Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/super.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  Big-endian to little-endian byte-swapping/bitmaps by
  17 *        David S. Miller (davem@caip.rutgers.edu), 1995
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/string.h>
  22#include <linux/fs.h>
  23#include <linux/time.h>
  24#include <linux/vmalloc.h>
  25#include <linux/slab.h>
  26#include <linux/init.h>
  27#include <linux/blkdev.h>
  28#include <linux/backing-dev.h>
  29#include <linux/parser.h>
  30#include <linux/buffer_head.h>
  31#include <linux/exportfs.h>
  32#include <linux/vfs.h>
  33#include <linux/random.h>
  34#include <linux/mount.h>
  35#include <linux/namei.h>
  36#include <linux/quotaops.h>
  37#include <linux/seq_file.h>
  38#include <linux/ctype.h>
  39#include <linux/log2.h>
  40#include <linux/crc16.h>
  41#include <linux/dax.h>
  42#include <linux/cleancache.h>
  43#include <linux/uaccess.h>
  44#include <linux/iversion.h>
  45
 
  46#include <linux/kthread.h>
  47#include <linux/freezer.h>
 
 
 
  48
  49#include "ext4.h"
  50#include "ext4_extents.h"	/* Needed for trace points definition */
  51#include "ext4_jbd2.h"
  52#include "xattr.h"
  53#include "acl.h"
  54#include "mballoc.h"
  55#include "fsmap.h"
  56
  57#define CREATE_TRACE_POINTS
  58#include <trace/events/ext4.h>
  59
  60static struct ext4_lazy_init *ext4_li_info;
  61static struct mutex ext4_li_mtx;
  62static struct ratelimit_state ext4_mount_msg_ratelimit;
  63
  64static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
  65			     unsigned long journal_devnum);
  66static int ext4_show_options(struct seq_file *seq, struct dentry *root);
  67static int ext4_commit_super(struct super_block *sb, int sync);
  68static void ext4_mark_recovery_complete(struct super_block *sb,
 
  69					struct ext4_super_block *es);
  70static void ext4_clear_journal_err(struct super_block *sb,
  71				   struct ext4_super_block *es);
  72static int ext4_sync_fs(struct super_block *sb, int wait);
  73static int ext4_remount(struct super_block *sb, int *flags, char *data);
  74static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
  75static int ext4_unfreeze(struct super_block *sb);
  76static int ext4_freeze(struct super_block *sb);
  77static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
  78		       const char *dev_name, void *data);
  79static inline int ext2_feature_set_ok(struct super_block *sb);
  80static inline int ext3_feature_set_ok(struct super_block *sb);
  81static int ext4_feature_set_ok(struct super_block *sb, int readonly);
  82static void ext4_destroy_lazyinit_thread(void);
  83static void ext4_unregister_li_request(struct super_block *sb);
  84static void ext4_clear_request_list(void);
  85static struct inode *ext4_get_journal_inode(struct super_block *sb,
  86					    unsigned int journal_inum);
 
 
 
 
 
 
 
 
 
 
 
  87
  88/*
  89 * Lock ordering
  90 *
  91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
  92 * i_mmap_rwsem (inode->i_mmap_rwsem)!
  93 *
  94 * page fault path:
  95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
  96 *   page lock -> i_data_sem (rw)
  97 *
  98 * buffered write path:
  99 * sb_start_write -> i_mutex -> mmap_sem
 100 * sb_start_write -> i_mutex -> transaction start -> page lock ->
 101 *   i_data_sem (rw)
 102 *
 103 * truncate:
 104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
 
 106 *   i_data_sem (rw)
 107 *
 108 * direct IO:
 109 * sb_start_write -> i_mutex -> mmap_sem
 110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
 111 *
 112 * writepages:
 113 * transaction start -> page lock(s) -> i_data_sem (rw)
 114 */
 115
 
 
 
 
 
 
 
 
 116#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
 117static struct file_system_type ext2_fs_type = {
 118	.owner		= THIS_MODULE,
 119	.name		= "ext2",
 120	.mount		= ext4_mount,
 121	.kill_sb	= kill_block_super,
 122	.fs_flags	= FS_REQUIRES_DEV,
 
 123};
 124MODULE_ALIAS_FS("ext2");
 125MODULE_ALIAS("ext2");
 126#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
 127#else
 128#define IS_EXT2_SB(sb) (0)
 129#endif
 130
 131
 132static struct file_system_type ext3_fs_type = {
 133	.owner		= THIS_MODULE,
 134	.name		= "ext3",
 135	.mount		= ext4_mount,
 136	.kill_sb	= kill_block_super,
 137	.fs_flags	= FS_REQUIRES_DEV,
 
 138};
 139MODULE_ALIAS_FS("ext3");
 140MODULE_ALIAS("ext3");
 141#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 142
 143static int ext4_verify_csum_type(struct super_block *sb,
 144				 struct ext4_super_block *es)
 145{
 146	if (!ext4_has_feature_metadata_csum(sb))
 147		return 1;
 148
 149	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
 150}
 151
 152static __le32 ext4_superblock_csum(struct super_block *sb,
 153				   struct ext4_super_block *es)
 154{
 155	struct ext4_sb_info *sbi = EXT4_SB(sb);
 156	int offset = offsetof(struct ext4_super_block, s_checksum);
 157	__u32 csum;
 158
 159	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
 160
 161	return cpu_to_le32(csum);
 162}
 163
 164static int ext4_superblock_csum_verify(struct super_block *sb,
 165				       struct ext4_super_block *es)
 166{
 167	if (!ext4_has_metadata_csum(sb))
 168		return 1;
 169
 170	return es->s_checksum == ext4_superblock_csum(sb, es);
 171}
 172
 173void ext4_superblock_csum_set(struct super_block *sb)
 174{
 175	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 176
 177	if (!ext4_has_metadata_csum(sb))
 178		return;
 179
 180	es->s_checksum = ext4_superblock_csum(sb, es);
 181}
 182
 183void *ext4_kvmalloc(size_t size, gfp_t flags)
 184{
 185	void *ret;
 186
 187	ret = kmalloc(size, flags | __GFP_NOWARN);
 188	if (!ret)
 189		ret = __vmalloc(size, flags, PAGE_KERNEL);
 190	return ret;
 191}
 192
 193void *ext4_kvzalloc(size_t size, gfp_t flags)
 194{
 195	void *ret;
 196
 197	ret = kzalloc(size, flags | __GFP_NOWARN);
 198	if (!ret)
 199		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
 200	return ret;
 201}
 202
 203ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
 204			       struct ext4_group_desc *bg)
 205{
 206	return le32_to_cpu(bg->bg_block_bitmap_lo) |
 207		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 208		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
 209}
 210
 211ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
 212			       struct ext4_group_desc *bg)
 213{
 214	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
 215		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 216		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
 217}
 218
 219ext4_fsblk_t ext4_inode_table(struct super_block *sb,
 220			      struct ext4_group_desc *bg)
 221{
 222	return le32_to_cpu(bg->bg_inode_table_lo) |
 223		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 224		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
 225}
 226
 227__u32 ext4_free_group_clusters(struct super_block *sb,
 228			       struct ext4_group_desc *bg)
 229{
 230	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
 231		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 232		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
 233}
 234
 235__u32 ext4_free_inodes_count(struct super_block *sb,
 236			      struct ext4_group_desc *bg)
 237{
 238	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
 239		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 240		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
 241}
 242
 243__u32 ext4_used_dirs_count(struct super_block *sb,
 244			      struct ext4_group_desc *bg)
 245{
 246	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
 247		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 248		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
 249}
 250
 251__u32 ext4_itable_unused_count(struct super_block *sb,
 252			      struct ext4_group_desc *bg)
 253{
 254	return le16_to_cpu(bg->bg_itable_unused_lo) |
 255		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 256		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
 257}
 258
 259void ext4_block_bitmap_set(struct super_block *sb,
 260			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 261{
 262	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
 263	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 264		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
 265}
 266
 267void ext4_inode_bitmap_set(struct super_block *sb,
 268			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 269{
 270	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
 271	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 272		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
 273}
 274
 275void ext4_inode_table_set(struct super_block *sb,
 276			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
 277{
 278	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
 279	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 280		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
 281}
 282
 283void ext4_free_group_clusters_set(struct super_block *sb,
 284				  struct ext4_group_desc *bg, __u32 count)
 285{
 286	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
 287	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 288		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
 289}
 290
 291void ext4_free_inodes_set(struct super_block *sb,
 292			  struct ext4_group_desc *bg, __u32 count)
 293{
 294	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
 295	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 296		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
 297}
 298
 299void ext4_used_dirs_set(struct super_block *sb,
 300			  struct ext4_group_desc *bg, __u32 count)
 301{
 302	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
 303	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 304		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
 305}
 306
 307void ext4_itable_unused_set(struct super_block *sb,
 308			  struct ext4_group_desc *bg, __u32 count)
 309{
 310	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
 311	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 312		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
 313}
 314
 315
 316static void __save_error_info(struct super_block *sb, const char *func,
 317			    unsigned int line)
 318{
 319	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 320
 321	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
 322	if (bdev_read_only(sb->s_bdev))
 323		return;
 324	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
 325	es->s_last_error_time = cpu_to_le32(get_seconds());
 326	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
 327	es->s_last_error_line = cpu_to_le32(line);
 328	if (!es->s_first_error_time) {
 329		es->s_first_error_time = es->s_last_error_time;
 330		strncpy(es->s_first_error_func, func,
 331			sizeof(es->s_first_error_func));
 332		es->s_first_error_line = cpu_to_le32(line);
 333		es->s_first_error_ino = es->s_last_error_ino;
 334		es->s_first_error_block = es->s_last_error_block;
 335	}
 336	/*
 337	 * Start the daily error reporting function if it hasn't been
 338	 * started already
 339	 */
 340	if (!es->s_error_count)
 341		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
 342	le32_add_cpu(&es->s_error_count, 1);
 343}
 344
 345static void save_error_info(struct super_block *sb, const char *func,
 346			    unsigned int line)
 347{
 348	__save_error_info(sb, func, line);
 349	ext4_commit_super(sb, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 350}
 351
 352/*
 353 * The del_gendisk() function uninitializes the disk-specific data
 354 * structures, including the bdi structure, without telling anyone
 355 * else.  Once this happens, any attempt to call mark_buffer_dirty()
 356 * (for example, by ext4_commit_super), will cause a kernel OOPS.
 357 * This is a kludge to prevent these oops until we can put in a proper
 358 * hook in del_gendisk() to inform the VFS and file system layers.
 359 */
 360static int block_device_ejected(struct super_block *sb)
 361{
 362	struct inode *bd_inode = sb->s_bdev->bd_inode;
 363	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
 364
 365	return bdi->dev == NULL;
 366}
 367
 368static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
 369{
 370	struct super_block		*sb = journal->j_private;
 371	struct ext4_sb_info		*sbi = EXT4_SB(sb);
 372	int				error = is_journal_aborted(journal);
 373	struct ext4_journal_cb_entry	*jce;
 374
 375	BUG_ON(txn->t_state == T_FINISHED);
 376
 377	ext4_process_freed_data(sb, txn->t_tid);
 
 378
 379	spin_lock(&sbi->s_md_lock);
 380	while (!list_empty(&txn->t_private_list)) {
 381		jce = list_entry(txn->t_private_list.next,
 382				 struct ext4_journal_cb_entry, jce_list);
 383		list_del_init(&jce->jce_list);
 384		spin_unlock(&sbi->s_md_lock);
 385		jce->jce_func(sb, jce, error);
 386		spin_lock(&sbi->s_md_lock);
 387	}
 388	spin_unlock(&sbi->s_md_lock);
 389}
 390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391/* Deal with the reporting of failure conditions on a filesystem such as
 392 * inconsistencies detected or read IO failures.
 393 *
 394 * On ext2, we can store the error state of the filesystem in the
 395 * superblock.  That is not possible on ext4, because we may have other
 396 * write ordering constraints on the superblock which prevent us from
 397 * writing it out straight away; and given that the journal is about to
 398 * be aborted, we can't rely on the current, or future, transactions to
 399 * write out the superblock safely.
 400 *
 401 * We'll just use the jbd2_journal_abort() error code to record an error in
 402 * the journal instead.  On recovery, the journal will complain about
 403 * that error until we've noted it down and cleared it.
 
 
 
 
 
 
 404 */
 405
 406static void ext4_handle_error(struct super_block *sb)
 
 407{
 408	if (sb_rdonly(sb))
 409		return;
 410
 411	if (!test_opt(sb, ERRORS_CONT)) {
 412		journal_t *journal = EXT4_SB(sb)->s_journal;
 
 413
 414		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
 
 415		if (journal)
 416			jbd2_journal_abort(journal, -EIO);
 417	}
 418	if (test_opt(sb, ERRORS_RO)) {
 419		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 
 420		/*
 421		 * Make sure updated value of ->s_mount_flags will be visible
 422		 * before ->s_flags update
 
 
 423		 */
 424		smp_wmb();
 425		sb->s_flags |= SB_RDONLY;
 
 
 426	}
 427	if (test_opt(sb, ERRORS_PANIC)) {
 428		if (EXT4_SB(sb)->s_journal &&
 429		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
 430			return;
 
 
 
 431		panic("EXT4-fs (device %s): panic forced after error\n",
 432			sb->s_id);
 433	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 434}
 435
 436#define ext4_error_ratelimit(sb)					\
 437		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
 438			     "EXT4-fs error")
 439
 440void __ext4_error(struct super_block *sb, const char *function,
 441		  unsigned int line, const char *fmt, ...)
 
 442{
 443	struct va_format vaf;
 444	va_list args;
 445
 446	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 447		return;
 448
 449	trace_ext4_error(sb, function, line);
 450	if (ext4_error_ratelimit(sb)) {
 451		va_start(args, fmt);
 452		vaf.fmt = fmt;
 453		vaf.va = &args;
 454		printk(KERN_CRIT
 455		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
 456		       sb->s_id, function, line, current->comm, &vaf);
 457		va_end(args);
 458	}
 459	save_error_info(sb, function, line);
 460	ext4_handle_error(sb);
 
 461}
 462
 463void __ext4_error_inode(struct inode *inode, const char *function,
 464			unsigned int line, ext4_fsblk_t block,
 465			const char *fmt, ...)
 466{
 467	va_list args;
 468	struct va_format vaf;
 469	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
 470
 471	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 472		return;
 473
 474	trace_ext4_error(inode->i_sb, function, line);
 475	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
 476	es->s_last_error_block = cpu_to_le64(block);
 477	if (ext4_error_ratelimit(inode->i_sb)) {
 478		va_start(args, fmt);
 479		vaf.fmt = fmt;
 480		vaf.va = &args;
 481		if (block)
 482			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 483			       "inode #%lu: block %llu: comm %s: %pV\n",
 484			       inode->i_sb->s_id, function, line, inode->i_ino,
 485			       block, current->comm, &vaf);
 486		else
 487			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 488			       "inode #%lu: comm %s: %pV\n",
 489			       inode->i_sb->s_id, function, line, inode->i_ino,
 490			       current->comm, &vaf);
 491		va_end(args);
 492	}
 493	save_error_info(inode->i_sb, function, line);
 494	ext4_handle_error(inode->i_sb);
 
 
 495}
 496
 497void __ext4_error_file(struct file *file, const char *function,
 498		       unsigned int line, ext4_fsblk_t block,
 499		       const char *fmt, ...)
 500{
 501	va_list args;
 502	struct va_format vaf;
 503	struct ext4_super_block *es;
 504	struct inode *inode = file_inode(file);
 505	char pathname[80], *path;
 506
 507	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 508		return;
 509
 510	trace_ext4_error(inode->i_sb, function, line);
 511	es = EXT4_SB(inode->i_sb)->s_es;
 512	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
 513	if (ext4_error_ratelimit(inode->i_sb)) {
 514		path = file_path(file, pathname, sizeof(pathname));
 515		if (IS_ERR(path))
 516			path = "(unknown)";
 517		va_start(args, fmt);
 518		vaf.fmt = fmt;
 519		vaf.va = &args;
 520		if (block)
 521			printk(KERN_CRIT
 522			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 523			       "block %llu: comm %s: path %s: %pV\n",
 524			       inode->i_sb->s_id, function, line, inode->i_ino,
 525			       block, current->comm, path, &vaf);
 526		else
 527			printk(KERN_CRIT
 528			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 529			       "comm %s: path %s: %pV\n",
 530			       inode->i_sb->s_id, function, line, inode->i_ino,
 531			       current->comm, path, &vaf);
 532		va_end(args);
 533	}
 534	save_error_info(inode->i_sb, function, line);
 535	ext4_handle_error(inode->i_sb);
 
 
 536}
 537
 538const char *ext4_decode_error(struct super_block *sb, int errno,
 539			      char nbuf[16])
 540{
 541	char *errstr = NULL;
 542
 543	switch (errno) {
 544	case -EFSCORRUPTED:
 545		errstr = "Corrupt filesystem";
 546		break;
 547	case -EFSBADCRC:
 548		errstr = "Filesystem failed CRC";
 549		break;
 550	case -EIO:
 551		errstr = "IO failure";
 552		break;
 553	case -ENOMEM:
 554		errstr = "Out of memory";
 555		break;
 556	case -EROFS:
 557		if (!sb || (EXT4_SB(sb)->s_journal &&
 558			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
 559			errstr = "Journal has aborted";
 560		else
 561			errstr = "Readonly filesystem";
 562		break;
 563	default:
 564		/* If the caller passed in an extra buffer for unknown
 565		 * errors, textualise them now.  Else we just return
 566		 * NULL. */
 567		if (nbuf) {
 568			/* Check for truncated error codes... */
 569			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
 570				errstr = nbuf;
 571		}
 572		break;
 573	}
 574
 575	return errstr;
 576}
 577
 578/* __ext4_std_error decodes expected errors from journaling functions
 579 * automatically and invokes the appropriate error response.  */
 580
 581void __ext4_std_error(struct super_block *sb, const char *function,
 582		      unsigned int line, int errno)
 583{
 584	char nbuf[16];
 585	const char *errstr;
 586
 587	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 588		return;
 589
 590	/* Special case: if the error is EROFS, and we're not already
 591	 * inside a transaction, then there's really no point in logging
 592	 * an error. */
 593	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
 594		return;
 595
 596	if (ext4_error_ratelimit(sb)) {
 597		errstr = ext4_decode_error(sb, errno, nbuf);
 598		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
 599		       sb->s_id, function, line, errstr);
 600	}
 
 601
 602	save_error_info(sb, function, line);
 603	ext4_handle_error(sb);
 604}
 605
 606/*
 607 * ext4_abort is a much stronger failure handler than ext4_error.  The
 608 * abort function may be used to deal with unrecoverable failures such
 609 * as journal IO errors or ENOMEM at a critical moment in log management.
 610 *
 611 * We unconditionally force the filesystem into an ABORT|READONLY state,
 612 * unless the error response on the fs has been set to panic in which
 613 * case we take the easy way out and panic immediately.
 614 */
 615
 616void __ext4_abort(struct super_block *sb, const char *function,
 617		unsigned int line, const char *fmt, ...)
 618{
 619	struct va_format vaf;
 620	va_list args;
 621
 622	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 623		return;
 624
 625	save_error_info(sb, function, line);
 626	va_start(args, fmt);
 627	vaf.fmt = fmt;
 628	vaf.va = &args;
 629	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
 630	       sb->s_id, function, line, &vaf);
 631	va_end(args);
 632
 633	if (sb_rdonly(sb) == 0) {
 634		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 635		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
 636		/*
 637		 * Make sure updated value of ->s_mount_flags will be visible
 638		 * before ->s_flags update
 639		 */
 640		smp_wmb();
 641		sb->s_flags |= SB_RDONLY;
 642		if (EXT4_SB(sb)->s_journal)
 643			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
 644		save_error_info(sb, function, line);
 645	}
 646	if (test_opt(sb, ERRORS_PANIC)) {
 647		if (EXT4_SB(sb)->s_journal &&
 648		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
 649			return;
 650		panic("EXT4-fs panic from previous error\n");
 651	}
 652}
 653
 654void __ext4_msg(struct super_block *sb,
 655		const char *prefix, const char *fmt, ...)
 656{
 657	struct va_format vaf;
 658	va_list args;
 659
 660	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
 661		return;
 
 
 
 
 662
 663	va_start(args, fmt);
 664	vaf.fmt = fmt;
 665	vaf.va = &args;
 666	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
 
 
 
 667	va_end(args);
 668}
 669
 670#define ext4_warning_ratelimit(sb)					\
 671		___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),	\
 672			     "EXT4-fs warning")
 
 
 
 673
 674void __ext4_warning(struct super_block *sb, const char *function,
 675		    unsigned int line, const char *fmt, ...)
 676{
 677	struct va_format vaf;
 678	va_list args;
 679
 680	if (!ext4_warning_ratelimit(sb))
 681		return;
 682
 683	va_start(args, fmt);
 684	vaf.fmt = fmt;
 685	vaf.va = &args;
 686	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
 687	       sb->s_id, function, line, &vaf);
 688	va_end(args);
 689}
 690
 691void __ext4_warning_inode(const struct inode *inode, const char *function,
 692			  unsigned int line, const char *fmt, ...)
 693{
 694	struct va_format vaf;
 695	va_list args;
 696
 697	if (!ext4_warning_ratelimit(inode->i_sb))
 698		return;
 699
 700	va_start(args, fmt);
 701	vaf.fmt = fmt;
 702	vaf.va = &args;
 703	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
 704	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
 705	       function, line, inode->i_ino, current->comm, &vaf);
 706	va_end(args);
 707}
 708
 709void __ext4_grp_locked_error(const char *function, unsigned int line,
 710			     struct super_block *sb, ext4_group_t grp,
 711			     unsigned long ino, ext4_fsblk_t block,
 712			     const char *fmt, ...)
 713__releases(bitlock)
 714__acquires(bitlock)
 715{
 716	struct va_format vaf;
 717	va_list args;
 718	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 719
 720	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 721		return;
 722
 723	trace_ext4_error(sb, function, line);
 724	es->s_last_error_ino = cpu_to_le32(ino);
 725	es->s_last_error_block = cpu_to_le64(block);
 726	__save_error_info(sb, function, line);
 727
 728	if (ext4_error_ratelimit(sb)) {
 729		va_start(args, fmt);
 730		vaf.fmt = fmt;
 731		vaf.va = &args;
 732		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
 733		       sb->s_id, function, line, grp);
 734		if (ino)
 735			printk(KERN_CONT "inode %lu: ", ino);
 736		if (block)
 737			printk(KERN_CONT "block %llu:",
 738			       (unsigned long long) block);
 739		printk(KERN_CONT "%pV\n", &vaf);
 740		va_end(args);
 741	}
 742
 743	if (test_opt(sb, ERRORS_CONT)) {
 744		ext4_commit_super(sb, 0);
 
 
 
 
 
 
 
 745		return;
 746	}
 747
 748	ext4_unlock_group(sb, grp);
 749	ext4_commit_super(sb, 1);
 750	ext4_handle_error(sb);
 751	/*
 752	 * We only get here in the ERRORS_RO case; relocking the group
 753	 * may be dangerous, but nothing bad will happen since the
 754	 * filesystem will have already been marked read/only and the
 755	 * journal has been aborted.  We return 1 as a hint to callers
 756	 * who might what to use the return value from
 757	 * ext4_grp_locked_error() to distinguish between the
 758	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
 759	 * aggressively from the ext4 function in question, with a
 760	 * more appropriate error code.
 761	 */
 762	ext4_lock_group(sb, grp);
 763	return;
 764}
 765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 766void ext4_update_dynamic_rev(struct super_block *sb)
 767{
 768	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 769
 770	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
 771		return;
 772
 773	ext4_warning(sb,
 774		     "updating to rev %d because of new feature flag, "
 775		     "running e2fsck is recommended",
 776		     EXT4_DYNAMIC_REV);
 777
 778	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
 779	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
 780	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
 781	/* leave es->s_feature_*compat flags alone */
 782	/* es->s_uuid will be set by e2fsck if empty */
 783
 784	/*
 785	 * The rest of the superblock fields should be zero, and if not it
 786	 * means they are likely already in use, so leave them alone.  We
 787	 * can leave it up to e2fsck to clean up any inconsistencies there.
 788	 */
 789}
 790
 791/*
 792 * Open the external journal device
 793 */
 794static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
 795{
 796	struct block_device *bdev;
 797	char b[BDEVNAME_SIZE];
 798
 799	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
 800	if (IS_ERR(bdev))
 801		goto fail;
 802	return bdev;
 803
 804fail:
 805	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
 806			__bdevname(dev, b), PTR_ERR(bdev));
 807	return NULL;
 808}
 809
 810/*
 811 * Release the journal device
 812 */
 813static void ext4_blkdev_put(struct block_device *bdev)
 814{
 815	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
 816}
 817
 818static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
 819{
 820	struct block_device *bdev;
 821	bdev = sbi->journal_bdev;
 822	if (bdev) {
 823		ext4_blkdev_put(bdev);
 824		sbi->journal_bdev = NULL;
 825	}
 826}
 827
 828static inline struct inode *orphan_list_entry(struct list_head *l)
 829{
 830	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
 831}
 832
 833static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
 834{
 835	struct list_head *l;
 836
 837	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
 838		 le32_to_cpu(sbi->s_es->s_last_orphan));
 839
 840	printk(KERN_ERR "sb_info orphan list:\n");
 841	list_for_each(l, &sbi->s_orphan) {
 842		struct inode *inode = orphan_list_entry(l);
 843		printk(KERN_ERR "  "
 844		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
 845		       inode->i_sb->s_id, inode->i_ino, inode,
 846		       inode->i_mode, inode->i_nlink,
 847		       NEXT_ORPHAN(inode));
 848	}
 849}
 850
 851#ifdef CONFIG_QUOTA
 852static int ext4_quota_off(struct super_block *sb, int type);
 853
 854static inline void ext4_quota_off_umount(struct super_block *sb)
 855{
 856	int type;
 857
 858	/* Use our quota_off function to clear inode flags etc. */
 859	for (type = 0; type < EXT4_MAXQUOTAS; type++)
 860		ext4_quota_off(sb, type);
 861}
 
 
 
 
 
 
 
 
 
 
 
 
 862#else
 863static inline void ext4_quota_off_umount(struct super_block *sb)
 864{
 865}
 866#endif
 867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868static void ext4_put_super(struct super_block *sb)
 869{
 870	struct ext4_sb_info *sbi = EXT4_SB(sb);
 871	struct ext4_super_block *es = sbi->s_es;
 872	int aborted = 0;
 873	int i, err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 874
 875	ext4_unregister_li_request(sb);
 876	ext4_quota_off_umount(sb);
 877
 
 878	destroy_workqueue(sbi->rsv_conversion_wq);
 
 879
 880	if (sbi->s_journal) {
 881		aborted = is_journal_aborted(sbi->s_journal);
 882		err = jbd2_journal_destroy(sbi->s_journal);
 883		sbi->s_journal = NULL;
 884		if ((err < 0) && !aborted)
 885			ext4_abort(sb, "Couldn't clean up the journal");
 
 886	}
 887
 888	ext4_unregister_sysfs(sb);
 889	ext4_es_unregister_shrinker(sbi);
 890	del_timer_sync(&sbi->s_err_report);
 891	ext4_release_system_zone(sb);
 892	ext4_mb_release(sb);
 893	ext4_ext_release(sb);
 894
 895	if (!sb_rdonly(sb) && !aborted) {
 896		ext4_clear_feature_journal_needs_recovery(sb);
 
 897		es->s_state = cpu_to_le16(sbi->s_mount_state);
 898	}
 899	if (!sb_rdonly(sb))
 900		ext4_commit_super(sb, 1);
 901
 902	for (i = 0; i < sbi->s_gdb_count; i++)
 903		brelse(sbi->s_group_desc[i]);
 904	kvfree(sbi->s_group_desc);
 905	kvfree(sbi->s_flex_groups);
 906	percpu_counter_destroy(&sbi->s_freeclusters_counter);
 907	percpu_counter_destroy(&sbi->s_freeinodes_counter);
 908	percpu_counter_destroy(&sbi->s_dirs_counter);
 909	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
 910	percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
 911#ifdef CONFIG_QUOTA
 912	for (i = 0; i < EXT4_MAXQUOTAS; i++)
 913		kfree(sbi->s_qf_names[i]);
 914#endif
 915
 916	/* Debugging code just in case the in-memory inode orphan list
 917	 * isn't empty.  The on-disk one can be non-empty if we've
 918	 * detected an error and taken the fs readonly, but the
 919	 * in-memory list had better be clean by this point. */
 920	if (!list_empty(&sbi->s_orphan))
 921		dump_orphan_list(sb, sbi);
 922	J_ASSERT(list_empty(&sbi->s_orphan));
 923
 924	sync_blockdev(sb->s_bdev);
 925	invalidate_bdev(sb->s_bdev);
 926	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
 927		/*
 928		 * Invalidate the journal device's buffers.  We don't want them
 929		 * floating about in memory - the physical journal device may
 930		 * hotswapped, and it breaks the `ro-after' testing code.
 931		 */
 932		sync_blockdev(sbi->journal_bdev);
 933		invalidate_bdev(sbi->journal_bdev);
 934		ext4_blkdev_remove(sbi);
 935	}
 936	if (sbi->s_ea_inode_cache) {
 937		ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
 938		sbi->s_ea_inode_cache = NULL;
 939	}
 940	if (sbi->s_ea_block_cache) {
 941		ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
 942		sbi->s_ea_block_cache = NULL;
 943	}
 944	if (sbi->s_mmp_tsk)
 945		kthread_stop(sbi->s_mmp_tsk);
 
 
 
 
 
 
 
 946	brelse(sbi->s_sbh);
 947	sb->s_fs_info = NULL;
 948	/*
 949	 * Now that we are completely done shutting down the
 950	 * superblock, we need to actually destroy the kobject.
 951	 */
 952	kobject_put(&sbi->s_kobj);
 953	wait_for_completion(&sbi->s_kobj_unregister);
 954	if (sbi->s_chksum_driver)
 955		crypto_free_shash(sbi->s_chksum_driver);
 956	kfree(sbi->s_blockgroup_lock);
 957	fs_put_dax(sbi->s_daxdev);
 
 
 
 
 958	kfree(sbi);
 959}
 960
 961static struct kmem_cache *ext4_inode_cachep;
 962
 963/*
 964 * Called inside transaction, so use GFP_NOFS
 965 */
 966static struct inode *ext4_alloc_inode(struct super_block *sb)
 967{
 968	struct ext4_inode_info *ei;
 969
 970	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
 971	if (!ei)
 972		return NULL;
 973
 974	inode_set_iversion(&ei->vfs_inode, 1);
 
 975	spin_lock_init(&ei->i_raw_lock);
 976	INIT_LIST_HEAD(&ei->i_prealloc_list);
 977	spin_lock_init(&ei->i_prealloc_lock);
 
 978	ext4_es_init_tree(&ei->i_es_tree);
 979	rwlock_init(&ei->i_es_lock);
 980	INIT_LIST_HEAD(&ei->i_es_list);
 981	ei->i_es_all_nr = 0;
 982	ei->i_es_shk_nr = 0;
 983	ei->i_es_shrink_lblk = 0;
 984	ei->i_reserved_data_blocks = 0;
 985	ei->i_da_metadata_calc_len = 0;
 986	ei->i_da_metadata_calc_last_lblock = 0;
 987	spin_lock_init(&(ei->i_block_reservation_lock));
 
 988#ifdef CONFIG_QUOTA
 989	ei->i_reserved_quota = 0;
 990	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
 991#endif
 992	ei->jinode = NULL;
 993	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
 994	spin_lock_init(&ei->i_completed_io_lock);
 995	ei->i_sync_tid = 0;
 996	ei->i_datasync_tid = 0;
 997	atomic_set(&ei->i_unwritten, 0);
 998	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
 
 
 999	return &ei->vfs_inode;
1000}
1001
1002static int ext4_drop_inode(struct inode *inode)
1003{
1004	int drop = generic_drop_inode(inode);
1005
 
 
 
1006	trace_ext4_drop_inode(inode, drop);
1007	return drop;
1008}
1009
1010static void ext4_i_callback(struct rcu_head *head)
1011{
1012	struct inode *inode = container_of(head, struct inode, i_rcu);
 
 
 
 
1013	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1014}
1015
1016static void ext4_destroy_inode(struct inode *inode)
1017{
1018	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1019		ext4_msg(inode->i_sb, KERN_ERR,
1020			 "Inode %lu (%p): orphan list check failed!",
1021			 inode->i_ino, EXT4_I(inode));
1022		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1023				EXT4_I(inode), sizeof(struct ext4_inode_info),
1024				true);
1025		dump_stack();
1026	}
1027	call_rcu(&inode->i_rcu, ext4_i_callback);
 
 
 
 
 
 
 
 
 
 
1028}
1029
1030static void init_once(void *foo)
1031{
1032	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1033
1034	INIT_LIST_HEAD(&ei->i_orphan);
1035	init_rwsem(&ei->xattr_sem);
1036	init_rwsem(&ei->i_data_sem);
1037	init_rwsem(&ei->i_mmap_sem);
1038	inode_init_once(&ei->vfs_inode);
 
1039}
1040
1041static int __init init_inodecache(void)
1042{
1043	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1044				sizeof(struct ext4_inode_info), 0,
1045				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1046					SLAB_ACCOUNT),
1047				offsetof(struct ext4_inode_info, i_data),
1048				sizeof_field(struct ext4_inode_info, i_data),
1049				init_once);
1050	if (ext4_inode_cachep == NULL)
1051		return -ENOMEM;
1052	return 0;
1053}
1054
1055static void destroy_inodecache(void)
1056{
1057	/*
1058	 * Make sure all delayed rcu free inodes are flushed before we
1059	 * destroy cache.
1060	 */
1061	rcu_barrier();
1062	kmem_cache_destroy(ext4_inode_cachep);
1063}
1064
1065void ext4_clear_inode(struct inode *inode)
1066{
 
1067	invalidate_inode_buffers(inode);
1068	clear_inode(inode);
1069	dquot_drop(inode);
1070	ext4_discard_preallocations(inode);
1071	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
 
1072	if (EXT4_I(inode)->jinode) {
1073		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1074					       EXT4_I(inode)->jinode);
1075		jbd2_free_inode(EXT4_I(inode)->jinode);
1076		EXT4_I(inode)->jinode = NULL;
1077	}
1078	fscrypt_put_encryption_info(inode);
 
1079}
1080
1081static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1082					u64 ino, u32 generation)
1083{
1084	struct inode *inode;
1085
1086	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1087		return ERR_PTR(-ESTALE);
1088	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1089		return ERR_PTR(-ESTALE);
1090
1091	/* iget isn't really right if the inode is currently unallocated!!
1092	 *
1093	 * ext4_read_inode will return a bad_inode if the inode had been
1094	 * deleted, so we should be safe.
1095	 *
1096	 * Currently we don't know the generation for parent directory, so
1097	 * a generation of 0 means "accept any"
1098	 */
1099	inode = ext4_iget_normal(sb, ino);
1100	if (IS_ERR(inode))
1101		return ERR_CAST(inode);
1102	if (generation && inode->i_generation != generation) {
1103		iput(inode);
1104		return ERR_PTR(-ESTALE);
1105	}
1106
1107	return inode;
1108}
1109
1110static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1111					int fh_len, int fh_type)
1112{
1113	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1114				    ext4_nfs_get_inode);
1115}
1116
1117static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1118					int fh_len, int fh_type)
1119{
1120	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1121				    ext4_nfs_get_inode);
1122}
1123
1124/*
1125 * Try to release metadata pages (indirect blocks, directories) which are
1126 * mapped via the block device.  Since these pages could have journal heads
1127 * which would prevent try_to_free_buffers() from freeing them, we must use
1128 * jbd2 layer's try_to_free_buffers() function to release them.
1129 */
1130static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1131				 gfp_t wait)
1132{
1133	journal_t *journal = EXT4_SB(sb)->s_journal;
1134
1135	WARN_ON(PageChecked(page));
1136	if (!page_has_buffers(page))
1137		return 0;
1138	if (journal)
1139		return jbd2_journal_try_to_free_buffers(journal, page,
1140						wait & ~__GFP_DIRECT_RECLAIM);
1141	return try_to_free_buffers(page);
1142}
1143
1144#ifdef CONFIG_EXT4_FS_ENCRYPTION
1145static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1146{
1147	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1148				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1149}
1150
1151static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1152							void *fs_data)
1153{
1154	handle_t *handle = fs_data;
1155	int res, res2, credits, retries = 0;
1156
1157	/*
1158	 * Encrypting the root directory is not allowed because e2fsck expects
1159	 * lost+found to exist and be unencrypted, and encrypting the root
1160	 * directory would imply encrypting the lost+found directory as well as
1161	 * the filename "lost+found" itself.
1162	 */
1163	if (inode->i_ino == EXT4_ROOT_INO)
1164		return -EPERM;
1165
1166	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1167		return -EINVAL;
1168
1169	res = ext4_convert_inline_data(inode);
1170	if (res)
1171		return res;
1172
1173	/*
1174	 * If a journal handle was specified, then the encryption context is
1175	 * being set on a new inode via inheritance and is part of a larger
1176	 * transaction to create the inode.  Otherwise the encryption context is
1177	 * being set on an existing inode in its own transaction.  Only in the
1178	 * latter case should the "retry on ENOSPC" logic be used.
1179	 */
1180
1181	if (handle) {
1182		res = ext4_xattr_set_handle(handle, inode,
1183					    EXT4_XATTR_INDEX_ENCRYPTION,
1184					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1185					    ctx, len, 0);
1186		if (!res) {
1187			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1188			ext4_clear_inode_state(inode,
1189					EXT4_STATE_MAY_INLINE_DATA);
1190			/*
1191			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1192			 * S_DAX may be disabled
1193			 */
1194			ext4_set_inode_flags(inode);
1195		}
1196		return res;
1197	}
1198
1199	res = dquot_initialize(inode);
1200	if (res)
1201		return res;
1202retry:
1203	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1204				     &credits);
1205	if (res)
1206		return res;
1207
1208	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1209	if (IS_ERR(handle))
1210		return PTR_ERR(handle);
1211
1212	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1213				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1214				    ctx, len, 0);
1215	if (!res) {
1216		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1217		/*
1218		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1219		 * S_DAX may be disabled
1220		 */
1221		ext4_set_inode_flags(inode);
1222		res = ext4_mark_inode_dirty(handle, inode);
1223		if (res)
1224			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1225	}
1226	res2 = ext4_journal_stop(handle);
1227
1228	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1229		goto retry;
1230	if (!res)
1231		res = res2;
1232	return res;
1233}
1234
1235static bool ext4_dummy_context(struct inode *inode)
1236{
1237	return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1238}
 
1239
1240static unsigned ext4_max_namelen(struct inode *inode)
1241{
1242	return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1243		EXT4_NAME_LEN;
1244}
1245
1246static const struct fscrypt_operations ext4_cryptops = {
1247	.key_prefix		= "ext4:",
1248	.get_context		= ext4_get_context,
1249	.set_context		= ext4_set_context,
1250	.dummy_context		= ext4_dummy_context,
1251	.empty_dir		= ext4_empty_dir,
1252	.max_namelen		= ext4_max_namelen,
1253};
1254#endif
1255
1256#ifdef CONFIG_QUOTA
1257static const char * const quotatypes[] = INITQFNAMES;
1258#define QTYPE2NAME(t) (quotatypes[t])
1259
1260static int ext4_write_dquot(struct dquot *dquot);
1261static int ext4_acquire_dquot(struct dquot *dquot);
1262static int ext4_release_dquot(struct dquot *dquot);
1263static int ext4_mark_dquot_dirty(struct dquot *dquot);
1264static int ext4_write_info(struct super_block *sb, int type);
1265static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1266			 const struct path *path);
1267static int ext4_quota_on_mount(struct super_block *sb, int type);
1268static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1269			       size_t len, loff_t off);
1270static ssize_t ext4_quota_write(struct super_block *sb, int type,
1271				const char *data, size_t len, loff_t off);
1272static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1273			     unsigned int flags);
1274static int ext4_enable_quotas(struct super_block *sb);
1275static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1276
1277static struct dquot **ext4_get_dquots(struct inode *inode)
1278{
1279	return EXT4_I(inode)->i_dquot;
1280}
1281
1282static const struct dquot_operations ext4_quota_operations = {
1283	.get_reserved_space	= ext4_get_reserved_space,
1284	.write_dquot		= ext4_write_dquot,
1285	.acquire_dquot		= ext4_acquire_dquot,
1286	.release_dquot		= ext4_release_dquot,
1287	.mark_dirty		= ext4_mark_dquot_dirty,
1288	.write_info		= ext4_write_info,
1289	.alloc_dquot		= dquot_alloc,
1290	.destroy_dquot		= dquot_destroy,
1291	.get_projid		= ext4_get_projid,
1292	.get_inode_usage	= ext4_get_inode_usage,
1293	.get_next_id		= ext4_get_next_id,
1294};
1295
1296static const struct quotactl_ops ext4_qctl_operations = {
1297	.quota_on	= ext4_quota_on,
1298	.quota_off	= ext4_quota_off,
1299	.quota_sync	= dquot_quota_sync,
1300	.get_state	= dquot_get_state,
1301	.set_info	= dquot_set_dqinfo,
1302	.get_dqblk	= dquot_get_dqblk,
1303	.set_dqblk	= dquot_set_dqblk,
1304	.get_nextdqblk	= dquot_get_next_dqblk,
1305};
1306#endif
1307
1308static const struct super_operations ext4_sops = {
1309	.alloc_inode	= ext4_alloc_inode,
 
1310	.destroy_inode	= ext4_destroy_inode,
1311	.write_inode	= ext4_write_inode,
1312	.dirty_inode	= ext4_dirty_inode,
1313	.drop_inode	= ext4_drop_inode,
1314	.evict_inode	= ext4_evict_inode,
1315	.put_super	= ext4_put_super,
1316	.sync_fs	= ext4_sync_fs,
1317	.freeze_fs	= ext4_freeze,
1318	.unfreeze_fs	= ext4_unfreeze,
1319	.statfs		= ext4_statfs,
1320	.remount_fs	= ext4_remount,
1321	.show_options	= ext4_show_options,
 
1322#ifdef CONFIG_QUOTA
1323	.quota_read	= ext4_quota_read,
1324	.quota_write	= ext4_quota_write,
1325	.get_dquots	= ext4_get_dquots,
1326#endif
1327	.bdev_try_to_free_page = bdev_try_to_free_page,
1328};
1329
1330static const struct export_operations ext4_export_ops = {
 
1331	.fh_to_dentry = ext4_fh_to_dentry,
1332	.fh_to_parent = ext4_fh_to_parent,
1333	.get_parent = ext4_get_parent,
 
1334};
1335
1336enum {
1337	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1338	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1339	Opt_nouid32, Opt_debug, Opt_removed,
1340	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1341	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1342	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1343	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1344	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1345	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1346	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1347	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1348	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1349	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1350	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1351	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
 
1352	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1353	Opt_inode_readahead_blks, Opt_journal_ioprio,
1354	Opt_dioread_nolock, Opt_dioread_lock,
1355	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1356	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
 
 
 
 
 
1357};
1358
1359static const match_table_t tokens = {
1360	{Opt_bsd_df, "bsddf"},
1361	{Opt_minix_df, "minixdf"},
1362	{Opt_grpid, "grpid"},
1363	{Opt_grpid, "bsdgroups"},
1364	{Opt_nogrpid, "nogrpid"},
1365	{Opt_nogrpid, "sysvgroups"},
1366	{Opt_resgid, "resgid=%u"},
1367	{Opt_resuid, "resuid=%u"},
1368	{Opt_sb, "sb=%u"},
1369	{Opt_err_cont, "errors=continue"},
1370	{Opt_err_panic, "errors=panic"},
1371	{Opt_err_ro, "errors=remount-ro"},
1372	{Opt_nouid32, "nouid32"},
1373	{Opt_debug, "debug"},
1374	{Opt_removed, "oldalloc"},
1375	{Opt_removed, "orlov"},
1376	{Opt_user_xattr, "user_xattr"},
1377	{Opt_nouser_xattr, "nouser_xattr"},
1378	{Opt_acl, "acl"},
1379	{Opt_noacl, "noacl"},
1380	{Opt_noload, "norecovery"},
1381	{Opt_noload, "noload"},
1382	{Opt_removed, "nobh"},
1383	{Opt_removed, "bh"},
1384	{Opt_commit, "commit=%u"},
1385	{Opt_min_batch_time, "min_batch_time=%u"},
1386	{Opt_max_batch_time, "max_batch_time=%u"},
1387	{Opt_journal_dev, "journal_dev=%u"},
1388	{Opt_journal_path, "journal_path=%s"},
1389	{Opt_journal_checksum, "journal_checksum"},
1390	{Opt_nojournal_checksum, "nojournal_checksum"},
1391	{Opt_journal_async_commit, "journal_async_commit"},
1392	{Opt_abort, "abort"},
1393	{Opt_data_journal, "data=journal"},
1394	{Opt_data_ordered, "data=ordered"},
1395	{Opt_data_writeback, "data=writeback"},
1396	{Opt_data_err_abort, "data_err=abort"},
1397	{Opt_data_err_ignore, "data_err=ignore"},
1398	{Opt_offusrjquota, "usrjquota="},
1399	{Opt_usrjquota, "usrjquota=%s"},
1400	{Opt_offgrpjquota, "grpjquota="},
1401	{Opt_grpjquota, "grpjquota=%s"},
1402	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1403	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1404	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1405	{Opt_grpquota, "grpquota"},
1406	{Opt_noquota, "noquota"},
1407	{Opt_quota, "quota"},
1408	{Opt_usrquota, "usrquota"},
1409	{Opt_prjquota, "prjquota"},
1410	{Opt_barrier, "barrier=%u"},
1411	{Opt_barrier, "barrier"},
1412	{Opt_nobarrier, "nobarrier"},
1413	{Opt_i_version, "i_version"},
1414	{Opt_dax, "dax"},
1415	{Opt_stripe, "stripe=%u"},
1416	{Opt_delalloc, "delalloc"},
1417	{Opt_lazytime, "lazytime"},
1418	{Opt_nolazytime, "nolazytime"},
1419	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1420	{Opt_nodelalloc, "nodelalloc"},
1421	{Opt_removed, "mblk_io_submit"},
1422	{Opt_removed, "nomblk_io_submit"},
1423	{Opt_block_validity, "block_validity"},
1424	{Opt_noblock_validity, "noblock_validity"},
1425	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1426	{Opt_journal_ioprio, "journal_ioprio=%u"},
1427	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1428	{Opt_auto_da_alloc, "auto_da_alloc"},
1429	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1430	{Opt_dioread_nolock, "dioread_nolock"},
1431	{Opt_dioread_lock, "dioread_lock"},
1432	{Opt_discard, "discard"},
1433	{Opt_nodiscard, "nodiscard"},
1434	{Opt_init_itable, "init_itable=%u"},
1435	{Opt_init_itable, "init_itable"},
1436	{Opt_noinit_itable, "noinit_itable"},
1437	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1438	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1439	{Opt_nombcache, "nombcache"},
1440	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1441	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1442	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1443	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1444	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1445	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1446	{Opt_err, NULL},
1447};
1448
1449static ext4_fsblk_t get_sb_block(void **data)
1450{
1451	ext4_fsblk_t	sb_block;
1452	char		*options = (char *) *data;
1453
1454	if (!options || strncmp(options, "sb=", 3) != 0)
1455		return 1;	/* Default location */
1456
1457	options += 3;
1458	/* TODO: use simple_strtoll with >32bit ext4 */
1459	sb_block = simple_strtoul(options, &options, 0);
1460	if (*options && *options != ',') {
1461		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1462		       (char *) *data);
1463		return 1;
1464	}
1465	if (*options == ',')
1466		options++;
1467	*data = (void *) options;
1468
1469	return sb_block;
1470}
1471
1472#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1473static const char deprecated_msg[] =
1474	"Mount option \"%s\" will be removed by %s\n"
1475	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1476
1477#ifdef CONFIG_QUOTA
1478static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1479{
1480	struct ext4_sb_info *sbi = EXT4_SB(sb);
1481	char *qname;
1482	int ret = -1;
1483
1484	if (sb_any_quota_loaded(sb) &&
1485		!sbi->s_qf_names[qtype]) {
1486		ext4_msg(sb, KERN_ERR,
1487			"Cannot change journaled "
1488			"quota options when quota turned on");
1489		return -1;
1490	}
1491	if (ext4_has_feature_quota(sb)) {
1492		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1493			 "ignored when QUOTA feature is enabled");
1494		return 1;
1495	}
1496	qname = match_strdup(args);
1497	if (!qname) {
1498		ext4_msg(sb, KERN_ERR,
1499			"Not enough memory for storing quotafile name");
1500		return -1;
1501	}
1502	if (sbi->s_qf_names[qtype]) {
1503		if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1504			ret = 1;
1505		else
1506			ext4_msg(sb, KERN_ERR,
1507				 "%s quota file already specified",
1508				 QTYPE2NAME(qtype));
1509		goto errout;
1510	}
1511	if (strchr(qname, '/')) {
1512		ext4_msg(sb, KERN_ERR,
1513			"quotafile must be on filesystem root");
1514		goto errout;
1515	}
1516	sbi->s_qf_names[qtype] = qname;
1517	set_opt(sb, QUOTA);
1518	return 1;
1519errout:
1520	kfree(qname);
1521	return ret;
1522}
1523
1524static int clear_qf_name(struct super_block *sb, int qtype)
1525{
 
 
 
 
1526
1527	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
 
1528
1529	if (sb_any_quota_loaded(sb) &&
1530		sbi->s_qf_names[qtype]) {
1531		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1532			" when quota turned on");
1533		return -1;
1534	}
1535	kfree(sbi->s_qf_names[qtype]);
1536	sbi->s_qf_names[qtype] = NULL;
1537	return 1;
1538}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1539#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1540
1541#define MOPT_SET	0x0001
1542#define MOPT_CLEAR	0x0002
1543#define MOPT_NOSUPPORT	0x0004
1544#define MOPT_EXPLICIT	0x0008
1545#define MOPT_CLEAR_ERR	0x0010
1546#define MOPT_GTE0	0x0020
1547#ifdef CONFIG_QUOTA
1548#define MOPT_Q		0
1549#define MOPT_QFMT	0x0040
1550#else
1551#define MOPT_Q		MOPT_NOSUPPORT
1552#define MOPT_QFMT	MOPT_NOSUPPORT
1553#endif
1554#define MOPT_DATAJ	0x0080
1555#define MOPT_NO_EXT2	0x0100
1556#define MOPT_NO_EXT3	0x0200
1557#define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1558#define MOPT_STRING	0x0400
 
1559
1560static const struct mount_opts {
1561	int	token;
1562	int	mount_opt;
1563	int	flags;
1564} ext4_mount_opts[] = {
1565	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1566	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1567	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1568	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1569	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1570	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1571	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1572	 MOPT_EXT4_ONLY | MOPT_SET},
1573	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1574	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1575	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1576	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1577	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1578	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1579	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1580	 MOPT_EXT4_ONLY | MOPT_CLEAR},
 
 
 
1581	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1582	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1583	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1584	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1585	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1586				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1587	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1588	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1589	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1590	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1591	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1592	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1593	 MOPT_NO_EXT2},
1594	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1595	 MOPT_NO_EXT2},
1596	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1597	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1598	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1599	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1600	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1601	{Opt_commit, 0, MOPT_GTE0},
1602	{Opt_max_batch_time, 0, MOPT_GTE0},
1603	{Opt_min_batch_time, 0, MOPT_GTE0},
1604	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1605	{Opt_init_itable, 0, MOPT_GTE0},
1606	{Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1607	{Opt_stripe, 0, MOPT_GTE0},
1608	{Opt_resuid, 0, MOPT_GTE0},
1609	{Opt_resgid, 0, MOPT_GTE0},
1610	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1611	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1612	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1613	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1614	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1615	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1616	 MOPT_NO_EXT2 | MOPT_DATAJ},
1617	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1618	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1619#ifdef CONFIG_EXT4_FS_POSIX_ACL
1620	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1621	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1622#else
1623	{Opt_acl, 0, MOPT_NOSUPPORT},
1624	{Opt_noacl, 0, MOPT_NOSUPPORT},
1625#endif
1626	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1627	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1628	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1629	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1630	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1631							MOPT_SET | MOPT_Q},
1632	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1633							MOPT_SET | MOPT_Q},
1634	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1635							MOPT_SET | MOPT_Q},
1636	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1637		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1638							MOPT_CLEAR | MOPT_Q},
1639	{Opt_usrjquota, 0, MOPT_Q},
1640	{Opt_grpjquota, 0, MOPT_Q},
1641	{Opt_offusrjquota, 0, MOPT_Q},
1642	{Opt_offgrpjquota, 0, MOPT_Q},
1643	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1644	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1645	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1646	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1647	{Opt_test_dummy_encryption, 0, MOPT_GTE0},
1648	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
 
