Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Copyright (c) 2007-2014 Nicira, Inc.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of version 2 of the GNU General Public
  6 * License as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful, but
  9 * WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public License
 14 * along with this program; if not, write to the Free Software
 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 16 * 02110-1301, USA
 17 */
 18
 19#include <linux/uaccess.h>
 20#include <linux/netdevice.h>
 21#include <linux/etherdevice.h>
 22#include <linux/if_ether.h>
 23#include <linux/if_vlan.h>
 24#include <net/llc_pdu.h>
 25#include <linux/kernel.h>
 26#include <linux/jhash.h>
 27#include <linux/jiffies.h>
 28#include <linux/llc.h>
 29#include <linux/module.h>
 30#include <linux/in.h>
 31#include <linux/rcupdate.h>
 32#include <linux/cpumask.h>
 33#include <linux/if_arp.h>
 34#include <linux/ip.h>
 35#include <linux/ipv6.h>
 36#include <linux/mpls.h>
 37#include <linux/sctp.h>
 38#include <linux/smp.h>
 39#include <linux/tcp.h>
 40#include <linux/udp.h>
 41#include <linux/icmp.h>
 42#include <linux/icmpv6.h>
 43#include <linux/rculist.h>
 44#include <net/ip.h>
 45#include <net/ip_tunnels.h>
 46#include <net/ipv6.h>
 47#include <net/mpls.h>
 48#include <net/ndisc.h>
 49#include <net/nsh.h>
 
 
 50
 51#include "conntrack.h"
 52#include "datapath.h"
 53#include "flow.h"
 54#include "flow_netlink.h"
 55#include "vport.h"
 56
 57u64 ovs_flow_used_time(unsigned long flow_jiffies)
 58{
 59	struct timespec64 cur_ts;
 60	u64 cur_ms, idle_ms;
 61
 62	ktime_get_ts64(&cur_ts);
 63	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
 64	cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
 65		 cur_ts.tv_nsec / NSEC_PER_MSEC;
 66
 67	return cur_ms - idle_ms;
 68}
 69
 70#define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
 71
 72void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
 73			   const struct sk_buff *skb)
 74{
 75	struct flow_stats *stats;
 76	unsigned int cpu = smp_processor_id();
 77	int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
 78
 79	stats = rcu_dereference(flow->stats[cpu]);
 80
 81	/* Check if already have CPU-specific stats. */
 82	if (likely(stats)) {
 83		spin_lock(&stats->lock);
 84		/* Mark if we write on the pre-allocated stats. */
 85		if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
 86			flow->stats_last_writer = cpu;
 87	} else {
 88		stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
 89		spin_lock(&stats->lock);
 90
 91		/* If the current CPU is the only writer on the
 92		 * pre-allocated stats keep using them.
 93		 */
 94		if (unlikely(flow->stats_last_writer != cpu)) {
 95			/* A previous locker may have already allocated the
 96			 * stats, so we need to check again.  If CPU-specific
 97			 * stats were already allocated, we update the pre-
 98			 * allocated stats as we have already locked them.
 99			 */
100			if (likely(flow->stats_last_writer != -1) &&
101			    likely(!rcu_access_pointer(flow->stats[cpu]))) {
102				/* Try to allocate CPU-specific stats. */
103				struct flow_stats *new_stats;
104
105				new_stats =
106					kmem_cache_alloc_node(flow_stats_cache,
107							      GFP_NOWAIT |
108							      __GFP_THISNODE |
109							      __GFP_NOWARN |
110							      __GFP_NOMEMALLOC,
111							      numa_node_id());
112				if (likely(new_stats)) {
113					new_stats->used = jiffies;
114					new_stats->packet_count = 1;
115					new_stats->byte_count = len;
116					new_stats->tcp_flags = tcp_flags;
117					spin_lock_init(&new_stats->lock);
118
119					rcu_assign_pointer(flow->stats[cpu],
120							   new_stats);
121					cpumask_set_cpu(cpu, &flow->cpu_used_mask);
 
122					goto unlock;
123				}
124			}
125			flow->stats_last_writer = cpu;
126		}
127	}
128
129	stats->used = jiffies;
130	stats->packet_count++;
131	stats->byte_count += len;
132	stats->tcp_flags |= tcp_flags;
133unlock:
134	spin_unlock(&stats->lock);
135}
136
137/* Must be called with rcu_read_lock or ovs_mutex. */
138void ovs_flow_stats_get(const struct sw_flow *flow,
139			struct ovs_flow_stats *ovs_stats,
140			unsigned long *used, __be16 *tcp_flags)
141{
142	int cpu;
143
144	*used = 0;
145	*tcp_flags = 0;
146	memset(ovs_stats, 0, sizeof(*ovs_stats));
147
148	/* We open code this to make sure cpu 0 is always considered */
149	for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
150		struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
 
151
152		if (stats) {
153			/* Local CPU may write on non-local stats, so we must
154			 * block bottom-halves here.
155			 */
156			spin_lock_bh(&stats->lock);
157			if (!*used || time_after(stats->used, *used))
158				*used = stats->used;
159			*tcp_flags |= stats->tcp_flags;
160			ovs_stats->n_packets += stats->packet_count;
161			ovs_stats->n_bytes += stats->byte_count;
162			spin_unlock_bh(&stats->lock);
163		}
164	}
165}
166
167/* Called with ovs_mutex. */
168void ovs_flow_stats_clear(struct sw_flow *flow)
169{
170	int cpu;
171
172	/* We open code this to make sure cpu 0 is always considered */
173	for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
174		struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
 
175
176		if (stats) {
177			spin_lock_bh(&stats->lock);
178			stats->used = 0;
179			stats->packet_count = 0;
180			stats->byte_count = 0;
181			stats->tcp_flags = 0;
182			spin_unlock_bh(&stats->lock);
183		}
184	}
185}
186
187static int check_header(struct sk_buff *skb, int len)
188{
189	if (unlikely(skb->len < len))
190		return -EINVAL;
191	if (unlikely(!pskb_may_pull(skb, len)))
192		return -ENOMEM;
193	return 0;
194}
195
196static bool arphdr_ok(struct sk_buff *skb)
197{
198	return pskb_may_pull(skb, skb_network_offset(skb) +
199				  sizeof(struct arp_eth_header));
200}
201
202static int check_iphdr(struct sk_buff *skb)
203{
204	unsigned int nh_ofs = skb_network_offset(skb);
205	unsigned int ip_len;
206	int err;
207
208	err = check_header(skb, nh_ofs + sizeof(struct iphdr));
209	if (unlikely(err))
210		return err;
211
212	ip_len = ip_hdrlen(skb);
213	if (unlikely(ip_len < sizeof(struct iphdr) ||
214		     skb->len < nh_ofs + ip_len))
215		return -EINVAL;
216
217	skb_set_transport_header(skb, nh_ofs + ip_len);
218	return 0;
219}
220
221static bool tcphdr_ok(struct sk_buff *skb)
222{
223	int th_ofs = skb_transport_offset(skb);
224	int tcp_len;
225
226	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
227		return false;
228
229	tcp_len = tcp_hdrlen(skb);
230	if (unlikely(tcp_len < sizeof(struct tcphdr) ||
231		     skb->len < th_ofs + tcp_len))
232		return false;
233
234	return true;
235}
236
237static bool udphdr_ok(struct sk_buff *skb)
238{
239	return pskb_may_pull(skb, skb_transport_offset(skb) +
240				  sizeof(struct udphdr));
241}
242
243static bool sctphdr_ok(struct sk_buff *skb)
244{
245	return pskb_may_pull(skb, skb_transport_offset(skb) +
246				  sizeof(struct sctphdr));
247}
248
249static bool icmphdr_ok(struct sk_buff *skb)
250{
251	return pskb_may_pull(skb, skb_transport_offset(skb) +
252				  sizeof(struct icmphdr));
253}
254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
256{
 
 
257	unsigned int nh_ofs = skb_network_offset(skb);
258	unsigned int nh_len;
259	int payload_ofs;
260	struct ipv6hdr *nh;
261	uint8_t nexthdr;
262	__be16 frag_off;
263	int err;
264
265	err = check_header(skb, nh_ofs + sizeof(*nh));
266	if (unlikely(err))
267		return err;
268
269	nh = ipv6_hdr(skb);
270	nexthdr = nh->nexthdr;
271	payload_ofs = (u8 *)(nh + 1) - skb->data;
272
273	key->ip.proto = NEXTHDR_NONE;
274	key->ip.tos = ipv6_get_dsfield(nh);
275	key->ip.ttl = nh->hop_limit;
276	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
277	key->ipv6.addr.src = nh->saddr;
278	key->ipv6.addr.dst = nh->daddr;
279
280	payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
281
282	if (frag_off) {
283		if (frag_off & htons(~0x7))
284			key->ip.frag = OVS_FRAG_TYPE_LATER;
285		else
286			key->ip.frag = OVS_FRAG_TYPE_FIRST;
 
 
287	} else {
288		key->ip.frag = OVS_FRAG_TYPE_NONE;
289	}
290
291	/* Delayed handling of error in ipv6_skip_exthdr() as it
292	 * always sets frag_off to a valid value which may be
293	 * used to set key->ip.frag above.
294	 */
295	if (unlikely(payload_ofs < 0))
296		return -EPROTO;
297
298	nh_len = payload_ofs - nh_ofs;
299	skb_set_transport_header(skb, nh_ofs + nh_len);
300	key->ip.proto = nexthdr;
301	return nh_len;
302}
303
304static bool icmp6hdr_ok(struct sk_buff *skb)
305{
306	return pskb_may_pull(skb, skb_transport_offset(skb) +
307				  sizeof(struct icmp6hdr));
308}
309
310/**
311 * Parse vlan tag from vlan header.
312 * Returns ERROR on memory error.
313 * Returns 0 if it encounters a non-vlan or incomplete packet.
314 * Returns 1 after successfully parsing vlan tag.
 
