Linux Audio

Check our new training course

Loading...
v4.17
 
  1/* bpf/cpumap.c
  2 *
  3 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
  4 * Released under terms in GPL version 2.  See COPYING.
  5 */
  6
  7/* The 'cpumap' is primarily used as a backend map for XDP BPF helper
 
 
  8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
  9 *
 10 * Unlike devmap which redirects XDP frames out another NIC device,
 11 * this map type redirects raw XDP frames to another CPU.  The remote
 12 * CPU will do SKB-allocation and call the normal network stack.
 13 *
 
 14 * This is a scalability and isolation mechanism, that allow
 15 * separating the early driver network XDP layer, from the rest of the
 16 * netstack, and assigning dedicated CPUs for this stage.  This
 17 * basically allows for 10G wirespeed pre-filtering via bpf.
 18 */
 
 19#include <linux/bpf.h>
 20#include <linux/filter.h>
 21#include <linux/ptr_ring.h>
 
 
 22
 23#include <linux/sched.h>
 24#include <linux/workqueue.h>
 25#include <linux/kthread.h>
 26#include <linux/capability.h>
 27#include <trace/events/xdp.h>
 
 28
 29#include <linux/netdevice.h>   /* netif_receive_skb_core */
 30#include <linux/etherdevice.h> /* eth_type_trans */
 31
 32/* General idea: XDP packets getting XDP redirected to another CPU,
 33 * will maximum be stored/queued for one driver ->poll() call.  It is
 34 * guaranteed that setting flush bit and flush operation happen on
 35 * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
 36 * which queue in bpf_cpu_map_entry contains packets.
 37 */
 38
 39#define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
 
 
 
 40struct xdp_bulk_queue {
 41	void *q[CPU_MAP_BULK_SIZE];
 
 
 42	unsigned int count;
 43};
 44
 45/* Struct for every remote "destination" CPU in map */
 46struct bpf_cpu_map_entry {
 47	u32 cpu;    /* kthread CPU and map index */
 48	int map_id; /* Back reference to map */
 49	u32 qsize;  /* Queue size placeholder for map lookup */
 50
 51	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
 52	struct xdp_bulk_queue __percpu *bulkq;
 53
 54	/* Queue with potential multi-producers, and single-consumer kthread */
 55	struct ptr_ring *queue;
 56	struct task_struct *kthread;
 57	struct work_struct kthread_stop_wq;
 58
 59	atomic_t refcnt; /* Control when this struct can be free'ed */
 60	struct rcu_head rcu;
 
 
 
 61};
 62
 63struct bpf_cpu_map {
 64	struct bpf_map map;
 65	/* Below members specific for map type */
 66	struct bpf_cpu_map_entry **cpu_map;
 67	unsigned long __percpu *flush_needed;
 68};
 69
 70static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
 71			     struct xdp_bulk_queue *bq);
 72
 73static u64 cpu_map_bitmap_size(const union bpf_attr *attr)
 74{
 75	return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long);
 76}
 77
 78static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
 79{
 
 80	struct bpf_cpu_map *cmap;
 81	int err = -ENOMEM;
 82	u64 cost;
 83	int ret;
 84
 85	if (!capable(CAP_SYS_ADMIN))
 86		return ERR_PTR(-EPERM);
 87
 88	/* check sanity of attributes */
 89	if (attr->max_entries == 0 || attr->key_size != 4 ||
 90	    attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
 
 
 91		return ERR_PTR(-EINVAL);
 92
 93	cmap = kzalloc(sizeof(*cmap), GFP_USER);
 
 
 
 
 94	if (!cmap)
 95		return ERR_PTR(-ENOMEM);
 96
 97	bpf_map_init_from_attr(&cmap->map, attr);
 98
 99	/* Pre-limit array size based on NR_CPUS, not final CPU check */
100	if (cmap->map.max_entries > NR_CPUS) {
101		err = -E2BIG;
102		goto free_cmap;
103	}
104
105	/* make sure page count doesn't overflow */
106	cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
107	cost += cpu_map_bitmap_size(attr) * num_possible_cpus();
108	if (cost >= U32_MAX - PAGE_SIZE)
109		goto free_cmap;
110	cmap->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
111
112	/* Notice returns -EPERM on if map size is larger than memlock limit */
113	ret = bpf_map_precharge_memlock(cmap->map.pages);
114	if (ret) {
115		err = ret;
116		goto free_cmap;
117	}
118
119	/* A per cpu bitfield with a bit per possible CPU in map  */
120	cmap->flush_needed = __alloc_percpu(cpu_map_bitmap_size(attr),
121					    __alignof__(unsigned long));
122	if (!cmap->flush_needed)
123		goto free_cmap;
124
125	/* Alloc array for possible remote "destination" CPUs */
126	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
127					   sizeof(struct bpf_cpu_map_entry *),
128					   cmap->map.numa_node);
129	if (!cmap->cpu_map)
130		goto free_percpu;
 
 
131
132	return &cmap->map;
133free_percpu:
134	free_percpu(cmap->flush_needed);
135free_cmap:
136	kfree(cmap);
137	return ERR_PTR(err);
138}
139
140static void __cpu_map_queue_destructor(void *ptr)
141{
142	/* The tear-down procedure should have made sure that queue is
143	 * empty.  See __cpu_map_entry_replace() and work-queue
144	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
145	 * gracefully and warn once.
146	 */
147	if (WARN_ON_ONCE(ptr))
148		page_frag_free(ptr);
149}
150
151static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
152{
153	if (atomic_dec_and_test(&rcpu->refcnt)) {
154		/* The queue should be empty at this point */
155		ptr_ring_cleanup(rcpu->queue, __cpu_map_queue_destructor);
156		kfree(rcpu->queue);
157		kfree(rcpu);
 
158	}
159}
160
161static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
162{
163	atomic_inc(&rcpu->refcnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164}
165
166/* called from workqueue, to workaround syscall using preempt_disable */
167static void cpu_map_kthread_stop(struct work_struct *work)
168{
169	struct bpf_cpu_map_entry *rcpu;
 
