Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * linux/kernel/power/snapshot.c
   3 *
   4 * This file provides system snapshot/restore functionality for swsusp.
   5 *
   6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   8 *
   9 * This file is released under the GPLv2.
  10 *
  11 */
  12
  13#define pr_fmt(fmt) "PM: " fmt
  14
  15#include <linux/version.h>
  16#include <linux/module.h>
  17#include <linux/mm.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/bitops.h>
  21#include <linux/spinlock.h>
  22#include <linux/kernel.h>
  23#include <linux/pm.h>
  24#include <linux/device.h>
  25#include <linux/init.h>
  26#include <linux/bootmem.h>
  27#include <linux/nmi.h>
  28#include <linux/syscalls.h>
  29#include <linux/console.h>
  30#include <linux/highmem.h>
  31#include <linux/list.h>
  32#include <linux/slab.h>
  33#include <linux/compiler.h>
  34#include <linux/ktime.h>
  35#include <linux/set_memory.h>
  36
  37#include <linux/uaccess.h>
  38#include <asm/mmu_context.h>
  39#include <asm/pgtable.h>
  40#include <asm/tlbflush.h>
  41#include <asm/io.h>
  42
  43#include "power.h"
  44
  45#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
  46static bool hibernate_restore_protection;
  47static bool hibernate_restore_protection_active;
  48
  49void enable_restore_image_protection(void)
  50{
  51	hibernate_restore_protection = true;
  52}
  53
  54static inline void hibernate_restore_protection_begin(void)
  55{
  56	hibernate_restore_protection_active = hibernate_restore_protection;
  57}
  58
  59static inline void hibernate_restore_protection_end(void)
  60{
  61	hibernate_restore_protection_active = false;
  62}
  63
  64static inline void hibernate_restore_protect_page(void *page_address)
  65{
  66	if (hibernate_restore_protection_active)
  67		set_memory_ro((unsigned long)page_address, 1);
  68}
  69
  70static inline void hibernate_restore_unprotect_page(void *page_address)
  71{
  72	if (hibernate_restore_protection_active)
  73		set_memory_rw((unsigned long)page_address, 1);
  74}
  75#else
  76static inline void hibernate_restore_protection_begin(void) {}
  77static inline void hibernate_restore_protection_end(void) {}
  78static inline void hibernate_restore_protect_page(void *page_address) {}
  79static inline void hibernate_restore_unprotect_page(void *page_address) {}
  80#endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
  81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  82static int swsusp_page_is_free(struct page *);
  83static void swsusp_set_page_forbidden(struct page *);
  84static void swsusp_unset_page_forbidden(struct page *);
  85
  86/*
  87 * Number of bytes to reserve for memory allocations made by device drivers
  88 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  89 * cause image creation to fail (tunable via /sys/power/reserved_size).
  90 */
  91unsigned long reserved_size;
  92
  93void __init hibernate_reserved_size_init(void)
  94{
  95	reserved_size = SPARE_PAGES * PAGE_SIZE;
  96}
  97
  98/*
  99 * Preferred image size in bytes (tunable via /sys/power/image_size).
 100 * When it is set to N, swsusp will do its best to ensure the image
 101 * size will not exceed N bytes, but if that is impossible, it will
 102 * try to create the smallest image possible.
 103 */
 104unsigned long image_size;
 105
 106void __init hibernate_image_size_init(void)
 107{
 108	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
 109}
 110
 111/*
 112 * List of PBEs needed for restoring the pages that were allocated before
 113 * the suspend and included in the suspend image, but have also been
 114 * allocated by the "resume" kernel, so their contents cannot be written
 115 * directly to their "original" page frames.
 116 */
 117struct pbe *restore_pblist;
 118
 119/* struct linked_page is used to build chains of pages */
 120
 121#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 122
 123struct linked_page {
 124	struct linked_page *next;
 125	char data[LINKED_PAGE_DATA_SIZE];
 126} __packed;
 127
 128/*
 129 * List of "safe" pages (ie. pages that were not used by the image kernel
 130 * before hibernation) that may be used as temporary storage for image kernel
 131 * memory contents.
 132 */
 133static struct linked_page *safe_pages_list;
 134
 135/* Pointer to an auxiliary buffer (1 page) */
 136static void *buffer;
 137
 138#define PG_ANY		0
 139#define PG_SAFE		1
 140#define PG_UNSAFE_CLEAR	1
 141#define PG_UNSAFE_KEEP	0
 142
 143static unsigned int allocated_unsafe_pages;
 144
 145/**
 146 * get_image_page - Allocate a page for a hibernation image.
 147 * @gfp_mask: GFP mask for the allocation.
 148 * @safe_needed: Get pages that were not used before hibernation (restore only)
 149 *
 150 * During image restoration, for storing the PBE list and the image data, we can
 151 * only use memory pages that do not conflict with the pages used before
 152 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 153 * using allocated_unsafe_pages.
 154 *
 155 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 156 * swsusp_free() can release it.
 157 */
 158static void *get_image_page(gfp_t gfp_mask, int safe_needed)
 159{
 160	void *res;
 161
 162	res = (void *)get_zeroed_page(gfp_mask);
 163	if (safe_needed)
 164		while (res && swsusp_page_is_free(virt_to_page(res))) {
 165			/* The page is unsafe, mark it for swsusp_free() */
 166			swsusp_set_page_forbidden(virt_to_page(res));
 167			allocated_unsafe_pages++;
 168			res = (void *)get_zeroed_page(gfp_mask);
 169		}
 170	if (res) {
 171		swsusp_set_page_forbidden(virt_to_page(res));
 172		swsusp_set_page_free(virt_to_page(res));
 173	}
 174	return res;
 175}
 176
 177static void *__get_safe_page(gfp_t gfp_mask)
 178{
 179	if (safe_pages_list) {
 180		void *ret = safe_pages_list;
 181
 182		safe_pages_list = safe_pages_list->next;
 183		memset(ret, 0, PAGE_SIZE);
 184		return ret;
 185	}
 186	return get_image_page(gfp_mask, PG_SAFE);
 187}
 188
 189unsigned long get_safe_page(gfp_t gfp_mask)
 190{
 191	return (unsigned long)__get_safe_page(gfp_mask);
 192}
 193
 194static struct page *alloc_image_page(gfp_t gfp_mask)
 195{
 196	struct page *page;
 197
 198	page = alloc_page(gfp_mask);
 199	if (page) {
 200		swsusp_set_page_forbidden(page);
 201		swsusp_set_page_free(page);
 202	}
 203	return page;
 204}
 205
 206static void recycle_safe_page(void *page_address)
 207{
 208	struct linked_page *lp = page_address;
 209
 210	lp->next = safe_pages_list;
 211	safe_pages_list = lp;
 212}
 213
 214/**
 215 * free_image_page - Free a page allocated for hibernation image.
 216 * @addr: Address of the page to free.
 217 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 218 *
 219 * The page to free should have been allocated by get_image_page() (page flags
 220 * set by it are affected).
 221 */
 222static inline void free_image_page(void *addr, int clear_nosave_free)
 223{
 224	struct page *page;
 225
 226	BUG_ON(!virt_addr_valid(addr));
 227
 228	page = virt_to_page(addr);
 229
 230	swsusp_unset_page_forbidden(page);
 231	if (clear_nosave_free)
 232		swsusp_unset_page_free(page);
 233
 234	__free_page(page);
 235}
 236
 237static inline void free_list_of_pages(struct linked_page *list,
 238				      int clear_page_nosave)
 239{
 240	while (list) {
 241		struct linked_page *lp = list->next;
 242
 243		free_image_page(list, clear_page_nosave);
 244		list = lp;
 245	}
 246}
 247
 248/*
 249 * struct chain_allocator is used for allocating small objects out of
 250 * a linked list of pages called 'the chain'.
 251 *
 252 * The chain grows each time when there is no room for a new object in
 253 * the current page.  The allocated objects cannot be freed individually.
 254 * It is only possible to free them all at once, by freeing the entire
 255 * chain.
 256 *
 257 * NOTE: The chain allocator may be inefficient if the allocated objects
 258 * are not much smaller than PAGE_SIZE.
 259 */
 260struct chain_allocator {
 261	struct linked_page *chain;	/* the chain */
 262	unsigned int used_space;	/* total size of objects allocated out
 263					   of the current page */
 264	gfp_t gfp_mask;		/* mask for allocating pages */
 265	int safe_needed;	/* if set, only "safe" pages are allocated */
 266};
 267
 268static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
 269		       int safe_needed)
 270{
 271	ca->chain = NULL;
 272	ca->used_space = LINKED_PAGE_DATA_SIZE;
 273	ca->gfp_mask = gfp_mask;
 274	ca->safe_needed = safe_needed;
 275}
 276
 277static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 278{
 279	void *ret;
 280
 281	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 282		struct linked_page *lp;
 283
 284		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
 285					get_image_page(ca->gfp_mask, PG_ANY);
 286		if (!lp)
 287			return NULL;
 288
 289		lp->next = ca->chain;
 290		ca->chain = lp;
 291		ca->used_space = 0;
 292	}
 293	ret = ca->chain->data + ca->used_space;
 294	ca->used_space += size;
 295	return ret;
 296}
 297
 298/**
 299 * Data types related to memory bitmaps.
 300 *
 301 * Memory bitmap is a structure consiting of many linked lists of
 302 * objects.  The main list's elements are of type struct zone_bitmap
 303 * and each of them corresonds to one zone.  For each zone bitmap
 304 * object there is a list of objects of type struct bm_block that
 305 * represent each blocks of bitmap in which information is stored.
 306 *
 307 * struct memory_bitmap contains a pointer to the main list of zone
 308 * bitmap objects, a struct bm_position used for browsing the bitmap,
 309 * and a pointer to the list of pages used for allocating all of the
 310 * zone bitmap objects and bitmap block objects.
 311 *
 312 * NOTE: It has to be possible to lay out the bitmap in memory
 313 * using only allocations of order 0.  Additionally, the bitmap is
 314 * designed to work with arbitrary number of zones (this is over the
 315 * top for now, but let's avoid making unnecessary assumptions ;-).
 316 *
 317 * struct zone_bitmap contains a pointer to a list of bitmap block
 318 * objects and a pointer to the bitmap block object that has been
 319 * most recently used for setting bits.  Additionally, it contains the
 320 * PFNs that correspond to the start and end of the represented zone.
 321 *
 322 * struct bm_block contains a pointer to the memory page in which
 323 * information is stored (in the form of a block of bitmap)
 324 * It also contains the pfns that correspond to the start and end of
 325 * the represented memory area.
 326 *
 327 * The memory bitmap is organized as a radix tree to guarantee fast random
 328 * access to the bits. There is one radix tree for each zone (as returned
 329 * from create_mem_extents).
 330 *
 331 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 332 * two linked lists for the nodes of the tree, one for the inner nodes and
 333 * one for the leave nodes. The linked leave nodes are used for fast linear
 334 * access of the memory bitmap.
 335 *
 336 * The struct rtree_node represents one node of the radix tree.
 337 */
 338
 339#define BM_END_OF_MAP	(~0UL)
 340
 341#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 342#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
 343#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
 344
 345/*
 346 * struct rtree_node is a wrapper struct to link the nodes
 347 * of the rtree together for easy linear iteration over
 348 * bits and easy freeing
 349 */
 350struct rtree_node {
 351	struct list_head list;
 352	unsigned long *data;
 353};
 354
 355/*
 356 * struct mem_zone_bm_rtree represents a bitmap used for one
 357 * populated memory zone.
 358 */
 359struct mem_zone_bm_rtree {
 360	struct list_head list;		/* Link Zones together         */
 361	struct list_head nodes;		/* Radix Tree inner nodes      */
 362	struct list_head leaves;	/* Radix Tree leaves           */
 363	unsigned long start_pfn;	/* Zone start page frame       */
 364	unsigned long end_pfn;		/* Zone end page frame + 1     */
 365	struct rtree_node *rtree;	/* Radix Tree Root             */
 366	int levels;			/* Number of Radix Tree Levels */
 367	unsigned int blocks;		/* Number of Bitmap Blocks     */
 368};
 369
 370/* strcut bm_position is used for browsing memory bitmaps */
 371
 372struct bm_position {
 373	struct mem_zone_bm_rtree *zone;
 374	struct rtree_node *node;
 375	unsigned long node_pfn;
 376	int node_bit;
 377};
 378
 379struct memory_bitmap {
 380	struct list_head zones;
 381	struct linked_page *p_list;	/* list of pages used to store zone
 382					   bitmap objects and bitmap block
 383					   objects */
 384	struct bm_position cur;	/* most recently used bit position */
 385};
 386
 387/* Functions that operate on memory bitmaps */
 388
 389#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
 390#if BITS_PER_LONG == 32
 391#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
 392#else
 393#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
 394#endif
 395#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 396
 397/**
 398 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
 399 *
 400 * This function is used to allocate inner nodes as well as the
 401 * leave nodes of the radix tree. It also adds the node to the
 402 * corresponding linked list passed in by the *list parameter.
 403 */
 404static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 405					   struct chain_allocator *ca,
 406					   struct list_head *list)
 407{
 408	struct rtree_node *node;
 409
 410	node = chain_alloc(ca, sizeof(struct rtree_node));
 411	if (!node)
 412		return NULL;
 413
 414	node->data = get_image_page(gfp_mask, safe_needed);
 415	if (!node->data)
 416		return NULL;
 417
 418	list_add_tail(&node->list, list);
 419
 420	return node;
 421}
 422
 423/**
 424 * add_rtree_block - Add a new leave node to the radix tree.
 425 *
 426 * The leave nodes need to be allocated in order to keep the leaves
 427 * linked list in order. This is guaranteed by the zone->blocks
 428 * counter.
 429 */
 430static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 431			   int safe_needed, struct chain_allocator *ca)
 432{
 433	struct rtree_node *node, *block, **dst;
 434	unsigned int levels_needed, block_nr;
 435	int i;
 436
 437	block_nr = zone->blocks;
 438	levels_needed = 0;
 439
 440	/* How many levels do we need for this block nr? */
 441	while (block_nr) {
 442		levels_needed += 1;
 443		block_nr >>= BM_RTREE_LEVEL_SHIFT;
 444	}
 445
 446	/* Make sure the rtree has enough levels */
 447	for (i = zone->levels; i < levels_needed; i++) {
 448		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 449					&zone->nodes);
 450		if (!node)
 451			return -ENOMEM;
 452
 453		node->data[0] = (unsigned long)zone->rtree;
 454		zone->rtree = node;
 455		zone->levels += 1;
 456	}
 457
 458	/* Allocate new block */
 459	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 460	if (!block)
 461		return -ENOMEM;
 462
 463	/* Now walk the rtree to insert the block */
 464	node = zone->rtree;
 465	dst = &zone->rtree;
 466	block_nr = zone->blocks;
 467	for (i = zone->levels; i > 0; i--) {
 468		int index;
 469
 470		if (!node) {
 471			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 472						&zone->nodes);
 473			if (!node)
 474				return -ENOMEM;
 475			*dst = node;
 476		}
 477
 478		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 479		index &= BM_RTREE_LEVEL_MASK;
 480		dst = (struct rtree_node **)&((*dst)->data[index]);
 481		node = *dst;
 482	}
 483
 484	zone->blocks += 1;
 485	*dst = block;
 486
 487	return 0;
 488}
 489
 490static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 491			       int clear_nosave_free);
 492
 493/**
 494 * create_zone_bm_rtree - Create a radix tree for one zone.
 495 *
 496 * Allocated the mem_zone_bm_rtree structure and initializes it.
 497 * This function also allocated and builds the radix tree for the
 498 * zone.
 499 */
 500static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
 501						      int safe_needed,
 502						      struct chain_allocator *ca,
 503						      unsigned long start,
 504						      unsigned long end)
 505{
 506	struct mem_zone_bm_rtree *zone;
 507	unsigned int i, nr_blocks;
 508	unsigned long pages;
 509
 510	pages = end - start;
 511	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 512	if (!zone)
 513		return NULL;
 514
 515	INIT_LIST_HEAD(&zone->nodes);
 516	INIT_LIST_HEAD(&zone->leaves);
 517	zone->start_pfn = start;
 518	zone->end_pfn = end;
 519	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 520
 521	for (i = 0; i < nr_blocks; i++) {
 522		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 523			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 524			return NULL;
 525		}
 526	}
 527
 528	return zone;
 529}
 530
 531/**
 532 * free_zone_bm_rtree - Free the memory of the radix tree.
 533 *
 534 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 535 * structure itself is not freed here nor are the rtree_node
 536 * structs.
 537 */
 538static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 539			       int clear_nosave_free)
 540{
 541	struct rtree_node *node;
 542
 543	list_for_each_entry(node, &zone->nodes, list)
 544		free_image_page(node->data, clear_nosave_free);
 545
 546	list_for_each_entry(node, &zone->leaves, list)
 547		free_image_page(node->data, clear_nosave_free);
 548}
 549
 550static void memory_bm_position_reset(struct memory_bitmap *bm)
 551{
 552	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 553				  list);
 554	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 555				  struct rtree_node, list);
 556	bm->cur.node_pfn = 0;
 557	bm->cur.node_bit = 0;
 558}
 559
 560static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 561
 562struct mem_extent {
 563	struct list_head hook;
 564	unsigned long start;
 565	unsigned long end;
 566};
 567
 568/**
 569 * free_mem_extents - Free a list of memory extents.
 570 * @list: List of extents to free.
 571 */
 572static void free_mem_extents(struct list_head *list)
 573{
 574	struct mem_extent *ext, *aux;
 575
 576	list_for_each_entry_safe(ext, aux, list, hook) {
 577		list_del(&ext->hook);
 578		kfree(ext);
 579	}
 580}
 581
 582/**
 583 * create_mem_extents - Create a list of memory extents.
 584 * @list: List to put the extents into.
 585 * @gfp_mask: Mask to use for memory allocations.
 586 *
 587 * The extents represent contiguous ranges of PFNs.
 588 */
 589static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 590{
 591	struct zone *zone;
 592
 593	INIT_LIST_HEAD(list);
 594
 595	for_each_populated_zone(zone) {
 596		unsigned long zone_start, zone_end;
 597		struct mem_extent *ext, *cur, *aux;
 598
 599		zone_start = zone->zone_start_pfn;
 600		zone_end = zone_end_pfn(zone);
 601
 602		list_for_each_entry(ext, list, hook)
 603			if (zone_start <= ext->end)
 604				break;
 605
 606		if (&ext->hook == list || zone_end < ext->start) {
 607			/* New extent is necessary */
 608			struct mem_extent *new_ext;
 609
 610			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 611			if (!new_ext) {
 612				free_mem_extents(list);
 613				return -ENOMEM;
 614			}
 615			new_ext->start = zone_start;
 616			new_ext->end = zone_end;
 617			list_add_tail(&new_ext->hook, &ext->hook);
 618			continue;
 619		}
 620
 621		/* Merge this zone's range of PFNs with the existing one */
 622		if (zone_start < ext->start)
 623			ext->start = zone_start;
 624		if (zone_end > ext->end)
 625			ext->end = zone_end;
 626
 627		/* More merging may be possible */
 628		cur = ext;
 629		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 630			if (zone_end < cur->start)
 631				break;
 632			if (zone_end < cur->end)
 633				ext->end = cur->end;
 634			list_del(&cur->hook);
 635			kfree(cur);
 636		}
 637	}
 638
 639	return 0;
 640}
 641
 642/**
 643 * memory_bm_create - Allocate memory for a memory bitmap.
 644 */
 645static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
 646			    int safe_needed)
 647{
 648	struct chain_allocator ca;
 649	struct list_head mem_extents;
 650	struct mem_extent *ext;
 651	int error;
 652
 653	chain_init(&ca, gfp_mask, safe_needed);
 654	INIT_LIST_HEAD(&bm->zones);
 655
 656	error = create_mem_extents(&mem_extents, gfp_mask);
 657	if (error)
 658		return error;
 659
 660	list_for_each_entry(ext, &mem_extents, hook) {
 661		struct mem_zone_bm_rtree *zone;
 662
 663		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 664					    ext->start, ext->end);
 665		if (!zone) {
 666			error = -ENOMEM;
 667			goto Error;
 668		}
 669		list_add_tail(&zone->list, &bm->zones);
 670	}
 671
 672	bm->p_list = ca.chain;
 673	memory_bm_position_reset(bm);
 674 Exit:
 675	free_mem_extents(&mem_extents);
 676	return error;
 677
 678 Error:
 679	bm->p_list = ca.chain;
 680	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 681	goto Exit;
 682}
 683
 684/**
 685 * memory_bm_free - Free memory occupied by the memory bitmap.
 686 * @bm: Memory bitmap.
 687 */
 688static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 689{
 690	struct mem_zone_bm_rtree *zone;
 691
 692	list_for_each_entry(zone, &bm->zones, list)
 693		free_zone_bm_rtree(zone, clear_nosave_free);
 694
 695	free_list_of_pages(bm->p_list, clear_nosave_free);
 696
 697	INIT_LIST_HEAD(&bm->zones);
 698}
 699
 700/**
 701 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
 702 *
 703 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 704 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 705 *
 706 * Walk the radix tree to find the page containing the bit that represents @pfn
 707 * and return the position of the bit in @addr and @bit_nr.
 708 */
 709static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 710			      void **addr, unsigned int *bit_nr)
 711{
 712	struct mem_zone_bm_rtree *curr, *zone;
 713	struct rtree_node *node;
 714	int i, block_nr;
 715
 716	zone = bm->cur.zone;
 717
 718	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 719		goto zone_found;
 720
 721	zone = NULL;
 722
 723	/* Find the right zone */
 724	list_for_each_entry(curr, &bm->zones, list) {
 725		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 726			zone = curr;
 727			break;
 728		}
 729	}
 730
 731	if (!zone)
 732		return -EFAULT;
 733
 734zone_found:
 735	/*
 736	 * We have found the zone. Now walk the radix tree to find the leaf node
 737	 * for our PFN.
 738	 */
 
