Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20#include <linux/module.h>
21#include <linux/string.h>
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/vmalloc.h>
25#include <linux/slab.h>
26#include <linux/init.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
29#include <linux/parser.h>
30#include <linux/buffer_head.h>
31#include <linux/exportfs.h>
32#include <linux/vfs.h>
33#include <linux/random.h>
34#include <linux/mount.h>
35#include <linux/namei.h>
36#include <linux/quotaops.h>
37#include <linux/seq_file.h>
38#include <linux/ctype.h>
39#include <linux/log2.h>
40#include <linux/crc16.h>
41#include <linux/dax.h>
42#include <linux/cleancache.h>
43#include <linux/uaccess.h>
44#include <linux/iversion.h>
45
46#include <linux/kthread.h>
47#include <linux/freezer.h>
48
49#include "ext4.h"
50#include "ext4_extents.h" /* Needed for trace points definition */
51#include "ext4_jbd2.h"
52#include "xattr.h"
53#include "acl.h"
54#include "mballoc.h"
55#include "fsmap.h"
56
57#define CREATE_TRACE_POINTS
58#include <trace/events/ext4.h>
59
60static struct ext4_lazy_init *ext4_li_info;
61static struct mutex ext4_li_mtx;
62static struct ratelimit_state ext4_mount_msg_ratelimit;
63
64static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67static int ext4_commit_super(struct super_block *sb, int sync);
68static void ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70static void ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72static int ext4_sync_fs(struct super_block *sb, int wait);
73static int ext4_remount(struct super_block *sb, int *flags, char *data);
74static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75static int ext4_unfreeze(struct super_block *sb);
76static int ext4_freeze(struct super_block *sb);
77static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79static inline int ext2_feature_set_ok(struct super_block *sb);
80static inline int ext3_feature_set_ok(struct super_block *sb);
81static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82static void ext4_destroy_lazyinit_thread(void);
83static void ext4_unregister_li_request(struct super_block *sb);
84static void ext4_clear_request_list(void);
85static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87
88/*
89 * Lock ordering
90 *
91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
92 * i_mmap_rwsem (inode->i_mmap_rwsem)!
93 *
94 * page fault path:
95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
96 * page lock -> i_data_sem (rw)
97 *
98 * buffered write path:
99 * sb_start_write -> i_mutex -> mmap_sem
100 * sb_start_write -> i_mutex -> transaction start -> page lock ->
101 * i_data_sem (rw)
102 *
103 * truncate:
104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
106 * i_data_sem (rw)
107 *
108 * direct IO:
109 * sb_start_write -> i_mutex -> mmap_sem
110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
111 *
112 * writepages:
113 * transaction start -> page lock(s) -> i_data_sem (rw)
114 */
115
116#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117static struct file_system_type ext2_fs_type = {
118 .owner = THIS_MODULE,
119 .name = "ext2",
120 .mount = ext4_mount,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
123};
124MODULE_ALIAS_FS("ext2");
125MODULE_ALIAS("ext2");
126#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127#else
128#define IS_EXT2_SB(sb) (0)
129#endif
130
131
132static struct file_system_type ext3_fs_type = {
133 .owner = THIS_MODULE,
134 .name = "ext3",
135 .mount = ext4_mount,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
138};
139MODULE_ALIAS_FS("ext3");
140MODULE_ALIAS("ext3");
141#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
142
143static int ext4_verify_csum_type(struct super_block *sb,
144 struct ext4_super_block *es)
145{
146 if (!ext4_has_feature_metadata_csum(sb))
147 return 1;
148
149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
150}
151
152static __le32 ext4_superblock_csum(struct super_block *sb,
153 struct ext4_super_block *es)
154{
155 struct ext4_sb_info *sbi = EXT4_SB(sb);
156 int offset = offsetof(struct ext4_super_block, s_checksum);
157 __u32 csum;
158
159 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
160
161 return cpu_to_le32(csum);
162}
163
164static int ext4_superblock_csum_verify(struct super_block *sb,
165 struct ext4_super_block *es)
166{
167 if (!ext4_has_metadata_csum(sb))
168 return 1;
169
170 return es->s_checksum == ext4_superblock_csum(sb, es);
171}
172
173void ext4_superblock_csum_set(struct super_block *sb)
174{
175 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
176
177 if (!ext4_has_metadata_csum(sb))
178 return;
179
180 es->s_checksum = ext4_superblock_csum(sb, es);
181}
182
183void *ext4_kvmalloc(size_t size, gfp_t flags)
184{
185 void *ret;
186
187 ret = kmalloc(size, flags | __GFP_NOWARN);
188 if (!ret)
189 ret = __vmalloc(size, flags, PAGE_KERNEL);
190 return ret;
191}
192
193void *ext4_kvzalloc(size_t size, gfp_t flags)
194{
195 void *ret;
196
197 ret = kzalloc(size, flags | __GFP_NOWARN);
198 if (!ret)
199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
200 return ret;
201}
202
203ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204 struct ext4_group_desc *bg)
205{
206 return le32_to_cpu(bg->bg_block_bitmap_lo) |
207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
209}
210
211ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212 struct ext4_group_desc *bg)
213{
214 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
217}
218
219ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220 struct ext4_group_desc *bg)
221{
222 return le32_to_cpu(bg->bg_inode_table_lo) |
223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
225}
226
227__u32 ext4_free_group_clusters(struct super_block *sb,
228 struct ext4_group_desc *bg)
229{
230 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
233}
234
235__u32 ext4_free_inodes_count(struct super_block *sb,
236 struct ext4_group_desc *bg)
237{
238 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
241}
242
243__u32 ext4_used_dirs_count(struct super_block *sb,
244 struct ext4_group_desc *bg)
245{
246 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
249}
250
251__u32 ext4_itable_unused_count(struct super_block *sb,
252 struct ext4_group_desc *bg)
253{
254 return le16_to_cpu(bg->bg_itable_unused_lo) |
255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
257}
258
259void ext4_block_bitmap_set(struct super_block *sb,
260 struct ext4_group_desc *bg, ext4_fsblk_t blk)
261{
262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
265}
266
267void ext4_inode_bitmap_set(struct super_block *sb,
268 struct ext4_group_desc *bg, ext4_fsblk_t blk)
269{
270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
273}
274
275void ext4_inode_table_set(struct super_block *sb,
276 struct ext4_group_desc *bg, ext4_fsblk_t blk)
277{
278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
281}
282
283void ext4_free_group_clusters_set(struct super_block *sb,
284 struct ext4_group_desc *bg, __u32 count)
285{
286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
289}
290
291void ext4_free_inodes_set(struct super_block *sb,
292 struct ext4_group_desc *bg, __u32 count)
293{
294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
297}
298
299void ext4_used_dirs_set(struct super_block *sb,
300 struct ext4_group_desc *bg, __u32 count)
301{
302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
305}
306
307void ext4_itable_unused_set(struct super_block *sb,
308 struct ext4_group_desc *bg, __u32 count)
309{
310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
313}
314
315
316static void __save_error_info(struct super_block *sb, const char *func,
317 unsigned int line)
318{
319 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
320
321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
322 if (bdev_read_only(sb->s_bdev))
323 return;
324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
325 es->s_last_error_time = cpu_to_le32(get_seconds());
326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
327 es->s_last_error_line = cpu_to_le32(line);
328 if (!es->s_first_error_time) {
329 es->s_first_error_time = es->s_last_error_time;
330 strncpy(es->s_first_error_func, func,
331 sizeof(es->s_first_error_func));
332 es->s_first_error_line = cpu_to_le32(line);
333 es->s_first_error_ino = es->s_last_error_ino;
334 es->s_first_error_block = es->s_last_error_block;
335 }
336 /*
337 * Start the daily error reporting function if it hasn't been
338 * started already
339 */
340 if (!es->s_error_count)
341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
342 le32_add_cpu(&es->s_error_count, 1);
343}
344
345static void save_error_info(struct super_block *sb, const char *func,
346 unsigned int line)
347{
348 __save_error_info(sb, func, line);
349 ext4_commit_super(sb, 1);
350}
351
352/*
353 * The del_gendisk() function uninitializes the disk-specific data
354 * structures, including the bdi structure, without telling anyone
355 * else. Once this happens, any attempt to call mark_buffer_dirty()
356 * (for example, by ext4_commit_super), will cause a kernel OOPS.
357 * This is a kludge to prevent these oops until we can put in a proper
358 * hook in del_gendisk() to inform the VFS and file system layers.
359 */
360static int block_device_ejected(struct super_block *sb)
361{
362 struct inode *bd_inode = sb->s_bdev->bd_inode;
363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
364
365 return bdi->dev == NULL;
366}
367
368static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
369{
370 struct super_block *sb = journal->j_private;
371 struct ext4_sb_info *sbi = EXT4_SB(sb);
372 int error = is_journal_aborted(journal);
373 struct ext4_journal_cb_entry *jce;
374
375 BUG_ON(txn->t_state == T_FINISHED);
376
377 ext4_process_freed_data(sb, txn->t_tid);
378
379 spin_lock(&sbi->s_md_lock);
380 while (!list_empty(&txn->t_private_list)) {
381 jce = list_entry(txn->t_private_list.next,
382 struct ext4_journal_cb_entry, jce_list);
383 list_del_init(&jce->jce_list);
384 spin_unlock(&sbi->s_md_lock);
385 jce->jce_func(sb, jce, error);
386 spin_lock(&sbi->s_md_lock);
387 }
388 spin_unlock(&sbi->s_md_lock);
389}
390
391/* Deal with the reporting of failure conditions on a filesystem such as
392 * inconsistencies detected or read IO failures.
393 *
394 * On ext2, we can store the error state of the filesystem in the
395 * superblock. That is not possible on ext4, because we may have other
396 * write ordering constraints on the superblock which prevent us from
397 * writing it out straight away; and given that the journal is about to
398 * be aborted, we can't rely on the current, or future, transactions to
399 * write out the superblock safely.
400 *
401 * We'll just use the jbd2_journal_abort() error code to record an error in
402 * the journal instead. On recovery, the journal will complain about
403 * that error until we've noted it down and cleared it.
404 */
405
406static void ext4_handle_error(struct super_block *sb)
407{
408 if (sb_rdonly(sb))
409 return;
410
411 if (!test_opt(sb, ERRORS_CONT)) {
412 journal_t *journal = EXT4_SB(sb)->s_journal;
413
414 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
415 if (journal)
416 jbd2_journal_abort(journal, -EIO);
417 }
418 if (test_opt(sb, ERRORS_RO)) {
419 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
420 /*
421 * Make sure updated value of ->s_mount_flags will be visible
422 * before ->s_flags update
423 */
424 smp_wmb();
425 sb->s_flags |= SB_RDONLY;
426 }
427 if (test_opt(sb, ERRORS_PANIC)) {
428 if (EXT4_SB(sb)->s_journal &&
429 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
430 return;
431 panic("EXT4-fs (device %s): panic forced after error\n",
432 sb->s_id);
433 }
434}
435
436#define ext4_error_ratelimit(sb) \
437 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
438 "EXT4-fs error")
439
440void __ext4_error(struct super_block *sb, const char *function,
441 unsigned int line, const char *fmt, ...)
442{
443 struct va_format vaf;
444 va_list args;
445
446 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
447 return;
448
449 trace_ext4_error(sb, function, line);
450 if (ext4_error_ratelimit(sb)) {
451 va_start(args, fmt);
452 vaf.fmt = fmt;
453 vaf.va = &args;
454 printk(KERN_CRIT
455 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
456 sb->s_id, function, line, current->comm, &vaf);
457 va_end(args);
458 }
459 save_error_info(sb, function, line);
460 ext4_handle_error(sb);
461}
462
463void __ext4_error_inode(struct inode *inode, const char *function,
464 unsigned int line, ext4_fsblk_t block,
465 const char *fmt, ...)
466{
467 va_list args;
468 struct va_format vaf;
469 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
470
471 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
472 return;
473
474 trace_ext4_error(inode->i_sb, function, line);
475 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
476 es->s_last_error_block = cpu_to_le64(block);
477 if (ext4_error_ratelimit(inode->i_sb)) {
478 va_start(args, fmt);
479 vaf.fmt = fmt;
480 vaf.va = &args;
481 if (block)
482 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
483 "inode #%lu: block %llu: comm %s: %pV\n",
484 inode->i_sb->s_id, function, line, inode->i_ino,
485 block, current->comm, &vaf);
486 else
487 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
488 "inode #%lu: comm %s: %pV\n",
489 inode->i_sb->s_id, function, line, inode->i_ino,
490 current->comm, &vaf);
491 va_end(args);
492 }
493 save_error_info(inode->i_sb, function, line);
494 ext4_handle_error(inode->i_sb);
495}
496
497void __ext4_error_file(struct file *file, const char *function,
498 unsigned int line, ext4_fsblk_t block,
499 const char *fmt, ...)
500{
501 va_list args;
502 struct va_format vaf;
503 struct ext4_super_block *es;
504 struct inode *inode = file_inode(file);
505 char pathname[80], *path;
506
507 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
508 return;
509
510 trace_ext4_error(inode->i_sb, function, line);
511 es = EXT4_SB(inode->i_sb)->s_es;
512 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
513 if (ext4_error_ratelimit(inode->i_sb)) {
514 path = file_path(file, pathname, sizeof(pathname));
515 if (IS_ERR(path))
516 path = "(unknown)";
517 va_start(args, fmt);
518 vaf.fmt = fmt;
519 vaf.va = &args;
520 if (block)
521 printk(KERN_CRIT
522 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
523 "block %llu: comm %s: path %s: %pV\n",
524 inode->i_sb->s_id, function, line, inode->i_ino,
525 block, current->comm, path, &vaf);
526 else
527 printk(KERN_CRIT
528 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
529 "comm %s: path %s: %pV\n",
530 inode->i_sb->s_id, function, line, inode->i_ino,
531 current->comm, path, &vaf);
532 va_end(args);
533 }
534 save_error_info(inode->i_sb, function, line);
535 ext4_handle_error(inode->i_sb);
536}
537
538const char *ext4_decode_error(struct super_block *sb, int errno,
539 char nbuf[16])
540{
541 char *errstr = NULL;
542
543 switch (errno) {
544 case -EFSCORRUPTED:
545 errstr = "Corrupt filesystem";
546 break;
547 case -EFSBADCRC:
548 errstr = "Filesystem failed CRC";
549 break;
550 case -EIO:
551 errstr = "IO failure";
552 break;
553 case -ENOMEM:
554 errstr = "Out of memory";
555 break;
556 case -EROFS:
557 if (!sb || (EXT4_SB(sb)->s_journal &&
558 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
559 errstr = "Journal has aborted";
560 else
561 errstr = "Readonly filesystem";
562 break;
563 default:
564 /* If the caller passed in an extra buffer for unknown
565 * errors, textualise them now. Else we just return
566 * NULL. */
567 if (nbuf) {
568 /* Check for truncated error codes... */
569 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
570 errstr = nbuf;
571 }
572 break;
573 }
574
575 return errstr;
576}
577
578/* __ext4_std_error decodes expected errors from journaling functions
579 * automatically and invokes the appropriate error response. */
580
581void __ext4_std_error(struct super_block *sb, const char *function,
582 unsigned int line, int errno)
583{
584 char nbuf[16];
585 const char *errstr;
586
587 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
588 return;
589
590 /* Special case: if the error is EROFS, and we're not already
591 * inside a transaction, then there's really no point in logging
592 * an error. */
593 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
594 return;
595
596 if (ext4_error_ratelimit(sb)) {
597 errstr = ext4_decode_error(sb, errno, nbuf);
598 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
599 sb->s_id, function, line, errstr);
600 }
601
602 save_error_info(sb, function, line);
603 ext4_handle_error(sb);
604}
605
606/*
607 * ext4_abort is a much stronger failure handler than ext4_error. The
608 * abort function may be used to deal with unrecoverable failures such
609 * as journal IO errors or ENOMEM at a critical moment in log management.
610 *
611 * We unconditionally force the filesystem into an ABORT|READONLY state,
612 * unless the error response on the fs has been set to panic in which
613 * case we take the easy way out and panic immediately.
614 */
615
616void __ext4_abort(struct super_block *sb, const char *function,
617 unsigned int line, const char *fmt, ...)
618{
619 struct va_format vaf;
620 va_list args;
621
622 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
623 return;
624
625 save_error_info(sb, function, line);
626 va_start(args, fmt);
627 vaf.fmt = fmt;
628 vaf.va = &args;
629 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
630 sb->s_id, function, line, &vaf);
631 va_end(args);
632
633 if (sb_rdonly(sb) == 0) {
634 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
635 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
636 /*
637 * Make sure updated value of ->s_mount_flags will be visible
638 * before ->s_flags update
639 */
640 smp_wmb();
641 sb->s_flags |= SB_RDONLY;
642 if (EXT4_SB(sb)->s_journal)
643 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
644 save_error_info(sb, function, line);
645 }
646 if (test_opt(sb, ERRORS_PANIC)) {
647 if (EXT4_SB(sb)->s_journal &&
648 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
649 return;
650 panic("EXT4-fs panic from previous error\n");
651 }
652}
653
654void __ext4_msg(struct super_block *sb,
655 const char *prefix, const char *fmt, ...)
656{
657 struct va_format vaf;
658 va_list args;
659
660 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
661 return;
662
663 va_start(args, fmt);
664 vaf.fmt = fmt;
665 vaf.va = &args;
666 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
667 va_end(args);
668}
669
670#define ext4_warning_ratelimit(sb) \
671 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
672 "EXT4-fs warning")
673
674void __ext4_warning(struct super_block *sb, const char *function,
675 unsigned int line, const char *fmt, ...)
676{
677 struct va_format vaf;
678 va_list args;
679
680 if (!ext4_warning_ratelimit(sb))
681 return;
682
683 va_start(args, fmt);
684 vaf.fmt = fmt;
685 vaf.va = &args;
686 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
687 sb->s_id, function, line, &vaf);
688 va_end(args);
689}
690
691void __ext4_warning_inode(const struct inode *inode, const char *function,
692 unsigned int line, const char *fmt, ...)
693{
694 struct va_format vaf;
695 va_list args;
696
697 if (!ext4_warning_ratelimit(inode->i_sb))
698 return;
699
700 va_start(args, fmt);
701 vaf.fmt = fmt;
702 vaf.va = &args;
703 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
704 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
705 function, line, inode->i_ino, current->comm, &vaf);
706 va_end(args);
707}
708
709void __ext4_grp_locked_error(const char *function, unsigned int line,
710 struct super_block *sb, ext4_group_t grp,
711 unsigned long ino, ext4_fsblk_t block,
712 const char *fmt, ...)
713__releases(bitlock)
714__acquires(bitlock)
715{
716 struct va_format vaf;
717 va_list args;
718 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
719
720 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
721 return;
722
723 trace_ext4_error(sb, function, line);
724 es->s_last_error_ino = cpu_to_le32(ino);
725 es->s_last_error_block = cpu_to_le64(block);
726 __save_error_info(sb, function, line);
727
728 if (ext4_error_ratelimit(sb)) {
729 va_start(args, fmt);
730 vaf.fmt = fmt;
731 vaf.va = &args;
732 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
733 sb->s_id, function, line, grp);
734 if (ino)
735 printk(KERN_CONT "inode %lu: ", ino);
736 if (block)
737 printk(KERN_CONT "block %llu:",
738 (unsigned long long) block);
739 printk(KERN_CONT "%pV\n", &vaf);
740 va_end(args);
741 }
742
743 if (test_opt(sb, ERRORS_CONT)) {
744 ext4_commit_super(sb, 0);
745 return;
746 }
747
748 ext4_unlock_group(sb, grp);
749 ext4_commit_super(sb, 1);
750 ext4_handle_error(sb);
751 /*
752 * We only get here in the ERRORS_RO case; relocking the group
753 * may be dangerous, but nothing bad will happen since the
754 * filesystem will have already been marked read/only and the
755 * journal has been aborted. We return 1 as a hint to callers
756 * who might what to use the return value from
757 * ext4_grp_locked_error() to distinguish between the
758 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
759 * aggressively from the ext4 function in question, with a
760 * more appropriate error code.
761 */
762 ext4_lock_group(sb, grp);
763 return;
764}
765
766void ext4_update_dynamic_rev(struct super_block *sb)
767{
768 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
769
770 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
771 return;
772
773 ext4_warning(sb,
774 "updating to rev %d because of new feature flag, "
775 "running e2fsck is recommended",
776 EXT4_DYNAMIC_REV);
777
778 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
779 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
780 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
781 /* leave es->s_feature_*compat flags alone */
782 /* es->s_uuid will be set by e2fsck if empty */
783
784 /*
785 * The rest of the superblock fields should be zero, and if not it
786 * means they are likely already in use, so leave them alone. We
787 * can leave it up to e2fsck to clean up any inconsistencies there.
788 */
789}
790
791/*
792 * Open the external journal device
793 */
794static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
795{
796 struct block_device *bdev;
797 char b[BDEVNAME_SIZE];
798
799 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
800 if (IS_ERR(bdev))
801 goto fail;
802 return bdev;
803
804fail:
805 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
806 __bdevname(dev, b), PTR_ERR(bdev));
807 return NULL;
808}
809
810/*
811 * Release the journal device
812 */
813static void ext4_blkdev_put(struct block_device *bdev)
814{
815 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
816}
817
818static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
819{
820 struct block_device *bdev;
821 bdev = sbi->journal_bdev;
822 if (bdev) {
823 ext4_blkdev_put(bdev);
824 sbi->journal_bdev = NULL;
825 }
826}
827
828static inline struct inode *orphan_list_entry(struct list_head *l)
829{
830 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
831}
832
833static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
834{
835 struct list_head *l;
836
837 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
838 le32_to_cpu(sbi->s_es->s_last_orphan));
839
840 printk(KERN_ERR "sb_info orphan list:\n");
841 list_for_each(l, &sbi->s_orphan) {
842 struct inode *inode = orphan_list_entry(l);
843 printk(KERN_ERR " "
844 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
845 inode->i_sb->s_id, inode->i_ino, inode,
846 inode->i_mode, inode->i_nlink,
847 NEXT_ORPHAN(inode));
848 }
849}
850
851#ifdef CONFIG_QUOTA
852static int ext4_quota_off(struct super_block *sb, int type);
853
854static inline void ext4_quota_off_umount(struct super_block *sb)
855{
856 int type;
857
858 /* Use our quota_off function to clear inode flags etc. */
859 for (type = 0; type < EXT4_MAXQUOTAS; type++)
860 ext4_quota_off(sb, type);
861}
862#else
863static inline void ext4_quota_off_umount(struct super_block *sb)
864{
865}
866#endif
867
868static void ext4_put_super(struct super_block *sb)
869{
870 struct ext4_sb_info *sbi = EXT4_SB(sb);
871 struct ext4_super_block *es = sbi->s_es;
872 int aborted = 0;
873 int i, err;
874
875 ext4_unregister_li_request(sb);
876 ext4_quota_off_umount(sb);
877
878 destroy_workqueue(sbi->rsv_conversion_wq);
879
880 if (sbi->s_journal) {
881 aborted = is_journal_aborted(sbi->s_journal);
882 err = jbd2_journal_destroy(sbi->s_journal);
883 sbi->s_journal = NULL;
884 if ((err < 0) && !aborted)
885 ext4_abort(sb, "Couldn't clean up the journal");
886 }
887
888 ext4_unregister_sysfs(sb);
889 ext4_es_unregister_shrinker(sbi);
890 del_timer_sync(&sbi->s_err_report);
891 ext4_release_system_zone(sb);
892 ext4_mb_release(sb);
893 ext4_ext_release(sb);
894
895 if (!sb_rdonly(sb) && !aborted) {
896 ext4_clear_feature_journal_needs_recovery(sb);
897 es->s_state = cpu_to_le16(sbi->s_mount_state);
898 }
899 if (!sb_rdonly(sb))
900 ext4_commit_super(sb, 1);
901
902 for (i = 0; i < sbi->s_gdb_count; i++)
903 brelse(sbi->s_group_desc[i]);
904 kvfree(sbi->s_group_desc);
905 kvfree(sbi->s_flex_groups);
906 percpu_counter_destroy(&sbi->s_freeclusters_counter);
907 percpu_counter_destroy(&sbi->s_freeinodes_counter);
908 percpu_counter_destroy(&sbi->s_dirs_counter);
909 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
910 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
911#ifdef CONFIG_QUOTA
912 for (i = 0; i < EXT4_MAXQUOTAS; i++)
913 kfree(sbi->s_qf_names[i]);
914#endif
915
916 /* Debugging code just in case the in-memory inode orphan list
917 * isn't empty. The on-disk one can be non-empty if we've
918 * detected an error and taken the fs readonly, but the
919 * in-memory list had better be clean by this point. */
920 if (!list_empty(&sbi->s_orphan))
921 dump_orphan_list(sb, sbi);
922 J_ASSERT(list_empty(&sbi->s_orphan));
923
924 sync_blockdev(sb->s_bdev);
925 invalidate_bdev(sb->s_bdev);
926 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
927 /*
928 * Invalidate the journal device's buffers. We don't want them
929 * floating about in memory - the physical journal device may
930 * hotswapped, and it breaks the `ro-after' testing code.
931 */
932 sync_blockdev(sbi->journal_bdev);
933 invalidate_bdev(sbi->journal_bdev);
934 ext4_blkdev_remove(sbi);
935 }
936 if (sbi->s_ea_inode_cache) {
937 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
938 sbi->s_ea_inode_cache = NULL;
939 }
940 if (sbi->s_ea_block_cache) {
941 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
942 sbi->s_ea_block_cache = NULL;
943 }
944 if (sbi->s_mmp_tsk)
945 kthread_stop(sbi->s_mmp_tsk);
946 brelse(sbi->s_sbh);
947 sb->s_fs_info = NULL;
948 /*
949 * Now that we are completely done shutting down the
950 * superblock, we need to actually destroy the kobject.