 
 
 
 
 
 
 
 
 
 
170
171	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
173	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
174	 * as it waits until all in-flight call_rcu() callbacks complete.
175	 */
176	rcu_barrier();
177
178	/* kthread_stop will wake_up_process and wait for it to complete */
179	kthread_stop(rcpu->kthread);
180}
181
182/* For now, xdp_pkt is a cpumap internal data structure, with info
183 * carried between enqueue to dequeue. It is mapped into the top
184 * headroom of the packet, to avoid allocating separate mem.
185 */
186struct xdp_pkt {
187	void *data;
188	u16 len;
189	u16 headroom;
190	u16 metasize;
191	struct net_device *dev_rx;
192};
193
194/* Convert xdp_buff to xdp_pkt */
195static struct xdp_pkt *convert_to_xdp_pkt(struct xdp_buff *xdp)
 
196{
197	struct xdp_pkt *xdp_pkt;
198	int metasize;
199	int headroom;
200
201	/* Assure headroom is available for storing info */
202	headroom = xdp->data - xdp->data_hard_start;
203	metasize = xdp->data - xdp->data_meta;
204	metasize = metasize > 0 ? metasize : 0;
205	if (unlikely((headroom - metasize) < sizeof(*xdp_pkt)))
206		return NULL;
207
208	/* Store info in top of packet */
209	xdp_pkt = xdp->data_hard_start;
210
211	xdp_pkt->data = xdp->data;
212	xdp_pkt->len  = xdp->data_end - xdp->data;
213	xdp_pkt->headroom = headroom - sizeof(*xdp_pkt);
214	xdp_pkt->metasize = metasize;
215
216	return xdp_pkt;
217}
218
219static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
220					 struct xdp_pkt *xdp_pkt)
221{
222	unsigned int frame_size;
223	void *pkt_data_start;
224	struct sk_buff *skb;
225
226	/* build_skb need to place skb_shared_info after SKB end, and
227	 * also want to know the memory "truesize".  Thus, need to
228	 * know the memory frame size backing xdp_buff.
229	 *
230	 * XDP was designed to have PAGE_SIZE frames, but this
231	 * assumption is not longer true with ixgbe and i40e.  It
232	 * would be preferred to set frame_size to 2048 or 4096
233	 * depending on the driver.
234	 *   frame_size = 2048;
235	 *   frame_len  = frame_size - sizeof(*xdp_pkt);
236	 *
237	 * Instead, with info avail, skb_shared_info in placed after
238	 * packet len.  This, unfortunately fakes the truesize.
239	 * Another disadvantage of this approach, the skb_shared_info
240	 * is not at a fixed memory location, with mixed length
241	 * packets, which is bad for cache-line hotness.
242	 */
243	frame_size = SKB_DATA_ALIGN(xdp_pkt->len) + xdp_pkt->headroom +
244		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
245
246	pkt_data_start = xdp_pkt->data - xdp_pkt->headroom;
247	skb = build_skb(pkt_data_start, frame_size);
248	if (!skb)
249		return NULL;
250
251	skb_reserve(skb, xdp_pkt->headroom);
252	__skb_put(skb, xdp_pkt->len);
253	if (xdp_pkt->metasize)
254		skb_metadata_set(skb, xdp_pkt->metasize);
255
256	/* Essential SKB info: protocol and skb->dev */
257	skb->protocol = eth_type_trans(skb, xdp_pkt->dev_rx);
258
259	/* Optional SKB info, currently missing:
260	 * - HW checksum info		(skb->ip_summed)
261	 * - HW RX hash			(skb_set_hash)
262	 * - RX ring dev queue index	(skb_record_rx_queue)
263	 */
264
265	return skb;
266}
267
268static int cpu_map_kthread_run(void *data)
269{
270	struct bpf_cpu_map_entry *rcpu = data;
 
271
 
272	set_current_state(TASK_INTERRUPTIBLE);
273
274	/* When kthread gives stop order, then rcpu have been disconnected
275	 * from map, thus no new packets can enter. Remaining in-flight
276	 * per CPU stored packets are flushed to this queue.  Wait honoring
277	 * kthread_stop signal until queue is empty.
278	 */
279	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
280		unsigned int processed = 0, drops = 0, sched = 0;
281		struct xdp_pkt *xdp_pkt;
 
 
 
 
 
282
283		/* Release CPU reschedule checks */
284		if (__ptr_ring_empty(rcpu->queue)) {
285			set_current_state(TASK_INTERRUPTIBLE);
286			/* Recheck to avoid lost wake-up */
287			if (__ptr_ring_empty(rcpu->queue)) {
288				schedule();
289				sched = 1;
 
290			} else {
291				__set_current_state(TASK_RUNNING);
292			}
293		} else {
 
294			sched = cond_resched();
295		}
296
297		/* Process packets in rcpu->queue */
298		local_bh_disable();
299		/*
300		 * The bpf_cpu_map_entry is single consumer, with this
301		 * kthread CPU pinned. Lockless access to ptr_ring
302		 * consume side valid as no-resize allowed of queue.
303		 */
304		while ((xdp_pkt = __ptr_ring_consume(rcpu->queue))) {
305			struct sk_buff *skb;
306			int ret;
 
 
 
 
 
307
308			skb = cpu_map_build_skb(rcpu, xdp_pkt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
309			if (!skb) {
310				page_frag_free(xdp_pkt);
311				continue;
312			}
313
314			/* Inject into network stack */
315			ret = netif_receive_skb_core(skb);
316			if (ret == NET_RX_DROP)
317				drops++;
318
319			/* Limit BH-disable period */
320			if (++processed == 8)
321				break;
322		}
 
 
323		/* Feedback loop via tracepoint */
324		trace_xdp_cpumap_kthread(rcpu->map_id, processed, drops, sched);
 
325
326		local_bh_enable(); /* resched point, may call do_softirq() */
327	}
328	__set_current_state(TASK_RUNNING);
329
330	put_cpu_map_entry(rcpu);
331	return 0;
332}
333
334static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
335						       int map_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
336{
 