 
 
 
 
 
 739	node = bm->cur.node;
 740	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 
 741		goto node_found;
 742
 743	node      = zone->rtree;
 744	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 745
 746	for (i = zone->levels; i > 0; i--) {
 747		int index;
 748
 749		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 750		index &= BM_RTREE_LEVEL_MASK;
 751		BUG_ON(node->data[index] == 0);
 752		node = (struct rtree_node *)node->data[index];
 753	}
 754
 755node_found:
 756	/* Update last position */
 757	bm->cur.zone = zone;
 758	bm->cur.node = node;
 759	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 760
 761	/* Set return values */
 762	*addr = node->data;
 763	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 764
 765	return 0;
 766}
 767
 768static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 769{
 770	void *addr;
 771	unsigned int bit;
 772	int error;
 773
 774	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 775	BUG_ON(error);
 776	set_bit(bit, addr);
 777}
 778
 779static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 780{
 781	void *addr;
 782	unsigned int bit;
 783	int error;
 784
 785	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 786	if (!error)
 787		set_bit(bit, addr);
 788
 789	return error;
 790}
 791
 792static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 793{
 794	void *addr;
 795	unsigned int bit;
 796	int error;
 797
 798	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 799	BUG_ON(error);
 800	clear_bit(bit, addr);
 801}
 802
 803static void memory_bm_clear_current(struct memory_bitmap *bm)
 804{
 805	int bit;
 806
 807	bit = max(bm->cur.node_bit - 1, 0);
 808	clear_bit(bit, bm->cur.node->data);
 809}
 810
 811static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 812{
 813	void *addr;
 814	unsigned int bit;
 815	int error;
 816
 817	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 818	BUG_ON(error);
 819	return test_bit(bit, addr);
 820}
 821
 822static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 823{
 824	void *addr;
 825	unsigned int bit;
 826
 827	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 828}
 829
 830/*
 831 * rtree_next_node - Jump to the next leaf node.
 832 *
 833 * Set the position to the beginning of the next node in the
 834 * memory bitmap. This is either the next node in the current
 835 * zone's radix tree or the first node in the radix tree of the
 836 * next zone.
 837 *
 838 * Return true if there is a next node, false otherwise.
 839 */
 840static bool rtree_next_node(struct memory_bitmap *bm)
 841{
 842	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
 843		bm->cur.node = list_entry(bm->cur.node->list.next,
 844					  struct rtree_node, list);
 845		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 846		bm->cur.node_bit  = 0;
 847		touch_softlockup_watchdog();
 848		return true;
 849	}
 850
 851	/* No more nodes, goto next zone */
 852	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
 853		bm->cur.zone = list_entry(bm->cur.zone->list.next,
 854				  struct mem_zone_bm_rtree, list);
 855		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 856					  struct rtree_node, list);
 857		bm->cur.node_pfn = 0;
 858		bm->cur.node_bit = 0;
 859		return true;
 860	}
 861
 862	/* No more zones */
 863	return false;
 864}
 865
 866/**
 867 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
 868 * @bm: Memory bitmap.
 869 *
 870 * Starting from the last returned position this function searches for the next
 871 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 872 * set, BM_END_OF_MAP is returned.
 873 *
 874 * It is required to run memory_bm_position_reset() before the first call to
 875 * this function for the given memory bitmap.
 876 */
 877static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 878{
 879	unsigned long bits, pfn, pages;
 880	int bit;
 881
 882	do {
 883		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 884		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 885		bit	  = find_next_bit(bm->cur.node->data, bits,
 886					  bm->cur.node_bit);
 887		if (bit < bits) {
 888			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 889			bm->cur.node_bit = bit + 1;
 890			return pfn;
 891		}
 892	} while (rtree_next_node(bm));
 893
 894	return BM_END_OF_MAP;
 895}
 896
 897/*
 898 * This structure represents a range of page frames the contents of which
 899 * should not be saved during hibernation.
 900 */
 901struct nosave_region {
 902	struct list_head list;
 903	unsigned long start_pfn;
 904	unsigned long end_pfn;
 905};
 906
 907static LIST_HEAD(nosave_regions);
 908
 909static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
 910{
 911	struct rtree_node *node;
 912
 913	list_for_each_entry(node, &zone->nodes, list)
 914		recycle_safe_page(node->data);
 915
 916	list_for_each_entry(node, &zone->leaves, list)
 917		recycle_safe_page(node->data);
 918}
 919
 920static void memory_bm_recycle(struct memory_bitmap *bm)
 921{
 922	struct mem_zone_bm_rtree *zone;
 923	struct linked_page *p_list;
 924
 925	list_for_each_entry(zone, &bm->zones, list)
 926		recycle_zone_bm_rtree(zone);
 927
 928	p_list = bm->p_list;
 929	while (p_list) {
 930		struct linked_page *lp = p_list;
 931
 932		p_list = lp->next;
 933		recycle_safe_page(lp);
 934	}
 935}
 936
 937/**
 938 * register_nosave_region - Register a region of unsaveable memory.
 939 *
 940 * Register a range of page frames the contents of which should not be saved
 941 * during hibernation (to be used in the early initialization code).
 942 */
 943void __init __register_nosave_region(unsigned long start_pfn,
 944				     unsigned long end_pfn, int use_kmalloc)
 945{
 946	struct nosave_region *region;
 947
 948	if (start_pfn >= end_pfn)
 949		return;
 950
 951	if (!list_empty(&nosave_regions)) {
 952		/* Try to extend the previous region (they should be sorted) */
 953		region = list_entry(nosave_regions.prev,
 954					struct nosave_region, list);
 955		if (region->end_pfn == start_pfn) {
 956			region->end_pfn = end_pfn;
 957			goto Report;
 958		}
 959	}
 960	if (use_kmalloc) {
 961		/* During init, this shouldn't fail */
 962		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
 963		BUG_ON(!region);
 964	} else {
 965		/* This allocation cannot fail */
 966		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
 
 
 
 
 967	}
 968	region->start_pfn = start_pfn;
 969	region->end_pfn = end_pfn;
 970	list_add_tail(&region->list, &nosave_regions);
 971 Report:
 972	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
 973		(unsigned long long) start_pfn << PAGE_SHIFT,
 974		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
 975}
 976
 977/*
 978 * Set bits in this map correspond to the page frames the contents of which
 979 * should not be saved during the suspend.
 980 */
 981static struct memory_bitmap *forbidden_pages_map;
 982
 983/* Set bits in this map correspond to free page frames. */
 984static struct memory_bitmap *free_pages_map;
 985
 986/*
 987 * Each page frame allocated for creating the image is marked by setting the
 988 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 989 */
 990
 991void swsusp_set_page_free(struct page *page)
 992{
 993	if (free_pages_map)
 994		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
 995}
 996
 997static int swsusp_page_is_free(struct page *page)
 998{
 999	return free_pages_map ?
1000		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1001}
1002
1003void swsusp_unset_page_free(struct page *page)
1004{
1005	if (free_pages_map)
1006		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1007}
1008
1009static void swsusp_set_page_forbidden(struct page *page)
1010{
1011	if (forbidden_pages_map)
1012		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1013}
1014
1015int swsusp_page_is_forbidden(struct page *page)
1016{
1017	return forbidden_pages_map ?
1018		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1019}
1020
1021static void swsusp_unset_page_forbidden(struct page *page)
1022{
1023	if (forbidden_pages_map)
1024		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1025}
1026
1027/**
1028 * mark_nosave_pages - Mark pages that should not be saved.
1029 * @bm: Memory bitmap.
1030 *
1031 * Set the bits in @bm that correspond to the page frames the contents of which
1032 * should not be saved.
1033 */
1034static void mark_nosave_pages(struct memory_bitmap *bm)
1035{
1036	struct nosave_region *region;
1037
1038	if (list_empty(&nosave_regions))
1039		return;
1040
1041	list_for_each_entry(region, &nosave_regions, list) {
1042		unsigned long pfn;
1043
1044		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1045			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1046			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1047				- 1);
1048
1049		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1050			if (pfn_valid(pfn)) {
1051				/*
1052				 * It is safe to ignore the result of
1053				 * mem_bm_set_bit_check() here, since we won't
1054				 * touch the PFNs for which the error is
1055				 * returned anyway.
1056				 */
1057				mem_bm_set_bit_check(bm, pfn);
1058			}
1059	}
1060}
1061
1062/**
1063 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1064 *
1065 * Create bitmaps needed for marking page frames that should not be saved and
1066 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1067 * only modified if everything goes well, because we don't want the bits to be
1068 * touched before both bitmaps are set up.
1069 */
1070int create_basic_memory_bitmaps(void)
1071{
1072	struct memory_bitmap *bm1, *bm2;
1073	int error = 0;
1074
1075	if (forbidden_pages_map && free_pages_map)
1076		return 0;
1077	else
1078		BUG_ON(forbidden_pages_map || free_pages_map);
1079
1080	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1081	if (!bm1)
1082		return -ENOMEM;
1083
1084	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1085	if (error)
1086		goto Free_first_object;
1087
1088	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1089	if (!bm2)
1090		goto Free_first_bitmap;
1091
1092	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1093	if (error)
1094		goto Free_second_object;
1095
1096	forbidden_pages_map = bm1;
1097	free_pages_map = bm2;
1098	mark_nosave_pages(forbidden_pages_map);
1099
1100	pr_debug("Basic memory bitmaps created\n");
1101
1102	return 0;
1103
1104 Free_second_object:
1105	kfree(bm2);
1106 Free_first_bitmap:
1107 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1108 Free_first_object:
1109	kfree(bm1);
1110	return -ENOMEM;
1111}
1112
1113/**
1114 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1115 *
1116 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1117 * auxiliary pointers are necessary so that the bitmaps themselves are not
1118 * referred to while they are being freed.
1119 */
1120void free_basic_memory_bitmaps(void)
1121{
1122	struct memory_bitmap *bm1, *bm2;
1123
1124	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1125		return;
1126
1127	bm1 = forbidden_pages_map;
1128	bm2 = free_pages_map;
1129	forbidden_pages_map = NULL;
1130	free_pages_map = NULL;
1131	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1132	kfree(bm1);
1133	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1134	kfree(bm2);
1135
1136	pr_debug("Basic memory bitmaps freed\n");
1137}
1138
1139void clear_free_pages(void)
 
 
 
 
 
 
 
 
1140{
1141#ifdef CONFIG_PAGE_POISONING_ZERO
1142	struct memory_bitmap *bm = free_pages_map;
1143	unsigned long pfn;
1144
1145	if (WARN_ON(!(free_pages_map)))
1146		return;
1147
1148	memory_bm_position_reset(bm);
1149	pfn = memory_bm_next_pfn(bm);
1150	while (pfn != BM_END_OF_MAP) {
1151		if (pfn_valid(pfn))
1152			clear_highpage(pfn_to_page(pfn));
1153
1154		pfn = memory_bm_next_pfn(bm);
 
 
 
 
 
 
 
 
1155	}
1156	memory_bm_position_reset(bm);
1157	pr_info("free pages cleared after restore\n");
1158#endif /* PAGE_POISONING_ZERO */
1159}
1160
1161/**
1162 * snapshot_additional_pages - Estimate the number of extra pages needed.
1163 * @zone: Memory zone to carry out the computation for.
1164 *
1165 * Estimate the number of additional pages needed for setting up a hibernation
1166 * image data structures for @zone (usually, the returned value is greater than
1167 * the exact number).
1168 */
1169unsigned int snapshot_additional_pages(struct zone *zone)
1170{
1171	unsigned int rtree, nodes;
1172
1173	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1174	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1175			      LINKED_PAGE_DATA_SIZE);
1176	while (nodes > 1) {
1177		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1178		rtree += nodes;
1179	}
1180
1181	return 2 * rtree;
1182}
1183
1184#ifdef CONFIG_HIGHMEM
1185/**
1186 * count_free_highmem_pages - Compute the total number of free highmem pages.
1187 *
1188 * The returned number is system-wide.
1189 */
1190static unsigned int count_free_highmem_pages(void)
1191{
1192	struct zone *zone;
1193	unsigned int cnt = 0;
1194
1195	for_each_populated_zone(zone)
1196		if (is_highmem(zone))
1197			cnt += zone_page_state(zone, NR_FREE_PAGES);
1198
1199	return cnt;
1200}
1201
1202/**
1203 * saveable_highmem_page - Check if a highmem page is saveable.
1204 *
1205 * Determine whether a highmem page should be included in a hibernation image.
1206 *
1207 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1208 * and it isn't part of a free chunk of pages.
1209 */
1210static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1211{
1212	struct page *page;
1213
1214	if (!pfn_valid(pfn))
1215		return NULL;
1216
1217	page = pfn_to_page(pfn);
1218	if (page_zone(page) != zone)
1219		return NULL;
1220
1221	BUG_ON(!PageHighMem(page));
1222
1223	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
1224	    PageReserved(page))
 
 
1225		return NULL;
1226
1227	if (page_is_guard(page))
1228		return NULL;
1229
1230	return page;
1231}
1232
1233/**
1234 * count_highmem_pages - Compute the total number of saveable highmem pages.
1235 */
1236static unsigned int count_highmem_pages(void)
1237{
1238	struct zone *zone;
1239	unsigned int n = 0;
1240
1241	for_each_populated_zone(zone) {
1242		unsigned long pfn, max_zone_pfn;
1243
1244		if (!is_highmem(zone))
1245			continue;
1246
1247		mark_free_pages(zone);
1248		max_zone_pfn = zone_end_pfn(zone);
1249		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1250			if (saveable_highmem_page(zone, pfn))
1251				n++;
1252	}
1253	return n;
1254}
1255#else
1256static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1257{
1258	return NULL;
1259}
1260#endif /* CONFIG_HIGHMEM */
1261
1262/**
1263 * saveable_page - Check if the given page is saveable.
1264 *
1265 * Determine whether a non-highmem page should be included in a hibernation
1266 * image.
1267 *
1268 * We should save the page if it isn't Nosave, and is not in the range
1269 * of pages statically defined as 'unsaveable', and it isn't part of
1270 * a free chunk of pages.
1271 */
1272static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1273{
1274	struct page *page;
1275
1276	if (!pfn_valid(pfn))
1277		return NULL;
1278
1279	page = pfn_to_page(pfn);
1280	if (page_zone(page) != zone)
1281		return NULL;
1282
1283	BUG_ON(PageHighMem(page));
1284
1285	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1286		return NULL;
1287
 
 
 
1288	if (PageReserved(page)
1289	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1290		return NULL;
1291
1292	if (page_is_guard(page))
1293		return NULL;
1294
1295	return page;
1296}
1297
1298/**
1299 * count_data_pages - Compute the total number of saveable non-highmem pages.
1300 */
1301static unsigned int count_data_pages(void)
1302{
1303	struct zone *zone;
1304	unsigned long pfn, max_zone_pfn;
1305	unsigned int n = 0;
1306
1307	for_each_populated_zone(zone) {
1308		if (is_highmem(zone))
1309			continue;
1310
1311		mark_free_pages(zone);
1312		max_zone_pfn = zone_end_pfn(zone);
1313		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1314			if (saveable_page(zone, pfn))
1315				n++;
1316	}
1317	return n;
1318}
1319
1320/*
1321 * This is needed, because copy_page and memcpy are not usable for copying
1322 * task structs.
1323 */
1324static inline void do_copy_page(long *dst, long *src)
1325{
1326	int n;
1327
1328	for (n = PAGE_SIZE / sizeof(long); n; n--)
1329		*dst++ = *src++;
1330}
1331
1332/**
1333 * safe_copy_page - Copy a page in a safe way.
1334 *
1335 * Check if the page we are going to copy is marked as present in the kernel
1336 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
1337 * and in that case kernel_page_present() always returns 'true').
 
