Loading...
1/*
2 * Copyright (c) 2007-2014 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19#include <linux/uaccess.h>
20#include <linux/netdevice.h>
21#include <linux/etherdevice.h>
22#include <linux/if_ether.h>
23#include <linux/if_vlan.h>
24#include <net/llc_pdu.h>
25#include <linux/kernel.h>
26#include <linux/jhash.h>
27#include <linux/jiffies.h>
28#include <linux/llc.h>
29#include <linux/module.h>
30#include <linux/in.h>
31#include <linux/rcupdate.h>
32#include <linux/cpumask.h>
33#include <linux/if_arp.h>
34#include <linux/ip.h>
35#include <linux/ipv6.h>
36#include <linux/mpls.h>
37#include <linux/sctp.h>
38#include <linux/smp.h>
39#include <linux/tcp.h>
40#include <linux/udp.h>
41#include <linux/icmp.h>
42#include <linux/icmpv6.h>
43#include <linux/rculist.h>
44#include <net/ip.h>
45#include <net/ip_tunnels.h>
46#include <net/ipv6.h>
47#include <net/mpls.h>
48#include <net/ndisc.h>
49#include <net/nsh.h>
50
51#include "conntrack.h"
52#include "datapath.h"
53#include "flow.h"
54#include "flow_netlink.h"
55#include "vport.h"
56
57u64 ovs_flow_used_time(unsigned long flow_jiffies)
58{
59 struct timespec64 cur_ts;
60 u64 cur_ms, idle_ms;
61
62 ktime_get_ts64(&cur_ts);
63 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
64 cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
65 cur_ts.tv_nsec / NSEC_PER_MSEC;
66
67 return cur_ms - idle_ms;
68}
69
70#define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
71
72void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
73 const struct sk_buff *skb)
74{
75 struct flow_stats *stats;
76 unsigned int cpu = smp_processor_id();
77 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
78
79 stats = rcu_dereference(flow->stats[cpu]);
80
81 /* Check if already have CPU-specific stats. */
82 if (likely(stats)) {
83 spin_lock(&stats->lock);
84 /* Mark if we write on the pre-allocated stats. */
85 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
86 flow->stats_last_writer = cpu;
87 } else {
88 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
89 spin_lock(&stats->lock);
90
91 /* If the current CPU is the only writer on the
92 * pre-allocated stats keep using them.
93 */
94 if (unlikely(flow->stats_last_writer != cpu)) {
95 /* A previous locker may have already allocated the
96 * stats, so we need to check again. If CPU-specific
97 * stats were already allocated, we update the pre-
98 * allocated stats as we have already locked them.
99 */
100 if (likely(flow->stats_last_writer != -1) &&
101 likely(!rcu_access_pointer(flow->stats[cpu]))) {
102 /* Try to allocate CPU-specific stats. */
103 struct flow_stats *new_stats;
104
105 new_stats =
106 kmem_cache_alloc_node(flow_stats_cache,
107 GFP_NOWAIT |
108 __GFP_THISNODE |
109 __GFP_NOWARN |
110 __GFP_NOMEMALLOC,
111 numa_node_id());
112 if (likely(new_stats)) {
113 new_stats->used = jiffies;
114 new_stats->packet_count = 1;
115 new_stats->byte_count = len;
116 new_stats->tcp_flags = tcp_flags;
117 spin_lock_init(&new_stats->lock);
118
119 rcu_assign_pointer(flow->stats[cpu],
120 new_stats);
121 cpumask_set_cpu(cpu, &flow->cpu_used_mask);
122 goto unlock;
123 }
124 }
125 flow->stats_last_writer = cpu;
126 }
127 }
128
129 stats->used = jiffies;
130 stats->packet_count++;
131 stats->byte_count += len;
132 stats->tcp_flags |= tcp_flags;
133unlock:
134 spin_unlock(&stats->lock);
135}
136
137/* Must be called with rcu_read_lock or ovs_mutex. */
138void ovs_flow_stats_get(const struct sw_flow *flow,
139 struct ovs_flow_stats *ovs_stats,
140 unsigned long *used, __be16 *tcp_flags)
141{
142 int cpu;
143
144 *used = 0;
145 *tcp_flags = 0;
146 memset(ovs_stats, 0, sizeof(*ovs_stats));
147
148 /* We open code this to make sure cpu 0 is always considered */
149 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
150 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
151
152 if (stats) {
153 /* Local CPU may write on non-local stats, so we must
154 * block bottom-halves here.
155 */
156 spin_lock_bh(&stats->lock);
157 if (!*used || time_after(stats->used, *used))
158 *used = stats->used;
159 *tcp_flags |= stats->tcp_flags;
160 ovs_stats->n_packets += stats->packet_count;
161 ovs_stats->n_bytes += stats->byte_count;
162 spin_unlock_bh(&stats->lock);
163 }
164 }
165}
166
167/* Called with ovs_mutex. */
168void ovs_flow_stats_clear(struct sw_flow *flow)
169{
170 int cpu;
171
172 /* We open code this to make sure cpu 0 is always considered */
173 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
174 struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
175
176 if (stats) {
177 spin_lock_bh(&stats->lock);
178 stats->used = 0;
179 stats->packet_count = 0;
180 stats->byte_count = 0;
181 stats->tcp_flags = 0;
182 spin_unlock_bh(&stats->lock);
183 }
184 }
185}
186
187static int check_header(struct sk_buff *skb, int len)
188{
189 if (unlikely(skb->len < len))
190 return -EINVAL;
191 if (unlikely(!pskb_may_pull(skb, len)))
192 return -ENOMEM;
193 return 0;
194}
195
196static bool arphdr_ok(struct sk_buff *skb)
197{
198 return pskb_may_pull(skb, skb_network_offset(skb) +
199 sizeof(struct arp_eth_header));
200}
201
202static int check_iphdr(struct sk_buff *skb)
203{
204 unsigned int nh_ofs = skb_network_offset(skb);
205 unsigned int ip_len;
206 int err;
207
208 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
209 if (unlikely(err))
210 return err;
211
212 ip_len = ip_hdrlen(skb);
213 if (unlikely(ip_len < sizeof(struct iphdr) ||
214 skb->len < nh_ofs + ip_len))
215 return -EINVAL;
216
217 skb_set_transport_header(skb, nh_ofs + ip_len);
218 return 0;
219}
220
221static bool tcphdr_ok(struct sk_buff *skb)
222{
223 int th_ofs = skb_transport_offset(skb);
224 int tcp_len;
225
226 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
227 return false;
228
229 tcp_len = tcp_hdrlen(skb);
230 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
231 skb->len < th_ofs + tcp_len))
232 return false;
233
234 return true;
235}
236
237static bool udphdr_ok(struct sk_buff *skb)
238{
239 return pskb_may_pull(skb, skb_transport_offset(skb) +
240 sizeof(struct udphdr));
241}
242
243static bool sctphdr_ok(struct sk_buff *skb)
244{
245 return pskb_may_pull(skb, skb_transport_offset(skb) +
246 sizeof(struct sctphdr));
247}
248
249static bool icmphdr_ok(struct sk_buff *skb)
250{
251 return pskb_may_pull(skb, skb_transport_offset(skb) +
252 sizeof(struct icmphdr));
253}
254
255static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
256{
257 unsigned int nh_ofs = skb_network_offset(skb);
258 unsigned int nh_len;
259 int payload_ofs;
260 struct ipv6hdr *nh;
261 uint8_t nexthdr;
262 __be16 frag_off;
263 int err;
264
265 err = check_header(skb, nh_ofs + sizeof(*nh));
266 if (unlikely(err))
267 return err;
268
269 nh = ipv6_hdr(skb);
270 nexthdr = nh->nexthdr;
271 payload_ofs = (u8 *)(nh + 1) - skb->data;
272
273 key->ip.proto = NEXTHDR_NONE;
274 key->ip.tos = ipv6_get_dsfield(nh);
275 key->ip.ttl = nh->hop_limit;
276 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
277 key->ipv6.addr.src = nh->saddr;
278 key->ipv6.addr.dst = nh->daddr;
279
280 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
281
282 if (frag_off) {
283 if (frag_off & htons(~0x7))
284 key->ip.frag = OVS_FRAG_TYPE_LATER;
285 else
286 key->ip.frag = OVS_FRAG_TYPE_FIRST;
287 } else {
288 key->ip.frag = OVS_FRAG_TYPE_NONE;
289 }
290
291 /* Delayed handling of error in ipv6_skip_exthdr() as it
292 * always sets frag_off to a valid value which may be
293 * used to set key->ip.frag above.
