Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * linux/kernel/power/snapshot.c
   3 *
   4 * This file provides system snapshot/restore functionality for swsusp.
   5 *
   6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   8 *
   9 * This file is released under the GPLv2.
  10 *
  11 */
  12
  13#define pr_fmt(fmt) "PM: " fmt
  14
  15#include <linux/version.h>
  16#include <linux/module.h>
  17#include <linux/mm.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/bitops.h>
  21#include <linux/spinlock.h>
  22#include <linux/kernel.h>
  23#include <linux/pm.h>
  24#include <linux/device.h>
  25#include <linux/init.h>
  26#include <linux/bootmem.h>
  27#include <linux/nmi.h>
  28#include <linux/syscalls.h>
  29#include <linux/console.h>
  30#include <linux/highmem.h>
  31#include <linux/list.h>
  32#include <linux/slab.h>
  33#include <linux/compiler.h>
  34#include <linux/ktime.h>
  35#include <linux/set_memory.h>
  36
  37#include <linux/uaccess.h>
  38#include <asm/mmu_context.h>
  39#include <asm/pgtable.h>
  40#include <asm/tlbflush.h>
  41#include <asm/io.h>
  42
  43#include "power.h"
  44
  45#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
  46static bool hibernate_restore_protection;
  47static bool hibernate_restore_protection_active;
  48
  49void enable_restore_image_protection(void)
  50{
  51	hibernate_restore_protection = true;
  52}
  53
  54static inline void hibernate_restore_protection_begin(void)
  55{
  56	hibernate_restore_protection_active = hibernate_restore_protection;
  57}
  58
  59static inline void hibernate_restore_protection_end(void)
  60{
  61	hibernate_restore_protection_active = false;
  62}
  63
  64static inline void hibernate_restore_protect_page(void *page_address)
  65{
  66	if (hibernate_restore_protection_active)
  67		set_memory_ro((unsigned long)page_address, 1);
  68}
  69
  70static inline void hibernate_restore_unprotect_page(void *page_address)
  71{
  72	if (hibernate_restore_protection_active)
  73		set_memory_rw((unsigned long)page_address, 1);
  74}
  75#else
  76static inline void hibernate_restore_protection_begin(void) {}
  77static inline void hibernate_restore_protection_end(void) {}
  78static inline void hibernate_restore_protect_page(void *page_address) {}
  79static inline void hibernate_restore_unprotect_page(void *page_address) {}
  80#endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
  81
  82static int swsusp_page_is_free(struct page *);
  83static void swsusp_set_page_forbidden(struct page *);
  84static void swsusp_unset_page_forbidden(struct page *);
  85
  86/*
  87 * Number of bytes to reserve for memory allocations made by device drivers
  88 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  89 * cause image creation to fail (tunable via /sys/power/reserved_size).
  90 */
  91unsigned long reserved_size;
  92
  93void __init hibernate_reserved_size_init(void)
  94{
  95	reserved_size = SPARE_PAGES * PAGE_SIZE;
  96}
  97
  98/*
  99 * Preferred image size in bytes (tunable via /sys/power/image_size).
 100 * When it is set to N, swsusp will do its best to ensure the image
 101 * size will not exceed N bytes, but if that is impossible, it will
 102 * try to create the smallest image possible.
 103 */
 104unsigned long image_size;
 105
 106void __init hibernate_image_size_init(void)
 107{
 108	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
 109}
 110
 111/*
 112 * List of PBEs needed for restoring the pages that were allocated before
 113 * the suspend and included in the suspend image, but have also been
 114 * allocated by the "resume" kernel, so their contents cannot be written
 115 * directly to their "original" page frames.
 116 */
 117struct pbe *restore_pblist;
 118
 119/* struct linked_page is used to build chains of pages */
 120
 121#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 122
 123struct linked_page {
 124	struct linked_page *next;
 125	char data[LINKED_PAGE_DATA_SIZE];
 126} __packed;
 127
 128/*
 129 * List of "safe" pages (ie. pages that were not used by the image kernel
 130 * before hibernation) that may be used as temporary storage for image kernel
 131 * memory contents.
 132 */
 133static struct linked_page *safe_pages_list;
 134
 135/* Pointer to an auxiliary buffer (1 page) */
 136static void *buffer;
 137
 
 
 
 
 
 
 
 
 
 
 138#define PG_ANY		0
 139#define PG_SAFE		1
 140#define PG_UNSAFE_CLEAR	1
 141#define PG_UNSAFE_KEEP	0
 142
 143static unsigned int allocated_unsafe_pages;
 144
 145/**
 146 * get_image_page - Allocate a page for a hibernation image.
 147 * @gfp_mask: GFP mask for the allocation.
 148 * @safe_needed: Get pages that were not used before hibernation (restore only)
 149 *
 150 * During image restoration, for storing the PBE list and the image data, we can
 151 * only use memory pages that do not conflict with the pages used before
 152 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 153 * using allocated_unsafe_pages.
 154 *
 155 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 156 * swsusp_free() can release it.
 157 */
 158static void *get_image_page(gfp_t gfp_mask, int safe_needed)
 159{
 160	void *res;
 161
 162	res = (void *)get_zeroed_page(gfp_mask);
 163	if (safe_needed)
 164		while (res && swsusp_page_is_free(virt_to_page(res))) {
 165			/* The page is unsafe, mark it for swsusp_free() */
 166			swsusp_set_page_forbidden(virt_to_page(res));
 167			allocated_unsafe_pages++;
 168			res = (void *)get_zeroed_page(gfp_mask);
 169		}
 170	if (res) {
 171		swsusp_set_page_forbidden(virt_to_page(res));
 172		swsusp_set_page_free(virt_to_page(res));
 173	}
 174	return res;
 175}
 176
 177static void *__get_safe_page(gfp_t gfp_mask)
 178{
 179	if (safe_pages_list) {
 180		void *ret = safe_pages_list;
 181
 182		safe_pages_list = safe_pages_list->next;
 183		memset(ret, 0, PAGE_SIZE);
 184		return ret;
 185	}
 186	return get_image_page(gfp_mask, PG_SAFE);
 187}
 188
 189unsigned long get_safe_page(gfp_t gfp_mask)
 190{
 191	return (unsigned long)__get_safe_page(gfp_mask);
 192}
 193
 194static struct page *alloc_image_page(gfp_t gfp_mask)
 195{
 196	struct page *page;
 197
 198	page = alloc_page(gfp_mask);
 199	if (page) {
 200		swsusp_set_page_forbidden(page);
 201		swsusp_set_page_free(page);
 202	}
 203	return page;
 204}
 205
 206static void recycle_safe_page(void *page_address)
 207{
 208	struct linked_page *lp = page_address;
 209
 210	lp->next = safe_pages_list;
 211	safe_pages_list = lp;
 212}
 213
 214/**
 215 * free_image_page - Free a page allocated for hibernation image.
 216 * @addr: Address of the page to free.
 217 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 218 *
 219 * The page to free should have been allocated by get_image_page() (page flags
 220 * set by it are affected).
 221 */
 
 222static inline void free_image_page(void *addr, int clear_nosave_free)
 223{
 224	struct page *page;
 225
 226	BUG_ON(!virt_addr_valid(addr));
 227
 228	page = virt_to_page(addr);
 229
 230	swsusp_unset_page_forbidden(page);
 231	if (clear_nosave_free)
 232		swsusp_unset_page_free(page);
 233
 234	__free_page(page);
 235}
 236
 237static inline void free_list_of_pages(struct linked_page *list,
 238				      int clear_page_nosave)
 
 
 
 
 
 
 
 
 
 239{
 240	while (list) {
 241		struct linked_page *lp = list->next;
 242
 243		free_image_page(list, clear_page_nosave);
 244		list = lp;
 245	}
 246}
 247
 248/*
 249 * struct chain_allocator is used for allocating small objects out of
 250 * a linked list of pages called 'the chain'.
 251 *
 252 * The chain grows each time when there is no room for a new object in
 253 * the current page.  The allocated objects cannot be freed individually.
 254 * It is only possible to free them all at once, by freeing the entire
 255 * chain.
 256 *
 257 * NOTE: The chain allocator may be inefficient if the allocated objects
 258 * are not much smaller than PAGE_SIZE.
 259 */
 
 260struct chain_allocator {
 261	struct linked_page *chain;	/* the chain */
 262	unsigned int used_space;	/* total size of objects allocated out
 263					   of the current page */
 
 264	gfp_t gfp_mask;		/* mask for allocating pages */
 265	int safe_needed;	/* if set, only "safe" pages are allocated */
 266};
 267
 268static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
 269		       int safe_needed)
 270{
 271	ca->chain = NULL;
 272	ca->used_space = LINKED_PAGE_DATA_SIZE;
 273	ca->gfp_mask = gfp_mask;
 274	ca->safe_needed = safe_needed;
 275}
 276
 277static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 278{
 279	void *ret;
 280
 281	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 282		struct linked_page *lp;
 283
 284		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
 285					get_image_page(ca->gfp_mask, PG_ANY);
 286		if (!lp)
 287			return NULL;
 288
 289		lp->next = ca->chain;
 290		ca->chain = lp;
 291		ca->used_space = 0;
 292	}
 293	ret = ca->chain->data + ca->used_space;
 294	ca->used_space += size;
 295	return ret;
 296}
 297
 298/**
 299 * Data types related to memory bitmaps.
 300 *
 301 * Memory bitmap is a structure consiting of many linked lists of
 302 * objects.  The main list's elements are of type struct zone_bitmap
 303 * and each of them corresonds to one zone.  For each zone bitmap
 304 * object there is a list of objects of type struct bm_block that
 305 * represent each blocks of bitmap in which information is stored.
 306 *
 307 * struct memory_bitmap contains a pointer to the main list of zone
 308 * bitmap objects, a struct bm_position used for browsing the bitmap,
 309 * and a pointer to the list of pages used for allocating all of the
 310 * zone bitmap objects and bitmap block objects.
 311 *
 312 * NOTE: It has to be possible to lay out the bitmap in memory
 313 * using only allocations of order 0.  Additionally, the bitmap is
 314 * designed to work with arbitrary number of zones (this is over the
 315 * top for now, but let's avoid making unnecessary assumptions ;-).
 316 *
 317 * struct zone_bitmap contains a pointer to a list of bitmap block
 318 * objects and a pointer to the bitmap block object that has been
 319 * most recently used for setting bits.  Additionally, it contains the
 320 * PFNs that correspond to the start and end of the represented zone.
 321 *
 322 * struct bm_block contains a pointer to the memory page in which
 323 * information is stored (in the form of a block of bitmap)
 324 * It also contains the pfns that correspond to the start and end of
 325 * the represented memory area.
 326 *
 327 * The memory bitmap is organized as a radix tree to guarantee fast random
 328 * access to the bits. There is one radix tree for each zone (as returned
 329 * from create_mem_extents).
 330 *
 331 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 332 * two linked lists for the nodes of the tree, one for the inner nodes and
 333 * one for the leave nodes. The linked leave nodes are used for fast linear
 334 * access of the memory bitmap.
 335 *
 336 * The struct rtree_node represents one node of the radix tree.
 337 */
 338
 339#define BM_END_OF_MAP	(~0UL)
 340
 341#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 342#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
 343#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
 344
 345/*
 346 * struct rtree_node is a wrapper struct to link the nodes
 347 * of the rtree together for easy linear iteration over
 348 * bits and easy freeing
 349 */
 350struct rtree_node {
 351	struct list_head list;
 352	unsigned long *data;
 353};
 354
 355/*
 356 * struct mem_zone_bm_rtree represents a bitmap used for one
 357 * populated memory zone.
 358 */
 359struct mem_zone_bm_rtree {
 360	struct list_head list;		/* Link Zones together         */
 361	struct list_head nodes;		/* Radix Tree inner nodes      */
 362	struct list_head leaves;	/* Radix Tree leaves           */
 363	unsigned long start_pfn;	/* Zone start page frame       */
 364	unsigned long end_pfn;		/* Zone end page frame + 1     */
 365	struct rtree_node *rtree;	/* Radix Tree Root             */
 366	int levels;			/* Number of Radix Tree Levels */
 367	unsigned int blocks;		/* Number of Bitmap Blocks     */
 368};
 369
 370/* strcut bm_position is used for browsing memory bitmaps */
 371
 372struct bm_position {
 373	struct mem_zone_bm_rtree *zone;
 374	struct rtree_node *node;
 375	unsigned long node_pfn;
 376	int node_bit;
 377};
 378
 379struct memory_bitmap {
 380	struct list_head zones;
 381	struct linked_page *p_list;	/* list of pages used to store zone
 382					   bitmap objects and bitmap block
 383					   objects */
 
 384	struct bm_position cur;	/* most recently used bit position */
 385};
 386
 387/* Functions that operate on memory bitmaps */
 388
 389#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
 390#if BITS_PER_LONG == 32
 391#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
 392#else
 393#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
 394#endif
 395#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 396
 397/**
 398 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
 399 *
 400 * This function is used to allocate inner nodes as well as the
 401 * leave nodes of the radix tree. It also adds the node to the
 402 * corresponding linked list passed in by the *list parameter.
 403 */
 404static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 405					   struct chain_allocator *ca,
 406					   struct list_head *list)
 407{
 408	struct rtree_node *node;
 409
 410	node = chain_alloc(ca, sizeof(struct rtree_node));
 411	if (!node)
 412		return NULL;
 413
 414	node->data = get_image_page(gfp_mask, safe_needed);
 415	if (!node->data)
 416		return NULL;
 417
 418	list_add_tail(&node->list, list);
 419
 420	return node;
 421}
 422
 423/**
 424 * add_rtree_block - Add a new leave node to the radix tree.
 425 *
 426 * The leave nodes need to be allocated in order to keep the leaves
 427 * linked list in order. This is guaranteed by the zone->blocks
 428 * counter.
 429 */
 430static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 431			   int safe_needed, struct chain_allocator *ca)
 432{
 433	struct rtree_node *node, *block, **dst;
 434	unsigned int levels_needed, block_nr;
 435	int i;
 436
 437	block_nr = zone->blocks;
 438	levels_needed = 0;
 439
 440	/* How many levels do we need for this block nr? */
 441	while (block_nr) {
 442		levels_needed += 1;
 443		block_nr >>= BM_RTREE_LEVEL_SHIFT;
 444	}
 445
 446	/* Make sure the rtree has enough levels */
 447	for (i = zone->levels; i < levels_needed; i++) {
 448		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 449					&zone->nodes);
 450		if (!node)
 451			return -ENOMEM;
 452
 453		node->data[0] = (unsigned long)zone->rtree;
 454		zone->rtree = node;
 455		zone->levels += 1;
 456	}
 457
 458	/* Allocate new block */
 459	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 460	if (!block)
 461		return -ENOMEM;
 462
 463	/* Now walk the rtree to insert the block */
 464	node = zone->rtree;
 465	dst = &zone->rtree;
 466	block_nr = zone->blocks;
 467	for (i = zone->levels; i > 0; i--) {
 468		int index;
 469
 470		if (!node) {
 471			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 472						&zone->nodes);
 473			if (!node)
 474				return -ENOMEM;
 475			*dst = node;
 476		}
 477
 478		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 479		index &= BM_RTREE_LEVEL_MASK;
 480		dst = (struct rtree_node **)&((*dst)->data[index]);
 481		node = *dst;
 482	}
 483
 484	zone->blocks += 1;
 485	*dst = block;
 486
 487	return 0;
 488}
 489
 490static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 491			       int clear_nosave_free);
 492
 493/**
 494 * create_zone_bm_rtree - Create a radix tree for one zone.
 495 *
 496 * Allocated the mem_zone_bm_rtree structure and initializes it.
 497 * This function also allocated and builds the radix tree for the
 498 * zone.
 499 */
 500static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
 501						      int safe_needed,
 502						      struct chain_allocator *ca,
 503						      unsigned long start,
 504						      unsigned long end)
 505{
 506	struct mem_zone_bm_rtree *zone;
 507	unsigned int i, nr_blocks;
 508	unsigned long pages;
 509
 510	pages = end - start;
 511	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 512	if (!zone)
 513		return NULL;
 514
 515	INIT_LIST_HEAD(&zone->nodes);
 516	INIT_LIST_HEAD(&zone->leaves);
 517	zone->start_pfn = start;
 518	zone->end_pfn = end;
 519	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 520
 521	for (i = 0; i < nr_blocks; i++) {
 522		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 523			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 524			return NULL;
 525		}
 526	}
 527
 528	return zone;
 529}
 530
 531/**
 532 * free_zone_bm_rtree - Free the memory of the radix tree.
 533 *
 534 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 535 * structure itself is not freed here nor are the rtree_node
 536 * structs.
 537 */
 538static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 539			       int clear_nosave_free)
 540{
 541	struct rtree_node *node;
 542
 543	list_for_each_entry(node, &zone->nodes, list)
 544		free_image_page(node->data, clear_nosave_free);
 545
 546	list_for_each_entry(node, &zone->leaves, list)
 547		free_image_page(node->data, clear_nosave_free);
 548}
 549
 550static void memory_bm_position_reset(struct memory_bitmap *bm)
 551{
 552	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 553				  list);
 554	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 555				  struct rtree_node, list);
 556	bm->cur.node_pfn = 0;
 557	bm->cur.node_bit = 0;
 558}
 559
 560static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 561
 562struct mem_extent {
 563	struct list_head hook;
 564	unsigned long start;
 565	unsigned long end;
 566};
 567
 568/**
 569 * free_mem_extents - Free a list of memory extents.
 570 * @list: List of extents to free.
 571 */
 572static void free_mem_extents(struct list_head *list)
 573{
 574	struct mem_extent *ext, *aux;
 575
 576	list_for_each_entry_safe(ext, aux, list, hook) {
 577		list_del(&ext->hook);
 578		kfree(ext);
 579	}
 580}
 581
 582/**
 583 * create_mem_extents - Create a list of memory extents.
 584 * @list: List to put the extents into.
 585 * @gfp_mask: Mask to use for memory allocations.
 586 *
 587 * The extents represent contiguous ranges of PFNs.
 588 */
 589static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 590{
 591	struct zone *zone;
 592
 593	INIT_LIST_HEAD(list);
 594
 595	for_each_populated_zone(zone) {
 596		unsigned long zone_start, zone_end;
 597		struct mem_extent *ext, *cur, *aux;
 598
 599		zone_start = zone->zone_start_pfn;
 600		zone_end = zone_end_pfn(zone);
 601
 602		list_for_each_entry(ext, list, hook)
 603			if (zone_start <= ext->end)
 604				break;
 605
 606		if (&ext->hook == list || zone_end < ext->start) {
 607			/* New extent is necessary */
 608			struct mem_extent *new_ext;
 609
 610			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 611			if (!new_ext) {
 612				free_mem_extents(list);
 613				return -ENOMEM;
 614			}
 615			new_ext->start = zone_start;
 616			new_ext->end = zone_end;
 617			list_add_tail(&new_ext->hook, &ext->hook);
 618			continue;
 619		}
 620
 621		/* Merge this zone's range of PFNs with the existing one */
 622		if (zone_start < ext->start)
 623			ext->start = zone_start;
 624		if (zone_end > ext->end)
 625			ext->end = zone_end;
 626
 627		/* More merging may be possible */
 628		cur = ext;
 629		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 630			if (zone_end < cur->start)
 631				break;
 632			if (zone_end < cur->end)
 633				ext->end = cur->end;
 634			list_del(&cur->hook);
 635			kfree(cur);
 636		}
 637	}
 638
 639	return 0;
 640}
 641
 642/**
 643 * memory_bm_create - Allocate memory for a memory bitmap.
 644 */
 645static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
 646			    int safe_needed)
 647{
 648	struct chain_allocator ca;
 649	struct list_head mem_extents;
 650	struct mem_extent *ext;
 651	int error;
 652
 653	chain_init(&ca, gfp_mask, safe_needed);
 654	INIT_LIST_HEAD(&bm->zones);
 655
 656	error = create_mem_extents(&mem_extents, gfp_mask);
 657	if (error)
 658		return error;
 659
 660	list_for_each_entry(ext, &mem_extents, hook) {
 661		struct mem_zone_bm_rtree *zone;
 662
 663		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 664					    ext->start, ext->end);
 665		if (!zone) {
 666			error = -ENOMEM;
 667			goto Error;
 668		}
 669		list_add_tail(&zone->list, &bm->zones);
 670	}
 671
 672	bm->p_list = ca.chain;
 673	memory_bm_position_reset(bm);
 674 Exit:
 675	free_mem_extents(&mem_extents);
 676	return error;
 677
 678 Error:
 679	bm->p_list = ca.chain;
 680	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 681	goto Exit;
 682}
 683
 684/**
 685 * memory_bm_free - Free memory occupied by the memory bitmap.
 686 * @bm: Memory bitmap.
 687 */
 688static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 689{
 690	struct mem_zone_bm_rtree *zone;
 691
 692	list_for_each_entry(zone, &bm->zones, list)
 693		free_zone_bm_rtree(zone, clear_nosave_free);
 694
 695	free_list_of_pages(bm->p_list, clear_nosave_free);
 696
 697	INIT_LIST_HEAD(&bm->zones);
 698}
 699
 700/**
 701 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
 702 *
 703 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 704 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 705 *
 706 * Walk the radix tree to find the page containing the bit that represents @pfn
 707 * and return the position of the bit in @addr and @bit_nr.
 
