Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * Copyright (c) 2007-2014 Nicira, Inc.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of version 2 of the GNU General Public
  6 * License as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful, but
  9 * WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public License
 14 * along with this program; if not, write to the Free Software
 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 16 * 02110-1301, USA
 17 */
 18
 
 
 19#include <linux/uaccess.h>
 20#include <linux/netdevice.h>
 21#include <linux/etherdevice.h>
 22#include <linux/if_ether.h>
 23#include <linux/if_vlan.h>
 24#include <net/llc_pdu.h>
 25#include <linux/kernel.h>
 26#include <linux/jhash.h>
 27#include <linux/jiffies.h>
 28#include <linux/llc.h>
 29#include <linux/module.h>
 30#include <linux/in.h>
 31#include <linux/rcupdate.h>
 32#include <linux/cpumask.h>
 33#include <linux/if_arp.h>
 34#include <linux/ip.h>
 35#include <linux/ipv6.h>
 36#include <linux/mpls.h>
 37#include <linux/sctp.h>
 38#include <linux/smp.h>
 39#include <linux/tcp.h>
 40#include <linux/udp.h>
 41#include <linux/icmp.h>
 42#include <linux/icmpv6.h>
 43#include <linux/rculist.h>
 44#include <net/ip.h>
 45#include <net/ip_tunnels.h>
 46#include <net/ipv6.h>
 47#include <net/mpls.h>
 48#include <net/ndisc.h>
 49#include <net/nsh.h>
 50
 51#include "conntrack.h"
 52#include "datapath.h"
 53#include "flow.h"
 54#include "flow_netlink.h"
 55#include "vport.h"
 56
 57u64 ovs_flow_used_time(unsigned long flow_jiffies)
 58{
 59	struct timespec64 cur_ts;
 60	u64 cur_ms, idle_ms;
 61
 62	ktime_get_ts64(&cur_ts);
 63	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
 64	cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
 65		 cur_ts.tv_nsec / NSEC_PER_MSEC;
 66
 67	return cur_ms - idle_ms;
 68}
 69
 70#define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
 71
 72void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
 73			   const struct sk_buff *skb)
 74{
 75	struct flow_stats *stats;
 76	unsigned int cpu = smp_processor_id();
 77	int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
 78
 79	stats = rcu_dereference(flow->stats[cpu]);
 80
 81	/* Check if already have CPU-specific stats. */
 82	if (likely(stats)) {
 83		spin_lock(&stats->lock);
 84		/* Mark if we write on the pre-allocated stats. */
 85		if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
 86			flow->stats_last_writer = cpu;
 87	} else {
 88		stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
 89		spin_lock(&stats->lock);
 90
 91		/* If the current CPU is the only writer on the
 92		 * pre-allocated stats keep using them.
 93		 */
 94		if (unlikely(flow->stats_last_writer != cpu)) {
 95			/* A previous locker may have already allocated the
 96			 * stats, so we need to check again.  If CPU-specific
 97			 * stats were already allocated, we update the pre-
 98			 * allocated stats as we have already locked them.
 99			 */
100			if (likely(flow->stats_last_writer != -1) &&
101			    likely(!rcu_access_pointer(flow->stats[cpu]))) {
102				/* Try to allocate CPU-specific stats. */
103				struct flow_stats *new_stats;
104
105				new_stats =
106					kmem_cache_alloc_node(flow_stats_cache,
107							      GFP_NOWAIT |
108							      __GFP_THISNODE |
109							      __GFP_NOWARN |
110							      __GFP_NOMEMALLOC,
111							      numa_node_id());
112				if (likely(new_stats)) {
113					new_stats->used = jiffies;
114					new_stats->packet_count = 1;
115					new_stats->byte_count = len;
116					new_stats->tcp_flags = tcp_flags;
117					spin_lock_init(&new_stats->lock);
118
119					rcu_assign_pointer(flow->stats[cpu],
120							   new_stats);
121					cpumask_set_cpu(cpu, &flow->cpu_used_mask);
122					goto unlock;
123				}
124			}
125			flow->stats_last_writer = cpu;
126		}
127	}
128
 
129	stats->used = jiffies;
130	stats->packet_count++;
131	stats->byte_count += len;
132	stats->tcp_flags |= tcp_flags;
133unlock:
134	spin_unlock(&stats->lock);
135}
136
137/* Must be called with rcu_read_lock or ovs_mutex. */
138void ovs_flow_stats_get(const struct sw_flow *flow,
139			struct ovs_flow_stats *ovs_stats,
 
 
 
 
 
 
 
 
 
 
 
140			unsigned long *used, __be16 *tcp_flags)
141{
142	int cpu;
143
144	*used = 0;
145	*tcp_flags = 0;
146	memset(ovs_stats, 0, sizeof(*ovs_stats));
147
148	/* We open code this to make sure cpu 0 is always considered */
149	for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
150		struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
151
152		if (stats) {
153			/* Local CPU may write on non-local stats, so we must
154			 * block bottom-halves here.
155			 */
156			spin_lock_bh(&stats->lock);
157			if (!*used || time_after(stats->used, *used))
158				*used = stats->used;
159			*tcp_flags |= stats->tcp_flags;
160			ovs_stats->n_packets += stats->packet_count;
161			ovs_stats->n_bytes += stats->byte_count;
162			spin_unlock_bh(&stats->lock);
163		}
164	}
 
 
 
 
 
 
 
 
 
 
 
165}
166
167/* Called with ovs_mutex. */
168void ovs_flow_stats_clear(struct sw_flow *flow)
169{
170	int cpu;
171
172	/* We open code this to make sure cpu 0 is always considered */
173	for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
174		struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
175
176		if (stats) {
177			spin_lock_bh(&stats->lock);
178			stats->used = 0;
179			stats->packet_count = 0;
180			stats->byte_count = 0;
181			stats->tcp_flags = 0;
182			spin_unlock_bh(&stats->lock);
183		}
184	}
 
