Linux Audio

Check our new training course

Loading...
v4.17
 
  1/* bpf/cpumap.c
  2 *
  3 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
  4 * Released under terms in GPL version 2.  See COPYING.
  5 */
  6
  7/* The 'cpumap' is primarily used as a backend map for XDP BPF helper
  8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
  9 *
 10 * Unlike devmap which redirects XDP frames out another NIC device,
 11 * this map type redirects raw XDP frames to another CPU.  The remote
 12 * CPU will do SKB-allocation and call the normal network stack.
 13 *
 14 * This is a scalability and isolation mechanism, that allow
 15 * separating the early driver network XDP layer, from the rest of the
 16 * netstack, and assigning dedicated CPUs for this stage.  This
 17 * basically allows for 10G wirespeed pre-filtering via bpf.
 18 */
 19#include <linux/bpf.h>
 20#include <linux/filter.h>
 21#include <linux/ptr_ring.h>
 
 22
 23#include <linux/sched.h>
 24#include <linux/workqueue.h>
 25#include <linux/kthread.h>
 26#include <linux/capability.h>
 27#include <trace/events/xdp.h>
 28
 29#include <linux/netdevice.h>   /* netif_receive_skb_core */
 30#include <linux/etherdevice.h> /* eth_type_trans */
 31
 32/* General idea: XDP packets getting XDP redirected to another CPU,
 33 * will maximum be stored/queued for one driver ->poll() call.  It is
 34 * guaranteed that setting flush bit and flush operation happen on
 35 * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
 36 * which queue in bpf_cpu_map_entry contains packets.
 37 */
 38
 39#define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
 
 
 
 40struct xdp_bulk_queue {
 41	void *q[CPU_MAP_BULK_SIZE];
 
 
 42	unsigned int count;
 43};
 44
 45/* Struct for every remote "destination" CPU in map */
 46struct bpf_cpu_map_entry {
 47	u32 cpu;    /* kthread CPU and map index */
 48	int map_id; /* Back reference to map */
 49	u32 qsize;  /* Queue size placeholder for map lookup */
 50
 51	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
 52	struct xdp_bulk_queue __percpu *bulkq;
 53
 
 
 54	/* Queue with potential multi-producers, and single-consumer kthread */
 55	struct ptr_ring *queue;
 56	struct task_struct *kthread;
 57	struct work_struct kthread_stop_wq;
 
 
 58
 59	atomic_t refcnt; /* Control when this struct can be free'ed */
 60	struct rcu_head rcu;
 
 
 61};
 62
 63struct bpf_cpu_map {
 64	struct bpf_map map;
 65	/* Below members specific for map type */
 66	struct bpf_cpu_map_entry **cpu_map;
 67	unsigned long __percpu *flush_needed;
 68};
 69
 70static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
 71			     struct xdp_bulk_queue *bq);
 72
 73static u64 cpu_map_bitmap_size(const union bpf_attr *attr)
 74{
 75	return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long);
 76}
 77
 78static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
 79{
 
 80	struct bpf_cpu_map *cmap;
 81	int err = -ENOMEM;
 82	u64 cost;
 83	int ret;
 84
 85	if (!capable(CAP_SYS_ADMIN))
 86		return ERR_PTR(-EPERM);
 87
 88	/* check sanity of attributes */
 89	if (attr->max_entries == 0 || attr->key_size != 4 ||
 90	    attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
 
 
 91		return ERR_PTR(-EINVAL);
 92
 93	cmap = kzalloc(sizeof(*cmap), GFP_USER);
 94	if (!cmap)
 95		return ERR_PTR(-ENOMEM);
 96
 97	bpf_map_init_from_attr(&cmap->map, attr);
 98
 99	/* Pre-limit array size based on NR_CPUS, not final CPU check */
100	if (cmap->map.max_entries > NR_CPUS) {
101		err = -E2BIG;
102		goto free_cmap;
103	}
104
105	/* make sure page count doesn't overflow */
106	cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
107	cost += cpu_map_bitmap_size(attr) * num_possible_cpus();
108	if (cost >= U32_MAX - PAGE_SIZE)
109		goto free_cmap;
110	cmap->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
111
112	/* Notice returns -EPERM on if map size is larger than memlock limit */
113	ret = bpf_map_precharge_memlock(cmap->map.pages);
114	if (ret) {
115		err = ret;
116		goto free_cmap;
117	}
118
119	/* A per cpu bitfield with a bit per possible CPU in map  */
120	cmap->flush_needed = __alloc_percpu(cpu_map_bitmap_size(attr),
121					    __alignof__(unsigned long));
122	if (!cmap->flush_needed)
123		goto free_cmap;
124
125	/* Alloc array for possible remote "destination" CPUs */
126	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
127					   sizeof(struct bpf_cpu_map_entry *),
128					   cmap->map.numa_node);
129	if (!cmap->cpu_map)
130		goto free_percpu;
131
132	return &cmap->map;
133free_percpu:
134	free_percpu(cmap->flush_needed);
135free_cmap:
136	kfree(cmap);
137	return ERR_PTR(err);
138}
139
140static void __cpu_map_queue_destructor(void *ptr)
141{
142	/* The tear-down procedure should have made sure that queue is
143	 * empty.  See __cpu_map_entry_replace() and work-queue
144	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
145	 * gracefully and warn once.
146	 */
147	if (WARN_ON_ONCE(ptr))
148		page_frag_free(ptr);
149}
150
151static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
152{
153	if (atomic_dec_and_test(&rcpu->refcnt)) {
154		/* The queue should be empty at this point */
155		ptr_ring_cleanup(rcpu->queue, __cpu_map_queue_destructor);
156		kfree(rcpu->queue);
157		kfree(rcpu);
158	}
159}
160
161static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
162{
163	atomic_inc(&rcpu->refcnt);
164}
165
166/* called from workqueue, to workaround syscall using preempt_disable */
167static void cpu_map_kthread_stop(struct work_struct *work)
168{
169	struct bpf_cpu_map_entry *rcpu;
170
171	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
172
173	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
174	 * as it waits until all in-flight call_rcu() callbacks complete.
175	 */
176	rcu_barrier();
177
178	/* kthread_stop will wake_up_process and wait for it to complete */
179	kthread_stop(rcpu->kthread);
180}
181
182/* For now, xdp_pkt is a cpumap internal data structure, with info
183 * carried between enqueue to dequeue. It is mapped into the top
184 * headroom of the packet, to avoid allocating separate mem.
185 */
186struct xdp_pkt {
187	void *data;
188	u16 len;
189	u16 headroom;
190	u16 metasize;
191	struct net_device *dev_rx;
192};
193
194/* Convert xdp_buff to xdp_pkt */
195static struct xdp_pkt *convert_to_xdp_pkt(struct xdp_buff *xdp)
196{
197	struct xdp_pkt *xdp_pkt;
198	int metasize;
199	int headroom;
200
201	/* Assure headroom is available for storing info */
202	headroom = xdp->data - xdp->data_hard_start;
203	metasize = xdp->data - xdp->data_meta;
204	metasize = metasize > 0 ? metasize : 0;
205	if (unlikely((headroom - metasize) < sizeof(*xdp_pkt)))
206		return NULL;
207
208	/* Store info in top of packet */
209	xdp_pkt = xdp->data_hard_start;
210
211	xdp_pkt->data = xdp->data;
212	xdp_pkt->len  = xdp->data_end - xdp->data;
213	xdp_pkt->headroom = headroom - sizeof(*xdp_pkt);
214	xdp_pkt->metasize = metasize;
215
216	return xdp_pkt;
 