 
 
 708 */
 709static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 710			      void **addr, unsigned int *bit_nr)
 711{
 712	struct mem_zone_bm_rtree *curr, *zone;
 713	struct rtree_node *node;
 714	int i, block_nr;
 715
 716	zone = bm->cur.zone;
 717
 718	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 719		goto zone_found;
 720
 721	zone = NULL;
 722
 723	/* Find the right zone */
 724	list_for_each_entry(curr, &bm->zones, list) {
 725		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 726			zone = curr;
 727			break;
 728		}
 729	}
 730
 731	if (!zone)
 732		return -EFAULT;
 733
 734zone_found:
 735	/*
 736	 * We have found the zone. Now walk the radix tree to find the leaf node
 737	 * for our PFN.
 738	 */
 
 739	node = bm->cur.node;
 740	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 741		goto node_found;
 742
 743	node      = zone->rtree;
 744	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 745
 746	for (i = zone->levels; i > 0; i--) {
 747		int index;
 748
 749		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 750		index &= BM_RTREE_LEVEL_MASK;
 751		BUG_ON(node->data[index] == 0);
 752		node = (struct rtree_node *)node->data[index];
 753	}
 754
 755node_found:
 756	/* Update last position */
 757	bm->cur.zone = zone;
 758	bm->cur.node = node;
 759	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 760
 761	/* Set return values */
 762	*addr = node->data;
 763	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 764
 765	return 0;
 766}
 767
 768static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 769{
 770	void *addr;
 771	unsigned int bit;
 772	int error;
 773
 774	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 775	BUG_ON(error);
 776	set_bit(bit, addr);
 777}
 778
 779static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 780{
 781	void *addr;
 782	unsigned int bit;
 783	int error;
 784
 785	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 786	if (!error)
 787		set_bit(bit, addr);
 788
 789	return error;
 790}
 791
 792static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 793{
 794	void *addr;
 795	unsigned int bit;
 796	int error;
 797
 798	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 799	BUG_ON(error);
 800	clear_bit(bit, addr);
 801}
 802
 803static void memory_bm_clear_current(struct memory_bitmap *bm)
 804{
 805	int bit;
 806
 807	bit = max(bm->cur.node_bit - 1, 0);
 808	clear_bit(bit, bm->cur.node->data);
 809}
 810
 811static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 812{
 813	void *addr;
 814	unsigned int bit;
 815	int error;
 816
 817	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 818	BUG_ON(error);
 819	return test_bit(bit, addr);
 820}
 821
 822static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 823{
 824	void *addr;
 825	unsigned int bit;
 826
 827	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 828}
 829
 830/*
 831 * rtree_next_node - Jump to the next leaf node.
 832 *
 833 * Set the position to the beginning of the next node in the
 834 * memory bitmap. This is either the next node in the current
 835 * zone's radix tree or the first node in the radix tree of the
 836 * next zone.
 837 *
 838 * Return true if there is a next node, false otherwise.
 839 */
 840static bool rtree_next_node(struct memory_bitmap *bm)
 841{
 842	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
 843		bm->cur.node = list_entry(bm->cur.node->list.next,
 844					  struct rtree_node, list);
 845		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 846		bm->cur.node_bit  = 0;
 847		touch_softlockup_watchdog();
 848		return true;
 849	}
 850
 851	/* No more nodes, goto next zone */
 852	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
 853		bm->cur.zone = list_entry(bm->cur.zone->list.next,
 854				  struct mem_zone_bm_rtree, list);
 
 855		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 856					  struct rtree_node, list);
 857		bm->cur.node_pfn = 0;
 858		bm->cur.node_bit = 0;
 859		return true;
 860	}
 861
 862	/* No more zones */
 863	return false;
 864}
 865
 866/**
 867 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
 868 * @bm: Memory bitmap.
 869 *
 870 * Starting from the last returned position this function searches for the next
 871 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 872 * set, BM_END_OF_MAP is returned.
 873 *
 874 * It is required to run memory_bm_position_reset() before the first call to
 875 * this function for the given memory bitmap.
 876 */
 877static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 878{
 879	unsigned long bits, pfn, pages;
 880	int bit;
 881
 882	do {
 883		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 884		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 885		bit	  = find_next_bit(bm->cur.node->data, bits,
 886					  bm->cur.node_bit);
 887		if (bit < bits) {
 888			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 889			bm->cur.node_bit = bit + 1;
 890			return pfn;
 891		}
 892	} while (rtree_next_node(bm));
 893
 894	return BM_END_OF_MAP;
 895}
 896
 897/*
 898 * This structure represents a range of page frames the contents of which
 899 * should not be saved during hibernation.
 900 */
 
 901struct nosave_region {
 902	struct list_head list;
 903	unsigned long start_pfn;
 904	unsigned long end_pfn;
 905};
 906
 907static LIST_HEAD(nosave_regions);
 908
 909static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
 910{
 911	struct rtree_node *node;
 912
 913	list_for_each_entry(node, &zone->nodes, list)
 914		recycle_safe_page(node->data);
 915
 916	list_for_each_entry(node, &zone->leaves, list)
 917		recycle_safe_page(node->data);
 918}
 919
 920static void memory_bm_recycle(struct memory_bitmap *bm)
 921{
 922	struct mem_zone_bm_rtree *zone;
 923	struct linked_page *p_list;
 924
 925	list_for_each_entry(zone, &bm->zones, list)
 926		recycle_zone_bm_rtree(zone);
 927
 928	p_list = bm->p_list;
 929	while (p_list) {
 930		struct linked_page *lp = p_list;
 931
 932		p_list = lp->next;
 933		recycle_safe_page(lp);
 934	}
 935}
 936
 937/**
 938 * register_nosave_region - Register a region of unsaveable memory.
 939 *
 940 * Register a range of page frames the contents of which should not be saved
 941 * during hibernation (to be used in the early initialization code).
 942 */
 943void __init __register_nosave_region(unsigned long start_pfn,
 944				     unsigned long end_pfn, int use_kmalloc)
 
 
 945{
 946	struct nosave_region *region;
 947
 948	if (start_pfn >= end_pfn)
 949		return;
 950
 951	if (!list_empty(&nosave_regions)) {
 952		/* Try to extend the previous region (they should be sorted) */
 953		region = list_entry(nosave_regions.prev,
 954					struct nosave_region, list);
 955		if (region->end_pfn == start_pfn) {
 956			region->end_pfn = end_pfn;
 957			goto Report;
 958		}
 959	}
 960	if (use_kmalloc) {
 961		/* During init, this shouldn't fail */
 962		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
 963		BUG_ON(!region);
 964	} else {
 965		/* This allocation cannot fail */
 966		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
 967	}
 968	region->start_pfn = start_pfn;
 969	region->end_pfn = end_pfn;
 970	list_add_tail(&region->list, &nosave_regions);
 971 Report:
 972	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
 973		(unsigned long long) start_pfn << PAGE_SHIFT,
 974		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
 975}
 976
 977/*
 978 * Set bits in this map correspond to the page frames the contents of which
 979 * should not be saved during the suspend.
 980 */
 981static struct memory_bitmap *forbidden_pages_map;
 982
 983/* Set bits in this map correspond to free page frames. */
 984static struct memory_bitmap *free_pages_map;
 985
 986/*
 987 * Each page frame allocated for creating the image is marked by setting the
 988 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 989 */
 990
 991void swsusp_set_page_free(struct page *page)
 992{
 993	if (free_pages_map)
 994		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
 995}
 996
 997static int swsusp_page_is_free(struct page *page)
 998{
 999	return free_pages_map ?
1000		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1001}
1002
1003void swsusp_unset_page_free(struct page *page)
1004{
1005	if (free_pages_map)
1006		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1007}
1008
1009static void swsusp_set_page_forbidden(struct page *page)
1010{
1011	if (forbidden_pages_map)
1012		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1013}
1014
1015int swsusp_page_is_forbidden(struct page *page)
1016{
1017	return forbidden_pages_map ?
1018		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1019}
1020
1021static void swsusp_unset_page_forbidden(struct page *page)
1022{
1023	if (forbidden_pages_map)
1024		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1025}
1026
1027/**
1028 * mark_nosave_pages - Mark pages that should not be saved.
1029 * @bm: Memory bitmap.
1030 *
1031 * Set the bits in @bm that correspond to the page frames the contents of which
1032 * should not be saved.
1033 */
 
1034static void mark_nosave_pages(struct memory_bitmap *bm)
1035{
1036	struct nosave_region *region;
1037
1038	if (list_empty(&nosave_regions))
1039		return;
1040
1041	list_for_each_entry(region, &nosave_regions, list) {
1042		unsigned long pfn;
1043
1044		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1045			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1046			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1047				- 1);
1048
1049		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1050			if (pfn_valid(pfn)) {
1051				/*
1052				 * It is safe to ignore the result of
1053				 * mem_bm_set_bit_check() here, since we won't
1054				 * touch the PFNs for which the error is
1055				 * returned anyway.
1056				 */
1057				mem_bm_set_bit_check(bm, pfn);
1058			}
1059	}
1060}
1061
1062/**
1063 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1064 *
1065 * Create bitmaps needed for marking page frames that should not be saved and
1066 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1067 * only modified if everything goes well, because we don't want the bits to be
1068 * touched before both bitmaps are set up.
1069 */
 
1070int create_basic_memory_bitmaps(void)
1071{
1072	struct memory_bitmap *bm1, *bm2;
1073	int error = 0;
1074
1075	if (forbidden_pages_map && free_pages_map)
1076		return 0;
1077	else
1078		BUG_ON(forbidden_pages_map || free_pages_map);
1079
1080	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1081	if (!bm1)
1082		return -ENOMEM;
1083
1084	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1085	if (error)
1086		goto Free_first_object;
1087
1088	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1089	if (!bm2)
1090		goto Free_first_bitmap;
1091
1092	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1093	if (error)
1094		goto Free_second_object;
1095
1096	forbidden_pages_map = bm1;
1097	free_pages_map = bm2;
1098	mark_nosave_pages(forbidden_pages_map);
1099
1100	pr_debug("Basic memory bitmaps created\n");
1101
1102	return 0;
1103
1104 Free_second_object:
1105	kfree(bm2);
1106 Free_first_bitmap:
1107 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1108 Free_first_object:
1109	kfree(bm1);
1110	return -ENOMEM;
1111}
1112
1113/**
1114 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1115 *
1116 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1117 * auxiliary pointers are necessary so that the bitmaps themselves are not
1118 * referred to while they are being freed.
1119 */
 
1120void free_basic_memory_bitmaps(void)
1121{
1122	struct memory_bitmap *bm1, *bm2;
1123
1124	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1125		return;
1126
1127	bm1 = forbidden_pages_map;
1128	bm2 = free_pages_map;
1129	forbidden_pages_map = NULL;
1130	free_pages_map = NULL;
1131	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1132	kfree(bm1);
1133	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1134	kfree(bm2);
1135
1136	pr_debug("Basic memory bitmaps freed\n");
1137}
1138
1139void clear_free_pages(void)
1140{
1141#ifdef CONFIG_PAGE_POISONING_ZERO
1142	struct memory_bitmap *bm = free_pages_map;
1143	unsigned long pfn;
1144
1145	if (WARN_ON(!(free_pages_map)))
1146		return;
1147
1148	memory_bm_position_reset(bm);
1149	pfn = memory_bm_next_pfn(bm);
1150	while (pfn != BM_END_OF_MAP) {
1151		if (pfn_valid(pfn))
1152			clear_highpage(pfn_to_page(pfn));
1153
1154		pfn = memory_bm_next_pfn(bm);
1155	}
1156	memory_bm_position_reset(bm);
1157	pr_info("free pages cleared after restore\n");
1158#endif /* PAGE_POISONING_ZERO */
1159}
1160
1161/**
1162 * snapshot_additional_pages - Estimate the number of extra pages needed.
1163 * @zone: Memory zone to carry out the computation for.
1164 *
1165 * Estimate the number of additional pages needed for setting up a hibernation
1166 * image data structures for @zone (usually, the returned value is greater than
1167 * the exact number).
1168 */
 
1169unsigned int snapshot_additional_pages(struct zone *zone)
1170{
1171	unsigned int rtree, nodes;
1172
1173	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1174	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1175			      LINKED_PAGE_DATA_SIZE);
1176	while (nodes > 1) {
1177		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1178		rtree += nodes;
1179	}
1180
1181	return 2 * rtree;
1182}
1183
1184#ifdef CONFIG_HIGHMEM
1185/**
1186 * count_free_highmem_pages - Compute the total number of free highmem pages.
1187 *
1188 * The returned number is system-wide.
1189 */
 
1190static unsigned int count_free_highmem_pages(void)
1191{
1192	struct zone *zone;
1193	unsigned int cnt = 0;
1194
1195	for_each_populated_zone(zone)
1196		if (is_highmem(zone))
1197			cnt += zone_page_state(zone, NR_FREE_PAGES);
1198
1199	return cnt;
1200}
1201
1202/**
1203 * saveable_highmem_page - Check if a highmem page is saveable.
1204 *
1205 * Determine whether a highmem page should be included in a hibernation image.
1206 *
1207 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1208 * and it isn't part of a free chunk of pages.
1209 */
1210static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1211{
1212	struct page *page;
1213
1214	if (!pfn_valid(pfn))
1215		return NULL;
1216
1217	page = pfn_to_page(pfn);
1218	if (page_zone(page) != zone)
1219		return NULL;
1220
1221	BUG_ON(!PageHighMem(page));
1222
1223	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
1224	    PageReserved(page))
1225		return NULL;
1226
1227	if (page_is_guard(page))
1228		return NULL;
1229
1230	return page;
1231}
1232
1233/**
1234 * count_highmem_pages - Compute the total number of saveable highmem pages.
 
1235 */
 
1236static unsigned int count_highmem_pages(void)
1237{
1238	struct zone *zone;
1239	unsigned int n = 0;
1240
1241	for_each_populated_zone(zone) {
1242		unsigned long pfn, max_zone_pfn;
1243
1244		if (!is_highmem(zone))
1245			continue;
1246
1247		mark_free_pages(zone);
1248		max_zone_pfn = zone_end_pfn(zone);
1249		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1250			if (saveable_highmem_page(zone, pfn))
1251				n++;
1252	}
1253	return n;
1254}
1255#else
1256static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1257{
1258	return NULL;
1259}
1260#endif /* CONFIG_HIGHMEM */
1261
1262/**
1263 * saveable_page - Check if the given page is saveable.
1264 *
1265 * Determine whether a non-highmem page should be included in a hibernation
1266 * image.
1267 *
1268 * We should save the page if it isn't Nosave, and is not in the range
1269 * of pages statically defined as 'unsaveable', and it isn't part of
1270 * a free chunk of pages.
1271 */
1272static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1273{
1274	struct page *page;
1275
1276	if (!pfn_valid(pfn))
1277		return NULL;
1278
1279	page = pfn_to_page(pfn);
1280	if (page_zone(page) != zone)
1281		return NULL;
1282
1283	BUG_ON(PageHighMem(page));
1284
1285	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1286		return NULL;
1287
1288	if (PageReserved(page)
1289	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1290		return NULL;
1291
1292	if (page_is_guard(page))
1293		return NULL;
1294
1295	return page;
1296}
1297
1298/**
1299 * count_data_pages - Compute the total number of saveable non-highmem pages.
 
1300 */
 
1301static unsigned int count_data_pages(void)
1302{
1303	struct zone *zone;
1304	unsigned long pfn, max_zone_pfn;
1305	unsigned int n = 0;
1306
1307	for_each_populated_zone(zone) {
1308		if (is_highmem(zone))
1309			continue;
1310
1311		mark_free_pages(zone);
1312		max_zone_pfn = zone_end_pfn(zone);
1313		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1314			if (saveable_page(zone, pfn))
1315				n++;
1316	}
1317	return n;
1318}
1319
1320/*
1321 * This is needed, because copy_page and memcpy are not usable for copying
1322 * task structs.
1323 */
1324static inline void do_copy_page(long *dst, long *src)
1325{
1326	int n;
1327
1328	for (n = PAGE_SIZE / sizeof(long); n; n--)
1329		*dst++ = *src++;
1330}
1331
 
1332/**
1333 * safe_copy_page - Copy a page in a safe way.
1334 *
1335 * Check if the page we are going to copy is marked as present in the kernel
1336 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
1337 * and in that case kernel_page_present() always returns 'true').
1338 */
1339static void safe_copy_page(void *dst, struct page *s_page)
1340{
1341	if (kernel_page_present(s_page)) {
1342		do_copy_page(dst, page_address(s_page));
1343	} else {
1344		kernel_map_pages(s_page, 1, 1);
1345		do_copy_page(dst, page_address(s_page));
1346		kernel_map_pages(s_page, 1, 0);
1347	}
1348}
1349
 
1350#ifdef CONFIG_HIGHMEM
1351static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
 