185}
186
187static int check_header(struct sk_buff *skb, int len)
188{
189	if (unlikely(skb->len < len))
190		return -EINVAL;
191	if (unlikely(!pskb_may_pull(skb, len)))
192		return -ENOMEM;
193	return 0;
194}
195
196static bool arphdr_ok(struct sk_buff *skb)
197{
198	return pskb_may_pull(skb, skb_network_offset(skb) +
199				  sizeof(struct arp_eth_header));
200}
201
202static int check_iphdr(struct sk_buff *skb)
203{
204	unsigned int nh_ofs = skb_network_offset(skb);
205	unsigned int ip_len;
206	int err;
207
208	err = check_header(skb, nh_ofs + sizeof(struct iphdr));
209	if (unlikely(err))
210		return err;
211
212	ip_len = ip_hdrlen(skb);
213	if (unlikely(ip_len < sizeof(struct iphdr) ||
214		     skb->len < nh_ofs + ip_len))
215		return -EINVAL;
216
217	skb_set_transport_header(skb, nh_ofs + ip_len);
218	return 0;
219}
220
221static bool tcphdr_ok(struct sk_buff *skb)
222{
223	int th_ofs = skb_transport_offset(skb);
224	int tcp_len;
225
226	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
227		return false;
228
229	tcp_len = tcp_hdrlen(skb);
230	if (unlikely(tcp_len < sizeof(struct tcphdr) ||
231		     skb->len < th_ofs + tcp_len))
232		return false;
233
234	return true;
235}
236
237static bool udphdr_ok(struct sk_buff *skb)
238{
239	return pskb_may_pull(skb, skb_transport_offset(skb) +
240				  sizeof(struct udphdr));
241}
242
243static bool sctphdr_ok(struct sk_buff *skb)
244{
245	return pskb_may_pull(skb, skb_transport_offset(skb) +
246				  sizeof(struct sctphdr));
247}
248
249static bool icmphdr_ok(struct sk_buff *skb)
250{
251	return pskb_may_pull(skb, skb_transport_offset(skb) +
252				  sizeof(struct icmphdr));
253}
254
255static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
256{
257	unsigned int nh_ofs = skb_network_offset(skb);
258	unsigned int nh_len;
259	int payload_ofs;
260	struct ipv6hdr *nh;
261	uint8_t nexthdr;
262	__be16 frag_off;
263	int err;
264
265	err = check_header(skb, nh_ofs + sizeof(*nh));
266	if (unlikely(err))
267		return err;
268
269	nh = ipv6_hdr(skb);
270	nexthdr = nh->nexthdr;
271	payload_ofs = (u8 *)(nh + 1) - skb->data;
272
273	key->ip.proto = NEXTHDR_NONE;
274	key->ip.tos = ipv6_get_dsfield(nh);
275	key->ip.ttl = nh->hop_limit;
276	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
277	key->ipv6.addr.src = nh->saddr;
278	key->ipv6.addr.dst = nh->daddr;
279
280	payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
 
 
281
282	if (frag_off) {
283		if (frag_off & htons(~0x7))
284			key->ip.frag = OVS_FRAG_TYPE_LATER;
285		else
286			key->ip.frag = OVS_FRAG_TYPE_FIRST;
287	} else {
288		key->ip.frag = OVS_FRAG_TYPE_NONE;
289	}
290
291	/* Delayed handling of error in ipv6_skip_exthdr() as it
292	 * always sets frag_off to a valid value which may be
293	 * used to set key->ip.frag above.
294	 */
295	if (unlikely(payload_ofs < 0))
296		return -EPROTO;
297
298	nh_len = payload_ofs - nh_ofs;
299	skb_set_transport_header(skb, nh_ofs + nh_len);
300	key->ip.proto = nexthdr;
301	return nh_len;
302}
303
304static bool icmp6hdr_ok(struct sk_buff *skb)
305{
306	return pskb_may_pull(skb, skb_transport_offset(skb) +
307				  sizeof(struct icmp6hdr));
308}
309
310/**
311 * Parse vlan tag from vlan header.
312 * Returns ERROR on memory error.
313 * Returns 0 if it encounters a non-vlan or incomplete packet.
314 * Returns 1 after successfully parsing vlan tag.
315 */
316static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
317			  bool untag_vlan)
318{
319	struct vlan_head *vh = (struct vlan_head *)skb->data;
320
321	if (likely(!eth_type_vlan(vh->tpid)))
322		return 0;
 
