Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * linux/kernel/power/snapshot.c
   3 *
   4 * This file provides system snapshot/restore functionality for swsusp.
   5 *
   6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   8 *
   9 * This file is released under the GPLv2.
  10 *
  11 */
  12
  13#define pr_fmt(fmt) "PM: " fmt
  14
  15#include <linux/version.h>
  16#include <linux/module.h>
  17#include <linux/mm.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/bitops.h>
  21#include <linux/spinlock.h>
  22#include <linux/kernel.h>
  23#include <linux/pm.h>
  24#include <linux/device.h>
  25#include <linux/init.h>
  26#include <linux/bootmem.h>
  27#include <linux/nmi.h>
  28#include <linux/syscalls.h>
  29#include <linux/console.h>
  30#include <linux/highmem.h>
  31#include <linux/list.h>
  32#include <linux/slab.h>
  33#include <linux/compiler.h>
  34#include <linux/ktime.h>
  35#include <linux/set_memory.h>
  36
  37#include <linux/uaccess.h>
  38#include <asm/mmu_context.h>
  39#include <asm/pgtable.h>
  40#include <asm/tlbflush.h>
  41#include <asm/io.h>
  42
  43#include "power.h"
  44
  45#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
  46static bool hibernate_restore_protection;
  47static bool hibernate_restore_protection_active;
  48
  49void enable_restore_image_protection(void)
  50{
  51	hibernate_restore_protection = true;
  52}
  53
  54static inline void hibernate_restore_protection_begin(void)
  55{
  56	hibernate_restore_protection_active = hibernate_restore_protection;
  57}
  58
  59static inline void hibernate_restore_protection_end(void)
  60{
  61	hibernate_restore_protection_active = false;
  62}
  63
  64static inline void hibernate_restore_protect_page(void *page_address)
  65{
  66	if (hibernate_restore_protection_active)
  67		set_memory_ro((unsigned long)page_address, 1);
 
  68}
  69
  70static inline void hibernate_restore_unprotect_page(void *page_address)
  71{
  72	if (hibernate_restore_protection_active)
  73		set_memory_rw((unsigned long)page_address, 1);
 
  74}
  75#else
  76static inline void hibernate_restore_protection_begin(void) {}
  77static inline void hibernate_restore_protection_end(void) {}
  78static inline void hibernate_restore_protect_page(void *page_address) {}
  79static inline void hibernate_restore_unprotect_page(void *page_address) {}
  80#endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
  81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  82static int swsusp_page_is_free(struct page *);
  83static void swsusp_set_page_forbidden(struct page *);
  84static void swsusp_unset_page_forbidden(struct page *);
  85
  86/*
  87 * Number of bytes to reserve for memory allocations made by device drivers
  88 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  89 * cause image creation to fail (tunable via /sys/power/reserved_size).
  90 */
  91unsigned long reserved_size;
  92
  93void __init hibernate_reserved_size_init(void)
  94{
  95	reserved_size = SPARE_PAGES * PAGE_SIZE;
  96}
  97
  98/*
  99 * Preferred image size in bytes (tunable via /sys/power/image_size).
 100 * When it is set to N, swsusp will do its best to ensure the image
 101 * size will not exceed N bytes, but if that is impossible, it will
 102 * try to create the smallest image possible.
 103 */
 104unsigned long image_size;
 105
 106void __init hibernate_image_size_init(void)
 107{
 108	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
 109}
 110
 111/*
 112 * List of PBEs needed for restoring the pages that were allocated before
 113 * the suspend and included in the suspend image, but have also been
 114 * allocated by the "resume" kernel, so their contents cannot be written
 115 * directly to their "original" page frames.
 116 */
 117struct pbe *restore_pblist;
 118
 119/* struct linked_page is used to build chains of pages */
 120
 121#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 122
 123struct linked_page {
 124	struct linked_page *next;
 125	char data[LINKED_PAGE_DATA_SIZE];
 126} __packed;
 127
 128/*
 129 * List of "safe" pages (ie. pages that were not used by the image kernel
 130 * before hibernation) that may be used as temporary storage for image kernel
 131 * memory contents.
 132 */
 133static struct linked_page *safe_pages_list;
 134
 135/* Pointer to an auxiliary buffer (1 page) */
 136static void *buffer;
 137
 138#define PG_ANY		0
 139#define PG_SAFE		1
 140#define PG_UNSAFE_CLEAR	1
 141#define PG_UNSAFE_KEEP	0
 142
 143static unsigned int allocated_unsafe_pages;
 144
 145/**
 146 * get_image_page - Allocate a page for a hibernation image.
 147 * @gfp_mask: GFP mask for the allocation.
 148 * @safe_needed: Get pages that were not used before hibernation (restore only)
 149 *
 150 * During image restoration, for storing the PBE list and the image data, we can
 151 * only use memory pages that do not conflict with the pages used before
 152 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 153 * using allocated_unsafe_pages.
 154 *
 155 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 156 * swsusp_free() can release it.
 157 */
 158static void *get_image_page(gfp_t gfp_mask, int safe_needed)
 159{
 160	void *res;
 161
 162	res = (void *)get_zeroed_page(gfp_mask);
 163	if (safe_needed)
 164		while (res && swsusp_page_is_free(virt_to_page(res))) {
 165			/* The page is unsafe, mark it for swsusp_free() */
 166			swsusp_set_page_forbidden(virt_to_page(res));
 167			allocated_unsafe_pages++;
 168			res = (void *)get_zeroed_page(gfp_mask);
 169		}
 170	if (res) {
 171		swsusp_set_page_forbidden(virt_to_page(res));
 172		swsusp_set_page_free(virt_to_page(res));
 173	}
 174	return res;
 175}
 176
 177static void *__get_safe_page(gfp_t gfp_mask)
 178{
 179	if (safe_pages_list) {
 180		void *ret = safe_pages_list;
 181
 182		safe_pages_list = safe_pages_list->next;
 183		memset(ret, 0, PAGE_SIZE);
 184		return ret;
 185	}
 186	return get_image_page(gfp_mask, PG_SAFE);
 187}
 188
 189unsigned long get_safe_page(gfp_t gfp_mask)
 190{
 191	return (unsigned long)__get_safe_page(gfp_mask);
 192}
 193
 194static struct page *alloc_image_page(gfp_t gfp_mask)
 195{
 196	struct page *page;
 197
 198	page = alloc_page(gfp_mask);
 199	if (page) {
 200		swsusp_set_page_forbidden(page);
 201		swsusp_set_page_free(page);
 202	}
 203	return page;
 204}
 205
 206static void recycle_safe_page(void *page_address)
 207{
 208	struct linked_page *lp = page_address;
 209
 210	lp->next = safe_pages_list;
 211	safe_pages_list = lp;
 212}
 213
 214/**
 215 * free_image_page - Free a page allocated for hibernation image.
 216 * @addr: Address of the page to free.
 217 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 218 *
 219 * The page to free should have been allocated by get_image_page() (page flags
 220 * set by it are affected).
 221 */
 222static inline void free_image_page(void *addr, int clear_nosave_free)
 223{
 224	struct page *page;
 225
 226	BUG_ON(!virt_addr_valid(addr));
 227
 228	page = virt_to_page(addr);
 229
 230	swsusp_unset_page_forbidden(page);
 231	if (clear_nosave_free)
 232		swsusp_unset_page_free(page);
 233
 234	__free_page(page);
 235}
 236
 237static inline void free_list_of_pages(struct linked_page *list,
 238				      int clear_page_nosave)
 239{
 240	while (list) {
 241		struct linked_page *lp = list->next;
 242
 243		free_image_page(list, clear_page_nosave);
 244		list = lp;
 245	}
 246}
 247
 248/*
 249 * struct chain_allocator is used for allocating small objects out of
 250 * a linked list of pages called 'the chain'.
 251 *
 252 * The chain grows each time when there is no room for a new object in
 253 * the current page.  The allocated objects cannot be freed individually.
 254 * It is only possible to free them all at once, by freeing the entire
 255 * chain.
 256 *
 257 * NOTE: The chain allocator may be inefficient if the allocated objects
 258 * are not much smaller than PAGE_SIZE.
 259 */
 260struct chain_allocator {
 261	struct linked_page *chain;	/* the chain */
 262	unsigned int used_space;	/* total size of objects allocated out
 263					   of the current page */
 264	gfp_t gfp_mask;		/* mask for allocating pages */
 265	int safe_needed;	/* if set, only "safe" pages are allocated */
 266};
 267
 268static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
 269		       int safe_needed)
 270{
 271	ca->chain = NULL;
 272	ca->used_space = LINKED_PAGE_DATA_SIZE;
 273	ca->gfp_mask = gfp_mask;
 274	ca->safe_needed = safe_needed;
 275}
 276
 277static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 278{
 279	void *ret;
 280
 281	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 282		struct linked_page *lp;
 283
 284		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
 285					get_image_page(ca->gfp_mask, PG_ANY);
 286		if (!lp)
 287			return NULL;
 288
 289		lp->next = ca->chain;
 290		ca->chain = lp;
 291		ca->used_space = 0;
 292	}
 293	ret = ca->chain->data + ca->used_space;
 294	ca->used_space += size;
 295	return ret;
 296}
 297
 298/**
 299 * Data types related to memory bitmaps.
 300 *
 301 * Memory bitmap is a structure consiting of many linked lists of
 302 * objects.  The main list's elements are of type struct zone_bitmap
 303 * and each of them corresonds to one zone.  For each zone bitmap
 304 * object there is a list of objects of type struct bm_block that
 305 * represent each blocks of bitmap in which information is stored.
 306 *
 307 * struct memory_bitmap contains a pointer to the main list of zone
 308 * bitmap objects, a struct bm_position used for browsing the bitmap,
 309 * and a pointer to the list of pages used for allocating all of the
 310 * zone bitmap objects and bitmap block objects.
 311 *
 312 * NOTE: It has to be possible to lay out the bitmap in memory
 313 * using only allocations of order 0.  Additionally, the bitmap is
 314 * designed to work with arbitrary number of zones (this is over the
 315 * top for now, but let's avoid making unnecessary assumptions ;-).
 316 *
 317 * struct zone_bitmap contains a pointer to a list of bitmap block
 318 * objects and a pointer to the bitmap block object that has been
 319 * most recently used for setting bits.  Additionally, it contains the
 320 * PFNs that correspond to the start and end of the represented zone.
 321 *
 322 * struct bm_block contains a pointer to the memory page in which
 323 * information is stored (in the form of a block of bitmap)
 324 * It also contains the pfns that correspond to the start and end of
 325 * the represented memory area.
 326 *
 327 * The memory bitmap is organized as a radix tree to guarantee fast random
 328 * access to the bits. There is one radix tree for each zone (as returned
 329 * from create_mem_extents).
 330 *
 331 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 332 * two linked lists for the nodes of the tree, one for the inner nodes and
 333 * one for the leave nodes. The linked leave nodes are used for fast linear
 334 * access of the memory bitmap.
 335 *
 336 * The struct rtree_node represents one node of the radix tree.
 337 */
 338
 339#define BM_END_OF_MAP	(~0UL)
 340
 341#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 342#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
 343#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
 344
 345/*
 346 * struct rtree_node is a wrapper struct to link the nodes
 347 * of the rtree together for easy linear iteration over
 348 * bits and easy freeing
 349 */
 350struct rtree_node {
 351	struct list_head list;
 352	unsigned long *data;
 353};
 354
 355/*
 356 * struct mem_zone_bm_rtree represents a bitmap used for one
 357 * populated memory zone.
 358 */
 359struct mem_zone_bm_rtree {
 360	struct list_head list;		/* Link Zones together         */
 361	struct list_head nodes;		/* Radix Tree inner nodes      */
 362	struct list_head leaves;	/* Radix Tree leaves           */
 363	unsigned long start_pfn;	/* Zone start page frame       */
 364	unsigned long end_pfn;		/* Zone end page frame + 1     */
 365	struct rtree_node *rtree;	/* Radix Tree Root             */
 366	int levels;			/* Number of Radix Tree Levels */
 367	unsigned int blocks;		/* Number of Bitmap Blocks     */
 368};
 369
 370/* strcut bm_position is used for browsing memory bitmaps */
 371
 372struct bm_position {
 373	struct mem_zone_bm_rtree *zone;
 374	struct rtree_node *node;
 375	unsigned long node_pfn;
 
 376	int node_bit;
 377};
 378
 379struct memory_bitmap {
 380	struct list_head zones;
 381	struct linked_page *p_list;	/* list of pages used to store zone
 382					   bitmap objects and bitmap block
 383					   objects */
 384	struct bm_position cur;	/* most recently used bit position */
 385};
 386
 387/* Functions that operate on memory bitmaps */
 388
 389#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
 390#if BITS_PER_LONG == 32
 391#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
 392#else
 393#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
 394#endif
 395#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 396
 397/**
 398 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
 
 
 
 
 399 *
 400 * This function is used to allocate inner nodes as well as the
 401 * leave nodes of the radix tree. It also adds the node to the
 402 * corresponding linked list passed in by the *list parameter.
 403 */
 404static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 405					   struct chain_allocator *ca,
 406					   struct list_head *list)
 407{
 408	struct rtree_node *node;
 409
 410	node = chain_alloc(ca, sizeof(struct rtree_node));
 411	if (!node)
 412		return NULL;
 413
 414	node->data = get_image_page(gfp_mask, safe_needed);
 415	if (!node->data)
 416		return NULL;
 417
 418	list_add_tail(&node->list, list);
 419
 420	return node;
 421}
 422
 423/**
 424 * add_rtree_block - Add a new leave node to the radix tree.
 425 *
 426 * The leave nodes need to be allocated in order to keep the leaves
 427 * linked list in order. This is guaranteed by the zone->blocks
 428 * counter.
 429 */
 430static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 431			   int safe_needed, struct chain_allocator *ca)
 432{
 433	struct rtree_node *node, *block, **dst;
 434	unsigned int levels_needed, block_nr;
 435	int i;
 436
 437	block_nr = zone->blocks;
 438	levels_needed = 0;
 439
 440	/* How many levels do we need for this block nr? */
 441	while (block_nr) {
 442		levels_needed += 1;
 443		block_nr >>= BM_RTREE_LEVEL_SHIFT;
 444	}
 445
 446	/* Make sure the rtree has enough levels */
 447	for (i = zone->levels; i < levels_needed; i++) {
 448		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 449					&zone->nodes);
 450		if (!node)
 451			return -ENOMEM;
 452
 453		node->data[0] = (unsigned long)zone->rtree;
 454		zone->rtree = node;
 455		zone->levels += 1;
 456	}
 457
 458	/* Allocate new block */
 459	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 460	if (!block)
 461		return -ENOMEM;
 462
 463	/* Now walk the rtree to insert the block */
 464	node = zone->rtree;
 465	dst = &zone->rtree;
 466	block_nr = zone->blocks;
 467	for (i = zone->levels; i > 0; i--) {
 468		int index;
 469
 470		if (!node) {
 471			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 472						&zone->nodes);
 473			if (!node)
 474				return -ENOMEM;
 475			*dst = node;
 476		}
 477
 478		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 479		index &= BM_RTREE_LEVEL_MASK;
 480		dst = (struct rtree_node **)&((*dst)->data[index]);
 481		node = *dst;
 482	}
 483
 484	zone->blocks += 1;
 485	*dst = block;
 486
 487	return 0;
 488}
 489
 490static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 491			       int clear_nosave_free);
 492
 493/**
 494 * create_zone_bm_rtree - Create a radix tree for one zone.
 495 *
 496 * Allocated the mem_zone_bm_rtree structure and initializes it.
 497 * This function also allocated and builds the radix tree for the
 498 * zone.
 499 */
 500static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
 501						      int safe_needed,
 502						      struct chain_allocator *ca,
 503						      unsigned long start,
 504						      unsigned long end)
 505{
 506	struct mem_zone_bm_rtree *zone;
 507	unsigned int i, nr_blocks;
 508	unsigned long pages;
 509
 510	pages = end - start;
 511	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 512	if (!zone)
 513		return NULL;
 514
 515	INIT_LIST_HEAD(&zone->nodes);
 516	INIT_LIST_HEAD(&zone->leaves);
 517	zone->start_pfn = start;
 518	zone->end_pfn = end;
 519	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 520
 521	for (i = 0; i < nr_blocks; i++) {
 522		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 523			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 524			return NULL;
 525		}
 526	}
 527
 528	return zone;
 529}
 530
 531/**
 532 * free_zone_bm_rtree - Free the memory of the radix tree.
 533 *
 534 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 535 * structure itself is not freed here nor are the rtree_node
 536 * structs.
 537 */
 538static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 539			       int clear_nosave_free)
 540{
 541	struct rtree_node *node;
 542
 543	list_for_each_entry(node, &zone->nodes, list)
 544		free_image_page(node->data, clear_nosave_free);
 545
 546	list_for_each_entry(node, &zone->leaves, list)
 547		free_image_page(node->data, clear_nosave_free);
 548}
 549
 550static void memory_bm_position_reset(struct memory_bitmap *bm)
 551{
 552	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 553				  list);
 554	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 555				  struct rtree_node, list);
 556	bm->cur.node_pfn = 0;
 
 557	bm->cur.node_bit = 0;
 558}
 559
 560static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 561
 562struct mem_extent {
 563	struct list_head hook;
 564	unsigned long start;
 565	unsigned long end;
 566};
 567
 568/**
 569 * free_mem_extents - Free a list of memory extents.
 570 * @list: List of extents to free.
 571 */
 572static void free_mem_extents(struct list_head *list)
 573{
 574	struct mem_extent *ext, *aux;
 575
 576	list_for_each_entry_safe(ext, aux, list, hook) {
 577		list_del(&ext->hook);
 578		kfree(ext);
 579	}
 580}
 581
 582/**
 583 * create_mem_extents - Create a list of memory extents.
 584 * @list: List to put the extents into.
 585 * @gfp_mask: Mask to use for memory allocations.
 586 *
 587 * The extents represent contiguous ranges of PFNs.
 588 */
 589static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 590{
 591	struct zone *zone;
 592
 593	INIT_LIST_HEAD(list);
 594
 595	for_each_populated_zone(zone) {
 596		unsigned long zone_start, zone_end;
 597		struct mem_extent *ext, *cur, *aux;
 598
 599		zone_start = zone->zone_start_pfn;
 600		zone_end = zone_end_pfn(zone);
 601
 602		list_for_each_entry(ext, list, hook)
 603			if (zone_start <= ext->end)
 604				break;
 605
 606		if (&ext->hook == list || zone_end < ext->start) {
 607			/* New extent is necessary */
 608			struct mem_extent *new_ext;
 609
 610			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 611			if (!new_ext) {
 612				free_mem_extents(list);
 613				return -ENOMEM;
 614			}
 615			new_ext->start = zone_start;
 616			new_ext->end = zone_end;
 617			list_add_tail(&new_ext->hook, &ext->hook);
 618			continue;
 619		}
 620
 621		/* Merge this zone's range of PFNs with the existing one */
 622		if (zone_start < ext->start)
 623			ext->start = zone_start;
 624		if (zone_end > ext->end)
 625			ext->end = zone_end;
 626
 627		/* More merging may be possible */
 628		cur = ext;
 629		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 630			if (zone_end < cur->start)
 631				break;
 632			if (zone_end < cur->end)
 633				ext->end = cur->end;
 634			list_del(&cur->hook);
 635			kfree(cur);
 636		}
 637	}
 638
 639	return 0;
 640}
 641
 642/**
 643 * memory_bm_create - Allocate memory for a memory bitmap.
 644 */
 645static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
 646			    int safe_needed)
 647{
 648	struct chain_allocator ca;
 649	struct list_head mem_extents;
 650	struct mem_extent *ext;
 651	int error;
 652
 653	chain_init(&ca, gfp_mask, safe_needed);
 654	INIT_LIST_HEAD(&bm->zones);
 655
 656	error = create_mem_extents(&mem_extents, gfp_mask);
 657	if (error)
 658		return error;
 659
 660	list_for_each_entry(ext, &mem_extents, hook) {
 661		struct mem_zone_bm_rtree *zone;
 662
 663		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 664					    ext->start, ext->end);
 665		if (!zone) {
 666			error = -ENOMEM;
 667			goto Error;
 668		}
 669		list_add_tail(&zone->list, &bm->zones);
 670	}
 671
 672	bm->p_list = ca.chain;
 673	memory_bm_position_reset(bm);
 674 Exit:
 675	free_mem_extents(&mem_extents);
 676	return error;
 677
 678 Error:
 679	bm->p_list = ca.chain;
 680	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 681	goto Exit;
 682}
 683
 684/**
 685 * memory_bm_free - Free memory occupied by the memory bitmap.
 686 * @bm: Memory bitmap.
 687 */
 688static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 689{
 690	struct mem_zone_bm_rtree *zone;
 691
 692	list_for_each_entry(zone, &bm->zones, list)
 693		free_zone_bm_rtree(zone, clear_nosave_free);
 694
 695	free_list_of_pages(bm->p_list, clear_nosave_free);
 696
 697	INIT_LIST_HEAD(&bm->zones);
 698}
 699
 700/**
 701 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
 702 *
 703 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 704 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 705 *
 706 * Walk the radix tree to find the page containing the bit that represents @pfn
 707 * and return the position of the bit in @addr and @bit_nr.
 708 */
 709static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 710			      void **addr, unsigned int *bit_nr)
 711{
 712	struct mem_zone_bm_rtree *curr, *zone;
 713	struct rtree_node *node;
 714	int i, block_nr;
 715
 716	zone = bm->cur.zone;
 717
 718	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 719		goto zone_found;
 720
 721	zone = NULL;
 722
 723	/* Find the right zone */
 724	list_for_each_entry(curr, &bm->zones, list) {
 725		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 726			zone = curr;
 727			break;
 728		}
 729	}
 730
 731	if (!zone)
 732		return -EFAULT;
 733
 734zone_found:
 735	/*
 736	 * We have found the zone. Now walk the radix tree to find the leaf node
 737	 * for our PFN.
 738	 */
 