 
 
 
 
 
 
 
 
 
217}
218
219static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
220					 struct xdp_pkt *xdp_pkt)
 
221{
222	unsigned int frame_size;
223	void *pkt_data_start;
224	struct sk_buff *skb;
225
226	/* build_skb need to place skb_shared_info after SKB end, and
227	 * also want to know the memory "truesize".  Thus, need to
228	 * know the memory frame size backing xdp_buff.
229	 *
230	 * XDP was designed to have PAGE_SIZE frames, but this
231	 * assumption is not longer true with ixgbe and i40e.  It
232	 * would be preferred to set frame_size to 2048 or 4096
233	 * depending on the driver.
234	 *   frame_size = 2048;
235	 *   frame_len  = frame_size - sizeof(*xdp_pkt);
236	 *
237	 * Instead, with info avail, skb_shared_info in placed after
238	 * packet len.  This, unfortunately fakes the truesize.
239	 * Another disadvantage of this approach, the skb_shared_info
240	 * is not at a fixed memory location, with mixed length
241	 * packets, which is bad for cache-line hotness.
242	 */
243	frame_size = SKB_DATA_ALIGN(xdp_pkt->len) + xdp_pkt->headroom +
244		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
245
246	pkt_data_start = xdp_pkt->data - xdp_pkt->headroom;
247	skb = build_skb(pkt_data_start, frame_size);
248	if (!skb)
249		return NULL;
250
251	skb_reserve(skb, xdp_pkt->headroom);
252	__skb_put(skb, xdp_pkt->len);
253	if (xdp_pkt->metasize)
254		skb_metadata_set(skb, xdp_pkt->metasize);
255
256	/* Essential SKB info: protocol and skb->dev */
257	skb->protocol = eth_type_trans(skb, xdp_pkt->dev_rx);
258
259	/* Optional SKB info, currently missing:
260	 * - HW checksum info		(skb->ip_summed)
261	 * - HW RX hash			(skb_set_hash)
262	 * - RX ring dev queue index	(skb_record_rx_queue)
263	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264
265	return skb;
 
 
 
 
 
 
 
266}
267
 
 
268static int cpu_map_kthread_run(void *data)
269{
270	struct bpf_cpu_map_entry *rcpu = data;
271
272	set_current_state(TASK_INTERRUPTIBLE);
273
274	/* When kthread gives stop order, then rcpu have been disconnected
275	 * from map, thus no new packets can enter. Remaining in-flight
276	 * per CPU stored packets are flushed to this queue.  Wait honoring
277	 * kthread_stop signal until queue is empty.
278	 */
279	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
280		unsigned int processed = 0, drops = 0, sched = 0;
281		struct xdp_pkt *xdp_pkt;
 
 
 
 
 
282
283		/* Release CPU reschedule checks */
284		if (__ptr_ring_empty(rcpu->queue)) {
285			set_current_state(TASK_INTERRUPTIBLE);
286			/* Recheck to avoid lost wake-up */
287			if (__ptr_ring_empty(rcpu->queue)) {
288				schedule();
289				sched = 1;
290			} else {
291				__set_current_state(TASK_RUNNING);
292			}
293		} else {
294			sched = cond_resched();
295		}
296
297		/* Process packets in rcpu->queue */
298		local_bh_disable();
299		/*
300		 * The bpf_cpu_map_entry is single consumer, with this
301		 * kthread CPU pinned. Lockless access to ptr_ring
302		 * consume side valid as no-resize allowed of queue.
303		 */
304		while ((xdp_pkt = __ptr_ring_consume(rcpu->queue))) {
305			struct sk_buff *skb;
306			int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
307
308			skb = cpu_map_build_skb(rcpu, xdp_pkt);
 
 
 
 
 