337	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
338	struct bpf_cpu_map_entry *rcpu;
339	int numa, err;
340
341	/* Have map->numa_node, but choose node of redirect target CPU */
342	numa = cpu_to_node(cpu);
343
344	rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
345	if (!rcpu)
346		return NULL;
347
348	/* Alloc percpu bulkq */
349	rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
350					 sizeof(void *), gfp);
351	if (!rcpu->bulkq)
352		goto free_rcu;
353
 
 
 
 
 
354	/* Alloc queue */
355	rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
 
356	if (!rcpu->queue)
357		goto free_bulkq;
358
359	err = ptr_ring_init(rcpu->queue, qsize, gfp);
360	if (err)
361		goto free_queue;
362
363	rcpu->cpu    = cpu;
364	rcpu->map_id = map_id;
365	rcpu->qsize  = qsize;
 
 
 
366
367	/* Setup kthread */
 
368	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
369					       "cpumap/%d/map:%d", cpu, map_id);
 
370	if (IS_ERR(rcpu->kthread))
371		goto free_ptr_ring;
372
373	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
374	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
375
376	/* Make sure kthread runs on a single CPU */
377	kthread_bind(rcpu->kthread, cpu);
378	wake_up_process(rcpu->kthread);
379
 
 
 
 
 
 
380	return rcpu;
381
 
 
 
382free_ptr_ring:
383	ptr_ring_cleanup(rcpu->queue, NULL);
384free_queue:
385	kfree(rcpu->queue);
386free_bulkq:
387	free_percpu(rcpu->bulkq);
388free_rcu:
389	kfree(rcpu);
390	return NULL;
391}
392
393static void __cpu_map_entry_free(struct rcu_head *rcu)
394{
395	struct bpf_cpu_map_entry *rcpu;
396	int cpu;
397
398	/* This cpu_map_entry have been disconnected from map and one
399	 * RCU graze-period have elapsed.  Thus, XDP cannot queue any
400	 * new packets and cannot change/set flush_needed that can
401	 * find this entry.
402	 */
403	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
404
405	/* Flush remaining packets in percpu bulkq */
406	for_each_online_cpu(cpu) {
407		struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu);
 
 
408
409		/* No concurrent bq_enqueue can run at this point */
410		bq_flush_to_queue(rcpu, bq);
411	}
 
 
 
412	free_percpu(rcpu->bulkq);
413	/* Cannot kthread_stop() here, last put free rcpu resources */
414	put_cpu_map_entry(rcpu);
415}
416
417/* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
418 * ensure any driver rcu critical sections have completed, but this
419 * does not guarantee a flush has happened yet. Because driver side
420 * rcu_read_lock/unlock only protects the running XDP program.  The
421 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
422 * pending flush op doesn't fail.
423 *
424 * The bpf_cpu_map_entry is still used by the kthread, and there can
425 * still be pending packets (in queue and percpu bulkq).  A refcnt
426 * makes sure to last user (kthread_stop vs. call_rcu) free memory
427 * resources.
428 *
429 * The rcu callback __cpu_map_entry_free flush remaining packets in
430 * percpu bulkq to queue.  Due to caller map_delete_elem() disable
431 * preemption, cannot call kthread_stop() to make sure queue is empty.
432 * Instead a work_queue is started for stopping kthread,
433 * cpu_map_kthread_stop, which waits for an RCU graze period before
434 * stopping kthread, emptying the queue.
435 */
436static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
437				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
438{
439	struct bpf_cpu_map_entry *old_rcpu;
440
441	old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
442	if (old_rcpu) {
443		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
444		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
445		schedule_work(&old_rcpu->kthread_stop_wq);
446	}
447}
448
449static int cpu_map_delete_elem(struct bpf_map *map, void *key)
450{
451	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
452	u32 key_cpu = *(u32 *)key;
453
454	if (key_cpu >= map->max_entries)
455		return -EINVAL;
456
457	/* notice caller map_delete_elem() use preempt_disable() */
458	__cpu_map_entry_replace(cmap, key_cpu, NULL);
459	return 0;
460}
461
462static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
463			       u64 map_flags)
464{
465	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 
466	struct bpf_cpu_map_entry *rcpu;
467
468	/* Array index key correspond to CPU number */
469	u32 key_cpu = *(u32 *)key;
470	/* Value is the queue size */
471	u32 qsize = *(u32 *)value;
472
473	if (unlikely(map_flags > BPF_EXIST))
474		return -EINVAL;
475	if (unlikely(key_cpu >= cmap->map.max_entries))
476		return -E2BIG;
477	if (unlikely(map_flags == BPF_NOEXIST))
478		return -EEXIST;
479	if (unlikely(qsize > 16384)) /* sanity limit on qsize */
480		return -EOVERFLOW;
481
482	/* Make sure CPU is a valid possible cpu */
483	if (!cpu_possible(key_cpu))
484		return -ENODEV;
485
486	if (qsize == 0) {
487		rcpu = NULL; /* Same as deleting */
488	} else {
489		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
490		rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
491		if (!rcpu)
492			return -ENOMEM;
493	}
494	rcu_read_lock();
495	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
496	rcu_read_unlock();
497	return 0;
498}
499
500static void cpu_map_free(struct bpf_map *map)
501{
502	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
503	int cpu;
504	u32 i;
505
506	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
507	 * so the bpf programs (can be more than one that used this map) were
508	 * disconnected from events. Wait for outstanding critical sections in
509	 * these programs to complete. The rcu critical section only guarantees
510	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
511	 * It does __not__ ensure pending flush operations (if any) are
512	 * complete.
513	 */
514	synchronize_rcu();
515
516	/* To ensure all pending flush operations have completed wait for flush
517	 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
518	 * Because the above synchronize_rcu() ensures the map is disconnected
519	 * from the program we can assume no new bits will be set.
520	 */
521	for_each_online_cpu(cpu) {
522		unsigned long *bitmap = per_cpu_ptr(cmap->flush_needed, cpu);
523
524		while (!bitmap_empty(bitmap, cmap->map.max_entries))
525			cond_resched();
526	}
527
528	/* For cpu_map the remote CPUs can still be using the entries
529	 * (struct bpf_cpu_map_entry).
530	 */
531	for (i = 0; i < cmap->map.max_entries; i++) {
532		struct bpf_cpu_map_entry *rcpu;
533
534		rcpu = READ_ONCE(cmap->cpu_map[i]);
535		if (!rcpu)
536			continue;
537
538		/* bq flush and cleanup happens after RCU graze-period */
539		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
540	}
541	free_percpu(cmap->flush_needed);
542	bpf_map_area_free(cmap->cpu_map);
543	kfree(cmap);
544}
545
546struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
 