323
324	if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
325		return 0;
326
327	if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
328				 sizeof(__be16))))
329		return -ENOMEM;
330
331	vh = (struct vlan_head *)skb->data;
332	key_vh->tci = vh->tci | htons(VLAN_TAG_PRESENT);
333	key_vh->tpid = vh->tpid;
334
335	if (unlikely(untag_vlan)) {
336		int offset = skb->data - skb_mac_header(skb);
337		u16 tci;
338		int err;
339
340		__skb_push(skb, offset);
341		err = __skb_vlan_pop(skb, &tci);
342		__skb_pull(skb, offset);
343		if (err)
344			return err;
345		__vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
346	} else {
347		__skb_pull(skb, sizeof(struct vlan_head));
348	}
349	return 1;
350}
351
352static void clear_vlan(struct sw_flow_key *key)
353{
354	key->eth.vlan.tci = 0;
355	key->eth.vlan.tpid = 0;
356	key->eth.cvlan.tci = 0;
357	key->eth.cvlan.tpid = 0;
358}
359
360static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
361{
362	int res;
363
364	if (skb_vlan_tag_present(skb)) {
365		key->eth.vlan.tci = htons(skb->vlan_tci);
366		key->eth.vlan.tpid = skb->vlan_proto;
367	} else {
368		/* Parse outer vlan tag in the non-accelerated case. */
369		res = parse_vlan_tag(skb, &key->eth.vlan, true);
370		if (res <= 0)
371			return res;
372	}
373
374	/* Parse inner vlan tag. */
375	res = parse_vlan_tag(skb, &key->eth.cvlan, false);
376	if (res <= 0)
377		return res;
378
379	return 0;
380}
381
382static __be16 parse_ethertype(struct sk_buff *skb)
383{
384	struct llc_snap_hdr {
385		u8  dsap;  /* Always 0xAA */
386		u8  ssap;  /* Always 0xAA */
387		u8  ctrl;
388		u8  oui[3];
389		__be16 ethertype;
390	};
391	struct llc_snap_hdr *llc;
392	__be16 proto;
393
394	proto = *(__be16 *) skb->data;
395	__skb_pull(skb, sizeof(__be16));
396
397	if (eth_proto_is_802_3(proto))
398		return proto;
399
400	if (skb->len < sizeof(struct llc_snap_hdr))
401		return htons(ETH_P_802_2);
402
403	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
404		return htons(0);
405
406	llc = (struct llc_snap_hdr *) skb->data;
407	if (llc->dsap != LLC_SAP_SNAP ||
408	    llc->ssap != LLC_SAP_SNAP ||
409	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
410		return htons(ETH_P_802_2);
411
412	__skb_pull(skb, sizeof(struct llc_snap_hdr));
413
414	if (eth_proto_is_802_3(llc->ethertype))
415		return llc->ethertype;
416
417	return htons(ETH_P_802_2);
418}
419
420static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
421			int nh_len)
422{
423	struct icmp6hdr *icmp = icmp6_hdr(skb);
424
425	/* The ICMPv6 type and code fields use the 16-bit transport port
426	 * fields, so we need to store them in 16-bit network byte order.
427	 */
428	key->tp.src = htons(icmp->icmp6_type);
429	key->tp.dst = htons(icmp->icmp6_code);
430	memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
431
432	if (icmp->icmp6_code == 0 &&
433	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
434	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
435		int icmp_len = skb->len - skb_transport_offset(skb);
436		struct nd_msg *nd;
437		int offset;
438
439		/* In order to process neighbor discovery options, we need the
440		 * entire packet.
441		 */
442		if (unlikely(icmp_len < sizeof(*nd)))
443			return 0;
444
445		if (unlikely(skb_linearize(skb)))
446			return -ENOMEM;
447
448		nd = (struct nd_msg *)skb_transport_header(skb);
449		key->ipv6.nd.target = nd->target;
450
451		icmp_len -= sizeof(*nd);
452		offset = 0;
453		while (icmp_len >= 8) {
454			struct nd_opt_hdr *nd_opt =
455				 (struct nd_opt_hdr *)(nd->opt + offset);
456			int opt_len = nd_opt->nd_opt_len * 8;
457
458			if (unlikely(!opt_len || opt_len > icmp_len))
459				return 0;
460
461			/* Store the link layer address if the appropriate
462			 * option is provided.  It is considered an error if
463			 * the same link layer option is specified twice.
464			 */
465			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
466			    && opt_len == 8) {
467				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
468					goto invalid;
469				ether_addr_copy(key->ipv6.nd.sll,
470						&nd->opt[offset+sizeof(*nd_opt)]);
471			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
472				   && opt_len == 8) {
473				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
474					goto invalid;
475				ether_addr_copy(key->ipv6.nd.tll,
476						&nd->opt[offset+sizeof(*nd_opt)]);
477			}
478
479			icmp_len -= opt_len;
480			offset += opt_len;
481		}
482	}
483
484	return 0;
485
486invalid:
487	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
488	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
489	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
490
491	return 0;
492}
493
494static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
495{
496	struct nshhdr *nh;
497	unsigned int nh_ofs = skb_network_offset(skb);
498	u8 version, length;
499	int err;
500
501	err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
502	if (unlikely(err))
503		return err;
504
505	nh = nsh_hdr(skb);
506	version = nsh_get_ver(nh);
507	length = nsh_hdr_len(nh);
508
509	if (version != 0)
510		return -EINVAL;
511
512	err = check_header(skb, nh_ofs + length);
513	if (unlikely(err))
514		return err;
515
516	nh = nsh_hdr(skb);
517	key->nsh.base.flags = nsh_get_flags(nh);
518	key->nsh.base.ttl = nsh_get_ttl(nh);
519	key->nsh.base.mdtype = nh->mdtype;
520	key->nsh.base.np = nh->np;
521	key->nsh.base.path_hdr = nh->path_hdr;
522	switch (key->nsh.base.mdtype) {
523	case NSH_M_TYPE1:
524		if (length != NSH_M_TYPE1_LEN)
525			return -EINVAL;
526		memcpy(key->nsh.context, nh->md1.context,
527		       sizeof(nh->md1));
528		break;
529	case NSH_M_TYPE2:
530		memset(key->nsh.context, 0,
531		       sizeof(nh->md1));
532		break;
533	default:
534		return -EINVAL;
535	}
536
537	return 0;
538}
539
540/**
541 * key_extract - extracts a flow key from an Ethernet frame.
542 * @skb: sk_buff that contains the frame, with skb->data pointing to the
543 * Ethernet header
 
544 * @key: output flow key
545 *
546 * The caller must ensure that skb->len >= ETH_HLEN.
547 *
548 * Returns 0 if successful, otherwise a negative errno value.
549 *
550 * Initializes @skb header fields as follows:
551 *
552 *    - skb->mac_header: the L2 header.
553 *
554 *    - skb->network_header: just past the L2 header, or just past the
555 *      VLAN header, to the first byte of the L2 payload.
556 *
557 *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
558 *      on output, then just past the IP header, if one is present and
559 *      of a correct length, otherwise the same as skb->network_header.
560 *      For other key->eth.type values it is left untouched.
561 *
562 *    - skb->protocol: the type of the data starting at skb->network_header.
563 *      Equals to key->eth.type.
564 */
565static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
566{
567	int error;
568	struct ethhdr *eth;
569
570	/* Flags are always used as part of stats */
571	key->tp.flags = 0;
572
573	skb_reset_mac_header(skb);
 
 
 
 
574
575	/* Link layer. */
576	clear_vlan(key);
577	if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
578		if (unlikely(eth_type_vlan(skb->protocol)))
579			return -EINVAL;
580
581		skb_reset_network_header(skb);
582		key->eth.type = skb->protocol;
583	} else {
584		eth = eth_hdr(skb);
585		ether_addr_copy(key->eth.src, eth->h_source);
586		ether_addr_copy(key->eth.dst, eth->h_dest);
587
588		__skb_pull(skb, 2 * ETH_ALEN);
589		/* We are going to push all headers that we pull, so no need to
590		* update skb->csum here.
591		*/
592
 
 
 
