Linux Audio

Check our new training course

Loading...
v4.17
 
  1/* bpf/cpumap.c
  2 *
  3 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
  4 * Released under terms in GPL version 2.  See COPYING.
  5 */
  6
  7/* The 'cpumap' is primarily used as a backend map for XDP BPF helper
  8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
  9 *
 10 * Unlike devmap which redirects XDP frames out another NIC device,
 11 * this map type redirects raw XDP frames to another CPU.  The remote
 12 * CPU will do SKB-allocation and call the normal network stack.
 13 *
 14 * This is a scalability and isolation mechanism, that allow
 15 * separating the early driver network XDP layer, from the rest of the
 16 * netstack, and assigning dedicated CPUs for this stage.  This
 17 * basically allows for 10G wirespeed pre-filtering via bpf.
 18 */
 19#include <linux/bpf.h>
 20#include <linux/filter.h>
 21#include <linux/ptr_ring.h>
 
 22
 23#include <linux/sched.h>
 24#include <linux/workqueue.h>
 25#include <linux/kthread.h>
 26#include <linux/capability.h>
 27#include <trace/events/xdp.h>
 28
 29#include <linux/netdevice.h>   /* netif_receive_skb_core */
 30#include <linux/etherdevice.h> /* eth_type_trans */
 31
 32/* General idea: XDP packets getting XDP redirected to another CPU,
 33 * will maximum be stored/queued for one driver ->poll() call.  It is
 34 * guaranteed that setting flush bit and flush operation happen on
 35 * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
 36 * which queue in bpf_cpu_map_entry contains packets.
 37 */
 38
 39#define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
 
 
 
 40struct xdp_bulk_queue {
 41	void *q[CPU_MAP_BULK_SIZE];
 
 
 42	unsigned int count;
 43};
 44
 45/* Struct for every remote "destination" CPU in map */
 46struct bpf_cpu_map_entry {
 47	u32 cpu;    /* kthread CPU and map index */
 48	int map_id; /* Back reference to map */
 49	u32 qsize;  /* Queue size placeholder for map lookup */
 50
 51	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
 52	struct xdp_bulk_queue __percpu *bulkq;
 53
 
 
 54	/* Queue with potential multi-producers, and single-consumer kthread */
 55	struct ptr_ring *queue;
 56	struct task_struct *kthread;
 57	struct work_struct kthread_stop_wq;
 58
 59	atomic_t refcnt; /* Control when this struct can be free'ed */
 60	struct rcu_head rcu;
 61};
 62
 63struct bpf_cpu_map {
 64	struct bpf_map map;
 65	/* Below members specific for map type */
 66	struct bpf_cpu_map_entry **cpu_map;
 67	unsigned long __percpu *flush_needed;
 68};
 69
 70static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
 71			     struct xdp_bulk_queue *bq);
 72
 73static u64 cpu_map_bitmap_size(const union bpf_attr *attr)
 74{
 75	return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long);
 76}
 77
 78static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
 79{
 80	struct bpf_cpu_map *cmap;
 81	int err = -ENOMEM;
 
 82	u64 cost;
 83	int ret;
 84
 85	if (!capable(CAP_SYS_ADMIN))
 86		return ERR_PTR(-EPERM);
 87
 88	/* check sanity of attributes */
 89	if (attr->max_entries == 0 || attr->key_size != 4 ||
 90	    attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
 91		return ERR_PTR(-EINVAL);
 92
 93	cmap = kzalloc(sizeof(*cmap), GFP_USER);
 94	if (!cmap)
 95		return ERR_PTR(-ENOMEM);
 96
 97	bpf_map_init_from_attr(&cmap->map, attr);
 98
 99	/* Pre-limit array size based on NR_CPUS, not final CPU check */
100	if (cmap->map.max_entries > NR_CPUS) {
101		err = -E2BIG;
102		goto free_cmap;
103	}
104
105	/* make sure page count doesn't overflow */
106	cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
107	cost += cpu_map_bitmap_size(attr) * num_possible_cpus();
108	if (cost >= U32_MAX - PAGE_SIZE)
109		goto free_cmap;
110	cmap->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
111
112	/* Notice returns -EPERM on if map size is larger than memlock limit */
113	ret = bpf_map_precharge_memlock(cmap->map.pages);
114	if (ret) {
115		err = ret;
116		goto free_cmap;
117	}
118
119	/* A per cpu bitfield with a bit per possible CPU in map  */
120	cmap->flush_needed = __alloc_percpu(cpu_map_bitmap_size(attr),
121					    __alignof__(unsigned long));
122	if (!cmap->flush_needed)
123		goto free_cmap;
 
124
125	/* Alloc array for possible remote "destination" CPUs */
126	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
127					   sizeof(struct bpf_cpu_map_entry *),
128					   cmap->map.numa_node);
129	if (!cmap->cpu_map)
130		goto free_percpu;
131
132	return &cmap->map;
133free_percpu:
134	free_percpu(cmap->flush_needed);
 