 
 
 
547{
548	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
549	struct bpf_cpu_map_entry *rcpu;
550
551	if (key >= map->max_entries)
552		return NULL;
553
554	rcpu = READ_ONCE(cmap->cpu_map[key]);
 
555	return rcpu;
556}
557
558static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
559{
560	struct bpf_cpu_map_entry *rcpu =
561		__cpu_map_lookup_elem(map, *(u32 *)key);
562
563	return rcpu ? &rcpu->qsize : NULL;
564}
565
566static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
567{
568	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
569	u32 index = key ? *(u32 *)key : U32_MAX;
570	u32 *next = next_key;
571
572	if (index >= cmap->map.max_entries) {
573		*next = 0;
574		return 0;
575	}
576
577	if (index == cmap->map.max_entries - 1)
578		return -ENOENT;
579	*next = index + 1;
580	return 0;
581}
582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
583const struct bpf_map_ops cpu_map_ops = {
 
584	.map_alloc		= cpu_map_alloc,
585	.map_free		= cpu_map_free,
586	.map_delete_elem	= cpu_map_delete_elem,
587	.map_update_elem	= cpu_map_update_elem,
588	.map_lookup_elem	= cpu_map_lookup_elem,
589	.map_get_next_key	= cpu_map_get_next_key,
 
 
 
 
590};
591
592static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
593			     struct xdp_bulk_queue *bq)
594{
 
595	unsigned int processed = 0, drops = 0;
596	const int to_cpu = rcpu->cpu;
597	struct ptr_ring *q;
598	int i;
599
600	if (unlikely(!bq->count))
601		return 0;
602
603	q = rcpu->queue;
604	spin_lock(&q->producer_lock);
605
606	for (i = 0; i < bq->count; i++) {
607		void *xdp_pkt = bq->q[i];
608		int err;
609
610		err = __ptr_ring_produce(q, xdp_pkt);
611		if (err) {
612			drops++;
613			page_frag_free(xdp_pkt); /* Free xdp_pkt */
614		}
615		processed++;
616	}
617	bq->count = 0;
618	spin_unlock(&q->producer_lock);
619
 
 
620	/* Feedback loop via tracepoints */
621	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
622	return 0;
623}
624
625/* Runs under RCU-read-side, plus in softirq under NAPI protection.
626 * Thus, safe percpu variable access.
627 */
628static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_pkt *xdp_pkt)
629{
 
630	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
631
632	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
633		bq_flush_to_queue(rcpu, bq);
634
635	/* Notice, xdp_buff/page MUST be queued here, long enough for
636	 * driver to code invoking us to finished, due to driver
637	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
638	 *
639	 * Thus, incoming xdp_pkt is always queued here (else we race
640	 * with another CPU on page-refcnt and remaining driver code).
641	 * Queue time is very short, as driver will invoke flush
642	 * operation, when completing napi->poll call.
643	 */
644	bq->q[bq->count++] = xdp_pkt;
645	return 0;
 
 
646}
647
648int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
649		    struct net_device *dev_rx)
650{
651	struct xdp_pkt *xdp_pkt;
652
653	xdp_pkt = convert_to_xdp_pkt(xdp);
654	if (unlikely(!xdp_pkt))
655		return -EOVERFLOW;
656
657	/* Info needed when constructing SKB on remote CPU */
658	xdp_pkt->dev_rx = dev_rx;
659
660	bq_enqueue(rcpu, xdp_pkt);
661	return 0;
662}
663
664void __cpu_map_insert_ctx(struct bpf_map *map, u32 bit)
 
665{
666	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
667	unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
 
 
 
 
 
 
 
668
669	__set_bit(bit, bitmap);
 
 
 
670}
671
672void __cpu_map_flush(struct bpf_map *map)
673{
674	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
675	unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
676	u32 bit;
677
678	/* The napi->poll softirq makes sure __cpu_map_insert_ctx()
679	 * and __cpu_map_flush() happen on same CPU. Thus, the percpu
680	 * bitmap indicate which percpu bulkq have packets.
681	 */
682	for_each_set_bit(bit, bitmap, map->max_entries) {
683		struct bpf_cpu_map_entry *rcpu = READ_ONCE(cmap->cpu_map[bit]);
684		struct xdp_bulk_queue *bq;
685
686		/* This is possible if entry is removed by user space
687		 * between xdp redirect and flush op.
688		 */
689		if (unlikely(!rcpu))
690			continue;
691
692		__clear_bit(bit, bitmap);
 
 
 
 
 
 
 
 
693
694		/* Flush all frames in bulkq to real queue */
695		bq = this_cpu_ptr(rcpu->bulkq);
696		bq_flush_to_queue(rcpu, bq);
697
698		/* If already running, costs spin_lock_irqsave + smb_mb */
699		wake_up_process(rcpu->kthread);
700	}
701}
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* bpf/cpumap.c
  3 *
  4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
 