1338 */
1339static void safe_copy_page(void *dst, struct page *s_page)
1340{
1341	if (kernel_page_present(s_page)) {
1342		do_copy_page(dst, page_address(s_page));
1343	} else {
1344		kernel_map_pages(s_page, 1, 1);
1345		do_copy_page(dst, page_address(s_page));
1346		kernel_map_pages(s_page, 1, 0);
1347	}
1348}
1349
1350#ifdef CONFIG_HIGHMEM
1351static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1352{
1353	return is_highmem(zone) ?
1354		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1355}
1356
1357static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1358{
1359	struct page *s_page, *d_page;
1360	void *src, *dst;
1361
1362	s_page = pfn_to_page(src_pfn);
1363	d_page = pfn_to_page(dst_pfn);
1364	if (PageHighMem(s_page)) {
1365		src = kmap_atomic(s_page);
1366		dst = kmap_atomic(d_page);
1367		do_copy_page(dst, src);
1368		kunmap_atomic(dst);
1369		kunmap_atomic(src);
1370	} else {
1371		if (PageHighMem(d_page)) {
1372			/*
1373			 * The page pointed to by src may contain some kernel
1374			 * data modified by kmap_atomic()
1375			 */
1376			safe_copy_page(buffer, s_page);
1377			dst = kmap_atomic(d_page);
1378			copy_page(dst, buffer);
1379			kunmap_atomic(dst);
1380		} else {
1381			safe_copy_page(page_address(d_page), s_page);
1382		}
1383	}
1384}
1385#else
1386#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1387
1388static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1389{
1390	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1391				pfn_to_page(src_pfn));
1392}
1393#endif /* CONFIG_HIGHMEM */
1394
1395static void copy_data_pages(struct memory_bitmap *copy_bm,
1396			    struct memory_bitmap *orig_bm)
1397{
1398	struct zone *zone;
1399	unsigned long pfn;
1400
1401	for_each_populated_zone(zone) {
1402		unsigned long max_zone_pfn;
1403
1404		mark_free_pages(zone);
1405		max_zone_pfn = zone_end_pfn(zone);
1406		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1407			if (page_is_saveable(zone, pfn))
1408				memory_bm_set_bit(orig_bm, pfn);
1409	}
1410	memory_bm_position_reset(orig_bm);
1411	memory_bm_position_reset(copy_bm);
1412	for(;;) {
1413		pfn = memory_bm_next_pfn(orig_bm);
1414		if (unlikely(pfn == BM_END_OF_MAP))
1415			break;
1416		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1417	}
1418}
1419
1420/* Total number of image pages */
1421static unsigned int nr_copy_pages;
1422/* Number of pages needed for saving the original pfns of the image pages */
1423static unsigned int nr_meta_pages;
1424/*
1425 * Numbers of normal and highmem page frames allocated for hibernation image
1426 * before suspending devices.
1427 */
1428static unsigned int alloc_normal, alloc_highmem;
1429/*
1430 * Memory bitmap used for marking saveable pages (during hibernation) or
1431 * hibernation image pages (during restore)
1432 */
1433static struct memory_bitmap orig_bm;
1434/*
1435 * Memory bitmap used during hibernation for marking allocated page frames that
1436 * will contain copies of saveable pages.  During restore it is initially used
1437 * for marking hibernation image pages, but then the set bits from it are
1438 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1439 * used for marking "safe" highmem pages, but it has to be reinitialized for
1440 * this purpose.
1441 */
1442static struct memory_bitmap copy_bm;
1443
1444/**
1445 * swsusp_free - Free pages allocated for hibernation image.
1446 *
1447 * Image pages are alocated before snapshot creation, so they need to be
1448 * released after resume.
1449 */
1450void swsusp_free(void)
1451{
1452	unsigned long fb_pfn, fr_pfn;
1453
1454	if (!forbidden_pages_map || !free_pages_map)
1455		goto out;
1456
1457	memory_bm_position_reset(forbidden_pages_map);
1458	memory_bm_position_reset(free_pages_map);
1459
1460loop:
1461	fr_pfn = memory_bm_next_pfn(free_pages_map);
1462	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1463
1464	/*
1465	 * Find the next bit set in both bitmaps. This is guaranteed to
1466	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1467	 */
1468	do {
1469		if (fb_pfn < fr_pfn)
1470			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1471		if (fr_pfn < fb_pfn)
1472			fr_pfn = memory_bm_next_pfn(free_pages_map);
1473	} while (fb_pfn != fr_pfn);
1474
1475	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1476		struct page *page = pfn_to_page(fr_pfn);
1477
1478		memory_bm_clear_current(forbidden_pages_map);
1479		memory_bm_clear_current(free_pages_map);
1480		hibernate_restore_unprotect_page(page_address(page));
1481		__free_page(page);
1482		goto loop;
1483	}
1484
1485out:
1486	nr_copy_pages = 0;
1487	nr_meta_pages = 0;
1488	restore_pblist = NULL;
1489	buffer = NULL;
1490	alloc_normal = 0;
1491	alloc_highmem = 0;
1492	hibernate_restore_protection_end();
1493}
1494
1495/* Helper functions used for the shrinking of memory. */
1496
1497#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1498
1499/**
1500 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1501 * @nr_pages: Number of page frames to allocate.
1502 * @mask: GFP flags to use for the allocation.
1503 *
1504 * Return value: Number of page frames actually allocated
1505 */
1506static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1507{
1508	unsigned long nr_alloc = 0;
1509
1510	while (nr_pages > 0) {
1511		struct page *page;
1512
1513		page = alloc_image_page(mask);
1514		if (!page)
1515			break;
1516		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1517		if (PageHighMem(page))
1518			alloc_highmem++;
1519		else
1520			alloc_normal++;
1521		nr_pages--;
1522		nr_alloc++;
1523	}
1524
1525	return nr_alloc;
1526}
1527
1528static unsigned long preallocate_image_memory(unsigned long nr_pages,
1529					      unsigned long avail_normal)
1530{
1531	unsigned long alloc;
1532
1533	if (avail_normal <= alloc_normal)
1534		return 0;
1535
1536	alloc = avail_normal - alloc_normal;
1537	if (nr_pages < alloc)
1538		alloc = nr_pages;
1539
1540	return preallocate_image_pages(alloc, GFP_IMAGE);
1541}
1542
1543#ifdef CONFIG_HIGHMEM
1544static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1545{
1546	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1547}
1548
1549/**
1550 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1551 */
1552static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1553{
1554	x *= multiplier;
1555	do_div(x, base);
1556	return (unsigned long)x;
1557}
1558
1559static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1560						  unsigned long highmem,
1561						  unsigned long total)
1562{
1563	unsigned long alloc = __fraction(nr_pages, highmem, total);
1564
1565	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1566}
1567#else /* CONFIG_HIGHMEM */
1568static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1569{
1570	return 0;
1571}
1572
1573static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1574							 unsigned long highmem,
1575							 unsigned long total)
1576{
1577	return 0;
1578}
1579#endif /* CONFIG_HIGHMEM */
1580
1581/**
1582 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1583 */
1584static unsigned long free_unnecessary_pages(void)
1585{
1586	unsigned long save, to_free_normal, to_free_highmem, free;
1587
1588	save = count_data_pages();
1589	if (alloc_normal >= save) {
1590		to_free_normal = alloc_normal - save;
1591		save = 0;
1592	} else {
1593		to_free_normal = 0;
1594		save -= alloc_normal;
1595	}
1596	save += count_highmem_pages();
1597	if (alloc_highmem >= save) {
1598		to_free_highmem = alloc_highmem - save;
1599	} else {
1600		to_free_highmem = 0;
1601		save -= alloc_highmem;
1602		if (to_free_normal > save)
1603			to_free_normal -= save;
1604		else
1605			to_free_normal = 0;
1606	}
1607	free = to_free_normal + to_free_highmem;
1608
1609	memory_bm_position_reset(&copy_bm);
1610
1611	while (to_free_normal > 0 || to_free_highmem > 0) {
1612		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1613		struct page *page = pfn_to_page(pfn);
1614
1615		if (PageHighMem(page)) {
1616			if (!to_free_highmem)
1617				continue;
1618			to_free_highmem--;
1619			alloc_highmem--;
1620		} else {
1621			if (!to_free_normal)
1622				continue;
1623			to_free_normal--;
1624			alloc_normal--;
1625		}
1626		memory_bm_clear_bit(&copy_bm, pfn);
1627		swsusp_unset_page_forbidden(page);
1628		swsusp_unset_page_free(page);
1629		__free_page(page);
1630	}
1631
1632	return free;
1633}
1634
1635/**
1636 * minimum_image_size - Estimate the minimum acceptable size of an image.
1637 * @saveable: Number of saveable pages in the system.
1638 *
1639 * We want to avoid attempting to free too much memory too hard, so estimate the
1640 * minimum acceptable size of a hibernation image to use as the lower limit for
1641 * preallocating memory.
1642 *
1643 * We assume that the minimum image size should be proportional to
1644 *
1645 * [number of saveable pages] - [number of pages that can be freed in theory]
1646 *
1647 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1648 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1649 */
1650static unsigned long minimum_image_size(unsigned long saveable)
1651{
1652	unsigned long size;
1653
1654	size = global_node_page_state(NR_SLAB_RECLAIMABLE)
1655		+ global_node_page_state(NR_ACTIVE_ANON)
1656		+ global_node_page_state(NR_INACTIVE_ANON)
1657		+ global_node_page_state(NR_ACTIVE_FILE)
1658		+ global_node_page_state(NR_INACTIVE_FILE);
1659
1660	return saveable <= size ? 0 : saveable - size;
1661}
1662
1663/**
1664 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1665 *
1666 * To create a hibernation image it is necessary to make a copy of every page
1667 * frame in use.  We also need a number of page frames to be free during
1668 * hibernation for allocations made while saving the image and for device
1669 * drivers, in case they need to allocate memory from their hibernation
1670 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1671 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1672 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1673 * total number of available page frames and allocate at least
1674 *
1675 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1676 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1677 *
1678 * of them, which corresponds to the maximum size of a hibernation image.
1679 *
1680 * If image_size is set below the number following from the above formula,
1681 * the preallocation of memory is continued until the total number of saveable
1682 * pages in the system is below the requested image size or the minimum
1683 * acceptable image size returned by minimum_image_size(), whichever is greater.
1684 */
1685int hibernate_preallocate_memory(void)
1686{
1687	struct zone *zone;
1688	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1689	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1690	ktime_t start, stop;
1691	int error;
1692
1693	pr_info("Preallocating image memory... ");
1694	start = ktime_get();
1695
1696	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1697	if (error)
 
1698		goto err_out;
 
1699
1700	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1701	if (error)
 
1702		goto err_out;
 
1703
1704	alloc_normal = 0;
1705	alloc_highmem = 0;
1706
1707	/* Count the number of saveable data pages. */
1708	save_highmem = count_highmem_pages();
1709	saveable = count_data_pages();
1710
1711	/*
1712	 * Compute the total number of page frames we can use (count) and the
1713	 * number of pages needed for image metadata (size).
1714	 */
1715	count = saveable;
1716	saveable += save_highmem;
1717	highmem = save_highmem;
1718	size = 0;
1719	for_each_populated_zone(zone) {
1720		size += snapshot_additional_pages(zone);
1721		if (is_highmem(zone))
1722			highmem += zone_page_state(zone, NR_FREE_PAGES);
1723		else
1724			count += zone_page_state(zone, NR_FREE_PAGES);
1725	}
1726	avail_normal = count;
1727	count += highmem;
1728	count -= totalreserve_pages;
1729
1730	/* Add number of pages required for page keys (s390 only). */
1731	size += page_key_additional_pages(saveable);
1732
1733	/* Compute the maximum number of saveable pages to leave in memory. */
1734	max_size = (count - (size + PAGES_FOR_IO)) / 2
1735			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1736	/* Compute the desired number of image pages specified by image_size. */
1737	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1738	if (size > max_size)
1739		size = max_size;
1740	/*
1741	 * If the desired number of image pages is at least as large as the
1742	 * current number of saveable pages in memory, allocate page frames for
1743	 * the image and we're done.
1744	 */
1745	if (size >= saveable) {
1746		pages = preallocate_image_highmem(save_highmem);
1747		pages += preallocate_image_memory(saveable - pages, avail_normal);
1748		goto out;
1749	}
1750
1751	/* Estimate the minimum size of the image. */
1752	pages = minimum_image_size(saveable);
1753	/*
1754	 * To avoid excessive pressure on the normal zone, leave room in it to
1755	 * accommodate an image of the minimum size (unless it's already too
1756	 * small, in which case don't preallocate pages from it at all).
1757	 */
1758	if (avail_normal > pages)
1759		avail_normal -= pages;
1760	else
1761		avail_normal = 0;
1762	if (size < pages)
1763		size = min_t(unsigned long, pages, max_size);
1764
1765	/*
1766	 * Let the memory management subsystem know that we're going to need a
1767	 * large number of page frames to allocate and make it free some memory.
1768	 * NOTE: If this is not done, performance will be hurt badly in some
1769	 * test cases.
1770	 */
1771	shrink_all_memory(saveable - size);
1772
1773	/*
1774	 * The number of saveable pages in memory was too high, so apply some
1775	 * pressure to decrease it.  First, make room for the largest possible
1776	 * image and fail if that doesn't work.  Next, try to decrease the size
1777	 * of the image as much as indicated by 'size' using allocations from
1778	 * highmem and non-highmem zones separately.
1779	 */
1780	pages_highmem = preallocate_image_highmem(highmem / 2);
1781	alloc = count - max_size;
1782	if (alloc > pages_highmem)
1783		alloc -= pages_highmem;
1784	else
1785		alloc = 0;
1786	pages = preallocate_image_memory(alloc, avail_normal);
1787	if (pages < alloc) {
1788		/* We have exhausted non-highmem pages, try highmem. */
1789		alloc -= pages;
1790		pages += pages_highmem;
1791		pages_highmem = preallocate_image_highmem(alloc);
1792		if (pages_highmem < alloc)
 
 
1793			goto err_out;
 