593		if (unlikely(parse_vlan(skb, key)))
594			return -ENOMEM;
595
596		key->eth.type = parse_ethertype(skb);
597		if (unlikely(key->eth.type == htons(0)))
598			return -ENOMEM;
599
600		/* Multiple tagged packets need to retain TPID to satisfy
601		 * skb_vlan_pop(), which will later shift the ethertype into
602		 * skb->protocol.
603		 */
604		if (key->eth.cvlan.tci & htons(VLAN_TAG_PRESENT))
605			skb->protocol = key->eth.cvlan.tpid;
606		else
607			skb->protocol = key->eth.type;
608
609		skb_reset_network_header(skb);
610		__skb_push(skb, skb->data - skb_mac_header(skb));
611	}
612	skb_reset_mac_len(skb);
613
614	/* Network layer. */
615	if (key->eth.type == htons(ETH_P_IP)) {
616		struct iphdr *nh;
617		__be16 offset;
618
619		error = check_iphdr(skb);
620		if (unlikely(error)) {
621			memset(&key->ip, 0, sizeof(key->ip));
622			memset(&key->ipv4, 0, sizeof(key->ipv4));
623			if (error == -EINVAL) {
624				skb->transport_header = skb->network_header;
625				error = 0;
626			}
627			return error;
628		}
629
630		nh = ip_hdr(skb);
631		key->ipv4.addr.src = nh->saddr;
632		key->ipv4.addr.dst = nh->daddr;
633
634		key->ip.proto = nh->protocol;
635		key->ip.tos = nh->tos;
636		key->ip.ttl = nh->ttl;
637
638		offset = nh->frag_off & htons(IP_OFFSET);
639		if (offset) {
640			key->ip.frag = OVS_FRAG_TYPE_LATER;
641			return 0;
642		}
643		if (nh->frag_off & htons(IP_MF) ||
644			skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
645			key->ip.frag = OVS_FRAG_TYPE_FIRST;
646		else
647			key->ip.frag = OVS_FRAG_TYPE_NONE;
648
649		/* Transport layer. */
650		if (key->ip.proto == IPPROTO_TCP) {
651			if (tcphdr_ok(skb)) {
652				struct tcphdr *tcp = tcp_hdr(skb);
653				key->tp.src = tcp->source;
654				key->tp.dst = tcp->dest;
655				key->tp.flags = TCP_FLAGS_BE16(tcp);
656			} else {
657				memset(&key->tp, 0, sizeof(key->tp));
658			}
659
660		} else if (key->ip.proto == IPPROTO_UDP) {
661			if (udphdr_ok(skb)) {
662				struct udphdr *udp = udp_hdr(skb);
663				key->tp.src = udp->source;
664				key->tp.dst = udp->dest;
665			} else {
666				memset(&key->tp, 0, sizeof(key->tp));
667			}
668		} else if (key->ip.proto == IPPROTO_SCTP) {
669			if (sctphdr_ok(skb)) {
670				struct sctphdr *sctp = sctp_hdr(skb);
671				key->tp.src = sctp->source;
672				key->tp.dst = sctp->dest;
673			} else {
674				memset(&key->tp, 0, sizeof(key->tp));
675			}
676		} else if (key->ip.proto == IPPROTO_ICMP) {
677			if (icmphdr_ok(skb)) {
678				struct icmphdr *icmp = icmp_hdr(skb);
679				/* The ICMP type and code fields use the 16-bit
680				 * transport port fields, so we need to store
681				 * them in 16-bit network byte order. */
682				key->tp.src = htons(icmp->type);
683				key->tp.dst = htons(icmp->code);
684			} else {
685				memset(&key->tp, 0, sizeof(key->tp));
686			}
687		}
688
689	} else if (key->eth.type == htons(ETH_P_ARP) ||
690		   key->eth.type == htons(ETH_P_RARP)) {
691		struct arp_eth_header *arp;
692		bool arp_available = arphdr_ok(skb);
693
694		arp = (struct arp_eth_header *)skb_network_header(skb);
695
696		if (arp_available &&
697		    arp->ar_hrd == htons(ARPHRD_ETHER) &&
698		    arp->ar_pro == htons(ETH_P_IP) &&
699		    arp->ar_hln == ETH_ALEN &&
700		    arp->ar_pln == 4) {
701
702			/* We only match on the lower 8 bits of the opcode. */
703			if (ntohs(arp->ar_op) <= 0xff)
704				key->ip.proto = ntohs(arp->ar_op);
705			else
706				key->ip.proto = 0;
707
708			memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
709			memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
710			ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
711			ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
712		} else {
713			memset(&key->ip, 0, sizeof(key->ip));
714			memset(&key->ipv4, 0, sizeof(key->ipv4));
715		}
716	} else if (eth_p_mpls(key->eth.type)) {
717		size_t stack_len = MPLS_HLEN;
718
719		skb_set_inner_network_header(skb, skb->mac_len);
720		while (1) {
721			__be32 lse;
722
723			error = check_header(skb, skb->mac_len + stack_len);
724			if (unlikely(error))
725				return 0;
726
727			memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
728
729			if (stack_len == MPLS_HLEN)
730				memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
731
732			skb_set_inner_network_header(skb, skb->mac_len + stack_len);
733			if (lse & htonl(MPLS_LS_S_MASK))
734				break;
735
736			stack_len += MPLS_HLEN;
737		}
738	} else if (key->eth.type == htons(ETH_P_IPV6)) {
739		int nh_len;             /* IPv6 Header + Extensions */
740
741		nh_len = parse_ipv6hdr(skb, key);
742		if (unlikely(nh_len < 0)) {
743			switch (nh_len) {
744			case -EINVAL:
745				memset(&key->ip, 0, sizeof(key->ip));
746				memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
747				/* fall-through */
748			case -EPROTO:
749				skb->transport_header = skb->network_header;
750				error = 0;
751				break;
752			default:
753				error = nh_len;
754			}
755			return error;
756		}
757
758		if (key->ip.frag == OVS_FRAG_TYPE_LATER)
759			return 0;
760		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
761			key->ip.frag = OVS_FRAG_TYPE_FIRST;
762
763		/* Transport layer. */
764		if (key->ip.proto == NEXTHDR_TCP) {
765			if (tcphdr_ok(skb)) {