  5 */
  6
  7/**
  8 * DOC: cpu map
  9 * The 'cpumap' is primarily used as a backend map for XDP BPF helper
 10 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
 11 *
 12 * Unlike devmap which redirects XDP frames out to another NIC device,
 13 * this map type redirects raw XDP frames to another CPU.  The remote
 14 * CPU will do SKB-allocation and call the normal network stack.
 15 */
 16/*
 17 * This is a scalability and isolation mechanism, that allow
 18 * separating the early driver network XDP layer, from the rest of the
 19 * netstack, and assigning dedicated CPUs for this stage.  This
 20 * basically allows for 10G wirespeed pre-filtering via bpf.
 21 */
 22#include <linux/bitops.h>
 23#include <linux/bpf.h>
 24#include <linux/filter.h>
 25#include <linux/ptr_ring.h>
 26#include <net/xdp.h>
 27#include <net/hotdata.h>
 28
 29#include <linux/sched.h>
 30#include <linux/workqueue.h>
 31#include <linux/kthread.h>
 32#include <linux/completion.h>
 33#include <trace/events/xdp.h>
 34#include <linux/btf_ids.h>
 35
 36#include <linux/netdevice.h>   /* netif_receive_skb_list */
 37#include <linux/etherdevice.h> /* eth_type_trans */
 38
 39/* General idea: XDP packets getting XDP redirected to another CPU,
 40 * will maximum be stored/queued for one driver ->poll() call.  It is
 41 * guaranteed that queueing the frame and the flush operation happen on
 42 * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
 43 * which queue in bpf_cpu_map_entry contains packets.
 44 */
 45
 46#define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
 47struct bpf_cpu_map_entry;
 48struct bpf_cpu_map;
 49
 50struct xdp_bulk_queue {
 51	void *q[CPU_MAP_BULK_SIZE];
 52	struct list_head flush_node;
 53	struct bpf_cpu_map_entry *obj;
 54	unsigned int count;
 55};
 56
 57/* Struct for every remote "destination" CPU in map */
 58struct bpf_cpu_map_entry {
 59	u32 cpu;    /* kthread CPU and map index */
 60	int map_id; /* Back reference to map */
 
 61
 62	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
 63	struct xdp_bulk_queue __percpu *bulkq;
 64
 65	/* Queue with potential multi-producers, and single-consumer kthread */
 66	struct ptr_ring *queue;
 67	struct task_struct *kthread;
 
 68
 69	struct bpf_cpumap_val value;
 70	struct bpf_prog *prog;
 71
 72	struct completion kthread_running;
 73	struct rcu_work free_work;
 74};
 75
 76struct bpf_cpu_map {
 77	struct bpf_map map;
 78	/* Below members specific for map type */
 79	struct bpf_cpu_map_entry __rcu **cpu_map;
 
 80};
 81
 82static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
 
 
 
 
 
 
 83
 84static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
 85{
 86	u32 value_size = attr->value_size;
 87	struct bpf_cpu_map *cmap;
 
 
 
 
 
 
 88
 89	/* check sanity of attributes */
 90	if (attr->max_entries == 0 || attr->key_size != 4 ||
 91	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
 92	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
 93	    attr->map_flags & ~BPF_F_NUMA_NODE)
 94		return ERR_PTR(-EINVAL);
 95
 96	/* Pre-limit array size based on NR_CPUS, not final CPU check */
 97	if (attr->max_entries > NR_CPUS)
 98		return ERR_PTR(-E2BIG);
 99
100	cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE);
101	if (!cmap)
102		return ERR_PTR(-ENOMEM);
103
104	bpf_map_init_from_attr(&cmap->map, attr);
105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106	/* Alloc array for possible remote "destination" CPUs */
107	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
108					   sizeof(struct bpf_cpu_map_entry *),
109					   cmap->map.numa_node);
110	if (!cmap->cpu_map) {
111		bpf_map_area_free(cmap);
112		return ERR_PTR(-ENOMEM);
113	}
114
115	return &cmap->map;
 
 
 
 
 
116}
117
118static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
119{
120	/* The tear-down procedure should have made sure that queue is
121	 * empty.  See __cpu_map_entry_replace() and work-queue
122	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
123	 * gracefully and warn once.
124	 */
125	void *ptr;
 
 
126
127	while ((ptr = ptr_ring_consume(ring))) {
128		WARN_ON_ONCE(1);
129		if (unlikely(__ptr_test_bit(0, &ptr))) {
130			__ptr_clear_bit(0, &ptr);
131			kfree_skb(ptr);
132			continue;
133		}
134		xdp_return_frame(ptr);
135	}
136}
137
138static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
139				     struct list_head *listp,
140				     struct xdp_cpumap_stats *stats)
141{
142	struct sk_buff *skb, *tmp;
143	struct xdp_buff xdp;
144	u32 act;
145	int err;
146
147	list_for_each_entry_safe(skb, tmp, listp, list) {
148		act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
149		switch (act) {
150		case XDP_PASS:
151			break;
152		case XDP_REDIRECT:
153			skb_list_del_init(skb);
154			err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
155						      rcpu->prog);
156			if (unlikely(err)) {
157				kfree_skb(skb);
158				stats->drop++;
159			} else {
160				stats->redirect++;
161			}
162			return;
163		default:
164			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
165			fallthrough;
166		case XDP_ABORTED:
167			trace_xdp_exception(skb->dev, rcpu->prog, act);
168			fallthrough;
169		case XDP_DROP:
170			skb_list_del_init(skb);
171			kfree_skb(skb);
172			stats->drop++;
173			return;
174		}
175	}
176}
177
178static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
179				    void **frames, int n,
180				    struct xdp_cpumap_stats *stats)
181{
182	struct xdp_rxq_info rxq = {};
183	struct xdp_buff xdp;
184	int i, nframes = 0;
185
186	xdp_set_return_frame_no_direct();
187	xdp.rxq = &rxq;
188
189	for (i = 0; i < n; i++) {
190		struct xdp_frame *xdpf = frames[i];
191		u32 act;
192		int err;
193
194		rxq.dev = xdpf->dev_rx;
195		rxq.mem = xdpf->mem;
196		/* TODO: report queue_index to xdp_rxq_info */
197
198		xdp_convert_frame_to_buff(xdpf, &xdp);
199
200		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
201		switch (act) {
202		case XDP_PASS:
203			err = xdp_update_frame_from_buff(&xdp, xdpf);
204			if (err < 0) {
205				xdp_return_frame(xdpf);
206				stats->drop++;
207			} else {
208				frames[nframes++] = xdpf;
209				stats->pass++;
210			}
211			break;
212		case XDP_REDIRECT:
213			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
214					      rcpu->prog);
215			if (unlikely(err)) {
216				xdp_return_frame(xdpf);
217				stats->drop++;
218			} else {
219				stats->redirect++;
220			}
221			break;
222		default:
223			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
224			fallthrough;
225		case XDP_DROP:
226			xdp_return_frame(xdpf);
227			stats->drop++;
228			break;
229		}
230	}
231
232	xdp_clear_return_frame_no_direct();
 