 
 
 
 
 
 
1649	{Opt_err, 0, 0}
1650};
1651
1652static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1653			    substring_t *args, unsigned long *journal_devnum,
1654			    unsigned int *journal_ioprio, int is_remount)
 
 
 
 
 
 
 
 
1655{
1656	struct ext4_sb_info *sbi = EXT4_SB(sb);
1657	const struct mount_opts *m;
1658	kuid_t uid;
1659	kgid_t gid;
1660	int arg = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1661
1662#ifdef CONFIG_QUOTA
1663	if (token == Opt_usrjquota)
1664		return set_qf_name(sb, USRQUOTA, &args[0]);
1665	else if (token == Opt_grpjquota)
1666		return set_qf_name(sb, GRPQUOTA, &args[0]);
1667	else if (token == Opt_offusrjquota)
1668		return clear_qf_name(sb, USRQUOTA);
1669	else if (token == Opt_offgrpjquota)
1670		return clear_qf_name(sb, GRPQUOTA);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1671#endif
1672	switch (token) {
1673	case Opt_noacl:
1674	case Opt_nouser_xattr:
1675		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1676		break;
1677	case Opt_sb:
1678		return 1;	/* handled by get_sb_block() */
1679	case Opt_removed:
1680		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1681		return 1;
1682	case Opt_abort:
1683		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1684		return 1;
1685	case Opt_i_version:
1686		sb->s_flags |= SB_I_VERSION;
1687		return 1;
1688	case Opt_lazytime:
1689		sb->s_flags |= SB_LAZYTIME;
1690		return 1;
1691	case Opt_nolazytime:
1692		sb->s_flags &= ~SB_LAZYTIME;
1693		return 1;
1694	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1695
1696	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1697		if (token == m->token)
1698			break;
1699
1700	if (m->token == Opt_err) {
1701		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1702			 "or missing value", opt);
1703		return -1;
1704	}
1705
1706	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1707		ext4_msg(sb, KERN_ERR,
1708			 "Mount option \"%s\" incompatible with ext2", opt);
1709		return -1;
1710	}
1711	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1712		ext4_msg(sb, KERN_ERR,
1713			 "Mount option \"%s\" incompatible with ext3", opt);
1714		return -1;
1715	}
1716
1717	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1718		return -1;
1719	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1720		return -1;
1721	if (m->flags & MOPT_EXPLICIT) {
1722		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1723			set_opt2(sb, EXPLICIT_DELALLOC);
1724		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1725			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
 
1726		} else
1727			return -1;
1728	}
1729	if (m->flags & MOPT_CLEAR_ERR)
1730		clear_opt(sb, ERRORS_MASK);
1731	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1732		ext4_msg(sb, KERN_ERR, "Cannot change quota "
1733			 "options when quota turned on");
1734		return -1;
1735	}
1736
1737	if (m->flags & MOPT_NOSUPPORT) {
1738		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1739	} else if (token == Opt_commit) {
1740		if (arg == 0)
1741			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1742		sbi->s_commit_interval = HZ * arg;
1743	} else if (token == Opt_debug_want_extra_isize) {
1744		sbi->s_want_extra_isize = arg;
1745	} else if (token == Opt_max_batch_time) {
1746		sbi->s_max_batch_time = arg;
1747	} else if (token == Opt_min_batch_time) {
1748		sbi->s_min_batch_time = arg;
1749	} else if (token == Opt_inode_readahead_blks) {
1750		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1751			ext4_msg(sb, KERN_ERR,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752				 "EXT4-fs: inode_readahead_blks must be "
1753				 "0 or a power of 2 smaller than 2^31");
1754			return -1;
1755		}
1756		sbi->s_inode_readahead_blks = arg;
1757	} else if (token == Opt_init_itable) {
1758		set_opt(sb, INIT_INODE_TABLE);
1759		if (!args->from)
1760			arg = EXT4_DEF_LI_WAIT_MULT;
1761		sbi->s_li_wait_mult = arg;
1762	} else if (token == Opt_max_dir_size_kb) {
1763		sbi->s_max_dir_size_kb = arg;
1764	} else if (token == Opt_stripe) {
1765		sbi->s_stripe = arg;
1766	} else if (token == Opt_resuid) {
1767		uid = make_kuid(current_user_ns(), arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1768		if (!uid_valid(uid)) {
1769			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1770			return -1;
 
1771		}
1772		sbi->s_resuid = uid;
1773	} else if (token == Opt_resgid) {
1774		gid = make_kgid(current_user_ns(), arg);
 
 
1775		if (!gid_valid(gid)) {
1776			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1777			return -1;
 
1778		}
1779		sbi->s_resgid = gid;
1780	} else if (token == Opt_journal_dev) {
 
 
1781		if (is_remount) {
1782			ext4_msg(sb, KERN_ERR,
1783				 "Cannot specify journal on remount");
1784			return -1;
1785		}
1786		*journal_devnum = arg;
1787	} else if (token == Opt_journal_path) {
1788		char *journal_path;
 
 
1789		struct inode *journal_inode;
1790		struct path path;
1791		int error;
1792
1793		if (is_remount) {
1794			ext4_msg(sb, KERN_ERR,
1795				 "Cannot specify journal on remount");
1796			return -1;
1797		}
1798		journal_path = match_strdup(&args[0]);
1799		if (!journal_path) {
1800			ext4_msg(sb, KERN_ERR, "error: could not dup "
1801				"journal device string");
1802			return -1;
1803		}
1804
1805		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1806		if (error) {
1807			ext4_msg(sb, KERN_ERR, "error: could not find "
1808				"journal device path: error %d", error);
1809			kfree(journal_path);
1810			return -1;
1811		}
1812
1813		journal_inode = d_inode(path.dentry);
1814		if (!S_ISBLK(journal_inode->i_mode)) {
1815			ext4_msg(sb, KERN_ERR, "error: journal path %s "
1816				"is not a block device", journal_path);
1817			path_put(&path);
1818			kfree(journal_path);
1819			return -1;
1820		}
1821
1822		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
1823		path_put(&path);
1824		kfree(journal_path);
1825	} else if (token == Opt_journal_ioprio) {
1826		if (arg > 7) {
1827			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
 
1828				 " (must be 0-7)");
1829			return -1;
1830		}
1831		*journal_ioprio =
1832			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1833	} else if (token == Opt_test_dummy_encryption) {
1834#ifdef CONFIG_EXT4_FS_ENCRYPTION
1835		sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1836		ext4_msg(sb, KERN_WARNING,
1837			 "Test dummy encryption mode enabled");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1838#else
1839		ext4_msg(sb, KERN_WARNING,
1840			 "Test dummy encryption mount option ignored");
1841#endif
1842	} else if (m->flags & MOPT_DATAJ) {
1843		if (is_remount) {
1844			if (!sbi->s_journal)
1845				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1846			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1847				ext4_msg(sb, KERN_ERR,
1848					 "Cannot change data mode on remount");
1849				return -1;
1850			}
 
 
 
 
1851		} else {
1852			clear_opt(sb, DATA_FLAGS);
1853			sbi->s_mount_opt |= m->mount_opt;
1854		}
1855#ifdef CONFIG_QUOTA
1856	} else if (m->flags & MOPT_QFMT) {
1857		if (sb_any_quota_loaded(sb) &&
1858		    sbi->s_jquota_fmt != m->mount_opt) {
1859			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1860				 "quota options when quota turned on");
1861			return -1;
1862		}
1863		if (ext4_has_feature_quota(sb)) {
1864			ext4_msg(sb, KERN_INFO,
1865				 "Quota format mount options ignored "
1866				 "when QUOTA feature is enabled");
1867			return 1;
1868		}
1869		sbi->s_jquota_fmt = m->mount_opt;
1870#endif
1871	} else if (token == Opt_dax) {
1872#ifdef CONFIG_FS_DAX
1873		ext4_msg(sb, KERN_WARNING,
1874		"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1875			sbi->s_mount_opt |= m->mount_opt;
1876#else
1877		ext4_msg(sb, KERN_INFO, "dax option not supported");
1878		return -1;
1879#endif
1880	} else if (token == Opt_data_err_abort) {
1881		sbi->s_mount_opt |= m->mount_opt;
1882	} else if (token == Opt_data_err_ignore) {
1883		sbi->s_mount_opt &= ~m->mount_opt;
1884	} else {
1885		if (!args->from)
1886			arg = 1;
 
 
 
1887		if (m->flags & MOPT_CLEAR)
1888			arg = !arg;
1889		else if (unlikely(!(m->flags & MOPT_SET))) {
1890			ext4_msg(sb, KERN_WARNING,
1891				 "buggy handling of option %s", opt);
 
1892			WARN_ON(1);
1893			return -1;
 
 
 
 
 
 
 
 
 
 
 
1894		}
1895		if (arg != 0)
1896			sbi->s_mount_opt |= m->mount_opt;
1897		else
1898			sbi->s_mount_opt &= ~m->mount_opt;
1899	}
1900	return 1;
 
1901}
1902
1903static int parse_options(char *options, struct super_block *sb,
1904			 unsigned long *journal_devnum,
1905			 unsigned int *journal_ioprio,
1906			 int is_remount)
1907{
1908	struct ext4_sb_info *sbi = EXT4_SB(sb);
1909	char *p;
1910	substring_t args[MAX_OPT_ARGS];
1911	int token;
1912
1913	if (!options)
1914		return 1;
1915
1916	while ((p = strsep(&options, ",")) != NULL) {
1917		if (!*p)
1918			continue;
1919		/*
1920		 * Initialize args struct so we know whether arg was
1921		 * found; some options take optional arguments.
1922		 */
1923		args[0].to = args[0].from = NULL;
1924		token = match_token(p, tokens, args);
1925		if (handle_mount_opt(sb, p, token, args, journal_devnum,
1926				     journal_ioprio, is_remount) < 0)
1927			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1928	}
 
 
 
 
 
 
 
 
 
 
 
 
1929#ifdef CONFIG_QUOTA
 
 
 
 
 
 
 
1930	/*
1931	 * We do the test below only for project quotas. 'usrquota' and
1932	 * 'grpquota' mount options are allowed even without quota feature
1933	 * to support legacy quotas in quota files.
1934	 */
1935	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1936		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
 
1937			 "Cannot enable project quota enforcement.");
1938		return 0;
1939	}
1940	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1941		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1942			clear_opt(sb, USRQUOTA);
1943
1944		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1945			clear_opt(sb, GRPQUOTA);
1946
1947		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1948			ext4_msg(sb, KERN_ERR, "old and new quota "
1949					"format mixing");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1950			return 0;
1951		}
 
1952
1953		if (!sbi->s_jquota_fmt) {
1954			ext4_msg(sb, KERN_ERR, "journaled quota format "
1955					"not specified");
 
 
 
1956			return 0;
1957		}
1958	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1959#endif
1960	if (test_opt(sb, DIOREAD_NOLOCK)) {
1961		int blocksize =
1962			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1963
1964		if (blocksize < PAGE_SIZE) {
1965			ext4_msg(sb, KERN_ERR, "can't mount with "
1966				 "dioread_nolock if block size != PAGE_SIZE");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1967			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1968		}
1969	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1970	return 1;
1971}
1972
1973static inline void ext4_show_quota_options(struct seq_file *seq,
1974					   struct super_block *sb)
1975{
1976#if defined(CONFIG_QUOTA)
1977	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
1978
1979	if (sbi->s_jquota_fmt) {
1980		char *fmtname = "";
1981
1982		switch (sbi->s_jquota_fmt) {
1983		case QFMT_VFS_OLD:
1984			fmtname = "vfsold";
1985			break;
1986		case QFMT_VFS_V0:
1987			fmtname = "vfsv0";
1988			break;
1989		case QFMT_VFS_V1:
1990			fmtname = "vfsv1";
1991			break;
1992		}
1993		seq_printf(seq, ",jqfmt=%s", fmtname);
1994	}
1995
1996	if (sbi->s_qf_names[USRQUOTA])
1997		seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1998
1999	if (sbi->s_qf_names[GRPQUOTA])
2000		seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
 
 
 
2001#endif
2002}
2003
2004static const char *token2str(int token)
2005{
2006	const struct match_token *t;
2007
2008	for (t = tokens; t->token != Opt_err; t++)
2009		if (t->token == token && !strchr(t->pattern, '='))
2010			break;
2011	return t->pattern;
2012}
2013
2014/*
2015 * Show an option if
2016 *  - it's set to a non-default value OR
2017 *  - if the per-sb default is different from the global default
2018 */
2019static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2020			      int nodefs)
2021{
2022	struct ext4_sb_info *sbi = EXT4_SB(sb);
2023	struct ext4_super_block *es = sbi->s_es;
2024	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2025	const struct mount_opts *m;
2026	char sep = nodefs ? '\n' : ',';
2027
2028#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2029#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2030
2031	if (sbi->s_sb_block != 1)
2032		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2033
2034	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2035		int want_set = m->flags & MOPT_SET;
 
 
 
2036		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2037		    (m->flags & MOPT_CLEAR_ERR))
 
 
 
 
 
 
 
 
 
 
 
2038			continue;
2039		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2040			continue; /* skip if same as the default */
2041		if ((want_set &&
2042		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2043		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2044			continue; /* select Opt_noFoo vs Opt_Foo */
2045		SEQ_OPTS_PRINT("%s", token2str(m->token));
2046	}
2047
2048	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2049	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2050		SEQ_OPTS_PRINT("resuid=%u",
2051				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2052	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2053	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2054		SEQ_OPTS_PRINT("resgid=%u",
2055				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2056	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2057	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2058		SEQ_OPTS_PUTS("errors=remount-ro");
2059	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2060		SEQ_OPTS_PUTS("errors=continue");
2061	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2062		SEQ_OPTS_PUTS("errors=panic");
2063	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2064		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2065	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2066		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2067	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2068		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2069	if (sb->s_flags & SB_I_VERSION)
2070		SEQ_OPTS_PUTS("i_version");
2071	if (nodefs || sbi->s_stripe)
2072		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2073	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2074			(sbi->s_mount_opt ^ def_mount_opt)) {
2075		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2076			SEQ_OPTS_PUTS("data=journal");
2077		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2078			SEQ_OPTS_PUTS("data=ordered");
2079		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2080			SEQ_OPTS_PUTS("data=writeback");
2081	}
2082	if (nodefs ||
2083	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2084		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2085			       sbi->s_inode_readahead_blks);
2086
2087	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2088		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2089		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2090	if (nodefs || sbi->s_max_dir_size_kb)
2091		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2092	if (test_opt(sb, DATA_ERR_ABORT))
2093		SEQ_OPTS_PUTS("data_err=abort");
2094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2095	ext4_show_quota_options(seq, sb);
2096	return 0;
2097}
2098
2099static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2100{
2101	return _ext4_show_options(seq, root->d_sb, 0);
2102}
2103
2104int ext4_seq_options_show(struct seq_file *seq, void *offset)
2105{
2106	struct super_block *sb = seq->private;
2107	int rc;
2108
2109	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2110	rc = _ext4_show_options(seq, sb, 1);
2111	seq_puts(seq, "\n");
2112	return rc;
2113}
2114
2115static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2116			    int read_only)
2117{
2118	struct ext4_sb_info *sbi = EXT4_SB(sb);
2119	int res = 0;
2120
2121	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2122		ext4_msg(sb, KERN_ERR, "revision level too high, "
2123			 "forcing read-only mode");
2124		res = SB_RDONLY;
 
2125	}
2126	if (read_only)
2127		goto done;
2128	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2129		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2130			 "running e2fsck is recommended");
2131	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2132		ext4_msg(sb, KERN_WARNING,
2133			 "warning: mounting fs with errors, "
2134			 "running e2fsck is recommended");
2135	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2136		 le16_to_cpu(es->s_mnt_count) >=
2137		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2138		ext4_msg(sb, KERN_WARNING,
2139			 "warning: maximal mount count reached, "
2140			 "running e2fsck is recommended");
2141	else if (le32_to_cpu(es->s_checkinterval) &&
2142		(le32_to_cpu(es->s_lastcheck) +
2143			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2144		ext4_msg(sb, KERN_WARNING,
2145			 "warning: checktime reached, "
2146			 "running e2fsck is recommended");
2147	if (!sbi->s_journal)
2148		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2149	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2150		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2151	le16_add_cpu(&es->s_mnt_count, 1);
2152	es->s_mtime = cpu_to_le32(get_seconds());
2153	ext4_update_dynamic_rev(sb);
2154	if (sbi->s_journal)
2155		ext4_set_feature_journal_needs_recovery(sb);
 
 
 
2156
2157	ext4_commit_super(sb, 1);
2158done:
2159	if (test_opt(sb, DEBUG))
2160		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2161				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2162			sb->s_blocksize,
2163			sbi->s_groups_count,
2164			EXT4_BLOCKS_PER_GROUP(sb),
2165			EXT4_INODES_PER_GROUP(sb),
2166			sbi->s_mount_opt, sbi->s_mount_opt2);
2167
2168	cleancache_init_fs(sb);
2169	return res;
2170}
2171
2172int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2173{
2174	struct ext4_sb_info *sbi = EXT4_SB(sb);
2175	struct flex_groups *new_groups;
2176	int size;
2177
2178	if (!sbi->s_log_groups_per_flex)
2179		return 0;
2180
2181	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2182	if (size <= sbi->s_flex_groups_allocated)
2183		return 0;
2184
2185	size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2186	new_groups = kvzalloc(size, GFP_KERNEL);
2187	if (!new_groups) {
2188		ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2189			 size / (int) sizeof(struct flex_groups));
2190		return -ENOMEM;
2191	}
2192
2193	if (sbi->s_flex_groups) {
2194		memcpy(new_groups, sbi->s_flex_groups,
2195		       (sbi->s_flex_groups_allocated *
2196			sizeof(struct flex_groups)));
2197		kvfree(sbi->s_flex_groups);
 
 
 
 
 
 
2198	}
2199	sbi->s_flex_groups = new_groups;
2200	sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
 
 
 
 
 
 
 
 
 
2201	return 0;
2202}
2203
2204static int ext4_fill_flex_info(struct super_block *sb)
2205{
2206	struct ext4_sb_info *sbi = EXT4_SB(sb);
2207	struct ext4_group_desc *gdp = NULL;
 
2208	ext4_group_t flex_group;
2209	int i, err;
2210
2211	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2212	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2213		sbi->s_log_groups_per_flex = 0;
2214		return 1;
2215	}
2216
2217	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2218	if (err)
2219		goto failed;
2220
2221	for (i = 0; i < sbi->s_groups_count; i++) {
2222		gdp = ext4_get_group_desc(sb, i, NULL);
2223
2224		flex_group = ext4_flex_group(sbi, i);
2225		atomic_add(ext4_free_inodes_count(sb, gdp),
2226			   &sbi->s_flex_groups[flex_group].free_inodes);
2227		atomic64_add(ext4_free_group_clusters(sb, gdp),
2228			     &sbi->s_flex_groups[flex_group].free_clusters);
2229		atomic_add(ext4_used_dirs_count(sb, gdp),
2230			   &sbi->s_flex_groups[flex_group].used_dirs);
2231	}
2232
2233	return 1;
2234failed:
2235	return 0;
2236}
2237
2238static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2239				   struct ext4_group_desc *gdp)
2240{
2241	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2242	__u16 crc = 0;
2243	__le32 le_group = cpu_to_le32(block_group);
2244	struct ext4_sb_info *sbi = EXT4_SB(sb);
2245
2246	if (ext4_has_metadata_csum(sbi->s_sb)) {
2247		/* Use new metadata_csum algorithm */
2248		__u32 csum32;
2249		__u16 dummy_csum = 0;
2250
2251		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2252				     sizeof(le_group));
2253		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2254		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2255				     sizeof(dummy_csum));
2256		offset += sizeof(dummy_csum);
2257		if (offset < sbi->s_desc_size)
2258			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2259					     sbi->s_desc_size - offset);
2260
2261		crc = csum32 & 0xFFFF;
2262		goto out;
2263	}
2264
2265	/* old crc16 code */
2266	if (!ext4_has_feature_gdt_csum(sb))
2267		return 0;
2268
2269	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2270	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2271	crc = crc16(crc, (__u8 *)gdp, offset);
2272	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2273	/* for checksum of struct ext4_group_desc do the rest...*/
2274	if (ext4_has_feature_64bit(sb) &&
2275	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2276		crc = crc16(crc, (__u8 *)gdp + offset,
2277			    le16_to_cpu(sbi->s_es->s_desc_size) -
2278				offset);
2279
2280out:
2281	return cpu_to_le16(crc);
2282}
2283
2284int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2285				struct ext4_group_desc *gdp)
2286{
2287	if (ext4_has_group_desc_csum(sb) &&
2288	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2289		return 0;
2290
2291	return 1;
2292}
2293
2294void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2295			      struct ext4_group_desc *gdp)
2296{
2297	if (!ext4_has_group_desc_csum(sb))
2298		return;
2299	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2300}
2301
2302/* Called at mount-time, super-block is locked */
2303static int ext4_check_descriptors(struct super_block *sb,
2304				  ext4_fsblk_t sb_block,
2305				  ext4_group_t *first_not_zeroed)
2306{
2307	struct ext4_sb_info *sbi = EXT4_SB(sb);
2308	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2309	ext4_fsblk_t last_block;
 
2310	ext4_fsblk_t block_bitmap;
2311	ext4_fsblk_t inode_bitmap;
2312	ext4_fsblk_t inode_table;
2313	int flexbg_flag = 0;
2314	ext4_group_t i, grp = sbi->s_groups_count;
2315
2316	if (ext4_has_feature_flex_bg(sb))
2317		flexbg_flag = 1;
2318
2319	ext4_debug("Checking group descriptors");
2320
2321	for (i = 0; i < sbi->s_groups_count; i++) {
2322		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2323
2324		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2325			last_block = ext4_blocks_count(sbi->s_es) - 1;
2326		else
2327			last_block = first_block +
2328				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2329
2330		if ((grp == sbi->s_groups_count) &&
2331		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2332			grp = i;
2333
2334		block_bitmap = ext4_block_bitmap(sb, gdp);
2335		if (block_bitmap == sb_block) {
2336			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2337				 "Block bitmap for group %u overlaps "
2338				 "superblock", i);
2339			if (!sb_rdonly(sb))
2340				return 0;
2341		}
 
 
 
 
 
 
 
 
2342		if (block_bitmap < first_block || block_bitmap > last_block) {
2343			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2344			       "Block bitmap for group %u not in group "
2345			       "(block %llu)!", i, block_bitmap);
2346			return 0;
2347		}
2348		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2349		if (inode_bitmap == sb_block) {
2350			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2351				 "Inode bitmap for group %u overlaps "
2352				 "superblock", i);
2353			if (!sb_rdonly(sb))
2354				return 0;
2355		}
 
 
 
 
 
 
 
 
2356		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2357			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2358			       "Inode bitmap for group %u not in group "
2359			       "(block %llu)!", i, inode_bitmap);
2360			return 0;
2361		}
2362		inode_table = ext4_inode_table(sb, gdp);
2363		if (inode_table == sb_block) {
2364			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2365				 "Inode table for group %u overlaps "
2366				 "superblock", i);
2367			if (!sb_rdonly(sb))
2368				return 0;
2369		}
 
 
 
 
 
 
 
 
2370		if (inode_table < first_block ||
2371		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2372			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2373			       "Inode table for group %u not in group "
2374			       "(block %llu)!", i, inode_table);
2375			return 0;
2376		}
2377		ext4_lock_group(sb, i);
2378		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2379			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2380				 "Checksum for group %u failed (%u!=%u)",
2381				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2382				     gdp)), le16_to_cpu(gdp->bg_checksum));
2383			if (!sb_rdonly(sb)) {
2384				ext4_unlock_group(sb, i);
2385				return 0;
2386			}
2387		}
2388		ext4_unlock_group(sb, i);
2389		if (!flexbg_flag)
2390			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2391	}
2392	if (NULL != first_not_zeroed)
2393		*first_not_zeroed = grp;
2394	return 1;
2395}
2396
2397/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2398 * the superblock) which were deleted from all directories, but held open by
2399 * a process at the time of a crash.  We walk the list and try to delete these
2400 * inodes at recovery time (only with a read-write filesystem).
2401 *
2402 * In order to keep the orphan inode chain consistent during traversal (in
2403 * case of crash during recovery), we link each inode into the superblock
2404 * orphan list_head and handle it the same way as an inode deletion during
2405 * normal operation (which journals the operations for us).
2406 *
2407 * We only do an iget() and an iput() on each inode, which is very safe if we
2408 * accidentally point at an in-use or already deleted inode.  The worst that
2409 * can happen in this case is that we get a "bit already cleared" message from
2410 * ext4_free_inode().  The only reason we would point at a wrong inode is if
2411 * e2fsck was run on this filesystem, and it must have already done the orphan
2412 * inode cleanup for us, so we can safely abort without any further action.
2413 */
2414static void ext4_orphan_cleanup(struct super_block *sb,
2415				struct ext4_super_block *es)
2416{
2417	unsigned int s_flags = sb->s_flags;
2418	int ret, nr_orphans = 0, nr_truncates = 0;
2419#ifdef CONFIG_QUOTA
2420	int quota_update = 0;
2421	int i;
2422#endif
2423	if (!es->s_last_orphan) {
2424		jbd_debug(4, "no orphan inodes to clean up\n");
2425		return;
2426	}
2427
2428	if (bdev_read_only(sb->s_bdev)) {
2429		ext4_msg(sb, KERN_ERR, "write access "
2430			"unavailable, skipping orphan cleanup");
2431		return;
2432	}
2433
2434	/* Check if feature set would not allow a r/w mount */
2435	if (!ext4_feature_set_ok(sb, 0)) {
2436		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2437			 "unknown ROCOMPAT features");
2438		return;
2439	}
2440
2441	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2442		/* don't clear list on RO mount w/ errors */
2443		if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2444			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2445				  "clearing orphan list.\n");
2446			es->s_last_orphan = 0;
2447		}
2448		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2449		return;
2450	}
2451
2452	if (s_flags & SB_RDONLY) {
2453		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2454		sb->s_flags &= ~SB_RDONLY;
2455	}
2456#ifdef CONFIG_QUOTA
2457	/* Needed for iput() to work correctly and not trash data */
2458	sb->s_flags |= SB_ACTIVE;
2459
2460	/*
2461	 * Turn on quotas which were not enabled for read-only mounts if
2462	 * filesystem has quota feature, so that they are updated correctly.
2463	 */
2464	if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2465		int ret = ext4_enable_quotas(sb);
2466
2467		if (!ret)
2468			quota_update = 1;
2469		else
2470			ext4_msg(sb, KERN_ERR,
2471				"Cannot turn on quotas: error %d", ret);
2472	}
2473
2474	/* Turn on journaled quotas used for old sytle */
2475	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2476		if (EXT4_SB(sb)->s_qf_names[i]) {
2477			int ret = ext4_quota_on_mount(sb, i);
2478
2479			if (!ret)
2480				quota_update = 1;
2481			else
2482				ext4_msg(sb, KERN_ERR,
2483					"Cannot turn on journaled "
2484					"quota: type %d: error %d", i, ret);
2485		}
2486	}
2487#endif
2488
2489	while (es->s_last_orphan) {
2490		struct inode *inode;
2491
2492		/*
2493		 * We may have encountered an error during cleanup; if
2494		 * so, skip the rest.
2495		 */
2496		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2497			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2498			es->s_last_orphan = 0;
2499			break;
2500		}
2501
2502		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2503		if (IS_ERR(inode)) {
2504			es->s_last_orphan = 0;
2505			break;
2506		}
2507
2508		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2509		dquot_initialize(inode);
2510		if (inode->i_nlink) {
2511			if (test_opt(sb, DEBUG))
2512				ext4_msg(sb, KERN_DEBUG,
2513					"%s: truncating inode %lu to %lld bytes",
2514					__func__, inode->i_ino, inode->i_size);
2515			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2516				  inode->i_ino, inode->i_size);
2517			inode_lock(inode);
2518			truncate_inode_pages(inode->i_mapping, inode->i_size);
2519			ret = ext4_truncate(inode);
2520			if (ret)
2521				ext4_std_error(inode->i_sb, ret);
2522			inode_unlock(inode);
2523			nr_truncates++;
2524		} else {
2525			if (test_opt(sb, DEBUG))
2526				ext4_msg(sb, KERN_DEBUG,
2527					"%s: deleting unreferenced inode %lu",
2528					__func__, inode->i_ino);
2529			jbd_debug(2, "deleting unreferenced inode %lu\n",
2530				  inode->i_ino);
2531			nr_orphans++;
2532		}
2533		iput(inode);  /* The delete magic happens here! */
2534	}
2535
2536#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2537
2538	if (nr_orphans)
2539		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2540		       PLURAL(nr_orphans));
2541	if (nr_truncates)
2542		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2543		       PLURAL(nr_truncates));
2544#ifdef CONFIG_QUOTA
2545	/* Turn off quotas if they were enabled for orphan cleanup */
2546	if (quota_update) {
2547		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2548			if (sb_dqopt(sb)->files[i])
2549				dquot_quota_off(sb, i);
2550		}
2551	}
2552#endif
2553	sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2554}
2555
2556/*
2557 * Maximal extent format file size.
2558 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2559 * extent format containers, within a sector_t, and within i_blocks
2560 * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2561 * so that won't be a limiting factor.
2562 *
2563 * However there is other limiting factor. We do store extents in the form
2564 * of starting block and length, hence the resulting length of the extent
2565 * covering maximum file size must fit into on-disk format containers as
2566 * well. Given that length is always by 1 unit bigger than max unit (because
2567 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2568 *
2569 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2570 */
2571static loff_t ext4_max_size(int blkbits, int has_huge_files)
2572{
2573	loff_t res;
2574	loff_t upper_limit = MAX_LFS_FILESIZE;
2575
2576	/* small i_blocks in vfs inode? */
2577	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2578		/*
2579		 * CONFIG_LBDAF is not enabled implies the inode
2580		 * i_block represent total blocks in 512 bytes
2581		 * 32 == size of vfs inode i_blocks * 8
2582		 */
2583		upper_limit = (1LL << 32) - 1;
2584
2585		/* total blocks in file system block size */
2586		upper_limit >>= (blkbits - 9);
2587		upper_limit <<= blkbits;
2588	}
2589
2590	/*
2591	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2592	 * by one fs block, so ee_len can cover the extent of maximum file
2593	 * size
2594	 */
2595	res = (1LL << 32) - 1;
2596	res <<= blkbits;
2597
2598	/* Sanity check against vm- & vfs- imposed limits */
2599	if (res > upper_limit)
2600		res = upper_limit;
2601
2602	return res;
2603}
2604
2605/*
2606 * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2607 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2608 * We need to be 1 filesystem block less than the 2^48 sector limit.
2609 */
2610static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2611{
2612	loff_t res = EXT4_NDIR_BLOCKS;
2613	int meta_blocks;
2614	loff_t upper_limit;
2615	/* This is calculated to be the largest file size for a dense, block
 
 
2616	 * mapped file such that the file's total number of 512-byte sectors,
2617	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2618	 *
2619	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2620	 * number of 512-byte sectors of the file.
2621	 */
2622
2623	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2624		/*
2625		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2626		 * the inode i_block field represents total file blocks in
2627		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2628		 */
2629		upper_limit = (1LL << 32) - 1;
2630
2631		/* total blocks in file system block size */
2632		upper_limit >>= (bits - 9);
2633
2634	} else {
2635		/*
2636		 * We use 48 bit ext4_inode i_blocks
2637		 * With EXT4_HUGE_FILE_FL set the i_blocks
2638		 * represent total number of blocks in
2639		 * file system block size
2640		 */
2641		upper_limit = (1LL << 48) - 1;
2642
2643	}
2644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2645	/* indirect blocks */
2646	meta_blocks = 1;
 
2647	/* double indirect blocks */
2648	meta_blocks += 1 + (1LL << (bits-2));
2649	/* tripple indirect blocks */
2650	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2651
2652	upper_limit -= meta_blocks;
2653	upper_limit <<= bits;
2654
2655	res += 1LL << (bits-2);
2656	res += 1LL << (2*(bits-2));
2657	res += 1LL << (3*(bits-2));
 
 
2658	res <<= bits;
2659	if (res > upper_limit)
2660		res = upper_limit;
2661
2662	if (res > MAX_LFS_FILESIZE)
2663		res = MAX_LFS_FILESIZE;
2664
2665	return res;
2666}
2667
2668static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2669				   ext4_fsblk_t logical_sb_block, int nr)
2670{
2671	struct ext4_sb_info *sbi = EXT4_SB(sb);
2672	ext4_group_t bg, first_meta_bg;
2673	int has_super = 0;
2674
2675	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2676
2677	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2678		return logical_sb_block + nr + 1;
2679	bg = sbi->s_desc_per_block * nr;
2680	if (ext4_bg_has_super(sb, bg))
2681		has_super = 1;
2682
2683	/*
2684	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2685	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2686	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2687	 * compensate.
2688	 */
2689	if (sb->s_blocksize == 1024 && nr == 0 &&
2690	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2691		has_super++;
2692
2693	return (has_super + ext4_group_first_block_no(sb, bg));
2694}
2695
2696/**
2697 * ext4_get_stripe_size: Get the stripe size.
2698 * @sbi: In memory super block info
2699 *
2700 * If we have specified it via mount option, then
2701 * use the mount option value. If the value specified at mount time is
2702 * greater than the blocks per group use the super block value.
2703 * If the super block value is greater than blocks per group return 0.
2704 * Allocator needs it be less than blocks per group.
2705 *
2706 */
2707static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2708{
2709	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2710	unsigned long stripe_width =
2711			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2712	int ret;
2713
2714	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2715		ret = sbi->s_stripe;
2716	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2717		ret = stripe_width;
2718	else if (stride && stride <= sbi->s_blocks_per_group)
2719		ret = stride;
2720	else
2721		ret = 0;
2722
2723	/*
2724	 * If the stripe width is 1, this makes no sense and
2725	 * we set it to 0 to turn off stripe handling code.
2726	 */
2727	if (ret <= 1)
2728		ret = 0;
2729
2730	return ret;
2731}
2732
2733/*
2734 * Check whether this filesystem can be mounted based on
2735 * the features present and the RDONLY/RDWR mount requested.
2736 * Returns 1 if this filesystem can be mounted as requested,
2737 * 0 if it cannot be.
2738 */
2739static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2740{
2741	if (ext4_has_unknown_ext4_incompat_features(sb)) {
2742		ext4_msg(sb, KERN_ERR,
2743			"Couldn't mount because of "
2744			"unsupported optional features (%x)",
2745			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2746			~EXT4_FEATURE_INCOMPAT_SUPP));
2747		return 0;
2748	}
2749
 
 
 
 
 
 
 
 
 
2750	if (readonly)
2751		return 1;
2752
2753	if (ext4_has_feature_readonly(sb)) {
2754		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2755		sb->s_flags |= SB_RDONLY;
2756		return 1;
2757	}
2758
2759	/* Check that feature set is OK for a read-write mount */
2760	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2761		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2762			 "unsupported optional features (%x)",
2763			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2764				~EXT4_FEATURE_RO_COMPAT_SUPP));
2765		return 0;
2766	}
2767	/*
2768	 * Large file size enabled file system can only be mounted
2769	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2770	 */
2771	if (ext4_has_feature_huge_file(sb)) {
2772		if (sizeof(blkcnt_t) < sizeof(u64)) {
2773			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2774				 "cannot be mounted RDWR without "
2775				 "CONFIG_LBDAF");
2776			return 0;
2777		}
2778	}
2779	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2780		ext4_msg(sb, KERN_ERR,
2781			 "Can't support bigalloc feature without "
2782			 "extents feature\n");
2783		return 0;
2784	}
2785
2786#ifndef CONFIG_QUOTA
2787	if (ext4_has_feature_quota(sb) && !readonly) {
 
2788		ext4_msg(sb, KERN_ERR,
2789			 "Filesystem with quota feature cannot be mounted RDWR "
2790			 "without CONFIG_QUOTA");
2791		return 0;
2792	}
2793	if (ext4_has_feature_project(sb) && !readonly) {
2794		ext4_msg(sb, KERN_ERR,
2795			 "Filesystem with project quota feature cannot be mounted RDWR "
2796			 "without CONFIG_QUOTA");
2797		return 0;
2798	}
2799#endif  /* CONFIG_QUOTA */
2800	return 1;
2801}
2802
2803/*
2804 * This function is called once a day if we have errors logged
2805 * on the file system
2806 */
2807static void print_daily_error_info(struct timer_list *t)
2808{
2809	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2810	struct super_block *sb = sbi->s_sb;
2811	struct ext4_super_block *es = sbi->s_es;
2812
2813	if (es->s_error_count)
2814		/* fsck newer than v1.41.13 is needed to clean this condition. */
2815		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2816			 le32_to_cpu(es->s_error_count));
2817	if (es->s_first_error_time) {
2818		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2819		       sb->s_id, le32_to_cpu(es->s_first_error_time),
 
2820		       (int) sizeof(es->s_first_error_func),
2821		       es->s_first_error_func,
2822		       le32_to_cpu(es->s_first_error_line));
2823		if (es->s_first_error_ino)
2824			printk(KERN_CONT ": inode %u",
2825			       le32_to_cpu(es->s_first_error_ino));
2826		if (es->s_first_error_block)
2827			printk(KERN_CONT ": block %llu", (unsigned long long)
2828			       le64_to_cpu(es->s_first_error_block));
2829		printk(KERN_CONT "\n");
2830	}
2831	if (es->s_last_error_time) {
2832		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2833		       sb->s_id, le32_to_cpu(es->s_last_error_time),
 
2834		       (int) sizeof(es->s_last_error_func),
2835		       es->s_last_error_func,
2836		       le32_to_cpu(es->s_last_error_line));
2837		if (es->s_last_error_ino)
2838			printk(KERN_CONT ": inode %u",
2839			       le32_to_cpu(es->s_last_error_ino));
2840		if (es->s_last_error_block)
2841			printk(KERN_CONT ": block %llu", (unsigned long long)
2842			       le64_to_cpu(es->s_last_error_block));
2843		printk(KERN_CONT "\n");
2844	}
2845	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2846}
2847
2848/* Find next suitable group and run ext4_init_inode_table */
2849static int ext4_run_li_request(struct ext4_li_request *elr)
2850{
2851	struct ext4_group_desc *gdp = NULL;
2852	ext4_group_t group, ngroups;
2853	struct super_block *sb;
2854	unsigned long timeout = 0;
 
2855	int ret = 0;
 
 
2856
2857	sb = elr->lr_super;
2858	ngroups = EXT4_SB(sb)->s_groups_count;
 
 
 
 
 
 
 
 
 
 
 
 
 
2859
2860	for (group = elr->lr_next_group; group < ngroups; group++) {
2861		gdp = ext4_get_group_desc(sb, group, NULL);
2862		if (!gdp) {
2863			ret = 1;
2864			break;
2865		}
2866
2867		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2868			break;
2869	}
2870
2871	if (group >= ngroups)
2872		ret = 1;
2873
2874	if (!ret) {
2875		timeout = jiffies;
2876		ret = ext4_init_inode_table(sb, group,
2877					    elr->lr_timeout ? 0 : 1);
 
2878		if (elr->lr_timeout == 0) {
2879			timeout = (jiffies - timeout) *
2880				  elr->lr_sbi->s_li_wait_mult;
2881			elr->lr_timeout = timeout;
2882		}
2883		elr->lr_next_sched = jiffies + elr->lr_timeout;
2884		elr->lr_next_group = group + 1;
2885	}
2886	return ret;
2887}
2888
2889/*
2890 * Remove lr_request from the list_request and free the
2891 * request structure. Should be called with li_list_mtx held
2892 */
2893static void ext4_remove_li_request(struct ext4_li_request *elr)
2894{
2895	struct ext4_sb_info *sbi;
2896
2897	if (!elr)
2898		return;
2899
2900	sbi = elr->lr_sbi;
2901
2902	list_del(&elr->lr_request);
2903	sbi->s_li_request = NULL;
2904	kfree(elr);
2905}
2906
2907static void ext4_unregister_li_request(struct super_block *sb)
2908{
2909	mutex_lock(&ext4_li_mtx);
2910	if (!ext4_li_info) {
2911		mutex_unlock(&ext4_li_mtx);
2912		return;
2913	}
2914
2915	mutex_lock(&ext4_li_info->li_list_mtx);
2916	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2917	mutex_unlock(&ext4_li_info->li_list_mtx);
2918	mutex_unlock(&ext4_li_mtx);
2919}
2920
2921static struct task_struct *ext4_lazyinit_task;
2922
2923/*
2924 * This is the function where ext4lazyinit thread lives. It walks
2925 * through the request list searching for next scheduled filesystem.
2926 * When such a fs is found, run the lazy initialization request
2927 * (ext4_rn_li_request) and keep track of the time spend in this
2928 * function. Based on that time we compute next schedule time of
2929 * the request. When walking through the list is complete, compute
2930 * next waking time and put itself into sleep.
2931 */
2932static int ext4_lazyinit_thread(void *arg)
2933{
2934	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2935	struct list_head *pos, *n;
2936	struct ext4_li_request *elr;
2937	unsigned long next_wakeup, cur;
2938
2939	BUG_ON(NULL == eli);
 
2940
2941cont_thread:
2942	while (true) {
2943		next_wakeup = MAX_JIFFY_OFFSET;
2944
2945		mutex_lock(&eli->li_list_mtx);
2946		if (list_empty(&eli->li_request_list)) {
2947			mutex_unlock(&eli->li_list_mtx);
2948			goto exit_thread;
2949		}
2950		list_for_each_safe(pos, n, &eli->li_request_list) {
2951			int err = 0;
2952			int progress = 0;
2953			elr = list_entry(pos, struct ext4_li_request,
2954					 lr_request);
2955
2956			if (time_before(jiffies, elr->lr_next_sched)) {
2957				if (time_before(elr->lr_next_sched, next_wakeup))
2958					next_wakeup = elr->lr_next_sched;
2959				continue;
2960			}
2961			if (down_read_trylock(&elr->lr_super->s_umount)) {
2962				if (sb_start_write_trylock(elr->lr_super)) {
2963					progress = 1;
2964					/*
2965					 * We hold sb->s_umount, sb can not
2966					 * be removed from the list, it is
2967					 * now safe to drop li_list_mtx
2968					 */
2969					mutex_unlock(&eli->li_list_mtx);
2970					err = ext4_run_li_request(elr);
2971					sb_end_write(elr->lr_super);
2972					mutex_lock(&eli->li_list_mtx);
2973					n = pos->next;
2974				}
2975				up_read((&elr->lr_super->s_umount));
2976			}
2977			/* error, remove the lazy_init job */
2978			if (err) {
2979				ext4_remove_li_request(elr);
2980				continue;
2981			}
2982			if (!progress) {
2983				elr->lr_next_sched = jiffies +
2984					(prandom_u32()
2985					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2986			}
2987			if (time_before(elr->lr_next_sched, next_wakeup))
2988				next_wakeup = elr->lr_next_sched;
2989		}
2990		mutex_unlock(&eli->li_list_mtx);
2991
2992		try_to_freeze();
2993
2994		cur = jiffies;
2995		if ((time_after_eq(cur, next_wakeup)) ||
2996		    (MAX_JIFFY_OFFSET == next_wakeup)) {
2997			cond_resched();
2998			continue;
2999		}
3000
3001		schedule_timeout_interruptible(next_wakeup - cur);
3002
3003		if (kthread_should_stop()) {
3004			ext4_clear_request_list();
3005			goto exit_thread;
3006		}
3007	}
3008
3009exit_thread:
3010	/*
3011	 * It looks like the request list is empty, but we need
3012	 * to check it under the li_list_mtx lock, to prevent any
3013	 * additions into it, and of course we should lock ext4_li_mtx
3014	 * to atomically free the list and ext4_li_info, because at
3015	 * this point another ext4 filesystem could be registering
3016	 * new one.
3017	 */
3018	mutex_lock(&ext4_li_mtx);
3019	mutex_lock(&eli->li_list_mtx);
3020	if (!list_empty(&eli->li_request_list)) {
3021		mutex_unlock(&eli->li_list_mtx);
3022		mutex_unlock(&ext4_li_mtx);
3023		goto cont_thread;
3024	}
3025	mutex_unlock(&eli->li_list_mtx);
3026	kfree(ext4_li_info);
3027	ext4_li_info = NULL;
3028	mutex_unlock(&ext4_li_mtx);
3029
3030	return 0;
3031}
3032
3033static void ext4_clear_request_list(void)
3034{
3035	struct list_head *pos, *n;
3036	struct ext4_li_request *elr;
3037
3038	mutex_lock(&ext4_li_info->li_list_mtx);
3039	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3040		elr = list_entry(pos, struct ext4_li_request,
3041				 lr_request);
3042		ext4_remove_li_request(elr);
3043	}
3044	mutex_unlock(&ext4_li_info->li_list_mtx);
3045}
3046
3047static int ext4_run_lazyinit_thread(void)
3048{
3049	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3050					 ext4_li_info, "ext4lazyinit");
3051	if (IS_ERR(ext4_lazyinit_task)) {
3052		int err = PTR_ERR(ext4_lazyinit_task);
3053		ext4_clear_request_list();
3054		kfree(ext4_li_info);
3055		ext4_li_info = NULL;
3056		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3057				 "initialization thread\n",
3058				 err);
3059		return err;
3060	}
3061	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3062	return 0;
3063}
3064
3065/*
3066 * Check whether it make sense to run itable init. thread or not.
3067 * If there is at least one uninitialized inode table, return
3068 * corresponding group number, else the loop goes through all
3069 * groups and return total number of groups.
3070 */
3071static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3072{
3073	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3074	struct ext4_group_desc *gdp = NULL;
3075
 
 
 
3076	for (group = 0; group < ngroups; group++) {
3077		gdp = ext4_get_group_desc(sb, group, NULL);
3078		if (!gdp)
3079			continue;
3080
3081		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3082			break;
3083	}
3084
3085	return group;
3086}
3087
3088static int ext4_li_info_new(void)
3089{
3090	struct ext4_lazy_init *eli = NULL;
3091
3092	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3093	if (!eli)
3094		return -ENOMEM;
3095
3096	INIT_LIST_HEAD(&eli->li_request_list);
3097	mutex_init(&eli->li_list_mtx);
3098
3099	eli->li_state |= EXT4_LAZYINIT_QUIT;
3100
3101	ext4_li_info = eli;
3102
3103	return 0;
3104}
3105
3106static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3107					    ext4_group_t start)
3108{
3109	struct ext4_sb_info *sbi = EXT4_SB(sb);
3110	struct ext4_li_request *elr;
3111
3112	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3113	if (!elr)
3114		return NULL;
3115
3116	elr->lr_super = sb;
3117	elr->lr_sbi = sbi;
3118	elr->lr_next_group = start;
 
 
 
 
 
3119
3120	/*
3121	 * Randomize first schedule time of the request to
3122	 * spread the inode table initialization requests
3123	 * better.
3124	 */
3125	elr->lr_next_sched = jiffies + (prandom_u32() %
3126				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3127	return elr;
3128}
3129
3130int ext4_register_li_request(struct super_block *sb,
3131			     ext4_group_t first_not_zeroed)
3132{
3133	struct ext4_sb_info *sbi = EXT4_SB(sb);
3134	struct ext4_li_request *elr = NULL;
3135	ext4_group_t ngroups = sbi->s_groups_count;
3136	int ret = 0;
3137
3138	mutex_lock(&ext4_li_mtx);
3139	if (sbi->s_li_request != NULL) {
3140		/*
3141		 * Reset timeout so it can be computed again, because
3142		 * s_li_wait_mult might have changed.
3143		 */
3144		sbi->s_li_request->lr_timeout = 0;
3145		goto out;
3146	}
3147
3148	if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3149	    !test_opt(sb, INIT_INODE_TABLE))
 
3150		goto out;
3151
3152	elr = ext4_li_request_new(sb, first_not_zeroed);
3153	if (!elr) {
3154		ret = -ENOMEM;
3155		goto out;
3156	}
3157
3158	if (NULL == ext4_li_info) {
3159		ret = ext4_li_info_new();
3160		if (ret)
3161			goto out;
3162	}
3163
3164	mutex_lock(&ext4_li_info->li_list_mtx);
3165	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3166	mutex_unlock(&ext4_li_info->li_list_mtx);
3167
3168	sbi->s_li_request = elr;
3169	/*
3170	 * set elr to NULL here since it has been inserted to
3171	 * the request_list and the removal and free of it is
3172	 * handled by ext4_clear_request_list from now on.
3173	 */
3174	elr = NULL;
3175
3176	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3177		ret = ext4_run_lazyinit_thread();
3178		if (ret)
3179			goto out;
3180	}
3181out:
3182	mutex_unlock(&ext4_li_mtx);
3183	if (ret)
3184		kfree(elr);
3185	return ret;
3186}
3187
3188/*
3189 * We do not need to lock anything since this is called on
3190 * module unload.
3191 */
3192static void ext4_destroy_lazyinit_thread(void)
3193{
3194	/*
3195	 * If thread exited earlier
3196	 * there's nothing to be done.
3197	 */
3198	if (!ext4_li_info || !ext4_lazyinit_task)
3199		return;
3200
3201	kthread_stop(ext4_lazyinit_task);
3202}
3203
3204static int set_journal_csum_feature_set(struct super_block *sb)
3205{
3206	int ret = 1;
3207	int compat, incompat;
3208	struct ext4_sb_info *sbi = EXT4_SB(sb);
3209
3210	if (ext4_has_metadata_csum(sb)) {
3211		/* journal checksum v3 */
3212		compat = 0;
3213		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3214	} else {
3215		/* journal checksum v1 */
3216		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3217		incompat = 0;
3218	}
3219
3220	jbd2_journal_clear_features(sbi->s_journal,
3221			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3222			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3223			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3224	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3225		ret = jbd2_journal_set_features(sbi->s_journal,
3226				compat, 0,
3227				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3228				incompat);
3229	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3230		ret = jbd2_journal_set_features(sbi->s_journal,
3231				compat, 0,
3232				incompat);
3233		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3234				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3235	} else {
3236		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3237				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3238	}
3239
3240	return ret;
3241}
3242
3243/*
3244 * Note: calculating the overhead so we can be compatible with
3245 * historical BSD practice is quite difficult in the face of
3246 * clusters/bigalloc.  This is because multiple metadata blocks from
3247 * different block group can end up in the same allocation cluster.
3248 * Calculating the exact overhead in the face of clustered allocation
3249 * requires either O(all block bitmaps) in memory or O(number of block
3250 * groups**2) in time.  We will still calculate the superblock for
3251 * older file systems --- and if we come across with a bigalloc file
3252 * system with zero in s_overhead_clusters the estimate will be close to
3253 * correct especially for very large cluster sizes --- but for newer
3254 * file systems, it's better to calculate this figure once at mkfs
3255 * time, and store it in the superblock.  If the superblock value is
3256 * present (even for non-bigalloc file systems), we will use it.
3257 */
3258static int count_overhead(struct super_block *sb, ext4_group_t grp,
3259			  char *buf)
3260{
3261	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3262	struct ext4_group_desc	*gdp;
3263	ext4_fsblk_t		first_block, last_block, b;
3264	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3265	int			s, j, count = 0;
 
3266
3267	if (!ext4_has_feature_bigalloc(sb))
3268		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
 