766				struct tcphdr *tcp = tcp_hdr(skb);
767				key->tp.src = tcp->source;
768				key->tp.dst = tcp->dest;
769				key->tp.flags = TCP_FLAGS_BE16(tcp);
770			} else {
771				memset(&key->tp, 0, sizeof(key->tp));
772			}
773		} else if (key->ip.proto == NEXTHDR_UDP) {
774			if (udphdr_ok(skb)) {
775				struct udphdr *udp = udp_hdr(skb);
776				key->tp.src = udp->source;
777				key->tp.dst = udp->dest;
778			} else {
779				memset(&key->tp, 0, sizeof(key->tp));
780			}
781		} else if (key->ip.proto == NEXTHDR_SCTP) {
782			if (sctphdr_ok(skb)) {
783				struct sctphdr *sctp = sctp_hdr(skb);
784				key->tp.src = sctp->source;
785				key->tp.dst = sctp->dest;
786			} else {
787				memset(&key->tp, 0, sizeof(key->tp));
788			}
789		} else if (key->ip.proto == NEXTHDR_ICMP) {
790			if (icmp6hdr_ok(skb)) {
791				error = parse_icmpv6(skb, key, nh_len);
792				if (error)
793					return error;
794			} else {
795				memset(&key->tp, 0, sizeof(key->tp));
796			}
797		}
798	} else if (key->eth.type == htons(ETH_P_NSH)) {
799		error = parse_nsh(skb, key);
800		if (error)
801			return error;
802	}
803	return 0;
804}
805
806int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
807{
808	int res;
809
810	res = key_extract(skb, key);
811	if (!res)
812		key->mac_proto &= ~SW_FLOW_KEY_INVALID;
813
814	return res;
815}
816
817static int key_extract_mac_proto(struct sk_buff *skb)
818{
819	switch (skb->dev->type) {
820	case ARPHRD_ETHER:
821		return MAC_PROTO_ETHERNET;
822	case ARPHRD_NONE:
823		if (skb->protocol == htons(ETH_P_TEB))
824			return MAC_PROTO_ETHERNET;
825		return MAC_PROTO_NONE;
826	}
827	WARN_ON_ONCE(1);
828	return -EINVAL;
829}
830
831int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
832			 struct sk_buff *skb, struct sw_flow_key *key)
833{
834	int res, err;
835
836	/* Extract metadata from packet. */
837	if (tun_info) {
838		key->tun_proto = ip_tunnel_info_af(tun_info);
839		memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
840
841		if (tun_info->options_len) {
842			BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
843						   8)) - 1
844					> sizeof(key->tun_opts));
845
846			ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
847						tun_info);
848			key->tun_opts_len = tun_info->options_len;
849		} else {
850			key->tun_opts_len = 0;
851		}
852	} else  {
853		key->tun_proto = 0;
854		key->tun_opts_len = 0;
855		memset(&key->tun_key, 0, sizeof(key->tun_key));
856	}
857
858	key->phy.priority = skb->priority;
859	key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
860	key->phy.skb_mark = skb->mark;
861	key->ovs_flow_hash = 0;
862	res = key_extract_mac_proto(skb);
863	if (res < 0)
864		return res;
865	key->mac_proto = res;
866	key->recirc_id = 0;
867
868	err = key_extract(skb, key);
869	if (!err)
870		ovs_ct_fill_key(skb, key);   /* Must be after key_extract(). */
871	return err;
872}
873
874int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
875				   struct sk_buff *skb,
876				   struct sw_flow_key *key, bool log)
877{
878	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
879	u64 attrs = 0;
880	int err;
881
882	err = parse_flow_nlattrs(attr, a, &attrs, log);
883	if (err)
884		return -EINVAL;
885
886	/* Extract metadata from netlink attributes. */
887	err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
888	if (err)
889		return err;
890
891	/* key_extract assumes that skb->protocol is set-up for
892	 * layer 3 packets which is the case for other callers,
893	 * in particular packets received from the network stack.
894	 * Here the correct value can be set from the metadata
895	 * extracted above.
896	 * For L2 packet key eth type would be zero. skb protocol
897	 * would be set to correct value later during key-extact.
898	 */
899
900	skb->protocol = key->eth.type;
901	err = key_extract(skb, key);
902	if (err)
903		return err;
904
905	/* Check that we have conntrack original direction tuple metadata only
906	 * for packets for which it makes sense.  Otherwise the key may be
907	 * corrupted due to overlapping key fields.
908	 */
909	if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
910	    key->eth.type != htons(ETH_P_IP))
911		return -EINVAL;
912	if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
913	    (key->eth.type != htons(ETH_P_IPV6) ||
914	     sw_flow_key_is_nd(key)))
915		return -EINVAL;
916
917	return 0;
918}
v3.15
  1/*
  2 * Copyright (c) 2007-2013 Nicira, Inc.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of version 2 of the GNU General Public
  6 * License as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful, but
  9 * WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public License
 14 * along with this program; if not, write to the Free Software
 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 16 * 02110-1301, USA
 17 */
 18
 19#include "flow.h"
 20#include "datapath.h"
 21#include <linux/uaccess.h>
 22#include <linux/netdevice.h>
 23#include <linux/etherdevice.h>
 24#include <linux/if_ether.h>
 25#include <linux/if_vlan.h>
 26#include <net/llc_pdu.h>
 27#include <linux/kernel.h>
 28#include <linux/jhash.h>
 29#include <linux/jiffies.h>
 30#include <linux/llc.h>
 31#include <linux/module.h>
 32#include <linux/in.h>
 33#include <linux/rcupdate.h>
 