1794		pages += pages_highmem;
1795		/*
1796		 * size is the desired number of saveable pages to leave in
1797		 * memory, so try to preallocate (all memory - size) pages.
1798		 */
1799		alloc = (count - pages) - size;
1800		pages += preallocate_image_highmem(alloc);
1801	} else {
1802		/*
1803		 * There are approximately max_size saveable pages at this point
1804		 * and we want to reduce this number down to size.
1805		 */
1806		alloc = max_size - size;
1807		size = preallocate_highmem_fraction(alloc, highmem, count);
1808		pages_highmem += size;
1809		alloc -= size;
1810		size = preallocate_image_memory(alloc, avail_normal);
1811		pages_highmem += preallocate_image_highmem(alloc - size);
1812		pages += pages_highmem + size;
1813	}
1814
1815	/*
1816	 * We only need as many page frames for the image as there are saveable
1817	 * pages in memory, but we have allocated more.  Release the excessive
1818	 * ones now.
1819	 */
1820	pages -= free_unnecessary_pages();
1821
1822 out:
1823	stop = ktime_get();
1824	pr_cont("done (allocated %lu pages)\n", pages);
1825	swsusp_show_speed(start, stop, pages, "Allocated");
1826
1827	return 0;
1828
1829 err_out:
1830	pr_cont("\n");
1831	swsusp_free();
1832	return -ENOMEM;
1833}
1834
1835#ifdef CONFIG_HIGHMEM
1836/**
1837 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1838 *
1839 * Compute the number of non-highmem pages that will be necessary for creating
1840 * copies of highmem pages.
1841 */
1842static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1843{
1844	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1845
1846	if (free_highmem >= nr_highmem)
1847		nr_highmem = 0;
1848	else
1849		nr_highmem -= free_highmem;
1850
1851	return nr_highmem;
1852}
1853#else
1854static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1855#endif /* CONFIG_HIGHMEM */
1856
1857/**
1858 * enough_free_mem - Check if there is enough free memory for the image.
1859 */
1860static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1861{
1862	struct zone *zone;
1863	unsigned int free = alloc_normal;
1864
1865	for_each_populated_zone(zone)
1866		if (!is_highmem(zone))
1867			free += zone_page_state(zone, NR_FREE_PAGES);
1868
1869	nr_pages += count_pages_for_highmem(nr_highmem);
1870	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1871		 nr_pages, PAGES_FOR_IO, free);
1872
1873	return free > nr_pages + PAGES_FOR_IO;
1874}
1875
1876#ifdef CONFIG_HIGHMEM
1877/**
1878 * get_highmem_buffer - Allocate a buffer for highmem pages.
1879 *
1880 * If there are some highmem pages in the hibernation image, we may need a
1881 * buffer to copy them and/or load their data.
1882 */
1883static inline int get_highmem_buffer(int safe_needed)
1884{
1885	buffer = get_image_page(GFP_ATOMIC, safe_needed);
1886	return buffer ? 0 : -ENOMEM;
1887}
1888
1889/**
1890 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1891 *
1892 * Try to allocate as many pages as needed, but if the number of free highmem
1893 * pages is less than that, allocate them all.
1894 */
1895static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1896					       unsigned int nr_highmem)
1897{
1898	unsigned int to_alloc = count_free_highmem_pages();
1899
1900	if (to_alloc > nr_highmem)
1901		to_alloc = nr_highmem;
1902
1903	nr_highmem -= to_alloc;
1904	while (to_alloc-- > 0) {
1905		struct page *page;
1906
1907		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1908		memory_bm_set_bit(bm, page_to_pfn(page));
1909	}
1910	return nr_highmem;
1911}
1912#else
1913static inline int get_highmem_buffer(int safe_needed) { return 0; }
1914
1915static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1916					       unsigned int n) { return 0; }
1917#endif /* CONFIG_HIGHMEM */
1918
1919/**
1920 * swsusp_alloc - Allocate memory for hibernation image.
1921 *
1922 * We first try to allocate as many highmem pages as there are
1923 * saveable highmem pages in the system.  If that fails, we allocate
1924 * non-highmem pages for the copies of the remaining highmem ones.
1925 *
1926 * In this approach it is likely that the copies of highmem pages will
1927 * also be located in the high memory, because of the way in which
1928 * copy_data_pages() works.
1929 */
1930static int swsusp_alloc(struct memory_bitmap *copy_bm,
1931			unsigned int nr_pages, unsigned int nr_highmem)
1932{
1933	if (nr_highmem > 0) {
1934		if (get_highmem_buffer(PG_ANY))
1935			goto err_out;
1936		if (nr_highmem > alloc_highmem) {
1937			nr_highmem -= alloc_highmem;
1938			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1939		}
1940	}
1941	if (nr_pages > alloc_normal) {
1942		nr_pages -= alloc_normal;
1943		while (nr_pages-- > 0) {
1944			struct page *page;
1945
1946			page = alloc_image_page(GFP_ATOMIC);
1947			if (!page)
1948				goto err_out;
1949			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1950		}
1951	}
1952
1953	return 0;
1954
1955 err_out:
1956	swsusp_free();
1957	return -ENOMEM;
1958}
1959
1960asmlinkage __visible int swsusp_save(void)
1961{
1962	unsigned int nr_pages, nr_highmem;
1963
1964	pr_info("Creating hibernation image:\n");
1965
1966	drain_local_pages(NULL);
1967	nr_pages = count_data_pages();
1968	nr_highmem = count_highmem_pages();
1969	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
1970
1971	if (!enough_free_mem(nr_pages, nr_highmem)) {
1972		pr_err("Not enough free memory\n");
1973		return -ENOMEM;
1974	}
1975
1976	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
1977		pr_err("Memory allocation failed\n");
1978		return -ENOMEM;
1979	}
1980
1981	/*
1982	 * During allocating of suspend pagedir, new cold pages may appear.
1983	 * Kill them.
1984	 */
1985	drain_local_pages(NULL);
1986	copy_data_pages(&copy_bm, &orig_bm);
1987
1988	/*
1989	 * End of critical section. From now on, we can write to memory,
1990	 * but we should not touch disk. This specially means we must _not_
1991	 * touch swap space! Except we must write out our image of course.
1992	 */
1993
1994	nr_pages += nr_highmem;
1995	nr_copy_pages = nr_pages;
1996	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1997
1998	pr_info("Hibernation image created (%d pages copied)\n", nr_pages);
1999
2000	return 0;
2001}
2002
2003#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2004static int init_header_complete(struct swsusp_info *info)
2005{
2006	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2007	info->version_code = LINUX_VERSION_CODE;
2008	return 0;
2009}
2010
2011static char *check_image_kernel(struct swsusp_info *info)
2012{
2013	if (info->version_code != LINUX_VERSION_CODE)
2014		return "kernel version";
2015	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2016		return "system type";
2017	if (strcmp(info->uts.release,init_utsname()->release))
2018		return "kernel release";
2019	if (strcmp(info->uts.version,init_utsname()->version))
2020		return "version";
2021	if (strcmp(info->uts.machine,init_utsname()->machine))
2022		return "machine";
2023	return NULL;
2024}
2025#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2026
2027unsigned long snapshot_get_image_size(void)
2028{
2029	return nr_copy_pages + nr_meta_pages + 1;
2030}
2031
2032static int init_header(struct swsusp_info *info)
2033{
2034	memset(info, 0, sizeof(struct swsusp_info));
2035	info->num_physpages = get_num_physpages();
2036	info->image_pages = nr_copy_pages;
2037	info->pages = snapshot_get_image_size();
2038	info->size = info->pages;
2039	info->size <<= PAGE_SHIFT;
2040	return init_header_complete(info);
2041}
2042
2043/**
2044 * pack_pfns - Prepare PFNs for saving.
2045 * @bm: Memory bitmap.
2046 * @buf: Memory buffer to store the PFNs in.
2047 *
2048 * PFNs corresponding to set bits in @bm are stored in the area of memory
2049 * pointed to by @buf (1 page at a time).
2050 */
2051static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2052{
2053	int j;
2054
2055	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2056		buf[j] = memory_bm_next_pfn(bm);
2057		if (unlikely(buf[j] == BM_END_OF_MAP))
2058			break;
2059		/* Save page key for data page (s390 only). */
2060		page_key_read(buf + j);
2061	}
2062}
2063
2064/**
2065 * snapshot_read_next - Get the address to read the next image page from.
2066 * @handle: Snapshot handle to be used for the reading.
2067 *
2068 * On the first call, @handle should point to a zeroed snapshot_handle
2069 * structure.  The structure gets populated then and a pointer to it should be
2070 * passed to this function every next time.
2071 *
2072 * On success, the function returns a positive number.  Then, the caller
2073 * is allowed to read up to the returned number of bytes from the memory
2074 * location computed by the data_of() macro.
2075 *
2076 * The function returns 0 to indicate the end of the data stream condition,
2077 * and negative numbers are returned on errors.  If that happens, the structure
2078 * pointed to by @handle is not updated and should not be used any more.
2079 */
2080int snapshot_read_next(struct snapshot_handle *handle)
2081{
2082	if (handle->cur > nr_meta_pages + nr_copy_pages)
2083		return 0;
2084
2085	if (!buffer) {
2086		/* This makes the buffer be freed by swsusp_free() */
2087		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2088		if (!buffer)
2089			return -ENOMEM;
2090	}
2091	if (!handle->cur) {
2092		int error;
2093
2094		error = init_header((struct swsusp_info *)buffer);
2095		if (error)
2096			return error;
2097		handle->buffer = buffer;
2098		memory_bm_position_reset(&orig_bm);
2099		memory_bm_position_reset(&copy_bm);
2100	} else if (handle->cur <= nr_meta_pages) {
2101		clear_page(buffer);
2102		pack_pfns(buffer, &orig_bm);
2103	} else {
2104		struct page *page;
2105
2106		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2107		if (PageHighMem(page)) {
2108			/*
2109			 * Highmem pages are copied to the buffer,
2110			 * because we can't return with a kmapped
2111			 * highmem page (we may not be called again).
2112			 */
2113			void *kaddr;
2114
2115			kaddr = kmap_atomic(page);
2116			copy_page(buffer, kaddr);
2117			kunmap_atomic(kaddr);
2118			handle->buffer = buffer;
2119		} else {
2120			handle->buffer = page_address(page);
2121		}
2122	}
2123	handle->cur++;
2124	return PAGE_SIZE;
2125}
2126
2127static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2128				    struct memory_bitmap *src)
2129{
2130	unsigned long pfn;
2131
2132	memory_bm_position_reset(src);
2133	pfn = memory_bm_next_pfn(src);
2134	while (pfn != BM_END_OF_MAP) {
2135		memory_bm_set_bit(dst, pfn);
2136		pfn = memory_bm_next_pfn(src);
2137	}
2138}
2139
2140/**
2141 * mark_unsafe_pages - Mark pages that were used before hibernation.
2142 *
2143 * Mark the pages that cannot be used for storing the image during restoration,
2144 * because they conflict with the pages that had been used before hibernation.
2145 */
2146static void mark_unsafe_pages(struct memory_bitmap *bm)
2147{
2148	unsigned long pfn;
2149
2150	/* Clear the "free"/"unsafe" bit for all PFNs */
2151	memory_bm_position_reset(free_pages_map);
2152	pfn = memory_bm_next_pfn(free_pages_map);
2153	while (pfn != BM_END_OF_MAP) {
2154		memory_bm_clear_current(free_pages_map);
2155		pfn = memory_bm_next_pfn(free_pages_map);
2156	}
2157
2158	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2159	duplicate_memory_bitmap(free_pages_map, bm);
2160
2161	allocated_unsafe_pages = 0;
2162}
2163
2164static int check_header(struct swsusp_info *info)
2165{
2166	char *reason;
2167
2168	reason = check_image_kernel(info);
2169	if (!reason && info->num_physpages != get_num_physpages())
2170		reason = "memory size";
2171	if (reason) {
2172		pr_err("Image mismatch: %s\n", reason);
2173		return -EPERM;
2174	}
2175	return 0;
2176}
2177
2178/**
2179 * load header - Check the image header and copy the data from it.
2180 */
2181static int load_header(struct swsusp_info *info)
2182{
2183	int error;
2184
2185	restore_pblist = NULL;
2186	error = check_header(info);
2187	if (!error) {
2188		nr_copy_pages = info->image_pages;
2189		nr_meta_pages = info->pages - info->image_pages - 1;
2190	}
2191	return error;
2192}
2193
2194/**
2195 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2196 * @bm: Memory bitmap.
2197 * @buf: Area of memory containing the PFNs.
2198 *
2199 * For each element of the array pointed to by @buf (1 page at a time), set the
2200 * corresponding bit in @bm.
2201 */
2202static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2203{
2204	int j;
2205
2206	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2207		if (unlikely(buf[j] == BM_END_OF_MAP))
2208			break;
2209
2210		/* Extract and buffer page key for data page (s390 only). */
2211		page_key_memorize(buf + j);
2212
2213		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2214			memory_bm_set_bit(bm, buf[j]);
2215		else
2216			return -EFAULT;
2217	}
2218
2219	return 0;
2220}
2221
2222#ifdef CONFIG_HIGHMEM
2223/*
2224 * struct highmem_pbe is used for creating the list of highmem pages that
2225 * should be restored atomically during the resume from disk, because the page
2226 * frames they have occupied before the suspend are in use.
2227 */
2228struct highmem_pbe {
2229	struct page *copy_page;	/* data is here now */
2230	struct page *orig_page;	/* data was here before the suspend */
2231	struct highmem_pbe *next;
2232};
2233
2234/*
2235 * List of highmem PBEs needed for restoring the highmem pages that were
2236 * allocated before the suspend and included in the suspend image, but have
2237 * also been allocated by the "resume" kernel, so their contents cannot be
2238 * written directly to their "original" page frames.
2239 */
2240static struct highmem_pbe *highmem_pblist;
2241
2242/**
2243 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2244 * @bm: Memory bitmap.
2245 *
2246 * The bits in @bm that correspond to image pages are assumed to be set.
2247 */
2248static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2249{
2250	unsigned long pfn;
2251	unsigned int cnt = 0;
2252
2253	memory_bm_position_reset(bm);
2254	pfn = memory_bm_next_pfn(bm);
2255	while (pfn != BM_END_OF_MAP) {
2256		if (PageHighMem(pfn_to_page(pfn)))
2257			cnt++;
2258
2259		pfn = memory_bm_next_pfn(bm);
2260	}
2261	return cnt;
2262}
2263
2264static unsigned int safe_highmem_pages;
2265
2266static struct memory_bitmap *safe_highmem_bm;
2267
2268/**
2269 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2270 * @bm: Pointer to an uninitialized memory bitmap structure.
2271 * @nr_highmem_p: Pointer to the number of highmem image pages.
2272 *
2273 * Try to allocate as many highmem pages as there are highmem image pages
2274 * (@nr_highmem_p points to the variable containing the number of highmem image
2275 * pages).  The pages that are "safe" (ie. will not be overwritten when the
2276 * hibernation image is restored entirely) have the corresponding bits set in
2277 * @bm (it must be unitialized).
2278 *
2279 * NOTE: This function should not be called if there are no highmem image pages.
2280 */
2281static int prepare_highmem_image(struct memory_bitmap *bm,
2282				 unsigned int *nr_highmem_p)
2283{
2284	unsigned int to_alloc;
2285
2286	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2287		return -ENOMEM;
2288
2289	if (get_highmem_buffer(PG_SAFE))
2290		return -ENOMEM;
2291
2292	to_alloc = count_free_highmem_pages();
2293	if (to_alloc > *nr_highmem_p)
2294		to_alloc = *nr_highmem_p;
2295	else
2296		*nr_highmem_p = to_alloc;
2297
2298	safe_highmem_pages = 0;
2299	while (to_alloc-- > 0) {
2300		struct page *page;
2301
2302		page = alloc_page(__GFP_HIGHMEM);
2303		if (!swsusp_page_is_free(page)) {
2304			/* The page is "safe", set its bit the bitmap */
2305			memory_bm_set_bit(bm, page_to_pfn(page));
2306			safe_highmem_pages++;
2307		}
2308		/* Mark the page as allocated */
2309		swsusp_set_page_forbidden(page);
2310		swsusp_set_page_free(page);
2311	}
2312	memory_bm_position_reset(bm);
2313	safe_highmem_bm = bm;
2314	return 0;
2315}
2316
2317static struct page *last_highmem_page;
2318
2319/**
2320 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2321 *
2322 * For a given highmem image page get a buffer that suspend_write_next() should
2323 * return to its caller to write to.
2324 *
2325 * If the page is to be saved to its "original" page frame or a copy of
2326 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2327 * the copy of the page is to be made in normal memory, so the address of
2328 * the copy is returned.
2329 *
2330 * If @buffer is returned, the caller of suspend_write_next() will write
2331 * the page's contents to @buffer, so they will have to be copied to the
2332 * right location on the next call to suspend_write_next() and it is done
2333 * with the help of copy_last_highmem_page().  For this purpose, if
2334 * @buffer is returned, @last_highmem_page is set to the page to which
2335 * the data will have to be copied from @buffer.
2336 */
2337static void *get_highmem_page_buffer(struct page *page,
2338				     struct chain_allocator *ca)
2339{
2340	struct highmem_pbe *pbe;
2341	void *kaddr;
2342
2343	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2344		/*
2345		 * We have allocated the "original" page frame and we can
2346		 * use it directly to store the loaded page.
2347		 */
2348		last_highmem_page = page;
2349		return buffer;
2350	}
2351	/*
2352	 * The "original" page frame has not been allocated and we have to
2353	 * use a "safe" page frame to store the loaded page.
2354	 */
2355	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2356	if (!pbe) {
2357		swsusp_free();
2358		return ERR_PTR(-ENOMEM);
2359	}
2360	pbe->orig_page = page;
2361	if (safe_highmem_pages > 0) {
2362		struct page *tmp;
2363
2364		/* Copy of the page will be stored in high memory */
2365		kaddr = buffer;
2366		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2367		safe_highmem_pages--;
2368		last_highmem_page = tmp;
2369		pbe->copy_page = tmp;
2370	} else {
2371		/* Copy of the page will be stored in normal memory */
2372		kaddr = safe_pages_list;
2373		safe_pages_list = safe_pages_list->next;
2374		pbe->copy_page = virt_to_page(kaddr);
2375	}
2376	pbe->next = highmem_pblist;
2377	highmem_pblist = pbe;
2378	return kaddr;
2379}
2380
2381/**
2382 * copy_last_highmem_page - Copy most the most recent highmem image page.
2383 *
2384 * Copy the contents of a highmem image from @buffer, where the caller of
2385 * snapshot_write_next() has stored them, to the right location represented by
2386 * @last_highmem_page .
2387 */
2388static void copy_last_highmem_page(void)
2389{
2390	if (last_highmem_page) {
2391		void *dst;
2392
2393		dst = kmap_atomic(last_highmem_page);
2394		copy_page(dst, buffer);
2395		kunmap_atomic(dst);
2396		last_highmem_page = NULL;
2397	}
2398}
2399
2400static inline int last_highmem_page_copied(void)
2401{
2402	return !last_highmem_page;
2403}
2404
2405static inline void free_highmem_data(void)
2406{
2407	if (safe_highmem_bm)
2408		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2409
2410	if (buffer)
2411		free_image_page(buffer, PG_UNSAFE_CLEAR);
2412}
2413#else
2414static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2415
2416static inline int prepare_highmem_image(struct memory_bitmap *bm,
2417					unsigned int *nr_highmem_p) { return 0; }
2418
2419static inline void *get_highmem_page_buffer(struct page *page,
2420					    struct chain_allocator *ca)
2421{
2422	return ERR_PTR(-EINVAL);
2423}
2424
2425static inline void copy_last_highmem_page(void) {}
2426static inline int last_highmem_page_copied(void) { return 1; }
2427static inline void free_highmem_data(void) {}
2428#endif /* CONFIG_HIGHMEM */
2429
2430#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2431
2432/**
2433 * prepare_image - Make room for loading hibernation image.
2434 * @new_bm: Unitialized memory bitmap structure.
2435 * @bm: Memory bitmap with unsafe pages marked.
2436 *
2437 * Use @bm to mark the pages that will be overwritten in the process of
2438 * restoring the system memory state from the suspend image ("unsafe" pages)
2439 * and allocate memory for the image.
2440 *
2441 * The idea is to allocate a new memory bitmap first and then allocate
2442 * as many pages as needed for image data, but without specifying what those
2443 * pages will be used for just yet.  Instead, we mark them all as allocated and
2444 * create a lists of "safe" pages to be used later.  On systems with high
2445 * memory a list of "safe" highmem pages is created too.
2446 */
2447static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2448{
2449	unsigned int nr_pages, nr_highmem;
2450	struct linked_page *lp;
2451	int error;
2452
2453	/* If there is no highmem, the buffer will not be necessary */
2454	free_image_page(buffer, PG_UNSAFE_CLEAR);
2455	buffer = NULL;
2456
2457	nr_highmem = count_highmem_image_pages(bm);
2458	mark_unsafe_pages(bm);
2459
2460	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2461	if (error)
2462		goto Free;
2463
2464	duplicate_memory_bitmap(new_bm, bm);
2465	memory_bm_free(bm, PG_UNSAFE_KEEP);
2466	if (nr_highmem > 0) {
2467		error = prepare_highmem_image(bm, &nr_highmem);
2468		if (error)
2469			goto Free;
2470	}
2471	/*
2472	 * Reserve some safe pages for potential later use.
2473	 *
2474	 * NOTE: This way we make sure there will be enough safe pages for the
2475	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2476	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2477	 *
2478	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2479	 */
2480	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2481	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2482	while (nr_pages > 0) {
2483		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2484		if (!lp) {
2485			error = -ENOMEM;
2486			goto Free;
2487		}
2488		lp->next = safe_pages_list;
2489		safe_pages_list = lp;
2490		nr_pages--;
2491	}
2492	/* Preallocate memory for the image */
2493	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2494	while (nr_pages > 0) {
2495		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2496		if (!lp) {
2497			error = -ENOMEM;
2498			goto Free;
2499		}
2500		if (!swsusp_page_is_free(virt_to_page(lp))) {
2501			/* The page is "safe", add it to the list */
2502			lp->next = safe_pages_list;
2503			safe_pages_list = lp;
2504		}
2505		/* Mark the page as allocated */
2506		swsusp_set_page_forbidden(virt_to_page(lp));
2507		swsusp_set_page_free(virt_to_page(lp));
2508		nr_pages--;
2509	}
2510	return 0;
2511
2512 Free:
2513	swsusp_free();
2514	return error;
2515}
2516
2517/**
2518 * get_buffer - Get the address to store the next image data page.
2519 *
2520 * Get the address that snapshot_write_next() should return to its caller to
2521 * write to.
2522 */
2523static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2524{
2525	struct pbe *pbe;
2526	struct page *page;
2527	unsigned long pfn = memory_bm_next_pfn(bm);
2528
2529	if (pfn == BM_END_OF_MAP)
2530		return ERR_PTR(-EFAULT);
2531
2532	page = pfn_to_page(pfn);
2533	if (PageHighMem(page))
2534		return get_highmem_page_buffer(page, ca);
2535
2536	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2537		/*
2538		 * We have allocated the "original" page frame and we can
2539		 * use it directly to store the loaded page.
2540		 */
2541		return page_address(page);
2542
2543	/*
2544	 * The "original" page frame has not been allocated and we have to
2545	 * use a "safe" page frame to store the loaded page.
2546	 */
2547	pbe = chain_alloc(ca, sizeof(struct pbe));
2548	if (!pbe) {
2549		swsusp_free();
2550		return ERR_PTR(-ENOMEM);
2551	}
2552	pbe->orig_address = page_address(page);
2553	pbe->address = safe_pages_list;
2554	safe_pages_list = safe_pages_list->next;
2555	pbe->next = restore_pblist;
2556	restore_pblist = pbe;
2557	return pbe->address;
2558}
2559
2560/**
2561 * snapshot_write_next - Get the address to store the next image page.
2562 * @handle: Snapshot handle structure to guide the writing.
2563 *
2564 * On the first call, @handle should point to a zeroed snapshot_handle
2565 * structure.  The structure gets populated then and a pointer to it should be
2566 * passed to this function every next time.
2567 *
2568 * On success, the function returns a positive number.  Then, the caller
2569 * is allowed to write up to the returned number of bytes to the memory
2570 * location computed by the data_of() macro.
2571 *
2572 * The function returns 0 to indicate the "end of file" condition.  Negative
2573 * numbers are returned on errors, in which cases the structure pointed to by
2574 * @handle is not updated and should not be used any more.
2575 */
2576int snapshot_write_next(struct snapshot_handle *handle)
2577{
2578	static struct chain_allocator ca;
2579	int error = 0;
2580
2581	/* Check if we have already loaded the entire image */
2582	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2583		return 0;
2584
2585	handle->sync_read = 1;
2586
2587	if (!handle->cur) {
2588		if (!buffer)
2589			/* This makes the buffer be freed by swsusp_free() */
2590			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2591
2592		if (!buffer)
2593			return -ENOMEM;
2594
2595		handle->buffer = buffer;
2596	} else if (handle->cur == 1) {
2597		error = load_header(buffer);
2598		if (error)
2599			return error;
2600
2601		safe_pages_list = NULL;
2602
2603		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2604		if (error)
2605			return error;
2606
2607		/* Allocate buffer for page keys. */
2608		error = page_key_alloc(nr_copy_pages);
2609		if (error)
2610			return error;
2611
2612		hibernate_restore_protection_begin();
2613	} else if (handle->cur <= nr_meta_pages + 1) {
2614		error = unpack_orig_pfns(buffer, &copy_bm);
2615		if (error)
2616			return error;
2617
2618		if (handle->cur == nr_meta_pages + 1) {
2619			error = prepare_image(&orig_bm, &copy_bm);
2620			if (error)
2621				return error;
2622
2623			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2624			memory_bm_position_reset(&orig_bm);
2625			restore_pblist = NULL;
2626			handle->buffer = get_buffer(&orig_bm, &ca);
2627			handle->sync_read = 0;
2628			if (IS_ERR(handle->buffer))
2629				return PTR_ERR(handle->buffer);
2630		}
2631	} else {
2632		copy_last_highmem_page();
2633		/* Restore page key for data page (s390 only). */
2634		page_key_write(handle->buffer);
2635		hibernate_restore_protect_page(handle->buffer);
2636		handle->buffer = get_buffer(&orig_bm, &ca);
2637		if (IS_ERR(handle->buffer))
2638			return PTR_ERR(handle->buffer);
2639		if (handle->buffer != buffer)
2640			handle->sync_read = 0;
2641	}
2642	handle->cur++;
2643	return PAGE_SIZE;
2644}
2645
2646/**
2647 * snapshot_write_finalize - Complete the loading of a hibernation image.
2648 *
2649 * Must be called after the last call to snapshot_write_next() in case the last
2650 * page in the image happens to be a highmem page and its contents should be
2651 * stored in highmem.  Additionally, it recycles bitmap memory that's not
2652 * necessary any more.
2653 */
2654void snapshot_write_finalize(struct snapshot_handle *handle)
2655{
2656	copy_last_highmem_page();
2657	/* Restore page key for data page (s390 only). */
2658	page_key_write(handle->buffer);
2659	page_key_free();
2660	hibernate_restore_protect_page(handle->buffer);
2661	/* Do that only if we have loaded the image entirely */
2662	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2663		memory_bm_recycle(&orig_bm);
2664		free_highmem_data();
2665	}
2666}
2667
2668int snapshot_image_loaded(struct snapshot_handle *handle)
2669{
2670	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2671			handle->cur <= nr_meta_pages + nr_copy_pages);
2672}
2673
2674#ifdef CONFIG_HIGHMEM
2675/* Assumes that @buf is ready and points to a "safe" page */
2676static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2677				       void *buf)
2678{
2679	void *kaddr1, *kaddr2;
2680
2681	kaddr1 = kmap_atomic(p1);
2682	kaddr2 = kmap_atomic(p2);
2683	copy_page(buf, kaddr1);
2684	copy_page(kaddr1, kaddr2);
2685	copy_page(kaddr2, buf);
2686	kunmap_atomic(kaddr2);
2687	kunmap_atomic(kaddr1);
2688}
2689
2690/**
2691 * restore_highmem - Put highmem image pages into their original locations.
2692 *
2693 * For each highmem page that was in use before hibernation and is included in
2694 * the image, and also has been allocated by the "restore" kernel, swap its
2695 * current contents with the previous (ie. "before hibernation") ones.
2696 *
2697 * If the restore eventually fails, we can call this function once again and
2698 * restore the highmem state as seen by the restore kernel.
2699 */
2700int restore_highmem(void)
2701{
2702	struct highmem_pbe *pbe = highmem_pblist;
2703	void *buf;
2704
2705	if (!pbe)
2706		return 0;
2707
2708	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2709	if (!buf)
2710		return -ENOMEM;
2711
2712	while (pbe) {
2713		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2714		pbe = pbe->next;
2715	}
2716	free_image_page(buf, PG_UNSAFE_CLEAR);
2717	return 0;
2718}
2719#endif /* CONFIG_HIGHMEM */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/kernel/power/snapshot.c
   4 *
   5 * This file provides system snapshot/restore functionality for swsusp.
   6 *
   7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
 
 
 
   9 */
  10
  11#define pr_fmt(fmt) "PM: hibernation: " fmt
  12
  13#include <linux/version.h>
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/suspend.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/spinlock.h>
  20#include <linux/kernel.h>
  21#include <linux/pm.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/memblock.h>
  25#include <linux/nmi.h>
  26#include <linux/syscalls.h>
  27#include <linux/console.h>
  28#include <linux/highmem.h>
  29#include <linux/list.h>
  30#include <linux/slab.h>
  31#include <linux/compiler.h>
  32#include <linux/ktime.h>
  33#include <linux/set_memory.h>
  34
  35#include <linux/uaccess.h>
  36#include <asm/mmu_context.h>
 