951 */
952 kobject_put(&sbi->s_kobj);
953 wait_for_completion(&sbi->s_kobj_unregister);
954 if (sbi->s_chksum_driver)
955 crypto_free_shash(sbi->s_chksum_driver);
956 kfree(sbi->s_blockgroup_lock);
957 fs_put_dax(sbi->s_daxdev);
958 kfree(sbi);
959}
960
961static struct kmem_cache *ext4_inode_cachep;
962
963/*
964 * Called inside transaction, so use GFP_NOFS
965 */
966static struct inode *ext4_alloc_inode(struct super_block *sb)
967{
968 struct ext4_inode_info *ei;
969
970 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
971 if (!ei)
972 return NULL;
973
974 inode_set_iversion(&ei->vfs_inode, 1);
975 spin_lock_init(&ei->i_raw_lock);
976 INIT_LIST_HEAD(&ei->i_prealloc_list);
977 spin_lock_init(&ei->i_prealloc_lock);
978 ext4_es_init_tree(&ei->i_es_tree);
979 rwlock_init(&ei->i_es_lock);
980 INIT_LIST_HEAD(&ei->i_es_list);
981 ei->i_es_all_nr = 0;
982 ei->i_es_shk_nr = 0;
983 ei->i_es_shrink_lblk = 0;
984 ei->i_reserved_data_blocks = 0;
985 ei->i_da_metadata_calc_len = 0;
986 ei->i_da_metadata_calc_last_lblock = 0;
987 spin_lock_init(&(ei->i_block_reservation_lock));
988#ifdef CONFIG_QUOTA
989 ei->i_reserved_quota = 0;
990 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
991#endif
992 ei->jinode = NULL;
993 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
994 spin_lock_init(&ei->i_completed_io_lock);
995 ei->i_sync_tid = 0;
996 ei->i_datasync_tid = 0;
997 atomic_set(&ei->i_unwritten, 0);
998 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
999 return &ei->vfs_inode;
1000}
1001
1002static int ext4_drop_inode(struct inode *inode)
1003{
1004 int drop = generic_drop_inode(inode);
1005
1006 trace_ext4_drop_inode(inode, drop);
1007 return drop;
1008}
1009
1010static void ext4_i_callback(struct rcu_head *head)
1011{
1012 struct inode *inode = container_of(head, struct inode, i_rcu);
1013 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1014}
1015
1016static void ext4_destroy_inode(struct inode *inode)
1017{
1018 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1019 ext4_msg(inode->i_sb, KERN_ERR,
1020 "Inode %lu (%p): orphan list check failed!",
1021 inode->i_ino, EXT4_I(inode));
1022 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1023 EXT4_I(inode), sizeof(struct ext4_inode_info),
1024 true);
1025 dump_stack();
1026 }
1027 call_rcu(&inode->i_rcu, ext4_i_callback);
1028}
1029
1030static void init_once(void *foo)
1031{
1032 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1033
1034 INIT_LIST_HEAD(&ei->i_orphan);
1035 init_rwsem(&ei->xattr_sem);
1036 init_rwsem(&ei->i_data_sem);
1037 init_rwsem(&ei->i_mmap_sem);
1038 inode_init_once(&ei->vfs_inode);
1039}
1040
1041static int __init init_inodecache(void)
1042{
1043 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1044 sizeof(struct ext4_inode_info), 0,
1045 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1046 SLAB_ACCOUNT),
1047 offsetof(struct ext4_inode_info, i_data),
1048 sizeof_field(struct ext4_inode_info, i_data),
1049 init_once);
1050 if (ext4_inode_cachep == NULL)
1051 return -ENOMEM;
1052 return 0;
1053}
1054
1055static void destroy_inodecache(void)
1056{
1057 /*
1058 * Make sure all delayed rcu free inodes are flushed before we
1059 * destroy cache.
1060 */
1061 rcu_barrier();
1062 kmem_cache_destroy(ext4_inode_cachep);
1063}
1064
1065void ext4_clear_inode(struct inode *inode)
1066{
1067 invalidate_inode_buffers(inode);
1068 clear_inode(inode);
1069 dquot_drop(inode);
1070 ext4_discard_preallocations(inode);
1071 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1072 if (EXT4_I(inode)->jinode) {
1073 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1074 EXT4_I(inode)->jinode);
1075 jbd2_free_inode(EXT4_I(inode)->jinode);
1076 EXT4_I(inode)->jinode = NULL;
1077 }
1078 fscrypt_put_encryption_info(inode);
1079}
1080
1081static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1082 u64 ino, u32 generation)
1083{
1084 struct inode *inode;
1085
1086 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1087 return ERR_PTR(-ESTALE);
1088 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1089 return ERR_PTR(-ESTALE);
1090
1091 /* iget isn't really right if the inode is currently unallocated!!
1092 *
1093 * ext4_read_inode will return a bad_inode if the inode had been
1094 * deleted, so we should be safe.
1095 *
1096 * Currently we don't know the generation for parent directory, so
1097 * a generation of 0 means "accept any"
1098 */
1099 inode = ext4_iget_normal(sb, ino);
1100 if (IS_ERR(inode))
1101 return ERR_CAST(inode);
1102 if (generation && inode->i_generation != generation) {
1103 iput(inode);
1104 return ERR_PTR(-ESTALE);
1105 }
1106
1107 return inode;
1108}
1109
1110static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1111 int fh_len, int fh_type)
1112{
1113 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1114 ext4_nfs_get_inode);
1115}
1116
1117static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1118 int fh_len, int fh_type)
1119{
1120 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1121 ext4_nfs_get_inode);
1122}
1123
1124/*
1125 * Try to release metadata pages (indirect blocks, directories) which are
1126 * mapped via the block device. Since these pages could have journal heads
1127 * which would prevent try_to_free_buffers() from freeing them, we must use
1128 * jbd2 layer's try_to_free_buffers() function to release them.
1129 */
1130static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1131 gfp_t wait)
1132{
1133 journal_t *journal = EXT4_SB(sb)->s_journal;
1134
1135 WARN_ON(PageChecked(page));
1136 if (!page_has_buffers(page))
1137 return 0;
1138 if (journal)
1139 return jbd2_journal_try_to_free_buffers(journal, page,
1140 wait & ~__GFP_DIRECT_RECLAIM);
1141 return try_to_free_buffers(page);
1142}
1143
1144#ifdef CONFIG_EXT4_FS_ENCRYPTION
1145static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1146{
1147 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1148 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1149}
1150
1151static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1152 void *fs_data)
1153{
1154 handle_t *handle = fs_data;
1155 int res, res2, credits, retries = 0;
1156
1157 /*
1158 * Encrypting the root directory is not allowed because e2fsck expects
1159 * lost+found to exist and be unencrypted, and encrypting the root
1160 * directory would imply encrypting the lost+found directory as well as
1161 * the filename "lost+found" itself.
1162 */
1163 if (inode->i_ino == EXT4_ROOT_INO)
1164 return -EPERM;
1165
1166 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1167 return -EINVAL;
1168
1169 res = ext4_convert_inline_data(inode);
1170 if (res)
1171 return res;
1172
1173 /*
1174 * If a journal handle was specified, then the encryption context is
1175 * being set on a new inode via inheritance and is part of a larger
1176 * transaction to create the inode. Otherwise the encryption context is
1177 * being set on an existing inode in its own transaction. Only in the
1178 * latter case should the "retry on ENOSPC" logic be used.
1179 */
1180
1181 if (handle) {
1182 res = ext4_xattr_set_handle(handle, inode,
1183 EXT4_XATTR_INDEX_ENCRYPTION,
1184 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1185 ctx, len, 0);
1186 if (!res) {
1187 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1188 ext4_clear_inode_state(inode,
1189 EXT4_STATE_MAY_INLINE_DATA);
1190 /*
1191 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1192 * S_DAX may be disabled
1193 */
1194 ext4_set_inode_flags(inode);
1195 }
1196 return res;
1197 }
1198
1199 res = dquot_initialize(inode);
1200 if (res)
1201 return res;
1202retry:
1203 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1204 &credits);
1205 if (res)
1206 return res;
1207
1208 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1209 if (IS_ERR(handle))
1210 return PTR_ERR(handle);
1211
1212 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1213 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1214 ctx, len, 0);
1215 if (!res) {
1216 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1217 /*
1218 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1219 * S_DAX may be disabled
1220 */
1221 ext4_set_inode_flags(inode);
1222 res = ext4_mark_inode_dirty(handle, inode);
1223 if (res)
1224 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1225 }
1226 res2 = ext4_journal_stop(handle);
1227
1228 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1229 goto retry;
1230 if (!res)
1231 res = res2;
1232 return res;
1233}
1234
1235static bool ext4_dummy_context(struct inode *inode)
1236{
1237 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1238}
1239
1240static unsigned ext4_max_namelen(struct inode *inode)
1241{
1242 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1243 EXT4_NAME_LEN;
1244}
1245
1246static const struct fscrypt_operations ext4_cryptops = {
1247 .key_prefix = "ext4:",
1248 .get_context = ext4_get_context,
1249 .set_context = ext4_set_context,
1250 .dummy_context = ext4_dummy_context,
1251 .empty_dir = ext4_empty_dir,
1252 .max_namelen = ext4_max_namelen,
1253};
1254#endif
1255
1256#ifdef CONFIG_QUOTA
1257static const char * const quotatypes[] = INITQFNAMES;
1258#define QTYPE2NAME(t) (quotatypes[t])
1259
1260static int ext4_write_dquot(struct dquot *dquot);
1261static int ext4_acquire_dquot(struct dquot *dquot);
1262static int ext4_release_dquot(struct dquot *dquot);
1263static int ext4_mark_dquot_dirty(struct dquot *dquot);
1264static int ext4_write_info(struct super_block *sb, int type);
1265static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1266 const struct path *path);
1267static int ext4_quota_on_mount(struct super_block *sb, int type);
1268static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1269 size_t len, loff_t off);
1270static ssize_t ext4_quota_write(struct super_block *sb, int type,
1271 const char *data, size_t len, loff_t off);
1272static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1273 unsigned int flags);
1274static int ext4_enable_quotas(struct super_block *sb);
1275static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1276
1277static struct dquot **ext4_get_dquots(struct inode *inode)
1278{
1279 return EXT4_I(inode)->i_dquot;
1280}
1281
1282static const struct dquot_operations ext4_quota_operations = {
1283 .get_reserved_space = ext4_get_reserved_space,
1284 .write_dquot = ext4_write_dquot,
1285 .acquire_dquot = ext4_acquire_dquot,
1286 .release_dquot = ext4_release_dquot,
1287 .mark_dirty = ext4_mark_dquot_dirty,
1288 .write_info = ext4_write_info,
1289 .alloc_dquot = dquot_alloc,
1290 .destroy_dquot = dquot_destroy,
1291 .get_projid = ext4_get_projid,
1292 .get_inode_usage = ext4_get_inode_usage,
1293 .get_next_id = ext4_get_next_id,
1294};
1295
1296static const struct quotactl_ops ext4_qctl_operations = {
1297 .quota_on = ext4_quota_on,
1298 .quota_off = ext4_quota_off,
1299 .quota_sync = dquot_quota_sync,
1300 .get_state = dquot_get_state,
1301 .set_info = dquot_set_dqinfo,
1302 .get_dqblk = dquot_get_dqblk,
1303 .set_dqblk = dquot_set_dqblk,
1304 .get_nextdqblk = dquot_get_next_dqblk,
1305};
1306#endif
1307
1308static const struct super_operations ext4_sops = {
1309 .alloc_inode = ext4_alloc_inode,
1310 .destroy_inode = ext4_destroy_inode,
1311 .write_inode = ext4_write_inode,
1312 .dirty_inode = ext4_dirty_inode,
1313 .drop_inode = ext4_drop_inode,
1314 .evict_inode = ext4_evict_inode,
1315 .put_super = ext4_put_super,
1316 .sync_fs = ext4_sync_fs,
1317 .freeze_fs = ext4_freeze,
1318 .unfreeze_fs = ext4_unfreeze,
1319 .statfs = ext4_statfs,
1320 .remount_fs = ext4_remount,
1321 .show_options = ext4_show_options,
1322#ifdef CONFIG_QUOTA
1323 .quota_read = ext4_quota_read,
1324 .quota_write = ext4_quota_write,
1325 .get_dquots = ext4_get_dquots,
1326#endif
1327 .bdev_try_to_free_page = bdev_try_to_free_page,
1328};
1329
1330static const struct export_operations ext4_export_ops = {
1331 .fh_to_dentry = ext4_fh_to_dentry,
1332 .fh_to_parent = ext4_fh_to_parent,
1333 .get_parent = ext4_get_parent,
1334};
1335
1336enum {
1337 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1338 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1339 Opt_nouid32, Opt_debug, Opt_removed,
1340 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1341 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1342 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1343 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1344 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1345 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1346 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1347 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1348 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1349 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1350 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1351 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1352 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1353 Opt_inode_readahead_blks, Opt_journal_ioprio,
1354 Opt_dioread_nolock, Opt_dioread_lock,
1355 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1356 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1357};
1358
1359static const match_table_t tokens = {
1360 {Opt_bsd_df, "bsddf"},
1361 {Opt_minix_df, "minixdf"},
1362 {Opt_grpid, "grpid"},
1363 {Opt_grpid, "bsdgroups"},
1364 {Opt_nogrpid, "nogrpid"},
1365 {Opt_nogrpid, "sysvgroups"},
1366 {Opt_resgid, "resgid=%u"},
1367 {Opt_resuid, "resuid=%u"},
1368 {Opt_sb, "sb=%u"},
1369 {Opt_err_cont, "errors=continue"},
1370 {Opt_err_panic, "errors=panic"},
1371 {Opt_err_ro, "errors=remount-ro"},
1372 {Opt_nouid32, "nouid32"},
1373 {Opt_debug, "debug"},
1374 {Opt_removed, "oldalloc"},
1375 {Opt_removed, "orlov"},
1376 {Opt_user_xattr, "user_xattr"},
1377 {Opt_nouser_xattr, "nouser_xattr"},
1378 {Opt_acl, "acl"},
1379 {Opt_noacl, "noacl"},
1380 {Opt_noload, "norecovery"},
1381 {Opt_noload, "noload"},
1382 {Opt_removed, "nobh"},
1383 {Opt_removed, "bh"},
1384 {Opt_commit, "commit=%u"},
1385 {Opt_min_batch_time, "min_batch_time=%u"},
1386 {Opt_max_batch_time, "max_batch_time=%u"},
1387 {Opt_journal_dev, "journal_dev=%u"},
1388 {Opt_journal_path, "journal_path=%s"},
1389 {Opt_journal_checksum, "journal_checksum"},
1390 {Opt_nojournal_checksum, "nojournal_checksum"},
1391 {Opt_journal_async_commit, "journal_async_commit"},
1392 {Opt_abort, "abort"},
1393 {Opt_data_journal, "data=journal"},
1394 {Opt_data_ordered, "data=ordered"},
1395 {Opt_data_writeback, "data=writeback"},
1396 {Opt_data_err_abort, "data_err=abort"},
1397 {Opt_data_err_ignore, "data_err=ignore"},
1398 {Opt_offusrjquota, "usrjquota="},
1399 {Opt_usrjquota, "usrjquota=%s"},
1400 {Opt_offgrpjquota, "grpjquota="},
1401 {Opt_grpjquota, "grpjquota=%s"},
1402 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1403 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1404 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1405 {Opt_grpquota, "grpquota"},
1406 {Opt_noquota, "noquota"},
1407 {Opt_quota, "quota"},
1408 {Opt_usrquota, "usrquota"},
1409 {Opt_prjquota, "prjquota"},
1410 {Opt_barrier, "barrier=%u"},
1411 {Opt_barrier, "barrier"},
1412 {Opt_nobarrier, "nobarrier"},
1413 {Opt_i_version, "i_version"},
1414 {Opt_dax, "dax"},
1415 {Opt_stripe, "stripe=%u"},
1416 {Opt_delalloc, "delalloc"},
1417 {Opt_lazytime, "lazytime"},
1418 {Opt_nolazytime, "nolazytime"},
1419 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1420 {Opt_nodelalloc, "nodelalloc"},
1421 {Opt_removed, "mblk_io_submit"},
1422 {Opt_removed, "nomblk_io_submit"},
1423 {Opt_block_validity, "block_validity"},
1424 {Opt_noblock_validity, "noblock_validity"},
1425 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1426 {Opt_journal_ioprio, "journal_ioprio=%u"},
1427 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1428 {Opt_auto_da_alloc, "auto_da_alloc"},
1429 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1430 {Opt_dioread_nolock, "dioread_nolock"},
1431 {Opt_dioread_lock, "dioread_lock"},
1432 {Opt_discard, "discard"},
1433 {Opt_nodiscard, "nodiscard"},
1434 {Opt_init_itable, "init_itable=%u"},
1435 {Opt_init_itable, "init_itable"},
1436 {Opt_noinit_itable, "noinit_itable"},
1437 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1438 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1439 {Opt_nombcache, "nombcache"},
1440 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1441 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1442 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1443 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1444 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1445 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1446 {Opt_err, NULL},
1447};
1448
1449static ext4_fsblk_t get_sb_block(void **data)
1450{
1451 ext4_fsblk_t sb_block;
1452 char *options = (char *) *data;
1453
1454 if (!options || strncmp(options, "sb=", 3) != 0)
1455 return 1; /* Default location */
1456
1457 options += 3;
1458 /* TODO: use simple_strtoll with >32bit ext4 */
1459 sb_block = simple_strtoul(options, &options, 0);
1460 if (*options && *options != ',') {
1461 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1462 (char *) *data);
1463 return 1;
1464 }
1465 if (*options == ',')
1466 options++;
1467 *data = (void *) options;
1468
1469 return sb_block;
1470}
1471
1472#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1473static const char deprecated_msg[] =
1474 "Mount option \"%s\" will be removed by %s\n"
1475 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1476
1477#ifdef CONFIG_QUOTA
1478static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1479{
1480 struct ext4_sb_info *sbi = EXT4_SB(sb);
1481 char *qname;
1482 int ret = -1;
1483
1484 if (sb_any_quota_loaded(sb) &&
1485 !sbi->s_qf_names[qtype]) {
1486 ext4_msg(sb, KERN_ERR,
1487 "Cannot change journaled "
1488 "quota options when quota turned on");
1489 return -1;
1490 }
1491 if (ext4_has_feature_quota(sb)) {
1492 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1493 "ignored when QUOTA feature is enabled");
1494 return 1;
1495 }
1496 qname = match_strdup(args);
1497 if (!qname) {
1498 ext4_msg(sb, KERN_ERR,
1499 "Not enough memory for storing quotafile name");
1500 return -1;
1501 }
1502 if (sbi->s_qf_names[qtype]) {
1503 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1504 ret = 1;
1505 else
1506 ext4_msg(sb, KERN_ERR,
1507 "%s quota file already specified",
1508 QTYPE2NAME(qtype));
1509 goto errout;
1510 }
1511 if (strchr(qname, '/')) {
1512 ext4_msg(sb, KERN_ERR,
1513 "quotafile must be on filesystem root");
1514 goto errout;
1515 }
1516 sbi->s_qf_names[qtype] = qname;
1517 set_opt(sb, QUOTA);
1518 return 1;
1519errout:
1520 kfree(qname);
1521 return ret;
1522}
1523
1524static int clear_qf_name(struct super_block *sb, int qtype)
1525{
1526
1527 struct ext4_sb_info *sbi = EXT4_SB(sb);
1528
1529 if (sb_any_quota_loaded(sb) &&
1530 sbi->s_qf_names[qtype]) {
1531 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1532 " when quota turned on");
1533 return -1;
1534 }
1535 kfree(sbi->s_qf_names[qtype]);
1536 sbi->s_qf_names[qtype] = NULL;
1537 return 1;
1538}
1539#endif
1540
1541#define MOPT_SET 0x0001
1542#define MOPT_CLEAR 0x0002
1543#define MOPT_NOSUPPORT 0x0004
1544#define MOPT_EXPLICIT 0x0008
1545#define MOPT_CLEAR_ERR 0x0010
1546#define MOPT_GTE0 0x0020
1547#ifdef CONFIG_QUOTA
1548#define MOPT_Q 0
1549#define MOPT_QFMT 0x0040
1550#else
1551#define MOPT_Q MOPT_NOSUPPORT
1552#define MOPT_QFMT MOPT_NOSUPPORT
1553#endif
1554#define MOPT_DATAJ 0x0080
1555#define MOPT_NO_EXT2 0x0100
1556#define MOPT_NO_EXT3 0x0200
1557#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1558#define MOPT_STRING 0x0400
1559
1560static const struct mount_opts {
1561 int token;
1562 int mount_opt;
1563 int flags;
1564} ext4_mount_opts[] = {
1565 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1566 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1567 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1568 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1569 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1570 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1571 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1572 MOPT_EXT4_ONLY | MOPT_SET},
1573 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1574 MOPT_EXT4_ONLY | MOPT_CLEAR},
1575 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1576 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1577 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1578 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1579 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1580 MOPT_EXT4_ONLY | MOPT_CLEAR},
1581 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1582 MOPT_EXT4_ONLY | MOPT_CLEAR},
1583 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1584 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1585 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1586 EXT4_MOUNT_JOURNAL_CHECKSUM),
1587 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1588 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1589 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1590 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1591 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1592 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1593 MOPT_NO_EXT2},
1594 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1595 MOPT_NO_EXT2},
1596 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1597 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1598 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1599 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1600 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1601 {Opt_commit, 0, MOPT_GTE0},
1602 {Opt_max_batch_time, 0, MOPT_GTE0},
1603 {Opt_min_batch_time, 0, MOPT_GTE0},
1604 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1605 {Opt_init_itable, 0, MOPT_GTE0},
1606 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1607 {Opt_stripe, 0, MOPT_GTE0},
1608 {Opt_resuid, 0, MOPT_GTE0},
1609 {Opt_resgid, 0, MOPT_GTE0},
1610 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1611 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1612 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1613 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1614 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1615 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1616 MOPT_NO_EXT2 | MOPT_DATAJ},
1617 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1618 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1619#ifdef CONFIG_EXT4_FS_POSIX_ACL
1620 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1621 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1622#else
1623 {Opt_acl, 0, MOPT_NOSUPPORT},
1624 {Opt_noacl, 0, MOPT_NOSUPPORT},
1625#endif
1626 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1627 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1628 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1629 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1630 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1631 MOPT_SET | MOPT_Q},
1632 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1633 MOPT_SET | MOPT_Q},
1634 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1635 MOPT_SET | MOPT_Q},
1636 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1637 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1638 MOPT_CLEAR | MOPT_Q},
1639 {Opt_usrjquota, 0, MOPT_Q},
1640 {Opt_grpjquota, 0, MOPT_Q},
1641 {Opt_offusrjquota, 0, MOPT_Q},
1642 {Opt_offgrpjquota, 0, MOPT_Q},
1643 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1644 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1645 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1646 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1647 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1648 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1649 {Opt_err, 0, 0}
1650};
1651
1652static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1653 substring_t *args, unsigned long *journal_devnum,
1654 unsigned int *journal_ioprio, int is_remount)
1655{
1656 struct ext4_sb_info *sbi = EXT4_SB(sb);
1657 const struct mount_opts *m;
1658 kuid_t uid;
1659 kgid_t gid;
1660 int arg = 0;
1661
1662#ifdef CONFIG_QUOTA
1663 if (token == Opt_usrjquota)
1664 return set_qf_name(sb, USRQUOTA, &args[0]);
1665 else if (token == Opt_grpjquota)
1666 return set_qf_name(sb, GRPQUOTA, &args[0]);
1667 else if (token == Opt_offusrjquota)
1668 return clear_qf_name(sb, USRQUOTA);
1669 else if (token == Opt_offgrpjquota)
1670 return clear_qf_name(sb, GRPQUOTA);
1671#endif
1672 switch (token) {
1673 case Opt_noacl:
1674 case Opt_nouser_xattr:
1675 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1676 break;
1677 case Opt_sb:
1678 return 1; /* handled by get_sb_block() */
1679 case Opt_removed:
1680 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1681 return 1;
1682 case Opt_abort:
1683 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1684 return 1;
1685 case Opt_i_version:
1686 sb->s_flags |= SB_I_VERSION;
1687 return 1;
1688 case Opt_lazytime:
1689 sb->s_flags |= SB_LAZYTIME;
1690 return 1;
1691 case Opt_nolazytime:
1692 sb->s_flags &= ~SB_LAZYTIME;
1693 return 1;
1694 }
1695
1696 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1697 if (token == m->token)
1698 break;
1699
1700 if (m->token == Opt_err) {
1701 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1702 "or missing value", opt);
1703 return -1;
1704 }
1705
1706 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1707 ext4_msg(sb, KERN_ERR,
1708 "Mount option \"%s\" incompatible with ext2", opt);
1709 return -1;
1710 }
1711 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1712 ext4_msg(sb, KERN_ERR,
1713 "Mount option \"%s\" incompatible with ext3", opt);
1714 return -1;
1715 }
1716
1717 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1718 return -1;
1719 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1720 return -1;
1721 if (m->flags & MOPT_EXPLICIT) {
1722 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1723 set_opt2(sb, EXPLICIT_DELALLOC);
1724 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1725 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1726 } else
1727 return -1;
1728 }
1729 if (m->flags & MOPT_CLEAR_ERR)
1730 clear_opt(sb, ERRORS_MASK);
1731 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1732 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1733 "options when quota turned on");
1734 return -1;
1735 }
1736
1737 if (m->flags & MOPT_NOSUPPORT) {
1738 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1739 } else if (token == Opt_commit) {
1740 if (arg == 0)
1741 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1742 sbi->s_commit_interval = HZ * arg;
1743 } else if (token == Opt_debug_want_extra_isize) {
1744 sbi->s_want_extra_isize = arg;
1745 } else if (token == Opt_max_batch_time) {
1746 sbi->s_max_batch_time = arg;
1747 } else if (token == Opt_min_batch_time) {
1748 sbi->s_min_batch_time = arg;
1749 } else if (token == Opt_inode_readahead_blks) {
1750 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1751 ext4_msg(sb, KERN_ERR,
1752 "EXT4-fs: inode_readahead_blks must be "
1753 "0 or a power of 2 smaller than 2^31");
1754 return -1;
1755 }
1756 sbi->s_inode_readahead_blks = arg;
1757 } else if (token == Opt_init_itable) {
1758 set_opt(sb, INIT_INODE_TABLE);
1759 if (!args->from)
1760 arg = EXT4_DEF_LI_WAIT_MULT;
1761 sbi->s_li_wait_mult = arg;
1762 } else if (token == Opt_max_dir_size_kb) {
1763 sbi->s_max_dir_size_kb = arg;
1764 } else if (token == Opt_stripe) {
1765 sbi->s_stripe = arg;
1766 } else if (token == Opt_resuid) {
1767 uid = make_kuid(current_user_ns(), arg);
1768 if (!uid_valid(uid)) {
1769 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1770 return -1;
1771 }
1772 sbi->s_resuid = uid;
1773 } else if (token == Opt_resgid) {
1774 gid = make_kgid(current_user_ns(), arg);
1775 if (!gid_valid(gid)) {
1776 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1777 return -1;
1778 }
1779 sbi->s_resgid = gid;
1780 } else if (token == Opt_journal_dev) {
1781 if (is_remount) {
1782 ext4_msg(sb, KERN_ERR,
1783 "Cannot specify journal on remount");
1784 return -1;
1785 }
1786 *journal_devnum = arg;
1787 } else if (token == Opt_journal_path) {
1788 char *journal_path;
1789 struct inode *journal_inode;
1790 struct path path;
1791 int error;
1792
1793 if (is_remount) {
1794 ext4_msg(sb, KERN_ERR,
1795 "Cannot specify journal on remount");
1796 return -1;
1797 }
1798 journal_path = match_strdup(&args[0]);
1799 if (!journal_path) {
1800 ext4_msg(sb, KERN_ERR, "error: could not dup "
1801 "journal device string");
1802 return -1;
1803 }
1804
1805 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1806 if (error) {
1807 ext4_msg(sb, KERN_ERR, "error: could not find "
1808 "journal device path: error %d", error);
1809 kfree(journal_path);
1810 return -1;
1811 }
1812
1813 journal_inode = d_inode(path.dentry);
1814 if (!S_ISBLK(journal_inode->i_mode)) {
1815 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1816 "is not a block device", journal_path);
1817 path_put(&path);
1818 kfree(journal_path);
1819 return -1;
1820 }
1821
1822 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1823 path_put(&path);
1824 kfree(journal_path);
1825 } else if (token == Opt_journal_ioprio) {
1826 if (arg > 7) {
1827 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1828 " (must be 0-7)");
1829 return -1;
1830 }
1831 *journal_ioprio =
1832 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1833 } else if (token == Opt_test_dummy_encryption) {
1834#ifdef CONFIG_EXT4_FS_ENCRYPTION
1835 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1836 ext4_msg(sb, KERN_WARNING,
1837 "Test dummy encryption mode enabled");
1838#else
1839 ext4_msg(sb, KERN_WARNING,
1840 "Test dummy encryption mount option ignored");
1841#endif
1842 } else if (m->flags & MOPT_DATAJ) {
1843 if (is_remount) {
1844 if (!sbi->s_journal)
1845 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1846 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1847 ext4_msg(sb, KERN_ERR,
1848 "Cannot change data mode on remount");
1849 return -1;
1850 }
1851 } else {
1852 clear_opt(sb, DATA_FLAGS);
1853 sbi->s_mount_opt |= m->mount_opt;
1854 }
1855#ifdef CONFIG_QUOTA
1856 } else if (m->flags & MOPT_QFMT) {
1857 if (sb_any_quota_loaded(sb) &&
1858 sbi->s_jquota_fmt != m->mount_opt) {
1859 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1860 "quota options when quota turned on");
1861 return -1;
1862 }
1863 if (ext4_has_feature_quota(sb)) {
1864 ext4_msg(sb, KERN_INFO,
1865 "Quota format mount options ignored "
1866 "when QUOTA feature is enabled");
1867 return 1;
1868 }
1869 sbi->s_jquota_fmt = m->mount_opt;
1870#endif
1871 } else if (token == Opt_dax) {
1872#ifdef CONFIG_FS_DAX
1873 ext4_msg(sb, KERN_WARNING,
1874 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1875 sbi->s_mount_opt |= m->mount_opt;
1876#else
1877 ext4_msg(sb, KERN_INFO, "dax option not supported");
1878 return -1;
1879#endif
1880 } else if (token == Opt_data_err_abort) {
1881 sbi->s_mount_opt |= m->mount_opt;
1882 } else if (token == Opt_data_err_ignore) {
1883 sbi->s_mount_opt &= ~m->mount_opt;
1884 } else {
1885 if (!args->from)
1886 arg = 1;
1887 if (m->flags & MOPT_CLEAR)
1888 arg = !arg;
1889 else if (unlikely(!(m->flags & MOPT_SET))) {
1890 ext4_msg(sb, KERN_WARNING,
1891 "buggy handling of option %s", opt);
1892 WARN_ON(1);
1893 return -1;
1894 }
1895 if (arg != 0)
1896 sbi->s_mount_opt |= m->mount_opt;
1897 else
1898 sbi->s_mount_opt &= ~m->mount_opt;
1899 }
1900 return 1;
1901}
1902
1903static int parse_options(char *options, struct super_block *sb,
1904 unsigned long *journal_devnum,
1905 unsigned int *journal_ioprio,
1906 int is_remount)
1907{
1908 struct ext4_sb_info *sbi = EXT4_SB(sb);
1909 char *p;
1910 substring_t args[MAX_OPT_ARGS];
1911 int token;
1912
1913 if (!options)
1914 return 1;
1915
1916 while ((p = strsep(&options, ",")) != NULL) {
1917 if (!*p)
1918 continue;
1919 /*
1920 * Initialize args struct so we know whether arg was
1921 * found; some options take optional arguments.