 
135free_cmap:
136	kfree(cmap);
137	return ERR_PTR(err);
138}
139
140static void __cpu_map_queue_destructor(void *ptr)
141{
142	/* The tear-down procedure should have made sure that queue is
143	 * empty.  See __cpu_map_entry_replace() and work-queue
144	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
145	 * gracefully and warn once.
146	 */
147	if (WARN_ON_ONCE(ptr))
148		page_frag_free(ptr);
149}
150
151static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
152{
153	if (atomic_dec_and_test(&rcpu->refcnt)) {
154		/* The queue should be empty at this point */
155		ptr_ring_cleanup(rcpu->queue, __cpu_map_queue_destructor);
156		kfree(rcpu->queue);
157		kfree(rcpu);
158	}
159}
160
161static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
162{
163	atomic_inc(&rcpu->refcnt);
164}
165
166/* called from workqueue, to workaround syscall using preempt_disable */
167static void cpu_map_kthread_stop(struct work_struct *work)
168{
169	struct bpf_cpu_map_entry *rcpu;
170
171	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
172
173	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
174	 * as it waits until all in-flight call_rcu() callbacks complete.
175	 */
176	rcu_barrier();
177
178	/* kthread_stop will wake_up_process and wait for it to complete */
179	kthread_stop(rcpu->kthread);
180}
181
182/* For now, xdp_pkt is a cpumap internal data structure, with info
183 * carried between enqueue to dequeue. It is mapped into the top
184 * headroom of the packet, to avoid allocating separate mem.
185 */
186struct xdp_pkt {
187	void *data;
188	u16 len;
189	u16 headroom;
190	u16 metasize;
191	struct net_device *dev_rx;
192};
193
194/* Convert xdp_buff to xdp_pkt */
195static struct xdp_pkt *convert_to_xdp_pkt(struct xdp_buff *xdp)
196{
197	struct xdp_pkt *xdp_pkt;
198	int metasize;
199	int headroom;
200
201	/* Assure headroom is available for storing info */
202	headroom = xdp->data - xdp->data_hard_start;
203	metasize = xdp->data - xdp->data_meta;
204	metasize = metasize > 0 ? metasize : 0;
205	if (unlikely((headroom - metasize) < sizeof(*xdp_pkt)))
206		return NULL;
207
208	/* Store info in top of packet */
209	xdp_pkt = xdp->data_hard_start;
210
211	xdp_pkt->data = xdp->data;
212	xdp_pkt->len  = xdp->data_end - xdp->data;
213	xdp_pkt->headroom = headroom - sizeof(*xdp_pkt);
214	xdp_pkt->metasize = metasize;
215
216	return xdp_pkt;
217}
218
219static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
220					 struct xdp_pkt *xdp_pkt)
 
221{
 
222	unsigned int frame_size;
223	void *pkt_data_start;
224	struct sk_buff *skb;
 
 
225
226	/* build_skb need to place skb_shared_info after SKB end, and
227	 * also want to know the memory "truesize".  Thus, need to
228	 * know the memory frame size backing xdp_buff.
229	 *
230	 * XDP was designed to have PAGE_SIZE frames, but this
231	 * assumption is not longer true with ixgbe and i40e.  It
232	 * would be preferred to set frame_size to 2048 or 4096
233	 * depending on the driver.
234	 *   frame_size = 2048;
235	 *   frame_len  = frame_size - sizeof(*xdp_pkt);
236	 *
237	 * Instead, with info avail, skb_shared_info in placed after
238	 * packet len.  This, unfortunately fakes the truesize.
239	 * Another disadvantage of this approach, the skb_shared_info
240	 * is not at a fixed memory location, with mixed length
241	 * packets, which is bad for cache-line hotness.
242	 */
243	frame_size = SKB_DATA_ALIGN(xdp_pkt->len) + xdp_pkt->headroom +
244		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
245
246	pkt_data_start = xdp_pkt->data - xdp_pkt->headroom;
247	skb = build_skb(pkt_data_start, frame_size);
248	if (!skb)
249		return NULL;
250
251	skb_reserve(skb, xdp_pkt->headroom);
252	__skb_put(skb, xdp_pkt->len);
253	if (xdp_pkt->metasize)
254		skb_metadata_set(skb, xdp_pkt->metasize);
255
256	/* Essential SKB info: protocol and skb->dev */
257	skb->protocol = eth_type_trans(skb, xdp_pkt->dev_rx);
258
259	/* Optional SKB info, currently missing:
260	 * - HW checksum info		(skb->ip_summed)
261	 * - HW RX hash			(skb_set_hash)
262	 * - RX ring dev queue index	(skb_record_rx_queue)
263	 */
264
 
 
 
 
 
 
265	return skb;
266}
267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268static int cpu_map_kthread_run(void *data)
269{
270	struct bpf_cpu_map_entry *rcpu = data;
271
272	set_current_state(TASK_INTERRUPTIBLE);
273
274	/* When kthread gives stop order, then rcpu have been disconnected
275	 * from map, thus no new packets can enter. Remaining in-flight
276	 * per CPU stored packets are flushed to this queue.  Wait honoring
277	 * kthread_stop signal until queue is empty.
278	 */
279	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
280		unsigned int processed = 0, drops = 0, sched = 0;
281		struct xdp_pkt *xdp_pkt;
 
 
 
282
283		/* Release CPU reschedule checks */
284		if (__ptr_ring_empty(rcpu->queue)) {
285			set_current_state(TASK_INTERRUPTIBLE);
286			/* Recheck to avoid lost wake-up */
287			if (__ptr_ring_empty(rcpu->queue)) {
288				schedule();
289				sched = 1;
290			} else {
291				__set_current_state(TASK_RUNNING);
292			}
293		} else {
294			sched = cond_resched();
295		}
296
297		/* Process packets in rcpu->queue */
298		local_bh_disable();
299		/*
300		 * The bpf_cpu_map_entry is single consumer, with this
301		 * kthread CPU pinned. Lockless access to ptr_ring
302		 * consume side valid as no-resize allowed of queue.
303		 */
304		while ((xdp_pkt = __ptr_ring_consume(rcpu->queue))) {
305			struct sk_buff *skb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306			int ret;
307
308			skb = cpu_map_build_skb(rcpu, xdp_pkt);
309			if (!skb) {
310				page_frag_free(xdp_pkt);
311				continue;
312			}
313
314			/* Inject into network stack */
315			ret = netif_receive_skb_core(skb);
316			if (ret == NET_RX_DROP)
317				drops++;
318
319			/* Limit BH-disable period */
320			if (++processed == 8)
321				break;
322		}
323		/* Feedback loop via tracepoint */
324		trace_xdp_cpumap_kthread(rcpu->map_id, processed, drops, sched);
325
326		local_bh_enable(); /* resched point, may call do_softirq() */
327	}
328	__set_current_state(TASK_RUNNING);
329
330	put_cpu_map_entry(rcpu);
331	return 0;
332}
333
334static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
335						       int map_id)
336{
337	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
338	struct bpf_cpu_map_entry *rcpu;
339	int numa, err;
 