 
 
233
234	return nframes;
 
235}
236
237#define CPUMAP_BATCH 8
 
 
 
 
 
 
 
 
 
 
238
239static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
240				int xdp_n, struct xdp_cpumap_stats *stats,
241				struct list_head *list)
242{
243	int nframes;
 
 
 
 
 
 
 
 
 
244
245	if (!rcpu->prog)
246		return xdp_n;
247
248	rcu_read_lock_bh();
 
 
 
 
 
 
249
250	nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats);
 
 
 
 
 
251
252	if (stats->redirect)
253		xdp_do_flush();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254
255	if (unlikely(!list_empty(list)))
256		cpu_map_bpf_prog_run_skb(rcpu, list, stats);
 
 
257
258	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
 
 
 
 
 
 
 
 
 
 
 
 
259
260	return nframes;
261}
262
263static int cpu_map_kthread_run(void *data)
264{
265	struct bpf_cpu_map_entry *rcpu = data;
266	unsigned long last_qs = jiffies;
267
268	complete(&rcpu->kthread_running);
269	set_current_state(TASK_INTERRUPTIBLE);
270
271	/* When kthread gives stop order, then rcpu have been disconnected
272	 * from map, thus no new packets can enter. Remaining in-flight
273	 * per CPU stored packets are flushed to this queue.  Wait honoring
274	 * kthread_stop signal until queue is empty.
275	 */
276	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
277		struct xdp_cpumap_stats stats = {}; /* zero stats */
278		unsigned int kmem_alloc_drops = 0, sched = 0;
279		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
280		int i, n, m, nframes, xdp_n;
281		void *frames[CPUMAP_BATCH];
282		void *skbs[CPUMAP_BATCH];
283		LIST_HEAD(list);
284
285		/* Release CPU reschedule checks */
286		if (__ptr_ring_empty(rcpu->queue)) {
287			set_current_state(TASK_INTERRUPTIBLE);
288			/* Recheck to avoid lost wake-up */
289			if (__ptr_ring_empty(rcpu->queue)) {
290				schedule();
291				sched = 1;
292				last_qs = jiffies;
293			} else {
294				__set_current_state(TASK_RUNNING);
295			}
296		} else {
297			rcu_softirq_qs_periodic(last_qs);
298			sched = cond_resched();
299		}
300
 
 
301		/*
302		 * The bpf_cpu_map_entry is single consumer, with this
303		 * kthread CPU pinned. Lockless access to ptr_ring
304		 * consume side valid as no-resize allowed of queue.
305		 */
306		n = __ptr_ring_consume_batched(rcpu->queue, frames,
307					       CPUMAP_BATCH);
308		for (i = 0, xdp_n = 0; i < n; i++) {
309			void *f = frames[i];
310			struct page *page;
311
312			if (unlikely(__ptr_test_bit(0, &f))) {
313				struct sk_buff *skb = f;
314
315				__ptr_clear_bit(0, &skb);
316				list_add_tail(&skb->list, &list);
317				continue;
318			}
319
320			frames[xdp_n++] = f;
321			page = virt_to_page(f);
322
323			/* Bring struct page memory area to curr CPU. Read by
324			 * build_skb_around via page_is_pfmemalloc(), and when
325			 * freed written by page_frag_free call.
326			 */
327			prefetchw(page);
328		}
329
330		/* Support running another XDP prog on this CPU */
331		nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list);
332		if (nframes) {
333			m = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
334						  gfp, nframes, skbs);
335			if (unlikely(m == 0)) {
336				for (i = 0; i < nframes; i++)
337					skbs[i] = NULL; /* effect: xdp_return_frame */
338				kmem_alloc_drops += nframes;
339			}
340		}
341
342		local_bh_disable();
343		for (i = 0; i < nframes; i++) {
344			struct xdp_frame *xdpf = frames[i];
345			struct sk_buff *skb = skbs[i];
346
347			skb = __xdp_build_skb_from_frame(xdpf, skb,
348							 xdpf->dev_rx);
349			if (!skb) {
350				xdp_return_frame(xdpf);
351				continue;
352			}
353
354			list_add_tail(&skb->list, &list);
 
 
 
 
 
 
 
355		}
356		netif_receive_skb_list(&list);
357
358		/* Feedback loop via tracepoint */
359		trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
360					 sched, &stats);
361
362		local_bh_enable(); /* resched point, may call do_softirq() */
363	}
364	__set_current_state(TASK_RUNNING);
365
 