1922 */
1923 args[0].to = args[0].from = NULL;
1924 token = match_token(p, tokens, args);
1925 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1926 journal_ioprio, is_remount) < 0)
1927 return 0;
1928 }
1929#ifdef CONFIG_QUOTA
1930 /*
1931 * We do the test below only for project quotas. 'usrquota' and
1932 * 'grpquota' mount options are allowed even without quota feature
1933 * to support legacy quotas in quota files.
1934 */
1935 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1936 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1937 "Cannot enable project quota enforcement.");
1938 return 0;
1939 }
1940 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1941 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1942 clear_opt(sb, USRQUOTA);
1943
1944 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1945 clear_opt(sb, GRPQUOTA);
1946
1947 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1948 ext4_msg(sb, KERN_ERR, "old and new quota "
1949 "format mixing");
1950 return 0;
1951 }
1952
1953 if (!sbi->s_jquota_fmt) {
1954 ext4_msg(sb, KERN_ERR, "journaled quota format "
1955 "not specified");
1956 return 0;
1957 }
1958 }
1959#endif
1960 if (test_opt(sb, DIOREAD_NOLOCK)) {
1961 int blocksize =
1962 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1963
1964 if (blocksize < PAGE_SIZE) {
1965 ext4_msg(sb, KERN_ERR, "can't mount with "
1966 "dioread_nolock if block size != PAGE_SIZE");
1967 return 0;
1968 }
1969 }
1970 return 1;
1971}
1972
1973static inline void ext4_show_quota_options(struct seq_file *seq,
1974 struct super_block *sb)
1975{
1976#if defined(CONFIG_QUOTA)
1977 struct ext4_sb_info *sbi = EXT4_SB(sb);
1978
1979 if (sbi->s_jquota_fmt) {
1980 char *fmtname = "";
1981
1982 switch (sbi->s_jquota_fmt) {
1983 case QFMT_VFS_OLD:
1984 fmtname = "vfsold";
1985 break;
1986 case QFMT_VFS_V0:
1987 fmtname = "vfsv0";
1988 break;
1989 case QFMT_VFS_V1:
1990 fmtname = "vfsv1";
1991 break;
1992 }
1993 seq_printf(seq, ",jqfmt=%s", fmtname);
1994 }
1995
1996 if (sbi->s_qf_names[USRQUOTA])
1997 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1998
1999 if (sbi->s_qf_names[GRPQUOTA])
2000 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
2001#endif
2002}
2003
2004static const char *token2str(int token)
2005{
2006 const struct match_token *t;
2007
2008 for (t = tokens; t->token != Opt_err; t++)
2009 if (t->token == token && !strchr(t->pattern, '='))
2010 break;
2011 return t->pattern;
2012}
2013
2014/*
2015 * Show an option if
2016 * - it's set to a non-default value OR
2017 * - if the per-sb default is different from the global default
2018 */
2019static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2020 int nodefs)
2021{
2022 struct ext4_sb_info *sbi = EXT4_SB(sb);
2023 struct ext4_super_block *es = sbi->s_es;
2024 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2025 const struct mount_opts *m;
2026 char sep = nodefs ? '\n' : ',';
2027
2028#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2029#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2030
2031 if (sbi->s_sb_block != 1)
2032 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2033
2034 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2035 int want_set = m->flags & MOPT_SET;
2036 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2037 (m->flags & MOPT_CLEAR_ERR))
2038 continue;
2039 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2040 continue; /* skip if same as the default */
2041 if ((want_set &&
2042 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2043 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2044 continue; /* select Opt_noFoo vs Opt_Foo */
2045 SEQ_OPTS_PRINT("%s", token2str(m->token));
2046 }
2047
2048 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2049 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2050 SEQ_OPTS_PRINT("resuid=%u",
2051 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2052 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2053 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2054 SEQ_OPTS_PRINT("resgid=%u",
2055 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2056 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2057 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2058 SEQ_OPTS_PUTS("errors=remount-ro");
2059 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2060 SEQ_OPTS_PUTS("errors=continue");
2061 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2062 SEQ_OPTS_PUTS("errors=panic");
2063 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2064 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2065 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2066 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2067 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2068 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2069 if (sb->s_flags & SB_I_VERSION)
2070 SEQ_OPTS_PUTS("i_version");
2071 if (nodefs || sbi->s_stripe)
2072 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2073 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2074 (sbi->s_mount_opt ^ def_mount_opt)) {
2075 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2076 SEQ_OPTS_PUTS("data=journal");
2077 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2078 SEQ_OPTS_PUTS("data=ordered");
2079 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2080 SEQ_OPTS_PUTS("data=writeback");
2081 }
2082 if (nodefs ||
2083 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2084 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2085 sbi->s_inode_readahead_blks);
2086
2087 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2088 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2089 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2090 if (nodefs || sbi->s_max_dir_size_kb)
2091 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2092 if (test_opt(sb, DATA_ERR_ABORT))
2093 SEQ_OPTS_PUTS("data_err=abort");
2094
2095 ext4_show_quota_options(seq, sb);
2096 return 0;
2097}
2098
2099static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2100{
2101 return _ext4_show_options(seq, root->d_sb, 0);
2102}
2103
2104int ext4_seq_options_show(struct seq_file *seq, void *offset)
2105{
2106 struct super_block *sb = seq->private;
2107 int rc;
2108
2109 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2110 rc = _ext4_show_options(seq, sb, 1);
2111 seq_puts(seq, "\n");
2112 return rc;
2113}
2114
2115static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2116 int read_only)
2117{
2118 struct ext4_sb_info *sbi = EXT4_SB(sb);
2119 int res = 0;
2120
2121 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2122 ext4_msg(sb, KERN_ERR, "revision level too high, "
2123 "forcing read-only mode");
2124 res = SB_RDONLY;
2125 }
2126 if (read_only)
2127 goto done;
2128 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2129 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2130 "running e2fsck is recommended");
2131 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2132 ext4_msg(sb, KERN_WARNING,
2133 "warning: mounting fs with errors, "
2134 "running e2fsck is recommended");
2135 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2136 le16_to_cpu(es->s_mnt_count) >=
2137 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2138 ext4_msg(sb, KERN_WARNING,
2139 "warning: maximal mount count reached, "
2140 "running e2fsck is recommended");
2141 else if (le32_to_cpu(es->s_checkinterval) &&
2142 (le32_to_cpu(es->s_lastcheck) +
2143 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2144 ext4_msg(sb, KERN_WARNING,
2145 "warning: checktime reached, "
2146 "running e2fsck is recommended");
2147 if (!sbi->s_journal)
2148 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2149 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2150 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2151 le16_add_cpu(&es->s_mnt_count, 1);
2152 es->s_mtime = cpu_to_le32(get_seconds());
2153 ext4_update_dynamic_rev(sb);
2154 if (sbi->s_journal)
2155 ext4_set_feature_journal_needs_recovery(sb);
2156
2157 ext4_commit_super(sb, 1);
2158done:
2159 if (test_opt(sb, DEBUG))
2160 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2161 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2162 sb->s_blocksize,
2163 sbi->s_groups_count,
2164 EXT4_BLOCKS_PER_GROUP(sb),
2165 EXT4_INODES_PER_GROUP(sb),
2166 sbi->s_mount_opt, sbi->s_mount_opt2);
2167
2168 cleancache_init_fs(sb);
2169 return res;
2170}
2171
2172int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2173{
2174 struct ext4_sb_info *sbi = EXT4_SB(sb);
2175 struct flex_groups *new_groups;
2176 int size;
2177
2178 if (!sbi->s_log_groups_per_flex)
2179 return 0;
2180
2181 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2182 if (size <= sbi->s_flex_groups_allocated)
2183 return 0;
2184
2185 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2186 new_groups = kvzalloc(size, GFP_KERNEL);
2187 if (!new_groups) {
2188 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2189 size / (int) sizeof(struct flex_groups));
2190 return -ENOMEM;
2191 }
2192
2193 if (sbi->s_flex_groups) {
2194 memcpy(new_groups, sbi->s_flex_groups,
2195 (sbi->s_flex_groups_allocated *
2196 sizeof(struct flex_groups)));
2197 kvfree(sbi->s_flex_groups);
2198 }
2199 sbi->s_flex_groups = new_groups;
2200 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2201 return 0;
2202}
2203
2204static int ext4_fill_flex_info(struct super_block *sb)
2205{
2206 struct ext4_sb_info *sbi = EXT4_SB(sb);
2207 struct ext4_group_desc *gdp = NULL;
2208 ext4_group_t flex_group;
2209 int i, err;
2210
2211 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2212 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2213 sbi->s_log_groups_per_flex = 0;
2214 return 1;
2215 }
2216
2217 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2218 if (err)
2219 goto failed;
2220
2221 for (i = 0; i < sbi->s_groups_count; i++) {
2222 gdp = ext4_get_group_desc(sb, i, NULL);
2223
2224 flex_group = ext4_flex_group(sbi, i);
2225 atomic_add(ext4_free_inodes_count(sb, gdp),
2226 &sbi->s_flex_groups[flex_group].free_inodes);
2227 atomic64_add(ext4_free_group_clusters(sb, gdp),
2228 &sbi->s_flex_groups[flex_group].free_clusters);
2229 atomic_add(ext4_used_dirs_count(sb, gdp),
2230 &sbi->s_flex_groups[flex_group].used_dirs);
2231 }
2232
2233 return 1;
2234failed:
2235 return 0;
2236}
2237
2238static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2239 struct ext4_group_desc *gdp)
2240{
2241 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2242 __u16 crc = 0;
2243 __le32 le_group = cpu_to_le32(block_group);
2244 struct ext4_sb_info *sbi = EXT4_SB(sb);
2245
2246 if (ext4_has_metadata_csum(sbi->s_sb)) {
2247 /* Use new metadata_csum algorithm */
2248 __u32 csum32;
2249 __u16 dummy_csum = 0;
2250
2251 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2252 sizeof(le_group));
2253 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2254 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2255 sizeof(dummy_csum));
2256 offset += sizeof(dummy_csum);
2257 if (offset < sbi->s_desc_size)
2258 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2259 sbi->s_desc_size - offset);
2260
2261 crc = csum32 & 0xFFFF;
2262 goto out;
2263 }
2264
2265 /* old crc16 code */
2266 if (!ext4_has_feature_gdt_csum(sb))
2267 return 0;
2268
2269 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2270 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2271 crc = crc16(crc, (__u8 *)gdp, offset);
2272 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2273 /* for checksum of struct ext4_group_desc do the rest...*/
2274 if (ext4_has_feature_64bit(sb) &&
2275 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2276 crc = crc16(crc, (__u8 *)gdp + offset,
2277 le16_to_cpu(sbi->s_es->s_desc_size) -
2278 offset);
2279
2280out:
2281 return cpu_to_le16(crc);
2282}
2283
2284int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2285 struct ext4_group_desc *gdp)
2286{
2287 if (ext4_has_group_desc_csum(sb) &&
2288 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2289 return 0;
2290
2291 return 1;
2292}
2293
2294void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2295 struct ext4_group_desc *gdp)
2296{
2297 if (!ext4_has_group_desc_csum(sb))
2298 return;
2299 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2300}
2301
2302/* Called at mount-time, super-block is locked */
2303static int ext4_check_descriptors(struct super_block *sb,
2304 ext4_fsblk_t sb_block,
2305 ext4_group_t *first_not_zeroed)
2306{
2307 struct ext4_sb_info *sbi = EXT4_SB(sb);
2308 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2309 ext4_fsblk_t last_block;
2310 ext4_fsblk_t block_bitmap;
2311 ext4_fsblk_t inode_bitmap;
2312 ext4_fsblk_t inode_table;
2313 int flexbg_flag = 0;
2314 ext4_group_t i, grp = sbi->s_groups_count;
2315
2316 if (ext4_has_feature_flex_bg(sb))
2317 flexbg_flag = 1;
2318
2319 ext4_debug("Checking group descriptors");
2320
2321 for (i = 0; i < sbi->s_groups_count; i++) {
2322 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2323
2324 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2325 last_block = ext4_blocks_count(sbi->s_es) - 1;
2326 else
2327 last_block = first_block +
2328 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2329
2330 if ((grp == sbi->s_groups_count) &&
2331 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2332 grp = i;
2333
2334 block_bitmap = ext4_block_bitmap(sb, gdp);
2335 if (block_bitmap == sb_block) {
2336 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2337 "Block bitmap for group %u overlaps "
2338 "superblock", i);
2339 if (!sb_rdonly(sb))
2340 return 0;
2341 }
2342 if (block_bitmap < first_block || block_bitmap > last_block) {
2343 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2344 "Block bitmap for group %u not in group "
2345 "(block %llu)!", i, block_bitmap);
2346 return 0;
2347 }
2348 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2349 if (inode_bitmap == sb_block) {
2350 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2351 "Inode bitmap for group %u overlaps "
2352 "superblock", i);
2353 if (!sb_rdonly(sb))
2354 return 0;
2355 }
2356 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2357 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2358 "Inode bitmap for group %u not in group "
2359 "(block %llu)!", i, inode_bitmap);
2360 return 0;
2361 }
2362 inode_table = ext4_inode_table(sb, gdp);
2363 if (inode_table == sb_block) {
2364 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2365 "Inode table for group %u overlaps "
2366 "superblock", i);
2367 if (!sb_rdonly(sb))
2368 return 0;
2369 }
2370 if (inode_table < first_block ||
2371 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2372 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2373 "Inode table for group %u not in group "
2374 "(block %llu)!", i, inode_table);
2375 return 0;
2376 }
2377 ext4_lock_group(sb, i);
2378 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2379 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2380 "Checksum for group %u failed (%u!=%u)",
2381 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2382 gdp)), le16_to_cpu(gdp->bg_checksum));
2383 if (!sb_rdonly(sb)) {
2384 ext4_unlock_group(sb, i);
2385 return 0;
2386 }
2387 }
2388 ext4_unlock_group(sb, i);
2389 if (!flexbg_flag)
2390 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2391 }
2392 if (NULL != first_not_zeroed)
2393 *first_not_zeroed = grp;
2394 return 1;
2395}
2396
2397/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2398 * the superblock) which were deleted from all directories, but held open by
2399 * a process at the time of a crash. We walk the list and try to delete these
2400 * inodes at recovery time (only with a read-write filesystem).
2401 *
2402 * In order to keep the orphan inode chain consistent during traversal (in
2403 * case of crash during recovery), we link each inode into the superblock
2404 * orphan list_head and handle it the same way as an inode deletion during
2405 * normal operation (which journals the operations for us).
2406 *
2407 * We only do an iget() and an iput() on each inode, which is very safe if we
2408 * accidentally point at an in-use or already deleted inode. The worst that
2409 * can happen in this case is that we get a "bit already cleared" message from
2410 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2411 * e2fsck was run on this filesystem, and it must have already done the orphan
2412 * inode cleanup for us, so we can safely abort without any further action.
2413 */
2414static void ext4_orphan_cleanup(struct super_block *sb,
2415 struct ext4_super_block *es)
2416{
2417 unsigned int s_flags = sb->s_flags;
2418 int ret, nr_orphans = 0, nr_truncates = 0;
2419#ifdef CONFIG_QUOTA
2420 int quota_update = 0;
2421 int i;
2422#endif
2423 if (!es->s_last_orphan) {
2424 jbd_debug(4, "no orphan inodes to clean up\n");
2425 return;
2426 }
2427
2428 if (bdev_read_only(sb->s_bdev)) {
2429 ext4_msg(sb, KERN_ERR, "write access "
2430 "unavailable, skipping orphan cleanup");
2431 return;
2432 }
2433
2434 /* Check if feature set would not allow a r/w mount */
2435 if (!ext4_feature_set_ok(sb, 0)) {
2436 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2437 "unknown ROCOMPAT features");
2438 return;
2439 }
2440
2441 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2442 /* don't clear list on RO mount w/ errors */
2443 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2444 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2445 "clearing orphan list.\n");
2446 es->s_last_orphan = 0;
2447 }
2448 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2449 return;
2450 }
2451
2452 if (s_flags & SB_RDONLY) {
2453 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2454 sb->s_flags &= ~SB_RDONLY;
2455 }
2456#ifdef CONFIG_QUOTA
2457 /* Needed for iput() to work correctly and not trash data */
2458 sb->s_flags |= SB_ACTIVE;
2459
2460 /*
2461 * Turn on quotas which were not enabled for read-only mounts if
2462 * filesystem has quota feature, so that they are updated correctly.
2463 */
2464 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2465 int ret = ext4_enable_quotas(sb);
2466
2467 if (!ret)
2468 quota_update = 1;
2469 else
2470 ext4_msg(sb, KERN_ERR,
2471 "Cannot turn on quotas: error %d", ret);
2472 }
2473
2474 /* Turn on journaled quotas used for old sytle */
2475 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2476 if (EXT4_SB(sb)->s_qf_names[i]) {
2477 int ret = ext4_quota_on_mount(sb, i);
2478
2479 if (!ret)
2480 quota_update = 1;
2481 else
2482 ext4_msg(sb, KERN_ERR,
2483 "Cannot turn on journaled "
2484 "quota: type %d: error %d", i, ret);
2485 }
2486 }
2487#endif
2488
2489 while (es->s_last_orphan) {
2490 struct inode *inode;
2491
2492 /*
2493 * We may have encountered an error during cleanup; if
2494 * so, skip the rest.
2495 */
2496 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2497 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2498 es->s_last_orphan = 0;
2499 break;
2500 }
2501
2502 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2503 if (IS_ERR(inode)) {
2504 es->s_last_orphan = 0;
2505 break;
2506 }
2507
2508 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2509 dquot_initialize(inode);
2510 if (inode->i_nlink) {
2511 if (test_opt(sb, DEBUG))
2512 ext4_msg(sb, KERN_DEBUG,
2513 "%s: truncating inode %lu to %lld bytes",
2514 __func__, inode->i_ino, inode->i_size);
2515 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2516 inode->i_ino, inode->i_size);
2517 inode_lock(inode);
2518 truncate_inode_pages(inode->i_mapping, inode->i_size);
2519 ret = ext4_truncate(inode);
2520 if (ret)
2521 ext4_std_error(inode->i_sb, ret);
2522 inode_unlock(inode);
2523 nr_truncates++;
2524 } else {
2525 if (test_opt(sb, DEBUG))
2526 ext4_msg(sb, KERN_DEBUG,
2527 "%s: deleting unreferenced inode %lu",
2528 __func__, inode->i_ino);
2529 jbd_debug(2, "deleting unreferenced inode %lu\n",
2530 inode->i_ino);
2531 nr_orphans++;
2532 }
2533 iput(inode); /* The delete magic happens here! */
2534 }
2535
2536#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2537
2538 if (nr_orphans)
2539 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2540 PLURAL(nr_orphans));
2541 if (nr_truncates)
2542 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2543 PLURAL(nr_truncates));
2544#ifdef CONFIG_QUOTA
2545 /* Turn off quotas if they were enabled for orphan cleanup */
2546 if (quota_update) {
2547 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2548 if (sb_dqopt(sb)->files[i])
2549 dquot_quota_off(sb, i);
2550 }
2551 }
2552#endif
2553 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2554}
2555
2556/*
2557 * Maximal extent format file size.