 
309			if (!skb) {
310				page_frag_free(xdp_pkt);
311				continue;
312			}
313
314			/* Inject into network stack */
315			ret = netif_receive_skb_core(skb);
316			if (ret == NET_RX_DROP)
317				drops++;
318
319			/* Limit BH-disable period */
320			if (++processed == 8)
321				break;
322		}
 
 
323		/* Feedback loop via tracepoint */
324		trace_xdp_cpumap_kthread(rcpu->map_id, processed, drops, sched);
 
325
326		local_bh_enable(); /* resched point, may call do_softirq() */
327	}
328	__set_current_state(TASK_RUNNING);
329
330	put_cpu_map_entry(rcpu);
331	return 0;
332}
333
334static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
335						       int map_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
336{
 
337	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
338	struct bpf_cpu_map_entry *rcpu;
339	int numa, err;
340
341	/* Have map->numa_node, but choose node of redirect target CPU */
342	numa = cpu_to_node(cpu);
343
344	rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
345	if (!rcpu)
346		return NULL;
347
348	/* Alloc percpu bulkq */
349	rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
350					 sizeof(void *), gfp);
351	if (!rcpu->bulkq)
352		goto free_rcu;
353
 
 
 
 
 
354	/* Alloc queue */
355	rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
 
356	if (!rcpu->queue)
357		goto free_bulkq;
358
359	err = ptr_ring_init(rcpu->queue, qsize, gfp);
360	if (err)
361		goto free_queue;
362
363	rcpu->cpu    = cpu;
364	rcpu->map_id = map_id;
365	rcpu->qsize  = qsize;
 
 
 
366
367	/* Setup kthread */
368	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
369					       "cpumap/%d/map:%d", cpu, map_id);
 
370	if (IS_ERR(rcpu->kthread))
371		goto free_ptr_ring;
372
373	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
374	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
375
376	/* Make sure kthread runs on a single CPU */
377	kthread_bind(rcpu->kthread, cpu);
378	wake_up_process(rcpu->kthread);
379
380	return rcpu;
381
 
 
 
382free_ptr_ring:
383	ptr_ring_cleanup(rcpu->queue, NULL);
384free_queue:
385	kfree(rcpu->queue);
386free_bulkq:
387	free_percpu(rcpu->bulkq);
388free_rcu:
389	kfree(rcpu);
390	return NULL;
391}
392
393static void __cpu_map_entry_free(struct rcu_head *rcu)
394{
395	struct bpf_cpu_map_entry *rcpu;
396	int cpu;
397
398	/* This cpu_map_entry have been disconnected from map and one
399	 * RCU graze-period have elapsed.  Thus, XDP cannot queue any
400	 * new packets and cannot change/set flush_needed that can
401	 * find this entry.
402	 */
403	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
404
405	/* Flush remaining packets in percpu bulkq */
406	for_each_online_cpu(cpu) {
407		struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu);
408
409		/* No concurrent bq_enqueue can run at this point */
410		bq_flush_to_queue(rcpu, bq);
411	}
412	free_percpu(rcpu->bulkq);
413	/* Cannot kthread_stop() here, last put free rcpu resources */
414	put_cpu_map_entry(rcpu);
415}
416
417/* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
418 * ensure any driver rcu critical sections have completed, but this
419 * does not guarantee a flush has happened yet. Because driver side
420 * rcu_read_lock/unlock only protects the running XDP program.  The
421 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
422 * pending flush op doesn't fail.
423 *
424 * The bpf_cpu_map_entry is still used by the kthread, and there can
425 * still be pending packets (in queue and percpu bulkq).  A refcnt
426 * makes sure to last user (kthread_stop vs. call_rcu) free memory
427 * resources.
428 *
429 * The rcu callback __cpu_map_entry_free flush remaining packets in
430 * percpu bulkq to queue.  Due to caller map_delete_elem() disable
431 * preemption, cannot call kthread_stop() to make sure queue is empty.
432 * Instead a work_queue is started for stopping kthread,
433 * cpu_map_kthread_stop, which waits for an RCU graze period before
434 * stopping kthread, emptying the queue.
435 */
436static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
437				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
438{
439	struct bpf_cpu_map_entry *old_rcpu;
440
441	old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
442	if (old_rcpu) {
443		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
444		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
445		schedule_work(&old_rcpu->kthread_stop_wq);
446	}
447}
448
449static int cpu_map_delete_elem(struct bpf_map *map, void *key)
450{
451	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
452	u32 key_cpu = *(u32 *)key;
453
454	if (key_cpu >= map->max_entries)
455		return -EINVAL;
456
457	/* notice caller map_delete_elem() use preempt_disable() */
458	__cpu_map_entry_replace(cmap, key_cpu, NULL);
459	return 0;
460}
461
462static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
463			       u64 map_flags)
464{
465	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 
466	struct bpf_cpu_map_entry *rcpu;
467
468	/* Array index key correspond to CPU number */
469	u32 key_cpu = *(u32 *)key;
470	/* Value is the queue size */
471	u32 qsize = *(u32 *)value;
472
473	if (unlikely(map_flags > BPF_EXIST))
474		return -EINVAL;
475	if (unlikely(key_cpu >= cmap->map.max_entries))
476		return -E2BIG;
477	if (unlikely(map_flags == BPF_NOEXIST))
478		return -EEXIST;
479	if (unlikely(qsize > 16384)) /* sanity limit on qsize */
480		return -EOVERFLOW;
481
482	/* Make sure CPU is a valid possible cpu */
483	if (!cpu_possible(key_cpu))
484		return -ENODEV;
485
486	if (qsize == 0) {
487		rcpu = NULL; /* Same as deleting */
488	} else {
489		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
490		rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
491		if (!rcpu)
492			return -ENOMEM;
 