294 */
295 if (unlikely(payload_ofs < 0))
296 return -EPROTO;
297
298 nh_len = payload_ofs - nh_ofs;
299 skb_set_transport_header(skb, nh_ofs + nh_len);
300 key->ip.proto = nexthdr;
301 return nh_len;
302}
303
304static bool icmp6hdr_ok(struct sk_buff *skb)
305{
306 return pskb_may_pull(skb, skb_transport_offset(skb) +
307 sizeof(struct icmp6hdr));
308}
309
310/**
311 * Parse vlan tag from vlan header.
312 * Returns ERROR on memory error.
313 * Returns 0 if it encounters a non-vlan or incomplete packet.
314 * Returns 1 after successfully parsing vlan tag.
315 */
316static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
317 bool untag_vlan)
318{
319 struct vlan_head *vh = (struct vlan_head *)skb->data;
320
321 if (likely(!eth_type_vlan(vh->tpid)))
322 return 0;
323
324 if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
325 return 0;
326
327 if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
328 sizeof(__be16))))
329 return -ENOMEM;
330
331 vh = (struct vlan_head *)skb->data;
332 key_vh->tci = vh->tci | htons(VLAN_TAG_PRESENT);
333 key_vh->tpid = vh->tpid;
334
335 if (unlikely(untag_vlan)) {
336 int offset = skb->data - skb_mac_header(skb);
337 u16 tci;
338 int err;
339
340 __skb_push(skb, offset);
341 err = __skb_vlan_pop(skb, &tci);
342 __skb_pull(skb, offset);
343 if (err)
344 return err;
345 __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
346 } else {
347 __skb_pull(skb, sizeof(struct vlan_head));
348 }
349 return 1;
350}
351
352static void clear_vlan(struct sw_flow_key *key)
353{
354 key->eth.vlan.tci = 0;
355 key->eth.vlan.tpid = 0;
356 key->eth.cvlan.tci = 0;
357 key->eth.cvlan.tpid = 0;
358}
359
360static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
361{
362 int res;
363
364 if (skb_vlan_tag_present(skb)) {
365 key->eth.vlan.tci = htons(skb->vlan_tci);
366 key->eth.vlan.tpid = skb->vlan_proto;
367 } else {
368 /* Parse outer vlan tag in the non-accelerated case. */
369 res = parse_vlan_tag(skb, &key->eth.vlan, true);
370 if (res <= 0)
371 return res;
372 }
373
374 /* Parse inner vlan tag. */
375 res = parse_vlan_tag(skb, &key->eth.cvlan, false);
376 if (res <= 0)
377 return res;
378
379 return 0;
380}
381
382static __be16 parse_ethertype(struct sk_buff *skb)
383{
384 struct llc_snap_hdr {
385 u8 dsap; /* Always 0xAA */
386 u8 ssap; /* Always 0xAA */
387 u8 ctrl;
388 u8 oui[3];
389 __be16 ethertype;
390 };
391 struct llc_snap_hdr *llc;
392 __be16 proto;
393
394 proto = *(__be16 *) skb->data;
395 __skb_pull(skb, sizeof(__be16));
396
397 if (eth_proto_is_802_3(proto))
398 return proto;
399
400 if (skb->len < sizeof(struct llc_snap_hdr))
401 return htons(ETH_P_802_2);
402
403 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
404 return htons(0);
405
406 llc = (struct llc_snap_hdr *) skb->data;
407 if (llc->dsap != LLC_SAP_SNAP ||
408 llc->ssap != LLC_SAP_SNAP ||
409 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
410 return htons(ETH_P_802_2);
411
412 __skb_pull(skb, sizeof(struct llc_snap_hdr));
413
414 if (eth_proto_is_802_3(llc->ethertype))
415 return llc->ethertype;
416
417 return htons(ETH_P_802_2);
418}
419
420static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
421 int nh_len)
422{
423 struct icmp6hdr *icmp = icmp6_hdr(skb);
424
425 /* The ICMPv6 type and code fields use the 16-bit transport port
426 * fields, so we need to store them in 16-bit network byte order.
427 */
428 key->tp.src = htons(icmp->icmp6_type);
429 key->tp.dst = htons(icmp->icmp6_code);
430 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
431
432 if (icmp->icmp6_code == 0 &&
433 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
434 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
435 int icmp_len = skb->len - skb_transport_offset(skb);
436 struct nd_msg *nd;
437 int offset;
438
439 /* In order to process neighbor discovery options, we need the
440 * entire packet.
441 */
442 if (unlikely(icmp_len < sizeof(*nd)))
443 return 0;
444
445 if (unlikely(skb_linearize(skb)))
446 return -ENOMEM;
447
448 nd = (struct nd_msg *)skb_transport_header(skb);
449 key->ipv6.nd.target = nd->target;
450
451 icmp_len -= sizeof(*nd);
452 offset = 0;
453 while (icmp_len >= 8) {
454 struct nd_opt_hdr *nd_opt =
455 (struct nd_opt_hdr *)(nd->opt + offset);
456 int opt_len = nd_opt->nd_opt_len * 8;
457
458 if (unlikely(!opt_len || opt_len > icmp_len))
459 return 0;
460
461 /* Store the link layer address if the appropriate
462 * option is provided. It is considered an error if
463 * the same link layer option is specified twice.
464 */
465 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
466 && opt_len == 8) {
467 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
468 goto invalid;
469 ether_addr_copy(key->ipv6.nd.sll,
470 &nd->opt[offset+sizeof(*nd_opt)]);
471 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
472 && opt_len == 8) {
473 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
474 goto invalid;
475 ether_addr_copy(key->ipv6.nd.tll,
476 &nd->opt[offset+sizeof(*nd_opt)]);
477 }
478
479 icmp_len -= opt_len;
480 offset += opt_len;
481 }
482 }
483
484 return 0;
485
486invalid:
487 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
488 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
489 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
490
491 return 0;
492}
493
494static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
495{
496 struct nshhdr *nh;
497 unsigned int nh_ofs = skb_network_offset(skb);
498 u8 version, length;
499 int err;
500
501 err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
502 if (unlikely(err))
503 return err;
504
505 nh = nsh_hdr(skb);
506 version = nsh_get_ver(nh);
507 length = nsh_hdr_len(nh);
508
509 if (version != 0)
510 return -EINVAL;
511
512 err = check_header(skb, nh_ofs + length);
513 if (unlikely(err))
514 return err;
515
516 nh = nsh_hdr(skb);
517 key->nsh.base.flags = nsh_get_flags(nh);
518 key->nsh.base.ttl = nsh_get_ttl(nh);
519 key->nsh.base.mdtype = nh->mdtype;
520 key->nsh.base.np = nh->np;
521 key->nsh.base.path_hdr = nh->path_hdr;
522 switch (key->nsh.base.mdtype) {
523 case NSH_M_TYPE1:
524 if (length != NSH_M_TYPE1_LEN)
525 return -EINVAL;
526 memcpy(key->nsh.context, nh->md1.context,
527 sizeof(nh->md1));
528 break;
529 case NSH_M_TYPE2:
530 memset(key->nsh.context, 0,
531 sizeof(nh->md1));
532 break;
533 default:
534 return -EINVAL;
535 }
536
537 return 0;
538}
539
540/**
541 * key_extract - extracts a flow key from an Ethernet frame.
542 * @skb: sk_buff that contains the frame, with skb->data pointing to the
543 * Ethernet header
544 * @key: output flow key
545 *
546 * The caller must ensure that skb->len >= ETH_HLEN.
547 *
548 * Returns 0 if successful, otherwise a negative errno value.
549 *
550 * Initializes @skb header fields as follows:
551 *
552 * - skb->mac_header: the L2 header.
553 *
554 * - skb->network_header: just past the L2 header, or just past the
555 * VLAN header, to the first byte of the L2 payload.
556 *
557 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
558 * on output, then just past the IP header, if one is present and
559 * of a correct length, otherwise the same as skb->network_header.
560 * For other key->eth.type values it is left untouched.
561 *
562 * - skb->protocol: the type of the data starting at skb->network_header.