1352{
1353	return is_highmem(zone) ?
1354		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1355}
1356
1357static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1358{
1359	struct page *s_page, *d_page;
1360	void *src, *dst;
1361
1362	s_page = pfn_to_page(src_pfn);
1363	d_page = pfn_to_page(dst_pfn);
1364	if (PageHighMem(s_page)) {
1365		src = kmap_atomic(s_page);
1366		dst = kmap_atomic(d_page);
1367		do_copy_page(dst, src);
1368		kunmap_atomic(dst);
1369		kunmap_atomic(src);
1370	} else {
1371		if (PageHighMem(d_page)) {
1372			/*
1373			 * The page pointed to by src may contain some kernel
1374			 * data modified by kmap_atomic()
1375			 */
1376			safe_copy_page(buffer, s_page);
1377			dst = kmap_atomic(d_page);
1378			copy_page(dst, buffer);
1379			kunmap_atomic(dst);
1380		} else {
1381			safe_copy_page(page_address(d_page), s_page);
1382		}
1383	}
1384}
1385#else
1386#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1387
1388static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1389{
1390	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1391				pfn_to_page(src_pfn));
1392}
1393#endif /* CONFIG_HIGHMEM */
1394
1395static void copy_data_pages(struct memory_bitmap *copy_bm,
1396			    struct memory_bitmap *orig_bm)
1397{
1398	struct zone *zone;
1399	unsigned long pfn;
1400
1401	for_each_populated_zone(zone) {
1402		unsigned long max_zone_pfn;
1403
1404		mark_free_pages(zone);
1405		max_zone_pfn = zone_end_pfn(zone);
1406		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1407			if (page_is_saveable(zone, pfn))
1408				memory_bm_set_bit(orig_bm, pfn);
1409	}
1410	memory_bm_position_reset(orig_bm);
1411	memory_bm_position_reset(copy_bm);
1412	for(;;) {
1413		pfn = memory_bm_next_pfn(orig_bm);
1414		if (unlikely(pfn == BM_END_OF_MAP))
1415			break;
1416		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1417	}
1418}
1419
1420/* Total number of image pages */
1421static unsigned int nr_copy_pages;
1422/* Number of pages needed for saving the original pfns of the image pages */
1423static unsigned int nr_meta_pages;
1424/*
1425 * Numbers of normal and highmem page frames allocated for hibernation image
1426 * before suspending devices.
1427 */
1428static unsigned int alloc_normal, alloc_highmem;
1429/*
1430 * Memory bitmap used for marking saveable pages (during hibernation) or
1431 * hibernation image pages (during restore)
1432 */
1433static struct memory_bitmap orig_bm;
1434/*
1435 * Memory bitmap used during hibernation for marking allocated page frames that
1436 * will contain copies of saveable pages.  During restore it is initially used
1437 * for marking hibernation image pages, but then the set bits from it are
1438 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1439 * used for marking "safe" highmem pages, but it has to be reinitialized for
1440 * this purpose.
1441 */
1442static struct memory_bitmap copy_bm;
1443
1444/**
1445 * swsusp_free - Free pages allocated for hibernation image.
1446 *
1447 * Image pages are alocated before snapshot creation, so they need to be
1448 * released after resume.
1449 */
 
1450void swsusp_free(void)
1451{
1452	unsigned long fb_pfn, fr_pfn;
1453
1454	if (!forbidden_pages_map || !free_pages_map)
1455		goto out;
1456
1457	memory_bm_position_reset(forbidden_pages_map);
1458	memory_bm_position_reset(free_pages_map);
1459
1460loop:
1461	fr_pfn = memory_bm_next_pfn(free_pages_map);
1462	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1463
1464	/*
1465	 * Find the next bit set in both bitmaps. This is guaranteed to
1466	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1467	 */
1468	do {
1469		if (fb_pfn < fr_pfn)
1470			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1471		if (fr_pfn < fb_pfn)
1472			fr_pfn = memory_bm_next_pfn(free_pages_map);
1473	} while (fb_pfn != fr_pfn);
1474
1475	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1476		struct page *page = pfn_to_page(fr_pfn);
1477
1478		memory_bm_clear_current(forbidden_pages_map);
1479		memory_bm_clear_current(free_pages_map);
1480		hibernate_restore_unprotect_page(page_address(page));
1481		__free_page(page);
1482		goto loop;
1483	}
1484
1485out:
1486	nr_copy_pages = 0;
1487	nr_meta_pages = 0;
1488	restore_pblist = NULL;
1489	buffer = NULL;
1490	alloc_normal = 0;
1491	alloc_highmem = 0;
1492	hibernate_restore_protection_end();
1493}
1494
1495/* Helper functions used for the shrinking of memory. */
1496
1497#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1498
1499/**
1500 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1501 * @nr_pages: Number of page frames to allocate.
1502 * @mask: GFP flags to use for the allocation.
1503 *
1504 * Return value: Number of page frames actually allocated
1505 */
1506static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1507{
1508	unsigned long nr_alloc = 0;
1509
1510	while (nr_pages > 0) {
1511		struct page *page;
1512
1513		page = alloc_image_page(mask);
1514		if (!page)
1515			break;
1516		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1517		if (PageHighMem(page))
1518			alloc_highmem++;
1519		else
1520			alloc_normal++;
1521		nr_pages--;
1522		nr_alloc++;
1523	}
1524
1525	return nr_alloc;
1526}
1527
1528static unsigned long preallocate_image_memory(unsigned long nr_pages,
1529					      unsigned long avail_normal)
1530{
1531	unsigned long alloc;
1532
1533	if (avail_normal <= alloc_normal)
1534		return 0;
1535
1536	alloc = avail_normal - alloc_normal;
1537	if (nr_pages < alloc)
1538		alloc = nr_pages;
1539
1540	return preallocate_image_pages(alloc, GFP_IMAGE);
1541}
1542
1543#ifdef CONFIG_HIGHMEM
1544static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1545{
1546	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1547}
1548
1549/**
1550 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1551 */
1552static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1553{
1554	x *= multiplier;
1555	do_div(x, base);
1556	return (unsigned long)x;
1557}
1558
1559static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1560						  unsigned long highmem,
1561						  unsigned long total)
1562{
1563	unsigned long alloc = __fraction(nr_pages, highmem, total);
1564
1565	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1566}
1567#else /* CONFIG_HIGHMEM */
1568static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1569{
1570	return 0;
1571}
1572
1573static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1574							 unsigned long highmem,
1575							 unsigned long total)
1576{
1577	return 0;
1578}
1579#endif /* CONFIG_HIGHMEM */
1580
1581/**
1582 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1583 */
1584static unsigned long free_unnecessary_pages(void)
1585{
1586	unsigned long save, to_free_normal, to_free_highmem, free;
1587
1588	save = count_data_pages();
1589	if (alloc_normal >= save) {
1590		to_free_normal = alloc_normal - save;
1591		save = 0;
1592	} else {
1593		to_free_normal = 0;
1594		save -= alloc_normal;
1595	}
1596	save += count_highmem_pages();
1597	if (alloc_highmem >= save) {
1598		to_free_highmem = alloc_highmem - save;
1599	} else {
1600		to_free_highmem = 0;
1601		save -= alloc_highmem;
1602		if (to_free_normal > save)
1603			to_free_normal -= save;
1604		else
1605			to_free_normal = 0;
1606	}
1607	free = to_free_normal + to_free_highmem;
1608
1609	memory_bm_position_reset(&copy_bm);
1610
1611	while (to_free_normal > 0 || to_free_highmem > 0) {
1612		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1613		struct page *page = pfn_to_page(pfn);
1614
1615		if (PageHighMem(page)) {
1616			if (!to_free_highmem)
1617				continue;
1618			to_free_highmem--;
1619			alloc_highmem--;
1620		} else {
1621			if (!to_free_normal)
1622				continue;
1623			to_free_normal--;
1624			alloc_normal--;
1625		}
1626		memory_bm_clear_bit(&copy_bm, pfn);
1627		swsusp_unset_page_forbidden(page);
1628		swsusp_unset_page_free(page);
1629		__free_page(page);
1630	}
1631
1632	return free;
1633}
1634
1635/**
1636 * minimum_image_size - Estimate the minimum acceptable size of an image.
1637 * @saveable: Number of saveable pages in the system.
1638 *
1639 * We want to avoid attempting to free too much memory too hard, so estimate the
1640 * minimum acceptable size of a hibernation image to use as the lower limit for
1641 * preallocating memory.
1642 *
1643 * We assume that the minimum image size should be proportional to
1644 *
1645 * [number of saveable pages] - [number of pages that can be freed in theory]
1646 *
1647 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1648 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
 
1649 */
1650static unsigned long minimum_image_size(unsigned long saveable)
1651{
1652	unsigned long size;
1653
1654	size = global_node_page_state(NR_SLAB_RECLAIMABLE)
1655		+ global_node_page_state(NR_ACTIVE_ANON)
1656		+ global_node_page_state(NR_INACTIVE_ANON)
1657		+ global_node_page_state(NR_ACTIVE_FILE)
1658		+ global_node_page_state(NR_INACTIVE_FILE);
 
1659
1660	return saveable <= size ? 0 : saveable - size;
1661}
1662
1663/**
1664 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1665 *
1666 * To create a hibernation image it is necessary to make a copy of every page
1667 * frame in use.  We also need a number of page frames to be free during
1668 * hibernation for allocations made while saving the image and for device
1669 * drivers, in case they need to allocate memory from their hibernation
1670 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1671 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1672 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1673 * total number of available page frames and allocate at least
1674 *
1675 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1676 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1677 *
1678 * of them, which corresponds to the maximum size of a hibernation image.
1679 *
1680 * If image_size is set below the number following from the above formula,
1681 * the preallocation of memory is continued until the total number of saveable
1682 * pages in the system is below the requested image size or the minimum
1683 * acceptable image size returned by minimum_image_size(), whichever is greater.
1684 */
1685int hibernate_preallocate_memory(void)
1686{
1687	struct zone *zone;
1688	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1689	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1690	ktime_t start, stop;
1691	int error;
1692
1693	pr_info("Preallocating image memory... ");
1694	start = ktime_get();
1695
1696	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1697	if (error)
1698		goto err_out;
1699
1700	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1701	if (error)
1702		goto err_out;
1703
1704	alloc_normal = 0;
1705	alloc_highmem = 0;
1706
1707	/* Count the number of saveable data pages. */
1708	save_highmem = count_highmem_pages();
1709	saveable = count_data_pages();
1710
1711	/*
1712	 * Compute the total number of page frames we can use (count) and the
1713	 * number of pages needed for image metadata (size).
1714	 */
1715	count = saveable;
1716	saveable += save_highmem;
1717	highmem = save_highmem;
1718	size = 0;
1719	for_each_populated_zone(zone) {
1720		size += snapshot_additional_pages(zone);
1721		if (is_highmem(zone))
1722			highmem += zone_page_state(zone, NR_FREE_PAGES);
1723		else
1724			count += zone_page_state(zone, NR_FREE_PAGES);
1725	}
1726	avail_normal = count;
1727	count += highmem;
1728	count -= totalreserve_pages;
1729
1730	/* Add number of pages required for page keys (s390 only). */
1731	size += page_key_additional_pages(saveable);
1732
1733	/* Compute the maximum number of saveable pages to leave in memory. */
1734	max_size = (count - (size + PAGES_FOR_IO)) / 2
1735			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1736	/* Compute the desired number of image pages specified by image_size. */
1737	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1738	if (size > max_size)
1739		size = max_size;
1740	/*
1741	 * If the desired number of image pages is at least as large as the
1742	 * current number of saveable pages in memory, allocate page frames for
1743	 * the image and we're done.
1744	 */
1745	if (size >= saveable) {
1746		pages = preallocate_image_highmem(save_highmem);
1747		pages += preallocate_image_memory(saveable - pages, avail_normal);
1748		goto out;
1749	}
1750
1751	/* Estimate the minimum size of the image. */
1752	pages = minimum_image_size(saveable);
1753	/*
1754	 * To avoid excessive pressure on the normal zone, leave room in it to
1755	 * accommodate an image of the minimum size (unless it's already too
1756	 * small, in which case don't preallocate pages from it at all).
1757	 */
1758	if (avail_normal > pages)
1759		avail_normal -= pages;
1760	else
1761		avail_normal = 0;
1762	if (size < pages)
1763		size = min_t(unsigned long, pages, max_size);
1764
1765	/*
1766	 * Let the memory management subsystem know that we're going to need a
1767	 * large number of page frames to allocate and make it free some memory.
1768	 * NOTE: If this is not done, performance will be hurt badly in some
1769	 * test cases.
1770	 */
1771	shrink_all_memory(saveable - size);
1772
1773	/*
1774	 * The number of saveable pages in memory was too high, so apply some
1775	 * pressure to decrease it.  First, make room for the largest possible
1776	 * image and fail if that doesn't work.  Next, try to decrease the size
1777	 * of the image as much as indicated by 'size' using allocations from
1778	 * highmem and non-highmem zones separately.
1779	 */
1780	pages_highmem = preallocate_image_highmem(highmem / 2);
1781	alloc = count - max_size;
1782	if (alloc > pages_highmem)
1783		alloc -= pages_highmem;
1784	else
1785		alloc = 0;
1786	pages = preallocate_image_memory(alloc, avail_normal);
1787	if (pages < alloc) {
1788		/* We have exhausted non-highmem pages, try highmem. */
1789		alloc -= pages;
1790		pages += pages_highmem;
1791		pages_highmem = preallocate_image_highmem(alloc);
1792		if (pages_highmem < alloc)
1793			goto err_out;
1794		pages += pages_highmem;
1795		/*
1796		 * size is the desired number of saveable pages to leave in
1797		 * memory, so try to preallocate (all memory - size) pages.
1798		 */
1799		alloc = (count - pages) - size;
1800		pages += preallocate_image_highmem(alloc);
1801	} else {
1802		/*
1803		 * There are approximately max_size saveable pages at this point
1804		 * and we want to reduce this number down to size.
1805		 */
1806		alloc = max_size - size;
1807		size = preallocate_highmem_fraction(alloc, highmem, count);
1808		pages_highmem += size;
1809		alloc -= size;
1810		size = preallocate_image_memory(alloc, avail_normal);
1811		pages_highmem += preallocate_image_highmem(alloc - size);
1812		pages += pages_highmem + size;
1813	}
1814
1815	/*
1816	 * We only need as many page frames for the image as there are saveable
1817	 * pages in memory, but we have allocated more.  Release the excessive
1818	 * ones now.
1819	 */
1820	pages -= free_unnecessary_pages();
1821
1822 out:
1823	stop = ktime_get();
1824	pr_cont("done (allocated %lu pages)\n", pages);
1825	swsusp_show_speed(start, stop, pages, "Allocated");
1826
1827	return 0;
1828
1829 err_out:
1830	pr_cont("\n");
1831	swsusp_free();
1832	return -ENOMEM;
1833}
1834
1835#ifdef CONFIG_HIGHMEM
1836/**
1837 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1838 *
1839 * Compute the number of non-highmem pages that will be necessary for creating
1840 * copies of highmem pages.
1841 */
1842static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1843{
1844	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1845
1846	if (free_highmem >= nr_highmem)
1847		nr_highmem = 0;
1848	else
1849		nr_highmem -= free_highmem;
1850
1851	return nr_highmem;
1852}
1853#else
1854static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
 
1855#endif /* CONFIG_HIGHMEM */
1856
1857/**
1858 * enough_free_mem - Check if there is enough free memory for the image.
 
1859 */
 
1860static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1861{
1862	struct zone *zone;
1863	unsigned int free = alloc_normal;
1864
1865	for_each_populated_zone(zone)
1866		if (!is_highmem(zone))
1867			free += zone_page_state(zone, NR_FREE_PAGES);
1868
1869	nr_pages += count_pages_for_highmem(nr_highmem);
1870	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1871		 nr_pages, PAGES_FOR_IO, free);
1872
1873	return free > nr_pages + PAGES_FOR_IO;
1874}
1875
1876#ifdef CONFIG_HIGHMEM
1877/**
1878 * get_highmem_buffer - Allocate a buffer for highmem pages.
1879 *
1880 * If there are some highmem pages in the hibernation image, we may need a
1881 * buffer to copy them and/or load their data.
1882 */
 
1883static inline int get_highmem_buffer(int safe_needed)
1884{
1885	buffer = get_image_page(GFP_ATOMIC, safe_needed);
1886	return buffer ? 0 : -ENOMEM;
1887}
1888
1889/**
1890 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1891 *
1892 * Try to allocate as many pages as needed, but if the number of free highmem
1893 * pages is less than that, allocate them all.
1894 */
1895static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1896					       unsigned int nr_highmem)
 
1897{
1898	unsigned int to_alloc = count_free_highmem_pages();
1899
1900	if (to_alloc > nr_highmem)
1901		to_alloc = nr_highmem;
1902
1903	nr_highmem -= to_alloc;
1904	while (to_alloc-- > 0) {
1905		struct page *page;
1906
1907		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1908		memory_bm_set_bit(bm, page_to_pfn(page));
1909	}
1910	return nr_highmem;
1911}
1912#else
1913static inline int get_highmem_buffer(int safe_needed) { return 0; }
1914
1915static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1916					       unsigned int n) { return 0; }
1917#endif /* CONFIG_HIGHMEM */
1918
1919/**
1920 * swsusp_alloc - Allocate memory for hibernation image.
 
 
 
 
1921 *
1922 * We first try to allocate as many highmem pages as there are
1923 * saveable highmem pages in the system.  If that fails, we allocate
1924 * non-highmem pages for the copies of the remaining highmem ones.
1925 *
1926 * In this approach it is likely that the copies of highmem pages will
1927 * also be located in the high memory, because of the way in which
1928 * copy_data_pages() works.
1929 */
1930static int swsusp_alloc(struct memory_bitmap *copy_bm,
1931			unsigned int nr_pages, unsigned int nr_highmem)
 
 
1932{
1933	if (nr_highmem > 0) {
1934		if (get_highmem_buffer(PG_ANY))
1935			goto err_out;
1936		if (nr_highmem > alloc_highmem) {
1937			nr_highmem -= alloc_highmem;
1938			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1939		}
1940	}
1941	if (nr_pages > alloc_normal) {
1942		nr_pages -= alloc_normal;
1943		while (nr_pages-- > 0) {
1944			struct page *page;
1945
1946			page = alloc_image_page(GFP_ATOMIC);
1947			if (!page)
1948				goto err_out;
1949			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1950		}
1951	}
1952
1953	return 0;
1954
1955 err_out:
1956	swsusp_free();
1957	return -ENOMEM;
1958}
1959
1960asmlinkage __visible int swsusp_save(void)
1961{
1962	unsigned int nr_pages, nr_highmem;
1963
1964	pr_info("Creating hibernation image:\n");
1965
1966	drain_local_pages(NULL);
1967	nr_pages = count_data_pages();
1968	nr_highmem = count_highmem_pages();
1969	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
1970
1971	if (!enough_free_mem(nr_pages, nr_highmem)) {
1972		pr_err("Not enough free memory\n");
1973		return -ENOMEM;
1974	}
1975
1976	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
1977		pr_err("Memory allocation failed\n");
1978		return -ENOMEM;
1979	}
1980
1981	/*
1982	 * During allocating of suspend pagedir, new cold pages may appear.
1983	 * Kill them.
1984	 */
1985	drain_local_pages(NULL);
1986	copy_data_pages(&copy_bm, &orig_bm);
1987
1988	/*
1989	 * End of critical section. From now on, we can write to memory,
1990	 * but we should not touch disk. This specially means we must _not_
1991	 * touch swap space! Except we must write out our image of course.
1992	 */
1993
1994	nr_pages += nr_highmem;
1995	nr_copy_pages = nr_pages;
1996	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1997
1998	pr_info("Hibernation image created (%d pages copied)\n", nr_pages);
 
1999
2000	return 0;
2001}
2002
2003#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2004static int init_header_complete(struct swsusp_info *info)
2005{
2006	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2007	info->version_code = LINUX_VERSION_CODE;
2008	return 0;
2009}
2010
2011static char *check_image_kernel(struct swsusp_info *info)
2012{
2013	if (info->version_code != LINUX_VERSION_CODE)
2014		return "kernel version";
2015	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2016		return "system type";
2017	if (strcmp(info->uts.release,init_utsname()->release))
2018		return "kernel release";
2019	if (strcmp(info->uts.version,init_utsname()->version))
2020		return "version";
2021	if (strcmp(info->uts.machine,init_utsname()->machine))
2022		return "machine";
2023	return NULL;
2024}
2025#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2026
2027unsigned long snapshot_get_image_size(void)
2028{
2029	return nr_copy_pages + nr_meta_pages + 1;
2030}
2031
2032static int init_header(struct swsusp_info *info)
2033{
2034	memset(info, 0, sizeof(struct swsusp_info));
2035	info->num_physpages = get_num_physpages();
2036	info->image_pages = nr_copy_pages;
2037	info->pages = snapshot_get_image_size();
2038	info->size = info->pages;
2039	info->size <<= PAGE_SHIFT;
2040	return init_header_complete(info);
2041}
2042
2043/**
2044 * pack_pfns - Prepare PFNs for saving.
2045 * @bm: Memory bitmap.
2046 * @buf: Memory buffer to store the PFNs in.
2047 *
2048 * PFNs corresponding to set bits in @bm are stored in the area of memory
2049 * pointed to by @buf (1 page at a time).
2050 */
2051static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
 
 
2052{
2053	int j;
2054
2055	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2056		buf[j] = memory_bm_next_pfn(bm);
2057		if (unlikely(buf[j] == BM_END_OF_MAP))
2058			break;
2059		/* Save page key for data page (s390 only). */
2060		page_key_read(buf + j);
2061	}
2062}
2063
2064/**
2065 * snapshot_read_next - Get the address to read the next image page from.
2066 * @handle: Snapshot handle to be used for the reading.
2067 *
2068 * On the first call, @handle should point to a zeroed snapshot_handle
2069 * structure.  The structure gets populated then and a pointer to it should be
2070 * passed to this function every next time.
2071 *
2072 * On success, the function returns a positive number.  Then, the caller
2073 * is allowed to read up to the returned number of bytes from the memory
2074 * location computed by the data_of() macro.
2075 *
2076 * The function returns 0 to indicate the end of the data stream condition,
2077 * and negative numbers are returned on errors.  If that happens, the structure
2078 * pointed to by @handle is not updated and should not be used any more.
 