 
 
 
 
 
 739	node = bm->cur.node;
 740	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 
 741		goto node_found;
 742
 743	node      = zone->rtree;
 744	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 745
 746	for (i = zone->levels; i > 0; i--) {
 747		int index;
 748
 749		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 750		index &= BM_RTREE_LEVEL_MASK;
 751		BUG_ON(node->data[index] == 0);
 752		node = (struct rtree_node *)node->data[index];
 753	}
 754
 755node_found:
 756	/* Update last position */
 757	bm->cur.zone = zone;
 758	bm->cur.node = node;
 759	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 
 760
 761	/* Set return values */
 762	*addr = node->data;
 763	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 764
 765	return 0;
 766}
 767
 768static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 769{
 770	void *addr;
 771	unsigned int bit;
 772	int error;
 773
 774	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 775	BUG_ON(error);
 776	set_bit(bit, addr);
 777}
 778
 779static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 780{
 781	void *addr;
 782	unsigned int bit;
 783	int error;
 784
 785	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 786	if (!error)
 787		set_bit(bit, addr);
 788
 789	return error;
 790}
 791
 792static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 793{
 794	void *addr;
 795	unsigned int bit;
 796	int error;
 797
 798	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 799	BUG_ON(error);
 800	clear_bit(bit, addr);
 801}
 802
 803static void memory_bm_clear_current(struct memory_bitmap *bm)
 804{
 805	int bit;
 806
 807	bit = max(bm->cur.node_bit - 1, 0);
 808	clear_bit(bit, bm->cur.node->data);
 809}
 810
 
 
 
 
 
 811static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 812{
 813	void *addr;
 814	unsigned int bit;
 815	int error;
 816
 817	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 818	BUG_ON(error);
 819	return test_bit(bit, addr);
 820}
 821
 822static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 823{
 824	void *addr;
 825	unsigned int bit;
 826
 827	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 828}
 829
 830/*
 831 * rtree_next_node - Jump to the next leaf node.
 832 *
 833 * Set the position to the beginning of the next node in the
 834 * memory bitmap. This is either the next node in the current
 835 * zone's radix tree or the first node in the radix tree of the
 836 * next zone.
 837 *
 838 * Return true if there is a next node, false otherwise.
 839 */
 840static bool rtree_next_node(struct memory_bitmap *bm)
 841{
 842	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
 843		bm->cur.node = list_entry(bm->cur.node->list.next,
 844					  struct rtree_node, list);
 845		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 846		bm->cur.node_bit  = 0;
 847		touch_softlockup_watchdog();
 848		return true;
 849	}
 850
 851	/* No more nodes, goto next zone */
 852	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
 853		bm->cur.zone = list_entry(bm->cur.zone->list.next,
 854				  struct mem_zone_bm_rtree, list);
 855		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 856					  struct rtree_node, list);
 857		bm->cur.node_pfn = 0;
 858		bm->cur.node_bit = 0;
 859		return true;
 860	}
 861
 862	/* No more zones */
 863	return false;
 864}
 865
 866/**
 867 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
 868 * @bm: Memory bitmap.
 869 *
 870 * Starting from the last returned position this function searches for the next
 871 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 872 * set, BM_END_OF_MAP is returned.
 873 *
 874 * It is required to run memory_bm_position_reset() before the first call to
 875 * this function for the given memory bitmap.
 876 */
 877static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 878{
 879	unsigned long bits, pfn, pages;
 880	int bit;
 881
 882	do {
 883		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 884		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 885		bit	  = find_next_bit(bm->cur.node->data, bits,
 886					  bm->cur.node_bit);
 887		if (bit < bits) {
 888			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 889			bm->cur.node_bit = bit + 1;
 
 890			return pfn;
 891		}
 892	} while (rtree_next_node(bm));
 893
 
 894	return BM_END_OF_MAP;
 895}
 896
 897/*
 898 * This structure represents a range of page frames the contents of which
 899 * should not be saved during hibernation.
 900 */
 901struct nosave_region {
 902	struct list_head list;
 903	unsigned long start_pfn;
 904	unsigned long end_pfn;
 905};
 906
 907static LIST_HEAD(nosave_regions);
 908
 909static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
 910{
 911	struct rtree_node *node;
 912
 913	list_for_each_entry(node, &zone->nodes, list)
 914		recycle_safe_page(node->data);
 915
 916	list_for_each_entry(node, &zone->leaves, list)
 917		recycle_safe_page(node->data);
 918}
 919
 920static void memory_bm_recycle(struct memory_bitmap *bm)
 921{
 922	struct mem_zone_bm_rtree *zone;
 923	struct linked_page *p_list;
 924
 925	list_for_each_entry(zone, &bm->zones, list)
 926		recycle_zone_bm_rtree(zone);
 927
 928	p_list = bm->p_list;
 929	while (p_list) {
 930		struct linked_page *lp = p_list;
 931
 932		p_list = lp->next;
 933		recycle_safe_page(lp);
 934	}
 935}
 936
 937/**
 938 * register_nosave_region - Register a region of unsaveable memory.
 939 *
 940 * Register a range of page frames the contents of which should not be saved
 941 * during hibernation (to be used in the early initialization code).
 942 */
 943void __init __register_nosave_region(unsigned long start_pfn,
 944				     unsigned long end_pfn, int use_kmalloc)
 945{
 946	struct nosave_region *region;
 947
 948	if (start_pfn >= end_pfn)
 949		return;
 950
 951	if (!list_empty(&nosave_regions)) {
 952		/* Try to extend the previous region (they should be sorted) */
 953		region = list_entry(nosave_regions.prev,
 954					struct nosave_region, list);
 955		if (region->end_pfn == start_pfn) {
 956			region->end_pfn = end_pfn;
 957			goto Report;
 958		}
 959	}
 960	if (use_kmalloc) {
 961		/* During init, this shouldn't fail */
 962		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
 963		BUG_ON(!region);
 964	} else {
 965		/* This allocation cannot fail */
 966		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
 967	}
 968	region->start_pfn = start_pfn;
 969	region->end_pfn = end_pfn;
 970	list_add_tail(&region->list, &nosave_regions);
 971 Report:
 972	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
 973		(unsigned long long) start_pfn << PAGE_SHIFT,
 974		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
 975}
 976
 977/*
 978 * Set bits in this map correspond to the page frames the contents of which
 979 * should not be saved during the suspend.
 980 */
 981static struct memory_bitmap *forbidden_pages_map;
 982
 983/* Set bits in this map correspond to free page frames. */
 984static struct memory_bitmap *free_pages_map;
 985
 986/*
 987 * Each page frame allocated for creating the image is marked by setting the
 988 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 989 */
 990
 991void swsusp_set_page_free(struct page *page)
 992{
 993	if (free_pages_map)
 994		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
 995}
 996
 997static int swsusp_page_is_free(struct page *page)
 998{
 999	return free_pages_map ?
1000		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1001}
1002
1003void swsusp_unset_page_free(struct page *page)
1004{
1005	if (free_pages_map)
1006		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1007}
1008
1009static void swsusp_set_page_forbidden(struct page *page)
1010{
1011	if (forbidden_pages_map)
1012		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1013}
1014
1015int swsusp_page_is_forbidden(struct page *page)
1016{
1017	return forbidden_pages_map ?
1018		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1019}
1020
1021static void swsusp_unset_page_forbidden(struct page *page)
1022{
1023	if (forbidden_pages_map)
1024		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1025}
1026
1027/**
1028 * mark_nosave_pages - Mark pages that should not be saved.
1029 * @bm: Memory bitmap.
1030 *
1031 * Set the bits in @bm that correspond to the page frames the contents of which
1032 * should not be saved.
1033 */
1034static void mark_nosave_pages(struct memory_bitmap *bm)
1035{
1036	struct nosave_region *region;
1037
1038	if (list_empty(&nosave_regions))
1039		return;
1040
1041	list_for_each_entry(region, &nosave_regions, list) {
1042		unsigned long pfn;
1043
1044		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1045			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1046			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1047				- 1);
1048
1049		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1050			if (pfn_valid(pfn)) {
1051				/*
1052				 * It is safe to ignore the result of
1053				 * mem_bm_set_bit_check() here, since we won't
1054				 * touch the PFNs for which the error is
1055				 * returned anyway.
1056				 */
1057				mem_bm_set_bit_check(bm, pfn);
1058			}
1059	}
1060}
1061
1062/**
1063 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1064 *
1065 * Create bitmaps needed for marking page frames that should not be saved and
1066 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1067 * only modified if everything goes well, because we don't want the bits to be
1068 * touched before both bitmaps are set up.
1069 */
1070int create_basic_memory_bitmaps(void)
1071{
1072	struct memory_bitmap *bm1, *bm2;
1073	int error = 0;
1074
1075	if (forbidden_pages_map && free_pages_map)
1076		return 0;
1077	else
1078		BUG_ON(forbidden_pages_map || free_pages_map);
1079
1080	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1081	if (!bm1)
1082		return -ENOMEM;
1083
1084	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1085	if (error)
1086		goto Free_first_object;
1087
1088	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1089	if (!bm2)
1090		goto Free_first_bitmap;
1091
1092	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1093	if (error)
1094		goto Free_second_object;
1095
1096	forbidden_pages_map = bm1;
1097	free_pages_map = bm2;
1098	mark_nosave_pages(forbidden_pages_map);
1099
1100	pr_debug("Basic memory bitmaps created\n");
1101
1102	return 0;
1103
1104 Free_second_object:
1105	kfree(bm2);
1106 Free_first_bitmap:
1107 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1108 Free_first_object:
1109	kfree(bm1);
1110	return -ENOMEM;
1111}
1112
1113/**
1114 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1115 *
1116 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1117 * auxiliary pointers are necessary so that the bitmaps themselves are not
1118 * referred to while they are being freed.
1119 */
1120void free_basic_memory_bitmaps(void)
1121{
1122	struct memory_bitmap *bm1, *bm2;
1123
1124	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1125		return;
1126
1127	bm1 = forbidden_pages_map;
1128	bm2 = free_pages_map;
1129	forbidden_pages_map = NULL;
1130	free_pages_map = NULL;
1131	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1132	kfree(bm1);
1133	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1134	kfree(bm2);
1135
1136	pr_debug("Basic memory bitmaps freed\n");
1137}
1138
1139void clear_free_pages(void)
 
 
 
 
 
 
 
 
1140{
1141#ifdef CONFIG_PAGE_POISONING_ZERO
1142	struct memory_bitmap *bm = free_pages_map;
1143	unsigned long pfn;
1144
1145	if (WARN_ON(!(free_pages_map)))
1146		return;
1147
1148	memory_bm_position_reset(bm);
1149	pfn = memory_bm_next_pfn(bm);
1150	while (pfn != BM_END_OF_MAP) {
1151		if (pfn_valid(pfn))
1152			clear_highpage(pfn_to_page(pfn));
1153
1154		pfn = memory_bm_next_pfn(bm);
 
 
 
 
 
 
 
 
1155	}
1156	memory_bm_position_reset(bm);
1157	pr_info("free pages cleared after restore\n");
1158#endif /* PAGE_POISONING_ZERO */
1159}
1160
1161/**
1162 * snapshot_additional_pages - Estimate the number of extra pages needed.
1163 * @zone: Memory zone to carry out the computation for.
1164 *
1165 * Estimate the number of additional pages needed for setting up a hibernation
1166 * image data structures for @zone (usually, the returned value is greater than
1167 * the exact number).
1168 */
1169unsigned int snapshot_additional_pages(struct zone *zone)
1170{
1171	unsigned int rtree, nodes;
1172
1173	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1174	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1175			      LINKED_PAGE_DATA_SIZE);
1176	while (nodes > 1) {
1177		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1178		rtree += nodes;
1179	}
1180
1181	return 2 * rtree;
1182}
1183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1184#ifdef CONFIG_HIGHMEM
1185/**
1186 * count_free_highmem_pages - Compute the total number of free highmem pages.
1187 *
1188 * The returned number is system-wide.
1189 */
1190static unsigned int count_free_highmem_pages(void)
1191{
1192	struct zone *zone;
1193	unsigned int cnt = 0;
1194
1195	for_each_populated_zone(zone)
1196		if (is_highmem(zone))
1197			cnt += zone_page_state(zone, NR_FREE_PAGES);
1198
1199	return cnt;
1200}
1201
1202/**
1203 * saveable_highmem_page - Check if a highmem page is saveable.
1204 *
1205 * Determine whether a highmem page should be included in a hibernation image.
1206 *
1207 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1208 * and it isn't part of a free chunk of pages.
1209 */
1210static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1211{
1212	struct page *page;
1213
1214	if (!pfn_valid(pfn))
1215		return NULL;
1216
1217	page = pfn_to_page(pfn);
1218	if (page_zone(page) != zone)
1219		return NULL;
1220
1221	BUG_ON(!PageHighMem(page));
1222
1223	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
1224	    PageReserved(page))
 
 
1225		return NULL;
1226
1227	if (page_is_guard(page))
1228		return NULL;
1229
1230	return page;
1231}
1232
1233/**
1234 * count_highmem_pages - Compute the total number of saveable highmem pages.
1235 */
1236static unsigned int count_highmem_pages(void)
1237{
1238	struct zone *zone;
1239	unsigned int n = 0;
1240
1241	for_each_populated_zone(zone) {
1242		unsigned long pfn, max_zone_pfn;
1243
1244		if (!is_highmem(zone))
1245			continue;
1246
1247		mark_free_pages(zone);
1248		max_zone_pfn = zone_end_pfn(zone);
1249		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1250			if (saveable_highmem_page(zone, pfn))
1251				n++;
1252	}
1253	return n;
1254}
1255#else
1256static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1257{
1258	return NULL;
1259}
1260#endif /* CONFIG_HIGHMEM */
1261
1262/**
1263 * saveable_page - Check if the given page is saveable.
1264 *
1265 * Determine whether a non-highmem page should be included in a hibernation
1266 * image.
1267 *
1268 * We should save the page if it isn't Nosave, and is not in the range
1269 * of pages statically defined as 'unsaveable', and it isn't part of
1270 * a free chunk of pages.
1271 */
1272static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1273{
1274	struct page *page;
1275
1276	if (!pfn_valid(pfn))
1277		return NULL;
1278
1279	page = pfn_to_page(pfn);
1280	if (page_zone(page) != zone)
1281		return NULL;
1282
1283	BUG_ON(PageHighMem(page));
1284
1285	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1286		return NULL;
1287
 
 
 
1288	if (PageReserved(page)
1289	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1290		return NULL;
1291
1292	if (page_is_guard(page))
1293		return NULL;
1294
1295	return page;
1296}
1297
1298/**
1299 * count_data_pages - Compute the total number of saveable non-highmem pages.
1300 */
1301static unsigned int count_data_pages(void)
1302{
1303	struct zone *zone;
1304	unsigned long pfn, max_zone_pfn;
1305	unsigned int n = 0;
1306
1307	for_each_populated_zone(zone) {
1308		if (is_highmem(zone))
1309			continue;
1310
1311		mark_free_pages(zone);
1312		max_zone_pfn = zone_end_pfn(zone);
1313		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1314			if (saveable_page(zone, pfn))
1315				n++;
1316	}
1317	return n;
1318}
1319
1320/*
1321 * This is needed, because copy_page and memcpy are not usable for copying
1322 * task structs.
 
1323 */
1324static inline void do_copy_page(long *dst, long *src)
1325{
 
1326	int n;
1327
1328	for (n = PAGE_SIZE / sizeof(long); n; n--)
 
1329		*dst++ = *src++;
 
 
1330}
1331
1332/**
1333 * safe_copy_page - Copy a page in a safe way.
1334 *
1335 * Check if the page we are going to copy is marked as present in the kernel
1336 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
1337 * and in that case kernel_page_present() always returns 'true').
 
 
1338 */
1339static void safe_copy_page(void *dst, struct page *s_page)
1340{
 
 
1341	if (kernel_page_present(s_page)) {
1342		do_copy_page(dst, page_address(s_page));
1343	} else {
1344		kernel_map_pages(s_page, 1, 1);
1345		do_copy_page(dst, page_address(s_page));
1346		kernel_map_pages(s_page, 1, 0);
1347	}
 
1348}
1349
1350#ifdef CONFIG_HIGHMEM
1351static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1352{
1353	return is_highmem(zone) ?
1354		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1355}
1356
1357static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1358{
1359	struct page *s_page, *d_page;
1360	void *src, *dst;
 
1361
1362	s_page = pfn_to_page(src_pfn);
1363	d_page = pfn_to_page(dst_pfn);
1364	if (PageHighMem(s_page)) {
1365		src = kmap_atomic(s_page);
1366		dst = kmap_atomic(d_page);
1367		do_copy_page(dst, src);
1368		kunmap_atomic(dst);
1369		kunmap_atomic(src);
1370	} else {
1371		if (PageHighMem(d_page)) {
1372			/*
1373			 * The page pointed to by src may contain some kernel
1374			 * data modified by kmap_atomic()
1375			 */
1376			safe_copy_page(buffer, s_page);
1377			dst = kmap_atomic(d_page);
1378			copy_page(dst, buffer);
1379			kunmap_atomic(dst);
1380		} else {
1381			safe_copy_page(page_address(d_page), s_page);
1382		}
1383	}
 
1384}
1385#else
1386#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1387
1388static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1389{
1390	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1391				pfn_to_page(src_pfn));
1392}
1393#endif /* CONFIG_HIGHMEM */
1394
1395static void copy_data_pages(struct memory_bitmap *copy_bm,
1396			    struct memory_bitmap *orig_bm)
 
 
 
 
 
 
 
1397{
 
1398	struct zone *zone;
1399	unsigned long pfn;
1400
1401	for_each_populated_zone(zone) {
1402		unsigned long max_zone_pfn;
1403
1404		mark_free_pages(zone);
1405		max_zone_pfn = zone_end_pfn(zone);
1406		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1407			if (page_is_saveable(zone, pfn))
1408				memory_bm_set_bit(orig_bm, pfn);
1409	}
1410	memory_bm_position_reset(orig_bm);
1411	memory_bm_position_reset(copy_bm);
 
1412	for(;;) {
1413		pfn = memory_bm_next_pfn(orig_bm);
1414		if (unlikely(pfn == BM_END_OF_MAP))
1415			break;
1416		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
 
 
 
 
 
 
1417	}
 
1418}
1419
1420/* Total number of image pages */
1421static unsigned int nr_copy_pages;
1422/* Number of pages needed for saving the original pfns of the image pages */
1423static unsigned int nr_meta_pages;
 
 
 
1424/*
1425 * Numbers of normal and highmem page frames allocated for hibernation image
1426 * before suspending devices.
1427 */
1428static unsigned int alloc_normal, alloc_highmem;
1429/*
1430 * Memory bitmap used for marking saveable pages (during hibernation) or
1431 * hibernation image pages (during restore)
1432 */
1433static struct memory_bitmap orig_bm;
1434/*
1435 * Memory bitmap used during hibernation for marking allocated page frames that
1436 * will contain copies of saveable pages.  During restore it is initially used
1437 * for marking hibernation image pages, but then the set bits from it are
1438 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1439 * used for marking "safe" highmem pages, but it has to be reinitialized for
1440 * this purpose.
1441 */
1442static struct memory_bitmap copy_bm;
1443
 
 
 
1444/**
1445 * swsusp_free - Free pages allocated for hibernation image.
1446 *
1447 * Image pages are alocated before snapshot creation, so they need to be
1448 * released after resume.
1449 */
1450void swsusp_free(void)
1451{
1452	unsigned long fb_pfn, fr_pfn;
1453
1454	if (!forbidden_pages_map || !free_pages_map)
1455		goto out;
1456
1457	memory_bm_position_reset(forbidden_pages_map);
1458	memory_bm_position_reset(free_pages_map);
1459
1460loop:
1461	fr_pfn = memory_bm_next_pfn(free_pages_map);
1462	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1463
1464	/*
1465	 * Find the next bit set in both bitmaps. This is guaranteed to
1466	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1467	 */
1468	do {
1469		if (fb_pfn < fr_pfn)
1470			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1471		if (fr_pfn < fb_pfn)
1472			fr_pfn = memory_bm_next_pfn(free_pages_map);
1473	} while (fb_pfn != fr_pfn);
1474
1475	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1476		struct page *page = pfn_to_page(fr_pfn);
1477
1478		memory_bm_clear_current(forbidden_pages_map);
1479		memory_bm_clear_current(free_pages_map);
1480		hibernate_restore_unprotect_page(page_address(page));
1481		__free_page(page);
1482		goto loop;
1483	}
1484
1485out:
1486	nr_copy_pages = 0;
1487	nr_meta_pages = 0;
 