563 * Equals to key->eth.type.
564 */
565static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
566{
567 int error;
568 struct ethhdr *eth;
569
570 /* Flags are always used as part of stats */
571 key->tp.flags = 0;
572
573 skb_reset_mac_header(skb);
574
575 /* Link layer. */
576 clear_vlan(key);
577 if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
578 if (unlikely(eth_type_vlan(skb->protocol)))
579 return -EINVAL;
580
581 skb_reset_network_header(skb);
582 key->eth.type = skb->protocol;
583 } else {
584 eth = eth_hdr(skb);
585 ether_addr_copy(key->eth.src, eth->h_source);
586 ether_addr_copy(key->eth.dst, eth->h_dest);
587
588 __skb_pull(skb, 2 * ETH_ALEN);
589 /* We are going to push all headers that we pull, so no need to
590 * update skb->csum here.
591 */
592
593 if (unlikely(parse_vlan(skb, key)))
594 return -ENOMEM;
595
596 key->eth.type = parse_ethertype(skb);
597 if (unlikely(key->eth.type == htons(0)))
598 return -ENOMEM;
599
600 /* Multiple tagged packets need to retain TPID to satisfy
601 * skb_vlan_pop(), which will later shift the ethertype into
602 * skb->protocol.
603 */
604 if (key->eth.cvlan.tci & htons(VLAN_TAG_PRESENT))
605 skb->protocol = key->eth.cvlan.tpid;
606 else
607 skb->protocol = key->eth.type;
608
609 skb_reset_network_header(skb);
610 __skb_push(skb, skb->data - skb_mac_header(skb));
611 }
612 skb_reset_mac_len(skb);
613
614 /* Network layer. */
615 if (key->eth.type == htons(ETH_P_IP)) {
616 struct iphdr *nh;
617 __be16 offset;
618
619 error = check_iphdr(skb);
620 if (unlikely(error)) {
621 memset(&key->ip, 0, sizeof(key->ip));
622 memset(&key->ipv4, 0, sizeof(key->ipv4));
623 if (error == -EINVAL) {
624 skb->transport_header = skb->network_header;
625 error = 0;
626 }
627 return error;
628 }
629
630 nh = ip_hdr(skb);
631 key->ipv4.addr.src = nh->saddr;
632 key->ipv4.addr.dst = nh->daddr;
633
634 key->ip.proto = nh->protocol;
635 key->ip.tos = nh->tos;
636 key->ip.ttl = nh->ttl;
637
638 offset = nh->frag_off & htons(IP_OFFSET);
639 if (offset) {
640 key->ip.frag = OVS_FRAG_TYPE_LATER;
641 return 0;
642 }
643 if (nh->frag_off & htons(IP_MF) ||
644 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
645 key->ip.frag = OVS_FRAG_TYPE_FIRST;
646 else
647 key->ip.frag = OVS_FRAG_TYPE_NONE;
648
649 /* Transport layer. */
650 if (key->ip.proto == IPPROTO_TCP) {
651 if (tcphdr_ok(skb)) {
652 struct tcphdr *tcp = tcp_hdr(skb);
653 key->tp.src = tcp->source;
654 key->tp.dst = tcp->dest;
655 key->tp.flags = TCP_FLAGS_BE16(tcp);
656 } else {
657 memset(&key->tp, 0, sizeof(key->tp));
658 }
659
660 } else if (key->ip.proto == IPPROTO_UDP) {
661 if (udphdr_ok(skb)) {
662 struct udphdr *udp = udp_hdr(skb);
663 key->tp.src = udp->source;
664 key->tp.dst = udp->dest;
665 } else {
666 memset(&key->tp, 0, sizeof(key->tp));
667 }
668 } else if (key->ip.proto == IPPROTO_SCTP) {
669 if (sctphdr_ok(skb)) {
670 struct sctphdr *sctp = sctp_hdr(skb);
671 key->tp.src = sctp->source;
672 key->tp.dst = sctp->dest;
673 } else {
674 memset(&key->tp, 0, sizeof(key->tp));
675 }
676 } else if (key->ip.proto == IPPROTO_ICMP) {
677 if (icmphdr_ok(skb)) {
678 struct icmphdr *icmp = icmp_hdr(skb);
679 /* The ICMP type and code fields use the 16-bit
680 * transport port fields, so we need to store
681 * them in 16-bit network byte order. */
682 key->tp.src = htons(icmp->type);
683 key->tp.dst = htons(icmp->code);
684 } else {
685 memset(&key->tp, 0, sizeof(key->tp));
686 }
687 }
688
689 } else if (key->eth.type == htons(ETH_P_ARP) ||
690 key->eth.type == htons(ETH_P_RARP)) {
691 struct arp_eth_header *arp;
692 bool arp_available = arphdr_ok(skb);
693
694 arp = (struct arp_eth_header *)skb_network_header(skb);
695
696 if (arp_available &&
697 arp->ar_hrd == htons(ARPHRD_ETHER) &&
698 arp->ar_pro == htons(ETH_P_IP) &&
699 arp->ar_hln == ETH_ALEN &&
700 arp->ar_pln == 4) {
701
702 /* We only match on the lower 8 bits of the opcode. */
703 if (ntohs(arp->ar_op) <= 0xff)
704 key->ip.proto = ntohs(arp->ar_op);
705 else
706 key->ip.proto = 0;
707
708 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
709 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
710 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
711 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
712 } else {
713 memset(&key->ip, 0, sizeof(key->ip));
714 memset(&key->ipv4, 0, sizeof(key->ipv4));
715 }
716 } else if (eth_p_mpls(key->eth.type)) {
717 size_t stack_len = MPLS_HLEN;
718
719 skb_set_inner_network_header(skb, skb->mac_len);
720 while (1) {
721 __be32 lse;
722
723 error = check_header(skb, skb->mac_len + stack_len);
724 if (unlikely(error))
725 return 0;
726
727 memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
728
729 if (stack_len == MPLS_HLEN)
730 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
731
732 skb_set_inner_network_header(skb, skb->mac_len + stack_len);
733 if (lse & htonl(MPLS_LS_S_MASK))
734 break;
735
736 stack_len += MPLS_HLEN;
737 }
738 } else if (key->eth.type == htons(ETH_P_IPV6)) {
739 int nh_len; /* IPv6 Header + Extensions */
740
741 nh_len = parse_ipv6hdr(skb, key);
742 if (unlikely(nh_len < 0)) {
743 switch (nh_len) {
744 case -EINVAL:
745 memset(&key->ip, 0, sizeof(key->ip));
746 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
747 /* fall-through */
748 case -EPROTO:
749 skb->transport_header = skb->network_header;
750 error = 0;
751 break;
752 default:
753 error = nh_len;
754 }
755 return error;
756 }
757
758 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
759 return 0;
760 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
761 key->ip.frag = OVS_FRAG_TYPE_FIRST;
762
763 /* Transport layer. */
764 if (key->ip.proto == NEXTHDR_TCP) {
765 if (tcphdr_ok(skb)) {
766 struct tcphdr *tcp = tcp_hdr(skb);
767 key->tp.src = tcp->source;
768 key->tp.dst = tcp->dest;
769 key->tp.flags = TCP_FLAGS_BE16(tcp);
770 } else {
771 memset(&key->tp, 0, sizeof(key->tp));
772 }
773 } else if (key->ip.proto == NEXTHDR_UDP) {
774 if (udphdr_ok(skb)) {
775 struct udphdr *udp = udp_hdr(skb);
776 key->tp.src = udp->source;
777 key->tp.dst = udp->dest;
778 } else {
779 memset(&key->tp, 0, sizeof(key->tp));
780 }
781 } else if (key->ip.proto == NEXTHDR_SCTP) {
782 if (sctphdr_ok(skb)) {
783 struct sctphdr *sctp = sctp_hdr(skb);
784 key->tp.src = sctp->source;
785 key->tp.dst = sctp->dest;
786 } else {
787 memset(&key->tp, 0, sizeof(key->tp));
788 }
789 } else if (key->ip.proto == NEXTHDR_ICMP) {
790 if (icmp6hdr_ok(skb)) {
791 error = parse_icmpv6(skb, key, nh_len);
792 if (error)
793 return error;
794 } else {
795 memset(&key->tp, 0, sizeof(key->tp));
796 }
797 }
798 } else if (key->eth.type == htons(ETH_P_NSH)) {
799 error = parse_nsh(skb, key);
800 if (error)
801 return error;
802 }
803 return 0;
804}
805
806int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
807{
808 int res;
809
810 res = key_extract(skb, key);
811 if (!res)
812 key->mac_proto &= ~SW_FLOW_KEY_INVALID;
813
814 return res;
815}
816
817static int key_extract_mac_proto(struct sk_buff *skb)
818{
819 switch (skb->dev->type) {
820 case ARPHRD_ETHER:
821 return MAC_PROTO_ETHERNET;
822 case ARPHRD_NONE:
823 if (skb->protocol == htons(ETH_P_TEB))
824 return MAC_PROTO_ETHERNET;
825 return MAC_PROTO_NONE;
826 }
827 WARN_ON_ONCE(1);
828 return -EINVAL;
829}
830
831int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
832 struct sk_buff *skb, struct sw_flow_key *key)
833{