 
 
 
315 */
316static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
317			  bool untag_vlan)
318{
319	struct vlan_head *vh = (struct vlan_head *)skb->data;
320
321	if (likely(!eth_type_vlan(vh->tpid)))
322		return 0;
323
324	if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
325		return 0;
326
327	if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
328				 sizeof(__be16))))
329		return -ENOMEM;
330
331	vh = (struct vlan_head *)skb->data;
332	key_vh->tci = vh->tci | htons(VLAN_TAG_PRESENT);
333	key_vh->tpid = vh->tpid;
334
335	if (unlikely(untag_vlan)) {
336		int offset = skb->data - skb_mac_header(skb);
337		u16 tci;
338		int err;
339
340		__skb_push(skb, offset);
341		err = __skb_vlan_pop(skb, &tci);
342		__skb_pull(skb, offset);
343		if (err)
344			return err;
345		__vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
346	} else {
347		__skb_pull(skb, sizeof(struct vlan_head));
348	}
349	return 1;
350}
351
352static void clear_vlan(struct sw_flow_key *key)
353{
354	key->eth.vlan.tci = 0;
355	key->eth.vlan.tpid = 0;
356	key->eth.cvlan.tci = 0;
357	key->eth.cvlan.tpid = 0;
358}
359
360static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
361{
362	int res;
363
364	if (skb_vlan_tag_present(skb)) {
365		key->eth.vlan.tci = htons(skb->vlan_tci);
366		key->eth.vlan.tpid = skb->vlan_proto;
367	} else {
368		/* Parse outer vlan tag in the non-accelerated case. */
369		res = parse_vlan_tag(skb, &key->eth.vlan, true);
370		if (res <= 0)
371			return res;
372	}
373
374	/* Parse inner vlan tag. */
375	res = parse_vlan_tag(skb, &key->eth.cvlan, false);
376	if (res <= 0)
377		return res;
378
379	return 0;
380}
381
382static __be16 parse_ethertype(struct sk_buff *skb)
383{
384	struct llc_snap_hdr {
385		u8  dsap;  /* Always 0xAA */
386		u8  ssap;  /* Always 0xAA */
387		u8  ctrl;
388		u8  oui[3];
389		__be16 ethertype;
390	};
391	struct llc_snap_hdr *llc;
392	__be16 proto;
393
394	proto = *(__be16 *) skb->data;
395	__skb_pull(skb, sizeof(__be16));
396
397	if (eth_proto_is_802_3(proto))
398		return proto;
399
400	if (skb->len < sizeof(struct llc_snap_hdr))
401		return htons(ETH_P_802_2);
402
403	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
404		return htons(0);
405
406	llc = (struct llc_snap_hdr *) skb->data;
407	if (llc->dsap != LLC_SAP_SNAP ||
408	    llc->ssap != LLC_SAP_SNAP ||
409	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
410		return htons(ETH_P_802_2);
411
412	__skb_pull(skb, sizeof(struct llc_snap_hdr));
413
414	if (eth_proto_is_802_3(llc->ethertype))
415		return llc->ethertype;
416
417	return htons(ETH_P_802_2);
418}
419
420static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
421			int nh_len)
422{
423	struct icmp6hdr *icmp = icmp6_hdr(skb);
424
425	/* The ICMPv6 type and code fields use the 16-bit transport port
426	 * fields, so we need to store them in 16-bit network byte order.
427	 */
428	key->tp.src = htons(icmp->icmp6_type);
429	key->tp.dst = htons(icmp->icmp6_code);
430	memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
431
432	if (icmp->icmp6_code == 0 &&
433	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
434	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
435		int icmp_len = skb->len - skb_transport_offset(skb);
436		struct nd_msg *nd;
437		int offset;
438
 
 
439		/* In order to process neighbor discovery options, we need the
440		 * entire packet.
441		 */
442		if (unlikely(icmp_len < sizeof(*nd)))
443			return 0;
444
445		if (unlikely(skb_linearize(skb)))
446			return -ENOMEM;
447
448		nd = (struct nd_msg *)skb_transport_header(skb);
449		key->ipv6.nd.target = nd->target;
450
451		icmp_len -= sizeof(*nd);
452		offset = 0;
453		while (icmp_len >= 8) {
454			struct nd_opt_hdr *nd_opt =
455				 (struct nd_opt_hdr *)(nd->opt + offset);
456			int opt_len = nd_opt->nd_opt_len * 8;
457
458			if (unlikely(!opt_len || opt_len > icmp_len))
459				return 0;
460
461			/* Store the link layer address if the appropriate
462			 * option is provided.  It is considered an error if
463			 * the same link layer option is specified twice.
464			 */
465			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
466			    && opt_len == 8) {
467				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
468					goto invalid;
469				ether_addr_copy(key->ipv6.nd.sll,
470						&nd->opt[offset+sizeof(*nd_opt)]);
471			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
472				   && opt_len == 8) {
473				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
474					goto invalid;
475				ether_addr_copy(key->ipv6.nd.tll,
476						&nd->opt[offset+sizeof(*nd_opt)]);
477			}
478
479			icmp_len -= opt_len;
480			offset += opt_len;
481		}
482	}
483
484	return 0;
485
486invalid:
487	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
488	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
489	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
490
491	return 0;
492}
493
494static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
495{
496	struct nshhdr *nh;
497	unsigned int nh_ofs = skb_network_offset(skb);
498	u8 version, length;
499	int err;
500
501	err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
502	if (unlikely(err))
503		return err;
504
505	nh = nsh_hdr(skb);
506	version = nsh_get_ver(nh);
507	length = nsh_hdr_len(nh);
508
509	if (version != 0)
510		return -EINVAL;
511
512	err = check_header(skb, nh_ofs + length);
513	if (unlikely(err))
514		return err;
515
516	nh = nsh_hdr(skb);
517	key->nsh.base.flags = nsh_get_flags(nh);
518	key->nsh.base.ttl = nsh_get_ttl(nh);
519	key->nsh.base.mdtype = nh->mdtype;
520	key->nsh.base.np = nh->np;
521	key->nsh.base.path_hdr = nh->path_hdr;
522	switch (key->nsh.base.mdtype) {
523	case NSH_M_TYPE1:
524		if (length != NSH_M_TYPE1_LEN)
525			return -EINVAL;
526		memcpy(key->nsh.context, nh->md1.context,
527		       sizeof(nh->md1));
528		break;
529	case NSH_M_TYPE2:
530		memset(key->nsh.context, 0,
531		       sizeof(nh->md1));
532		break;
533	default:
534		return -EINVAL;
535	}
536
537	return 0;
538}
539
540/**
541 * key_extract - extracts a flow key from an Ethernet frame.
542 * @skb: sk_buff that contains the frame, with skb->data pointing to the
543 * Ethernet header
544 * @key: output flow key
545 *
546 * The caller must ensure that skb->len >= ETH_HLEN.
547 *
548 * Returns 0 if successful, otherwise a negative errno value.
549 *
550 * Initializes @skb header fields as follows:
551 *
552 *    - skb->mac_header: the L2 header.
553 *
554 *    - skb->network_header: just past the L2 header, or just past the
555 *      VLAN header, to the first byte of the L2 payload.
556 *
557 *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
558 *      on output, then just past the IP header, if one is present and
559 *      of a correct length, otherwise the same as skb->network_header.
560 *      For other key->eth.type values it is left untouched.
561 *
562 *    - skb->protocol: the type of the data starting at skb->network_header.
563 *      Equals to key->eth.type.
564 */
565static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
566{
567	int error;
568	struct ethhdr *eth;
569
570	/* Flags are always used as part of stats */
571	key->tp.flags = 0;
572
573	skb_reset_mac_header(skb);
574
575	/* Link layer. */
576	clear_vlan(key);
577	if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
578		if (unlikely(eth_type_vlan(skb->protocol)))
579			return -EINVAL;
580
581		skb_reset_network_header(skb);
582		key->eth.type = skb->protocol;
583	} else {
584		eth = eth_hdr(skb);
585		ether_addr_copy(key->eth.src, eth->h_source);
586		ether_addr_copy(key->eth.dst, eth->h_dest);
587
588		__skb_pull(skb, 2 * ETH_ALEN);
589		/* We are going to push all headers that we pull, so no need to
590		* update skb->csum here.
591		*/
592
593		if (unlikely(parse_vlan(skb, key)))
594			return -ENOMEM;
595
596		key->eth.type = parse_ethertype(skb);
597		if (unlikely(key->eth.type == htons(0)))
598			return -ENOMEM;
599
600		/* Multiple tagged packets need to retain TPID to satisfy
601		 * skb_vlan_pop(), which will later shift the ethertype into
602		 * skb->protocol.
603		 */
604		if (key->eth.cvlan.tci & htons(VLAN_TAG_PRESENT))
605			skb->protocol = key->eth.cvlan.tpid;
606		else
607			skb->protocol = key->eth.type;
608
609		skb_reset_network_header(skb);
610		__skb_push(skb, skb->data - skb_mac_header(skb));
611	}
612	skb_reset_mac_len(skb);
613
614	/* Network layer. */
615	if (key->eth.type == htons(ETH_P_IP)) {
616		struct iphdr *nh;
617		__be16 offset;
618
619		error = check_iphdr(skb);
620		if (unlikely(error)) {
621			memset(&key->ip, 0, sizeof(key->ip));
622			memset(&key->ipv4, 0, sizeof(key->ipv4));
623			if (error == -EINVAL) {
624				skb->transport_header = skb->network_header;
625				error = 0;
626			}
627			return error;
628		}
629
630		nh = ip_hdr(skb);
631		key->ipv4.addr.src = nh->saddr;
632		key->ipv4.addr.dst = nh->daddr;
633
634		key->ip.proto = nh->protocol;
635		key->ip.tos = nh->tos;
636		key->ip.ttl = nh->ttl;
637
638		offset = nh->frag_off & htons(IP_OFFSET);
639		if (offset) {
640			key->ip.frag = OVS_FRAG_TYPE_LATER;
 
