikely(ret)) {
768 if (ret == -ENODATA)
769 ret = 0;
770 return ret;
771 }
772
773 ret = actor(pipe, buf, sd);
774 if (ret <= 0)
775 return ret;
776
777 buf->offset += ret;
778 buf->len -= ret;
779
780 sd->num_spliced += ret;
781 sd->len -= ret;
782 sd->pos += ret;
783 sd->total_len -= ret;
784
785 if (!buf->len) {
786 buf->ops = NULL;
787 ops->release(pipe, buf);
788 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
789 pipe->nrbufs--;
790 if (pipe->files)
791 sd->need_wakeup = true;
792 }
793
794 if (!sd->total_len)
795 return 0;
796 }
797
798 return 1;
799}
800
801/**
802 * splice_from_pipe_next - wait for some data to splice from
803 * @pipe: pipe to splice from
804 * @sd: information about the splice operation
805 *
806 * Description:
807 * This function will wait for some data and return a positive
808 * value (one) if pipe buffers are available. It will return zero
809 * or -errno if no more data needs to be spliced.
810 */
811static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
812{
813 /*
814 * Check for signal early to make process killable when there are
815 * always buffers available
816 */
817 if (signal_pending(current))
818 return -ERESTARTSYS;
819
820 while (!pipe->nrbufs) {
821 if (!pipe->writers)
822 return 0;
823
824 if (!pipe->waiting_writers && sd->num_spliced)
825 return 0;
826
827 if (sd->flags & SPLICE_F_NONBLOCK)
828 return -EAGAIN;
829
830 if (signal_pending(current))
831 return -ERESTARTSYS;
832
833 if (sd->need_wakeup) {
834 wakeup_pipe_writers(pipe);
835 sd->need_wakeup = false;
836 }
837
838 pipe_wait(pipe);
839 }
840
841 return 1;
842}
843
844/**
845 * splice_from_pipe_begin - start splicing from pipe
846 * @sd: information about the splice operation
847 *
848 * Description:
849 * This function should be called before a loop containing
850 * splice_from_pipe_next() and splice_from_pipe_feed() to
851 * initialize the necessary fields of @sd.
852 */
853static void splice_from_pipe_begin(struct splice_desc *sd)
854{
855 sd->num_spliced = 0;
856 sd->need_wakeup = false;
857}
858
859/**
860 * splice_from_pipe_end - finish splicing from pipe
861 * @pipe: pipe to splice from
862 * @sd: information about the splice operation
863 *
864 * Description:
865 * This function will wake up pipe writers if necessary. It should
866 * be called after a loop containing splice_from_pipe_next() and
867 * splice_from_pipe_feed().
868 */
869static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
870{
871 if (sd->need_wakeup)
872 wakeup_pipe_writers(pipe);
873}
874
875/**
876 * __splice_from_pipe - splice data from a pipe to given actor
877 * @pipe: pipe to splice from
878 * @sd: information to @actor
879 * @actor: handler that splices the data
880 *
881 * Description:
882 * This function does little more than loop over the pipe and call
883 * @actor to do the actual moving of a single struct pipe_buffer to
884 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
885 * pipe_to_user.
886 *
887 */
888ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
889 splice_actor *actor)
890{
891 int ret;
892
893 splice_from_pipe_begin(sd);
894 do {
895 cond_resched();
896 ret = splice_from_pipe_next(pipe, sd);
897 if (ret > 0)
898 ret = splice_from_pipe_feed(pipe, sd, actor);
899 } while (ret > 0);
900 splice_from_pipe_end(pipe, sd);
901
902 return sd->num_spliced ? sd->num_spliced : ret;
903}
904EXPORT_SYMBOL(__splice_from_pipe);
905
906/**
907 * splice_from_pipe - splice data from a pipe to a file
908 * @pipe: pipe to splice from
909 * @out: file to splice to
910 * @ppos: position in @out
911 * @len: how many bytes to splice
912 * @flags: splice modifier flags
913 * @actor: handler that splices the data
914 *
915 * Description:
916 * See __splice_from_pipe. This function locks the pipe inode,
917 * otherwise it's identical to __splice_from_pipe().
918 *
919 */
920ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
921 loff_t *ppos, size_t len, unsigned int flags,
922 splice_actor *actor)
923{
924 ssize_t ret;
925 struct splice_desc sd = {
926 .total_len = len,
927 .flags = flags,
928 .pos = *ppos,
929 .u.file = out,
930 };
931
932 pipe_lock(pipe);
933 ret = __splice_from_pipe(pipe, &sd, actor);
934 pipe_unlock(pipe);
935
936 return ret;
937}
938
939/**
940 * iter_file_splice_write - splice data from a pipe to a file
941 * @pipe: pipe info
942 * @out: file to write to
943 * @ppos: position in @out
944 * @len: number of bytes to splice
945 * @flags: splice modifier flags
946 *
947 * Description:
948 * Will either move or copy pages (determined by @flags options) from
949 * the given pipe inode to the given file.
950 * This one is ->write_iter-based.
951 *
952 */
953ssize_t
954iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
955 loff_t *ppos, size_t len, unsigned int flags)
956{
957 struct splice_desc sd = {
958 .total_len = len,
959 .flags = flags,
960 .pos = *ppos,
961 .u.file = out,
962 };
963 int nbufs = pipe->buffers;
964 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
965 GFP_KERNEL);
966 ssize_t ret;
967
968 if (unlikely(!array))
969 return -ENOMEM;
970
971 pipe_lock(pipe);
972
973 splice_from_pipe_begin(&sd);
974 while (sd.total_len) {
975 struct iov_iter from;
976 size_t left;
977 int n, idx;
978
979 ret = splice_from_pipe_next(pipe, &sd);
980 if (ret <= 0)
981 break;
982
983 if (unlikely(nbufs < pipe->buffers)) {
984 kfree(array);
985 nbufs = pipe->buffers;
986 array = kcalloc(nbufs, sizeof(struct bio_vec),
987 GFP_KERNEL);
988 if (!array) {
989 ret = -ENOMEM;
990 break;
991 }
992 }
993
994 /* build the vector */
995 left = sd.total_len;
996 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
997 struct pipe_buffer *buf = pipe->bufs + idx;
998 size_t this_len = buf->len;
999
1000 if (this_len > left)
1001 this_len = left;
1002
1003 if (idx == pipe->buffers - 1)
1004 idx = -1;
1005
1006 ret = buf->ops->confirm(pipe, buf);
1007 if (unlikely(ret)) {
1008 if (ret == -ENODATA)
1009 ret = 0;
1010 goto done;
1011 }
1012
1013 array[n].bv_page = buf->page;
1014 array[n].bv_len = this_len;
1015 array[n].bv_offset = buf->offset;
1016 left -= this_len;
1017 }
1018
1019 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1020 sd.total_len - left);
1021 ret = vfs_iter_write(out, &from, &sd.pos);
1022 if (ret <= 0)
1023 break;
1024
1025 sd.num_spliced += ret;
1026 sd.total_len -= ret;
1027 *ppos = sd.pos;
1028
1029 /* dismiss the fully eaten buffers, adjust the partial one */
1030 while (ret) {
1031 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1032 if (ret >= buf->len) {
1033 const struct pipe_buf_operations *ops = buf->ops;
1034 ret -= buf->len;
1035 buf->len = 0;
1036 buf->ops = NULL;
1037 ops->release(pipe, buf);
1038 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1039 pipe->nrbufs--;
1040 if (pipe->files)
1041 sd.need_wakeup = true;
1042 } else {
1043 buf->offset += ret;
1044 buf->len -= ret;
1045 ret = 0;
1046 }
1047 }
1048 }
1049done:
1050 kfree(array);
1051 splice_from_pipe_end(pipe, &sd);
1052
1053 pipe_unlock(pipe);
1054
1055 if (sd.num_spliced)
1056 ret = sd.num_spliced;
1057
1058 return ret;
1059}
1060
1061EXPORT_SYMBOL(iter_file_splice_write);
1062
1063static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1064 struct splice_desc *sd)
1065{
1066 int ret;
1067 void *data;
1068 loff_t tmp = sd->pos;
1069
1070 data = kmap(buf->page);
1071 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1072 kunmap(buf->page);
1073
1074 return ret;
1075}
1076
1077static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1078 struct file *out, loff_t *ppos,
1079 size_t len, unsigned int flags)
1080{
1081 ssize_t ret;
1082
1083 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1084 if (ret > 0)
1085 *ppos += ret;
1086
1087 return ret;
1088}
1089
1090/**
1091 * generic_splice_sendpage - splice data from a pipe to a socket
1092 * @pipe: pipe to splice from
1093 * @out: socket to write to
1094 * @ppos: position in @out
1095 * @len: number of bytes to splice
1096 * @flags: splice modifier flags
1097 *
1098 * Description:
1099 * Will send @len bytes from the pipe to a network socket. No data copying
1100 * is involved.
1101 *
1102 */
1103ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1104 loff_t *ppos, size_t len, unsigned int flags)
1105{
1106 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1107}
1108
1109EXPORT_SYMBOL(generic_splice_sendpage);
1110
1111/*
1112 * Attempt to initiate a splice from pipe to file.
1113 */
1114static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1115 loff_t *ppos, size_t len, unsigned int flags)
1116{
1117 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1118 loff_t *, size_t, unsigned int);
1119
1120 if (out->f_op->splice_write)
1121 splice_write = out->f_op->splice_write;
1122 else
1123 splice_write = default_file_splice_write;
1124
1125 return splice_write(pipe, out, ppos, len, flags);
1126}
1127
1128/*
1129 * Attempt to initiate a splice from a file to a pipe.
1130 */
1131static long do_splice_to(struct file *in, loff_t *ppos,
1132 struct pipe_inode_info *pipe, size_t len,
1133 unsigned int flags)
1134{
1135 ssize_t (*splice_read)(struct file *, loff_t *,
1136 struct pipe_inode_info *, size_t, unsigned int);
1137 int ret;
1138
1139 if (unlikely(!(in->f_mode & FMODE_READ)))
1140 return -EBADF;
1141
1142 ret = rw_verify_area(READ, in, ppos, len);
1143 if (unlikely(ret < 0))
1144 return ret;
1145
1146 if (unlikely(len > MAX_RW_COUNT))
1147 len = MAX_RW_COUNT;
1148
1149 if (in->f_op->splice_read)
1150 splice_read = in->f_op->splice_read;
1151 else
1152 splice_read = default_file_splice_read;
1153
1154 return splice_read(in, ppos, pipe, len, flags);
1155}
1156
1157/**
1158 * splice_direct_to_actor - splices data directly between two non-pipes
1159 * @in: file to splice from
1160 * @sd: actor information on where to splice to
1161 * @actor: handles the data splicing
1162 *
1163 * Description:
1164 * This is a special case helper to splice directly between two
1165 * points, without requiring an explicit pipe. Internally an allocated
1166 * pipe is cached in the process, and reused during the lifetime of
1167 * that process.
1168 *
1169 */
1170ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1171 splice_direct_actor *actor)
1172{
1173 struct pipe_inode_info *pipe;
1174 long ret, bytes;
1175 umode_t i_mode;
1176 size_t len;
1177 int i, flags, more;
1178
1179 /*
1180 * We require the input being a regular file, as we don't want to
1181 * randomly drop data for eg socket -> socket splicing. Use the
1182 * piped splicing for that!