2079 */
 
2080int snapshot_read_next(struct snapshot_handle *handle)
2081{
2082	if (handle->cur > nr_meta_pages + nr_copy_pages)
2083		return 0;
2084
2085	if (!buffer) {
2086		/* This makes the buffer be freed by swsusp_free() */
2087		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2088		if (!buffer)
2089			return -ENOMEM;
2090	}
2091	if (!handle->cur) {
2092		int error;
2093
2094		error = init_header((struct swsusp_info *)buffer);
2095		if (error)
2096			return error;
2097		handle->buffer = buffer;
2098		memory_bm_position_reset(&orig_bm);
2099		memory_bm_position_reset(&copy_bm);
2100	} else if (handle->cur <= nr_meta_pages) {
2101		clear_page(buffer);
2102		pack_pfns(buffer, &orig_bm);
2103	} else {
2104		struct page *page;
2105
2106		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2107		if (PageHighMem(page)) {
2108			/*
2109			 * Highmem pages are copied to the buffer,
2110			 * because we can't return with a kmapped
2111			 * highmem page (we may not be called again).
2112			 */
2113			void *kaddr;
2114
2115			kaddr = kmap_atomic(page);
2116			copy_page(buffer, kaddr);
2117			kunmap_atomic(kaddr);
2118			handle->buffer = buffer;
2119		} else {
2120			handle->buffer = page_address(page);
2121		}
2122	}
2123	handle->cur++;
2124	return PAGE_SIZE;
2125}
2126
2127static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2128				    struct memory_bitmap *src)
 
 
 
 
 
2129{
2130	unsigned long pfn;
 
2131
2132	memory_bm_position_reset(src);
2133	pfn = memory_bm_next_pfn(src);
2134	while (pfn != BM_END_OF_MAP) {
2135		memory_bm_set_bit(dst, pfn);
2136		pfn = memory_bm_next_pfn(src);
 
2137	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2138}
2139
2140/**
2141 * mark_unsafe_pages - Mark pages that were used before hibernation.
2142 *
2143 * Mark the pages that cannot be used for storing the image during restoration,
2144 * because they conflict with the pages that had been used before hibernation.
2145 */
2146static void mark_unsafe_pages(struct memory_bitmap *bm)
2147{
2148	unsigned long pfn;
2149
2150	/* Clear the "free"/"unsafe" bit for all PFNs */
2151	memory_bm_position_reset(free_pages_map);
2152	pfn = memory_bm_next_pfn(free_pages_map);
2153	while (pfn != BM_END_OF_MAP) {
2154		memory_bm_clear_current(free_pages_map);
2155		pfn = memory_bm_next_pfn(free_pages_map);
2156	}
2157
2158	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2159	duplicate_memory_bitmap(free_pages_map, bm);
2160
2161	allocated_unsafe_pages = 0;
2162}
2163
2164static int check_header(struct swsusp_info *info)
2165{
2166	char *reason;
2167
2168	reason = check_image_kernel(info);
2169	if (!reason && info->num_physpages != get_num_physpages())
2170		reason = "memory size";
2171	if (reason) {
2172		pr_err("Image mismatch: %s\n", reason);
2173		return -EPERM;
2174	}
2175	return 0;
2176}
2177
2178/**
2179 * load header - Check the image header and copy the data from it.
2180 */
2181static int load_header(struct swsusp_info *info)
 
 
2182{
2183	int error;
2184
2185	restore_pblist = NULL;
2186	error = check_header(info);
2187	if (!error) {
2188		nr_copy_pages = info->image_pages;
2189		nr_meta_pages = info->pages - info->image_pages - 1;
2190	}
2191	return error;
2192}
2193
2194/**
2195 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2196 * @bm: Memory bitmap.
2197 * @buf: Area of memory containing the PFNs.
2198 *
2199 * For each element of the array pointed to by @buf (1 page at a time), set the
2200 * corresponding bit in @bm.
2201 */
2202static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2203{
2204	int j;
2205
2206	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2207		if (unlikely(buf[j] == BM_END_OF_MAP))
2208			break;
2209
2210		/* Extract and buffer page key for data page (s390 only). */
2211		page_key_memorize(buf + j);
2212
2213		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2214			memory_bm_set_bit(bm, buf[j]);
2215		else
2216			return -EFAULT;
2217	}
2218
2219	return 0;
2220}
2221
 
 
 
 
 
2222#ifdef CONFIG_HIGHMEM
2223/*
2224 * struct highmem_pbe is used for creating the list of highmem pages that
2225 * should be restored atomically during the resume from disk, because the page
2226 * frames they have occupied before the suspend are in use.
2227 */
2228struct highmem_pbe {
2229	struct page *copy_page;	/* data is here now */
2230	struct page *orig_page;	/* data was here before the suspend */
2231	struct highmem_pbe *next;
2232};
2233
2234/*
2235 * List of highmem PBEs needed for restoring the highmem pages that were
2236 * allocated before the suspend and included in the suspend image, but have
2237 * also been allocated by the "resume" kernel, so their contents cannot be
2238 * written directly to their "original" page frames.
2239 */
2240static struct highmem_pbe *highmem_pblist;
2241
2242/**
2243 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2244 * @bm: Memory bitmap.
2245 *
2246 * The bits in @bm that correspond to image pages are assumed to be set.
2247 */
 
2248static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2249{
2250	unsigned long pfn;
2251	unsigned int cnt = 0;
2252
2253	memory_bm_position_reset(bm);
2254	pfn = memory_bm_next_pfn(bm);
2255	while (pfn != BM_END_OF_MAP) {
2256		if (PageHighMem(pfn_to_page(pfn)))
2257			cnt++;
2258
2259		pfn = memory_bm_next_pfn(bm);
2260	}
2261	return cnt;
2262}
2263
 
 
 
 
 
 
 
 
 
 
 
 
2264static unsigned int safe_highmem_pages;
2265
2266static struct memory_bitmap *safe_highmem_bm;
2267
2268/**
2269 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2270 * @bm: Pointer to an uninitialized memory bitmap structure.
2271 * @nr_highmem_p: Pointer to the number of highmem image pages.
2272 *
2273 * Try to allocate as many highmem pages as there are highmem image pages
2274 * (@nr_highmem_p points to the variable containing the number of highmem image
2275 * pages).  The pages that are "safe" (ie. will not be overwritten when the
2276 * hibernation image is restored entirely) have the corresponding bits set in
2277 * @bm (it must be unitialized).
2278 *
2279 * NOTE: This function should not be called if there are no highmem image pages.
2280 */
2281static int prepare_highmem_image(struct memory_bitmap *bm,
2282				 unsigned int *nr_highmem_p)
2283{
2284	unsigned int to_alloc;
2285
2286	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2287		return -ENOMEM;
2288
2289	if (get_highmem_buffer(PG_SAFE))
2290		return -ENOMEM;
2291
2292	to_alloc = count_free_highmem_pages();
2293	if (to_alloc > *nr_highmem_p)
2294		to_alloc = *nr_highmem_p;
2295	else
2296		*nr_highmem_p = to_alloc;
2297
2298	safe_highmem_pages = 0;
2299	while (to_alloc-- > 0) {
2300		struct page *page;
2301
2302		page = alloc_page(__GFP_HIGHMEM);
2303		if (!swsusp_page_is_free(page)) {
2304			/* The page is "safe", set its bit the bitmap */
2305			memory_bm_set_bit(bm, page_to_pfn(page));
2306			safe_highmem_pages++;
2307		}
2308		/* Mark the page as allocated */
2309		swsusp_set_page_forbidden(page);
2310		swsusp_set_page_free(page);
2311	}
2312	memory_bm_position_reset(bm);
2313	safe_highmem_bm = bm;
2314	return 0;
2315}
2316
2317static struct page *last_highmem_page;
2318
2319/**
2320 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2321 *
2322 * For a given highmem image page get a buffer that suspend_write_next() should
2323 * return to its caller to write to.
2324 *
2325 * If the page is to be saved to its "original" page frame or a copy of
2326 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2327 * the copy of the page is to be made in normal memory, so the address of
2328 * the copy is returned.
2329 *
2330 * If @buffer is returned, the caller of suspend_write_next() will write
2331 * the page's contents to @buffer, so they will have to be copied to the
2332 * right location on the next call to suspend_write_next() and it is done
2333 * with the help of copy_last_highmem_page().  For this purpose, if
2334 * @buffer is returned, @last_highmem_page is set to the page to which
2335 * the data will have to be copied from @buffer.
2336 */
2337static void *get_highmem_page_buffer(struct page *page,
2338				     struct chain_allocator *ca)
 
 
 
2339{
2340	struct highmem_pbe *pbe;
2341	void *kaddr;
2342
2343	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2344		/*
2345		 * We have allocated the "original" page frame and we can
2346		 * use it directly to store the loaded page.
2347		 */
2348		last_highmem_page = page;
2349		return buffer;
2350	}
2351	/*
2352	 * The "original" page frame has not been allocated and we have to
2353	 * use a "safe" page frame to store the loaded page.
2354	 */
2355	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2356	if (!pbe) {
2357		swsusp_free();
2358		return ERR_PTR(-ENOMEM);
2359	}
2360	pbe->orig_page = page;
2361	if (safe_highmem_pages > 0) {
2362		struct page *tmp;
2363
2364		/* Copy of the page will be stored in high memory */
2365		kaddr = buffer;
2366		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2367		safe_highmem_pages--;
2368		last_highmem_page = tmp;
2369		pbe->copy_page = tmp;
2370	} else {
2371		/* Copy of the page will be stored in normal memory */
2372		kaddr = safe_pages_list;
2373		safe_pages_list = safe_pages_list->next;
2374		pbe->copy_page = virt_to_page(kaddr);
2375	}
2376	pbe->next = highmem_pblist;
2377	highmem_pblist = pbe;
2378	return kaddr;
2379}
2380
2381/**
2382 * copy_last_highmem_page - Copy most the most recent highmem image page.
2383 *
2384 * Copy the contents of a highmem image from @buffer, where the caller of
2385 * snapshot_write_next() has stored them, to the right location represented by
2386 * @last_highmem_page .
2387 */
 
2388static void copy_last_highmem_page(void)
2389{
2390	if (last_highmem_page) {
2391		void *dst;
2392
2393		dst = kmap_atomic(last_highmem_page);
2394		copy_page(dst, buffer);
2395		kunmap_atomic(dst);
2396		last_highmem_page = NULL;
2397	}
2398}
2399
2400static inline int last_highmem_page_copied(void)
2401{
2402	return !last_highmem_page;
2403}
2404
2405static inline void free_highmem_data(void)
2406{
2407	if (safe_highmem_bm)
2408		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2409
2410	if (buffer)
2411		free_image_page(buffer, PG_UNSAFE_CLEAR);
2412}
2413#else
2414static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
 
2415
2416static inline int prepare_highmem_image(struct memory_bitmap *bm,
2417					unsigned int *nr_highmem_p) { return 0; }
 
 
 
2418
2419static inline void *get_highmem_page_buffer(struct page *page,
2420					    struct chain_allocator *ca)
2421{
2422	return ERR_PTR(-EINVAL);
2423}
2424
2425static inline void copy_last_highmem_page(void) {}
2426static inline int last_highmem_page_copied(void) { return 1; }
2427static inline void free_highmem_data(void) {}
2428#endif /* CONFIG_HIGHMEM */
2429
2430#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2431
2432/**
2433 * prepare_image - Make room for loading hibernation image.
2434 * @new_bm: Unitialized memory bitmap structure.
2435 * @bm: Memory bitmap with unsafe pages marked.
2436 *
2437 * Use @bm to mark the pages that will be overwritten in the process of
2438 * restoring the system memory state from the suspend image ("unsafe" pages)
2439 * and allocate memory for the image.
2440 *
2441 * The idea is to allocate a new memory bitmap first and then allocate
2442 * as many pages as needed for image data, but without specifying what those
2443 * pages will be used for just yet.  Instead, we mark them all as allocated and
2444 * create a lists of "safe" pages to be used later.  On systems with high
2445 * memory a list of "safe" highmem pages is created too.
2446 */
2447static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
 
 
 
 
2448{
2449	unsigned int nr_pages, nr_highmem;
2450	struct linked_page *lp;
2451	int error;
2452
2453	/* If there is no highmem, the buffer will not be necessary */
2454	free_image_page(buffer, PG_UNSAFE_CLEAR);
2455	buffer = NULL;
2456
2457	nr_highmem = count_highmem_image_pages(bm);
2458	mark_unsafe_pages(bm);
 
 
2459
2460	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2461	if (error)
2462		goto Free;
2463
2464	duplicate_memory_bitmap(new_bm, bm);
2465	memory_bm_free(bm, PG_UNSAFE_KEEP);
2466	if (nr_highmem > 0) {
2467		error = prepare_highmem_image(bm, &nr_highmem);
2468		if (error)
2469			goto Free;
2470	}
2471	/*
2472	 * Reserve some safe pages for potential later use.
2473	 *
2474	 * NOTE: This way we make sure there will be enough safe pages for the
2475	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2476	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2477	 *
2478	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2479	 */
 
 
2480	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2481	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2482	while (nr_pages > 0) {
2483		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2484		if (!lp) {
2485			error = -ENOMEM;
2486			goto Free;
2487		}
2488		lp->next = safe_pages_list;
2489		safe_pages_list = lp;
2490		nr_pages--;
2491	}
2492	/* Preallocate memory for the image */
 
2493	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2494	while (nr_pages > 0) {
2495		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2496		if (!lp) {
2497			error = -ENOMEM;
2498			goto Free;
2499		}
2500		if (!swsusp_page_is_free(virt_to_page(lp))) {
2501			/* The page is "safe", add it to the list */
2502			lp->next = safe_pages_list;
2503			safe_pages_list = lp;
2504		}
2505		/* Mark the page as allocated */
2506		swsusp_set_page_forbidden(virt_to_page(lp));
2507		swsusp_set_page_free(virt_to_page(lp));
2508		nr_pages--;
2509	}
 
 
 
 
 
 
2510	return 0;
2511
2512 Free:
2513	swsusp_free();
2514	return error;
2515}
2516
2517/**
2518 * get_buffer - Get the address to store the next image data page.
2519 *
2520 * Get the address that snapshot_write_next() should return to its caller to
2521 * write to.
2522 */
 
2523static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2524{
2525	struct pbe *pbe;
2526	struct page *page;
2527	unsigned long pfn = memory_bm_next_pfn(bm);
2528
2529	if (pfn == BM_END_OF_MAP)
2530		return ERR_PTR(-EFAULT);
2531
2532	page = pfn_to_page(pfn);
2533	if (PageHighMem(page))
2534		return get_highmem_page_buffer(page, ca);
2535
2536	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2537		/*
2538		 * We have allocated the "original" page frame and we can
2539		 * use it directly to store the loaded page.
2540		 */
2541		return page_address(page);
2542
2543	/*
2544	 * The "original" page frame has not been allocated and we have to
2545	 * use a "safe" page frame to store the loaded page.
2546	 */
2547	pbe = chain_alloc(ca, sizeof(struct pbe));
2548	if (!pbe) {
2549		swsusp_free();
2550		return ERR_PTR(-ENOMEM);
2551	}
2552	pbe->orig_address = page_address(page);
2553	pbe->address = safe_pages_list;
2554	safe_pages_list = safe_pages_list->next;
2555	pbe->next = restore_pblist;
2556	restore_pblist = pbe;
2557	return pbe->address;
2558}
2559
2560/**
2561 * snapshot_write_next - Get the address to store the next image page.
2562 * @handle: Snapshot handle structure to guide the writing.
2563 *
2564 * On the first call, @handle should point to a zeroed snapshot_handle
2565 * structure.  The structure gets populated then and a pointer to it should be
2566 * passed to this function every next time.
2567 *
2568 * On success, the function returns a positive number.  Then, the caller
2569 * is allowed to write up to the returned number of bytes to the memory
2570 * location computed by the data_of() macro.
2571 *
2572 * The function returns 0 to indicate the "end of file" condition.  Negative
2573 * numbers are returned on errors, in which cases the structure pointed to by
2574 * @handle is not updated and should not be used any more.
 