2558 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2559 * extent format containers, within a sector_t, and within i_blocks
2560 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2561 * so that won't be a limiting factor.
2562 *
2563 * However there is other limiting factor. We do store extents in the form
2564 * of starting block and length, hence the resulting length of the extent
2565 * covering maximum file size must fit into on-disk format containers as
2566 * well. Given that length is always by 1 unit bigger than max unit (because
2567 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2568 *
2569 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2570 */
2571static loff_t ext4_max_size(int blkbits, int has_huge_files)
2572{
2573 loff_t res;
2574 loff_t upper_limit = MAX_LFS_FILESIZE;
2575
2576 /* small i_blocks in vfs inode? */
2577 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2578 /*
2579 * CONFIG_LBDAF is not enabled implies the inode
2580 * i_block represent total blocks in 512 bytes
2581 * 32 == size of vfs inode i_blocks * 8
2582 */
2583 upper_limit = (1LL << 32) - 1;
2584
2585 /* total blocks in file system block size */
2586 upper_limit >>= (blkbits - 9);
2587 upper_limit <<= blkbits;
2588 }
2589
2590 /*
2591 * 32-bit extent-start container, ee_block. We lower the maxbytes
2592 * by one fs block, so ee_len can cover the extent of maximum file
2593 * size
2594 */
2595 res = (1LL << 32) - 1;
2596 res <<= blkbits;
2597
2598 /* Sanity check against vm- & vfs- imposed limits */
2599 if (res > upper_limit)
2600 res = upper_limit;
2601
2602 return res;
2603}
2604
2605/*
2606 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2607 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2608 * We need to be 1 filesystem block less than the 2^48 sector limit.
2609 */
2610static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2611{
2612 loff_t res = EXT4_NDIR_BLOCKS;
2613 int meta_blocks;
2614 loff_t upper_limit;
2615 /* This is calculated to be the largest file size for a dense, block
2616 * mapped file such that the file's total number of 512-byte sectors,
2617 * including data and all indirect blocks, does not exceed (2^48 - 1).
2618 *
2619 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2620 * number of 512-byte sectors of the file.
2621 */
2622
2623 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2624 /*
2625 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2626 * the inode i_block field represents total file blocks in
2627 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2628 */
2629 upper_limit = (1LL << 32) - 1;
2630
2631 /* total blocks in file system block size */
2632 upper_limit >>= (bits - 9);
2633
2634 } else {
2635 /*
2636 * We use 48 bit ext4_inode i_blocks
2637 * With EXT4_HUGE_FILE_FL set the i_blocks
2638 * represent total number of blocks in
2639 * file system block size
2640 */
2641 upper_limit = (1LL << 48) - 1;
2642
2643 }
2644
2645 /* indirect blocks */
2646 meta_blocks = 1;
2647 /* double indirect blocks */
2648 meta_blocks += 1 + (1LL << (bits-2));
2649 /* tripple indirect blocks */
2650 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2651
2652 upper_limit -= meta_blocks;
2653 upper_limit <<= bits;
2654
2655 res += 1LL << (bits-2);
2656 res += 1LL << (2*(bits-2));
2657 res += 1LL << (3*(bits-2));
2658 res <<= bits;
2659 if (res > upper_limit)
2660 res = upper_limit;
2661
2662 if (res > MAX_LFS_FILESIZE)
2663 res = MAX_LFS_FILESIZE;
2664
2665 return res;
2666}
2667
2668static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2669 ext4_fsblk_t logical_sb_block, int nr)
2670{
2671 struct ext4_sb_info *sbi = EXT4_SB(sb);
2672 ext4_group_t bg, first_meta_bg;
2673 int has_super = 0;
2674
2675 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2676
2677 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2678 return logical_sb_block + nr + 1;
2679 bg = sbi->s_desc_per_block * nr;
2680 if (ext4_bg_has_super(sb, bg))
2681 has_super = 1;
2682
2683 /*
2684 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2685 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2686 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2687 * compensate.
2688 */
2689 if (sb->s_blocksize == 1024 && nr == 0 &&
2690 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2691 has_super++;
2692
2693 return (has_super + ext4_group_first_block_no(sb, bg));
2694}
2695
2696/**
2697 * ext4_get_stripe_size: Get the stripe size.
2698 * @sbi: In memory super block info
2699 *
2700 * If we have specified it via mount option, then
2701 * use the mount option value. If the value specified at mount time is
2702 * greater than the blocks per group use the super block value.
2703 * If the super block value is greater than blocks per group return 0.
2704 * Allocator needs it be less than blocks per group.
2705 *
2706 */
2707static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2708{
2709 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2710 unsigned long stripe_width =
2711 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2712 int ret;
2713
2714 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2715 ret = sbi->s_stripe;
2716 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2717 ret = stripe_width;
2718 else if (stride && stride <= sbi->s_blocks_per_group)
2719 ret = stride;
2720 else
2721 ret = 0;
2722
2723 /*
2724 * If the stripe width is 1, this makes no sense and
2725 * we set it to 0 to turn off stripe handling code.
2726 */
2727 if (ret <= 1)
2728 ret = 0;
2729
2730 return ret;
2731}
2732
2733/*
2734 * Check whether this filesystem can be mounted based on
2735 * the features present and the RDONLY/RDWR mount requested.
2736 * Returns 1 if this filesystem can be mounted as requested,
2737 * 0 if it cannot be.
2738 */
2739static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2740{
2741 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2742 ext4_msg(sb, KERN_ERR,
2743 "Couldn't mount because of "
2744 "unsupported optional features (%x)",
2745 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2746 ~EXT4_FEATURE_INCOMPAT_SUPP));
2747 return 0;
2748 }
2749
2750 if (readonly)
2751 return 1;
2752
2753 if (ext4_has_feature_readonly(sb)) {
2754 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2755 sb->s_flags |= SB_RDONLY;
2756 return 1;
2757 }
2758
2759 /* Check that feature set is OK for a read-write mount */
2760 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2761 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2762 "unsupported optional features (%x)",
2763 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2764 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2765 return 0;
2766 }
2767 /*
2768 * Large file size enabled file system can only be mounted
2769 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2770 */
2771 if (ext4_has_feature_huge_file(sb)) {
2772 if (sizeof(blkcnt_t) < sizeof(u64)) {
2773 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2774 "cannot be mounted RDWR without "
2775 "CONFIG_LBDAF");
2776 return 0;
2777 }
2778 }
2779 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2780 ext4_msg(sb, KERN_ERR,
2781 "Can't support bigalloc feature without "
2782 "extents feature\n");
2783 return 0;
2784 }
2785
2786#ifndef CONFIG_QUOTA
2787 if (ext4_has_feature_quota(sb) && !readonly) {
2788 ext4_msg(sb, KERN_ERR,
2789 "Filesystem with quota feature cannot be mounted RDWR "
2790 "without CONFIG_QUOTA");
2791 return 0;
2792 }
2793 if (ext4_has_feature_project(sb) && !readonly) {
2794 ext4_msg(sb, KERN_ERR,
2795 "Filesystem with project quota feature cannot be mounted RDWR "
2796 "without CONFIG_QUOTA");
2797 return 0;
2798 }
2799#endif /* CONFIG_QUOTA */
2800 return 1;
2801}
2802
2803/*
2804 * This function is called once a day if we have errors logged
2805 * on the file system
2806 */
2807static void print_daily_error_info(struct timer_list *t)
2808{
2809 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2810 struct super_block *sb = sbi->s_sb;
2811 struct ext4_super_block *es = sbi->s_es;
2812
2813 if (es->s_error_count)
2814 /* fsck newer than v1.41.13 is needed to clean this condition. */
2815 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2816 le32_to_cpu(es->s_error_count));
2817 if (es->s_first_error_time) {
2818 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2819 sb->s_id, le32_to_cpu(es->s_first_error_time),
2820 (int) sizeof(es->s_first_error_func),
2821 es->s_first_error_func,
2822 le32_to_cpu(es->s_first_error_line));
2823 if (es->s_first_error_ino)
2824 printk(KERN_CONT ": inode %u",
2825 le32_to_cpu(es->s_first_error_ino));
2826 if (es->s_first_error_block)
2827 printk(KERN_CONT ": block %llu", (unsigned long long)
2828 le64_to_cpu(es->s_first_error_block));
2829 printk(KERN_CONT "\n");
2830 }
2831 if (es->s_last_error_time) {
2832 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2833 sb->s_id, le32_to_cpu(es->s_last_error_time),
2834 (int) sizeof(es->s_last_error_func),
2835 es->s_last_error_func,
2836 le32_to_cpu(es->s_last_error_line));
2837 if (es->s_last_error_ino)
2838 printk(KERN_CONT ": inode %u",
2839 le32_to_cpu(es->s_last_error_ino));
2840 if (es->s_last_error_block)
2841 printk(KERN_CONT ": block %llu", (unsigned long long)
2842 le64_to_cpu(es->s_last_error_block));
2843 printk(KERN_CONT "\n");
2844 }
2845 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2846}
2847
2848/* Find next suitable group and run ext4_init_inode_table */
2849static int ext4_run_li_request(struct ext4_li_request *elr)
2850{
2851 struct ext4_group_desc *gdp = NULL;
2852 ext4_group_t group, ngroups;
2853 struct super_block *sb;
2854 unsigned long timeout = 0;
2855 int ret = 0;
2856
2857 sb = elr->lr_super;
2858 ngroups = EXT4_SB(sb)->s_groups_count;
2859
2860 for (group = elr->lr_next_group; group < ngroups; group++) {
2861 gdp = ext4_get_group_desc(sb, group, NULL);
2862 if (!gdp) {
2863 ret = 1;
2864 break;
2865 }
2866
2867 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2868 break;
2869 }
2870
2871 if (group >= ngroups)
2872 ret = 1;
2873
2874 if (!ret) {
2875 timeout = jiffies;
2876 ret = ext4_init_inode_table(sb, group,
2877 elr->lr_timeout ? 0 : 1);
2878 if (elr->lr_timeout == 0) {
2879 timeout = (jiffies - timeout) *
2880 elr->lr_sbi->s_li_wait_mult;
2881 elr->lr_timeout = timeout;
2882 }
2883 elr->lr_next_sched = jiffies + elr->lr_timeout;
2884 elr->lr_next_group = group + 1;
2885 }
2886 return ret;
2887}
2888
2889/*
2890 * Remove lr_request from the list_request and free the
2891 * request structure. Should be called with li_list_mtx held
2892 */
2893static void ext4_remove_li_request(struct ext4_li_request *elr)
2894{
2895 struct ext4_sb_info *sbi;
2896
2897 if (!elr)
2898 return;
2899
2900 sbi = elr->lr_sbi;
2901
2902 list_del(&elr->lr_request);
2903 sbi->s_li_request = NULL;
2904 kfree(elr);
2905}
2906
2907static void ext4_unregister_li_request(struct super_block *sb)
2908{
2909 mutex_lock(&ext4_li_mtx);
2910 if (!ext4_li_info) {
2911 mutex_unlock(&ext4_li_mtx);
2912 return;
2913 }
2914
2915 mutex_lock(&ext4_li_info->li_list_mtx);
2916 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2917 mutex_unlock(&ext4_li_info->li_list_mtx);
2918 mutex_unlock(&ext4_li_mtx);
2919}
2920
2921static struct task_struct *ext4_lazyinit_task;
2922
2923/*
2924 * This is the function where ext4lazyinit thread lives. It walks
2925 * through the request list searching for next scheduled filesystem.
2926 * When such a fs is found, run the lazy initialization request
2927 * (ext4_rn_li_request) and keep track of the time spend in this
2928 * function. Based on that time we compute next schedule time of
2929 * the request. When walking through the list is complete, compute
2930 * next waking time and put itself into sleep.
2931 */
2932static int ext4_lazyinit_thread(void *arg)
2933{
2934 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2935 struct list_head *pos, *n;
2936 struct ext4_li_request *elr;
2937 unsigned long next_wakeup, cur;
2938
2939 BUG_ON(NULL == eli);
2940
2941cont_thread:
2942 while (true) {
2943 next_wakeup = MAX_JIFFY_OFFSET;
2944
2945 mutex_lock(&eli->li_list_mtx);
2946 if (list_empty(&eli->li_request_list)) {
2947 mutex_unlock(&eli->li_list_mtx);
2948 goto exit_thread;
2949 }
2950 list_for_each_safe(pos, n, &eli->li_request_list) {
2951 int err = 0;
2952 int progress = 0;
2953 elr = list_entry(pos, struct ext4_li_request,
2954 lr_request);
2955
2956 if (time_before(jiffies, elr->lr_next_sched)) {
2957 if (time_before(elr->lr_next_sched, next_wakeup))
2958 next_wakeup = elr->lr_next_sched;
2959 continue;
2960 }
2961 if (down_read_trylock(&elr->lr_super->s_umount)) {
2962 if (sb_start_write_trylock(elr->lr_super)) {
2963 progress = 1;
2964 /*
2965 * We hold sb->s_umount, sb can not
2966 * be removed from the list, it is
2967 * now safe to drop li_list_mtx
2968 */
2969 mutex_unlock(&eli->li_list_mtx);
2970 err = ext4_run_li_request(elr);
2971 sb_end_write(elr->lr_super);
2972 mutex_lock(&eli->li_list_mtx);
2973 n = pos->next;
2974 }
2975 up_read((&elr->lr_super->s_umount));
2976 }
2977 /* error, remove the lazy_init job */
2978 if (err) {
2979 ext4_remove_li_request(elr);
2980 continue;
2981 }
2982 if (!progress) {
2983 elr->lr_next_sched = jiffies +
2984 (prandom_u32()
2985 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2986 }
2987 if (time_before(elr->lr_next_sched, next_wakeup))
2988 next_wakeup = elr->lr_next_sched;
2989 }
2990 mutex_unlock(&eli->li_list_mtx);
2991
2992 try_to_freeze();
2993
2994 cur = jiffies;
2995 if ((time_after_eq(cur, next_wakeup)) ||
2996 (MAX_JIFFY_OFFSET == next_wakeup)) {
2997 cond_resched();
2998 continue;
2999 }
3000
3001 schedule_timeout_interruptible(next_wakeup - cur);
3002
3003 if (kthread_should_stop()) {
3004 ext4_clear_request_list();
3005 goto exit_thread;
3006 }
3007 }
3008
3009exit_thread:
3010 /*
3011 * It looks like the request list is empty, but we need
3012 * to check it under the li_list_mtx lock, to prevent any
3013 * additions into it, and of course we should lock ext4_li_mtx
3014 * to atomically free the list and ext4_li_info, because at
3015 * this point another ext4 filesystem could be registering
3016 * new one.
3017 */
3018 mutex_lock(&ext4_li_mtx);
3019 mutex_lock(&eli->li_list_mtx);
3020 if (!list_empty(&eli->li_request_list)) {
3021 mutex_unlock(&eli->li_list_mtx);
3022 mutex_unlock(&ext4_li_mtx);
3023 goto cont_thread;
3024 }
3025 mutex_unlock(&eli->li_list_mtx);
3026 kfree(ext4_li_info);
3027 ext4_li_info = NULL;
3028 mutex_unlock(&ext4_li_mtx);
3029
3030 return 0;
3031}
3032
3033static void ext4_clear_request_list(void)
3034{
3035 struct list_head *pos, *n;
3036 struct ext4_li_request *elr;
3037
3038 mutex_lock(&ext4_li_info->li_list_mtx);
3039 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3040 elr = list_entry(pos, struct ext4_li_request,
3041 lr_request);
3042 ext4_remove_li_request(elr);
3043 }
3044 mutex_unlock(&ext4_li_info->li_list_mtx);
3045}
3046
3047static int ext4_run_lazyinit_thread(void)
3048{
3049 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3050 ext4_li_info, "ext4lazyinit");
3051 if (IS_ERR(ext4_lazyinit_task)) {
3052 int err = PTR_ERR(ext4_lazyinit_task);
3053 ext4_clear_request_list();
3054 kfree(ext4_li_info);
3055 ext4_li_info = NULL;
3056 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3057 "initialization thread\n",
3058 err);
3059 return err;
3060 }
3061 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3062 return 0;
3063}
3064
3065/*
3066 * Check whether it make sense to run itable init. thread or not.
3067 * If there is at least one uninitialized inode table, return
3068 * corresponding group number, else the loop goes through all
3069 * groups and return total number of groups.
3070 */
3071static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3072{
3073 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3074 struct ext4_group_desc *gdp = NULL;
3075
3076 for (group = 0; group < ngroups; group++) {
3077 gdp = ext4_get_group_desc(sb, group, NULL);
3078 if (!gdp)
3079 continue;
3080
3081 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3082 break;
3083 }
3084
3085 return group;
3086}
3087
3088static int ext4_li_info_new(void)
3089{
3090 struct ext4_lazy_init *eli = NULL;
3091
3092 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3093 if (!eli)
3094 return -ENOMEM;
3095
3096 INIT_LIST_HEAD(&eli->li_request_list);
3097 mutex_init(&eli->li_list_mtx);
3098
3099 eli->li_state |= EXT4_LAZYINIT_QUIT;
3100
3101 ext4_li_info = eli;
3102
3103 return 0;
3104}
3105
3106static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3107 ext4_group_t start)
3108{
3109 struct ext4_sb_info *sbi = EXT4_SB(sb);
3110 struct ext4_li_request *elr;
3111
3112 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3113 if (!elr)
3114 return NULL;
3115
3116 elr->lr_super = sb;
3117 elr->lr_sbi = sbi;
3118 elr->lr_next_group = start;
3119
3120 /*
3121 * Randomize first schedule time of the request to
3122 * spread the inode table initialization requests
3123 * better.
3124 */
3125 elr->lr_next_sched = jiffies + (prandom_u32() %
3126 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3127 return elr;
3128}
3129
3130int ext4_register_li_request(struct super_block *sb,
3131 ext4_group_t first_not_zeroed)
3132{
3133 struct ext4_sb_info *sbi = EXT4_SB(sb);
3134 struct ext4_li_request *elr = NULL;
3135 ext4_group_t ngroups = sbi->s_groups_count;
3136 int ret = 0;
3137
3138 mutex_lock(&ext4_li_mtx);
3139 if (sbi->s_li_request != NULL) {
3140 /*
3141 * Reset timeout so it can be computed again, because
3142 * s_li_wait_mult might have changed.
3143 */
3144 sbi->s_li_request->lr_timeout = 0;
3145 goto out;
3146 }
3147
3148 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3149 !test_opt(sb, INIT_INODE_TABLE))
3150 goto out;
3151
3152 elr = ext4_li_request_new(sb, first_not_zeroed);
3153 if (!elr) {
3154 ret = -ENOMEM;
3155 goto out;
3156 }
3157
3158 if (NULL == ext4_li_info) {
3159 ret = ext4_li_info_new();
3160 if (ret)
3161 goto out;
3162 }
3163
3164 mutex_lock(&ext4_li_info->li_list_mtx);
3165 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3166 mutex_unlock(&ext4_li_info->li_list_mtx);
3167
3168 sbi->s_li_request = elr;
3169 /*
3170 * set elr to NULL here since it has been inserted to
3171 * the request_list and the removal and free of it is
3172 * handled by ext4_clear_request_list from now on.
3173 */
3174 elr = NULL;
3175
3176 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3177 ret = ext4_run_lazyinit_thread();
3178 if (ret)
3179 goto out;
3180 }
3181out:
3182 mutex_unlock(&ext4_li_mtx);
3183 if (ret)
3184 kfree(elr);
3185 return ret;
3186}
3187
3188/*
3189 * We do not need to lock anything since this is called on
3190 * module unload.
3191 */
3192static void ext4_destroy_lazyinit_thread(void)
3193{
3194 /*
3195 * If thread exited earlier
3196 * there's nothing to be done.
3197 */
3198 if (!ext4_li_info || !ext4_lazyinit_task)
3199 return;
3200
3201 kthread_stop(ext4_lazyinit_task);
3202}
3203
3204static int set_journal_csum_feature_set(struct super_block *sb)
3205{
3206 int ret = 1;
3207 int compat, incompat;
3208 struct ext4_sb_info *sbi = EXT4_SB(sb);
3209
3210 if (ext4_has_metadata_csum(sb)) {
3211 /* journal checksum v3 */
3212 compat = 0;
3213 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3214 } else {
3215 /* journal checksum v1 */
3216 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3217 incompat = 0;
3218 }
3219
3220 jbd2_journal_clear_features(sbi->s_journal,
3221 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3222 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3223 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3224 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3225 ret = jbd2_journal_set_features(sbi->s_journal,
3226 compat, 0,
3227 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3228 incompat);
3229 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3230 ret = jbd2_journal_set_features(sbi->s_journal,
3231 compat, 0,
3232 incompat);
3233 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3234 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3235 } else {
3236 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3237 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3238 }
3239
3240 return ret;
3241}
3242
3243/*
3244 * Note: calculating the overhead so we can be compatible with
3245 * historical BSD practice is quite difficult in the face of
3246 * clusters/bigalloc. This is because multiple metadata blocks from
3247 * different block group can end up in the same allocation cluster.
3248 * Calculating the exact overhead in the face of clustered allocation
3249 * requires either O(all block bitmaps) in memory or O(number of block
3250 * groups**2) in time. We will still calculate the superblock for
3251 * older file systems --- and if we come across with a bigalloc file
3252 * system with zero in s_overhead_clusters the estimate will be close to
3253 * correct especially for very large cluster sizes --- but for newer
3254 * file systems, it's better to calculate this figure once at mkfs
3255 * time, and store it in the superblock. If the superblock value is
3256 * present (even for non-bigalloc file systems), we will use it.
3257 */
3258static int count_overhead(struct super_block *sb, ext4_group_t grp,
3259 char *buf)
3260{
3261 struct ext4_sb_info *sbi = EXT4_SB(sb);
3262 struct ext4_group_desc *gdp;
3263 ext4_fsblk_t first_block, last_block, b;
3264 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3265 int s, j, count = 0;
3266
3267 if (!ext4_has_feature_bigalloc(sb))
3268 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3269 sbi->s_itb_per_group + 2);
3270
3271 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3272 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3273 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3274 for (i = 0; i < ngroups; i++) {
3275 gdp = ext4_get_group_desc(sb, i, NULL);
3276 b = ext4_block_bitmap(sb, gdp);
3277 if (b >= first_block && b <= last_block) {
3278 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3279 count++;
3280 }
3281 b = ext4_inode_bitmap(sb, gdp);
3282 if (b >= first_block && b <= last_block) {
3283 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3284 count++;
3285 }
3286 b = ext4_inode_table(sb, gdp);
3287 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3288 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3289 int c = EXT4_B2C(sbi, b - first_block);
3290 ext4_set_bit(c, buf);
3291 count++;
3292 }
3293 if (i != grp)
3294 continue;
3295 s = 0;
3296 if (ext4_bg_has_super(sb, grp)) {
3297 ext4_set_bit(s++, buf);
3298 count++;
3299 }
3300 j = ext4_bg_num_gdb(sb, grp);
3301 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3302 ext4_error(sb, "Invalid number of block group "
3303 "descriptor blocks: %d", j);
3304 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3305 }
3306 count += j;
3307 for (; j > 0; j--)
3308 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3309 }
3310 if (!count)
3311 return 0;
3312 return EXT4_CLUSTERS_PER_GROUP(sb) -
3313 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3314}
3315
3316/*
3317 * Compute the overhead and stash it in sbi->s_overhead
3318 */
3319int ext4_calculate_overhead(struct super_block *sb)
3320{
3321 struct ext4_sb_info *sbi = EXT4_SB(sb);
3322 struct ext4_super_block *es = sbi->s_es;
3323 struct inode *j_inode;
3324 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3325 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3326 ext4_fsblk_t overhead = 0;
3327 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3328
3329 if (!buf)
3330 return -ENOMEM;
3331
3332 /*
3333 * Compute the overhead (FS structures). This is constant
3334 * for a given filesystem unless the number of block groups
3335 * changes so we cache the previous value until it does.
3336 */
3337
3338 /*
3339 * All of the blocks before first_data_block are overhead
3340 */
3341 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3342
3343 /*
3344 * Add the overhead found in each block group
3345 */
3346 for (i = 0; i < ngroups; i++) {
3347 int blks;
3348
3349 blks = count_overhead(sb, i, buf);
3350 overhead += blks;
3351 if (blks)
3352 memset(buf, 0, PAGE_SIZE);
3353 cond_resched();
3354 }
3355
3356 /*
3357 * Add the internal journal blocks whether the journal has been
3358 * loaded or not
3359 */
3360 if (sbi->s_journal && !sbi->journal_bdev)
3361 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3362 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3363 j_inode = ext4_get_journal_inode(sb, j_inum);
3364 if (j_inode) {
3365 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3366 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3367 iput(j_inode);
3368 } else {
3369 ext4_msg(sb, KERN_ERR, "can't get journal size");
3370 }
3371 }
3372 sbi->s_overhead = overhead;
3373 smp_wmb();
3374 free_page((unsigned long) buf);
3375 return 0;
3376}
3377
3378static void ext4_set_resv_clusters(struct super_block *sb)
3379{
3380 ext4_fsblk_t resv_clusters;
3381 struct ext4_sb_info *sbi = EXT4_SB(sb);
3382
3383 /*
3384 * There's no need to reserve anything when we aren't using extents.