340
341	/* Have map->numa_node, but choose node of redirect target CPU */
342	numa = cpu_to_node(cpu);
343
344	rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
345	if (!rcpu)
346		return NULL;
347
348	/* Alloc percpu bulkq */
349	rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
350					 sizeof(void *), gfp);
351	if (!rcpu->bulkq)
352		goto free_rcu;
353
 
 
 
 
 
354	/* Alloc queue */
355	rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
356	if (!rcpu->queue)
357		goto free_bulkq;
358
359	err = ptr_ring_init(rcpu->queue, qsize, gfp);
360	if (err)
361		goto free_queue;
362
363	rcpu->cpu    = cpu;
364	rcpu->map_id = map_id;
365	rcpu->qsize  = qsize;
366
367	/* Setup kthread */
368	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
369					       "cpumap/%d/map:%d", cpu, map_id);
370	if (IS_ERR(rcpu->kthread))
371		goto free_ptr_ring;
372
373	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
374	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
375
376	/* Make sure kthread runs on a single CPU */
377	kthread_bind(rcpu->kthread, cpu);
378	wake_up_process(rcpu->kthread);
379
380	return rcpu;
381
382free_ptr_ring:
383	ptr_ring_cleanup(rcpu->queue, NULL);
384free_queue:
385	kfree(rcpu->queue);
386free_bulkq:
387	free_percpu(rcpu->bulkq);
388free_rcu:
389	kfree(rcpu);
390	return NULL;
391}
392
393static void __cpu_map_entry_free(struct rcu_head *rcu)
394{
395	struct bpf_cpu_map_entry *rcpu;
396	int cpu;
397
398	/* This cpu_map_entry have been disconnected from map and one
399	 * RCU graze-period have elapsed.  Thus, XDP cannot queue any
400	 * new packets and cannot change/set flush_needed that can
401	 * find this entry.
402	 */
403	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
404
405	/* Flush remaining packets in percpu bulkq */
406	for_each_online_cpu(cpu) {
407		struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu);
408
409		/* No concurrent bq_enqueue can run at this point */
410		bq_flush_to_queue(rcpu, bq);
411	}
412	free_percpu(rcpu->bulkq);
413	/* Cannot kthread_stop() here, last put free rcpu resources */
414	put_cpu_map_entry(rcpu);
415}
416
417/* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
418 * ensure any driver rcu critical sections have completed, but this
419 * does not guarantee a flush has happened yet. Because driver side
420 * rcu_read_lock/unlock only protects the running XDP program.  The
421 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
422 * pending flush op doesn't fail.
423 *
424 * The bpf_cpu_map_entry is still used by the kthread, and there can
425 * still be pending packets (in queue and percpu bulkq).  A refcnt
426 * makes sure to last user (kthread_stop vs. call_rcu) free memory
427 * resources.
428 *
429 * The rcu callback __cpu_map_entry_free flush remaining packets in
430 * percpu bulkq to queue.  Due to caller map_delete_elem() disable
431 * preemption, cannot call kthread_stop() to make sure queue is empty.
432 * Instead a work_queue is started for stopping kthread,
433 * cpu_map_kthread_stop, which waits for an RCU graze period before
434 * stopping kthread, emptying the queue.
435 */
436static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
437				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
438{
439	struct bpf_cpu_map_entry *old_rcpu;
440
441	old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
442	if (old_rcpu) {
443		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
444		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
445		schedule_work(&old_rcpu->kthread_stop_wq);
446	}
447}
448
449static int cpu_map_delete_elem(struct bpf_map *map, void *key)
450{
451	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
452	u32 key_cpu = *(u32 *)key;
453
454	if (key_cpu >= map->max_entries)
455		return -EINVAL;
456
457	/* notice caller map_delete_elem() use preempt_disable() */
458	__cpu_map_entry_replace(cmap, key_cpu, NULL);
459	return 0;
460}
461
462static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
463			       u64 map_flags)
464{
465	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
466	struct bpf_cpu_map_entry *rcpu;
467
468	/* Array index key correspond to CPU number */
469	u32 key_cpu = *(u32 *)key;
470	/* Value is the queue size */
471	u32 qsize = *(u32 *)value;
472
473	if (unlikely(map_flags > BPF_EXIST))
474		return -EINVAL;
475	if (unlikely(key_cpu >= cmap->map.max_entries))
476		return -E2BIG;
477	if (unlikely(map_flags == BPF_NOEXIST))
478		return -EEXIST;
479	if (unlikely(qsize > 16384)) /* sanity limit on qsize */
480		return -EOVERFLOW;
481
482	/* Make sure CPU is a valid possible cpu */
483	if (!cpu_possible(key_cpu))
484		return -ENODEV;
485
486	if (qsize == 0) {
487		rcpu = NULL; /* Same as deleting */
488	} else {
489		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
490		rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
491		if (!rcpu)
492			return -ENOMEM;
 
493	}
494	rcu_read_lock();
495	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
496	rcu_read_unlock();
497	return 0;
498}
499
500static void cpu_map_free(struct bpf_map *map)
501{
502	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
503	int cpu;
504	u32 i;
505
506	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
507	 * so the bpf programs (can be more than one that used this map) were
508	 * disconnected from events. Wait for outstanding critical sections in
509	 * these programs to complete. The rcu critical section only guarantees
510	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
511	 * It does __not__ ensure pending flush operations (if any) are
512	 * complete.
513	 */
 