834 int res, err;
835
836 /* Extract metadata from packet. */
837 if (tun_info) {
838 key->tun_proto = ip_tunnel_info_af(tun_info);
839 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
840
841 if (tun_info->options_len) {
842 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
843 8)) - 1
844 > sizeof(key->tun_opts));
845
846 ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
847 tun_info);
848 key->tun_opts_len = tun_info->options_len;
849 } else {
850 key->tun_opts_len = 0;
851 }
852 } else {
853 key->tun_proto = 0;
854 key->tun_opts_len = 0;
855 memset(&key->tun_key, 0, sizeof(key->tun_key));
856 }
857
858 key->phy.priority = skb->priority;
859 key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
860 key->phy.skb_mark = skb->mark;
861 key->ovs_flow_hash = 0;
862 res = key_extract_mac_proto(skb);
863 if (res < 0)
864 return res;
865 key->mac_proto = res;
866 key->recirc_id = 0;
867
868 err = key_extract(skb, key);
869 if (!err)
870 ovs_ct_fill_key(skb, key); /* Must be after key_extract(). */
871 return err;
872}
873
874int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
875 struct sk_buff *skb,
876 struct sw_flow_key *key, bool log)
877{
878 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
879 u64 attrs = 0;
880 int err;
881
882 err = parse_flow_nlattrs(attr, a, &attrs, log);
883 if (err)
884 return -EINVAL;
885
886 /* Extract metadata from netlink attributes. */
887 err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
888 if (err)
889 return err;
890
891 /* key_extract assumes that skb->protocol is set-up for
892 * layer 3 packets which is the case for other callers,
893 * in particular packets received from the network stack.
894 * Here the correct value can be set from the metadata
895 * extracted above.
896 * For L2 packet key eth type would be zero. skb protocol
897 * would be set to correct value later during key-extact.
898 */
899
900 skb->protocol = key->eth.type;
901 err = key_extract(skb, key);
902 if (err)
903 return err;
904
905 /* Check that we have conntrack original direction tuple metadata only
906 * for packets for which it makes sense. Otherwise the key may be
907 * corrupted due to overlapping key fields.
908 */
909 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
910 key->eth.type != htons(ETH_P_IP))
911 return -EINVAL;
912 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
913 (key->eth.type != htons(ETH_P_IPV6) ||
914 sw_flow_key_is_nd(key)))
915 return -EINVAL;
916
917 return 0;
918}
1/*
2 * Copyright (c) 2007-2011 Nicira Networks.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19#include "flow.h"
20#include "datapath.h"
21#include <linux/uaccess.h>
22#include <linux/netdevice.h>
23#include <linux/etherdevice.h>
24#include <linux/if_ether.h>
25#include <linux/if_vlan.h>
26#include <net/llc_pdu.h>
27#include <linux/kernel.h>
28#include <linux/jhash.h>
29#include <linux/jiffies.h>
30#include <linux/llc.h>
31#include <linux/module.h>
32#include <linux/in.h>
33#include <linux/rcupdate.h>
34#include <linux/if_arp.h>
35#include <linux/ip.h>
36#include <linux/ipv6.h>
37#include <linux/tcp.h>
38#include <linux/udp.h>
39#include <linux/icmp.h>
40#include <linux/icmpv6.h>
41#include <linux/rculist.h>
42#include <net/ip.h>
43#include <net/ipv6.h>
44#include <net/ndisc.h>
45
46static struct kmem_cache *flow_cache;
47
48static int check_header(struct sk_buff *skb, int len)
49{
50 if (unlikely(skb->len < len))
51 return -EINVAL;
52 if (unlikely(!pskb_may_pull(skb, len)))
53 return -ENOMEM;
54 return 0;
55}
56
57static bool arphdr_ok(struct sk_buff *skb)
58{
59 return pskb_may_pull(skb, skb_network_offset(skb) +
60 sizeof(struct arp_eth_header));
61}
62
63static int check_iphdr(struct sk_buff *skb)
64{
65 unsigned int nh_ofs = skb_network_offset(skb);
66 unsigned int ip_len;
67 int err;
68
69 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
70 if (unlikely(err))
71 return err;
72
73 ip_len = ip_hdrlen(skb);
74 if (unlikely(ip_len < sizeof(struct iphdr) ||
75 skb->len < nh_ofs + ip_len))
76 return -EINVAL;
77
78 skb_set_transport_header(skb, nh_ofs + ip_len);
79 return 0;
80}
81
82static bool tcphdr_ok(struct sk_buff *skb)
83{
84 int th_ofs = skb_transport_offset(skb);
85 int tcp_len;
86
87 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
88 return false;
89
90 tcp_len = tcp_hdrlen(skb);
91 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
92 skb->len < th_ofs + tcp_len))
93 return false;
94
95 return true;
96}
97
98static bool udphdr_ok(struct sk_buff *skb)
99{
100 return pskb_may_pull(skb, skb_transport_offset(skb) +
101 sizeof(struct udphdr));
102}
103
104static bool icmphdr_ok(struct sk_buff *skb)
105{
106 return pskb_may_pull(skb, skb_transport_offset(skb) +
107 sizeof(struct icmphdr));
108}
109
110u64 ovs_flow_used_time(unsigned long flow_jiffies)
111{
112 struct timespec cur_ts;
113 u64 cur_ms, idle_ms;
114
115 ktime_get_ts(&cur_ts);
116 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
117 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
118 cur_ts.tv_nsec / NSEC_PER_MSEC;
119
120 return cur_ms - idle_ms;
121}
122
123#define SW_FLOW_KEY_OFFSET(field) \
124 (offsetof(struct sw_flow_key, field) + \
125 FIELD_SIZEOF(struct sw_flow_key, field))
126
127static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
128 int *key_lenp)
129{
130 unsigned int nh_ofs = skb_network_offset(skb);
131 unsigned int nh_len;
132 int payload_ofs;
133 struct ipv6hdr *nh;
134 uint8_t nexthdr;
135 __be16 frag_off;
136 int err;
137
138 *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);
139
140 err = check_header(skb, nh_ofs + sizeof(*nh));
141 if (unlikely(err))
142 return err;
143
144 nh = ipv6_hdr(skb);
145 nexthdr = nh->nexthdr;
146 payload_ofs = (u8 *)(nh + 1) - skb->data;
147
148 key->ip.proto = NEXTHDR_NONE;
149 key->ip.tos = ipv6_get_dsfield(nh);
150 key->ip.ttl = nh->hop_limit;
151 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
152 key->ipv6.addr.src = nh->saddr;
153 key->ipv6.addr.dst = nh->daddr;
154
155 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
156 if (unlikely(payload_ofs < 0))
157 return -EINVAL;
158
159 if (frag_off) {
160 if (frag_off & htons(~0x7))
161 key->ip.frag = OVS_FRAG_TYPE_LATER;
162 else
163 key->ip.frag = OVS_FRAG_TYPE_FIRST;
164 }
165
166 nh_len = payload_ofs - nh_ofs;
167 skb_set_transport_header(skb, nh_ofs + nh_len);
168 key->ip.proto = nexthdr;
169 return nh_len;
170}
171
172static bool icmp6hdr_ok(struct sk_buff *skb)
173{
174 return pskb_may_pull(skb, skb_transport_offset(skb) +
175 sizeof(struct icmp6hdr));
176}
177
178#define TCP_FLAGS_OFFSET 13
179#define TCP_FLAG_MASK 0x3f
180
181void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
182{
183 u8 tcp_flags = 0;
184
185 if (flow->key.eth.type == htons(ETH_P_IP) &&
186 flow->key.ip.proto == IPPROTO_TCP &&
187 likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) {
188 u8 *tcp = (u8 *)tcp_hdr(skb);
189 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
190 }
191
192 spin_lock(&flow->lock);
193 flow->used = jiffies;
194 flow->packet_count++;
195 flow->byte_count += skb->len;
196 flow->tcp_flags |= tcp_flags;
197 spin_unlock(&flow->lock);
198}
199
200struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions)
201{
202 int actions_len = nla_len(actions);
203 struct sw_flow_actions *sfa;
204
205 /* At least DP_MAX_PORTS actions are required to be able to flood a