1183 */
1184 i_mode = file_inode(in)->i_mode;
1185 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1186 return -EINVAL;
1187
1188 /*
1189 * neither in nor out is a pipe, setup an internal pipe attached to
1190 * 'out' and transfer the wanted data from 'in' to 'out' through that
1191 */
1192 pipe = current->splice_pipe;
1193 if (unlikely(!pipe)) {
1194 pipe = alloc_pipe_info();
1195 if (!pipe)
1196 return -ENOMEM;
1197
1198 /*
1199 * We don't have an immediate reader, but we'll read the stuff
1200 * out of the pipe right after the splice_to_pipe(). So set
1201 * PIPE_READERS appropriately.
1202 */
1203 pipe->readers = 1;
1204
1205 current->splice_pipe = pipe;
1206 }
1207
1208 /*
1209 * Do the splice.
1210 */
1211 ret = 0;
1212 bytes = 0;
1213 len = sd->total_len;
1214 flags = sd->flags;
1215
1216 /*
1217 * Don't block on output, we have to drain the direct pipe.
1218 */
1219 sd->flags &= ~SPLICE_F_NONBLOCK;
1220 more = sd->flags & SPLICE_F_MORE;
1221
1222 while (len) {
1223 size_t read_len;
1224 loff_t pos = sd->pos, prev_pos = pos;
1225
1226 ret = do_splice_to(in, &pos, pipe, len, flags);
1227 if (unlikely(ret <= 0))
1228 goto out_release;
1229
1230 read_len = ret;
1231 sd->total_len = read_len;
1232
1233 /*
1234 * If more data is pending, set SPLICE_F_MORE
1235 * If this is the last data and SPLICE_F_MORE was not set
1236 * initially, clears it.
1237 */
1238 if (read_len < len)
1239 sd->flags |= SPLICE_F_MORE;
1240 else if (!more)
1241 sd->flags &= ~SPLICE_F_MORE;
1242 /*
1243 * NOTE: nonblocking mode only applies to the input. We
1244 * must not do the output in nonblocking mode as then we
1245 * could get stuck data in the internal pipe:
1246 */
1247 ret = actor(pipe, sd);
1248 if (unlikely(ret <= 0)) {
1249 sd->pos = prev_pos;
1250 goto out_release;
1251 }
1252
1253 bytes += ret;
1254 len -= ret;
1255 sd->pos = pos;
1256
1257 if (ret < read_len) {
1258 sd->pos = prev_pos + ret;
1259 goto out_release;
1260 }
1261 }
1262
1263done:
1264 pipe->nrbufs = pipe->curbuf = 0;
1265 file_accessed(in);
1266 return bytes;
1267
1268out_release:
1269 /*
1270 * If we did an incomplete transfer we must release
1271 * the pipe buffers in question:
1272 */
1273 for (i = 0; i < pipe->buffers; i++) {
1274 struct pipe_buffer *buf = pipe->bufs + i;
1275
1276 if (buf->ops) {
1277 buf->ops->release(pipe, buf);
1278 buf->ops = NULL;
1279 }
1280 }
1281
1282 if (!bytes)
1283 bytes = ret;
1284
1285 goto done;
1286}
1287EXPORT_SYMBOL(splice_direct_to_actor);
1288
1289static int direct_splice_actor(struct pipe_inode_info *pipe,
1290 struct splice_desc *sd)
1291{
1292 struct file *file = sd->u.file;
1293
1294 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1295 sd->flags);
1296}
1297
1298/**
1299 * do_splice_direct - splices data directly between two files
1300 * @in: file to splice from
1301 * @ppos: input file offset
1302 * @out: file to splice to
1303 * @opos: output file offset
1304 * @len: number of bytes to splice
1305 * @flags: splice modifier flags
1306 *
1307 * Description:
1308 * For use by do_sendfile(). splice can easily emulate sendfile, but
1309 * doing it in the application would incur an extra system call
1310 * (splice in + splice out, as compared to just sendfile()). So this helper
1311 * can splice directly through a process-private pipe.
1312 *
1313 */
1314long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1315 loff_t *opos, size_t len, unsigned int flags)
1316{
1317 struct splice_desc sd = {
1318 .len = len,
1319 .total_len = len,
1320 .flags = flags,
1321 .pos = *ppos,
1322 .u.file = out,
1323 .opos = opos,
1324 };
1325 long ret;
1326
1327 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1328 return -EBADF;
1329
1330 if (unlikely(out->f_flags & O_APPEND))
1331 return -EINVAL;
1332
1333 ret = rw_verify_area(WRITE, out, opos, len);
1334 if (unlikely(ret < 0))
1335 return ret;
1336
1337 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1338 if (ret > 0)
1339 *ppos = sd.pos;
1340
1341 return ret;
1342}
1343EXPORT_SYMBOL(do_splice_direct);
1344
1345static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1346 struct pipe_inode_info *opipe,
1347 size_t len, unsigned int flags);
1348
1349/*
1350 * Determine where to splice to/from.
1351 */
1352static long do_splice(struct file *in, loff_t __user *off_in,
1353 struct file *out, loff_t __user *off_out,
1354 size_t len, unsigned int flags)
1355{
1356 struct pipe_inode_info *ipipe;
1357 struct pipe_inode_info *opipe;
1358 loff_t offset;
1359 long ret;
1360
1361 ipipe = get_pipe_info(in);
1362 opipe = get_pipe_info(out);
1363
1364 if (ipipe && opipe) {
1365 if (off_in || off_out)
1366 return -ESPIPE;
1367
1368 if (!(in->f_mode & FMODE_READ))
1369 return -EBADF;
1370
1371 if (!(out->f_mode & FMODE_WRITE))
1372 return -EBADF;
1373
1374 /* Splicing to self would be fun, but... */
1375 if (ipipe == opipe)
1376 return -EINVAL;
1377
1378 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1379 }
1380
1381 if (ipipe) {
1382 if (off_in)
1383 return -ESPIPE;
1384 if (off_out) {
1385 if (!(out->f_mode & FMODE_PWRITE))
1386 return -EINVAL;
1387 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1388 return -EFAULT;
1389 } else {
1390 offset = out->f_pos;
1391 }
1392
1393 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1394 return -EBADF;
1395
1396 if (unlikely(out->f_flags & O_APPEND))
1397 return -EINVAL;
1398
1399 ret = rw_verify_area(WRITE, out, &offset, len);
1400 if (unlikely(ret < 0))
1401 return ret;
1402
1403 file_start_write(out);
1404 ret = do_splice_from(ipipe, out, &offset, len, flags);
1405 file_end_write(out);
1406
1407 if (!off_out)
1408 out->f_pos = offset;
1409 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1410 ret = -EFAULT;
1411
1412 return ret;
1413 }
1414
1415 if (opipe) {
1416 if (off_out)
1417 return -ESPIPE;
1418 if (off_in) {
1419 if (!(in->f_mode & FMODE_PREAD))
1420 return -EINVAL;
1421 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1422 return -EFAULT;
1423 } else {
1424 offset = in->f_pos;
1425 }
1426
1427 ret = do_splice_to(in, &offset, opipe, len, flags);
1428
1429 if (!off_in)
1430 in->f_pos = offset;
1431 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1432 ret = -EFAULT;
1433
1434 return ret;
1435 }
1436
1437 return -EINVAL;
1438}
1439
1440/*
1441 * Map an iov into an array of pages and offset/length tupples. With the
1442 * partial_page structure, we can map several non-contiguous ranges into
1443 * our ones pages[] map instead of splitting that operation into pieces.
1444 * Could easily be exported as a generic helper for other users, in which
1445 * case one would probably want to add a 'max_nr_pages' parameter as well.
1446 */
1447static int get_iovec_page_array(const struct iovec __user *iov,
1448 unsigned int nr_vecs, struct page **pages,
1449 struct partial_page *partial, bool aligned,
1450 unsigned int pipe_buffers)
1451{
1452 int buffers = 0, error = 0;
1453
1454 while (nr_vecs) {
1455 unsigned long off, npages;
1456 struct iovec entry;
1457 void __user *base;
1458 size_t len;
1459 int i;
1460
1461 error = -EFAULT;
1462 if (copy_from_user(&entry, iov, sizeof(entry)))
1463 break;
1464
1465 base = entry.iov_base;
1466 len = entry.iov_len;
1467
1468 /*
1469 * Sanity check this iovec. 0 read succeeds.
1470 */
1471 error = 0;
1472 if (unlikely(!len))
1473 break;
1474 error = -EFAULT;
1475 if (!access_ok(VERIFY_READ, base, len))
1476 break;
1477
1478 /*
1479 * Get this base offset and number of pages, then map
1480 * in the user pages.
1481 */
1482 off = (unsigned long) base & ~PAGE_MASK;
1483
1484 /*
1485 * If asked for alignment, the offset must be zero and the
1486 * length a multiple of the PAGE_SIZE.
1487 */
1488 error = -EINVAL;
1489 if (aligned && (off || len & ~PAGE_MASK))
1490 break;
1491
1492 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1493 if (npages > pipe_buffers - buffers)
1494 npages = pipe_buffers - buffers;
1495
1496 error = get_user_pages_fast((unsigned long)base, npages,
1497 0, &pages[buffers]);
1498
1499 if (unlikely(error <= 0))
1500 break;
1501
1502 /*
1503 * Fill this contiguous range into the partial page map.
1504 */
1505 for (i = 0; i < error; i++) {
1506 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1507
1508 partial[buffers].offset = off;
1509 partial[buffers].len = plen;
1510
1511 off = 0;
1512 len -= plen;
1513 buffers++;
1514 }
1515
1516 /*
1517 * We didn't complete this iov, stop here since it probably
1518 * means we have to move some of this into a pipe to
1519 * be able to continue.
1520 */
1521 if (len)
1522 break;
1523
1524 /*
1525 * Don't continue if we mapped fewer pages than we asked for,
1526 * or if we mapped the max number of pages that we have
1527 * room for.
1528 */
1529 if (error < npages || buffers == pipe_buffers)
1530 break;
1531
1532 nr_vecs--;
1533 iov++;
1534 }
1535
1536 if (buffers)
1537 return buffers;
1538
1539 return error;
1540}
1541
1542static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1543 struct splice_desc *sd)
1544{
1545 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1546 return n == sd->len ? n : -EFAULT;
1547}
1548
1549/*
1550 * For lack of a better implementation, implement vmsplice() to userspace
1551 * as a simple copy of the pipes pages to the user iov.
1552 */
1553static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1554 unsigned long nr_segs, unsigned int flags)
1555{
1556 struct pipe_inode_info *pipe;
1557 struct splice_desc sd;
1558 long ret;
1559 struct iovec iovstack[UIO_FASTIOV];
1560 struct iovec *iov = iovstack;
1561 struct iov_iter iter;
1562
1563 pipe = get_pipe_info(file);
1564 if (!pipe)
1565 return -EBADF;
1566
1567 ret = import_iovec(READ, uiov, nr_segs,
1568 ARRAY_SIZE(iovstack), &iov, &iter);
1569 if (ret < 0)
1570 return ret;
1571
1572 sd.total_len = iov_iter_count(&iter);
1573 sd.len = 0;
1574 sd.flags = flags;
1575 sd.u.data = &iter;
1576 sd.pos = 0;
1577
1578 if (sd.total_len) {
1579 pipe_lock(pipe);
1580 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1581 pipe_unlock(pipe);
1582 }
1583
1584 kfree(iov);
1585 return ret;
1586}
1587
1588/*
1589 * vmsplice splices a user address range into a pipe. It can be thought of
1590 * as splice-from-memory, where the regular splice is splice-from-file (or
1591 * to file). In both cases the output is a pipe, naturally.