3385 * The space estimates are exact, there are no unwritten extents,
3386 * hole punching doesn't need new metadata... This is needed especially
3387 * to keep ext2/3 backward compatibility.
3388 */
3389 if (!ext4_has_feature_extents(sb))
3390 return;
3391 /*
3392 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3393 * This should cover the situations where we can not afford to run
3394 * out of space like for example punch hole, or converting
3395 * unwritten extents in delalloc path. In most cases such
3396 * allocation would require 1, or 2 blocks, higher numbers are
3397 * very rare.
3398 */
3399 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3400 sbi->s_cluster_bits);
3401
3402 do_div(resv_clusters, 50);
3403 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3404
3405 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3406}
3407
3408static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3409{
3410 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3411 char *orig_data = kstrdup(data, GFP_KERNEL);
3412 struct buffer_head *bh;
3413 struct ext4_super_block *es = NULL;
3414 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3415 ext4_fsblk_t block;
3416 ext4_fsblk_t sb_block = get_sb_block(&data);
3417 ext4_fsblk_t logical_sb_block;
3418 unsigned long offset = 0;
3419 unsigned long journal_devnum = 0;
3420 unsigned long def_mount_opts;
3421 struct inode *root;
3422 const char *descr;
3423 int ret = -ENOMEM;
3424 int blocksize, clustersize;
3425 unsigned int db_count;
3426 unsigned int i;
3427 int needs_recovery, has_huge_files, has_bigalloc;
3428 __u64 blocks_count;
3429 int err = 0;
3430 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3431 ext4_group_t first_not_zeroed;
3432
3433 if ((data && !orig_data) || !sbi)
3434 goto out_free_base;
3435
3436 sbi->s_daxdev = dax_dev;
3437 sbi->s_blockgroup_lock =
3438 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3439 if (!sbi->s_blockgroup_lock)
3440 goto out_free_base;
3441
3442 sb->s_fs_info = sbi;
3443 sbi->s_sb = sb;
3444 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3445 sbi->s_sb_block = sb_block;
3446 if (sb->s_bdev->bd_part)
3447 sbi->s_sectors_written_start =
3448 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3449
3450 /* Cleanup superblock name */
3451 strreplace(sb->s_id, '/', '!');
3452
3453 /* -EINVAL is default */
3454 ret = -EINVAL;
3455 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3456 if (!blocksize) {
3457 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3458 goto out_fail;
3459 }
3460
3461 /*
3462 * The ext4 superblock will not be buffer aligned for other than 1kB
3463 * block sizes. We need to calculate the offset from buffer start.
3464 */
3465 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3466 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3467 offset = do_div(logical_sb_block, blocksize);
3468 } else {
3469 logical_sb_block = sb_block;
3470 }
3471
3472 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3473 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3474 goto out_fail;
3475 }
3476 /*
3477 * Note: s_es must be initialized as soon as possible because
3478 * some ext4 macro-instructions depend on its value
3479 */
3480 es = (struct ext4_super_block *) (bh->b_data + offset);
3481 sbi->s_es = es;
3482 sb->s_magic = le16_to_cpu(es->s_magic);
3483 if (sb->s_magic != EXT4_SUPER_MAGIC)
3484 goto cantfind_ext4;
3485 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3486
3487 /* Warn if metadata_csum and gdt_csum are both set. */
3488 if (ext4_has_feature_metadata_csum(sb) &&
3489 ext4_has_feature_gdt_csum(sb))
3490 ext4_warning(sb, "metadata_csum and uninit_bg are "
3491 "redundant flags; please run fsck.");
3492
3493 /* Check for a known checksum algorithm */
3494 if (!ext4_verify_csum_type(sb, es)) {
3495 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3496 "unknown checksum algorithm.");
3497 silent = 1;
3498 goto cantfind_ext4;
3499 }
3500
3501 /* Load the checksum driver */
3502 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3503 if (IS_ERR(sbi->s_chksum_driver)) {
3504 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3505 ret = PTR_ERR(sbi->s_chksum_driver);
3506 sbi->s_chksum_driver = NULL;
3507 goto failed_mount;
3508 }
3509
3510 /* Check superblock checksum */
3511 if (!ext4_superblock_csum_verify(sb, es)) {
3512 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3513 "invalid superblock checksum. Run e2fsck?");
3514 silent = 1;
3515 ret = -EFSBADCRC;
3516 goto cantfind_ext4;
3517 }
3518
3519 /* Precompute checksum seed for all metadata */
3520 if (ext4_has_feature_csum_seed(sb))
3521 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3522 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3523 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3524 sizeof(es->s_uuid));
3525
3526 /* Set defaults before we parse the mount options */
3527 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3528 set_opt(sb, INIT_INODE_TABLE);
3529 if (def_mount_opts & EXT4_DEFM_DEBUG)
3530 set_opt(sb, DEBUG);
3531 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3532 set_opt(sb, GRPID);
3533 if (def_mount_opts & EXT4_DEFM_UID16)
3534 set_opt(sb, NO_UID32);
3535 /* xattr user namespace & acls are now defaulted on */
3536 set_opt(sb, XATTR_USER);
3537#ifdef CONFIG_EXT4_FS_POSIX_ACL
3538 set_opt(sb, POSIX_ACL);
3539#endif
3540 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3541 if (ext4_has_metadata_csum(sb))
3542 set_opt(sb, JOURNAL_CHECKSUM);
3543
3544 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3545 set_opt(sb, JOURNAL_DATA);
3546 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3547 set_opt(sb, ORDERED_DATA);
3548 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3549 set_opt(sb, WRITEBACK_DATA);
3550
3551 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3552 set_opt(sb, ERRORS_PANIC);
3553 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3554 set_opt(sb, ERRORS_CONT);
3555 else
3556 set_opt(sb, ERRORS_RO);
3557 /* block_validity enabled by default; disable with noblock_validity */
3558 set_opt(sb, BLOCK_VALIDITY);
3559 if (def_mount_opts & EXT4_DEFM_DISCARD)
3560 set_opt(sb, DISCARD);
3561
3562 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3563 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3564 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3565 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3566 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3567
3568 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3569 set_opt(sb, BARRIER);
3570
3571 /*
3572 * enable delayed allocation by default
3573 * Use -o nodelalloc to turn it off
3574 */
3575 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3576 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3577 set_opt(sb, DELALLOC);
3578
3579 /*
3580 * set default s_li_wait_mult for lazyinit, for the case there is
3581 * no mount option specified.
3582 */
3583 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3584
3585 if (sbi->s_es->s_mount_opts[0]) {
3586 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3587 sizeof(sbi->s_es->s_mount_opts),
3588 GFP_KERNEL);
3589 if (!s_mount_opts)
3590 goto failed_mount;
3591 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3592 &journal_ioprio, 0)) {
3593 ext4_msg(sb, KERN_WARNING,
3594 "failed to parse options in superblock: %s",
3595 s_mount_opts);
3596 }
3597 kfree(s_mount_opts);
3598 }
3599 sbi->s_def_mount_opt = sbi->s_mount_opt;
3600 if (!parse_options((char *) data, sb, &journal_devnum,
3601 &journal_ioprio, 0))
3602 goto failed_mount;
3603
3604 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3605 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3606 "with data=journal disables delayed "
3607 "allocation and O_DIRECT support!\n");
3608 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3609 ext4_msg(sb, KERN_ERR, "can't mount with "
3610 "both data=journal and delalloc");
3611 goto failed_mount;
3612 }
3613 if (test_opt(sb, DIOREAD_NOLOCK)) {
3614 ext4_msg(sb, KERN_ERR, "can't mount with "
3615 "both data=journal and dioread_nolock");
3616 goto failed_mount;
3617 }
3618 if (test_opt(sb, DAX)) {
3619 ext4_msg(sb, KERN_ERR, "can't mount with "
3620 "both data=journal and dax");
3621 goto failed_mount;
3622 }
3623 if (ext4_has_feature_encrypt(sb)) {
3624 ext4_msg(sb, KERN_WARNING,
3625 "encrypted files will use data=ordered "
3626 "instead of data journaling mode");
3627 }
3628 if (test_opt(sb, DELALLOC))
3629 clear_opt(sb, DELALLOC);
3630 } else {
3631 sb->s_iflags |= SB_I_CGROUPWB;
3632 }
3633
3634 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3635 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3636
3637 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3638 (ext4_has_compat_features(sb) ||
3639 ext4_has_ro_compat_features(sb) ||
3640 ext4_has_incompat_features(sb)))
3641 ext4_msg(sb, KERN_WARNING,
3642 "feature flags set on rev 0 fs, "
3643 "running e2fsck is recommended");
3644
3645 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3646 set_opt2(sb, HURD_COMPAT);
3647 if (ext4_has_feature_64bit(sb)) {
3648 ext4_msg(sb, KERN_ERR,
3649 "The Hurd can't support 64-bit file systems");
3650 goto failed_mount;
3651 }
3652
3653 /*
3654 * ea_inode feature uses l_i_version field which is not
3655 * available in HURD_COMPAT mode.
3656 */
3657 if (ext4_has_feature_ea_inode(sb)) {
3658 ext4_msg(sb, KERN_ERR,
3659 "ea_inode feature is not supported for Hurd");
3660 goto failed_mount;
3661 }
3662 }
3663
3664 if (IS_EXT2_SB(sb)) {
3665 if (ext2_feature_set_ok(sb))
3666 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3667 "using the ext4 subsystem");
3668 else {
3669 /*
3670 * If we're probing be silent, if this looks like
3671 * it's actually an ext[34] filesystem.
3672 */
3673 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3674 goto failed_mount;
3675 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3676 "to feature incompatibilities");
3677 goto failed_mount;
3678 }
3679 }
3680
3681 if (IS_EXT3_SB(sb)) {
3682 if (ext3_feature_set_ok(sb))
3683 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3684 "using the ext4 subsystem");
3685 else {
3686 /*
3687 * If we're probing be silent, if this looks like
3688 * it's actually an ext4 filesystem.
3689 */
3690 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3691 goto failed_mount;
3692 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3693 "to feature incompatibilities");
3694 goto failed_mount;
3695 }
3696 }
3697
3698 /*
3699 * Check feature flags regardless of the revision level, since we
3700 * previously didn't change the revision level when setting the flags,
3701 * so there is a chance incompat flags are set on a rev 0 filesystem.
3702 */
3703 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3704 goto failed_mount;
3705
3706 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3707 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3708 blocksize > EXT4_MAX_BLOCK_SIZE) {
3709 ext4_msg(sb, KERN_ERR,
3710 "Unsupported filesystem blocksize %d (%d log_block_size)",
3711 blocksize, le32_to_cpu(es->s_log_block_size));
3712 goto failed_mount;
3713 }
3714 if (le32_to_cpu(es->s_log_block_size) >
3715 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3716 ext4_msg(sb, KERN_ERR,
3717 "Invalid log block size: %u",
3718 le32_to_cpu(es->s_log_block_size));
3719 goto failed_mount;
3720 }
3721
3722 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3723 ext4_msg(sb, KERN_ERR,
3724 "Number of reserved GDT blocks insanely large: %d",
3725 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3726 goto failed_mount;
3727 }
3728
3729 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3730 if (ext4_has_feature_inline_data(sb)) {
3731 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3732 " that may contain inline data");
3733 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3734 }
3735 err = bdev_dax_supported(sb, blocksize);
3736 if (err) {
3737 ext4_msg(sb, KERN_ERR,
3738 "DAX unsupported by block device. Turning off DAX.");
3739 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3740 }
3741 }
3742
3743 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3744 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3745 es->s_encryption_level);
3746 goto failed_mount;
3747 }
3748
3749 if (sb->s_blocksize != blocksize) {
3750 /* Validate the filesystem blocksize */
3751 if (!sb_set_blocksize(sb, blocksize)) {
3752 ext4_msg(sb, KERN_ERR, "bad block size %d",
3753 blocksize);
3754 goto failed_mount;
3755 }
3756
3757 brelse(bh);
3758 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3759 offset = do_div(logical_sb_block, blocksize);
3760 bh = sb_bread_unmovable(sb, logical_sb_block);
3761 if (!bh) {
3762 ext4_msg(sb, KERN_ERR,
3763 "Can't read superblock on 2nd try");
3764 goto failed_mount;
3765 }
3766 es = (struct ext4_super_block *)(bh->b_data + offset);
3767 sbi->s_es = es;
3768 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3769 ext4_msg(sb, KERN_ERR,
3770 "Magic mismatch, very weird!");
3771 goto failed_mount;
3772 }
3773 }
3774
3775 has_huge_files = ext4_has_feature_huge_file(sb);
3776 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3777 has_huge_files);
3778 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3779
3780 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3781 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3782 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3783 } else {
3784 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3785 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3786 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3787 (!is_power_of_2(sbi->s_inode_size)) ||
3788 (sbi->s_inode_size > blocksize)) {
3789 ext4_msg(sb, KERN_ERR,
3790 "unsupported inode size: %d",
3791 sbi->s_inode_size);
3792 goto failed_mount;
3793 }
3794 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3795 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3796 }
3797
3798 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3799 if (ext4_has_feature_64bit(sb)) {
3800 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3801 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3802 !is_power_of_2(sbi->s_desc_size)) {
3803 ext4_msg(sb, KERN_ERR,
3804 "unsupported descriptor size %lu",
3805 sbi->s_desc_size);
3806 goto failed_mount;
3807 }
3808 } else
3809 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3810
3811 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3812 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3813
3814 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3815 if (sbi->s_inodes_per_block == 0)
3816 goto cantfind_ext4;
3817 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3818 sbi->s_inodes_per_group > blocksize * 8) {
3819 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3820 sbi->s_blocks_per_group);
3821 goto failed_mount;
3822 }
3823 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3824 sbi->s_inodes_per_block;
3825 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3826 sbi->s_sbh = bh;
3827 sbi->s_mount_state = le16_to_cpu(es->s_state);
3828 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3829 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3830
3831 for (i = 0; i < 4; i++)
3832 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3833 sbi->s_def_hash_version = es->s_def_hash_version;
3834 if (ext4_has_feature_dir_index(sb)) {
3835 i = le32_to_cpu(es->s_flags);
3836 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3837 sbi->s_hash_unsigned = 3;
3838 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3839#ifdef __CHAR_UNSIGNED__
3840 if (!sb_rdonly(sb))
3841 es->s_flags |=
3842 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3843 sbi->s_hash_unsigned = 3;
3844#else
3845 if (!sb_rdonly(sb))
3846 es->s_flags |=
3847 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3848#endif
3849 }
3850 }
3851
3852 /* Handle clustersize */
3853 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3854 has_bigalloc = ext4_has_feature_bigalloc(sb);
3855 if (has_bigalloc) {
3856 if (clustersize < blocksize) {
3857 ext4_msg(sb, KERN_ERR,
3858 "cluster size (%d) smaller than "
3859 "block size (%d)", clustersize, blocksize);
3860 goto failed_mount;
3861 }
3862 if (le32_to_cpu(es->s_log_cluster_size) >
3863 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3864 ext4_msg(sb, KERN_ERR,
3865 "Invalid log cluster size: %u",
3866 le32_to_cpu(es->s_log_cluster_size));
3867 goto failed_mount;
3868 }
3869 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3870 le32_to_cpu(es->s_log_block_size);
3871 sbi->s_clusters_per_group =
3872 le32_to_cpu(es->s_clusters_per_group);
3873 if (sbi->s_clusters_per_group > blocksize * 8) {
3874 ext4_msg(sb, KERN_ERR,
3875 "#clusters per group too big: %lu",
3876 sbi->s_clusters_per_group);
3877 goto failed_mount;
3878 }
3879 if (sbi->s_blocks_per_group !=
3880 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3881 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3882 "clusters per group (%lu) inconsistent",
3883 sbi->s_blocks_per_group,
3884 sbi->s_clusters_per_group);
3885 goto failed_mount;
3886 }
3887 } else {
3888 if (clustersize != blocksize) {
3889 ext4_warning(sb, "fragment/cluster size (%d) != "
3890 "block size (%d)", clustersize,
3891 blocksize);
3892 clustersize = blocksize;
3893 }
3894 if (sbi->s_blocks_per_group > blocksize * 8) {
3895 ext4_msg(sb, KERN_ERR,
3896 "#blocks per group too big: %lu",
3897 sbi->s_blocks_per_group);
3898 goto failed_mount;
3899 }
3900 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3901 sbi->s_cluster_bits = 0;
3902 }
3903 sbi->s_cluster_ratio = clustersize / blocksize;
3904
3905 /* Do we have standard group size of clustersize * 8 blocks ? */
3906 if (sbi->s_blocks_per_group == clustersize << 3)
3907 set_opt2(sb, STD_GROUP_SIZE);
3908
3909 /*
3910 * Test whether we have more sectors than will fit in sector_t,
3911 * and whether the max offset is addressable by the page cache.
3912 */
3913 err = generic_check_addressable(sb->s_blocksize_bits,
3914 ext4_blocks_count(es));
3915 if (err) {
3916 ext4_msg(sb, KERN_ERR, "filesystem"
3917 " too large to mount safely on this system");
3918 if (sizeof(sector_t) < 8)
3919 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3920 goto failed_mount;
3921 }
3922
3923 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3924 goto cantfind_ext4;
3925
3926 /* check blocks count against device size */
3927 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3928 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3929 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3930 "exceeds size of device (%llu blocks)",
3931 ext4_blocks_count(es), blocks_count);
3932 goto failed_mount;
3933 }
3934
3935 /*
3936 * It makes no sense for the first data block to be beyond the end
3937 * of the filesystem.
3938 */
3939 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3940 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3941 "block %u is beyond end of filesystem (%llu)",
3942 le32_to_cpu(es->s_first_data_block),
3943 ext4_blocks_count(es));
3944 goto failed_mount;
3945 }
3946 blocks_count = (ext4_blocks_count(es) -
3947 le32_to_cpu(es->s_first_data_block) +
3948 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3949 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3950 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3951 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3952 "(block count %llu, first data block %u, "
3953 "blocks per group %lu)", sbi->s_groups_count,
3954 ext4_blocks_count(es),
3955 le32_to_cpu(es->s_first_data_block),
3956 EXT4_BLOCKS_PER_GROUP(sb));
3957 goto failed_mount;
3958 }
3959 sbi->s_groups_count = blocks_count;
3960 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3961 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3962 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3963 EXT4_DESC_PER_BLOCK(sb);
3964 if (ext4_has_feature_meta_bg(sb)) {
3965 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3966 ext4_msg(sb, KERN_WARNING,
3967 "first meta block group too large: %u "
3968 "(group descriptor block count %u)",
3969 le32_to_cpu(es->s_first_meta_bg), db_count);
3970 goto failed_mount;
3971 }
3972 }
3973 sbi->s_group_desc = kvmalloc(db_count *
3974 sizeof(struct buffer_head *),
3975 GFP_KERNEL);
3976 if (sbi->s_group_desc == NULL) {
3977 ext4_msg(sb, KERN_ERR, "not enough memory");
3978 ret = -ENOMEM;
3979 goto failed_mount;
3980 }
3981
3982 bgl_lock_init(sbi->s_blockgroup_lock);
3983
3984 /* Pre-read the descriptors into the buffer cache */
3985 for (i = 0; i < db_count; i++) {
3986 block = descriptor_loc(sb, logical_sb_block, i);
3987 sb_breadahead(sb, block);
3988 }
3989
3990 for (i = 0; i < db_count; i++) {
3991 block = descriptor_loc(sb, logical_sb_block, i);
3992 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3993 if (!sbi->s_group_desc[i]) {
3994 ext4_msg(sb, KERN_ERR,
3995 "can't read group descriptor %d", i);
3996 db_count = i;
3997 goto failed_mount2;
3998 }
3999 }
4000 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4001 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4002 ret = -EFSCORRUPTED;
4003 goto failed_mount2;
4004 }
4005
4006 sbi->s_gdb_count = db_count;
4007
4008 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4009
4010 /* Register extent status tree shrinker */
4011 if (ext4_es_register_shrinker(sbi))
4012 goto failed_mount3;
4013
4014 sbi->s_stripe = ext4_get_stripe_size(sbi);
4015 sbi->s_extent_max_zeroout_kb = 32;
4016
4017 /*
4018 * set up enough so that it can read an inode
4019 */
4020 sb->s_op = &ext4_sops;
4021 sb->s_export_op = &ext4_export_ops;
4022 sb->s_xattr = ext4_xattr_handlers;
4023#ifdef CONFIG_EXT4_FS_ENCRYPTION
4024 sb->s_cop = &ext4_cryptops;
4025#endif
4026#ifdef CONFIG_QUOTA
4027 sb->dq_op = &ext4_quota_operations;
4028 if (ext4_has_feature_quota(sb))
4029 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4030 else
4031 sb->s_qcop = &ext4_qctl_operations;
4032 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4033#endif
4034 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4035
4036 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4037 mutex_init(&sbi->s_orphan_lock);
4038
4039 sb->s_root = NULL;
4040
4041 needs_recovery = (es->s_last_orphan != 0 ||
4042 ext4_has_feature_journal_needs_recovery(sb));
4043
4044 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4045 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4046 goto failed_mount3a;
4047
4048 /*
4049 * The first inode we look at is the journal inode. Don't try
4050 * root first: it may be modified in the journal!
4051 */
4052 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4053 err = ext4_load_journal(sb, es, journal_devnum);
4054 if (err)
4055 goto failed_mount3a;
4056 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4057 ext4_has_feature_journal_needs_recovery(sb)) {
4058 ext4_msg(sb, KERN_ERR, "required journal recovery "
4059 "suppressed and not mounted read-only");
4060 goto failed_mount_wq;
4061 } else {
4062 /* Nojournal mode, all journal mount options are illegal */
4063 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4064 ext4_msg(sb, KERN_ERR, "can't mount with "
4065 "journal_checksum, fs mounted w/o journal");
4066 goto failed_mount_wq;
4067 }
4068 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4069 ext4_msg(sb, KERN_ERR, "can't mount with "
4070 "journal_async_commit, fs mounted w/o journal");
4071 goto failed_mount_wq;
4072 }
4073 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4074 ext4_msg(sb, KERN_ERR, "can't mount with "
4075 "commit=%lu, fs mounted w/o journal",
4076 sbi->s_commit_interval / HZ);
4077 goto failed_mount_wq;
4078 }
4079 if (EXT4_MOUNT_DATA_FLAGS &
4080 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4081 ext4_msg(sb, KERN_ERR, "can't mount with "
4082 "data=, fs mounted w/o journal");
4083 goto failed_mount_wq;
4084 }
4085 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4086 clear_opt(sb, JOURNAL_CHECKSUM);
4087 clear_opt(sb, DATA_FLAGS);
4088 sbi->s_journal = NULL;
4089 needs_recovery = 0;
4090 goto no_journal;
4091 }
4092
4093 if (ext4_has_feature_64bit(sb) &&
4094 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4095 JBD2_FEATURE_INCOMPAT_64BIT)) {
4096 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4097 goto failed_mount_wq;
4098 }
4099
4100 if (!set_journal_csum_feature_set(sb)) {
4101 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4102 "feature set");
4103 goto failed_mount_wq;
4104 }
4105
4106 /* We have now updated the journal if required, so we can
4107 * validate the data journaling mode. */
4108 switch (test_opt(sb, DATA_FLAGS)) {
4109 case 0:
4110 /* No mode set, assume a default based on the journal
4111 * capabilities: ORDERED_DATA if the journal can
4112 * cope, else JOURNAL_DATA
4113 */
4114 if (jbd2_journal_check_available_features
4115 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4116 set_opt(sb, ORDERED_DATA);
4117 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4118 } else {
4119 set_opt(sb, JOURNAL_DATA);
4120 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4121 }
4122 break;
4123
4124 case EXT4_MOUNT_ORDERED_DATA:
4125 case EXT4_MOUNT_WRITEBACK_DATA:
4126 if (!jbd2_journal_check_available_features
4127 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4128 ext4_msg(sb, KERN_ERR, "Journal does not support "
4129 "requested data journaling mode");
4130 goto failed_mount_wq;
4131 }
4132 default:
4133 break;
4134 }
4135
4136 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4137 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4138 ext4_msg(sb, KERN_ERR, "can't mount with "
4139 "journal_async_commit in data=ordered mode");
4140 goto failed_mount_wq;
4141 }
4142
4143 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4144
4145 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4146
4147no_journal:
4148 if (!test_opt(sb, NO_MBCACHE)) {
4149 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4150 if (!sbi->s_ea_block_cache) {
4151 ext4_msg(sb, KERN_ERR,
4152 "Failed to create ea_block_cache");
4153 goto failed_mount_wq;
4154 }
4155
4156 if (ext4_has_feature_ea_inode(sb)) {
4157 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4158 if (!sbi->s_ea_inode_cache) {
4159 ext4_msg(sb, KERN_ERR,
4160 "Failed to create ea_inode_cache");
4161 goto failed_mount_wq;
4162 }
4163 }
4164 }
4165
4166 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4167 (blocksize != PAGE_SIZE)) {
4168 ext4_msg(sb, KERN_ERR,
4169 "Unsupported blocksize for fs encryption");
4170 goto failed_mount_wq;
4171 }
4172
4173 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4174 !ext4_has_feature_encrypt(sb)) {
4175 ext4_set_feature_encrypt(sb);
4176 ext4_commit_super(sb, 1);
4177 }
4178
4179 /*
4180 * Get the # of file system overhead blocks from the
4181 * superblock if present.
4182 */
4183 if (es->s_overhead_clusters)
4184 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4185 else {
4186 err = ext4_calculate_overhead(sb);
4187 if (err)
4188 goto failed_mount_wq;
4189 }
4190
4191 /*
4192 * The maximum number of concurrent works can be high and
4193 * concurrency isn't really necessary. Limit it to 1.