493	}
494	rcu_read_lock();
495	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
496	rcu_read_unlock();
497	return 0;
498}
499
500static void cpu_map_free(struct bpf_map *map)
501{
502	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
503	int cpu;
504	u32 i;
505
506	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
507	 * so the bpf programs (can be more than one that used this map) were
508	 * disconnected from events. Wait for outstanding critical sections in
509	 * these programs to complete. The rcu critical section only guarantees
510	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
511	 * It does __not__ ensure pending flush operations (if any) are
512	 * complete.
513	 */
514	synchronize_rcu();
515
516	/* To ensure all pending flush operations have completed wait for flush
517	 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
518	 * Because the above synchronize_rcu() ensures the map is disconnected
519	 * from the program we can assume no new bits will be set.
520	 */
521	for_each_online_cpu(cpu) {
522		unsigned long *bitmap = per_cpu_ptr(cmap->flush_needed, cpu);
523
524		while (!bitmap_empty(bitmap, cmap->map.max_entries))
525			cond_resched();
526	}
527
528	/* For cpu_map the remote CPUs can still be using the entries
529	 * (struct bpf_cpu_map_entry).
530	 */
531	for (i = 0; i < cmap->map.max_entries; i++) {
532		struct bpf_cpu_map_entry *rcpu;
533
534		rcpu = READ_ONCE(cmap->cpu_map[i]);
535		if (!rcpu)
536			continue;
537
538		/* bq flush and cleanup happens after RCU graze-period */
539		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
540	}
541	free_percpu(cmap->flush_needed);
542	bpf_map_area_free(cmap->cpu_map);
543	kfree(cmap);
544}
545
546struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
 
 
 
 
547{
548	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
549	struct bpf_cpu_map_entry *rcpu;
550
551	if (key >= map->max_entries)
552		return NULL;
553
554	rcpu = READ_ONCE(cmap->cpu_map[key]);
 
555	return rcpu;
556}
557
558static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
559{
560	struct bpf_cpu_map_entry *rcpu =
561		__cpu_map_lookup_elem(map, *(u32 *)key);
562
563	return rcpu ? &rcpu->qsize : NULL;
564}
565
566static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
567{
568	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
569	u32 index = key ? *(u32 *)key : U32_MAX;
570	u32 *next = next_key;
571
572	if (index >= cmap->map.max_entries) {
573		*next = 0;
574		return 0;
575	}
576
577	if (index == cmap->map.max_entries - 1)
578		return -ENOENT;
579	*next = index + 1;
580	return 0;
581}
582
 
 
 
 
 
 
 
583const struct bpf_map_ops cpu_map_ops = {
 
584	.map_alloc		= cpu_map_alloc,
585	.map_free		= cpu_map_free,
586	.map_delete_elem	= cpu_map_delete_elem,
587	.map_update_elem	= cpu_map_update_elem,
588	.map_lookup_elem	= cpu_map_lookup_elem,
589	.map_get_next_key	= cpu_map_get_next_key,
 
 
 
 
590};
591
592static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
593			     struct xdp_bulk_queue *bq)
594{
 
595	unsigned int processed = 0, drops = 0;
596	const int to_cpu = rcpu->cpu;
597	struct ptr_ring *q;
598	int i;
599
600	if (unlikely(!bq->count))
601		return 0;
602
603	q = rcpu->queue;
604	spin_lock(&q->producer_lock);
605
606	for (i = 0; i < bq->count; i++) {
607		void *xdp_pkt = bq->q[i];
608		int err;
609
610		err = __ptr_ring_produce(q, xdp_pkt);
611		if (err) {
612			drops++;
613			page_frag_free(xdp_pkt); /* Free xdp_pkt */
614		}
615		processed++;
616	}
617	bq->count = 0;
618	spin_unlock(&q->producer_lock);
619
 
 
620	/* Feedback loop via tracepoints */
621	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
622	return 0;
623}
624
625/* Runs under RCU-read-side, plus in softirq under NAPI protection.
626 * Thus, safe percpu variable access.
627 */
628static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_pkt *xdp_pkt)
629{
 
630	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
631
632	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
633		bq_flush_to_queue(rcpu, bq);
634
635	/* Notice, xdp_buff/page MUST be queued here, long enough for
636	 * driver to code invoking us to finished, due to driver
637	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
638	 *
639	 * Thus, incoming xdp_pkt is always queued here (else we race
640	 * with another CPU on page-refcnt and remaining driver code).
641	 * Queue time is very short, as driver will invoke flush
642	 * operation, when completing napi->poll call.
643	 */
644	bq->q[bq->count++] = xdp_pkt;
645	return 0;
 
 
646}
647
648int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
649		    struct net_device *dev_rx)
650{
651	struct xdp_pkt *xdp_pkt;
652
653	xdp_pkt = convert_to_xdp_pkt(xdp);
654	if (unlikely(!xdp_pkt))
655		return -EOVERFLOW;
656
657	/* Info needed when constructing SKB on remote CPU */
658	xdp_pkt->dev_rx = dev_rx;
659
660	bq_enqueue(rcpu, xdp_pkt);
661	return 0;
662}
663
664void __cpu_map_insert_ctx(struct bpf_map *map, u32 bit)
665{
666	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
667	unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
668
669	__set_bit(bit, bitmap);
 
 
 
 
 