1592 */
1593static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1594 unsigned long nr_segs, unsigned int flags)
1595{
1596 struct pipe_inode_info *pipe;
1597 struct page *pages[PIPE_DEF_BUFFERS];
1598 struct partial_page partial[PIPE_DEF_BUFFERS];
1599 struct splice_pipe_desc spd = {
1600 .pages = pages,
1601 .partial = partial,
1602 .nr_pages_max = PIPE_DEF_BUFFERS,
1603 .flags = flags,
1604 .ops = &user_page_pipe_buf_ops,
1605 .spd_release = spd_release_page,
1606 };
1607 long ret;
1608
1609 pipe = get_pipe_info(file);
1610 if (!pipe)
1611 return -EBADF;
1612
1613 if (splice_grow_spd(pipe, &spd))
1614 return -ENOMEM;
1615
1616 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1617 spd.partial, false,
1618 spd.nr_pages_max);
1619 if (spd.nr_pages <= 0)
1620 ret = spd.nr_pages;
1621 else
1622 ret = splice_to_pipe(pipe, &spd);
1623
1624 splice_shrink_spd(&spd);
1625 return ret;
1626}
1627
1628/*
1629 * Note that vmsplice only really supports true splicing _from_ user memory
1630 * to a pipe, not the other way around. Splicing from user memory is a simple
1631 * operation that can be supported without any funky alignment restrictions
1632 * or nasty vm tricks. We simply map in the user memory and fill them into
1633 * a pipe. The reverse isn't quite as easy, though. There are two possible
1634 * solutions for that:
1635 *
1636 * - memcpy() the data internally, at which point we might as well just
1637 * do a regular read() on the buffer anyway.
1638 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1639 * has restriction limitations on both ends of the pipe).
1640 *
1641 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1642 *
1643 */
1644SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1645 unsigned long, nr_segs, unsigned int, flags)
1646{
1647 struct fd f;
1648 long error;
1649
1650 if (unlikely(nr_segs > UIO_MAXIOV))
1651 return -EINVAL;
1652 else if (unlikely(!nr_segs))
1653 return 0;
1654
1655 error = -EBADF;
1656 f = fdget(fd);
1657 if (f.file) {
1658 if (f.file->f_mode & FMODE_WRITE)
1659 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1660 else if (f.file->f_mode & FMODE_READ)
1661 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1662
1663 fdput(f);
1664 }
1665
1666 return error;
1667}
1668
1669#ifdef CONFIG_COMPAT
1670COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1671 unsigned int, nr_segs, unsigned int, flags)
1672{
1673 unsigned i;
1674 struct iovec __user *iov;
1675 if (nr_segs > UIO_MAXIOV)
1676 return -EINVAL;
1677 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1678 for (i = 0; i < nr_segs; i++) {
1679 struct compat_iovec v;
1680 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1681 get_user(v.iov_len, &iov32[i].iov_len) ||
1682 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1683 put_user(v.iov_len, &iov[i].iov_len))
1684 return -EFAULT;
1685 }
1686 return sys_vmsplice(fd, iov, nr_segs, flags);
1687}
1688#endif
1689
1690SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1691 int, fd_out, loff_t __user *, off_out,
1692 size_t, len, unsigned int, flags)
1693{
1694 struct fd in, out;
1695 long error;
1696
1697 if (unlikely(!len))
1698 return 0;
1699
1700 error = -EBADF;
1701 in = fdget(fd_in);
1702 if (in.file) {
1703 if (in.file->f_mode & FMODE_READ) {
1704 out = fdget(fd_out);
1705 if (out.file) {
1706 if (out.file->f_mode & FMODE_WRITE)
1707 error = do_splice(in.file, off_in,
1708 out.file, off_out,
1709 len, flags);
1710 fdput(out);
1711 }
1712 }
1713 fdput(in);
1714 }
1715 return error;
1716}
1717
1718/*
1719 * Make sure there's data to read. Wait for input if we can, otherwise
1720 * return an appropriate error.
1721 */
1722static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1723{
1724 int ret;
1725
1726 /*
1727 * Check ->nrbufs without the inode lock first. This function
1728 * is speculative anyways, so missing one is ok.
1729 */
1730 if (pipe->nrbufs)
1731 return 0;
1732
1733 ret = 0;
1734 pipe_lock(pipe);
1735
1736 while (!pipe->nrbufs) {
1737 if (signal_pending(current)) {
1738 ret = -ERESTARTSYS;
1739 break;
1740 }
1741 if (!pipe->writers)
1742 break;
1743 if (!pipe->waiting_writers) {
1744 if (flags & SPLICE_F_NONBLOCK) {
1745 ret = -EAGAIN;
1746 break;
1747 }
1748 }
1749 pipe_wait(pipe);
1750 }
1751
1752 pipe_unlock(pipe);
1753 return ret;
1754}
1755
1756/*
1757 * Make sure there's writeable room. Wait for room if we can, otherwise
1758 * return an appropriate error.
1759 */
1760static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1761{
1762 int ret;
1763
1764 /*
1765 * Check ->nrbufs without the inode lock first. This function
1766 * is speculative anyways, so missing one is ok.
1767 */
1768 if (pipe->nrbufs < pipe->buffers)
1769 return 0;
1770
1771 ret = 0;
1772 pipe_lock(pipe);
1773
1774 while (pipe->nrbufs >= pipe->buffers) {
1775 if (!pipe->readers) {
1776 send_sig(SIGPIPE, current, 0);
1777 ret = -EPIPE;
1778 break;
1779 }
1780 if (flags & SPLICE_F_NONBLOCK) {
1781 ret = -EAGAIN;
1782 break;
1783 }
1784 if (signal_pending(current)) {
1785 ret = -ERESTARTSYS;
1786 break;
1787 }
1788 pipe->waiting_writers++;
1789 pipe_wait(pipe);
1790 pipe->waiting_writers--;
1791 }
1792
1793 pipe_unlock(pipe);
1794 return ret;
1795}
1796
1797/*
1798 * Splice contents of ipipe to opipe.
1799 */
1800static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1801 struct pipe_inode_info *opipe,
1802 size_t len, unsigned int flags)
1803{
1804 struct pipe_buffer *ibuf, *obuf;
1805 int ret = 0, nbuf;
1806 bool input_wakeup = false;
1807
1808
1809retry:
1810 ret = ipipe_prep(ipipe, flags);
1811 if (ret)
1812 return ret;
1813
1814 ret = opipe_prep(opipe, flags);
1815 if (ret)
1816 return ret;
1817
1818 /*
1819 * Potential ABBA deadlock, work around it by ordering lock
1820 * grabbing by pipe info address. Otherwise two different processes
1821 * could deadlock (one doing tee from A -> B, the other from B -> A).
1822 */
1823 pipe_double_lock(ipipe, opipe);
1824
1825 do {
1826 if (!opipe->readers) {
1827 send_sig(SIGPIPE, current, 0);
1828 if (!ret)
1829 ret = -EPIPE;
1830 break;
1831 }
1832
1833 if (!ipipe->nrbufs && !ipipe->writers)
1834 break;
1835
1836 /*
1837 * Cannot make any progress, because either the input
1838 * pipe is empty or the output pipe is full.
1839 */
1840 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1841 /* Already processed some buffers, break */
1842 if (ret)
1843 break;
1844
1845 if (flags & SPLICE_F_NONBLOCK) {
1846 ret = -EAGAIN;
1847 break;
1848 }
1849
1850 /*
1851 * We raced with another reader/writer and haven't
1852 * managed to process any buffers. A zero return
1853 * value means EOF, so retry instead.
1854 */
1855 pipe_unlock(ipipe);
1856 pipe_unlock(opipe);
1857 goto retry;
1858 }
1859
1860 ibuf = ipipe->bufs + ipipe->curbuf;
1861 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1862 obuf = opipe->bufs + nbuf;
1863
1864 if (len >= ibuf->len) {
1865 /*
1866 * Simply move the whole buffer from ipipe to opipe
1867 */
1868 *obuf = *ibuf;
1869 ibuf->ops = NULL;
1870 opipe->nrbufs++;
1871 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1872 ipipe->nrbufs--;
1873 input_wakeup = true;
1874 } else {
1875 /*
1876 * Get a reference to this pipe buffer,
1877 * so we can copy the contents over.
1878 */
1879 ibuf->ops->get(ipipe, ibuf);
1880 *obuf = *ibuf;
1881
1882 /*
1883 * Don't inherit the gift flag, we need to
1884 * prevent multiple steals of this page.
1885 */
1886 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1887
1888 obuf->len = len;
1889 opipe->nrbufs++;
1890 ibuf->offset += obuf->len;
1891 ibuf->len -= obuf->len;
1892 }
1893 ret += obuf->len;
1894 len -= obuf->len;
1895 } while (len);
1896
1897 pipe_unlock(ipipe);
1898 pipe_unlock(opipe);
1899
1900 /*
1901 * If we put data in the output pipe, wakeup any potential readers.
1902 */
1903 if (ret > 0)
1904 wakeup_pipe_readers(opipe);
1905
1906 if (input_wakeup)
1907 wakeup_pipe_writers(ipipe);
1908
1909 return ret;
1910}
1911
1912/*
1913 * Link contents of ipipe to opipe.
1914 */
1915static int link_pipe(struct pipe_inode_info *ipipe,
1916 struct pipe_inode_info *opipe,
1917 size_t len, unsigned int flags)
1918{
1919 struct pipe_buffer *ibuf, *obuf;
1920 int ret = 0, i = 0, nbuf;
1921
1922 /*
1923 * Potential ABBA deadlock, work around it by ordering lock
1924 * grabbing by pipe info address. Otherwise two different processes
1925 * could deadlock (one doing tee from A -> B, the other from B -> A).
1926 */
1927 pipe_double_lock(ipipe, opipe);
1928
1929 do {
1930 if (!opipe->readers) {
1931 send_sig(SIGPIPE, current, 0);
1932 if (!ret)
1933 ret = -EPIPE;
1934 break;
1935 }
1936
1937 /*
1938 * If we have iterated all input buffers or ran out of
1939 * output room, break.
1940 */
1941 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1942 break;
1943
1944 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1945 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1946
1947 /*
1948 * Get a reference to this pipe buffer,
1949 * so we can copy the contents over.
1950 */
1951 ibuf->ops->get(ipipe, ibuf);
1952
1953 obuf = opipe->bufs + nbuf;
1954 *obuf = *ibuf;
1955
1956 /*
1957 * Don't inherit the gift flag, we need to
1958 * prevent multiple steals of this page.
1959 */
1960 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1961
1962 if (obuf->len > len)
1963 obuf->len = len;
1964
1965 opipe->nrbufs++;
1966 ret += obuf->len;
1967 len -= obuf->len;
1968 i++;
1969 } while (len);
1970
1971 /*
1972 * return EAGAIN if we have the potential of some data in the
1973 * future, otherwise just return 0
1974 */
1975 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1976 ret = -EAGAIN;
1977
1978 pipe_unlock(ipipe);
1979 pipe_unlock(opipe);
1980
1981 /*
1982 * If we put data in the output pipe, wakeup any potential readers.