 
514	synchronize_rcu();
515
516	/* To ensure all pending flush operations have completed wait for flush
517	 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
518	 * Because the above synchronize_rcu() ensures the map is disconnected
519	 * from the program we can assume no new bits will be set.
520	 */
521	for_each_online_cpu(cpu) {
522		unsigned long *bitmap = per_cpu_ptr(cmap->flush_needed, cpu);
523
524		while (!bitmap_empty(bitmap, cmap->map.max_entries))
525			cond_resched();
526	}
527
528	/* For cpu_map the remote CPUs can still be using the entries
529	 * (struct bpf_cpu_map_entry).
530	 */
531	for (i = 0; i < cmap->map.max_entries; i++) {
532		struct bpf_cpu_map_entry *rcpu;
533
534		rcpu = READ_ONCE(cmap->cpu_map[i]);
535		if (!rcpu)
536			continue;
537
538		/* bq flush and cleanup happens after RCU graze-period */
539		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
540	}
541	free_percpu(cmap->flush_needed);
542	bpf_map_area_free(cmap->cpu_map);
543	kfree(cmap);
544}
545
546struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
547{
548	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
549	struct bpf_cpu_map_entry *rcpu;
550
551	if (key >= map->max_entries)
552		return NULL;
553
554	rcpu = READ_ONCE(cmap->cpu_map[key]);
555	return rcpu;
556}
557
558static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
559{
560	struct bpf_cpu_map_entry *rcpu =
561		__cpu_map_lookup_elem(map, *(u32 *)key);
562
563	return rcpu ? &rcpu->qsize : NULL;
564}
565
566static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
567{
568	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
569	u32 index = key ? *(u32 *)key : U32_MAX;
570	u32 *next = next_key;
571
572	if (index >= cmap->map.max_entries) {
573		*next = 0;
574		return 0;
575	}
576
577	if (index == cmap->map.max_entries - 1)
578		return -ENOENT;
579	*next = index + 1;
580	return 0;
581}
582
583const struct bpf_map_ops cpu_map_ops = {
584	.map_alloc		= cpu_map_alloc,
585	.map_free		= cpu_map_free,
586	.map_delete_elem	= cpu_map_delete_elem,
587	.map_update_elem	= cpu_map_update_elem,
588	.map_lookup_elem	= cpu_map_lookup_elem,
589	.map_get_next_key	= cpu_map_get_next_key,
 
590};
591
592static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
593			     struct xdp_bulk_queue *bq)
594{
 
595	unsigned int processed = 0, drops = 0;
596	const int to_cpu = rcpu->cpu;
597	struct ptr_ring *q;
598	int i;
599
600	if (unlikely(!bq->count))
601		return 0;
602
603	q = rcpu->queue;
604	spin_lock(&q->producer_lock);
605
606	for (i = 0; i < bq->count; i++) {
607		void *xdp_pkt = bq->q[i];
608		int err;
609
610		err = __ptr_ring_produce(q, xdp_pkt);
611		if (err) {
612			drops++;
613			page_frag_free(xdp_pkt); /* Free xdp_pkt */
 
 
 
614		}
615		processed++;
616	}
617	bq->count = 0;
618	spin_unlock(&q->producer_lock);
619
 
 
620	/* Feedback loop via tracepoints */
621	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
622	return 0;
623}
624
625/* Runs under RCU-read-side, plus in softirq under NAPI protection.
626 * Thus, safe percpu variable access.
627 */
628static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_pkt *xdp_pkt)
629{
 
630	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
631
632	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
633		bq_flush_to_queue(rcpu, bq);
634
635	/* Notice, xdp_buff/page MUST be queued here, long enough for
636	 * driver to code invoking us to finished, due to driver
637	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
638	 *
639	 * Thus, incoming xdp_pkt is always queued here (else we race
640	 * with another CPU on page-refcnt and remaining driver code).
641	 * Queue time is very short, as driver will invoke flush
642	 * operation, when completing napi->poll call.
643	 */
644	bq->q[bq->count++] = xdp_pkt;
 
 
 
 
645	return 0;
646}
647
648int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
649		    struct net_device *dev_rx)
650{
651	struct xdp_pkt *xdp_pkt;
652
653	xdp_pkt = convert_to_xdp_pkt(xdp);
654	if (unlikely(!xdp_pkt))
655		return -EOVERFLOW;
656
657	/* Info needed when constructing SKB on remote CPU */
658	xdp_pkt->dev_rx = dev_rx;
659
660	bq_enqueue(rcpu, xdp_pkt);
661	return 0;
662}
663
664void __cpu_map_insert_ctx(struct bpf_map *map, u32 bit)
665{
666	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
667	unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
668
669	__set_bit(bit, bitmap);
670}
671
672void __cpu_map_flush(struct bpf_map *map)
673{
674	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
675	unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
676	u32 bit;
677
678	/* The napi->poll softirq makes sure __cpu_map_insert_ctx()
679	 * and __cpu_map_flush() happen on same CPU. Thus, the percpu
680	 * bitmap indicate which percpu bulkq have packets.
681	 */
682	for_each_set_bit(bit, bitmap, map->max_entries) {
683		struct bpf_cpu_map_entry *rcpu = READ_ONCE(cmap->cpu_map[bit]);
684		struct xdp_bulk_queue *bq;
685
686		/* This is possible if entry is removed by user space
687		 * between xdp redirect and flush op.
688		 */
689		if (unlikely(!rcpu))
690			continue;
691
692		__clear_bit(bit, bitmap);
693
694		/* Flush all frames in bulkq to real queue */
695		bq = this_cpu_ptr(rcpu->bulkq);
696		bq_flush_to_queue(rcpu, bq);
697
698		/* If already running, costs spin_lock_irqsave + smb_mb */
699		wake_up_process(rcpu->kthread);
700	}
701}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* bpf/cpumap.c
  3 *
  4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
 