2575 */
 
2576int snapshot_write_next(struct snapshot_handle *handle)
2577{
2578	static struct chain_allocator ca;
2579	int error = 0;
2580
2581	/* Check if we have already loaded the entire image */
2582	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2583		return 0;
2584
2585	handle->sync_read = 1;
2586
2587	if (!handle->cur) {
2588		if (!buffer)
2589			/* This makes the buffer be freed by swsusp_free() */
2590			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2591
2592		if (!buffer)
2593			return -ENOMEM;
2594
2595		handle->buffer = buffer;
2596	} else if (handle->cur == 1) {
2597		error = load_header(buffer);
2598		if (error)
2599			return error;
2600
2601		safe_pages_list = NULL;
2602
2603		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2604		if (error)
2605			return error;
2606
2607		/* Allocate buffer for page keys. */
2608		error = page_key_alloc(nr_copy_pages);
2609		if (error)
2610			return error;
2611
2612		hibernate_restore_protection_begin();
2613	} else if (handle->cur <= nr_meta_pages + 1) {
2614		error = unpack_orig_pfns(buffer, &copy_bm);
2615		if (error)
2616			return error;
2617
2618		if (handle->cur == nr_meta_pages + 1) {
2619			error = prepare_image(&orig_bm, &copy_bm);
2620			if (error)
2621				return error;
2622
2623			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2624			memory_bm_position_reset(&orig_bm);
2625			restore_pblist = NULL;
2626			handle->buffer = get_buffer(&orig_bm, &ca);
2627			handle->sync_read = 0;
2628			if (IS_ERR(handle->buffer))
2629				return PTR_ERR(handle->buffer);
2630		}
2631	} else {
2632		copy_last_highmem_page();
2633		/* Restore page key for data page (s390 only). */
2634		page_key_write(handle->buffer);
2635		hibernate_restore_protect_page(handle->buffer);
2636		handle->buffer = get_buffer(&orig_bm, &ca);
2637		if (IS_ERR(handle->buffer))
2638			return PTR_ERR(handle->buffer);
2639		if (handle->buffer != buffer)
2640			handle->sync_read = 0;
2641	}
2642	handle->cur++;
2643	return PAGE_SIZE;
2644}
2645
2646/**
2647 * snapshot_write_finalize - Complete the loading of a hibernation image.
2648 *
2649 * Must be called after the last call to snapshot_write_next() in case the last
2650 * page in the image happens to be a highmem page and its contents should be
2651 * stored in highmem.  Additionally, it recycles bitmap memory that's not
2652 * necessary any more.
2653 */
 
2654void snapshot_write_finalize(struct snapshot_handle *handle)
2655{
2656	copy_last_highmem_page();
2657	/* Restore page key for data page (s390 only). */
2658	page_key_write(handle->buffer);
2659	page_key_free();
2660	hibernate_restore_protect_page(handle->buffer);
2661	/* Do that only if we have loaded the image entirely */
2662	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2663		memory_bm_recycle(&orig_bm);
2664		free_highmem_data();
2665	}
2666}
2667
2668int snapshot_image_loaded(struct snapshot_handle *handle)
2669{
2670	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2671			handle->cur <= nr_meta_pages + nr_copy_pages);
2672}
2673
2674#ifdef CONFIG_HIGHMEM
2675/* Assumes that @buf is ready and points to a "safe" page */
2676static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2677				       void *buf)
2678{
2679	void *kaddr1, *kaddr2;
2680
2681	kaddr1 = kmap_atomic(p1);
2682	kaddr2 = kmap_atomic(p2);
2683	copy_page(buf, kaddr1);
2684	copy_page(kaddr1, kaddr2);
2685	copy_page(kaddr2, buf);
2686	kunmap_atomic(kaddr2);
2687	kunmap_atomic(kaddr1);
2688}
2689
2690/**
2691 * restore_highmem - Put highmem image pages into their original locations.
2692 *
2693 * For each highmem page that was in use before hibernation and is included in
2694 * the image, and also has been allocated by the "restore" kernel, swap its
2695 * current contents with the previous (ie. "before hibernation") ones.
2696 *
2697 * If the restore eventually fails, we can call this function once again and
2698 * restore the highmem state as seen by the restore kernel.
2699 */
 
2700int restore_highmem(void)
2701{
2702	struct highmem_pbe *pbe = highmem_pblist;
2703	void *buf;
2704
2705	if (!pbe)
2706		return 0;
2707
2708	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2709	if (!buf)
2710		return -ENOMEM;
2711
2712	while (pbe) {
2713		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2714		pbe = pbe->next;
2715	}
2716	free_image_page(buf, PG_UNSAFE_CLEAR);
2717	return 0;
2718}
2719#endif /* CONFIG_HIGHMEM */
v4.6
   1/*
   2 * linux/kernel/power/snapshot.c
   3 *
   4 * This file provides system snapshot/restore functionality for swsusp.
   5 *
   6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   8 *
   9 * This file is released under the GPLv2.
  10 *
  11 */
  12
 
 
  13#include <linux/version.h>
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/suspend.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/spinlock.h>
  20#include <linux/kernel.h>
  21#include <linux/pm.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/bootmem.h>
 
  25#include <linux/syscalls.h>
  26#include <linux/console.h>
  27#include <linux/highmem.h>
  28#include <linux/list.h>
  29#include <linux/slab.h>
  30#include <linux/compiler.h>
  31#include <linux/ktime.h>
 
  32
  33#include <asm/uaccess.h>
  34#include <asm/mmu_context.h>
  35#include <asm/pgtable.h>
  36#include <asm/tlbflush.h>
  37#include <asm/io.h>
  38
  39#include "power.h"
  40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  41static int swsusp_page_is_free(struct page *);
  42static void swsusp_set_page_forbidden(struct page *);
  43static void swsusp_unset_page_forbidden(struct page *);
  44
  45/*
  46 * Number of bytes to reserve for memory allocations made by device drivers
  47 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  48 * cause image creation to fail (tunable via /sys/power/reserved_size).
  49 */
  50unsigned long reserved_size;
  51
  52void __init hibernate_reserved_size_init(void)
  53{
  54	reserved_size = SPARE_PAGES * PAGE_SIZE;
  55}
  56
  57/*
  58 * Preferred image size in bytes (tunable via /sys/power/image_size).
  59 * When it is set to N, swsusp will do its best to ensure the image
  60 * size will not exceed N bytes, but if that is impossible, it will
  61 * try to create the smallest image possible.
  62 */
  63unsigned long image_size;
  64
  65void __init hibernate_image_size_init(void)
  66{
  67	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
  68}
  69
  70/* List of PBEs needed for restoring the pages that were allocated before
 
  71 * the suspend and included in the suspend image, but have also been
  72 * allocated by the "resume" kernel, so their contents cannot be written
  73 * directly to their "original" page frames.
  74 */
  75struct pbe *restore_pblist;
  76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  77/* Pointer to an auxiliary buffer (1 page) */
  78static void *buffer;
  79
  80/**
  81 *	@safe_needed - on resume, for storing the PBE list and the image,
  82 *	we can only use memory pages that do not conflict with the pages
  83 *	used before suspend.  The unsafe pages have PageNosaveFree set
  84 *	and we count them using unsafe_pages.
  85 *
  86 *	Each allocated image page is marked as PageNosave and PageNosaveFree
  87 *	so that swsusp_free() can release it.
  88 */
  89
  90#define PG_ANY		0
  91#define PG_SAFE		1
  92#define PG_UNSAFE_CLEAR	1
  93#define PG_UNSAFE_KEEP	0
  94
  95static unsigned int allocated_unsafe_pages;
  96
 
 
 
 
 
 
 
 
 
 
 
 
 
  97static void *get_image_page(gfp_t gfp_mask, int safe_needed)
  98{
  99	void *res;
 100
 101	res = (void *)get_zeroed_page(gfp_mask);
 102	if (safe_needed)
 103		while (res && swsusp_page_is_free(virt_to_page(res))) {
 104			/* The page is unsafe, mark it for swsusp_free() */
 105			swsusp_set_page_forbidden(virt_to_page(res));
 106			allocated_unsafe_pages++;
 107			res = (void *)get_zeroed_page(gfp_mask);
 108		}
 109	if (res) {
 110		swsusp_set_page_forbidden(virt_to_page(res));
 111		swsusp_set_page_free(virt_to_page(res));
 112	}
 113	return res;
 114}
 115
 
 
 
 
 
 
 
 
 
 
 
 
 116unsigned long get_safe_page(gfp_t gfp_mask)
 117{
 118	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
 119}
 120
 121static struct page *alloc_image_page(gfp_t gfp_mask)
 122{
 123	struct page *page;
 124
 125	page = alloc_page(gfp_mask);
 126	if (page) {
 127		swsusp_set_page_forbidden(page);
 128		swsusp_set_page_free(page);
 129	}
 130	return page;
 131}
 132
 
 
 
 
 
 
 
 
 133/**
 134 *	free_image_page - free page represented by @addr, allocated with
 135 *	get_image_page (page flags set by it must be cleared)
 
 
 
 
 136 */
 137
 138static inline void free_image_page(void *addr, int clear_nosave_free)
 139{
 140	struct page *page;
 141
 142	BUG_ON(!virt_addr_valid(addr));
 143
 144	page = virt_to_page(addr);
 145
 146	swsusp_unset_page_forbidden(page);
 147	if (clear_nosave_free)
 148		swsusp_unset_page_free(page);
 149
 150	__free_page(page);
 151}
 152
 153/* struct linked_page is used to build chains of pages */
 154
 155#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 156
 157struct linked_page {
 158	struct linked_page *next;
 159	char data[LINKED_PAGE_DATA_SIZE];
 160} __packed;
 161
 162static inline void
 163free_list_of_pages(struct linked_page *list, int clear_page_nosave)
 164{
 165	while (list) {
 166		struct linked_page *lp = list->next;
 167
 168		free_image_page(list, clear_page_nosave);
 169		list = lp;
 170	}
 171}
 172
 173/**
 174  *	struct chain_allocator is used for allocating small objects out of
 175  *	a linked list of pages called 'the chain'.
 176  *
 177  *	The chain grows each time when there is no room for a new object in
 178  *	the current page.  The allocated objects cannot be freed individually.
 179  *	It is only possible to free them all at once, by freeing the entire
 180  *	chain.
 181  *
 182  *	NOTE: The chain allocator may be inefficient if the allocated objects
 183  *	are not much smaller than PAGE_SIZE.
 184  */
 185
 186struct chain_allocator {
 187	struct linked_page *chain;	/* the chain */
 188	unsigned int used_space;	/* total size of objects allocated out
 189					 * of the current page
 190					 */
 191	gfp_t gfp_mask;		/* mask for allocating pages */
 192	int safe_needed;	/* if set, only "safe" pages are allocated */
 193};
 194
 195static void
 196chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
 197{
 198	ca->chain = NULL;
 199	ca->used_space = LINKED_PAGE_DATA_SIZE;
 200	ca->gfp_mask = gfp_mask;
 201	ca->safe_needed = safe_needed;
 202}
 203
 204static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 205{
 206	void *ret;
 207
 208	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 209		struct linked_page *lp;
 210
 211		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
 
 212		if (!lp)
 213			return NULL;
 214
 215		lp->next = ca->chain;
 216		ca->chain = lp;
 217		ca->used_space = 0;
 218	}
 219	ret = ca->chain->data + ca->used_space;
 220	ca->used_space += size;
 221	return ret;
 222}
 223
 224/**
 225 *	Data types related to memory bitmaps.
 226 *
 227 *	Memory bitmap is a structure consiting of many linked lists of
 228 *	objects.  The main list's elements are of type struct zone_bitmap
 229 *	and each of them corresonds to one zone.  For each zone bitmap
 230 *	object there is a list of objects of type struct bm_block that
 231 *	represent each blocks of bitmap in which information is stored.
 232 *
 233 *	struct memory_bitmap contains a pointer to the main list of zone
 234 *	bitmap objects, a struct bm_position used for browsing the bitmap,
 235 *	and a pointer to the list of pages used for allocating all of the
 236 *	zone bitmap objects and bitmap block objects.
 237 *
 238 *	NOTE: It has to be possible to lay out the bitmap in memory
 239 *	using only allocations of order 0.  Additionally, the bitmap is
 240 *	designed to work with arbitrary number of zones (this is over the
 241 *	top for now, but let's avoid making unnecessary assumptions ;-).
 242 *
 243 *	struct zone_bitmap contains a pointer to a list of bitmap block
 244 *	objects and a pointer to the bitmap block object that has been
 245 *	most recently used for setting bits.  Additionally, it contains the
 246 *	pfns that correspond to the start and end of the represented zone.
 247 *
 248 *	struct bm_block contains a pointer to the memory page in which
 249 *	information is stored (in the form of a block of bitmap)
 250 *	It also contains the pfns that correspond to the start and end of
 251 *	the represented memory area.
 252 *
 253 *	The memory bitmap is organized as a radix tree to guarantee fast random
 254 *	access to the bits. There is one radix tree for each zone (as returned
 255 *	from create_mem_extents).
 256 *
 257 *	One radix tree is represented by one struct mem_zone_bm_rtree. There are
 258 *	two linked lists for the nodes of the tree, one for the inner nodes and
 259 *	one for the leave nodes. The linked leave nodes are used for fast linear
 260 *	access of the memory bitmap.
 261 *
 262 *	The struct rtree_node represents one node of the radix tree.
 263 */
 264
 265#define BM_END_OF_MAP	(~0UL)
 266
 267#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 268#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
 269#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
 270
 271/*
 272 * struct rtree_node is a wrapper struct to link the nodes
 273 * of the rtree together for easy linear iteration over
 274 * bits and easy freeing
 275 */
 276struct rtree_node {
 277	struct list_head list;
 278	unsigned long *data;
 279};
 280
 281/*
 282 * struct mem_zone_bm_rtree represents a bitmap used for one
 283 * populated memory zone.
 284 */
 285struct mem_zone_bm_rtree {
 286	struct list_head list;		/* Link Zones together         */
 287	struct list_head nodes;		/* Radix Tree inner nodes      */
 288	struct list_head leaves;	/* Radix Tree leaves           */
 289	unsigned long start_pfn;	/* Zone start page frame       */
 290	unsigned long end_pfn;		/* Zone end page frame + 1     */
 291	struct rtree_node *rtree;	/* Radix Tree Root             */
 292	int levels;			/* Number of Radix Tree Levels */
 293	unsigned int blocks;		/* Number of Bitmap Blocks     */
 294};
 295
 296/* strcut bm_position is used for browsing memory bitmaps */
 297
 298struct bm_position {
 299	struct mem_zone_bm_rtree *zone;
 300	struct rtree_node *node;
 301	unsigned long node_pfn;
 302	int node_bit;
 303};
 304
 305struct memory_bitmap {
 306	struct list_head zones;
 307	struct linked_page *p_list;	/* list of pages used to store zone
 308					 * bitmap objects and bitmap block
 309					 * objects
 310					 */
 311	struct bm_position cur;	/* most recently used bit position */
 312};
 313
 314/* Functions that operate on memory bitmaps */
 315
 316#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
 317#if BITS_PER_LONG == 32
 318#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
 319#else
 320#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
 321#endif
 322#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 323
 324/*
 325 *	alloc_rtree_node - Allocate a new node and add it to the radix tree.
 326 *
 327 *	This function is used to allocate inner nodes as well as the
 328 *	leave nodes of the radix tree. It also adds the node to the
 329 *	corresponding linked list passed in by the *list parameter.
 330 */
 331static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 332					   struct chain_allocator *ca,
 333					   struct list_head *list)
 334{
 335	struct rtree_node *node;
 336
 337	node = chain_alloc(ca, sizeof(struct rtree_node));
 338	if (!node)
 339		return NULL;
 340
 341	node->data = get_image_page(gfp_mask, safe_needed);
 342	if (!node->data)
 343		return NULL;
 344
 345	list_add_tail(&node->list, list);
 346
 347	return node;
 348}
 349
 350/*
 351 *	add_rtree_block - Add a new leave node to the radix tree
 352 *
 353 *	The leave nodes need to be allocated in order to keep the leaves
 354 *	linked list in order. This is guaranteed by the zone->blocks
 355 *	counter.
 356 */
 357static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 358			   int safe_needed, struct chain_allocator *ca)
 359{
 360	struct rtree_node *node, *block, **dst;
 361	unsigned int levels_needed, block_nr;
 362	int i;
 363
 364	block_nr = zone->blocks;
 365	levels_needed = 0;
 366
 367	/* How many levels do we need for this block nr? */
 368	while (block_nr) {
 369		levels_needed += 1;
 370		block_nr >>= BM_RTREE_LEVEL_SHIFT;
 371	}
 372
 373	/* Make sure the rtree has enough levels */
 374	for (i = zone->levels; i < levels_needed; i++) {
 375		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 376					&zone->nodes);
 377		if (!node)
 378			return -ENOMEM;
 379
 380		node->data[0] = (unsigned long)zone->rtree;
 381		zone->rtree = node;
 382		zone->levels += 1;
 383	}
 384
 385	/* Allocate new block */
 386	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 387	if (!block)
 388		return -ENOMEM;
 389
 390	/* Now walk the rtree to insert the block */
 391	node = zone->rtree;
 392	dst = &zone->rtree;
 393	block_nr = zone->blocks;
 394	for (i = zone->levels; i > 0; i--) {
 395		int index;
 396
 397		if (!node) {
 398			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 399						&zone->nodes);
 400			if (!node)
 401				return -ENOMEM;
 402			*dst = node;
 403		}
 404
 405		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 406		index &= BM_RTREE_LEVEL_MASK;
 407		dst = (struct rtree_node **)&((*dst)->data[index]);
 408		node = *dst;
 409	}
 410
 411	zone->blocks += 1;
 412	*dst = block;
 413
 414	return 0;
 415}
 416
 417static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 418			       int clear_nosave_free);
 419
 420/*
 421 *	create_zone_bm_rtree - create a radix tree for one zone
 422 *
 423 *	Allocated the mem_zone_bm_rtree structure and initializes it.
 424 *	This function also allocated and builds the radix tree for the
 425 *	zone.
 426 */
 427static struct mem_zone_bm_rtree *
 428create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed,
 429		     struct chain_allocator *ca,
 430		     unsigned long start, unsigned long end)
 
 431{
 432	struct mem_zone_bm_rtree *zone;
 433	unsigned int i, nr_blocks;
 434	unsigned long pages;
 435
 436	pages = end - start;
 437	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 438	if (!zone)
 439		return NULL;
 440
 441	INIT_LIST_HEAD(&zone->nodes);
 442	INIT_LIST_HEAD(&zone->leaves);
 443	zone->start_pfn = start;
 444	zone->end_pfn = end;
 445	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 446
 447	for (i = 0; i < nr_blocks; i++) {
 448		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 449			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 450			return NULL;
 451		}
 452	}
 453
 454	return zone;
 455}
 456
 457/*
 458 *	free_zone_bm_rtree - Free the memory of the radix tree
 459 *
 460 *	Free all node pages of the radix tree. The mem_zone_bm_rtree
 461 *	structure itself is not freed here nor are the rtree_node
 462 *	structs.
 463 */
 464static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 465			       int clear_nosave_free)
 466{
 467	struct rtree_node *node;
 468
 469	list_for_each_entry(node, &zone->nodes, list)
 470		free_image_page(node->data, clear_nosave_free);
 471
 472	list_for_each_entry(node, &zone->leaves, list)
 473		free_image_page(node->data, clear_nosave_free);
 474}
 475
 476static void memory_bm_position_reset(struct memory_bitmap *bm)
 477{
 478	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 479				  list);
 480	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 481				  struct rtree_node, list);
 482	bm->cur.node_pfn = 0;
 483	bm->cur.node_bit = 0;
 484}
 485
 486static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 487
 488struct mem_extent {
 489	struct list_head hook;
 490	unsigned long start;
 491	unsigned long end;
 492};
 493
 494/**
 495 *	free_mem_extents - free a list of memory extents
 496 *	@list - list of extents to empty
 497 */
 498static void free_mem_extents(struct list_head *list)
 499{
 500	struct mem_extent *ext, *aux;
 501
 502	list_for_each_entry_safe(ext, aux, list, hook) {
 503		list_del(&ext->hook);
 504		kfree(ext);
 505	}
 506}
 507
 508/**
 509 *	create_mem_extents - create a list of memory extents representing
 510 *	                     contiguous ranges of PFNs
 511 *	@list - list to put the extents into
 512 *	@gfp_mask - mask to use for memory allocations
 
 513 */
 514static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 515{
 516	struct zone *zone;
 517
 518	INIT_LIST_HEAD(list);
 519
 520	for_each_populated_zone(zone) {
 521		unsigned long zone_start, zone_end;
 522		struct mem_extent *ext, *cur, *aux;
 523
 524		zone_start = zone->zone_start_pfn;
 525		zone_end = zone_end_pfn(zone);
 526
 527		list_for_each_entry(ext, list, hook)
 528			if (zone_start <= ext->end)
 529				break;
 530
 531		if (&ext->hook == list || zone_end < ext->start) {
 532			/* New extent is necessary */
 533			struct mem_extent *new_ext;
 534
 535			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 536			if (!new_ext) {
 537				free_mem_extents(list);
 538				return -ENOMEM;
 539			}
 540			new_ext->start = zone_start;
 541			new_ext->end = zone_end;
 542			list_add_tail(&new_ext->hook, &ext->hook);
 543			continue;
 544		}
 545
 546		/* Merge this zone's range of PFNs with the existing one */
 547		if (zone_start < ext->start)
 548			ext->start = zone_start;
 549		if (zone_end > ext->end)
 550			ext->end = zone_end;
 551
 552		/* More merging may be possible */
 553		cur = ext;
 554		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 555			if (zone_end < cur->start)
 556				break;
 557			if (zone_end < cur->end)
 558				ext->end = cur->end;
 559			list_del(&cur->hook);
 560			kfree(cur);
 561		}
 562	}
 563
 564	return 0;
 565}
 566
 567/**
 568  *	memory_bm_create - allocate memory for a memory bitmap
 569  */
 570static int
 571memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
 572{
 573	struct chain_allocator ca;
 574	struct list_head mem_extents;
 575	struct mem_extent *ext;
 576	int error;
 577
 578	chain_init(&ca, gfp_mask, safe_needed);
 579	INIT_LIST_HEAD(&bm->zones);
 580
 581	error = create_mem_extents(&mem_extents, gfp_mask);
 582	if (error)
 583		return error;
 584
 585	list_for_each_entry(ext, &mem_extents, hook) {
 586		struct mem_zone_bm_rtree *zone;
 587
 588		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 589					    ext->start, ext->end);
 590		if (!zone) {
 591			error = -ENOMEM;
 592			goto Error;
 593		}
 594		list_add_tail(&zone->list, &bm->zones);
 595	}
 596
 597	bm->p_list = ca.chain;
 598	memory_bm_position_reset(bm);
 599 Exit:
 600	free_mem_extents(&mem_extents);
 601	return error;
 602
 603 Error:
 604	bm->p_list = ca.chain;
 605	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 606	goto Exit;
 607}
 608
 609/**
 610  *	memory_bm_free - free memory occupied by the memory bitmap @bm
 611  */
 