1488	restore_pblist = NULL;
1489	buffer = NULL;
1490	alloc_normal = 0;
1491	alloc_highmem = 0;
1492	hibernate_restore_protection_end();
1493}
1494
1495/* Helper functions used for the shrinking of memory. */
1496
1497#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1498
1499/**
1500 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1501 * @nr_pages: Number of page frames to allocate.
1502 * @mask: GFP flags to use for the allocation.
1503 *
1504 * Return value: Number of page frames actually allocated
1505 */
1506static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1507{
1508	unsigned long nr_alloc = 0;
1509
1510	while (nr_pages > 0) {
1511		struct page *page;
1512
1513		page = alloc_image_page(mask);
1514		if (!page)
1515			break;
1516		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1517		if (PageHighMem(page))
1518			alloc_highmem++;
1519		else
1520			alloc_normal++;
1521		nr_pages--;
1522		nr_alloc++;
1523	}
1524
1525	return nr_alloc;
1526}
1527
1528static unsigned long preallocate_image_memory(unsigned long nr_pages,
1529					      unsigned long avail_normal)
1530{
1531	unsigned long alloc;
1532
1533	if (avail_normal <= alloc_normal)
1534		return 0;
1535
1536	alloc = avail_normal - alloc_normal;
1537	if (nr_pages < alloc)
1538		alloc = nr_pages;
1539
1540	return preallocate_image_pages(alloc, GFP_IMAGE);
1541}
1542
1543#ifdef CONFIG_HIGHMEM
1544static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1545{
1546	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1547}
1548
1549/**
1550 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1551 */
1552static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1553{
1554	x *= multiplier;
1555	do_div(x, base);
1556	return (unsigned long)x;
1557}
1558
1559static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1560						  unsigned long highmem,
1561						  unsigned long total)
1562{
1563	unsigned long alloc = __fraction(nr_pages, highmem, total);
1564
1565	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1566}
1567#else /* CONFIG_HIGHMEM */
1568static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1569{
1570	return 0;
1571}
1572
1573static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1574							 unsigned long highmem,
1575							 unsigned long total)
1576{
1577	return 0;
1578}
1579#endif /* CONFIG_HIGHMEM */
1580
1581/**
1582 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1583 */
1584static unsigned long free_unnecessary_pages(void)
1585{
1586	unsigned long save, to_free_normal, to_free_highmem, free;
1587
1588	save = count_data_pages();
1589	if (alloc_normal >= save) {
1590		to_free_normal = alloc_normal - save;
1591		save = 0;
1592	} else {
1593		to_free_normal = 0;
1594		save -= alloc_normal;
1595	}
1596	save += count_highmem_pages();
1597	if (alloc_highmem >= save) {
1598		to_free_highmem = alloc_highmem - save;
1599	} else {
1600		to_free_highmem = 0;
1601		save -= alloc_highmem;
1602		if (to_free_normal > save)
1603			to_free_normal -= save;
1604		else
1605			to_free_normal = 0;
1606	}
1607	free = to_free_normal + to_free_highmem;
1608
1609	memory_bm_position_reset(&copy_bm);
1610
1611	while (to_free_normal > 0 || to_free_highmem > 0) {
1612		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1613		struct page *page = pfn_to_page(pfn);
1614
1615		if (PageHighMem(page)) {
1616			if (!to_free_highmem)
1617				continue;
1618			to_free_highmem--;
1619			alloc_highmem--;
1620		} else {
1621			if (!to_free_normal)
1622				continue;
1623			to_free_normal--;
1624			alloc_normal--;
1625		}
1626		memory_bm_clear_bit(&copy_bm, pfn);
1627		swsusp_unset_page_forbidden(page);
1628		swsusp_unset_page_free(page);
1629		__free_page(page);
1630	}
1631
1632	return free;
1633}
1634
1635/**
1636 * minimum_image_size - Estimate the minimum acceptable size of an image.
1637 * @saveable: Number of saveable pages in the system.
1638 *
1639 * We want to avoid attempting to free too much memory too hard, so estimate the
1640 * minimum acceptable size of a hibernation image to use as the lower limit for
1641 * preallocating memory.
1642 *
1643 * We assume that the minimum image size should be proportional to
1644 *
1645 * [number of saveable pages] - [number of pages that can be freed in theory]
1646 *
1647 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1648 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1649 */
1650static unsigned long minimum_image_size(unsigned long saveable)
1651{
1652	unsigned long size;
1653
1654	size = global_node_page_state(NR_SLAB_RECLAIMABLE)
1655		+ global_node_page_state(NR_ACTIVE_ANON)
1656		+ global_node_page_state(NR_INACTIVE_ANON)
1657		+ global_node_page_state(NR_ACTIVE_FILE)
1658		+ global_node_page_state(NR_INACTIVE_FILE);
1659
1660	return saveable <= size ? 0 : saveable - size;
1661}
1662
1663/**
1664 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1665 *
1666 * To create a hibernation image it is necessary to make a copy of every page
1667 * frame in use.  We also need a number of page frames to be free during
1668 * hibernation for allocations made while saving the image and for device
1669 * drivers, in case they need to allocate memory from their hibernation
1670 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1671 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1672 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1673 * total number of available page frames and allocate at least
1674 *
1675 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1676 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1677 *
1678 * of them, which corresponds to the maximum size of a hibernation image.
1679 *
1680 * If image_size is set below the number following from the above formula,
1681 * the preallocation of memory is continued until the total number of saveable
1682 * pages in the system is below the requested image size or the minimum
1683 * acceptable image size returned by minimum_image_size(), whichever is greater.
1684 */
1685int hibernate_preallocate_memory(void)
1686{
1687	struct zone *zone;
1688	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1689	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1690	ktime_t start, stop;
1691	int error;
1692
1693	pr_info("Preallocating image memory... ");
1694	start = ktime_get();
1695
1696	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1697	if (error)
 
1698		goto err_out;
 
1699
1700	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1701	if (error)
 
1702		goto err_out;
 
 
 
 
 
 
 
1703
1704	alloc_normal = 0;
1705	alloc_highmem = 0;
 
1706
1707	/* Count the number of saveable data pages. */
1708	save_highmem = count_highmem_pages();
1709	saveable = count_data_pages();
1710
1711	/*
1712	 * Compute the total number of page frames we can use (count) and the
1713	 * number of pages needed for image metadata (size).
1714	 */
1715	count = saveable;
1716	saveable += save_highmem;
1717	highmem = save_highmem;
1718	size = 0;
1719	for_each_populated_zone(zone) {
1720		size += snapshot_additional_pages(zone);
1721		if (is_highmem(zone))
1722			highmem += zone_page_state(zone, NR_FREE_PAGES);
1723		else
1724			count += zone_page_state(zone, NR_FREE_PAGES);
1725	}
1726	avail_normal = count;
1727	count += highmem;
1728	count -= totalreserve_pages;
1729
1730	/* Add number of pages required for page keys (s390 only). */
1731	size += page_key_additional_pages(saveable);
1732
1733	/* Compute the maximum number of saveable pages to leave in memory. */
1734	max_size = (count - (size + PAGES_FOR_IO)) / 2
1735			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1736	/* Compute the desired number of image pages specified by image_size. */
1737	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1738	if (size > max_size)
1739		size = max_size;
1740	/*
1741	 * If the desired number of image pages is at least as large as the
1742	 * current number of saveable pages in memory, allocate page frames for
1743	 * the image and we're done.
1744	 */
1745	if (size >= saveable) {
1746		pages = preallocate_image_highmem(save_highmem);
1747		pages += preallocate_image_memory(saveable - pages, avail_normal);
1748		goto out;
1749	}
1750
1751	/* Estimate the minimum size of the image. */
1752	pages = minimum_image_size(saveable);
1753	/*
1754	 * To avoid excessive pressure on the normal zone, leave room in it to
1755	 * accommodate an image of the minimum size (unless it's already too
1756	 * small, in which case don't preallocate pages from it at all).
1757	 */
1758	if (avail_normal > pages)
1759		avail_normal -= pages;
1760	else
1761		avail_normal = 0;
1762	if (size < pages)
1763		size = min_t(unsigned long, pages, max_size);
1764
1765	/*
1766	 * Let the memory management subsystem know that we're going to need a
1767	 * large number of page frames to allocate and make it free some memory.
1768	 * NOTE: If this is not done, performance will be hurt badly in some
1769	 * test cases.
1770	 */
1771	shrink_all_memory(saveable - size);
1772
1773	/*
1774	 * The number of saveable pages in memory was too high, so apply some
1775	 * pressure to decrease it.  First, make room for the largest possible
1776	 * image and fail if that doesn't work.  Next, try to decrease the size
1777	 * of the image as much as indicated by 'size' using allocations from
1778	 * highmem and non-highmem zones separately.
1779	 */
1780	pages_highmem = preallocate_image_highmem(highmem / 2);
1781	alloc = count - max_size;
1782	if (alloc > pages_highmem)
1783		alloc -= pages_highmem;
1784	else
1785		alloc = 0;
1786	pages = preallocate_image_memory(alloc, avail_normal);
1787	if (pages < alloc) {
1788		/* We have exhausted non-highmem pages, try highmem. */
1789		alloc -= pages;
1790		pages += pages_highmem;
1791		pages_highmem = preallocate_image_highmem(alloc);
1792		if (pages_highmem < alloc)
 
 
1793			goto err_out;
 
1794		pages += pages_highmem;
1795		/*
1796		 * size is the desired number of saveable pages to leave in
1797		 * memory, so try to preallocate (all memory - size) pages.
1798		 */
1799		alloc = (count - pages) - size;
1800		pages += preallocate_image_highmem(alloc);
1801	} else {
1802		/*
1803		 * There are approximately max_size saveable pages at this point
1804		 * and we want to reduce this number down to size.
1805		 */
1806		alloc = max_size - size;
1807		size = preallocate_highmem_fraction(alloc, highmem, count);
1808		pages_highmem += size;
1809		alloc -= size;
1810		size = preallocate_image_memory(alloc, avail_normal);
1811		pages_highmem += preallocate_image_highmem(alloc - size);
1812		pages += pages_highmem + size;
1813	}
1814
1815	/*
1816	 * We only need as many page frames for the image as there are saveable
1817	 * pages in memory, but we have allocated more.  Release the excessive
1818	 * ones now.
1819	 */
1820	pages -= free_unnecessary_pages();
1821
1822 out:
1823	stop = ktime_get();
1824	pr_cont("done (allocated %lu pages)\n", pages);
1825	swsusp_show_speed(start, stop, pages, "Allocated");
1826
1827	return 0;
1828
1829 err_out:
1830	pr_cont("\n");
1831	swsusp_free();
1832	return -ENOMEM;
1833}
1834
1835#ifdef CONFIG_HIGHMEM
1836/**
1837 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1838 *
1839 * Compute the number of non-highmem pages that will be necessary for creating
1840 * copies of highmem pages.
1841 */
1842static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1843{
1844	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1845
1846	if (free_highmem >= nr_highmem)
1847		nr_highmem = 0;
1848	else
1849		nr_highmem -= free_highmem;
1850
1851	return nr_highmem;
1852}
1853#else
1854static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1855#endif /* CONFIG_HIGHMEM */
1856
1857/**
1858 * enough_free_mem - Check if there is enough free memory for the image.
1859 */
1860static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1861{
1862	struct zone *zone;
1863	unsigned int free = alloc_normal;
1864
1865	for_each_populated_zone(zone)
1866		if (!is_highmem(zone))
1867			free += zone_page_state(zone, NR_FREE_PAGES);
1868
1869	nr_pages += count_pages_for_highmem(nr_highmem);
1870	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1871		 nr_pages, PAGES_FOR_IO, free);
1872
1873	return free > nr_pages + PAGES_FOR_IO;
1874}
1875
1876#ifdef CONFIG_HIGHMEM
1877/**
1878 * get_highmem_buffer - Allocate a buffer for highmem pages.
1879 *
1880 * If there are some highmem pages in the hibernation image, we may need a
1881 * buffer to copy them and/or load their data.
1882 */
1883static inline int get_highmem_buffer(int safe_needed)
1884{
1885	buffer = get_image_page(GFP_ATOMIC, safe_needed);
1886	return buffer ? 0 : -ENOMEM;
1887}
1888
1889/**
1890 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1891 *
1892 * Try to allocate as many pages as needed, but if the number of free highmem
1893 * pages is less than that, allocate them all.
1894 */
1895static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1896					       unsigned int nr_highmem)
1897{
1898	unsigned int to_alloc = count_free_highmem_pages();
1899
1900	if (to_alloc > nr_highmem)
1901		to_alloc = nr_highmem;
1902
1903	nr_highmem -= to_alloc;
1904	while (to_alloc-- > 0) {
1905		struct page *page;
1906
1907		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1908		memory_bm_set_bit(bm, page_to_pfn(page));
1909	}
1910	return nr_highmem;
1911}
1912#else
1913static inline int get_highmem_buffer(int safe_needed) { return 0; }
1914
1915static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1916					       unsigned int n) { return 0; }
1917#endif /* CONFIG_HIGHMEM */
1918
1919/**
1920 * swsusp_alloc - Allocate memory for hibernation image.
1921 *
1922 * We first try to allocate as many highmem pages as there are
1923 * saveable highmem pages in the system.  If that fails, we allocate
1924 * non-highmem pages for the copies of the remaining highmem ones.
1925 *
1926 * In this approach it is likely that the copies of highmem pages will
1927 * also be located in the high memory, because of the way in which
1928 * copy_data_pages() works.
1929 */
1930static int swsusp_alloc(struct memory_bitmap *copy_bm,
1931			unsigned int nr_pages, unsigned int nr_highmem)
1932{
1933	if (nr_highmem > 0) {
1934		if (get_highmem_buffer(PG_ANY))
1935			goto err_out;
1936		if (nr_highmem > alloc_highmem) {
1937			nr_highmem -= alloc_highmem;
1938			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1939		}
1940	}
1941	if (nr_pages > alloc_normal) {
1942		nr_pages -= alloc_normal;
1943		while (nr_pages-- > 0) {
1944			struct page *page;
1945
1946			page = alloc_image_page(GFP_ATOMIC);
1947			if (!page)
1948				goto err_out;
1949			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1950		}
1951	}
1952
1953	return 0;
1954
1955 err_out:
1956	swsusp_free();
1957	return -ENOMEM;
1958}
1959
1960asmlinkage __visible int swsusp_save(void)
1961{
1962	unsigned int nr_pages, nr_highmem;
1963
1964	pr_info("Creating hibernation image:\n");
1965
1966	drain_local_pages(NULL);
1967	nr_pages = count_data_pages();
1968	nr_highmem = count_highmem_pages();
1969	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
1970
1971	if (!enough_free_mem(nr_pages, nr_highmem)) {
1972		pr_err("Not enough free memory\n");
1973		return -ENOMEM;
1974	}
1975
1976	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
1977		pr_err("Memory allocation failed\n");
1978		return -ENOMEM;
1979	}
1980
1981	/*
1982	 * During allocating of suspend pagedir, new cold pages may appear.
1983	 * Kill them.
1984	 */
1985	drain_local_pages(NULL);
1986	copy_data_pages(&copy_bm, &orig_bm);
1987
1988	/*
1989	 * End of critical section. From now on, we can write to memory,
1990	 * but we should not touch disk. This specially means we must _not_
1991	 * touch swap space! Except we must write out our image of course.
1992	 */
1993
1994	nr_pages += nr_highmem;
1995	nr_copy_pages = nr_pages;
 
1996	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1997
1998	pr_info("Hibernation image created (%d pages copied)\n", nr_pages);
1999
2000	return 0;
2001}
2002
2003#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2004static int init_header_complete(struct swsusp_info *info)
2005{
2006	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2007	info->version_code = LINUX_VERSION_CODE;
2008	return 0;
2009}
2010
2011static char *check_image_kernel(struct swsusp_info *info)
2012{
2013	if (info->version_code != LINUX_VERSION_CODE)
2014		return "kernel version";
2015	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2016		return "system type";
2017	if (strcmp(info->uts.release,init_utsname()->release))
2018		return "kernel release";
2019	if (strcmp(info->uts.version,init_utsname()->version))
2020		return "version";
2021	if (strcmp(info->uts.machine,init_utsname()->machine))
2022		return "machine";
2023	return NULL;
2024}
2025#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2026
2027unsigned long snapshot_get_image_size(void)
2028{
2029	return nr_copy_pages + nr_meta_pages + 1;
2030}
2031
2032static int init_header(struct swsusp_info *info)
2033{
2034	memset(info, 0, sizeof(struct swsusp_info));
2035	info->num_physpages = get_num_physpages();
2036	info->image_pages = nr_copy_pages;
2037	info->pages = snapshot_get_image_size();
2038	info->size = info->pages;
2039	info->size <<= PAGE_SHIFT;
2040	return init_header_complete(info);
2041}
2042
 
 
 
2043/**
2044 * pack_pfns - Prepare PFNs for saving.
2045 * @bm: Memory bitmap.
2046 * @buf: Memory buffer to store the PFNs in.
 
2047 *
2048 * PFNs corresponding to set bits in @bm are stored in the area of memory
2049 * pointed to by @buf (1 page at a time).
 
 
2050 */
2051static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
 
2052{
2053	int j;
2054
2055	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2056		buf[j] = memory_bm_next_pfn(bm);
2057		if (unlikely(buf[j] == BM_END_OF_MAP))
2058			break;
2059		/* Save page key for data page (s390 only). */
2060		page_key_read(buf + j);
2061	}
2062}
2063
2064/**
2065 * snapshot_read_next - Get the address to read the next image page from.
2066 * @handle: Snapshot handle to be used for the reading.
2067 *
2068 * On the first call, @handle should point to a zeroed snapshot_handle
2069 * structure.  The structure gets populated then and a pointer to it should be
2070 * passed to this function every next time.
2071 *
2072 * On success, the function returns a positive number.  Then, the caller
2073 * is allowed to read up to the returned number of bytes from the memory
2074 * location computed by the data_of() macro.
2075 *
2076 * The function returns 0 to indicate the end of the data stream condition,
2077 * and negative numbers are returned on errors.  If that happens, the structure
2078 * pointed to by @handle is not updated and should not be used any more.
2079 */
2080int snapshot_read_next(struct snapshot_handle *handle)
2081{
2082	if (handle->cur > nr_meta_pages + nr_copy_pages)
2083		return 0;
2084
2085	if (!buffer) {
2086		/* This makes the buffer be freed by swsusp_free() */
2087		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2088		if (!buffer)
2089			return -ENOMEM;
2090	}
2091	if (!handle->cur) {
2092		int error;
2093
2094		error = init_header((struct swsusp_info *)buffer);
2095		if (error)
2096			return error;
2097		handle->buffer = buffer;
2098		memory_bm_position_reset(&orig_bm);
2099		memory_bm_position_reset(&copy_bm);
2100	} else if (handle->cur <= nr_meta_pages) {
2101		clear_page(buffer);
2102		pack_pfns(buffer, &orig_bm);
2103	} else {
2104		struct page *page;
2105
2106		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2107		if (PageHighMem(page)) {
2108			/*
2109			 * Highmem pages are copied to the buffer,
2110			 * because we can't return with a kmapped
2111			 * highmem page (we may not be called again).
2112			 */
2113			void *kaddr;
2114
2115			kaddr = kmap_atomic(page);
2116			copy_page(buffer, kaddr);
2117			kunmap_atomic(kaddr);
2118			handle->buffer = buffer;
2119		} else {
2120			handle->buffer = page_address(page);
2121		}
2122	}
2123	handle->cur++;
2124	return PAGE_SIZE;
2125}
2126
2127static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2128				    struct memory_bitmap *src)
2129{
2130	unsigned long pfn;
2131
2132	memory_bm_position_reset(src);
2133	pfn = memory_bm_next_pfn(src);
2134	while (pfn != BM_END_OF_MAP) {
2135		memory_bm_set_bit(dst, pfn);
2136		pfn = memory_bm_next_pfn(src);
2137	}
2138}
2139
2140/**
2141 * mark_unsafe_pages - Mark pages that were used before hibernation.
2142 *
2143 * Mark the pages that cannot be used for storing the image during restoration,
2144 * because they conflict with the pages that had been used before hibernation.
2145 */
2146static void mark_unsafe_pages(struct memory_bitmap *bm)
2147{
2148	unsigned long pfn;
2149
2150	/* Clear the "free"/"unsafe" bit for all PFNs */
2151	memory_bm_position_reset(free_pages_map);
2152	pfn = memory_bm_next_pfn(free_pages_map);
2153	while (pfn != BM_END_OF_MAP) {
2154		memory_bm_clear_current(free_pages_map);
2155		pfn = memory_bm_next_pfn(free_pages_map);
2156	}
2157
2158	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2159	duplicate_memory_bitmap(free_pages_map, bm);
2160
2161	allocated_unsafe_pages = 0;
2162}
2163
2164static int check_header(struct swsusp_info *info)
2165{
2166	char *reason;
2167
2168	reason = check_image_kernel(info);
2169	if (!reason && info->num_physpages != get_num_physpages())
2170		reason = "memory size";
2171	if (reason) {
2172		pr_err("Image mismatch: %s\n", reason);
2173		return -EPERM;
2174	}
2175	return 0;
2176}
2177
2178/**
2179 * load header - Check the image header and copy the data from it.
2180 */
2181static int load_header(struct swsusp_info *info)
2182{
2183	int error;
2184
2185	restore_pblist = NULL;
2186	error = check_header(info);
2187	if (!error) {
2188		nr_copy_pages = info->image_pages;
2189		nr_meta_pages = info->pages - info->image_pages - 1;
2190	}
2191	return error;
2192}
2193
2194/**
2195 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2196 * @bm: Memory bitmap.
2197 * @buf: Area of memory containing the PFNs.
 