3269			sbi->s_itb_per_group + 2);
3270
3271	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3272		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3273	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3274	for (i = 0; i < ngroups; i++) {
3275		gdp = ext4_get_group_desc(sb, i, NULL);
3276		b = ext4_block_bitmap(sb, gdp);
3277		if (b >= first_block && b <= last_block) {
3278			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3279			count++;
3280		}
3281		b = ext4_inode_bitmap(sb, gdp);
3282		if (b >= first_block && b <= last_block) {
3283			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3284			count++;
3285		}
3286		b = ext4_inode_table(sb, gdp);
3287		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3288			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3289				int c = EXT4_B2C(sbi, b - first_block);
3290				ext4_set_bit(c, buf);
3291				count++;
3292			}
3293		if (i != grp)
3294			continue;
3295		s = 0;
3296		if (ext4_bg_has_super(sb, grp)) {
3297			ext4_set_bit(s++, buf);
3298			count++;
3299		}
3300		j = ext4_bg_num_gdb(sb, grp);
3301		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3302			ext4_error(sb, "Invalid number of block group "
3303				   "descriptor blocks: %d", j);
3304			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3305		}
3306		count += j;
3307		for (; j > 0; j--)
3308			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3309	}
3310	if (!count)
3311		return 0;
3312	return EXT4_CLUSTERS_PER_GROUP(sb) -
3313		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3314}
3315
3316/*
3317 * Compute the overhead and stash it in sbi->s_overhead
3318 */
3319int ext4_calculate_overhead(struct super_block *sb)
3320{
3321	struct ext4_sb_info *sbi = EXT4_SB(sb);
3322	struct ext4_super_block *es = sbi->s_es;
3323	struct inode *j_inode;
3324	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3325	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3326	ext4_fsblk_t overhead = 0;
3327	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3328
3329	if (!buf)
3330		return -ENOMEM;
3331
3332	/*
3333	 * Compute the overhead (FS structures).  This is constant
3334	 * for a given filesystem unless the number of block groups
3335	 * changes so we cache the previous value until it does.
3336	 */
3337
3338	/*
3339	 * All of the blocks before first_data_block are overhead
3340	 */
3341	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3342
3343	/*
3344	 * Add the overhead found in each block group
3345	 */
3346	for (i = 0; i < ngroups; i++) {
3347		int blks;
3348
3349		blks = count_overhead(sb, i, buf);
3350		overhead += blks;
3351		if (blks)
3352			memset(buf, 0, PAGE_SIZE);
3353		cond_resched();
3354	}
3355
3356	/*
3357	 * Add the internal journal blocks whether the journal has been
3358	 * loaded or not
3359	 */
3360	if (sbi->s_journal && !sbi->journal_bdev)
3361		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3362	else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
 
3363		j_inode = ext4_get_journal_inode(sb, j_inum);
3364		if (j_inode) {
3365			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3366			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3367			iput(j_inode);
3368		} else {
3369			ext4_msg(sb, KERN_ERR, "can't get journal size");
3370		}
3371	}
3372	sbi->s_overhead = overhead;
3373	smp_wmb();
3374	free_page((unsigned long) buf);
3375	return 0;
3376}
3377
3378static void ext4_set_resv_clusters(struct super_block *sb)
3379{
3380	ext4_fsblk_t resv_clusters;
3381	struct ext4_sb_info *sbi = EXT4_SB(sb);
3382
3383	/*
3384	 * There's no need to reserve anything when we aren't using extents.
3385	 * The space estimates are exact, there are no unwritten extents,
3386	 * hole punching doesn't need new metadata... This is needed especially
3387	 * to keep ext2/3 backward compatibility.
3388	 */
3389	if (!ext4_has_feature_extents(sb))
3390		return;
3391	/*
3392	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3393	 * This should cover the situations where we can not afford to run
3394	 * out of space like for example punch hole, or converting
3395	 * unwritten extents in delalloc path. In most cases such
3396	 * allocation would require 1, or 2 blocks, higher numbers are
3397	 * very rare.
3398	 */
3399	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3400			 sbi->s_cluster_bits);
3401
3402	do_div(resv_clusters, 50);
3403	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3404
3405	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3406}
3407
3408static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3409{
3410	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3411	char *orig_data = kstrdup(data, GFP_KERNEL);
3412	struct buffer_head *bh;
3413	struct ext4_super_block *es = NULL;
3414	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3415	ext4_fsblk_t block;
3416	ext4_fsblk_t sb_block = get_sb_block(&data);
3417	ext4_fsblk_t logical_sb_block;
3418	unsigned long offset = 0;
3419	unsigned long journal_devnum = 0;
3420	unsigned long def_mount_opts;
3421	struct inode *root;
3422	const char *descr;
3423	int ret = -ENOMEM;
3424	int blocksize, clustersize;
3425	unsigned int db_count;
3426	unsigned int i;
3427	int needs_recovery, has_huge_files, has_bigalloc;
3428	__u64 blocks_count;
3429	int err = 0;
3430	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3431	ext4_group_t first_not_zeroed;
3432
3433	if ((data && !orig_data) || !sbi)
3434		goto out_free_base;
 
 
 
 
 
 
3435
3436	sbi->s_daxdev = dax_dev;
3437	sbi->s_blockgroup_lock =
3438		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3439	if (!sbi->s_blockgroup_lock)
3440		goto out_free_base;
 
 
 
 
3441
3442	sb->s_fs_info = sbi;
3443	sbi->s_sb = sb;
3444	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3445	sbi->s_sb_block = sb_block;
3446	if (sb->s_bdev->bd_part)
3447		sbi->s_sectors_written_start =
3448			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3449
3450	/* Cleanup superblock name */
3451	strreplace(sb->s_id, '/', '!');
 
 
3452
3453	/* -EINVAL is default */
3454	ret = -EINVAL;
3455	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3456	if (!blocksize) {
3457		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3458		goto out_fail;
3459	}
3460
3461	/*
3462	 * The ext4 superblock will not be buffer aligned for other than 1kB
3463	 * block sizes.  We need to calculate the offset from buffer start.
3464	 */
3465	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3466		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3467		offset = do_div(logical_sb_block, blocksize);
3468	} else {
3469		logical_sb_block = sb_block;
3470	}
3471
3472	if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3473		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3474		goto out_fail;
3475	}
3476	/*
3477	 * Note: s_es must be initialized as soon as possible because
3478	 *       some ext4 macro-instructions depend on its value
3479	 */
3480	es = (struct ext4_super_block *) (bh->b_data + offset);
3481	sbi->s_es = es;
3482	sb->s_magic = le16_to_cpu(es->s_magic);
3483	if (sb->s_magic != EXT4_SUPER_MAGIC)
3484		goto cantfind_ext4;
3485	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3486
3487	/* Warn if metadata_csum and gdt_csum are both set. */
3488	if (ext4_has_feature_metadata_csum(sb) &&
3489	    ext4_has_feature_gdt_csum(sb))
3490		ext4_warning(sb, "metadata_csum and uninit_bg are "
3491			     "redundant flags; please run fsck.");
3492
3493	/* Check for a known checksum algorithm */
3494	if (!ext4_verify_csum_type(sb, es)) {
3495		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3496			 "unknown checksum algorithm.");
3497		silent = 1;
3498		goto cantfind_ext4;
3499	}
3500
3501	/* Load the checksum driver */
3502	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3503	if (IS_ERR(sbi->s_chksum_driver)) {
3504		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3505		ret = PTR_ERR(sbi->s_chksum_driver);
3506		sbi->s_chksum_driver = NULL;
3507		goto failed_mount;
3508	}
3509
3510	/* Check superblock checksum */
3511	if (!ext4_superblock_csum_verify(sb, es)) {
3512		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3513			 "invalid superblock checksum.  Run e2fsck?");
3514		silent = 1;
3515		ret = -EFSBADCRC;
3516		goto cantfind_ext4;
3517	}
3518
3519	/* Precompute checksum seed for all metadata */
3520	if (ext4_has_feature_csum_seed(sb))
3521		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3522	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3523		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3524					       sizeof(es->s_uuid));
3525
3526	/* Set defaults before we parse the mount options */
3527	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3528	set_opt(sb, INIT_INODE_TABLE);
3529	if (def_mount_opts & EXT4_DEFM_DEBUG)
3530		set_opt(sb, DEBUG);
3531	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3532		set_opt(sb, GRPID);
3533	if (def_mount_opts & EXT4_DEFM_UID16)
3534		set_opt(sb, NO_UID32);
3535	/* xattr user namespace & acls are now defaulted on */
3536	set_opt(sb, XATTR_USER);
3537#ifdef CONFIG_EXT4_FS_POSIX_ACL
3538	set_opt(sb, POSIX_ACL);
3539#endif
 
 
3540	/* don't forget to enable journal_csum when metadata_csum is enabled. */
3541	if (ext4_has_metadata_csum(sb))
3542		set_opt(sb, JOURNAL_CHECKSUM);
3543
3544	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3545		set_opt(sb, JOURNAL_DATA);
3546	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3547		set_opt(sb, ORDERED_DATA);
3548	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3549		set_opt(sb, WRITEBACK_DATA);
3550
3551	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3552		set_opt(sb, ERRORS_PANIC);
3553	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3554		set_opt(sb, ERRORS_CONT);
3555	else
3556		set_opt(sb, ERRORS_RO);
3557	/* block_validity enabled by default; disable with noblock_validity */
3558	set_opt(sb, BLOCK_VALIDITY);
3559	if (def_mount_opts & EXT4_DEFM_DISCARD)
3560		set_opt(sb, DISCARD);
3561
3562	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3563	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3564	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3565	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3566	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3567
3568	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3569		set_opt(sb, BARRIER);
3570
3571	/*
3572	 * enable delayed allocation by default
3573	 * Use -o nodelalloc to turn it off
3574	 */
3575	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3576	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3577		set_opt(sb, DELALLOC);
3578
3579	/*
3580	 * set default s_li_wait_mult for lazyinit, for the case there is
3581	 * no mount option specified.
3582	 */
3583	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3584
3585	if (sbi->s_es->s_mount_opts[0]) {
3586		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3587					      sizeof(sbi->s_es->s_mount_opts),
3588					      GFP_KERNEL);
3589		if (!s_mount_opts)
3590			goto failed_mount;
3591		if (!parse_options(s_mount_opts, sb, &journal_devnum,
3592				   &journal_ioprio, 0)) {
3593			ext4_msg(sb, KERN_WARNING,
3594				 "failed to parse options in superblock: %s",
3595				 s_mount_opts);
 
 
 
 
 
 
 
 
 
 
 
 
3596		}
3597		kfree(s_mount_opts);
 
 
 
 
 
 
3598	}
3599	sbi->s_def_mount_opt = sbi->s_mount_opt;
3600	if (!parse_options((char *) data, sb, &journal_devnum,
3601			   &journal_ioprio, 0))
3602		goto failed_mount;
 
 
 
 
 
 
 
 
 
 
3603
3604	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3605		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3606			    "with data=journal disables delayed "
3607			    "allocation and O_DIRECT support!\n");
3608		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3609			ext4_msg(sb, KERN_ERR, "can't mount with "
3610				 "both data=journal and delalloc");
3611			goto failed_mount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3612		}
3613		if (test_opt(sb, DIOREAD_NOLOCK)) {
3614			ext4_msg(sb, KERN_ERR, "can't mount with "
3615				 "both data=journal and dioread_nolock");
3616			goto failed_mount;
 
 
 
 
3617		}
3618		if (test_opt(sb, DAX)) {
3619			ext4_msg(sb, KERN_ERR, "can't mount with "
3620				 "both data=journal and dax");
3621			goto failed_mount;
 
 
 
 
 
 
 
 
 
3622		}
3623		if (ext4_has_feature_encrypt(sb)) {
3624			ext4_msg(sb, KERN_WARNING,
3625				 "encrypted files will use data=ordered "
3626				 "instead of data journaling mode");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3627		}
3628		if (test_opt(sb, DELALLOC))
3629			clear_opt(sb, DELALLOC);
3630	} else {
3631		sb->s_iflags |= SB_I_CGROUPWB;
3632	}
3633
3634	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3635		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3636
3637	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3638	    (ext4_has_compat_features(sb) ||
3639	     ext4_has_ro_compat_features(sb) ||
3640	     ext4_has_incompat_features(sb)))
3641		ext4_msg(sb, KERN_WARNING,
3642		       "feature flags set on rev 0 fs, "
3643		       "running e2fsck is recommended");
3644
3645	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3646		set_opt2(sb, HURD_COMPAT);
3647		if (ext4_has_feature_64bit(sb)) {
3648			ext4_msg(sb, KERN_ERR,
3649				 "The Hurd can't support 64-bit file systems");
3650			goto failed_mount;
3651		}
3652
3653		/*
3654		 * ea_inode feature uses l_i_version field which is not
3655		 * available in HURD_COMPAT mode.
3656		 */
3657		if (ext4_has_feature_ea_inode(sb)) {
3658			ext4_msg(sb, KERN_ERR,
3659				 "ea_inode feature is not supported for Hurd");
3660			goto failed_mount;
3661		}
3662	}
3663
3664	if (IS_EXT2_SB(sb)) {
3665		if (ext2_feature_set_ok(sb))
3666			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3667				 "using the ext4 subsystem");
3668		else {
3669			/*
3670			 * If we're probing be silent, if this looks like
3671			 * it's actually an ext[34] filesystem.
3672			 */
3673			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3674				goto failed_mount;
3675			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3676				 "to feature incompatibilities");
3677			goto failed_mount;
3678		}
3679	}
3680
3681	if (IS_EXT3_SB(sb)) {
3682		if (ext3_feature_set_ok(sb))
3683			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3684				 "using the ext4 subsystem");
3685		else {
3686			/*
3687			 * If we're probing be silent, if this looks like
3688			 * it's actually an ext4 filesystem.
3689			 */
3690			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3691				goto failed_mount;
3692			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3693				 "to feature incompatibilities");
3694			goto failed_mount;
3695		}
3696	}
3697
3698	/*
3699	 * Check feature flags regardless of the revision level, since we
3700	 * previously didn't change the revision level when setting the flags,
3701	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3702	 */
3703	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3704		goto failed_mount;
3705
3706	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3707	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3708	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3709		ext4_msg(sb, KERN_ERR,
3710		       "Unsupported filesystem blocksize %d (%d log_block_size)",
3711			 blocksize, le32_to_cpu(es->s_log_block_size));
3712		goto failed_mount;
3713	}
3714	if (le32_to_cpu(es->s_log_block_size) >
3715	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3716		ext4_msg(sb, KERN_ERR,
3717			 "Invalid log block size: %u",
3718			 le32_to_cpu(es->s_log_block_size));
3719		goto failed_mount;
3720	}
3721
3722	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3723		ext4_msg(sb, KERN_ERR,
3724			 "Number of reserved GDT blocks insanely large: %d",
3725			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3726		goto failed_mount;
3727	}
3728
3729	if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3730		if (ext4_has_feature_inline_data(sb)) {
3731			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3732					" that may contain inline data");
3733			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3734		}
3735		err = bdev_dax_supported(sb, blocksize);
3736		if (err) {
3737			ext4_msg(sb, KERN_ERR,
3738				"DAX unsupported by block device. Turning off DAX.");
3739			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3740		}
3741	}
3742
3743	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3744		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3745			 es->s_encryption_level);
3746		goto failed_mount;
3747	}
3748
3749	if (sb->s_blocksize != blocksize) {
3750		/* Validate the filesystem blocksize */
3751		if (!sb_set_blocksize(sb, blocksize)) {
3752			ext4_msg(sb, KERN_ERR, "bad block size %d",
3753					blocksize);
3754			goto failed_mount;
3755		}
3756
3757		brelse(bh);
3758		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3759		offset = do_div(logical_sb_block, blocksize);
3760		bh = sb_bread_unmovable(sb, logical_sb_block);
3761		if (!bh) {
3762			ext4_msg(sb, KERN_ERR,
3763			       "Can't read superblock on 2nd try");
3764			goto failed_mount;
3765		}
3766		es = (struct ext4_super_block *)(bh->b_data + offset);
3767		sbi->s_es = es;
3768		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3769			ext4_msg(sb, KERN_ERR,
3770			       "Magic mismatch, very weird!");
3771			goto failed_mount;
3772		}
3773	}
3774
3775	has_huge_files = ext4_has_feature_huge_file(sb);
3776	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3777						      has_huge_files);
3778	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3779
3780	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3781		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3782		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3783	} else {
3784		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3785		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3786		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3787		    (!is_power_of_2(sbi->s_inode_size)) ||
3788		    (sbi->s_inode_size > blocksize)) {
3789			ext4_msg(sb, KERN_ERR,
3790			       "unsupported inode size: %d",
3791			       sbi->s_inode_size);
3792			goto failed_mount;
3793		}
3794		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3795			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3796	}
3797
3798	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3799	if (ext4_has_feature_64bit(sb)) {
3800		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3801		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3802		    !is_power_of_2(sbi->s_desc_size)) {
3803			ext4_msg(sb, KERN_ERR,
3804			       "unsupported descriptor size %lu",
3805			       sbi->s_desc_size);
3806			goto failed_mount;
3807		}
3808	} else
3809		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3810
3811	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3812	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3813
3814	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3815	if (sbi->s_inodes_per_block == 0)
3816		goto cantfind_ext4;
3817	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3818	    sbi->s_inodes_per_group > blocksize * 8) {
3819		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3820			 sbi->s_blocks_per_group);
3821		goto failed_mount;
3822	}
3823	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3824					sbi->s_inodes_per_block;
3825	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3826	sbi->s_sbh = bh;
3827	sbi->s_mount_state = le16_to_cpu(es->s_state);
3828	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3829	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3830
3831	for (i = 0; i < 4; i++)
3832		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3833	sbi->s_def_hash_version = es->s_def_hash_version;
3834	if (ext4_has_feature_dir_index(sb)) {
3835		i = le32_to_cpu(es->s_flags);
3836		if (i & EXT2_FLAGS_UNSIGNED_HASH)
3837			sbi->s_hash_unsigned = 3;
3838		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3839#ifdef __CHAR_UNSIGNED__
3840			if (!sb_rdonly(sb))
3841				es->s_flags |=
3842					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3843			sbi->s_hash_unsigned = 3;
3844#else
3845			if (!sb_rdonly(sb))
3846				es->s_flags |=
3847					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3848#endif
3849		}
3850	}
3851
3852	/* Handle clustersize */
3853	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3854	has_bigalloc = ext4_has_feature_bigalloc(sb);
3855	if (has_bigalloc) {
3856		if (clustersize < blocksize) {
3857			ext4_msg(sb, KERN_ERR,
3858				 "cluster size (%d) smaller than "
3859				 "block size (%d)", clustersize, blocksize);
3860			goto failed_mount;
3861		}
3862		if (le32_to_cpu(es->s_log_cluster_size) >
3863		    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3864			ext4_msg(sb, KERN_ERR,
3865				 "Invalid log cluster size: %u",
3866				 le32_to_cpu(es->s_log_cluster_size));
3867			goto failed_mount;
3868		}
3869		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3870			le32_to_cpu(es->s_log_block_size);
3871		sbi->s_clusters_per_group =
3872			le32_to_cpu(es->s_clusters_per_group);
3873		if (sbi->s_clusters_per_group > blocksize * 8) {
3874			ext4_msg(sb, KERN_ERR,
3875				 "#clusters per group too big: %lu",
3876				 sbi->s_clusters_per_group);
3877			goto failed_mount;
3878		}
3879		if (sbi->s_blocks_per_group !=
3880		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3881			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3882				 "clusters per group (%lu) inconsistent",
3883				 sbi->s_blocks_per_group,
3884				 sbi->s_clusters_per_group);
3885			goto failed_mount;
3886		}
3887	} else {
3888		if (clustersize != blocksize) {
3889			ext4_warning(sb, "fragment/cluster size (%d) != "
3890				     "block size (%d)", clustersize,
3891				     blocksize);
3892			clustersize = blocksize;
3893		}
3894		if (sbi->s_blocks_per_group > blocksize * 8) {
3895			ext4_msg(sb, KERN_ERR,
3896				 "#blocks per group too big: %lu",
3897				 sbi->s_blocks_per_group);
3898			goto failed_mount;
3899		}
3900		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3901		sbi->s_cluster_bits = 0;
3902	}
3903	sbi->s_cluster_ratio = clustersize / blocksize;
3904
3905	/* Do we have standard group size of clustersize * 8 blocks ? */
3906	if (sbi->s_blocks_per_group == clustersize << 3)
3907		set_opt2(sb, STD_GROUP_SIZE);
3908
3909	/*
3910	 * Test whether we have more sectors than will fit in sector_t,
3911	 * and whether the max offset is addressable by the page cache.
3912	 */
3913	err = generic_check_addressable(sb->s_blocksize_bits,
3914					ext4_blocks_count(es));
3915	if (err) {
3916		ext4_msg(sb, KERN_ERR, "filesystem"
3917			 " too large to mount safely on this system");
3918		if (sizeof(sector_t) < 8)
3919			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3920		goto failed_mount;
3921	}
3922
3923	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3924		goto cantfind_ext4;
3925
3926	/* check blocks count against device size */
3927	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3928	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3929		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3930		       "exceeds size of device (%llu blocks)",
3931		       ext4_blocks_count(es), blocks_count);
3932		goto failed_mount;
3933	}
3934
3935	/*
3936	 * It makes no sense for the first data block to be beyond the end
3937	 * of the filesystem.
3938	 */
3939	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3940		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3941			 "block %u is beyond end of filesystem (%llu)",
3942			 le32_to_cpu(es->s_first_data_block),
3943			 ext4_blocks_count(es));
3944		goto failed_mount;
 
 
 
 
 
 
3945	}
 
3946	blocks_count = (ext4_blocks_count(es) -
3947			le32_to_cpu(es->s_first_data_block) +
3948			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3949	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3950	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3951		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3952		       "(block count %llu, first data block %u, "
3953		       "blocks per group %lu)", sbi->s_groups_count,
3954		       ext4_blocks_count(es),
3955		       le32_to_cpu(es->s_first_data_block),
3956		       EXT4_BLOCKS_PER_GROUP(sb));
3957		goto failed_mount;
3958	}
3959	sbi->s_groups_count = blocks_count;
3960	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3961			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3962	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3963		   EXT4_DESC_PER_BLOCK(sb);
3964	if (ext4_has_feature_meta_bg(sb)) {
3965		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3966			ext4_msg(sb, KERN_WARNING,
3967				 "first meta block group too large: %u "
3968				 "(group descriptor block count %u)",
3969				 le32_to_cpu(es->s_first_meta_bg), db_count);
3970			goto failed_mount;
3971		}
3972	}
3973	sbi->s_group_desc = kvmalloc(db_count *
 
3974					  sizeof(struct buffer_head *),
3975					  GFP_KERNEL);
3976	if (sbi->s_group_desc == NULL) {
3977		ext4_msg(sb, KERN_ERR, "not enough memory");
3978		ret = -ENOMEM;
3979		goto failed_mount;
3980	}
3981
3982	bgl_lock_init(sbi->s_blockgroup_lock);
3983
3984	/* Pre-read the descriptors into the buffer cache */
3985	for (i = 0; i < db_count; i++) {
3986		block = descriptor_loc(sb, logical_sb_block, i);
3987		sb_breadahead(sb, block);
3988	}
3989
3990	for (i = 0; i < db_count; i++) {
 
 
3991		block = descriptor_loc(sb, logical_sb_block, i);
3992		sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3993		if (!sbi->s_group_desc[i]) {
3994			ext4_msg(sb, KERN_ERR,
3995			       "can't read group descriptor %d", i);
3996			db_count = i;
3997			goto failed_mount2;
3998		}
 
 
 
3999	}
4000	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
 
4001		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4002		ret = -EFSCORRUPTED;
4003		goto failed_mount2;
4004	}
4005
4006	sbi->s_gdb_count = db_count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4007
4008	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
 
 
 
 
 
 
4009
4010	/* Register extent status tree shrinker */
4011	if (ext4_es_register_shrinker(sbi))
4012		goto failed_mount3;
4013
4014	sbi->s_stripe = ext4_get_stripe_size(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
 
4015	sbi->s_extent_max_zeroout_kb = 32;
4016
4017	/*
4018	 * set up enough so that it can read an inode
4019	 */
4020	sb->s_op = &ext4_sops;
4021	sb->s_export_op = &ext4_export_ops;
4022	sb->s_xattr = ext4_xattr_handlers;
4023#ifdef CONFIG_EXT4_FS_ENCRYPTION
4024	sb->s_cop = &ext4_cryptops;
4025#endif
 
 
 
4026#ifdef CONFIG_QUOTA
4027	sb->dq_op = &ext4_quota_operations;
4028	if (ext4_has_feature_quota(sb))
4029		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4030	else
4031		sb->s_qcop = &ext4_qctl_operations;
4032	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4033#endif
4034	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4035
4036	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4037	mutex_init(&sbi->s_orphan_lock);
4038
 
 
4039	sb->s_root = NULL;
4040
4041	needs_recovery = (es->s_last_orphan != 0 ||
 
4042			  ext4_has_feature_journal_needs_recovery(sb));
4043
4044	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4045		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
 
4046			goto failed_mount3a;
 
4047
 
4048	/*
4049	 * The first inode we look at is the journal inode.  Don't try
4050	 * root first: it may be modified in the journal!
4051	 */
4052	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4053		err = ext4_load_journal(sb, es, journal_devnum);
4054		if (err)
4055			goto failed_mount3a;
4056	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4057		   ext4_has_feature_journal_needs_recovery(sb)) {
4058		ext4_msg(sb, KERN_ERR, "required journal recovery "
4059		       "suppressed and not mounted read-only");
4060		goto failed_mount_wq;
4061	} else {
4062		/* Nojournal mode, all journal mount options are illegal */
4063		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4064			ext4_msg(sb, KERN_ERR, "can't mount with "
4065				 "journal_checksum, fs mounted w/o journal");
4066			goto failed_mount_wq;
4067		}
4068		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4069			ext4_msg(sb, KERN_ERR, "can't mount with "
4070				 "journal_async_commit, fs mounted w/o journal");
4071			goto failed_mount_wq;
 
 
 
 
 
 
4072		}
4073		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4074			ext4_msg(sb, KERN_ERR, "can't mount with "
4075				 "commit=%lu, fs mounted w/o journal",
4076				 sbi->s_commit_interval / HZ);
4077			goto failed_mount_wq;
4078		}
4079		if (EXT4_MOUNT_DATA_FLAGS &
4080		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4081			ext4_msg(sb, KERN_ERR, "can't mount with "
4082				 "data=, fs mounted w/o journal");
4083			goto failed_mount_wq;
4084		}
4085		sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4086		clear_opt(sb, JOURNAL_CHECKSUM);
4087		clear_opt(sb, DATA_FLAGS);
 
4088		sbi->s_journal = NULL;
4089		needs_recovery = 0;
4090		goto no_journal;
4091	}
4092
4093	if (ext4_has_feature_64bit(sb) &&
4094	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4095				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4096		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4097		goto failed_mount_wq;
4098	}
4099
4100	if (!set_journal_csum_feature_set(sb)) {
4101		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4102			 "feature set");
4103		goto failed_mount_wq;
4104	}
4105
4106	/* We have now updated the journal if required, so we can
4107	 * validate the data journaling mode. */
4108	switch (test_opt(sb, DATA_FLAGS)) {
4109	case 0:
4110		/* No mode set, assume a default based on the journal
4111		 * capabilities: ORDERED_DATA if the journal can
4112		 * cope, else JOURNAL_DATA
4113		 */
4114		if (jbd2_journal_check_available_features
4115		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4116			set_opt(sb, ORDERED_DATA);
4117			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4118		} else {
4119			set_opt(sb, JOURNAL_DATA);
4120			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4121		}
4122		break;
4123
4124	case EXT4_MOUNT_ORDERED_DATA:
4125	case EXT4_MOUNT_WRITEBACK_DATA:
4126		if (!jbd2_journal_check_available_features
4127		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4128			ext4_msg(sb, KERN_ERR, "Journal does not support "
4129			       "requested data journaling mode");
4130			goto failed_mount_wq;
4131		}
4132	default:
4133		break;
4134	}
4135
4136	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4137	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4138		ext4_msg(sb, KERN_ERR, "can't mount with "
4139			"journal_async_commit in data=ordered mode");
4140		goto failed_mount_wq;
4141	}
4142
4143	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4144
4145	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4146
4147no_journal:
4148	if (!test_opt(sb, NO_MBCACHE)) {
4149		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4150		if (!sbi->s_ea_block_cache) {
4151			ext4_msg(sb, KERN_ERR,
4152				 "Failed to create ea_block_cache");
 
4153			goto failed_mount_wq;
4154		}
4155
4156		if (ext4_has_feature_ea_inode(sb)) {
4157			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4158			if (!sbi->s_ea_inode_cache) {
4159				ext4_msg(sb, KERN_ERR,
4160					 "Failed to create ea_inode_cache");
 
4161				goto failed_mount_wq;
4162			}
4163		}
4164	}
4165
4166	if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4167	    (blocksize != PAGE_SIZE)) {
4168		ext4_msg(sb, KERN_ERR,
4169			 "Unsupported blocksize for fs encryption");
4170		goto failed_mount_wq;
4171	}
4172
4173	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4174	    !ext4_has_feature_encrypt(sb)) {
4175		ext4_set_feature_encrypt(sb);
4176		ext4_commit_super(sb, 1);
4177	}
4178
4179	/*
4180	 * Get the # of file system overhead blocks from the
4181	 * superblock if present.
4182	 */
4183	if (es->s_overhead_clusters)
4184		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4185	else {
 
 
 
 
 
 
 
 
 
4186		err = ext4_calculate_overhead(sb);
4187		if (err)
4188			goto failed_mount_wq;
4189	}
4190
4191	/*
4192	 * The maximum number of concurrent works can be high and
4193	 * concurrency isn't really necessary.  Limit it to 1.
4194	 */
4195	EXT4_SB(sb)->rsv_conversion_wq =
4196		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4197	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4198		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4199		ret = -ENOMEM;
4200		goto failed_mount4;
4201	}
4202
4203	/*
4204	 * The jbd2_journal_load will have done any necessary log recovery,
4205	 * so we can safely mount the rest of the filesystem now.
4206	 */
4207
4208	root = ext4_iget(sb, EXT4_ROOT_INO);
4209	if (IS_ERR(root)) {
4210		ext4_msg(sb, KERN_ERR, "get root inode failed");
4211		ret = PTR_ERR(root);
4212		root = NULL;
4213		goto failed_mount4;
4214	}
4215	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4216		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4217		iput(root);
 
4218		goto failed_mount4;
4219	}
 
 
4220	sb->s_root = d_make_root(root);
4221	if (!sb->s_root) {
4222		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4223		ret = -ENOMEM;
4224		goto failed_mount4;
4225	}
4226
4227	if (ext4_setup_super(sb, es, sb_rdonly(sb)))
 
4228		sb->s_flags |= SB_RDONLY;
 
 
4229
4230	/* determine the minimum size of new large inodes, if present */
4231	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4232	    sbi->s_want_extra_isize == 0) {
4233		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4234						     EXT4_GOOD_OLD_INODE_SIZE;
4235		if (ext4_has_feature_extra_isize(sb)) {
4236			if (sbi->s_want_extra_isize <
4237			    le16_to_cpu(es->s_want_extra_isize))
4238				sbi->s_want_extra_isize =
4239					le16_to_cpu(es->s_want_extra_isize);
4240			if (sbi->s_want_extra_isize <
4241			    le16_to_cpu(es->s_min_extra_isize))
4242				sbi->s_want_extra_isize =
4243					le16_to_cpu(es->s_min_extra_isize);
4244		}
4245	}
4246	/* Check if enough inode space is available */
4247	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4248							sbi->s_inode_size) {
4249		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4250						       EXT4_GOOD_OLD_INODE_SIZE;
4251		ext4_msg(sb, KERN_INFO, "required extra inode space not"
4252			 "available");
4253	}
4254
4255	ext4_set_resv_clusters(sb);
4256
4257	err = ext4_setup_system_zone(sb);
4258	if (err) {
4259		ext4_msg(sb, KERN_ERR, "failed to initialize system "
4260			 "zone (%d)", err);
4261		goto failed_mount4a;
 
 
 
 
 
4262	}
4263
4264	ext4_ext_init(sb);
4265	err = ext4_mb_init(sb);
4266	if (err) {
4267		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4268			 err);
4269		goto failed_mount5;
4270	}
4271
4272	block = ext4_count_free_clusters(sb);
4273	ext4_free_blocks_count_set(sbi->s_es, 
4274				   EXT4_C2B(sbi, block));
4275	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4276				  GFP_KERNEL);
4277	if (!err) {
4278		unsigned long freei = ext4_count_free_inodes(sb);
4279		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4280		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4281					  GFP_KERNEL);
4282	}
4283	if (!err)
4284		err = percpu_counter_init(&sbi->s_dirs_counter,
4285					  ext4_count_dirs(sb), GFP_KERNEL);
4286	if (!err)
4287		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4288					  GFP_KERNEL);
4289	if (!err)
4290		err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4291
4292	if (err) {
4293		ext4_msg(sb, KERN_ERR, "insufficient memory");
4294		goto failed_mount6;
4295	}
4296
4297	if (ext4_has_feature_flex_bg(sb))
4298		if (!ext4_fill_flex_info(sb)) {
4299			ext4_msg(sb, KERN_ERR,
4300			       "unable to initialize "
4301			       "flex_bg meta info!");
 
4302			goto failed_mount6;
4303		}
4304
4305	err = ext4_register_li_request(sb, first_not_zeroed);
4306	if (err)
4307		goto failed_mount6;
4308
4309	err = ext4_register_sysfs(sb);
4310	if (err)
4311		goto failed_mount7;
4312
 
 
 
4313#ifdef CONFIG_QUOTA
4314	/* Enable quota usage during mount. */
4315	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4316		err = ext4_enable_quotas(sb);
4317		if (err)
4318			goto failed_mount8;
4319	}
4320#endif  /* CONFIG_QUOTA */
4321
 
 
 
 
 
 
 
4322	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4323	ext4_orphan_cleanup(sb, es);
4324	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
 
 
 
 
 
 
 
 
4325	if (needs_recovery) {
4326		ext4_msg(sb, KERN_INFO, "recovery complete");
4327		ext4_mark_recovery_complete(sb, es);
4328	}
4329	if (EXT4_SB(sb)->s_journal) {
4330		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4331			descr = " journalled data mode";
4332		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4333			descr = " ordered data mode";
4334		else
4335			descr = " writeback data mode";
4336	} else
4337		descr = "out journal";
4338
4339	if (test_opt(sb, DISCARD)) {
4340		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4341		if (!blk_queue_discard(q))
4342			ext4_msg(sb, KERN_WARNING,
4343				 "mounting with \"discard\" option, but "
4344				 "the device does not support discard");
4345	}
4346
4347	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4348		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4349			 "Opts: %.*s%s%s", descr,
4350			 (int) sizeof(sbi->s_es->s_mount_opts),
4351			 sbi->s_es->s_mount_opts,
4352			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4353
4354	if (es->s_error_count)
4355		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4356
4357	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4358	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4359	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4360	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
 
 
4361
4362	kfree(orig_data);
4363	return 0;
4364
4365cantfind_ext4:
4366	if (!silent)
4367		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4368	goto failed_mount;
4369
4370#ifdef CONFIG_QUOTA
4371failed_mount8:
4372	ext4_unregister_sysfs(sb);
4373#endif
4374failed_mount7:
4375	ext4_unregister_li_request(sb);
4376failed_mount6:
4377	ext4_mb_release(sb);
4378	if (sbi->s_flex_groups)
4379		kvfree(sbi->s_flex_groups);
4380	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4381	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4382	percpu_counter_destroy(&sbi->s_dirs_counter);
4383	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4384failed_mount5:
4385	ext4_ext_release(sb);
4386	ext4_release_system_zone(sb);
4387failed_mount4a:
4388	dput(sb->s_root);
4389	sb->s_root = NULL;
4390failed_mount4:
4391	ext4_msg(sb, KERN_ERR, "mount failed");
4392	if (EXT4_SB(sb)->rsv_conversion_wq)
4393		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4394failed_mount_wq:
4395	if (sbi->s_ea_inode_cache) {
4396		ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4397		sbi->s_ea_inode_cache = NULL;
4398	}
4399	if (sbi->s_ea_block_cache) {
4400		ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4401		sbi->s_ea_block_cache = NULL;
4402	}
4403	if (sbi->s_journal) {
 
 
4404		jbd2_journal_destroy(sbi->s_journal);
4405		sbi->s_journal = NULL;
4406	}
4407failed_mount3a:
4408	ext4_es_unregister_shrinker(sbi);
4409failed_mount3:
 
 
4410	del_timer_sync(&sbi->s_err_report);
4411	if (sbi->s_mmp_tsk)
4412		kthread_stop(sbi->s_mmp_tsk);
4413failed_mount2:
4414	for (i = 0; i < db_count; i++)
4415		brelse(sbi->s_group_desc[i]);
4416	kvfree(sbi->s_group_desc);
4417failed_mount:
4418	if (sbi->s_chksum_driver)
4419		crypto_free_shash(sbi->s_chksum_driver);
 
 
 
 
 
4420#ifdef CONFIG_QUOTA
4421	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4422		kfree(sbi->s_qf_names[i]);
4423#endif
4424	ext4_blkdev_remove(sbi);
4425	brelse(bh);
 
 
 
 
4426out_fail:
 
4427	sb->s_fs_info = NULL;
4428	kfree(sbi->s_blockgroup_lock);
4429out_free_base:
4430	kfree(sbi);
4431	kfree(orig_data);
4432	fs_put_dax(dax_dev);
4433	return err ? err : ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4434}
4435
4436/*
4437 * Setup any per-fs journal parameters now.  We'll do this both on
4438 * initial mount, once the journal has been initialised but before we've
4439 * done any recovery; and again on any subsequent remount.
4440 */
4441static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4442{
4443	struct ext4_sb_info *sbi = EXT4_SB(sb);
4444
4445	journal->j_commit_interval = sbi->s_commit_interval;
4446	journal->j_min_batch_time = sbi->s_min_batch_time;
4447	journal->j_max_batch_time = sbi->s_max_batch_time;
 
4448
4449	write_lock(&journal->j_state_lock);
4450	if (test_opt(sb, BARRIER))
4451		journal->j_flags |= JBD2_BARRIER;
4452	else
4453		journal->j_flags &= ~JBD2_BARRIER;
4454	if (test_opt(sb, DATA_ERR_ABORT))
4455		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4456	else
4457		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
 
 
 
 
 
4458	write_unlock(&journal->j_state_lock);
4459}
4460
4461static struct inode *ext4_get_journal_inode(struct super_block *sb,
4462					     unsigned int journal_inum)
4463{
4464	struct inode *journal_inode;
4465
4466	/*
4467	 * Test for the existence of a valid inode on disk.  Bad things
4468	 * happen if we iget() an unused inode, as the subsequent iput()
4469	 * will try to delete it.
4470	 */
4471	journal_inode = ext4_iget(sb, journal_inum);
4472	if (IS_ERR(journal_inode)) {
4473		ext4_msg(sb, KERN_ERR, "no journal found");
4474		return NULL;
4475	}
4476	if (!journal_inode->i_nlink) {
4477		make_bad_inode(journal_inode);
4478		iput(journal_inode);
4479		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4480		return NULL;
4481	}
4482
4483	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4484		  journal_inode, journal_inode->i_size);
4485	if (!S_ISREG(journal_inode->i_mode)) {
4486		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4487		iput(journal_inode);
4488		return NULL;
4489	}
 
 
 
4490	return journal_inode;
4491}
4492
4493static journal_t *ext4_get_journal(struct super_block *sb,
4494				   unsigned int journal_inum)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4495{
4496	struct inode *journal_inode;
4497	journal_t *journal;
4498
4499	BUG_ON(!ext4_has_feature_journal(sb));
4500
4501	journal_inode = ext4_get_journal_inode(sb, journal_inum);
4502	if (!journal_inode)
4503		return NULL;
4504
4505	journal = jbd2_journal_init_inode(journal_inode);
4506	if (!journal) {
4507		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4508		iput(journal_inode);
4509		return NULL;
4510	}
4511	journal->j_private = sb;
 
4512	ext4_init_journal_params(sb, journal);
4513	return journal;
4514}
4515
4516static journal_t *ext4_get_dev_journal(struct super_block *sb,
4517				       dev_t j_dev)
 
4518{
4519	struct buffer_head *bh;
4520	journal_t *journal;
4521	ext4_fsblk_t start;
4522	ext4_fsblk_t len;
4523	int hblock, blocksize;
4524	ext4_fsblk_t sb_block;
4525	unsigned long offset;
4526	struct ext4_super_block *es;
4527	struct block_device *bdev;
4528
4529	BUG_ON(!ext4_has_feature_journal(sb));
4530
4531	bdev = ext4_blkdev_get(j_dev, sb);
4532	if (bdev == NULL)
4533		return NULL;
 
 
 
 
4534
 
4535	blocksize = sb->s_blocksize;
4536	hblock = bdev_logical_block_size(bdev);
4537	if (blocksize < hblock) {
4538		ext4_msg(sb, KERN_ERR,
4539			"blocksize too small for journal device");
 
4540		goto out_bdev;
4541	}
4542
4543	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4544	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4545	set_blocksize(bdev, blocksize);
4546	if (!(bh = __bread(bdev, sb_block, blocksize))) {
 
4547		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4548		       "external journal");
 
4549		goto out_bdev;
4550	}
4551
4552	es = (struct ext4_super_block *) (bh->b_data + offset);
4553	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4554	    !(le32_to_cpu(es->s_feature_incompat) &
4555	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4556		ext4_msg(sb, KERN_ERR, "external journal has "
4557					"bad superblock");
4558		brelse(bh);
4559		goto out_bdev;
4560	}
4561
4562	if ((le32_to_cpu(es->s_feature_ro_compat) &
4563	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4564	    es->s_checksum != ext4_superblock_csum(sb, es)) {
4565		ext4_msg(sb, KERN_ERR, "external journal has "
4566				       "corrupt superblock");
4567		brelse(bh);
4568		goto out_bdev;
4569	}
4570
4571	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4572		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4573		brelse(bh);
4574		goto out_bdev;
4575	}
4576
4577	len = ext4_blocks_count(es);
4578	start = sb_block + 1;
4579	brelse(bh);	/* we're done with the superblock */
4580
4581	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4582					start, len, blocksize);
4583	if (!journal) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4584		ext4_msg(sb, KERN_ERR, "failed to create device journal");
 
4585		goto out_bdev;
4586	}
4587	journal->j_private = sb;
4588	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4589	wait_on_buffer(journal->j_sb_buffer);
4590	if (!buffer_uptodate(journal->j_sb_buffer)) {
4591		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4592		goto out_journal;
4593	}
4594	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4595		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4596					"user (unsupported) - %d",
4597			be32_to_cpu(journal->j_superblock->s_nr_users));
 
4598		goto out_journal;
4599	}
4600	EXT4_SB(sb)->journal_bdev = bdev;
 
4601	ext4_init_journal_params(sb, journal);
4602	return journal;
4603
4604out_journal:
4605	jbd2_journal_destroy(journal);
4606out_bdev:
4607	ext4_blkdev_put(bdev);
4608	return NULL;
4609}
4610
4611static int ext4_load_journal(struct super_block *sb,
4612			     struct ext4_super_block *es,
4613			     unsigned long journal_devnum)
4614{
4615	journal_t *journal;
4616	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4617	dev_t journal_dev;
4618	int err = 0;
4619	int really_read_only;
 
4620
4621	BUG_ON(!ext4_has_feature_journal(sb));
 
4622
4623	if (journal_devnum &&
4624	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4625		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4626			"numbers have changed");
4627		journal_dev = new_decode_dev(journal_devnum);
4628	} else
4629		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4630
4631	really_read_only = bdev_read_only(sb->s_bdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4632
4633	/*
4634	 * Are we loading a blank journal or performing recovery after a
4635	 * crash?  For recovery, we need to check in advance whether we
4636	 * can get read-write access to the device.
4637	 */
4638	if (ext4_has_feature_journal_needs_recovery(sb)) {
4639		if (sb_rdonly(sb)) {
4640			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4641					"required on readonly filesystem");
4642			if (really_read_only) {
4643				ext4_msg(sb, KERN_ERR, "write access "
4644					"unavailable, cannot proceed "
4645					"(try mounting with noload)");
4646				return -EROFS;
 
4647			}
4648			ext4_msg(sb, KERN_INFO, "write access will "
4649			       "be enabled during recovery");
4650		}
4651	}
4652
4653	if (journal_inum && journal_dev) {
4654		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4655		       "and inode journals!");
4656		return -EINVAL;
4657	}
4658
4659	if (journal_inum) {
4660		if (!(journal = ext4_get_journal(sb, journal_inum)))
4661			return -EINVAL;
4662	} else {
4663		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4664			return -EINVAL;
4665	}
4666
4667	if (!(journal->j_flags & JBD2_BARRIER))
4668		ext4_msg(sb, KERN_INFO, "barriers disabled");
4669
4670	if (!ext4_has_feature_journal_needs_recovery(sb))
4671		err = jbd2_journal_wipe(journal, !really_read_only);
4672	if (!err) {
4673		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
 
 
 
4674		if (save)
4675			memcpy(save, ((char *) es) +
4676			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4677		err = jbd2_journal_load(journal);
4678		if (save)
 
4679			memcpy(((char *) es) + EXT4_S_ERR_START,
4680			       save, EXT4_S_ERR_LEN);
 
 
4681		kfree(save);
 
 
 
 
 
 
 
 
 
 
 
4682	}
4683
4684	if (err) {
4685		ext4_msg(sb, KERN_ERR, "error loading journal");
4686		jbd2_journal_destroy(journal);
4687		return err;
4688	}
4689
4690	EXT4_SB(sb)->s_journal = journal;
4691	ext4_clear_journal_err(sb, es);
 
 
 
 
 
4692
4693	if (!really_read_only && journal_devnum &&
4694	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4695		es->s_journal_dev = cpu_to_le32(journal_devnum);
4696
4697		/* Make sure we flush the recovery flag to disk. */
4698		ext4_commit_super(sb, 1);
 
 
 
4699	}
4700
4701	return 0;
 
 
 
 
4702}
4703
4704static int ext4_commit_super(struct super_block *sb, int sync)
 
4705{
4706	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4707	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4708	int error = 0;
4709
4710	if (!sbh || block_device_ejected(sb))
4711		return error;
4712	/*
4713	 * If the file system is mounted read-only, don't update the
4714	 * superblock write time.  This avoids updating the superblock
4715	 * write time when we are mounting the root file system
4716	 * read/only but we need to replay the journal; at that point,
4717	 * for people who are east of GMT and who make their clock
4718	 * tick in localtime for Windows bug-for-bug compatibility,
4719	 * the clock is set in the future, and this will cause e2fsck
4720	 * to complain and force a full file system check.
4721	 */
4722	if (!(sb->s_flags & SB_RDONLY))
4723		es->s_wtime = cpu_to_le32(get_seconds());
4724	if (sb->s_bdev->bd_part)
4725		es->s_kbytes_written =
4726			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4727			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4728			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4729	else
4730		es->s_kbytes_written =
4731			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4732	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4733		ext4_free_blocks_count_set(es,
4734			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4735				&EXT4_SB(sb)->s_freeclusters_counter)));
4736	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4737		es->s_free_inodes_count =
4738			cpu_to_le32(percpu_counter_sum_positive(
4739				&EXT4_SB(sb)->s_freeinodes_counter));
4740	BUFFER_TRACE(sbh, "marking dirty");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4741	ext4_superblock_csum_set(sb);
4742	if (sync)
4743		lock_buffer(sbh);
4744	if (buffer_write_io_error(sbh)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4745		/*
4746		 * Oh, dear.  A previous attempt to write the
4747		 * superblock failed.  This could happen because the
4748		 * USB device was yanked out.  Or it could happen to
4749		 * be a transient write error and maybe the block will
4750		 * be remapped.  Nothing we can do but to retry the
4751		 * write and hope for the best.
4752		 */
4753		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4754		       "superblock detected");
4755		clear_buffer_write_io_error(sbh);
4756		set_buffer_uptodate(sbh);
4757	}
4758	mark_buffer_dirty(sbh);
4759	if (sync) {
4760		unlock_buffer(sbh);
4761		error = __sync_dirty_buffer(sbh,
4762			REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4763		if (error)
4764			return error;
4765
4766		error = buffer_write_io_error(sbh);
4767		if (error) {
4768			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4769			       "superblock");
4770			clear_buffer_write_io_error(sbh);
4771			set_buffer_uptodate(sbh);
4772		}
4773	}
4774	return error;
4775}
4776
4777/*
4778 * Have we just finished recovery?  If so, and if we are mounting (or
4779 * remounting) the filesystem readonly, then we will end up with a
4780 * consistent fs on disk.  Record that fact.
4781 */
4782static void ext4_mark_recovery_complete(struct super_block *sb,
4783					struct ext4_super_block *es)
4784{
 
4785	journal_t *journal = EXT4_SB(sb)->s_journal;
4786
4787	if (!ext4_has_feature_journal(sb)) {
4788		BUG_ON(journal != NULL);
4789		return;
 
 
 
 
4790	}
4791	jbd2_journal_lock_updates(journal);
4792	if (jbd2_journal_flush(journal) < 0)
 
4793		goto out;
4794
4795	if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
 
 
 
 
 
 
4796		ext4_clear_feature_journal_needs_recovery(sb);
4797		ext4_commit_super(sb, 1);
 
4798	}
4799
4800out:
4801	jbd2_journal_unlock_updates(journal);
 
4802}
4803
4804/*
4805 * If we are mounting (or read-write remounting) a filesystem whose journal
4806 * has recorded an error from a previous lifetime, move that error to the
4807 * main filesystem now.
4808 */
4809static void ext4_clear_journal_err(struct super_block *sb,
4810				   struct ext4_super_block *es)
4811{
4812	journal_t *journal;
4813	int j_errno;
4814	const char *errstr;
4815
4816	BUG_ON(!ext4_has_feature_journal(sb));
 
 
 
4817
4818	journal = EXT4_SB(sb)->s_journal;
4819
4820	/*
4821	 * Now check for any error status which may have been recorded in the
4822	 * journal by a prior ext4_error() or ext4_abort()
4823	 */
4824
4825	j_errno = jbd2_journal_errno(journal);
4826	if (j_errno) {
4827		char nbuf[16];
4828
4829		errstr = ext4_decode_error(sb, j_errno, nbuf);
4830		ext4_warning(sb, "Filesystem error recorded "
4831			     "from previous mount: %s", errstr);
4832		ext4_warning(sb, "Marking fs in need of filesystem check.");
4833
4834		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4835		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4836		ext4_commit_super(sb, 1);
 
 
 
4837
4838		jbd2_journal_clear_err(journal);
4839		jbd2_journal_update_sb_errno(journal);
4840	}
 
4841}
4842
4843/*
4844 * Force the running and committing transactions to commit,
4845 * and wait on the commit.
4846 */
4847int ext4_force_commit(struct super_block *sb)
4848{
4849	journal_t *journal;
4850
4851	if (sb_rdonly(sb))
4852		return 0;
4853
4854	journal = EXT4_SB(sb)->s_journal;
4855	return ext4_journal_force_commit(journal);
4856}
4857
4858static int ext4_sync_fs(struct super_block *sb, int wait)
4859{
4860	int ret = 0;
4861	tid_t target;
4862	bool needs_barrier = false;
4863	struct ext4_sb_info *sbi = EXT4_SB(sb);
4864
4865	if (unlikely(ext4_forced_shutdown(sbi)))
4866		return 0;
4867
4868	trace_ext4_sync_fs(sb, wait);
4869	flush_workqueue(sbi->rsv_conversion_wq);
4870	/*
4871	 * Writeback quota in non-journalled quota case - journalled quota has
4872	 * no dirty dquots
4873	 */
4874	dquot_writeback_dquots(sb, -1);
4875	/*
4876	 * Data writeback is possible w/o journal transaction, so barrier must
4877	 * being sent at the end of the function. But we can skip it if
4878	 * transaction_commit will do it for us.
4879	 */
4880	if (sbi->s_journal) {
4881		target = jbd2_get_latest_transaction(sbi->s_journal);
4882		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4883		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4884			needs_barrier = true;
4885
4886		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4887			if (wait)
4888				ret = jbd2_log_wait_commit(sbi->s_journal,
4889							   target);
4890		}
4891	} else if (wait && test_opt(sb, BARRIER))
4892		needs_barrier = true;
4893	if (needs_barrier) {
4894		int err;
4895		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4896		if (!ret)
4897			ret = err;
4898	}
4899
4900	return ret;
4901}
4902
4903/*
4904 * LVM calls this function before a (read-only) snapshot is created.  This
4905 * gives us a chance to flush the journal completely and mark the fs clean.
4906 *
4907 * Note that only this function cannot bring a filesystem to be in a clean
4908 * state independently. It relies on upper layer to stop all data & metadata
4909 * modifications.
4910 */
4911static int ext4_freeze(struct super_block *sb)
4912{
4913	int error = 0;
4914	journal_t *journal;
4915
4916	if (sb_rdonly(sb))
4917		return 0;
4918
4919	journal = EXT4_SB(sb)->s_journal;
4920
4921	if (journal) {
4922		/* Now we set up the journal barrier. */
4923		jbd2_journal_lock_updates(journal);
4924
4925		/*
4926		 * Don't clear the needs_recovery flag if we failed to
4927		 * flush the journal.
4928		 */
4929		error = jbd2_journal_flush(journal);
4930		if (error < 0)
4931			goto out;
4932
4933		/* Journal blocked and flushed, clear needs_recovery flag. */
4934		ext4_clear_feature_journal_needs_recovery(sb);
 