670}
671
672void __cpu_map_flush(struct bpf_map *map)
673{
674	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
675	unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
676	u32 bit;
677
678	/* The napi->poll softirq makes sure __cpu_map_insert_ctx()
679	 * and __cpu_map_flush() happen on same CPU. Thus, the percpu
680	 * bitmap indicate which percpu bulkq have packets.
681	 */
682	for_each_set_bit(bit, bitmap, map->max_entries) {
683		struct bpf_cpu_map_entry *rcpu = READ_ONCE(cmap->cpu_map[bit]);
684		struct xdp_bulk_queue *bq;
685
686		/* This is possible if entry is removed by user space
687		 * between xdp redirect and flush op.
688		 */
689		if (unlikely(!rcpu))
690			continue;
691
692		__clear_bit(bit, bitmap);
693
694		/* Flush all frames in bulkq to real queue */
695		bq = this_cpu_ptr(rcpu->bulkq);
696		bq_flush_to_queue(rcpu, bq);
697
698		/* If already running, costs spin_lock_irqsave + smb_mb */
699		wake_up_process(rcpu->kthread);
700	}
701}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* bpf/cpumap.c
  3 *
  4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
 
  5 */
  6
  7/* The 'cpumap' is primarily used as a backend map for XDP BPF helper
  8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
  9 *
 10 * Unlike devmap which redirects XDP frames out another NIC device,
 11 * this map type redirects raw XDP frames to another CPU.  The remote
 12 * CPU will do SKB-allocation and call the normal network stack.
 13 *
 14 * This is a scalability and isolation mechanism, that allow
 15 * separating the early driver network XDP layer, from the rest of the
 16 * netstack, and assigning dedicated CPUs for this stage.  This
 17 * basically allows for 10G wirespeed pre-filtering via bpf.
 18 */
 19#include <linux/bpf.h>
 20#include <linux/filter.h>
 21#include <linux/ptr_ring.h>
 22#include <net/xdp.h>
 23
 24#include <linux/sched.h>
 25#include <linux/workqueue.h>
 26#include <linux/kthread.h>
 27#include <linux/capability.h>
 28#include <trace/events/xdp.h>
 29
 30#include <linux/netdevice.h>   /* netif_receive_skb_list */
 31#include <linux/etherdevice.h> /* eth_type_trans */
 32
 33/* General idea: XDP packets getting XDP redirected to another CPU,
 34 * will maximum be stored/queued for one driver ->poll() call.  It is
 35 * guaranteed that queueing the frame and the flush operation happen on
 36 * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
 37 * which queue in bpf_cpu_map_entry contains packets.
 38 */
 39
 40#define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
 41struct bpf_cpu_map_entry;
 42struct bpf_cpu_map;
 43
 44struct xdp_bulk_queue {
 45	void *q[CPU_MAP_BULK_SIZE];
 46	struct list_head flush_node;
 47	struct bpf_cpu_map_entry *obj;
 48	unsigned int count;
 49};
 50
 51/* Struct for every remote "destination" CPU in map */
 52struct bpf_cpu_map_entry {
 53	u32 cpu;    /* kthread CPU and map index */
 54	int map_id; /* Back reference to map */
 
 55
 56	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
 57	struct xdp_bulk_queue __percpu *bulkq;
 58
 59	struct bpf_cpu_map *cmap;
 60
 61	/* Queue with potential multi-producers, and single-consumer kthread */
 62	struct ptr_ring *queue;
 63	struct task_struct *kthread;
 64
 65	struct bpf_cpumap_val value;
 66	struct bpf_prog *prog;
 67
 68	atomic_t refcnt; /* Control when this struct can be free'ed */
 69	struct rcu_head rcu;
 70
 71	struct work_struct kthread_stop_wq;
 72};
 73
 74struct bpf_cpu_map {
 75	struct bpf_map map;
 76	/* Below members specific for map type */
 77	struct bpf_cpu_map_entry __rcu **cpu_map;
 
 78};
 79
 80static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
 
 
 
 
 
 
 81
 82static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
 83{
 84	u32 value_size = attr->value_size;
 85	struct bpf_cpu_map *cmap;
 86	int err = -ENOMEM;
 
 
 87
 88	if (!bpf_capable())
 89		return ERR_PTR(-EPERM);
 90
 91	/* check sanity of attributes */
 92	if (attr->max_entries == 0 || attr->key_size != 4 ||
 93	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
 94	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
 95	    attr->map_flags & ~BPF_F_NUMA_NODE)
 96		return ERR_PTR(-EINVAL);
 97
 98	cmap = kzalloc(sizeof(*cmap), GFP_USER | __GFP_ACCOUNT);
 99	if (!cmap)
100		return ERR_PTR(-ENOMEM);
101
102	bpf_map_init_from_attr(&cmap->map, attr);
103
104	/* Pre-limit array size based on NR_CPUS, not final CPU check */
105	if (cmap->map.max_entries > NR_CPUS) {
106		err = -E2BIG;
107		goto free_cmap;
108	}
109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110	/* Alloc array for possible remote "destination" CPUs */
111	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
112					   sizeof(struct bpf_cpu_map_entry *),
113					   cmap->map.numa_node);
114	if (!cmap->cpu_map)
115		goto free_cmap;
116
117	return &cmap->map;
 
 
118free_cmap:
119	kfree(cmap);
120	return ERR_PTR(err);
121}
122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
124{
125	atomic_inc(&rcpu->refcnt);
126}
127
128/* called from workqueue, to workaround syscall using preempt_disable */
129static void cpu_map_kthread_stop(struct work_struct *work)
130{
131	struct bpf_cpu_map_entry *rcpu;
132
133	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
134
135	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
136	 * as it waits until all in-flight call_rcu() callbacks complete.
137	 */
138	rcu_barrier();
139
140	/* kthread_stop will wake_up_process and wait for it to complete */
141	kthread_stop(rcpu->kthread);
142}
143
144static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
 
 
 
 
 
 
 
 
 
 
 
 
 
145{
146	/* The tear-down procedure should have made sure that queue is
147	 * empty.  See __cpu_map_entry_replace() and work-queue
148	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
149	 * gracefully and warn once.
150	 */
151	struct xdp_frame *xdpf;
 
 
 
 
 
 
 