2198 *
2199 * For each element of the array pointed to by @buf (1 page at a time), set the
2200 * corresponding bit in @bm.
 
2201 */
2202static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
 
2203{
 
 
2204	int j;
2205
2206	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2207		if (unlikely(buf[j] == BM_END_OF_MAP))
2208			break;
2209
2210		/* Extract and buffer page key for data page (s390 only). */
2211		page_key_memorize(buf + j);
2212
2213		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2214			memory_bm_set_bit(bm, buf[j]);
2215		else
 
 
 
 
 
 
2216			return -EFAULT;
 
2217	}
2218
2219	return 0;
2220}
2221
2222#ifdef CONFIG_HIGHMEM
2223/*
2224 * struct highmem_pbe is used for creating the list of highmem pages that
2225 * should be restored atomically during the resume from disk, because the page
2226 * frames they have occupied before the suspend are in use.
2227 */
2228struct highmem_pbe {
2229	struct page *copy_page;	/* data is here now */
2230	struct page *orig_page;	/* data was here before the suspend */
2231	struct highmem_pbe *next;
2232};
2233
2234/*
2235 * List of highmem PBEs needed for restoring the highmem pages that were
2236 * allocated before the suspend and included in the suspend image, but have
2237 * also been allocated by the "resume" kernel, so their contents cannot be
2238 * written directly to their "original" page frames.
2239 */
2240static struct highmem_pbe *highmem_pblist;
2241
2242/**
2243 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2244 * @bm: Memory bitmap.
2245 *
2246 * The bits in @bm that correspond to image pages are assumed to be set.
2247 */
2248static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2249{
2250	unsigned long pfn;
2251	unsigned int cnt = 0;
2252
2253	memory_bm_position_reset(bm);
2254	pfn = memory_bm_next_pfn(bm);
2255	while (pfn != BM_END_OF_MAP) {
2256		if (PageHighMem(pfn_to_page(pfn)))
2257			cnt++;
2258
2259		pfn = memory_bm_next_pfn(bm);
2260	}
2261	return cnt;
2262}
2263
2264static unsigned int safe_highmem_pages;
2265
2266static struct memory_bitmap *safe_highmem_bm;
2267
2268/**
2269 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2270 * @bm: Pointer to an uninitialized memory bitmap structure.
2271 * @nr_highmem_p: Pointer to the number of highmem image pages.
2272 *
2273 * Try to allocate as many highmem pages as there are highmem image pages
2274 * (@nr_highmem_p points to the variable containing the number of highmem image
2275 * pages).  The pages that are "safe" (ie. will not be overwritten when the
2276 * hibernation image is restored entirely) have the corresponding bits set in
2277 * @bm (it must be unitialized).
2278 *
2279 * NOTE: This function should not be called if there are no highmem image pages.
2280 */
2281static int prepare_highmem_image(struct memory_bitmap *bm,
2282				 unsigned int *nr_highmem_p)
2283{
2284	unsigned int to_alloc;
2285
2286	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2287		return -ENOMEM;
2288
2289	if (get_highmem_buffer(PG_SAFE))
2290		return -ENOMEM;
2291
2292	to_alloc = count_free_highmem_pages();
2293	if (to_alloc > *nr_highmem_p)
2294		to_alloc = *nr_highmem_p;
2295	else
2296		*nr_highmem_p = to_alloc;
2297
2298	safe_highmem_pages = 0;
2299	while (to_alloc-- > 0) {
2300		struct page *page;
2301
2302		page = alloc_page(__GFP_HIGHMEM);
2303		if (!swsusp_page_is_free(page)) {
2304			/* The page is "safe", set its bit the bitmap */
2305			memory_bm_set_bit(bm, page_to_pfn(page));
2306			safe_highmem_pages++;
2307		}
2308		/* Mark the page as allocated */
2309		swsusp_set_page_forbidden(page);
2310		swsusp_set_page_free(page);
2311	}
2312	memory_bm_position_reset(bm);
2313	safe_highmem_bm = bm;
2314	return 0;
2315}
2316
2317static struct page *last_highmem_page;
2318
2319/**
2320 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2321 *
2322 * For a given highmem image page get a buffer that suspend_write_next() should
2323 * return to its caller to write to.
2324 *
2325 * If the page is to be saved to its "original" page frame or a copy of
2326 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2327 * the copy of the page is to be made in normal memory, so the address of
2328 * the copy is returned.
2329 *
2330 * If @buffer is returned, the caller of suspend_write_next() will write
2331 * the page's contents to @buffer, so they will have to be copied to the
2332 * right location on the next call to suspend_write_next() and it is done
2333 * with the help of copy_last_highmem_page().  For this purpose, if
2334 * @buffer is returned, @last_highmem_page is set to the page to which
2335 * the data will have to be copied from @buffer.
2336 */
2337static void *get_highmem_page_buffer(struct page *page,
2338				     struct chain_allocator *ca)
2339{
2340	struct highmem_pbe *pbe;
2341	void *kaddr;
2342
2343	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2344		/*
2345		 * We have allocated the "original" page frame and we can
2346		 * use it directly to store the loaded page.
2347		 */
2348		last_highmem_page = page;
2349		return buffer;
2350	}
2351	/*
2352	 * The "original" page frame has not been allocated and we have to
2353	 * use a "safe" page frame to store the loaded page.
2354	 */
2355	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2356	if (!pbe) {
2357		swsusp_free();
2358		return ERR_PTR(-ENOMEM);
2359	}
2360	pbe->orig_page = page;
2361	if (safe_highmem_pages > 0) {
2362		struct page *tmp;
2363
2364		/* Copy of the page will be stored in high memory */
2365		kaddr = buffer;
2366		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2367		safe_highmem_pages--;
2368		last_highmem_page = tmp;
2369		pbe->copy_page = tmp;
2370	} else {
2371		/* Copy of the page will be stored in normal memory */
2372		kaddr = safe_pages_list;
2373		safe_pages_list = safe_pages_list->next;
 
2374		pbe->copy_page = virt_to_page(kaddr);
2375	}
2376	pbe->next = highmem_pblist;
2377	highmem_pblist = pbe;
2378	return kaddr;
2379}
2380
2381/**
2382 * copy_last_highmem_page - Copy most the most recent highmem image page.
2383 *
2384 * Copy the contents of a highmem image from @buffer, where the caller of
2385 * snapshot_write_next() has stored them, to the right location represented by
2386 * @last_highmem_page .
2387 */
2388static void copy_last_highmem_page(void)
2389{
2390	if (last_highmem_page) {
2391		void *dst;
2392
2393		dst = kmap_atomic(last_highmem_page);
2394		copy_page(dst, buffer);
2395		kunmap_atomic(dst);
2396		last_highmem_page = NULL;
2397	}
2398}
2399
2400static inline int last_highmem_page_copied(void)
2401{
2402	return !last_highmem_page;
2403}
2404
2405static inline void free_highmem_data(void)
2406{
2407	if (safe_highmem_bm)
2408		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2409
2410	if (buffer)
2411		free_image_page(buffer, PG_UNSAFE_CLEAR);
2412}
2413#else
2414static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2415
2416static inline int prepare_highmem_image(struct memory_bitmap *bm,
2417					unsigned int *nr_highmem_p) { return 0; }
2418
2419static inline void *get_highmem_page_buffer(struct page *page,
2420					    struct chain_allocator *ca)
2421{
2422	return ERR_PTR(-EINVAL);
2423}
2424
2425static inline void copy_last_highmem_page(void) {}
2426static inline int last_highmem_page_copied(void) { return 1; }
2427static inline void free_highmem_data(void) {}
2428#endif /* CONFIG_HIGHMEM */
2429
2430#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2431
2432/**
2433 * prepare_image - Make room for loading hibernation image.
2434 * @new_bm: Unitialized memory bitmap structure.
2435 * @bm: Memory bitmap with unsafe pages marked.
 
2436 *
2437 * Use @bm to mark the pages that will be overwritten in the process of
2438 * restoring the system memory state from the suspend image ("unsafe" pages)
2439 * and allocate memory for the image.
2440 *
2441 * The idea is to allocate a new memory bitmap first and then allocate
2442 * as many pages as needed for image data, but without specifying what those
2443 * pages will be used for just yet.  Instead, we mark them all as allocated and
2444 * create a lists of "safe" pages to be used later.  On systems with high
2445 * memory a list of "safe" highmem pages is created too.
 
 
 
2446 */
2447static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
 
2448{
2449	unsigned int nr_pages, nr_highmem;
 
2450	struct linked_page *lp;
2451	int error;
2452
2453	/* If there is no highmem, the buffer will not be necessary */
2454	free_image_page(buffer, PG_UNSAFE_CLEAR);
2455	buffer = NULL;
2456
2457	nr_highmem = count_highmem_image_pages(bm);
2458	mark_unsafe_pages(bm);
2459
2460	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2461	if (error)
2462		goto Free;
2463
2464	duplicate_memory_bitmap(new_bm, bm);
2465	memory_bm_free(bm, PG_UNSAFE_KEEP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2466	if (nr_highmem > 0) {
2467		error = prepare_highmem_image(bm, &nr_highmem);
2468		if (error)
2469			goto Free;
2470	}
2471	/*
2472	 * Reserve some safe pages for potential later use.
2473	 *
2474	 * NOTE: This way we make sure there will be enough safe pages for the
2475	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2476	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2477	 *
2478	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2479	 */
2480	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2481	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2482	while (nr_pages > 0) {
2483		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2484		if (!lp) {
2485			error = -ENOMEM;
2486			goto Free;
2487		}
2488		lp->next = safe_pages_list;
2489		safe_pages_list = lp;
2490		nr_pages--;
2491	}
2492	/* Preallocate memory for the image */
2493	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2494	while (nr_pages > 0) {
2495		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2496		if (!lp) {
2497			error = -ENOMEM;
2498			goto Free;
2499		}
2500		if (!swsusp_page_is_free(virt_to_page(lp))) {
2501			/* The page is "safe", add it to the list */
2502			lp->next = safe_pages_list;
2503			safe_pages_list = lp;
2504		}
2505		/* Mark the page as allocated */
2506		swsusp_set_page_forbidden(virt_to_page(lp));
2507		swsusp_set_page_free(virt_to_page(lp));
2508		nr_pages--;
2509	}
2510	return 0;
2511
2512 Free:
2513	swsusp_free();
2514	return error;
2515}
2516
2517/**
2518 * get_buffer - Get the address to store the next image data page.
2519 *
2520 * Get the address that snapshot_write_next() should return to its caller to
2521 * write to.
2522 */
2523static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2524{
2525	struct pbe *pbe;
2526	struct page *page;
2527	unsigned long pfn = memory_bm_next_pfn(bm);
2528
2529	if (pfn == BM_END_OF_MAP)
2530		return ERR_PTR(-EFAULT);
2531
2532	page = pfn_to_page(pfn);
2533	if (PageHighMem(page))
2534		return get_highmem_page_buffer(page, ca);
2535
2536	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2537		/*
2538		 * We have allocated the "original" page frame and we can
2539		 * use it directly to store the loaded page.
2540		 */
2541		return page_address(page);
2542
2543	/*
2544	 * The "original" page frame has not been allocated and we have to
2545	 * use a "safe" page frame to store the loaded page.
2546	 */
2547	pbe = chain_alloc(ca, sizeof(struct pbe));
2548	if (!pbe) {
2549		swsusp_free();
2550		return ERR_PTR(-ENOMEM);
2551	}
2552	pbe->orig_address = page_address(page);
2553	pbe->address = safe_pages_list;
2554	safe_pages_list = safe_pages_list->next;
 
2555	pbe->next = restore_pblist;
2556	restore_pblist = pbe;
2557	return pbe->address;
2558}
2559
2560/**
2561 * snapshot_write_next - Get the address to store the next image page.
2562 * @handle: Snapshot handle structure to guide the writing.
2563 *
2564 * On the first call, @handle should point to a zeroed snapshot_handle
2565 * structure.  The structure gets populated then and a pointer to it should be
2566 * passed to this function every next time.
2567 *
2568 * On success, the function returns a positive number.  Then, the caller
2569 * is allowed to write up to the returned number of bytes to the memory
2570 * location computed by the data_of() macro.
2571 *
2572 * The function returns 0 to indicate the "end of file" condition.  Negative
2573 * numbers are returned on errors, in which cases the structure pointed to by
2574 * @handle is not updated and should not be used any more.
2575 */
2576int snapshot_write_next(struct snapshot_handle *handle)
2577{
2578	static struct chain_allocator ca;
2579	int error = 0;
2580
 
2581	/* Check if we have already loaded the entire image */
2582	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2583		return 0;
2584
2585	handle->sync_read = 1;
2586
2587	if (!handle->cur) {
2588		if (!buffer)
2589			/* This makes the buffer be freed by swsusp_free() */
2590			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2591
2592		if (!buffer)
2593			return -ENOMEM;
2594
2595		handle->buffer = buffer;
2596	} else if (handle->cur == 1) {
2597		error = load_header(buffer);
2598		if (error)
2599			return error;
2600
2601		safe_pages_list = NULL;
2602
2603		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2604		if (error)
2605			return error;
2606
2607		/* Allocate buffer for page keys. */
2608		error = page_key_alloc(nr_copy_pages);
2609		if (error)
2610			return error;
2611
 
 
2612		hibernate_restore_protection_begin();
2613	} else if (handle->cur <= nr_meta_pages + 1) {
2614		error = unpack_orig_pfns(buffer, &copy_bm);
2615		if (error)
2616			return error;
2617
2618		if (handle->cur == nr_meta_pages + 1) {
2619			error = prepare_image(&orig_bm, &copy_bm);
2620			if (error)
2621				return error;
2622
2623			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2624			memory_bm_position_reset(&orig_bm);
 
2625			restore_pblist = NULL;
2626			handle->buffer = get_buffer(&orig_bm, &ca);
2627			handle->sync_read = 0;
2628			if (IS_ERR(handle->buffer))
2629				return PTR_ERR(handle->buffer);
2630		}
2631	} else {
2632		copy_last_highmem_page();
2633		/* Restore page key for data page (s390 only). */
2634		page_key_write(handle->buffer);
2635		hibernate_restore_protect_page(handle->buffer);
2636		handle->buffer = get_buffer(&orig_bm, &ca);
2637		if (IS_ERR(handle->buffer))
2638			return PTR_ERR(handle->buffer);
2639		if (handle->buffer != buffer)
2640			handle->sync_read = 0;
2641	}
 
2642	handle->cur++;
 
 
 
 
 
 
 
 
2643	return PAGE_SIZE;
2644}
2645
2646/**
2647 * snapshot_write_finalize - Complete the loading of a hibernation image.
2648 *
2649 * Must be called after the last call to snapshot_write_next() in case the last
2650 * page in the image happens to be a highmem page and its contents should be
2651 * stored in highmem.  Additionally, it recycles bitmap memory that's not
2652 * necessary any more.
2653 */
2654void snapshot_write_finalize(struct snapshot_handle *handle)
2655{
 
 
2656	copy_last_highmem_page();
2657	/* Restore page key for data page (s390 only). */
2658	page_key_write(handle->buffer);
2659	page_key_free();
2660	hibernate_restore_protect_page(handle->buffer);
2661	/* Do that only if we have loaded the image entirely */
2662	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2663		memory_bm_recycle(&orig_bm);
2664		free_highmem_data();
2665	}
 
2666}
2667
2668int snapshot_image_loaded(struct snapshot_handle *handle)
2669{
2670	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2671			handle->cur <= nr_meta_pages + nr_copy_pages);
2672}
2673
2674#ifdef CONFIG_HIGHMEM
2675/* Assumes that @buf is ready and points to a "safe" page */
2676static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2677				       void *buf)
2678{
2679	void *kaddr1, *kaddr2;
2680
2681	kaddr1 = kmap_atomic(p1);
2682	kaddr2 = kmap_atomic(p2);
2683	copy_page(buf, kaddr1);
2684	copy_page(kaddr1, kaddr2);
2685	copy_page(kaddr2, buf);
2686	kunmap_atomic(kaddr2);
2687	kunmap_atomic(kaddr1);
2688}
2689
2690/**
2691 * restore_highmem - Put highmem image pages into their original locations.
2692 *
2693 * For each highmem page that was in use before hibernation and is included in
2694 * the image, and also has been allocated by the "restore" kernel, swap its
2695 * current contents with the previous (ie. "before hibernation") ones.
2696 *
2697 * If the restore eventually fails, we can call this function once again and
2698 * restore the highmem state as seen by the restore kernel.
2699 */
2700int restore_highmem(void)
2701{
2702	struct highmem_pbe *pbe = highmem_pblist;
2703	void *buf;
2704
2705	if (!pbe)
2706		return 0;
2707
2708	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2709	if (!buf)
2710		return -ENOMEM;
2711
2712	while (pbe) {
2713		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2714		pbe = pbe->next;
2715	}
2716	free_image_page(buf, PG_UNSAFE_CLEAR);
2717	return 0;
2718}
2719#endif /* CONFIG_HIGHMEM */
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/kernel/power/snapshot.c
   4 *
   5 * This file provides system snapshot/restore functionality for swsusp.
   6 *
   7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
 
 
 
   9 */
  10
  11#define pr_fmt(fmt) "PM: hibernation: " fmt
  12
  13#include <linux/version.h>
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/suspend.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/spinlock.h>
  20#include <linux/kernel.h>
  21#include <linux/pm.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/memblock.h>
  25#include <linux/nmi.h>
  26#include <linux/syscalls.h>
  27#include <linux/console.h>
  28#include <linux/highmem.h>
  29#include <linux/list.h>
  30#include <linux/slab.h>
  31#include <linux/compiler.h>
  32#include <linux/ktime.h>
  33#include <linux/set_memory.h>
  34
  35#include <linux/uaccess.h>
  36#include <asm/mmu_context.h>
 