1983 */
1984 if (ret > 0)
1985 wakeup_pipe_readers(opipe);
1986
1987 return ret;
1988}
1989
1990/*
1991 * This is a tee(1) implementation that works on pipes. It doesn't copy
1992 * any data, it simply references the 'in' pages on the 'out' pipe.
1993 * The 'flags' used are the SPLICE_F_* variants, currently the only
1994 * applicable one is SPLICE_F_NONBLOCK.
1995 */
1996static long do_tee(struct file *in, struct file *out, size_t len,
1997 unsigned int flags)
1998{
1999 struct pipe_inode_info *ipipe = get_pipe_info(in);
2000 struct pipe_inode_info *opipe = get_pipe_info(out);
2001 int ret = -EINVAL;
2002
2003 /*
2004 * Duplicate the contents of ipipe to opipe without actually
2005 * copying the data.
2006 */
2007 if (ipipe && opipe && ipipe != opipe) {
2008 /*
2009 * Keep going, unless we encounter an error. The ipipe/opipe
2010 * ordering doesn't really matter.
2011 */
2012 ret = ipipe_prep(ipipe, flags);
2013 if (!ret) {
2014 ret = opipe_prep(opipe, flags);
2015 if (!ret)
2016 ret = link_pipe(ipipe, opipe, len, flags);
2017 }
2018 }
2019
2020 return ret;
2021}
2022
2023SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2024{
2025 struct fd in;
2026 int error;
2027
2028 if (unlikely(!len))
2029 return 0;
2030
2031 error = -EBADF;
2032 in = fdget(fdin);
2033 if (in.file) {
2034 if (in.file->f_mode & FMODE_READ) {
2035 struct fd out = fdget(fdout);
2036 if (out.file) {
2037 if (out.file->f_mode & FMODE_WRITE)
2038 error = do_tee(in.file, out.file,
2039 len, flags);
2040 fdput(out);
2041 }
2042 }
2043 fdput(in);
2044 }
2045
2046 return error;
2047}
1/*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/pagemap.h>
23#include <linux/splice.h>
24#include <linux/memcontrol.h>
25#include <linux/mm_inline.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
28#include <linux/buffer_head.h>
29#include <linux/module.h>
30#include <linux/syscalls.h>
31#include <linux/uio.h>
32#include <linux/security.h>
33#include <linux/gfp.h>
34
35/*
36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
37 * a vm helper function, it's already simplified quite a bit by the
38 * addition of remove_mapping(). If success is returned, the caller may
39 * attempt to reuse this page for another destination.
40 */
41static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 struct pipe_buffer *buf)
43{
44 struct page *page = buf->page;
45 struct address_space *mapping;
46
47 lock_page(page);
48
49 mapping = page_mapping(page);
50 if (mapping) {
51 WARN_ON(!PageUptodate(page));
52
53 /*
54 * At least for ext2 with nobh option, we need to wait on
55 * writeback completing on this page, since we'll remove it
56 * from the pagecache. Otherwise truncate wont wait on the
57 * page, allowing the disk blocks to be reused by someone else
58 * before we actually wrote our data to them. fs corruption
59 * ensues.
60 */
61 wait_on_page_writeback(page);
62
63 if (page_has_private(page) &&
64 !try_to_release_page(page, GFP_KERNEL))
65 goto out_unlock;
66
67 /*
68 * If we succeeded in removing the mapping, set LRU flag
69 * and return good.
70 */
71 if (remove_mapping(mapping, page)) {
72 buf->flags |= PIPE_BUF_FLAG_LRU;
73 return 0;
74 }
75 }
76
77 /*
78 * Raced with truncate or failed to remove page from current
79 * address space, unlock and return failure.
80 */
81out_unlock:
82 unlock_page(page);
83 return 1;
84}
85
86static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 struct pipe_buffer *buf)
88{
89 page_cache_release(buf->page);
90 buf->flags &= ~PIPE_BUF_FLAG_LRU;
91}
92
93/*
94 * Check whether the contents of buf is OK to access. Since the content
95 * is a page cache page, IO may be in flight.
96 */
97static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
99{
100 struct page *page = buf->page;
101 int err;
102
103 if (!PageUptodate(page)) {
104 lock_page(page);
105
106 /*
107 * Page got truncated/unhashed. This will cause a 0-byte
108 * splice, if this is the first page.
109 */
110 if (!page->mapping) {
111 err = -ENODATA;
112 goto error;
113 }
114
115 /*
116 * Uh oh, read-error from disk.
117 */
118 if (!PageUptodate(page)) {
119 err = -EIO;
120 goto error;
121 }
122
123 /*
124 * Page is ok afterall, we are done.
125 */
126 unlock_page(page);
127 }
128
129 return 0;
130error:
131 unlock_page(page);
132 return err;
133}
134
135const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 .can_merge = 0,
137 .map = generic_pipe_buf_map,
138 .unmap = generic_pipe_buf_unmap,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143};
144
145static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147{
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153}
154
155static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .map = generic_pipe_buf_map,
158 .unmap = generic_pipe_buf_unmap,
159 .confirm = generic_pipe_buf_confirm,
160 .release = page_cache_pipe_buf_release,
161 .steal = user_page_pipe_buf_steal,
162 .get = generic_pipe_buf_get,
163};
164
165static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
166{
167 smp_mb();
168 if (waitqueue_active(&pipe->wait))
169 wake_up_interruptible(&pipe->wait);
170 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
171}
172
173/**
174 * splice_to_pipe - fill passed data into a pipe
175 * @pipe: pipe to fill
176 * @spd: data to fill
177 *
178 * Description:
179 * @spd contains a map of pages and len/offset tuples, along with
180 * the struct pipe_buf_operations associated with these pages. This
181 * function will link that data to the pipe.
182 *
183 */
184ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
185 struct splice_pipe_desc *spd)
186{
187 unsigned int spd_pages = spd->nr_pages;
188 int ret, do_wakeup, page_nr;
189
190 ret = 0;
191 do_wakeup = 0;
192 page_nr = 0;
193
194 pipe_lock(pipe);
195
196 for (;;) {
197 if (!pipe->readers) {
198 send_sig(SIGPIPE, current, 0);
199 if (!ret)
200 ret = -EPIPE;
201 break;
202 }
203
204 if (pipe->nrbufs < pipe->buffers) {
205 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
206 struct pipe_buffer *buf = pipe->bufs + newbuf;
207
208 buf->page = spd->pages[page_nr];
209 buf->offset = spd->partial[page_nr].offset;
210 buf->len = spd->partial[page_nr].len;
211 buf->private = spd->partial[page_nr].private;
212 buf->ops = spd->ops;
213 if (spd->flags & SPLICE_F_GIFT)
214 buf->flags |= PIPE_BUF_FLAG_GIFT;
215
216 pipe->nrbufs++;
217 page_nr++;
218 ret += buf->len;
219
220 if (pipe->inode)
221 do_wakeup = 1;
222
223 if (!--spd->nr_pages)
224 break;
225 if (pipe->nrbufs < pipe->buffers)
226 continue;
227
228 break;
229 }
230
231 if (spd->flags & SPLICE_F_NONBLOCK) {
232 if (!ret)
233 ret = -EAGAIN;
234 break;
235 }
236
237 if (signal_pending(current)) {
238 if (!ret)
239 ret = -ERESTARTSYS;
240 break;
241 }
242
243 if (do_wakeup) {
244 smp_mb();
245 if (waitqueue_active(&pipe->wait))
246 wake_up_interruptible_sync(&pipe->wait);
247 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
248 do_wakeup = 0;
249 }
250
251 pipe->waiting_writers++;
252 pipe_wait(pipe);
253 pipe->waiting_writers--;
254 }
255
256 pipe_unlock(pipe);
257
258 if (do_wakeup)
259 wakeup_pipe_readers(pipe);
260
261 while (page_nr < spd_pages)
262 spd->spd_release(spd, page_nr++);
263
264 return ret;
265}
266
267void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
268{
269 page_cache_release(spd->pages[i]);
270}
271
272/*
273 * Check if we need to grow the arrays holding pages and partial page
274 * descriptions.
275 */
276int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
277{
278 if (pipe->buffers <= PIPE_DEF_BUFFERS)
279 return 0;
280
281 spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
282 spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
283
284 if (spd->pages && spd->partial)
285 return 0;
286
287 kfree(spd->pages);
288 kfree(spd->partial);
289 return -ENOMEM;
290}
291
292void splice_shrink_spd(struct pipe_inode_info *pipe,
293 struct splice_pipe_desc *spd)
294{
295 if (pipe->buffers <= PIPE_DEF_BUFFERS)
296 return;
297
298 kfree(spd->pages);
299 kfree(spd->partial);
300}
301
302static int
303__generic_file_splice_read(struct file *in, loff_t *ppos,
304 struct pipe_inode_info *pipe, size_t len,
305 unsigned int flags)
306{
307 struct address_space *mapping = in->f_mapping;
308 unsigned int loff, nr_pages, req_pages;
309 struct page *pages[PIPE_DEF_BUFFERS];
310 struct partial_page partial[PIPE_DEF_BUFFERS];
311 struct page *page;
312 pgoff_t index, end_index;
313 loff_t isize;
314 int error, page_nr;
315 struct splice_pipe_desc spd = {
316 .pages = pages,
317 .partial = partial,
318 .flags = flags,
319 .ops = &page_cache_pipe_buf_ops,
320 .spd_release = spd_release_page,
321 };
322
323 if (splice_grow_spd(pipe, &spd))
324 return -ENOMEM;
325
326 index = *ppos >> PAGE_CACHE_SHIFT;
327 loff = *ppos & ~PAGE_CACHE_MASK;
328 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
329 nr_pages = min(req_pages, pipe->buffers);
330
331 /*
332 * Lookup the (hopefully) full range of pages we need.
333 */
334 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
335 index += spd.nr_pages;
336
337 /*
338 * If find_get_pages_contig() returned fewer pages than we needed,
339 * readahead/allocate the rest and fill in the holes.
340 */
341 if (spd.nr_pages < nr_pages)
342 page_cache_sync_readahead(mapping, &in->f_ra, in,
343 index, req_pages - spd.nr_pages);
344
345 error = 0;
346 while (spd.nr_pages < nr_pages) {
347 /*
348 * Page could be there, find_get_pages_contig() breaks on
349 * the first hole.
350 */
351 page = find_get_page(mapping, index);
352 if (!page) {
353 /*
354 * page didn't exist, allocate one.
355 */
356 page = page_cache_alloc_cold(mapping);
357 if (!page)
358 break;
359
360 error = add_to_page_cache_lru(page, mapping, index,
361 GFP_KERNEL);
362 if (unlikely(error)) {
363 page_cache_release(page);
364 if (error == -EEXIST)
365 continue;
366 break;
367 }
368 /*
369 * add_to_page_cache() locks the page, unlock it
370 * to avoid convoluting the logic below even more.
371 */
372 unlock_page(page);
373 }
374
375 spd.pages[spd.nr_pages++] = page;
376 index++;
377 }
378
379 /*
380 * Now loop over the map and see if we need to start IO on any
381 * pages, fill in the partial map, etc.