4194 */
4195 EXT4_SB(sb)->rsv_conversion_wq =
4196 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4197 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4198 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4199 ret = -ENOMEM;
4200 goto failed_mount4;
4201 }
4202
4203 /*
4204 * The jbd2_journal_load will have done any necessary log recovery,
4205 * so we can safely mount the rest of the filesystem now.
4206 */
4207
4208 root = ext4_iget(sb, EXT4_ROOT_INO);
4209 if (IS_ERR(root)) {
4210 ext4_msg(sb, KERN_ERR, "get root inode failed");
4211 ret = PTR_ERR(root);
4212 root = NULL;
4213 goto failed_mount4;
4214 }
4215 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4216 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4217 iput(root);
4218 goto failed_mount4;
4219 }
4220 sb->s_root = d_make_root(root);
4221 if (!sb->s_root) {
4222 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4223 ret = -ENOMEM;
4224 goto failed_mount4;
4225 }
4226
4227 if (ext4_setup_super(sb, es, sb_rdonly(sb)))
4228 sb->s_flags |= SB_RDONLY;
4229
4230 /* determine the minimum size of new large inodes, if present */
4231 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4232 sbi->s_want_extra_isize == 0) {
4233 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4234 EXT4_GOOD_OLD_INODE_SIZE;
4235 if (ext4_has_feature_extra_isize(sb)) {
4236 if (sbi->s_want_extra_isize <
4237 le16_to_cpu(es->s_want_extra_isize))
4238 sbi->s_want_extra_isize =
4239 le16_to_cpu(es->s_want_extra_isize);
4240 if (sbi->s_want_extra_isize <
4241 le16_to_cpu(es->s_min_extra_isize))
4242 sbi->s_want_extra_isize =
4243 le16_to_cpu(es->s_min_extra_isize);
4244 }
4245 }
4246 /* Check if enough inode space is available */
4247 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4248 sbi->s_inode_size) {
4249 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4250 EXT4_GOOD_OLD_INODE_SIZE;
4251 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4252 "available");
4253 }
4254
4255 ext4_set_resv_clusters(sb);
4256
4257 err = ext4_setup_system_zone(sb);
4258 if (err) {
4259 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4260 "zone (%d)", err);
4261 goto failed_mount4a;
4262 }
4263
4264 ext4_ext_init(sb);
4265 err = ext4_mb_init(sb);
4266 if (err) {
4267 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4268 err);
4269 goto failed_mount5;
4270 }
4271
4272 block = ext4_count_free_clusters(sb);
4273 ext4_free_blocks_count_set(sbi->s_es,
4274 EXT4_C2B(sbi, block));
4275 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4276 GFP_KERNEL);
4277 if (!err) {
4278 unsigned long freei = ext4_count_free_inodes(sb);
4279 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4280 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4281 GFP_KERNEL);
4282 }
4283 if (!err)
4284 err = percpu_counter_init(&sbi->s_dirs_counter,
4285 ext4_count_dirs(sb), GFP_KERNEL);
4286 if (!err)
4287 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4288 GFP_KERNEL);
4289 if (!err)
4290 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4291
4292 if (err) {
4293 ext4_msg(sb, KERN_ERR, "insufficient memory");
4294 goto failed_mount6;
4295 }
4296
4297 if (ext4_has_feature_flex_bg(sb))
4298 if (!ext4_fill_flex_info(sb)) {
4299 ext4_msg(sb, KERN_ERR,
4300 "unable to initialize "
4301 "flex_bg meta info!");
4302 goto failed_mount6;
4303 }
4304
4305 err = ext4_register_li_request(sb, first_not_zeroed);
4306 if (err)
4307 goto failed_mount6;
4308
4309 err = ext4_register_sysfs(sb);
4310 if (err)
4311 goto failed_mount7;
4312
4313#ifdef CONFIG_QUOTA
4314 /* Enable quota usage during mount. */
4315 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4316 err = ext4_enable_quotas(sb);
4317 if (err)
4318 goto failed_mount8;
4319 }
4320#endif /* CONFIG_QUOTA */
4321
4322 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4323 ext4_orphan_cleanup(sb, es);
4324 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4325 if (needs_recovery) {
4326 ext4_msg(sb, KERN_INFO, "recovery complete");
4327 ext4_mark_recovery_complete(sb, es);
4328 }
4329 if (EXT4_SB(sb)->s_journal) {
4330 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4331 descr = " journalled data mode";
4332 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4333 descr = " ordered data mode";
4334 else
4335 descr = " writeback data mode";
4336 } else
4337 descr = "out journal";
4338
4339 if (test_opt(sb, DISCARD)) {
4340 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4341 if (!blk_queue_discard(q))
4342 ext4_msg(sb, KERN_WARNING,
4343 "mounting with \"discard\" option, but "
4344 "the device does not support discard");
4345 }
4346
4347 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4348 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4349 "Opts: %.*s%s%s", descr,
4350 (int) sizeof(sbi->s_es->s_mount_opts),
4351 sbi->s_es->s_mount_opts,
4352 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4353
4354 if (es->s_error_count)
4355 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4356
4357 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4358 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4359 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4360 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4361
4362 kfree(orig_data);
4363 return 0;
4364
4365cantfind_ext4:
4366 if (!silent)
4367 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4368 goto failed_mount;
4369
4370#ifdef CONFIG_QUOTA
4371failed_mount8:
4372 ext4_unregister_sysfs(sb);
4373#endif
4374failed_mount7:
4375 ext4_unregister_li_request(sb);
4376failed_mount6:
4377 ext4_mb_release(sb);
4378 if (sbi->s_flex_groups)
4379 kvfree(sbi->s_flex_groups);
4380 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4381 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4382 percpu_counter_destroy(&sbi->s_dirs_counter);
4383 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4384failed_mount5:
4385 ext4_ext_release(sb);
4386 ext4_release_system_zone(sb);
4387failed_mount4a:
4388 dput(sb->s_root);
4389 sb->s_root = NULL;
4390failed_mount4:
4391 ext4_msg(sb, KERN_ERR, "mount failed");
4392 if (EXT4_SB(sb)->rsv_conversion_wq)
4393 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4394failed_mount_wq:
4395 if (sbi->s_ea_inode_cache) {
4396 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4397 sbi->s_ea_inode_cache = NULL;
4398 }
4399 if (sbi->s_ea_block_cache) {
4400 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4401 sbi->s_ea_block_cache = NULL;
4402 }
4403 if (sbi->s_journal) {
4404 jbd2_journal_destroy(sbi->s_journal);
4405 sbi->s_journal = NULL;
4406 }
4407failed_mount3a:
4408 ext4_es_unregister_shrinker(sbi);
4409failed_mount3:
4410 del_timer_sync(&sbi->s_err_report);
4411 if (sbi->s_mmp_tsk)
4412 kthread_stop(sbi->s_mmp_tsk);
4413failed_mount2:
4414 for (i = 0; i < db_count; i++)
4415 brelse(sbi->s_group_desc[i]);
4416 kvfree(sbi->s_group_desc);
4417failed_mount:
4418 if (sbi->s_chksum_driver)
4419 crypto_free_shash(sbi->s_chksum_driver);
4420#ifdef CONFIG_QUOTA
4421 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4422 kfree(sbi->s_qf_names[i]);
4423#endif
4424 ext4_blkdev_remove(sbi);
4425 brelse(bh);
4426out_fail:
4427 sb->s_fs_info = NULL;
4428 kfree(sbi->s_blockgroup_lock);
4429out_free_base:
4430 kfree(sbi);
4431 kfree(orig_data);
4432 fs_put_dax(dax_dev);
4433 return err ? err : ret;
4434}
4435
4436/*
4437 * Setup any per-fs journal parameters now. We'll do this both on
4438 * initial mount, once the journal has been initialised but before we've
4439 * done any recovery; and again on any subsequent remount.
4440 */
4441static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4442{
4443 struct ext4_sb_info *sbi = EXT4_SB(sb);
4444
4445 journal->j_commit_interval = sbi->s_commit_interval;
4446 journal->j_min_batch_time = sbi->s_min_batch_time;
4447 journal->j_max_batch_time = sbi->s_max_batch_time;
4448
4449 write_lock(&journal->j_state_lock);
4450 if (test_opt(sb, BARRIER))
4451 journal->j_flags |= JBD2_BARRIER;
4452 else
4453 journal->j_flags &= ~JBD2_BARRIER;
4454 if (test_opt(sb, DATA_ERR_ABORT))
4455 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4456 else
4457 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4458 write_unlock(&journal->j_state_lock);
4459}
4460
4461static struct inode *ext4_get_journal_inode(struct super_block *sb,
4462 unsigned int journal_inum)
4463{
4464 struct inode *journal_inode;
4465
4466 /*
4467 * Test for the existence of a valid inode on disk. Bad things
4468 * happen if we iget() an unused inode, as the subsequent iput()
4469 * will try to delete it.
4470 */
4471 journal_inode = ext4_iget(sb, journal_inum);
4472 if (IS_ERR(journal_inode)) {
4473 ext4_msg(sb, KERN_ERR, "no journal found");
4474 return NULL;
4475 }
4476 if (!journal_inode->i_nlink) {
4477 make_bad_inode(journal_inode);
4478 iput(journal_inode);
4479 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4480 return NULL;
4481 }
4482
4483 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4484 journal_inode, journal_inode->i_size);
4485 if (!S_ISREG(journal_inode->i_mode)) {
4486 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4487 iput(journal_inode);
4488 return NULL;
4489 }
4490 return journal_inode;
4491}
4492
4493static journal_t *ext4_get_journal(struct super_block *sb,
4494 unsigned int journal_inum)
4495{
4496 struct inode *journal_inode;
4497 journal_t *journal;
4498
4499 BUG_ON(!ext4_has_feature_journal(sb));
4500
4501 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4502 if (!journal_inode)
4503 return NULL;
4504
4505 journal = jbd2_journal_init_inode(journal_inode);
4506 if (!journal) {
4507 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4508 iput(journal_inode);
4509 return NULL;
4510 }
4511 journal->j_private = sb;
4512 ext4_init_journal_params(sb, journal);
4513 return journal;
4514}
4515
4516static journal_t *ext4_get_dev_journal(struct super_block *sb,
4517 dev_t j_dev)
4518{
4519 struct buffer_head *bh;
4520 journal_t *journal;
4521 ext4_fsblk_t start;
4522 ext4_fsblk_t len;
4523 int hblock, blocksize;
4524 ext4_fsblk_t sb_block;
4525 unsigned long offset;
4526 struct ext4_super_block *es;
4527 struct block_device *bdev;
4528
4529 BUG_ON(!ext4_has_feature_journal(sb));
4530
4531 bdev = ext4_blkdev_get(j_dev, sb);
4532 if (bdev == NULL)
4533 return NULL;
4534
4535 blocksize = sb->s_blocksize;
4536 hblock = bdev_logical_block_size(bdev);
4537 if (blocksize < hblock) {
4538 ext4_msg(sb, KERN_ERR,
4539 "blocksize too small for journal device");
4540 goto out_bdev;
4541 }
4542
4543 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4544 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4545 set_blocksize(bdev, blocksize);
4546 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4547 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4548 "external journal");
4549 goto out_bdev;
4550 }
4551
4552 es = (struct ext4_super_block *) (bh->b_data + offset);
4553 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4554 !(le32_to_cpu(es->s_feature_incompat) &
4555 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4556 ext4_msg(sb, KERN_ERR, "external journal has "
4557 "bad superblock");
4558 brelse(bh);
4559 goto out_bdev;
4560 }
4561
4562 if ((le32_to_cpu(es->s_feature_ro_compat) &
4563 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4564 es->s_checksum != ext4_superblock_csum(sb, es)) {
4565 ext4_msg(sb, KERN_ERR, "external journal has "
4566 "corrupt superblock");
4567 brelse(bh);
4568 goto out_bdev;
4569 }
4570
4571 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4572 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4573 brelse(bh);
4574 goto out_bdev;
4575 }
4576
4577 len = ext4_blocks_count(es);
4578 start = sb_block + 1;
4579 brelse(bh); /* we're done with the superblock */
4580
4581 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4582 start, len, blocksize);
4583 if (!journal) {
4584 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4585 goto out_bdev;
4586 }
4587 journal->j_private = sb;
4588 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4589 wait_on_buffer(journal->j_sb_buffer);
4590 if (!buffer_uptodate(journal->j_sb_buffer)) {
4591 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4592 goto out_journal;
4593 }
4594 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4595 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4596 "user (unsupported) - %d",
4597 be32_to_cpu(journal->j_superblock->s_nr_users));
4598 goto out_journal;
4599 }
4600 EXT4_SB(sb)->journal_bdev = bdev;
4601 ext4_init_journal_params(sb, journal);
4602 return journal;
4603
4604out_journal:
4605 jbd2_journal_destroy(journal);
4606out_bdev:
4607 ext4_blkdev_put(bdev);
4608 return NULL;
4609}
4610
4611static int ext4_load_journal(struct super_block *sb,
4612 struct ext4_super_block *es,
4613 unsigned long journal_devnum)
4614{
4615 journal_t *journal;
4616 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4617 dev_t journal_dev;
4618 int err = 0;
4619 int really_read_only;
4620
4621 BUG_ON(!ext4_has_feature_journal(sb));
4622
4623 if (journal_devnum &&
4624 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4625 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4626 "numbers have changed");
4627 journal_dev = new_decode_dev(journal_devnum);
4628 } else
4629 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4630
4631 really_read_only = bdev_read_only(sb->s_bdev);
4632
4633 /*
4634 * Are we loading a blank journal or performing recovery after a
4635 * crash? For recovery, we need to check in advance whether we
4636 * can get read-write access to the device.
4637 */
4638 if (ext4_has_feature_journal_needs_recovery(sb)) {
4639 if (sb_rdonly(sb)) {
4640 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4641 "required on readonly filesystem");
4642 if (really_read_only) {
4643 ext4_msg(sb, KERN_ERR, "write access "
4644 "unavailable, cannot proceed "
4645 "(try mounting with noload)");
4646 return -EROFS;
4647 }
4648 ext4_msg(sb, KERN_INFO, "write access will "
4649 "be enabled during recovery");
4650 }
4651 }
4652
4653 if (journal_inum && journal_dev) {
4654 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4655 "and inode journals!");
4656 return -EINVAL;
4657 }
4658
4659 if (journal_inum) {
4660 if (!(journal = ext4_get_journal(sb, journal_inum)))
4661 return -EINVAL;
4662 } else {
4663 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4664 return -EINVAL;
4665 }
4666
4667 if (!(journal->j_flags & JBD2_BARRIER))
4668 ext4_msg(sb, KERN_INFO, "barriers disabled");
4669
4670 if (!ext4_has_feature_journal_needs_recovery(sb))
4671 err = jbd2_journal_wipe(journal, !really_read_only);
4672 if (!err) {
4673 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4674 if (save)
4675 memcpy(save, ((char *) es) +
4676 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4677 err = jbd2_journal_load(journal);
4678 if (save)
4679 memcpy(((char *) es) + EXT4_S_ERR_START,
4680 save, EXT4_S_ERR_LEN);
4681 kfree(save);
4682 }
4683
4684 if (err) {
4685 ext4_msg(sb, KERN_ERR, "error loading journal");
4686 jbd2_journal_destroy(journal);
4687 return err;
4688 }
4689
4690 EXT4_SB(sb)->s_journal = journal;
4691 ext4_clear_journal_err(sb, es);
4692
4693 if (!really_read_only && journal_devnum &&
4694 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4695 es->s_journal_dev = cpu_to_le32(journal_devnum);
4696
4697 /* Make sure we flush the recovery flag to disk. */
4698 ext4_commit_super(sb, 1);
4699 }
4700
4701 return 0;
4702}
4703
4704static int ext4_commit_super(struct super_block *sb, int sync)
4705{
4706 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4707 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4708 int error = 0;
4709
4710 if (!sbh || block_device_ejected(sb))
4711 return error;
4712 /*
4713 * If the file system is mounted read-only, don't update the
4714 * superblock write time. This avoids updating the superblock
4715 * write time when we are mounting the root file system
4716 * read/only but we need to replay the journal; at that point,
4717 * for people who are east of GMT and who make their clock
4718 * tick in localtime for Windows bug-for-bug compatibility,
4719 * the clock is set in the future, and this will cause e2fsck
4720 * to complain and force a full file system check.
4721 */
4722 if (!(sb->s_flags & SB_RDONLY))
4723 es->s_wtime = cpu_to_le32(get_seconds());
4724 if (sb->s_bdev->bd_part)
4725 es->s_kbytes_written =
4726 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4727 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4728 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4729 else
4730 es->s_kbytes_written =
4731 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4732 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4733 ext4_free_blocks_count_set(es,
4734 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4735 &EXT4_SB(sb)->s_freeclusters_counter)));
4736 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4737 es->s_free_inodes_count =
4738 cpu_to_le32(percpu_counter_sum_positive(
4739 &EXT4_SB(sb)->s_freeinodes_counter));
4740 BUFFER_TRACE(sbh, "marking dirty");
4741 ext4_superblock_csum_set(sb);
4742 if (sync)
4743 lock_buffer(sbh);
4744 if (buffer_write_io_error(sbh)) {
4745 /*
4746 * Oh, dear. A previous attempt to write the
4747 * superblock failed. This could happen because the
4748 * USB device was yanked out. Or it could happen to
4749 * be a transient write error and maybe the block will
4750 * be remapped. Nothing we can do but to retry the
4751 * write and hope for the best.
4752 */
4753 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4754 "superblock detected");
4755 clear_buffer_write_io_error(sbh);
4756 set_buffer_uptodate(sbh);
4757 }
4758 mark_buffer_dirty(sbh);
4759 if (sync) {
4760 unlock_buffer(sbh);
4761 error = __sync_dirty_buffer(sbh,
4762 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4763 if (error)
4764 return error;
4765
4766 error = buffer_write_io_error(sbh);
4767 if (error) {
4768 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4769 "superblock");
4770 clear_buffer_write_io_error(sbh);
4771 set_buffer_uptodate(sbh);
4772 }
4773 }
4774 return error;
4775}
4776
4777/*
4778 * Have we just finished recovery? If so, and if we are mounting (or
4779 * remounting) the filesystem readonly, then we will end up with a
4780 * consistent fs on disk. Record that fact.
4781 */
4782static void ext4_mark_recovery_complete(struct super_block *sb,
4783 struct ext4_super_block *es)
4784{
4785 journal_t *journal = EXT4_SB(sb)->s_journal;
4786
4787 if (!ext4_has_feature_journal(sb)) {
4788 BUG_ON(journal != NULL);
4789 return;
4790 }
4791 jbd2_journal_lock_updates(journal);
4792 if (jbd2_journal_flush(journal) < 0)
4793 goto out;
4794
4795 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
4796 ext4_clear_feature_journal_needs_recovery(sb);
4797 ext4_commit_super(sb, 1);
4798 }
4799
4800out:
4801 jbd2_journal_unlock_updates(journal);
4802}
4803
4804/*
4805 * If we are mounting (or read-write remounting) a filesystem whose journal
4806 * has recorded an error from a previous lifetime, move that error to the
4807 * main filesystem now.
4808 */
4809static void ext4_clear_journal_err(struct super_block *sb,
4810 struct ext4_super_block *es)
4811{
4812 journal_t *journal;
4813 int j_errno;
4814 const char *errstr;
4815
4816 BUG_ON(!ext4_has_feature_journal(sb));
4817
4818 journal = EXT4_SB(sb)->s_journal;
4819
4820 /*
4821 * Now check for any error status which may have been recorded in the
4822 * journal by a prior ext4_error() or ext4_abort()
4823 */
4824
4825 j_errno = jbd2_journal_errno(journal);
4826 if (j_errno) {
4827 char nbuf[16];
4828
4829 errstr = ext4_decode_error(sb, j_errno, nbuf);
4830 ext4_warning(sb, "Filesystem error recorded "
4831 "from previous mount: %s", errstr);
4832 ext4_warning(sb, "Marking fs in need of filesystem check.");
4833
4834 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4835 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4836 ext4_commit_super(sb, 1);
4837
4838 jbd2_journal_clear_err(journal);
4839 jbd2_journal_update_sb_errno(journal);
4840 }
4841}
4842
4843/*
4844 * Force the running and committing transactions to commit,
4845 * and wait on the commit.
4846 */
4847int ext4_force_commit(struct super_block *sb)
4848{
4849 journal_t *journal;
4850
4851 if (sb_rdonly(sb))
4852 return 0;
4853
4854 journal = EXT4_SB(sb)->s_journal;
4855 return ext4_journal_force_commit(journal);
4856}
4857
4858static int ext4_sync_fs(struct super_block *sb, int wait)
4859{
4860 int ret = 0;
4861 tid_t target;
4862 bool needs_barrier = false;
4863 struct ext4_sb_info *sbi = EXT4_SB(sb);
4864
4865 if (unlikely(ext4_forced_shutdown(sbi)))
4866 return 0;
4867
4868 trace_ext4_sync_fs(sb, wait);
4869 flush_workqueue(sbi->rsv_conversion_wq);
4870 /*
4871 * Writeback quota in non-journalled quota case - journalled quota has
4872 * no dirty dquots
4873 */
4874 dquot_writeback_dquots(sb, -1);
4875 /*
4876 * Data writeback is possible w/o journal transaction, so barrier must
4877 * being sent at the end of the function. But we can skip it if
4878 * transaction_commit will do it for us.
4879 */
4880 if (sbi->s_journal) {
4881 target = jbd2_get_latest_transaction(sbi->s_journal);
4882 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4883 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4884 needs_barrier = true;
4885
4886 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4887 if (wait)
4888 ret = jbd2_log_wait_commit(sbi->s_journal,
4889 target);
4890 }
4891 } else if (wait && test_opt(sb, BARRIER))
4892 needs_barrier = true;
4893 if (needs_barrier) {
4894 int err;
4895 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4896 if (!ret)
4897 ret = err;
4898 }
4899
4900 return ret;
4901}
4902
4903/*
4904 * LVM calls this function before a (read-only) snapshot is created. This
4905 * gives us a chance to flush the journal completely and mark the fs clean.
4906 *
4907 * Note that only this function cannot bring a filesystem to be in a clean
4908 * state independently. It relies on upper layer to stop all data & metadata
4909 * modifications.
4910 */
4911static int ext4_freeze(struct super_block *sb)
4912{
4913 int error = 0;
4914 journal_t *journal;
4915
4916 if (sb_rdonly(sb))
4917 return 0;
4918
4919 journal = EXT4_SB(sb)->s_journal;
4920
4921 if (journal) {
4922 /* Now we set up the journal barrier. */
4923 jbd2_journal_lock_updates(journal);
4924
4925 /*
4926 * Don't clear the needs_recovery flag if we failed to
4927 * flush the journal.
4928 */
4929 error = jbd2_journal_flush(journal);
4930 if (error < 0)
4931 goto out;
4932
4933 /* Journal blocked and flushed, clear needs_recovery flag. */
4934 ext4_clear_feature_journal_needs_recovery(sb);
4935 }
4936
4937 error = ext4_commit_super(sb, 1);
4938out:
4939 if (journal)
4940 /* we rely on upper layer to stop further updates */
4941 jbd2_journal_unlock_updates(journal);
4942 return error;
4943}
4944
4945/*
4946 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4947 * flag here, even though the filesystem is not technically dirty yet.