 
4935	}
4936
4937	error = ext4_commit_super(sb, 1);
4938out:
4939	if (journal)
4940		/* we rely on upper layer to stop further updates */
4941		jbd2_journal_unlock_updates(journal);
4942	return error;
4943}
4944
4945/*
4946 * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4947 * flag here, even though the filesystem is not technically dirty yet.
4948 */
4949static int ext4_unfreeze(struct super_block *sb)
4950{
4951	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
4952		return 0;
4953
4954	if (EXT4_SB(sb)->s_journal) {
4955		/* Reset the needs_recovery flag before the fs is unlocked. */
4956		ext4_set_feature_journal_needs_recovery(sb);
 
 
4957	}
4958
4959	ext4_commit_super(sb, 1);
4960	return 0;
4961}
4962
4963/*
4964 * Structure to save mount options for ext4_remount's benefit
4965 */
4966struct ext4_mount_options {
4967	unsigned long s_mount_opt;
4968	unsigned long s_mount_opt2;
4969	kuid_t s_resuid;
4970	kgid_t s_resgid;
4971	unsigned long s_commit_interval;
4972	u32 s_min_batch_time, s_max_batch_time;
4973#ifdef CONFIG_QUOTA
4974	int s_jquota_fmt;
4975	char *s_qf_names[EXT4_MAXQUOTAS];
4976#endif
4977};
4978
4979static int ext4_remount(struct super_block *sb, int *flags, char *data)
4980{
 
4981	struct ext4_super_block *es;
4982	struct ext4_sb_info *sbi = EXT4_SB(sb);
4983	unsigned long old_sb_flags;
4984	struct ext4_mount_options old_opts;
4985	int enable_quota = 0;
4986	ext4_group_t g;
4987	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4988	int err = 0;
 
4989#ifdef CONFIG_QUOTA
 
4990	int i, j;
 
4991#endif
4992	char *orig_data = kstrdup(data, GFP_KERNEL);
4993
4994	/* Store the original options */
4995	old_sb_flags = sb->s_flags;
4996	old_opts.s_mount_opt = sbi->s_mount_opt;
4997	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4998	old_opts.s_resuid = sbi->s_resuid;
4999	old_opts.s_resgid = sbi->s_resgid;
5000	old_opts.s_commit_interval = sbi->s_commit_interval;
5001	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5002	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5003#ifdef CONFIG_QUOTA
5004	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5005	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5006		if (sbi->s_qf_names[i]) {
5007			old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
5008							 GFP_KERNEL);
 
5009			if (!old_opts.s_qf_names[i]) {
5010				for (j = 0; j < i; j++)
5011					kfree(old_opts.s_qf_names[j]);
5012				kfree(orig_data);
5013				return -ENOMEM;
5014			}
5015		} else
5016			old_opts.s_qf_names[i] = NULL;
5017#endif
5018	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5019		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
 
 
 
 
5020
5021	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5022		err = -EINVAL;
5023		goto restore_opts;
5024	}
5025
 
 
 
 
 
 
 
 
 
 
 
5026	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5027	    test_opt(sb, JOURNAL_CHECKSUM)) {
5028		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5029			 "during remount not supported; ignoring");
5030		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5031	}
5032
5033	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5034		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5035			ext4_msg(sb, KERN_ERR, "can't mount with "
5036				 "both data=journal and delalloc");
5037			err = -EINVAL;
5038			goto restore_opts;
5039		}
5040		if (test_opt(sb, DIOREAD_NOLOCK)) {
5041			ext4_msg(sb, KERN_ERR, "can't mount with "
5042				 "both data=journal and dioread_nolock");
5043			err = -EINVAL;
5044			goto restore_opts;
5045		}
5046		if (test_opt(sb, DAX)) {
5047			ext4_msg(sb, KERN_ERR, "can't mount with "
5048				 "both data=journal and dax");
5049			err = -EINVAL;
5050			goto restore_opts;
5051		}
5052	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5053		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5054			ext4_msg(sb, KERN_ERR, "can't mount with "
5055				"journal_async_commit in data=ordered mode");
5056			err = -EINVAL;
5057			goto restore_opts;
5058		}
5059	}
5060
5061	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5062		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5063		err = -EINVAL;
5064		goto restore_opts;
5065	}
5066
5067	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5068		ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5069			"dax flag with busy inodes while remounting");
5070		sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5071	}
5072
5073	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5074		ext4_abort(sb, "Abort forced by user");
5075
5076	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5077		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5078
5079	es = sbi->s_es;
5080
5081	if (sbi->s_journal) {
5082		ext4_init_journal_params(sb, sbi->s_journal);
5083		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5084	}
5085
5086	if (*flags & SB_LAZYTIME)
5087		sb->s_flags |= SB_LAZYTIME;
5088
5089	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5090		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5091			err = -EROFS;
5092			goto restore_opts;
5093		}
5094
5095		if (*flags & SB_RDONLY) {
5096			err = sync_filesystem(sb);
5097			if (err < 0)
5098				goto restore_opts;
5099			err = dquot_suspend(sb, -1);
5100			if (err < 0)
5101				goto restore_opts;
5102
5103			/*
5104			 * First of all, the unconditional stuff we have to do
5105			 * to disable replay of the journal when we next remount
5106			 */
5107			sb->s_flags |= SB_RDONLY;
5108
5109			/*
5110			 * OK, test if we are remounting a valid rw partition
5111			 * readonly, and if so set the rdonly flag and then
5112			 * mark the partition as valid again.
5113			 */
5114			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5115			    (sbi->s_mount_state & EXT4_VALID_FS))
5116				es->s_state = cpu_to_le16(sbi->s_mount_state);
5117
5118			if (sbi->s_journal)
 
 
 
 
5119				ext4_mark_recovery_complete(sb, es);
 
5120		} else {
5121			/* Make sure we can mount this feature set readwrite */
5122			if (ext4_has_feature_readonly(sb) ||
5123			    !ext4_feature_set_ok(sb, 0)) {
5124				err = -EROFS;
5125				goto restore_opts;
5126			}
5127			/*
5128			 * Make sure the group descriptor checksums
5129			 * are sane.  If they aren't, refuse to remount r/w.
5130			 */
5131			for (g = 0; g < sbi->s_groups_count; g++) {
5132				struct ext4_group_desc *gdp =
5133					ext4_get_group_desc(sb, g, NULL);
5134
5135				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5136					ext4_msg(sb, KERN_ERR,
5137	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5138		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5139					       le16_to_cpu(gdp->bg_checksum));
5140					err = -EFSBADCRC;
5141					goto restore_opts;
5142				}
5143			}
5144
5145			/*
5146			 * If we have an unprocessed orphan list hanging
5147			 * around from a previously readonly bdev mount,
5148			 * require a full umount/remount for now.
5149			 */
5150			if (es->s_last_orphan) {
5151				ext4_msg(sb, KERN_WARNING, "Couldn't "
5152				       "remount RDWR because of unprocessed "
5153				       "orphan inode list.  Please "
5154				       "umount/remount instead");
5155				err = -EINVAL;
5156				goto restore_opts;
5157			}
5158
5159			/*
5160			 * Mounting a RDONLY partition read-write, so reread
5161			 * and store the current valid flag.  (It may have
5162			 * been changed by e2fsck since we originally mounted
5163			 * the partition.)
5164			 */
5165			if (sbi->s_journal)
5166				ext4_clear_journal_err(sb, es);
5167			sbi->s_mount_state = le16_to_cpu(es->s_state);
5168			if (!ext4_setup_super(sb, es, 0))
5169				sb->s_flags &= ~SB_RDONLY;
5170			if (ext4_has_feature_mmp(sb))
5171				if (ext4_multi_mount_protect(sb,
5172						le64_to_cpu(es->s_mmp_block))) {
5173					err = -EROFS;
5174					goto restore_opts;
5175				}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5176			enable_quota = 1;
 
5177		}
5178	}
5179
5180	/*
5181	 * Reinitialize lazy itable initialization thread based on
5182	 * current settings
 
5183	 */
5184	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5185		ext4_unregister_li_request(sb);
5186	else {
5187		ext4_group_t first_not_zeroed;
5188		first_not_zeroed = ext4_has_uninit_itable(sb);
5189		ext4_register_li_request(sb, first_not_zeroed);
5190	}
5191
5192	ext4_setup_system_zone(sb);
5193	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY))
5194		ext4_commit_super(sb, 1);
 
 
5195
5196#ifdef CONFIG_QUOTA
5197	/* Release old quota file names */
5198	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5199		kfree(old_opts.s_qf_names[i]);
5200	if (enable_quota) {
5201		if (sb_any_quota_suspended(sb))
5202			dquot_resume(sb, -1);
5203		else if (ext4_has_feature_quota(sb)) {
5204			err = ext4_enable_quotas(sb);
5205			if (err)
5206				goto restore_opts;
5207		}
5208	}
 
 
 
5209#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5210
5211	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5212	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5213	kfree(orig_data);
5214	return 0;
5215
5216restore_opts:
 
 
 
 
 
 
 
 
 
5217	sb->s_flags = old_sb_flags;
5218	sbi->s_mount_opt = old_opts.s_mount_opt;
5219	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5220	sbi->s_resuid = old_opts.s_resuid;
5221	sbi->s_resgid = old_opts.s_resgid;
5222	sbi->s_commit_interval = old_opts.s_commit_interval;
5223	sbi->s_min_batch_time = old_opts.s_min_batch_time;
5224	sbi->s_max_batch_time = old_opts.s_max_batch_time;
 
 
 
 
5225#ifdef CONFIG_QUOTA
5226	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5227	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5228		kfree(sbi->s_qf_names[i]);
5229		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5230	}
 
 
 
5231#endif
5232	kfree(orig_data);
 
5233	return err;
5234}
5235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5236#ifdef CONFIG_QUOTA
5237static int ext4_statfs_project(struct super_block *sb,
5238			       kprojid_t projid, struct kstatfs *buf)
5239{
5240	struct kqid qid;
5241	struct dquot *dquot;
5242	u64 limit;
5243	u64 curblock;
5244
5245	qid = make_kqid_projid(projid);
5246	dquot = dqget(sb, qid);
5247	if (IS_ERR(dquot))
5248		return PTR_ERR(dquot);
5249	spin_lock(&dquot->dq_dqb_lock);
5250
5251	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5252		 dquot->dq_dqb.dqb_bsoftlimit :
5253		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
 
5254	if (limit && buf->f_blocks > limit) {
5255		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
 
5256		buf->f_blocks = limit;
5257		buf->f_bfree = buf->f_bavail =
5258			(buf->f_blocks > curblock) ?
5259			 (buf->f_blocks - curblock) : 0;
5260	}
5261
5262	limit = dquot->dq_dqb.dqb_isoftlimit ?
5263		dquot->dq_dqb.dqb_isoftlimit :
5264		dquot->dq_dqb.dqb_ihardlimit;
5265	if (limit && buf->f_files > limit) {
5266		buf->f_files = limit;
5267		buf->f_ffree =
5268			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5269			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5270	}
5271
5272	spin_unlock(&dquot->dq_dqb_lock);
5273	dqput(dquot);
5274	return 0;
5275}
5276#endif
5277
5278static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5279{
5280	struct super_block *sb = dentry->d_sb;
5281	struct ext4_sb_info *sbi = EXT4_SB(sb);
5282	struct ext4_super_block *es = sbi->s_es;
5283	ext4_fsblk_t overhead = 0, resv_blocks;
5284	u64 fsid;
5285	s64 bfree;
5286	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5287
5288	if (!test_opt(sb, MINIX_DF))
5289		overhead = sbi->s_overhead;
5290
5291	buf->f_type = EXT4_SUPER_MAGIC;
5292	buf->f_bsize = sb->s_blocksize;
5293	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5294	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5295		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5296	/* prevent underflow in case that few free space is available */
5297	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5298	buf->f_bavail = buf->f_bfree -
5299			(ext4_r_blocks_count(es) + resv_blocks);
5300	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5301		buf->f_bavail = 0;
5302	buf->f_files = le32_to_cpu(es->s_inodes_count);
5303	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5304	buf->f_namelen = EXT4_NAME_LEN;
5305	fsid = le64_to_cpup((void *)es->s_uuid) ^
5306	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5307	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5308	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5309
5310#ifdef CONFIG_QUOTA
5311	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5312	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
5313		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5314#endif
5315	return 0;
5316}
5317
5318
5319#ifdef CONFIG_QUOTA
5320
5321/*
5322 * Helper functions so that transaction is started before we acquire dqio_sem
5323 * to keep correct lock ordering of transaction > dqio_sem
5324 */
5325static inline struct inode *dquot_to_inode(struct dquot *dquot)
5326{
5327	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5328}
5329
5330static int ext4_write_dquot(struct dquot *dquot)
5331{
5332	int ret, err;
5333	handle_t *handle;
5334	struct inode *inode;
5335
5336	inode = dquot_to_inode(dquot);
5337	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5338				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5339	if (IS_ERR(handle))
5340		return PTR_ERR(handle);
5341	ret = dquot_commit(dquot);
 
 
 
 
5342	err = ext4_journal_stop(handle);
5343	if (!ret)
5344		ret = err;
5345	return ret;
5346}
5347
5348static int ext4_acquire_dquot(struct dquot *dquot)
5349{
5350	int ret, err;
5351	handle_t *handle;
5352
5353	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5354				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5355	if (IS_ERR(handle))
5356		return PTR_ERR(handle);
5357	ret = dquot_acquire(dquot);
 
 
 
 
5358	err = ext4_journal_stop(handle);
5359	if (!ret)
5360		ret = err;
5361	return ret;
5362}
5363
5364static int ext4_release_dquot(struct dquot *dquot)
5365{
5366	int ret, err;
5367	handle_t *handle;
5368
5369	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5370				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5371	if (IS_ERR(handle)) {
5372		/* Release dquot anyway to avoid endless cycle in dqput() */
5373		dquot_release(dquot);
5374		return PTR_ERR(handle);
5375	}
5376	ret = dquot_release(dquot);
 
 
 
 
5377	err = ext4_journal_stop(handle);
5378	if (!ret)
5379		ret = err;
5380	return ret;
5381}
5382
5383static int ext4_mark_dquot_dirty(struct dquot *dquot)
5384{
5385	struct super_block *sb = dquot->dq_sb;
5386	struct ext4_sb_info *sbi = EXT4_SB(sb);
5387
5388	/* Are we journaling quotas? */
5389	if (ext4_has_feature_quota(sb) ||
5390	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5391		dquot_mark_dquot_dirty(dquot);
5392		return ext4_write_dquot(dquot);
5393	} else {
5394		return dquot_mark_dquot_dirty(dquot);
5395	}
5396}
5397
5398static int ext4_write_info(struct super_block *sb, int type)
5399{
5400	int ret, err;
5401	handle_t *handle;
5402
5403	/* Data block + inode block */
5404	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5405	if (IS_ERR(handle))
5406		return PTR_ERR(handle);
5407	ret = dquot_commit_info(sb, type);
5408	err = ext4_journal_stop(handle);
5409	if (!ret)
5410		ret = err;
5411	return ret;
5412}
5413
5414/*
5415 * Turn on quotas during mount time - we need to find
5416 * the quota file and such...
5417 */
5418static int ext4_quota_on_mount(struct super_block *sb, int type)
5419{
5420	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5421					EXT4_SB(sb)->s_jquota_fmt, type);
5422}
5423
5424static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5425{
5426	struct ext4_inode_info *ei = EXT4_I(inode);
5427
5428	/* The first argument of lockdep_set_subclass has to be
5429	 * *exactly* the same as the argument to init_rwsem() --- in
5430	 * this case, in init_once() --- or lockdep gets unhappy
5431	 * because the name of the lock is set using the
5432	 * stringification of the argument to init_rwsem().
5433	 */
5434	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
5435	lockdep_set_subclass(&ei->i_data_sem, subclass);
5436}
5437
5438/*
5439 * Standard function to be called on quota_on
5440 */
5441static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5442			 const struct path *path)
5443{
5444	int err;
5445
5446	if (!test_opt(sb, QUOTA))
5447		return -EINVAL;
5448
5449	/* Quotafile not on the same filesystem? */
5450	if (path->dentry->d_sb != sb)
5451		return -EXDEV;
 
 
 
 
 
5452	/* Journaling quota? */
5453	if (EXT4_SB(sb)->s_qf_names[type]) {
5454		/* Quotafile not in fs root? */
5455		if (path->dentry->d_parent != sb->s_root)
5456			ext4_msg(sb, KERN_WARNING,
5457				"Quota file not on filesystem root. "
5458				"Journaled quota will not work");
5459		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5460	} else {
5461		/*
5462		 * Clear the flag just in case mount options changed since
5463		 * last time.
5464		 */
5465		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5466	}
5467
5468	/*
5469	 * When we journal data on quota file, we have to flush journal to see
5470	 * all updates to the file when we bypass pagecache...
5471	 */
5472	if (EXT4_SB(sb)->s_journal &&
5473	    ext4_should_journal_data(d_inode(path->dentry))) {
5474		/*
5475		 * We don't need to lock updates but journal_flush() could
5476		 * otherwise be livelocked...
5477		 */
5478		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5479		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5480		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5481		if (err)
5482			return err;
5483	}
5484
5485	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5486	err = dquot_quota_on(sb, type, format_id, path);
5487	if (err) {
5488		lockdep_set_quota_inode(path->dentry->d_inode,
5489					     I_DATA_SEM_NORMAL);
5490	} else {
5491		struct inode *inode = d_inode(path->dentry);
5492		handle_t *handle;
5493
5494		/*
5495		 * Set inode flags to prevent userspace from messing with quota
5496		 * files. If this fails, we return success anyway since quotas
5497		 * are already enabled and this is not a hard failure.
5498		 */
5499		inode_lock(inode);
5500		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5501		if (IS_ERR(handle))
5502			goto unlock_inode;
5503		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5504		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5505				S_NOATIME | S_IMMUTABLE);
5506		ext4_mark_inode_dirty(handle, inode);
5507		ext4_journal_stop(handle);
5508	unlock_inode:
5509		inode_unlock(inode);
 
 
5510	}
 
 
 
5511	return err;
5512}
5513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5514static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5515			     unsigned int flags)
5516{
5517	int err;
5518	struct inode *qf_inode;
5519	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5520		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5521		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5522		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5523	};
5524
5525	BUG_ON(!ext4_has_feature_quota(sb));
5526
5527	if (!qf_inums[type])
5528		return -EPERM;
5529
5530	qf_inode = ext4_iget(sb, qf_inums[type]);
 
 
 
 
 
 
5531	if (IS_ERR(qf_inode)) {
5532		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
 
5533		return PTR_ERR(qf_inode);
5534	}
5535
5536	/* Don't account quota for quota files to avoid recursion */
5537	qf_inode->i_flags |= S_NOQUOTA;
5538	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5539	err = dquot_enable(qf_inode, type, format_id, flags);
5540	iput(qf_inode);
5541	if (err)
5542		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
 
5543
5544	return err;
5545}
5546
5547/* Enable usage tracking for all quota types. */
5548static int ext4_enable_quotas(struct super_block *sb)
5549{
5550	int type, err = 0;
5551	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5552		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5553		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5554		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5555	};
5556	bool quota_mopt[EXT4_MAXQUOTAS] = {
5557		test_opt(sb, USRQUOTA),
5558		test_opt(sb, GRPQUOTA),
5559		test_opt(sb, PRJQUOTA),
5560	};
5561
5562	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5563	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5564		if (qf_inums[type]) {
5565			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5566				DQUOT_USAGE_ENABLED |
5567				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5568			if (err) {
5569				for (type--; type >= 0; type--)
5570					dquot_quota_off(sb, type);
5571
5572				ext4_warning(sb,
5573					"Failed to enable quota tracking "
5574					"(type=%d, err=%d). Please run "
5575					"e2fsck to fix.", type, err);
 
 
 
5576				return err;
5577			}
5578		}
5579	}
5580	return 0;
5581}
5582
5583static int ext4_quota_off(struct super_block *sb, int type)
5584{
5585	struct inode *inode = sb_dqopt(sb)->files[type];
5586	handle_t *handle;
5587	int err;
5588
5589	/* Force all delayed allocation blocks to be allocated.
5590	 * Caller already holds s_umount sem */
5591	if (test_opt(sb, DELALLOC))
5592		sync_filesystem(sb);
5593
5594	if (!inode || !igrab(inode))
5595		goto out;
5596
5597	err = dquot_quota_off(sb, type);
5598	if (err || ext4_has_feature_quota(sb))
5599		goto out_put;
 
 
 
 
 
 
 
5600
5601	inode_lock(inode);
5602	/*
5603	 * Update modification times of quota files when userspace can
5604	 * start looking at them. If we fail, we return success anyway since
5605	 * this is not a hard failure and quotas are already disabled.
5606	 */
5607	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5608	if (IS_ERR(handle))
 
5609		goto out_unlock;
 
5610	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5611	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5612	inode->i_mtime = inode->i_ctime = current_time(inode);
5613	ext4_mark_inode_dirty(handle, inode);
5614	ext4_journal_stop(handle);
5615out_unlock:
5616	inode_unlock(inode);
5617out_put:
5618	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5619	iput(inode);
5620	return err;
5621out:
5622	return dquot_quota_off(sb, type);
5623}
5624
5625/* Read data from quotafile - avoid pagecache and such because we cannot afford
5626 * acquiring the locks... As quota files are never truncated and quota code
5627 * itself serializes the operations (and no one else should touch the files)
5628 * we don't have to be afraid of races */
5629static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5630			       size_t len, loff_t off)
5631{
5632	struct inode *inode = sb_dqopt(sb)->files[type];
5633	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5634	int offset = off & (sb->s_blocksize - 1);
5635	int tocopy;
5636	size_t toread;
5637	struct buffer_head *bh;
5638	loff_t i_size = i_size_read(inode);
5639
5640	if (off > i_size)
5641		return 0;
5642	if (off+len > i_size)
5643		len = i_size-off;
5644	toread = len;
5645	while (toread > 0) {
5646		tocopy = sb->s_blocksize - offset < toread ?
5647				sb->s_blocksize - offset : toread;
5648		bh = ext4_bread(NULL, inode, blk, 0);
5649		if (IS_ERR(bh))
5650			return PTR_ERR(bh);
5651		if (!bh)	/* A hole? */
5652			memset(data, 0, tocopy);
5653		else
5654			memcpy(data, bh->b_data+offset, tocopy);
5655		brelse(bh);
5656		offset = 0;
5657		toread -= tocopy;
5658		data += tocopy;
5659		blk++;
5660	}
5661	return len;
5662}
5663
5664/* Write to quotafile (we know the transaction is already started and has
5665 * enough credits) */
5666static ssize_t ext4_quota_write(struct super_block *sb, int type,
5667				const char *data, size_t len, loff_t off)
5668{
5669	struct inode *inode = sb_dqopt(sb)->files[type];
5670	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5671	int err, offset = off & (sb->s_blocksize - 1);
5672	int retries = 0;
5673	struct buffer_head *bh;
5674	handle_t *handle = journal_current_handle();
5675
5676	if (EXT4_SB(sb)->s_journal && !handle) {
5677		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5678			" cancelled because transaction is not started",
5679			(unsigned long long)off, (unsigned long long)len);
5680		return -EIO;
5681	}
5682	/*
5683	 * Since we account only one data block in transaction credits,
5684	 * then it is impossible to cross a block boundary.
5685	 */
5686	if (sb->s_blocksize - offset < len) {
5687		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5688			" cancelled because not block aligned",
5689			(unsigned long long)off, (unsigned long long)len);
5690		return -EIO;
5691	}
5692
5693	do {
5694		bh = ext4_bread(handle, inode, blk,
5695				EXT4_GET_BLOCKS_CREATE |
5696				EXT4_GET_BLOCKS_METADATA_NOFAIL);
5697	} while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5698		 ext4_should_retry_alloc(inode->i_sb, &retries));
5699	if (IS_ERR(bh))
5700		return PTR_ERR(bh);
5701	if (!bh)
5702		goto out;
5703	BUFFER_TRACE(bh, "get write access");
5704	err = ext4_journal_get_write_access(handle, bh);
5705	if (err) {
5706		brelse(bh);
5707		return err;
5708	}
5709	lock_buffer(bh);
5710	memcpy(bh->b_data+offset, data, len);
5711	flush_dcache_page(bh->b_page);
5712	unlock_buffer(bh);
5713	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5714	brelse(bh);
5715out:
5716	if (inode->i_size < off + len) {
5717		i_size_write(inode, off + len);
5718		EXT4_I(inode)->i_disksize = inode->i_size;
5719		ext4_mark_inode_dirty(handle, inode);
 
 
5720	}
5721	return len;
5722}
5723
5724static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5725{
5726	const struct quota_format_ops	*ops;
5727
5728	if (!sb_has_quota_loaded(sb, qid->type))
5729		return -ESRCH;
5730	ops = sb_dqopt(sb)->ops[qid->type];
5731	if (!ops || !ops->get_next_id)
5732		return -ENOSYS;
5733	return dquot_get_next_id(sb, qid);
5734}
5735#endif
5736
5737static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5738		       const char *dev_name, void *data)
5739{
5740	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5741}
5742
5743#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5744static inline void register_as_ext2(void)
5745{
5746	int err = register_filesystem(&ext2_fs_type);
5747	if (err)
5748		printk(KERN_WARNING
5749		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5750}
5751
5752static inline void unregister_as_ext2(void)
5753{
5754	unregister_filesystem(&ext2_fs_type);
5755}
5756
5757static inline int ext2_feature_set_ok(struct super_block *sb)
5758{
5759	if (ext4_has_unknown_ext2_incompat_features(sb))
5760		return 0;
5761	if (sb_rdonly(sb))
5762		return 1;
5763	if (ext4_has_unknown_ext2_ro_compat_features(sb))
5764		return 0;
5765	return 1;
5766}
5767#else
5768static inline void register_as_ext2(void) { }
5769static inline void unregister_as_ext2(void) { }
5770static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5771#endif
5772
5773static inline void register_as_ext3(void)
5774{
5775	int err = register_filesystem(&ext3_fs_type);
5776	if (err)
5777		printk(KERN_WARNING
5778		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5779}
5780
5781static inline void unregister_as_ext3(void)
5782{
5783	unregister_filesystem(&ext3_fs_type);
5784}
5785
5786static inline int ext3_feature_set_ok(struct super_block *sb)
5787{
5788	if (ext4_has_unknown_ext3_incompat_features(sb))
5789		return 0;
5790	if (!ext4_has_feature_journal(sb))
5791		return 0;
5792	if (sb_rdonly(sb))
5793		return 1;
5794	if (ext4_has_unknown_ext3_ro_compat_features(sb))
5795		return 0;
5796	return 1;
5797}
5798
 
 
 
 
 
 
 
 
 
 
 
5799static struct file_system_type ext4_fs_type = {
5800	.owner		= THIS_MODULE,
5801	.name		= "ext4",
5802	.mount		= ext4_mount,
5803	.kill_sb	= kill_block_super,
5804	.fs_flags	= FS_REQUIRES_DEV,
 
5805};
5806MODULE_ALIAS_FS("ext4");
5807
5808/* Shared across all ext4 file systems */
5809wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5810
5811static int __init ext4_init_fs(void)
5812{
5813	int i, err;
5814
5815	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5816	ext4_li_info = NULL;
5817	mutex_init(&ext4_li_mtx);
5818
5819	/* Build-time check for flags consistency */
5820	ext4_check_flag_values();
5821
5822	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5823		init_waitqueue_head(&ext4__ioend_wq[i]);
5824
5825	err = ext4_init_es();
5826	if (err)
5827		return err;
5828
 
 
 
 
 
 
 
 
5829	err = ext4_init_pageio();
5830	if (err)
5831		goto out5;
5832
5833	err = ext4_init_system_zone();
5834	if (err)
5835		goto out4;
5836
5837	err = ext4_init_sysfs();
5838	if (err)
5839		goto out3;
5840
5841	err = ext4_init_mballoc();
5842	if (err)
5843		goto out2;
5844	err = init_inodecache();
5845	if (err)
5846		goto out1;
 
 
 
 
 
5847	register_as_ext3();
5848	register_as_ext2();
5849	err = register_filesystem(&ext4_fs_type);
5850	if (err)
5851		goto out;
5852
5853	return 0;
5854out:
5855	unregister_as_ext2();
5856	unregister_as_ext3();
 
 
5857	destroy_inodecache();
5858out1:
5859	ext4_exit_mballoc();
5860out2:
5861	ext4_exit_sysfs();
5862out3:
5863	ext4_exit_system_zone();
5864out4:
5865	ext4_exit_pageio();
5866out5:
 
 
 
 
5867	ext4_exit_es();
5868
5869	return err;
5870}
5871
5872static void __exit ext4_exit_fs(void)
5873{
5874	ext4_destroy_lazyinit_thread();
5875	unregister_as_ext2();
5876	unregister_as_ext3();
5877	unregister_filesystem(&ext4_fs_type);
 
5878	destroy_inodecache();
5879	ext4_exit_mballoc();
5880	ext4_exit_sysfs();
5881	ext4_exit_system_zone();
5882	ext4_exit_pageio();
 
5883	ext4_exit_es();
 
5884}
5885
5886MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5887MODULE_DESCRIPTION("Fourth Extended Filesystem");
5888MODULE_LICENSE("GPL");
5889MODULE_SOFTDEP("pre: crc32c");
5890module_init(ext4_init_fs)
5891module_exit(ext4_exit_fs)
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/super.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  Big-endian to little-endian byte-swapping/bitmaps by
  17 *        David S. Miller (davem@caip.rutgers.edu), 1995
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/string.h>
  22#include <linux/fs.h>
  23#include <linux/time.h>
  24#include <linux/vmalloc.h>
  25#include <linux/slab.h>
  26#include <linux/init.h>
  27#include <linux/blkdev.h>
  28#include <linux/backing-dev.h>
  29#include <linux/parser.h>
  30#include <linux/buffer_head.h>
  31#include <linux/exportfs.h>
  32#include <linux/vfs.h>
  33#include <linux/random.h>
  34#include <linux/mount.h>
  35#include <linux/namei.h>
  36#include <linux/quotaops.h>
  37#include <linux/seq_file.h>
  38#include <linux/ctype.h>
  39#include <linux/log2.h>
  40#include <linux/crc16.h>
  41#include <linux/dax.h>
 
  42#include <linux/uaccess.h>
  43#include <linux/iversion.h>
  44#include <linux/unicode.h>
  45#include <linux/part_stat.h>
  46#include <linux/kthread.h>
  47#include <linux/freezer.h>
  48#include <linux/fsnotify.h>
  49#include <linux/fs_context.h>
  50#include <linux/fs_parser.h>
  51
  52#include "ext4.h"
  53#include "ext4_extents.h"	/* Needed for trace points definition */
  54#include "ext4_jbd2.h"
  55#include "xattr.h"
  56#include "acl.h"
  57#include "mballoc.h"
  58#include "fsmap.h"
  59
  60#define CREATE_TRACE_POINTS
  61#include <trace/events/ext4.h>
  62
  63static struct ext4_lazy_init *ext4_li_info;
  64static DEFINE_MUTEX(ext4_li_mtx);
  65static struct ratelimit_state ext4_mount_msg_ratelimit;
  66
  67static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
  68			     unsigned long journal_devnum);
  69static int ext4_show_options(struct seq_file *seq, struct dentry *root);
  70static void ext4_update_super(struct super_block *sb);
  71static int ext4_commit_super(struct super_block *sb);
  72static int ext4_mark_recovery_complete(struct super_block *sb,
  73					struct ext4_super_block *es);
  74static int ext4_clear_journal_err(struct super_block *sb,
  75				  struct ext4_super_block *es);
  76static int ext4_sync_fs(struct super_block *sb, int wait);
 
  77static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
  78static int ext4_unfreeze(struct super_block *sb);
  79static int ext4_freeze(struct super_block *sb);
 
 
  80static inline int ext2_feature_set_ok(struct super_block *sb);
  81static inline int ext3_feature_set_ok(struct super_block *sb);
 
  82static void ext4_destroy_lazyinit_thread(void);
  83static void ext4_unregister_li_request(struct super_block *sb);
  84static void ext4_clear_request_list(void);
  85static struct inode *ext4_get_journal_inode(struct super_block *sb,
  86					    unsigned int journal_inum);
  87static int ext4_validate_options(struct fs_context *fc);
  88static int ext4_check_opt_consistency(struct fs_context *fc,
  89				      struct super_block *sb);
  90static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
  91static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
  92static int ext4_get_tree(struct fs_context *fc);
  93static int ext4_reconfigure(struct fs_context *fc);
  94static void ext4_fc_free(struct fs_context *fc);
  95static int ext4_init_fs_context(struct fs_context *fc);
  96static void ext4_kill_sb(struct super_block *sb);
  97static const struct fs_parameter_spec ext4_param_specs[];
  98
  99/*
 100 * Lock ordering
 101 *
 
 
 
 102 * page fault path:
 103 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
 104 *   -> page lock -> i_data_sem (rw)
 105 *
 106 * buffered write path:
 107 * sb_start_write -> i_mutex -> mmap_lock
 108 * sb_start_write -> i_mutex -> transaction start -> page lock ->
 109 *   i_data_sem (rw)
 110 *
 111 * truncate:
 112 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
 113 *   page lock
 114 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
 115 *   i_data_sem (rw)
 116 *
 117 * direct IO:
 118 * sb_start_write -> i_mutex -> mmap_lock
 119 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
 120 *
 121 * writepages:
 122 * transaction start -> page lock(s) -> i_data_sem (rw)
 123 */
 124
 125static const struct fs_context_operations ext4_context_ops = {
 126	.parse_param	= ext4_parse_param,
 127	.get_tree	= ext4_get_tree,
 128	.reconfigure	= ext4_reconfigure,
 129	.free		= ext4_fc_free,
 130};
 131
 132
 133#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
 134static struct file_system_type ext2_fs_type = {
 135	.owner			= THIS_MODULE,
 136	.name			= "ext2",
 137	.init_fs_context	= ext4_init_fs_context,
 138	.parameters		= ext4_param_specs,
 139	.kill_sb		= ext4_kill_sb,
 140	.fs_flags		= FS_REQUIRES_DEV,
 141};
 142MODULE_ALIAS_FS("ext2");
 143MODULE_ALIAS("ext2");
 144#define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
 145#else
 146#define IS_EXT2_SB(sb) (0)
 147#endif
 148
 149
 150static struct file_system_type ext3_fs_type = {
 151	.owner			= THIS_MODULE,
 152	.name			= "ext3",
 153	.init_fs_context	= ext4_init_fs_context,
 154	.parameters		= ext4_param_specs,
 155	.kill_sb		= ext4_kill_sb,
 156	.fs_flags		= FS_REQUIRES_DEV,
 157};
 158MODULE_ALIAS_FS("ext3");
 159MODULE_ALIAS("ext3");
 160#define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
 161
 162
 163static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
 164				  bh_end_io_t *end_io)
 165{
 166	/*
 167	 * buffer's verified bit is no longer valid after reading from
 168	 * disk again due to write out error, clear it to make sure we
 169	 * recheck the buffer contents.
 170	 */
 171	clear_buffer_verified(bh);
 172
 173	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
 174	get_bh(bh);
 175	submit_bh(REQ_OP_READ | op_flags, bh);
 176}
 177
 178void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
 179			 bh_end_io_t *end_io)
 180{
 181	BUG_ON(!buffer_locked(bh));
 182
 183	if (ext4_buffer_uptodate(bh)) {
 184		unlock_buffer(bh);
 185		return;
 186	}
 187	__ext4_read_bh(bh, op_flags, end_io);
 188}
 189
 190int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
 191{
 192	BUG_ON(!buffer_locked(bh));
 193
 194	if (ext4_buffer_uptodate(bh)) {
 195		unlock_buffer(bh);
 196		return 0;
 197	}
 198
 199	__ext4_read_bh(bh, op_flags, end_io);
 200
 201	wait_on_buffer(bh);
 202	if (buffer_uptodate(bh))
 203		return 0;
 204	return -EIO;
 205}
 206
 207int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
 208{
 209	lock_buffer(bh);
 210	if (!wait) {
 211		ext4_read_bh_nowait(bh, op_flags, NULL);
 212		return 0;
 213	}
 214	return ext4_read_bh(bh, op_flags, NULL);
 215}
 216
 217/*
 218 * This works like __bread_gfp() except it uses ERR_PTR for error
 219 * returns.  Currently with sb_bread it's impossible to distinguish
 220 * between ENOMEM and EIO situations (since both result in a NULL
 221 * return.
 222 */
 223static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
 224					       sector_t block,
 225					       blk_opf_t op_flags, gfp_t gfp)
 226{
 227	struct buffer_head *bh;
 228	int ret;
 229
 230	bh = sb_getblk_gfp(sb, block, gfp);
 231	if (bh == NULL)
 232		return ERR_PTR(-ENOMEM);
 233	if (ext4_buffer_uptodate(bh))
 234		return bh;
 235
 236	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
 237	if (ret) {
 238		put_bh(bh);
 239		return ERR_PTR(ret);
 240	}
 241	return bh;
 242}
 243
 244struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
 245				   blk_opf_t op_flags)
 246{
 247	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping,
 248			~__GFP_FS) | __GFP_MOVABLE;
 249
 250	return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
 251}
 252
 253struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
 254					    sector_t block)
 255{
 256	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping,
 257			~__GFP_FS);
 258
 259	return __ext4_sb_bread_gfp(sb, block, 0, gfp);
 260}
 261
 262void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
 263{
 264	struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
 265			sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN);
 266
 267	if (likely(bh)) {
 268		if (trylock_buffer(bh))
 269			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
 270		brelse(bh);
 271	}
 272}
 273
 274static int ext4_verify_csum_type(struct super_block *sb,
 275				 struct ext4_super_block *es)
 276{
 277	if (!ext4_has_feature_metadata_csum(sb))
 278		return 1;
 279
 280	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
 281}
 282
 283__le32 ext4_superblock_csum(struct super_block *sb,
 284			    struct ext4_super_block *es)
 285{
 286	struct ext4_sb_info *sbi = EXT4_SB(sb);
 287	int offset = offsetof(struct ext4_super_block, s_checksum);
 288	__u32 csum;
 289
 290	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
 291
 292	return cpu_to_le32(csum);
 293}
 294
 295static int ext4_superblock_csum_verify(struct super_block *sb,
 296				       struct ext4_super_block *es)
 297{
 298	if (!ext4_has_metadata_csum(sb))
 299		return 1;
 300
 301	return es->s_checksum == ext4_superblock_csum(sb, es);
 302}
 303
 304void ext4_superblock_csum_set(struct super_block *sb)
 305{
 306	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 307
 308	if (!ext4_has_metadata_csum(sb))
 309		return;
 310
 311	es->s_checksum = ext4_superblock_csum(sb, es);
 312}
 313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
 315			       struct ext4_group_desc *bg)
 316{
 317	return le32_to_cpu(bg->bg_block_bitmap_lo) |
 318		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 319		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
 320}
 321
 322ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
 323			       struct ext4_group_desc *bg)
 324{
 325	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
 326		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 327		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
 328}
 329
 330ext4_fsblk_t ext4_inode_table(struct super_block *sb,
 331			      struct ext4_group_desc *bg)
 332{
 333	return le32_to_cpu(bg->bg_inode_table_lo) |
 334		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 335		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
 336}
 337
 338__u32 ext4_free_group_clusters(struct super_block *sb,
 339			       struct ext4_group_desc *bg)
 340{
 341	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
 342		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 343		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
 344}
 345
 346__u32 ext4_free_inodes_count(struct super_block *sb,
 347			      struct ext4_group_desc *bg)
 348{
 349	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
 350		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 351		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
 352}
 353
 354__u32 ext4_used_dirs_count(struct super_block *sb,
 355			      struct ext4_group_desc *bg)
 356{
 357	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
 358		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 359		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
 360}
 361
 362__u32 ext4_itable_unused_count(struct super_block *sb,
 363			      struct ext4_group_desc *bg)
 364{
 365	return le16_to_cpu(bg->bg_itable_unused_lo) |
 366		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 367		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
 368}
 369
 370void ext4_block_bitmap_set(struct super_block *sb,
 371			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 372{
 373	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
 374	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 375		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
 376}
 377
 378void ext4_inode_bitmap_set(struct super_block *sb,
 379			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 380{
 381	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
 382	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 383		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
 384}
 385
 386void ext4_inode_table_set(struct super_block *sb,
 387			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
 388{
 389	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
 390	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 391		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
 392}
 393
 394void ext4_free_group_clusters_set(struct super_block *sb,
 395				  struct ext4_group_desc *bg, __u32 count)
 396{
 397	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
 398	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 399		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
 400}
 401
 402void ext4_free_inodes_set(struct super_block *sb,
 403			  struct ext4_group_desc *bg, __u32 count)
 404{
 405	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
 406	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 407		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
 408}
 409
 410void ext4_used_dirs_set(struct super_block *sb,
 411			  struct ext4_group_desc *bg, __u32 count)
 412{
 413	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
 414	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 415		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
 416}
 417
 418void ext4_itable_unused_set(struct super_block *sb,
 419			  struct ext4_group_desc *bg, __u32 count)
 420{
 421	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
 422	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 423		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
 424}
 425
 426static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
 
 
 427{
 428	now = clamp_val(now, 0, (1ull << 40) - 1);
 429
 430	*lo = cpu_to_le32(lower_32_bits(now));
 431	*hi = upper_32_bits(now);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432}
 433
 434static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
 
 435{
 436	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
 437}
 438#define ext4_update_tstamp(es, tstamp) \
 439	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
 440			     ktime_get_real_seconds())
 441#define ext4_get_tstamp(es, tstamp) \
 442	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
 443
 444#define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
 445#define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
 446
 447/*
 448 * The ext4_maybe_update_superblock() function checks and updates the
 449 * superblock if needed.
 450 *
 451 * This function is designed to update the on-disk superblock only under
 452 * certain conditions to prevent excessive disk writes and unnecessary
 453 * waking of the disk from sleep. The superblock will be updated if:
 454 * 1. More than an hour has passed since the last superblock update, and
 455 * 2. More than 16MB have been written since the last superblock update.
 456 *
 457 * @sb: The superblock
 458 */
 459static void ext4_maybe_update_superblock(struct super_block *sb)
 460{
 461	struct ext4_sb_info *sbi = EXT4_SB(sb);
 462	struct ext4_super_block *es = sbi->s_es;
 463	journal_t *journal = sbi->s_journal;
 464	time64_t now;
 465	__u64 last_update;
 466	__u64 lifetime_write_kbytes;
 467	__u64 diff_size;
 468
 469	if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
 470	    !journal || (journal->j_flags & JBD2_UNMOUNT))
 471		return;
 472
 473	now = ktime_get_real_seconds();
 474	last_update = ext4_get_tstamp(es, s_wtime);
 475
 476	if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
 477		return;
 478
 479	lifetime_write_kbytes = sbi->s_kbytes_written +
 480		((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
 481		  sbi->s_sectors_written_start) >> 1);
 482
 483	/* Get the number of kilobytes not written to disk to account
 484	 * for statistics and compare with a multiple of 16 MB. This
 485	 * is used to determine when the next superblock commit should
 486	 * occur (i.e. not more often than once per 16MB if there was
 487	 * less written in an hour).
 488	 */
 489	diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
 490
 491	if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
 492		schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
 493}
 494
 495/*
 496 * The del_gendisk() function uninitializes the disk-specific data
 497 * structures, including the bdi structure, without telling anyone
 498 * else.  Once this happens, any attempt to call mark_buffer_dirty()
 499 * (for example, by ext4_commit_super), will cause a kernel OOPS.
 500 * This is a kludge to prevent these oops until we can put in a proper
 501 * hook in del_gendisk() to inform the VFS and file system layers.
 502 */
 503static int block_device_ejected(struct super_block *sb)
 504{
 505	struct inode *bd_inode = sb->s_bdev->bd_inode;
 506	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
 507
 508	return bdi->dev == NULL;
 509}
 510
 511static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
 512{
 513	struct super_block		*sb = journal->j_private;
 514	struct ext4_sb_info		*sbi = EXT4_SB(sb);
 515	int				error = is_journal_aborted(journal);
 516	struct ext4_journal_cb_entry	*jce;
 517
 518	BUG_ON(txn->t_state == T_FINISHED);
 519
 520	ext4_process_freed_data(sb, txn->t_tid);
 521	ext4_maybe_update_superblock(sb);
 522
 523	spin_lock(&sbi->s_md_lock);
 524	while (!list_empty(&txn->t_private_list)) {
 525		jce = list_entry(txn->t_private_list.next,
 526				 struct ext4_journal_cb_entry, jce_list);
 527		list_del_init(&jce->jce_list);
 528		spin_unlock(&sbi->s_md_lock);
 529		jce->jce_func(sb, jce, error);
 530		spin_lock(&sbi->s_md_lock);
 531	}
 532	spin_unlock(&sbi->s_md_lock);
 533}
 534
 535/*
 536 * This writepage callback for write_cache_pages()
 537 * takes care of a few cases after page cleaning.
 538 *
 539 * write_cache_pages() already checks for dirty pages
 540 * and calls clear_page_dirty_for_io(), which we want,
 541 * to write protect the pages.
 542 *
 543 * However, we may have to redirty a page (see below.)
 544 */
 545static int ext4_journalled_writepage_callback(struct folio *folio,
 546					      struct writeback_control *wbc,
 547					      void *data)
 548{
 549	transaction_t *transaction = (transaction_t *) data;
 550	struct buffer_head *bh, *head;
 551	struct journal_head *jh;
 552
 553	bh = head = folio_buffers(folio);
 554	do {
 555		/*
 556		 * We have to redirty a page in these cases:
 557		 * 1) If buffer is dirty, it means the page was dirty because it
 558		 * contains a buffer that needs checkpointing. So the dirty bit
 559		 * needs to be preserved so that checkpointing writes the buffer
 560		 * properly.
 561		 * 2) If buffer is not part of the committing transaction
 562		 * (we may have just accidentally come across this buffer because
 563		 * inode range tracking is not exact) or if the currently running
 564		 * transaction already contains this buffer as well, dirty bit
 565		 * needs to be preserved so that the buffer gets writeprotected
 566		 * properly on running transaction's commit.
 567		 */
 568		jh = bh2jh(bh);
 569		if (buffer_dirty(bh) ||
 570		    (jh && (jh->b_transaction != transaction ||
 571			    jh->b_next_transaction))) {
 572			folio_redirty_for_writepage(wbc, folio);
 573			goto out;
 574		}
 575	} while ((bh = bh->b_this_page) != head);
 576
 577out:
 578	return AOP_WRITEPAGE_ACTIVATE;
 579}
 580
 581static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
 582{
 583	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
 584	struct writeback_control wbc = {
 585		.sync_mode =  WB_SYNC_ALL,
 586		.nr_to_write = LONG_MAX,
 587		.range_start = jinode->i_dirty_start,
 588		.range_end = jinode->i_dirty_end,
 589        };
 590
 591	return write_cache_pages(mapping, &wbc,
 592				 ext4_journalled_writepage_callback,
 593				 jinode->i_transaction);
 594}
 595
 596static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
 597{
 598	int ret;
 599
 600	if (ext4_should_journal_data(jinode->i_vfs_inode))
 601		ret = ext4_journalled_submit_inode_data_buffers(jinode);
 602	else
 603		ret = ext4_normal_submit_inode_data_buffers(jinode);
 604	return ret;
 605}
 606
 607static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
 608{
 609	int ret = 0;
 610
 611	if (!ext4_should_journal_data(jinode->i_vfs_inode))
 612		ret = jbd2_journal_finish_inode_data_buffers(jinode);
 613
 614	return ret;
 615}
 616
 617static bool system_going_down(void)
 618{
 619	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
 620		|| system_state == SYSTEM_RESTART;
 621}
 622
 623struct ext4_err_translation {
 624	int code;
 625	int errno;
 626};
 627
 628#define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
 629
 630static struct ext4_err_translation err_translation[] = {
 631	EXT4_ERR_TRANSLATE(EIO),
 632	EXT4_ERR_TRANSLATE(ENOMEM),
 633	EXT4_ERR_TRANSLATE(EFSBADCRC),
 634	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
 635	EXT4_ERR_TRANSLATE(ENOSPC),
 636	EXT4_ERR_TRANSLATE(ENOKEY),
 637	EXT4_ERR_TRANSLATE(EROFS),
 638	EXT4_ERR_TRANSLATE(EFBIG),
 639	EXT4_ERR_TRANSLATE(EEXIST),
 640	EXT4_ERR_TRANSLATE(ERANGE),
 641	EXT4_ERR_TRANSLATE(EOVERFLOW),
 642	EXT4_ERR_TRANSLATE(EBUSY),
 643	EXT4_ERR_TRANSLATE(ENOTDIR),
 644	EXT4_ERR_TRANSLATE(ENOTEMPTY),
 645	EXT4_ERR_TRANSLATE(ESHUTDOWN),
 646	EXT4_ERR_TRANSLATE(EFAULT),
 647};
 648
 649static int ext4_errno_to_code(int errno)
 650{
 651	int i;
 652
 653	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
 654		if (err_translation[i].errno == errno)
 655			return err_translation[i].code;
 656	return EXT4_ERR_UNKNOWN;
 657}
 658
 659static void save_error_info(struct super_block *sb, int error,
 660			    __u32 ino, __u64 block,
 661			    const char *func, unsigned int line)
 662{
 663	struct ext4_sb_info *sbi = EXT4_SB(sb);
 664
 665	/* We default to EFSCORRUPTED error... */
 666	if (error == 0)
 667		error = EFSCORRUPTED;
 668
 669	spin_lock(&sbi->s_error_lock);
 670	sbi->s_add_error_count++;
 671	sbi->s_last_error_code = error;
 672	sbi->s_last_error_line = line;
 673	sbi->s_last_error_ino = ino;
 674	sbi->s_last_error_block = block;
 675	sbi->s_last_error_func = func;
 676	sbi->s_last_error_time = ktime_get_real_seconds();
 677	if (!sbi->s_first_error_time) {
 678		sbi->s_first_error_code = error;
 679		sbi->s_first_error_line = line;
 680		sbi->s_first_error_ino = ino;
 681		sbi->s_first_error_block = block;
 682		sbi->s_first_error_func = func;
 683		sbi->s_first_error_time = sbi->s_last_error_time;
 684	}
 685	spin_unlock(&sbi->s_error_lock);
 686}
 687
 688/* Deal with the reporting of failure conditions on a filesystem such as
 689 * inconsistencies detected or read IO failures.
 690 *
 691 * On ext2, we can store the error state of the filesystem in the
 692 * superblock.  That is not possible on ext4, because we may have other
 693 * write ordering constraints on the superblock which prevent us from
 694 * writing it out straight away; and given that the journal is about to
 695 * be aborted, we can't rely on the current, or future, transactions to
 696 * write out the superblock safely.
 697 *
 698 * We'll just use the jbd2_journal_abort() error code to record an error in
 699 * the journal instead.  On recovery, the journal will complain about
 700 * that error until we've noted it down and cleared it.
 701 *
 702 * If force_ro is set, we unconditionally force the filesystem into an
 703 * ABORT|READONLY state, unless the error response on the fs has been set to
 704 * panic in which case we take the easy way out and panic immediately. This is
 705 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
 706 * at a critical moment in log management.
 707 */
 708static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
 709			      __u32 ino, __u64 block,
 710			      const char *func, unsigned int line)
 711{
 712	journal_t *journal = EXT4_SB(sb)->s_journal;
 713	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
 714
 715	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
 716	if (test_opt(sb, WARN_ON_ERROR))
 717		WARN_ON_ONCE(1);
 718
 719	if (!continue_fs && !sb_rdonly(sb)) {
 720		set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
 721		if (journal)
 722			jbd2_journal_abort(journal, -EIO);
 723	}
 724
 725	if (!bdev_read_only(sb->s_bdev)) {
 726		save_error_info(sb, error, ino, block, func, line);
 727		/*
 728		 * In case the fs should keep running, we need to writeout
 729		 * superblock through the journal. Due to lock ordering
 730		 * constraints, it may not be safe to do it right here so we
 731		 * defer superblock flushing to a workqueue.
 732		 */
 733		if (continue_fs && journal)
 734			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
 735		else
 736			ext4_commit_super(sb);
 737	}
 738
 739	/*
 740	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
 741	 * could panic during 'reboot -f' as the underlying device got already
 742	 * disabled.
 743	 */
 744	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
 745		panic("EXT4-fs (device %s): panic forced after error\n",
 746			sb->s_id);
 747	}
 748
 749	if (sb_rdonly(sb) || continue_fs)
 750		return;
 751
 752	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 753	/*
 754	 * Make sure updated value of ->s_mount_flags will be visible before
 755	 * ->s_flags update
 756	 */
 757	smp_wmb();
 758	sb->s_flags |= SB_RDONLY;
 759}
 760
 761static void update_super_work(struct work_struct *work)
 762{
 763	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
 764						s_sb_upd_work);
 765	journal_t *journal = sbi->s_journal;
 766	handle_t *handle;
 767
 768	/*
 769	 * If the journal is still running, we have to write out superblock
 770	 * through the journal to avoid collisions of other journalled sb
 771	 * updates.
 772	 *
 773	 * We use directly jbd2 functions here to avoid recursing back into
 774	 * ext4 error handling code during handling of previous errors.
 775	 */
 776	if (!sb_rdonly(sbi->s_sb) && journal) {
 777		struct buffer_head *sbh = sbi->s_sbh;
 778		bool call_notify_err = false;
 779
 780		handle = jbd2_journal_start(journal, 1);
 781		if (IS_ERR(handle))
 782			goto write_directly;
 783		if (jbd2_journal_get_write_access(handle, sbh)) {
 784			jbd2_journal_stop(handle);
 785			goto write_directly;
 786		}
 787
 788		if (sbi->s_add_error_count > 0)
 789			call_notify_err = true;
 790
 791		ext4_update_super(sbi->s_sb);
 792		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
 793			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
 794				 "superblock detected");
 795			clear_buffer_write_io_error(sbh);
 796			set_buffer_uptodate(sbh);
 797		}
 798
 799		if (jbd2_journal_dirty_metadata(handle, sbh)) {
 800			jbd2_journal_stop(handle);
 801			goto write_directly;
 802		}
 803		jbd2_journal_stop(handle);
 804
 805		if (call_notify_err)
 806			ext4_notify_error_sysfs(sbi);
 807
 808		return;
 809	}
 810write_directly:
 811	/*
 812	 * Write through journal failed. Write sb directly to get error info
 813	 * out and hope for the best.
 814	 */
 815	ext4_commit_super(sbi->s_sb);
 816	ext4_notify_error_sysfs(sbi);
 817}
 818
 819#define ext4_error_ratelimit(sb)					\
 820		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
 821			     "EXT4-fs error")
 822
 823void __ext4_error(struct super_block *sb, const char *function,
 824		  unsigned int line, bool force_ro, int error, __u64 block,
 825		  const char *fmt, ...)
 826{
 827	struct va_format vaf;
 828	va_list args;
 829
 830	if (unlikely(ext4_forced_shutdown(sb)))
 831		return;
 832
 833	trace_ext4_error(sb, function, line);
 834	if (ext4_error_ratelimit(sb)) {
 835		va_start(args, fmt);
 836		vaf.fmt = fmt;
 837		vaf.va = &args;
 838		printk(KERN_CRIT
 839		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
 840		       sb->s_id, function, line, current->comm, &vaf);
 841		va_end(args);
 842	}
 843	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
 844
 845	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
 846}
 847
 848void __ext4_error_inode(struct inode *inode, const char *function,
 849			unsigned int line, ext4_fsblk_t block, int error,
 850			const char *fmt, ...)
 851{
 852	va_list args;
 853	struct va_format vaf;
 