 612static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 613{
 614	struct mem_zone_bm_rtree *zone;
 615
 616	list_for_each_entry(zone, &bm->zones, list)
 617		free_zone_bm_rtree(zone, clear_nosave_free);
 618
 619	free_list_of_pages(bm->p_list, clear_nosave_free);
 620
 621	INIT_LIST_HEAD(&bm->zones);
 622}
 623
 624/**
 625 *	memory_bm_find_bit - Find the bit for pfn in the memory
 626 *			     bitmap
 
 
 627 *
 628 *	Find the bit in the bitmap @bm that corresponds to given pfn.
 629 *	The cur.zone, cur.block and cur.node_pfn member of @bm are
 630 *	updated.
 631 *	It walks the radix tree to find the page which contains the bit for
 632 *	pfn and returns the bit position in **addr and *bit_nr.
 633 */
 634static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 635			      void **addr, unsigned int *bit_nr)
 636{
 637	struct mem_zone_bm_rtree *curr, *zone;
 638	struct rtree_node *node;
 639	int i, block_nr;
 640
 641	zone = bm->cur.zone;
 642
 643	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 644		goto zone_found;
 645
 646	zone = NULL;
 647
 648	/* Find the right zone */
 649	list_for_each_entry(curr, &bm->zones, list) {
 650		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 651			zone = curr;
 652			break;
 653		}
 654	}
 655
 656	if (!zone)
 657		return -EFAULT;
 658
 659zone_found:
 660	/*
 661	 * We have a zone. Now walk the radix tree to find the leave
 662	 * node for our pfn.
 663	 */
 664
 665	node = bm->cur.node;
 666	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 667		goto node_found;
 668
 669	node      = zone->rtree;
 670	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 671
 672	for (i = zone->levels; i > 0; i--) {
 673		int index;
 674
 675		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 676		index &= BM_RTREE_LEVEL_MASK;
 677		BUG_ON(node->data[index] == 0);
 678		node = (struct rtree_node *)node->data[index];
 679	}
 680
 681node_found:
 682	/* Update last position */
 683	bm->cur.zone = zone;
 684	bm->cur.node = node;
 685	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 686
 687	/* Set return values */
 688	*addr = node->data;
 689	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 690
 691	return 0;
 692}
 693
 694static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 695{
 696	void *addr;
 697	unsigned int bit;
 698	int error;
 699
 700	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 701	BUG_ON(error);
 702	set_bit(bit, addr);
 703}
 704
 705static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 706{
 707	void *addr;
 708	unsigned int bit;
 709	int error;
 710
 711	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 712	if (!error)
 713		set_bit(bit, addr);
 714
 715	return error;
 716}
 717
 718static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 719{
 720	void *addr;
 721	unsigned int bit;
 722	int error;
 723
 724	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 725	BUG_ON(error);
 726	clear_bit(bit, addr);
 727}
 728
 729static void memory_bm_clear_current(struct memory_bitmap *bm)
 730{
 731	int bit;
 732
 733	bit = max(bm->cur.node_bit - 1, 0);
 734	clear_bit(bit, bm->cur.node->data);
 735}
 736
 737static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 738{
 739	void *addr;
 740	unsigned int bit;
 741	int error;
 742
 743	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 744	BUG_ON(error);
 745	return test_bit(bit, addr);
 746}
 747
 748static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 749{
 750	void *addr;
 751	unsigned int bit;
 752
 753	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 754}
 755
 756/*
 757 *	rtree_next_node - Jumps to the next leave node
 758 *
 759 *	Sets the position to the beginning of the next node in the
 760 *	memory bitmap. This is either the next node in the current
 761 *	zone's radix tree or the first node in the radix tree of the
 762 *	next zone.
 763 *
 764 *	Returns true if there is a next node, false otherwise.
 765 */
 766static bool rtree_next_node(struct memory_bitmap *bm)
 767{
 768	bm->cur.node = list_entry(bm->cur.node->list.next,
 769				  struct rtree_node, list);
 770	if (&bm->cur.node->list != &bm->cur.zone->leaves) {
 771		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 772		bm->cur.node_bit  = 0;
 773		touch_softlockup_watchdog();
 774		return true;
 775	}
 776
 777	/* No more nodes, goto next zone */
 778	bm->cur.zone = list_entry(bm->cur.zone->list.next,
 
 779				  struct mem_zone_bm_rtree, list);
 780	if (&bm->cur.zone->list != &bm->zones) {
 781		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 782					  struct rtree_node, list);
 783		bm->cur.node_pfn = 0;
 784		bm->cur.node_bit = 0;
 785		return true;
 786	}
 787
 788	/* No more zones */
 789	return false;
 790}
 791
 792/**
 793 *	memory_bm_rtree_next_pfn - Find the next set bit in the bitmap @bm
 
 794 *
 795 *	Starting from the last returned position this function searches
 796 *	for the next set bit in the memory bitmap and returns its
 797 *	number. If no more bit is set BM_END_OF_MAP is returned.
 798 *
 799 *	It is required to run memory_bm_position_reset() before the
 800 *	first call to this function.
 801 */
 802static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 803{
 804	unsigned long bits, pfn, pages;
 805	int bit;
 806
 807	do {
 808		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 809		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 810		bit	  = find_next_bit(bm->cur.node->data, bits,
 811					  bm->cur.node_bit);
 812		if (bit < bits) {
 813			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 814			bm->cur.node_bit = bit + 1;
 815			return pfn;
 816		}
 817	} while (rtree_next_node(bm));
 818
 819	return BM_END_OF_MAP;
 820}
 821
 822/**
 823 *	This structure represents a range of page frames the contents of which
 824 *	should not be saved during the suspend.
 825 */
 826
 827struct nosave_region {
 828	struct list_head list;
 829	unsigned long start_pfn;
 830	unsigned long end_pfn;
 831};
 832
 833static LIST_HEAD(nosave_regions);
 834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835/**
 836 *	register_nosave_region - register a range of page frames the contents
 837 *	of which should not be saved during the suspend (to be used in the early
 838 *	initialization code)
 
 839 */
 840
 841void __init
 842__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
 843			 int use_kmalloc)
 844{
 845	struct nosave_region *region;
 846
 847	if (start_pfn >= end_pfn)
 848		return;
 849
 850	if (!list_empty(&nosave_regions)) {
 851		/* Try to extend the previous region (they should be sorted) */
 852		region = list_entry(nosave_regions.prev,
 853					struct nosave_region, list);
 854		if (region->end_pfn == start_pfn) {
 855			region->end_pfn = end_pfn;
 856			goto Report;
 857		}
 858	}
 859	if (use_kmalloc) {
 860		/* during init, this shouldn't fail */
 861		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
 862		BUG_ON(!region);
 863	} else
 864		/* This allocation cannot fail */
 865		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
 
 866	region->start_pfn = start_pfn;
 867	region->end_pfn = end_pfn;
 868	list_add_tail(&region->list, &nosave_regions);
 869 Report:
 870	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
 871		(unsigned long long) start_pfn << PAGE_SHIFT,
 872		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
 873}
 874
 875/*
 876 * Set bits in this map correspond to the page frames the contents of which
 877 * should not be saved during the suspend.
 878 */
 879static struct memory_bitmap *forbidden_pages_map;
 880
 881/* Set bits in this map correspond to free page frames. */
 882static struct memory_bitmap *free_pages_map;
 883
 884/*
 885 * Each page frame allocated for creating the image is marked by setting the
 886 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 887 */
 888
 889void swsusp_set_page_free(struct page *page)
 890{
 891	if (free_pages_map)
 892		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
 893}
 894
 895static int swsusp_page_is_free(struct page *page)
 896{
 897	return free_pages_map ?
 898		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
 899}
 900
 901void swsusp_unset_page_free(struct page *page)
 902{
 903	if (free_pages_map)
 904		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
 905}
 906
 907static void swsusp_set_page_forbidden(struct page *page)
 908{
 909	if (forbidden_pages_map)
 910		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
 911}
 912
 913int swsusp_page_is_forbidden(struct page *page)
 914{
 915	return forbidden_pages_map ?
 916		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
 917}
 918
 919static void swsusp_unset_page_forbidden(struct page *page)
 920{
 921	if (forbidden_pages_map)
 922		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
 923}
 924
 925/**
 926 *	mark_nosave_pages - set bits corresponding to the page frames the
 927 *	contents of which should not be saved in a given bitmap.
 
 
 
 928 */
 929
 930static void mark_nosave_pages(struct memory_bitmap *bm)
 931{
 932	struct nosave_region *region;
 933
 934	if (list_empty(&nosave_regions))
 935		return;
 936
 937	list_for_each_entry(region, &nosave_regions, list) {
 938		unsigned long pfn;
 939
 940		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
 941			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
 942			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
 943				- 1);
 944
 945		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
 946			if (pfn_valid(pfn)) {
 947				/*
 948				 * It is safe to ignore the result of
 949				 * mem_bm_set_bit_check() here, since we won't
 950				 * touch the PFNs for which the error is
 951				 * returned anyway.
 952				 */
 953				mem_bm_set_bit_check(bm, pfn);
 954			}
 955	}
 956}
 957
 958/**
 959 *	create_basic_memory_bitmaps - create bitmaps needed for marking page
 960 *	frames that should not be saved and free page frames.  The pointers
 961 *	forbidden_pages_map and free_pages_map are only modified if everything
 962 *	goes well, because we don't want the bits to be used before both bitmaps
 963 *	are set up.
 
 964 */
 965
 966int create_basic_memory_bitmaps(void)
 967{
 968	struct memory_bitmap *bm1, *bm2;
 969	int error = 0;
 970
 971	if (forbidden_pages_map && free_pages_map)
 972		return 0;
 973	else
 974		BUG_ON(forbidden_pages_map || free_pages_map);
 975
 976	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
 977	if (!bm1)
 978		return -ENOMEM;
 979
 980	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
 981	if (error)
 982		goto Free_first_object;
 983
 984	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
 985	if (!bm2)
 986		goto Free_first_bitmap;
 987
 988	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
 989	if (error)
 990		goto Free_second_object;
 991
 992	forbidden_pages_map = bm1;
 993	free_pages_map = bm2;
 994	mark_nosave_pages(forbidden_pages_map);
 995
 996	pr_debug("PM: Basic memory bitmaps created\n");
 997
 998	return 0;
 999
1000 Free_second_object:
1001	kfree(bm2);
1002 Free_first_bitmap:
1003 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1004 Free_first_object:
1005	kfree(bm1);
1006	return -ENOMEM;
1007}
1008
1009/**
1010 *	free_basic_memory_bitmaps - free memory bitmaps allocated by
1011 *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
1012 *	so that the bitmaps themselves are not referred to while they are being
1013 *	freed.
 
1014 */
1015
1016void free_basic_memory_bitmaps(void)
1017{
1018	struct memory_bitmap *bm1, *bm2;
1019
1020	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1021		return;
1022
1023	bm1 = forbidden_pages_map;
1024	bm2 = free_pages_map;
1025	forbidden_pages_map = NULL;
1026	free_pages_map = NULL;
1027	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1028	kfree(bm1);
1029	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1030	kfree(bm2);
1031
1032	pr_debug("PM: Basic memory bitmaps freed\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033}
1034
1035/**
1036 *	snapshot_additional_pages - estimate the number of additional pages
1037 *	be needed for setting up the suspend image data structures for given
1038 *	zone (usually the returned value is greater than the exact number)
 
 
 
1039 */
1040
1041unsigned int snapshot_additional_pages(struct zone *zone)
1042{
1043	unsigned int rtree, nodes;
1044
1045	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1046	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1047			      LINKED_PAGE_DATA_SIZE);
1048	while (nodes > 1) {
1049		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1050		rtree += nodes;
1051	}
1052
1053	return 2 * rtree;
1054}
1055
1056#ifdef CONFIG_HIGHMEM
1057/**
1058 *	count_free_highmem_pages - compute the total number of free highmem
1059 *	pages, system-wide.
 
1060 */
1061
1062static unsigned int count_free_highmem_pages(void)
1063{
1064	struct zone *zone;
1065	unsigned int cnt = 0;
1066
1067	for_each_populated_zone(zone)
1068		if (is_highmem(zone))
1069			cnt += zone_page_state(zone, NR_FREE_PAGES);
1070
1071	return cnt;
1072}
1073
1074/**
1075 *	saveable_highmem_page - Determine whether a highmem page should be
1076 *	included in the suspend image.
 
1077 *
1078 *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1079 *	and it isn't a part of a free chunk of pages.
1080 */
1081static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1082{
1083	struct page *page;
1084
1085	if (!pfn_valid(pfn))
1086		return NULL;
1087
1088	page = pfn_to_page(pfn);
1089	if (page_zone(page) != zone)
1090		return NULL;
1091
1092	BUG_ON(!PageHighMem(page));
1093
1094	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
1095	    PageReserved(page))
1096		return NULL;
1097
1098	if (page_is_guard(page))
1099		return NULL;
1100
1101	return page;
1102}
1103
1104/**
1105 *	count_highmem_pages - compute the total number of saveable highmem
1106 *	pages.
1107 */
1108
1109static unsigned int count_highmem_pages(void)
1110{
1111	struct zone *zone;
1112	unsigned int n = 0;
1113
1114	for_each_populated_zone(zone) {
1115		unsigned long pfn, max_zone_pfn;
1116
1117		if (!is_highmem(zone))
1118			continue;
1119
1120		mark_free_pages(zone);
1121		max_zone_pfn = zone_end_pfn(zone);
1122		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1123			if (saveable_highmem_page(zone, pfn))
1124				n++;
1125	}
1126	return n;
1127}
1128#else
1129static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1130{
1131	return NULL;
1132}
1133#endif /* CONFIG_HIGHMEM */
1134
1135/**
1136 *	saveable_page - Determine whether a non-highmem page should be included
1137 *	in the suspend image.
 
 
1138 *
1139 *	We should save the page if it isn't Nosave, and is not in the range
1140 *	of pages statically defined as 'unsaveable', and it isn't a part of
1141 *	a free chunk of pages.
1142 */
1143static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1144{
1145	struct page *page;
1146
1147	if (!pfn_valid(pfn))
1148		return NULL;
1149
1150	page = pfn_to_page(pfn);
1151	if (page_zone(page) != zone)
1152		return NULL;
1153
1154	BUG_ON(PageHighMem(page));
1155
1156	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1157		return NULL;
1158
1159	if (PageReserved(page)
1160	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1161		return NULL;
1162
1163	if (page_is_guard(page))
1164		return NULL;
1165
1166	return page;
1167}
1168
1169/**
1170 *	count_data_pages - compute the total number of saveable non-highmem
1171 *	pages.
1172 */
1173
1174static unsigned int count_data_pages(void)
1175{
1176	struct zone *zone;
1177	unsigned long pfn, max_zone_pfn;
1178	unsigned int n = 0;
1179
1180	for_each_populated_zone(zone) {
1181		if (is_highmem(zone))
1182			continue;
1183
1184		mark_free_pages(zone);
1185		max_zone_pfn = zone_end_pfn(zone);
1186		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1187			if (saveable_page(zone, pfn))
1188				n++;
1189	}
1190	return n;
1191}
1192
1193/* This is needed, because copy_page and memcpy are not usable for copying
 
1194 * task structs.
1195 */
1196static inline void do_copy_page(long *dst, long *src)
1197{
1198	int n;
1199
1200	for (n = PAGE_SIZE / sizeof(long); n; n--)
1201		*dst++ = *src++;
1202}
1203
1204
1205/**
1206 *	safe_copy_page - check if the page we are going to copy is marked as
1207 *		present in the kernel page tables (this always is the case if
1208 *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
1209 *		kernel_page_present() always returns 'true').
 
1210 */
1211static void safe_copy_page(void *dst, struct page *s_page)
1212{
1213	if (kernel_page_present(s_page)) {
1214		do_copy_page(dst, page_address(s_page));
1215	} else {
1216		kernel_map_pages(s_page, 1, 1);
1217		do_copy_page(dst, page_address(s_page));
1218		kernel_map_pages(s_page, 1, 0);
1219	}
1220}
1221
1222
1223#ifdef CONFIG_HIGHMEM
1224static inline struct page *
1225page_is_saveable(struct zone *zone, unsigned long pfn)
1226{
1227	return is_highmem(zone) ?
1228		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1229}
1230
1231static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1232{
1233	struct page *s_page, *d_page;
1234	void *src, *dst;
1235
1236	s_page = pfn_to_page(src_pfn);
1237	d_page = pfn_to_page(dst_pfn);
1238	if (PageHighMem(s_page)) {
1239		src = kmap_atomic(s_page);
1240		dst = kmap_atomic(d_page);
1241		do_copy_page(dst, src);
1242		kunmap_atomic(dst);
1243		kunmap_atomic(src);
1244	} else {
1245		if (PageHighMem(d_page)) {
1246			/* Page pointed to by src may contain some kernel
 
1247			 * data modified by kmap_atomic()
1248			 */
1249			safe_copy_page(buffer, s_page);
1250			dst = kmap_atomic(d_page);
1251			copy_page(dst, buffer);
1252			kunmap_atomic(dst);
1253		} else {
1254			safe_copy_page(page_address(d_page), s_page);
1255		}
1256	}
1257}
1258#else
1259#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1260
1261static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1262{
1263	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1264				pfn_to_page(src_pfn));
1265}
1266#endif /* CONFIG_HIGHMEM */
1267
1268static void
1269copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1270{
1271	struct zone *zone;
1272	unsigned long pfn;
1273
1274	for_each_populated_zone(zone) {
1275		unsigned long max_zone_pfn;
1276
1277		mark_free_pages(zone);
1278		max_zone_pfn = zone_end_pfn(zone);
1279		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1280			if (page_is_saveable(zone, pfn))
1281				memory_bm_set_bit(orig_bm, pfn);
1282	}
1283	memory_bm_position_reset(orig_bm);
1284	memory_bm_position_reset(copy_bm);
1285	for(;;) {
1286		pfn = memory_bm_next_pfn(orig_bm);
1287		if (unlikely(pfn == BM_END_OF_MAP))
1288			break;
1289		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1290	}
1291}
1292
1293/* Total number of image pages */
1294static unsigned int nr_copy_pages;
1295/* Number of pages needed for saving the original pfns of the image pages */
1296static unsigned int nr_meta_pages;
1297/*
1298 * Numbers of normal and highmem page frames allocated for hibernation image
1299 * before suspending devices.
1300 */
1301unsigned int alloc_normal, alloc_highmem;
1302/*
1303 * Memory bitmap used for marking saveable pages (during hibernation) or
1304 * hibernation image pages (during restore)
1305 */
1306static struct memory_bitmap orig_bm;
1307/*
1308 * Memory bitmap used during hibernation for marking allocated page frames that
1309 * will contain copies of saveable pages.  During restore it is initially used
1310 * for marking hibernation image pages, but then the set bits from it are
1311 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1312 * used for marking "safe" highmem pages, but it has to be reinitialized for
1313 * this purpose.
1314 */
1315static struct memory_bitmap copy_bm;
1316
1317/**
1318 *	swsusp_free - free pages allocated for the suspend.
1319 *
1320 *	Suspend pages are alocated before the atomic copy is made, so we
1321 *	need to release them after the resume.
1322 */
1323
1324void swsusp_free(void)
1325{
1326	unsigned long fb_pfn, fr_pfn;
1327
1328	if (!forbidden_pages_map || !free_pages_map)
1329		goto out;
1330
1331	memory_bm_position_reset(forbidden_pages_map);
1332	memory_bm_position_reset(free_pages_map);
1333
1334loop:
1335	fr_pfn = memory_bm_next_pfn(free_pages_map);
1336	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1337
1338	/*
1339	 * Find the next bit set in both bitmaps. This is guaranteed to
1340	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1341	 */
1342	do {
1343		if (fb_pfn < fr_pfn)
1344			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1345		if (fr_pfn < fb_pfn)
1346			fr_pfn = memory_bm_next_pfn(free_pages_map);
1347	} while (fb_pfn != fr_pfn);
1348
1349	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1350		struct page *page = pfn_to_page(fr_pfn);
1351
1352		memory_bm_clear_current(forbidden_pages_map);
1353		memory_bm_clear_current(free_pages_map);
 