382 */
383 index = *ppos >> PAGE_CACHE_SHIFT;
384 nr_pages = spd.nr_pages;
385 spd.nr_pages = 0;
386 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
387 unsigned int this_len;
388
389 if (!len)
390 break;
391
392 /*
393 * this_len is the max we'll use from this page
394 */
395 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
396 page = spd.pages[page_nr];
397
398 if (PageReadahead(page))
399 page_cache_async_readahead(mapping, &in->f_ra, in,
400 page, index, req_pages - page_nr);
401
402 /*
403 * If the page isn't uptodate, we may need to start io on it
404 */
405 if (!PageUptodate(page)) {
406 lock_page(page);
407
408 /*
409 * Page was truncated, or invalidated by the
410 * filesystem. Redo the find/create, but this time the
411 * page is kept locked, so there's no chance of another
412 * race with truncate/invalidate.
413 */
414 if (!page->mapping) {
415 unlock_page(page);
416 page = find_or_create_page(mapping, index,
417 mapping_gfp_mask(mapping));
418
419 if (!page) {
420 error = -ENOMEM;
421 break;
422 }
423 page_cache_release(spd.pages[page_nr]);
424 spd.pages[page_nr] = page;
425 }
426 /*
427 * page was already under io and is now done, great
428 */
429 if (PageUptodate(page)) {
430 unlock_page(page);
431 goto fill_it;
432 }
433
434 /*
435 * need to read in the page
436 */
437 error = mapping->a_ops->readpage(in, page);
438 if (unlikely(error)) {
439 /*
440 * We really should re-lookup the page here,
441 * but it complicates things a lot. Instead
442 * lets just do what we already stored, and
443 * we'll get it the next time we are called.
444 */
445 if (error == AOP_TRUNCATED_PAGE)
446 error = 0;
447
448 break;
449 }
450 }
451fill_it:
452 /*
453 * i_size must be checked after PageUptodate.
454 */
455 isize = i_size_read(mapping->host);
456 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
457 if (unlikely(!isize || index > end_index))
458 break;
459
460 /*
461 * if this is the last page, see if we need to shrink
462 * the length and stop
463 */
464 if (end_index == index) {
465 unsigned int plen;
466
467 /*
468 * max good bytes in this page
469 */
470 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
471 if (plen <= loff)
472 break;
473
474 /*
475 * force quit after adding this page
476 */
477 this_len = min(this_len, plen - loff);
478 len = this_len;
479 }
480
481 spd.partial[page_nr].offset = loff;
482 spd.partial[page_nr].len = this_len;
483 len -= this_len;
484 loff = 0;
485 spd.nr_pages++;
486 index++;
487 }
488
489 /*
490 * Release any pages at the end, if we quit early. 'page_nr' is how far
491 * we got, 'nr_pages' is how many pages are in the map.
492 */
493 while (page_nr < nr_pages)
494 page_cache_release(spd.pages[page_nr++]);
495 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
496
497 if (spd.nr_pages)
498 error = splice_to_pipe(pipe, &spd);
499
500 splice_shrink_spd(pipe, &spd);
501 return error;
502}
503
504/**
505 * generic_file_splice_read - splice data from file to a pipe
506 * @in: file to splice from
507 * @ppos: position in @in
508 * @pipe: pipe to splice to
509 * @len: number of bytes to splice
510 * @flags: splice modifier flags
511 *
512 * Description:
513 * Will read pages from given file and fill them into a pipe. Can be
514 * used as long as the address_space operations for the source implements
515 * a readpage() hook.
516 *
517 */
518ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
519 struct pipe_inode_info *pipe, size_t len,
520 unsigned int flags)
521{
522 loff_t isize, left;
523 int ret;
524
525 isize = i_size_read(in->f_mapping->host);
526 if (unlikely(*ppos >= isize))
527 return 0;
528
529 left = isize - *ppos;
530 if (unlikely(left < len))
531 len = left;
532
533 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
534 if (ret > 0) {
535 *ppos += ret;
536 file_accessed(in);
537 }
538
539 return ret;
540}
541EXPORT_SYMBOL(generic_file_splice_read);
542
543static const struct pipe_buf_operations default_pipe_buf_ops = {
544 .can_merge = 0,
545 .map = generic_pipe_buf_map,
546 .unmap = generic_pipe_buf_unmap,
547 .confirm = generic_pipe_buf_confirm,
548 .release = generic_pipe_buf_release,
549 .steal = generic_pipe_buf_steal,
550 .get = generic_pipe_buf_get,
551};
552
553static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
554 unsigned long vlen, loff_t offset)
555{
556 mm_segment_t old_fs;
557 loff_t pos = offset;
558 ssize_t res;
559
560 old_fs = get_fs();
561 set_fs(get_ds());
562 /* The cast to a user pointer is valid due to the set_fs() */
563 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
564 set_fs(old_fs);
565
566 return res;
567}
568
569static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
570 loff_t pos)
571{
572 mm_segment_t old_fs;
573 ssize_t res;
574
575 old_fs = get_fs();
576 set_fs(get_ds());
577 /* The cast to a user pointer is valid due to the set_fs() */
578 res = vfs_write(file, (const char __user *)buf, count, &pos);
579 set_fs(old_fs);
580
581 return res;
582}
583
584ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
585 struct pipe_inode_info *pipe, size_t len,
586 unsigned int flags)
587{
588 unsigned int nr_pages;
589 unsigned int nr_freed;
590 size_t offset;
591 struct page *pages[PIPE_DEF_BUFFERS];
592 struct partial_page partial[PIPE_DEF_BUFFERS];
593 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
594 ssize_t res;
595 size_t this_len;
596 int error;
597 int i;
598 struct splice_pipe_desc spd = {
599 .pages = pages,
600 .partial = partial,
601 .flags = flags,
602 .ops = &default_pipe_buf_ops,
603 .spd_release = spd_release_page,
604 };
605
606 if (splice_grow_spd(pipe, &spd))
607 return -ENOMEM;
608
609 res = -ENOMEM;
610 vec = __vec;
611 if (pipe->buffers > PIPE_DEF_BUFFERS) {
612 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
613 if (!vec)
614 goto shrink_ret;
615 }
616
617 offset = *ppos & ~PAGE_CACHE_MASK;
618 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
619
620 for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
621 struct page *page;
622
623 page = alloc_page(GFP_USER);
624 error = -ENOMEM;
625 if (!page)
626 goto err;
627
628 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
629 vec[i].iov_base = (void __user *) page_address(page);
630 vec[i].iov_len = this_len;
631 spd.pages[i] = page;
632 spd.nr_pages++;
633 len -= this_len;
634 offset = 0;
635 }
636
637 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
638 if (res < 0) {
639 error = res;
640 goto err;
641 }
642
643 error = 0;
644 if (!res)
645 goto err;
646
647 nr_freed = 0;
648 for (i = 0; i < spd.nr_pages; i++) {
649 this_len = min_t(size_t, vec[i].iov_len, res);
650 spd.partial[i].offset = 0;
651 spd.partial[i].len = this_len;
652 if (!this_len) {
653 __free_page(spd.pages[i]);
654 spd.pages[i] = NULL;
655 nr_freed++;
656 }
657 res -= this_len;
658 }
659 spd.nr_pages -= nr_freed;
660
661 res = splice_to_pipe(pipe, &spd);
662 if (res > 0)
663 *ppos += res;
664
665shrink_ret:
666 if (vec != __vec)
667 kfree(vec);
668 splice_shrink_spd(pipe, &spd);
669 return res;
670
671err:
672 for (i = 0; i < spd.nr_pages; i++)
673 __free_page(spd.pages[i]);
674
675 res = error;
676 goto shrink_ret;
677}
678EXPORT_SYMBOL(default_file_splice_read);
679
680/*
681 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
682 * using sendpage(). Return the number of bytes sent.
683 */
684static int pipe_to_sendpage(struct pipe_inode_info *pipe,
685 struct pipe_buffer *buf, struct splice_desc *sd)
686{
687 struct file *file = sd->u.file;
688 loff_t pos = sd->pos;
689 int more;
690
691 if (!likely(file->f_op && file->f_op->sendpage))
692 return -EINVAL;
693
694 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
695 return file->f_op->sendpage(file, buf->page, buf->offset,
696 sd->len, &pos, more);
697}
698
699/*
700 * This is a little more tricky than the file -> pipe splicing. There are
701 * basically three cases:
702 *
703 * - Destination page already exists in the address space and there
704 * are users of it. For that case we have no other option that
705 * copying the data. Tough luck.
706 * - Destination page already exists in the address space, but there
707 * are no users of it. Make sure it's uptodate, then drop it. Fall
708 * through to last case.
709 * - Destination page does not exist, we can add the pipe page to
710 * the page cache and avoid the copy.
711 *
712 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
713 * sd->flags), we attempt to migrate pages from the pipe to the output
714 * file address space page cache. This is possible if no one else has
715 * the pipe page referenced outside of the pipe and page cache. If
716 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
717 * a new page in the output file page cache and fill/dirty that.
718 */
719int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
720 struct splice_desc *sd)
721{
722 struct file *file = sd->u.file;
723 struct address_space *mapping = file->f_mapping;
724 unsigned int offset, this_len;
725 struct page *page;
726 void *fsdata;
727 int ret;
728
729 offset = sd->pos & ~PAGE_CACHE_MASK;
730
731 this_len = sd->len;
732 if (this_len + offset > PAGE_CACHE_SIZE)
733 this_len = PAGE_CACHE_SIZE - offset;
734
735 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
736 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
737 if (unlikely(ret))
738 goto out;
739
740 if (buf->page != page) {
741 /*
742 * Careful, ->map() uses KM_USER0!
743 */
744 char *src = buf->ops->map(pipe, buf, 1);
745 char *dst = kmap_atomic(page, KM_USER1);
746
747 memcpy(dst + offset, src + buf->offset, this_len);
748 flush_dcache_page(page);
749 kunmap_atomic(dst, KM_USER1);
750 buf->ops->unmap(pipe, buf, src);
751 }
752 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
753 page, fsdata);
754out:
755 return ret;
756}
757EXPORT_SYMBOL(pipe_to_file);
758
759static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
760{
761 smp_mb();
762 if (waitqueue_active(&pipe->wait))
763 wake_up_interruptible(&pipe->wait);
764 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
765}
766
767/**
768 * splice_from_pipe_feed - feed available data from a pipe to a file
769 * @pipe: pipe to splice from
770 * @sd: information to @actor
771 * @actor: handler that splices the data
772 *
773 * Description:
774 * This function loops over the pipe and calls @actor to do the
775 * actual moving of a single struct pipe_buffer to the desired
776 * destination. It returns when there's no more buffers left in
777 * the pipe or if the requested number of bytes (@sd->total_len)
778 * have been copied. It returns a positive number (one) if the
779 * pipe needs to be filled with more data, zero if the required
780 * number of bytes have been copied and -errno on error.
781 *
782 * This, together with splice_from_pipe_{begin,end,next}, may be
783 * used to implement the functionality of __splice_from_pipe() when
784 * locking is required around copying the pipe buffers to the
785 * destination.