  5 */
  6
  7/* The 'cpumap' is primarily used as a backend map for XDP BPF helper
  8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
  9 *
 10 * Unlike devmap which redirects XDP frames out another NIC device,
 11 * this map type redirects raw XDP frames to another CPU.  The remote
 12 * CPU will do SKB-allocation and call the normal network stack.
 13 *
 14 * This is a scalability and isolation mechanism, that allow
 15 * separating the early driver network XDP layer, from the rest of the
 16 * netstack, and assigning dedicated CPUs for this stage.  This
 17 * basically allows for 10G wirespeed pre-filtering via bpf.
 18 */
 19#include <linux/bpf.h>
 20#include <linux/filter.h>
 21#include <linux/ptr_ring.h>
 22#include <net/xdp.h>
 23
 24#include <linux/sched.h>
 25#include <linux/workqueue.h>
 26#include <linux/kthread.h>
 27#include <linux/capability.h>
 28#include <trace/events/xdp.h>
 29
 30#include <linux/netdevice.h>   /* netif_receive_skb_core */
 31#include <linux/etherdevice.h> /* eth_type_trans */
 32
 33/* General idea: XDP packets getting XDP redirected to another CPU,
 34 * will maximum be stored/queued for one driver ->poll() call.  It is
 35 * guaranteed that queueing the frame and the flush operation happen on
 36 * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
 37 * which queue in bpf_cpu_map_entry contains packets.
 38 */
 39
 40#define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
 41struct bpf_cpu_map_entry;
 42struct bpf_cpu_map;
 43
 44struct xdp_bulk_queue {
 45	void *q[CPU_MAP_BULK_SIZE];
 46	struct list_head flush_node;
 47	struct bpf_cpu_map_entry *obj;
 48	unsigned int count;
 49};
 50
 51/* Struct for every remote "destination" CPU in map */
 52struct bpf_cpu_map_entry {
 53	u32 cpu;    /* kthread CPU and map index */
 54	int map_id; /* Back reference to map */
 55	u32 qsize;  /* Queue size placeholder for map lookup */
 56
 57	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
 58	struct xdp_bulk_queue __percpu *bulkq;
 59
 60	struct bpf_cpu_map *cmap;
 61
 62	/* Queue with potential multi-producers, and single-consumer kthread */
 63	struct ptr_ring *queue;
 64	struct task_struct *kthread;
 65	struct work_struct kthread_stop_wq;
 66
 67	atomic_t refcnt; /* Control when this struct can be free'ed */
 68	struct rcu_head rcu;
 69};
 70
 71struct bpf_cpu_map {
 72	struct bpf_map map;
 73	/* Below members specific for map type */
 74	struct bpf_cpu_map_entry **cpu_map;
 75	struct list_head __percpu *flush_list;
 76};
 77
 78static int bq_flush_to_queue(struct xdp_bulk_queue *bq, bool in_napi_ctx);
 
 
 
 
 
 
 79
 80static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
 81{
 82	struct bpf_cpu_map *cmap;
 83	int err = -ENOMEM;
 84	int ret, cpu;
 85	u64 cost;
 
 86
 87	if (!capable(CAP_SYS_ADMIN))
 88		return ERR_PTR(-EPERM);
 89
 90	/* check sanity of attributes */
 91	if (attr->max_entries == 0 || attr->key_size != 4 ||
 92	    attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
 93		return ERR_PTR(-EINVAL);
 94
 95	cmap = kzalloc(sizeof(*cmap), GFP_USER);
 96	if (!cmap)
 97		return ERR_PTR(-ENOMEM);
 98
 99	bpf_map_init_from_attr(&cmap->map, attr);
100
101	/* Pre-limit array size based on NR_CPUS, not final CPU check */
102	if (cmap->map.max_entries > NR_CPUS) {
103		err = -E2BIG;
104		goto free_cmap;
105	}
106
107	/* make sure page count doesn't overflow */
108	cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
109	cost += sizeof(struct list_head) * num_possible_cpus();
 
 
 