  37#include <asm/tlbflush.h>
  38#include <asm/io.h>
  39
  40#include "power.h"
  41
  42#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
  43static bool hibernate_restore_protection;
  44static bool hibernate_restore_protection_active;
  45
  46void enable_restore_image_protection(void)
  47{
  48	hibernate_restore_protection = true;
  49}
  50
  51static inline void hibernate_restore_protection_begin(void)
  52{
  53	hibernate_restore_protection_active = hibernate_restore_protection;
  54}
  55
  56static inline void hibernate_restore_protection_end(void)
  57{
  58	hibernate_restore_protection_active = false;
  59}
  60
  61static inline int __must_check hibernate_restore_protect_page(void *page_address)
  62{
  63	if (hibernate_restore_protection_active)
  64		return set_memory_ro((unsigned long)page_address, 1);
  65	return 0;
  66}
  67
  68static inline int hibernate_restore_unprotect_page(void *page_address)
  69{
  70	if (hibernate_restore_protection_active)
  71		return set_memory_rw((unsigned long)page_address, 1);
  72	return 0;
  73}
  74#else
  75static inline void hibernate_restore_protection_begin(void) {}
  76static inline void hibernate_restore_protection_end(void) {}
  77static inline int __must_check hibernate_restore_protect_page(void *page_address) {return 0; }
  78static inline int hibernate_restore_unprotect_page(void *page_address) {return 0; }
  79#endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
  80
  81
  82/*
  83 * The calls to set_direct_map_*() should not fail because remapping a page
  84 * here means that we only update protection bits in an existing PTE.
  85 * It is still worth to have a warning here if something changes and this
  86 * will no longer be the case.
  87 */
  88static inline void hibernate_map_page(struct page *page)
  89{
  90	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
  91		int ret = set_direct_map_default_noflush(page);
  92
  93		if (ret)
  94			pr_warn_once("Failed to remap page\n");
  95	} else {
  96		debug_pagealloc_map_pages(page, 1);
  97	}
  98}
  99
 100static inline void hibernate_unmap_page(struct page *page)
 101{
 102	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
 103		unsigned long addr = (unsigned long)page_address(page);
 104		int ret  = set_direct_map_invalid_noflush(page);
 105
 106		if (ret)
 107			pr_warn_once("Failed to remap page\n");
 108
 109		flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
 110	} else {
 111		debug_pagealloc_unmap_pages(page, 1);
 112	}
 113}
 114
 115static int swsusp_page_is_free(struct page *);
 116static void swsusp_set_page_forbidden(struct page *);
 117static void swsusp_unset_page_forbidden(struct page *);
 118
 119/*
 120 * Number of bytes to reserve for memory allocations made by device drivers
 121 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 122 * cause image creation to fail (tunable via /sys/power/reserved_size).
 123 */
 124unsigned long reserved_size;
 125
 126void __init hibernate_reserved_size_init(void)
 127{
 128	reserved_size = SPARE_PAGES * PAGE_SIZE;
 129}
 130
 131/*
 132 * Preferred image size in bytes (tunable via /sys/power/image_size).
 133 * When it is set to N, swsusp will do its best to ensure the image
 134 * size will not exceed N bytes, but if that is impossible, it will
 135 * try to create the smallest image possible.
 136 */
 137unsigned long image_size;
 138
 139void __init hibernate_image_size_init(void)
 140{
 141	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
 142}
 143
 144/*
 145 * List of PBEs needed for restoring the pages that were allocated before
 146 * the suspend and included in the suspend image, but have also been
 147 * allocated by the "resume" kernel, so their contents cannot be written
 148 * directly to their "original" page frames.
 149 */
 150struct pbe *restore_pblist;
 151
 152/* struct linked_page is used to build chains of pages */
 153
 154#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 155
 156struct linked_page {
 157	struct linked_page *next;
 158	char data[LINKED_PAGE_DATA_SIZE];
 159} __packed;
 160
 161/*
 162 * List of "safe" pages (ie. pages that were not used by the image kernel
 163 * before hibernation) that may be used as temporary storage for image kernel
 164 * memory contents.
 165 */
 166static struct linked_page *safe_pages_list;
 167
 168/* Pointer to an auxiliary buffer (1 page) */
 169static void *buffer;
 170
 171#define PG_ANY		0
 172#define PG_SAFE		1
 173#define PG_UNSAFE_CLEAR	1
 174#define PG_UNSAFE_KEEP	0
 175
 176static unsigned int allocated_unsafe_pages;
 177
 178/**
 179 * get_image_page - Allocate a page for a hibernation image.
 180 * @gfp_mask: GFP mask for the allocation.
 181 * @safe_needed: Get pages that were not used before hibernation (restore only)
 182 *
 183 * During image restoration, for storing the PBE list and the image data, we can
 184 * only use memory pages that do not conflict with the pages used before
 185 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 186 * using allocated_unsafe_pages.
 187 *
 188 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 189 * swsusp_free() can release it.
 190 */
 191static void *get_image_page(gfp_t gfp_mask, int safe_needed)
 192{
 193	void *res;
 194
 195	res = (void *)get_zeroed_page(gfp_mask);
 196	if (safe_needed)
 197		while (res && swsusp_page_is_free(virt_to_page(res))) {
 198			/* The page is unsafe, mark it for swsusp_free() */
 199			swsusp_set_page_forbidden(virt_to_page(res));
 200			allocated_unsafe_pages++;
 201			res = (void *)get_zeroed_page(gfp_mask);
 202		}
 203	if (res) {
 204		swsusp_set_page_forbidden(virt_to_page(res));
 205		swsusp_set_page_free(virt_to_page(res));
 206	}
 207	return res;
 208}
 209
 210static void *__get_safe_page(gfp_t gfp_mask)
 211{
 212	if (safe_pages_list) {
 213		void *ret = safe_pages_list;
 214
 215		safe_pages_list = safe_pages_list->next;
 216		memset(ret, 0, PAGE_SIZE);
 217		return ret;
 218	}
 219	return get_image_page(gfp_mask, PG_SAFE);
 220}
 221
 222unsigned long get_safe_page(gfp_t gfp_mask)
 223{
 224	return (unsigned long)__get_safe_page(gfp_mask);
 225}
 226
 227static struct page *alloc_image_page(gfp_t gfp_mask)
 228{
 229	struct page *page;
 230
 231	page = alloc_page(gfp_mask);
 232	if (page) {
 233		swsusp_set_page_forbidden(page);
 234		swsusp_set_page_free(page);
 235	}
 236	return page;
 237}
 238
 239static void recycle_safe_page(void *page_address)
 240{
 241	struct linked_page *lp = page_address;
 242
 243	lp->next = safe_pages_list;
 244	safe_pages_list = lp;
 245}
 246
 247/**
 248 * free_image_page - Free a page allocated for hibernation image.
 249 * @addr: Address of the page to free.
 250 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 251 *
 252 * The page to free should have been allocated by get_image_page() (page flags
 253 * set by it are affected).
 254 */
 255static inline void free_image_page(void *addr, int clear_nosave_free)
 256{
 257	struct page *page;
 258
 259	BUG_ON(!virt_addr_valid(addr));
 260
 261	page = virt_to_page(addr);
 262
 263	swsusp_unset_page_forbidden(page);
 264	if (clear_nosave_free)
 265		swsusp_unset_page_free(page);
 266
 267	__free_page(page);
 268}
 269
 270static inline void free_list_of_pages(struct linked_page *list,
 271				      int clear_page_nosave)
 272{
 273	while (list) {
 274		struct linked_page *lp = list->next;
 275
 276		free_image_page(list, clear_page_nosave);
 277		list = lp;
 278	}
 279}
 280
 281/*
 282 * struct chain_allocator is used for allocating small objects out of
 283 * a linked list of pages called 'the chain'.
 284 *
 285 * The chain grows each time when there is no room for a new object in
 286 * the current page.  The allocated objects cannot be freed individually.
 287 * It is only possible to free them all at once, by freeing the entire
 288 * chain.
 289 *
 290 * NOTE: The chain allocator may be inefficient if the allocated objects
 291 * are not much smaller than PAGE_SIZE.
 292 */
 293struct chain_allocator {
 294	struct linked_page *chain;	/* the chain */
 295	unsigned int used_space;	/* total size of objects allocated out
 296					   of the current page */
 297	gfp_t gfp_mask;		/* mask for allocating pages */
 298	int safe_needed;	/* if set, only "safe" pages are allocated */
 299};
 300
 301static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
 302		       int safe_needed)
 303{
 304	ca->chain = NULL;
 305	ca->used_space = LINKED_PAGE_DATA_SIZE;
 306	ca->gfp_mask = gfp_mask;
 307	ca->safe_needed = safe_needed;
 308}
 309
 310static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 311{
 312	void *ret;
 313
 314	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 315		struct linked_page *lp;
 316
 317		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
 318					get_image_page(ca->gfp_mask, PG_ANY);
 319		if (!lp)
 320			return NULL;
 321
 322		lp->next = ca->chain;
 323		ca->chain = lp;
 324		ca->used_space = 0;
 325	}
 326	ret = ca->chain->data + ca->used_space;
 327	ca->used_space += size;
 328	return ret;
 329}
 330
 331/*
 332 * Data types related to memory bitmaps.
 333 *
 334 * Memory bitmap is a structure consisting of many linked lists of
 335 * objects.  The main list's elements are of type struct zone_bitmap
 336 * and each of them corresponds to one zone.  For each zone bitmap
 337 * object there is a list of objects of type struct bm_block that
 338 * represent each blocks of bitmap in which information is stored.
 339 *
 340 * struct memory_bitmap contains a pointer to the main list of zone
 341 * bitmap objects, a struct bm_position used for browsing the bitmap,
 342 * and a pointer to the list of pages used for allocating all of the
 343 * zone bitmap objects and bitmap block objects.
 344 *
 345 * NOTE: It has to be possible to lay out the bitmap in memory
 346 * using only allocations of order 0.  Additionally, the bitmap is
 347 * designed to work with arbitrary number of zones (this is over the
 348 * top for now, but let's avoid making unnecessary assumptions ;-).
 349 *
 350 * struct zone_bitmap contains a pointer to a list of bitmap block
 351 * objects and a pointer to the bitmap block object that has been
 352 * most recently used for setting bits.  Additionally, it contains the
 353 * PFNs that correspond to the start and end of the represented zone.
 354 *
 355 * struct bm_block contains a pointer to the memory page in which
 356 * information is stored (in the form of a block of bitmap)
 357 * It also contains the pfns that correspond to the start and end of
 358 * the represented memory area.
 359 *
 360 * The memory bitmap is organized as a radix tree to guarantee fast random
 361 * access to the bits. There is one radix tree for each zone (as returned
 362 * from create_mem_extents).
 363 *
 364 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 365 * two linked lists for the nodes of the tree, one for the inner nodes and
 366 * one for the leave nodes. The linked leave nodes are used for fast linear
 367 * access of the memory bitmap.
 368 *
 369 * The struct rtree_node represents one node of the radix tree.
 370 */
 371
 372#define BM_END_OF_MAP	(~0UL)
 373
 374#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 375#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
 376#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
 377
 378/*
 379 * struct rtree_node is a wrapper struct to link the nodes
 380 * of the rtree together for easy linear iteration over
 381 * bits and easy freeing
 382 */
 383struct rtree_node {
 384	struct list_head list;
 385	unsigned long *data;
 386};
 387
 388/*
 389 * struct mem_zone_bm_rtree represents a bitmap used for one
 390 * populated memory zone.
 391 */
 392struct mem_zone_bm_rtree {
 393	struct list_head list;		/* Link Zones together         */
 394	struct list_head nodes;		/* Radix Tree inner nodes      */
 395	struct list_head leaves;	/* Radix Tree leaves           */
 396	unsigned long start_pfn;	/* Zone start page frame       */
 397	unsigned long end_pfn;		/* Zone end page frame + 1     */
 398	struct rtree_node *rtree;	/* Radix Tree Root             */
 399	int levels;			/* Number of Radix Tree Levels */
 400	unsigned int blocks;		/* Number of Bitmap Blocks     */
 401};
 402
 403/* struct bm_position is used for browsing memory bitmaps */
 404
 405struct bm_position {
 406	struct mem_zone_bm_rtree *zone;
 407	struct rtree_node *node;
 408	unsigned long node_pfn;
 409	unsigned long cur_pfn;
 410	int node_bit;
 411};
 412
 413struct memory_bitmap {
 414	struct list_head zones;
 415	struct linked_page *p_list;	/* list of pages used to store zone
 416					   bitmap objects and bitmap block
 417					   objects */
 418	struct bm_position cur;	/* most recently used bit position */
 419};
 420
 421/* Functions that operate on memory bitmaps */
 422
 423#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
 424#if BITS_PER_LONG == 32
 425#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
 426#else
 427#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
 428#endif
 429#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 430
 431/**
 432 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
 433 * @gfp_mask: GFP mask for the allocation.
 434 * @safe_needed: Get pages not used before hibernation (restore only)
 435 * @ca: Pointer to a linked list of pages ("a chain") to allocate from
 436 * @list: Radix Tree node to add.
 437 *
 438 * This function is used to allocate inner nodes as well as the
 439 * leave nodes of the radix tree. It also adds the node to the
 440 * corresponding linked list passed in by the *list parameter.
 441 */
 442static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 443					   struct chain_allocator *ca,
 444					   struct list_head *list)
 445{
 446	struct rtree_node *node;
 447
 448	node = chain_alloc(ca, sizeof(struct rtree_node));
 449	if (!node)
 450		return NULL;
 451
 452	node->data = get_image_page(gfp_mask, safe_needed);
 453	if (!node->data)
 454		return NULL;
 455
 456	list_add_tail(&node->list, list);
 457
 458	return node;
 459}
 460
 461/**
 462 * add_rtree_block - Add a new leave node to the radix tree.
 463 *
 464 * The leave nodes need to be allocated in order to keep the leaves
 465 * linked list in order. This is guaranteed by the zone->blocks
 466 * counter.
 467 */
 468static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 469			   int safe_needed, struct chain_allocator *ca)
 470{
 471	struct rtree_node *node, *block, **dst;
 472	unsigned int levels_needed, block_nr;
 473	int i;
 474
 475	block_nr = zone->blocks;
 476	levels_needed = 0;
 477
 478	/* How many levels do we need for this block nr? */
 479	while (block_nr) {
 480		levels_needed += 1;
 481		block_nr >>= BM_RTREE_LEVEL_SHIFT;
 482	}
 483
 484	/* Make sure the rtree has enough levels */
 485	for (i = zone->levels; i < levels_needed; i++) {
 486		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 487					&zone->nodes);
 488		if (!node)
 489			return -ENOMEM;
 490
 491		node->data[0] = (unsigned long)zone->rtree;
 492		zone->rtree = node;
 493		zone->levels += 1;
 494	}
 495
 496	/* Allocate new block */
 497	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 498	if (!block)
 499		return -ENOMEM;
 500
 501	/* Now walk the rtree to insert the block */
 502	node = zone->rtree;
 503	dst = &zone->rtree;
 504	block_nr = zone->blocks;
 505	for (i = zone->levels; i > 0; i--) {
 506		int index;
 507
 508		if (!node) {
 509			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 510						&zone->nodes);
 511			if (!node)
 512				return -ENOMEM;
 513			*dst = node;
 514		}
 515
 516		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 517		index &= BM_RTREE_LEVEL_MASK;
 518		dst = (struct rtree_node **)&((*dst)->data[index]);
 519		node = *dst;
 520	}
 521
 522	zone->blocks += 1;
 523	*dst = block;
 524
 525	return 0;
 526}
 527
 528static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 529			       int clear_nosave_free);
 530
 531/**
 532 * create_zone_bm_rtree - Create a radix tree for one zone.
 533 *
 534 * Allocated the mem_zone_bm_rtree structure and initializes it.
 535 * This function also allocated and builds the radix tree for the
 536 * zone.
 537 */
 538static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
 539						      int safe_needed,
 540						      struct chain_allocator *ca,
 541						      unsigned long start,
 542						      unsigned long end)
 543{
 544	struct mem_zone_bm_rtree *zone;
 545	unsigned int i, nr_blocks;
 546	unsigned long pages;
 547
 548	pages = end - start;
 549	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 550	if (!zone)
 551		return NULL;
 552
 553	INIT_LIST_HEAD(&zone->nodes);
 554	INIT_LIST_HEAD(&zone->leaves);
 555	zone->start_pfn = start;
 556	zone->end_pfn = end;
 557	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 558
 559	for (i = 0; i < nr_blocks; i++) {
 560		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 561			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 562			return NULL;
 563		}
 564	}
 565
 566	return zone;
 567}
 568
 569/**
 570 * free_zone_bm_rtree - Free the memory of the radix tree.
 571 *
 572 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 573 * structure itself is not freed here nor are the rtree_node
 574 * structs.
 575 */
 576static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 577			       int clear_nosave_free)
 578{
 579	struct rtree_node *node;
 580
 581	list_for_each_entry(node, &zone->nodes, list)
 582		free_image_page(node->data, clear_nosave_free);
 583
 584	list_for_each_entry(node, &zone->leaves, list)
 585		free_image_page(node->data, clear_nosave_free);
 586}
 587
 588static void memory_bm_position_reset(struct memory_bitmap *bm)
 589{
 590	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 591				  list);
 592	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 593				  struct rtree_node, list);
 594	bm->cur.node_pfn = 0;
 595	bm->cur.cur_pfn = BM_END_OF_MAP;
 596	bm->cur.node_bit = 0;
 597}
 598
 599static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 600
 601struct mem_extent {
 602	struct list_head hook;
 603	unsigned long start;
 604	unsigned long end;
 605};
 606
 607/**
 608 * free_mem_extents - Free a list of memory extents.
 609 * @list: List of extents to free.
 610 */
 611static void free_mem_extents(struct list_head *list)
 612{
 613	struct mem_extent *ext, *aux;
 614
 615	list_for_each_entry_safe(ext, aux, list, hook) {
 616		list_del(&ext->hook);
 617		kfree(ext);
 618	}
 619}
 620
 621/**
 622 * create_mem_extents - Create a list of memory extents.
 623 * @list: List to put the extents into.
 624 * @gfp_mask: Mask to use for memory allocations.
 625 *
 626 * The extents represent contiguous ranges of PFNs.
 627 */
 628static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 629{
 630	struct zone *zone;
 631
 632	INIT_LIST_HEAD(list);
 633
 634	for_each_populated_zone(zone) {
 635		unsigned long zone_start, zone_end;
 636		struct mem_extent *ext, *cur, *aux;
 637
 638		zone_start = zone->zone_start_pfn;
 639		zone_end = zone_end_pfn(zone);
 640
 641		list_for_each_entry(ext, list, hook)
 642			if (zone_start <= ext->end)
 643				break;
 644
 645		if (&ext->hook == list || zone_end < ext->start) {
 646			/* New extent is necessary */
 647			struct mem_extent *new_ext;
 648
 649			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 650			if (!new_ext) {
 651				free_mem_extents(list);
 652				return -ENOMEM;
 653			}
 654			new_ext->start = zone_start;
 655			new_ext->end = zone_end;
 656			list_add_tail(&new_ext->hook, &ext->hook);
 657			continue;
 658		}
 659
 660		/* Merge this zone's range of PFNs with the existing one */
 661		if (zone_start < ext->start)
 662			ext->start = zone_start;
 663		if (zone_end > ext->end)
 664			ext->end = zone_end;
 665
 666		/* More merging may be possible */
 667		cur = ext;
 668		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 669			if (zone_end < cur->start)
 670				break;
 671			if (zone_end < cur->end)
 672				ext->end = cur->end;
 673			list_del(&cur->hook);
 674			kfree(cur);
 675		}
 676	}
 677
 678	return 0;
 679}
 680
 681/**
 682 * memory_bm_create - Allocate memory for a memory bitmap.
 683 */
 684static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
 685			    int safe_needed)
 686{
 687	struct chain_allocator ca;
 688	struct list_head mem_extents;
 689	struct mem_extent *ext;
 690	int error;
 691
 692	chain_init(&ca, gfp_mask, safe_needed);
 693	INIT_LIST_HEAD(&bm->zones);
 694
 695	error = create_mem_extents(&mem_extents, gfp_mask);
 696	if (error)
 697		return error;
 698
 699	list_for_each_entry(ext, &mem_extents, hook) {
 700		struct mem_zone_bm_rtree *zone;
 701
 702		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 703					    ext->start, ext->end);
 704		if (!zone) {
 705			error = -ENOMEM;
 706			goto Error;
 707		}
 708		list_add_tail(&zone->list, &bm->zones);
 709	}
 710
 711	bm->p_list = ca.chain;
 712	memory_bm_position_reset(bm);
 713 Exit:
 714	free_mem_extents(&mem_extents);
 715	return error;
 716
 717 Error:
 718	bm->p_list = ca.chain;
 719	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 720	goto Exit;
 721}
 722
 723/**
 724 * memory_bm_free - Free memory occupied by the memory bitmap.
 725 * @bm: Memory bitmap.
 726 */
 727static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 728{
 729	struct mem_zone_bm_rtree *zone;
 730
 731	list_for_each_entry(zone, &bm->zones, list)
 732		free_zone_bm_rtree(zone, clear_nosave_free);
 733
 734	free_list_of_pages(bm->p_list, clear_nosave_free);
 735
 736	INIT_LIST_HEAD(&bm->zones);
 737}
 738
 739/**
 740 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
 741 *
 742 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 743 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 744 *
 745 * Walk the radix tree to find the page containing the bit that represents @pfn
 746 * and return the position of the bit in @addr and @bit_nr.
 747 */
 748static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 749			      void **addr, unsigned int *bit_nr)
 750{
 751	struct mem_zone_bm_rtree *curr, *zone;
 752	struct rtree_node *node;
 753	int i, block_nr;
 754
 755	zone = bm->cur.zone;
 756
 757	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 758		goto zone_found;
 759
 760	zone = NULL;
 761
 762	/* Find the right zone */
 763	list_for_each_entry(curr, &bm->zones, list) {
 764		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 765			zone = curr;
 766			break;
 767		}
 768	}
 769
 770	if (!zone)
 771		return -EFAULT;
 772
 773zone_found:
 774	/*
 775	 * We have found the zone. Now walk the radix tree to find the leaf node
 776	 * for our PFN.
 777	 */
 778
 779	/*
 780	 * If the zone we wish to scan is the current zone and the
 781	 * pfn falls into the current node then we do not need to walk
 782	 * the tree.
 783	 */
 784	node = bm->cur.node;
 785	if (zone == bm->cur.zone &&
 786	    ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 787		goto node_found;
 788
 789	node      = zone->rtree;
 790	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 791
 792	for (i = zone->levels; i > 0; i--) {
 793		int index;
 794
 795		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 796		index &= BM_RTREE_LEVEL_MASK;
 797		BUG_ON(node->data[index] == 0);
 798		node = (struct rtree_node *)node->data[index];
 799	}
 800
 801node_found:
 802	/* Update last position */
 803	bm->cur.zone = zone;
 804	bm->cur.node = node;
 805	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 806	bm->cur.cur_pfn = pfn;
 807
 808	/* Set return values */
 809	*addr = node->data;
 810	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 811
 812	return 0;
 813}
 814
 815static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 816{
 817	void *addr;
 818	unsigned int bit;
 819	int error;
 820
 821	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 822	BUG_ON(error);
 823	set_bit(bit, addr);
 824}
 825
 826static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 827{
 828	void *addr;
 829	unsigned int bit;
 830	int error;
 831
 832	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 833	if (!error)
 834		set_bit(bit, addr);
 835
 836	return error;
 837}
 838
 839static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 840{
 841	void *addr;
 842	unsigned int bit;
 843	int error;
 844
 845	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 846	BUG_ON(error);
 847	clear_bit(bit, addr);
 848}
 849
 850static void memory_bm_clear_current(struct memory_bitmap *bm)
 851{
 852	int bit;
 853
 854	bit = max(bm->cur.node_bit - 1, 0);
 855	clear_bit(bit, bm->cur.node->data);
 856}
 857
 858static unsigned long memory_bm_get_current(struct memory_bitmap *bm)
 859{
 860	return bm->cur.cur_pfn;
 861}
 862
 863static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 864{
 865	void *addr;
 866	unsigned int bit;
 867	int error;
 868
 869	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 870	BUG_ON(error);
 871	return test_bit(bit, addr);
 872}
 873
 874static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 875{
 876	void *addr;
 877	unsigned int bit;
 878
 879	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 880}
 881
 882/*
 883 * rtree_next_node - Jump to the next leaf node.
 884 *
 885 * Set the position to the beginning of the next node in the
 886 * memory bitmap. This is either the next node in the current
 887 * zone's radix tree or the first node in the radix tree of the
 888 * next zone.
 889 *
 890 * Return true if there is a next node, false otherwise.
 891 */
 892static bool rtree_next_node(struct memory_bitmap *bm)
 893{
 894	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
 895		bm->cur.node = list_entry(bm->cur.node->list.next,
 896					  struct rtree_node, list);
 897		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 898		bm->cur.node_bit  = 0;
 899		touch_softlockup_watchdog();
 900		return true;
 901	}
 902
 903	/* No more nodes, goto next zone */
 904	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
 905		bm->cur.zone = list_entry(bm->cur.zone->list.next,
 906				  struct mem_zone_bm_rtree, list);
 907		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 908					  struct rtree_node, list);
 909		bm->cur.node_pfn = 0;
 910		bm->cur.node_bit = 0;
 911		return true;
 912	}
 913
 914	/* No more zones */
 915	return false;
 916}
 917
 918/**
 919 * memory_bm_next_pfn - Find the next set bit in a memory bitmap.
 920 * @bm: Memory bitmap.
 921 *
 922 * Starting from the last returned position this function searches for the next
 923 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 924 * set, BM_END_OF_MAP is returned.
 925 *
 926 * It is required to run memory_bm_position_reset() before the first call to
 927 * this function for the given memory bitmap.
 928 */
 929static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 930{
 931	unsigned long bits, pfn, pages;
 932	int bit;
 933
 934	do {
 935		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 936		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 937		bit	  = find_next_bit(bm->cur.node->data, bits,
 938					  bm->cur.node_bit);
 939		if (bit < bits) {
 940			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 941			bm->cur.node_bit = bit + 1;
 942			bm->cur.cur_pfn = pfn;
 943			return pfn;
 944		}
 945	} while (rtree_next_node(bm));
 946
 947	bm->cur.cur_pfn = BM_END_OF_MAP;
 948	return BM_END_OF_MAP;
 949}
 950
 951/*
 952 * This structure represents a range of page frames the contents of which
 953 * should not be saved during hibernation.
 954 */
 955struct nosave_region {
 956	struct list_head list;
 957	unsigned long start_pfn;
 958	unsigned long end_pfn;
 959};
 960
 961static LIST_HEAD(nosave_regions);
 962
 963static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
 964{
 965	struct rtree_node *node;
 966
 967	list_for_each_entry(node, &zone->nodes, list)
 968		recycle_safe_page(node->data);
 969
 970	list_for_each_entry(node, &zone->leaves, list)
 971		recycle_safe_page(node->data);
 972}
 973
 974static void memory_bm_recycle(struct memory_bitmap *bm)
 975{
 976	struct mem_zone_bm_rtree *zone;
 977	struct linked_page *p_list;
 978
 979	list_for_each_entry(zone, &bm->zones, list)
 980		recycle_zone_bm_rtree(zone);
 981
 982	p_list = bm->p_list;
 983	while (p_list) {
 984		struct linked_page *lp = p_list;
 985
 986		p_list = lp->next;
 987		recycle_safe_page(lp);
 988	}
 989}
 990
 991/**
 992 * register_nosave_region - Register a region of unsaveable memory.
 993 *
 994 * Register a range of page frames the contents of which should not be saved
 995 * during hibernation (to be used in the early initialization code).
 996 */
 997void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
 