786 */
787int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
788 splice_actor *actor)
789{
790 int ret;
791
792 while (pipe->nrbufs) {
793 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
794 const struct pipe_buf_operations *ops = buf->ops;
795
796 sd->len = buf->len;
797 if (sd->len > sd->total_len)
798 sd->len = sd->total_len;
799
800 ret = buf->ops->confirm(pipe, buf);
801 if (unlikely(ret)) {
802 if (ret == -ENODATA)
803 ret = 0;
804 return ret;
805 }
806
807 ret = actor(pipe, buf, sd);
808 if (ret <= 0)
809 return ret;
810
811 buf->offset += ret;
812 buf->len -= ret;
813
814 sd->num_spliced += ret;
815 sd->len -= ret;
816 sd->pos += ret;
817 sd->total_len -= ret;
818
819 if (!buf->len) {
820 buf->ops = NULL;
821 ops->release(pipe, buf);
822 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
823 pipe->nrbufs--;
824 if (pipe->inode)
825 sd->need_wakeup = true;
826 }
827
828 if (!sd->total_len)
829 return 0;
830 }
831
832 return 1;
833}
834EXPORT_SYMBOL(splice_from_pipe_feed);
835
836/**
837 * splice_from_pipe_next - wait for some data to splice from
838 * @pipe: pipe to splice from
839 * @sd: information about the splice operation
840 *
841 * Description:
842 * This function will wait for some data and return a positive
843 * value (one) if pipe buffers are available. It will return zero
844 * or -errno if no more data needs to be spliced.
845 */
846int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
847{
848 while (!pipe->nrbufs) {
849 if (!pipe->writers)
850 return 0;
851
852 if (!pipe->waiting_writers && sd->num_spliced)
853 return 0;
854
855 if (sd->flags & SPLICE_F_NONBLOCK)
856 return -EAGAIN;
857
858 if (signal_pending(current))
859 return -ERESTARTSYS;
860
861 if (sd->need_wakeup) {
862 wakeup_pipe_writers(pipe);
863 sd->need_wakeup = false;
864 }
865
866 pipe_wait(pipe);
867 }
868
869 return 1;
870}
871EXPORT_SYMBOL(splice_from_pipe_next);
872
873/**
874 * splice_from_pipe_begin - start splicing from pipe
875 * @sd: information about the splice operation
876 *
877 * Description:
878 * This function should be called before a loop containing
879 * splice_from_pipe_next() and splice_from_pipe_feed() to
880 * initialize the necessary fields of @sd.
881 */
882void splice_from_pipe_begin(struct splice_desc *sd)
883{
884 sd->num_spliced = 0;
885 sd->need_wakeup = false;
886}
887EXPORT_SYMBOL(splice_from_pipe_begin);
888
889/**
890 * splice_from_pipe_end - finish splicing from pipe
891 * @pipe: pipe to splice from
892 * @sd: information about the splice operation
893 *
894 * Description:
895 * This function will wake up pipe writers if necessary. It should
896 * be called after a loop containing splice_from_pipe_next() and
897 * splice_from_pipe_feed().
898 */
899void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
900{
901 if (sd->need_wakeup)
902 wakeup_pipe_writers(pipe);
903}
904EXPORT_SYMBOL(splice_from_pipe_end);
905
906/**
907 * __splice_from_pipe - splice data from a pipe to given actor
908 * @pipe: pipe to splice from
909 * @sd: information to @actor
910 * @actor: handler that splices the data
911 *
912 * Description:
913 * This function does little more than loop over the pipe and call
914 * @actor to do the actual moving of a single struct pipe_buffer to
915 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
916 * pipe_to_user.
917 *
918 */
919ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
920 splice_actor *actor)
921{
922 int ret;
923
924 splice_from_pipe_begin(sd);
925 do {
926 ret = splice_from_pipe_next(pipe, sd);
927 if (ret > 0)
928 ret = splice_from_pipe_feed(pipe, sd, actor);
929 } while (ret > 0);
930 splice_from_pipe_end(pipe, sd);
931
932 return sd->num_spliced ? sd->num_spliced : ret;
933}
934EXPORT_SYMBOL(__splice_from_pipe);
935
936/**
937 * splice_from_pipe - splice data from a pipe to a file
938 * @pipe: pipe to splice from
939 * @out: file to splice to
940 * @ppos: position in @out
941 * @len: how many bytes to splice
942 * @flags: splice modifier flags
943 * @actor: handler that splices the data
944 *
945 * Description:
946 * See __splice_from_pipe. This function locks the pipe inode,
947 * otherwise it's identical to __splice_from_pipe().
948 *
949 */
950ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
951 loff_t *ppos, size_t len, unsigned int flags,
952 splice_actor *actor)
953{
954 ssize_t ret;
955 struct splice_desc sd = {
956 .total_len = len,
957 .flags = flags,
958 .pos = *ppos,
959 .u.file = out,
960 };
961
962 pipe_lock(pipe);
963 ret = __splice_from_pipe(pipe, &sd, actor);
964 pipe_unlock(pipe);
965
966 return ret;
967}
968
969/**
970 * generic_file_splice_write - splice data from a pipe to a file
971 * @pipe: pipe info
972 * @out: file to write to
973 * @ppos: position in @out
974 * @len: number of bytes to splice
975 * @flags: splice modifier flags
976 *
977 * Description:
978 * Will either move or copy pages (determined by @flags options) from
979 * the given pipe inode to the given file.
980 *
981 */
982ssize_t
983generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
984 loff_t *ppos, size_t len, unsigned int flags)
985{
986 struct address_space *mapping = out->f_mapping;
987 struct inode *inode = mapping->host;
988 struct splice_desc sd = {
989 .total_len = len,
990 .flags = flags,
991 .pos = *ppos,
992 .u.file = out,
993 };
994 ssize_t ret;
995
996 pipe_lock(pipe);
997
998 splice_from_pipe_begin(&sd);
999 do {
1000 ret = splice_from_pipe_next(pipe, &sd);
1001 if (ret <= 0)
1002 break;
1003
1004 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1005 ret = file_remove_suid(out);
1006 if (!ret) {
1007 file_update_time(out);
1008 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1009 }
1010 mutex_unlock(&inode->i_mutex);
1011 } while (ret > 0);
1012 splice_from_pipe_end(pipe, &sd);
1013
1014 pipe_unlock(pipe);
1015
1016 if (sd.num_spliced)
1017 ret = sd.num_spliced;
1018
1019 if (ret > 0) {
1020 unsigned long nr_pages;
1021 int err;
1022
1023 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1024
1025 err = generic_write_sync(out, *ppos, ret);
1026 if (err)
1027 ret = err;
1028 else
1029 *ppos += ret;
1030 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1031 }
1032
1033 return ret;
1034}
1035
1036EXPORT_SYMBOL(generic_file_splice_write);
1037
1038static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1039 struct splice_desc *sd)
1040{
1041 int ret;
1042 void *data;
1043
1044 data = buf->ops->map(pipe, buf, 0);
1045 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1046 buf->ops->unmap(pipe, buf, data);
1047
1048 return ret;
1049}
1050
1051static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1052 struct file *out, loff_t *ppos,
1053 size_t len, unsigned int flags)
1054{
1055 ssize_t ret;
1056
1057 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1058 if (ret > 0)
1059 *ppos += ret;
1060
1061 return ret;
1062}
1063
1064/**
1065 * generic_splice_sendpage - splice data from a pipe to a socket
1066 * @pipe: pipe to splice from
1067 * @out: socket to write to
1068 * @ppos: position in @out
1069 * @len: number of bytes to splice
1070 * @flags: splice modifier flags
1071 *
1072 * Description:
1073 * Will send @len bytes from the pipe to a network socket. No data copying
1074 * is involved.
1075 *
1076 */
1077ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1078 loff_t *ppos, size_t len, unsigned int flags)
1079{
1080 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1081}
1082
1083EXPORT_SYMBOL(generic_splice_sendpage);
1084
1085/*
1086 * Attempt to initiate a splice from pipe to file.
1087 */
1088static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1089 loff_t *ppos, size_t len, unsigned int flags)
1090{
1091 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1092 loff_t *, size_t, unsigned int);
1093 int ret;
1094
1095 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1096 return -EBADF;
1097
1098 if (unlikely(out->f_flags & O_APPEND))
1099 return -EINVAL;
1100
1101 ret = rw_verify_area(WRITE, out, ppos, len);
1102 if (unlikely(ret < 0))
1103 return ret;
1104
1105 if (out->f_op && out->f_op->splice_write)
1106 splice_write = out->f_op->splice_write;
1107 else
1108 splice_write = default_file_splice_write;
1109
1110 return splice_write(pipe, out, ppos, len, flags);
1111}
1112
1113/*
1114 * Attempt to initiate a splice from a file to a pipe.
1115 */
1116static long do_splice_to(struct file *in, loff_t *ppos,
1117 struct pipe_inode_info *pipe, size_t len,
1118 unsigned int flags)
1119{
1120 ssize_t (*splice_read)(struct file *, loff_t *,
1121 struct pipe_inode_info *, size_t, unsigned int);
1122 int ret;
1123
1124 if (unlikely(!(in->f_mode & FMODE_READ)))
1125 return -EBADF;
1126
1127 ret = rw_verify_area(READ, in, ppos, len);
1128 if (unlikely(ret < 0))
1129 return ret;
1130
1131 if (in->f_op && in->f_op->splice_read)
1132 splice_read = in->f_op->splice_read;
1133 else
1134 splice_read = default_file_splice_read;
1135
1136 return splice_read(in, ppos, pipe, len, flags);
1137}
1138
1139/**
1140 * splice_direct_to_actor - splices data directly between two non-pipes
1141 * @in: file to splice from
1142 * @sd: actor information on where to splice to
1143 * @actor: handles the data splicing
1144 *
1145 * Description:
1146 * This is a special case helper to splice directly between two
1147 * points, without requiring an explicit pipe. Internally an allocated
1148 * pipe is cached in the process, and reused during the lifetime of
1149 * that process.
1150 *
1151 */
1152ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1153 splice_direct_actor *actor)
1154{
1155 struct pipe_inode_info *pipe;
1156 long ret, bytes;
1157 umode_t i_mode;
1158 size_t len;
1159 int i, flags;
1160
1161 /*
1162 * We require the input being a regular file, as we don't want to
1163 * randomly drop data for eg socket -> socket splicing. Use the
1164 * piped splicing for that!
1165 */
1166 i_mode = in->f_path.dentry->d_inode->i_mode;
1167 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1168 return -EINVAL;
1169
1170 /*
1171 * neither in nor out is a pipe, setup an internal pipe attached to
1172 * 'out' and transfer the wanted data from 'in' to 'out' through that
1173 */
1174 pipe = current->splice_pipe;
1175 if (unlikely(!pipe)) {
1176 pipe = alloc_pipe_info(NULL);
1177 if (!pipe)
1178 return -ENOMEM;
1179
1180 /*
1181 * We don't have an immediate reader, but we'll read the stuff
1182 * out of the pipe right after the splice_to_pipe(). So set
1183 * PIPE_READERS appropriately.
1184 */
1185 pipe->readers = 1;
1186
1187 current->splice_pipe = pipe;
1188 }
1189
1190 /*
1191 * Do the splice.
1192 */
1193 ret = 0;
1194 bytes = 0;
1195 len = sd->total_len;
1196 flags = sd->flags;
1197
1198 /*
1199 * Don't block on output, we have to drain the direct pipe.