4948 */
4949static int ext4_unfreeze(struct super_block *sb)
4950{
4951 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
4952 return 0;
4953
4954 if (EXT4_SB(sb)->s_journal) {
4955 /* Reset the needs_recovery flag before the fs is unlocked. */
4956 ext4_set_feature_journal_needs_recovery(sb);
4957 }
4958
4959 ext4_commit_super(sb, 1);
4960 return 0;
4961}
4962
4963/*
4964 * Structure to save mount options for ext4_remount's benefit
4965 */
4966struct ext4_mount_options {
4967 unsigned long s_mount_opt;
4968 unsigned long s_mount_opt2;
4969 kuid_t s_resuid;
4970 kgid_t s_resgid;
4971 unsigned long s_commit_interval;
4972 u32 s_min_batch_time, s_max_batch_time;
4973#ifdef CONFIG_QUOTA
4974 int s_jquota_fmt;
4975 char *s_qf_names[EXT4_MAXQUOTAS];
4976#endif
4977};
4978
4979static int ext4_remount(struct super_block *sb, int *flags, char *data)
4980{
4981 struct ext4_super_block *es;
4982 struct ext4_sb_info *sbi = EXT4_SB(sb);
4983 unsigned long old_sb_flags;
4984 struct ext4_mount_options old_opts;
4985 int enable_quota = 0;
4986 ext4_group_t g;
4987 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4988 int err = 0;
4989#ifdef CONFIG_QUOTA
4990 int i, j;
4991#endif
4992 char *orig_data = kstrdup(data, GFP_KERNEL);
4993
4994 /* Store the original options */
4995 old_sb_flags = sb->s_flags;
4996 old_opts.s_mount_opt = sbi->s_mount_opt;
4997 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4998 old_opts.s_resuid = sbi->s_resuid;
4999 old_opts.s_resgid = sbi->s_resgid;
5000 old_opts.s_commit_interval = sbi->s_commit_interval;
5001 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5002 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5003#ifdef CONFIG_QUOTA
5004 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5005 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5006 if (sbi->s_qf_names[i]) {
5007 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
5008 GFP_KERNEL);
5009 if (!old_opts.s_qf_names[i]) {
5010 for (j = 0; j < i; j++)
5011 kfree(old_opts.s_qf_names[j]);
5012 kfree(orig_data);
5013 return -ENOMEM;
5014 }
5015 } else
5016 old_opts.s_qf_names[i] = NULL;
5017#endif
5018 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5019 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5020
5021 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5022 err = -EINVAL;
5023 goto restore_opts;
5024 }
5025
5026 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5027 test_opt(sb, JOURNAL_CHECKSUM)) {
5028 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5029 "during remount not supported; ignoring");
5030 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5031 }
5032
5033 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5034 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5035 ext4_msg(sb, KERN_ERR, "can't mount with "
5036 "both data=journal and delalloc");
5037 err = -EINVAL;
5038 goto restore_opts;
5039 }
5040 if (test_opt(sb, DIOREAD_NOLOCK)) {
5041 ext4_msg(sb, KERN_ERR, "can't mount with "
5042 "both data=journal and dioread_nolock");
5043 err = -EINVAL;
5044 goto restore_opts;
5045 }
5046 if (test_opt(sb, DAX)) {
5047 ext4_msg(sb, KERN_ERR, "can't mount with "
5048 "both data=journal and dax");
5049 err = -EINVAL;
5050 goto restore_opts;
5051 }
5052 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5053 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5054 ext4_msg(sb, KERN_ERR, "can't mount with "
5055 "journal_async_commit in data=ordered mode");
5056 err = -EINVAL;
5057 goto restore_opts;
5058 }
5059 }
5060
5061 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5062 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5063 err = -EINVAL;
5064 goto restore_opts;
5065 }
5066
5067 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5068 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5069 "dax flag with busy inodes while remounting");
5070 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5071 }
5072
5073 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5074 ext4_abort(sb, "Abort forced by user");
5075
5076 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5077 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5078
5079 es = sbi->s_es;
5080
5081 if (sbi->s_journal) {
5082 ext4_init_journal_params(sb, sbi->s_journal);
5083 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5084 }
5085
5086 if (*flags & SB_LAZYTIME)
5087 sb->s_flags |= SB_LAZYTIME;
5088
5089 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5090 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5091 err = -EROFS;
5092 goto restore_opts;
5093 }
5094
5095 if (*flags & SB_RDONLY) {
5096 err = sync_filesystem(sb);
5097 if (err < 0)
5098 goto restore_opts;
5099 err = dquot_suspend(sb, -1);
5100 if (err < 0)
5101 goto restore_opts;
5102
5103 /*
5104 * First of all, the unconditional stuff we have to do
5105 * to disable replay of the journal when we next remount
5106 */
5107 sb->s_flags |= SB_RDONLY;
5108
5109 /*
5110 * OK, test if we are remounting a valid rw partition
5111 * readonly, and if so set the rdonly flag and then
5112 * mark the partition as valid again.
5113 */
5114 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5115 (sbi->s_mount_state & EXT4_VALID_FS))
5116 es->s_state = cpu_to_le16(sbi->s_mount_state);
5117
5118 if (sbi->s_journal)
5119 ext4_mark_recovery_complete(sb, es);
5120 } else {
5121 /* Make sure we can mount this feature set readwrite */
5122 if (ext4_has_feature_readonly(sb) ||
5123 !ext4_feature_set_ok(sb, 0)) {
5124 err = -EROFS;
5125 goto restore_opts;
5126 }
5127 /*
5128 * Make sure the group descriptor checksums
5129 * are sane. If they aren't, refuse to remount r/w.
5130 */
5131 for (g = 0; g < sbi->s_groups_count; g++) {
5132 struct ext4_group_desc *gdp =
5133 ext4_get_group_desc(sb, g, NULL);
5134
5135 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5136 ext4_msg(sb, KERN_ERR,
5137 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5138 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5139 le16_to_cpu(gdp->bg_checksum));
5140 err = -EFSBADCRC;
5141 goto restore_opts;
5142 }
5143 }
5144
5145 /*
5146 * If we have an unprocessed orphan list hanging
5147 * around from a previously readonly bdev mount,
5148 * require a full umount/remount for now.
5149 */
5150 if (es->s_last_orphan) {
5151 ext4_msg(sb, KERN_WARNING, "Couldn't "
5152 "remount RDWR because of unprocessed "
5153 "orphan inode list. Please "
5154 "umount/remount instead");
5155 err = -EINVAL;
5156 goto restore_opts;
5157 }
5158
5159 /*
5160 * Mounting a RDONLY partition read-write, so reread
5161 * and store the current valid flag. (It may have
5162 * been changed by e2fsck since we originally mounted
5163 * the partition.)
5164 */
5165 if (sbi->s_journal)
5166 ext4_clear_journal_err(sb, es);
5167 sbi->s_mount_state = le16_to_cpu(es->s_state);
5168 if (!ext4_setup_super(sb, es, 0))
5169 sb->s_flags &= ~SB_RDONLY;
5170 if (ext4_has_feature_mmp(sb))
5171 if (ext4_multi_mount_protect(sb,
5172 le64_to_cpu(es->s_mmp_block))) {
5173 err = -EROFS;
5174 goto restore_opts;
5175 }
5176 enable_quota = 1;
5177 }
5178 }
5179
5180 /*
5181 * Reinitialize lazy itable initialization thread based on
5182 * current settings
5183 */
5184 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5185 ext4_unregister_li_request(sb);
5186 else {
5187 ext4_group_t first_not_zeroed;
5188 first_not_zeroed = ext4_has_uninit_itable(sb);
5189 ext4_register_li_request(sb, first_not_zeroed);
5190 }
5191
5192 ext4_setup_system_zone(sb);
5193 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY))
5194 ext4_commit_super(sb, 1);
5195
5196#ifdef CONFIG_QUOTA
5197 /* Release old quota file names */
5198 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5199 kfree(old_opts.s_qf_names[i]);
5200 if (enable_quota) {
5201 if (sb_any_quota_suspended(sb))
5202 dquot_resume(sb, -1);
5203 else if (ext4_has_feature_quota(sb)) {
5204 err = ext4_enable_quotas(sb);
5205 if (err)
5206 goto restore_opts;
5207 }
5208 }
5209#endif
5210
5211 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5212 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5213 kfree(orig_data);
5214 return 0;
5215
5216restore_opts:
5217 sb->s_flags = old_sb_flags;
5218 sbi->s_mount_opt = old_opts.s_mount_opt;
5219 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5220 sbi->s_resuid = old_opts.s_resuid;
5221 sbi->s_resgid = old_opts.s_resgid;
5222 sbi->s_commit_interval = old_opts.s_commit_interval;
5223 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5224 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5225#ifdef CONFIG_QUOTA
5226 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5227 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5228 kfree(sbi->s_qf_names[i]);
5229 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5230 }
5231#endif
5232 kfree(orig_data);
5233 return err;
5234}
5235
5236#ifdef CONFIG_QUOTA
5237static int ext4_statfs_project(struct super_block *sb,
5238 kprojid_t projid, struct kstatfs *buf)
5239{
5240 struct kqid qid;
5241 struct dquot *dquot;
5242 u64 limit;
5243 u64 curblock;
5244
5245 qid = make_kqid_projid(projid);
5246 dquot = dqget(sb, qid);
5247 if (IS_ERR(dquot))
5248 return PTR_ERR(dquot);
5249 spin_lock(&dquot->dq_dqb_lock);
5250
5251 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5252 dquot->dq_dqb.dqb_bsoftlimit :
5253 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5254 if (limit && buf->f_blocks > limit) {
5255 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5256 buf->f_blocks = limit;
5257 buf->f_bfree = buf->f_bavail =
5258 (buf->f_blocks > curblock) ?
5259 (buf->f_blocks - curblock) : 0;
5260 }
5261
5262 limit = dquot->dq_dqb.dqb_isoftlimit ?
5263 dquot->dq_dqb.dqb_isoftlimit :
5264 dquot->dq_dqb.dqb_ihardlimit;
5265 if (limit && buf->f_files > limit) {
5266 buf->f_files = limit;
5267 buf->f_ffree =
5268 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5269 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5270 }
5271
5272 spin_unlock(&dquot->dq_dqb_lock);
5273 dqput(dquot);
5274 return 0;
5275}
5276#endif
5277
5278static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5279{
5280 struct super_block *sb = dentry->d_sb;
5281 struct ext4_sb_info *sbi = EXT4_SB(sb);
5282 struct ext4_super_block *es = sbi->s_es;
5283 ext4_fsblk_t overhead = 0, resv_blocks;
5284 u64 fsid;
5285 s64 bfree;
5286 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5287
5288 if (!test_opt(sb, MINIX_DF))
5289 overhead = sbi->s_overhead;
5290
5291 buf->f_type = EXT4_SUPER_MAGIC;
5292 buf->f_bsize = sb->s_blocksize;
5293 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5294 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5295 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5296 /* prevent underflow in case that few free space is available */
5297 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5298 buf->f_bavail = buf->f_bfree -
5299 (ext4_r_blocks_count(es) + resv_blocks);
5300 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5301 buf->f_bavail = 0;
5302 buf->f_files = le32_to_cpu(es->s_inodes_count);
5303 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5304 buf->f_namelen = EXT4_NAME_LEN;
5305 fsid = le64_to_cpup((void *)es->s_uuid) ^
5306 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5307 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5308 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5309
5310#ifdef CONFIG_QUOTA
5311 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5312 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5313 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5314#endif
5315 return 0;
5316}
5317
5318
5319#ifdef CONFIG_QUOTA
5320
5321/*
5322 * Helper functions so that transaction is started before we acquire dqio_sem
5323 * to keep correct lock ordering of transaction > dqio_sem
5324 */
5325static inline struct inode *dquot_to_inode(struct dquot *dquot)
5326{
5327 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5328}
5329
5330static int ext4_write_dquot(struct dquot *dquot)
5331{
5332 int ret, err;
5333 handle_t *handle;
5334 struct inode *inode;
5335
5336 inode = dquot_to_inode(dquot);
5337 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5338 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5339 if (IS_ERR(handle))
5340 return PTR_ERR(handle);
5341 ret = dquot_commit(dquot);
5342 err = ext4_journal_stop(handle);
5343 if (!ret)
5344 ret = err;
5345 return ret;
5346}
5347
5348static int ext4_acquire_dquot(struct dquot *dquot)
5349{
5350 int ret, err;
5351 handle_t *handle;
5352
5353 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5354 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5355 if (IS_ERR(handle))
5356 return PTR_ERR(handle);
5357 ret = dquot_acquire(dquot);
5358 err = ext4_journal_stop(handle);
5359 if (!ret)
5360 ret = err;
5361 return ret;
5362}
5363
5364static int ext4_release_dquot(struct dquot *dquot)
5365{
5366 int ret, err;
5367 handle_t *handle;
5368
5369 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5370 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5371 if (IS_ERR(handle)) {
5372 /* Release dquot anyway to avoid endless cycle in dqput() */
5373 dquot_release(dquot);
5374 return PTR_ERR(handle);
5375 }
5376 ret = dquot_release(dquot);
5377 err = ext4_journal_stop(handle);
5378 if (!ret)
5379 ret = err;
5380 return ret;
5381}
5382
5383static int ext4_mark_dquot_dirty(struct dquot *dquot)
5384{
5385 struct super_block *sb = dquot->dq_sb;
5386 struct ext4_sb_info *sbi = EXT4_SB(sb);
5387
5388 /* Are we journaling quotas? */
5389 if (ext4_has_feature_quota(sb) ||
5390 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5391 dquot_mark_dquot_dirty(dquot);
5392 return ext4_write_dquot(dquot);
5393 } else {
5394 return dquot_mark_dquot_dirty(dquot);
5395 }
5396}
5397
5398static int ext4_write_info(struct super_block *sb, int type)
5399{
5400 int ret, err;
5401 handle_t *handle;
5402
5403 /* Data block + inode block */
5404 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5405 if (IS_ERR(handle))
5406 return PTR_ERR(handle);
5407 ret = dquot_commit_info(sb, type);
5408 err = ext4_journal_stop(handle);
5409 if (!ret)
5410 ret = err;
5411 return ret;
5412}
5413
5414/*
5415 * Turn on quotas during mount time - we need to find
5416 * the quota file and such...
5417 */
5418static int ext4_quota_on_mount(struct super_block *sb, int type)
5419{
5420 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5421 EXT4_SB(sb)->s_jquota_fmt, type);
5422}
5423
5424static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5425{
5426 struct ext4_inode_info *ei = EXT4_I(inode);
5427
5428 /* The first argument of lockdep_set_subclass has to be
5429 * *exactly* the same as the argument to init_rwsem() --- in
5430 * this case, in init_once() --- or lockdep gets unhappy
5431 * because the name of the lock is set using the
5432 * stringification of the argument to init_rwsem().
5433 */
5434 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5435 lockdep_set_subclass(&ei->i_data_sem, subclass);
5436}
5437
5438/*
5439 * Standard function to be called on quota_on
5440 */
5441static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5442 const struct path *path)
5443{
5444 int err;
5445
5446 if (!test_opt(sb, QUOTA))
5447 return -EINVAL;
5448
5449 /* Quotafile not on the same filesystem? */
5450 if (path->dentry->d_sb != sb)
5451 return -EXDEV;
5452 /* Journaling quota? */
5453 if (EXT4_SB(sb)->s_qf_names[type]) {
5454 /* Quotafile not in fs root? */
5455 if (path->dentry->d_parent != sb->s_root)
5456 ext4_msg(sb, KERN_WARNING,
5457 "Quota file not on filesystem root. "
5458 "Journaled quota will not work");
5459 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5460 } else {
5461 /*
5462 * Clear the flag just in case mount options changed since
5463 * last time.
5464 */
5465 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5466 }
5467
5468 /*
5469 * When we journal data on quota file, we have to flush journal to see
5470 * all updates to the file when we bypass pagecache...
5471 */
5472 if (EXT4_SB(sb)->s_journal &&
5473 ext4_should_journal_data(d_inode(path->dentry))) {
5474 /*
5475 * We don't need to lock updates but journal_flush() could
5476 * otherwise be livelocked...
5477 */
5478 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5479 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5480 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5481 if (err)
5482 return err;
5483 }
5484
5485 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5486 err = dquot_quota_on(sb, type, format_id, path);
5487 if (err) {
5488 lockdep_set_quota_inode(path->dentry->d_inode,
5489 I_DATA_SEM_NORMAL);
5490 } else {
5491 struct inode *inode = d_inode(path->dentry);
5492 handle_t *handle;
5493
5494 /*
5495 * Set inode flags to prevent userspace from messing with quota
5496 * files. If this fails, we return success anyway since quotas
5497 * are already enabled and this is not a hard failure.
5498 */
5499 inode_lock(inode);
5500 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5501 if (IS_ERR(handle))
5502 goto unlock_inode;
5503 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5504 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5505 S_NOATIME | S_IMMUTABLE);
5506 ext4_mark_inode_dirty(handle, inode);
5507 ext4_journal_stop(handle);
5508 unlock_inode:
5509 inode_unlock(inode);
5510 }
5511 return err;
5512}
5513
5514static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5515 unsigned int flags)
5516{
5517 int err;
5518 struct inode *qf_inode;
5519 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5520 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5521 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5522 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5523 };
5524
5525 BUG_ON(!ext4_has_feature_quota(sb));
5526
5527 if (!qf_inums[type])
5528 return -EPERM;
5529
5530 qf_inode = ext4_iget(sb, qf_inums[type]);
5531 if (IS_ERR(qf_inode)) {
5532 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5533 return PTR_ERR(qf_inode);
5534 }
5535
5536 /* Don't account quota for quota files to avoid recursion */
5537 qf_inode->i_flags |= S_NOQUOTA;
5538 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5539 err = dquot_enable(qf_inode, type, format_id, flags);
5540 iput(qf_inode);
5541 if (err)
5542 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5543
5544 return err;
5545}
5546
5547/* Enable usage tracking for all quota types. */
5548static int ext4_enable_quotas(struct super_block *sb)
5549{
5550 int type, err = 0;
5551 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5552 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5553 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5554 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5555 };
5556 bool quota_mopt[EXT4_MAXQUOTAS] = {
5557 test_opt(sb, USRQUOTA),
5558 test_opt(sb, GRPQUOTA),
5559 test_opt(sb, PRJQUOTA),
5560 };
5561
5562 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5563 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5564 if (qf_inums[type]) {
5565 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5566 DQUOT_USAGE_ENABLED |
5567 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5568 if (err) {
5569 for (type--; type >= 0; type--)
5570 dquot_quota_off(sb, type);
5571
5572 ext4_warning(sb,
5573 "Failed to enable quota tracking "
5574 "(type=%d, err=%d). Please run "
5575 "e2fsck to fix.", type, err);
5576 return err;
5577 }
5578 }
5579 }
5580 return 0;
5581}
5582
5583static int ext4_quota_off(struct super_block *sb, int type)
5584{
5585 struct inode *inode = sb_dqopt(sb)->files[type];
5586 handle_t *handle;
5587 int err;
5588
5589 /* Force all delayed allocation blocks to be allocated.
5590 * Caller already holds s_umount sem */
5591 if (test_opt(sb, DELALLOC))
5592 sync_filesystem(sb);
5593
5594 if (!inode || !igrab(inode))
5595 goto out;
5596
5597 err = dquot_quota_off(sb, type);
5598 if (err || ext4_has_feature_quota(sb))
5599 goto out_put;
5600
5601 inode_lock(inode);
5602 /*
5603 * Update modification times of quota files when userspace can
5604 * start looking at them. If we fail, we return success anyway since
5605 * this is not a hard failure and quotas are already disabled.
5606 */
5607 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5608 if (IS_ERR(handle))
5609 goto out_unlock;
5610 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5611 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5612 inode->i_mtime = inode->i_ctime = current_time(inode);
5613 ext4_mark_inode_dirty(handle, inode);
5614 ext4_journal_stop(handle);
5615out_unlock:
5616 inode_unlock(inode);
5617out_put:
5618 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5619 iput(inode);
5620 return err;
5621out:
5622 return dquot_quota_off(sb, type);
5623}
5624
5625/* Read data from quotafile - avoid pagecache and such because we cannot afford
5626 * acquiring the locks... As quota files are never truncated and quota code
5627 * itself serializes the operations (and no one else should touch the files)
5628 * we don't have to be afraid of races */
5629static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5630 size_t len, loff_t off)
5631{
5632 struct inode *inode = sb_dqopt(sb)->files[type];
5633 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5634 int offset = off & (sb->s_blocksize - 1);
5635 int tocopy;
5636 size_t toread;
5637 struct buffer_head *bh;
5638 loff_t i_size = i_size_read(inode);
5639
5640 if (off > i_size)
5641 return 0;
5642 if (off+len > i_size)
5643 len = i_size-off;
5644 toread = len;
5645 while (toread > 0) {
5646 tocopy = sb->s_blocksize - offset < toread ?
5647 sb->s_blocksize - offset : toread;
5648 bh = ext4_bread(NULL, inode, blk, 0);
5649 if (IS_ERR(bh))
5650 return PTR_ERR(bh);
5651 if (!bh) /* A hole? */
5652 memset(data, 0, tocopy);
5653 else
5654 memcpy(data, bh->b_data+offset, tocopy);
5655 brelse(bh);
5656 offset = 0;
5657 toread -= tocopy;
5658 data += tocopy;
5659 blk++;
5660 }
5661 return len;
5662}
5663
5664/* Write to quotafile (we know the transaction is already started and has
5665 * enough credits) */
5666static ssize_t ext4_quota_write(struct super_block *sb, int type,
5667 const char *data, size_t len, loff_t off)
5668{
5669 struct inode *inode = sb_dqopt(sb)->files[type];
5670 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5671 int err, offset = off & (sb->s_blocksize - 1);
5672 int retries = 0;
5673 struct buffer_head *bh;
5674 handle_t *handle = journal_current_handle();
5675
5676 if (EXT4_SB(sb)->s_journal && !handle) {
5677 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5678 " cancelled because transaction is not started",
5679 (unsigned long long)off, (unsigned long long)len);
5680 return -EIO;
5681 }
5682 /*
5683 * Since we account only one data block in transaction credits,
5684 * then it is impossible to cross a block boundary.
5685 */
5686 if (sb->s_blocksize - offset < len) {
5687 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5688 " cancelled because not block aligned",
5689 (unsigned long long)off, (unsigned long long)len);
5690 return -EIO;
5691 }
5692
5693 do {
5694 bh = ext4_bread(handle, inode, blk,
5695 EXT4_GET_BLOCKS_CREATE |
5696 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5697 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5698 ext4_should_retry_alloc(inode->i_sb, &retries));
5699 if (IS_ERR(bh))
5700 return PTR_ERR(bh);
5701 if (!bh)
5702 goto out;
5703 BUFFER_TRACE(bh, "get write access");
5704 err = ext4_journal_get_write_access(handle, bh);
5705 if (err) {
5706 brelse(bh);
5707 return err;
5708 }
5709 lock_buffer(bh);
5710 memcpy(bh->b_data+offset, data, len);
5711 flush_dcache_page(bh->b_page);
5712 unlock_buffer(bh);
5713 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5714 brelse(bh);
5715out:
5716 if (inode->i_size < off + len) {
5717 i_size_write(inode, off + len);
5718 EXT4_I(inode)->i_disksize = inode->i_size;
5719 ext4_mark_inode_dirty(handle, inode);
5720 }
5721 return len;
5722}
5723
5724static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5725{
5726 const struct quota_format_ops *ops;
5727
5728 if (!sb_has_quota_loaded(sb, qid->type))
5729 return -ESRCH;
5730 ops = sb_dqopt(sb)->ops[qid->type];
5731 if (!ops || !ops->get_next_id)
5732 return -ENOSYS;
5733 return dquot_get_next_id(sb, qid);
5734}
5735#endif
5736
5737static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5738 const char *dev_name, void *data)
5739{
5740 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5741}
5742
5743#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5744static inline void register_as_ext2(void)
5745{
5746 int err = register_filesystem(&ext2_fs_type);
5747 if (err)
5748 printk(KERN_WARNING
5749 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5750}
5751
5752static inline void unregister_as_ext2(void)
5753{
5754 unregister_filesystem(&ext2_fs_type);
5755}
5756
5757static inline int ext2_feature_set_ok(struct super_block *sb)
5758{
5759 if (ext4_has_unknown_ext2_incompat_features(sb))
5760 return 0;
5761 if (sb_rdonly(sb))
5762 return 1;
5763 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5764 return 0;
5765 return 1;
5766}
5767#else
5768static inline void register_as_ext2(void) { }
5769static inline void unregister_as_ext2(void) { }
5770static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5771#endif
5772
5773static inline void register_as_ext3(void)
5774{
5775 int err = register_filesystem(&ext3_fs_type);
5776 if (err)
5777 printk(KERN_WARNING
5778 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5779}
5780
5781static inline void unregister_as_ext3(void)
5782{
5783 unregister_filesystem(&ext3_fs_type);
5784}
5785
5786static inline int ext3_feature_set_ok(struct super_block *sb)
5787{
5788 if (ext4_has_unknown_ext3_incompat_features(sb))
5789 return 0;
5790 if (!ext4_has_feature_journal(sb))
5791 return 0;
5792 if (sb_rdonly(sb))
5793 return 1;
5794 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5795 return 0;
5796 return 1;
5797}
5798
5799static struct file_system_type ext4_fs_type = {
5800 .owner = THIS_MODULE,
5801 .name = "ext4",
5802 .mount = ext4_mount,
5803 .kill_sb = kill_block_super,
5804 .fs_flags = FS_REQUIRES_DEV,
5805};
5806MODULE_ALIAS_FS("ext4");
5807
5808/* Shared across all ext4 file systems */
5809wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5810
5811static int __init ext4_init_fs(void)
5812{
5813 int i, err;
5814
5815 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5816 ext4_li_info = NULL;
5817 mutex_init(&ext4_li_mtx);
5818
5819 /* Build-time check for flags consistency */
5820 ext4_check_flag_values();
5821
5822 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5823 init_waitqueue_head(&ext4__ioend_wq[i]);
5824
5825 err = ext4_init_es();
5826 if (err)
5827 return err;
5828
5829 err = ext4_init_pageio();
5830 if (err)
5831 goto out5;
5832
5833 err = ext4_init_system_zone();
5834 if (err)
5835 goto out4;
5836
5837 err = ext4_init_sysfs();
5838 if (err)
5839 goto out3;
5840
5841 err = ext4_init_mballoc();
5842 if (err)
5843 goto out2;
5844 err = init_inodecache();
5845 if (err)
5846 goto out1;
5847 register_as_ext3();
5848 register_as_ext2();
5849 err = register_filesystem(&ext4_fs_type);
5850 if (err)
5851 goto out;
5852
5853 return 0;
5854out:
5855 unregister_as_ext2();
5856 unregister_as_ext3();
5857 destroy_inodecache();
5858out1:
5859 ext4_exit_mballoc();
5860out2:
5861 ext4_exit_sysfs();
5862out3:
5863 ext4_exit_system_zone();
5864out4:
5865 ext4_exit_pageio();
5866out5:
5867 ext4_exit_es();
5868
5869 return err;
5870}
5871
5872static void __exit ext4_exit_fs(void)
5873{
5874 ext4_destroy_lazyinit_thread();
5875 unregister_as_ext2();
5876 unregister_as_ext3();
5877 unregister_filesystem(&ext4_fs_type);
5878 destroy_inodecache();
5879 ext4_exit_mballoc();
5880 ext4_exit_sysfs();
5881 ext4_exit_system_zone();
5882 ext4_exit_pageio();
5883 ext4_exit_es();
5884}
5885
5886MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5887MODULE_DESCRIPTION("Fourth Extended Filesystem");
5888MODULE_LICENSE("GPL");
5889MODULE_SOFTDEP("pre: crc32c");
5890module_init(ext4_init_fs)
5891module_exit(ext4_exit_fs)
1/*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19#include <linux/module.h>
20#include <linux/string.h>
21#include <linux/fs.h>
22#include <linux/time.h>
23#include <linux/vmalloc.h>
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
28#include <linux/parser.h>
29#include <linux/buffer_head.h>
30#include <linux/exportfs.h>
31#include <linux/vfs.h>
32#include <linux/random.h>
33#include <linux/mount.h>
34#include <linux/namei.h>
35#include <linux/quotaops.h>
36#include <linux/seq_file.h>
37#include <linux/ctype.h>
38#include <linux/log2.h>
39#include <linux/crc16.h>
40#include <linux/cleancache.h>
41#include <asm/uaccess.h>
42
43#include <linux/kthread.h>
44#include <linux/freezer.h>
45
46#include "ext4.h"
47#include "ext4_extents.h" /* Needed for trace points definition */
48#include "ext4_jbd2.h"
49#include "xattr.h"
50#include "acl.h"
51#include "mballoc.h"
52
53#define CREATE_TRACE_POINTS
54#include <trace/events/ext4.h>
55
56static struct ext4_lazy_init *ext4_li_info;
57static struct mutex ext4_li_mtx;
58static struct ratelimit_state ext4_mount_msg_ratelimit;
59
60static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
61 unsigned long journal_devnum);
62static int ext4_show_options(struct seq_file *seq, struct dentry *root);
63static int ext4_commit_super(struct super_block *sb, int sync);
64static void ext4_mark_recovery_complete(struct super_block *sb,
65 struct ext4_super_block *es);
66static void ext4_clear_journal_err(struct super_block *sb,
67 struct ext4_super_block *es);
68static int ext4_sync_fs(struct super_block *sb, int wait);
69static int ext4_remount(struct super_block *sb, int *flags, char *data);
70static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
71static int ext4_unfreeze(struct super_block *sb);
72static int ext4_freeze(struct super_block *sb);
73static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
74 const char *dev_name, void *data);
75static inline int ext2_feature_set_ok(struct super_block *sb);
76static inline int ext3_feature_set_ok(struct super_block *sb);
77static int ext4_feature_set_ok(struct super_block *sb, int readonly);
78static void ext4_destroy_lazyinit_thread(void);
79static void ext4_unregister_li_request(struct super_block *sb);
80static void ext4_clear_request_list(void);
81
82/*
83 * Lock ordering
84 *
85 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
86 * i_mmap_rwsem (inode->i_mmap_rwsem)!