641			return 0;
642		}
643		if (nh->frag_off & htons(IP_MF) ||
644			skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
645			key->ip.frag = OVS_FRAG_TYPE_FIRST;
646		else
647			key->ip.frag = OVS_FRAG_TYPE_NONE;
648
649		/* Transport layer. */
650		if (key->ip.proto == IPPROTO_TCP) {
651			if (tcphdr_ok(skb)) {
652				struct tcphdr *tcp = tcp_hdr(skb);
653				key->tp.src = tcp->source;
654				key->tp.dst = tcp->dest;
655				key->tp.flags = TCP_FLAGS_BE16(tcp);
656			} else {
657				memset(&key->tp, 0, sizeof(key->tp));
658			}
659
660		} else if (key->ip.proto == IPPROTO_UDP) {
661			if (udphdr_ok(skb)) {
662				struct udphdr *udp = udp_hdr(skb);
663				key->tp.src = udp->source;
664				key->tp.dst = udp->dest;
665			} else {
666				memset(&key->tp, 0, sizeof(key->tp));
667			}
668		} else if (key->ip.proto == IPPROTO_SCTP) {
669			if (sctphdr_ok(skb)) {
670				struct sctphdr *sctp = sctp_hdr(skb);
671				key->tp.src = sctp->source;
672				key->tp.dst = sctp->dest;
673			} else {
674				memset(&key->tp, 0, sizeof(key->tp));
675			}
676		} else if (key->ip.proto == IPPROTO_ICMP) {
677			if (icmphdr_ok(skb)) {
678				struct icmphdr *icmp = icmp_hdr(skb);
679				/* The ICMP type and code fields use the 16-bit
680				 * transport port fields, so we need to store
681				 * them in 16-bit network byte order. */
682				key->tp.src = htons(icmp->type);
683				key->tp.dst = htons(icmp->code);
684			} else {
685				memset(&key->tp, 0, sizeof(key->tp));
686			}
687		}
688
689	} else if (key->eth.type == htons(ETH_P_ARP) ||
690		   key->eth.type == htons(ETH_P_RARP)) {
691		struct arp_eth_header *arp;
692		bool arp_available = arphdr_ok(skb);
693
694		arp = (struct arp_eth_header *)skb_network_header(skb);
695
696		if (arp_available &&
697		    arp->ar_hrd == htons(ARPHRD_ETHER) &&
698		    arp->ar_pro == htons(ETH_P_IP) &&
699		    arp->ar_hln == ETH_ALEN &&
700		    arp->ar_pln == 4) {
701
702			/* We only match on the lower 8 bits of the opcode. */
703			if (ntohs(arp->ar_op) <= 0xff)
704				key->ip.proto = ntohs(arp->ar_op);
705			else
706				key->ip.proto = 0;
707
708			memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
709			memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
710			ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
711			ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
712		} else {
713			memset(&key->ip, 0, sizeof(key->ip));
714			memset(&key->ipv4, 0, sizeof(key->ipv4));
715		}
716	} else if (eth_p_mpls(key->eth.type)) {
717		size_t stack_len = MPLS_HLEN;
718
 
719		skb_set_inner_network_header(skb, skb->mac_len);
720		while (1) {
721			__be32 lse;
722
723			error = check_header(skb, skb->mac_len + stack_len);
 
724			if (unlikely(error))
725				return 0;
726
727			memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
728
729			if (stack_len == MPLS_HLEN)
730				memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
 
731
732			skb_set_inner_network_header(skb, skb->mac_len + stack_len);
 
733			if (lse & htonl(MPLS_LS_S_MASK))
734				break;
735
736			stack_len += MPLS_HLEN;
737		}
 
 
 
 
738	} else if (key->eth.type == htons(ETH_P_IPV6)) {
739		int nh_len;             /* IPv6 Header + Extensions */
740
741		nh_len = parse_ipv6hdr(skb, key);
742		if (unlikely(nh_len < 0)) {
743			switch (nh_len) {
744			case -EINVAL:
745				memset(&key->ip, 0, sizeof(key->ip));
746				memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
747				/* fall-through */
748			case -EPROTO:
749				skb->transport_header = skb->network_header;
750				error = 0;
751				break;
752			default:
753				error = nh_len;
754			}
755			return error;
756		}
757
758		if (key->ip.frag == OVS_FRAG_TYPE_LATER)
 
759			return 0;
 
760		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
761			key->ip.frag = OVS_FRAG_TYPE_FIRST;
762
763		/* Transport layer. */
764		if (key->ip.proto == NEXTHDR_TCP) {
765			if (tcphdr_ok(skb)) {
766				struct tcphdr *tcp = tcp_hdr(skb);
767				key->tp.src = tcp->source;
768				key->tp.dst = tcp->dest;
769				key->tp.flags = TCP_FLAGS_BE16(tcp);
770			} else {
771				memset(&key->tp, 0, sizeof(key->tp));
772			}
773		} else if (key->ip.proto == NEXTHDR_UDP) {
774			if (udphdr_ok(skb)) {
775				struct udphdr *udp = udp_hdr(skb);
776				key->tp.src = udp->source;
777				key->tp.dst = udp->dest;
778			} else {
779				memset(&key->tp, 0, sizeof(key->tp));
780			}
781		} else if (key->ip.proto == NEXTHDR_SCTP) {
782			if (sctphdr_ok(skb)) {
783				struct sctphdr *sctp = sctp_hdr(skb);
784				key->tp.src = sctp->source;
785				key->tp.dst = sctp->dest;
786			} else {
787				memset(&key->tp, 0, sizeof(key->tp));
788			}
789		} else if (key->ip.proto == NEXTHDR_ICMP) {
790			if (icmp6hdr_ok(skb)) {
791				error = parse_icmpv6(skb, key, nh_len);
792				if (error)
793					return error;
794			} else {
795				memset(&key->tp, 0, sizeof(key->tp));
796			}
797		}
798	} else if (key->eth.type == htons(ETH_P_NSH)) {
799		error = parse_nsh(skb, key);
800		if (error)
801			return error;
802	}
803	return 0;
804}
805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
806int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
807{
808	int res;
809
810	res = key_extract(skb, key);
811	if (!res)
812		key->mac_proto &= ~SW_FLOW_KEY_INVALID;
813
814	return res;
815}
816
817static int key_extract_mac_proto(struct sk_buff *skb)
818{
819	switch (skb->dev->type) {
820	case ARPHRD_ETHER:
821		return MAC_PROTO_ETHERNET;
822	case ARPHRD_NONE:
823		if (skb->protocol == htons(ETH_P_TEB))
824			return MAC_PROTO_ETHERNET;
825		return MAC_PROTO_NONE;
826	}
827	WARN_ON_ONCE(1);
828	return -EINVAL;
829}
830
831int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
832			 struct sk_buff *skb, struct sw_flow_key *key)
833{
 