 854
 855	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
 856		return;
 857
 858	trace_ext4_error(inode->i_sb, function, line);
 
 
 859	if (ext4_error_ratelimit(inode->i_sb)) {
 860		va_start(args, fmt);
 861		vaf.fmt = fmt;
 862		vaf.va = &args;
 863		if (block)
 864			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 865			       "inode #%lu: block %llu: comm %s: %pV\n",
 866			       inode->i_sb->s_id, function, line, inode->i_ino,
 867			       block, current->comm, &vaf);
 868		else
 869			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 870			       "inode #%lu: comm %s: %pV\n",
 871			       inode->i_sb->s_id, function, line, inode->i_ino,
 872			       current->comm, &vaf);
 873		va_end(args);
 874	}
 875	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
 876
 877	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
 878			  function, line);
 879}
 880
 881void __ext4_error_file(struct file *file, const char *function,
 882		       unsigned int line, ext4_fsblk_t block,
 883		       const char *fmt, ...)
 884{
 885	va_list args;
 886	struct va_format vaf;
 
 887	struct inode *inode = file_inode(file);
 888	char pathname[80], *path;
 889
 890	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
 891		return;
 892
 893	trace_ext4_error(inode->i_sb, function, line);
 
 
 894	if (ext4_error_ratelimit(inode->i_sb)) {
 895		path = file_path(file, pathname, sizeof(pathname));
 896		if (IS_ERR(path))
 897			path = "(unknown)";
 898		va_start(args, fmt);
 899		vaf.fmt = fmt;
 900		vaf.va = &args;
 901		if (block)
 902			printk(KERN_CRIT
 903			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 904			       "block %llu: comm %s: path %s: %pV\n",
 905			       inode->i_sb->s_id, function, line, inode->i_ino,
 906			       block, current->comm, path, &vaf);
 907		else
 908			printk(KERN_CRIT
 909			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 910			       "comm %s: path %s: %pV\n",
 911			       inode->i_sb->s_id, function, line, inode->i_ino,
 912			       current->comm, path, &vaf);
 913		va_end(args);
 914	}
 915	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
 916
 917	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
 918			  function, line);
 919}
 920
 921const char *ext4_decode_error(struct super_block *sb, int errno,
 922			      char nbuf[16])
 923{
 924	char *errstr = NULL;
 925
 926	switch (errno) {
 927	case -EFSCORRUPTED:
 928		errstr = "Corrupt filesystem";
 929		break;
 930	case -EFSBADCRC:
 931		errstr = "Filesystem failed CRC";
 932		break;
 933	case -EIO:
 934		errstr = "IO failure";
 935		break;
 936	case -ENOMEM:
 937		errstr = "Out of memory";
 938		break;
 939	case -EROFS:
 940		if (!sb || (EXT4_SB(sb)->s_journal &&
 941			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
 942			errstr = "Journal has aborted";
 943		else
 944			errstr = "Readonly filesystem";
 945		break;
 946	default:
 947		/* If the caller passed in an extra buffer for unknown
 948		 * errors, textualise them now.  Else we just return
 949		 * NULL. */
 950		if (nbuf) {
 951			/* Check for truncated error codes... */
 952			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
 953				errstr = nbuf;
 954		}
 955		break;
 956	}
 957
 958	return errstr;
 959}
 960
 961/* __ext4_std_error decodes expected errors from journaling functions
 962 * automatically and invokes the appropriate error response.  */
 963
 964void __ext4_std_error(struct super_block *sb, const char *function,
 965		      unsigned int line, int errno)
 966{
 967	char nbuf[16];
 968	const char *errstr;
 969
 970	if (unlikely(ext4_forced_shutdown(sb)))
 971		return;
 972
 973	/* Special case: if the error is EROFS, and we're not already
 974	 * inside a transaction, then there's really no point in logging
 975	 * an error. */
 976	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
 977		return;
 978
 979	if (ext4_error_ratelimit(sb)) {
 980		errstr = ext4_decode_error(sb, errno, nbuf);
 981		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
 982		       sb->s_id, function, line, errstr);
 983	}
 984	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
 985
 986	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987}
 988
 989void __ext4_msg(struct super_block *sb,
 990		const char *prefix, const char *fmt, ...)
 991{
 992	struct va_format vaf;
 993	va_list args;
 994
 995	if (sb) {
 996		atomic_inc(&EXT4_SB(sb)->s_msg_count);
 997		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
 998				  "EXT4-fs"))
 999			return;
1000	}
1001
1002	va_start(args, fmt);
1003	vaf.fmt = fmt;
1004	vaf.va = &args;
1005	if (sb)
1006		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
1007	else
1008		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1009	va_end(args);
1010}
1011
1012static int ext4_warning_ratelimit(struct super_block *sb)
1013{
1014	atomic_inc(&EXT4_SB(sb)->s_warning_count);
1015	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1016			    "EXT4-fs warning");
1017}
1018
1019void __ext4_warning(struct super_block *sb, const char *function,
1020		    unsigned int line, const char *fmt, ...)
1021{
1022	struct va_format vaf;
1023	va_list args;
1024
1025	if (!ext4_warning_ratelimit(sb))
1026		return;
1027
1028	va_start(args, fmt);
1029	vaf.fmt = fmt;
1030	vaf.va = &args;
1031	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1032	       sb->s_id, function, line, &vaf);
1033	va_end(args);
1034}
1035
1036void __ext4_warning_inode(const struct inode *inode, const char *function,
1037			  unsigned int line, const char *fmt, ...)
1038{
1039	struct va_format vaf;
1040	va_list args;
1041
1042	if (!ext4_warning_ratelimit(inode->i_sb))
1043		return;
1044
1045	va_start(args, fmt);
1046	vaf.fmt = fmt;
1047	vaf.va = &args;
1048	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1049	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1050	       function, line, inode->i_ino, current->comm, &vaf);
1051	va_end(args);
1052}
1053
1054void __ext4_grp_locked_error(const char *function, unsigned int line,
1055			     struct super_block *sb, ext4_group_t grp,
1056			     unsigned long ino, ext4_fsblk_t block,
1057			     const char *fmt, ...)
1058__releases(bitlock)
1059__acquires(bitlock)
1060{
1061	struct va_format vaf;
1062	va_list args;
 
1063
1064	if (unlikely(ext4_forced_shutdown(sb)))
1065		return;
1066
1067	trace_ext4_error(sb, function, line);
 
 
 
 
1068	if (ext4_error_ratelimit(sb)) {
1069		va_start(args, fmt);
1070		vaf.fmt = fmt;
1071		vaf.va = &args;
1072		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1073		       sb->s_id, function, line, grp);
1074		if (ino)
1075			printk(KERN_CONT "inode %lu: ", ino);
1076		if (block)
1077			printk(KERN_CONT "block %llu:",
1078			       (unsigned long long) block);
1079		printk(KERN_CONT "%pV\n", &vaf);
1080		va_end(args);
1081	}
1082
1083	if (test_opt(sb, ERRORS_CONT)) {
1084		if (test_opt(sb, WARN_ON_ERROR))
1085			WARN_ON_ONCE(1);
1086		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1087		if (!bdev_read_only(sb->s_bdev)) {
1088			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1089					line);
1090			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1091		}
1092		return;
1093	}
 
1094	ext4_unlock_group(sb, grp);
1095	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
 
1096	/*
1097	 * We only get here in the ERRORS_RO case; relocking the group
1098	 * may be dangerous, but nothing bad will happen since the
1099	 * filesystem will have already been marked read/only and the
1100	 * journal has been aborted.  We return 1 as a hint to callers
1101	 * who might what to use the return value from
1102	 * ext4_grp_locked_error() to distinguish between the
1103	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1104	 * aggressively from the ext4 function in question, with a
1105	 * more appropriate error code.
1106	 */
1107	ext4_lock_group(sb, grp);
1108	return;
1109}
1110
1111void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1112				     ext4_group_t group,
1113				     unsigned int flags)
1114{
1115	struct ext4_sb_info *sbi = EXT4_SB(sb);
1116	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1117	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1118	int ret;
1119
1120	if (!grp || !gdp)
1121		return;
1122	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1123		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1124					    &grp->bb_state);
1125		if (!ret)
1126			percpu_counter_sub(&sbi->s_freeclusters_counter,
1127					   grp->bb_free);
1128	}
1129
1130	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1131		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1132					    &grp->bb_state);
1133		if (!ret && gdp) {
1134			int count;
1135
1136			count = ext4_free_inodes_count(sb, gdp);
1137			percpu_counter_sub(&sbi->s_freeinodes_counter,
1138					   count);
1139		}
1140	}
1141}
1142
1143void ext4_update_dynamic_rev(struct super_block *sb)
1144{
1145	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1146
1147	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1148		return;
1149
1150	ext4_warning(sb,
1151		     "updating to rev %d because of new feature flag, "
1152		     "running e2fsck is recommended",
1153		     EXT4_DYNAMIC_REV);
1154
1155	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1156	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1157	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1158	/* leave es->s_feature_*compat flags alone */
1159	/* es->s_uuid will be set by e2fsck if empty */
1160
1161	/*
1162	 * The rest of the superblock fields should be zero, and if not it
1163	 * means they are likely already in use, so leave them alone.  We
1164	 * can leave it up to e2fsck to clean up any inconsistencies there.
1165	 */
1166}
1167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1168static inline struct inode *orphan_list_entry(struct list_head *l)
1169{
1170	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1171}
1172
1173static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1174{
1175	struct list_head *l;
1176
1177	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1178		 le32_to_cpu(sbi->s_es->s_last_orphan));
1179
1180	printk(KERN_ERR "sb_info orphan list:\n");
1181	list_for_each(l, &sbi->s_orphan) {
1182		struct inode *inode = orphan_list_entry(l);
1183		printk(KERN_ERR "  "
1184		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1185		       inode->i_sb->s_id, inode->i_ino, inode,
1186		       inode->i_mode, inode->i_nlink,
1187		       NEXT_ORPHAN(inode));
1188	}
1189}
1190
1191#ifdef CONFIG_QUOTA
1192static int ext4_quota_off(struct super_block *sb, int type);
1193
1194static inline void ext4_quotas_off(struct super_block *sb, int type)
1195{
1196	BUG_ON(type > EXT4_MAXQUOTAS);
1197
1198	/* Use our quota_off function to clear inode flags etc. */
1199	for (type--; type >= 0; type--)
1200		ext4_quota_off(sb, type);
1201}
1202
1203/*
1204 * This is a helper function which is used in the mount/remount
1205 * codepaths (which holds s_umount) to fetch the quota file name.
1206 */
1207static inline char *get_qf_name(struct super_block *sb,
1208				struct ext4_sb_info *sbi,
1209				int type)
1210{
1211	return rcu_dereference_protected(sbi->s_qf_names[type],
1212					 lockdep_is_held(&sb->s_umount));
1213}
1214#else
1215static inline void ext4_quotas_off(struct super_block *sb, int type)
1216{
1217}
1218#endif
1219
1220static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1221{
1222	ext4_fsblk_t block;
1223	int err;
1224
1225	block = ext4_count_free_clusters(sbi->s_sb);
1226	ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1227	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1228				  GFP_KERNEL);
1229	if (!err) {
1230		unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1231		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1232		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1233					  GFP_KERNEL);
1234	}
1235	if (!err)
1236		err = percpu_counter_init(&sbi->s_dirs_counter,
1237					  ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1238	if (!err)
1239		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1240					  GFP_KERNEL);
1241	if (!err)
1242		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1243					  GFP_KERNEL);
1244	if (!err)
1245		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1246
1247	if (err)
1248		ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1249
1250	return err;
1251}
1252
1253static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1254{
1255	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1256	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1257	percpu_counter_destroy(&sbi->s_dirs_counter);
1258	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1259	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1260	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1261}
1262
1263static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1264{
1265	struct buffer_head **group_desc;
1266	int i;
1267
1268	rcu_read_lock();
1269	group_desc = rcu_dereference(sbi->s_group_desc);
1270	for (i = 0; i < sbi->s_gdb_count; i++)
1271		brelse(group_desc[i]);
1272	kvfree(group_desc);
1273	rcu_read_unlock();
1274}
1275
1276static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1277{
1278	struct flex_groups **flex_groups;
1279	int i;
1280
1281	rcu_read_lock();
1282	flex_groups = rcu_dereference(sbi->s_flex_groups);
1283	if (flex_groups) {
1284		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1285			kvfree(flex_groups[i]);
1286		kvfree(flex_groups);
1287	}
1288	rcu_read_unlock();
1289}
1290
1291static void ext4_put_super(struct super_block *sb)
1292{
1293	struct ext4_sb_info *sbi = EXT4_SB(sb);
1294	struct ext4_super_block *es = sbi->s_es;
1295	int aborted = 0;
1296	int err;
1297
1298	/*
1299	 * Unregister sysfs before destroying jbd2 journal.
1300	 * Since we could still access attr_journal_task attribute via sysfs
1301	 * path which could have sbi->s_journal->j_task as NULL
1302	 * Unregister sysfs before flush sbi->s_sb_upd_work.
1303	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1304	 * read metadata verify failed then will queue error work.
1305	 * update_super_work will call start_this_handle may trigger
1306	 * BUG_ON.
1307	 */
1308	ext4_unregister_sysfs(sb);
1309
1310	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1311		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1312			 &sb->s_uuid);
1313
1314	ext4_unregister_li_request(sb);
1315	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1316
1317	flush_work(&sbi->s_sb_upd_work);
1318	destroy_workqueue(sbi->rsv_conversion_wq);
1319	ext4_release_orphan_info(sb);
1320
1321	if (sbi->s_journal) {
1322		aborted = is_journal_aborted(sbi->s_journal);
1323		err = jbd2_journal_destroy(sbi->s_journal);
1324		sbi->s_journal = NULL;
1325		if ((err < 0) && !aborted) {
1326			ext4_abort(sb, -err, "Couldn't clean up the journal");
1327		}
1328	}
1329
 
1330	ext4_es_unregister_shrinker(sbi);
1331	timer_shutdown_sync(&sbi->s_err_report);
1332	ext4_release_system_zone(sb);
1333	ext4_mb_release(sb);
1334	ext4_ext_release(sb);
1335
1336	if (!sb_rdonly(sb) && !aborted) {
1337		ext4_clear_feature_journal_needs_recovery(sb);
1338		ext4_clear_feature_orphan_present(sb);
1339		es->s_state = cpu_to_le16(sbi->s_mount_state);
1340	}
1341	if (!sb_rdonly(sb))
1342		ext4_commit_super(sb);
1343
1344	ext4_group_desc_free(sbi);
1345	ext4_flex_groups_free(sbi);
1346	ext4_percpu_param_destroy(sbi);
 
 
 
 
 
 
1347#ifdef CONFIG_QUOTA
1348	for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1349		kfree(get_qf_name(sb, sbi, i));
1350#endif
1351
1352	/* Debugging code just in case the in-memory inode orphan list
1353	 * isn't empty.  The on-disk one can be non-empty if we've
1354	 * detected an error and taken the fs readonly, but the
1355	 * in-memory list had better be clean by this point. */
1356	if (!list_empty(&sbi->s_orphan))
1357		dump_orphan_list(sb, sbi);
1358	ASSERT(list_empty(&sbi->s_orphan));
1359
1360	sync_blockdev(sb->s_bdev);
1361	invalidate_bdev(sb->s_bdev);
1362	if (sbi->s_journal_bdev_file) {
1363		/*
1364		 * Invalidate the journal device's buffers.  We don't want them
1365		 * floating about in memory - the physical journal device may
1366		 * hotswapped, and it breaks the `ro-after' testing code.
1367		 */
1368		sync_blockdev(file_bdev(sbi->s_journal_bdev_file));
1369		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
 
 
 
 
 
 
 
 
 
1370	}
1371
1372	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1373	sbi->s_ea_inode_cache = NULL;
1374
1375	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1376	sbi->s_ea_block_cache = NULL;
1377
1378	ext4_stop_mmpd(sbi);
1379
1380	brelse(sbi->s_sbh);
1381	sb->s_fs_info = NULL;
1382	/*
1383	 * Now that we are completely done shutting down the
1384	 * superblock, we need to actually destroy the kobject.
1385	 */
1386	kobject_put(&sbi->s_kobj);
1387	wait_for_completion(&sbi->s_kobj_unregister);
1388	if (sbi->s_chksum_driver)
1389		crypto_free_shash(sbi->s_chksum_driver);
1390	kfree(sbi->s_blockgroup_lock);
1391	fs_put_dax(sbi->s_daxdev, NULL);
1392	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1393#if IS_ENABLED(CONFIG_UNICODE)
1394	utf8_unload(sb->s_encoding);
1395#endif
1396	kfree(sbi);
1397}
1398
1399static struct kmem_cache *ext4_inode_cachep;
1400
1401/*
1402 * Called inside transaction, so use GFP_NOFS
1403 */
1404static struct inode *ext4_alloc_inode(struct super_block *sb)
1405{
1406	struct ext4_inode_info *ei;
1407
1408	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1409	if (!ei)
1410		return NULL;
1411
1412	inode_set_iversion(&ei->vfs_inode, 1);
1413	ei->i_flags = 0;
1414	spin_lock_init(&ei->i_raw_lock);
1415	ei->i_prealloc_node = RB_ROOT;
1416	atomic_set(&ei->i_prealloc_active, 0);
1417	rwlock_init(&ei->i_prealloc_lock);
1418	ext4_es_init_tree(&ei->i_es_tree);
1419	rwlock_init(&ei->i_es_lock);
1420	INIT_LIST_HEAD(&ei->i_es_list);
1421	ei->i_es_all_nr = 0;
1422	ei->i_es_shk_nr = 0;
1423	ei->i_es_shrink_lblk = 0;
1424	ei->i_reserved_data_blocks = 0;
 
 
1425	spin_lock_init(&(ei->i_block_reservation_lock));
1426	ext4_init_pending_tree(&ei->i_pending_tree);
1427#ifdef CONFIG_QUOTA
1428	ei->i_reserved_quota = 0;
1429	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1430#endif
1431	ei->jinode = NULL;
1432	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1433	spin_lock_init(&ei->i_completed_io_lock);
1434	ei->i_sync_tid = 0;
1435	ei->i_datasync_tid = 0;
1436	atomic_set(&ei->i_unwritten, 0);
1437	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1438	ext4_fc_init_inode(&ei->vfs_inode);
1439	mutex_init(&ei->i_fc_lock);
1440	return &ei->vfs_inode;
1441}
1442
1443static int ext4_drop_inode(struct inode *inode)
1444{
1445	int drop = generic_drop_inode(inode);
1446
1447	if (!drop)
1448		drop = fscrypt_drop_inode(inode);
1449
1450	trace_ext4_drop_inode(inode, drop);
1451	return drop;
1452}
1453
1454static void ext4_free_in_core_inode(struct inode *inode)
1455{
1456	fscrypt_free_inode(inode);
1457	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1458		pr_warn("%s: inode %ld still in fc list",
1459			__func__, inode->i_ino);
1460	}
1461	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1462}
1463
1464static void ext4_destroy_inode(struct inode *inode)
1465{
1466	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1467		ext4_msg(inode->i_sb, KERN_ERR,
1468			 "Inode %lu (%p): orphan list check failed!",
1469			 inode->i_ino, EXT4_I(inode));
1470		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1471				EXT4_I(inode), sizeof(struct ext4_inode_info),
1472				true);
1473		dump_stack();
1474	}
1475
1476	if (EXT4_I(inode)->i_reserved_data_blocks)
1477		ext4_msg(inode->i_sb, KERN_ERR,
1478			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1479			 inode->i_ino, EXT4_I(inode),
1480			 EXT4_I(inode)->i_reserved_data_blocks);
1481}
1482
1483static void ext4_shutdown(struct super_block *sb)
1484{
1485       ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1486}
1487
1488static void init_once(void *foo)
1489{
1490	struct ext4_inode_info *ei = foo;
1491
1492	INIT_LIST_HEAD(&ei->i_orphan);
1493	init_rwsem(&ei->xattr_sem);
1494	init_rwsem(&ei->i_data_sem);
 
1495	inode_init_once(&ei->vfs_inode);
1496	ext4_fc_init_inode(&ei->vfs_inode);
1497}
1498
1499static int __init init_inodecache(void)
1500{
1501	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1502				sizeof(struct ext4_inode_info), 0,
1503				SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
 
1504				offsetof(struct ext4_inode_info, i_data),
1505				sizeof_field(struct ext4_inode_info, i_data),
1506				init_once);
1507	if (ext4_inode_cachep == NULL)
1508		return -ENOMEM;
1509	return 0;
1510}
1511
1512static void destroy_inodecache(void)
1513{
1514	/*
1515	 * Make sure all delayed rcu free inodes are flushed before we
1516	 * destroy cache.
1517	 */
1518	rcu_barrier();
1519	kmem_cache_destroy(ext4_inode_cachep);
1520}
1521
1522void ext4_clear_inode(struct inode *inode)
1523{
1524	ext4_fc_del(inode);
1525	invalidate_inode_buffers(inode);
1526	clear_inode(inode);
 
1527	ext4_discard_preallocations(inode);
1528	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1529	dquot_drop(inode);
1530	if (EXT4_I(inode)->jinode) {
1531		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1532					       EXT4_I(inode)->jinode);
1533		jbd2_free_inode(EXT4_I(inode)->jinode);
1534		EXT4_I(inode)->jinode = NULL;
1535	}
1536	fscrypt_put_encryption_info(inode);
1537	fsverity_cleanup_inode(inode);
1538}
1539
1540static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1541					u64 ino, u32 generation)
1542{
1543	struct inode *inode;
1544
1545	/*
 
 
 
 
 
 
 
 
 
1546	 * Currently we don't know the generation for parent directory, so
1547	 * a generation of 0 means "accept any"
1548	 */
1549	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1550	if (IS_ERR(inode))
1551		return ERR_CAST(inode);
1552	if (generation && inode->i_generation != generation) {
1553		iput(inode);
1554		return ERR_PTR(-ESTALE);
1555	}
1556
1557	return inode;
1558}
1559
1560static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1561					int fh_len, int fh_type)
1562{
1563	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1564				    ext4_nfs_get_inode);
1565}
1566
1567static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1568					int fh_len, int fh_type)
1569{
1570	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1571				    ext4_nfs_get_inode);
1572}
1573
1574static int ext4_nfs_commit_metadata(struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1575{
1576	struct writeback_control wbc = {
1577		.sync_mode = WB_SYNC_ALL
1578	};
1579
1580	trace_ext4_nfs_commit_metadata(inode);
1581	return ext4_write_inode(inode, &wbc);
 
 
1582}
1583
 
 
 
 
 
 
 
 
 
 
1584#ifdef CONFIG_QUOTA
1585static const char * const quotatypes[] = INITQFNAMES;
1586#define QTYPE2NAME(t) (quotatypes[t])
1587
1588static int ext4_write_dquot(struct dquot *dquot);
1589static int ext4_acquire_dquot(struct dquot *dquot);
1590static int ext4_release_dquot(struct dquot *dquot);
1591static int ext4_mark_dquot_dirty(struct dquot *dquot);
1592static int ext4_write_info(struct super_block *sb, int type);
1593static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1594			 const struct path *path);
 
1595static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1596			       size_t len, loff_t off);
1597static ssize_t ext4_quota_write(struct super_block *sb, int type,
1598				const char *data, size_t len, loff_t off);
1599static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1600			     unsigned int flags);
 
 
1601
1602static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1603{
1604	return EXT4_I(inode)->i_dquot;
1605}
1606
1607static const struct dquot_operations ext4_quota_operations = {
1608	.get_reserved_space	= ext4_get_reserved_space,
1609	.write_dquot		= ext4_write_dquot,
1610	.acquire_dquot		= ext4_acquire_dquot,
1611	.release_dquot		= ext4_release_dquot,
1612	.mark_dirty		= ext4_mark_dquot_dirty,
1613	.write_info		= ext4_write_info,
1614	.alloc_dquot		= dquot_alloc,
1615	.destroy_dquot		= dquot_destroy,
1616	.get_projid		= ext4_get_projid,
1617	.get_inode_usage	= ext4_get_inode_usage,
1618	.get_next_id		= dquot_get_next_id,
1619};
1620
1621static const struct quotactl_ops ext4_qctl_operations = {
1622	.quota_on	= ext4_quota_on,
1623	.quota_off	= ext4_quota_off,
1624	.quota_sync	= dquot_quota_sync,
1625	.get_state	= dquot_get_state,
1626	.set_info	= dquot_set_dqinfo,
1627	.get_dqblk	= dquot_get_dqblk,
1628	.set_dqblk	= dquot_set_dqblk,
1629	.get_nextdqblk	= dquot_get_next_dqblk,
1630};
1631#endif
1632
1633static const struct super_operations ext4_sops = {
1634	.alloc_inode	= ext4_alloc_inode,
1635	.free_inode	= ext4_free_in_core_inode,
1636	.destroy_inode	= ext4_destroy_inode,
1637	.write_inode	= ext4_write_inode,
1638	.dirty_inode	= ext4_dirty_inode,
1639	.drop_inode	= ext4_drop_inode,
1640	.evict_inode	= ext4_evict_inode,
1641	.put_super	= ext4_put_super,
1642	.sync_fs	= ext4_sync_fs,
1643	.freeze_fs	= ext4_freeze,
1644	.unfreeze_fs	= ext4_unfreeze,
1645	.statfs		= ext4_statfs,
 
1646	.show_options	= ext4_show_options,
1647	.shutdown	= ext4_shutdown,
1648#ifdef CONFIG_QUOTA
1649	.quota_read	= ext4_quota_read,
1650	.quota_write	= ext4_quota_write,
1651	.get_dquots	= ext4_get_dquots,
1652#endif
 
1653};
1654
1655static const struct export_operations ext4_export_ops = {
1656	.encode_fh = generic_encode_ino32_fh,
1657	.fh_to_dentry = ext4_fh_to_dentry,
1658	.fh_to_parent = ext4_fh_to_parent,
1659	.get_parent = ext4_get_parent,
1660	.commit_metadata = ext4_nfs_commit_metadata,
1661};
1662
1663enum {
1664	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1665	Opt_resgid, Opt_resuid, Opt_sb,
1666	Opt_nouid32, Opt_debug, Opt_removed,
1667	Opt_user_xattr, Opt_acl,
1668	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1669	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1670	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1671	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1672	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1673	Opt_inlinecrypt,
1674	Opt_usrjquota, Opt_grpjquota, Opt_quota,
1675	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1676	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1677	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1678	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1679	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1680	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1681	Opt_inode_readahead_blks, Opt_journal_ioprio,
1682	Opt_dioread_nolock, Opt_dioread_lock,
1683	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1684	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1685	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1686	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1687#ifdef CONFIG_EXT4_DEBUG
1688	Opt_fc_debug_max_replay, Opt_fc_debug_force
1689#endif
1690};
1691
1692static const struct constant_table ext4_param_errors[] = {
1693	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1694	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1695	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1696	{}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1697};
1698
1699static const struct constant_table ext4_param_data[] = {
1700	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1701	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1702	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1703	{}
1704};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1705
1706static const struct constant_table ext4_param_data_err[] = {
1707	{"abort",	Opt_data_err_abort},
1708	{"ignore",	Opt_data_err_ignore},
1709	{}
1710};
 
1711
1712static const struct constant_table ext4_param_jqfmt[] = {
1713	{"vfsold",	QFMT_VFS_OLD},
1714	{"vfsv0",	QFMT_VFS_V0},
1715	{"vfsv1",	QFMT_VFS_V1},
1716	{}
1717};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1718
1719static const struct constant_table ext4_param_dax[] = {
1720	{"always",	Opt_dax_always},
1721	{"inode",	Opt_dax_inode},
1722	{"never",	Opt_dax_never},
1723	{}
1724};
1725
1726/* String parameter that allows empty argument */
1727#define fsparam_string_empty(NAME, OPT) \
1728	__fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1729
1730/*
1731 * Mount option specification
1732 * We don't use fsparam_flag_no because of the way we set the
1733 * options and the way we show them in _ext4_show_options(). To
1734 * keep the changes to a minimum, let's keep the negative options
1735 * separate for now.
1736 */
1737static const struct fs_parameter_spec ext4_param_specs[] = {
1738	fsparam_flag	("bsddf",		Opt_bsd_df),
1739	fsparam_flag	("minixdf",		Opt_minix_df),
1740	fsparam_flag	("grpid",		Opt_grpid),
1741	fsparam_flag	("bsdgroups",		Opt_grpid),
1742	fsparam_flag	("nogrpid",		Opt_nogrpid),
1743	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1744	fsparam_u32	("resgid",		Opt_resgid),
1745	fsparam_u32	("resuid",		Opt_resuid),
1746	fsparam_u32	("sb",			Opt_sb),
1747	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1748	fsparam_flag	("nouid32",		Opt_nouid32),
1749	fsparam_flag	("debug",		Opt_debug),
1750	fsparam_flag	("oldalloc",		Opt_removed),
1751	fsparam_flag	("orlov",		Opt_removed),
1752	fsparam_flag	("user_xattr",		Opt_user_xattr),
1753	fsparam_flag	("acl",			Opt_acl),
1754	fsparam_flag	("norecovery",		Opt_noload),
1755	fsparam_flag	("noload",		Opt_noload),
1756	fsparam_flag	("bh",			Opt_removed),
1757	fsparam_flag	("nobh",		Opt_removed),
1758	fsparam_u32	("commit",		Opt_commit),
1759	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1760	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1761	fsparam_u32	("journal_dev",		Opt_journal_dev),
1762	fsparam_bdev	("journal_path",	Opt_journal_path),
1763	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1764	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1765	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1766	fsparam_flag	("abort",		Opt_abort),
1767	fsparam_enum	("data",		Opt_data, ext4_param_data),
1768	fsparam_enum	("data_err",		Opt_data_err,
1769						ext4_param_data_err),
1770	fsparam_string_empty
1771			("usrjquota",		Opt_usrjquota),
1772	fsparam_string_empty
1773			("grpjquota",		Opt_grpjquota),
1774	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1775	fsparam_flag	("grpquota",		Opt_grpquota),
1776	fsparam_flag	("quota",		Opt_quota),
1777	fsparam_flag	("noquota",		Opt_noquota),
1778	fsparam_flag	("usrquota",		Opt_usrquota),
1779	fsparam_flag	("prjquota",		Opt_prjquota),
1780	fsparam_flag	("barrier",		Opt_barrier),
1781	fsparam_u32	("barrier",		Opt_barrier),
1782	fsparam_flag	("nobarrier",		Opt_nobarrier),
1783	fsparam_flag	("i_version",		Opt_removed),
1784	fsparam_flag	("dax",			Opt_dax),
1785	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1786	fsparam_u32	("stripe",		Opt_stripe),
1787	fsparam_flag	("delalloc",		Opt_delalloc),
1788	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1789	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1790	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1791	fsparam_u32	("debug_want_extra_isize",
1792						Opt_debug_want_extra_isize),
1793	fsparam_flag	("mblk_io_submit",	Opt_removed),
1794	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1795	fsparam_flag	("block_validity",	Opt_block_validity),
1796	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1797	fsparam_u32	("inode_readahead_blks",
1798						Opt_inode_readahead_blks),
1799	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1800	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1801	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1802	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1803	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1804	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1805	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1806	fsparam_flag	("discard",		Opt_discard),
1807	fsparam_flag	("nodiscard",		Opt_nodiscard),
1808	fsparam_u32	("init_itable",		Opt_init_itable),
1809	fsparam_flag	("init_itable",		Opt_init_itable),
1810	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1811#ifdef CONFIG_EXT4_DEBUG
1812	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1813	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1814#endif
1815	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1816	fsparam_flag	("test_dummy_encryption",
1817						Opt_test_dummy_encryption),
1818	fsparam_string	("test_dummy_encryption",
1819						Opt_test_dummy_encryption),
1820	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1821	fsparam_flag	("nombcache",		Opt_nombcache),
1822	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1823	fsparam_flag	("prefetch_block_bitmaps",
1824						Opt_removed),
1825	fsparam_flag	("no_prefetch_block_bitmaps",
1826						Opt_no_prefetch_block_bitmaps),
1827	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1828	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1829	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1830	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1831	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1832	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1833	{}
1834};
1835
1836#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1837
1838#define MOPT_SET	0x0001
1839#define MOPT_CLEAR	0x0002
1840#define MOPT_NOSUPPORT	0x0004
1841#define MOPT_EXPLICIT	0x0008
 
 
1842#ifdef CONFIG_QUOTA
1843#define MOPT_Q		0
1844#define MOPT_QFMT	0x0010
1845#else
1846#define MOPT_Q		MOPT_NOSUPPORT
1847#define MOPT_QFMT	MOPT_NOSUPPORT
1848#endif
1849#define MOPT_NO_EXT2	0x0020
1850#define MOPT_NO_EXT3	0x0040
 
1851#define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1852#define MOPT_SKIP	0x0080
1853#define	MOPT_2		0x0100
1854
1855static const struct mount_opts {
1856	int	token;
1857	int	mount_opt;
1858	int	flags;
1859} ext4_mount_opts[] = {
1860	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1861	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1862	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1863	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1864	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1865	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1866	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1867	 MOPT_EXT4_ONLY | MOPT_SET},
1868	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1869	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1870	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1871	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1872	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1873	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1874	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1875	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1876	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1877	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1878	{Opt_commit, 0, MOPT_NO_EXT2},
1879	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1880	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1881	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1882	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1883	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1884				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1885	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1886	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1887	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
 
 
 
 
 
 
1888	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1889	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1890	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1891	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1892	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1893	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1894	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1895	{Opt_journal_path, 0, MOPT_NO_EXT2},
1896	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1897	{Opt_data, 0, MOPT_NO_EXT2},
 
 
 
 
 
 
 
 
 
 
 
1898	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
 
1899#ifdef CONFIG_EXT4_FS_POSIX_ACL
1900	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
 
1901#else
1902	{Opt_acl, 0, MOPT_NOSUPPORT},
 
1903#endif
1904	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1905	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
 
1906	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1907	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1908							MOPT_SET | MOPT_Q},
1909	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1910							MOPT_SET | MOPT_Q},
1911	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1912							MOPT_SET | MOPT_Q},
1913	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1914		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1915							MOPT_CLEAR | MOPT_Q},
1916	{Opt_usrjquota, 0, MOPT_Q},
1917	{Opt_grpjquota, 0, MOPT_Q},
1918	{Opt_jqfmt, 0, MOPT_QFMT},
 
 
 
 
 
 
1919	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1920	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1921	 MOPT_SET},
1922#ifdef CONFIG_EXT4_DEBUG
1923	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1924	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1925#endif
1926	{Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1927	{Opt_err, 0, 0}
1928};
1929
1930#if IS_ENABLED(CONFIG_UNICODE)
1931static const struct ext4_sb_encodings {
1932	__u16 magic;
1933	char *name;
1934	unsigned int version;
1935} ext4_sb_encoding_map[] = {
1936	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1937};
1938
1939static const struct ext4_sb_encodings *
1940ext4_sb_read_encoding(const struct ext4_super_block *es)
1941{
1942	__u16 magic = le16_to_cpu(es->s_encoding);
1943	int i;
1944
1945	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1946		if (magic == ext4_sb_encoding_map[i].magic)
1947			return &ext4_sb_encoding_map[i];
1948
1949	return NULL;
1950}
1951#endif
1952
1953#define EXT4_SPEC_JQUOTA			(1 <<  0)
1954#define EXT4_SPEC_JQFMT				(1 <<  1)
1955#define EXT4_SPEC_DATAJ				(1 <<  2)
1956#define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1957#define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1958#define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1959#define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1960#define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1961#define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1962#define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1963#define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1964#define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1965#define EXT4_SPEC_s_stripe			(1 << 13)
1966#define EXT4_SPEC_s_resuid			(1 << 14)
1967#define EXT4_SPEC_s_resgid			(1 << 15)
1968#define EXT4_SPEC_s_commit_interval		(1 << 16)
1969#define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1970#define EXT4_SPEC_s_sb_block			(1 << 18)
1971#define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1972
1973struct ext4_fs_context {
1974	char		*s_qf_names[EXT4_MAXQUOTAS];
1975	struct fscrypt_dummy_policy dummy_enc_policy;
1976	int		s_jquota_fmt;	/* Format of quota to use */
1977#ifdef CONFIG_EXT4_DEBUG
1978	int s_fc_debug_max_replay;
1979#endif
1980	unsigned short	qname_spec;
1981	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1982	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1983	unsigned long	journal_devnum;
1984	unsigned long	s_commit_interval;
1985	unsigned long	s_stripe;
1986	unsigned int	s_inode_readahead_blks;
1987	unsigned int	s_want_extra_isize;
1988	unsigned int	s_li_wait_mult;
1989	unsigned int	s_max_dir_size_kb;
1990	unsigned int	journal_ioprio;
1991	unsigned int	vals_s_mount_opt;
1992	unsigned int	mask_s_mount_opt;
1993	unsigned int	vals_s_mount_opt2;
1994	unsigned int	mask_s_mount_opt2;
1995	unsigned int	opt_flags;	/* MOPT flags */
1996	unsigned int	spec;
1997	u32		s_max_batch_time;
1998	u32		s_min_batch_time;
1999	kuid_t		s_resuid;
2000	kgid_t		s_resgid;
2001	ext4_fsblk_t	s_sb_block;
2002};
2003
2004static void ext4_fc_free(struct fs_context *fc)
2005{
2006	struct ext4_fs_context *ctx = fc->fs_private;
2007	int i;
2008
2009	if (!ctx)
2010		return;
2011
2012	for (i = 0; i < EXT4_MAXQUOTAS; i++)
2013		kfree(ctx->s_qf_names[i]);
2014
2015	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2016	kfree(ctx);
2017}
2018
2019int ext4_init_fs_context(struct fs_context *fc)
2020{
2021	struct ext4_fs_context *ctx;
2022
2023	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2024	if (!ctx)
2025		return -ENOMEM;
2026
2027	fc->fs_private = ctx;
2028	fc->ops = &ext4_context_ops;
2029
2030	return 0;
2031}
2032
2033#ifdef CONFIG_QUOTA
2034/*
2035 * Note the name of the specified quota file.
2036 */
2037static int note_qf_name(struct fs_context *fc, int qtype,
2038		       struct fs_parameter *param)
2039{
2040	struct ext4_fs_context *ctx = fc->fs_private;
2041	char *qname;
2042
2043	if (param->size < 1) {
2044		ext4_msg(NULL, KERN_ERR, "Missing quota name");
2045		return -EINVAL;
2046	}
2047	if (strchr(param->string, '/')) {
2048		ext4_msg(NULL, KERN_ERR,
2049			 "quotafile must be on filesystem root");
2050		return -EINVAL;
2051	}
2052	if (ctx->s_qf_names[qtype]) {
2053		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2054			ext4_msg(NULL, KERN_ERR,
2055				 "%s quota file already specified",
2056				 QTYPE2NAME(qtype));
2057			return -EINVAL;
2058		}
2059		return 0;
2060	}
2061
2062	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2063	if (!qname) {
2064		ext4_msg(NULL, KERN_ERR,
2065			 "Not enough memory for storing quotafile name");
2066		return -ENOMEM;
2067	}
2068	ctx->s_qf_names[qtype] = qname;
2069	ctx->qname_spec |= 1 << qtype;
2070	ctx->spec |= EXT4_SPEC_JQUOTA;
2071	return 0;
2072}
2073
2074/*
2075 * Clear the name of the specified quota file.
2076 */
2077static int unnote_qf_name(struct fs_context *fc, int qtype)
2078{
2079	struct ext4_fs_context *ctx = fc->fs_private;
2080
2081	if (ctx->s_qf_names[qtype])
2082		kfree(ctx->s_qf_names[qtype]);
2083
2084	ctx->s_qf_names[qtype] = NULL;
2085	ctx->qname_spec |= 1 << qtype;
2086	ctx->spec |= EXT4_SPEC_JQUOTA;
2087	return 0;
2088}
2089#endif
2090
2091static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2092					    struct ext4_fs_context *ctx)
2093{
2094	int err;
2095
2096	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2097		ext4_msg(NULL, KERN_WARNING,
2098			 "test_dummy_encryption option not supported");
2099		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
2100	}
2101	err = fscrypt_parse_test_dummy_encryption(param,
2102						  &ctx->dummy_enc_policy);
2103	if (err == -EINVAL) {
2104		ext4_msg(NULL, KERN_WARNING,
2105			 "Value of option \"%s\" is unrecognized", param->key);
2106	} else if (err == -EEXIST) {
2107		ext4_msg(NULL, KERN_WARNING,
2108			 "Conflicting test_dummy_encryption options");
2109		return -EINVAL;
2110	}
2111	return err;
2112}
2113
2114#define EXT4_SET_CTX(name)						\
2115static inline void ctx_set_##name(struct ext4_fs_context *ctx,		\
2116				  unsigned long flag)			\
2117{									\
2118	ctx->mask_s_##name |= flag;					\
2119	ctx->vals_s_##name |= flag;					\
2120}
2121
2122#define EXT4_CLEAR_CTX(name)						\
2123static inline void ctx_clear_##name(struct ext4_fs_context *ctx,	\
2124				    unsigned long flag)			\
2125{									\
2126	ctx->mask_s_##name |= flag;					\
2127	ctx->vals_s_##name &= ~flag;					\
2128}
2129
2130#define EXT4_TEST_CTX(name)						\
2131static inline unsigned long						\
2132ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2133{									\
2134	return (ctx->vals_s_##name & flag);				\
2135}
2136
2137EXT4_SET_CTX(flags); /* set only */
2138EXT4_SET_CTX(mount_opt);
2139EXT4_CLEAR_CTX(mount_opt);
2140EXT4_TEST_CTX(mount_opt);
2141EXT4_SET_CTX(mount_opt2);
2142EXT4_CLEAR_CTX(mount_opt2);
2143EXT4_TEST_CTX(mount_opt2);
2144
2145static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2146{
2147	struct ext4_fs_context *ctx = fc->fs_private;
2148	struct fs_parse_result result;
2149	const struct mount_opts *m;
2150	int is_remount;
2151	kuid_t uid;
2152	kgid_t gid;
2153	int token;
2154
2155	token = fs_parse(fc, ext4_param_specs, param, &result);
2156	if (token < 0)
2157		return token;
2158	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2159
2160	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2161		if (token == m->token)
2162			break;
2163
2164	ctx->opt_flags |= m->flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2165
 
 
 
 
2166	if (m->flags & MOPT_EXPLICIT) {
2167		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2168			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2169		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2170			ctx_set_mount_opt2(ctx,
2171				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2172		} else
2173			return -EINVAL;
 
 
 
 
 
 
 
2174	}
2175
2176	if (m->flags & MOPT_NOSUPPORT) {
2177		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2178			 param->key);
2179		return 0;
2180	}
2181
2182	switch (token) {
2183#ifdef CONFIG_QUOTA
2184	case Opt_usrjquota:
2185		if (!*param->string)
2186			return unnote_qf_name(fc, USRQUOTA);
2187		else
2188			return note_qf_name(fc, USRQUOTA, param);
2189	case Opt_grpjquota:
2190		if (!*param->string)
2191			return unnote_qf_name(fc, GRPQUOTA);
2192		else
2193			return note_qf_name(fc, GRPQUOTA, param);
2194#endif
2195	case Opt_sb:
2196		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2197			ext4_msg(NULL, KERN_WARNING,
2198				 "Ignoring %s option on remount", param->key);
2199		} else {
2200			ctx->s_sb_block = result.uint_32;
2201			ctx->spec |= EXT4_SPEC_s_sb_block;
2202		}
2203		return 0;
2204	case Opt_removed:
2205		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2206			 param->key);
2207		return 0;
2208	case Opt_inlinecrypt:
2209#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2210		ctx_set_flags(ctx, SB_INLINECRYPT);
2211#else
2212		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2213#endif
2214		return 0;
2215	case Opt_errors:
2216		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2217		ctx_set_mount_opt(ctx, result.uint_32);
2218		return 0;
2219#ifdef CONFIG_QUOTA
2220	case Opt_jqfmt:
2221		ctx->s_jquota_fmt = result.uint_32;
2222		ctx->spec |= EXT4_SPEC_JQFMT;
2223		return 0;
2224#endif
2225	case Opt_data:
2226		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2227		ctx_set_mount_opt(ctx, result.uint_32);
2228		ctx->spec |= EXT4_SPEC_DATAJ;
2229		return 0;
2230	case Opt_commit:
2231		if (result.uint_32 == 0)
2232			result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2233		else if (result.uint_32 > INT_MAX / HZ) {
2234			ext4_msg(NULL, KERN_ERR,
2235				 "Invalid commit interval %d, "
2236				 "must be smaller than %d",
2237				 result.uint_32, INT_MAX / HZ);
2238			return -EINVAL;
2239		}
2240		ctx->s_commit_interval = HZ * result.uint_32;
2241		ctx->spec |= EXT4_SPEC_s_commit_interval;
2242		return 0;
2243	case Opt_debug_want_extra_isize:
2244		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2245			ext4_msg(NULL, KERN_ERR,
2246				 "Invalid want_extra_isize %d", result.uint_32);
2247			return -EINVAL;
2248		}
2249		ctx->s_want_extra_isize = result.uint_32;
2250		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2251		return 0;
2252	case Opt_max_batch_time:
2253		ctx->s_max_batch_time = result.uint_32;
2254		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2255		return 0;
2256	case Opt_min_batch_time:
2257		ctx->s_min_batch_time = result.uint_32;
2258		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2259		return 0;
2260	case Opt_inode_readahead_blks:
2261		if (result.uint_32 &&
2262		    (result.uint_32 > (1 << 30) ||
2263		     !is_power_of_2(result.uint_32))) {
2264			ext4_msg(NULL, KERN_ERR,
2265				 "EXT4-fs: inode_readahead_blks must be "
2266				 "0 or a power of 2 smaller than 2^31");
2267			return -EINVAL;
2268		}
2269		ctx->s_inode_readahead_blks = result.uint_32;
2270		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2271		return 0;
2272	case Opt_init_itable:
2273		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2274		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2275		if (param->type == fs_value_is_string)
2276			ctx->s_li_wait_mult = result.uint_32;
2277		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2278		return 0;
2279	case Opt_max_dir_size_kb:
2280		ctx->s_max_dir_size_kb = result.uint_32;
2281		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2282		return 0;
2283#ifdef CONFIG_EXT4_DEBUG
2284	case Opt_fc_debug_max_replay:
2285		ctx->s_fc_debug_max_replay = result.uint_32;
2286		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2287		return 0;
2288#endif
2289	case Opt_stripe:
2290		ctx->s_stripe = result.uint_32;
2291		ctx->spec |= EXT4_SPEC_s_stripe;
2292		return 0;
2293	case Opt_resuid:
2294		uid = make_kuid(current_user_ns(), result.uint_32);
2295		if (!uid_valid(uid)) {
2296			ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2297				 result.uint_32);
2298			return -EINVAL;
2299		}
2300		ctx->s_resuid = uid;
2301		ctx->spec |= EXT4_SPEC_s_resuid;
2302		return 0;
2303	case Opt_resgid:
2304		gid = make_kgid(current_user_ns(), result.uint_32);
2305		if (!gid_valid(gid)) {
2306			ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2307				 result.uint_32);
2308			return -EINVAL;
2309		}
2310		ctx->s_resgid = gid;
2311		ctx->spec |= EXT4_SPEC_s_resgid;
2312		return 0;
2313	case Opt_journal_dev:
2314		if (is_remount) {
2315			ext4_msg(NULL, KERN_ERR,
2316				 "Cannot specify journal on remount");
2317			return -EINVAL;
2318		}
2319		ctx->journal_devnum = result.uint_32;
2320		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2321		return 0;
2322	case Opt_journal_path:
2323	{
2324		struct inode *journal_inode;
2325		struct path path;
2326		int error;
2327
2328		if (is_remount) {
2329			ext4_msg(NULL, KERN_ERR,
2330				 "Cannot specify journal on remount");
2331			return -EINVAL;
 