152
153	while ((xdpf = ptr_ring_consume(ring)))
154		if (WARN_ON_ONCE(xdpf))
155			xdp_return_frame(xdpf);
156}
157
158static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
159{
160	if (atomic_dec_and_test(&rcpu->refcnt)) {
161		if (rcpu->prog)
162			bpf_prog_put(rcpu->prog);
163		/* The queue should be empty at this point */
164		__cpu_map_ring_cleanup(rcpu->queue);
165		ptr_ring_cleanup(rcpu->queue, NULL);
166		kfree(rcpu->queue);
167		kfree(rcpu);
168	}
169}
170
171static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
172				    void **frames, int n,
173				    struct xdp_cpumap_stats *stats)
174{
175	struct xdp_rxq_info rxq;
176	struct xdp_buff xdp;
177	int i, nframes = 0;
178
179	if (!rcpu->prog)
180		return n;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
182	rcu_read_lock_bh();
 
 
 
183
184	xdp_set_return_frame_no_direct();
185	xdp.rxq = &rxq;
186
187	for (i = 0; i < n; i++) {
188		struct xdp_frame *xdpf = frames[i];
189		u32 act;
190		int err;
191
192		rxq.dev = xdpf->dev_rx;
193		rxq.mem = xdpf->mem;
194		/* TODO: report queue_index to xdp_rxq_info */
195
196		xdp_convert_frame_to_buff(xdpf, &xdp);
197
198		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
199		switch (act) {
200		case XDP_PASS:
201			err = xdp_update_frame_from_buff(&xdp, xdpf);
202			if (err < 0) {
203				xdp_return_frame(xdpf);
204				stats->drop++;
205			} else {
206				frames[nframes++] = xdpf;
207				stats->pass++;
208			}
209			break;
210		case XDP_REDIRECT:
211			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
212					      rcpu->prog);
213			if (unlikely(err)) {
214				xdp_return_frame(xdpf);
215				stats->drop++;
216			} else {
217				stats->redirect++;
218			}
219			break;
220		default:
221			bpf_warn_invalid_xdp_action(act);
222			fallthrough;
223		case XDP_DROP:
224			xdp_return_frame(xdpf);
225			stats->drop++;
226			break;
227		}
228	}
229
230	if (stats->redirect)
231		xdp_do_flush_map();
232
233	xdp_clear_return_frame_no_direct();
234
235	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
236
237	return nframes;
238}
239
240#define CPUMAP_BATCH 8
241
242static int cpu_map_kthread_run(void *data)
243{
244	struct bpf_cpu_map_entry *rcpu = data;
245
246	set_current_state(TASK_INTERRUPTIBLE);
247
248	/* When kthread gives stop order, then rcpu have been disconnected
249	 * from map, thus no new packets can enter. Remaining in-flight
250	 * per CPU stored packets are flushed to this queue.  Wait honoring
251	 * kthread_stop signal until queue is empty.
252	 */
253	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
254		struct xdp_cpumap_stats stats = {}; /* zero stats */
255		unsigned int kmem_alloc_drops = 0, sched = 0;
256		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
257		void *frames[CPUMAP_BATCH];
258		void *skbs[CPUMAP_BATCH];
259		int i, n, m, nframes;
260		LIST_HEAD(list);
261
262		/* Release CPU reschedule checks */
263		if (__ptr_ring_empty(rcpu->queue)) {
264			set_current_state(TASK_INTERRUPTIBLE);
265			/* Recheck to avoid lost wake-up */
266			if (__ptr_ring_empty(rcpu->queue)) {
267				schedule();
268				sched = 1;
269			} else {
270				__set_current_state(TASK_RUNNING);
271			}
272		} else {
273			sched = cond_resched();
274		}
275
 
 
276		/*
277		 * The bpf_cpu_map_entry is single consumer, with this
278		 * kthread CPU pinned. Lockless access to ptr_ring
279		 * consume side valid as no-resize allowed of queue.
280		 */
281		n = __ptr_ring_consume_batched(rcpu->queue, frames,
282					       CPUMAP_BATCH);
283		for (i = 0; i < n; i++) {
284			void *f = frames[i];
285			struct page *page = virt_to_page(f);
286
287			/* Bring struct page memory area to curr CPU. Read by
288			 * build_skb_around via page_is_pfmemalloc(), and when
289			 * freed written by page_frag_free call.
290			 */
291			prefetchw(page);
292		}
293
294		/* Support running another XDP prog on this CPU */
295		nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, n, &stats);
296		if (nframes) {
297			m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
298			if (unlikely(m == 0)) {
299				for (i = 0; i < nframes; i++)
300					skbs[i] = NULL; /* effect: xdp_return_frame */
301				kmem_alloc_drops += nframes;
302			}
303		}
304
305		local_bh_disable();
306		for (i = 0; i < nframes; i++) {
307			struct xdp_frame *xdpf = frames[i];
308			struct sk_buff *skb = skbs[i];
309
310			skb = __xdp_build_skb_from_frame(xdpf, skb,
311							 xdpf->dev_rx);
312			if (!skb) {
313				xdp_return_frame(xdpf);
314				continue;
315			}
316
317			list_add_tail(&skb->list, &list);
 
 
 
 
 
 
 