1200 */
1201 sd->flags &= ~SPLICE_F_NONBLOCK;
1202
1203 while (len) {
1204 size_t read_len;
1205 loff_t pos = sd->pos, prev_pos = pos;
1206
1207 ret = do_splice_to(in, &pos, pipe, len, flags);
1208 if (unlikely(ret <= 0))
1209 goto out_release;
1210
1211 read_len = ret;
1212 sd->total_len = read_len;
1213
1214 /*
1215 * NOTE: nonblocking mode only applies to the input. We
1216 * must not do the output in nonblocking mode as then we
1217 * could get stuck data in the internal pipe:
1218 */
1219 ret = actor(pipe, sd);
1220 if (unlikely(ret <= 0)) {
1221 sd->pos = prev_pos;
1222 goto out_release;
1223 }
1224
1225 bytes += ret;
1226 len -= ret;
1227 sd->pos = pos;
1228
1229 if (ret < read_len) {
1230 sd->pos = prev_pos + ret;
1231 goto out_release;
1232 }
1233 }
1234
1235done:
1236 pipe->nrbufs = pipe->curbuf = 0;
1237 file_accessed(in);
1238 return bytes;
1239
1240out_release:
1241 /*
1242 * If we did an incomplete transfer we must release
1243 * the pipe buffers in question:
1244 */
1245 for (i = 0; i < pipe->buffers; i++) {
1246 struct pipe_buffer *buf = pipe->bufs + i;
1247
1248 if (buf->ops) {
1249 buf->ops->release(pipe, buf);
1250 buf->ops = NULL;
1251 }
1252 }
1253
1254 if (!bytes)
1255 bytes = ret;
1256
1257 goto done;
1258}
1259EXPORT_SYMBOL(splice_direct_to_actor);
1260
1261static int direct_splice_actor(struct pipe_inode_info *pipe,
1262 struct splice_desc *sd)
1263{
1264 struct file *file = sd->u.file;
1265
1266 return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1267 sd->flags);
1268}
1269
1270/**
1271 * do_splice_direct - splices data directly between two files
1272 * @in: file to splice from
1273 * @ppos: input file offset
1274 * @out: file to splice to
1275 * @len: number of bytes to splice
1276 * @flags: splice modifier flags
1277 *
1278 * Description:
1279 * For use by do_sendfile(). splice can easily emulate sendfile, but
1280 * doing it in the application would incur an extra system call
1281 * (splice in + splice out, as compared to just sendfile()). So this helper
1282 * can splice directly through a process-private pipe.
1283 *
1284 */
1285long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1286 size_t len, unsigned int flags)
1287{
1288 struct splice_desc sd = {
1289 .len = len,
1290 .total_len = len,
1291 .flags = flags,
1292 .pos = *ppos,
1293 .u.file = out,
1294 };
1295 long ret;
1296
1297 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1298 if (ret > 0)
1299 *ppos = sd.pos;
1300
1301 return ret;
1302}
1303
1304static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1305 struct pipe_inode_info *opipe,
1306 size_t len, unsigned int flags);
1307
1308/*
1309 * Determine where to splice to/from.
1310 */
1311static long do_splice(struct file *in, loff_t __user *off_in,
1312 struct file *out, loff_t __user *off_out,
1313 size_t len, unsigned int flags)
1314{
1315 struct pipe_inode_info *ipipe;
1316 struct pipe_inode_info *opipe;
1317 loff_t offset, *off;
1318 long ret;
1319
1320 ipipe = get_pipe_info(in);
1321 opipe = get_pipe_info(out);
1322
1323 if (ipipe && opipe) {
1324 if (off_in || off_out)
1325 return -ESPIPE;
1326
1327 if (!(in->f_mode & FMODE_READ))
1328 return -EBADF;
1329
1330 if (!(out->f_mode & FMODE_WRITE))
1331 return -EBADF;
1332
1333 /* Splicing to self would be fun, but... */
1334 if (ipipe == opipe)
1335 return -EINVAL;
1336
1337 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1338 }
1339
1340 if (ipipe) {
1341 if (off_in)
1342 return -ESPIPE;
1343 if (off_out) {
1344 if (!(out->f_mode & FMODE_PWRITE))
1345 return -EINVAL;
1346 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1347 return -EFAULT;
1348 off = &offset;
1349 } else
1350 off = &out->f_pos;
1351
1352 ret = do_splice_from(ipipe, out, off, len, flags);
1353
1354 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1355 ret = -EFAULT;
1356
1357 return ret;
1358 }
1359
1360 if (opipe) {
1361 if (off_out)
1362 return -ESPIPE;
1363 if (off_in) {
1364 if (!(in->f_mode & FMODE_PREAD))
1365 return -EINVAL;
1366 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1367 return -EFAULT;
1368 off = &offset;
1369 } else
1370 off = &in->f_pos;
1371
1372 ret = do_splice_to(in, off, opipe, len, flags);
1373
1374 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1375 ret = -EFAULT;
1376
1377 return ret;
1378 }
1379
1380 return -EINVAL;
1381}
1382
1383/*
1384 * Map an iov into an array of pages and offset/length tupples. With the
1385 * partial_page structure, we can map several non-contiguous ranges into
1386 * our ones pages[] map instead of splitting that operation into pieces.
1387 * Could easily be exported as a generic helper for other users, in which
1388 * case one would probably want to add a 'max_nr_pages' parameter as well.
1389 */
1390static int get_iovec_page_array(const struct iovec __user *iov,
1391 unsigned int nr_vecs, struct page **pages,
1392 struct partial_page *partial, int aligned,
1393 unsigned int pipe_buffers)
1394{
1395 int buffers = 0, error = 0;
1396
1397 while (nr_vecs) {
1398 unsigned long off, npages;
1399 struct iovec entry;
1400 void __user *base;
1401 size_t len;
1402 int i;
1403
1404 error = -EFAULT;
1405 if (copy_from_user(&entry, iov, sizeof(entry)))
1406 break;
1407
1408 base = entry.iov_base;
1409 len = entry.iov_len;
1410
1411 /*
1412 * Sanity check this iovec. 0 read succeeds.
1413 */
1414 error = 0;
1415 if (unlikely(!len))
1416 break;
1417 error = -EFAULT;
1418 if (!access_ok(VERIFY_READ, base, len))
1419 break;
1420
1421 /*
1422 * Get this base offset and number of pages, then map
1423 * in the user pages.
1424 */
1425 off = (unsigned long) base & ~PAGE_MASK;
1426
1427 /*
1428 * If asked for alignment, the offset must be zero and the
1429 * length a multiple of the PAGE_SIZE.
1430 */
1431 error = -EINVAL;
1432 if (aligned && (off || len & ~PAGE_MASK))
1433 break;
1434
1435 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1436 if (npages > pipe_buffers - buffers)
1437 npages = pipe_buffers - buffers;
1438
1439 error = get_user_pages_fast((unsigned long)base, npages,
1440 0, &pages[buffers]);
1441
1442 if (unlikely(error <= 0))
1443 break;
1444
1445 /*
1446 * Fill this contiguous range into the partial page map.
1447 */
1448 for (i = 0; i < error; i++) {
1449 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1450
1451 partial[buffers].offset = off;
1452 partial[buffers].len = plen;
1453
1454 off = 0;
1455 len -= plen;
1456 buffers++;
1457 }
1458
1459 /*
1460 * We didn't complete this iov, stop here since it probably
1461 * means we have to move some of this into a pipe to
1462 * be able to continue.
1463 */
1464 if (len)
1465 break;
1466
1467 /*
1468 * Don't continue if we mapped fewer pages than we asked for,
1469 * or if we mapped the max number of pages that we have
1470 * room for.
1471 */
1472 if (error < npages || buffers == pipe_buffers)
1473 break;
1474
1475 nr_vecs--;
1476 iov++;
1477 }
1478
1479 if (buffers)
1480 return buffers;
1481
1482 return error;
1483}
1484
1485static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1486 struct splice_desc *sd)
1487{
1488 char *src;
1489 int ret;
1490
1491 /*
1492 * See if we can use the atomic maps, by prefaulting in the
1493 * pages and doing an atomic copy
1494 */
1495 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1496 src = buf->ops->map(pipe, buf, 1);
1497 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1498 sd->len);
1499 buf->ops->unmap(pipe, buf, src);
1500 if (!ret) {
1501 ret = sd->len;
1502 goto out;
1503 }
1504 }
1505
1506 /*
1507 * No dice, use slow non-atomic map and copy
1508 */
1509 src = buf->ops->map(pipe, buf, 0);
1510
1511 ret = sd->len;
1512 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1513 ret = -EFAULT;
1514
1515 buf->ops->unmap(pipe, buf, src);
1516out:
1517 if (ret > 0)
1518 sd->u.userptr += ret;
1519 return ret;
1520}
1521
1522/*
1523 * For lack of a better implementation, implement vmsplice() to userspace
1524 * as a simple copy of the pipes pages to the user iov.
1525 */
1526static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1527 unsigned long nr_segs, unsigned int flags)
1528{
1529 struct pipe_inode_info *pipe;
1530 struct splice_desc sd;
1531 ssize_t size;
1532 int error;
1533 long ret;
1534
1535 pipe = get_pipe_info(file);
1536 if (!pipe)
1537 return -EBADF;
1538
1539 pipe_lock(pipe);
1540
1541 error = ret = 0;
1542 while (nr_segs) {
1543 void __user *base;
1544 size_t len;
1545
1546 /*
1547 * Get user address base and length for this iovec.
1548 */
1549 error = get_user(base, &iov->iov_base);
1550 if (unlikely(error))
1551 break;
1552 error = get_user(len, &iov->iov_len);
1553 if (unlikely(error))
1554 break;
1555
1556 /*
1557 * Sanity check this iovec. 0 read succeeds.
1558 */
1559 if (unlikely(!len))
1560 break;
1561 if (unlikely(!base)) {
1562 error = -EFAULT;
1563 break;
1564 }
1565
1566 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1567 error = -EFAULT;
1568 break;
1569 }
1570
1571 sd.len = 0;
1572 sd.total_len = len;
1573 sd.flags = flags;
1574 sd.u.userptr = base;
1575 sd.pos = 0;
1576
1577 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1578 if (size < 0) {
1579 if (!ret)
1580 ret = size;
1581
1582 break;
1583 }
1584
1585 ret += size;
1586
1587 if (size < len)
1588 break;
1589
1590 nr_segs--;
1591 iov++;
1592 }
1593
1594 pipe_unlock(pipe);
1595
1596 if (!ret)
1597 ret = error;
1598
1599 return ret;
1600}
1601
1602/*
1603 * vmsplice splices a user address range into a pipe. It can be thought of
1604 * as splice-from-memory, where the regular splice is splice-from-file (or
1605 * to file). In both cases the output is a pipe, naturally.
1606 */
1607static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1608 unsigned long nr_segs, unsigned int flags)
1609{
1610 struct pipe_inode_info *pipe;
1611 struct page *pages[PIPE_DEF_BUFFERS];
1612 struct partial_page partial[PIPE_DEF_BUFFERS];
1613 struct splice_pipe_desc spd = {
1614 .pages = pages,
1615 .partial = partial,
1616 .flags = flags,
1617 .ops = &user_page_pipe_buf_ops,
1618 .spd_release = spd_release_page,
1619 };
1620 long ret;
1621
1622 pipe = get_pipe_info(file);
1623 if (!pipe)
1624 return -EBADF;
1625
1626 if (splice_grow_spd(pipe, &spd))
1627 return -ENOMEM;
1628
1629 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1630 spd.partial, flags & SPLICE_F_GIFT,
1631 pipe->buffers);
1632 if (spd.nr_pages <= 0)
1633 ret = spd.nr_pages;
1634 else
1635 ret = splice_to_pipe(pipe, &spd);
1636
1637 splice_shrink_spd(pipe, &spd);
1638 return ret;
1639}
1640
1641/*
1642 * Note that vmsplice only really supports true splicing _from_ user memory
1643 * to a pipe, not the other way around. Splicing from user memory is a simple
1644 * operation that can be supported without any funky alignment restrictions
1645 * or nasty vm tricks. We simply map in the user memory and fill them into
1646 * a pipe. The reverse isn't quite as easy, though. There are two possible
1647 * solutions for that:
1648 *
1649 * - memcpy() the data internally, at which point we might as well just
1650 * do a regular read() on the buffer anyway.