 
 
 
 
 
2332		}
2333
2334		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2335		if (error) {
2336			ext4_msg(NULL, KERN_ERR, "error: could not find "
2337				 "journal device path");
2338			return -EINVAL;
 
2339		}
2340
2341		journal_inode = d_inode(path.dentry);
2342		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2343		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
 
 
 
 
 
 
 
2344		path_put(&path);
2345		return 0;
2346	}
2347	case Opt_journal_ioprio:
2348		if (result.uint_32 > 7) {
2349			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2350				 " (must be 0-7)");
2351			return -EINVAL;
2352		}
2353		ctx->journal_ioprio =
2354			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2355		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2356		return 0;
2357	case Opt_test_dummy_encryption:
2358		return ext4_parse_test_dummy_encryption(param, ctx);
2359	case Opt_dax:
2360	case Opt_dax_type:
2361#ifdef CONFIG_FS_DAX
2362	{
2363		int type = (token == Opt_dax) ?
2364			   Opt_dax : result.uint_32;
2365
2366		switch (type) {
2367		case Opt_dax:
2368		case Opt_dax_always:
2369			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2370			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2371			break;
2372		case Opt_dax_never:
2373			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2374			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2375			break;
2376		case Opt_dax_inode:
2377			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2378			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2379			/* Strictly for printing options */
2380			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2381			break;
2382		}
2383		return 0;
2384	}
2385#else
2386		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2387		return -EINVAL;
2388#endif
2389	case Opt_data_err:
2390		if (result.uint_32 == Opt_data_err_abort)
2391			ctx_set_mount_opt(ctx, m->mount_opt);
2392		else if (result.uint_32 == Opt_data_err_ignore)
2393			ctx_clear_mount_opt(ctx, m->mount_opt);
2394		return 0;
2395	case Opt_mb_optimize_scan:
2396		if (result.int_32 == 1) {
2397			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2398			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2399		} else if (result.int_32 == 0) {
2400			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2401			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2402		} else {
2403			ext4_msg(NULL, KERN_WARNING,
2404				 "mb_optimize_scan should be set to 0 or 1.");
2405			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
2406		}
2407		return 0;
2408	}
2409
2410	/*
2411	 * At this point we should only be getting options requiring MOPT_SET,
2412	 * or MOPT_CLEAR. Anything else is a bug
2413	 */
2414	if (m->token == Opt_err) {
2415		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2416			 param->key);
2417		WARN_ON(1);
2418		return -EINVAL;
2419	}
2420
2421	else {
2422		unsigned int set = 0;
2423
2424		if ((param->type == fs_value_is_flag) ||
2425		    result.uint_32 > 0)
2426			set = 1;
2427
2428		if (m->flags & MOPT_CLEAR)
2429			set = !set;
2430		else if (unlikely(!(m->flags & MOPT_SET))) {
2431			ext4_msg(NULL, KERN_WARNING,
2432				 "buggy handling of option %s",
2433				 param->key);
2434			WARN_ON(1);
2435			return -EINVAL;
2436		}
2437		if (m->flags & MOPT_2) {
2438			if (set != 0)
2439				ctx_set_mount_opt2(ctx, m->mount_opt);
2440			else
2441				ctx_clear_mount_opt2(ctx, m->mount_opt);
2442		} else {
2443			if (set != 0)
2444				ctx_set_mount_opt(ctx, m->mount_opt);
2445			else
2446				ctx_clear_mount_opt(ctx, m->mount_opt);
2447		}
 
 
 
 
2448	}
2449
2450	return 0;
2451}
2452
2453static int parse_options(struct fs_context *fc, char *options)
 
 
 
2454{
2455	struct fs_parameter param;
2456	int ret;
2457	char *key;
 
2458
2459	if (!options)
2460		return 0;
2461
2462	while ((key = strsep(&options, ",")) != NULL) {
2463		if (*key) {
2464			size_t v_len = 0;
2465			char *value = strchr(key, '=');
2466
2467			param.type = fs_value_is_flag;
2468			param.string = NULL;
2469
2470			if (value) {
2471				if (value == key)
2472					continue;
2473
2474				*value++ = 0;
2475				v_len = strlen(value);
2476				param.string = kmemdup_nul(value, v_len,
2477							   GFP_KERNEL);
2478				if (!param.string)
2479					return -ENOMEM;
2480				param.type = fs_value_is_string;
2481			}
2482
2483			param.key = key;
2484			param.size = v_len;
2485
2486			ret = ext4_parse_param(fc, &param);
2487			if (param.string)
2488				kfree(param.string);
2489			if (ret < 0)
2490				return ret;
2491		}
2492	}
2493
2494	ret = ext4_validate_options(fc);
2495	if (ret < 0)
2496		return ret;
2497
2498	return 0;
2499}
2500
2501static int parse_apply_sb_mount_options(struct super_block *sb,
2502					struct ext4_fs_context *m_ctx)
2503{
2504	struct ext4_sb_info *sbi = EXT4_SB(sb);
2505	char *s_mount_opts = NULL;
2506	struct ext4_fs_context *s_ctx = NULL;
2507	struct fs_context *fc = NULL;
2508	int ret = -ENOMEM;
2509
2510	if (!sbi->s_es->s_mount_opts[0])
2511		return 0;
2512
2513	s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2514				sizeof(sbi->s_es->s_mount_opts),
2515				GFP_KERNEL);
2516	if (!s_mount_opts)
2517		return ret;
2518
2519	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2520	if (!fc)
2521		goto out_free;
2522
2523	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2524	if (!s_ctx)
2525		goto out_free;
2526
2527	fc->fs_private = s_ctx;
2528	fc->s_fs_info = sbi;
2529
2530	ret = parse_options(fc, s_mount_opts);
2531	if (ret < 0)
2532		goto parse_failed;
2533
2534	ret = ext4_check_opt_consistency(fc, sb);
2535	if (ret < 0) {
2536parse_failed:
2537		ext4_msg(sb, KERN_WARNING,
2538			 "failed to parse options in superblock: %s",
2539			 s_mount_opts);
2540		ret = 0;
2541		goto out_free;
2542	}
2543
2544	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2545		m_ctx->journal_devnum = s_ctx->journal_devnum;
2546	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2547		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2548
2549	ext4_apply_options(fc, sb);
2550	ret = 0;
2551
2552out_free:
2553	if (fc) {
2554		ext4_fc_free(fc);
2555		kfree(fc);
2556	}
2557	kfree(s_mount_opts);
2558	return ret;
2559}
2560
2561static void ext4_apply_quota_options(struct fs_context *fc,
2562				     struct super_block *sb)
2563{
2564#ifdef CONFIG_QUOTA
2565	bool quota_feature = ext4_has_feature_quota(sb);
2566	struct ext4_fs_context *ctx = fc->fs_private;
2567	struct ext4_sb_info *sbi = EXT4_SB(sb);
2568	char *qname;
2569	int i;
2570
2571	if (quota_feature)
2572		return;
2573
2574	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2575		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2576			if (!(ctx->qname_spec & (1 << i)))
2577				continue;
2578
2579			qname = ctx->s_qf_names[i]; /* May be NULL */
2580			if (qname)
2581				set_opt(sb, QUOTA);
2582			ctx->s_qf_names[i] = NULL;
2583			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2584						lockdep_is_held(&sb->s_umount));
2585			if (qname)
2586				kfree_rcu_mightsleep(qname);
2587		}
2588	}
2589
2590	if (ctx->spec & EXT4_SPEC_JQFMT)
2591		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2592#endif
2593}
2594
2595/*
2596 * Check quota settings consistency.
2597 */
2598static int ext4_check_quota_consistency(struct fs_context *fc,
2599					struct super_block *sb)
2600{
2601#ifdef CONFIG_QUOTA
2602	struct ext4_fs_context *ctx = fc->fs_private;
2603	struct ext4_sb_info *sbi = EXT4_SB(sb);
2604	bool quota_feature = ext4_has_feature_quota(sb);
2605	bool quota_loaded = sb_any_quota_loaded(sb);
2606	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2607	int quota_flags, i;
2608
2609	/*
2610	 * We do the test below only for project quotas. 'usrquota' and
2611	 * 'grpquota' mount options are allowed even without quota feature
2612	 * to support legacy quotas in quota files.
2613	 */
2614	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2615	    !ext4_has_feature_project(sb)) {
2616		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2617			 "Cannot enable project quota enforcement.");
2618		return -EINVAL;
2619	}
2620
2621	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2622		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2623	if (quota_loaded &&
2624	    ctx->mask_s_mount_opt & quota_flags &&
2625	    !ctx_test_mount_opt(ctx, quota_flags))
2626		goto err_quota_change;
2627
2628	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2629
2630		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2631			if (!(ctx->qname_spec & (1 << i)))
2632				continue;
2633
2634			if (quota_loaded &&
2635			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2636				goto err_jquota_change;
2637
2638			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2639			    strcmp(get_qf_name(sb, sbi, i),
2640				   ctx->s_qf_names[i]) != 0)
2641				goto err_jquota_specified;
2642		}
2643
2644		if (quota_feature) {
2645			ext4_msg(NULL, KERN_INFO,
2646				 "Journaled quota options ignored when "
2647				 "QUOTA feature is enabled");
2648			return 0;
2649		}
2650	}
2651
2652	if (ctx->spec & EXT4_SPEC_JQFMT) {
2653		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2654			goto err_jquota_change;
2655		if (quota_feature) {
2656			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2657				 "ignored when QUOTA feature is enabled");
2658			return 0;
2659		}
2660	}
2661
2662	/* Make sure we don't mix old and new quota format */
2663	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2664		       ctx->s_qf_names[USRQUOTA]);
2665	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2666		       ctx->s_qf_names[GRPQUOTA]);
2667
2668	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2669		    test_opt(sb, USRQUOTA));
2670
2671	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2672		    test_opt(sb, GRPQUOTA));
2673
2674	if (usr_qf_name) {
2675		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2676		usrquota = false;
2677	}
2678	if (grp_qf_name) {
2679		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2680		grpquota = false;
2681	}
2682
2683	if (usr_qf_name || grp_qf_name) {
2684		if (usrquota || grpquota) {
2685			ext4_msg(NULL, KERN_ERR, "old and new quota "
2686				 "format mixing");
2687			return -EINVAL;
2688		}
2689
2690		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2691			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2692				 "not specified");
2693			return -EINVAL;
2694		}
2695	}
2696
2697	return 0;
2698
2699err_quota_change:
2700	ext4_msg(NULL, KERN_ERR,
2701		 "Cannot change quota options when quota turned on");
2702	return -EINVAL;
2703err_jquota_change:
2704	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2705		 "options when quota turned on");
2706	return -EINVAL;
2707err_jquota_specified:
2708	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2709		 QTYPE2NAME(i));
2710	return -EINVAL;
2711#else
2712	return 0;
2713#endif
2714}
 
 
2715
2716static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2717					    struct super_block *sb)
2718{
2719	const struct ext4_fs_context *ctx = fc->fs_private;
2720	const struct ext4_sb_info *sbi = EXT4_SB(sb);
2721
2722	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2723		return 0;
2724
2725	if (!ext4_has_feature_encrypt(sb)) {
2726		ext4_msg(NULL, KERN_WARNING,
2727			 "test_dummy_encryption requires encrypt feature");
2728		return -EINVAL;
2729	}
2730	/*
2731	 * This mount option is just for testing, and it's not worthwhile to
2732	 * implement the extra complexity (e.g. RCU protection) that would be
2733	 * needed to allow it to be set or changed during remount.  We do allow
2734	 * it to be specified during remount, but only if there is no change.
2735	 */
2736	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2737		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2738						 &ctx->dummy_enc_policy))
2739			return 0;
2740		ext4_msg(NULL, KERN_WARNING,
2741			 "Can't set or change test_dummy_encryption on remount");
2742		return -EINVAL;
2743	}
2744	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2745	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2746		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2747						 &ctx->dummy_enc_policy))
2748			return 0;
2749		ext4_msg(NULL, KERN_WARNING,
2750			 "Conflicting test_dummy_encryption options");
2751		return -EINVAL;
2752	}
2753	return 0;
2754}
2755
2756static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2757					     struct super_block *sb)
2758{
2759	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2760	    /* if already set, it was already verified to be the same */
2761	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2762		return;
2763	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2764	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2765	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2766}
2767
2768static int ext4_check_opt_consistency(struct fs_context *fc,
2769				      struct super_block *sb)
2770{
2771	struct ext4_fs_context *ctx = fc->fs_private;
2772	struct ext4_sb_info *sbi = fc->s_fs_info;
2773	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2774	int err;
2775
2776	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2777		ext4_msg(NULL, KERN_ERR,
2778			 "Mount option(s) incompatible with ext2");
2779		return -EINVAL;
2780	}
2781	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2782		ext4_msg(NULL, KERN_ERR,
2783			 "Mount option(s) incompatible with ext3");
2784		return -EINVAL;
2785	}
2786
2787	if (ctx->s_want_extra_isize >
2788	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2789		ext4_msg(NULL, KERN_ERR,
2790			 "Invalid want_extra_isize %d",
2791			 ctx->s_want_extra_isize);
2792		return -EINVAL;
2793	}
2794
2795	err = ext4_check_test_dummy_encryption(fc, sb);
2796	if (err)
2797		return err;
2798
2799	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2800		if (!sbi->s_journal) {
2801			ext4_msg(NULL, KERN_WARNING,
2802				 "Remounting file system with no journal "
2803				 "so ignoring journalled data option");
2804			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2805		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2806			   test_opt(sb, DATA_FLAGS)) {
2807			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2808				 "on remount");
2809			return -EINVAL;
2810		}
2811	}
2812
2813	if (is_remount) {
2814		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2815		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2816			ext4_msg(NULL, KERN_ERR, "can't mount with "
2817				 "both data=journal and dax");
2818			return -EINVAL;
2819		}
2820
2821		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2822		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2823		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2824fail_dax_change_remount:
2825			ext4_msg(NULL, KERN_ERR, "can't change "
2826				 "dax mount option while remounting");
2827			return -EINVAL;
2828		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2829			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2830			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2831			goto fail_dax_change_remount;
2832		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2833			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2834			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2835			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2836			goto fail_dax_change_remount;
2837		}
2838	}
2839
2840	return ext4_check_quota_consistency(fc, sb);
2841}
2842
2843static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2844{
2845	struct ext4_fs_context *ctx = fc->fs_private;
2846	struct ext4_sb_info *sbi = fc->s_fs_info;
2847
2848	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2849	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2850	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2851	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2852	sb->s_flags &= ~ctx->mask_s_flags;
2853	sb->s_flags |= ctx->vals_s_flags;
2854
2855#define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2856	APPLY(s_commit_interval);
2857	APPLY(s_stripe);
2858	APPLY(s_max_batch_time);
2859	APPLY(s_min_batch_time);
2860	APPLY(s_want_extra_isize);
2861	APPLY(s_inode_readahead_blks);
2862	APPLY(s_max_dir_size_kb);
2863	APPLY(s_li_wait_mult);
2864	APPLY(s_resgid);
2865	APPLY(s_resuid);
2866
2867#ifdef CONFIG_EXT4_DEBUG
2868	APPLY(s_fc_debug_max_replay);
2869#endif
2870
2871	ext4_apply_quota_options(fc, sb);
2872	ext4_apply_test_dummy_encryption(ctx, sb);
2873}
2874
2875
2876static int ext4_validate_options(struct fs_context *fc)
2877{
2878#ifdef CONFIG_QUOTA
2879	struct ext4_fs_context *ctx = fc->fs_private;
2880	char *usr_qf_name, *grp_qf_name;
2881
2882	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2883	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2884
2885	if (usr_qf_name || grp_qf_name) {
2886		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2887			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2888
2889		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2890			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2891
2892		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2893		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2894			ext4_msg(NULL, KERN_ERR, "old and new quota "
2895				 "format mixing");
2896			return -EINVAL;
2897		}
2898	}
2899#endif
2900	return 1;
2901}
2902
2903static inline void ext4_show_quota_options(struct seq_file *seq,
2904					   struct super_block *sb)
2905{
2906#if defined(CONFIG_QUOTA)
2907	struct ext4_sb_info *sbi = EXT4_SB(sb);
2908	char *usr_qf_name, *grp_qf_name;
2909
2910	if (sbi->s_jquota_fmt) {
2911		char *fmtname = "";
2912
2913		switch (sbi->s_jquota_fmt) {
2914		case QFMT_VFS_OLD:
2915			fmtname = "vfsold";
2916			break;
2917		case QFMT_VFS_V0:
2918			fmtname = "vfsv0";
2919			break;
2920		case QFMT_VFS_V1:
2921			fmtname = "vfsv1";
2922			break;
2923		}
2924		seq_printf(seq, ",jqfmt=%s", fmtname);
2925	}
2926
2927	rcu_read_lock();
2928	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2929	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2930	if (usr_qf_name)
2931		seq_show_option(seq, "usrjquota", usr_qf_name);
2932	if (grp_qf_name)
2933		seq_show_option(seq, "grpjquota", grp_qf_name);
2934	rcu_read_unlock();
2935#endif
2936}
2937
2938static const char *token2str(int token)
2939{
2940	const struct fs_parameter_spec *spec;
2941
2942	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2943		if (spec->opt == token && !spec->type)
2944			break;
2945	return spec->name;
2946}
2947
2948/*
2949 * Show an option if
2950 *  - it's set to a non-default value OR
2951 *  - if the per-sb default is different from the global default
2952 */
2953static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2954			      int nodefs)
2955{
2956	struct ext4_sb_info *sbi = EXT4_SB(sb);
2957	struct ext4_super_block *es = sbi->s_es;
2958	int def_errors;
2959	const struct mount_opts *m;
2960	char sep = nodefs ? '\n' : ',';
2961
2962#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2963#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2964
2965	if (sbi->s_sb_block != 1)
2966		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2967
2968	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2969		int want_set = m->flags & MOPT_SET;
2970		int opt_2 = m->flags & MOPT_2;
2971		unsigned int mount_opt, def_mount_opt;
2972
2973		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2974		    m->flags & MOPT_SKIP)
2975			continue;
2976
2977		if (opt_2) {
2978			mount_opt = sbi->s_mount_opt2;
2979			def_mount_opt = sbi->s_def_mount_opt2;
2980		} else {
2981			mount_opt = sbi->s_mount_opt;
2982			def_mount_opt = sbi->s_def_mount_opt;
2983		}
2984		/* skip if same as the default */
2985		if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2986			continue;
2987		/* select Opt_noFoo vs Opt_Foo */
 
2988		if ((want_set &&
2989		     (mount_opt & m->mount_opt) != m->mount_opt) ||
2990		    (!want_set && (mount_opt & m->mount_opt)))
2991			continue;
2992		SEQ_OPTS_PRINT("%s", token2str(m->token));
2993	}
2994
2995	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2996	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2997		SEQ_OPTS_PRINT("resuid=%u",
2998				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2999	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
3000	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
3001		SEQ_OPTS_PRINT("resgid=%u",
3002				from_kgid_munged(&init_user_ns, sbi->s_resgid));
3003	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
3004	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
3005		SEQ_OPTS_PUTS("errors=remount-ro");
3006	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
3007		SEQ_OPTS_PUTS("errors=continue");
3008	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
3009		SEQ_OPTS_PUTS("errors=panic");
3010	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
3011		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
3012	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
3013		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
3014	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
3015		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
 
 
3016	if (nodefs || sbi->s_stripe)
3017		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
3018	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
3019			(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3020		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3021			SEQ_OPTS_PUTS("data=journal");
3022		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3023			SEQ_OPTS_PUTS("data=ordered");
3024		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3025			SEQ_OPTS_PUTS("data=writeback");
3026	}
3027	if (nodefs ||
3028	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3029		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3030			       sbi->s_inode_readahead_blks);
3031
3032	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3033		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3034		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3035	if (nodefs || sbi->s_max_dir_size_kb)
3036		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3037	if (test_opt(sb, DATA_ERR_ABORT))
3038		SEQ_OPTS_PUTS("data_err=abort");
3039
3040	fscrypt_show_test_dummy_encryption(seq, sep, sb);
3041
3042	if (sb->s_flags & SB_INLINECRYPT)
3043		SEQ_OPTS_PUTS("inlinecrypt");
3044
3045	if (test_opt(sb, DAX_ALWAYS)) {
3046		if (IS_EXT2_SB(sb))
3047			SEQ_OPTS_PUTS("dax");
3048		else
3049			SEQ_OPTS_PUTS("dax=always");
3050	} else if (test_opt2(sb, DAX_NEVER)) {
3051		SEQ_OPTS_PUTS("dax=never");
3052	} else if (test_opt2(sb, DAX_INODE)) {
3053		SEQ_OPTS_PUTS("dax=inode");
3054	}
3055
3056	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3057			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3058		SEQ_OPTS_PUTS("mb_optimize_scan=0");
3059	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3060			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3061		SEQ_OPTS_PUTS("mb_optimize_scan=1");
3062	}
3063
3064	ext4_show_quota_options(seq, sb);
3065	return 0;
3066}
3067
3068static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3069{
3070	return _ext4_show_options(seq, root->d_sb, 0);
3071}
3072
3073int ext4_seq_options_show(struct seq_file *seq, void *offset)
3074{
3075	struct super_block *sb = seq->private;
3076	int rc;
3077
3078	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3079	rc = _ext4_show_options(seq, sb, 1);
3080	seq_puts(seq, "\n");
3081	return rc;
3082}
3083
3084static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3085			    int read_only)
3086{
3087	struct ext4_sb_info *sbi = EXT4_SB(sb);
3088	int err = 0;
3089
3090	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3091		ext4_msg(sb, KERN_ERR, "revision level too high, "
3092			 "forcing read-only mode");
3093		err = -EROFS;
3094		goto done;
3095	}
3096	if (read_only)
3097		goto done;
3098	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3099		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3100			 "running e2fsck is recommended");
3101	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3102		ext4_msg(sb, KERN_WARNING,
3103			 "warning: mounting fs with errors, "
3104			 "running e2fsck is recommended");
3105	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3106		 le16_to_cpu(es->s_mnt_count) >=
3107		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3108		ext4_msg(sb, KERN_WARNING,
3109			 "warning: maximal mount count reached, "
3110			 "running e2fsck is recommended");
3111	else if (le32_to_cpu(es->s_checkinterval) &&
3112		 (ext4_get_tstamp(es, s_lastcheck) +
3113		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3114		ext4_msg(sb, KERN_WARNING,
3115			 "warning: checktime reached, "
3116			 "running e2fsck is recommended");
3117	if (!sbi->s_journal)
3118		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3119	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3120		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3121	le16_add_cpu(&es->s_mnt_count, 1);
3122	ext4_update_tstamp(es, s_mtime);
3123	if (sbi->s_journal) {
 
3124		ext4_set_feature_journal_needs_recovery(sb);
3125		if (ext4_has_feature_orphan_file(sb))
3126			ext4_set_feature_orphan_present(sb);
3127	}
3128
3129	err = ext4_commit_super(sb);
3130done:
3131	if (test_opt(sb, DEBUG))
3132		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3133				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3134			sb->s_blocksize,
3135			sbi->s_groups_count,
3136			EXT4_BLOCKS_PER_GROUP(sb),
3137			EXT4_INODES_PER_GROUP(sb),
3138			sbi->s_mount_opt, sbi->s_mount_opt2);
3139	return err;
 
 
3140}
3141
3142int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3143{
3144	struct ext4_sb_info *sbi = EXT4_SB(sb);
3145	struct flex_groups **old_groups, **new_groups;
3146	int size, i, j;
3147
3148	if (!sbi->s_log_groups_per_flex)
3149		return 0;
3150
3151	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3152	if (size <= sbi->s_flex_groups_allocated)
3153		return 0;
3154
3155	new_groups = kvzalloc(roundup_pow_of_two(size *
3156			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3157	if (!new_groups) {
3158		ext4_msg(sb, KERN_ERR,
3159			 "not enough memory for %d flex group pointers", size);
3160		return -ENOMEM;
3161	}
3162	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3163		new_groups[i] = kvzalloc(roundup_pow_of_two(
3164					 sizeof(struct flex_groups)),
3165					 GFP_KERNEL);
3166		if (!new_groups[i]) {
3167			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3168				kvfree(new_groups[j]);
3169			kvfree(new_groups);
3170			ext4_msg(sb, KERN_ERR,
3171				 "not enough memory for %d flex groups", size);
3172			return -ENOMEM;
3173		}
3174	}
3175	rcu_read_lock();
3176	old_groups = rcu_dereference(sbi->s_flex_groups);
3177	if (old_groups)
3178		memcpy(new_groups, old_groups,
3179		       (sbi->s_flex_groups_allocated *
3180			sizeof(struct flex_groups *)));
3181	rcu_read_unlock();
3182	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3183	sbi->s_flex_groups_allocated = size;
3184	if (old_groups)
3185		ext4_kvfree_array_rcu(old_groups);
3186	return 0;
3187}
3188
3189static int ext4_fill_flex_info(struct super_block *sb)
3190{
3191	struct ext4_sb_info *sbi = EXT4_SB(sb);
3192	struct ext4_group_desc *gdp = NULL;
3193	struct flex_groups *fg;
3194	ext4_group_t flex_group;
3195	int i, err;
3196
3197	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3198	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3199		sbi->s_log_groups_per_flex = 0;
3200		return 1;
3201	}
3202
3203	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3204	if (err)
3205		goto failed;
3206
3207	for (i = 0; i < sbi->s_groups_count; i++) {
3208		gdp = ext4_get_group_desc(sb, i, NULL);
3209
3210		flex_group = ext4_flex_group(sbi, i);
3211		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3212		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3213		atomic64_add(ext4_free_group_clusters(sb, gdp),
3214			     &fg->free_clusters);
3215		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
 
3216	}
3217
3218	return 1;
3219failed:
3220	return 0;
3221}
3222
3223static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3224				   struct ext4_group_desc *gdp)
3225{
3226	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3227	__u16 crc = 0;
3228	__le32 le_group = cpu_to_le32(block_group);
3229	struct ext4_sb_info *sbi = EXT4_SB(sb);
3230
3231	if (ext4_has_metadata_csum(sbi->s_sb)) {
3232		/* Use new metadata_csum algorithm */
3233		__u32 csum32;
3234		__u16 dummy_csum = 0;
3235
3236		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3237				     sizeof(le_group));
3238		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3239		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3240				     sizeof(dummy_csum));
3241		offset += sizeof(dummy_csum);
3242		if (offset < sbi->s_desc_size)
3243			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3244					     sbi->s_desc_size - offset);
3245
3246		crc = csum32 & 0xFFFF;
3247		goto out;
3248	}
3249
3250	/* old crc16 code */
3251	if (!ext4_has_feature_gdt_csum(sb))
3252		return 0;
3253
3254	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3255	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3256	crc = crc16(crc, (__u8 *)gdp, offset);
3257	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3258	/* for checksum of struct ext4_group_desc do the rest...*/
3259	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
 
3260		crc = crc16(crc, (__u8 *)gdp + offset,
3261			    sbi->s_desc_size - offset);
 
3262
3263out:
3264	return cpu_to_le16(crc);
3265}
3266
3267int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3268				struct ext4_group_desc *gdp)
3269{
3270	if (ext4_has_group_desc_csum(sb) &&
3271	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3272		return 0;
3273
3274	return 1;
3275}
3276
3277void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3278			      struct ext4_group_desc *gdp)
3279{
3280	if (!ext4_has_group_desc_csum(sb))
3281		return;
3282	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3283}
3284
3285/* Called at mount-time, super-block is locked */
3286static int ext4_check_descriptors(struct super_block *sb,
3287				  ext4_fsblk_t sb_block,
3288				  ext4_group_t *first_not_zeroed)
3289{
3290	struct ext4_sb_info *sbi = EXT4_SB(sb);
3291	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3292	ext4_fsblk_t last_block;
3293	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3294	ext4_fsblk_t block_bitmap;
3295	ext4_fsblk_t inode_bitmap;
3296	ext4_fsblk_t inode_table;
3297	int flexbg_flag = 0;
3298	ext4_group_t i, grp = sbi->s_groups_count;
3299
3300	if (ext4_has_feature_flex_bg(sb))
3301		flexbg_flag = 1;
3302
3303	ext4_debug("Checking group descriptors");
3304
3305	for (i = 0; i < sbi->s_groups_count; i++) {
3306		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3307
3308		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3309			last_block = ext4_blocks_count(sbi->s_es) - 1;
3310		else
3311			last_block = first_block +
3312				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3313
3314		if ((grp == sbi->s_groups_count) &&
3315		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3316			grp = i;
3317
3318		block_bitmap = ext4_block_bitmap(sb, gdp);
3319		if (block_bitmap == sb_block) {
3320			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3321				 "Block bitmap for group %u overlaps "
3322				 "superblock", i);
3323			if (!sb_rdonly(sb))
3324				return 0;
3325		}
3326		if (block_bitmap >= sb_block + 1 &&
3327		    block_bitmap <= last_bg_block) {
3328			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3329				 "Block bitmap for group %u overlaps "
3330				 "block group descriptors", i);
3331			if (!sb_rdonly(sb))
3332				return 0;
3333		}
3334		if (block_bitmap < first_block || block_bitmap > last_block) {
3335			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3336			       "Block bitmap for group %u not in group "
3337			       "(block %llu)!", i, block_bitmap);
3338			return 0;
3339		}
3340		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3341		if (inode_bitmap == sb_block) {
3342			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3343				 "Inode bitmap for group %u overlaps "
3344				 "superblock", i);
3345			if (!sb_rdonly(sb))
3346				return 0;
3347		}
3348		if (inode_bitmap >= sb_block + 1 &&
3349		    inode_bitmap <= last_bg_block) {
3350			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3351				 "Inode bitmap for group %u overlaps "
3352				 "block group descriptors", i);
3353			if (!sb_rdonly(sb))
3354				return 0;
3355		}
3356		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3357			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3358			       "Inode bitmap for group %u not in group "
3359			       "(block %llu)!", i, inode_bitmap);
3360			return 0;
3361		}
3362		inode_table = ext4_inode_table(sb, gdp);
3363		if (inode_table == sb_block) {
3364			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3365				 "Inode table for group %u overlaps "
3366				 "superblock", i);
3367			if (!sb_rdonly(sb))
3368				return 0;
3369		}
3370		if (inode_table >= sb_block + 1 &&
3371		    inode_table <= last_bg_block) {
3372			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3373				 "Inode table for group %u overlaps "
3374				 "block group descriptors", i);
3375			if (!sb_rdonly(sb))
3376				return 0;
3377		}
3378		if (inode_table < first_block ||
3379		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3380			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3381			       "Inode table for group %u not in group "
3382			       "(block %llu)!", i, inode_table);
3383			return 0;
3384		}
3385		ext4_lock_group(sb, i);
3386		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3387			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3388				 "Checksum for group %u failed (%u!=%u)",
3389				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3390				     gdp)), le16_to_cpu(gdp->bg_checksum));
3391			if (!sb_rdonly(sb)) {
3392				ext4_unlock_group(sb, i);
3393				return 0;
3394			}
3395		}
3396		ext4_unlock_group(sb, i);
3397		if (!flexbg_flag)
3398			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3399	}
3400	if (NULL != first_not_zeroed)
3401		*first_not_zeroed = grp;
3402	return 1;
3403}
3404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3405/*
3406 * Maximal extent format file size.
3407 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3408 * extent format containers, within a sector_t, and within i_blocks
3409 * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3410 * so that won't be a limiting factor.
3411 *
3412 * However there is other limiting factor. We do store extents in the form
3413 * of starting block and length, hence the resulting length of the extent
3414 * covering maximum file size must fit into on-disk format containers as
3415 * well. Given that length is always by 1 unit bigger than max unit (because
3416 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3417 *
3418 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3419 */
3420static loff_t ext4_max_size(int blkbits, int has_huge_files)
3421{
3422	loff_t res;
3423	loff_t upper_limit = MAX_LFS_FILESIZE;
3424
3425	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3426
3427	if (!has_huge_files) {
 
 
 
 
3428		upper_limit = (1LL << 32) - 1;
3429
3430		/* total blocks in file system block size */
3431		upper_limit >>= (blkbits - 9);
3432		upper_limit <<= blkbits;
3433	}
3434
3435	/*
3436	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3437	 * by one fs block, so ee_len can cover the extent of maximum file
3438	 * size
3439	 */
3440	res = (1LL << 32) - 1;
3441	res <<= blkbits;
3442
3443	/* Sanity check against vm- & vfs- imposed limits */
3444	if (res > upper_limit)
3445		res = upper_limit;
3446
3447	return res;
3448}
3449
3450/*
3451 * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3452 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3453 * We need to be 1 filesystem block less than the 2^48 sector limit.
3454 */
3455static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3456{
3457	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3458	int meta_blocks;
3459	unsigned int ppb = 1 << (bits - 2);
3460
3461	/*
3462	 * This is calculated to be the largest file size for a dense, block
3463	 * mapped file such that the file's total number of 512-byte sectors,
3464	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3465	 *
3466	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3467	 * number of 512-byte sectors of the file.
3468	 */
3469	if (!has_huge_files) {
 
3470		/*
3471		 * !has_huge_files or implies that the inode i_block field
3472		 * represents total file blocks in 2^32 512-byte sectors ==
3473		 * size of vfs inode i_blocks * 8
3474		 */
3475		upper_limit = (1LL << 32) - 1;
3476
3477		/* total blocks in file system block size */
3478		upper_limit >>= (bits - 9);
3479
3480	} else {
3481		/*
3482		 * We use 48 bit ext4_inode i_blocks
3483		 * With EXT4_HUGE_FILE_FL set the i_blocks
3484		 * represent total number of blocks in
3485		 * file system block size
3486		 */
3487		upper_limit = (1LL << 48) - 1;
3488
3489	}
3490
3491	/* Compute how many blocks we can address by block tree */
3492	res += ppb;
3493	res += ppb * ppb;
3494	res += ((loff_t)ppb) * ppb * ppb;
3495	/* Compute how many metadata blocks are needed */
3496	meta_blocks = 1;
3497	meta_blocks += 1 + ppb;
3498	meta_blocks += 1 + ppb + ppb * ppb;
3499	/* Does block tree limit file size? */
3500	if (res + meta_blocks <= upper_limit)
3501		goto check_lfs;
3502
3503	res = upper_limit;
3504	/* How many metadata blocks are needed for addressing upper_limit? */
3505	upper_limit -= EXT4_NDIR_BLOCKS;
3506	/* indirect blocks */
3507	meta_blocks = 1;
3508	upper_limit -= ppb;
3509	/* double indirect blocks */
3510	if (upper_limit < ppb * ppb) {
3511		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3512		res -= meta_blocks;
3513		goto check_lfs;
3514	}
3515	meta_blocks += 1 + ppb;
3516	upper_limit -= ppb * ppb;
3517	/* tripple indirect blocks for the rest */
3518	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3519		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3520	res -= meta_blocks;
3521check_lfs:
3522	res <<= bits;
 
 
 
3523	if (res > MAX_LFS_FILESIZE)
3524		res = MAX_LFS_FILESIZE;
3525
3526	return res;
3527}
3528
3529static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3530				   ext4_fsblk_t logical_sb_block, int nr)
3531{
3532	struct ext4_sb_info *sbi = EXT4_SB(sb);
3533	ext4_group_t bg, first_meta_bg;
3534	int has_super = 0;
3535
3536	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3537
3538	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3539		return logical_sb_block + nr + 1;
3540	bg = sbi->s_desc_per_block * nr;
3541	if (ext4_bg_has_super(sb, bg))
3542		has_super = 1;
3543
3544	/*
3545	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3546	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3547	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3548	 * compensate.
3549	 */
3550	if (sb->s_blocksize == 1024 && nr == 0 &&
3551	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3552		has_super++;
3553
3554	return (has_super + ext4_group_first_block_no(sb, bg));
3555}
3556
3557/**
3558 * ext4_get_stripe_size: Get the stripe size.
3559 * @sbi: In memory super block info
3560 *
3561 * If we have specified it via mount option, then
3562 * use the mount option value. If the value specified at mount time is
3563 * greater than the blocks per group use the super block value.
3564 * If the super block value is greater than blocks per group return 0.
3565 * Allocator needs it be less than blocks per group.
3566 *
3567 */
3568static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3569{
3570	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3571	unsigned long stripe_width =
3572			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3573	int ret;
3574
3575	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3576		ret = sbi->s_stripe;
3577	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3578		ret = stripe_width;
3579	else if (stride && stride <= sbi->s_blocks_per_group)
3580		ret = stride;
3581	else
3582		ret = 0;
3583
3584	/*
3585	 * If the stripe width is 1, this makes no sense and
3586	 * we set it to 0 to turn off stripe handling code.
3587	 */
3588	if (ret <= 1)
3589		ret = 0;
3590
3591	return ret;
3592}
3593
3594/*
3595 * Check whether this filesystem can be mounted based on
3596 * the features present and the RDONLY/RDWR mount requested.
3597 * Returns 1 if this filesystem can be mounted as requested,
3598 * 0 if it cannot be.
3599 */
3600int ext4_feature_set_ok(struct super_block *sb, int readonly)
3601{
3602	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3603		ext4_msg(sb, KERN_ERR,
3604			"Couldn't mount because of "
3605			"unsupported optional features (%x)",
3606			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3607			~EXT4_FEATURE_INCOMPAT_SUPP));
3608		return 0;
3609	}
3610
3611#if !IS_ENABLED(CONFIG_UNICODE)
3612	if (ext4_has_feature_casefold(sb)) {
3613		ext4_msg(sb, KERN_ERR,
3614			 "Filesystem with casefold feature cannot be "
3615			 "mounted without CONFIG_UNICODE");
3616		return 0;
3617	}
3618#endif
3619
3620	if (readonly)
3621		return 1;
3622
3623	if (ext4_has_feature_readonly(sb)) {
3624		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3625		sb->s_flags |= SB_RDONLY;
3626		return 1;
3627	}
3628
3629	/* Check that feature set is OK for a read-write mount */
3630	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3631		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3632			 "unsupported optional features (%x)",
3633			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3634				~EXT4_FEATURE_RO_COMPAT_SUPP));
3635		return 0;
3636	}
 
 
 
 
 
 
 
 
 
 
 
 
3637	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3638		ext4_msg(sb, KERN_ERR,
3639			 "Can't support bigalloc feature without "
3640			 "extents feature\n");
3641		return 0;
3642	}
3643
3644#if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3645	if (!readonly && (ext4_has_feature_quota(sb) ||
3646			  ext4_has_feature_project(sb))) {
3647		ext4_msg(sb, KERN_ERR,
3648			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
 
 
 
 
 
 
 
3649		return 0;
3650	}
3651#endif  /* CONFIG_QUOTA */
3652	return 1;
3653}
3654
3655/*
3656 * This function is called once a day if we have errors logged
3657 * on the file system
3658 */
3659static void print_daily_error_info(struct timer_list *t)
3660{
3661	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3662	struct super_block *sb = sbi->s_sb;
3663	struct ext4_super_block *es = sbi->s_es;
3664
3665	if (es->s_error_count)
3666		/* fsck newer than v1.41.13 is needed to clean this condition. */
3667		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3668			 le32_to_cpu(es->s_error_count));
3669	if (es->s_first_error_time) {
3670		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3671		       sb->s_id,
3672		       ext4_get_tstamp(es, s_first_error_time),
3673		       (int) sizeof(es->s_first_error_func),
3674		       es->s_first_error_func,
3675		       le32_to_cpu(es->s_first_error_line));
3676		if (es->s_first_error_ino)
3677			printk(KERN_CONT ": inode %u",
3678			       le32_to_cpu(es->s_first_error_ino));
3679		if (es->s_first_error_block)
3680			printk(KERN_CONT ": block %llu", (unsigned long long)
3681			       le64_to_cpu(es->s_first_error_block));
3682		printk(KERN_CONT "\n");
3683	}
3684	if (es->s_last_error_time) {
3685		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3686		       sb->s_id,
3687		       ext4_get_tstamp(es, s_last_error_time),
3688		       (int) sizeof(es->s_last_error_func),
3689		       es->s_last_error_func,
3690		       le32_to_cpu(es->s_last_error_line));
3691		if (es->s_last_error_ino)
3692			printk(KERN_CONT ": inode %u",
3693			       le32_to_cpu(es->s_last_error_ino));
3694		if (es->s_last_error_block)
3695			printk(KERN_CONT ": block %llu", (unsigned long long)
3696			       le64_to_cpu(es->s_last_error_block));
3697		printk(KERN_CONT "\n");
3698	}
3699	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3700}
3701
3702/* Find next suitable group and run ext4_init_inode_table */
3703static int ext4_run_li_request(struct ext4_li_request *elr)
3704{
3705	struct ext4_group_desc *gdp = NULL;
3706	struct super_block *sb = elr->lr_super;
3707	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3708	ext4_group_t group = elr->lr_next_group;
3709	unsigned int prefetch_ios = 0;
3710	int ret = 0;
3711	int nr = EXT4_SB(sb)->s_mb_prefetch;
3712	u64 start_time;
3713
3714	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3715		elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3716		ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3717		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3718		if (group >= elr->lr_next_group) {
3719			ret = 1;
3720			if (elr->lr_first_not_zeroed != ngroups &&
3721			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3722				elr->lr_next_group = elr->lr_first_not_zeroed;
3723				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3724				ret = 0;
3725			}
3726		}
3727		return ret;
3728	}
3729
3730	for (; group < ngroups; group++) {
3731		gdp = ext4_get_group_desc(sb, group, NULL);
3732		if (!gdp) {
3733			ret = 1;
3734			break;
3735		}
3736
3737		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3738			break;
3739	}
3740
3741	if (group >= ngroups)
3742		ret = 1;
3743
3744	if (!ret) {
3745		start_time = ktime_get_real_ns();
3746		ret = ext4_init_inode_table(sb, group,
3747					    elr->lr_timeout ? 0 : 1);
3748		trace_ext4_lazy_itable_init(sb, group);
3749		if (elr->lr_timeout == 0) {
3750			elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3751				EXT4_SB(elr->lr_super)->s_li_wait_mult);
 
3752		}
3753		elr->lr_next_sched = jiffies + elr->lr_timeout;
3754		elr->lr_next_group = group + 1;
3755	}
3756	return ret;
3757}
3758
3759/*
3760 * Remove lr_request from the list_request and free the
3761 * request structure. Should be called with li_list_mtx held
3762 */
3763static void ext4_remove_li_request(struct ext4_li_request *elr)
3764{
 
 
3765	if (!elr)
3766		return;
3767
 
 
3768	list_del(&elr->lr_request);
3769	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3770	kfree(elr);
3771}
3772
3773static void ext4_unregister_li_request(struct super_block *sb)
3774{
3775	mutex_lock(&ext4_li_mtx);
3776	if (!ext4_li_info) {
3777		mutex_unlock(&ext4_li_mtx);
3778		return;
3779	}
3780
3781	mutex_lock(&ext4_li_info->li_list_mtx);
3782	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3783	mutex_unlock(&ext4_li_info->li_list_mtx);
3784	mutex_unlock(&ext4_li_mtx);
3785}
3786
3787static struct task_struct *ext4_lazyinit_task;
3788
3789/*
3790 * This is the function where ext4lazyinit thread lives. It walks
3791 * through the request list searching for next scheduled filesystem.
3792 * When such a fs is found, run the lazy initialization request
3793 * (ext4_rn_li_request) and keep track of the time spend in this
3794 * function. Based on that time we compute next schedule time of
3795 * the request. When walking through the list is complete, compute
3796 * next waking time and put itself into sleep.
3797 */
3798static int ext4_lazyinit_thread(void *arg)
3799{
3800	struct ext4_lazy_init *eli = arg;
3801	struct list_head *pos, *n;
3802	struct ext4_li_request *elr;
3803	unsigned long next_wakeup, cur;
3804
3805	BUG_ON(NULL == eli);
3806	set_freezable();
3807
3808cont_thread:
3809	while (true) {
3810		next_wakeup = MAX_JIFFY_OFFSET;
3811
3812		mutex_lock(&eli->li_list_mtx);
3813		if (list_empty(&eli->li_request_list)) {
3814			mutex_unlock(&eli->li_list_mtx);
3815			goto exit_thread;
3816		}
3817		list_for_each_safe(pos, n, &eli->li_request_list) {
3818			int err = 0;
3819			int progress = 0;
3820			elr = list_entry(pos, struct ext4_li_request,
3821					 lr_request);
3822
3823			if (time_before(jiffies, elr->lr_next_sched)) {
3824				if (time_before(elr->lr_next_sched, next_wakeup))
3825					next_wakeup = elr->lr_next_sched;
3826				continue;
3827			}
3828			if (down_read_trylock(&elr->lr_super->s_umount)) {
3829				if (sb_start_write_trylock(elr->lr_super)) {
3830					progress = 1;
3831					/*
3832					 * We hold sb->s_umount, sb can not
3833					 * be removed from the list, it is
3834					 * now safe to drop li_list_mtx
3835					 */
3836					mutex_unlock(&eli->li_list_mtx);
3837					err = ext4_run_li_request(elr);
3838					sb_end_write(elr->lr_super);
3839					mutex_lock(&eli->li_list_mtx);
3840					n = pos->next;
3841				}
3842				up_read((&elr->lr_super->s_umount));
3843			}
3844			/* error, remove the lazy_init job */
3845			if (err) {
3846				ext4_remove_li_request(elr);
3847				continue;
3848			}
3849			if (!progress) {
3850				elr->lr_next_sched = jiffies +
3851					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
 
3852			}
3853			if (time_before(elr->lr_next_sched, next_wakeup))
3854				next_wakeup = elr->lr_next_sched;
3855		}
3856		mutex_unlock(&eli->li_list_mtx);
3857
3858		try_to_freeze();
3859
3860		cur = jiffies;
3861		if ((time_after_eq(cur, next_wakeup)) ||
3862		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3863			cond_resched();
3864			continue;
3865		}
3866
3867		schedule_timeout_interruptible(next_wakeup - cur);
3868
3869		if (kthread_should_stop()) {
3870			ext4_clear_request_list();
3871			goto exit_thread;
3872		}
3873	}
3874
3875exit_thread:
3876	/*
3877	 * It looks like the request list is empty, but we need
3878	 * to check it under the li_list_mtx lock, to prevent any
3879	 * additions into it, and of course we should lock ext4_li_mtx
3880	 * to atomically free the list and ext4_li_info, because at
3881	 * this point another ext4 filesystem could be registering
3882	 * new one.
3883	 */
3884	mutex_lock(&ext4_li_mtx);
3885	mutex_lock(&eli->li_list_mtx);
3886	if (!list_empty(&eli->li_request_list)) {
3887		mutex_unlock(&eli->li_list_mtx);
3888		mutex_unlock(&ext4_li_mtx);
3889		goto cont_thread;
3890	}
3891	mutex_unlock(&eli->li_list_mtx);
3892	kfree(ext4_li_info);
3893	ext4_li_info = NULL;
3894	mutex_unlock(&ext4_li_mtx);
3895
3896	return 0;
3897}
3898
3899static void ext4_clear_request_list(void)
3900{
3901	struct list_head *pos, *n;
3902	struct ext4_li_request *elr;
3903
3904	mutex_lock(&ext4_li_info->li_list_mtx);
3905	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3906		elr = list_entry(pos, struct ext4_li_request,
3907				 lr_request);
3908		ext4_remove_li_request(elr);
3909	}
3910	mutex_unlock(&ext4_li_info->li_list_mtx);
3911}
3912
3913static int ext4_run_lazyinit_thread(void)
3914{
3915	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3916					 ext4_li_info, "ext4lazyinit");
3917	if (IS_ERR(ext4_lazyinit_task)) {
3918		int err = PTR_ERR(ext4_lazyinit_task);
3919		ext4_clear_request_list();
3920		kfree(ext4_li_info);
3921		ext4_li_info = NULL;
3922		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3923				 "initialization thread\n",
3924				 err);
3925		return err;
3926	}
3927	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3928	return 0;
3929}
3930
3931/*
3932 * Check whether it make sense to run itable init. thread or not.
3933 * If there is at least one uninitialized inode table, return
3934 * corresponding group number, else the loop goes through all
3935 * groups and return total number of groups.
3936 */
3937static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3938{
3939	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3940	struct ext4_group_desc *gdp = NULL;
3941
3942	if (!ext4_has_group_desc_csum(sb))
3943		return ngroups;
3944
3945	for (group = 0; group < ngroups; group++) {
3946		gdp = ext4_get_group_desc(sb, group, NULL);
3947		if (!gdp)
3948			continue;
3949
3950		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3951			break;
3952	}
3953
3954	return group;
3955}
3956
3957static int ext4_li_info_new(void)
3958{
3959	struct ext4_lazy_init *eli = NULL;
3960
3961	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3962	if (!eli)
3963		return -ENOMEM;
3964
3965	INIT_LIST_HEAD(&eli->li_request_list);
3966	mutex_init(&eli->li_list_mtx);
3967
3968	eli->li_state |= EXT4_LAZYINIT_QUIT;
3969
3970	ext4_li_info = eli;
3971
3972	return 0;
3973}
3974
3975static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3976					    ext4_group_t start)
3977{
 
3978	struct ext4_li_request *elr;
3979
3980	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3981	if (!elr)
3982		return NULL;
3983
3984	elr->lr_super = sb;
3985	elr->lr_first_not_zeroed = start;
3986	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3987		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3988		elr->lr_next_group = start;
3989	} else {
3990		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3991	}
3992
3993	/*
3994	 * Randomize first schedule time of the request to
3995	 * spread the inode table initialization requests
3996	 * better.
3997	 */
3998	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
 