 998{
 999	struct nosave_region *region;
1000
1001	if (start_pfn >= end_pfn)
1002		return;
1003
1004	if (!list_empty(&nosave_regions)) {
1005		/* Try to extend the previous region (they should be sorted) */
1006		region = list_entry(nosave_regions.prev,
1007					struct nosave_region, list);
1008		if (region->end_pfn == start_pfn) {
1009			region->end_pfn = end_pfn;
1010			goto Report;
1011		}
1012	}
1013	/* This allocation cannot fail */
1014	region = memblock_alloc(sizeof(struct nosave_region),
1015				SMP_CACHE_BYTES);
1016	if (!region)
1017		panic("%s: Failed to allocate %zu bytes\n", __func__,
1018		      sizeof(struct nosave_region));
 
 
1019	region->start_pfn = start_pfn;
1020	region->end_pfn = end_pfn;
1021	list_add_tail(&region->list, &nosave_regions);
1022 Report:
1023	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
1024		(unsigned long long) start_pfn << PAGE_SHIFT,
1025		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1026}
1027
1028/*
1029 * Set bits in this map correspond to the page frames the contents of which
1030 * should not be saved during the suspend.
1031 */
1032static struct memory_bitmap *forbidden_pages_map;
1033
1034/* Set bits in this map correspond to free page frames. */
1035static struct memory_bitmap *free_pages_map;
1036
1037/*
1038 * Each page frame allocated for creating the image is marked by setting the
1039 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1040 */
1041
1042void swsusp_set_page_free(struct page *page)
1043{
1044	if (free_pages_map)
1045		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1046}
1047
1048static int swsusp_page_is_free(struct page *page)
1049{
1050	return free_pages_map ?
1051		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1052}
1053
1054void swsusp_unset_page_free(struct page *page)
1055{
1056	if (free_pages_map)
1057		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1058}
1059
1060static void swsusp_set_page_forbidden(struct page *page)
1061{
1062	if (forbidden_pages_map)
1063		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1064}
1065
1066int swsusp_page_is_forbidden(struct page *page)
1067{
1068	return forbidden_pages_map ?
1069		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1070}
1071
1072static void swsusp_unset_page_forbidden(struct page *page)
1073{
1074	if (forbidden_pages_map)
1075		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1076}
1077
1078/**
1079 * mark_nosave_pages - Mark pages that should not be saved.
1080 * @bm: Memory bitmap.
1081 *
1082 * Set the bits in @bm that correspond to the page frames the contents of which
1083 * should not be saved.
1084 */
1085static void mark_nosave_pages(struct memory_bitmap *bm)
1086{
1087	struct nosave_region *region;
1088
1089	if (list_empty(&nosave_regions))
1090		return;
1091
1092	list_for_each_entry(region, &nosave_regions, list) {
1093		unsigned long pfn;
1094
1095		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1096			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1097			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1098				- 1);
1099
1100		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1101			if (pfn_valid(pfn)) {
1102				/*
1103				 * It is safe to ignore the result of
1104				 * mem_bm_set_bit_check() here, since we won't
1105				 * touch the PFNs for which the error is
1106				 * returned anyway.
1107				 */
1108				mem_bm_set_bit_check(bm, pfn);
1109			}
1110	}
1111}
1112
1113/**
1114 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1115 *
1116 * Create bitmaps needed for marking page frames that should not be saved and
1117 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1118 * only modified if everything goes well, because we don't want the bits to be
1119 * touched before both bitmaps are set up.
1120 */
1121int create_basic_memory_bitmaps(void)
1122{
1123	struct memory_bitmap *bm1, *bm2;
1124	int error;
1125
1126	if (forbidden_pages_map && free_pages_map)
1127		return 0;
1128	else
1129		BUG_ON(forbidden_pages_map || free_pages_map);
1130
1131	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1132	if (!bm1)
1133		return -ENOMEM;
1134
1135	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1136	if (error)
1137		goto Free_first_object;
1138
1139	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1140	if (!bm2)
1141		goto Free_first_bitmap;
1142
1143	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1144	if (error)
1145		goto Free_second_object;
1146
1147	forbidden_pages_map = bm1;
1148	free_pages_map = bm2;
1149	mark_nosave_pages(forbidden_pages_map);
1150
1151	pr_debug("Basic memory bitmaps created\n");
1152
1153	return 0;
1154
1155 Free_second_object:
1156	kfree(bm2);
1157 Free_first_bitmap:
1158	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1159 Free_first_object:
1160	kfree(bm1);
1161	return -ENOMEM;
1162}
1163
1164/**
1165 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1166 *
1167 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1168 * auxiliary pointers are necessary so that the bitmaps themselves are not
1169 * referred to while they are being freed.
1170 */
1171void free_basic_memory_bitmaps(void)
1172{
1173	struct memory_bitmap *bm1, *bm2;
1174
1175	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1176		return;
1177
1178	bm1 = forbidden_pages_map;
1179	bm2 = free_pages_map;
1180	forbidden_pages_map = NULL;
1181	free_pages_map = NULL;
1182	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1183	kfree(bm1);
1184	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1185	kfree(bm2);
1186
1187	pr_debug("Basic memory bitmaps freed\n");
1188}
1189
1190static void clear_or_poison_free_page(struct page *page)
1191{
1192	if (page_poisoning_enabled_static())
1193		__kernel_poison_pages(page, 1);
1194	else if (want_init_on_free())
1195		clear_highpage(page);
1196}
1197
1198void clear_or_poison_free_pages(void)
1199{
 
1200	struct memory_bitmap *bm = free_pages_map;
1201	unsigned long pfn;
1202
1203	if (WARN_ON(!(free_pages_map)))
1204		return;
1205
1206	if (page_poisoning_enabled() || want_init_on_free()) {
1207		memory_bm_position_reset(bm);
 
 
 
 
1208		pfn = memory_bm_next_pfn(bm);
1209		while (pfn != BM_END_OF_MAP) {
1210			if (pfn_valid(pfn))
1211				clear_or_poison_free_page(pfn_to_page(pfn));
1212
1213			pfn = memory_bm_next_pfn(bm);
1214		}
1215		memory_bm_position_reset(bm);
1216		pr_info("free pages cleared after restore\n");
1217	}
 
 
 
1218}
1219
1220/**
1221 * snapshot_additional_pages - Estimate the number of extra pages needed.
1222 * @zone: Memory zone to carry out the computation for.
1223 *
1224 * Estimate the number of additional pages needed for setting up a hibernation
1225 * image data structures for @zone (usually, the returned value is greater than
1226 * the exact number).
1227 */
1228unsigned int snapshot_additional_pages(struct zone *zone)
1229{
1230	unsigned int rtree, nodes;
1231
1232	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1233	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1234			      LINKED_PAGE_DATA_SIZE);
1235	while (nodes > 1) {
1236		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1237		rtree += nodes;
1238	}
1239
1240	return 2 * rtree;
1241}
1242
1243/*
1244 * Touch the watchdog for every WD_PAGE_COUNT pages.
1245 */
1246#define WD_PAGE_COUNT	(128*1024)
1247
1248static void mark_free_pages(struct zone *zone)
1249{
1250	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
1251	unsigned long flags;
1252	unsigned int order, t;
1253	struct page *page;
1254
1255	if (zone_is_empty(zone))
1256		return;
1257
1258	spin_lock_irqsave(&zone->lock, flags);
1259
1260	max_zone_pfn = zone_end_pfn(zone);
1261	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1262		if (pfn_valid(pfn)) {
1263			page = pfn_to_page(pfn);
1264
1265			if (!--page_count) {
1266				touch_nmi_watchdog();
1267				page_count = WD_PAGE_COUNT;
1268			}
1269
1270			if (page_zone(page) != zone)
1271				continue;
1272
1273			if (!swsusp_page_is_forbidden(page))
1274				swsusp_unset_page_free(page);
1275		}
1276
1277	for_each_migratetype_order(order, t) {
1278		list_for_each_entry(page,
1279				&zone->free_area[order].free_list[t], buddy_list) {
1280			unsigned long i;
1281
1282			pfn = page_to_pfn(page);
1283			for (i = 0; i < (1UL << order); i++) {
1284				if (!--page_count) {
1285					touch_nmi_watchdog();
1286					page_count = WD_PAGE_COUNT;
1287				}
1288				swsusp_set_page_free(pfn_to_page(pfn + i));
1289			}
1290		}
1291	}
1292	spin_unlock_irqrestore(&zone->lock, flags);
1293}
1294
1295#ifdef CONFIG_HIGHMEM
1296/**
1297 * count_free_highmem_pages - Compute the total number of free highmem pages.
1298 *
1299 * The returned number is system-wide.
1300 */
1301static unsigned int count_free_highmem_pages(void)
1302{
1303	struct zone *zone;
1304	unsigned int cnt = 0;
1305
1306	for_each_populated_zone(zone)
1307		if (is_highmem(zone))
1308			cnt += zone_page_state(zone, NR_FREE_PAGES);
1309
1310	return cnt;
1311}
1312
1313/**
1314 * saveable_highmem_page - Check if a highmem page is saveable.
1315 *
1316 * Determine whether a highmem page should be included in a hibernation image.
1317 *
1318 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1319 * and it isn't part of a free chunk of pages.
1320 */
1321static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1322{
1323	struct page *page;
1324
1325	if (!pfn_valid(pfn))
1326		return NULL;
1327
1328	page = pfn_to_online_page(pfn);
1329	if (!page || page_zone(page) != zone)
1330		return NULL;
1331
1332	BUG_ON(!PageHighMem(page));
1333
1334	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
1335		return NULL;
1336
1337	if (PageReserved(page) || PageOffline(page))
1338		return NULL;
1339
1340	if (page_is_guard(page))
1341		return NULL;
1342
1343	return page;
1344}
1345
1346/**
1347 * count_highmem_pages - Compute the total number of saveable highmem pages.
1348 */
1349static unsigned int count_highmem_pages(void)
1350{
1351	struct zone *zone;
1352	unsigned int n = 0;
1353
1354	for_each_populated_zone(zone) {
1355		unsigned long pfn, max_zone_pfn;
1356
1357		if (!is_highmem(zone))
1358			continue;
1359
1360		mark_free_pages(zone);
1361		max_zone_pfn = zone_end_pfn(zone);
1362		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1363			if (saveable_highmem_page(zone, pfn))
1364				n++;
1365	}
1366	return n;
1367}
1368#else
1369static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1370{
1371	return NULL;
1372}
1373#endif /* CONFIG_HIGHMEM */
1374
1375/**
1376 * saveable_page - Check if the given page is saveable.
1377 *
1378 * Determine whether a non-highmem page should be included in a hibernation
1379 * image.
1380 *
1381 * We should save the page if it isn't Nosave, and is not in the range
1382 * of pages statically defined as 'unsaveable', and it isn't part of
1383 * a free chunk of pages.
1384 */
1385static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1386{
1387	struct page *page;
1388
1389	if (!pfn_valid(pfn))
1390		return NULL;
1391
1392	page = pfn_to_online_page(pfn);
1393	if (!page || page_zone(page) != zone)
1394		return NULL;
1395
1396	BUG_ON(PageHighMem(page));
1397
1398	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1399		return NULL;
1400
1401	if (PageOffline(page))
1402		return NULL;
1403
1404	if (PageReserved(page)
1405	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1406		return NULL;
1407
1408	if (page_is_guard(page))
1409		return NULL;
1410
1411	return page;
1412}
1413
1414/**
1415 * count_data_pages - Compute the total number of saveable non-highmem pages.
1416 */
1417static unsigned int count_data_pages(void)
1418{
1419	struct zone *zone;
1420	unsigned long pfn, max_zone_pfn;
1421	unsigned int n = 0;
1422
1423	for_each_populated_zone(zone) {
1424		if (is_highmem(zone))
1425			continue;
1426
1427		mark_free_pages(zone);
1428		max_zone_pfn = zone_end_pfn(zone);
1429		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1430			if (saveable_page(zone, pfn))
1431				n++;
1432	}
1433	return n;
1434}
1435
1436/*
1437 * This is needed, because copy_page and memcpy are not usable for copying
1438 * task structs. Returns true if the page was filled with only zeros,
1439 * otherwise false.
1440 */
1441static inline bool do_copy_page(long *dst, long *src)
1442{
1443	long z = 0;
1444	int n;
1445
1446	for (n = PAGE_SIZE / sizeof(long); n; n--) {
1447		z |= *src;
1448		*dst++ = *src++;
1449	}
1450	return !z;
1451}
1452
1453/**
1454 * safe_copy_page - Copy a page in a safe way.
1455 *
1456 * Check if the page we are going to copy is marked as present in the kernel
1457 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1458 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1459 * always returns 'true'. Returns true if the page was entirely composed of
1460 * zeros, otherwise it will return false.
1461 */
1462static bool safe_copy_page(void *dst, struct page *s_page)
1463{
1464	bool zeros_only;
1465
1466	if (kernel_page_present(s_page)) {
1467		zeros_only = do_copy_page(dst, page_address(s_page));
1468	} else {
1469		hibernate_map_page(s_page);
1470		zeros_only = do_copy_page(dst, page_address(s_page));
1471		hibernate_unmap_page(s_page);
1472	}
1473	return zeros_only;
1474}
1475
1476#ifdef CONFIG_HIGHMEM
1477static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1478{
1479	return is_highmem(zone) ?
1480		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1481}
1482
1483static bool copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1484{
1485	struct page *s_page, *d_page;
1486	void *src, *dst;
1487	bool zeros_only;
1488
1489	s_page = pfn_to_page(src_pfn);
1490	d_page = pfn_to_page(dst_pfn);
1491	if (PageHighMem(s_page)) {
1492		src = kmap_local_page(s_page);
1493		dst = kmap_local_page(d_page);
1494		zeros_only = do_copy_page(dst, src);
1495		kunmap_local(dst);
1496		kunmap_local(src);
1497	} else {
1498		if (PageHighMem(d_page)) {
1499			/*
1500			 * The page pointed to by src may contain some kernel
1501			 * data modified by kmap_atomic()
1502			 */
1503			zeros_only = safe_copy_page(buffer, s_page);
1504			dst = kmap_local_page(d_page);
1505			copy_page(dst, buffer);
1506			kunmap_local(dst);
1507		} else {
1508			zeros_only = safe_copy_page(page_address(d_page), s_page);
1509		}
1510	}
1511	return zeros_only;
1512}
1513#else
1514#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1515
1516static inline int copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1517{
1518	return safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1519				pfn_to_page(src_pfn));
1520}
1521#endif /* CONFIG_HIGHMEM */
1522
1523/*
1524 * Copy data pages will copy all pages into pages pulled from the copy_bm.
1525 * If a page was entirely filled with zeros it will be marked in the zero_bm.
1526 *
1527 * Returns the number of pages copied.
1528 */
1529static unsigned long copy_data_pages(struct memory_bitmap *copy_bm,
1530			    struct memory_bitmap *orig_bm,
1531			    struct memory_bitmap *zero_bm)
1532{
1533	unsigned long copied_pages = 0;
1534	struct zone *zone;
1535	unsigned long pfn, copy_pfn;
1536
1537	for_each_populated_zone(zone) {
1538		unsigned long max_zone_pfn;
1539
1540		mark_free_pages(zone);
1541		max_zone_pfn = zone_end_pfn(zone);
1542		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1543			if (page_is_saveable(zone, pfn))
1544				memory_bm_set_bit(orig_bm, pfn);
1545	}
1546	memory_bm_position_reset(orig_bm);
1547	memory_bm_position_reset(copy_bm);
1548	copy_pfn = memory_bm_next_pfn(copy_bm);
1549	for(;;) {
1550		pfn = memory_bm_next_pfn(orig_bm);
1551		if (unlikely(pfn == BM_END_OF_MAP))
1552			break;
1553		if (copy_data_page(copy_pfn, pfn)) {
1554			memory_bm_set_bit(zero_bm, pfn);
1555			/* Use this copy_pfn for a page that is not full of zeros */
1556			continue;
1557		}
1558		copied_pages++;
1559		copy_pfn = memory_bm_next_pfn(copy_bm);
1560	}
1561	return copied_pages;
1562}
1563
1564/* Total number of image pages */
1565static unsigned int nr_copy_pages;
1566/* Number of pages needed for saving the original pfns of the image pages */
1567static unsigned int nr_meta_pages;
1568/* Number of zero pages */
1569static unsigned int nr_zero_pages;
1570
1571/*
1572 * Numbers of normal and highmem page frames allocated for hibernation image
1573 * before suspending devices.
1574 */
1575static unsigned int alloc_normal, alloc_highmem;
1576/*
1577 * Memory bitmap used for marking saveable pages (during hibernation) or
1578 * hibernation image pages (during restore)
1579 */
1580static struct memory_bitmap orig_bm;
1581/*
1582 * Memory bitmap used during hibernation for marking allocated page frames that
1583 * will contain copies of saveable pages.  During restore it is initially used
1584 * for marking hibernation image pages, but then the set bits from it are
1585 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1586 * used for marking "safe" highmem pages, but it has to be reinitialized for
1587 * this purpose.
1588 */
1589static struct memory_bitmap copy_bm;
1590
1591/* Memory bitmap which tracks which saveable pages were zero filled. */
1592static struct memory_bitmap zero_bm;
1593
1594/**
1595 * swsusp_free - Free pages allocated for hibernation image.
1596 *
1597 * Image pages are allocated before snapshot creation, so they need to be
1598 * released after resume.
1599 */
1600void swsusp_free(void)
1601{
1602	unsigned long fb_pfn, fr_pfn;
1603
1604	if (!forbidden_pages_map || !free_pages_map)
1605		goto out;
1606
1607	memory_bm_position_reset(forbidden_pages_map);
1608	memory_bm_position_reset(free_pages_map);
1609
1610loop:
1611	fr_pfn = memory_bm_next_pfn(free_pages_map);
1612	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1613
1614	/*
1615	 * Find the next bit set in both bitmaps. This is guaranteed to
1616	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1617	 */
1618	do {
1619		if (fb_pfn < fr_pfn)
1620			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1621		if (fr_pfn < fb_pfn)
1622			fr_pfn = memory_bm_next_pfn(free_pages_map);
1623	} while (fb_pfn != fr_pfn);
1624
1625	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1626		struct page *page = pfn_to_page(fr_pfn);
1627
1628		memory_bm_clear_current(forbidden_pages_map);
1629		memory_bm_clear_current(free_pages_map);
1630		hibernate_restore_unprotect_page(page_address(page));
1631		__free_page(page);
1632		goto loop;
1633	}
1634
1635out:
1636	nr_copy_pages = 0;
1637	nr_meta_pages = 0;
1638	nr_zero_pages = 0;
1639	restore_pblist = NULL;
1640	buffer = NULL;
1641	alloc_normal = 0;
1642	alloc_highmem = 0;
1643	hibernate_restore_protection_end();
1644}
1645
1646/* Helper functions used for the shrinking of memory. */
1647
1648#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1649
1650/**
1651 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1652 * @nr_pages: Number of page frames to allocate.
1653 * @mask: GFP flags to use for the allocation.
1654 *
1655 * Return value: Number of page frames actually allocated
1656 */
1657static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1658{
1659	unsigned long nr_alloc = 0;
1660
1661	while (nr_pages > 0) {
1662		struct page *page;
1663
1664		page = alloc_image_page(mask);
1665		if (!page)
1666			break;
1667		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1668		if (PageHighMem(page))
1669			alloc_highmem++;
1670		else
1671			alloc_normal++;
1672		nr_pages--;
1673		nr_alloc++;
1674	}
1675
1676	return nr_alloc;
1677}
1678
1679static unsigned long preallocate_image_memory(unsigned long nr_pages,
1680					      unsigned long avail_normal)
1681{
1682	unsigned long alloc;
1683
1684	if (avail_normal <= alloc_normal)
1685		return 0;
1686
1687	alloc = avail_normal - alloc_normal;
1688	if (nr_pages < alloc)
1689		alloc = nr_pages;
1690
1691	return preallocate_image_pages(alloc, GFP_IMAGE);
1692}
1693
1694#ifdef CONFIG_HIGHMEM
1695static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1696{
1697	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1698}
1699
1700/**
1701 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1702 */
1703static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1704{
1705	return div64_u64(x * multiplier, base);
 