206 * packet to every port. Factor of 2 allows for setting VLAN tags,
207 * etc. */
208 if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4))
209 return ERR_PTR(-EINVAL);
210
211 sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
212 if (!sfa)
213 return ERR_PTR(-ENOMEM);
214
215 sfa->actions_len = actions_len;
216 memcpy(sfa->actions, nla_data(actions), actions_len);
217 return sfa;
218}
219
220struct sw_flow *ovs_flow_alloc(void)
221{
222 struct sw_flow *flow;
223
224 flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
225 if (!flow)
226 return ERR_PTR(-ENOMEM);
227
228 spin_lock_init(&flow->lock);
229 flow->sf_acts = NULL;
230
231 return flow;
232}
233
234static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
235{
236 hash = jhash_1word(hash, table->hash_seed);
237 return flex_array_get(table->buckets,
238 (hash & (table->n_buckets - 1)));
239}
240
241static struct flex_array *alloc_buckets(unsigned int n_buckets)
242{
243 struct flex_array *buckets;
244 int i, err;
245
246 buckets = flex_array_alloc(sizeof(struct hlist_head *),
247 n_buckets, GFP_KERNEL);
248 if (!buckets)
249 return NULL;
250
251 err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
252 if (err) {
253 flex_array_free(buckets);
254 return NULL;
255 }
256
257 for (i = 0; i < n_buckets; i++)
258 INIT_HLIST_HEAD((struct hlist_head *)
259 flex_array_get(buckets, i));
260
261 return buckets;
262}
263
264static void free_buckets(struct flex_array *buckets)
265{
266 flex_array_free(buckets);
267}
268
269struct flow_table *ovs_flow_tbl_alloc(int new_size)
270{
271 struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
272
273 if (!table)
274 return NULL;
275
276 table->buckets = alloc_buckets(new_size);
277
278 if (!table->buckets) {
279 kfree(table);
280 return NULL;
281 }
282 table->n_buckets = new_size;
283 table->count = 0;
284 table->node_ver = 0;
285 table->keep_flows = false;
286 get_random_bytes(&table->hash_seed, sizeof(u32));
287
288 return table;
289}
290
291void ovs_flow_tbl_destroy(struct flow_table *table)
292{
293 int i;
294
295 if (!table)
296 return;
297
298 if (table->keep_flows)
299 goto skip_flows;
300
301 for (i = 0; i < table->n_buckets; i++) {
302 struct sw_flow *flow;
303 struct hlist_head *head = flex_array_get(table->buckets, i);
304 struct hlist_node *node, *n;
305 int ver = table->node_ver;
306
307 hlist_for_each_entry_safe(flow, node, n, head, hash_node[ver]) {
308 hlist_del_rcu(&flow->hash_node[ver]);
309 ovs_flow_free(flow);
310 }
311 }
312
313skip_flows:
314 free_buckets(table->buckets);
315 kfree(table);
316}
317
318static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
319{
320 struct flow_table *table = container_of(rcu, struct flow_table, rcu);
321
322 ovs_flow_tbl_destroy(table);
323}
324
325void ovs_flow_tbl_deferred_destroy(struct flow_table *table)
326{
327 if (!table)
328 return;
329
330 call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
331}
332
333struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
334{
335 struct sw_flow *flow;
336 struct hlist_head *head;
337 struct hlist_node *n;
338 int ver;
339 int i;
340
341 ver = table->node_ver;
342 while (*bucket < table->n_buckets) {
343 i = 0;
344 head = flex_array_get(table->buckets, *bucket);
345 hlist_for_each_entry_rcu(flow, n, head, hash_node[ver]) {
346 if (i < *last) {
347 i++;
348 continue;
349 }
350 *last = i + 1;
351 return flow;
352 }
353 (*bucket)++;
354 *last = 0;
355 }
356
357 return NULL;
358}
359
360static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
361{
362 int old_ver;
363 int i;
364
365 old_ver = old->node_ver;
366 new->node_ver = !old_ver;
367
368 /* Insert in new table. */
369 for (i = 0; i < old->n_buckets; i++) {
370 struct sw_flow *flow;
371 struct hlist_head *head;
372 struct hlist_node *n;
373
374 head = flex_array_get(old->buckets, i);
375
376 hlist_for_each_entry(flow, n, head, hash_node[old_ver])
377 ovs_flow_tbl_insert(new, flow);
378 }
379 old->keep_flows = true;
380}
381
382static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
383{
384 struct flow_table *new_table;
385
386 new_table = ovs_flow_tbl_alloc(n_buckets);
387 if (!new_table)
388 return ERR_PTR(-ENOMEM);
389
390 flow_table_copy_flows(table, new_table);
391
392 return new_table;
393}
394
395struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
396{
397 return __flow_tbl_rehash(table, table->n_buckets);
398}
399
400struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
401{
402 return __flow_tbl_rehash(table, table->n_buckets * 2);
403}
404
405void ovs_flow_free(struct sw_flow *flow)
406{
407 if (unlikely(!flow))
408 return;
409
410 kfree((struct sf_flow_acts __force *)flow->sf_acts);
411 kmem_cache_free(flow_cache, flow);
412}
413
414/* RCU callback used by ovs_flow_deferred_free. */
415static void rcu_free_flow_callback(struct rcu_head *rcu)
416{
417 struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
418
419 ovs_flow_free(flow);
420}
421
422/* Schedules 'flow' to be freed after the next RCU grace period.
423 * The caller must hold rcu_read_lock for this to be sensible. */
424void ovs_flow_deferred_free(struct sw_flow *flow)
425{
426 call_rcu(&flow->rcu, rcu_free_flow_callback);
427}
428
429/* RCU callback used by ovs_flow_deferred_free_acts. */
430static void rcu_free_acts_callback(struct rcu_head *rcu)
431{
432 struct sw_flow_actions *sf_acts = container_of(rcu,
433 struct sw_flow_actions, rcu);
434 kfree(sf_acts);
435}
436
437/* Schedules 'sf_acts' to be freed after the next RCU grace period.
438 * The caller must hold rcu_read_lock for this to be sensible. */
439void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
440{
441 call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
442}
443
444static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
445{
446 struct qtag_prefix {
447 __be16 eth_type; /* ETH_P_8021Q */
448 __be16 tci;
449 };
450 struct qtag_prefix *qp;
451
452 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
453 return 0;
454
455 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
456 sizeof(__be16))))
457 return -ENOMEM;
458
459 qp = (struct qtag_prefix *) skb->data;
460 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
461 __skb_pull(skb, sizeof(struct qtag_prefix));
462
463 return 0;
464}
465
466static __be16 parse_ethertype(struct sk_buff *skb)
467{
468 struct llc_snap_hdr {
469 u8 dsap; /* Always 0xAA */
470 u8 ssap; /* Always 0xAA */
471 u8 ctrl;
472 u8 oui[3];
473 __be16 ethertype;
474 };
475 struct llc_snap_hdr *llc;
476 __be16 proto;
477
478 proto = *(__be16 *) skb->data;
479 __skb_pull(skb, sizeof(__be16));
480
481 if (ntohs(proto) >= 1536)
482 return proto;
483
484 if (skb->len < sizeof(struct llc_snap_hdr))
485 return htons(ETH_P_802_2);
486
487 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
488 return htons(0);
489
490 llc = (struct llc_snap_hdr *) skb->data;
491 if (llc->dsap != LLC_SAP_SNAP ||
492 llc->ssap != LLC_SAP_SNAP ||
493 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
494 return htons(ETH_P_802_2);
495
496 __skb_pull(skb, sizeof(struct llc_snap_hdr));
497 return llc->ethertype;
498}
499
500static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
501 int *key_lenp, int nh_len)
502{
503 struct icmp6hdr *icmp = icmp6_hdr(skb);
504 int error = 0;
505 int key_len;
506
507 /* The ICMPv6 type and code fields use the 16-bit transport port
508 * fields, so we need to store them in 16-bit network byte order.