 
 
 
834	int res, err;
 
835
836	/* Extract metadata from packet. */
837	if (tun_info) {
838		key->tun_proto = ip_tunnel_info_af(tun_info);
839		memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
840
841		if (tun_info->options_len) {
842			BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
843						   8)) - 1
844					> sizeof(key->tun_opts));
845
846			ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
847						tun_info);
848			key->tun_opts_len = tun_info->options_len;
849		} else {
850			key->tun_opts_len = 0;
851		}
852	} else  {
853		key->tun_proto = 0;
854		key->tun_opts_len = 0;
855		memset(&key->tun_key, 0, sizeof(key->tun_key));
856	}
857
858	key->phy.priority = skb->priority;
859	key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
860	key->phy.skb_mark = skb->mark;
861	key->ovs_flow_hash = 0;
862	res = key_extract_mac_proto(skb);
863	if (res < 0)
864		return res;
865	key->mac_proto = res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
866	key->recirc_id = 0;
 
867
868	err = key_extract(skb, key);
869	if (!err)
870		ovs_ct_fill_key(skb, key);   /* Must be after key_extract(). */
 
 
 
 
 
 
 
 
 
 
 
871	return err;
872}
873
874int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
875				   struct sk_buff *skb,
876				   struct sw_flow_key *key, bool log)
877{
878	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
879	u64 attrs = 0;
880	int err;
881
882	err = parse_flow_nlattrs(attr, a, &attrs, log);
883	if (err)
884		return -EINVAL;
885
886	/* Extract metadata from netlink attributes. */
887	err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
888	if (err)
889		return err;
890
891	/* key_extract assumes that skb->protocol is set-up for
892	 * layer 3 packets which is the case for other callers,
893	 * in particular packets received from the network stack.
894	 * Here the correct value can be set from the metadata
895	 * extracted above.
896	 * For L2 packet key eth type would be zero. skb protocol
897	 * would be set to correct value later during key-extact.
898	 */
899
900	skb->protocol = key->eth.type;
901	err = key_extract(skb, key);
902	if (err)
903		return err;
904
905	/* Check that we have conntrack original direction tuple metadata only
906	 * for packets for which it makes sense.  Otherwise the key may be
907	 * corrupted due to overlapping key fields.
908	 */
909	if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
910	    key->eth.type != htons(ETH_P_IP))
911		return -EINVAL;
912	if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
913	    (key->eth.type != htons(ETH_P_IPV6) ||
914	     sw_flow_key_is_nd(key)))
915		return -EINVAL;
916
917	return 0;
918}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2007-2014 Nicira, Inc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/uaccess.h>
   7#include <linux/netdevice.h>
   8#include <linux/etherdevice.h>
   9#include <linux/if_ether.h>
  10#include <linux/if_vlan.h>
  11#include <net/llc_pdu.h>
  12#include <linux/kernel.h>
  13#include <linux/jhash.h>
  14#include <linux/jiffies.h>
  15#include <linux/llc.h>
  16#include <linux/module.h>
  17#include <linux/in.h>
  18#include <linux/rcupdate.h>
  19#include <linux/cpumask.h>
  20#include <linux/if_arp.h>
  21#include <linux/ip.h>
  22#include <linux/ipv6.h>
  23#include <linux/mpls.h>
  24#include <linux/sctp.h>
  25#include <linux/smp.h>
  26#include <linux/tcp.h>
  27#include <linux/udp.h>
  28#include <linux/icmp.h>
  29#include <linux/icmpv6.h>
  30#include <linux/rculist.h>
  31#include <net/ip.h>
  32#include <net/ip_tunnels.h>
  33#include <net/ipv6.h>
  34#include <net/mpls.h>
  35#include <net/ndisc.h>
  36#include <net/nsh.h>
  37#include <net/pkt_cls.h>
  38#include <net/netfilter/nf_conntrack_zones.h>
  39
  40#include "conntrack.h"
  41#include "datapath.h"
  42#include "flow.h"
  43#include "flow_netlink.h"
  44#include "vport.h"
  45
  46u64 ovs_flow_used_time(unsigned long flow_jiffies)
  47{
  48	struct timespec64 cur_ts;
  49	u64 cur_ms, idle_ms;
  50
  51	ktime_get_ts64(&cur_ts);
  52	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
  53	cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
  54		 cur_ts.tv_nsec / NSEC_PER_MSEC;
  55
  56	return cur_ms - idle_ms;
  57}
  58
  59#define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
  60
  61void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
  62			   const struct sk_buff *skb)
  63{
  64	struct sw_flow_stats *stats;
  65	unsigned int cpu = smp_processor_id();
  66	int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
  67
  68	stats = rcu_dereference(flow->stats[cpu]);
  69
  70	/* Check if already have CPU-specific stats. */
  71	if (likely(stats)) {
  72		spin_lock(&stats->lock);
  73		/* Mark if we write on the pre-allocated stats. */
  74		if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
  75			flow->stats_last_writer = cpu;
  76	} else {
  77		stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
  78		spin_lock(&stats->lock);
  79
  80		/* If the current CPU is the only writer on the
  81		 * pre-allocated stats keep using them.
  82		 */
  83		if (unlikely(flow->stats_last_writer != cpu)) {
  84			/* A previous locker may have already allocated the
  85			 * stats, so we need to check again.  If CPU-specific
  86			 * stats were already allocated, we update the pre-
  87			 * allocated stats as we have already locked them.
  88			 */
  89			if (likely(flow->stats_last_writer != -1) &&
  90			    likely(!rcu_access_pointer(flow->stats[cpu]))) {
  91				/* Try to allocate CPU-specific stats. */
  92				struct sw_flow_stats *new_stats;
  93
  94				new_stats =
  95					kmem_cache_alloc_node(flow_stats_cache,
  96							      GFP_NOWAIT |
  97							      __GFP_THISNODE |
  98							      __GFP_NOWARN |
  99							      __GFP_NOMEMALLOC,
 100							      numa_node_id());
 101				if (likely(new_stats)) {
 102					new_stats->used = jiffies;
 103					new_stats->packet_count = 1;
 104					new_stats->byte_count = len;
 105					new_stats->tcp_flags = tcp_flags;
 106					spin_lock_init(&new_stats->lock);
 107
 108					rcu_assign_pointer(flow->stats[cpu],
 109							   new_stats);
 110					cpumask_set_cpu(cpu,
 111							flow->cpu_used_mask);
 112					goto unlock;
 113				}
 114			}
 115			flow->stats_last_writer = cpu;
 116		}
 117	}
 118
 119	stats->used = jiffies;
 120	stats->packet_count++;
 121	stats->byte_count += len;
 122	stats->tcp_flags |= tcp_flags;
 123unlock:
 124	spin_unlock(&stats->lock);
 125}
 126
 127/* Must be called with rcu_read_lock or ovs_mutex. */
 128void ovs_flow_stats_get(const struct sw_flow *flow,
 129			struct ovs_flow_stats *ovs_stats,
 130			unsigned long *used, __be16 *tcp_flags)
 131{
 132	int cpu;
 133
 134	*used = 0;
 135	*tcp_flags = 0;
 136	memset(ovs_stats, 0, sizeof(*ovs_stats));
 137
 138	/* We open code this to make sure cpu 0 is always considered */
 139	for (cpu = 0; cpu < nr_cpu_ids;
 140	     cpu = cpumask_next(cpu, flow->cpu_used_mask)) {
 141		struct sw_flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
 142
 143		if (stats) {
 144			/* Local CPU may write on non-local stats, so we must
 145			 * block bottom-halves here.