3999	return elr;
4000}
4001
4002int ext4_register_li_request(struct super_block *sb,
4003			     ext4_group_t first_not_zeroed)
4004{
4005	struct ext4_sb_info *sbi = EXT4_SB(sb);
4006	struct ext4_li_request *elr = NULL;
4007	ext4_group_t ngroups = sbi->s_groups_count;
4008	int ret = 0;
4009
4010	mutex_lock(&ext4_li_mtx);
4011	if (sbi->s_li_request != NULL) {
4012		/*
4013		 * Reset timeout so it can be computed again, because
4014		 * s_li_wait_mult might have changed.
4015		 */
4016		sbi->s_li_request->lr_timeout = 0;
4017		goto out;
4018	}
4019
4020	if (sb_rdonly(sb) ||
4021	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4022	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4023		goto out;
4024
4025	elr = ext4_li_request_new(sb, first_not_zeroed);
4026	if (!elr) {
4027		ret = -ENOMEM;
4028		goto out;
4029	}
4030
4031	if (NULL == ext4_li_info) {
4032		ret = ext4_li_info_new();
4033		if (ret)
4034			goto out;
4035	}
4036
4037	mutex_lock(&ext4_li_info->li_list_mtx);
4038	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4039	mutex_unlock(&ext4_li_info->li_list_mtx);
4040
4041	sbi->s_li_request = elr;
4042	/*
4043	 * set elr to NULL here since it has been inserted to
4044	 * the request_list and the removal and free of it is
4045	 * handled by ext4_clear_request_list from now on.
4046	 */
4047	elr = NULL;
4048
4049	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4050		ret = ext4_run_lazyinit_thread();
4051		if (ret)
4052			goto out;
4053	}
4054out:
4055	mutex_unlock(&ext4_li_mtx);
4056	if (ret)
4057		kfree(elr);
4058	return ret;
4059}
4060
4061/*
4062 * We do not need to lock anything since this is called on
4063 * module unload.
4064 */
4065static void ext4_destroy_lazyinit_thread(void)
4066{
4067	/*
4068	 * If thread exited earlier
4069	 * there's nothing to be done.
4070	 */
4071	if (!ext4_li_info || !ext4_lazyinit_task)
4072		return;
4073
4074	kthread_stop(ext4_lazyinit_task);
4075}
4076
4077static int set_journal_csum_feature_set(struct super_block *sb)
4078{
4079	int ret = 1;
4080	int compat, incompat;
4081	struct ext4_sb_info *sbi = EXT4_SB(sb);
4082
4083	if (ext4_has_metadata_csum(sb)) {
4084		/* journal checksum v3 */
4085		compat = 0;
4086		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4087	} else {
4088		/* journal checksum v1 */
4089		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4090		incompat = 0;
4091	}
4092
4093	jbd2_journal_clear_features(sbi->s_journal,
4094			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4095			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4096			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4097	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4098		ret = jbd2_journal_set_features(sbi->s_journal,
4099				compat, 0,
4100				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4101				incompat);
4102	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4103		ret = jbd2_journal_set_features(sbi->s_journal,
4104				compat, 0,
4105				incompat);
4106		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4107				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4108	} else {
4109		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4110				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4111	}
4112
4113	return ret;
4114}
4115
4116/*
4117 * Note: calculating the overhead so we can be compatible with
4118 * historical BSD practice is quite difficult in the face of
4119 * clusters/bigalloc.  This is because multiple metadata blocks from
4120 * different block group can end up in the same allocation cluster.
4121 * Calculating the exact overhead in the face of clustered allocation
4122 * requires either O(all block bitmaps) in memory or O(number of block
4123 * groups**2) in time.  We will still calculate the superblock for
4124 * older file systems --- and if we come across with a bigalloc file
4125 * system with zero in s_overhead_clusters the estimate will be close to
4126 * correct especially for very large cluster sizes --- but for newer
4127 * file systems, it's better to calculate this figure once at mkfs
4128 * time, and store it in the superblock.  If the superblock value is
4129 * present (even for non-bigalloc file systems), we will use it.
4130 */
4131static int count_overhead(struct super_block *sb, ext4_group_t grp,
4132			  char *buf)
4133{
4134	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4135	struct ext4_group_desc	*gdp;
4136	ext4_fsblk_t		first_block, last_block, b;
4137	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4138	int			s, j, count = 0;
4139	int			has_super = ext4_bg_has_super(sb, grp);
4140
4141	if (!ext4_has_feature_bigalloc(sb))
4142		return (has_super + ext4_bg_num_gdb(sb, grp) +
4143			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4144			sbi->s_itb_per_group + 2);
4145
4146	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4147		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4148	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4149	for (i = 0; i < ngroups; i++) {
4150		gdp = ext4_get_group_desc(sb, i, NULL);
4151		b = ext4_block_bitmap(sb, gdp);
4152		if (b >= first_block && b <= last_block) {
4153			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4154			count++;
4155		}
4156		b = ext4_inode_bitmap(sb, gdp);
4157		if (b >= first_block && b <= last_block) {
4158			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4159			count++;
4160		}
4161		b = ext4_inode_table(sb, gdp);
4162		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4163			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4164				int c = EXT4_B2C(sbi, b - first_block);
4165				ext4_set_bit(c, buf);
4166				count++;
4167			}
4168		if (i != grp)
4169			continue;
4170		s = 0;
4171		if (ext4_bg_has_super(sb, grp)) {
4172			ext4_set_bit(s++, buf);
4173			count++;
4174		}
4175		j = ext4_bg_num_gdb(sb, grp);
4176		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4177			ext4_error(sb, "Invalid number of block group "
4178				   "descriptor blocks: %d", j);
4179			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4180		}
4181		count += j;
4182		for (; j > 0; j--)
4183			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4184	}
4185	if (!count)
4186		return 0;
4187	return EXT4_CLUSTERS_PER_GROUP(sb) -
4188		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4189}
4190
4191/*
4192 * Compute the overhead and stash it in sbi->s_overhead
4193 */
4194int ext4_calculate_overhead(struct super_block *sb)
4195{
4196	struct ext4_sb_info *sbi = EXT4_SB(sb);
4197	struct ext4_super_block *es = sbi->s_es;
4198	struct inode *j_inode;
4199	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4200	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4201	ext4_fsblk_t overhead = 0;
4202	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4203
4204	if (!buf)
4205		return -ENOMEM;
4206
4207	/*
4208	 * Compute the overhead (FS structures).  This is constant
4209	 * for a given filesystem unless the number of block groups
4210	 * changes so we cache the previous value until it does.
4211	 */
4212
4213	/*
4214	 * All of the blocks before first_data_block are overhead
4215	 */
4216	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4217
4218	/*
4219	 * Add the overhead found in each block group
4220	 */
4221	for (i = 0; i < ngroups; i++) {
4222		int blks;
4223
4224		blks = count_overhead(sb, i, buf);
4225		overhead += blks;
4226		if (blks)
4227			memset(buf, 0, PAGE_SIZE);
4228		cond_resched();
4229	}
4230
4231	/*
4232	 * Add the internal journal blocks whether the journal has been
4233	 * loaded or not
4234	 */
4235	if (sbi->s_journal && !sbi->s_journal_bdev_file)
4236		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4237	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4238		/* j_inum for internal journal is non-zero */
4239		j_inode = ext4_get_journal_inode(sb, j_inum);
4240		if (!IS_ERR(j_inode)) {
4241			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4242			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4243			iput(j_inode);
4244		} else {
4245			ext4_msg(sb, KERN_ERR, "can't get journal size");
4246		}
4247	}
4248	sbi->s_overhead = overhead;
4249	smp_wmb();
4250	free_page((unsigned long) buf);
4251	return 0;
4252}
4253
4254static void ext4_set_resv_clusters(struct super_block *sb)
4255{
4256	ext4_fsblk_t resv_clusters;
4257	struct ext4_sb_info *sbi = EXT4_SB(sb);
4258
4259	/*
4260	 * There's no need to reserve anything when we aren't using extents.
4261	 * The space estimates are exact, there are no unwritten extents,
4262	 * hole punching doesn't need new metadata... This is needed especially
4263	 * to keep ext2/3 backward compatibility.
4264	 */
4265	if (!ext4_has_feature_extents(sb))
4266		return;
4267	/*
4268	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4269	 * This should cover the situations where we can not afford to run
4270	 * out of space like for example punch hole, or converting
4271	 * unwritten extents in delalloc path. In most cases such
4272	 * allocation would require 1, or 2 blocks, higher numbers are
4273	 * very rare.
4274	 */
4275	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4276			 sbi->s_cluster_bits);
4277
4278	do_div(resv_clusters, 50);
4279	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4280
4281	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4282}
4283
4284static const char *ext4_quota_mode(struct super_block *sb)
4285{
4286#ifdef CONFIG_QUOTA
4287	if (!ext4_quota_capable(sb))
4288		return "none";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4289
4290	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4291		return "journalled";
4292	else
4293		return "writeback";
4294#else
4295	return "disabled";
4296#endif
4297}
4298
4299static void ext4_setup_csum_trigger(struct super_block *sb,
4300				    enum ext4_journal_trigger_type type,
4301				    void (*trigger)(
4302					struct jbd2_buffer_trigger_type *type,
4303					struct buffer_head *bh,
4304					void *mapped_data,
4305					size_t size))
4306{
4307	struct ext4_sb_info *sbi = EXT4_SB(sb);
4308
4309	sbi->s_journal_triggers[type].sb = sb;
4310	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4311}
 
 
 
 
4312
4313static void ext4_free_sbi(struct ext4_sb_info *sbi)
4314{
4315	if (!sbi)
4316		return;
4317
4318	kfree(sbi->s_blockgroup_lock);
4319	fs_put_dax(sbi->s_daxdev, NULL);
4320	kfree(sbi);
4321}
 
 
 
4322
4323static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4324{
4325	struct ext4_sb_info *sbi;
 
 
 
 
 
 
 
4326
4327	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4328	if (!sbi)
4329		return NULL;
 
 
 
 
 
 
 
 
 
 
 
4330
4331	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4332					   NULL, NULL);
 
 
 
4333
4334	sbi->s_blockgroup_lock =
4335		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
 
 
 
 
 
4336
4337	if (!sbi->s_blockgroup_lock)
4338		goto err_out;
 
 
 
 
 
 
4339
4340	sb->s_fs_info = sbi;
4341	sbi->s_sb = sb;
4342	return sbi;
4343err_out:
4344	fs_put_dax(sbi->s_daxdev, NULL);
4345	kfree(sbi);
4346	return NULL;
4347}
4348
4349static void ext4_set_def_opts(struct super_block *sb,
4350			      struct ext4_super_block *es)
4351{
4352	unsigned long def_mount_opts;
 
 
4353
4354	/* Set defaults before we parse the mount options */
4355	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4356	set_opt(sb, INIT_INODE_TABLE);
4357	if (def_mount_opts & EXT4_DEFM_DEBUG)
4358		set_opt(sb, DEBUG);
4359	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4360		set_opt(sb, GRPID);
4361	if (def_mount_opts & EXT4_DEFM_UID16)
4362		set_opt(sb, NO_UID32);
4363	/* xattr user namespace & acls are now defaulted on */
4364	set_opt(sb, XATTR_USER);
4365#ifdef CONFIG_EXT4_FS_POSIX_ACL
4366	set_opt(sb, POSIX_ACL);
4367#endif
4368	if (ext4_has_feature_fast_commit(sb))
4369		set_opt2(sb, JOURNAL_FAST_COMMIT);
4370	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4371	if (ext4_has_metadata_csum(sb))
4372		set_opt(sb, JOURNAL_CHECKSUM);
4373
4374	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4375		set_opt(sb, JOURNAL_DATA);
4376	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4377		set_opt(sb, ORDERED_DATA);
4378	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4379		set_opt(sb, WRITEBACK_DATA);
4380
4381	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4382		set_opt(sb, ERRORS_PANIC);
4383	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4384		set_opt(sb, ERRORS_CONT);
4385	else
4386		set_opt(sb, ERRORS_RO);
4387	/* block_validity enabled by default; disable with noblock_validity */
4388	set_opt(sb, BLOCK_VALIDITY);
4389	if (def_mount_opts & EXT4_DEFM_DISCARD)
4390		set_opt(sb, DISCARD);
4391
 
 
 
 
 
 
4392	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4393		set_opt(sb, BARRIER);
4394
4395	/*
4396	 * enable delayed allocation by default
4397	 * Use -o nodelalloc to turn it off
4398	 */
4399	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4400	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4401		set_opt(sb, DELALLOC);
4402
4403	if (sb->s_blocksize <= PAGE_SIZE)
4404		set_opt(sb, DIOREAD_NOLOCK);
4405}
 
 
4406
4407static int ext4_handle_clustersize(struct super_block *sb)
4408{
4409	struct ext4_sb_info *sbi = EXT4_SB(sb);
4410	struct ext4_super_block *es = sbi->s_es;
4411	int clustersize;
4412
4413	/* Handle clustersize */
4414	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4415	if (ext4_has_feature_bigalloc(sb)) {
4416		if (clustersize < sb->s_blocksize) {
4417			ext4_msg(sb, KERN_ERR,
4418				 "cluster size (%d) smaller than "
4419				 "block size (%lu)", clustersize, sb->s_blocksize);
4420			return -EINVAL;
4421		}
4422		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4423			le32_to_cpu(es->s_log_block_size);
4424	} else {
4425		if (clustersize != sb->s_blocksize) {
4426			ext4_msg(sb, KERN_ERR,
4427				 "fragment/cluster size (%d) != "
4428				 "block size (%lu)", clustersize, sb->s_blocksize);
4429			return -EINVAL;
4430		}
4431		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4432			ext4_msg(sb, KERN_ERR,
4433				 "#blocks per group too big: %lu",
4434				 sbi->s_blocks_per_group);
4435			return -EINVAL;
4436		}
4437		sbi->s_cluster_bits = 0;
4438	}
4439	sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group);
4440	if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4441		ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu",
4442			 sbi->s_clusters_per_group);
4443		return -EINVAL;
4444	}
4445	if (sbi->s_blocks_per_group !=
4446	    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4447		ext4_msg(sb, KERN_ERR,
4448			 "blocks per group (%lu) and clusters per group (%lu) inconsistent",
4449			 sbi->s_blocks_per_group, sbi->s_clusters_per_group);
4450		return -EINVAL;
4451	}
4452	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4453
4454	/* Do we have standard group size of clustersize * 8 blocks ? */
4455	if (sbi->s_blocks_per_group == clustersize << 3)
4456		set_opt2(sb, STD_GROUP_SIZE);
4457
4458	return 0;
4459}
4460
4461static void ext4_fast_commit_init(struct super_block *sb)
4462{
4463	struct ext4_sb_info *sbi = EXT4_SB(sb);
4464
4465	/* Initialize fast commit stuff */
4466	atomic_set(&sbi->s_fc_subtid, 0);
4467	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4468	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4469	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4470	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4471	sbi->s_fc_bytes = 0;
4472	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4473	sbi->s_fc_ineligible_tid = 0;
4474	spin_lock_init(&sbi->s_fc_lock);
4475	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4476	sbi->s_fc_replay_state.fc_regions = NULL;
4477	sbi->s_fc_replay_state.fc_regions_size = 0;
4478	sbi->s_fc_replay_state.fc_regions_used = 0;
4479	sbi->s_fc_replay_state.fc_regions_valid = 0;
4480	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4481	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4482	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4483}
4484
4485static int ext4_inode_info_init(struct super_block *sb,
4486				struct ext4_super_block *es)
4487{
4488	struct ext4_sb_info *sbi = EXT4_SB(sb);
4489
4490	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4491		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4492		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4493	} else {
4494		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4495		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4496		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4497			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4498				 sbi->s_first_ino);
4499			return -EINVAL;
4500		}
4501		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4502		    (!is_power_of_2(sbi->s_inode_size)) ||
4503		    (sbi->s_inode_size > sb->s_blocksize)) {
4504			ext4_msg(sb, KERN_ERR,
4505			       "unsupported inode size: %d",
4506			       sbi->s_inode_size);
4507			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4508			return -EINVAL;
4509		}
4510		/*
4511		 * i_atime_extra is the last extra field available for
4512		 * [acm]times in struct ext4_inode. Checking for that
4513		 * field should suffice to ensure we have extra space
4514		 * for all three.
4515		 */
4516		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4517			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4518			sb->s_time_gran = 1;
4519			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4520		} else {
4521			sb->s_time_gran = NSEC_PER_SEC;
4522			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4523		}
4524		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4525	}
4526
4527	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4528		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4529			EXT4_GOOD_OLD_INODE_SIZE;
4530		if (ext4_has_feature_extra_isize(sb)) {
4531			unsigned v, max = (sbi->s_inode_size -
4532					   EXT4_GOOD_OLD_INODE_SIZE);
4533
4534			v = le16_to_cpu(es->s_want_extra_isize);
4535			if (v > max) {
4536				ext4_msg(sb, KERN_ERR,
4537					 "bad s_want_extra_isize: %d", v);
4538				return -EINVAL;
4539			}
4540			if (sbi->s_want_extra_isize < v)
4541				sbi->s_want_extra_isize = v;
4542
4543			v = le16_to_cpu(es->s_min_extra_isize);
4544			if (v > max) {
4545				ext4_msg(sb, KERN_ERR,
4546					 "bad s_min_extra_isize: %d", v);
4547				return -EINVAL;
4548			}
4549			if (sbi->s_want_extra_isize < v)
4550				sbi->s_want_extra_isize = v;
4551		}
 
 
 
 
4552	}
4553
4554	return 0;
4555}
4556
4557#if IS_ENABLED(CONFIG_UNICODE)
4558static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4559{
4560	const struct ext4_sb_encodings *encoding_info;
4561	struct unicode_map *encoding;
4562	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4563
4564	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4565		return 0;
4566
4567	encoding_info = ext4_sb_read_encoding(es);
4568	if (!encoding_info) {
4569		ext4_msg(sb, KERN_ERR,
4570			"Encoding requested by superblock is unknown");
4571		return -EINVAL;
4572	}
4573
4574	encoding = utf8_load(encoding_info->version);
4575	if (IS_ERR(encoding)) {
4576		ext4_msg(sb, KERN_ERR,
4577			"can't mount with superblock charset: %s-%u.%u.%u "
4578			"not supported by the kernel. flags: 0x%x.",
4579			encoding_info->name,
4580			unicode_major(encoding_info->version),
4581			unicode_minor(encoding_info->version),
4582			unicode_rev(encoding_info->version),
4583			encoding_flags);
4584		return -EINVAL;
4585	}
4586	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4587		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4588		unicode_major(encoding_info->version),
4589		unicode_minor(encoding_info->version),
4590		unicode_rev(encoding_info->version),
4591		encoding_flags);
4592
4593	sb->s_encoding = encoding;
4594	sb->s_encoding_flags = encoding_flags;
4595
4596	return 0;
4597}
4598#else
4599static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4600{
4601	return 0;
4602}
4603#endif
4604
4605static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4606{
4607	struct ext4_sb_info *sbi = EXT4_SB(sb);
4608
4609	/* Warn if metadata_csum and gdt_csum are both set. */
4610	if (ext4_has_feature_metadata_csum(sb) &&
4611	    ext4_has_feature_gdt_csum(sb))
4612		ext4_warning(sb, "metadata_csum and uninit_bg are "
4613			     "redundant flags; please run fsck.");
4614
4615	/* Check for a known checksum algorithm */
4616	if (!ext4_verify_csum_type(sb, es)) {
4617		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4618			 "unknown checksum algorithm.");
4619		return -EINVAL;
4620	}
4621	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4622				ext4_orphan_file_block_trigger);
4623
4624	/* Load the checksum driver */
4625	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4626	if (IS_ERR(sbi->s_chksum_driver)) {
4627		int ret = PTR_ERR(sbi->s_chksum_driver);
4628		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4629		sbi->s_chksum_driver = NULL;
4630		return ret;
4631	}
4632
4633	/* Check superblock checksum */
4634	if (!ext4_superblock_csum_verify(sb, es)) {
4635		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4636			 "invalid superblock checksum.  Run e2fsck?");
4637		return -EFSBADCRC;
4638	}
4639
4640	/* Precompute checksum seed for all metadata */
4641	if (ext4_has_feature_csum_seed(sb))
4642		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4643	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4644		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4645					       sizeof(es->s_uuid));
4646	return 0;
4647}
4648
4649static int ext4_check_feature_compatibility(struct super_block *sb,
4650					    struct ext4_super_block *es,
4651					    int silent)
4652{
4653	struct ext4_sb_info *sbi = EXT4_SB(sb);
4654
4655	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4656	    (ext4_has_compat_features(sb) ||
4657	     ext4_has_ro_compat_features(sb) ||
4658	     ext4_has_incompat_features(sb)))
4659		ext4_msg(sb, KERN_WARNING,
4660		       "feature flags set on rev 0 fs, "
4661		       "running e2fsck is recommended");
4662
4663	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4664		set_opt2(sb, HURD_COMPAT);
4665		if (ext4_has_feature_64bit(sb)) {
4666			ext4_msg(sb, KERN_ERR,
4667				 "The Hurd can't support 64-bit file systems");
4668			return -EINVAL;
4669		}
4670
4671		/*
4672		 * ea_inode feature uses l_i_version field which is not
4673		 * available in HURD_COMPAT mode.
4674		 */
4675		if (ext4_has_feature_ea_inode(sb)) {
4676			ext4_msg(sb, KERN_ERR,
4677				 "ea_inode feature is not supported for Hurd");
4678			return -EINVAL;
4679		}
4680	}
4681
4682	if (IS_EXT2_SB(sb)) {
4683		if (ext2_feature_set_ok(sb))
4684			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4685				 "using the ext4 subsystem");
4686		else {
4687			/*
4688			 * If we're probing be silent, if this looks like
4689			 * it's actually an ext[34] filesystem.
4690			 */
4691			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4692				return -EINVAL;
4693			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4694				 "to feature incompatibilities");
4695			return -EINVAL;
4696		}
4697	}
4698
4699	if (IS_EXT3_SB(sb)) {
4700		if (ext3_feature_set_ok(sb))
4701			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4702				 "using the ext4 subsystem");
4703		else {
4704			/*
4705			 * If we're probing be silent, if this looks like
4706			 * it's actually an ext4 filesystem.
4707			 */
4708			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4709				return -EINVAL;
4710			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4711				 "to feature incompatibilities");
4712			return -EINVAL;
4713		}
4714	}
4715
4716	/*
4717	 * Check feature flags regardless of the revision level, since we
4718	 * previously didn't change the revision level when setting the flags,
4719	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4720	 */
4721	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4722		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4723
4724	if (sbi->s_daxdev) {
4725		if (sb->s_blocksize == PAGE_SIZE)
4726			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4727		else
4728			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4729	}
4730
4731	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4732		if (ext4_has_feature_inline_data(sb)) {
4733			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4734					" that may contain inline data");
4735			return -EINVAL;
4736		}
4737		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
 
4738			ext4_msg(sb, KERN_ERR,
4739				"DAX unsupported by block device.");
4740			return -EINVAL;
4741		}
4742	}
4743
4744	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4745		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4746			 es->s_encryption_level);
4747		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4748	}
4749
4750	return 0;
4751}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4752
4753static int ext4_check_geometry(struct super_block *sb,
4754			       struct ext4_super_block *es)
4755{
4756	struct ext4_sb_info *sbi = EXT4_SB(sb);
4757	__u64 blocks_count;
4758	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4759
4760	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4761		ext4_msg(sb, KERN_ERR,
4762			 "Number of reserved GDT blocks insanely large: %d",
4763			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4764		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4765	}
 
 
 
 
 
 
4766	/*
4767	 * Test whether we have more sectors than will fit in sector_t,
4768	 * and whether the max offset is addressable by the page cache.
4769	 */
4770	err = generic_check_addressable(sb->s_blocksize_bits,
4771					ext4_blocks_count(es));
4772	if (err) {
4773		ext4_msg(sb, KERN_ERR, "filesystem"
4774			 " too large to mount safely on this system");
4775		return err;
 
 
4776	}
4777
 
 
 
4778	/* check blocks count against device size */
4779	blocks_count = sb_bdev_nr_blocks(sb);
4780	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4781		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4782		       "exceeds size of device (%llu blocks)",
4783		       ext4_blocks_count(es), blocks_count);
4784		return -EINVAL;
4785	}
4786
4787	/*
4788	 * It makes no sense for the first data block to be beyond the end
4789	 * of the filesystem.
4790	 */
4791	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4792		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4793			 "block %u is beyond end of filesystem (%llu)",
4794			 le32_to_cpu(es->s_first_data_block),
4795			 ext4_blocks_count(es));
4796		return -EINVAL;
4797	}
4798	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4799	    (sbi->s_cluster_ratio == 1)) {
4800		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4801			 "block is 0 with a 1k block and cluster size");
4802		return -EINVAL;
4803	}
4804
4805	blocks_count = (ext4_blocks_count(es) -
4806			le32_to_cpu(es->s_first_data_block) +
4807			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4808	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4809	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4810		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4811		       "(block count %llu, first data block %u, "
4812		       "blocks per group %lu)", blocks_count,
4813		       ext4_blocks_count(es),
4814		       le32_to_cpu(es->s_first_data_block),
4815		       EXT4_BLOCKS_PER_GROUP(sb));
4816		return -EINVAL;
4817	}
4818	sbi->s_groups_count = blocks_count;
4819	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4820			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4821	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4822	    le32_to_cpu(es->s_inodes_count)) {
4823		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4824			 le32_to_cpu(es->s_inodes_count),
4825			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4826		return -EINVAL;
4827	}
4828
4829	return 0;
4830}
4831
4832static int ext4_group_desc_init(struct super_block *sb,
4833				struct ext4_super_block *es,
4834				ext4_fsblk_t logical_sb_block,
4835				ext4_group_t *first_not_zeroed)
4836{
4837	struct ext4_sb_info *sbi = EXT4_SB(sb);
4838	unsigned int db_count;
4839	ext4_fsblk_t block;
4840	int i;
4841
4842	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4843		   EXT4_DESC_PER_BLOCK(sb);
4844	if (ext4_has_feature_meta_bg(sb)) {
4845		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4846			ext4_msg(sb, KERN_WARNING,
4847				 "first meta block group too large: %u "
4848				 "(group descriptor block count %u)",
4849				 le32_to_cpu(es->s_first_meta_bg), db_count);
4850			return -EINVAL;
4851		}
4852	}
4853	rcu_assign_pointer(sbi->s_group_desc,
4854			   kvmalloc_array(db_count,
4855					  sizeof(struct buffer_head *),
4856					  GFP_KERNEL));
4857	if (sbi->s_group_desc == NULL) {
4858		ext4_msg(sb, KERN_ERR, "not enough memory");
4859		return -ENOMEM;
 
4860	}
4861
4862	bgl_lock_init(sbi->s_blockgroup_lock);
4863
4864	/* Pre-read the descriptors into the buffer cache */
4865	for (i = 0; i < db_count; i++) {
4866		block = descriptor_loc(sb, logical_sb_block, i);
4867		ext4_sb_breadahead_unmovable(sb, block);
4868	}
4869
4870	for (i = 0; i < db_count; i++) {
4871		struct buffer_head *bh;
4872
4873		block = descriptor_loc(sb, logical_sb_block, i);
4874		bh = ext4_sb_bread_unmovable(sb, block);
4875		if (IS_ERR(bh)) {
4876			ext4_msg(sb, KERN_ERR,
4877			       "can't read group descriptor %d", i);
4878			sbi->s_gdb_count = i;
4879			return PTR_ERR(bh);
4880		}
4881		rcu_read_lock();
4882		rcu_dereference(sbi->s_group_desc)[i] = bh;
4883		rcu_read_unlock();
4884	}
4885	sbi->s_gdb_count = db_count;
4886	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4887		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4888		return -EFSCORRUPTED;
 
4889	}
4890
4891	return 0;
4892}
4893
4894static int ext4_load_and_init_journal(struct super_block *sb,
4895				      struct ext4_super_block *es,
4896				      struct ext4_fs_context *ctx)
4897{
4898	struct ext4_sb_info *sbi = EXT4_SB(sb);
4899	int err;
4900
4901	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4902	if (err)
4903		return err;
4904
4905	if (ext4_has_feature_64bit(sb) &&
4906	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4907				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4908		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4909		goto out;
4910	}
4911
4912	if (!set_journal_csum_feature_set(sb)) {
4913		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4914			 "feature set");
4915		goto out;
4916	}
4917
4918	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4919		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4920					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4921		ext4_msg(sb, KERN_ERR,
4922			"Failed to set fast commit journal feature");
4923		goto out;
4924	}
4925
4926	/* We have now updated the journal if required, so we can
4927	 * validate the data journaling mode. */
4928	switch (test_opt(sb, DATA_FLAGS)) {
4929	case 0:
4930		/* No mode set, assume a default based on the journal
4931		 * capabilities: ORDERED_DATA if the journal can
4932		 * cope, else JOURNAL_DATA
4933		 */
4934		if (jbd2_journal_check_available_features
4935		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4936			set_opt(sb, ORDERED_DATA);
4937			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4938		} else {
4939			set_opt(sb, JOURNAL_DATA);
4940			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4941		}
4942		break;
4943
4944	case EXT4_MOUNT_ORDERED_DATA:
4945	case EXT4_MOUNT_WRITEBACK_DATA:
4946		if (!jbd2_journal_check_available_features
4947		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4948			ext4_msg(sb, KERN_ERR, "Journal does not support "
4949			       "requested data journaling mode");
4950			goto out;
4951		}
4952		break;
4953	default:
4954		break;
4955	}
4956
4957	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4958	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4959		ext4_msg(sb, KERN_ERR, "can't mount with "
4960			"journal_async_commit in data=ordered mode");
4961		goto out;
4962	}
4963
4964	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4965
4966	sbi->s_journal->j_submit_inode_data_buffers =
4967		ext4_journal_submit_inode_data_buffers;
4968	sbi->s_journal->j_finish_inode_data_buffers =
4969		ext4_journal_finish_inode_data_buffers;
4970
4971	return 0;
4972
4973out:
4974	/* flush s_sb_upd_work before destroying the journal. */
4975	flush_work(&sbi->s_sb_upd_work);
4976	jbd2_journal_destroy(sbi->s_journal);
4977	sbi->s_journal = NULL;
4978	return -EINVAL;
4979}
4980
4981static int ext4_check_journal_data_mode(struct super_block *sb)
4982{
4983	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4984		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4985			    "data=journal disables delayed allocation, "
4986			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
4987		/* can't mount with both data=journal and dioread_nolock. */
4988		clear_opt(sb, DIOREAD_NOLOCK);
4989		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4990		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4991			ext4_msg(sb, KERN_ERR, "can't mount with "
4992				 "both data=journal and delalloc");
4993			return -EINVAL;
4994		}
4995		if (test_opt(sb, DAX_ALWAYS)) {
4996			ext4_msg(sb, KERN_ERR, "can't mount with "
4997				 "both data=journal and dax");
4998			return -EINVAL;
4999		}
5000		if (ext4_has_feature_encrypt(sb)) {
5001			ext4_msg(sb, KERN_WARNING,
5002				 "encrypted files will use data=ordered "
5003				 "instead of data journaling mode");
5004		}
5005		if (test_opt(sb, DELALLOC))
5006			clear_opt(sb, DELALLOC);
5007	} else {
5008		sb->s_iflags |= SB_I_CGROUPWB;
5009	}
5010
5011	return 0;
5012}
5013
5014static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5015			   int silent)
5016{
5017	struct ext4_sb_info *sbi = EXT4_SB(sb);
5018	struct ext4_super_block *es;
5019	ext4_fsblk_t logical_sb_block;
5020	unsigned long offset = 0;
5021	struct buffer_head *bh;
5022	int ret = -EINVAL;
5023	int blocksize;
5024
5025	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5026	if (!blocksize) {
5027		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5028		return -EINVAL;
5029	}
5030
5031	/*
5032	 * The ext4 superblock will not be buffer aligned for other than 1kB
5033	 * block sizes.  We need to calculate the offset from buffer start.
5034	 */
5035	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5036		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5037		offset = do_div(logical_sb_block, blocksize);
5038	} else {
5039		logical_sb_block = sbi->s_sb_block;
5040	}
5041
5042	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5043	if (IS_ERR(bh)) {
5044		ext4_msg(sb, KERN_ERR, "unable to read superblock");
5045		return PTR_ERR(bh);
5046	}
5047	/*
5048	 * Note: s_es must be initialized as soon as possible because
5049	 *       some ext4 macro-instructions depend on its value
5050	 */
5051	es = (struct ext4_super_block *) (bh->b_data + offset);
5052	sbi->s_es = es;
5053	sb->s_magic = le16_to_cpu(es->s_magic);
5054	if (sb->s_magic != EXT4_SUPER_MAGIC) {
5055		if (!silent)
5056			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5057		goto out;
5058	}
5059
5060	if (le32_to_cpu(es->s_log_block_size) >
5061	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5062		ext4_msg(sb, KERN_ERR,
5063			 "Invalid log block size: %u",
5064			 le32_to_cpu(es->s_log_block_size));
5065		goto out;
5066	}
5067	if (le32_to_cpu(es->s_log_cluster_size) >
5068	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5069		ext4_msg(sb, KERN_ERR,
5070			 "Invalid log cluster size: %u",
5071			 le32_to_cpu(es->s_log_cluster_size));
5072		goto out;
5073	}
5074
5075	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5076
5077	/*
5078	 * If the default block size is not the same as the real block size,
5079	 * we need to reload it.
5080	 */
5081	if (sb->s_blocksize == blocksize) {
5082		*lsb = logical_sb_block;
5083		sbi->s_sbh = bh;
5084		return 0;
5085	}
5086
5087	/*
5088	 * bh must be released before kill_bdev(), otherwise
5089	 * it won't be freed and its page also. kill_bdev()
5090	 * is called by sb_set_blocksize().
5091	 */
5092	brelse(bh);
5093	/* Validate the filesystem blocksize */
5094	if (!sb_set_blocksize(sb, blocksize)) {
5095		ext4_msg(sb, KERN_ERR, "bad block size %d",
5096				blocksize);
5097		bh = NULL;
5098		goto out;
5099	}
5100
5101	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5102	offset = do_div(logical_sb_block, blocksize);
5103	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5104	if (IS_ERR(bh)) {
5105		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5106		ret = PTR_ERR(bh);
5107		bh = NULL;
5108		goto out;
5109	}
5110	es = (struct ext4_super_block *)(bh->b_data + offset);
5111	sbi->s_es = es;
5112	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5113		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5114		goto out;
5115	}
5116	*lsb = logical_sb_block;
5117	sbi->s_sbh = bh;
5118	return 0;
5119out:
5120	brelse(bh);
5121	return ret;
5122}
5123
5124static void ext4_hash_info_init(struct super_block *sb)
5125{
5126	struct ext4_sb_info *sbi = EXT4_SB(sb);
5127	struct ext4_super_block *es = sbi->s_es;
5128	unsigned int i;
5129
5130	for (i = 0; i < 4; i++)
5131		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5132
5133	sbi->s_def_hash_version = es->s_def_hash_version;
5134	if (ext4_has_feature_dir_index(sb)) {
5135		i = le32_to_cpu(es->s_flags);
5136		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5137			sbi->s_hash_unsigned = 3;
5138		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5139#ifdef __CHAR_UNSIGNED__
5140			if (!sb_rdonly(sb))
5141				es->s_flags |=
5142					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5143			sbi->s_hash_unsigned = 3;
5144#else
5145			if (!sb_rdonly(sb))
5146				es->s_flags |=
5147					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5148#endif
5149		}
5150	}
5151}
5152
5153static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5154{
5155	struct ext4_sb_info *sbi = EXT4_SB(sb);
5156	struct ext4_super_block *es = sbi->s_es;
5157	int has_huge_files;
5158
5159	has_huge_files = ext4_has_feature_huge_file(sb);
5160	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5161						      has_huge_files);
5162	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5163
5164	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5165	if (ext4_has_feature_64bit(sb)) {
5166		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5167		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5168		    !is_power_of_2(sbi->s_desc_size)) {
5169			ext4_msg(sb, KERN_ERR,
5170			       "unsupported descriptor size %lu",
5171			       sbi->s_desc_size);
5172			return -EINVAL;
5173		}
5174	} else
5175		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5176
5177	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5178	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5179
5180	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5181	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5182		if (!silent)
5183			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5184		return -EINVAL;
5185	}
5186	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5187	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5188		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5189			 sbi->s_inodes_per_group);
5190		return -EINVAL;
5191	}
5192	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5193					sbi->s_inodes_per_block;
5194	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5195	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5196	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5197	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5198
5199	return 0;
5200}
5201
5202static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5203{
5204	struct ext4_super_block *es = NULL;
5205	struct ext4_sb_info *sbi = EXT4_SB(sb);
5206	ext4_fsblk_t logical_sb_block;
5207	struct inode *root;
5208	int needs_recovery;
5209	int err;
5210	ext4_group_t first_not_zeroed;
5211	struct ext4_fs_context *ctx = fc->fs_private;
5212	int silent = fc->sb_flags & SB_SILENT;
5213
5214	/* Set defaults for the variables that will be set during parsing */
5215	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5216		ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5217
5218	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5219	sbi->s_sectors_written_start =
5220		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5221
5222	err = ext4_load_super(sb, &logical_sb_block, silent);
5223	if (err)
5224		goto out_fail;
5225
5226	es = sbi->s_es;
5227	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5228
5229	err = ext4_init_metadata_csum(sb, es);
5230	if (err)
5231		goto failed_mount;
5232
5233	ext4_set_def_opts(sb, es);
5234
5235	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5236	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5237	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5238	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5239	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5240
5241	/*
5242	 * set default s_li_wait_mult for lazyinit, for the case there is
5243	 * no mount option specified.
5244	 */
5245	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5246
5247	err = ext4_inode_info_init(sb, es);
5248	if (err)
5249		goto failed_mount;
5250
5251	err = parse_apply_sb_mount_options(sb, ctx);
5252	if (err < 0)
5253		goto failed_mount;
5254
5255	sbi->s_def_mount_opt = sbi->s_mount_opt;
5256	sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5257
5258	err = ext4_check_opt_consistency(fc, sb);
5259	if (err < 0)
5260		goto failed_mount;
5261
5262	ext4_apply_options(fc, sb);
5263
5264	err = ext4_encoding_init(sb, es);
5265	if (err)
5266		goto failed_mount;
5267
5268	err = ext4_check_journal_data_mode(sb);
5269	if (err)
5270		goto failed_mount;
5271
5272	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5273		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5274
5275	/* i_version is always enabled now */
5276	sb->s_flags |= SB_I_VERSION;
5277
5278	err = ext4_check_feature_compatibility(sb, es, silent);
5279	if (err)
5280		goto failed_mount;
5281
5282	err = ext4_block_group_meta_init(sb, silent);
5283	if (err)
5284		goto failed_mount;
5285
5286	ext4_hash_info_init(sb);
5287
5288	err = ext4_handle_clustersize(sb);
5289	if (err)
5290		goto failed_mount;
5291
5292	err = ext4_check_geometry(sb, es);
5293	if (err)
5294		goto failed_mount;
5295
5296	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5297	spin_lock_init(&sbi->s_error_lock);
5298	INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5299
5300	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5301	if (err)
5302		goto failed_mount3;
5303
5304	err = ext4_es_register_shrinker(sbi);
5305	if (err)
5306		goto failed_mount3;
5307
5308	sbi->s_stripe = ext4_get_stripe_size(sbi);
5309	/*
5310	 * It's hard to get stripe aligned blocks if stripe is not aligned with
5311	 * cluster, just disable stripe and alert user to simpfy code and avoid
5312	 * stripe aligned allocation which will rarely successes.
5313	 */
5314	if (sbi->s_stripe > 0 && sbi->s_cluster_ratio > 1 &&
5315	    sbi->s_stripe % sbi->s_cluster_ratio != 0) {
5316		ext4_msg(sb, KERN_WARNING,
5317			 "stripe (%lu) is not aligned with cluster size (%u), "
5318			 "stripe is disabled",
5319			 sbi->s_stripe, sbi->s_cluster_ratio);
5320		sbi->s_stripe = 0;
5321	}
5322	sbi->s_extent_max_zeroout_kb = 32;
5323
5324	/*
5325	 * set up enough so that it can read an inode
5326	 */
5327	sb->s_op = &ext4_sops;
5328	sb->s_export_op = &ext4_export_ops;
5329	sb->s_xattr = ext4_xattr_handlers;
5330#ifdef CONFIG_FS_ENCRYPTION
5331	sb->s_cop = &ext4_cryptops;
5332#endif
5333#ifdef CONFIG_FS_VERITY
5334	sb->s_vop = &ext4_verityops;
5335#endif
5336#ifdef CONFIG_QUOTA
5337	sb->dq_op = &ext4_quota_operations;
5338	if (ext4_has_feature_quota(sb))
5339		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5340	else
5341		sb->s_qcop = &ext4_qctl_operations;
5342	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5343#endif
5344	super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid));
5345
5346	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5347	mutex_init(&sbi->s_orphan_lock);
5348
5349	ext4_fast_commit_init(sb);
5350
5351	sb->s_root = NULL;
5352
5353	needs_recovery = (es->s_last_orphan != 0 ||
5354			  ext4_has_feature_orphan_present(sb) ||
5355			  ext4_has_feature_journal_needs_recovery(sb));
5356
5357	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5358		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5359		if (err)
5360			goto failed_mount3a;
5361	}
5362
5363	err = -EINVAL;
5364	/*
5365	 * The first inode we look at is the journal inode.  Don't try
5366	 * root first: it may be modified in the journal!
5367	 */
5368	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5369		err = ext4_load_and_init_journal(sb, es, ctx);
5370		if (err)
5371			goto failed_mount3a;
5372	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5373		   ext4_has_feature_journal_needs_recovery(sb)) {
5374		ext4_msg(sb, KERN_ERR, "required journal recovery "
5375		       "suppressed and not mounted read-only");
5376		goto failed_mount3a;
5377	} else {
5378		/* Nojournal mode, all journal mount options are illegal */
 
 
 
 
 
5379		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5380			ext4_msg(sb, KERN_ERR, "can't mount with "
5381				 "journal_async_commit, fs mounted w/o journal");
5382			goto failed_mount3a;
5383		}
5384
5385		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5386			ext4_msg(sb, KERN_ERR, "can't mount with "
5387				 "journal_checksum, fs mounted w/o journal");
5388			goto failed_mount3a;
5389		}
5390		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5391			ext4_msg(sb, KERN_ERR, "can't mount with "
5392				 "commit=%lu, fs mounted w/o journal",
5393				 sbi->s_commit_interval / HZ);
5394			goto failed_mount3a;
5395		}
5396		if (EXT4_MOUNT_DATA_FLAGS &
5397		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5398			ext4_msg(sb, KERN_ERR, "can't mount with "
5399				 "data=, fs mounted w/o journal");
5400			goto failed_mount3a;
5401		}
5402		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5403		clear_opt(sb, JOURNAL_CHECKSUM);
5404		clear_opt(sb, DATA_FLAGS);
5405		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5406		sbi->s_journal = NULL;
5407		needs_recovery = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5408	}
5409
 
 
 
 
 
 
 
 
 
 
 
 
5410	if (!test_opt(sb, NO_MBCACHE)) {
5411		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5412		if (!sbi->s_ea_block_cache) {
5413			ext4_msg(sb, KERN_ERR,
5414				 "Failed to create ea_block_cache");
5415			err = -EINVAL;
5416			goto failed_mount_wq;
5417		}
5418
5419		if (ext4_has_feature_ea_inode(sb)) {
5420			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5421			if (!sbi->s_ea_inode_cache) {
5422				ext4_msg(sb, KERN_ERR,
5423					 "Failed to create ea_inode_cache");
5424				err = -EINVAL;
5425				goto failed_mount_wq;
5426			}
5427		}
5428	}
5429
 
 
 
 
 
 
 
 
 
 
 
 
 
5430	/*
5431	 * Get the # of file system overhead blocks from the
5432	 * superblock if present.
5433	 */
5434	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5435	/* ignore the precalculated value if it is ridiculous */
5436	if (sbi->s_overhead > ext4_blocks_count(es))
5437		sbi->s_overhead = 0;
5438	/*
5439	 * If the bigalloc feature is not enabled recalculating the
5440	 * overhead doesn't take long, so we might as well just redo
5441	 * it to make sure we are using the correct value.
5442	 */
5443	if (!ext4_has_feature_bigalloc(sb))
5444		sbi->s_overhead = 0;
5445	if (sbi->s_overhead == 0) {
5446		err = ext4_calculate_overhead(sb);
5447		if (err)
5448			goto failed_mount_wq;
5449	}
5450
5451	/*
5452	 * The maximum number of concurrent works can be high and
5453	 * concurrency isn't really necessary.  Limit it to 1.
5454	 */
5455	EXT4_SB(sb)->rsv_conversion_wq =
5456		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5457	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5458		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5459		err = -ENOMEM;
5460		goto failed_mount4;
5461	}
5462
5463	/*
5464	 * The jbd2_journal_load will have done any necessary log recovery,
5465	 * so we can safely mount the rest of the filesystem now.
5466	 */
5467
5468	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5469	if (IS_ERR(root)) {
5470		ext4_msg(sb, KERN_ERR, "get root inode failed");
5471		err = PTR_ERR(root);
5472		root = NULL;
5473		goto failed_mount4;
5474	}
5475	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5476		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5477		iput(root);
5478		err = -EFSCORRUPTED;
5479		goto failed_mount4;
5480	}
5481
5482	generic_set_sb_d_ops(sb);
5483	sb->s_root = d_make_root(root);
5484	if (!sb->s_root) {
5485		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5486		err = -ENOMEM;
5487		goto failed_mount4;
5488	}
5489
5490	err = ext4_setup_super(sb, es, sb_rdonly(sb));
5491	if (err == -EROFS) {
5492		sb->s_flags |= SB_RDONLY;
5493	} else if (err)
5494		goto failed_mount4a;
5495
5496	ext4_set_resv_clusters(sb);
5497
5498	if (test_opt(sb, BLOCK_VALIDITY)) {
5499		err = ext4_setup_system_zone(sb);
5500		if (err) {
5501			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5502				 "zone (%d)", err);
5503			goto failed_mount4a;
 
 
 
 
 
 
5504		}
5505	}
5506	ext4_fc_replay_cleanup(sb);
 
 
 
 
 
 
 
5507
5508	ext4_ext_init(sb);
5509
5510	/*
5511	 * Enable optimize_scan if number of groups is > threshold. This can be
5512	 * turned off by passing "mb_optimize_scan=0". This can also be
5513	 * turned on forcefully by passing "mb_optimize_scan=1".
5514	 */
5515	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5516		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5517			set_opt2(sb, MB_OPTIMIZE_SCAN);
5518		else
5519			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5520	}
5521
 
5522	err = ext4_mb_init(sb);
5523	if (err) {
5524		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5525			 err);
5526		goto failed_mount5;
5527	}
5528
5529	/*
5530	 * We can only set up the journal commit callback once
5531	 * mballoc is initialized
5532	 */
5533	if (sbi->s_journal)
5534		sbi->s_journal->j_commit_callback =
5535			ext4_journal_commit_callback;
 
 
 
 
 
 
 
 
 
 
 
 
5536
5537	err = ext4_percpu_param_init(sbi);
5538	if (err)
5539		goto failed_mount6;
 
5540
5541	if (ext4_has_feature_flex_bg(sb))
5542		if (!ext4_fill_flex_info(sb)) {
5543			ext4_msg(sb, KERN_ERR,
5544			       "unable to initialize "
5545			       "flex_bg meta info!");
5546			err = -ENOMEM;
5547			goto failed_mount6;
5548		}
5549
5550	err = ext4_register_li_request(sb, first_not_zeroed);
5551	if (err)
5552		goto failed_mount6;
5553
5554	err = ext4_register_sysfs(sb);
5555	if (err)
5556		goto failed_mount7;
5557
5558	err = ext4_init_orphan_info(sb);
5559	if (err)
5560		goto failed_mount8;
5561#ifdef CONFIG_QUOTA
5562	/* Enable quota usage during mount. */
5563	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5564		err = ext4_enable_quotas(sb);
5565		if (err)
5566			goto failed_mount9;
5567	}
5568#endif  /* CONFIG_QUOTA */
5569
5570	/*
5571	 * Save the original bdev mapping's wb_err value which could be
5572	 * used to detect the metadata async write error.
5573	 */
5574	spin_lock_init(&sbi->s_bdev_wb_lock);
5575	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5576				 &sbi->s_bdev_wb_err);
5577	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5578	ext4_orphan_cleanup(sb, es);
5579	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5580	/*
5581	 * Update the checksum after updating free space/inode counters and
5582	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5583	 * checksum in the buffer cache until it is written out and
5584	 * e2fsprogs programs trying to open a file system immediately
5585	 * after it is mounted can fail.
5586	 */
5587	ext4_superblock_csum_set(sb);
5588	if (needs_recovery) {
5589		ext4_msg(sb, KERN_INFO, "recovery complete");
5590		err = ext4_mark_recovery_complete(sb, es);
5591		if (err)
5592			goto failed_mount10;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5593	}
5594
5595	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5596		ext4_msg(sb, KERN_WARNING,
5597			 "mounting with \"discard\" option, but the device does not support discard");
 
 
 
5598
5599	if (es->s_error_count)
5600		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5601
5602	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5603	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5604	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5605	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5606	atomic_set(&sbi->s_warning_count, 0);
5607	atomic_set(&sbi->s_msg_count, 0);
5608
 
5609	return 0;
5610
5611failed_mount10:
5612	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5613failed_mount9: __maybe_unused
5614	ext4_release_orphan_info(sb);
 
 
5615failed_mount8:
5616	ext4_unregister_sysfs(sb);
5617	kobject_put(&sbi->s_kobj);
5618failed_mount7:
5619	ext4_unregister_li_request(sb);
5620failed_mount6:
5621	ext4_mb_release(sb);
5622	ext4_flex_groups_free(sbi);
5623	ext4_percpu_param_destroy(sbi);
 
 
 
 
5624failed_mount5:
5625	ext4_ext_release(sb);
5626	ext4_release_system_zone(sb);
5627failed_mount4a:
5628	dput(sb->s_root);
5629	sb->s_root = NULL;
5630failed_mount4:
5631	ext4_msg(sb, KERN_ERR, "mount failed");
5632	if (EXT4_SB(sb)->rsv_conversion_wq)
5633		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5634failed_mount_wq:
5635	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5636	sbi->s_ea_inode_cache = NULL;
5637
5638	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5639	sbi->s_ea_block_cache = NULL;
5640
 
 
5641	if (sbi->s_journal) {
5642		/* flush s_sb_upd_work before journal destroy. */
5643		flush_work(&sbi->s_sb_upd_work);
5644		jbd2_journal_destroy(sbi->s_journal);
5645		sbi->s_journal = NULL;
5646	}
5647failed_mount3a:
5648	ext4_es_unregister_shrinker(sbi);
5649failed_mount3:
5650	/* flush s_sb_upd_work before sbi destroy */
5651	flush_work(&sbi->s_sb_upd_work);
5652	del_timer_sync(&sbi->s_err_report);
5653	ext4_stop_mmpd(sbi);
5654	ext4_group_desc_free(sbi);
 
 
 
 
5655failed_mount:
5656	if (sbi->s_chksum_driver)
5657		crypto_free_shash(sbi->s_chksum_driver);
5658
5659#if IS_ENABLED(CONFIG_UNICODE)
5660	utf8_unload(sb->s_encoding);
5661#endif
5662
5663#ifdef CONFIG_QUOTA
5664	for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5665		kfree(get_qf_name(sb, sbi, i));
5666#endif
5667	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5668	brelse(sbi->s_sbh);
5669	if (sbi->s_journal_bdev_file) {
5670		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
5671		bdev_fput(sbi->s_journal_bdev_file);
5672	}
5673out_fail:
5674	invalidate_bdev(sb->s_bdev);
5675	sb->s_fs_info = NULL;
5676	return err;
5677}
5678
5679static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5680{
5681	struct ext4_fs_context *ctx = fc->fs_private;
5682	struct ext4_sb_info *sbi;
5683	const char *descr;
5684	int ret;
5685
5686	sbi = ext4_alloc_sbi(sb);
5687	if (!sbi)
5688		return -ENOMEM;
5689
5690	fc->s_fs_info = sbi;
5691
5692	/* Cleanup superblock name */
5693	strreplace(sb->s_id, '/', '!');
5694
5695	sbi->s_sb_block = 1;	/* Default super block location */
5696	if (ctx->spec & EXT4_SPEC_s_sb_block)
5697		sbi->s_sb_block = ctx->s_sb_block;
5698
5699	ret = __ext4_fill_super(fc, sb);
5700	if (ret < 0)
5701		goto free_sbi;
5702
5703	if (sbi->s_journal) {
5704		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5705			descr = " journalled data mode";
5706		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5707			descr = " ordered data mode";
5708		else
5709			descr = " writeback data mode";
5710	} else
5711		descr = "out journal";
5712
5713	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5714		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5715			 "Quota mode: %s.", &sb->s_uuid,
5716			 sb_rdonly(sb) ? "ro" : "r/w", descr,
5717			 ext4_quota_mode(sb));
5718
5719	/* Update the s_overhead_clusters if necessary */
5720	ext4_update_overhead(sb, false);
5721	return 0;
5722
5723free_sbi:
5724	ext4_free_sbi(sbi);
5725	fc->s_fs_info = NULL;
5726	return ret;
5727}
5728
5729static int ext4_get_tree(struct fs_context *fc)
5730{
5731	return get_tree_bdev(fc, ext4_fill_super);
5732}
5733
5734/*
5735 * Setup any per-fs journal parameters now.  We'll do this both on
5736 * initial mount, once the journal has been initialised but before we've
5737 * done any recovery; and again on any subsequent remount.
5738 */
5739static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5740{
5741	struct ext4_sb_info *sbi = EXT4_SB(sb);
5742
5743	journal->j_commit_interval = sbi->s_commit_interval;
5744	journal->j_min_batch_time = sbi->s_min_batch_time;
5745	journal->j_max_batch_time = sbi->s_max_batch_time;
5746	ext4_fc_init(sb, journal);
5747
5748	write_lock(&journal->j_state_lock);
5749	if (test_opt(sb, BARRIER))
5750		journal->j_flags |= JBD2_BARRIER;
5751	else
5752		journal->j_flags &= ~JBD2_BARRIER;
5753	if (test_opt(sb, DATA_ERR_ABORT))
5754		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5755	else
5756		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5757	/*
5758	 * Always enable journal cycle record option, letting the journal
5759	 * records log transactions continuously between each mount.
5760	 */
5761	journal->j_flags |= JBD2_CYCLE_RECORD;
5762	write_unlock(&journal->j_state_lock);
5763}
5764
5765static struct inode *ext4_get_journal_inode(struct super_block *sb,
5766					     unsigned int journal_inum)
5767{
5768	struct inode *journal_inode;
5769
5770	/*
5771	 * Test for the existence of a valid inode on disk.  Bad things
5772	 * happen if we iget() an unused inode, as the subsequent iput()
5773	 * will try to delete it.
5774	 */
5775	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5776	if (IS_ERR(journal_inode)) {
5777		ext4_msg(sb, KERN_ERR, "no journal found");
5778		return ERR_CAST(journal_inode);
5779	}
5780	if (!journal_inode->i_nlink) {
5781		make_bad_inode(journal_inode);
5782		iput(journal_inode);
5783		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5784		return ERR_PTR(-EFSCORRUPTED);
5785	}
5786	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
 