318		}
319		netif_receive_skb_list(&list);
320
321		/* Feedback loop via tracepoint */
322		trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
323					 sched, &stats);
324
325		local_bh_enable(); /* resched point, may call do_softirq() */
326	}
327	__set_current_state(TASK_RUNNING);
328
329	put_cpu_map_entry(rcpu);
330	return 0;
331}
332
333bool cpu_map_prog_allowed(struct bpf_map *map)
334{
335	return map->map_type == BPF_MAP_TYPE_CPUMAP &&
336	       map->value_size != offsetofend(struct bpf_cpumap_val, qsize);
337}
338
339static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd)
340{
341	struct bpf_prog *prog;
342
343	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
344	if (IS_ERR(prog))
345		return PTR_ERR(prog);
346
347	if (prog->expected_attach_type != BPF_XDP_CPUMAP) {
348		bpf_prog_put(prog);
349		return -EINVAL;
350	}
351
352	rcpu->value.bpf_prog.id = prog->aux->id;
353	rcpu->prog = prog;
354
355	return 0;
356}
357
358static struct bpf_cpu_map_entry *
359__cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
360		      u32 cpu)
361{
362	int numa, err, i, fd = value->bpf_prog.fd;
363	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
364	struct bpf_cpu_map_entry *rcpu;
365	struct xdp_bulk_queue *bq;
366
367	/* Have map->numa_node, but choose node of redirect target CPU */
368	numa = cpu_to_node(cpu);
369
370	rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
371	if (!rcpu)
372		return NULL;
373
374	/* Alloc percpu bulkq */
375	rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
376					   sizeof(void *), gfp);
377	if (!rcpu->bulkq)
378		goto free_rcu;
379
380	for_each_possible_cpu(i) {
381		bq = per_cpu_ptr(rcpu->bulkq, i);
382		bq->obj = rcpu;
383	}
384
385	/* Alloc queue */
386	rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
387					   numa);
388	if (!rcpu->queue)
389		goto free_bulkq;
390
391	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
392	if (err)
393		goto free_queue;
394
395	rcpu->cpu    = cpu;
396	rcpu->map_id = map->id;
397	rcpu->value.qsize  = value->qsize;
398
399	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd))
400		goto free_ptr_ring;
401
402	/* Setup kthread */
403	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
404					       "cpumap/%d/map:%d", cpu,
405					       map->id);
406	if (IS_ERR(rcpu->kthread))
407		goto free_prog;
408
409	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
410	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
411
412	/* Make sure kthread runs on a single CPU */
413	kthread_bind(rcpu->kthread, cpu);
414	wake_up_process(rcpu->kthread);
415
416	return rcpu;
417
418free_prog:
419	if (rcpu->prog)
420		bpf_prog_put(rcpu->prog);
421free_ptr_ring:
422	ptr_ring_cleanup(rcpu->queue, NULL);
423free_queue:
424	kfree(rcpu->queue);
425free_bulkq:
426	free_percpu(rcpu->bulkq);
427free_rcu:
428	kfree(rcpu);
429	return NULL;
430}
431
432static void __cpu_map_entry_free(struct rcu_head *rcu)
433{
434	struct bpf_cpu_map_entry *rcpu;
 
435
436	/* This cpu_map_entry have been disconnected from map and one
437	 * RCU grace-period have elapsed.  Thus, XDP cannot queue any
438	 * new packets and cannot change/set flush_needed that can
439	 * find this entry.
440	 */
441	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
442
 
 
 
 
 
 
 
443	free_percpu(rcpu->bulkq);
444	/* Cannot kthread_stop() here, last put free rcpu resources */
445	put_cpu_map_entry(rcpu);
446}
447
448/* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
449 * ensure any driver rcu critical sections have completed, but this
450 * does not guarantee a flush has happened yet. Because driver side
451 * rcu_read_lock/unlock only protects the running XDP program.  The
452 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
453 * pending flush op doesn't fail.
454 *
455 * The bpf_cpu_map_entry is still used by the kthread, and there can
456 * still be pending packets (in queue and percpu bulkq).  A refcnt
457 * makes sure to last user (kthread_stop vs. call_rcu) free memory
458 * resources.
459 *
460 * The rcu callback __cpu_map_entry_free flush remaining packets in
461 * percpu bulkq to queue.  Due to caller map_delete_elem() disable
462 * preemption, cannot call kthread_stop() to make sure queue is empty.
463 * Instead a work_queue is started for stopping kthread,
464 * cpu_map_kthread_stop, which waits for an RCU grace period before
465 * stopping kthread, emptying the queue.
466 */
467static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
468				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
469{
470	struct bpf_cpu_map_entry *old_rcpu;
471
472	old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
473	if (old_rcpu) {
474		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
475		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
476		schedule_work(&old_rcpu->kthread_stop_wq);
477	}
478}
479
480static int cpu_map_delete_elem(struct bpf_map *map, void *key)
481{
482	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
483	u32 key_cpu = *(u32 *)key;
484
485	if (key_cpu >= map->max_entries)
486		return -EINVAL;
487
488	/* notice caller map_delete_elem() use preempt_disable() */
489	__cpu_map_entry_replace(cmap, key_cpu, NULL);
490	return 0;
491}
492
493static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
494			       u64 map_flags)
495{
496	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
497	struct bpf_cpumap_val cpumap_value = {};
498	struct bpf_cpu_map_entry *rcpu;
 
499	/* Array index key correspond to CPU number */
500	u32 key_cpu = *(u32 *)key;
501
502	memcpy(&cpumap_value, value, map->value_size);
503
504	if (unlikely(map_flags > BPF_EXIST))
505		return -EINVAL;
506	if (unlikely(key_cpu >= cmap->map.max_entries))
507		return -E2BIG;
508	if (unlikely(map_flags == BPF_NOEXIST))
509		return -EEXIST;
510	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
511		return -EOVERFLOW;
512
513	/* Make sure CPU is a valid possible cpu */
514	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
515		return -ENODEV;
516
517	if (cpumap_value.qsize == 0) {
518		rcpu = NULL; /* Same as deleting */
519	} else {
520		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
521		rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
522		if (!rcpu)
523			return -ENOMEM;
524		rcpu->cmap = cmap;
525	}
526	rcu_read_lock();
527	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
528	rcu_read_unlock();
529	return 0;
530}
531
532static void cpu_map_free(struct bpf_map *map)
533{
534	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 
535	u32 i;
536
537	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
538	 * so the bpf programs (can be more than one that used this map) were
539	 * disconnected from events. Wait for outstanding critical sections in
540	 * these programs to complete. The rcu critical section only guarantees
541	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
542	 * It does __not__ ensure pending flush operations (if any) are
543	 * complete.
544	 */
 