1651 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1652 * has restriction limitations on both ends of the pipe).
1653 *
1654 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1655 *
1656 */
1657SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1658 unsigned long, nr_segs, unsigned int, flags)
1659{
1660 struct file *file;
1661 long error;
1662 int fput;
1663
1664 if (unlikely(nr_segs > UIO_MAXIOV))
1665 return -EINVAL;
1666 else if (unlikely(!nr_segs))
1667 return 0;
1668
1669 error = -EBADF;
1670 file = fget_light(fd, &fput);
1671 if (file) {
1672 if (file->f_mode & FMODE_WRITE)
1673 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1674 else if (file->f_mode & FMODE_READ)
1675 error = vmsplice_to_user(file, iov, nr_segs, flags);
1676
1677 fput_light(file, fput);
1678 }
1679
1680 return error;
1681}
1682
1683SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1684 int, fd_out, loff_t __user *, off_out,
1685 size_t, len, unsigned int, flags)
1686{
1687 long error;
1688 struct file *in, *out;
1689 int fput_in, fput_out;
1690
1691 if (unlikely(!len))
1692 return 0;
1693
1694 error = -EBADF;
1695 in = fget_light(fd_in, &fput_in);
1696 if (in) {
1697 if (in->f_mode & FMODE_READ) {
1698 out = fget_light(fd_out, &fput_out);
1699 if (out) {
1700 if (out->f_mode & FMODE_WRITE)
1701 error = do_splice(in, off_in,
1702 out, off_out,
1703 len, flags);
1704 fput_light(out, fput_out);
1705 }
1706 }
1707
1708 fput_light(in, fput_in);
1709 }
1710
1711 return error;
1712}
1713
1714/*
1715 * Make sure there's data to read. Wait for input if we can, otherwise
1716 * return an appropriate error.
1717 */
1718static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1719{
1720 int ret;
1721
1722 /*
1723 * Check ->nrbufs without the inode lock first. This function
1724 * is speculative anyways, so missing one is ok.
1725 */
1726 if (pipe->nrbufs)
1727 return 0;
1728
1729 ret = 0;
1730 pipe_lock(pipe);
1731
1732 while (!pipe->nrbufs) {
1733 if (signal_pending(current)) {
1734 ret = -ERESTARTSYS;
1735 break;
1736 }
1737 if (!pipe->writers)
1738 break;
1739 if (!pipe->waiting_writers) {
1740 if (flags & SPLICE_F_NONBLOCK) {
1741 ret = -EAGAIN;
1742 break;
1743 }
1744 }
1745 pipe_wait(pipe);
1746 }
1747
1748 pipe_unlock(pipe);
1749 return ret;
1750}
1751
1752/*
1753 * Make sure there's writeable room. Wait for room if we can, otherwise
1754 * return an appropriate error.
1755 */
1756static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1757{
1758 int ret;
1759
1760 /*
1761 * Check ->nrbufs without the inode lock first. This function
1762 * is speculative anyways, so missing one is ok.
1763 */
1764 if (pipe->nrbufs < pipe->buffers)
1765 return 0;
1766
1767 ret = 0;
1768 pipe_lock(pipe);
1769
1770 while (pipe->nrbufs >= pipe->buffers) {
1771 if (!pipe->readers) {
1772 send_sig(SIGPIPE, current, 0);
1773 ret = -EPIPE;
1774 break;
1775 }
1776 if (flags & SPLICE_F_NONBLOCK) {
1777 ret = -EAGAIN;
1778 break;
1779 }
1780 if (signal_pending(current)) {
1781 ret = -ERESTARTSYS;
1782 break;
1783 }
1784 pipe->waiting_writers++;
1785 pipe_wait(pipe);
1786 pipe->waiting_writers--;
1787 }
1788
1789 pipe_unlock(pipe);
1790 return ret;
1791}
1792
1793/*
1794 * Splice contents of ipipe to opipe.
1795 */
1796static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1797 struct pipe_inode_info *opipe,
1798 size_t len, unsigned int flags)
1799{
1800 struct pipe_buffer *ibuf, *obuf;
1801 int ret = 0, nbuf;
1802 bool input_wakeup = false;
1803
1804
1805retry:
1806 ret = ipipe_prep(ipipe, flags);
1807 if (ret)
1808 return ret;
1809
1810 ret = opipe_prep(opipe, flags);
1811 if (ret)
1812 return ret;
1813
1814 /*
1815 * Potential ABBA deadlock, work around it by ordering lock
1816 * grabbing by pipe info address. Otherwise two different processes
1817 * could deadlock (one doing tee from A -> B, the other from B -> A).
1818 */
1819 pipe_double_lock(ipipe, opipe);
1820
1821 do {
1822 if (!opipe->readers) {
1823 send_sig(SIGPIPE, current, 0);
1824 if (!ret)
1825 ret = -EPIPE;
1826 break;
1827 }
1828
1829 if (!ipipe->nrbufs && !ipipe->writers)
1830 break;
1831
1832 /*
1833 * Cannot make any progress, because either the input
1834 * pipe is empty or the output pipe is full.
1835 */
1836 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1837 /* Already processed some buffers, break */
1838 if (ret)
1839 break;
1840
1841 if (flags & SPLICE_F_NONBLOCK) {
1842 ret = -EAGAIN;
1843 break;
1844 }
1845
1846 /*
1847 * We raced with another reader/writer and haven't
1848 * managed to process any buffers. A zero return
1849 * value means EOF, so retry instead.
1850 */
1851 pipe_unlock(ipipe);
1852 pipe_unlock(opipe);
1853 goto retry;
1854 }
1855
1856 ibuf = ipipe->bufs + ipipe->curbuf;
1857 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1858 obuf = opipe->bufs + nbuf;
1859
1860 if (len >= ibuf->len) {
1861 /*
1862 * Simply move the whole buffer from ipipe to opipe
1863 */
1864 *obuf = *ibuf;
1865 ibuf->ops = NULL;
1866 opipe->nrbufs++;
1867 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1868 ipipe->nrbufs--;
1869 input_wakeup = true;
1870 } else {
1871 /*
1872 * Get a reference to this pipe buffer,
1873 * so we can copy the contents over.
1874 */
1875 ibuf->ops->get(ipipe, ibuf);
1876 *obuf = *ibuf;
1877
1878 /*
1879 * Don't inherit the gift flag, we need to
1880 * prevent multiple steals of this page.
1881 */
1882 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1883
1884 obuf->len = len;
1885 opipe->nrbufs++;
1886 ibuf->offset += obuf->len;
1887 ibuf->len -= obuf->len;
1888 }
1889 ret += obuf->len;
1890 len -= obuf->len;
1891 } while (len);
1892
1893 pipe_unlock(ipipe);
1894 pipe_unlock(opipe);
1895
1896 /*
1897 * If we put data in the output pipe, wakeup any potential readers.
1898 */
1899 if (ret > 0)
1900 wakeup_pipe_readers(opipe);
1901
1902 if (input_wakeup)
1903 wakeup_pipe_writers(ipipe);
1904
1905 return ret;
1906}
1907
1908/*
1909 * Link contents of ipipe to opipe.
1910 */
1911static int link_pipe(struct pipe_inode_info *ipipe,
1912 struct pipe_inode_info *opipe,
1913 size_t len, unsigned int flags)
1914{
1915 struct pipe_buffer *ibuf, *obuf;
1916 int ret = 0, i = 0, nbuf;
1917
1918 /*
1919 * Potential ABBA deadlock, work around it by ordering lock
1920 * grabbing by pipe info address. Otherwise two different processes
1921 * could deadlock (one doing tee from A -> B, the other from B -> A).
1922 */
1923 pipe_double_lock(ipipe, opipe);
1924
1925 do {
1926 if (!opipe->readers) {
1927 send_sig(SIGPIPE, current, 0);
1928 if (!ret)
1929 ret = -EPIPE;
1930 break;
1931 }
1932
1933 /*
1934 * If we have iterated all input buffers or ran out of
1935 * output room, break.
1936 */
1937 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1938 break;
1939
1940 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1941 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1942
1943 /*
1944 * Get a reference to this pipe buffer,
1945 * so we can copy the contents over.
1946 */
1947 ibuf->ops->get(ipipe, ibuf);
1948
1949 obuf = opipe->bufs + nbuf;
1950 *obuf = *ibuf;
1951
1952 /*
1953 * Don't inherit the gift flag, we need to
1954 * prevent multiple steals of this page.
1955 */
1956 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1957
1958 if (obuf->len > len)
1959 obuf->len = len;
1960
1961 opipe->nrbufs++;
1962 ret += obuf->len;
1963 len -= obuf->len;
1964 i++;
1965 } while (len);
1966
1967 /*
1968 * return EAGAIN if we have the potential of some data in the
1969 * future, otherwise just return 0
1970 */
1971 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1972 ret = -EAGAIN;
1973
1974 pipe_unlock(ipipe);
1975 pipe_unlock(opipe);
1976
1977 /*
1978 * If we put data in the output pipe, wakeup any potential readers.
1979 */
1980 if (ret > 0)
1981 wakeup_pipe_readers(opipe);
1982
1983 return ret;
1984}
1985
1986/*
1987 * This is a tee(1) implementation that works on pipes. It doesn't copy
1988 * any data, it simply references the 'in' pages on the 'out' pipe.
1989 * The 'flags' used are the SPLICE_F_* variants, currently the only
1990 * applicable one is SPLICE_F_NONBLOCK.
1991 */
1992static long do_tee(struct file *in, struct file *out, size_t len,
1993 unsigned int flags)
1994{
1995 struct pipe_inode_info *ipipe = get_pipe_info(in);
1996 struct pipe_inode_info *opipe = get_pipe_info(out);
1997 int ret = -EINVAL;
1998
1999 /*
2000 * Duplicate the contents of ipipe to opipe without actually
2001 * copying the data.
2002 */
2003 if (ipipe && opipe && ipipe != opipe) {
2004 /*
2005 * Keep going, unless we encounter an error. The ipipe/opipe
2006 * ordering doesn't really matter.
2007 */
2008 ret = ipipe_prep(ipipe, flags);
2009 if (!ret) {
2010 ret = opipe_prep(opipe, flags);
2011 if (!ret)
2012 ret = link_pipe(ipipe, opipe, len, flags);
2013 }
2014 }
2015
2016 return ret;
2017}
2018
2019SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2020{
2021 struct file *in;
2022 int error, fput_in;
2023
2024 if (unlikely(!len))
2025 return 0;
2026
2027 error = -EBADF;
2028 in = fget_light(fdin, &fput_in);
2029 if (in) {
2030 if (in->f_mode & FMODE_READ) {
2031 int fput_out;
2032 struct file *out = fget_light(fdout, &fput_out);
2033
2034 if (out) {
2035 if (out->f_mode & FMODE_WRITE)
2036 error = do_tee(in, out, len, flags);
2037 fput_light(out, fput_out);
2038 }
2039 }
2040 fput_light(in, fput_in);
2041 }
2042
2043 return error;
2044}