 146			 */
 147			spin_lock_bh(&stats->lock);
 148			if (!*used || time_after(stats->used, *used))
 149				*used = stats->used;
 150			*tcp_flags |= stats->tcp_flags;
 151			ovs_stats->n_packets += stats->packet_count;
 152			ovs_stats->n_bytes += stats->byte_count;
 153			spin_unlock_bh(&stats->lock);
 154		}
 155	}
 156}
 157
 158/* Called with ovs_mutex. */
 159void ovs_flow_stats_clear(struct sw_flow *flow)
 160{
 161	int cpu;
 162
 163	/* We open code this to make sure cpu 0 is always considered */
 164	for (cpu = 0; cpu < nr_cpu_ids;
 165	     cpu = cpumask_next(cpu, flow->cpu_used_mask)) {
 166		struct sw_flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
 167
 168		if (stats) {
 169			spin_lock_bh(&stats->lock);
 170			stats->used = 0;
 171			stats->packet_count = 0;
 172			stats->byte_count = 0;
 173			stats->tcp_flags = 0;
 174			spin_unlock_bh(&stats->lock);
 175		}
 176	}
 177}
 178
 179static int check_header(struct sk_buff *skb, int len)
 180{
 181	if (unlikely(skb->len < len))
 182		return -EINVAL;
 183	if (unlikely(!pskb_may_pull(skb, len)))
 184		return -ENOMEM;
 185	return 0;
 186}
 187
 188static bool arphdr_ok(struct sk_buff *skb)
 189{
 190	return pskb_may_pull(skb, skb_network_offset(skb) +
 191				  sizeof(struct arp_eth_header));
 192}
 193
 194static int check_iphdr(struct sk_buff *skb)
 195{
 196	unsigned int nh_ofs = skb_network_offset(skb);
 197	unsigned int ip_len;
 198	int err;
 199
 200	err = check_header(skb, nh_ofs + sizeof(struct iphdr));
 201	if (unlikely(err))
 202		return err;
 203
 204	ip_len = ip_hdrlen(skb);
 205	if (unlikely(ip_len < sizeof(struct iphdr) ||
 206		     skb->len < nh_ofs + ip_len))
 207		return -EINVAL;
 208
 209	skb_set_transport_header(skb, nh_ofs + ip_len);
 210	return 0;
 211}
 212
 213static bool tcphdr_ok(struct sk_buff *skb)
 214{
 215	int th_ofs = skb_transport_offset(skb);
 216	int tcp_len;
 217
 218	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
 219		return false;
 220
 221	tcp_len = tcp_hdrlen(skb);
 222	if (unlikely(tcp_len < sizeof(struct tcphdr) ||
 223		     skb->len < th_ofs + tcp_len))
 224		return false;
 225
 226	return true;
 227}
 228
 229static bool udphdr_ok(struct sk_buff *skb)
 230{
 231	return pskb_may_pull(skb, skb_transport_offset(skb) +
 232				  sizeof(struct udphdr));
 233}
 234
 235static bool sctphdr_ok(struct sk_buff *skb)
 236{
 237	return pskb_may_pull(skb, skb_transport_offset(skb) +
 238				  sizeof(struct sctphdr));
 239}
 240
 241static bool icmphdr_ok(struct sk_buff *skb)
 242{
 243	return pskb_may_pull(skb, skb_transport_offset(skb) +
 244				  sizeof(struct icmphdr));
 245}
 246
 247/**
 248 * get_ipv6_ext_hdrs() - Parses packet and sets IPv6 extension header flags.
 249 *
 250 * @skb: buffer where extension header data starts in packet
 251 * @nh: ipv6 header
 252 * @ext_hdrs: flags are stored here
 253 *
 254 * OFPIEH12_UNREP is set if more than one of a given IPv6 extension header
 255 * is unexpectedly encountered. (Two destination options headers may be
 256 * expected and would not cause this bit to be set.)
 257 *
 258 * OFPIEH12_UNSEQ is set if IPv6 extension headers were not in the order
 259 * preferred (but not required) by RFC 2460:
 260 *
 261 * When more than one extension header is used in the same packet, it is
 262 * recommended that those headers appear in the following order:
 263 *      IPv6 header
 264 *      Hop-by-Hop Options header
 265 *      Destination Options header
 266 *      Routing header
 267 *      Fragment header
 268 *      Authentication header
 269 *      Encapsulating Security Payload header
 270 *      Destination Options header
 271 *      upper-layer header
 272 */
 273static void get_ipv6_ext_hdrs(struct sk_buff *skb, struct ipv6hdr *nh,
 274			      u16 *ext_hdrs)
 275{
 276	u8 next_type = nh->nexthdr;
 277	unsigned int start = skb_network_offset(skb) + sizeof(struct ipv6hdr);
 278	int dest_options_header_count = 0;
 279
 280	*ext_hdrs = 0;
 281
 282	while (ipv6_ext_hdr(next_type)) {
 283		struct ipv6_opt_hdr _hdr, *hp;
 284
 285		switch (next_type) {
 286		case IPPROTO_NONE:
 287			*ext_hdrs |= OFPIEH12_NONEXT;
 288			/* stop parsing */
 289			return;
 290
 291		case IPPROTO_ESP:
 292			if (*ext_hdrs & OFPIEH12_ESP)
 293				*ext_hdrs |= OFPIEH12_UNREP;
 294			if ((*ext_hdrs & ~(OFPIEH12_HOP | OFPIEH12_DEST |
 295					   OFPIEH12_ROUTER | IPPROTO_FRAGMENT |
 296					   OFPIEH12_AUTH | OFPIEH12_UNREP)) ||
 297			    dest_options_header_count >= 2) {
 298				*ext_hdrs |= OFPIEH12_UNSEQ;
 299			}
 300			*ext_hdrs |= OFPIEH12_ESP;
 301			break;
 302
 303		case IPPROTO_AH:
 304			if (*ext_hdrs & OFPIEH12_AUTH)
 305				*ext_hdrs |= OFPIEH12_UNREP;
 306			if ((*ext_hdrs &
 307			     ~(OFPIEH12_HOP | OFPIEH12_DEST | OFPIEH12_ROUTER |
 308			       IPPROTO_FRAGMENT | OFPIEH12_UNREP)) ||
 309			    dest_options_header_count >= 2) {
 310				*ext_hdrs |= OFPIEH12_UNSEQ;
 311			}
 312			*ext_hdrs |= OFPIEH12_AUTH;
 313			break;
 314
 315		case IPPROTO_DSTOPTS:
 316			if (dest_options_header_count == 0) {
 317				if (*ext_hdrs &
 318				    ~(OFPIEH12_HOP | OFPIEH12_UNREP))
 319					*ext_hdrs |= OFPIEH12_UNSEQ;
 320				*ext_hdrs |= OFPIEH12_DEST;
 321			} else if (dest_options_header_count == 1) {
 322				if (*ext_hdrs &
 323				    ~(OFPIEH12_HOP | OFPIEH12_DEST |
 324				      OFPIEH12_ROUTER | OFPIEH12_FRAG |
 325				      OFPIEH12_AUTH | OFPIEH12_ESP |
 326				      OFPIEH12_UNREP)) {
 327					*ext_hdrs |= OFPIEH12_UNSEQ;
 328				}
 329			} else {
 330				*ext_hdrs |= OFPIEH12_UNREP;
 331			}
 332			dest_options_header_count++;
 333			break;
 334
 335		case IPPROTO_FRAGMENT:
 336			if (*ext_hdrs & OFPIEH12_FRAG)
 337				*ext_hdrs |= OFPIEH12_UNREP;
 338			if ((*ext_hdrs & ~(OFPIEH12_HOP |
 339					   OFPIEH12_DEST |
 340					   OFPIEH12_ROUTER |
 341					   OFPIEH12_UNREP)) ||
 342			    dest_options_header_count >= 2) {
 343				*ext_hdrs |= OFPIEH12_UNSEQ;
 344			}
 345			*ext_hdrs |= OFPIEH12_FRAG;
 346			break;
 347
 348		case IPPROTO_ROUTING:
 349			if (*ext_hdrs & OFPIEH12_ROUTER)
 350				*ext_hdrs |= OFPIEH12_UNREP;
 351			if ((*ext_hdrs & ~(OFPIEH12_HOP |
 352					   OFPIEH12_DEST |
 353					   OFPIEH12_UNREP)) ||
 354			    dest_options_header_count >= 2) {
 355				*ext_hdrs |= OFPIEH12_UNSEQ;
 356			}
 357			*ext_hdrs |= OFPIEH12_ROUTER;
 358			break;
 359
 360		case IPPROTO_HOPOPTS:
 361			if (*ext_hdrs & OFPIEH12_HOP)
 362				*ext_hdrs |= OFPIEH12_UNREP;
 363			/* OFPIEH12_HOP is set to 1 if a hop-by-hop IPv6
 364			 * extension header is present as the first
 365			 * extension header in the packet.
 366			 */
 367			if (*ext_hdrs == 0)
 368				*ext_hdrs |= OFPIEH12_HOP;
 369			else
 370				*ext_hdrs |= OFPIEH12_UNSEQ;
 371			break;
 372
 373		default:
 374			return;
 375		}
 376
 377		hp = skb_header_pointer(skb, start, sizeof(_hdr), &_hdr);
 378		if (!hp)
 379			break;
 380		next_type = hp->nexthdr;
 381		start += ipv6_optlen(hp);
 382	}
 383}
 384
 385static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
 386{
 387	unsigned short frag_off;
 388	unsigned int payload_ofs = 0;
 389	unsigned int nh_ofs = skb_network_offset(skb);
 390	unsigned int nh_len;
 