  37#include <asm/tlbflush.h>
  38#include <asm/io.h>
  39
  40#include "power.h"
  41
  42#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
  43static bool hibernate_restore_protection;
  44static bool hibernate_restore_protection_active;
  45
  46void enable_restore_image_protection(void)
  47{
  48	hibernate_restore_protection = true;
  49}
  50
  51static inline void hibernate_restore_protection_begin(void)
  52{
  53	hibernate_restore_protection_active = hibernate_restore_protection;
  54}
  55
  56static inline void hibernate_restore_protection_end(void)
  57{
  58	hibernate_restore_protection_active = false;
  59}
  60
  61static inline void hibernate_restore_protect_page(void *page_address)
  62{
  63	if (hibernate_restore_protection_active)
  64		set_memory_ro((unsigned long)page_address, 1);
  65}
  66
  67static inline void hibernate_restore_unprotect_page(void *page_address)
  68{
  69	if (hibernate_restore_protection_active)
  70		set_memory_rw((unsigned long)page_address, 1);
  71}
  72#else
  73static inline void hibernate_restore_protection_begin(void) {}
  74static inline void hibernate_restore_protection_end(void) {}
  75static inline void hibernate_restore_protect_page(void *page_address) {}
  76static inline void hibernate_restore_unprotect_page(void *page_address) {}
  77#endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
  78
  79
  80/*
  81 * The calls to set_direct_map_*() should not fail because remapping a page
  82 * here means that we only update protection bits in an existing PTE.
  83 * It is still worth to have a warning here if something changes and this
  84 * will no longer be the case.
  85 */
  86static inline void hibernate_map_page(struct page *page)
  87{
  88	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
  89		int ret = set_direct_map_default_noflush(page);
  90
  91		if (ret)
  92			pr_warn_once("Failed to remap page\n");
  93	} else {
  94		debug_pagealloc_map_pages(page, 1);
  95	}
  96}
  97
  98static inline void hibernate_unmap_page(struct page *page)
  99{
 100	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
 101		unsigned long addr = (unsigned long)page_address(page);
 102		int ret  = set_direct_map_invalid_noflush(page);
 103
 104		if (ret)
 105			pr_warn_once("Failed to remap page\n");
 106
 107		flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
 108	} else {
 109		debug_pagealloc_unmap_pages(page, 1);
 110	}
 111}
 112
 113static int swsusp_page_is_free(struct page *);
 114static void swsusp_set_page_forbidden(struct page *);
 115static void swsusp_unset_page_forbidden(struct page *);
 116
 117/*
 118 * Number of bytes to reserve for memory allocations made by device drivers
 119 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 120 * cause image creation to fail (tunable via /sys/power/reserved_size).
 121 */
 122unsigned long reserved_size;
 123
 124void __init hibernate_reserved_size_init(void)
 125{
 126	reserved_size = SPARE_PAGES * PAGE_SIZE;
 127}
 128
 129/*
 130 * Preferred image size in bytes (tunable via /sys/power/image_size).
 131 * When it is set to N, swsusp will do its best to ensure the image
 132 * size will not exceed N bytes, but if that is impossible, it will
 133 * try to create the smallest image possible.
 134 */
 135unsigned long image_size;
 136
 137void __init hibernate_image_size_init(void)
 138{
 139	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
 140}
 141
 142/*
 143 * List of PBEs needed for restoring the pages that were allocated before
 144 * the suspend and included in the suspend image, but have also been
 145 * allocated by the "resume" kernel, so their contents cannot be written
 146 * directly to their "original" page frames.
 147 */
 148struct pbe *restore_pblist;
 149
 150/* struct linked_page is used to build chains of pages */
 151
 152#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 153
 154struct linked_page {
 155	struct linked_page *next;
 156	char data[LINKED_PAGE_DATA_SIZE];
 157} __packed;
 158
 159/*
 160 * List of "safe" pages (ie. pages that were not used by the image kernel
 161 * before hibernation) that may be used as temporary storage for image kernel
 162 * memory contents.
 163 */
 164static struct linked_page *safe_pages_list;
 165
 166/* Pointer to an auxiliary buffer (1 page) */
 167static void *buffer;
 168
 169#define PG_ANY		0
 170#define PG_SAFE		1
 171#define PG_UNSAFE_CLEAR	1
 172#define PG_UNSAFE_KEEP	0
 173
 174static unsigned int allocated_unsafe_pages;
 175
 176/**
 177 * get_image_page - Allocate a page for a hibernation image.
 178 * @gfp_mask: GFP mask for the allocation.
 179 * @safe_needed: Get pages that were not used before hibernation (restore only)
 180 *
 181 * During image restoration, for storing the PBE list and the image data, we can
 182 * only use memory pages that do not conflict with the pages used before
 183 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 184 * using allocated_unsafe_pages.
 185 *
 186 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 187 * swsusp_free() can release it.
 188 */
 189static void *get_image_page(gfp_t gfp_mask, int safe_needed)
 190{
 191	void *res;
 192
 193	res = (void *)get_zeroed_page(gfp_mask);
 194	if (safe_needed)
 195		while (res && swsusp_page_is_free(virt_to_page(res))) {
 196			/* The page is unsafe, mark it for swsusp_free() */
 197			swsusp_set_page_forbidden(virt_to_page(res));
 198			allocated_unsafe_pages++;
 199			res = (void *)get_zeroed_page(gfp_mask);
 200		}
 201	if (res) {
 202		swsusp_set_page_forbidden(virt_to_page(res));
 203		swsusp_set_page_free(virt_to_page(res));
 204	}
 205	return res;
 206}
 207
 208static void *__get_safe_page(gfp_t gfp_mask)
 209{
 210	if (safe_pages_list) {
 211		void *ret = safe_pages_list;
 212
 213		safe_pages_list = safe_pages_list->next;
 214		memset(ret, 0, PAGE_SIZE);
 215		return ret;
 216	}
 217	return get_image_page(gfp_mask, PG_SAFE);
 218}
 219
 220unsigned long get_safe_page(gfp_t gfp_mask)
 221{
 222	return (unsigned long)__get_safe_page(gfp_mask);
 223}
 224
 225static struct page *alloc_image_page(gfp_t gfp_mask)
 226{
 227	struct page *page;
 228
 229	page = alloc_page(gfp_mask);
 230	if (page) {
 231		swsusp_set_page_forbidden(page);
 232		swsusp_set_page_free(page);
 233	}
 234	return page;
 235}
 236
 237static void recycle_safe_page(void *page_address)
 238{
 239	struct linked_page *lp = page_address;
 240
 241	lp->next = safe_pages_list;
 242	safe_pages_list = lp;
 243}
 244
 245/**
 246 * free_image_page - Free a page allocated for hibernation image.
 247 * @addr: Address of the page to free.
 248 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 249 *
 250 * The page to free should have been allocated by get_image_page() (page flags
 251 * set by it are affected).
 252 */
 253static inline void free_image_page(void *addr, int clear_nosave_free)
 254{
 255	struct page *page;
 256
 257	BUG_ON(!virt_addr_valid(addr));
 258
 259	page = virt_to_page(addr);
 260
 261	swsusp_unset_page_forbidden(page);
 262	if (clear_nosave_free)
 263		swsusp_unset_page_free(page);
 264
 265	__free_page(page);
 266}
 267
 268static inline void free_list_of_pages(struct linked_page *list,
 269				      int clear_page_nosave)
 270{
 271	while (list) {
 272		struct linked_page *lp = list->next;
 273
 274		free_image_page(list, clear_page_nosave);
 275		list = lp;
 276	}
 277}
 278
 279/*
 280 * struct chain_allocator is used for allocating small objects out of
 281 * a linked list of pages called 'the chain'.
 282 *
 283 * The chain grows each time when there is no room for a new object in
 284 * the current page.  The allocated objects cannot be freed individually.
 285 * It is only possible to free them all at once, by freeing the entire
 286 * chain.
 287 *
 288 * NOTE: The chain allocator may be inefficient if the allocated objects
 289 * are not much smaller than PAGE_SIZE.
 290 */
 291struct chain_allocator {
 292	struct linked_page *chain;	/* the chain */
 293	unsigned int used_space;	/* total size of objects allocated out
 294					   of the current page */
 295	gfp_t gfp_mask;		/* mask for allocating pages */
 296	int safe_needed;	/* if set, only "safe" pages are allocated */
 297};
 298
 299static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
 300		       int safe_needed)
 301{
 302	ca->chain = NULL;
 303	ca->used_space = LINKED_PAGE_DATA_SIZE;
 304	ca->gfp_mask = gfp_mask;
 305	ca->safe_needed = safe_needed;
 306}
 307
 308static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 309{
 310	void *ret;
 311
 312	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 313		struct linked_page *lp;
 314
 315		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
 316					get_image_page(ca->gfp_mask, PG_ANY);
 317		if (!lp)
 318			return NULL;
 319
 320		lp->next = ca->chain;
 321		ca->chain = lp;
 322		ca->used_space = 0;
 323	}
 324	ret = ca->chain->data + ca->used_space;
 325	ca->used_space += size;
 326	return ret;
 327}
 328
 329/**
 330 * Data types related to memory bitmaps.
 331 *
 332 * Memory bitmap is a structure consisting of many linked lists of
 333 * objects.  The main list's elements are of type struct zone_bitmap
 334 * and each of them corresponds to one zone.  For each zone bitmap
 335 * object there is a list of objects of type struct bm_block that
 336 * represent each blocks of bitmap in which information is stored.
 337 *
 338 * struct memory_bitmap contains a pointer to the main list of zone
 339 * bitmap objects, a struct bm_position used for browsing the bitmap,
 340 * and a pointer to the list of pages used for allocating all of the
 341 * zone bitmap objects and bitmap block objects.
 342 *
 343 * NOTE: It has to be possible to lay out the bitmap in memory
 344 * using only allocations of order 0.  Additionally, the bitmap is
 345 * designed to work with arbitrary number of zones (this is over the
 346 * top for now, but let's avoid making unnecessary assumptions ;-).
 347 *
 348 * struct zone_bitmap contains a pointer to a list of bitmap block
 349 * objects and a pointer to the bitmap block object that has been
 350 * most recently used for setting bits.  Additionally, it contains the
 351 * PFNs that correspond to the start and end of the represented zone.
 352 *
 353 * struct bm_block contains a pointer to the memory page in which
 354 * information is stored (in the form of a block of bitmap)
 355 * It also contains the pfns that correspond to the start and end of
 356 * the represented memory area.
 357 *
 358 * The memory bitmap is organized as a radix tree to guarantee fast random
 359 * access to the bits. There is one radix tree for each zone (as returned
 360 * from create_mem_extents).
 361 *
 362 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 363 * two linked lists for the nodes of the tree, one for the inner nodes and
 364 * one for the leave nodes. The linked leave nodes are used for fast linear
 365 * access of the memory bitmap.
 366 *
 367 * The struct rtree_node represents one node of the radix tree.
 368 */
 369
 370#define BM_END_OF_MAP	(~0UL)
 371
 372#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 373#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
 374#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
 375
 376/*
 377 * struct rtree_node is a wrapper struct to link the nodes
 378 * of the rtree together for easy linear iteration over
 379 * bits and easy freeing
 380 */
 381struct rtree_node {
 382	struct list_head list;
 383	unsigned long *data;
 384};
 385
 386/*
 387 * struct mem_zone_bm_rtree represents a bitmap used for one
 388 * populated memory zone.
 389 */
 390struct mem_zone_bm_rtree {
 391	struct list_head list;		/* Link Zones together         */
 392	struct list_head nodes;		/* Radix Tree inner nodes      */
 393	struct list_head leaves;	/* Radix Tree leaves           */
 394	unsigned long start_pfn;	/* Zone start page frame       */
 395	unsigned long end_pfn;		/* Zone end page frame + 1     */
 396	struct rtree_node *rtree;	/* Radix Tree Root             */
 397	int levels;			/* Number of Radix Tree Levels */
 398	unsigned int blocks;		/* Number of Bitmap Blocks     */
 399};
 400
 401/* strcut bm_position is used for browsing memory bitmaps */
 402
 403struct bm_position {
 404	struct mem_zone_bm_rtree *zone;
 405	struct rtree_node *node;
 406	unsigned long node_pfn;
 407	int node_bit;
 408};
 409
 410struct memory_bitmap {
 411	struct list_head zones;
 412	struct linked_page *p_list;	/* list of pages used to store zone
 413					   bitmap objects and bitmap block
 414					   objects */
 415	struct bm_position cur;	/* most recently used bit position */
 416};
 417
 418/* Functions that operate on memory bitmaps */
 419
 420#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
 421#if BITS_PER_LONG == 32
 422#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
 423#else
 424#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
 425#endif
 426#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 427
 428/**
 429 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
 430 *
 431 * This function is used to allocate inner nodes as well as the
 432 * leave nodes of the radix tree. It also adds the node to the
 433 * corresponding linked list passed in by the *list parameter.
 434 */
 435static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 436					   struct chain_allocator *ca,
 437					   struct list_head *list)
 438{
 439	struct rtree_node *node;
 440
 441	node = chain_alloc(ca, sizeof(struct rtree_node));
 442	if (!node)
 443		return NULL;
 444
 445	node->data = get_image_page(gfp_mask, safe_needed);
 446	if (!node->data)
 447		return NULL;
 448
 449	list_add_tail(&node->list, list);
 450
 451	return node;
 452}
 453
 454/**
 455 * add_rtree_block - Add a new leave node to the radix tree.
 456 *
 457 * The leave nodes need to be allocated in order to keep the leaves
 458 * linked list in order. This is guaranteed by the zone->blocks
 459 * counter.
 460 */
 461static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 462			   int safe_needed, struct chain_allocator *ca)
 463{
 464	struct rtree_node *node, *block, **dst;
 465	unsigned int levels_needed, block_nr;
 466	int i;
 467
 468	block_nr = zone->blocks;
 469	levels_needed = 0;
 470
 471	/* How many levels do we need for this block nr? */
 472	while (block_nr) {
 473		levels_needed += 1;
 474		block_nr >>= BM_RTREE_LEVEL_SHIFT;
 475	}
 476
 477	/* Make sure the rtree has enough levels */
 478	for (i = zone->levels; i < levels_needed; i++) {
 479		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 480					&zone->nodes);
 481		if (!node)
 482			return -ENOMEM;
 483
 484		node->data[0] = (unsigned long)zone->rtree;
 485		zone->rtree = node;
 486		zone->levels += 1;
 487	}
 488
 489	/* Allocate new block */
 490	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 491	if (!block)
 492		return -ENOMEM;
 493
 494	/* Now walk the rtree to insert the block */
 495	node = zone->rtree;
 496	dst = &zone->rtree;
 497	block_nr = zone->blocks;
 498	for (i = zone->levels; i > 0; i--) {
 499		int index;
 500
 501		if (!node) {
 502			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 503						&zone->nodes);
 504			if (!node)
 505				return -ENOMEM;
 506			*dst = node;
 507		}
 508
 509		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 510		index &= BM_RTREE_LEVEL_MASK;
 511		dst = (struct rtree_node **)&((*dst)->data[index]);
 512		node = *dst;
 513	}
 514
 515	zone->blocks += 1;
 516	*dst = block;
 517
 518	return 0;
 519}
 520
 521static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 522			       int clear_nosave_free);
 523
 524/**
 525 * create_zone_bm_rtree - Create a radix tree for one zone.
 526 *
 527 * Allocated the mem_zone_bm_rtree structure and initializes it.
 528 * This function also allocated and builds the radix tree for the
 529 * zone.
 530 */
 531static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
 532						      int safe_needed,
 533						      struct chain_allocator *ca,
 534						      unsigned long start,
 535						      unsigned long end)
 536{
 537	struct mem_zone_bm_rtree *zone;
 538	unsigned int i, nr_blocks;
 539	unsigned long pages;
 540
 541	pages = end - start;
 542	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 543	if (!zone)
 544		return NULL;
 545
 546	INIT_LIST_HEAD(&zone->nodes);
 547	INIT_LIST_HEAD(&zone->leaves);
 548	zone->start_pfn = start;
 549	zone->end_pfn = end;
 550	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 551
 552	for (i = 0; i < nr_blocks; i++) {
 553		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 554			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 555			return NULL;
 556		}
 557	}
 558
 559	return zone;
 560}
 561
 562/**
 563 * free_zone_bm_rtree - Free the memory of the radix tree.
 564 *
 565 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 566 * structure itself is not freed here nor are the rtree_node
 567 * structs.
 568 */
 569static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 570			       int clear_nosave_free)
 571{
 572	struct rtree_node *node;
 573
 574	list_for_each_entry(node, &zone->nodes, list)
 575		free_image_page(node->data, clear_nosave_free);
 576
 577	list_for_each_entry(node, &zone->leaves, list)
 578		free_image_page(node->data, clear_nosave_free);
 579}
 580
 581static void memory_bm_position_reset(struct memory_bitmap *bm)
 582{
 583	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 584				  list);
 585	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 586				  struct rtree_node, list);
 587	bm->cur.node_pfn = 0;
 588	bm->cur.node_bit = 0;
 589}
 590
 591static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 592
 593struct mem_extent {
 594	struct list_head hook;
 595	unsigned long start;
 596	unsigned long end;
 597};
 598
 599/**
 600 * free_mem_extents - Free a list of memory extents.
 601 * @list: List of extents to free.
 602 */
 603static void free_mem_extents(struct list_head *list)
 604{
 605	struct mem_extent *ext, *aux;
 606
 607	list_for_each_entry_safe(ext, aux, list, hook) {
 608		list_del(&ext->hook);
 609		kfree(ext);
 610	}
 611}
 612
 613/**
 614 * create_mem_extents - Create a list of memory extents.
 615 * @list: List to put the extents into.
 616 * @gfp_mask: Mask to use for memory allocations.
 617 *
 618 * The extents represent contiguous ranges of PFNs.
 619 */
 620static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 621{
 622	struct zone *zone;
 623
 624	INIT_LIST_HEAD(list);
 625
 626	for_each_populated_zone(zone) {
 627		unsigned long zone_start, zone_end;
 628		struct mem_extent *ext, *cur, *aux;
 629
 630		zone_start = zone->zone_start_pfn;
 631		zone_end = zone_end_pfn(zone);
 632
 633		list_for_each_entry(ext, list, hook)
 634			if (zone_start <= ext->end)
 635				break;
 636
 637		if (&ext->hook == list || zone_end < ext->start) {
 638			/* New extent is necessary */
 639			struct mem_extent *new_ext;
 640
 641			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 642			if (!new_ext) {
 643				free_mem_extents(list);
 644				return -ENOMEM;
 645			}
 646			new_ext->start = zone_start;
 647			new_ext->end = zone_end;
 648			list_add_tail(&new_ext->hook, &ext->hook);
 649			continue;
 650		}
 651
 652		/* Merge this zone's range of PFNs with the existing one */
 653		if (zone_start < ext->start)
 654			ext->start = zone_start;
 655		if (zone_end > ext->end)
 656			ext->end = zone_end;
 657
 658		/* More merging may be possible */
 659		cur = ext;
 660		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 661			if (zone_end < cur->start)
 662				break;
 663			if (zone_end < cur->end)
 664				ext->end = cur->end;
 665			list_del(&cur->hook);
 666			kfree(cur);
 667		}
 668	}
 669
 670	return 0;
 671}
 672
 673/**
 674 * memory_bm_create - Allocate memory for a memory bitmap.
 675 */
 676static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
 677			    int safe_needed)
 678{
 679	struct chain_allocator ca;
 680	struct list_head mem_extents;
 681	struct mem_extent *ext;
 682	int error;
 683
 684	chain_init(&ca, gfp_mask, safe_needed);
 685	INIT_LIST_HEAD(&bm->zones);
 686
 687	error = create_mem_extents(&mem_extents, gfp_mask);
 688	if (error)
 689		return error;
 690
 691	list_for_each_entry(ext, &mem_extents, hook) {
 692		struct mem_zone_bm_rtree *zone;
 693
 694		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 695					    ext->start, ext->end);
 696		if (!zone) {
 697			error = -ENOMEM;
 698			goto Error;
 699		}
 700		list_add_tail(&zone->list, &bm->zones);
 701	}
 702
 703	bm->p_list = ca.chain;
 704	memory_bm_position_reset(bm);
 705 Exit:
 706	free_mem_extents(&mem_extents);
 707	return error;
 708
 709 Error:
 710	bm->p_list = ca.chain;
 711	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 712	goto Exit;
 713}
 714
 715/**
 716 * memory_bm_free - Free memory occupied by the memory bitmap.
 717 * @bm: Memory bitmap.
 718 */
 719static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 720{
 721	struct mem_zone_bm_rtree *zone;
 722
 723	list_for_each_entry(zone, &bm->zones, list)
 724		free_zone_bm_rtree(zone, clear_nosave_free);
 725
 726	free_list_of_pages(bm->p_list, clear_nosave_free);
 727
 728	INIT_LIST_HEAD(&bm->zones);
 729}
 730
 731/**
 732 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
 733 *
 734 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 735 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 736 *
 737 * Walk the radix tree to find the page containing the bit that represents @pfn
 738 * and return the position of the bit in @addr and @bit_nr.
 739 */
 740static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 741			      void **addr, unsigned int *bit_nr)
 742{
 743	struct mem_zone_bm_rtree *curr, *zone;
 744	struct rtree_node *node;
 745	int i, block_nr;
 746
 747	zone = bm->cur.zone;
 748
 749	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 750		goto zone_found;
 751
 752	zone = NULL;
 753
 754	/* Find the right zone */
 755	list_for_each_entry(curr, &bm->zones, list) {
 756		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 757			zone = curr;
 758			break;
 759		}
 760	}
 761
 762	if (!zone)
 763		return -EFAULT;
 764
 765zone_found:
 766	/*
 767	 * We have found the zone. Now walk the radix tree to find the leaf node
 768	 * for our PFN.
 769	 */
 770
 771	/*
 772	 * If the zone we wish to scan is the current zone and the
 773	 * pfn falls into the current node then we do not need to walk
 774	 * the tree.
 775	 */
 776	node = bm->cur.node;
 777	if (zone == bm->cur.zone &&
 778	    ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 779		goto node_found;
 780
 781	node      = zone->rtree;
 782	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 783
 784	for (i = zone->levels; i > 0; i--) {
 785		int index;
 786
 787		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 788		index &= BM_RTREE_LEVEL_MASK;
 789		BUG_ON(node->data[index] == 0);
 790		node = (struct rtree_node *)node->data[index];
 791	}
 792
 793node_found:
 794	/* Update last position */
 795	bm->cur.zone = zone;
 796	bm->cur.node = node;
 797	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 798
 799	/* Set return values */
 800	*addr = node->data;
 801	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 802
 803	return 0;
 804}
 805
 806static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 807{
 808	void *addr;
 809	unsigned int bit;
 810	int error;
 811
 812	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 813	BUG_ON(error);
 814	set_bit(bit, addr);
 815}
 816
 817static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 818{
 819	void *addr;
 820	unsigned int bit;
 821	int error;
 822
 823	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 824	if (!error)
 825		set_bit(bit, addr);
 826
 827	return error;
 828}
 829
 830static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 831{
 832	void *addr;
 833	unsigned int bit;
 834	int error;
 835
 836	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 837	BUG_ON(error);
 838	clear_bit(bit, addr);
 839}
 840
 841static void memory_bm_clear_current(struct memory_bitmap *bm)
 842{
 843	int bit;
 844
 845	bit = max(bm->cur.node_bit - 1, 0);
 846	clear_bit(bit, bm->cur.node->data);
 847}
 848
 849static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 850{
 851	void *addr;
 852	unsigned int bit;
 853	int error;
 854
 855	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 856	BUG_ON(error);
 857	return test_bit(bit, addr);
 858}
 859
 860static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 861{
 862	void *addr;
 863	unsigned int bit;
 864
 865	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 866}
 867
 868/*
 869 * rtree_next_node - Jump to the next leaf node.
 870 *
 871 * Set the position to the beginning of the next node in the
 872 * memory bitmap. This is either the next node in the current
 873 * zone's radix tree or the first node in the radix tree of the
 874 * next zone.
 875 *
 876 * Return true if there is a next node, false otherwise.
 877 */
 878static bool rtree_next_node(struct memory_bitmap *bm)
 879{
 880	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
 881		bm->cur.node = list_entry(bm->cur.node->list.next,
 882					  struct rtree_node, list);
 883		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 884		bm->cur.node_bit  = 0;
 885		touch_softlockup_watchdog();
 886		return true;
 887	}
 888
 889	/* No more nodes, goto next zone */
 890	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
 891		bm->cur.zone = list_entry(bm->cur.zone->list.next,
 892				  struct mem_zone_bm_rtree, list);
 893		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 894					  struct rtree_node, list);
 895		bm->cur.node_pfn = 0;
 896		bm->cur.node_bit = 0;
 897		return true;
 898	}
 899
 900	/* No more zones */
 901	return false;
 902}
 903
 904/**
 905 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
 906 * @bm: Memory bitmap.
 907 *
 908 * Starting from the last returned position this function searches for the next
 909 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 910 * set, BM_END_OF_MAP is returned.
 911 *
 912 * It is required to run memory_bm_position_reset() before the first call to
 913 * this function for the given memory bitmap.
 914 */
 915static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 916{
 917	unsigned long bits, pfn, pages;
 918	int bit;
 919
 920	do {
 921		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 922		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 923		bit	  = find_next_bit(bm->cur.node->data, bits,
 924					  bm->cur.node_bit);
 925		if (bit < bits) {
 926			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 927			bm->cur.node_bit = bit + 1;
 928			return pfn;
 929		}
 930	} while (rtree_next_node(bm));
 931
 932	return BM_END_OF_MAP;
 933}
 934
 935/*
 936 * This structure represents a range of page frames the contents of which
 937 * should not be saved during hibernation.
 938 */
 939struct nosave_region {
 940	struct list_head list;
 941	unsigned long start_pfn;
 942	unsigned long end_pfn;
 943};
 944
 945static LIST_HEAD(nosave_regions);
 946
 947static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
 948{
 949	struct rtree_node *node;
 950
 951	list_for_each_entry(node, &zone->nodes, list)
 952		recycle_safe_page(node->data);
 953
 954	list_for_each_entry(node, &zone->leaves, list)
 955		recycle_safe_page(node->data);
 956}
 957
 958static void memory_bm_recycle(struct memory_bitmap *bm)
 959{
 960	struct mem_zone_bm_rtree *zone;
 961	struct linked_page *p_list;
 962
 963	list_for_each_entry(zone, &bm->zones, list)
 964		recycle_zone_bm_rtree(zone);
 965
 966	p_list = bm->p_list;
 967	while (p_list) {
 968		struct linked_page *lp = p_list;
 969
 970		p_list = lp->next;
 971		recycle_safe_page(lp);
 972	}
 973}
 974
 975/**
 976 * register_nosave_region - Register a region of unsaveable memory.
 977 *
 978 * Register a range of page frames the contents of which should not be saved
 979 * during hibernation (to be used in the early initialization code).
 980 */
 981void __init __register_nosave_region(unsigned long start_pfn,
 982				     unsigned long end_pfn, int use_kmalloc)
 983{
 984	struct nosave_region *region;
 985
 986	if (start_pfn >= end_pfn)
 987		return;
 988
 989	if (!list_empty(&nosave_regions)) {
 990		/* Try to extend the previous region (they should be sorted) */
 991		region = list_entry(nosave_regions.prev,
 992					struct nosave_region, list);
 993		if (region->end_pfn == start_pfn) {
 994			region->end_pfn = end_pfn;
 995			goto Report;
 996		}
 997	}
 998	if (use_kmalloc) {
 999		/* During init, this shouldn't fail */
1000		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
1001		BUG_ON(!region);
1002	} else {
1003		/* This allocation cannot fail */
1004		region = memblock_alloc(sizeof(struct nosave_region),
1005					SMP_CACHE_BYTES);
1006		if (!region)
1007			panic("%s: Failed to allocate %zu bytes\n", __func__,
1008			      sizeof(struct nosave_region));
1009	}
1010	region->start_pfn = start_pfn;
1011	region->end_pfn = end_pfn;
1012	list_add_tail(&region->list, &nosave_regions);
1013 Report:
1014	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
1015		(unsigned long long) start_pfn << PAGE_SHIFT,
1016		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1017}
1018
1019/*
1020 * Set bits in this map correspond to the page frames the contents of which
1021 * should not be saved during the suspend.
1022 */
1023static struct memory_bitmap *forbidden_pages_map;
1024
1025/* Set bits in this map correspond to free page frames. */
1026static struct memory_bitmap *free_pages_map;
1027
1028/*
1029 * Each page frame allocated for creating the image is marked by setting the
1030 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1031 */
1032
1033void swsusp_set_page_free(struct page *page)
1034{
1035	if (free_pages_map)
1036		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1037}
1038
1039static int swsusp_page_is_free(struct page *page)
1040{
1041	return free_pages_map ?
1042		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1043}
1044
1045void swsusp_unset_page_free(struct page *page)
1046{
1047	if (free_pages_map)
1048		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1049}
1050
1051static void swsusp_set_page_forbidden(struct page *page)
1052{
1053	if (forbidden_pages_map)
1054		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1055}
1056
1057int swsusp_page_is_forbidden(struct page *page)
1058{
1059	return forbidden_pages_map ?
1060		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1061}
1062
1063static void swsusp_unset_page_forbidden(struct page *page)
1064{
1065	if (forbidden_pages_map)
1066		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1067}
1068
1069/**
1070 * mark_nosave_pages - Mark pages that should not be saved.
1071 * @bm: Memory bitmap.
1072 *
1073 * Set the bits in @bm that correspond to the page frames the contents of which
1074 * should not be saved.
1075 */
1076static void mark_nosave_pages(struct memory_bitmap *bm)
1077{
1078	struct nosave_region *region;
1079
1080	if (list_empty(&nosave_regions))
1081		return;
1082
1083	list_for_each_entry(region, &nosave_regions, list) {
1084		unsigned long pfn;
1085
1086		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1087			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1088			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1089				- 1);
1090
1091		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1092			if (pfn_valid(pfn)) {
1093				/*
1094				 * It is safe to ignore the result of
1095				 * mem_bm_set_bit_check() here, since we won't
1096				 * touch the PFNs for which the error is
1097				 * returned anyway.
1098				 */
1099				mem_bm_set_bit_check(bm, pfn);
1100			}
1101	}
1102}
1103
1104/**
1105 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1106 *
1107 * Create bitmaps needed for marking page frames that should not be saved and
1108 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1109 * only modified if everything goes well, because we don't want the bits to be
1110 * touched before both bitmaps are set up.
1111 */
1112int create_basic_memory_bitmaps(void)
1113{
1114	struct memory_bitmap *bm1, *bm2;
1115	int error = 0;
1116
1117	if (forbidden_pages_map && free_pages_map)
1118		return 0;
1119	else
1120		BUG_ON(forbidden_pages_map || free_pages_map);
1121
1122	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1123	if (!bm1)
1124		return -ENOMEM;
1125
1126	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1127	if (error)
1128		goto Free_first_object;
1129
1130	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1131	if (!bm2)
1132		goto Free_first_bitmap;
1133
1134	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1135	if (error)
1136		goto Free_second_object;
1137
1138	forbidden_pages_map = bm1;
1139	free_pages_map = bm2;
1140	mark_nosave_pages(forbidden_pages_map);
1141
1142	pr_debug("Basic memory bitmaps created\n");
1143
1144	return 0;
1145
1146 Free_second_object:
1147	kfree(bm2);
1148 Free_first_bitmap:
1149	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1150 Free_first_object:
1151	kfree(bm1);
1152	return -ENOMEM;
1153}
1154
1155/**
1156 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1157 *
1158 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1159 * auxiliary pointers are necessary so that the bitmaps themselves are not
1160 * referred to while they are being freed.
1161 */
1162void free_basic_memory_bitmaps(void)
1163{
1164	struct memory_bitmap *bm1, *bm2;
1165
1166	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1167		return;
1168
1169	bm1 = forbidden_pages_map;
1170	bm2 = free_pages_map;
1171	forbidden_pages_map = NULL;
1172	free_pages_map = NULL;
1173	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1174	kfree(bm1);
1175	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1176	kfree(bm2);
1177
1178	pr_debug("Basic memory bitmaps freed\n");
1179}
1180
1181static void clear_or_poison_free_page(struct page *page)
1182{
1183	if (page_poisoning_enabled_static())
1184		__kernel_poison_pages(page, 1);
1185	else if (want_init_on_free())
1186		clear_highpage(page);
1187}
1188
1189void clear_or_poison_free_pages(void)
1190{
 