110
111	/* Notice returns -EPERM on if map size is larger than memlock limit */
112	ret = bpf_map_charge_init(&cmap->map.memory, cost);
113	if (ret) {
114		err = ret;
115		goto free_cmap;
116	}
117
118	cmap->flush_list = alloc_percpu(struct list_head);
119	if (!cmap->flush_list)
120		goto free_charge;
121
122	for_each_possible_cpu(cpu)
123		INIT_LIST_HEAD(per_cpu_ptr(cmap->flush_list, cpu));
124
125	/* Alloc array for possible remote "destination" CPUs */
126	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
127					   sizeof(struct bpf_cpu_map_entry *),
128					   cmap->map.numa_node);
129	if (!cmap->cpu_map)
130		goto free_percpu;
131
132	return &cmap->map;
133free_percpu:
134	free_percpu(cmap->flush_list);
135free_charge:
136	bpf_map_charge_finish(&cmap->map.memory);
137free_cmap:
138	kfree(cmap);
139	return ERR_PTR(err);
140}
141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
143{
144	atomic_inc(&rcpu->refcnt);
145}
146
147/* called from workqueue, to workaround syscall using preempt_disable */
148static void cpu_map_kthread_stop(struct work_struct *work)
149{
150	struct bpf_cpu_map_entry *rcpu;
151
152	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
153
154	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
155	 * as it waits until all in-flight call_rcu() callbacks complete.
156	 */
157	rcu_barrier();
158
159	/* kthread_stop will wake_up_process and wait for it to complete */
160	kthread_stop(rcpu->kthread);
161}
162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
164					 struct xdp_frame *xdpf,
165					 struct sk_buff *skb)
166{
167	unsigned int hard_start_headroom;
168	unsigned int frame_size;
169	void *pkt_data_start;
170
171	/* Part of headroom was reserved to xdpf */
172	hard_start_headroom = sizeof(struct xdp_frame) +  xdpf->headroom;
173
174	/* build_skb need to place skb_shared_info after SKB end, and
175	 * also want to know the memory "truesize".  Thus, need to
176	 * know the memory frame size backing xdp_buff.
177	 *
178	 * XDP was designed to have PAGE_SIZE frames, but this
179	 * assumption is not longer true with ixgbe and i40e.  It
180	 * would be preferred to set frame_size to 2048 or 4096
181	 * depending on the driver.
182	 *   frame_size = 2048;
183	 *   frame_len  = frame_size - sizeof(*xdp_frame);
184	 *
185	 * Instead, with info avail, skb_shared_info in placed after
186	 * packet len.  This, unfortunately fakes the truesize.
187	 * Another disadvantage of this approach, the skb_shared_info
188	 * is not at a fixed memory location, with mixed length
189	 * packets, which is bad for cache-line hotness.
190	 */
191	frame_size = SKB_DATA_ALIGN(xdpf->len + hard_start_headroom) +
192		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
193
194	pkt_data_start = xdpf->data - hard_start_headroom;
195	skb = build_skb_around(skb, pkt_data_start, frame_size);
196	if (unlikely(!skb))
197		return NULL;
198
199	skb_reserve(skb, hard_start_headroom);
200	__skb_put(skb, xdpf->len);
201	if (xdpf->metasize)
202		skb_metadata_set(skb, xdpf->metasize);
203
204	/* Essential SKB info: protocol and skb->dev */
205	skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
206
207	/* Optional SKB info, currently missing:
208	 * - HW checksum info		(skb->ip_summed)
209	 * - HW RX hash			(skb_set_hash)
210	 * - RX ring dev queue index	(skb_record_rx_queue)
211	 */
212
213	/* Until page_pool get SKB return path, release DMA here */
214	xdp_release_frame(xdpf);
215
216	/* Allow SKB to reuse area used by xdp_frame */
217	xdp_scrub_frame(xdpf);
218
219	return skb;
220}
221
222static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
223{
224	/* The tear-down procedure should have made sure that queue is
225	 * empty.  See __cpu_map_entry_replace() and work-queue
226	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
227	 * gracefully and warn once.
228	 */
229	struct xdp_frame *xdpf;
230
231	while ((xdpf = ptr_ring_consume(ring)))
232		if (WARN_ON_ONCE(xdpf))
233			xdp_return_frame(xdpf);
234}
235
236static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
237{
238	if (atomic_dec_and_test(&rcpu->refcnt)) {
239		/* The queue should be empty at this point */
240		__cpu_map_ring_cleanup(rcpu->queue);
241		ptr_ring_cleanup(rcpu->queue, NULL);
242		kfree(rcpu->queue);
243		kfree(rcpu);
244	}
245}
246
247#define CPUMAP_BATCH 8
248
249static int cpu_map_kthread_run(void *data)
250{
251	struct bpf_cpu_map_entry *rcpu = data;
252
253	set_current_state(TASK_INTERRUPTIBLE);
254
255	/* When kthread gives stop order, then rcpu have been disconnected
256	 * from map, thus no new packets can enter. Remaining in-flight
257	 * per CPU stored packets are flushed to this queue.  Wait honoring
258	 * kthread_stop signal until queue is empty.
259	 */
260	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
261		unsigned int drops = 0, sched = 0;
262		void *frames[CPUMAP_BATCH];
263		void *skbs[CPUMAP_BATCH];
264		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
265		int i, n, m;
266
267		/* Release CPU reschedule checks */
268		if (__ptr_ring_empty(rcpu->queue)) {
269			set_current_state(TASK_INTERRUPTIBLE);
270			/* Recheck to avoid lost wake-up */
271			if (__ptr_ring_empty(rcpu->queue)) {
272				schedule();
273				sched = 1;
274			} else {
275				__set_current_state(TASK_RUNNING);
276			}
277		} else {
278			sched = cond_resched();
279		}
280
 
 
281		/*
282		 * The bpf_cpu_map_entry is single consumer, with this
283		 * kthread CPU pinned. Lockless access to ptr_ring
284		 * consume side valid as no-resize allowed of queue.
285		 */
286		n = ptr_ring_consume_batched(rcpu->queue, frames, CPUMAP_BATCH);
287
288		for (i = 0; i < n; i++) {
289			void *f = frames[i];
290			struct page *page = virt_to_page(f);
291
292			/* Bring struct page memory area to curr CPU. Read by
293			 * build_skb_around via page_is_pfmemalloc(), and when
294			 * freed written by page_frag_free call.
295			 */
296			prefetchw(page);
297		}
298
299		m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, n, skbs);
300		if (unlikely(m == 0)) {
301			for (i = 0; i < n; i++)
302				skbs[i] = NULL; /* effect: xdp_return_frame */
303			drops = n;
304		}
305
306		local_bh_disable();
307		for (i = 0; i < n; i++) {
308			struct xdp_frame *xdpf = frames[i];
309			struct sk_buff *skb = skbs[i];
310			int ret;
311
312			skb = cpu_map_build_skb(rcpu, xdpf, skb);
313			if (!skb) {
314				xdp_return_frame(xdpf);
315				continue;
316			}
317
318			/* Inject into network stack */
319			ret = netif_receive_skb_core(skb);
320			if (ret == NET_RX_DROP)
321				drops++;
 