1354		__free_page(page);
1355		goto loop;
1356	}
1357
1358out:
1359	nr_copy_pages = 0;
1360	nr_meta_pages = 0;
1361	restore_pblist = NULL;
1362	buffer = NULL;
1363	alloc_normal = 0;
1364	alloc_highmem = 0;
 
1365}
1366
1367/* Helper functions used for the shrinking of memory. */
1368
1369#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1370
1371/**
1372 * preallocate_image_pages - Allocate a number of pages for hibernation image
1373 * @nr_pages: Number of page frames to allocate.
1374 * @mask: GFP flags to use for the allocation.
1375 *
1376 * Return value: Number of page frames actually allocated
1377 */
1378static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1379{
1380	unsigned long nr_alloc = 0;
1381
1382	while (nr_pages > 0) {
1383		struct page *page;
1384
1385		page = alloc_image_page(mask);
1386		if (!page)
1387			break;
1388		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1389		if (PageHighMem(page))
1390			alloc_highmem++;
1391		else
1392			alloc_normal++;
1393		nr_pages--;
1394		nr_alloc++;
1395	}
1396
1397	return nr_alloc;
1398}
1399
1400static unsigned long preallocate_image_memory(unsigned long nr_pages,
1401					      unsigned long avail_normal)
1402{
1403	unsigned long alloc;
1404
1405	if (avail_normal <= alloc_normal)
1406		return 0;
1407
1408	alloc = avail_normal - alloc_normal;
1409	if (nr_pages < alloc)
1410		alloc = nr_pages;
1411
1412	return preallocate_image_pages(alloc, GFP_IMAGE);
1413}
1414
1415#ifdef CONFIG_HIGHMEM
1416static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1417{
1418	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1419}
1420
1421/**
1422 *  __fraction - Compute (an approximation of) x * (multiplier / base)
1423 */
1424static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1425{
1426	x *= multiplier;
1427	do_div(x, base);
1428	return (unsigned long)x;
1429}
1430
1431static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1432						unsigned long highmem,
1433						unsigned long total)
1434{
1435	unsigned long alloc = __fraction(nr_pages, highmem, total);
1436
1437	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1438}
1439#else /* CONFIG_HIGHMEM */
1440static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1441{
1442	return 0;
1443}
1444
1445static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1446						unsigned long highmem,
1447						unsigned long total)
1448{
1449	return 0;
1450}
1451#endif /* CONFIG_HIGHMEM */
1452
1453/**
1454 * free_unnecessary_pages - Release preallocated pages not needed for the image
1455 */
1456static unsigned long free_unnecessary_pages(void)
1457{
1458	unsigned long save, to_free_normal, to_free_highmem, free;
1459
1460	save = count_data_pages();
1461	if (alloc_normal >= save) {
1462		to_free_normal = alloc_normal - save;
1463		save = 0;
1464	} else {
1465		to_free_normal = 0;
1466		save -= alloc_normal;
1467	}
1468	save += count_highmem_pages();
1469	if (alloc_highmem >= save) {
1470		to_free_highmem = alloc_highmem - save;
1471	} else {
1472		to_free_highmem = 0;
1473		save -= alloc_highmem;
1474		if (to_free_normal > save)
1475			to_free_normal -= save;
1476		else
1477			to_free_normal = 0;
1478	}
1479	free = to_free_normal + to_free_highmem;
1480
1481	memory_bm_position_reset(&copy_bm);
1482
1483	while (to_free_normal > 0 || to_free_highmem > 0) {
1484		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1485		struct page *page = pfn_to_page(pfn);
1486
1487		if (PageHighMem(page)) {
1488			if (!to_free_highmem)
1489				continue;
1490			to_free_highmem--;
1491			alloc_highmem--;
1492		} else {
1493			if (!to_free_normal)
1494				continue;
1495			to_free_normal--;
1496			alloc_normal--;
1497		}
1498		memory_bm_clear_bit(&copy_bm, pfn);
1499		swsusp_unset_page_forbidden(page);
1500		swsusp_unset_page_free(page);
1501		__free_page(page);
1502	}
1503
1504	return free;
1505}
1506
1507/**
1508 * minimum_image_size - Estimate the minimum acceptable size of an image
1509 * @saveable: Number of saveable pages in the system.
1510 *
1511 * We want to avoid attempting to free too much memory too hard, so estimate the
1512 * minimum acceptable size of a hibernation image to use as the lower limit for
1513 * preallocating memory.
1514 *
1515 * We assume that the minimum image size should be proportional to
1516 *
1517 * [number of saveable pages] - [number of pages that can be freed in theory]
1518 *
1519 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1520 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1521 * minus mapped file pages.
1522 */
1523static unsigned long minimum_image_size(unsigned long saveable)
1524{
1525	unsigned long size;
1526
1527	size = global_page_state(NR_SLAB_RECLAIMABLE)
1528		+ global_page_state(NR_ACTIVE_ANON)
1529		+ global_page_state(NR_INACTIVE_ANON)
1530		+ global_page_state(NR_ACTIVE_FILE)
1531		+ global_page_state(NR_INACTIVE_FILE)
1532		- global_page_state(NR_FILE_MAPPED);
1533
1534	return saveable <= size ? 0 : saveable - size;
1535}
1536
1537/**
1538 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1539 *
1540 * To create a hibernation image it is necessary to make a copy of every page
1541 * frame in use.  We also need a number of page frames to be free during
1542 * hibernation for allocations made while saving the image and for device
1543 * drivers, in case they need to allocate memory from their hibernation
1544 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1545 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1546 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1547 * total number of available page frames and allocate at least
1548 *
1549 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1550 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1551 *
1552 * of them, which corresponds to the maximum size of a hibernation image.
1553 *
1554 * If image_size is set below the number following from the above formula,
1555 * the preallocation of memory is continued until the total number of saveable
1556 * pages in the system is below the requested image size or the minimum
1557 * acceptable image size returned by minimum_image_size(), whichever is greater.
1558 */
1559int hibernate_preallocate_memory(void)
1560{
1561	struct zone *zone;
1562	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1563	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1564	ktime_t start, stop;
1565	int error;
1566
1567	printk(KERN_INFO "PM: Preallocating image memory... ");
1568	start = ktime_get();
1569
1570	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1571	if (error)
1572		goto err_out;
1573
1574	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1575	if (error)
1576		goto err_out;
1577
1578	alloc_normal = 0;
1579	alloc_highmem = 0;
1580
1581	/* Count the number of saveable data pages. */
1582	save_highmem = count_highmem_pages();
1583	saveable = count_data_pages();
1584
1585	/*
1586	 * Compute the total number of page frames we can use (count) and the
1587	 * number of pages needed for image metadata (size).
1588	 */
1589	count = saveable;
1590	saveable += save_highmem;
1591	highmem = save_highmem;
1592	size = 0;
1593	for_each_populated_zone(zone) {
1594		size += snapshot_additional_pages(zone);
1595		if (is_highmem(zone))
1596			highmem += zone_page_state(zone, NR_FREE_PAGES);
1597		else
1598			count += zone_page_state(zone, NR_FREE_PAGES);
1599	}
1600	avail_normal = count;
1601	count += highmem;
1602	count -= totalreserve_pages;
1603
1604	/* Add number of pages required for page keys (s390 only). */
1605	size += page_key_additional_pages(saveable);
1606
1607	/* Compute the maximum number of saveable pages to leave in memory. */
1608	max_size = (count - (size + PAGES_FOR_IO)) / 2
1609			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1610	/* Compute the desired number of image pages specified by image_size. */
1611	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1612	if (size > max_size)
1613		size = max_size;
1614	/*
1615	 * If the desired number of image pages is at least as large as the
1616	 * current number of saveable pages in memory, allocate page frames for
1617	 * the image and we're done.
1618	 */
1619	if (size >= saveable) {
1620		pages = preallocate_image_highmem(save_highmem);
1621		pages += preallocate_image_memory(saveable - pages, avail_normal);
1622		goto out;
1623	}
1624
1625	/* Estimate the minimum size of the image. */
1626	pages = minimum_image_size(saveable);
1627	/*
1628	 * To avoid excessive pressure on the normal zone, leave room in it to
1629	 * accommodate an image of the minimum size (unless it's already too
1630	 * small, in which case don't preallocate pages from it at all).
1631	 */
1632	if (avail_normal > pages)
1633		avail_normal -= pages;
1634	else
1635		avail_normal = 0;
1636	if (size < pages)
1637		size = min_t(unsigned long, pages, max_size);
1638
1639	/*
1640	 * Let the memory management subsystem know that we're going to need a
1641	 * large number of page frames to allocate and make it free some memory.
1642	 * NOTE: If this is not done, performance will be hurt badly in some
1643	 * test cases.
1644	 */
1645	shrink_all_memory(saveable - size);
1646
1647	/*
1648	 * The number of saveable pages in memory was too high, so apply some
1649	 * pressure to decrease it.  First, make room for the largest possible
1650	 * image and fail if that doesn't work.  Next, try to decrease the size
1651	 * of the image as much as indicated by 'size' using allocations from
1652	 * highmem and non-highmem zones separately.
1653	 */
1654	pages_highmem = preallocate_image_highmem(highmem / 2);
1655	alloc = count - max_size;
1656	if (alloc > pages_highmem)
1657		alloc -= pages_highmem;
1658	else
1659		alloc = 0;
1660	pages = preallocate_image_memory(alloc, avail_normal);
1661	if (pages < alloc) {
1662		/* We have exhausted non-highmem pages, try highmem. */
1663		alloc -= pages;
1664		pages += pages_highmem;
1665		pages_highmem = preallocate_image_highmem(alloc);
1666		if (pages_highmem < alloc)
1667			goto err_out;
1668		pages += pages_highmem;
1669		/*
1670		 * size is the desired number of saveable pages to leave in
1671		 * memory, so try to preallocate (all memory - size) pages.
1672		 */
1673		alloc = (count - pages) - size;
1674		pages += preallocate_image_highmem(alloc);
1675	} else {
1676		/*
1677		 * There are approximately max_size saveable pages at this point
1678		 * and we want to reduce this number down to size.
1679		 */
1680		alloc = max_size - size;
1681		size = preallocate_highmem_fraction(alloc, highmem, count);
1682		pages_highmem += size;
1683		alloc -= size;
1684		size = preallocate_image_memory(alloc, avail_normal);
1685		pages_highmem += preallocate_image_highmem(alloc - size);
1686		pages += pages_highmem + size;
1687	}
1688
1689	/*
1690	 * We only need as many page frames for the image as there are saveable
1691	 * pages in memory, but we have allocated more.  Release the excessive
1692	 * ones now.
1693	 */
1694	pages -= free_unnecessary_pages();
1695
1696 out:
1697	stop = ktime_get();
1698	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1699	swsusp_show_speed(start, stop, pages, "Allocated");
1700
1701	return 0;
1702
1703 err_out:
1704	printk(KERN_CONT "\n");
1705	swsusp_free();
1706	return -ENOMEM;
1707}
1708
1709#ifdef CONFIG_HIGHMEM
1710/**
1711  *	count_pages_for_highmem - compute the number of non-highmem pages
1712  *	that will be necessary for creating copies of highmem pages.
1713  */
1714
 
1715static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1716{
1717	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1718
1719	if (free_highmem >= nr_highmem)
1720		nr_highmem = 0;
1721	else
1722		nr_highmem -= free_highmem;
1723
1724	return nr_highmem;
1725}
1726#else
1727static unsigned int
1728count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1729#endif /* CONFIG_HIGHMEM */
1730
1731/**
1732 *	enough_free_mem - Make sure we have enough free memory for the
1733 *	snapshot image.
1734 */
1735
1736static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1737{
1738	struct zone *zone;
1739	unsigned int free = alloc_normal;
1740
1741	for_each_populated_zone(zone)
1742		if (!is_highmem(zone))
1743			free += zone_page_state(zone, NR_FREE_PAGES);
1744
1745	nr_pages += count_pages_for_highmem(nr_highmem);
1746	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1747		nr_pages, PAGES_FOR_IO, free);
1748
1749	return free > nr_pages + PAGES_FOR_IO;
1750}
1751
1752#ifdef CONFIG_HIGHMEM
1753/**
1754 *	get_highmem_buffer - if there are some highmem pages in the suspend
1755 *	image, we may need the buffer to copy them and/or load their data.
 
 
1756 */
1757
1758static inline int get_highmem_buffer(int safe_needed)
1759{
1760	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1761	return buffer ? 0 : -ENOMEM;
1762}
1763
1764/**
1765 *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1766 *	Try to allocate as many pages as needed, but if the number of free
1767 *	highmem pages is lesser than that, allocate them all.
 
1768 */
1769
1770static inline unsigned int
1771alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1772{
1773	unsigned int to_alloc = count_free_highmem_pages();
1774
1775	if (to_alloc > nr_highmem)
1776		to_alloc = nr_highmem;
1777
1778	nr_highmem -= to_alloc;
1779	while (to_alloc-- > 0) {
1780		struct page *page;
1781
1782		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1783		memory_bm_set_bit(bm, page_to_pfn(page));
1784	}
1785	return nr_highmem;
1786}
1787#else
1788static inline int get_highmem_buffer(int safe_needed) { return 0; }
1789
1790static inline unsigned int
1791alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1792#endif /* CONFIG_HIGHMEM */
1793
1794/**
1795 *	swsusp_alloc - allocate memory for the suspend image
1796 *
1797 *	We first try to allocate as many highmem pages as there are
1798 *	saveable highmem pages in the system.  If that fails, we allocate
1799 *	non-highmem pages for the copies of the remaining highmem ones.
1800 *
1801 *	In this approach it is likely that the copies of highmem pages will
1802 *	also be located in the high memory, because of the way in which
1803 *	copy_data_pages() works.
 
 
 
 
1804 */
1805
1806static int
1807swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1808		unsigned int nr_pages, unsigned int nr_highmem)
1809{
1810	if (nr_highmem > 0) {
1811		if (get_highmem_buffer(PG_ANY))
1812			goto err_out;
1813		if (nr_highmem > alloc_highmem) {
1814			nr_highmem -= alloc_highmem;
1815			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1816		}
1817	}
1818	if (nr_pages > alloc_normal) {
1819		nr_pages -= alloc_normal;
1820		while (nr_pages-- > 0) {
1821			struct page *page;
1822
1823			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1824			if (!page)
1825				goto err_out;
1826			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1827		}
1828	}
1829
1830	return 0;
1831
1832 err_out:
1833	swsusp_free();
1834	return -ENOMEM;
1835}
1836
1837asmlinkage __visible int swsusp_save(void)
1838{
1839	unsigned int nr_pages, nr_highmem;
1840
1841	printk(KERN_INFO "PM: Creating hibernation image:\n");
1842
1843	drain_local_pages(NULL);
1844	nr_pages = count_data_pages();
1845	nr_highmem = count_highmem_pages();
1846	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1847
1848	if (!enough_free_mem(nr_pages, nr_highmem)) {
1849		printk(KERN_ERR "PM: Not enough free memory\n");
1850		return -ENOMEM;
1851	}
1852
1853	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1854		printk(KERN_ERR "PM: Memory allocation failed\n");
1855		return -ENOMEM;
1856	}
1857
1858	/* During allocating of suspend pagedir, new cold pages may appear.
 
1859	 * Kill them.
1860	 */
1861	drain_local_pages(NULL);
1862	copy_data_pages(&copy_bm, &orig_bm);
1863
1864	/*
1865	 * End of critical section. From now on, we can write to memory,
1866	 * but we should not touch disk. This specially means we must _not_
1867	 * touch swap space! Except we must write out our image of course.
1868	 */
1869
1870	nr_pages += nr_highmem;
1871	nr_copy_pages = nr_pages;
1872	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1873
1874	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1875		nr_pages);
1876
1877	return 0;
1878}
1879
1880#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1881static int init_header_complete(struct swsusp_info *info)
1882{
1883	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1884	info->version_code = LINUX_VERSION_CODE;
1885	return 0;
1886}
1887
1888static char *check_image_kernel(struct swsusp_info *info)
1889{
1890	if (info->version_code != LINUX_VERSION_CODE)
1891		return "kernel version";
1892	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1893		return "system type";
1894	if (strcmp(info->uts.release,init_utsname()->release))
1895		return "kernel release";
1896	if (strcmp(info->uts.version,init_utsname()->version))
1897		return "version";
1898	if (strcmp(info->uts.machine,init_utsname()->machine))
1899		return "machine";
1900	return NULL;
1901}
1902#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1903
1904unsigned long snapshot_get_image_size(void)
1905{
1906	return nr_copy_pages + nr_meta_pages + 1;
1907}
1908
1909static int init_header(struct swsusp_info *info)
1910{
1911	memset(info, 0, sizeof(struct swsusp_info));
1912	info->num_physpages = get_num_physpages();
1913	info->image_pages = nr_copy_pages;
1914	info->pages = snapshot_get_image_size();
1915	info->size = info->pages;
1916	info->size <<= PAGE_SHIFT;
1917	return init_header_complete(info);
1918}
1919
1920/**
1921 *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1922 *	are stored in the array @buf[] (1 page at a time)
 
 
 
 
1923 */
1924
1925static inline void
1926pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1927{
1928	int j;
1929
1930	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1931		buf[j] = memory_bm_next_pfn(bm);
1932		if (unlikely(buf[j] == BM_END_OF_MAP))
1933			break;
1934		/* Save page key for data page (s390 only). */
1935		page_key_read(buf + j);
1936	}
1937}
1938
1939/**
1940 *	snapshot_read_next - used for reading the system memory snapshot.
 