1191	struct memory_bitmap *bm = free_pages_map;
1192	unsigned long pfn;
1193
1194	if (WARN_ON(!(free_pages_map)))
1195		return;
1196
1197	if (page_poisoning_enabled() || want_init_on_free()) {
1198		memory_bm_position_reset(bm);
 
 
 
 
1199		pfn = memory_bm_next_pfn(bm);
1200		while (pfn != BM_END_OF_MAP) {
1201			if (pfn_valid(pfn))
1202				clear_or_poison_free_page(pfn_to_page(pfn));
1203
1204			pfn = memory_bm_next_pfn(bm);
1205		}
1206		memory_bm_position_reset(bm);
1207		pr_info("free pages cleared after restore\n");
1208	}
 
 
 
1209}
1210
1211/**
1212 * snapshot_additional_pages - Estimate the number of extra pages needed.
1213 * @zone: Memory zone to carry out the computation for.
1214 *
1215 * Estimate the number of additional pages needed for setting up a hibernation
1216 * image data structures for @zone (usually, the returned value is greater than
1217 * the exact number).
1218 */
1219unsigned int snapshot_additional_pages(struct zone *zone)
1220{
1221	unsigned int rtree, nodes;
1222
1223	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1224	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1225			      LINKED_PAGE_DATA_SIZE);
1226	while (nodes > 1) {
1227		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1228		rtree += nodes;
1229	}
1230
1231	return 2 * rtree;
1232}
1233
1234#ifdef CONFIG_HIGHMEM
1235/**
1236 * count_free_highmem_pages - Compute the total number of free highmem pages.
1237 *
1238 * The returned number is system-wide.
1239 */
1240static unsigned int count_free_highmem_pages(void)
1241{
1242	struct zone *zone;
1243	unsigned int cnt = 0;
1244
1245	for_each_populated_zone(zone)
1246		if (is_highmem(zone))
1247			cnt += zone_page_state(zone, NR_FREE_PAGES);
1248
1249	return cnt;
1250}
1251
1252/**
1253 * saveable_highmem_page - Check if a highmem page is saveable.
1254 *
1255 * Determine whether a highmem page should be included in a hibernation image.
1256 *
1257 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1258 * and it isn't part of a free chunk of pages.
1259 */
1260static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1261{
1262	struct page *page;
1263
1264	if (!pfn_valid(pfn))
1265		return NULL;
1266
1267	page = pfn_to_online_page(pfn);
1268	if (!page || page_zone(page) != zone)
1269		return NULL;
1270
1271	BUG_ON(!PageHighMem(page));
1272
1273	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
1274		return NULL;
1275
1276	if (PageReserved(page) || PageOffline(page))
1277		return NULL;
1278
1279	if (page_is_guard(page))
1280		return NULL;
1281
1282	return page;
1283}
1284
1285/**
1286 * count_highmem_pages - Compute the total number of saveable highmem pages.
1287 */
1288static unsigned int count_highmem_pages(void)
1289{
1290	struct zone *zone;
1291	unsigned int n = 0;
1292
1293	for_each_populated_zone(zone) {
1294		unsigned long pfn, max_zone_pfn;
1295
1296		if (!is_highmem(zone))
1297			continue;
1298
1299		mark_free_pages(zone);
1300		max_zone_pfn = zone_end_pfn(zone);
1301		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1302			if (saveable_highmem_page(zone, pfn))
1303				n++;
1304	}
1305	return n;
1306}
1307#else
1308static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1309{
1310	return NULL;
1311}
1312#endif /* CONFIG_HIGHMEM */
1313
1314/**
1315 * saveable_page - Check if the given page is saveable.
1316 *
1317 * Determine whether a non-highmem page should be included in a hibernation
1318 * image.
1319 *
1320 * We should save the page if it isn't Nosave, and is not in the range
1321 * of pages statically defined as 'unsaveable', and it isn't part of
1322 * a free chunk of pages.
1323 */
1324static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1325{
1326	struct page *page;
1327
1328	if (!pfn_valid(pfn))
1329		return NULL;
1330
1331	page = pfn_to_online_page(pfn);
1332	if (!page || page_zone(page) != zone)
1333		return NULL;
1334
1335	BUG_ON(PageHighMem(page));
1336
1337	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1338		return NULL;
1339
1340	if (PageOffline(page))
1341		return NULL;
1342
1343	if (PageReserved(page)
1344	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1345		return NULL;
1346
1347	if (page_is_guard(page))
1348		return NULL;
1349
1350	return page;
1351}
1352
1353/**
1354 * count_data_pages - Compute the total number of saveable non-highmem pages.
1355 */
1356static unsigned int count_data_pages(void)
1357{
1358	struct zone *zone;
1359	unsigned long pfn, max_zone_pfn;
1360	unsigned int n = 0;
1361
1362	for_each_populated_zone(zone) {
1363		if (is_highmem(zone))
1364			continue;
1365
1366		mark_free_pages(zone);
1367		max_zone_pfn = zone_end_pfn(zone);
1368		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1369			if (saveable_page(zone, pfn))
1370				n++;
1371	}
1372	return n;
1373}
1374
1375/*
1376 * This is needed, because copy_page and memcpy are not usable for copying
1377 * task structs.
1378 */
1379static inline void do_copy_page(long *dst, long *src)
1380{
1381	int n;
1382
1383	for (n = PAGE_SIZE / sizeof(long); n; n--)
1384		*dst++ = *src++;
1385}
1386
1387/**
1388 * safe_copy_page - Copy a page in a safe way.
1389 *
1390 * Check if the page we are going to copy is marked as present in the kernel
1391 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1392 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1393 * always returns 'true'.
1394 */
1395static void safe_copy_page(void *dst, struct page *s_page)
1396{
1397	if (kernel_page_present(s_page)) {
1398		do_copy_page(dst, page_address(s_page));
1399	} else {
1400		hibernate_map_page(s_page);
1401		do_copy_page(dst, page_address(s_page));
1402		hibernate_unmap_page(s_page);
1403	}
1404}
1405
1406#ifdef CONFIG_HIGHMEM
1407static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1408{
1409	return is_highmem(zone) ?
1410		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1411}
1412
1413static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1414{
1415	struct page *s_page, *d_page;
1416	void *src, *dst;
1417
1418	s_page = pfn_to_page(src_pfn);
1419	d_page = pfn_to_page(dst_pfn);
1420	if (PageHighMem(s_page)) {
1421		src = kmap_atomic(s_page);
1422		dst = kmap_atomic(d_page);
1423		do_copy_page(dst, src);
1424		kunmap_atomic(dst);
1425		kunmap_atomic(src);
1426	} else {
1427		if (PageHighMem(d_page)) {
1428			/*
1429			 * The page pointed to by src may contain some kernel
1430			 * data modified by kmap_atomic()
1431			 */
1432			safe_copy_page(buffer, s_page);
1433			dst = kmap_atomic(d_page);
1434			copy_page(dst, buffer);
1435			kunmap_atomic(dst);
1436		} else {
1437			safe_copy_page(page_address(d_page), s_page);
1438		}
1439	}
1440}
1441#else
1442#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1443
1444static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1445{
1446	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1447				pfn_to_page(src_pfn));
1448}
1449#endif /* CONFIG_HIGHMEM */
1450
1451static void copy_data_pages(struct memory_bitmap *copy_bm,
1452			    struct memory_bitmap *orig_bm)
1453{
1454	struct zone *zone;
1455	unsigned long pfn;
1456
1457	for_each_populated_zone(zone) {
1458		unsigned long max_zone_pfn;
1459
1460		mark_free_pages(zone);
1461		max_zone_pfn = zone_end_pfn(zone);
1462		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1463			if (page_is_saveable(zone, pfn))
1464				memory_bm_set_bit(orig_bm, pfn);
1465	}
1466	memory_bm_position_reset(orig_bm);
1467	memory_bm_position_reset(copy_bm);
1468	for(;;) {
1469		pfn = memory_bm_next_pfn(orig_bm);
1470		if (unlikely(pfn == BM_END_OF_MAP))
1471			break;
1472		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1473	}
1474}
1475
1476/* Total number of image pages */
1477static unsigned int nr_copy_pages;
1478/* Number of pages needed for saving the original pfns of the image pages */
1479static unsigned int nr_meta_pages;
1480/*
1481 * Numbers of normal and highmem page frames allocated for hibernation image
1482 * before suspending devices.
1483 */
1484static unsigned int alloc_normal, alloc_highmem;
1485/*
1486 * Memory bitmap used for marking saveable pages (during hibernation) or
1487 * hibernation image pages (during restore)
1488 */
1489static struct memory_bitmap orig_bm;
1490/*
1491 * Memory bitmap used during hibernation for marking allocated page frames that
1492 * will contain copies of saveable pages.  During restore it is initially used
1493 * for marking hibernation image pages, but then the set bits from it are
1494 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1495 * used for marking "safe" highmem pages, but it has to be reinitialized for
1496 * this purpose.
1497 */
1498static struct memory_bitmap copy_bm;
1499
1500/**
1501 * swsusp_free - Free pages allocated for hibernation image.
1502 *
1503 * Image pages are allocated before snapshot creation, so they need to be
1504 * released after resume.
1505 */
1506void swsusp_free(void)
1507{
1508	unsigned long fb_pfn, fr_pfn;
1509
1510	if (!forbidden_pages_map || !free_pages_map)
1511		goto out;
1512
1513	memory_bm_position_reset(forbidden_pages_map);
1514	memory_bm_position_reset(free_pages_map);
1515
1516loop:
1517	fr_pfn = memory_bm_next_pfn(free_pages_map);
1518	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1519
1520	/*
1521	 * Find the next bit set in both bitmaps. This is guaranteed to
1522	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1523	 */
1524	do {
1525		if (fb_pfn < fr_pfn)
1526			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1527		if (fr_pfn < fb_pfn)
1528			fr_pfn = memory_bm_next_pfn(free_pages_map);
1529	} while (fb_pfn != fr_pfn);
1530
1531	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1532		struct page *page = pfn_to_page(fr_pfn);
1533
1534		memory_bm_clear_current(forbidden_pages_map);
1535		memory_bm_clear_current(free_pages_map);
1536		hibernate_restore_unprotect_page(page_address(page));
1537		__free_page(page);
1538		goto loop;
1539	}
1540
1541out:
1542	nr_copy_pages = 0;
1543	nr_meta_pages = 0;
1544	restore_pblist = NULL;
1545	buffer = NULL;
1546	alloc_normal = 0;
1547	alloc_highmem = 0;
1548	hibernate_restore_protection_end();
1549}
1550
1551/* Helper functions used for the shrinking of memory. */
1552
1553#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1554
1555/**
1556 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1557 * @nr_pages: Number of page frames to allocate.
1558 * @mask: GFP flags to use for the allocation.
1559 *
1560 * Return value: Number of page frames actually allocated
1561 */
1562static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1563{
1564	unsigned long nr_alloc = 0;
1565
1566	while (nr_pages > 0) {
1567		struct page *page;
1568
1569		page = alloc_image_page(mask);
1570		if (!page)
1571			break;
1572		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1573		if (PageHighMem(page))
1574			alloc_highmem++;
1575		else
1576			alloc_normal++;
1577		nr_pages--;
1578		nr_alloc++;
1579	}
1580
1581	return nr_alloc;
1582}
1583
1584static unsigned long preallocate_image_memory(unsigned long nr_pages,
1585					      unsigned long avail_normal)
1586{
1587	unsigned long alloc;
1588
1589	if (avail_normal <= alloc_normal)
1590		return 0;
1591
1592	alloc = avail_normal - alloc_normal;
1593	if (nr_pages < alloc)
1594		alloc = nr_pages;
1595
1596	return preallocate_image_pages(alloc, GFP_IMAGE);
1597}
1598
1599#ifdef CONFIG_HIGHMEM
1600static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1601{
1602	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1603}
1604
1605/**
1606 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1607 */
1608static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1609{
1610	return div64_u64(x * multiplier, base);
 