509 */
510 key->ipv6.tp.src = htons(icmp->icmp6_type);
511 key->ipv6.tp.dst = htons(icmp->icmp6_code);
512 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
513
514 if (icmp->icmp6_code == 0 &&
515 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
516 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
517 int icmp_len = skb->len - skb_transport_offset(skb);
518 struct nd_msg *nd;
519 int offset;
520
521 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
522
523 /* In order to process neighbor discovery options, we need the
524 * entire packet.
525 */
526 if (unlikely(icmp_len < sizeof(*nd)))
527 goto out;
528 if (unlikely(skb_linearize(skb))) {
529 error = -ENOMEM;
530 goto out;
531 }
532
533 nd = (struct nd_msg *)skb_transport_header(skb);
534 key->ipv6.nd.target = nd->target;
535 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
536
537 icmp_len -= sizeof(*nd);
538 offset = 0;
539 while (icmp_len >= 8) {
540 struct nd_opt_hdr *nd_opt =
541 (struct nd_opt_hdr *)(nd->opt + offset);
542 int opt_len = nd_opt->nd_opt_len * 8;
543
544 if (unlikely(!opt_len || opt_len > icmp_len))
545 goto invalid;
546
547 /* Store the link layer address if the appropriate
548 * option is provided. It is considered an error if
549 * the same link layer option is specified twice.
550 */
551 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
552 && opt_len == 8) {
553 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
554 goto invalid;
555 memcpy(key->ipv6.nd.sll,
556 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
557 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
558 && opt_len == 8) {
559 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
560 goto invalid;
561 memcpy(key->ipv6.nd.tll,
562 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
563 }
564
565 icmp_len -= opt_len;
566 offset += opt_len;
567 }
568 }
569
570 goto out;
571
572invalid:
573 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
574 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
575 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
576
577out:
578 *key_lenp = key_len;
579 return error;
580}
581
582/**
583 * ovs_flow_extract - extracts a flow key from an Ethernet frame.
584 * @skb: sk_buff that contains the frame, with skb->data pointing to the
585 * Ethernet header
586 * @in_port: port number on which @skb was received.
587 * @key: output flow key
588 * @key_lenp: length of output flow key
589 *
590 * The caller must ensure that skb->len >= ETH_HLEN.
591 *
592 * Returns 0 if successful, otherwise a negative errno value.
593 *
594 * Initializes @skb header pointers as follows:
595 *
596 * - skb->mac_header: the Ethernet header.
597 *
598 * - skb->network_header: just past the Ethernet header, or just past the
599 * VLAN header, to the first byte of the Ethernet payload.
600 *
601 * - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
602 * on output, then just past the IP header, if one is present and
603 * of a correct length, otherwise the same as skb->network_header.
604 * For other key->dl_type values it is left untouched.
605 */
606int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
607 int *key_lenp)
608{
609 int error = 0;
610 int key_len = SW_FLOW_KEY_OFFSET(eth);
611 struct ethhdr *eth;
612
613 memset(key, 0, sizeof(*key));
614
615 key->phy.priority = skb->priority;
616 key->phy.in_port = in_port;
617
618 skb_reset_mac_header(skb);
619
620 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet
621 * header in the linear data area.
622 */
623 eth = eth_hdr(skb);
624 memcpy(key->eth.src, eth->h_source, ETH_ALEN);
625 memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
626
627 __skb_pull(skb, 2 * ETH_ALEN);
628
629 if (vlan_tx_tag_present(skb))
630 key->eth.tci = htons(skb->vlan_tci);
631 else if (eth->h_proto == htons(ETH_P_8021Q))
632 if (unlikely(parse_vlan(skb, key)))
633 return -ENOMEM;
634
635 key->eth.type = parse_ethertype(skb);
636 if (unlikely(key->eth.type == htons(0)))
637 return -ENOMEM;
638
639 skb_reset_network_header(skb);
640 __skb_push(skb, skb->data - skb_mac_header(skb));
641
642 /* Network layer. */
643 if (key->eth.type == htons(ETH_P_IP)) {
644 struct iphdr *nh;
645 __be16 offset;
646
647 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
648
649 error = check_iphdr(skb);
650 if (unlikely(error)) {
651 if (error == -EINVAL) {
652 skb->transport_header = skb->network_header;
653 error = 0;
654 }
655 goto out;
656 }
657
658 nh = ip_hdr(skb);
659 key->ipv4.addr.src = nh->saddr;
660 key->ipv4.addr.dst = nh->daddr;
661
662 key->ip.proto = nh->protocol;
663 key->ip.tos = nh->tos;
664 key->ip.ttl = nh->ttl;
665
666 offset = nh->frag_off & htons(IP_OFFSET);
667 if (offset) {
668 key->ip.frag = OVS_FRAG_TYPE_LATER;
669 goto out;
670 }
671 if (nh->frag_off & htons(IP_MF) ||
672 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
673 key->ip.frag = OVS_FRAG_TYPE_FIRST;
674
675 /* Transport layer. */
676 if (key->ip.proto == IPPROTO_TCP) {
677 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
678 if (tcphdr_ok(skb)) {
679 struct tcphdr *tcp = tcp_hdr(skb);
680 key->ipv4.tp.src = tcp->source;
681 key->ipv4.tp.dst = tcp->dest;
682 }
683 } else if (key->ip.proto == IPPROTO_UDP) {
684 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
685 if (udphdr_ok(skb)) {
686 struct udphdr *udp = udp_hdr(skb);
687 key->ipv4.tp.src = udp->source;
688 key->ipv4.tp.dst = udp->dest;
689 }
690 } else if (key->ip.proto == IPPROTO_ICMP) {
691 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
692 if (icmphdr_ok(skb)) {
693 struct icmphdr *icmp = icmp_hdr(skb);
694 /* The ICMP type and code fields use the 16-bit
695 * transport port fields, so we need to store
696 * them in 16-bit network byte order. */
697 key->ipv4.tp.src = htons(icmp->type);
698 key->ipv4.tp.dst = htons(icmp->code);
699 }
700 }
701
702 } else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
703 struct arp_eth_header *arp;
704
705 arp = (struct arp_eth_header *)skb_network_header(skb);
706
707 if (arp->ar_hrd == htons(ARPHRD_ETHER)
708 && arp->ar_pro == htons(ETH_P_IP)
709 && arp->ar_hln == ETH_ALEN
710 && arp->ar_pln == 4) {
711
712 /* We only match on the lower 8 bits of the opcode. */
713 if (ntohs(arp->ar_op) <= 0xff)
714 key->ip.proto = ntohs(arp->ar_op);
715
716 if (key->ip.proto == ARPOP_REQUEST
717 || key->ip.proto == ARPOP_REPLY) {
718 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
719 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
720 memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
721 memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
722 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
723 }
724 }
725 } else if (key->eth.type == htons(ETH_P_IPV6)) {
726 int nh_len; /* IPv6 Header + Extensions */
727
728 nh_len = parse_ipv6hdr(skb, key, &key_len);
729 if (unlikely(nh_len < 0)) {
730 if (nh_len == -EINVAL)
731 skb->transport_header = skb->network_header;
732 else
733 error = nh_len;
734 goto out;
735 }
736
737 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
738 goto out;
739 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
740 key->ip.frag = OVS_FRAG_TYPE_FIRST;
741
742 /* Transport layer. */
743 if (key->ip.proto == NEXTHDR_TCP) {
744 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
745 if (tcphdr_ok(skb)) {
746 struct tcphdr *tcp = tcp_hdr(skb);
747 key->ipv6.tp.src = tcp->source;
748 key->ipv6.tp.dst = tcp->dest;
749 }
750 } else if (key->ip.proto == NEXTHDR_UDP) {
751 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
752 if (udphdr_ok(skb)) {
753 struct udphdr *udp = udp_hdr(skb);
754 key->ipv6.tp.src = udp->source;
755 key->ipv6.tp.dst = udp->dest;
756 }
757 } else if (key->ip.proto == NEXTHDR_ICMP) {
758 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
759 if (icmp6hdr_ok(skb)) {
760 error = parse_icmpv6(skb, key, &key_len, nh_len);
761 if (error < 0)
762 goto out;
763 }
764 }
765 }
766
767out:
768 *key_lenp = key_len;
769 return error;
770}
771
772u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len)
773{
774 return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0);
775}
776
777struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table,
778 struct sw_flow_key *key, int key_len)
779{
780 struct sw_flow *flow;
781 struct hlist_node *n;
782 struct hlist_head *head;
783 u32 hash;
784
785 hash = ovs_flow_hash(key, key_len);
786
787 head = find_bucket(table, hash);
788 hlist_for_each_entry_rcu(flow, n, head, hash_node[table->node_ver]) {
789
790 if (flow->hash == hash &&
791 !memcmp(&flow->key, key, key_len)) {
792 return flow;
793 }
794 }
795 return NULL;
796}
797
798void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
799{
800 struct hlist_head *head;
801
802 head = find_bucket(table, flow->hash);
803 hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
804 table->count++;
805}
806
807void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
808{
809 hlist_del_rcu(&flow->hash_node[table->node_ver]);
810 table->count--;
811 BUG_ON(table->count < 0);
812}
813
814/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
815const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
816 [OVS_KEY_ATTR_ENCAP] = -1,
817 [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
818 [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
819 [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
820 [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
821 [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
822 [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
823 [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
824 [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
825 [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
826 [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
827 [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