 391	struct ipv6hdr *nh;
 392	int err, nexthdr, flags = 0;
 
 
 393
 394	err = check_header(skb, nh_ofs + sizeof(*nh));
 395	if (unlikely(err))
 396		return err;
 397
 398	nh = ipv6_hdr(skb);
 399
 400	get_ipv6_ext_hdrs(skb, nh, &key->ipv6.exthdrs);
 401
 402	key->ip.proto = NEXTHDR_NONE;
 403	key->ip.tos = ipv6_get_dsfield(nh);
 404	key->ip.ttl = nh->hop_limit;
 405	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
 406	key->ipv6.addr.src = nh->saddr;
 407	key->ipv6.addr.dst = nh->daddr;
 408
 409	nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
 410	if (flags & IP6_FH_F_FRAG) {
 411		if (frag_off) {
 
 412			key->ip.frag = OVS_FRAG_TYPE_LATER;
 413			key->ip.proto = NEXTHDR_FRAGMENT;
 414			return 0;
 415		}
 416		key->ip.frag = OVS_FRAG_TYPE_FIRST;
 417	} else {
 418		key->ip.frag = OVS_FRAG_TYPE_NONE;
 419	}
 420
 421	/* Delayed handling of error in ipv6_find_hdr() as it
 422	 * always sets flags and frag_off to a valid value which may be
 423	 * used to set key->ip.frag above.
 424	 */
 425	if (unlikely(nexthdr < 0))
 426		return -EPROTO;
 427
 428	nh_len = payload_ofs - nh_ofs;
 429	skb_set_transport_header(skb, nh_ofs + nh_len);
 430	key->ip.proto = nexthdr;
 431	return nh_len;
 432}
 433
 434static bool icmp6hdr_ok(struct sk_buff *skb)
 435{
 436	return pskb_may_pull(skb, skb_transport_offset(skb) +
 437				  sizeof(struct icmp6hdr));
 438}
 439
 440/**
 441 * parse_vlan_tag - Parse vlan tag from vlan header.
 442 * @skb: skb containing frame to parse
 443 * @key_vh: pointer to parsed vlan tag
 444 * @untag_vlan: should the vlan header be removed from the frame
 445 *
 446 * Return: ERROR on memory error.
 447 * %0 if it encounters a non-vlan or incomplete packet.
 448 * %1 after successfully parsing vlan tag.
 449 */
 450static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
 451			  bool untag_vlan)
 452{
 453	struct vlan_head *vh = (struct vlan_head *)skb->data;
 454
 455	if (likely(!eth_type_vlan(vh->tpid)))
 456		return 0;
 457
 458	if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
 459		return 0;
 460
 461	if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
 462				 sizeof(__be16))))
 463		return -ENOMEM;
 464
 465	vh = (struct vlan_head *)skb->data;
 466	key_vh->tci = vh->tci | htons(VLAN_CFI_MASK);
 467	key_vh->tpid = vh->tpid;
 468
 469	if (unlikely(untag_vlan)) {
 470		int offset = skb->data - skb_mac_header(skb);
 471		u16 tci;
 472		int err;
 473
 474		__skb_push(skb, offset);
 475		err = __skb_vlan_pop(skb, &tci);
 476		__skb_pull(skb, offset);
 477		if (err)
 478			return err;
 479		__vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
 480	} else {
 481		__skb_pull(skb, sizeof(struct vlan_head));
 482	}
 483	return 1;
 484}
 485
 486static void clear_vlan(struct sw_flow_key *key)
 487{
 488	key->eth.vlan.tci = 0;
 489	key->eth.vlan.tpid = 0;
 490	key->eth.cvlan.tci = 0;
 491	key->eth.cvlan.tpid = 0;
 492}
 493
 494static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
 495{
 496	int res;
 497
 498	if (skb_vlan_tag_present(skb)) {
 499		key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK);
 500		key->eth.vlan.tpid = skb->vlan_proto;
 501	} else {
 502		/* Parse outer vlan tag in the non-accelerated case. */
 503		res = parse_vlan_tag(skb, &key->eth.vlan, true);
 504		if (res <= 0)
 505			return res;
 506	}
 507
 508	/* Parse inner vlan tag. */
 509	res = parse_vlan_tag(skb, &key->eth.cvlan, false);
 510	if (res <= 0)
 511		return res;
 512
 513	return 0;
 514}
 515
 516static __be16 parse_ethertype(struct sk_buff *skb)
 517{
 518	struct llc_snap_hdr {
 519		u8  dsap;  /* Always 0xAA */
 520		u8  ssap;  /* Always 0xAA */
 521		u8  ctrl;
 522		u8  oui[3];
 523		__be16 ethertype;
 524	};
 525	struct llc_snap_hdr *llc;
 526	__be16 proto;
 527
 528	proto = *(__be16 *) skb->data;
 529	__skb_pull(skb, sizeof(__be16));
 530
 531	if (eth_proto_is_802_3(proto))
 532		return proto;
 533
 534	if (skb->len < sizeof(struct llc_snap_hdr))
 535		return htons(ETH_P_802_2);
 536
 537	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
 538		return htons(0);
 539
 540	llc = (struct llc_snap_hdr *) skb->data;
 541	if (llc->dsap != LLC_SAP_SNAP ||
 542	    llc->ssap != LLC_SAP_SNAP ||
 543	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
 544		return htons(ETH_P_802_2);
 545
 546	__skb_pull(skb, sizeof(struct llc_snap_hdr));
 547
 548	if (eth_proto_is_802_3(llc->ethertype))
 549		return llc->ethertype;
 550
 551	return htons(ETH_P_802_2);
 552}
 553
 554static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
 555			int nh_len)
 556{
 557	struct icmp6hdr *icmp = icmp6_hdr(skb);
 558
 559	/* The ICMPv6 type and code fields use the 16-bit transport port
 560	 * fields, so we need to store them in 16-bit network byte order.
 561	 */
 562	key->tp.src = htons(icmp->icmp6_type);
 563	key->tp.dst = htons(icmp->icmp6_code);
 