 
 
 
 
 
 
 
 
545
546	synchronize_rcu();
 
 
547
548	/* For cpu_map the remote CPUs can still be using the entries
549	 * (struct bpf_cpu_map_entry).
550	 */
551	for (i = 0; i < cmap->map.max_entries; i++) {
552		struct bpf_cpu_map_entry *rcpu;
553
554		rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
555		if (!rcpu)
556			continue;
557
558		/* bq flush and cleanup happens after RCU grace-period */
559		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
560	}
 
561	bpf_map_area_free(cmap->cpu_map);
562	kfree(cmap);
563}
564
565/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
566 * by local_bh_disable() (from XDP calls inside NAPI). The
567 * rcu_read_lock_bh_held() below makes lockdep accept both.
568 */
569static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
570{
571	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
572	struct bpf_cpu_map_entry *rcpu;
573
574	if (key >= map->max_entries)
575		return NULL;
576
577	rcpu = rcu_dereference_check(cmap->cpu_map[key],
578				     rcu_read_lock_bh_held());
579	return rcpu;
580}
581
582static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
583{
584	struct bpf_cpu_map_entry *rcpu =
585		__cpu_map_lookup_elem(map, *(u32 *)key);
586
587	return rcpu ? &rcpu->value : NULL;
588}
589
590static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
591{
592	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
593	u32 index = key ? *(u32 *)key : U32_MAX;
594	u32 *next = next_key;
595
596	if (index >= cmap->map.max_entries) {
597		*next = 0;
598		return 0;
599	}
600
601	if (index == cmap->map.max_entries - 1)
602		return -ENOENT;
603	*next = index + 1;
604	return 0;
605}
606
607static int cpu_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
608{
609	return __bpf_xdp_redirect_map(map, ifindex, flags, 0,
610				      __cpu_map_lookup_elem);
611}
612
613static int cpu_map_btf_id;
614const struct bpf_map_ops cpu_map_ops = {
615	.map_meta_equal		= bpf_map_meta_equal,
616	.map_alloc		= cpu_map_alloc,
617	.map_free		= cpu_map_free,
618	.map_delete_elem	= cpu_map_delete_elem,
619	.map_update_elem	= cpu_map_update_elem,
620	.map_lookup_elem	= cpu_map_lookup_elem,
621	.map_get_next_key	= cpu_map_get_next_key,
622	.map_check_btf		= map_check_no_btf,
623	.map_btf_name		= "bpf_cpu_map",
624	.map_btf_id		= &cpu_map_btf_id,
625	.map_redirect		= cpu_map_redirect,
626};
627
628static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
 
629{
630	struct bpf_cpu_map_entry *rcpu = bq->obj;
631	unsigned int processed = 0, drops = 0;
632	const int to_cpu = rcpu->cpu;
633	struct ptr_ring *q;
634	int i;
635
636	if (unlikely(!bq->count))
637		return;
638
639	q = rcpu->queue;
640	spin_lock(&q->producer_lock);
641
642	for (i = 0; i < bq->count; i++) {
643		struct xdp_frame *xdpf = bq->q[i];
644		int err;
645
646		err = __ptr_ring_produce(q, xdpf);
647		if (err) {
648			drops++;
649			xdp_return_frame_rx_napi(xdpf);
650		}
651		processed++;
652	}
653	bq->count = 0;
654	spin_unlock(&q->producer_lock);
655
656	__list_del_clearprev(&bq->flush_node);
657
658	/* Feedback loop via tracepoints */
659	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
 
660}
661
662/* Runs under RCU-read-side, plus in softirq under NAPI protection.
663 * Thus, safe percpu variable access.
664 */
665static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
666{
667	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
668	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
669
670	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
671		bq_flush_to_queue(bq);
672
673	/* Notice, xdp_buff/page MUST be queued here, long enough for
674	 * driver to code invoking us to finished, due to driver
675	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
676	 *
677	 * Thus, incoming xdp_frame is always queued here (else we race
678	 * with another CPU on page-refcnt and remaining driver code).
679	 * Queue time is very short, as driver will invoke flush
680	 * operation, when completing napi->poll call.
681	 */
682	bq->q[bq->count++] = xdpf;
683
684	if (!bq->flush_node.prev)
685		list_add(&bq->flush_node, flush_list);
686}
687
688int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
689		    struct net_device *dev_rx)
690{
691	struct xdp_frame *xdpf;
692
693	xdpf = xdp_convert_buff_to_frame(xdp);
694	if (unlikely(!xdpf))
695		return -EOVERFLOW;
696
697	/* Info needed when constructing SKB on remote CPU */
698	xdpf->dev_rx = dev_rx;
699
700	bq_enqueue(rcpu, xdpf);
701	return 0;
702}
703
704void __cpu_map_flush(void)
705{
706	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
707	struct xdp_bulk_queue *bq, *tmp;
708
709	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
710		bq_flush_to_queue(bq);
711
712		/* If already running, costs spin_lock_irqsave + smb_mb */
713		wake_up_process(bq->obj->kthread);
714	}
715}
716
717static int __init cpu_map_init(void)
718{
719	int cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
720
721	for_each_possible_cpu(cpu)
722		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
723	return 0;
724}
725
726subsys_initcall(cpu_map_init);