 34#include <linux/if_arp.h>
 35#include <linux/ip.h>
 36#include <linux/ipv6.h>
 
 37#include <linux/sctp.h>
 38#include <linux/smp.h>
 39#include <linux/tcp.h>
 40#include <linux/udp.h>
 41#include <linux/icmp.h>
 42#include <linux/icmpv6.h>
 43#include <linux/rculist.h>
 44#include <net/ip.h>
 45#include <net/ip_tunnels.h>
 46#include <net/ipv6.h>
 
 47#include <net/ndisc.h>
 
 
 
 
 
 
 
 48
 49u64 ovs_flow_used_time(unsigned long flow_jiffies)
 50{
 51	struct timespec cur_ts;
 52	u64 cur_ms, idle_ms;
 53
 54	ktime_get_ts(&cur_ts);
 55	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
 56	cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
 57		 cur_ts.tv_nsec / NSEC_PER_MSEC;
 58
 59	return cur_ms - idle_ms;
 60}
 61
 62#define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
 63
 64void ovs_flow_stats_update(struct sw_flow *flow, struct sk_buff *skb)
 
 65{
 66	struct flow_stats *stats;
 67	__be16 tcp_flags = 0;
 
 68
 69	if (!flow->stats.is_percpu)
 70		stats = flow->stats.stat;
 71	else
 72		stats = this_cpu_ptr(flow->stats.cpu_stats);
 73
 74	if ((flow->key.eth.type == htons(ETH_P_IP) ||
 75	     flow->key.eth.type == htons(ETH_P_IPV6)) &&
 76	    flow->key.ip.frag != OVS_FRAG_TYPE_LATER &&
 77	    flow->key.ip.proto == IPPROTO_TCP &&
 78	    likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) {
 79		tcp_flags = TCP_FLAGS_BE16(tcp_hdr(skb));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 80	}
 81
 82	spin_lock(&stats->lock);
 83	stats->used = jiffies;
 84	stats->packet_count++;
 85	stats->byte_count += skb->len;
 86	stats->tcp_flags |= tcp_flags;
 
 87	spin_unlock(&stats->lock);
 88}
 89
 90static void stats_read(struct flow_stats *stats,
 91		       struct ovs_flow_stats *ovs_stats,
 92		       unsigned long *used, __be16 *tcp_flags)
 93{
 94	spin_lock(&stats->lock);
 95	if (!*used || time_after(stats->used, *used))
 96		*used = stats->used;
 97	*tcp_flags |= stats->tcp_flags;
 98	ovs_stats->n_packets += stats->packet_count;
 99	ovs_stats->n_bytes += stats->byte_count;
100	spin_unlock(&stats->lock);
101}
102
103void ovs_flow_stats_get(struct sw_flow *flow, struct ovs_flow_stats *ovs_stats,
104			unsigned long *used, __be16 *tcp_flags)
105{
106	int cpu;
107
108	*used = 0;
109	*tcp_flags = 0;
110	memset(ovs_stats, 0, sizeof(*ovs_stats));
111
112	local_bh_disable();
113	if (!flow->stats.is_percpu) {
114		stats_read(flow->stats.stat, ovs_stats, used, tcp_flags);
115	} else {
116		for_each_possible_cpu(cpu) {
117			struct flow_stats *stats;
118
119			stats = per_cpu_ptr(flow->stats.cpu_stats, cpu);
120			stats_read(stats, ovs_stats, used, tcp_flags);
 
 
 
 
 
 
121		}
122	}
123	local_bh_enable();
124}
125
126static void stats_reset(struct flow_stats *stats)
127{
128	spin_lock(&stats->lock);
129	stats->used = 0;
130	stats->packet_count = 0;
131	stats->byte_count = 0;
132	stats->tcp_flags = 0;
133	spin_unlock(&stats->lock);
134}
135
 
136void ovs_flow_stats_clear(struct sw_flow *flow)
137{
138	int cpu;
139
140	local_bh_disable();
141	if (!flow->stats.is_percpu) {
142		stats_reset(flow->stats.stat);
143	} else {
144		for_each_possible_cpu(cpu) {
145			stats_reset(per_cpu_ptr(flow->stats.cpu_stats, cpu));
 
 
 
 
 
146		}
147	}
148	local_bh_enable();
149}
150
151static int check_header(struct sk_buff *skb, int len)
152{
153	if (unlikely(skb->len < len))
154		return -EINVAL;
155	if (unlikely(!pskb_may_pull(skb, len)))
156		return -ENOMEM;
157	return 0;
158}
159
160static bool arphdr_ok(struct sk_buff *skb)
161{
162	return pskb_may_pull(skb, skb_network_offset(skb) +
163				  sizeof(struct arp_eth_header));
164}
165
166static int check_iphdr(struct sk_buff *skb)
167{
168	unsigned int nh_ofs = skb_network_offset(skb);
169	unsigned int ip_len;
170	int err;
171
172	err = check_header(skb, nh_ofs + sizeof(struct iphdr));
173	if (unlikely(err))
174		return err;
175
176	ip_len = ip_hdrlen(skb);
177	if (unlikely(ip_len < sizeof(struct iphdr) ||
178		     skb->len < nh_ofs + ip_len))
179		return -EINVAL;
180
181	skb_set_transport_header(skb, nh_ofs + ip_len);
182	return 0;
183}
184
185static bool tcphdr_ok(struct sk_buff *skb)
186{
187	int th_ofs = skb_transport_offset(skb);
188	int tcp_len;
189
190	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
191		return false;
192
193	tcp_len = tcp_hdrlen(skb);
194	if (unlikely(tcp_len < sizeof(struct tcphdr) ||
195		     skb->len < th_ofs + tcp_len))
196		return false;
197
198	return true;
199}
200
201static bool udphdr_ok(struct sk_buff *skb)
202{
203	return pskb_may_pull(skb, skb_transport_offset(skb) +
204				  sizeof(struct udphdr));
205}
206
207static bool sctphdr_ok(struct sk_buff *skb)
208{
209	return pskb_may_pull(skb, skb_transport_offset(skb) +
210				  sizeof(struct sctphdr));
211}
212
213static bool icmphdr_ok(struct sk_buff *skb)
214{
215	return pskb_may_pull(skb, skb_transport_offset(skb) +
216				  sizeof(struct icmphdr));
217}
218
219static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
220{
221	unsigned int nh_ofs = skb_network_offset(skb);
222	unsigned int nh_len;
223	int payload_ofs;
224	struct ipv6hdr *nh;
225	uint8_t nexthdr;
226	__be16 frag_off;
227	int err;
228
229	err = check_header(skb, nh_ofs + sizeof(*nh));
230	if (unlikely(err))
231		return err;
232
233	nh = ipv6_hdr(skb);
234	nexthdr = nh->nexthdr;
235	payload_ofs = (u8 *)(nh + 1) - skb->data;
236
237	key->ip.proto = NEXTHDR_NONE;
238	key->ip.tos = ipv6_get_dsfield(nh);
239	key->ip.ttl = nh->hop_limit;
240	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
241	key->ipv6.addr.src = nh->saddr;
242	key->ipv6.addr.dst = nh->daddr;
243
244	payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
245	if (unlikely(payload_ofs < 0))
246		return -EINVAL;
247
248	if (frag_off) {
249		if (frag_off & htons(~0x7))
250			key->ip.frag = OVS_FRAG_TYPE_LATER;
251		else
252			key->ip.frag = OVS_FRAG_TYPE_FIRST;
 