 
1611}
1612
1613static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1614						  unsigned long highmem,
1615						  unsigned long total)
1616{
1617	unsigned long alloc = __fraction(nr_pages, highmem, total);
1618
1619	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1620}
1621#else /* CONFIG_HIGHMEM */
1622static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1623{
1624	return 0;
1625}
1626
1627static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1628							 unsigned long highmem,
1629							 unsigned long total)
1630{
1631	return 0;
1632}
1633#endif /* CONFIG_HIGHMEM */
1634
1635/**
1636 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1637 */
1638static unsigned long free_unnecessary_pages(void)
1639{
1640	unsigned long save, to_free_normal, to_free_highmem, free;
1641
1642	save = count_data_pages();
1643	if (alloc_normal >= save) {
1644		to_free_normal = alloc_normal - save;
1645		save = 0;
1646	} else {
1647		to_free_normal = 0;
1648		save -= alloc_normal;
1649	}
1650	save += count_highmem_pages();
1651	if (alloc_highmem >= save) {
1652		to_free_highmem = alloc_highmem - save;
1653	} else {
1654		to_free_highmem = 0;
1655		save -= alloc_highmem;
1656		if (to_free_normal > save)
1657			to_free_normal -= save;
1658		else
1659			to_free_normal = 0;
1660	}
1661	free = to_free_normal + to_free_highmem;
1662
1663	memory_bm_position_reset(&copy_bm);
1664
1665	while (to_free_normal > 0 || to_free_highmem > 0) {
1666		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1667		struct page *page = pfn_to_page(pfn);
1668
1669		if (PageHighMem(page)) {
1670			if (!to_free_highmem)
1671				continue;
1672			to_free_highmem--;
1673			alloc_highmem--;
1674		} else {
1675			if (!to_free_normal)
1676				continue;
1677			to_free_normal--;
1678			alloc_normal--;
1679		}
1680		memory_bm_clear_bit(&copy_bm, pfn);
1681		swsusp_unset_page_forbidden(page);
1682		swsusp_unset_page_free(page);
1683		__free_page(page);
1684	}
1685
1686	return free;
1687}
1688
1689/**
1690 * minimum_image_size - Estimate the minimum acceptable size of an image.
1691 * @saveable: Number of saveable pages in the system.
1692 *
1693 * We want to avoid attempting to free too much memory too hard, so estimate the
1694 * minimum acceptable size of a hibernation image to use as the lower limit for
1695 * preallocating memory.
1696 *
1697 * We assume that the minimum image size should be proportional to
1698 *
1699 * [number of saveable pages] - [number of pages that can be freed in theory]
1700 *
1701 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1702 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1703 */
1704static unsigned long minimum_image_size(unsigned long saveable)
1705{
1706	unsigned long size;
1707
1708	size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
1709		+ global_node_page_state(NR_ACTIVE_ANON)
1710		+ global_node_page_state(NR_INACTIVE_ANON)
1711		+ global_node_page_state(NR_ACTIVE_FILE)
1712		+ global_node_page_state(NR_INACTIVE_FILE);
1713
1714	return saveable <= size ? 0 : saveable - size;
1715}
1716
1717/**
1718 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1719 *
1720 * To create a hibernation image it is necessary to make a copy of every page
1721 * frame in use.  We also need a number of page frames to be free during
1722 * hibernation for allocations made while saving the image and for device
1723 * drivers, in case they need to allocate memory from their hibernation
1724 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1725 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1726 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1727 * total number of available page frames and allocate at least
1728 *
1729 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1730 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1731 *
1732 * of them, which corresponds to the maximum size of a hibernation image.
1733 *
1734 * If image_size is set below the number following from the above formula,
1735 * the preallocation of memory is continued until the total number of saveable
1736 * pages in the system is below the requested image size or the minimum
1737 * acceptable image size returned by minimum_image_size(), whichever is greater.
1738 */
1739int hibernate_preallocate_memory(void)
1740{
1741	struct zone *zone;
1742	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1743	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1744	ktime_t start, stop;
1745	int error;
1746
1747	pr_info("Preallocating image memory\n");
1748	start = ktime_get();
1749
1750	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1751	if (error) {
1752		pr_err("Cannot allocate original bitmap\n");
1753		goto err_out;
1754	}
1755
1756	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1757	if (error) {
1758		pr_err("Cannot allocate copy bitmap\n");
1759		goto err_out;
1760	}
1761
1762	alloc_normal = 0;
1763	alloc_highmem = 0;
1764
1765	/* Count the number of saveable data pages. */
1766	save_highmem = count_highmem_pages();
1767	saveable = count_data_pages();
1768
1769	/*
1770	 * Compute the total number of page frames we can use (count) and the
1771	 * number of pages needed for image metadata (size).
1772	 */
1773	count = saveable;
1774	saveable += save_highmem;
1775	highmem = save_highmem;
1776	size = 0;
1777	for_each_populated_zone(zone) {
1778		size += snapshot_additional_pages(zone);
1779		if (is_highmem(zone))
1780			highmem += zone_page_state(zone, NR_FREE_PAGES);
1781		else
1782			count += zone_page_state(zone, NR_FREE_PAGES);
1783	}
1784	avail_normal = count;
1785	count += highmem;
1786	count -= totalreserve_pages;
1787
 
 
 
1788	/* Compute the maximum number of saveable pages to leave in memory. */
1789	max_size = (count - (size + PAGES_FOR_IO)) / 2
1790			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1791	/* Compute the desired number of image pages specified by image_size. */
1792	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1793	if (size > max_size)
1794		size = max_size;
1795	/*
1796	 * If the desired number of image pages is at least as large as the
1797	 * current number of saveable pages in memory, allocate page frames for
1798	 * the image and we're done.
1799	 */
1800	if (size >= saveable) {
1801		pages = preallocate_image_highmem(save_highmem);
1802		pages += preallocate_image_memory(saveable - pages, avail_normal);
1803		goto out;
1804	}
1805
1806	/* Estimate the minimum size of the image. */
1807	pages = minimum_image_size(saveable);
1808	/*
1809	 * To avoid excessive pressure on the normal zone, leave room in it to
1810	 * accommodate an image of the minimum size (unless it's already too
1811	 * small, in which case don't preallocate pages from it at all).
1812	 */
1813	if (avail_normal > pages)
1814		avail_normal -= pages;
1815	else
1816		avail_normal = 0;
1817	if (size < pages)
1818		size = min_t(unsigned long, pages, max_size);
1819
1820	/*
1821	 * Let the memory management subsystem know that we're going to need a
1822	 * large number of page frames to allocate and make it free some memory.
1823	 * NOTE: If this is not done, performance will be hurt badly in some
1824	 * test cases.
1825	 */
1826	shrink_all_memory(saveable - size);
1827
1828	/*
1829	 * The number of saveable pages in memory was too high, so apply some
1830	 * pressure to decrease it.  First, make room for the largest possible
1831	 * image and fail if that doesn't work.  Next, try to decrease the size
1832	 * of the image as much as indicated by 'size' using allocations from
1833	 * highmem and non-highmem zones separately.
1834	 */
1835	pages_highmem = preallocate_image_highmem(highmem / 2);
1836	alloc = count - max_size;
1837	if (alloc > pages_highmem)
1838		alloc -= pages_highmem;
1839	else
1840		alloc = 0;
1841	pages = preallocate_image_memory(alloc, avail_normal);
1842	if (pages < alloc) {
1843		/* We have exhausted non-highmem pages, try highmem. */
1844		alloc -= pages;
1845		pages += pages_highmem;
1846		pages_highmem = preallocate_image_highmem(alloc);
1847		if (pages_highmem < alloc) {
1848			pr_err("Image allocation is %lu pages short\n",
1849				alloc - pages_highmem);
1850			goto err_out;
1851		}
1852		pages += pages_highmem;
1853		/*
1854		 * size is the desired number of saveable pages to leave in
1855		 * memory, so try to preallocate (all memory - size) pages.
1856		 */
1857		alloc = (count - pages) - size;
1858		pages += preallocate_image_highmem(alloc);
1859	} else {
1860		/*
1861		 * There are approximately max_size saveable pages at this point
1862		 * and we want to reduce this number down to size.
1863		 */
1864		alloc = max_size - size;
1865		size = preallocate_highmem_fraction(alloc, highmem, count);
1866		pages_highmem += size;
1867		alloc -= size;
1868		size = preallocate_image_memory(alloc, avail_normal);
1869		pages_highmem += preallocate_image_highmem(alloc - size);
1870		pages += pages_highmem + size;
1871	}
1872
1873	/*
1874	 * We only need as many page frames for the image as there are saveable
1875	 * pages in memory, but we have allocated more.  Release the excessive
1876	 * ones now.
1877	 */
1878	pages -= free_unnecessary_pages();
1879
1880 out:
1881	stop = ktime_get();
1882	pr_info("Allocated %lu pages for snapshot\n", pages);
1883	swsusp_show_speed(start, stop, pages, "Allocated");
1884
1885	return 0;
1886
1887 err_out:
 
1888	swsusp_free();
1889	return -ENOMEM;
1890}
1891
1892#ifdef CONFIG_HIGHMEM
1893/**
1894 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1895 *
1896 * Compute the number of non-highmem pages that will be necessary for creating
1897 * copies of highmem pages.
1898 */
1899static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1900{
1901	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1902
1903	if (free_highmem >= nr_highmem)
1904		nr_highmem = 0;
1905	else
1906		nr_highmem -= free_highmem;
1907
1908	return nr_highmem;
1909}
1910#else
1911static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1912#endif /* CONFIG_HIGHMEM */
1913
1914/**
1915 * enough_free_mem - Check if there is enough free memory for the image.
1916 */
1917static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1918{
1919	struct zone *zone;
1920	unsigned int free = alloc_normal;
1921
1922	for_each_populated_zone(zone)
1923		if (!is_highmem(zone))
1924			free += zone_page_state(zone, NR_FREE_PAGES);
1925
1926	nr_pages += count_pages_for_highmem(nr_highmem);
1927	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1928		 nr_pages, PAGES_FOR_IO, free);
1929
1930	return free > nr_pages + PAGES_FOR_IO;
1931}
1932
1933#ifdef CONFIG_HIGHMEM
1934/**
1935 * get_highmem_buffer - Allocate a buffer for highmem pages.
1936 *
1937 * If there are some highmem pages in the hibernation image, we may need a
1938 * buffer to copy them and/or load their data.
1939 */
1940static inline int get_highmem_buffer(int safe_needed)
1941{
1942	buffer = get_image_page(GFP_ATOMIC, safe_needed);
1943	return buffer ? 0 : -ENOMEM;
1944}
1945
1946/**
1947 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1948 *
1949 * Try to allocate as many pages as needed, but if the number of free highmem
1950 * pages is less than that, allocate them all.
1951 */
1952static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1953					       unsigned int nr_highmem)
1954{
1955	unsigned int to_alloc = count_free_highmem_pages();
1956
1957	if (to_alloc > nr_highmem)
1958		to_alloc = nr_highmem;
1959
1960	nr_highmem -= to_alloc;
1961	while (to_alloc-- > 0) {
1962		struct page *page;
1963
1964		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1965		memory_bm_set_bit(bm, page_to_pfn(page));
1966	}
1967	return nr_highmem;
1968}
1969#else
1970static inline int get_highmem_buffer(int safe_needed) { return 0; }
1971
1972static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1973					       unsigned int n) { return 0; }
1974#endif /* CONFIG_HIGHMEM */
1975
1976/**
1977 * swsusp_alloc - Allocate memory for hibernation image.
1978 *
1979 * We first try to allocate as many highmem pages as there are
1980 * saveable highmem pages in the system.  If that fails, we allocate
1981 * non-highmem pages for the copies of the remaining highmem ones.
1982 *
1983 * In this approach it is likely that the copies of highmem pages will
1984 * also be located in the high memory, because of the way in which
1985 * copy_data_pages() works.
1986 */
1987static int swsusp_alloc(struct memory_bitmap *copy_bm,
1988			unsigned int nr_pages, unsigned int nr_highmem)
1989{
1990	if (nr_highmem > 0) {
1991		if (get_highmem_buffer(PG_ANY))
1992			goto err_out;
1993		if (nr_highmem > alloc_highmem) {
1994			nr_highmem -= alloc_highmem;
1995			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1996		}
1997	}
1998	if (nr_pages > alloc_normal) {
1999		nr_pages -= alloc_normal;
2000		while (nr_pages-- > 0) {
2001			struct page *page;
2002
2003			page = alloc_image_page(GFP_ATOMIC);
2004			if (!page)
2005				goto err_out;
2006			memory_bm_set_bit(copy_bm, page_to_pfn(page));
2007		}
2008	}
2009
2010	return 0;
2011
2012 err_out:
2013	swsusp_free();
2014	return -ENOMEM;
2015}
2016
2017asmlinkage __visible int swsusp_save(void)
2018{
2019	unsigned int nr_pages, nr_highmem;
2020
2021	pr_info("Creating image:\n");
2022
2023	drain_local_pages(NULL);
2024	nr_pages = count_data_pages();
2025	nr_highmem = count_highmem_pages();
2026	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
2027
2028	if (!enough_free_mem(nr_pages, nr_highmem)) {
2029		pr_err("Not enough free memory\n");
2030		return -ENOMEM;
2031	}
2032
2033	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
2034		pr_err("Memory allocation failed\n");
2035		return -ENOMEM;
2036	}
2037
2038	/*
2039	 * During allocating of suspend pagedir, new cold pages may appear.
2040	 * Kill them.
2041	 */
2042	drain_local_pages(NULL);
2043	copy_data_pages(&copy_bm, &orig_bm);
2044
2045	/*
2046	 * End of critical section. From now on, we can write to memory,
2047	 * but we should not touch disk. This specially means we must _not_
2048	 * touch swap space! Except we must write out our image of course.
2049	 */
2050
2051	nr_pages += nr_highmem;
2052	nr_copy_pages = nr_pages;
2053	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2054
2055	pr_info("Image created (%d pages copied)\n", nr_pages);
2056
2057	return 0;
2058}
2059
2060#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2061static int init_header_complete(struct swsusp_info *info)
2062{
2063	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2064	info->version_code = LINUX_VERSION_CODE;
2065	return 0;
2066}
2067
2068static const char *check_image_kernel(struct swsusp_info *info)
2069{
2070	if (info->version_code != LINUX_VERSION_CODE)
2071		return "kernel version";
2072	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2073		return "system type";
2074	if (strcmp(info->uts.release,init_utsname()->release))
2075		return "kernel release";
2076	if (strcmp(info->uts.version,init_utsname()->version))
2077		return "version";
2078	if (strcmp(info->uts.machine,init_utsname()->machine))
2079		return "machine";
2080	return NULL;
2081}
2082#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2083
2084unsigned long snapshot_get_image_size(void)
2085{
2086	return nr_copy_pages + nr_meta_pages + 1;
2087}
2088
2089static int init_header(struct swsusp_info *info)
2090{
2091	memset(info, 0, sizeof(struct swsusp_info));
2092	info->num_physpages = get_num_physpages();
2093	info->image_pages = nr_copy_pages;
2094	info->pages = snapshot_get_image_size();
2095	info->size = info->pages;
2096	info->size <<= PAGE_SHIFT;
2097	return init_header_complete(info);
2098}
2099
2100/**
2101 * pack_pfns - Prepare PFNs for saving.
2102 * @bm: Memory bitmap.
2103 * @buf: Memory buffer to store the PFNs in.
2104 *
2105 * PFNs corresponding to set bits in @bm are stored in the area of memory
2106 * pointed to by @buf (1 page at a time).
2107 */
2108static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2109{
2110	int j;
2111
2112	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2113		buf[j] = memory_bm_next_pfn(bm);
2114		if (unlikely(buf[j] == BM_END_OF_MAP))
2115			break;
 