828 [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
829 [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
830};
831
832static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
833 const struct nlattr *a[], u32 *attrs)
834{
835 const struct ovs_key_icmp *icmp_key;
836 const struct ovs_key_tcp *tcp_key;
837 const struct ovs_key_udp *udp_key;
838
839 switch (swkey->ip.proto) {
840 case IPPROTO_TCP:
841 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
842 return -EINVAL;
843 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
844
845 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
846 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
847 swkey->ipv4.tp.src = tcp_key->tcp_src;
848 swkey->ipv4.tp.dst = tcp_key->tcp_dst;
849 break;
850
851 case IPPROTO_UDP:
852 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
853 return -EINVAL;
854 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
855
856 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
857 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
858 swkey->ipv4.tp.src = udp_key->udp_src;
859 swkey->ipv4.tp.dst = udp_key->udp_dst;
860 break;
861
862 case IPPROTO_ICMP:
863 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
864 return -EINVAL;
865 *attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
866
867 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
868 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
869 swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
870 swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
871 break;
872 }
873
874 return 0;
875}
876
877static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
878 const struct nlattr *a[], u32 *attrs)
879{
880 const struct ovs_key_icmpv6 *icmpv6_key;
881 const struct ovs_key_tcp *tcp_key;
882 const struct ovs_key_udp *udp_key;
883
884 switch (swkey->ip.proto) {
885 case IPPROTO_TCP:
886 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
887 return -EINVAL;
888 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
889
890 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
891 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
892 swkey->ipv6.tp.src = tcp_key->tcp_src;
893 swkey->ipv6.tp.dst = tcp_key->tcp_dst;
894 break;
895
896 case IPPROTO_UDP:
897 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
898 return -EINVAL;
899 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
900
901 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
902 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
903 swkey->ipv6.tp.src = udp_key->udp_src;
904 swkey->ipv6.tp.dst = udp_key->udp_dst;
905 break;
906
907 case IPPROTO_ICMPV6:
908 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
909 return -EINVAL;
910 *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
911
912 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
913 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
914 swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
915 swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
916
917 if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
918 swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
919 const struct ovs_key_nd *nd_key;
920
921 if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
922 return -EINVAL;
923 *attrs &= ~(1 << OVS_KEY_ATTR_ND);
924
925 *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
926 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
927 memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
928 sizeof(swkey->ipv6.nd.target));
929 memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
930 memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
931 }
932 break;
933 }
934
935 return 0;
936}
937
938static int parse_flow_nlattrs(const struct nlattr *attr,
939 const struct nlattr *a[], u32 *attrsp)
940{
941 const struct nlattr *nla;
942 u32 attrs;
943 int rem;
944
945 attrs = 0;
946 nla_for_each_nested(nla, attr, rem) {
947 u16 type = nla_type(nla);
948 int expected_len;
949
950 if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type))
951 return -EINVAL;
952
953 expected_len = ovs_key_lens[type];
954 if (nla_len(nla) != expected_len && expected_len != -1)
955 return -EINVAL;
956
957 attrs |= 1 << type;
958 a[type] = nla;
959 }
960 if (rem)
961 return -EINVAL;
962
963 *attrsp = attrs;
964 return 0;
965}
966
967/**
968 * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
969 * @swkey: receives the extracted flow key.
970 * @key_lenp: number of bytes used in @swkey.
971 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
972 * sequence.
973 */
974int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
975 const struct nlattr *attr)
976{
977 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
978 const struct ovs_key_ethernet *eth_key;
979 int key_len;
980 u32 attrs;
981 int err;
982
983 memset(swkey, 0, sizeof(struct sw_flow_key));
984 key_len = SW_FLOW_KEY_OFFSET(eth);
985
986 err = parse_flow_nlattrs(attr, a, &attrs);
987 if (err)
988 return err;
989
990 /* Metadata attributes. */
991 if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
992 swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
993 attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
994 }
995 if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
996 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
997 if (in_port >= DP_MAX_PORTS)
998 return -EINVAL;
999 swkey->phy.in_port = in_port;
1000 attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1001 } else {
1002 swkey->phy.in_port = USHRT_MAX;
1003 }
1004
1005 /* Data attributes. */
1006 if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET)))
1007 return -EINVAL;
1008 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1009
1010 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1011 memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
1012 memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);
1013
1014 if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) &&
1015 nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) {
1016 const struct nlattr *encap;
1017 __be16 tci;
1018
1019 if (attrs != ((1 << OVS_KEY_ATTR_VLAN) |
1020 (1 << OVS_KEY_ATTR_ETHERTYPE) |
1021 (1 << OVS_KEY_ATTR_ENCAP)))
1022 return -EINVAL;
1023
1024 encap = a[OVS_KEY_ATTR_ENCAP];
1025 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1026 if (tci & htons(VLAN_TAG_PRESENT)) {
1027 swkey->eth.tci = tci;
1028
1029 err = parse_flow_nlattrs(encap, a, &attrs);
1030 if (err)
1031 return err;
1032 } else if (!tci) {
1033 /* Corner case for truncated 802.1Q header. */
1034 if (nla_len(encap))
1035 return -EINVAL;
1036
1037 swkey->eth.type = htons(ETH_P_8021Q);
1038 *key_lenp = key_len;
1039 return 0;
1040 } else {
1041 return -EINVAL;
1042 }
1043 }
1044
1045 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1046 swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1047 if (ntohs(swkey->eth.type) < 1536)
1048 return -EINVAL;
1049 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1050 } else {
1051 swkey->eth.type = htons(ETH_P_802_2);
1052 }
1053
1054 if (swkey->eth.type == htons(ETH_P_IP)) {
1055 const struct ovs_key_ipv4 *ipv4_key;
1056
1057 if (!(attrs & (1 << OVS_KEY_ATTR_IPV4)))
1058 return -EINVAL;
1059 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1060
1061 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
1062 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1063 if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX)
1064 return -EINVAL;
1065 swkey->ip.proto = ipv4_key->ipv4_proto;
1066 swkey->ip.tos = ipv4_key->ipv4_tos;
1067 swkey->ip.ttl = ipv4_key->ipv4_ttl;
1068 swkey->ip.frag = ipv4_key->ipv4_frag;
1069 swkey->ipv4.addr.src = ipv4_key->ipv4_src;
1070 swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;
1071
1072 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1073 err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1074 if (err)
1075 return err;
1076 }
1077 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1078 const struct ovs_key_ipv6 *ipv6_key;
1079
1080 if (!(attrs & (1 << OVS_KEY_ATTR_IPV6)))
1081 return -EINVAL;
1082 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1083
1084 key_len = SW_FLOW_KEY_OFFSET(ipv6.label);
1085 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1086 if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX)
1087 return -EINVAL;
1088 swkey->ipv6.label = ipv6_key->ipv6_label;
1089 swkey->ip.proto = ipv6_key->ipv6_proto;
1090 swkey->ip.tos = ipv6_key->ipv6_tclass;
1091 swkey->ip.ttl = ipv6_key->ipv6_hlimit;
1092 swkey->ip.frag = ipv6_key->ipv6_frag;
1093 memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
1094 sizeof(swkey->ipv6.addr.src));
1095 memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
1096 sizeof(swkey->ipv6.addr.dst));
1097
1098 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1099 err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1100 if (err)
1101 return err;
1102 }
1103 } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1104 const struct ovs_key_arp *arp_key;
1105
1106 if (!(attrs & (1 << OVS_KEY_ATTR_ARP)))
1107 return -EINVAL;
1108 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1109
1110 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
1111 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1112 swkey->ipv4.addr.src = arp_key->arp_sip;
1113 swkey->ipv4.addr.dst = arp_key->arp_tip;
1114 if (arp_key->arp_op & htons(0xff00))
1115 return -EINVAL;
1116 swkey->ip.proto = ntohs(arp_key->arp_op);
1117 memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
1118 memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
1119 }
1120
1121 if (attrs)
1122 return -EINVAL;
1123 *key_lenp = key_len;
1124
1125 return 0;
1126}
1127
1128/**
1129 * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1130 * @in_port: receives the extracted input port.