 
 
 
322		}
323		/* Feedback loop via tracepoint */
324		trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched);
325
326		local_bh_enable(); /* resched point, may call do_softirq() */
327	}
328	__set_current_state(TASK_RUNNING);
329
330	put_cpu_map_entry(rcpu);
331	return 0;
332}
333
334static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
335						       int map_id)
336{
337	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
338	struct bpf_cpu_map_entry *rcpu;
339	struct xdp_bulk_queue *bq;
340	int numa, err, i;
341
342	/* Have map->numa_node, but choose node of redirect target CPU */
343	numa = cpu_to_node(cpu);
344
345	rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
346	if (!rcpu)
347		return NULL;
348
349	/* Alloc percpu bulkq */
350	rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
351					 sizeof(void *), gfp);
352	if (!rcpu->bulkq)
353		goto free_rcu;
354
355	for_each_possible_cpu(i) {
356		bq = per_cpu_ptr(rcpu->bulkq, i);
357		bq->obj = rcpu;
358	}
359
360	/* Alloc queue */
361	rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
362	if (!rcpu->queue)
363		goto free_bulkq;
364
365	err = ptr_ring_init(rcpu->queue, qsize, gfp);
366	if (err)
367		goto free_queue;
368
369	rcpu->cpu    = cpu;
370	rcpu->map_id = map_id;
371	rcpu->qsize  = qsize;
372
373	/* Setup kthread */
374	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
375					       "cpumap/%d/map:%d", cpu, map_id);
376	if (IS_ERR(rcpu->kthread))
377		goto free_ptr_ring;
378
379	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
380	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
381
382	/* Make sure kthread runs on a single CPU */
383	kthread_bind(rcpu->kthread, cpu);
384	wake_up_process(rcpu->kthread);
385
386	return rcpu;
387
388free_ptr_ring:
389	ptr_ring_cleanup(rcpu->queue, NULL);
390free_queue:
391	kfree(rcpu->queue);
392free_bulkq:
393	free_percpu(rcpu->bulkq);
394free_rcu:
395	kfree(rcpu);
396	return NULL;
397}
398
399static void __cpu_map_entry_free(struct rcu_head *rcu)
400{
401	struct bpf_cpu_map_entry *rcpu;
402	int cpu;
403
404	/* This cpu_map_entry have been disconnected from map and one
405	 * RCU graze-period have elapsed.  Thus, XDP cannot queue any
406	 * new packets and cannot change/set flush_needed that can
407	 * find this entry.
408	 */
409	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
410
411	/* Flush remaining packets in percpu bulkq */
412	for_each_online_cpu(cpu) {
413		struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu);
414
415		/* No concurrent bq_enqueue can run at this point */
416		bq_flush_to_queue(bq, false);
417	}
418	free_percpu(rcpu->bulkq);
419	/* Cannot kthread_stop() here, last put free rcpu resources */
420	put_cpu_map_entry(rcpu);
421}
422
423/* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
424 * ensure any driver rcu critical sections have completed, but this
425 * does not guarantee a flush has happened yet. Because driver side
426 * rcu_read_lock/unlock only protects the running XDP program.  The
427 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
428 * pending flush op doesn't fail.
429 *
430 * The bpf_cpu_map_entry is still used by the kthread, and there can
431 * still be pending packets (in queue and percpu bulkq).  A refcnt
432 * makes sure to last user (kthread_stop vs. call_rcu) free memory
433 * resources.
434 *
435 * The rcu callback __cpu_map_entry_free flush remaining packets in
436 * percpu bulkq to queue.  Due to caller map_delete_elem() disable
437 * preemption, cannot call kthread_stop() to make sure queue is empty.
438 * Instead a work_queue is started for stopping kthread,
439 * cpu_map_kthread_stop, which waits for an RCU graze period before
440 * stopping kthread, emptying the queue.
441 */
442static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
443				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
444{
445	struct bpf_cpu_map_entry *old_rcpu;
446
447	old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
448	if (old_rcpu) {
449		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
450		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
451		schedule_work(&old_rcpu->kthread_stop_wq);
452	}
453}
454
455static int cpu_map_delete_elem(struct bpf_map *map, void *key)
456{
457	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
458	u32 key_cpu = *(u32 *)key;
459
460	if (key_cpu >= map->max_entries)
461		return -EINVAL;
462
463	/* notice caller map_delete_elem() use preempt_disable() */
464	__cpu_map_entry_replace(cmap, key_cpu, NULL);
465	return 0;
466}
467
468static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
469			       u64 map_flags)
470{
471	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
472	struct bpf_cpu_map_entry *rcpu;
473
474	/* Array index key correspond to CPU number */
475	u32 key_cpu = *(u32 *)key;
476	/* Value is the queue size */
477	u32 qsize = *(u32 *)value;
478
479	if (unlikely(map_flags > BPF_EXIST))
480		return -EINVAL;
481	if (unlikely(key_cpu >= cmap->map.max_entries))
482		return -E2BIG;
483	if (unlikely(map_flags == BPF_NOEXIST))
484		return -EEXIST;
485	if (unlikely(qsize > 16384)) /* sanity limit on qsize */
486		return -EOVERFLOW;
487
488	/* Make sure CPU is a valid possible cpu */
489	if (!cpu_possible(key_cpu))
490		return -ENODEV;
491
492	if (qsize == 0) {
493		rcpu = NULL; /* Same as deleting */
494	} else {
495		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
496		rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
497		if (!rcpu)
498			return -ENOMEM;
499		rcpu->cmap = cmap;
500	}
501	rcu_read_lock();
502	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
503	rcu_read_unlock();
504	return 0;
505}
506
507static void cpu_map_free(struct bpf_map *map)
508{
509	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
510	int cpu;
511	u32 i;
512
513	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
514	 * so the bpf programs (can be more than one that used this map) were
515	 * disconnected from events. Wait for outstanding critical sections in
516	 * these programs to complete. The rcu critical section only guarantees
517	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
518	 * It does __not__ ensure pending flush operations (if any) are
519	 * complete.
520	 */
521
522	bpf_clear_redirect_map(map);
523	synchronize_rcu();
524
525	/* To ensure all pending flush operations have completed wait for flush
526	 * list be empty on _all_ cpus. Because the above synchronize_rcu()
527	 * ensures the map is disconnected from the program we can assume no new
528	 * items will be added to the list.
529	 */
530	for_each_online_cpu(cpu) {
531		struct list_head *flush_list = per_cpu_ptr(cmap->flush_list, cpu);
532
533		while (!list_empty(flush_list))
534			cond_resched();
535	}
536
537	/* For cpu_map the remote CPUs can still be using the entries
538	 * (struct bpf_cpu_map_entry).
539	 */
540	for (i = 0; i < cmap->map.max_entries; i++) {
541		struct bpf_cpu_map_entry *rcpu;
542
543		rcpu = READ_ONCE(cmap->cpu_map[i]);
544		if (!rcpu)
545			continue;
546
547		/* bq flush and cleanup happens after RCU graze-period */
548		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
549	}
550	free_percpu(cmap->flush_list);
551	bpf_map_area_free(cmap->cpu_map);
552	kfree(cmap);
553}
554
555struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
556{
557	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
558	struct bpf_cpu_map_entry *rcpu;
559
560	if (key >= map->max_entries)
561		return NULL;
562
563	rcpu = READ_ONCE(cmap->cpu_map[key]);
564	return rcpu;
565}
566
567static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
568{
569	struct bpf_cpu_map_entry *rcpu =
570		__cpu_map_lookup_elem(map, *(u32 *)key);
571
572	return rcpu ? &rcpu->qsize : NULL;
573}
574
575static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
576{
577	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
578	u32 index = key ? *(u32 *)key : U32_MAX;
579	u32 *next = next_key;
580
581	if (index >= cmap->map.max_entries) {
582		*next = 0;
583		return 0;
584	}
585
586	if (index == cmap->map.max_entries - 1)
587		return -ENOENT;
588	*next = index + 1;
589	return 0;
590}
591
592const struct bpf_map_ops cpu_map_ops = {
593	.map_alloc		= cpu_map_alloc,
594	.map_free		= cpu_map_free,
595	.map_delete_elem	= cpu_map_delete_elem,
596	.map_update_elem	= cpu_map_update_elem,
597	.map_lookup_elem	= cpu_map_lookup_elem,
598	.map_get_next_key	= cpu_map_get_next_key,
599	.map_check_btf		= map_check_no_btf,
600};
601
602static int bq_flush_to_queue(struct xdp_bulk_queue *bq, bool in_napi_ctx)
 