 
2116	}
2117}
2118
2119/**
2120 * snapshot_read_next - Get the address to read the next image page from.
2121 * @handle: Snapshot handle to be used for the reading.
2122 *
2123 * On the first call, @handle should point to a zeroed snapshot_handle
2124 * structure.  The structure gets populated then and a pointer to it should be
2125 * passed to this function every next time.
2126 *
2127 * On success, the function returns a positive number.  Then, the caller
2128 * is allowed to read up to the returned number of bytes from the memory
2129 * location computed by the data_of() macro.
2130 *
2131 * The function returns 0 to indicate the end of the data stream condition,
2132 * and negative numbers are returned on errors.  If that happens, the structure
2133 * pointed to by @handle is not updated and should not be used any more.
2134 */
2135int snapshot_read_next(struct snapshot_handle *handle)
2136{
2137	if (handle->cur > nr_meta_pages + nr_copy_pages)
2138		return 0;
2139
2140	if (!buffer) {
2141		/* This makes the buffer be freed by swsusp_free() */
2142		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2143		if (!buffer)
2144			return -ENOMEM;
2145	}
2146	if (!handle->cur) {
2147		int error;
2148
2149		error = init_header((struct swsusp_info *)buffer);
2150		if (error)
2151			return error;
2152		handle->buffer = buffer;
2153		memory_bm_position_reset(&orig_bm);
2154		memory_bm_position_reset(&copy_bm);
2155	} else if (handle->cur <= nr_meta_pages) {
2156		clear_page(buffer);
2157		pack_pfns(buffer, &orig_bm);
2158	} else {
2159		struct page *page;
2160
2161		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2162		if (PageHighMem(page)) {
2163			/*
2164			 * Highmem pages are copied to the buffer,
2165			 * because we can't return with a kmapped
2166			 * highmem page (we may not be called again).
2167			 */
2168			void *kaddr;
2169
2170			kaddr = kmap_atomic(page);
2171			copy_page(buffer, kaddr);
2172			kunmap_atomic(kaddr);
2173			handle->buffer = buffer;
2174		} else {
2175			handle->buffer = page_address(page);
2176		}
2177	}
2178	handle->cur++;
2179	return PAGE_SIZE;
2180}
2181
2182static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2183				    struct memory_bitmap *src)
2184{
2185	unsigned long pfn;
2186
2187	memory_bm_position_reset(src);
2188	pfn = memory_bm_next_pfn(src);
2189	while (pfn != BM_END_OF_MAP) {
2190		memory_bm_set_bit(dst, pfn);
2191		pfn = memory_bm_next_pfn(src);
2192	}
2193}
2194
2195/**
2196 * mark_unsafe_pages - Mark pages that were used before hibernation.
2197 *
2198 * Mark the pages that cannot be used for storing the image during restoration,
2199 * because they conflict with the pages that had been used before hibernation.
2200 */
2201static void mark_unsafe_pages(struct memory_bitmap *bm)
2202{
2203	unsigned long pfn;
2204
2205	/* Clear the "free"/"unsafe" bit for all PFNs */
2206	memory_bm_position_reset(free_pages_map);
2207	pfn = memory_bm_next_pfn(free_pages_map);
2208	while (pfn != BM_END_OF_MAP) {
2209		memory_bm_clear_current(free_pages_map);
2210		pfn = memory_bm_next_pfn(free_pages_map);
2211	}
2212
2213	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2214	duplicate_memory_bitmap(free_pages_map, bm);
2215
2216	allocated_unsafe_pages = 0;
2217}
2218
2219static int check_header(struct swsusp_info *info)
2220{
2221	const char *reason;
2222
2223	reason = check_image_kernel(info);
2224	if (!reason && info->num_physpages != get_num_physpages())
2225		reason = "memory size";
2226	if (reason) {
2227		pr_err("Image mismatch: %s\n", reason);
2228		return -EPERM;
2229	}
2230	return 0;
2231}
2232
2233/**
2234 * load header - Check the image header and copy the data from it.
2235 */
2236static int load_header(struct swsusp_info *info)
2237{
2238	int error;
2239
2240	restore_pblist = NULL;
2241	error = check_header(info);
2242	if (!error) {
2243		nr_copy_pages = info->image_pages;
2244		nr_meta_pages = info->pages - info->image_pages - 1;
2245	}
2246	return error;
2247}
2248
2249/**
2250 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2251 * @bm: Memory bitmap.
2252 * @buf: Area of memory containing the PFNs.
2253 *
2254 * For each element of the array pointed to by @buf (1 page at a time), set the
2255 * corresponding bit in @bm.
2256 */
2257static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2258{
2259	int j;
2260
2261	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2262		if (unlikely(buf[j] == BM_END_OF_MAP))
2263			break;
2264
 
 
 
2265		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2266			memory_bm_set_bit(bm, buf[j]);
2267		else
2268			return -EFAULT;
2269	}
2270
2271	return 0;
2272}
2273
2274#ifdef CONFIG_HIGHMEM
2275/*
2276 * struct highmem_pbe is used for creating the list of highmem pages that
2277 * should be restored atomically during the resume from disk, because the page
2278 * frames they have occupied before the suspend are in use.
2279 */
2280struct highmem_pbe {
2281	struct page *copy_page;	/* data is here now */
2282	struct page *orig_page;	/* data was here before the suspend */
2283	struct highmem_pbe *next;
2284};
2285
2286/*
2287 * List of highmem PBEs needed for restoring the highmem pages that were
2288 * allocated before the suspend and included in the suspend image, but have
2289 * also been allocated by the "resume" kernel, so their contents cannot be
2290 * written directly to their "original" page frames.
2291 */
2292static struct highmem_pbe *highmem_pblist;
2293
2294/**
2295 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2296 * @bm: Memory bitmap.
2297 *
2298 * The bits in @bm that correspond to image pages are assumed to be set.
2299 */
2300static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2301{
2302	unsigned long pfn;
2303	unsigned int cnt = 0;
2304
2305	memory_bm_position_reset(bm);
2306	pfn = memory_bm_next_pfn(bm);
2307	while (pfn != BM_END_OF_MAP) {
2308		if (PageHighMem(pfn_to_page(pfn)))
2309			cnt++;
2310
2311		pfn = memory_bm_next_pfn(bm);
2312	}
2313	return cnt;
2314}
2315
2316static unsigned int safe_highmem_pages;
2317
2318static struct memory_bitmap *safe_highmem_bm;
2319
2320/**
2321 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2322 * @bm: Pointer to an uninitialized memory bitmap structure.
2323 * @nr_highmem_p: Pointer to the number of highmem image pages.
2324 *
2325 * Try to allocate as many highmem pages as there are highmem image pages
2326 * (@nr_highmem_p points to the variable containing the number of highmem image
2327 * pages).  The pages that are "safe" (ie. will not be overwritten when the
2328 * hibernation image is restored entirely) have the corresponding bits set in
2329 * @bm (it must be uninitialized).
2330 *
2331 * NOTE: This function should not be called if there are no highmem image pages.
2332 */
2333static int prepare_highmem_image(struct memory_bitmap *bm,
2334				 unsigned int *nr_highmem_p)
2335{
2336	unsigned int to_alloc;
2337
2338	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2339		return -ENOMEM;
2340
2341	if (get_highmem_buffer(PG_SAFE))
2342		return -ENOMEM;
2343
2344	to_alloc = count_free_highmem_pages();
2345	if (to_alloc > *nr_highmem_p)
2346		to_alloc = *nr_highmem_p;
2347	else
2348		*nr_highmem_p = to_alloc;
2349
2350	safe_highmem_pages = 0;
2351	while (to_alloc-- > 0) {
2352		struct page *page;
2353
2354		page = alloc_page(__GFP_HIGHMEM);
2355		if (!swsusp_page_is_free(page)) {
2356			/* The page is "safe", set its bit the bitmap */
2357			memory_bm_set_bit(bm, page_to_pfn(page));
2358			safe_highmem_pages++;
2359		}
2360		/* Mark the page as allocated */
2361		swsusp_set_page_forbidden(page);
2362		swsusp_set_page_free(page);
2363	}
2364	memory_bm_position_reset(bm);
2365	safe_highmem_bm = bm;
2366	return 0;
2367}
2368
2369static struct page *last_highmem_page;
2370
2371/**
2372 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2373 *
2374 * For a given highmem image page get a buffer that suspend_write_next() should
2375 * return to its caller to write to.
2376 *
2377 * If the page is to be saved to its "original" page frame or a copy of
2378 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2379 * the copy of the page is to be made in normal memory, so the address of
2380 * the copy is returned.
2381 *
2382 * If @buffer is returned, the caller of suspend_write_next() will write
2383 * the page's contents to @buffer, so they will have to be copied to the
2384 * right location on the next call to suspend_write_next() and it is done
2385 * with the help of copy_last_highmem_page().  For this purpose, if
2386 * @buffer is returned, @last_highmem_page is set to the page to which
2387 * the data will have to be copied from @buffer.
2388 */
2389static void *get_highmem_page_buffer(struct page *page,
2390				     struct chain_allocator *ca)
2391{
2392	struct highmem_pbe *pbe;
2393	void *kaddr;
2394
2395	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2396		/*
2397		 * We have allocated the "original" page frame and we can
2398		 * use it directly to store the loaded page.
2399		 */
2400		last_highmem_page = page;
2401		return buffer;
2402	}
2403	/*
2404	 * The "original" page frame has not been allocated and we have to
2405	 * use a "safe" page frame to store the loaded page.
2406	 */
2407	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2408	if (!pbe) {
2409		swsusp_free();
2410		return ERR_PTR(-ENOMEM);
2411	}
2412	pbe->orig_page = page;
2413	if (safe_highmem_pages > 0) {
2414		struct page *tmp;
2415
2416		/* Copy of the page will be stored in high memory */
2417		kaddr = buffer;
2418		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2419		safe_highmem_pages--;
2420		last_highmem_page = tmp;
2421		pbe->copy_page = tmp;
2422	} else {
2423		/* Copy of the page will be stored in normal memory */
2424		kaddr = safe_pages_list;
2425		safe_pages_list = safe_pages_list->next;
2426		pbe->copy_page = virt_to_page(kaddr);
2427	}
2428	pbe->next = highmem_pblist;
2429	highmem_pblist = pbe;
2430	return kaddr;
2431}
2432
2433/**
2434 * copy_last_highmem_page - Copy most the most recent highmem image page.
2435 *
2436 * Copy the contents of a highmem image from @buffer, where the caller of
2437 * snapshot_write_next() has stored them, to the right location represented by
2438 * @last_highmem_page .
2439 */
2440static void copy_last_highmem_page(void)
2441{
2442	if (last_highmem_page) {
2443		void *dst;
2444
2445		dst = kmap_atomic(last_highmem_page);
2446		copy_page(dst, buffer);
2447		kunmap_atomic(dst);
2448		last_highmem_page = NULL;
2449	}
2450}
2451
2452static inline int last_highmem_page_copied(void)
2453{
2454	return !last_highmem_page;
2455}
2456
2457static inline void free_highmem_data(void)
2458{
2459	if (safe_highmem_bm)
2460		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2461
2462	if (buffer)
2463		free_image_page(buffer, PG_UNSAFE_CLEAR);
2464}
2465#else
2466static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2467
2468static inline int prepare_highmem_image(struct memory_bitmap *bm,
2469					unsigned int *nr_highmem_p) { return 0; }
2470
2471static inline void *get_highmem_page_buffer(struct page *page,
2472					    struct chain_allocator *ca)
2473{
2474	return ERR_PTR(-EINVAL);
2475}
2476
2477static inline void copy_last_highmem_page(void) {}
2478static inline int last_highmem_page_copied(void) { return 1; }
2479static inline void free_highmem_data(void) {}
2480#endif /* CONFIG_HIGHMEM */
2481
2482#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2483
2484/**
2485 * prepare_image - Make room for loading hibernation image.
2486 * @new_bm: Uninitialized memory bitmap structure.
2487 * @bm: Memory bitmap with unsafe pages marked.
2488 *
2489 * Use @bm to mark the pages that will be overwritten in the process of
2490 * restoring the system memory state from the suspend image ("unsafe" pages)
2491 * and allocate memory for the image.
2492 *
2493 * The idea is to allocate a new memory bitmap first and then allocate
2494 * as many pages as needed for image data, but without specifying what those
2495 * pages will be used for just yet.  Instead, we mark them all as allocated and
2496 * create a lists of "safe" pages to be used later.  On systems with high
2497 * memory a list of "safe" highmem pages is created too.
2498 */
2499static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2500{
2501	unsigned int nr_pages, nr_highmem;
2502	struct linked_page *lp;
2503	int error;
2504
2505	/* If there is no highmem, the buffer will not be necessary */
2506	free_image_page(buffer, PG_UNSAFE_CLEAR);
2507	buffer = NULL;
2508
2509	nr_highmem = count_highmem_image_pages(bm);
2510	mark_unsafe_pages(bm);
2511
2512	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2513	if (error)
2514		goto Free;
2515
2516	duplicate_memory_bitmap(new_bm, bm);
2517	memory_bm_free(bm, PG_UNSAFE_KEEP);
2518	if (nr_highmem > 0) {
2519		error = prepare_highmem_image(bm, &nr_highmem);
2520		if (error)
2521			goto Free;
2522	}
2523	/*
2524	 * Reserve some safe pages for potential later use.
2525	 *
2526	 * NOTE: This way we make sure there will be enough safe pages for the
2527	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2528	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2529	 *
2530	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2531	 */
2532	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2533	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2534	while (nr_pages > 0) {
2535		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2536		if (!lp) {
2537			error = -ENOMEM;
2538			goto Free;
2539		}
2540		lp->next = safe_pages_list;
2541		safe_pages_list = lp;
2542		nr_pages--;
2543	}
2544	/* Preallocate memory for the image */
2545	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2546	while (nr_pages > 0) {
2547		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2548		if (!lp) {
2549			error = -ENOMEM;
2550			goto Free;
2551		}
2552		if (!swsusp_page_is_free(virt_to_page(lp))) {
2553			/* The page is "safe", add it to the list */
2554			lp->next = safe_pages_list;
2555			safe_pages_list = lp;
2556		}
2557		/* Mark the page as allocated */
2558		swsusp_set_page_forbidden(virt_to_page(lp));
2559		swsusp_set_page_free(virt_to_page(lp));
2560		nr_pages--;
2561	}
2562	return 0;
2563
2564 Free:
2565	swsusp_free();
2566	return error;
2567}
2568
2569/**
2570 * get_buffer - Get the address to store the next image data page.
2571 *
2572 * Get the address that snapshot_write_next() should return to its caller to
2573 * write to.
2574 */
2575static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2576{
2577	struct pbe *pbe;
2578	struct page *page;
2579	unsigned long pfn = memory_bm_next_pfn(bm);
2580
2581	if (pfn == BM_END_OF_MAP)
2582		return ERR_PTR(-EFAULT);
2583
2584	page = pfn_to_page(pfn);
2585	if (PageHighMem(page))
2586		return get_highmem_page_buffer(page, ca);
2587
2588	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2589		/*
2590		 * We have allocated the "original" page frame and we can
2591		 * use it directly to store the loaded page.
2592		 */
2593		return page_address(page);
2594
2595	/*
2596	 * The "original" page frame has not been allocated and we have to
2597	 * use a "safe" page frame to store the loaded page.
2598	 */
2599	pbe = chain_alloc(ca, sizeof(struct pbe));
2600	if (!pbe) {
2601		swsusp_free();
2602		return ERR_PTR(-ENOMEM);
2603	}
2604	pbe->orig_address = page_address(page);
2605	pbe->address = safe_pages_list;
2606	safe_pages_list = safe_pages_list->next;
2607	pbe->next = restore_pblist;
2608	restore_pblist = pbe;
2609	return pbe->address;
2610}
2611
2612/**
2613 * snapshot_write_next - Get the address to store the next image page.
2614 * @handle: Snapshot handle structure to guide the writing.
2615 *
2616 * On the first call, @handle should point to a zeroed snapshot_handle
2617 * structure.  The structure gets populated then and a pointer to it should be
2618 * passed to this function every next time.
2619 *
2620 * On success, the function returns a positive number.  Then, the caller
2621 * is allowed to write up to the returned number of bytes to the memory
2622 * location computed by the data_of() macro.
2623 *
2624 * The function returns 0 to indicate the "end of file" condition.  Negative
2625 * numbers are returned on errors, in which cases the structure pointed to by
2626 * @handle is not updated and should not be used any more.
2627 */
2628int snapshot_write_next(struct snapshot_handle *handle)
2629{
2630	static struct chain_allocator ca;
2631	int error = 0;
2632
2633	/* Check if we have already loaded the entire image */
2634	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2635		return 0;
2636
2637	handle->sync_read = 1;
2638
2639	if (!handle->cur) {
2640		if (!buffer)
2641			/* This makes the buffer be freed by swsusp_free() */
2642			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2643
2644		if (!buffer)
2645			return -ENOMEM;
2646
2647		handle->buffer = buffer;
2648	} else if (handle->cur == 1) {
2649		error = load_header(buffer);
2650		if (error)
2651			return error;
2652
2653		safe_pages_list = NULL;
2654
2655		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2656		if (error)
2657			return error;
2658
 
 
 
 
 
2659		hibernate_restore_protection_begin();
2660	} else if (handle->cur <= nr_meta_pages + 1) {
2661		error = unpack_orig_pfns(buffer, &copy_bm);
2662		if (error)
2663			return error;
2664
2665		if (handle->cur == nr_meta_pages + 1) {
2666			error = prepare_image(&orig_bm, &copy_bm);
2667			if (error)
2668				return error;
2669
2670			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2671			memory_bm_position_reset(&orig_bm);
2672			restore_pblist = NULL;
2673			handle->buffer = get_buffer(&orig_bm, &ca);
2674			handle->sync_read = 0;
2675			if (IS_ERR(handle->buffer))
2676				return PTR_ERR(handle->buffer);
2677		}
2678	} else {
2679		copy_last_highmem_page();
 
 
2680		hibernate_restore_protect_page(handle->buffer);
2681		handle->buffer = get_buffer(&orig_bm, &ca);
2682		if (IS_ERR(handle->buffer))
2683			return PTR_ERR(handle->buffer);
2684		if (handle->buffer != buffer)
2685			handle->sync_read = 0;
2686	}
2687	handle->cur++;
2688	return PAGE_SIZE;
2689}
2690
2691/**
2692 * snapshot_write_finalize - Complete the loading of a hibernation image.
2693 *
2694 * Must be called after the last call to snapshot_write_next() in case the last
2695 * page in the image happens to be a highmem page and its contents should be
2696 * stored in highmem.  Additionally, it recycles bitmap memory that's not
2697 * necessary any more.
2698 */
2699void snapshot_write_finalize(struct snapshot_handle *handle)
2700{
2701	copy_last_highmem_page();
 
 
 
2702	hibernate_restore_protect_page(handle->buffer);
2703	/* Do that only if we have loaded the image entirely */
2704	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2705		memory_bm_recycle(&orig_bm);
2706		free_highmem_data();
2707	}
2708}
2709
2710int snapshot_image_loaded(struct snapshot_handle *handle)
2711{
2712	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2713			handle->cur <= nr_meta_pages + nr_copy_pages);
2714}
2715
2716#ifdef CONFIG_HIGHMEM
2717/* Assumes that @buf is ready and points to a "safe" page */
2718static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2719				       void *buf)
2720{
2721	void *kaddr1, *kaddr2;
2722
2723	kaddr1 = kmap_atomic(p1);
2724	kaddr2 = kmap_atomic(p2);
2725	copy_page(buf, kaddr1);
2726	copy_page(kaddr1, kaddr2);
2727	copy_page(kaddr2, buf);
2728	kunmap_atomic(kaddr2);
2729	kunmap_atomic(kaddr1);
2730}
2731
2732/**
2733 * restore_highmem - Put highmem image pages into their original locations.
2734 *
2735 * For each highmem page that was in use before hibernation and is included in
2736 * the image, and also has been allocated by the "restore" kernel, swap its
2737 * current contents with the previous (ie. "before hibernation") ones.
2738 *
2739 * If the restore eventually fails, we can call this function once again and
2740 * restore the highmem state as seen by the restore kernel.
2741 */
2742int restore_highmem(void)
2743{
2744	struct highmem_pbe *pbe = highmem_pblist;
2745	void *buf;
2746
2747	if (!pbe)
2748		return 0;
2749
2750	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2751	if (!buf)
2752		return -ENOMEM;
2753
2754	while (pbe) {
2755		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2756		pbe = pbe->next;
2757	}
2758	free_image_page(buf, PG_UNSAFE_CLEAR);
2759	return 0;
2760}
2761#endif /* CONFIG_HIGHMEM */