 
1706}
1707
1708static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1709						  unsigned long highmem,
1710						  unsigned long total)
1711{
1712	unsigned long alloc = __fraction(nr_pages, highmem, total);
1713
1714	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1715}
1716#else /* CONFIG_HIGHMEM */
1717static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1718{
1719	return 0;
1720}
1721
1722static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1723							 unsigned long highmem,
1724							 unsigned long total)
1725{
1726	return 0;
1727}
1728#endif /* CONFIG_HIGHMEM */
1729
1730/**
1731 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1732 */
1733static unsigned long free_unnecessary_pages(void)
1734{
1735	unsigned long save, to_free_normal, to_free_highmem, free;
1736
1737	save = count_data_pages();
1738	if (alloc_normal >= save) {
1739		to_free_normal = alloc_normal - save;
1740		save = 0;
1741	} else {
1742		to_free_normal = 0;
1743		save -= alloc_normal;
1744	}
1745	save += count_highmem_pages();
1746	if (alloc_highmem >= save) {
1747		to_free_highmem = alloc_highmem - save;
1748	} else {
1749		to_free_highmem = 0;
1750		save -= alloc_highmem;
1751		if (to_free_normal > save)
1752			to_free_normal -= save;
1753		else
1754			to_free_normal = 0;
1755	}
1756	free = to_free_normal + to_free_highmem;
1757
1758	memory_bm_position_reset(&copy_bm);
1759
1760	while (to_free_normal > 0 || to_free_highmem > 0) {
1761		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1762		struct page *page = pfn_to_page(pfn);
1763
1764		if (PageHighMem(page)) {
1765			if (!to_free_highmem)
1766				continue;
1767			to_free_highmem--;
1768			alloc_highmem--;
1769		} else {
1770			if (!to_free_normal)
1771				continue;
1772			to_free_normal--;
1773			alloc_normal--;
1774		}
1775		memory_bm_clear_bit(&copy_bm, pfn);
1776		swsusp_unset_page_forbidden(page);
1777		swsusp_unset_page_free(page);
1778		__free_page(page);
1779	}
1780
1781	return free;
1782}
1783
1784/**
1785 * minimum_image_size - Estimate the minimum acceptable size of an image.
1786 * @saveable: Number of saveable pages in the system.
1787 *
1788 * We want to avoid attempting to free too much memory too hard, so estimate the
1789 * minimum acceptable size of a hibernation image to use as the lower limit for
1790 * preallocating memory.
1791 *
1792 * We assume that the minimum image size should be proportional to
1793 *
1794 * [number of saveable pages] - [number of pages that can be freed in theory]
1795 *
1796 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1797 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1798 */
1799static unsigned long minimum_image_size(unsigned long saveable)
1800{
1801	unsigned long size;
1802
1803	size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
1804		+ global_node_page_state(NR_ACTIVE_ANON)
1805		+ global_node_page_state(NR_INACTIVE_ANON)
1806		+ global_node_page_state(NR_ACTIVE_FILE)
1807		+ global_node_page_state(NR_INACTIVE_FILE);
1808
1809	return saveable <= size ? 0 : saveable - size;
1810}
1811
1812/**
1813 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1814 *
1815 * To create a hibernation image it is necessary to make a copy of every page
1816 * frame in use.  We also need a number of page frames to be free during
1817 * hibernation for allocations made while saving the image and for device
1818 * drivers, in case they need to allocate memory from their hibernation
1819 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1820 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1821 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1822 * total number of available page frames and allocate at least
1823 *
1824 * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2
1825 *  - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1826 *
1827 * of them, which corresponds to the maximum size of a hibernation image.
1828 *
1829 * If image_size is set below the number following from the above formula,
1830 * the preallocation of memory is continued until the total number of saveable
1831 * pages in the system is below the requested image size or the minimum
1832 * acceptable image size returned by minimum_image_size(), whichever is greater.
1833 */
1834int hibernate_preallocate_memory(void)
1835{
1836	struct zone *zone;
1837	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1838	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1839	ktime_t start, stop;
1840	int error;
1841
1842	pr_info("Preallocating image memory\n");
1843	start = ktime_get();
1844
1845	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1846	if (error) {
1847		pr_err("Cannot allocate original bitmap\n");
1848		goto err_out;
1849	}
1850
1851	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1852	if (error) {
1853		pr_err("Cannot allocate copy bitmap\n");
1854		goto err_out;
1855	}
1856
1857	error = memory_bm_create(&zero_bm, GFP_IMAGE, PG_ANY);
1858	if (error) {
1859		pr_err("Cannot allocate zero bitmap\n");
1860		goto err_out;
1861	}
1862
1863	alloc_normal = 0;
1864	alloc_highmem = 0;
1865	nr_zero_pages = 0;
1866
1867	/* Count the number of saveable data pages. */
1868	save_highmem = count_highmem_pages();
1869	saveable = count_data_pages();
1870
1871	/*
1872	 * Compute the total number of page frames we can use (count) and the
1873	 * number of pages needed for image metadata (size).
1874	 */
1875	count = saveable;
1876	saveable += save_highmem;
1877	highmem = save_highmem;
1878	size = 0;
1879	for_each_populated_zone(zone) {
1880		size += snapshot_additional_pages(zone);
1881		if (is_highmem(zone))
1882			highmem += zone_page_state(zone, NR_FREE_PAGES);
1883		else
1884			count += zone_page_state(zone, NR_FREE_PAGES);
1885	}
1886	avail_normal = count;
1887	count += highmem;
1888	count -= totalreserve_pages;
1889
 
 
 
1890	/* Compute the maximum number of saveable pages to leave in memory. */
1891	max_size = (count - (size + PAGES_FOR_IO)) / 2
1892			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1893	/* Compute the desired number of image pages specified by image_size. */
1894	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1895	if (size > max_size)
1896		size = max_size;
1897	/*
1898	 * If the desired number of image pages is at least as large as the
1899	 * current number of saveable pages in memory, allocate page frames for
1900	 * the image and we're done.
1901	 */
1902	if (size >= saveable) {
1903		pages = preallocate_image_highmem(save_highmem);
1904		pages += preallocate_image_memory(saveable - pages, avail_normal);
1905		goto out;
1906	}
1907
1908	/* Estimate the minimum size of the image. */
1909	pages = minimum_image_size(saveable);
1910	/*
1911	 * To avoid excessive pressure on the normal zone, leave room in it to
1912	 * accommodate an image of the minimum size (unless it's already too
1913	 * small, in which case don't preallocate pages from it at all).
1914	 */
1915	if (avail_normal > pages)
1916		avail_normal -= pages;
1917	else
1918		avail_normal = 0;
1919	if (size < pages)
1920		size = min_t(unsigned long, pages, max_size);
1921
1922	/*
1923	 * Let the memory management subsystem know that we're going to need a
1924	 * large number of page frames to allocate and make it free some memory.
1925	 * NOTE: If this is not done, performance will be hurt badly in some
1926	 * test cases.
1927	 */
1928	shrink_all_memory(saveable - size);
1929
1930	/*
1931	 * The number of saveable pages in memory was too high, so apply some
1932	 * pressure to decrease it.  First, make room for the largest possible
1933	 * image and fail if that doesn't work.  Next, try to decrease the size
1934	 * of the image as much as indicated by 'size' using allocations from
1935	 * highmem and non-highmem zones separately.
1936	 */
1937	pages_highmem = preallocate_image_highmem(highmem / 2);
1938	alloc = count - max_size;
1939	if (alloc > pages_highmem)
1940		alloc -= pages_highmem;
1941	else
1942		alloc = 0;
1943	pages = preallocate_image_memory(alloc, avail_normal);
1944	if (pages < alloc) {
1945		/* We have exhausted non-highmem pages, try highmem. */
1946		alloc -= pages;
1947		pages += pages_highmem;
1948		pages_highmem = preallocate_image_highmem(alloc);
1949		if (pages_highmem < alloc) {
1950			pr_err("Image allocation is %lu pages short\n",
1951				alloc - pages_highmem);
1952			goto err_out;
1953		}
1954		pages += pages_highmem;
1955		/*
1956		 * size is the desired number of saveable pages to leave in
1957		 * memory, so try to preallocate (all memory - size) pages.
1958		 */
1959		alloc = (count - pages) - size;
1960		pages += preallocate_image_highmem(alloc);
1961	} else {
1962		/*
1963		 * There are approximately max_size saveable pages at this point
1964		 * and we want to reduce this number down to size.
1965		 */
1966		alloc = max_size - size;
1967		size = preallocate_highmem_fraction(alloc, highmem, count);
1968		pages_highmem += size;
1969		alloc -= size;
1970		size = preallocate_image_memory(alloc, avail_normal);
1971		pages_highmem += preallocate_image_highmem(alloc - size);
1972		pages += pages_highmem + size;
1973	}
1974
1975	/*
1976	 * We only need as many page frames for the image as there are saveable
1977	 * pages in memory, but we have allocated more.  Release the excessive
1978	 * ones now.
1979	 */
1980	pages -= free_unnecessary_pages();
1981
1982 out:
1983	stop = ktime_get();
1984	pr_info("Allocated %lu pages for snapshot\n", pages);
1985	swsusp_show_speed(start, stop, pages, "Allocated");
1986
1987	return 0;
1988
1989 err_out:
 
1990	swsusp_free();
1991	return -ENOMEM;
1992}
1993
1994#ifdef CONFIG_HIGHMEM
1995/**
1996 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1997 *
1998 * Compute the number of non-highmem pages that will be necessary for creating
1999 * copies of highmem pages.
2000 */
2001static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
2002{
2003	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
2004
2005	if (free_highmem >= nr_highmem)
2006		nr_highmem = 0;
2007	else
2008		nr_highmem -= free_highmem;
2009
2010	return nr_highmem;
2011}
2012#else
2013static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
2014#endif /* CONFIG_HIGHMEM */
2015
2016/**
2017 * enough_free_mem - Check if there is enough free memory for the image.
2018 */
2019static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
2020{
2021	struct zone *zone;
2022	unsigned int free = alloc_normal;
2023
2024	for_each_populated_zone(zone)
2025		if (!is_highmem(zone))
2026			free += zone_page_state(zone, NR_FREE_PAGES);
2027
2028	nr_pages += count_pages_for_highmem(nr_highmem);
2029	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
2030		 nr_pages, PAGES_FOR_IO, free);
2031
2032	return free > nr_pages + PAGES_FOR_IO;
2033}
2034
2035#ifdef CONFIG_HIGHMEM
2036/**
2037 * get_highmem_buffer - Allocate a buffer for highmem pages.
2038 *
2039 * If there are some highmem pages in the hibernation image, we may need a
2040 * buffer to copy them and/or load their data.
2041 */
2042static inline int get_highmem_buffer(int safe_needed)
2043{
2044	buffer = get_image_page(GFP_ATOMIC, safe_needed);
2045	return buffer ? 0 : -ENOMEM;
2046}
2047
2048/**
2049 * alloc_highmem_pages - Allocate some highmem pages for the image.
2050 *
2051 * Try to allocate as many pages as needed, but if the number of free highmem
2052 * pages is less than that, allocate them all.
2053 */
2054static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
2055					       unsigned int nr_highmem)
2056{
2057	unsigned int to_alloc = count_free_highmem_pages();
2058
2059	if (to_alloc > nr_highmem)
2060		to_alloc = nr_highmem;
2061
2062	nr_highmem -= to_alloc;
2063	while (to_alloc-- > 0) {
2064		struct page *page;
2065
2066		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
2067		memory_bm_set_bit(bm, page_to_pfn(page));
2068	}
2069	return nr_highmem;
2070}
2071#else
2072static inline int get_highmem_buffer(int safe_needed) { return 0; }
2073
2074static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
2075					       unsigned int n) { return 0; }
2076#endif /* CONFIG_HIGHMEM */
2077
2078/**
2079 * swsusp_alloc - Allocate memory for hibernation image.
2080 *
2081 * We first try to allocate as many highmem pages as there are
2082 * saveable highmem pages in the system.  If that fails, we allocate
2083 * non-highmem pages for the copies of the remaining highmem ones.
2084 *
2085 * In this approach it is likely that the copies of highmem pages will
2086 * also be located in the high memory, because of the way in which
2087 * copy_data_pages() works.
2088 */
2089static int swsusp_alloc(struct memory_bitmap *copy_bm,
2090			unsigned int nr_pages, unsigned int nr_highmem)
2091{
2092	if (nr_highmem > 0) {
2093		if (get_highmem_buffer(PG_ANY))
2094			goto err_out;
2095		if (nr_highmem > alloc_highmem) {
2096			nr_highmem -= alloc_highmem;
2097			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
2098		}
2099	}
2100	if (nr_pages > alloc_normal) {
2101		nr_pages -= alloc_normal;
2102		while (nr_pages-- > 0) {
2103			struct page *page;
2104
2105			page = alloc_image_page(GFP_ATOMIC);
2106			if (!page)
2107				goto err_out;
2108			memory_bm_set_bit(copy_bm, page_to_pfn(page));
2109		}
2110	}
2111
2112	return 0;
2113
2114 err_out:
2115	swsusp_free();
2116	return -ENOMEM;
2117}
2118
2119asmlinkage __visible int swsusp_save(void)
2120{
2121	unsigned int nr_pages, nr_highmem;
2122
2123	pr_info("Creating image:\n");
2124
2125	drain_local_pages(NULL);
2126	nr_pages = count_data_pages();
2127	nr_highmem = count_highmem_pages();
2128	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
2129
2130	if (!enough_free_mem(nr_pages, nr_highmem)) {
2131		pr_err("Not enough free memory\n");
2132		return -ENOMEM;
2133	}
2134
2135	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
2136		pr_err("Memory allocation failed\n");
2137		return -ENOMEM;
2138	}
2139
2140	/*
2141	 * During allocating of suspend pagedir, new cold pages may appear.
2142	 * Kill them.
2143	 */
2144	drain_local_pages(NULL);
2145	nr_copy_pages = copy_data_pages(&copy_bm, &orig_bm, &zero_bm);
2146
2147	/*
2148	 * End of critical section. From now on, we can write to memory,
2149	 * but we should not touch disk. This specially means we must _not_
2150	 * touch swap space! Except we must write out our image of course.
2151	 */
 