 
 
5787		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5788		iput(journal_inode);
5789		return ERR_PTR(-EFSCORRUPTED);
5790	}
5791
5792	ext4_debug("Journal inode found at %p: %lld bytes\n",
5793		  journal_inode, journal_inode->i_size);
5794	return journal_inode;
5795}
5796
5797static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5798{
5799	struct ext4_map_blocks map;
5800	int ret;
5801
5802	if (journal->j_inode == NULL)
5803		return 0;
5804
5805	map.m_lblk = *block;
5806	map.m_len = 1;
5807	ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5808	if (ret <= 0) {
5809		ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5810			 "journal bmap failed: block %llu ret %d\n",
5811			 *block, ret);
5812		jbd2_journal_abort(journal, ret ? ret : -EIO);
5813		return ret;
5814	}
5815	*block = map.m_pblk;
5816	return 0;
5817}
5818
5819static journal_t *ext4_open_inode_journal(struct super_block *sb,
5820					  unsigned int journal_inum)
5821{
5822	struct inode *journal_inode;
5823	journal_t *journal;
5824
 
 
5825	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5826	if (IS_ERR(journal_inode))
5827		return ERR_CAST(journal_inode);
5828
5829	journal = jbd2_journal_init_inode(journal_inode);
5830	if (IS_ERR(journal)) {
5831		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5832		iput(journal_inode);
5833		return ERR_CAST(journal);
5834	}
5835	journal->j_private = sb;
5836	journal->j_bmap = ext4_journal_bmap;
5837	ext4_init_journal_params(sb, journal);
5838	return journal;
5839}
5840
5841static struct file *ext4_get_journal_blkdev(struct super_block *sb,
5842					dev_t j_dev, ext4_fsblk_t *j_start,
5843					ext4_fsblk_t *j_len)
5844{
5845	struct buffer_head *bh;
5846	struct block_device *bdev;
5847	struct file *bdev_file;
 
5848	int hblock, blocksize;
5849	ext4_fsblk_t sb_block;
5850	unsigned long offset;
5851	struct ext4_super_block *es;
5852	int errno;
5853
5854	bdev_file = bdev_file_open_by_dev(j_dev,
5855		BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5856		sb, &fs_holder_ops);
5857	if (IS_ERR(bdev_file)) {
5858		ext4_msg(sb, KERN_ERR,
5859			 "failed to open journal device unknown-block(%u,%u) %ld",
5860			 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file));
5861		return bdev_file;
5862	}
5863
5864	bdev = file_bdev(bdev_file);
5865	blocksize = sb->s_blocksize;
5866	hblock = bdev_logical_block_size(bdev);
5867	if (blocksize < hblock) {
5868		ext4_msg(sb, KERN_ERR,
5869			"blocksize too small for journal device");
5870		errno = -EINVAL;
5871		goto out_bdev;
5872	}
5873
5874	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5875	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5876	set_blocksize(bdev, blocksize);
5877	bh = __bread(bdev, sb_block, blocksize);
5878	if (!bh) {
5879		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5880		       "external journal");
5881		errno = -EINVAL;
5882		goto out_bdev;
5883	}
5884
5885	es = (struct ext4_super_block *) (bh->b_data + offset);
5886	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5887	    !(le32_to_cpu(es->s_feature_incompat) &
5888	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5889		ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5890		errno = -EFSCORRUPTED;
5891		goto out_bh;
 
5892	}
5893
5894	if ((le32_to_cpu(es->s_feature_ro_compat) &
5895	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5896	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5897		ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5898		errno = -EFSCORRUPTED;
5899		goto out_bh;
 
5900	}
5901
5902	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5903		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5904		errno = -EFSCORRUPTED;
5905		goto out_bh;
5906	}
5907
5908	*j_start = sb_block + 1;
5909	*j_len = ext4_blocks_count(es);
5910	brelse(bh);
5911	return bdev_file;
5912
5913out_bh:
5914	brelse(bh);
5915out_bdev:
5916	bdev_fput(bdev_file);
5917	return ERR_PTR(errno);
5918}
5919
5920static journal_t *ext4_open_dev_journal(struct super_block *sb,
5921					dev_t j_dev)
5922{
5923	journal_t *journal;
5924	ext4_fsblk_t j_start;
5925	ext4_fsblk_t j_len;
5926	struct file *bdev_file;
5927	int errno = 0;
5928
5929	bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5930	if (IS_ERR(bdev_file))
5931		return ERR_CAST(bdev_file);
5932
5933	journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start,
5934					j_len, sb->s_blocksize);
5935	if (IS_ERR(journal)) {
5936		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5937		errno = PTR_ERR(journal);
5938		goto out_bdev;
5939	}
 
 
 
 
 
 
 
5940	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5941		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5942					"user (unsupported) - %d",
5943			be32_to_cpu(journal->j_superblock->s_nr_users));
5944		errno = -EINVAL;
5945		goto out_journal;
5946	}
5947	journal->j_private = sb;
5948	EXT4_SB(sb)->s_journal_bdev_file = bdev_file;
5949	ext4_init_journal_params(sb, journal);
5950	return journal;
5951
5952out_journal:
5953	jbd2_journal_destroy(journal);
5954out_bdev:
5955	bdev_fput(bdev_file);
5956	return ERR_PTR(errno);
5957}
5958
5959static int ext4_load_journal(struct super_block *sb,
5960			     struct ext4_super_block *es,
5961			     unsigned long journal_devnum)
5962{
5963	journal_t *journal;
5964	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5965	dev_t journal_dev;
5966	int err = 0;
5967	int really_read_only;
5968	int journal_dev_ro;
5969
5970	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5971		return -EFSCORRUPTED;
5972
5973	if (journal_devnum &&
5974	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5975		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5976			"numbers have changed");
5977		journal_dev = new_decode_dev(journal_devnum);
5978	} else
5979		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5980
5981	if (journal_inum && journal_dev) {
5982		ext4_msg(sb, KERN_ERR,
5983			 "filesystem has both journal inode and journal device!");
5984		return -EINVAL;
5985	}
5986
5987	if (journal_inum) {
5988		journal = ext4_open_inode_journal(sb, journal_inum);
5989		if (IS_ERR(journal))
5990			return PTR_ERR(journal);
5991	} else {
5992		journal = ext4_open_dev_journal(sb, journal_dev);
5993		if (IS_ERR(journal))
5994			return PTR_ERR(journal);
5995	}
5996
5997	journal_dev_ro = bdev_read_only(journal->j_dev);
5998	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5999
6000	if (journal_dev_ro && !sb_rdonly(sb)) {
6001		ext4_msg(sb, KERN_ERR,
6002			 "journal device read-only, try mounting with '-o ro'");
6003		err = -EROFS;
6004		goto err_out;
6005	}
6006
6007	/*
6008	 * Are we loading a blank journal or performing recovery after a
6009	 * crash?  For recovery, we need to check in advance whether we
6010	 * can get read-write access to the device.
6011	 */
6012	if (ext4_has_feature_journal_needs_recovery(sb)) {
6013		if (sb_rdonly(sb)) {
6014			ext4_msg(sb, KERN_INFO, "INFO: recovery "
6015					"required on readonly filesystem");
6016			if (really_read_only) {
6017				ext4_msg(sb, KERN_ERR, "write access "
6018					"unavailable, cannot proceed "
6019					"(try mounting with noload)");
6020				err = -EROFS;
6021				goto err_out;
6022			}
6023			ext4_msg(sb, KERN_INFO, "write access will "
6024			       "be enabled during recovery");
6025		}
6026	}
6027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6028	if (!(journal->j_flags & JBD2_BARRIER))
6029		ext4_msg(sb, KERN_INFO, "barriers disabled");
6030
6031	if (!ext4_has_feature_journal_needs_recovery(sb))
6032		err = jbd2_journal_wipe(journal, !really_read_only);
6033	if (!err) {
6034		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6035		__le16 orig_state;
6036		bool changed = false;
6037
6038		if (save)
6039			memcpy(save, ((char *) es) +
6040			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6041		err = jbd2_journal_load(journal);
6042		if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6043				   save, EXT4_S_ERR_LEN)) {
6044			memcpy(((char *) es) + EXT4_S_ERR_START,
6045			       save, EXT4_S_ERR_LEN);
6046			changed = true;
6047		}
6048		kfree(save);
6049		orig_state = es->s_state;
6050		es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6051					   EXT4_ERROR_FS);
6052		if (orig_state != es->s_state)
6053			changed = true;
6054		/* Write out restored error information to the superblock */
6055		if (changed && !really_read_only) {
6056			int err2;
6057			err2 = ext4_commit_super(sb);
6058			err = err ? : err2;
6059		}
6060	}
6061
6062	if (err) {
6063		ext4_msg(sb, KERN_ERR, "error loading journal");
6064		goto err_out;
 
6065	}
6066
6067	EXT4_SB(sb)->s_journal = journal;
6068	err = ext4_clear_journal_err(sb, es);
6069	if (err) {
6070		EXT4_SB(sb)->s_journal = NULL;
6071		jbd2_journal_destroy(journal);
6072		return err;
6073	}
6074
6075	if (!really_read_only && journal_devnum &&
6076	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6077		es->s_journal_dev = cpu_to_le32(journal_devnum);
6078		ext4_commit_super(sb);
6079	}
6080	if (!really_read_only && journal_inum &&
6081	    journal_inum != le32_to_cpu(es->s_journal_inum)) {
6082		es->s_journal_inum = cpu_to_le32(journal_inum);
6083		ext4_commit_super(sb);
6084	}
6085
6086	return 0;
6087
6088err_out:
6089	jbd2_journal_destroy(journal);
6090	return err;
6091}
6092
6093/* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
6094static void ext4_update_super(struct super_block *sb)
6095{
6096	struct ext4_sb_info *sbi = EXT4_SB(sb);
6097	struct ext4_super_block *es = sbi->s_es;
6098	struct buffer_head *sbh = sbi->s_sbh;
6099
6100	lock_buffer(sbh);
 
6101	/*
6102	 * If the file system is mounted read-only, don't update the
6103	 * superblock write time.  This avoids updating the superblock
6104	 * write time when we are mounting the root file system
6105	 * read/only but we need to replay the journal; at that point,
6106	 * for people who are east of GMT and who make their clock
6107	 * tick in localtime for Windows bug-for-bug compatibility,
6108	 * the clock is set in the future, and this will cause e2fsck
6109	 * to complain and force a full file system check.
6110	 */
6111	if (!sb_rdonly(sb))
6112		ext4_update_tstamp(es, s_wtime);
6113	es->s_kbytes_written =
6114		cpu_to_le64(sbi->s_kbytes_written +
6115		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6116		      sbi->s_sectors_written_start) >> 1));
6117	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
 
 
 
 
6118		ext4_free_blocks_count_set(es,
6119			EXT4_C2B(sbi, percpu_counter_sum_positive(
6120				&sbi->s_freeclusters_counter)));
6121	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6122		es->s_free_inodes_count =
6123			cpu_to_le32(percpu_counter_sum_positive(
6124				&sbi->s_freeinodes_counter));
6125	/* Copy error information to the on-disk superblock */
6126	spin_lock(&sbi->s_error_lock);
6127	if (sbi->s_add_error_count > 0) {
6128		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6129		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6130			__ext4_update_tstamp(&es->s_first_error_time,
6131					     &es->s_first_error_time_hi,
6132					     sbi->s_first_error_time);
6133			strncpy(es->s_first_error_func, sbi->s_first_error_func,
6134				sizeof(es->s_first_error_func));
6135			es->s_first_error_line =
6136				cpu_to_le32(sbi->s_first_error_line);
6137			es->s_first_error_ino =
6138				cpu_to_le32(sbi->s_first_error_ino);
6139			es->s_first_error_block =
6140				cpu_to_le64(sbi->s_first_error_block);
6141			es->s_first_error_errcode =
6142				ext4_errno_to_code(sbi->s_first_error_code);
6143		}
6144		__ext4_update_tstamp(&es->s_last_error_time,
6145				     &es->s_last_error_time_hi,
6146				     sbi->s_last_error_time);
6147		strncpy(es->s_last_error_func, sbi->s_last_error_func,
6148			sizeof(es->s_last_error_func));
6149		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6150		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6151		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6152		es->s_last_error_errcode =
6153				ext4_errno_to_code(sbi->s_last_error_code);
6154		/*
6155		 * Start the daily error reporting function if it hasn't been
6156		 * started already
6157		 */
6158		if (!es->s_error_count)
6159			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6160		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6161		sbi->s_add_error_count = 0;
6162	}
6163	spin_unlock(&sbi->s_error_lock);
6164
6165	ext4_superblock_csum_set(sb);
6166	unlock_buffer(sbh);
6167}
6168
6169static int ext4_commit_super(struct super_block *sb)
6170{
6171	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6172
6173	if (!sbh)
6174		return -EINVAL;
6175	if (block_device_ejected(sb))
6176		return -ENODEV;
6177
6178	ext4_update_super(sb);
6179
6180	lock_buffer(sbh);
6181	/* Buffer got discarded which means block device got invalidated */
6182	if (!buffer_mapped(sbh)) {
6183		unlock_buffer(sbh);
6184		return -EIO;
6185	}
6186
6187	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6188		/*
6189		 * Oh, dear.  A previous attempt to write the
6190		 * superblock failed.  This could happen because the
6191		 * USB device was yanked out.  Or it could happen to
6192		 * be a transient write error and maybe the block will
6193		 * be remapped.  Nothing we can do but to retry the
6194		 * write and hope for the best.
6195		 */
6196		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6197		       "superblock detected");
6198		clear_buffer_write_io_error(sbh);
6199		set_buffer_uptodate(sbh);
6200	}
6201	get_bh(sbh);
6202	/* Clear potential dirty bit if it was journalled update */
6203	clear_buffer_dirty(sbh);
6204	sbh->b_end_io = end_buffer_write_sync;
6205	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6206		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6207	wait_on_buffer(sbh);
6208	if (buffer_write_io_error(sbh)) {
6209		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6210		       "superblock");
6211		clear_buffer_write_io_error(sbh);
6212		set_buffer_uptodate(sbh);
6213		return -EIO;
 
 
6214	}
6215	return 0;
6216}
6217
6218/*
6219 * Have we just finished recovery?  If so, and if we are mounting (or
6220 * remounting) the filesystem readonly, then we will end up with a
6221 * consistent fs on disk.  Record that fact.
6222 */
6223static int ext4_mark_recovery_complete(struct super_block *sb,
6224				       struct ext4_super_block *es)
6225{
6226	int err;
6227	journal_t *journal = EXT4_SB(sb)->s_journal;
6228
6229	if (!ext4_has_feature_journal(sb)) {
6230		if (journal != NULL) {
6231			ext4_error(sb, "Journal got removed while the fs was "
6232				   "mounted!");
6233			return -EFSCORRUPTED;
6234		}
6235		return 0;
6236	}
6237	jbd2_journal_lock_updates(journal);
6238	err = jbd2_journal_flush(journal, 0);
6239	if (err < 0)
6240		goto out;
6241
6242	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6243	    ext4_has_feature_orphan_present(sb))) {
6244		if (!ext4_orphan_file_empty(sb)) {
6245			ext4_error(sb, "Orphan file not empty on read-only fs.");
6246			err = -EFSCORRUPTED;
6247			goto out;
6248		}
6249		ext4_clear_feature_journal_needs_recovery(sb);
6250		ext4_clear_feature_orphan_present(sb);
6251		ext4_commit_super(sb);
6252	}
 
6253out:
6254	jbd2_journal_unlock_updates(journal);
6255	return err;
6256}
6257
6258/*
6259 * If we are mounting (or read-write remounting) a filesystem whose journal
6260 * has recorded an error from a previous lifetime, move that error to the
6261 * main filesystem now.
6262 */
6263static int ext4_clear_journal_err(struct super_block *sb,
6264				   struct ext4_super_block *es)
6265{
6266	journal_t *journal;
6267	int j_errno;
6268	const char *errstr;
6269
6270	if (!ext4_has_feature_journal(sb)) {
6271		ext4_error(sb, "Journal got removed while the fs was mounted!");
6272		return -EFSCORRUPTED;
6273	}
6274
6275	journal = EXT4_SB(sb)->s_journal;
6276
6277	/*
6278	 * Now check for any error status which may have been recorded in the
6279	 * journal by a prior ext4_error() or ext4_abort()
6280	 */
6281
6282	j_errno = jbd2_journal_errno(journal);
6283	if (j_errno) {
6284		char nbuf[16];
6285
6286		errstr = ext4_decode_error(sb, j_errno, nbuf);
6287		ext4_warning(sb, "Filesystem error recorded "
6288			     "from previous mount: %s", errstr);
 
6289
6290		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6291		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6292		j_errno = ext4_commit_super(sb);
6293		if (j_errno)
6294			return j_errno;
6295		ext4_warning(sb, "Marked fs in need of filesystem check.");
6296
6297		jbd2_journal_clear_err(journal);
6298		jbd2_journal_update_sb_errno(journal);
6299	}
6300	return 0;
6301}
6302
6303/*
6304 * Force the running and committing transactions to commit,
6305 * and wait on the commit.
6306 */
6307int ext4_force_commit(struct super_block *sb)
6308{
6309	return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
 
 
 
 
 
 
6310}
6311
6312static int ext4_sync_fs(struct super_block *sb, int wait)
6313{
6314	int ret = 0;
6315	tid_t target;
6316	bool needs_barrier = false;
6317	struct ext4_sb_info *sbi = EXT4_SB(sb);
6318
6319	if (unlikely(ext4_forced_shutdown(sb)))
6320		return 0;
6321
6322	trace_ext4_sync_fs(sb, wait);
6323	flush_workqueue(sbi->rsv_conversion_wq);
6324	/*
6325	 * Writeback quota in non-journalled quota case - journalled quota has
6326	 * no dirty dquots
6327	 */
6328	dquot_writeback_dquots(sb, -1);
6329	/*
6330	 * Data writeback is possible w/o journal transaction, so barrier must
6331	 * being sent at the end of the function. But we can skip it if
6332	 * transaction_commit will do it for us.
6333	 */
6334	if (sbi->s_journal) {
6335		target = jbd2_get_latest_transaction(sbi->s_journal);
6336		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6337		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6338			needs_barrier = true;
6339
6340		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6341			if (wait)
6342				ret = jbd2_log_wait_commit(sbi->s_journal,
6343							   target);
6344		}
6345	} else if (wait && test_opt(sb, BARRIER))
6346		needs_barrier = true;
6347	if (needs_barrier) {
6348		int err;
6349		err = blkdev_issue_flush(sb->s_bdev);
6350		if (!ret)
6351			ret = err;
6352	}
6353
6354	return ret;
6355}
6356
6357/*
6358 * LVM calls this function before a (read-only) snapshot is created.  This
6359 * gives us a chance to flush the journal completely and mark the fs clean.
6360 *
6361 * Note that only this function cannot bring a filesystem to be in a clean
6362 * state independently. It relies on upper layer to stop all data & metadata
6363 * modifications.
6364 */
6365static int ext4_freeze(struct super_block *sb)
6366{
6367	int error = 0;
6368	journal_t *journal = EXT4_SB(sb)->s_journal;
 
 
 
 
 
6369
6370	if (journal) {
6371		/* Now we set up the journal barrier. */
6372		jbd2_journal_lock_updates(journal);
6373
6374		/*
6375		 * Don't clear the needs_recovery flag if we failed to
6376		 * flush the journal.
6377		 */
6378		error = jbd2_journal_flush(journal, 0);
6379		if (error < 0)
6380			goto out;
6381
6382		/* Journal blocked and flushed, clear needs_recovery flag. */
6383		ext4_clear_feature_journal_needs_recovery(sb);
6384		if (ext4_orphan_file_empty(sb))
6385			ext4_clear_feature_orphan_present(sb);
6386	}
6387
6388	error = ext4_commit_super(sb);
6389out:
6390	if (journal)
6391		/* we rely on upper layer to stop further updates */
6392		jbd2_journal_unlock_updates(journal);
6393	return error;
6394}
6395
6396/*
6397 * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6398 * flag here, even though the filesystem is not technically dirty yet.
6399 */
6400static int ext4_unfreeze(struct super_block *sb)
6401{
6402	if (ext4_forced_shutdown(sb))
6403		return 0;
6404
6405	if (EXT4_SB(sb)->s_journal) {
6406		/* Reset the needs_recovery flag before the fs is unlocked. */
6407		ext4_set_feature_journal_needs_recovery(sb);
6408		if (ext4_has_feature_orphan_file(sb))
6409			ext4_set_feature_orphan_present(sb);
6410	}
6411
6412	ext4_commit_super(sb);
6413	return 0;
6414}
6415
6416/*
6417 * Structure to save mount options for ext4_remount's benefit
6418 */
6419struct ext4_mount_options {
6420	unsigned long s_mount_opt;
6421	unsigned long s_mount_opt2;
6422	kuid_t s_resuid;
6423	kgid_t s_resgid;
6424	unsigned long s_commit_interval;
6425	u32 s_min_batch_time, s_max_batch_time;
6426#ifdef CONFIG_QUOTA
6427	int s_jquota_fmt;
6428	char *s_qf_names[EXT4_MAXQUOTAS];
6429#endif
6430};
6431
6432static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6433{
6434	struct ext4_fs_context *ctx = fc->fs_private;
6435	struct ext4_super_block *es;
6436	struct ext4_sb_info *sbi = EXT4_SB(sb);
6437	unsigned long old_sb_flags;
6438	struct ext4_mount_options old_opts;
 
6439	ext4_group_t g;
 
6440	int err = 0;
6441	int alloc_ctx;
6442#ifdef CONFIG_QUOTA
6443	int enable_quota = 0;
6444	int i, j;
6445	char *to_free[EXT4_MAXQUOTAS];
6446#endif
6447
6448
6449	/* Store the original options */
6450	old_sb_flags = sb->s_flags;
6451	old_opts.s_mount_opt = sbi->s_mount_opt;
6452	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6453	old_opts.s_resuid = sbi->s_resuid;
6454	old_opts.s_resgid = sbi->s_resgid;
6455	old_opts.s_commit_interval = sbi->s_commit_interval;
6456	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6457	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6458#ifdef CONFIG_QUOTA
6459	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6460	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6461		if (sbi->s_qf_names[i]) {
6462			char *qf_name = get_qf_name(sb, sbi, i);
6463
6464			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6465			if (!old_opts.s_qf_names[i]) {
6466				for (j = 0; j < i; j++)
6467					kfree(old_opts.s_qf_names[j]);
 
6468				return -ENOMEM;
6469			}
6470		} else
6471			old_opts.s_qf_names[i] = NULL;
6472#endif
6473	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6474		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6475			ctx->journal_ioprio =
6476				sbi->s_journal->j_task->io_context->ioprio;
6477		else
6478			ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6479
 
 
 
6480	}
6481
6482	/*
6483	 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6484	 * two calls to ext4_should_dioread_nolock() to return inconsistent
6485	 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6486	 * here s_writepages_rwsem to avoid race between writepages ops and
6487	 * remount.
6488	 */
6489	alloc_ctx = ext4_writepages_down_write(sb);
6490	ext4_apply_options(fc, sb);
6491	ext4_writepages_up_write(sb, alloc_ctx);
6492
6493	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6494	    test_opt(sb, JOURNAL_CHECKSUM)) {
6495		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6496			 "during remount not supported; ignoring");
6497		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6498	}
6499
6500	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6501		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6502			ext4_msg(sb, KERN_ERR, "can't mount with "
6503				 "both data=journal and delalloc");
6504			err = -EINVAL;
6505			goto restore_opts;
6506		}
6507		if (test_opt(sb, DIOREAD_NOLOCK)) {
6508			ext4_msg(sb, KERN_ERR, "can't mount with "
6509				 "both data=journal and dioread_nolock");
6510			err = -EINVAL;
6511			goto restore_opts;
6512		}
 
 
 
 
 
 
6513	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6514		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6515			ext4_msg(sb, KERN_ERR, "can't mount with "
6516				"journal_async_commit in data=ordered mode");
6517			err = -EINVAL;
6518			goto restore_opts;
6519		}
6520	}
6521
6522	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6523		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6524		err = -EINVAL;
6525		goto restore_opts;
6526	}
6527
6528	if (test_opt2(sb, ABORT))
6529		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
 
 
 
 
 
 
6530
6531	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6532		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6533
6534	es = sbi->s_es;
6535
6536	if (sbi->s_journal) {
6537		ext4_init_journal_params(sb, sbi->s_journal);
6538		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6539	}
6540
6541	/* Flush outstanding errors before changing fs state */
6542	flush_work(&sbi->s_sb_upd_work);
6543
6544	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6545		if (ext4_forced_shutdown(sb)) {
6546			err = -EROFS;
6547			goto restore_opts;
6548		}
6549
6550		if (fc->sb_flags & SB_RDONLY) {
6551			err = sync_filesystem(sb);
6552			if (err < 0)
6553				goto restore_opts;
6554			err = dquot_suspend(sb, -1);
6555			if (err < 0)
6556				goto restore_opts;
6557
6558			/*
6559			 * First of all, the unconditional stuff we have to do
6560			 * to disable replay of the journal when we next remount
6561			 */
6562			sb->s_flags |= SB_RDONLY;
6563
6564			/*
6565			 * OK, test if we are remounting a valid rw partition
6566			 * readonly, and if so set the rdonly flag and then
6567			 * mark the partition as valid again.
6568			 */
6569			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6570			    (sbi->s_mount_state & EXT4_VALID_FS))
6571				es->s_state = cpu_to_le16(sbi->s_mount_state);
6572
6573			if (sbi->s_journal) {
6574				/*
6575				 * We let remount-ro finish even if marking fs
6576				 * as clean failed...
6577				 */
6578				ext4_mark_recovery_complete(sb, es);
6579			}
6580		} else {
6581			/* Make sure we can mount this feature set readwrite */
6582			if (ext4_has_feature_readonly(sb) ||
6583			    !ext4_feature_set_ok(sb, 0)) {
6584				err = -EROFS;
6585				goto restore_opts;
6586			}
6587			/*
6588			 * Make sure the group descriptor checksums
6589			 * are sane.  If they aren't, refuse to remount r/w.
6590			 */
6591			for (g = 0; g < sbi->s_groups_count; g++) {
6592				struct ext4_group_desc *gdp =
6593					ext4_get_group_desc(sb, g, NULL);
6594
6595				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6596					ext4_msg(sb, KERN_ERR,
6597	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6598		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6599					       le16_to_cpu(gdp->bg_checksum));
6600					err = -EFSBADCRC;
6601					goto restore_opts;
6602				}
6603			}
6604
6605			/*
6606			 * If we have an unprocessed orphan list hanging
6607			 * around from a previously readonly bdev mount,
6608			 * require a full umount/remount for now.
6609			 */
6610			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6611				ext4_msg(sb, KERN_WARNING, "Couldn't "
6612				       "remount RDWR because of unprocessed "
6613				       "orphan inode list.  Please "
6614				       "umount/remount instead");
6615				err = -EINVAL;
6616				goto restore_opts;
6617			}
6618
6619			/*
6620			 * Mounting a RDONLY partition read-write, so reread
6621			 * and store the current valid flag.  (It may have
6622			 * been changed by e2fsck since we originally mounted
6623			 * the partition.)
6624			 */
6625			if (sbi->s_journal) {
6626				err = ext4_clear_journal_err(sb, es);
6627				if (err)
 
 
 
 
 
 
6628					goto restore_opts;
6629			}
6630			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6631					      ~EXT4_FC_REPLAY);
6632
6633			err = ext4_setup_super(sb, es, 0);
6634			if (err)
6635				goto restore_opts;
6636
6637			sb->s_flags &= ~SB_RDONLY;
6638			if (ext4_has_feature_mmp(sb)) {
6639				err = ext4_multi_mount_protect(sb,
6640						le64_to_cpu(es->s_mmp_block));
6641				if (err)
6642					goto restore_opts;
6643			}
6644#ifdef CONFIG_QUOTA
6645			enable_quota = 1;
6646#endif
6647		}
6648	}
6649
6650	/*
6651	 * Handle creation of system zone data early because it can fail.
6652	 * Releasing of existing data is done when we are sure remount will
6653	 * succeed.
6654	 */
6655	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6656		err = ext4_setup_system_zone(sb);
6657		if (err)
6658			goto restore_opts;
 
 
6659	}
6660
6661	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6662		err = ext4_commit_super(sb);
6663		if (err)
6664			goto restore_opts;
6665	}
6666
6667#ifdef CONFIG_QUOTA
 
 
 
6668	if (enable_quota) {
6669		if (sb_any_quota_suspended(sb))
6670			dquot_resume(sb, -1);
6671		else if (ext4_has_feature_quota(sb)) {
6672			err = ext4_enable_quotas(sb);
6673			if (err)
6674				goto restore_opts;
6675		}
6676	}
6677	/* Release old quota file names */
6678	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6679		kfree(old_opts.s_qf_names[i]);
6680#endif
6681	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6682		ext4_release_system_zone(sb);
6683
6684	/*
6685	 * Reinitialize lazy itable initialization thread based on
6686	 * current settings
6687	 */
6688	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6689		ext4_unregister_li_request(sb);
6690	else {
6691		ext4_group_t first_not_zeroed;
6692		first_not_zeroed = ext4_has_uninit_itable(sb);
6693		ext4_register_li_request(sb, first_not_zeroed);
6694	}
6695
6696	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6697		ext4_stop_mmpd(sbi);
6698
 
 
 
6699	return 0;
6700
6701restore_opts:
6702	/*
6703	 * If there was a failing r/w to ro transition, we may need to
6704	 * re-enable quota
6705	 */
6706	if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6707	    sb_any_quota_suspended(sb))
6708		dquot_resume(sb, -1);
6709
6710	alloc_ctx = ext4_writepages_down_write(sb);
6711	sb->s_flags = old_sb_flags;
6712	sbi->s_mount_opt = old_opts.s_mount_opt;
6713	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6714	sbi->s_resuid = old_opts.s_resuid;
6715	sbi->s_resgid = old_opts.s_resgid;
6716	sbi->s_commit_interval = old_opts.s_commit_interval;
6717	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6718	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6719	ext4_writepages_up_write(sb, alloc_ctx);
6720
6721	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6722		ext4_release_system_zone(sb);
6723#ifdef CONFIG_QUOTA
6724	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6725	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6726		to_free[i] = get_qf_name(sb, sbi, i);
6727		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6728	}
6729	synchronize_rcu();
6730	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6731		kfree(to_free[i]);
6732#endif
6733	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6734		ext4_stop_mmpd(sbi);
6735	return err;
6736}
6737
6738static int ext4_reconfigure(struct fs_context *fc)
6739{
6740	struct super_block *sb = fc->root->d_sb;
6741	int ret;
6742
6743	fc->s_fs_info = EXT4_SB(sb);
6744
6745	ret = ext4_check_opt_consistency(fc, sb);
6746	if (ret < 0)
6747		return ret;
6748
6749	ret = __ext4_remount(fc, sb);
6750	if (ret < 0)
6751		return ret;
6752
6753	ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6754		 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6755		 ext4_quota_mode(sb));
6756
6757	return 0;
6758}
6759
6760#ifdef CONFIG_QUOTA
6761static int ext4_statfs_project(struct super_block *sb,
6762			       kprojid_t projid, struct kstatfs *buf)
6763{
6764	struct kqid qid;
6765	struct dquot *dquot;
6766	u64 limit;
6767	u64 curblock;
6768
6769	qid = make_kqid_projid(projid);
6770	dquot = dqget(sb, qid);
6771	if (IS_ERR(dquot))
6772		return PTR_ERR(dquot);
6773	spin_lock(&dquot->dq_dqb_lock);
6774
6775	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6776			     dquot->dq_dqb.dqb_bhardlimit);
6777	limit >>= sb->s_blocksize_bits;
6778
6779	if (limit && buf->f_blocks > limit) {
6780		curblock = (dquot->dq_dqb.dqb_curspace +
6781			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6782		buf->f_blocks = limit;
6783		buf->f_bfree = buf->f_bavail =
6784			(buf->f_blocks > curblock) ?
6785			 (buf->f_blocks - curblock) : 0;
6786	}
6787
6788	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6789			     dquot->dq_dqb.dqb_ihardlimit);
 
6790	if (limit && buf->f_files > limit) {
6791		buf->f_files = limit;
6792		buf->f_ffree =
6793			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6794			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6795	}
6796
6797	spin_unlock(&dquot->dq_dqb_lock);
6798	dqput(dquot);
6799	return 0;
6800}
6801#endif
6802
6803static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6804{
6805	struct super_block *sb = dentry->d_sb;
6806	struct ext4_sb_info *sbi = EXT4_SB(sb);
6807	struct ext4_super_block *es = sbi->s_es;
6808	ext4_fsblk_t overhead = 0, resv_blocks;
 
6809	s64 bfree;
6810	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6811
6812	if (!test_opt(sb, MINIX_DF))
6813		overhead = sbi->s_overhead;
6814
6815	buf->f_type = EXT4_SUPER_MAGIC;
6816	buf->f_bsize = sb->s_blocksize;
6817	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6818	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6819		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6820	/* prevent underflow in case that few free space is available */
6821	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6822	buf->f_bavail = buf->f_bfree -
6823			(ext4_r_blocks_count(es) + resv_blocks);
6824	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6825		buf->f_bavail = 0;
6826	buf->f_files = le32_to_cpu(es->s_inodes_count);
6827	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6828	buf->f_namelen = EXT4_NAME_LEN;
6829	buf->f_fsid = uuid_to_fsid(es->s_uuid);
 
 
 
6830
6831#ifdef CONFIG_QUOTA
6832	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6833	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6834		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6835#endif
6836	return 0;
6837}
6838
6839
6840#ifdef CONFIG_QUOTA
6841
6842/*
6843 * Helper functions so that transaction is started before we acquire dqio_sem
6844 * to keep correct lock ordering of transaction > dqio_sem
6845 */
6846static inline struct inode *dquot_to_inode(struct dquot *dquot)
6847{
6848	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6849}
6850
6851static int ext4_write_dquot(struct dquot *dquot)
6852{
6853	int ret, err;
6854	handle_t *handle;
6855	struct inode *inode;
6856
6857	inode = dquot_to_inode(dquot);
6858	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6859				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6860	if (IS_ERR(handle))
6861		return PTR_ERR(handle);
6862	ret = dquot_commit(dquot);
6863	if (ret < 0)
6864		ext4_error_err(dquot->dq_sb, -ret,
6865			       "Failed to commit dquot type %d",
6866			       dquot->dq_id.type);
6867	err = ext4_journal_stop(handle);
6868	if (!ret)
6869		ret = err;
6870	return ret;
6871}
6872
6873static int ext4_acquire_dquot(struct dquot *dquot)
6874{
6875	int ret, err;
6876	handle_t *handle;
6877
6878	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6879				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6880	if (IS_ERR(handle))
6881		return PTR_ERR(handle);
6882	ret = dquot_acquire(dquot);
6883	if (ret < 0)
6884		ext4_error_err(dquot->dq_sb, -ret,
6885			      "Failed to acquire dquot type %d",
6886			      dquot->dq_id.type);
6887	err = ext4_journal_stop(handle);
6888	if (!ret)
6889		ret = err;
6890	return ret;
6891}
6892
6893static int ext4_release_dquot(struct dquot *dquot)
6894{
6895	int ret, err;
6896	handle_t *handle;
6897
6898	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6899				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6900	if (IS_ERR(handle)) {
6901		/* Release dquot anyway to avoid endless cycle in dqput() */
6902		dquot_release(dquot);
6903		return PTR_ERR(handle);
6904	}
6905	ret = dquot_release(dquot);
6906	if (ret < 0)
6907		ext4_error_err(dquot->dq_sb, -ret,
6908			       "Failed to release dquot type %d",
6909			       dquot->dq_id.type);
6910	err = ext4_journal_stop(handle);
6911	if (!ret)
6912		ret = err;
6913	return ret;
6914}
6915
6916static int ext4_mark_dquot_dirty(struct dquot *dquot)
6917{
6918	struct super_block *sb = dquot->dq_sb;
 
6919
6920	if (ext4_is_quota_journalled(sb)) {
 
 
6921		dquot_mark_dquot_dirty(dquot);
6922		return ext4_write_dquot(dquot);
6923	} else {
6924		return dquot_mark_dquot_dirty(dquot);
6925	}
6926}
6927
6928static int ext4_write_info(struct super_block *sb, int type)
6929{
6930	int ret, err;
6931	handle_t *handle;
6932
6933	/* Data block + inode block */
6934	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6935	if (IS_ERR(handle))
6936		return PTR_ERR(handle);
6937	ret = dquot_commit_info(sb, type);
6938	err = ext4_journal_stop(handle);
6939	if (!ret)
6940		ret = err;
6941	return ret;
6942}
6943
 
 
 
 
 
 
 
 
 
 
6944static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6945{
6946	struct ext4_inode_info *ei = EXT4_I(inode);
6947
6948	/* The first argument of lockdep_set_subclass has to be
6949	 * *exactly* the same as the argument to init_rwsem() --- in
6950	 * this case, in init_once() --- or lockdep gets unhappy
6951	 * because the name of the lock is set using the
6952	 * stringification of the argument to init_rwsem().
6953	 */
6954	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6955	lockdep_set_subclass(&ei->i_data_sem, subclass);
6956}
6957
6958/*
6959 * Standard function to be called on quota_on
6960 */
6961static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6962			 const struct path *path)
6963{
6964	int err;
6965
6966	if (!test_opt(sb, QUOTA))
6967		return -EINVAL;
6968
6969	/* Quotafile not on the same filesystem? */
6970	if (path->dentry->d_sb != sb)
6971		return -EXDEV;
6972
6973	/* Quota already enabled for this file? */
6974	if (IS_NOQUOTA(d_inode(path->dentry)))
6975		return -EBUSY;
6976
6977	/* Journaling quota? */
6978	if (EXT4_SB(sb)->s_qf_names[type]) {
6979		/* Quotafile not in fs root? */
6980		if (path->dentry->d_parent != sb->s_root)
6981			ext4_msg(sb, KERN_WARNING,
6982				"Quota file not on filesystem root. "
6983				"Journaled quota will not work");
6984		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6985	} else {
6986		/*
6987		 * Clear the flag just in case mount options changed since
6988		 * last time.
6989		 */
6990		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6991	}
6992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6993	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6994	err = dquot_quota_on(sb, type, format_id, path);
6995	if (!err) {
 
 
 
6996		struct inode *inode = d_inode(path->dentry);
6997		handle_t *handle;
6998
6999		/*
7000		 * Set inode flags to prevent userspace from messing with quota
7001		 * files. If this fails, we return success anyway since quotas
7002		 * are already enabled and this is not a hard failure.
7003		 */
7004		inode_lock(inode);
7005		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7006		if (IS_ERR(handle))
7007			goto unlock_inode;
7008		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7009		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7010				S_NOATIME | S_IMMUTABLE);
7011		err = ext4_mark_inode_dirty(handle, inode);
7012		ext4_journal_stop(handle);
7013	unlock_inode:
7014		inode_unlock(inode);
7015		if (err)
7016			dquot_quota_off(sb, type);
7017	}
7018	if (err)
7019		lockdep_set_quota_inode(path->dentry->d_inode,
7020					     I_DATA_SEM_NORMAL);
7021	return err;
7022}
7023
7024static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7025{
7026	switch (type) {
7027	case USRQUOTA:
7028		return qf_inum == EXT4_USR_QUOTA_INO;
7029	case GRPQUOTA:
7030		return qf_inum == EXT4_GRP_QUOTA_INO;
7031	case PRJQUOTA:
7032		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7033	default:
7034		BUG();
7035	}
7036}
7037
7038static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7039			     unsigned int flags)
7040{
7041	int err;
7042	struct inode *qf_inode;
7043	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7044		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7045		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7046		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7047	};
7048
7049	BUG_ON(!ext4_has_feature_quota(sb));
7050
7051	if (!qf_inums[type])
7052		return -EPERM;
7053
7054	if (!ext4_check_quota_inum(type, qf_inums[type])) {
7055		ext4_error(sb, "Bad quota inum: %lu, type: %d",
7056				qf_inums[type], type);
7057		return -EUCLEAN;
7058	}
7059
7060	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7061	if (IS_ERR(qf_inode)) {
7062		ext4_error(sb, "Bad quota inode: %lu, type: %d",
7063				qf_inums[type], type);
7064		return PTR_ERR(qf_inode);
7065	}
7066
7067	/* Don't account quota for quota files to avoid recursion */
7068	qf_inode->i_flags |= S_NOQUOTA;
7069	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7070	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
 
7071	if (err)
7072		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7073	iput(qf_inode);
7074
7075	return err;
7076}
7077
7078/* Enable usage tracking for all quota types. */
7079int ext4_enable_quotas(struct super_block *sb)
7080{
7081	int type, err = 0;
7082	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7083		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7084		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7085		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7086	};
7087	bool quota_mopt[EXT4_MAXQUOTAS] = {
7088		test_opt(sb, USRQUOTA),
7089		test_opt(sb, GRPQUOTA),
7090		test_opt(sb, PRJQUOTA),
7091	};
7092
7093	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7094	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7095		if (qf_inums[type]) {
7096			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7097				DQUOT_USAGE_ENABLED |
7098				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7099			if (err) {
 
 
 
7100				ext4_warning(sb,
7101					"Failed to enable quota tracking "
7102					"(type=%d, err=%d, ino=%lu). "
7103					"Please run e2fsck to fix.", type,
7104					err, qf_inums[type]);
7105
7106				ext4_quotas_off(sb, type);
7107				return err;
7108			}
7109		}
7110	}
7111	return 0;
7112}
7113
7114static int ext4_quota_off(struct super_block *sb, int type)
7115{
7116	struct inode *inode = sb_dqopt(sb)->files[type];
7117	handle_t *handle;
7118	int err;
7119
7120	/* Force all delayed allocation blocks to be allocated.
7121	 * Caller already holds s_umount sem */
7122	if (test_opt(sb, DELALLOC))
7123		sync_filesystem(sb);
7124
7125	if (!inode || !igrab(inode))
7126		goto out;
7127
7128	err = dquot_quota_off(sb, type);
7129	if (err || ext4_has_feature_quota(sb))
7130		goto out_put;
7131	/*
7132	 * When the filesystem was remounted read-only first, we cannot cleanup
7133	 * inode flags here. Bad luck but people should be using QUOTA feature
7134	 * these days anyway.
7135	 */
7136	if (sb_rdonly(sb))
7137		goto out_put;
7138
7139	inode_lock(inode);
7140	/*
7141	 * Update modification times of quota files when userspace can
7142	 * start looking at them. If we fail, we return success anyway since
7143	 * this is not a hard failure and quotas are already disabled.
7144	 */
7145	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7146	if (IS_ERR(handle)) {
7147		err = PTR_ERR(handle);
7148		goto out_unlock;
7149	}
7150	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7151	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7152	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7153	err = ext4_mark_inode_dirty(handle, inode);
7154	ext4_journal_stop(handle);
7155out_unlock:
7156	inode_unlock(inode);
7157out_put:
7158	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7159	iput(inode);
7160	return err;
7161out:
7162	return dquot_quota_off(sb, type);
7163}
7164
7165/* Read data from quotafile - avoid pagecache and such because we cannot afford
7166 * acquiring the locks... As quota files are never truncated and quota code
7167 * itself serializes the operations (and no one else should touch the files)
7168 * we don't have to be afraid of races */
7169static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7170			       size_t len, loff_t off)
7171{
7172	struct inode *inode = sb_dqopt(sb)->files[type];
7173	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7174	int offset = off & (sb->s_blocksize - 1);
7175	int tocopy;
7176	size_t toread;
7177	struct buffer_head *bh;
7178	loff_t i_size = i_size_read(inode);
7179
7180	if (off > i_size)
7181		return 0;
7182	if (off+len > i_size)
7183		len = i_size-off;
7184	toread = len;
7185	while (toread > 0) {
7186		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
 
7187		bh = ext4_bread(NULL, inode, blk, 0);
7188		if (IS_ERR(bh))
7189			return PTR_ERR(bh);
7190		if (!bh)	/* A hole? */
7191			memset(data, 0, tocopy);
7192		else
7193			memcpy(data, bh->b_data+offset, tocopy);
7194		brelse(bh);
7195		offset = 0;
7196		toread -= tocopy;
7197		data += tocopy;
7198		blk++;
7199	}
7200	return len;
7201}
7202
7203/* Write to quotafile (we know the transaction is already started and has
7204 * enough credits) */
7205static ssize_t ext4_quota_write(struct super_block *sb, int type,
7206				const char *data, size_t len, loff_t off)
7207{
7208	struct inode *inode = sb_dqopt(sb)->files[type];
7209	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7210	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7211	int retries = 0;
7212	struct buffer_head *bh;
7213	handle_t *handle = journal_current_handle();
7214
7215	if (!handle) {
7216		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7217			" cancelled because transaction is not started",
7218			(unsigned long long)off, (unsigned long long)len);
7219		return -EIO;
7220	}
7221	/*
7222	 * Since we account only one data block in transaction credits,
7223	 * then it is impossible to cross a block boundary.
7224	 */
7225	if (sb->s_blocksize - offset < len) {
7226		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7227			" cancelled because not block aligned",
7228			(unsigned long long)off, (unsigned long long)len);
7229		return -EIO;
7230	}
7231
7232	do {
7233		bh = ext4_bread(handle, inode, blk,
7234				EXT4_GET_BLOCKS_CREATE |
7235				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7236	} while (PTR_ERR(bh) == -ENOSPC &&
7237		 ext4_should_retry_alloc(inode->i_sb, &retries));
7238	if (IS_ERR(bh))
7239		return PTR_ERR(bh);
7240	if (!bh)
7241		goto out;
7242	BUFFER_TRACE(bh, "get write access");
7243	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7244	if (err) {
7245		brelse(bh);
7246		return err;
7247	}
7248	lock_buffer(bh);
7249	memcpy(bh->b_data+offset, data, len);
7250	flush_dcache_page(bh->b_page);
7251	unlock_buffer(bh);
7252	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7253	brelse(bh);
7254out:
7255	if (inode->i_size < off + len) {
7256		i_size_write(inode, off + len);
7257		EXT4_I(inode)->i_disksize = inode->i_size;
7258		err2 = ext4_mark_inode_dirty(handle, inode);
7259		if (unlikely(err2 && !err))
7260			err = err2;
7261	}
7262	return err ? err : len;
 
 
 
 
 
 
 
 
 
 
 
 
7263}
7264#endif
7265
 
 
 
 
 
 
7266#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7267static inline void register_as_ext2(void)
7268{
7269	int err = register_filesystem(&ext2_fs_type);
7270	if (err)
7271		printk(KERN_WARNING
7272		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7273}
7274
7275static inline void unregister_as_ext2(void)
7276{
7277	unregister_filesystem(&ext2_fs_type);
7278}
7279
7280static inline int ext2_feature_set_ok(struct super_block *sb)
7281{
7282	if (ext4_has_unknown_ext2_incompat_features(sb))
7283		return 0;
7284	if (sb_rdonly(sb))
7285		return 1;
7286	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7287		return 0;
7288	return 1;
7289}
7290#else
7291static inline void register_as_ext2(void) { }
7292static inline void unregister_as_ext2(void) { }
7293static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7294#endif
7295
7296static inline void register_as_ext3(void)
7297{
7298	int err = register_filesystem(&ext3_fs_type);
7299	if (err)
7300		printk(KERN_WARNING
7301		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7302}
7303
7304static inline void unregister_as_ext3(void)
7305{
7306	unregister_filesystem(&ext3_fs_type);
7307}
7308
7309static inline int ext3_feature_set_ok(struct super_block *sb)
7310{
7311	if (ext4_has_unknown_ext3_incompat_features(sb))
7312		return 0;
7313	if (!ext4_has_feature_journal(sb))
7314		return 0;
7315	if (sb_rdonly(sb))
7316		return 1;
7317	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7318		return 0;
7319	return 1;
7320}
7321
7322static void ext4_kill_sb(struct super_block *sb)
7323{
7324	struct ext4_sb_info *sbi = EXT4_SB(sb);
7325	struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL;
7326
7327	kill_block_super(sb);
7328
7329	if (bdev_file)
7330		bdev_fput(bdev_file);
7331}
7332
7333static struct file_system_type ext4_fs_type = {
7334	.owner			= THIS_MODULE,
7335	.name			= "ext4",
7336	.init_fs_context	= ext4_init_fs_context,
7337	.parameters		= ext4_param_specs,
7338	.kill_sb		= ext4_kill_sb,
7339	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7340};
7341MODULE_ALIAS_FS("ext4");
7342
7343/* Shared across all ext4 file systems */
7344wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7345
7346static int __init ext4_init_fs(void)
7347{
7348	int i, err;
7349
7350	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7351	ext4_li_info = NULL;
 
7352
7353	/* Build-time check for flags consistency */
7354	ext4_check_flag_values();
7355
7356	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7357		init_waitqueue_head(&ext4__ioend_wq[i]);
7358
7359	err = ext4_init_es();
7360	if (err)
7361		return err;
7362
7363	err = ext4_init_pending();
7364	if (err)
7365		goto out7;
7366
7367	err = ext4_init_post_read_processing();
7368	if (err)
7369		goto out6;
7370
7371	err = ext4_init_pageio();
7372	if (err)
7373		goto out5;
7374
7375	err = ext4_init_system_zone();
7376	if (err)
7377		goto out4;
7378
7379	err = ext4_init_sysfs();
7380	if (err)
7381		goto out3;
7382
7383	err = ext4_init_mballoc();
7384	if (err)
7385		goto out2;
7386	err = init_inodecache();
7387	if (err)
7388		goto out1;
7389
7390	err = ext4_fc_init_dentry_cache();
7391	if (err)
7392		goto out05;
7393
7394	register_as_ext3();
7395	register_as_ext2();
7396	err = register_filesystem(&ext4_fs_type);
7397	if (err)
7398		goto out;
7399
7400	return 0;
7401out:
7402	unregister_as_ext2();
7403	unregister_as_ext3();
7404	ext4_fc_destroy_dentry_cache();
7405out05:
7406	destroy_inodecache();
7407out1:
7408	ext4_exit_mballoc();
7409out2:
7410	ext4_exit_sysfs();
7411out3:
7412	ext4_exit_system_zone();
7413out4:
7414	ext4_exit_pageio();
7415out5:
7416	ext4_exit_post_read_processing();
7417out6:
7418	ext4_exit_pending();
7419out7:
7420	ext4_exit_es();
7421
7422	return err;
7423}
7424
7425static void __exit ext4_exit_fs(void)
7426{
7427	ext4_destroy_lazyinit_thread();
7428	unregister_as_ext2();
7429	unregister_as_ext3();
7430	unregister_filesystem(&ext4_fs_type);
7431	ext4_fc_destroy_dentry_cache();
7432	destroy_inodecache();
7433	ext4_exit_mballoc();
7434	ext4_exit_sysfs();
7435	ext4_exit_system_zone();
7436	ext4_exit_pageio();
7437	ext4_exit_post_read_processing();
7438	ext4_exit_es();
7439	ext4_exit_pending();
7440}
7441
7442MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7443MODULE_DESCRIPTION("Fourth Extended Filesystem");
7444MODULE_LICENSE("GPL");
7445MODULE_SOFTDEP("pre: crc32c");
7446module_init(ext4_init_fs)
7447module_exit(ext4_exit_fs)