1131 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1132 * sequence.
1133 *
1134 * This parses a series of Netlink attributes that form a flow key, which must
1135 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1136 * get the metadata, that is, the parts of the flow key that cannot be
1137 * extracted from the packet itself.
1138 */
1139int ovs_flow_metadata_from_nlattrs(u32 *priority, u16 *in_port,
1140 const struct nlattr *attr)
1141{
1142 const struct nlattr *nla;
1143 int rem;
1144
1145 *in_port = USHRT_MAX;
1146 *priority = 0;
1147
1148 nla_for_each_nested(nla, attr, rem) {
1149 int type = nla_type(nla);
1150
1151 if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) {
1152 if (nla_len(nla) != ovs_key_lens[type])
1153 return -EINVAL;
1154
1155 switch (type) {
1156 case OVS_KEY_ATTR_PRIORITY:
1157 *priority = nla_get_u32(nla);
1158 break;
1159
1160 case OVS_KEY_ATTR_IN_PORT:
1161 if (nla_get_u32(nla) >= DP_MAX_PORTS)
1162 return -EINVAL;
1163 *in_port = nla_get_u32(nla);
1164 break;
1165 }
1166 }
1167 }
1168 if (rem)
1169 return -EINVAL;
1170 return 0;
1171}
1172
1173int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
1174{
1175 struct ovs_key_ethernet *eth_key;
1176 struct nlattr *nla, *encap;
1177
1178 if (swkey->phy.priority &&
1179 nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority))
1180 goto nla_put_failure;
1181
1182 if (swkey->phy.in_port != USHRT_MAX &&
1183 nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port))
1184 goto nla_put_failure;
1185
1186 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1187 if (!nla)
1188 goto nla_put_failure;
1189 eth_key = nla_data(nla);
1190 memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
1191 memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);
1192
1193 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1194 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q)) ||
1195 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci))
1196 goto nla_put_failure;
1197 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1198 if (!swkey->eth.tci)
1199 goto unencap;
1200 } else {
1201 encap = NULL;
1202 }
1203
1204 if (swkey->eth.type == htons(ETH_P_802_2))
1205 goto unencap;
1206
1207 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type))
1208 goto nla_put_failure;
1209
1210 if (swkey->eth.type == htons(ETH_P_IP)) {
1211 struct ovs_key_ipv4 *ipv4_key;
1212
1213 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1214 if (!nla)
1215 goto nla_put_failure;
1216 ipv4_key = nla_data(nla);
1217 ipv4_key->ipv4_src = swkey->ipv4.addr.src;
1218 ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
1219 ipv4_key->ipv4_proto = swkey->ip.proto;
1220 ipv4_key->ipv4_tos = swkey->ip.tos;
1221 ipv4_key->ipv4_ttl = swkey->ip.ttl;
1222 ipv4_key->ipv4_frag = swkey->ip.frag;
1223 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1224 struct ovs_key_ipv6 *ipv6_key;
1225
1226 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1227 if (!nla)
1228 goto nla_put_failure;
1229 ipv6_key = nla_data(nla);
1230 memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
1231 sizeof(ipv6_key->ipv6_src));
1232 memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
1233 sizeof(ipv6_key->ipv6_dst));
1234 ipv6_key->ipv6_label = swkey->ipv6.label;
1235 ipv6_key->ipv6_proto = swkey->ip.proto;
1236 ipv6_key->ipv6_tclass = swkey->ip.tos;
1237 ipv6_key->ipv6_hlimit = swkey->ip.ttl;
1238 ipv6_key->ipv6_frag = swkey->ip.frag;
1239 } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1240 struct ovs_key_arp *arp_key;
1241
1242 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1243 if (!nla)
1244 goto nla_put_failure;
1245 arp_key = nla_data(nla);
1246 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1247 arp_key->arp_sip = swkey->ipv4.addr.src;
1248 arp_key->arp_tip = swkey->ipv4.addr.dst;
1249 arp_key->arp_op = htons(swkey->ip.proto);
1250 memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
1251 memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
1252 }
1253
1254 if ((swkey->eth.type == htons(ETH_P_IP) ||
1255 swkey->eth.type == htons(ETH_P_IPV6)) &&
1256 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1257
1258 if (swkey->ip.proto == IPPROTO_TCP) {
1259 struct ovs_key_tcp *tcp_key;
1260
1261 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1262 if (!nla)
1263 goto nla_put_failure;
1264 tcp_key = nla_data(nla);
1265 if (swkey->eth.type == htons(ETH_P_IP)) {
1266 tcp_key->tcp_src = swkey->ipv4.tp.src;
1267 tcp_key->tcp_dst = swkey->ipv4.tp.dst;
1268 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1269 tcp_key->tcp_src = swkey->ipv6.tp.src;
1270 tcp_key->tcp_dst = swkey->ipv6.tp.dst;
1271 }
1272 } else if (swkey->ip.proto == IPPROTO_UDP) {
1273 struct ovs_key_udp *udp_key;
1274
1275 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1276 if (!nla)
1277 goto nla_put_failure;
1278 udp_key = nla_data(nla);
1279 if (swkey->eth.type == htons(ETH_P_IP)) {
1280 udp_key->udp_src = swkey->ipv4.tp.src;
1281 udp_key->udp_dst = swkey->ipv4.tp.dst;
1282 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1283 udp_key->udp_src = swkey->ipv6.tp.src;
1284 udp_key->udp_dst = swkey->ipv6.tp.dst;
1285 }
1286 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1287 swkey->ip.proto == IPPROTO_ICMP) {
1288 struct ovs_key_icmp *icmp_key;
1289
1290 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1291 if (!nla)
1292 goto nla_put_failure;
1293 icmp_key = nla_data(nla);
1294 icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
1295 icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
1296 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1297 swkey->ip.proto == IPPROTO_ICMPV6) {
1298 struct ovs_key_icmpv6 *icmpv6_key;
1299
1300 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1301 sizeof(*icmpv6_key));
1302 if (!nla)
1303 goto nla_put_failure;
1304 icmpv6_key = nla_data(nla);
1305 icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
1306 icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);
1307
1308 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1309 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1310 struct ovs_key_nd *nd_key;
1311
1312 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1313 if (!nla)
1314 goto nla_put_failure;
1315 nd_key = nla_data(nla);
1316 memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
1317 sizeof(nd_key->nd_target));
1318 memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
1319 memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
1320 }
1321 }
1322 }
1323
1324unencap:
1325 if (encap)
1326 nla_nest_end(skb, encap);
1327
1328 return 0;
1329
1330nla_put_failure:
1331 return -EMSGSIZE;
1332}
1333
1334/* Initializes the flow module.
1335 * Returns zero if successful or a negative error code. */
1336int ovs_flow_init(void)
1337{
1338 flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
1339 0, NULL);
1340 if (flow_cache == NULL)
1341 return -ENOMEM;
1342
1343 return 0;
1344}
1345
1346/* Uninitializes the flow module. */
1347void ovs_flow_exit(void)
1348{
1349 kmem_cache_destroy(flow_cache);
1350}