 
253	}
254
 
 
 
 
 
 
 
255	nh_len = payload_ofs - nh_ofs;
256	skb_set_transport_header(skb, nh_ofs + nh_len);
257	key->ip.proto = nexthdr;
258	return nh_len;
259}
260
261static bool icmp6hdr_ok(struct sk_buff *skb)
262{
263	return pskb_may_pull(skb, skb_transport_offset(skb) +
264				  sizeof(struct icmp6hdr));
265}
266
267static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
 
 
 
 
 
 
 
268{
269	struct qtag_prefix {
270		__be16 eth_type; /* ETH_P_8021Q */
271		__be16 tci;
272	};
273	struct qtag_prefix *qp;
274
275	if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
276		return 0;
277
278	if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
279					 sizeof(__be16))))
280		return -ENOMEM;
281
282	qp = (struct qtag_prefix *) skb->data;
283	key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
284	__skb_pull(skb, sizeof(struct qtag_prefix));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285
286	return 0;
287}
288
289static __be16 parse_ethertype(struct sk_buff *skb)
290{
291	struct llc_snap_hdr {
292		u8  dsap;  /* Always 0xAA */
293		u8  ssap;  /* Always 0xAA */
294		u8  ctrl;
295		u8  oui[3];
296		__be16 ethertype;
297	};
298	struct llc_snap_hdr *llc;
299	__be16 proto;
300
301	proto = *(__be16 *) skb->data;
302	__skb_pull(skb, sizeof(__be16));
303
304	if (ntohs(proto) >= ETH_P_802_3_MIN)
305		return proto;
306
307	if (skb->len < sizeof(struct llc_snap_hdr))
308		return htons(ETH_P_802_2);
309
310	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
311		return htons(0);
312
313	llc = (struct llc_snap_hdr *) skb->data;
314	if (llc->dsap != LLC_SAP_SNAP ||
315	    llc->ssap != LLC_SAP_SNAP ||
316	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
317		return htons(ETH_P_802_2);
318
319	__skb_pull(skb, sizeof(struct llc_snap_hdr));
320
321	if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN)
322		return llc->ethertype;
323
324	return htons(ETH_P_802_2);
325}
326
327static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
328			int nh_len)
329{
330	struct icmp6hdr *icmp = icmp6_hdr(skb);
331
332	/* The ICMPv6 type and code fields use the 16-bit transport port
333	 * fields, so we need to store them in 16-bit network byte order.
334	 */
335	key->ipv6.tp.src = htons(icmp->icmp6_type);
336	key->ipv6.tp.dst = htons(icmp->icmp6_code);
 
337
338	if (icmp->icmp6_code == 0 &&
339	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
340	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
341		int icmp_len = skb->len - skb_transport_offset(skb);
342		struct nd_msg *nd;
343		int offset;
344
345		/* In order to process neighbor discovery options, we need the
346		 * entire packet.
347		 */
348		if (unlikely(icmp_len < sizeof(*nd)))
349			return 0;
350
351		if (unlikely(skb_linearize(skb)))
352			return -ENOMEM;
353
354		nd = (struct nd_msg *)skb_transport_header(skb);
355		key->ipv6.nd.target = nd->target;
356
357		icmp_len -= sizeof(*nd);
358		offset = 0;
359		while (icmp_len >= 8) {
360			struct nd_opt_hdr *nd_opt =
361				 (struct nd_opt_hdr *)(nd->opt + offset);
362			int opt_len = nd_opt->nd_opt_len * 8;
363
364			if (unlikely(!opt_len || opt_len > icmp_len))
365				return 0;
366
367			/* Store the link layer address if the appropriate
368			 * option is provided.  It is considered an error if
369			 * the same link layer option is specified twice.
370			 */
371			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
372			    && opt_len == 8) {
373				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
374					goto invalid;
375				memcpy(key->ipv6.nd.sll,
376				    &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
377			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
378				   && opt_len == 8) {
379				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
380					goto invalid;
381				memcpy(key->ipv6.nd.tll,
382				    &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
383			}
384
385			icmp_len -= opt_len;
386			offset += opt_len;
387		}
388	}
389
390	return 0;
391
392invalid:
393	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
394	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
395	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
396
397	return 0;
398}
399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
400/**
401 * ovs_flow_extract - extracts a flow key from an Ethernet frame.
402 * @skb: sk_buff that contains the frame, with skb->data pointing to the
403 * Ethernet header
404 * @in_port: port number on which @skb was received.
405 * @key: output flow key
406 *
407 * The caller must ensure that skb->len >= ETH_HLEN.
408 *
409 * Returns 0 if successful, otherwise a negative errno value.
410 *
411 * Initializes @skb header pointers as follows:
412 *
413 *    - skb->mac_header: the Ethernet header.
414 *
415 *    - skb->network_header: just past the Ethernet header, or just past the
416 *      VLAN header, to the first byte of the Ethernet payload.
417 *
418 *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
419 *      on output, then just past the IP header, if one is present and
420 *      of a correct length, otherwise the same as skb->network_header.
421 *      For other key->eth.type values it is left untouched.
 