1941 *
1942 *	On the first call to it @handle should point to a zeroed
1943 *	snapshot_handle structure.  The structure gets updated and a pointer
1944 *	to it should be passed to this function every next time.
1945 *
1946 *	On success the function returns a positive number.  Then, the caller
1947 *	is allowed to read up to the returned number of bytes from the memory
1948 *	location computed by the data_of() macro.
1949 *
1950 *	The function returns 0 to indicate the end of data stream condition,
1951 *	and a negative number is returned on error.  In such cases the
1952 *	structure pointed to by @handle is not updated and should not be used
1953 *	any more.
1954 */
1955
1956int snapshot_read_next(struct snapshot_handle *handle)
1957{
1958	if (handle->cur > nr_meta_pages + nr_copy_pages)
1959		return 0;
1960
1961	if (!buffer) {
1962		/* This makes the buffer be freed by swsusp_free() */
1963		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1964		if (!buffer)
1965			return -ENOMEM;
1966	}
1967	if (!handle->cur) {
1968		int error;
1969
1970		error = init_header((struct swsusp_info *)buffer);
1971		if (error)
1972			return error;
1973		handle->buffer = buffer;
1974		memory_bm_position_reset(&orig_bm);
1975		memory_bm_position_reset(&copy_bm);
1976	} else if (handle->cur <= nr_meta_pages) {
1977		clear_page(buffer);
1978		pack_pfns(buffer, &orig_bm);
1979	} else {
1980		struct page *page;
1981
1982		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1983		if (PageHighMem(page)) {
1984			/* Highmem pages are copied to the buffer,
 
1985			 * because we can't return with a kmapped
1986			 * highmem page (we may not be called again).
1987			 */
1988			void *kaddr;
1989
1990			kaddr = kmap_atomic(page);
1991			copy_page(buffer, kaddr);
1992			kunmap_atomic(kaddr);
1993			handle->buffer = buffer;
1994		} else {
1995			handle->buffer = page_address(page);
1996		}
1997	}
1998	handle->cur++;
1999	return PAGE_SIZE;
2000}
2001
2002/**
2003 *	mark_unsafe_pages - mark the pages that cannot be used for storing
2004 *	the image during resume, because they conflict with the pages that
2005 *	had been used before suspend
2006 */
2007
2008static int mark_unsafe_pages(struct memory_bitmap *bm)
2009{
2010	struct zone *zone;
2011	unsigned long pfn, max_zone_pfn;
2012
2013	/* Clear page flags */
2014	for_each_populated_zone(zone) {
2015		max_zone_pfn = zone_end_pfn(zone);
2016		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2017			if (pfn_valid(pfn))
2018				swsusp_unset_page_free(pfn_to_page(pfn));
2019	}
2020
2021	/* Mark pages that correspond to the "original" pfns as "unsafe" */
2022	memory_bm_position_reset(bm);
2023	do {
2024		pfn = memory_bm_next_pfn(bm);
2025		if (likely(pfn != BM_END_OF_MAP)) {
2026			if (likely(pfn_valid(pfn)))
2027				swsusp_set_page_free(pfn_to_page(pfn));
2028			else
2029				return -EFAULT;
2030		}
2031	} while (pfn != BM_END_OF_MAP);
2032
2033	allocated_unsafe_pages = 0;
2034
2035	return 0;
2036}
2037
2038static void
2039duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
 
 
 
 
 
2040{
2041	unsigned long pfn;
2042
2043	memory_bm_position_reset(src);
2044	pfn = memory_bm_next_pfn(src);
 
2045	while (pfn != BM_END_OF_MAP) {
2046		memory_bm_set_bit(dst, pfn);
2047		pfn = memory_bm_next_pfn(src);
2048	}
 
 
 
 
 
2049}
2050
2051static int check_header(struct swsusp_info *info)
2052{
2053	char *reason;
2054
2055	reason = check_image_kernel(info);
2056	if (!reason && info->num_physpages != get_num_physpages())
2057		reason = "memory size";
2058	if (reason) {
2059		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2060		return -EPERM;
2061	}
2062	return 0;
2063}
2064
2065/**
2066 *	load header - check the image header and copy data from it
2067 */
2068
2069static int
2070load_header(struct swsusp_info *info)
2071{
2072	int error;
2073
2074	restore_pblist = NULL;
2075	error = check_header(info);
2076	if (!error) {
2077		nr_copy_pages = info->image_pages;
2078		nr_meta_pages = info->pages - info->image_pages - 1;
2079	}
2080	return error;
2081}
2082
2083/**
2084 *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
2085 *	the corresponding bit in the memory bitmap @bm
 
 
 
 
2086 */
2087static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2088{
2089	int j;
2090
2091	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2092		if (unlikely(buf[j] == BM_END_OF_MAP))
2093			break;
2094
2095		/* Extract and buffer page key for data page (s390 only). */
2096		page_key_memorize(buf + j);
2097
2098		if (memory_bm_pfn_present(bm, buf[j]))
2099			memory_bm_set_bit(bm, buf[j]);
2100		else
2101			return -EFAULT;
2102	}
2103
2104	return 0;
2105}
2106
2107/* List of "safe" pages that may be used to store data loaded from the suspend
2108 * image
2109 */
2110static struct linked_page *safe_pages_list;
2111
2112#ifdef CONFIG_HIGHMEM
2113/* struct highmem_pbe is used for creating the list of highmem pages that
 
2114 * should be restored atomically during the resume from disk, because the page
2115 * frames they have occupied before the suspend are in use.
2116 */
2117struct highmem_pbe {
2118	struct page *copy_page;	/* data is here now */
2119	struct page *orig_page;	/* data was here before the suspend */
2120	struct highmem_pbe *next;
2121};
2122
2123/* List of highmem PBEs needed for restoring the highmem pages that were
 
2124 * allocated before the suspend and included in the suspend image, but have
2125 * also been allocated by the "resume" kernel, so their contents cannot be
2126 * written directly to their "original" page frames.
2127 */
2128static struct highmem_pbe *highmem_pblist;
2129
2130/**
2131 *	count_highmem_image_pages - compute the number of highmem pages in the
2132 *	suspend image.  The bits in the memory bitmap @bm that correspond to the
2133 *	image pages are assumed to be set.
 
2134 */
2135
2136static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2137{
2138	unsigned long pfn;
2139	unsigned int cnt = 0;
2140
2141	memory_bm_position_reset(bm);
2142	pfn = memory_bm_next_pfn(bm);
2143	while (pfn != BM_END_OF_MAP) {
2144		if (PageHighMem(pfn_to_page(pfn)))
2145			cnt++;
2146
2147		pfn = memory_bm_next_pfn(bm);
2148	}
2149	return cnt;
2150}
2151
2152/**
2153 *	prepare_highmem_image - try to allocate as many highmem pages as
2154 *	there are highmem image pages (@nr_highmem_p points to the variable
2155 *	containing the number of highmem image pages).  The pages that are
2156 *	"safe" (ie. will not be overwritten when the suspend image is
2157 *	restored) have the corresponding bits set in @bm (it must be
2158 *	unitialized).
2159 *
2160 *	NOTE: This function should not be called if there are no highmem
2161 *	image pages.
2162 */
2163
2164static unsigned int safe_highmem_pages;
2165
2166static struct memory_bitmap *safe_highmem_bm;
2167
2168static int
2169prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
 
 
 
 
 
 
 
 
 
 
 
 
 
2170{
2171	unsigned int to_alloc;
2172
2173	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2174		return -ENOMEM;
2175
2176	if (get_highmem_buffer(PG_SAFE))
2177		return -ENOMEM;
2178
2179	to_alloc = count_free_highmem_pages();
2180	if (to_alloc > *nr_highmem_p)
2181		to_alloc = *nr_highmem_p;
2182	else
2183		*nr_highmem_p = to_alloc;
2184
2185	safe_highmem_pages = 0;
2186	while (to_alloc-- > 0) {
2187		struct page *page;
2188
2189		page = alloc_page(__GFP_HIGHMEM);
2190		if (!swsusp_page_is_free(page)) {
2191			/* The page is "safe", set its bit the bitmap */
2192			memory_bm_set_bit(bm, page_to_pfn(page));
2193			safe_highmem_pages++;
2194		}
2195		/* Mark the page as allocated */
2196		swsusp_set_page_forbidden(page);
2197		swsusp_set_page_free(page);
2198	}
2199	memory_bm_position_reset(bm);
2200	safe_highmem_bm = bm;
2201	return 0;
2202}
2203
 
 
2204/**
2205 *	get_highmem_page_buffer - for given highmem image page find the buffer
2206 *	that suspend_write_next() should set for its caller to write to.
 
 
2207 *
2208 *	If the page is to be saved to its "original" page frame or a copy of
2209 *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
2210 *	the copy of the page is to be made in normal memory, so the address of
2211 *	the copy is returned.
2212 *
2213 *	If @buffer is returned, the caller of suspend_write_next() will write
2214 *	the page's contents to @buffer, so they will have to be copied to the
2215 *	right location on the next call to suspend_write_next() and it is done
2216 *	with the help of copy_last_highmem_page().  For this purpose, if
2217 *	@buffer is returned, @last_highmem page is set to the page to which
2218 *	the data will have to be copied from @buffer.
2219 */
2220
2221static struct page *last_highmem_page;
2222
2223static void *
2224get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2225{
2226	struct highmem_pbe *pbe;
2227	void *kaddr;
2228
2229	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2230		/* We have allocated the "original" page frame and we can
 
2231		 * use it directly to store the loaded page.
2232		 */
2233		last_highmem_page = page;
2234		return buffer;
2235	}
2236	/* The "original" page frame has not been allocated and we have to
 
2237	 * use a "safe" page frame to store the loaded page.
2238	 */
2239	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2240	if (!pbe) {
2241		swsusp_free();
2242		return ERR_PTR(-ENOMEM);
2243	}
2244	pbe->orig_page = page;
2245	if (safe_highmem_pages > 0) {
2246		struct page *tmp;
2247
2248		/* Copy of the page will be stored in high memory */
2249		kaddr = buffer;
2250		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2251		safe_highmem_pages--;
2252		last_highmem_page = tmp;
2253		pbe->copy_page = tmp;
2254	} else {
2255		/* Copy of the page will be stored in normal memory */
2256		kaddr = safe_pages_list;
2257		safe_pages_list = safe_pages_list->next;
2258		pbe->copy_page = virt_to_page(kaddr);
2259	}
2260	pbe->next = highmem_pblist;
2261	highmem_pblist = pbe;
2262	return kaddr;
2263}
2264
2265/**
2266 *	copy_last_highmem_page - copy the contents of a highmem image from
2267 *	@buffer, where the caller of snapshot_write_next() has place them,
2268 *	to the right location represented by @last_highmem_page .
 
 
2269 */
2270
2271static void copy_last_highmem_page(void)
2272{
2273	if (last_highmem_page) {
2274		void *dst;
2275
2276		dst = kmap_atomic(last_highmem_page);
2277		copy_page(dst, buffer);
2278		kunmap_atomic(dst);
2279		last_highmem_page = NULL;
2280	}
2281}
2282
2283static inline int last_highmem_page_copied(void)
2284{
2285	return !last_highmem_page;
2286}
2287
2288static inline void free_highmem_data(void)
2289{
2290	if (safe_highmem_bm)
2291		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2292
2293	if (buffer)
2294		free_image_page(buffer, PG_UNSAFE_CLEAR);
2295}
2296#else
2297static unsigned int
2298count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2299
2300static inline int
2301prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2302{
2303	return 0;
2304}
2305
2306static inline void *
2307get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2308{
2309	return ERR_PTR(-EINVAL);
2310}
2311
2312static inline void copy_last_highmem_page(void) {}
2313static inline int last_highmem_page_copied(void) { return 1; }
2314static inline void free_highmem_data(void) {}
2315#endif /* CONFIG_HIGHMEM */
2316
 
 
2317/**
2318 *	prepare_image - use the memory bitmap @bm to mark the pages that will
2319 *	be overwritten in the process of restoring the system memory state
2320 *	from the suspend image ("unsafe" pages) and allocate memory for the
2321 *	image.
2322 *
2323 *	The idea is to allocate a new memory bitmap first and then allocate
2324 *	as many pages as needed for the image data, but not to assign these
2325 *	pages to specific tasks initially.  Instead, we just mark them as
2326 *	allocated and create a lists of "safe" pages that will be used
2327 *	later.  On systems with high memory a list of "safe" highmem pages is
2328 *	also created.
 
 
2329 */
2330
2331#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2332
2333static int
2334prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2335{
2336	unsigned int nr_pages, nr_highmem;
2337	struct linked_page *sp_list, *lp;
2338	int error;
2339
2340	/* If there is no highmem, the buffer will not be necessary */
2341	free_image_page(buffer, PG_UNSAFE_CLEAR);
2342	buffer = NULL;
2343
2344	nr_highmem = count_highmem_image_pages(bm);
2345	error = mark_unsafe_pages(bm);
2346	if (error)
2347		goto Free;
2348
2349	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2350	if (error)
2351		goto Free;
2352
2353	duplicate_memory_bitmap(new_bm, bm);
2354	memory_bm_free(bm, PG_UNSAFE_KEEP);
2355	if (nr_highmem > 0) {
2356		error = prepare_highmem_image(bm, &nr_highmem);
2357		if (error)
2358			goto Free;
2359	}
2360	/* Reserve some safe pages for potential later use.
 
2361	 *
2362	 * NOTE: This way we make sure there will be enough safe pages for the
2363	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2364	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
 
 
2365	 */
2366	sp_list = NULL;
2367	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2368	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2369	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2370	while (nr_pages > 0) {
2371		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2372		if (!lp) {
2373			error = -ENOMEM;
2374			goto Free;
2375		}
2376		lp->next = sp_list;
2377		sp_list = lp;
2378		nr_pages--;
2379	}
2380	/* Preallocate memory for the image */
2381	safe_pages_list = NULL;
2382	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2383	while (nr_pages > 0) {
2384		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2385		if (!lp) {
2386			error = -ENOMEM;
2387			goto Free;
2388		}
2389		if (!swsusp_page_is_free(virt_to_page(lp))) {
2390			/* The page is "safe", add it to the list */
2391			lp->next = safe_pages_list;
2392			safe_pages_list = lp;
2393		}
2394		/* Mark the page as allocated */
2395		swsusp_set_page_forbidden(virt_to_page(lp));
2396		swsusp_set_page_free(virt_to_page(lp));
2397		nr_pages--;
2398	}
2399	/* Free the reserved safe pages so that chain_alloc() can use them */
2400	while (sp_list) {
2401		lp = sp_list->next;
2402		free_image_page(sp_list, PG_UNSAFE_CLEAR);
2403		sp_list = lp;
2404	}
2405	return 0;
2406
2407 Free:
2408	swsusp_free();
2409	return error;
2410}
2411
2412/**
2413 *	get_buffer - compute the address that snapshot_write_next() should
2414 *	set for its caller to write to.
 
 
2415 */
2416
2417static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2418{
2419	struct pbe *pbe;
2420	struct page *page;
2421	unsigned long pfn = memory_bm_next_pfn(bm);
2422
2423	if (pfn == BM_END_OF_MAP)
2424		return ERR_PTR(-EFAULT);
2425
2426	page = pfn_to_page(pfn);
2427	if (PageHighMem(page))
2428		return get_highmem_page_buffer(page, ca);
2429
2430	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2431		/* We have allocated the "original" page frame and we can
 
2432		 * use it directly to store the loaded page.
2433		 */
2434		return page_address(page);
2435
2436	/* The "original" page frame has not been allocated and we have to
 
2437	 * use a "safe" page frame to store the loaded page.
2438	 */
2439	pbe = chain_alloc(ca, sizeof(struct pbe));
2440	if (!pbe) {
2441		swsusp_free();
2442		return ERR_PTR(-ENOMEM);
2443	}
2444	pbe->orig_address = page_address(page);
2445	pbe->address = safe_pages_list;
2446	safe_pages_list = safe_pages_list->next;
2447	pbe->next = restore_pblist;
2448	restore_pblist = pbe;
2449	return pbe->address;
2450}
2451
2452/**
2453 *	snapshot_write_next - used for writing the system memory snapshot.
 
2454 *
2455 *	On the first call to it @handle should point to a zeroed
2456 *	snapshot_handle structure.  The structure gets updated and a pointer
2457 *	to it should be passed to this function every next time.
2458 *
2459 *	On success the function returns a positive number.  Then, the caller
2460 *	is allowed to write up to the returned number of bytes to the memory
2461 *	location computed by the data_of() macro.
2462 *
2463 *	The function returns 0 to indicate the "end of file" condition,
2464 *	and a negative number is returned on error.  In such cases the
2465 *	structure pointed to by @handle is not updated and should not be used
2466 *	any more.
2467 */
2468
2469int snapshot_write_next(struct snapshot_handle *handle)
2470{
2471	static struct chain_allocator ca;
2472	int error = 0;
2473
2474	/* Check if we have already loaded the entire image */
2475	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2476		return 0;
2477
2478	handle->sync_read = 1;
2479
2480	if (!handle->cur) {
2481		if (!buffer)
2482			/* This makes the buffer be freed by swsusp_free() */
2483			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2484
2485		if (!buffer)
2486			return -ENOMEM;
2487
2488		handle->buffer = buffer;
2489	} else if (handle->cur == 1) {
2490		error = load_header(buffer);
2491		if (error)
2492			return error;
2493
 
 
2494		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2495		if (error)
2496			return error;
2497
2498		/* Allocate buffer for page keys. */
2499		error = page_key_alloc(nr_copy_pages);
2500		if (error)
2501			return error;
2502
 
2503	} else if (handle->cur <= nr_meta_pages + 1) {
2504		error = unpack_orig_pfns(buffer, &copy_bm);
2505		if (error)
2506			return error;
2507
2508		if (handle->cur == nr_meta_pages + 1) {
2509			error = prepare_image(&orig_bm, &copy_bm);
2510			if (error)
2511				return error;
2512
2513			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2514			memory_bm_position_reset(&orig_bm);
2515			restore_pblist = NULL;
2516			handle->buffer = get_buffer(&orig_bm, &ca);
2517			handle->sync_read = 0;
2518			if (IS_ERR(handle->buffer))
2519				return PTR_ERR(handle->buffer);
2520		}
2521	} else {
2522		copy_last_highmem_page();
2523		/* Restore page key for data page (s390 only). */
2524		page_key_write(handle->buffer);
 
2525		handle->buffer = get_buffer(&orig_bm, &ca);
2526		if (IS_ERR(handle->buffer))
2527			return PTR_ERR(handle->buffer);
2528		if (handle->buffer != buffer)
2529			handle->sync_read = 0;
2530	}
2531	handle->cur++;
2532	return PAGE_SIZE;
2533}
2534
2535/**
2536 *	snapshot_write_finalize - must be called after the last call to
2537 *	snapshot_write_next() in case the last page in the image happens
2538 *	to be a highmem page and its contents should be stored in the
2539 *	highmem.  Additionally, it releases the memory that will not be
2540 *	used any more.
 
2541 */
2542
2543void snapshot_write_finalize(struct snapshot_handle *handle)
2544{
2545	copy_last_highmem_page();
2546	/* Restore page key for data page (s390 only). */
2547	page_key_write(handle->buffer);
2548	page_key_free();
2549	/* Free only if we have loaded the image entirely */
 
2550	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2551		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2552		free_highmem_data();
2553	}
2554}
2555
2556int snapshot_image_loaded(struct snapshot_handle *handle)
2557{
2558	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2559			handle->cur <= nr_meta_pages + nr_copy_pages);
2560}
2561
2562#ifdef CONFIG_HIGHMEM
2563/* Assumes that @buf is ready and points to a "safe" page */
2564static inline void
2565swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2566{
2567	void *kaddr1, *kaddr2;
2568
2569	kaddr1 = kmap_atomic(p1);
2570	kaddr2 = kmap_atomic(p2);
2571	copy_page(buf, kaddr1);
2572	copy_page(kaddr1, kaddr2);
2573	copy_page(kaddr2, buf);
2574	kunmap_atomic(kaddr2);
2575	kunmap_atomic(kaddr1);
2576}
2577
2578/**
2579 *	restore_highmem - for each highmem page that was allocated before
2580 *	the suspend and included in the suspend image, and also has been
2581 *	allocated by the "resume" kernel swap its current (ie. "before
2582 *	resume") contents with the previous (ie. "before suspend") one.
 
2583 *
2584 *	If the resume eventually fails, we can call this function once
2585 *	again and restore the "before resume" highmem state.
2586 */
2587
2588int restore_highmem(void)
2589{
2590	struct highmem_pbe *pbe = highmem_pblist;
2591	void *buf;
2592
2593	if (!pbe)
2594		return 0;
2595
2596	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2597	if (!buf)
2598		return -ENOMEM;
2599
2600	while (pbe) {
2601		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2602		pbe = pbe->next;
2603	}
2604	free_image_page(buf, PG_UNSAFE_CLEAR);
2605	return 0;
2606}
2607#endif /* CONFIG_HIGHMEM */