366	return 0;
367}
368
369static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu,
370				      struct bpf_map *map, int fd)
371{
372	struct bpf_prog *prog;
373
374	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
375	if (IS_ERR(prog))
376		return PTR_ERR(prog);
377
378	if (prog->expected_attach_type != BPF_XDP_CPUMAP ||
379	    !bpf_prog_map_compatible(map, prog)) {
380		bpf_prog_put(prog);
381		return -EINVAL;
382	}
383
384	rcpu->value.bpf_prog.id = prog->aux->id;
385	rcpu->prog = prog;
386
387	return 0;
388}
389
390static struct bpf_cpu_map_entry *
391__cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
392		      u32 cpu)
393{
394	int numa, err, i, fd = value->bpf_prog.fd;
395	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
396	struct bpf_cpu_map_entry *rcpu;
397	struct xdp_bulk_queue *bq;
398
399	/* Have map->numa_node, but choose node of redirect target CPU */
400	numa = cpu_to_node(cpu);
401
402	rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
403	if (!rcpu)
404		return NULL;
405
406	/* Alloc percpu bulkq */
407	rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
408					   sizeof(void *), gfp);
409	if (!rcpu->bulkq)
410		goto free_rcu;
411
412	for_each_possible_cpu(i) {
413		bq = per_cpu_ptr(rcpu->bulkq, i);
414		bq->obj = rcpu;
415	}
416
417	/* Alloc queue */
418	rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
419					   numa);
420	if (!rcpu->queue)
421		goto free_bulkq;
422
423	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
424	if (err)
425		goto free_queue;
426
427	rcpu->cpu    = cpu;
428	rcpu->map_id = map->id;
429	rcpu->value.qsize  = value->qsize;
430
431	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd))
432		goto free_ptr_ring;
433
434	/* Setup kthread */
435	init_completion(&rcpu->kthread_running);
436	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
437					       "cpumap/%d/map:%d", cpu,
438					       map->id);
439	if (IS_ERR(rcpu->kthread))
440		goto free_prog;
 
 
 
441
442	/* Make sure kthread runs on a single CPU */
443	kthread_bind(rcpu->kthread, cpu);
444	wake_up_process(rcpu->kthread);
445
446	/* Make sure kthread has been running, so kthread_stop() will not
447	 * stop the kthread prematurely and all pending frames or skbs
448	 * will be handled by the kthread before kthread_stop() returns.
449	 */
450	wait_for_completion(&rcpu->kthread_running);
451
452	return rcpu;
453
454free_prog:
455	if (rcpu->prog)
456		bpf_prog_put(rcpu->prog);
457free_ptr_ring:
458	ptr_ring_cleanup(rcpu->queue, NULL);
459free_queue:
460	kfree(rcpu->queue);
461free_bulkq:
462	free_percpu(rcpu->bulkq);
463free_rcu:
464	kfree(rcpu);
465	return NULL;
466}
467
468static void __cpu_map_entry_free(struct work_struct *work)
469{
470	struct bpf_cpu_map_entry *rcpu;
 
471
472	/* This cpu_map_entry have been disconnected from map and one
473	 * RCU grace-period have elapsed. Thus, XDP cannot queue any
474	 * new packets and cannot change/set flush_needed that can
475	 * find this entry.
476	 */
477	rcpu = container_of(to_rcu_work(work), struct bpf_cpu_map_entry, free_work);
478
479	/* kthread_stop will wake_up_process and wait for it to complete.
480	 * cpu_map_kthread_run() makes sure the pointer ring is empty
481	 * before exiting.
482	 */
483	kthread_stop(rcpu->kthread);
484
485	if (rcpu->prog)
486		bpf_prog_put(rcpu->prog);
487	/* The queue should be empty at this point */
488	__cpu_map_ring_cleanup(rcpu->queue);
489	ptr_ring_cleanup(rcpu->queue, NULL);
490	kfree(rcpu->queue);
491	free_percpu(rcpu->bulkq);
492	kfree(rcpu);
 
493}
494
495/* After the xchg of the bpf_cpu_map_entry pointer, we need to make sure the old
496 * entry is no longer in use before freeing. We use queue_rcu_work() to call
497 * __cpu_map_entry_free() in a separate workqueue after waiting for an RCU grace
498 * period. This means that (a) all pending enqueue and flush operations have
499 * completed (because of the RCU callback), and (b) we are in a workqueue
500 * context where we can stop the kthread and wait for it to exit before freeing
501 * everything.
 
 
 
 
 
 
 
 
 
 
 
502 */
503static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
504				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
505{
506	struct bpf_cpu_map_entry *old_rcpu;
507
508	old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
509	if (old_rcpu) {
510		INIT_RCU_WORK(&old_rcpu->free_work, __cpu_map_entry_free);
511		queue_rcu_work(system_wq, &old_rcpu->free_work);
 
512	}
513}
514
515static long cpu_map_delete_elem(struct bpf_map *map, void *key)
516{
517	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
518	u32 key_cpu = *(u32 *)key;
519
520	if (key_cpu >= map->max_entries)
521		return -EINVAL;
522
523	/* notice caller map_delete_elem() uses rcu_read_lock() */
524	__cpu_map_entry_replace(cmap, key_cpu, NULL);
525	return 0;
526}
527
528static long cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
529				u64 map_flags)
530{
531	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
532	struct bpf_cpumap_val cpumap_value = {};
533	struct bpf_cpu_map_entry *rcpu;
 
534	/* Array index key correspond to CPU number */
535	u32 key_cpu = *(u32 *)key;
536
537	memcpy(&cpumap_value, value, map->value_size);
538
539	if (unlikely(map_flags > BPF_EXIST))
540		return -EINVAL;
541	if (unlikely(key_cpu >= cmap->map.max_entries))
542		return -E2BIG;
543	if (unlikely(map_flags == BPF_NOEXIST))
544		return -EEXIST;
545	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
546		return -EOVERFLOW;
547
548	/* Make sure CPU is a valid possible cpu */
549	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
550		return -ENODEV;
551
552	if (cpumap_value.qsize == 0) {
553		rcpu = NULL; /* Same as deleting */
554	} else {
555		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
556		rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
557		if (!rcpu)
558			return -ENOMEM;
559	}
560	rcu_read_lock();
561	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
562	rcu_read_unlock();
563	return 0;
564}
565
566static void cpu_map_free(struct bpf_map *map)
567{
568	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 
569	u32 i;
570
571	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
572	 * so the bpf programs (can be more than one that used this map) were
573	 * disconnected from events. Wait for outstanding critical sections in
574	 * these programs to complete. synchronize_rcu() below not only
575	 * guarantees no further "XDP/bpf-side" reads against
576	 * bpf_cpu_map->cpu_map, but also ensure pending flush operations
577	 * (if any) are completed.
578	 */
579	synchronize_rcu();
580
581	/* The only possible user of bpf_cpu_map_entry is
582	 * cpu_map_kthread_run().
 