603{
604	struct bpf_cpu_map_entry *rcpu = bq->obj;
605	unsigned int processed = 0, drops = 0;
606	const int to_cpu = rcpu->cpu;
607	struct ptr_ring *q;
608	int i;
609
610	if (unlikely(!bq->count))
611		return 0;
612
613	q = rcpu->queue;
614	spin_lock(&q->producer_lock);
615
616	for (i = 0; i < bq->count; i++) {
617		struct xdp_frame *xdpf = bq->q[i];
618		int err;
619
620		err = __ptr_ring_produce(q, xdpf);
621		if (err) {
622			drops++;
623			if (likely(in_napi_ctx))
624				xdp_return_frame_rx_napi(xdpf);
625			else
626				xdp_return_frame(xdpf);
627		}
628		processed++;
629	}
630	bq->count = 0;
631	spin_unlock(&q->producer_lock);
632
633	__list_del_clearprev(&bq->flush_node);
634
635	/* Feedback loop via tracepoints */
636	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
637	return 0;
638}
639
640/* Runs under RCU-read-side, plus in softirq under NAPI protection.
641 * Thus, safe percpu variable access.
642 */
643static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
644{
645	struct list_head *flush_list = this_cpu_ptr(rcpu->cmap->flush_list);
646	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
647
648	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
649		bq_flush_to_queue(bq, true);
650
651	/* Notice, xdp_buff/page MUST be queued here, long enough for
652	 * driver to code invoking us to finished, due to driver
653	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
654	 *
655	 * Thus, incoming xdp_frame is always queued here (else we race
656	 * with another CPU on page-refcnt and remaining driver code).
657	 * Queue time is very short, as driver will invoke flush
658	 * operation, when completing napi->poll call.
659	 */
660	bq->q[bq->count++] = xdpf;
661
662	if (!bq->flush_node.prev)
663		list_add(&bq->flush_node, flush_list);
664
665	return 0;
666}
667
668int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
669		    struct net_device *dev_rx)
670{
671	struct xdp_frame *xdpf;
672
673	xdpf = convert_to_xdp_frame(xdp);
674	if (unlikely(!xdpf))
675		return -EOVERFLOW;
676
677	/* Info needed when constructing SKB on remote CPU */
678	xdpf->dev_rx = dev_rx;
679
680	bq_enqueue(rcpu, xdpf);
681	return 0;
682}
683
 
 
 
 
 
 
 
 
684void __cpu_map_flush(struct bpf_map *map)
685{
686	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
687	struct list_head *flush_list = this_cpu_ptr(cmap->flush_list);
688	struct xdp_bulk_queue *bq, *tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
689
690	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
691		bq_flush_to_queue(bq, true);
 
692
693		/* If already running, costs spin_lock_irqsave + smb_mb */
694		wake_up_process(bq->obj->kthread);
695	}
696}