 
 
422 */
423int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key)
424{
425	int error;
426	struct ethhdr *eth;
427
428	memset(key, 0, sizeof(*key));
 
429
430	key->phy.priority = skb->priority;
431	if (OVS_CB(skb)->tun_key)
432		memcpy(&key->tun_key, OVS_CB(skb)->tun_key, sizeof(key->tun_key));
433	key->phy.in_port = in_port;
434	key->phy.skb_mark = skb->mark;
435
436	skb_reset_mac_header(skb);
 
 
 
 
437
438	/* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
439	 * header in the linear data area.
440	 */
441	eth = eth_hdr(skb);
442	memcpy(key->eth.src, eth->h_source, ETH_ALEN);
443	memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
444
445	__skb_pull(skb, 2 * ETH_ALEN);
446	/* We are going to push all headers that we pull, so no need to
447	 * update skb->csum here.
448	 */
449
450	if (vlan_tx_tag_present(skb))
451		key->eth.tci = htons(skb->vlan_tci);
452	else if (eth->h_proto == htons(ETH_P_8021Q))
453		if (unlikely(parse_vlan(skb, key)))
454			return -ENOMEM;
455
456	key->eth.type = parse_ethertype(skb);
457	if (unlikely(key->eth.type == htons(0)))
458		return -ENOMEM;
 
 
 
 
 
 
 
 
 
459
460	skb_reset_network_header(skb);
461	__skb_push(skb, skb->data - skb_mac_header(skb));
 
 
462
463	/* Network layer. */
464	if (key->eth.type == htons(ETH_P_IP)) {
465		struct iphdr *nh;
466		__be16 offset;
467
468		error = check_iphdr(skb);
469		if (unlikely(error)) {
 
 
470			if (error == -EINVAL) {
471				skb->transport_header = skb->network_header;
472				error = 0;
473			}
474			return error;
475		}
476
477		nh = ip_hdr(skb);
478		key->ipv4.addr.src = nh->saddr;
479		key->ipv4.addr.dst = nh->daddr;
480
481		key->ip.proto = nh->protocol;
482		key->ip.tos = nh->tos;
483		key->ip.ttl = nh->ttl;
484
485		offset = nh->frag_off & htons(IP_OFFSET);
486		if (offset) {
487			key->ip.frag = OVS_FRAG_TYPE_LATER;
488			return 0;
489		}
490		if (nh->frag_off & htons(IP_MF) ||
491			 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
492			key->ip.frag = OVS_FRAG_TYPE_FIRST;
 
 
493
494		/* Transport layer. */
495		if (key->ip.proto == IPPROTO_TCP) {
496			if (tcphdr_ok(skb)) {
497				struct tcphdr *tcp = tcp_hdr(skb);
498				key->ipv4.tp.src = tcp->source;
499				key->ipv4.tp.dst = tcp->dest;
500				key->ipv4.tp.flags = TCP_FLAGS_BE16(tcp);
 
 
501			}
 
502		} else if (key->ip.proto == IPPROTO_UDP) {
503			if (udphdr_ok(skb)) {
504				struct udphdr *udp = udp_hdr(skb);
505				key->ipv4.tp.src = udp->source;
506				key->ipv4.tp.dst = udp->dest;
 
 
507			}
508		} else if (key->ip.proto == IPPROTO_SCTP) {
509			if (sctphdr_ok(skb)) {
510				struct sctphdr *sctp = sctp_hdr(skb);
511				key->ipv4.tp.src = sctp->source;
512				key->ipv4.tp.dst = sctp->dest;
 
 
513			}
514		} else if (key->ip.proto == IPPROTO_ICMP) {
515			if (icmphdr_ok(skb)) {
516				struct icmphdr *icmp = icmp_hdr(skb);
517				/* The ICMP type and code fields use the 16-bit
518				 * transport port fields, so we need to store
519				 * them in 16-bit network byte order. */
520				key->ipv4.tp.src = htons(icmp->type);
521				key->ipv4.tp.dst = htons(icmp->code);
 
 
522			}
523		}
524
525	} else if ((key->eth.type == htons(ETH_P_ARP) ||
526		   key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) {
527		struct arp_eth_header *arp;
 
528
529		arp = (struct arp_eth_header *)skb_network_header(skb);
530
531		if (arp->ar_hrd == htons(ARPHRD_ETHER)
532				&& arp->ar_pro == htons(ETH_P_IP)
533				&& arp->ar_hln == ETH_ALEN
534				&& arp->ar_pln == 4) {
 
535
536			/* We only match on the lower 8 bits of the opcode. */
537			if (ntohs(arp->ar_op) <= 0xff)
538				key->ip.proto = ntohs(arp->ar_op);
 
 
 
539			memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
540			memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
541			memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
542			memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
543		}
544	} else if (key->eth.type == htons(ETH_P_IPV6)) {
545		int nh_len;             /* IPv6 Header + Extensions */
546
547		nh_len = parse_ipv6hdr(skb, key);
548		if (unlikely(nh_len < 0)) {
549			if (nh_len == -EINVAL) {
 
 
 
 
 
550				skb->transport_header = skb->network_header;
551				error = 0;
552			} else {
 
553				error = nh_len;
554			}
555			return error;
556		}
557
558		if (key->ip.frag == OVS_FRAG_TYPE_LATER)
559			return 0;
560		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
561			key->ip.frag = OVS_FRAG_TYPE_FIRST;
562
563		/* Transport layer. */
564		if (key->ip.proto == NEXTHDR_TCP) {
565			if (tcphdr_ok(skb)) {
566				struct tcphdr *tcp = tcp_hdr(skb);
567				key->ipv6.tp.src = tcp->source;
568				key->ipv6.tp.dst = tcp->dest;
569				key->ipv6.tp.flags = TCP_FLAGS_BE16(tcp);
 
 
570			}
571		} else if (key->ip.proto == NEXTHDR_UDP) {
572			if (udphdr_ok(skb)) {
573				struct udphdr *udp = udp_hdr(skb);
574				key->ipv6.tp.src = udp->source;
575				key->ipv6.tp.dst = udp->dest;
 
 
576			}
577		} else if (key->ip.proto == NEXTHDR_SCTP) {
578			if (sctphdr_ok(skb)) {
579				struct sctphdr *sctp = sctp_hdr(skb);
580				key->ipv6.tp.src = sctp->source;
581				key->ipv6.tp.dst = sctp->dest;
 
 
582			}
583		} else if (key->ip.proto == NEXTHDR_ICMP) {
584			if (icmp6hdr_ok(skb)) {
585				error = parse_icmpv6(skb, key, nh_len);
586				if (error)
587					return error;
 
 
588			}
589		}
 
 
 
 
590	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
591
592	return 0;
593}