 564
 565	if (icmp->icmp6_code == 0 &&
 566	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
 567	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 568		int icmp_len = skb->len - skb_transport_offset(skb);
 569		struct nd_msg *nd;
 570		int offset;
 571
 572		memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
 573
 574		/* In order to process neighbor discovery options, we need the
 575		 * entire packet.
 576		 */
 577		if (unlikely(icmp_len < sizeof(*nd)))
 578			return 0;
 579
 580		if (unlikely(skb_linearize(skb)))
 581			return -ENOMEM;
 582
 583		nd = (struct nd_msg *)skb_transport_header(skb);
 584		key->ipv6.nd.target = nd->target;
 585
 586		icmp_len -= sizeof(*nd);
 587		offset = 0;
 588		while (icmp_len >= 8) {
 589			struct nd_opt_hdr *nd_opt =
 590				 (struct nd_opt_hdr *)(nd->opt + offset);
 591			int opt_len = nd_opt->nd_opt_len * 8;
 592
 593			if (unlikely(!opt_len || opt_len > icmp_len))
 594				return 0;
 595
 596			/* Store the link layer address if the appropriate
 597			 * option is provided.  It is considered an error if
 598			 * the same link layer option is specified twice.
 599			 */
 600			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
 601			    && opt_len == 8) {
 602				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
 603					goto invalid;
 604				ether_addr_copy(key->ipv6.nd.sll,
 605						&nd->opt[offset+sizeof(*nd_opt)]);
 606			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
 607				   && opt_len == 8) {
 608				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
 609					goto invalid;
 610				ether_addr_copy(key->ipv6.nd.tll,
 611						&nd->opt[offset+sizeof(*nd_opt)]);
 612			}
 613
 614			icmp_len -= opt_len;
 615			offset += opt_len;
 616		}
 617	}
 618
 619	return 0;
 620
 621invalid:
 622	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
 623	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
 624	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
 625
 626	return 0;
 627}
 628
 629static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
 630{
 631	struct nshhdr *nh;
 632	unsigned int nh_ofs = skb_network_offset(skb);
 633	u8 version, length;
 634	int err;
 635
 636	err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
 637	if (unlikely(err))
 638		return err;
 639
 640	nh = nsh_hdr(skb);
 641	version = nsh_get_ver(nh);
 642	length = nsh_hdr_len(nh);
 643
 644	if (version != 0)
 645		return -EINVAL;
 646
 647	err = check_header(skb, nh_ofs + length);
 648	if (unlikely(err))
 649		return err;
 650
 651	nh = nsh_hdr(skb);
 652	key->nsh.base.flags = nsh_get_flags(nh);
 653	key->nsh.base.ttl = nsh_get_ttl(nh);
 654	key->nsh.base.mdtype = nh->mdtype;
 655	key->nsh.base.np = nh->np;
 656	key->nsh.base.path_hdr = nh->path_hdr;
 657	switch (key->nsh.base.mdtype) {
 658	case NSH_M_TYPE1:
 659		if (length != NSH_M_TYPE1_LEN)
 660			return -EINVAL;
 661		memcpy(key->nsh.context, nh->md1.context,
 662		       sizeof(nh->md1));
 663		break;
 664	case NSH_M_TYPE2:
 665		memset(key->nsh.context, 0,
 666		       sizeof(nh->md1));
 667		break;
 668	default:
 669		return -EINVAL;
 670	}
 671
 672	return 0;
 673}
 674
 675/**
 676 * key_extract_l3l4 - extracts L3/L4 header information.
 677 * @skb: sk_buff that contains the frame, with skb->data pointing to the
 678 *       L3 header
 679 * @key: output flow key
 680 *
 681 * Return: %0 if successful, otherwise a negative errno value.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 682 */
 683static int key_extract_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
 684{
 685	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 686
 687	/* Network layer. */
 688	if (key->eth.type == htons(ETH_P_IP)) {
 689		struct iphdr *nh;
 690		__be16 offset;
 691
 692		error = check_iphdr(skb);
 693		if (unlikely(error)) {
 694			memset(&key->ip, 0, sizeof(key->ip));
 695			memset(&key->ipv4, 0, sizeof(key->ipv4));
 696			if (error == -EINVAL) {
 697				skb->transport_header = skb->network_header;
 698				error = 0;
 699			}
 700			return error;
 701		}
 702
 703		nh = ip_hdr(skb);
 704		key->ipv4.addr.src = nh->saddr;
 705		key->ipv4.addr.dst = nh->daddr;
 706
 707		key->ip.proto = nh->protocol;
 708		key->ip.tos = nh->tos;
 709		key->ip.ttl = nh->ttl;
 710
 711		offset = nh->frag_off & htons(IP_OFFSET);
 712		if (offset) {
 713			key->ip.frag = OVS_FRAG_TYPE_LATER;
 714			memset(&key->tp, 0, sizeof(key->tp));
 715			return 0;
 716		}
 717		if (nh->frag_off & htons(IP_MF) ||
 718			skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
 719			key->ip.frag = OVS_FRAG_TYPE_FIRST;
 720		else
 721			key->ip.frag = OVS_FRAG_TYPE_NONE;
 722
 723		/* Transport layer. */
 724		if (key->ip.proto == IPPROTO_TCP) {
 725			if (tcphdr_ok(skb)) {
 726				struct tcphdr *tcp = tcp_hdr(skb);
 727				key->tp.src = tcp->source;
 728				key->tp.dst = tcp->dest;
 729				key->tp.flags = TCP_FLAGS_BE16(tcp);
 730			} else {
 731				memset(&key->tp, 0, sizeof(key->tp));
 732			}
 733
 734		} else if (key->ip.proto == IPPROTO_UDP) {
 735			if (udphdr_ok(skb)) {
 736				struct udphdr *udp = udp_hdr(skb);
 737				key->tp.src = udp->source;
 738				key->tp.dst = udp->dest;
 739			} else {
 740				memset(&key->tp, 0, sizeof(key->tp));
 741			}
 742		} else if (key->ip.proto == IPPROTO_SCTP) {
 743			if (sctphdr_ok(skb)) {
 744				struct sctphdr *sctp = sctp_hdr(skb);
 745				key->tp.src = sctp->source;
 746				key->tp.dst = sctp->dest;
 747			} else {
 748				memset(&key->tp, 0, sizeof(key->tp));
 749			}
 750		} else if (key->ip.proto == IPPROTO_ICMP) {
 751			if (icmphdr_ok(skb)) {
 752				struct icmphdr *icmp = icmp_hdr(skb);
 753				/* The ICMP type and code fields use the 16-bit
 754				 * transport port fields, so we need to store
 755				 * them in 16-bit network byte order. */
 756				key->tp.src = htons(icmp->type);
 757				key->tp.dst = htons(icmp->code);
 758			} else {
 759				memset(&key->tp, 0, sizeof(key->tp));
 760			}
 761		}
 762
 763	} else if (key->eth.type == htons(ETH_P_ARP) ||
 764		   key->eth.type == htons(ETH_P_RARP)) {
 765		struct arp_eth_header *arp;
 766		bool arp_available = arphdr_ok(skb);
 767
 768		arp = (struct arp_eth_header *)skb_network_header(skb);
 769
 770		if (arp_available &&
 771		    arp->ar_hrd == htons(ARPHRD_ETHER) &&
 772		    arp->ar_pro == htons(ETH_P_IP) &&
 773		    arp->ar_hln == ETH_ALEN &&
 774		    arp->ar_pln == 4) {
 775
 776			/* We only match on the lower 8 bits of the opcode. */
 777			if (ntohs(arp->ar_op) <= 0xff)
 778				key->ip.proto = ntohs(arp->ar_op);
 779			else
 780				key->ip.proto = 0;
 781
 782			memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
 783			memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
 784			ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
 785			ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
 786		} else {
 787			memset(&key->ip, 0, sizeof(key->ip));
 788			memset(&key->ipv4, 0, sizeof(key->ipv4));
 789		}
 790	} else if (eth_p_mpls(key->eth.type)) {
 791		u8 label_count = 1;
 792
 793		memset(&key->mpls, 0, sizeof(key->mpls));
 794		skb_set_inner_network_header(skb, skb->mac_len);
 795		while (1) {
 796			__be32 lse;
 797
 798			error = check_header(skb, skb->mac_len +
 799					     label_count * MPLS_HLEN);
 800			if (unlikely(error))
 801				return 0;
 802
 803			memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
 804
 805			if (label_count <= MPLS_LABEL_DEPTH)
 806				memcpy(&key->mpls.lse[label_count - 1], &lse,
 807				       MPLS_HLEN);
 808
 809			skb_set_inner_network_header(skb, skb->mac_len +
 810						     label_count * MPLS_HLEN);
 811			if (lse & htonl(MPLS_LS_S_MASK))
 812				break;
 813
 814			label_count++;
 815		}
 816		if (label_count > MPLS_LABEL_DEPTH)
 817			label_count = MPLS_LABEL_DEPTH;
 818
 819		key->mpls.num_labels_mask = GENMASK(label_count - 1, 0);
 820	} else if (key->eth.type == htons(ETH_P_IPV6)) {
 821		int nh_len;             /* IPv6 Header + Extensions */
 822
 823		nh_len = parse_ipv6hdr(skb, key);
 824		if (unlikely(nh_len < 0)) {
 825			switch (nh_len) {
 826			case -EINVAL:
 827				memset(&key->ip, 0, sizeof(key->ip));
 828				memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
 829				fallthrough;
 830			case -EPROTO:
 831				skb->transport_header = skb->network_header;
 832				error = 0;
 833				break;
 834			default:
 835				error = nh_len;
 836			}
 837			return error;
 838		}
 839
 840		if (key->ip.frag == OVS_FRAG_TYPE_LATER) {
 841			memset(&key->tp, 0, sizeof(key->tp));
 842			return 0;