 
 
 
 
 
 
 
 
 
 
 
583	 */
584	for (i = 0; i < cmap->map.max_entries; i++) {
585		struct bpf_cpu_map_entry *rcpu;
586
587		rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
588		if (!rcpu)
589			continue;
590
591		/* Stop kthread and cleanup entry directly */
592		__cpu_map_entry_free(&rcpu->free_work.work);
593	}
 
594	bpf_map_area_free(cmap->cpu_map);
595	bpf_map_area_free(cmap);
596}
597
598/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
599 * by local_bh_disable() (from XDP calls inside NAPI). The
600 * rcu_read_lock_bh_held() below makes lockdep accept both.
601 */
602static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
603{
604	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
605	struct bpf_cpu_map_entry *rcpu;
606
607	if (key >= map->max_entries)
608		return NULL;
609
610	rcpu = rcu_dereference_check(cmap->cpu_map[key],
611				     rcu_read_lock_bh_held());
612	return rcpu;
613}
614
615static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
616{
617	struct bpf_cpu_map_entry *rcpu =
618		__cpu_map_lookup_elem(map, *(u32 *)key);
619
620	return rcpu ? &rcpu->value : NULL;
621}
622
623static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
624{
625	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
626	u32 index = key ? *(u32 *)key : U32_MAX;
627	u32 *next = next_key;
628
629	if (index >= cmap->map.max_entries) {
630		*next = 0;
631		return 0;
632	}
633
634	if (index == cmap->map.max_entries - 1)
635		return -ENOENT;
636	*next = index + 1;
637	return 0;
638}
639
640static long cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags)
641{
642	return __bpf_xdp_redirect_map(map, index, flags, 0,
643				      __cpu_map_lookup_elem);
644}
645
646static u64 cpu_map_mem_usage(const struct bpf_map *map)
647{
648	u64 usage = sizeof(struct bpf_cpu_map);
649
650	/* Currently the dynamically allocated elements are not counted */
651	usage += (u64)map->max_entries * sizeof(struct bpf_cpu_map_entry *);
652	return usage;
653}
654
655BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map)
656const struct bpf_map_ops cpu_map_ops = {
657	.map_meta_equal		= bpf_map_meta_equal,
658	.map_alloc		= cpu_map_alloc,
659	.map_free		= cpu_map_free,
660	.map_delete_elem	= cpu_map_delete_elem,
661	.map_update_elem	= cpu_map_update_elem,
662	.map_lookup_elem	= cpu_map_lookup_elem,
663	.map_get_next_key	= cpu_map_get_next_key,
664	.map_check_btf		= map_check_no_btf,
665	.map_mem_usage		= cpu_map_mem_usage,
666	.map_btf_id		= &cpu_map_btf_ids[0],
667	.map_redirect		= cpu_map_redirect,
668};
669
670static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
 
671{
672	struct bpf_cpu_map_entry *rcpu = bq->obj;
673	unsigned int processed = 0, drops = 0;
674	const int to_cpu = rcpu->cpu;
675	struct ptr_ring *q;
676	int i;
677
678	if (unlikely(!bq->count))
679		return;
680
681	q = rcpu->queue;
682	spin_lock(&q->producer_lock);
683
684	for (i = 0; i < bq->count; i++) {
685		struct xdp_frame *xdpf = bq->q[i];
686		int err;
687
688		err = __ptr_ring_produce(q, xdpf);
689		if (err) {
690			drops++;
691			xdp_return_frame_rx_napi(xdpf);
692		}
693		processed++;
694	}
695	bq->count = 0;
696	spin_unlock(&q->producer_lock);
697
698	__list_del_clearprev(&bq->flush_node);
699
700	/* Feedback loop via tracepoints */
701	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
 
702}
703
704/* Runs under RCU-read-side, plus in softirq under NAPI protection.
705 * Thus, safe percpu variable access.
706 */
707static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
708{
709	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
710	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
711
712	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
713		bq_flush_to_queue(bq);
714
715	/* Notice, xdp_buff/page MUST be queued here, long enough for
716	 * driver to code invoking us to finished, due to driver
717	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
718	 *
719	 * Thus, incoming xdp_frame is always queued here (else we race
720	 * with another CPU on page-refcnt and remaining driver code).
721	 * Queue time is very short, as driver will invoke flush
722	 * operation, when completing napi->poll call.
723	 */
724	bq->q[bq->count++] = xdpf;
725
726	if (!bq->flush_node.prev)
727		list_add(&bq->flush_node, flush_list);
728}
729
730int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
731		    struct net_device *dev_rx)
732{
 
 
 
 
 
 
733	/* Info needed when constructing SKB on remote CPU */
734	xdpf->dev_rx = dev_rx;
735
736	bq_enqueue(rcpu, xdpf);
737	return 0;
738}
739
740int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
741			     struct sk_buff *skb)
742{
743	int ret;
744
745	__skb_pull(skb, skb->mac_len);
746	skb_set_redirected(skb, false);
747	__ptr_set_bit(0, &skb);
748
749	ret = ptr_ring_produce(rcpu->queue, skb);
750	if (ret < 0)
751		goto trace;
752
753	wake_up_process(rcpu->kthread);
754trace:
755	trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
756	return ret;
757}
758
759void __cpu_map_flush(void)
760{
761	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
762	struct xdp_bulk_queue *bq, *tmp;
 
763
764	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
765		bq_flush_to_queue(bq);
 
 
 
 
 
766
767		/* If already running, costs spin_lock_irqsave + smb_mb */
768		wake_up_process(bq->obj->kthread);
769	}
770}
 
771
772#ifdef CONFIG_DEBUG_NET
773bool cpu_map_check_flush(void)
774{
775	if (list_empty(this_cpu_ptr(&cpu_map_flush_list)))
776		return false;
777	__cpu_map_flush();
778	return true;
779}
780#endif
781
782static int __init cpu_map_init(void)
783{
784	int cpu;
785
786	for_each_possible_cpu(cpu)
787		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
788	return 0;
789}
790
791subsys_initcall(cpu_map_init);