2152	nr_pages += nr_highmem;
2153	/* We don't actually copy the zero pages */
2154	nr_zero_pages = nr_pages - nr_copy_pages;
2155	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2156
2157	pr_info("Image created (%d pages copied, %d zero pages)\n", nr_copy_pages, nr_zero_pages);
2158
2159	return 0;
2160}
2161
2162#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2163static int init_header_complete(struct swsusp_info *info)
2164{
2165	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2166	info->version_code = LINUX_VERSION_CODE;
2167	return 0;
2168}
2169
2170static const char *check_image_kernel(struct swsusp_info *info)
2171{
2172	if (info->version_code != LINUX_VERSION_CODE)
2173		return "kernel version";
2174	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2175		return "system type";
2176	if (strcmp(info->uts.release,init_utsname()->release))
2177		return "kernel release";
2178	if (strcmp(info->uts.version,init_utsname()->version))
2179		return "version";
2180	if (strcmp(info->uts.machine,init_utsname()->machine))
2181		return "machine";
2182	return NULL;
2183}
2184#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2185
2186unsigned long snapshot_get_image_size(void)
2187{
2188	return nr_copy_pages + nr_meta_pages + 1;
2189}
2190
2191static int init_header(struct swsusp_info *info)
2192{
2193	memset(info, 0, sizeof(struct swsusp_info));
2194	info->num_physpages = get_num_physpages();
2195	info->image_pages = nr_copy_pages;
2196	info->pages = snapshot_get_image_size();
2197	info->size = info->pages;
2198	info->size <<= PAGE_SHIFT;
2199	return init_header_complete(info);
2200}
2201
2202#define ENCODED_PFN_ZERO_FLAG ((unsigned long)1 << (BITS_PER_LONG - 1))
2203#define ENCODED_PFN_MASK (~ENCODED_PFN_ZERO_FLAG)
2204
2205/**
2206 * pack_pfns - Prepare PFNs for saving.
2207 * @bm: Memory bitmap.
2208 * @buf: Memory buffer to store the PFNs in.
2209 * @zero_bm: Memory bitmap containing PFNs of zero pages.
2210 *
2211 * PFNs corresponding to set bits in @bm are stored in the area of memory
2212 * pointed to by @buf (1 page at a time). Pages which were filled with only
2213 * zeros will have the highest bit set in the packed format to distinguish
2214 * them from PFNs which will be contained in the image file.
2215 */
2216static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm,
2217		struct memory_bitmap *zero_bm)
2218{
2219	int j;
2220
2221	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2222		buf[j] = memory_bm_next_pfn(bm);
2223		if (unlikely(buf[j] == BM_END_OF_MAP))
2224			break;
2225		if (memory_bm_test_bit(zero_bm, buf[j]))
2226			buf[j] |= ENCODED_PFN_ZERO_FLAG;
2227	}
2228}
2229
2230/**
2231 * snapshot_read_next - Get the address to read the next image page from.
2232 * @handle: Snapshot handle to be used for the reading.
2233 *
2234 * On the first call, @handle should point to a zeroed snapshot_handle
2235 * structure.  The structure gets populated then and a pointer to it should be
2236 * passed to this function every next time.
2237 *
2238 * On success, the function returns a positive number.  Then, the caller
2239 * is allowed to read up to the returned number of bytes from the memory
2240 * location computed by the data_of() macro.
2241 *
2242 * The function returns 0 to indicate the end of the data stream condition,
2243 * and negative numbers are returned on errors.  If that happens, the structure
2244 * pointed to by @handle is not updated and should not be used any more.
2245 */
2246int snapshot_read_next(struct snapshot_handle *handle)
2247{
2248	if (handle->cur > nr_meta_pages + nr_copy_pages)
2249		return 0;
2250
2251	if (!buffer) {
2252		/* This makes the buffer be freed by swsusp_free() */
2253		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2254		if (!buffer)
2255			return -ENOMEM;
2256	}
2257	if (!handle->cur) {
2258		int error;
2259
2260		error = init_header((struct swsusp_info *)buffer);
2261		if (error)
2262			return error;
2263		handle->buffer = buffer;
2264		memory_bm_position_reset(&orig_bm);
2265		memory_bm_position_reset(&copy_bm);
2266	} else if (handle->cur <= nr_meta_pages) {
2267		clear_page(buffer);
2268		pack_pfns(buffer, &orig_bm, &zero_bm);
2269	} else {
2270		struct page *page;
2271
2272		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2273		if (PageHighMem(page)) {
2274			/*
2275			 * Highmem pages are copied to the buffer,
2276			 * because we can't return with a kmapped
2277			 * highmem page (we may not be called again).
2278			 */
2279			void *kaddr;
2280
2281			kaddr = kmap_atomic(page);
2282			copy_page(buffer, kaddr);
2283			kunmap_atomic(kaddr);
2284			handle->buffer = buffer;
2285		} else {
2286			handle->buffer = page_address(page);
2287		}
2288	}
2289	handle->cur++;
2290	return PAGE_SIZE;
2291}
2292
2293static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2294				    struct memory_bitmap *src)
2295{
2296	unsigned long pfn;
2297
2298	memory_bm_position_reset(src);
2299	pfn = memory_bm_next_pfn(src);
2300	while (pfn != BM_END_OF_MAP) {
2301		memory_bm_set_bit(dst, pfn);
2302		pfn = memory_bm_next_pfn(src);
2303	}
2304}
2305
2306/**
2307 * mark_unsafe_pages - Mark pages that were used before hibernation.
2308 *
2309 * Mark the pages that cannot be used for storing the image during restoration,
2310 * because they conflict with the pages that had been used before hibernation.
2311 */
2312static void mark_unsafe_pages(struct memory_bitmap *bm)
2313{
2314	unsigned long pfn;
2315
2316	/* Clear the "free"/"unsafe" bit for all PFNs */
2317	memory_bm_position_reset(free_pages_map);
2318	pfn = memory_bm_next_pfn(free_pages_map);
2319	while (pfn != BM_END_OF_MAP) {
2320		memory_bm_clear_current(free_pages_map);
2321		pfn = memory_bm_next_pfn(free_pages_map);
2322	}
2323
2324	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2325	duplicate_memory_bitmap(free_pages_map, bm);
2326
2327	allocated_unsafe_pages = 0;
2328}
2329
2330static int check_header(struct swsusp_info *info)
2331{
2332	const char *reason;
2333
2334	reason = check_image_kernel(info);
2335	if (!reason && info->num_physpages != get_num_physpages())
2336		reason = "memory size";
2337	if (reason) {
2338		pr_err("Image mismatch: %s\n", reason);
2339		return -EPERM;
2340	}
2341	return 0;
2342}
2343
2344/**
2345 * load_header - Check the image header and copy the data from it.
2346 */
2347static int load_header(struct swsusp_info *info)
2348{
2349	int error;
2350
2351	restore_pblist = NULL;
2352	error = check_header(info);
2353	if (!error) {
2354		nr_copy_pages = info->image_pages;
2355		nr_meta_pages = info->pages - info->image_pages - 1;
2356	}
2357	return error;
2358}
2359
2360/**
2361 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2362 * @bm: Memory bitmap.
2363 * @buf: Area of memory containing the PFNs.
2364 * @zero_bm: Memory bitmap with the zero PFNs marked.
2365 *
2366 * For each element of the array pointed to by @buf (1 page at a time), set the
2367 * corresponding bit in @bm. If the page was originally populated with only
2368 * zeros then a corresponding bit will also be set in @zero_bm.
2369 */
2370static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm,
2371		struct memory_bitmap *zero_bm)
2372{
2373	unsigned long decoded_pfn;
2374        bool zero;
2375	int j;
2376
2377	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2378		if (unlikely(buf[j] == BM_END_OF_MAP))
2379			break;
2380
2381		zero = !!(buf[j] & ENCODED_PFN_ZERO_FLAG);
2382		decoded_pfn = buf[j] & ENCODED_PFN_MASK;
2383		if (pfn_valid(decoded_pfn) && memory_bm_pfn_present(bm, decoded_pfn)) {
2384			memory_bm_set_bit(bm, decoded_pfn);
2385			if (zero) {
2386				memory_bm_set_bit(zero_bm, decoded_pfn);
2387				nr_zero_pages++;
2388			}
2389		} else {
2390			if (!pfn_valid(decoded_pfn))
2391				pr_err(FW_BUG "Memory map mismatch at 0x%llx after hibernation\n",
2392				       (unsigned long long)PFN_PHYS(decoded_pfn));
2393			return -EFAULT;
2394		}
2395	}
2396
2397	return 0;
2398}
2399
2400#ifdef CONFIG_HIGHMEM
2401/*
2402 * struct highmem_pbe is used for creating the list of highmem pages that
2403 * should be restored atomically during the resume from disk, because the page
2404 * frames they have occupied before the suspend are in use.
2405 */
2406struct highmem_pbe {
2407	struct page *copy_page;	/* data is here now */
2408	struct page *orig_page;	/* data was here before the suspend */
2409	struct highmem_pbe *next;
2410};
2411
2412/*
2413 * List of highmem PBEs needed for restoring the highmem pages that were
2414 * allocated before the suspend and included in the suspend image, but have
2415 * also been allocated by the "resume" kernel, so their contents cannot be
2416 * written directly to their "original" page frames.
2417 */
2418static struct highmem_pbe *highmem_pblist;
2419
2420/**
2421 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2422 * @bm: Memory bitmap.
2423 *
2424 * The bits in @bm that correspond to image pages are assumed to be set.
2425 */
2426static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2427{
2428	unsigned long pfn;
2429	unsigned int cnt = 0;
2430
2431	memory_bm_position_reset(bm);
2432	pfn = memory_bm_next_pfn(bm);
2433	while (pfn != BM_END_OF_MAP) {
2434		if (PageHighMem(pfn_to_page(pfn)))
2435			cnt++;
2436
2437		pfn = memory_bm_next_pfn(bm);
2438	}
2439	return cnt;
2440}
2441
2442static unsigned int safe_highmem_pages;
2443
2444static struct memory_bitmap *safe_highmem_bm;
2445
2446/**
2447 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2448 * @bm: Pointer to an uninitialized memory bitmap structure.
2449 * @nr_highmem_p: Pointer to the number of highmem image pages.
2450 *
2451 * Try to allocate as many highmem pages as there are highmem image pages
2452 * (@nr_highmem_p points to the variable containing the number of highmem image
2453 * pages).  The pages that are "safe" (ie. will not be overwritten when the
2454 * hibernation image is restored entirely) have the corresponding bits set in
2455 * @bm (it must be uninitialized).
2456 *
2457 * NOTE: This function should not be called if there are no highmem image pages.
2458 */
2459static int prepare_highmem_image(struct memory_bitmap *bm,
2460				 unsigned int *nr_highmem_p)
2461{
2462	unsigned int to_alloc;
2463
2464	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2465		return -ENOMEM;
2466
2467	if (get_highmem_buffer(PG_SAFE))
2468		return -ENOMEM;
2469
2470	to_alloc = count_free_highmem_pages();
2471	if (to_alloc > *nr_highmem_p)
2472		to_alloc = *nr_highmem_p;
2473	else
2474		*nr_highmem_p = to_alloc;
2475
2476	safe_highmem_pages = 0;
2477	while (to_alloc-- > 0) {
2478		struct page *page;
2479
2480		page = alloc_page(__GFP_HIGHMEM);
2481		if (!swsusp_page_is_free(page)) {
2482			/* The page is "safe", set its bit the bitmap */
2483			memory_bm_set_bit(bm, page_to_pfn(page));
2484			safe_highmem_pages++;
2485		}
2486		/* Mark the page as allocated */
2487		swsusp_set_page_forbidden(page);
2488		swsusp_set_page_free(page);
2489	}
2490	memory_bm_position_reset(bm);
2491	safe_highmem_bm = bm;
2492	return 0;
2493}
2494
2495static struct page *last_highmem_page;
2496
2497/**
2498 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2499 *
2500 * For a given highmem image page get a buffer that suspend_write_next() should
2501 * return to its caller to write to.
2502 *
2503 * If the page is to be saved to its "original" page frame or a copy of
2504 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2505 * the copy of the page is to be made in normal memory, so the address of
2506 * the copy is returned.
2507 *
2508 * If @buffer is returned, the caller of suspend_write_next() will write
2509 * the page's contents to @buffer, so they will have to be copied to the
2510 * right location on the next call to suspend_write_next() and it is done
2511 * with the help of copy_last_highmem_page().  For this purpose, if
2512 * @buffer is returned, @last_highmem_page is set to the page to which
2513 * the data will have to be copied from @buffer.
2514 */
2515static void *get_highmem_page_buffer(struct page *page,
2516				     struct chain_allocator *ca)
2517{
2518	struct highmem_pbe *pbe;
2519	void *kaddr;
2520
2521	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2522		/*
2523		 * We have allocated the "original" page frame and we can
2524		 * use it directly to store the loaded page.
2525		 */
2526		last_highmem_page = page;
2527		return buffer;
2528	}
2529	/*
2530	 * The "original" page frame has not been allocated and we have to
2531	 * use a "safe" page frame to store the loaded page.
2532	 */
2533	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2534	if (!pbe) {
2535		swsusp_free();
2536		return ERR_PTR(-ENOMEM);
2537	}
2538	pbe->orig_page = page;
2539	if (safe_highmem_pages > 0) {
2540		struct page *tmp;
2541
2542		/* Copy of the page will be stored in high memory */
2543		kaddr = buffer;
2544		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2545		safe_highmem_pages--;
2546		last_highmem_page = tmp;
2547		pbe->copy_page = tmp;
2548	} else {
2549		/* Copy of the page will be stored in normal memory */
2550		kaddr = __get_safe_page(ca->gfp_mask);
2551		if (!kaddr)
2552			return ERR_PTR(-ENOMEM);
2553		pbe->copy_page = virt_to_page(kaddr);
2554	}
2555	pbe->next = highmem_pblist;
2556	highmem_pblist = pbe;
2557	return kaddr;
2558}
2559
2560/**
2561 * copy_last_highmem_page - Copy most the most recent highmem image page.
2562 *
2563 * Copy the contents of a highmem image from @buffer, where the caller of
2564 * snapshot_write_next() has stored them, to the right location represented by
2565 * @last_highmem_page .
2566 */
2567static void copy_last_highmem_page(void)
2568{
2569	if (last_highmem_page) {
2570		void *dst;
2571
2572		dst = kmap_atomic(last_highmem_page);
2573		copy_page(dst, buffer);
2574		kunmap_atomic(dst);
2575		last_highmem_page = NULL;
2576	}
2577}
2578
2579static inline int last_highmem_page_copied(void)
2580{
2581	return !last_highmem_page;
2582}
2583
2584static inline void free_highmem_data(void)
2585{
2586	if (safe_highmem_bm)
2587		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2588
2589	if (buffer)
2590		free_image_page(buffer, PG_UNSAFE_CLEAR);
2591}
2592#else
2593static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2594
2595static inline int prepare_highmem_image(struct memory_bitmap *bm,
2596					unsigned int *nr_highmem_p) { return 0; }
2597
2598static inline void *get_highmem_page_buffer(struct page *page,
2599					    struct chain_allocator *ca)
2600{
2601	return ERR_PTR(-EINVAL);
2602}
2603
2604static inline void copy_last_highmem_page(void) {}
2605static inline int last_highmem_page_copied(void) { return 1; }
2606static inline void free_highmem_data(void) {}
2607#endif /* CONFIG_HIGHMEM */
2608
2609#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2610
2611/**
2612 * prepare_image - Make room for loading hibernation image.
2613 * @new_bm: Uninitialized memory bitmap structure.
2614 * @bm: Memory bitmap with unsafe pages marked.
2615 * @zero_bm: Memory bitmap containing the zero pages.
2616 *
2617 * Use @bm to mark the pages that will be overwritten in the process of
2618 * restoring the system memory state from the suspend image ("unsafe" pages)
2619 * and allocate memory for the image.
2620 *
2621 * The idea is to allocate a new memory bitmap first and then allocate
2622 * as many pages as needed for image data, but without specifying what those
2623 * pages will be used for just yet.  Instead, we mark them all as allocated and
2624 * create a lists of "safe" pages to be used later.  On systems with high
2625 * memory a list of "safe" highmem pages is created too.
2626 *
2627 * Because it was not known which pages were unsafe when @zero_bm was created,
2628 * make a copy of it and recreate it within safe pages.
2629 */
2630static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm,
2631		struct memory_bitmap *zero_bm)
2632{
2633	unsigned int nr_pages, nr_highmem;
2634	struct memory_bitmap tmp;
2635	struct linked_page *lp;
2636	int error;
2637
2638	/* If there is no highmem, the buffer will not be necessary */
2639	free_image_page(buffer, PG_UNSAFE_CLEAR);
2640	buffer = NULL;
2641
2642	nr_highmem = count_highmem_image_pages(bm);
2643	mark_unsafe_pages(bm);
2644
2645	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2646	if (error)
2647		goto Free;
2648
2649	duplicate_memory_bitmap(new_bm, bm);
2650	memory_bm_free(bm, PG_UNSAFE_KEEP);
2651
2652	/* Make a copy of zero_bm so it can be created in safe pages */
2653	error = memory_bm_create(&tmp, GFP_ATOMIC, PG_SAFE);
2654	if (error)
2655		goto Free;
2656
2657	duplicate_memory_bitmap(&tmp, zero_bm);
2658	memory_bm_free(zero_bm, PG_UNSAFE_KEEP);
2659
2660	/* Recreate zero_bm in safe pages */
2661	error = memory_bm_create(zero_bm, GFP_ATOMIC, PG_SAFE);
2662	if (error)
2663		goto Free;
2664
2665	duplicate_memory_bitmap(zero_bm, &tmp);
2666	memory_bm_free(&tmp, PG_UNSAFE_CLEAR);
2667	/* At this point zero_bm is in safe pages and it can be used for restoring. */
2668
2669	if (nr_highmem > 0) {
2670		error = prepare_highmem_image(bm, &nr_highmem);
2671		if (error)
2672			goto Free;
2673	}
2674	/*
2675	 * Reserve some safe pages for potential later use.
2676	 *
2677	 * NOTE: This way we make sure there will be enough safe pages for the
2678	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2679	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2680	 *
2681	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2682	 */
2683	nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages;
2684	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2685	while (nr_pages > 0) {
2686		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2687		if (!lp) {
2688			error = -ENOMEM;
2689			goto Free;
2690		}
2691		lp->next = safe_pages_list;
2692		safe_pages_list = lp;
2693		nr_pages--;
2694	}
2695	/* Preallocate memory for the image */
2696	nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages;
2697	while (nr_pages > 0) {
2698		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2699		if (!lp) {
2700			error = -ENOMEM;
2701			goto Free;
2702		}
2703		if (!swsusp_page_is_free(virt_to_page(lp))) {
2704			/* The page is "safe", add it to the list */
2705			lp->next = safe_pages_list;
2706			safe_pages_list = lp;
2707		}
2708		/* Mark the page as allocated */
2709		swsusp_set_page_forbidden(virt_to_page(lp));
2710		swsusp_set_page_free(virt_to_page(lp));
2711		nr_pages--;
2712	}
2713	return 0;
2714
2715 Free:
2716	swsusp_free();
2717	return error;
2718}
2719
2720/**
2721 * get_buffer - Get the address to store the next image data page.
2722 *
2723 * Get the address that snapshot_write_next() should return to its caller to
2724 * write to.
2725 */
2726static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2727{
2728	struct pbe *pbe;
2729	struct page *page;
2730	unsigned long pfn = memory_bm_next_pfn(bm);
2731
2732	if (pfn == BM_END_OF_MAP)
2733		return ERR_PTR(-EFAULT);
2734
2735	page = pfn_to_page(pfn);
2736	if (PageHighMem(page))
2737		return get_highmem_page_buffer(page, ca);
2738
2739	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2740		/*
2741		 * We have allocated the "original" page frame and we can
2742		 * use it directly to store the loaded page.
2743		 */
2744		return page_address(page);
2745
2746	/*
2747	 * The "original" page frame has not been allocated and we have to
2748	 * use a "safe" page frame to store the loaded page.
2749	 */
2750	pbe = chain_alloc(ca, sizeof(struct pbe));
2751	if (!pbe) {
2752		swsusp_free();
2753		return ERR_PTR(-ENOMEM);
2754	}
2755	pbe->orig_address = page_address(page);
2756	pbe->address = __get_safe_page(ca->gfp_mask);
2757	if (!pbe->address)
2758		return ERR_PTR(-ENOMEM);
2759	pbe->next = restore_pblist;
2760	restore_pblist = pbe;
2761	return pbe->address;
2762}
2763
2764/**
2765 * snapshot_write_next - Get the address to store the next image page.
2766 * @handle: Snapshot handle structure to guide the writing.
2767 *
2768 * On the first call, @handle should point to a zeroed snapshot_handle
2769 * structure.  The structure gets populated then and a pointer to it should be
2770 * passed to this function every next time.
2771 *
2772 * On success, the function returns a positive number.  Then, the caller
2773 * is allowed to write up to the returned number of bytes to the memory
2774 * location computed by the data_of() macro.
2775 *
2776 * The function returns 0 to indicate the "end of file" condition.  Negative
2777 * numbers are returned on errors, in which cases the structure pointed to by
2778 * @handle is not updated and should not be used any more.
2779 */
2780int snapshot_write_next(struct snapshot_handle *handle)
2781{
2782	static struct chain_allocator ca;
2783	int error;
2784
2785next:
2786	/* Check if we have already loaded the entire image */
2787	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages)
2788		return 0;
2789
 
 
2790	if (!handle->cur) {
2791		if (!buffer)
2792			/* This makes the buffer be freed by swsusp_free() */
2793			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2794
2795		if (!buffer)
2796			return -ENOMEM;
2797
2798		handle->buffer = buffer;
2799	} else if (handle->cur == 1) {
2800		error = load_header(buffer);
2801		if (error)
2802			return error;
2803
2804		safe_pages_list = NULL;
2805
2806		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2807		if (error)
2808			return error;
2809
2810		error = memory_bm_create(&zero_bm, GFP_ATOMIC, PG_ANY);
 
2811		if (error)
2812			return error;
2813
2814		nr_zero_pages = 0;
2815
2816		hibernate_restore_protection_begin();
2817	} else if (handle->cur <= nr_meta_pages + 1) {
2818		error = unpack_orig_pfns(buffer, &copy_bm, &zero_bm);
2819		if (error)
2820			return error;
2821
2822		if (handle->cur == nr_meta_pages + 1) {
2823			error = prepare_image(&orig_bm, &copy_bm, &zero_bm);
2824			if (error)
2825				return error;
2826
2827			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2828			memory_bm_position_reset(&orig_bm);
2829			memory_bm_position_reset(&zero_bm);
2830			restore_pblist = NULL;
2831			handle->buffer = get_buffer(&orig_bm, &ca);
 
2832			if (IS_ERR(handle->buffer))
2833				return PTR_ERR(handle->buffer);
2834		}
2835	} else {
2836		copy_last_highmem_page();
2837		error = hibernate_restore_protect_page(handle->buffer);
2838		if (error)
2839			return error;
2840		handle->buffer = get_buffer(&orig_bm, &ca);
2841		if (IS_ERR(handle->buffer))
2842			return PTR_ERR(handle->buffer);
 
 
2843	}
2844	handle->sync_read = (handle->buffer == buffer);
2845	handle->cur++;
2846
2847	/* Zero pages were not included in the image, memset it and move on. */
2848	if (handle->cur > nr_meta_pages + 1 &&
2849	    memory_bm_test_bit(&zero_bm, memory_bm_get_current(&orig_bm))) {
2850		memset(handle->buffer, 0, PAGE_SIZE);
2851		goto next;
2852	}
2853
2854	return PAGE_SIZE;
2855}
2856
2857/**
2858 * snapshot_write_finalize - Complete the loading of a hibernation image.
2859 *
2860 * Must be called after the last call to snapshot_write_next() in case the last
2861 * page in the image happens to be a highmem page and its contents should be
2862 * stored in highmem.  Additionally, it recycles bitmap memory that's not
2863 * necessary any more.
2864 */
2865int snapshot_write_finalize(struct snapshot_handle *handle)
2866{
2867	int error;
2868
2869	copy_last_highmem_page();
2870	error = hibernate_restore_protect_page(handle->buffer);
 
 
 
2871	/* Do that only if we have loaded the image entirely */
2872	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages) {
2873		memory_bm_recycle(&orig_bm);
2874		free_highmem_data();
2875	}
2876	return error;
2877}
2878
2879int snapshot_image_loaded(struct snapshot_handle *handle)
2880{
2881	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2882			handle->cur <= nr_meta_pages + nr_copy_pages + nr_zero_pages);
2883}
2884
2885#ifdef CONFIG_HIGHMEM
2886/* Assumes that @buf is ready and points to a "safe" page */
2887static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2888				       void *buf)
2889{
2890	void *kaddr1, *kaddr2;
2891
2892	kaddr1 = kmap_atomic(p1);
2893	kaddr2 = kmap_atomic(p2);
2894	copy_page(buf, kaddr1);
2895	copy_page(kaddr1, kaddr2);
2896	copy_page(kaddr2, buf);
2897	kunmap_atomic(kaddr2);
2898	kunmap_atomic(kaddr1);
2899}
2900
2901/**
2902 * restore_highmem - Put highmem image pages into their original locations.
2903 *
2904 * For each highmem page that was in use before hibernation and is included in
2905 * the image, and also has been allocated by the "restore" kernel, swap its
2906 * current contents with the previous (ie. "before hibernation") ones.
2907 *
2908 * If the restore eventually fails, we can call this function once again and
2909 * restore the highmem state as seen by the restore kernel.
2910 */
2911int restore_highmem(void)
2912{
2913	struct highmem_pbe *pbe = highmem_pblist;
2914	void *buf;
2915
2916	if (!pbe)
2917		return 0;
2918
2919	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2920	if (!buf)
2921		return -ENOMEM;
2922
2923	while (pbe) {
2924		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2925		pbe = pbe->next;
2926	}
2927	free_image_page(buf, PG_UNSAFE_CLEAR);
2928	return 0;
2929}
2930#endif /* CONFIG_HIGHMEM */