 843		}
 844		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
 845			key->ip.frag = OVS_FRAG_TYPE_FIRST;
 846
 847		/* Transport layer. */
 848		if (key->ip.proto == NEXTHDR_TCP) {
 849			if (tcphdr_ok(skb)) {
 850				struct tcphdr *tcp = tcp_hdr(skb);
 851				key->tp.src = tcp->source;
 852				key->tp.dst = tcp->dest;
 853				key->tp.flags = TCP_FLAGS_BE16(tcp);
 854			} else {
 855				memset(&key->tp, 0, sizeof(key->tp));
 856			}
 857		} else if (key->ip.proto == NEXTHDR_UDP) {
 858			if (udphdr_ok(skb)) {
 859				struct udphdr *udp = udp_hdr(skb);
 860				key->tp.src = udp->source;
 861				key->tp.dst = udp->dest;
 862			} else {
 863				memset(&key->tp, 0, sizeof(key->tp));
 864			}
 865		} else if (key->ip.proto == NEXTHDR_SCTP) {
 866			if (sctphdr_ok(skb)) {
 867				struct sctphdr *sctp = sctp_hdr(skb);
 868				key->tp.src = sctp->source;
 869				key->tp.dst = sctp->dest;
 870			} else {
 871				memset(&key->tp, 0, sizeof(key->tp));
 872			}
 873		} else if (key->ip.proto == NEXTHDR_ICMP) {
 874			if (icmp6hdr_ok(skb)) {
 875				error = parse_icmpv6(skb, key, nh_len);
 876				if (error)
 877					return error;
 878			} else {
 879				memset(&key->tp, 0, sizeof(key->tp));
 880			}
 881		}
 882	} else if (key->eth.type == htons(ETH_P_NSH)) {
 883		error = parse_nsh(skb, key);
 884		if (error)
 885			return error;
 886	}
 887	return 0;
 888}
 889
 890/**
 891 * key_extract - extracts a flow key from an Ethernet frame.
 892 * @skb: sk_buff that contains the frame, with skb->data pointing to the
 893 * Ethernet header
 894 * @key: output flow key
 895 *
 896 * The caller must ensure that skb->len >= ETH_HLEN.
 897 *
 898 * Initializes @skb header fields as follows:
 899 *
 900 *    - skb->mac_header: the L2 header.
 901 *
 902 *    - skb->network_header: just past the L2 header, or just past the
 903 *      VLAN header, to the first byte of the L2 payload.
 904 *
 905 *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
 906 *      on output, then just past the IP header, if one is present and
 907 *      of a correct length, otherwise the same as skb->network_header.
 908 *      For other key->eth.type values it is left untouched.
 909 *
 910 *    - skb->protocol: the type of the data starting at skb->network_header.
 911 *      Equals to key->eth.type.
 912 *
 913 * Return: %0 if successful, otherwise a negative errno value.
 914 */
 915static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
 916{
 917	struct ethhdr *eth;
 918
 919	/* Flags are always used as part of stats */
 920	key->tp.flags = 0;
 921
 922	skb_reset_mac_header(skb);
 923
 924	/* Link layer. */
 925	clear_vlan(key);
 926	if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
 927		if (unlikely(eth_type_vlan(skb->protocol)))
 928			return -EINVAL;
 929
 930		skb_reset_network_header(skb);
 931		key->eth.type = skb->protocol;
 932	} else {
 933		eth = eth_hdr(skb);
 934		ether_addr_copy(key->eth.src, eth->h_source);
 935		ether_addr_copy(key->eth.dst, eth->h_dest);
 936
 937		__skb_pull(skb, 2 * ETH_ALEN);
 938		/* We are going to push all headers that we pull, so no need to
 939		 * update skb->csum here.
 940		 */
 941
 942		if (unlikely(parse_vlan(skb, key)))
 943			return -ENOMEM;
 944
 945		key->eth.type = parse_ethertype(skb);
 946		if (unlikely(key->eth.type == htons(0)))
 947			return -ENOMEM;
 948
 949		/* Multiple tagged packets need to retain TPID to satisfy
 950		 * skb_vlan_pop(), which will later shift the ethertype into
 951		 * skb->protocol.
 952		 */
 953		if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK))
 954			skb->protocol = key->eth.cvlan.tpid;
 955		else
 956			skb->protocol = key->eth.type;
 957
 958		skb_reset_network_header(skb);
 959		__skb_push(skb, skb->data - skb_mac_header(skb));
 960	}
 961
 962	skb_reset_mac_len(skb);
 963
 964	/* Fill out L3/L4 key info, if any */
 965	return key_extract_l3l4(skb, key);
 966}
 967
 968/* In the case of conntrack fragment handling it expects L3 headers,
 969 * add a helper.
 970 */
 971int ovs_flow_key_update_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
 972{
 973	return key_extract_l3l4(skb, key);
 974}
 975
 976int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
 977{
 978	int res;
 979
 980	res = key_extract(skb, key);
 981	if (!res)
 982		key->mac_proto &= ~SW_FLOW_KEY_INVALID;
 983
 984	return res;
 985}
 986
 987static int key_extract_mac_proto(struct sk_buff *skb)
 988{
 989	switch (skb->dev->type) {
 990	case ARPHRD_ETHER:
 991		return MAC_PROTO_ETHERNET;
 992	case ARPHRD_NONE:
 993		if (skb->protocol == htons(ETH_P_TEB))
 994			return MAC_PROTO_ETHERNET;
 995		return MAC_PROTO_NONE;
 996	}
 997	WARN_ON_ONCE(1);
 998	return -EINVAL;
 999}
1000
1001int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
1002			 struct sk_buff *skb, struct sw_flow_key *key)
1003{
1004#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
1005	struct tc_skb_ext *tc_ext;
1006#endif
1007	bool post_ct = false, post_ct_snat = false, post_ct_dnat = false;
1008	int res, err;
1009	u16 zone = 0;
1010
1011	/* Extract metadata from packet. */
1012	if (tun_info) {
1013		key->tun_proto = ip_tunnel_info_af(tun_info);
1014		memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
1015
1016		if (tun_info->options_len) {
1017			BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
1018						   8)) - 1
1019					> sizeof(key->tun_opts));
1020
1021			ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
1022						tun_info);
1023			key->tun_opts_len = tun_info->options_len;
1024		} else {
1025			key->tun_opts_len = 0;
1026		}
1027	} else  {
1028		key->tun_proto = 0;
1029		key->tun_opts_len = 0;
1030		memset(&key->tun_key, 0, sizeof(key->tun_key));
1031	}
1032
1033	key->phy.priority = skb->priority;
1034	key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
1035	key->phy.skb_mark = skb->mark;
1036	key->ovs_flow_hash = 0;
1037	res = key_extract_mac_proto(skb);
1038	if (res < 0)
1039		return res;
1040	key->mac_proto = res;
1041
1042#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
1043	if (tc_skb_ext_tc_enabled()) {
1044		tc_ext = skb_ext_find(skb, TC_SKB_EXT);
1045		key->recirc_id = tc_ext && !tc_ext->act_miss ?
1046				 tc_ext->chain : 0;
1047		OVS_CB(skb)->mru = tc_ext ? tc_ext->mru : 0;
1048		post_ct = tc_ext ? tc_ext->post_ct : false;
1049		post_ct_snat = post_ct ? tc_ext->post_ct_snat : false;
1050		post_ct_dnat = post_ct ? tc_ext->post_ct_dnat : false;
1051		zone = post_ct ? tc_ext->zone : 0;
1052	} else {
1053		key->recirc_id = 0;
1054	}
1055#else
1056	key->recirc_id = 0;
1057#endif
1058
1059	err = key_extract(skb, key);
1060	if (!err) {
1061		ovs_ct_fill_key(skb, key, post_ct);   /* Must be after key_extract(). */
1062		if (post_ct) {
1063			if (!skb_get_nfct(skb)) {
1064				key->ct_zone = zone;
1065			} else {
1066				if (!post_ct_dnat)
1067					key->ct_state &= ~OVS_CS_F_DST_NAT;
1068				if (!post_ct_snat)
1069					key->ct_state &= ~OVS_CS_F_SRC_NAT;
1070			}
1071		}
1072	}
1073	return err;
1074}
1075
1076int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
1077				   struct sk_buff *skb,
1078				   struct sw_flow_key *key, bool log)
1079{
1080	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1081	u64 attrs = 0;
1082	int err;
1083
1084	err = parse_flow_nlattrs(attr, a, &attrs, log);
1085	if (err)
1086		return -EINVAL;
1087
1088	/* Extract metadata from netlink attributes. */
1089	err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
1090	if (err)
1091		return err;
1092
1093	/* key_extract assumes that skb->protocol is set-up for
1094	 * layer 3 packets which is the case for other callers,
1095	 * in particular packets received from the network stack.
1096	 * Here the correct value can be set from the metadata
1097	 * extracted above.
1098	 * For L2 packet key eth type would be zero. skb protocol
1099	 * would be set to correct value later during key-extact.
1100	 */
1101
1102	skb->protocol = key->eth.type;
1103	err = key_extract(skb, key);
1104	if (err)
1105		return err;
1106
1107	/* Check that we have conntrack original direction tuple metadata only
1108	 * for packets for which it makes sense.  Otherwise the key may be
1109	 * corrupted due to overlapping key fields.
1110	 */
1111	if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
1112	    key->eth.type != htons(ETH_P_IP))
1113		return -EINVAL;
1114	if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
1115	    (key->eth.type != htons(ETH_P_IPV6) ||
1116	     sw_flow_key_is_nd(key)))
1117		return -EINVAL;
1118
1119	return 0;
1120}