87 *
88 * page fault path:
89 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
90 * page lock -> i_data_sem (rw)
91 *
92 * buffered write path:
93 * sb_start_write -> i_mutex -> mmap_sem
94 * sb_start_write -> i_mutex -> transaction start -> page lock ->
95 * i_data_sem (rw)
96 *
97 * truncate:
98 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
99 * i_mmap_rwsem (w) -> page lock
100 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
101 * transaction start -> i_data_sem (rw)
102 *
103 * direct IO:
104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
105 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
106 * transaction start -> i_data_sem (rw)
107 *
108 * writepages:
109 * transaction start -> page lock(s) -> i_data_sem (rw)
110 */
111
112#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
113static struct file_system_type ext2_fs_type = {
114 .owner = THIS_MODULE,
115 .name = "ext2",
116 .mount = ext4_mount,
117 .kill_sb = kill_block_super,
118 .fs_flags = FS_REQUIRES_DEV,
119};
120MODULE_ALIAS_FS("ext2");
121MODULE_ALIAS("ext2");
122#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
123#else
124#define IS_EXT2_SB(sb) (0)
125#endif
126
127
128static struct file_system_type ext3_fs_type = {
129 .owner = THIS_MODULE,
130 .name = "ext3",
131 .mount = ext4_mount,
132 .kill_sb = kill_block_super,
133 .fs_flags = FS_REQUIRES_DEV,
134};
135MODULE_ALIAS_FS("ext3");
136MODULE_ALIAS("ext3");
137#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
138
139static int ext4_verify_csum_type(struct super_block *sb,
140 struct ext4_super_block *es)
141{
142 if (!ext4_has_feature_metadata_csum(sb))
143 return 1;
144
145 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
146}
147
148static __le32 ext4_superblock_csum(struct super_block *sb,
149 struct ext4_super_block *es)
150{
151 struct ext4_sb_info *sbi = EXT4_SB(sb);
152 int offset = offsetof(struct ext4_super_block, s_checksum);
153 __u32 csum;
154
155 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
156
157 return cpu_to_le32(csum);
158}
159
160static int ext4_superblock_csum_verify(struct super_block *sb,
161 struct ext4_super_block *es)
162{
163 if (!ext4_has_metadata_csum(sb))
164 return 1;
165
166 return es->s_checksum == ext4_superblock_csum(sb, es);
167}
168
169void ext4_superblock_csum_set(struct super_block *sb)
170{
171 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
172
173 if (!ext4_has_metadata_csum(sb))
174 return;
175
176 es->s_checksum = ext4_superblock_csum(sb, es);
177}
178
179void *ext4_kvmalloc(size_t size, gfp_t flags)
180{
181 void *ret;
182
183 ret = kmalloc(size, flags | __GFP_NOWARN);
184 if (!ret)
185 ret = __vmalloc(size, flags, PAGE_KERNEL);
186 return ret;
187}
188
189void *ext4_kvzalloc(size_t size, gfp_t flags)
190{
191 void *ret;
192
193 ret = kzalloc(size, flags | __GFP_NOWARN);
194 if (!ret)
195 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
196 return ret;
197}
198
199ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
200 struct ext4_group_desc *bg)
201{
202 return le32_to_cpu(bg->bg_block_bitmap_lo) |
203 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
204 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
205}
206
207ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
208 struct ext4_group_desc *bg)
209{
210 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
212 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
213}
214
215ext4_fsblk_t ext4_inode_table(struct super_block *sb,
216 struct ext4_group_desc *bg)
217{
218 return le32_to_cpu(bg->bg_inode_table_lo) |
219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
221}
222
223__u32 ext4_free_group_clusters(struct super_block *sb,
224 struct ext4_group_desc *bg)
225{
226 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
228 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
229}
230
231__u32 ext4_free_inodes_count(struct super_block *sb,
232 struct ext4_group_desc *bg)
233{
234 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
236 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
237}
238
239__u32 ext4_used_dirs_count(struct super_block *sb,
240 struct ext4_group_desc *bg)
241{
242 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
244 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
245}
246
247__u32 ext4_itable_unused_count(struct super_block *sb,
248 struct ext4_group_desc *bg)
249{
250 return le16_to_cpu(bg->bg_itable_unused_lo) |
251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
252 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
253}
254
255void ext4_block_bitmap_set(struct super_block *sb,
256 struct ext4_group_desc *bg, ext4_fsblk_t blk)
257{
258 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
259 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
260 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
261}
262
263void ext4_inode_bitmap_set(struct super_block *sb,
264 struct ext4_group_desc *bg, ext4_fsblk_t blk)
265{
266 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
268 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
269}
270
271void ext4_inode_table_set(struct super_block *sb,
272 struct ext4_group_desc *bg, ext4_fsblk_t blk)
273{
274 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
276 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
277}
278
279void ext4_free_group_clusters_set(struct super_block *sb,
280 struct ext4_group_desc *bg, __u32 count)
281{
282 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
284 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
285}
286
287void ext4_free_inodes_set(struct super_block *sb,
288 struct ext4_group_desc *bg, __u32 count)
289{
290 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
292 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
293}
294
295void ext4_used_dirs_set(struct super_block *sb,
296 struct ext4_group_desc *bg, __u32 count)
297{
298 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
300 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
301}
302
303void ext4_itable_unused_set(struct super_block *sb,
304 struct ext4_group_desc *bg, __u32 count)
305{
306 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
308 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
309}
310
311
312static void __save_error_info(struct super_block *sb, const char *func,
313 unsigned int line)
314{
315 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
316
317 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
318 if (bdev_read_only(sb->s_bdev))
319 return;
320 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
321 es->s_last_error_time = cpu_to_le32(get_seconds());
322 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
323 es->s_last_error_line = cpu_to_le32(line);
324 if (!es->s_first_error_time) {
325 es->s_first_error_time = es->s_last_error_time;
326 strncpy(es->s_first_error_func, func,
327 sizeof(es->s_first_error_func));
328 es->s_first_error_line = cpu_to_le32(line);
329 es->s_first_error_ino = es->s_last_error_ino;
330 es->s_first_error_block = es->s_last_error_block;
331 }
332 /*
333 * Start the daily error reporting function if it hasn't been
334 * started already
335 */
336 if (!es->s_error_count)
337 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
338 le32_add_cpu(&es->s_error_count, 1);
339}
340
341static void save_error_info(struct super_block *sb, const char *func,
342 unsigned int line)
343{
344 __save_error_info(sb, func, line);
345 ext4_commit_super(sb, 1);
346}
347
348/*
349 * The del_gendisk() function uninitializes the disk-specific data
350 * structures, including the bdi structure, without telling anyone
351 * else. Once this happens, any attempt to call mark_buffer_dirty()
352 * (for example, by ext4_commit_super), will cause a kernel OOPS.
353 * This is a kludge to prevent these oops until we can put in a proper
354 * hook in del_gendisk() to inform the VFS and file system layers.
355 */
356static int block_device_ejected(struct super_block *sb)
357{
358 struct inode *bd_inode = sb->s_bdev->bd_inode;
359 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
360
361 return bdi->dev == NULL;
362}
363
364static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
365{
366 struct super_block *sb = journal->j_private;
367 struct ext4_sb_info *sbi = EXT4_SB(sb);
368 int error = is_journal_aborted(journal);
369 struct ext4_journal_cb_entry *jce;
370
371 BUG_ON(txn->t_state == T_FINISHED);
372 spin_lock(&sbi->s_md_lock);
373 while (!list_empty(&txn->t_private_list)) {
374 jce = list_entry(txn->t_private_list.next,
375 struct ext4_journal_cb_entry, jce_list);
376 list_del_init(&jce->jce_list);
377 spin_unlock(&sbi->s_md_lock);
378 jce->jce_func(sb, jce, error);
379 spin_lock(&sbi->s_md_lock);
380 }
381 spin_unlock(&sbi->s_md_lock);
382}
383
384/* Deal with the reporting of failure conditions on a filesystem such as
385 * inconsistencies detected or read IO failures.
386 *
387 * On ext2, we can store the error state of the filesystem in the
388 * superblock. That is not possible on ext4, because we may have other
389 * write ordering constraints on the superblock which prevent us from
390 * writing it out straight away; and given that the journal is about to
391 * be aborted, we can't rely on the current, or future, transactions to
392 * write out the superblock safely.
393 *
394 * We'll just use the jbd2_journal_abort() error code to record an error in
395 * the journal instead. On recovery, the journal will complain about
396 * that error until we've noted it down and cleared it.
397 */
398
399static void ext4_handle_error(struct super_block *sb)
400{
401 if (sb->s_flags & MS_RDONLY)
402 return;
403
404 if (!test_opt(sb, ERRORS_CONT)) {
405 journal_t *journal = EXT4_SB(sb)->s_journal;
406
407 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
408 if (journal)
409 jbd2_journal_abort(journal, -EIO);
410 }
411 if (test_opt(sb, ERRORS_RO)) {
412 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
413 /*
414 * Make sure updated value of ->s_mount_flags will be visible
415 * before ->s_flags update
416 */
417 smp_wmb();
418 sb->s_flags |= MS_RDONLY;
419 }
420 if (test_opt(sb, ERRORS_PANIC)) {
421 if (EXT4_SB(sb)->s_journal &&
422 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
423 return;
424 panic("EXT4-fs (device %s): panic forced after error\n",
425 sb->s_id);
426 }
427}
428
429#define ext4_error_ratelimit(sb) \
430 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
431 "EXT4-fs error")
432
433void __ext4_error(struct super_block *sb, const char *function,
434 unsigned int line, const char *fmt, ...)
435{
436 struct va_format vaf;
437 va_list args;
438
439 if (ext4_error_ratelimit(sb)) {
440 va_start(args, fmt);
441 vaf.fmt = fmt;
442 vaf.va = &args;
443 printk(KERN_CRIT
444 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
445 sb->s_id, function, line, current->comm, &vaf);
446 va_end(args);
447 }
448 save_error_info(sb, function, line);
449 ext4_handle_error(sb);
450}
451
452void __ext4_error_inode(struct inode *inode, const char *function,
453 unsigned int line, ext4_fsblk_t block,
454 const char *fmt, ...)
455{
456 va_list args;
457 struct va_format vaf;
458 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
459
460 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
461 es->s_last_error_block = cpu_to_le64(block);
462 if (ext4_error_ratelimit(inode->i_sb)) {
463 va_start(args, fmt);
464 vaf.fmt = fmt;
465 vaf.va = &args;
466 if (block)
467 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
468 "inode #%lu: block %llu: comm %s: %pV\n",
469 inode->i_sb->s_id, function, line, inode->i_ino,
470 block, current->comm, &vaf);
471 else
472 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
473 "inode #%lu: comm %s: %pV\n",
474 inode->i_sb->s_id, function, line, inode->i_ino,
475 current->comm, &vaf);
476 va_end(args);
477 }
478 save_error_info(inode->i_sb, function, line);
479 ext4_handle_error(inode->i_sb);
480}
481
482void __ext4_error_file(struct file *file, const char *function,
483 unsigned int line, ext4_fsblk_t block,
484 const char *fmt, ...)
485{
486 va_list args;
487 struct va_format vaf;
488 struct ext4_super_block *es;
489 struct inode *inode = file_inode(file);
490 char pathname[80], *path;
491
492 es = EXT4_SB(inode->i_sb)->s_es;
493 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
494 if (ext4_error_ratelimit(inode->i_sb)) {
495 path = file_path(file, pathname, sizeof(pathname));
496 if (IS_ERR(path))
497 path = "(unknown)";
498 va_start(args, fmt);
499 vaf.fmt = fmt;
500 vaf.va = &args;
501 if (block)
502 printk(KERN_CRIT
503 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
504 "block %llu: comm %s: path %s: %pV\n",
505 inode->i_sb->s_id, function, line, inode->i_ino,
506 block, current->comm, path, &vaf);
507 else
508 printk(KERN_CRIT
509 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
510 "comm %s: path %s: %pV\n",
511 inode->i_sb->s_id, function, line, inode->i_ino,
512 current->comm, path, &vaf);
513 va_end(args);
514 }
515 save_error_info(inode->i_sb, function, line);
516 ext4_handle_error(inode->i_sb);
517}
518
519const char *ext4_decode_error(struct super_block *sb, int errno,
520 char nbuf[16])
521{
522 char *errstr = NULL;
523
524 switch (errno) {
525 case -EFSCORRUPTED:
526 errstr = "Corrupt filesystem";
527 break;
528 case -EFSBADCRC:
529 errstr = "Filesystem failed CRC";
530 break;
531 case -EIO:
532 errstr = "IO failure";
533 break;
534 case -ENOMEM:
535 errstr = "Out of memory";
536 break;
537 case -EROFS:
538 if (!sb || (EXT4_SB(sb)->s_journal &&
539 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
540 errstr = "Journal has aborted";
541 else
542 errstr = "Readonly filesystem";
543 break;
544 default:
545 /* If the caller passed in an extra buffer for unknown
546 * errors, textualise them now. Else we just return
547 * NULL. */
548 if (nbuf) {
549 /* Check for truncated error codes... */
550 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
551 errstr = nbuf;
552 }
553 break;
554 }
555
556 return errstr;
557}
558
559/* __ext4_std_error decodes expected errors from journaling functions
560 * automatically and invokes the appropriate error response. */
561
562void __ext4_std_error(struct super_block *sb, const char *function,
563 unsigned int line, int errno)
564{
565 char nbuf[16];
566 const char *errstr;
567
568 /* Special case: if the error is EROFS, and we're not already
569 * inside a transaction, then there's really no point in logging
570 * an error. */
571 if (errno == -EROFS && journal_current_handle() == NULL &&
572 (sb->s_flags & MS_RDONLY))
573 return;
574
575 if (ext4_error_ratelimit(sb)) {
576 errstr = ext4_decode_error(sb, errno, nbuf);
577 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
578 sb->s_id, function, line, errstr);
579 }
580
581 save_error_info(sb, function, line);
582 ext4_handle_error(sb);
583}
584
585/*
586 * ext4_abort is a much stronger failure handler than ext4_error. The
587 * abort function may be used to deal with unrecoverable failures such
588 * as journal IO errors or ENOMEM at a critical moment in log management.
589 *
590 * We unconditionally force the filesystem into an ABORT|READONLY state,
591 * unless the error response on the fs has been set to panic in which
592 * case we take the easy way out and panic immediately.
593 */
594
595void __ext4_abort(struct super_block *sb, const char *function,
596 unsigned int line, const char *fmt, ...)
597{
598 va_list args;
599
600 save_error_info(sb, function, line);
601 va_start(args, fmt);
602 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
603 function, line);
604 vprintk(fmt, args);
605 printk("\n");
606 va_end(args);
607
608 if ((sb->s_flags & MS_RDONLY) == 0) {
609 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
610 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
611 /*
612 * Make sure updated value of ->s_mount_flags will be visible
613 * before ->s_flags update
614 */
615 smp_wmb();
616 sb->s_flags |= MS_RDONLY;
617 if (EXT4_SB(sb)->s_journal)
618 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
619 save_error_info(sb, function, line);
620 }
621 if (test_opt(sb, ERRORS_PANIC)) {
622 if (EXT4_SB(sb)->s_journal &&
623 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
624 return;
625 panic("EXT4-fs panic from previous error\n");
626 }
627}
628
629void __ext4_msg(struct super_block *sb,
630 const char *prefix, const char *fmt, ...)
631{
632 struct va_format vaf;
633 va_list args;
634
635 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
636 return;
637
638 va_start(args, fmt);
639 vaf.fmt = fmt;
640 vaf.va = &args;
641 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
642 va_end(args);
643}
644
645#define ext4_warning_ratelimit(sb) \
646 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
647 "EXT4-fs warning")
648
649void __ext4_warning(struct super_block *sb, const char *function,
650 unsigned int line, const char *fmt, ...)
651{
652 struct va_format vaf;
653 va_list args;
654
655 if (!ext4_warning_ratelimit(sb))
656 return;
657
658 va_start(args, fmt);
659 vaf.fmt = fmt;
660 vaf.va = &args;
661 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
662 sb->s_id, function, line, &vaf);
663 va_end(args);
664}
665
666void __ext4_warning_inode(const struct inode *inode, const char *function,
667 unsigned int line, const char *fmt, ...)
668{
669 struct va_format vaf;
670 va_list args;
671
672 if (!ext4_warning_ratelimit(inode->i_sb))
673 return;
674
675 va_start(args, fmt);
676 vaf.fmt = fmt;
677 vaf.va = &args;
678 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
679 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
680 function, line, inode->i_ino, current->comm, &vaf);
681 va_end(args);
682}
683
684void __ext4_grp_locked_error(const char *function, unsigned int line,
685 struct super_block *sb, ext4_group_t grp,
686 unsigned long ino, ext4_fsblk_t block,
687 const char *fmt, ...)
688__releases(bitlock)
689__acquires(bitlock)
690{
691 struct va_format vaf;
692 va_list args;
693 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
694
695 es->s_last_error_ino = cpu_to_le32(ino);
696 es->s_last_error_block = cpu_to_le64(block);
697 __save_error_info(sb, function, line);
698
699 if (ext4_error_ratelimit(sb)) {
700 va_start(args, fmt);
701 vaf.fmt = fmt;
702 vaf.va = &args;
703 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
704 sb->s_id, function, line, grp);
705 if (ino)
706 printk(KERN_CONT "inode %lu: ", ino);
707 if (block)
708 printk(KERN_CONT "block %llu:",
709 (unsigned long long) block);
710 printk(KERN_CONT "%pV\n", &vaf);
711 va_end(args);
712 }
713
714 if (test_opt(sb, ERRORS_CONT)) {
715 ext4_commit_super(sb, 0);
716 return;
717 }
718
719 ext4_unlock_group(sb, grp);
720 ext4_handle_error(sb);
721 /*
722 * We only get here in the ERRORS_RO case; relocking the group
723 * may be dangerous, but nothing bad will happen since the
724 * filesystem will have already been marked read/only and the
725 * journal has been aborted. We return 1 as a hint to callers
726 * who might what to use the return value from
727 * ext4_grp_locked_error() to distinguish between the
728 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
729 * aggressively from the ext4 function in question, with a
730 * more appropriate error code.
731 */
732 ext4_lock_group(sb, grp);
733 return;
734}
735
736void ext4_update_dynamic_rev(struct super_block *sb)
737{
738 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
739
740 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
741 return;
742
743 ext4_warning(sb,
744 "updating to rev %d because of new feature flag, "
745 "running e2fsck is recommended",
746 EXT4_DYNAMIC_REV);
747
748 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
749 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
750 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
751 /* leave es->s_feature_*compat flags alone */
752 /* es->s_uuid will be set by e2fsck if empty */
753
754 /*
755 * The rest of the superblock fields should be zero, and if not it
756 * means they are likely already in use, so leave them alone. We
757 * can leave it up to e2fsck to clean up any inconsistencies there.
758 */
759}
760
761/*
762 * Open the external journal device
763 */
764static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
765{
766 struct block_device *bdev;
767 char b[BDEVNAME_SIZE];
768
769 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
770 if (IS_ERR(bdev))
771 goto fail;
772 return bdev;
773
774fail:
775 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
776 __bdevname(dev, b), PTR_ERR(bdev));
777 return NULL;
778}
779
780/*
781 * Release the journal device
782 */
783static void ext4_blkdev_put(struct block_device *bdev)
784{
785 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
786}
787
788static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
789{
790 struct block_device *bdev;
791 bdev = sbi->journal_bdev;
792 if (bdev) {
793 ext4_blkdev_put(bdev);
794 sbi->journal_bdev = NULL;
795 }
796}
797
798static inline struct inode *orphan_list_entry(struct list_head *l)
799{
800 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
801}
802
803static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
804{
805 struct list_head *l;
806
807 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
808 le32_to_cpu(sbi->s_es->s_last_orphan));
809
810 printk(KERN_ERR "sb_info orphan list:\n");
811 list_for_each(l, &sbi->s_orphan) {
812 struct inode *inode = orphan_list_entry(l);
813 printk(KERN_ERR " "
814 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
815 inode->i_sb->s_id, inode->i_ino, inode,
816 inode->i_mode, inode->i_nlink,
817 NEXT_ORPHAN(inode));
818 }
819}
820
821static void ext4_put_super(struct super_block *sb)
822{
823 struct ext4_sb_info *sbi = EXT4_SB(sb);
824 struct ext4_super_block *es = sbi->s_es;
825 int i, err;
826
827 ext4_unregister_li_request(sb);
828 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
829
830 flush_workqueue(sbi->rsv_conversion_wq);
831 destroy_workqueue(sbi->rsv_conversion_wq);
832
833 if (sbi->s_journal) {
834 err = jbd2_journal_destroy(sbi->s_journal);
835 sbi->s_journal = NULL;
836 if (err < 0)
837 ext4_abort(sb, "Couldn't clean up the journal");
838 }
839
840 ext4_unregister_sysfs(sb);
841 ext4_es_unregister_shrinker(sbi);
842 del_timer_sync(&sbi->s_err_report);
843 ext4_release_system_zone(sb);
844 ext4_mb_release(sb);
845 ext4_ext_release(sb);
846
847 if (!(sb->s_flags & MS_RDONLY)) {
848 ext4_clear_feature_journal_needs_recovery(sb);
849 es->s_state = cpu_to_le16(sbi->s_mount_state);
850 }
851 if (!(sb->s_flags & MS_RDONLY))
852 ext4_commit_super(sb, 1);
853
854 for (i = 0; i < sbi->s_gdb_count; i++)
855 brelse(sbi->s_group_desc[i]);
856 kvfree(sbi->s_group_desc);
857 kvfree(sbi->s_flex_groups);
858 percpu_counter_destroy(&sbi->s_freeclusters_counter);
859 percpu_counter_destroy(&sbi->s_freeinodes_counter);
860 percpu_counter_destroy(&sbi->s_dirs_counter);
861 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
862 brelse(sbi->s_sbh);
863#ifdef CONFIG_QUOTA
864 for (i = 0; i < EXT4_MAXQUOTAS; i++)
865 kfree(sbi->s_qf_names[i]);
866#endif
867
868 /* Debugging code just in case the in-memory inode orphan list
869 * isn't empty. The on-disk one can be non-empty if we've
870 * detected an error and taken the fs readonly, but the
871 * in-memory list had better be clean by this point. */
872 if (!list_empty(&sbi->s_orphan))
873 dump_orphan_list(sb, sbi);
874 J_ASSERT(list_empty(&sbi->s_orphan));
875
876 sync_blockdev(sb->s_bdev);
877 invalidate_bdev(sb->s_bdev);
878 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
879 /*
880 * Invalidate the journal device's buffers. We don't want them
881 * floating about in memory - the physical journal device may
882 * hotswapped, and it breaks the `ro-after' testing code.
883 */
884 sync_blockdev(sbi->journal_bdev);
885 invalidate_bdev(sbi->journal_bdev);
886 ext4_blkdev_remove(sbi);
887 }
888 if (sbi->s_mb_cache) {
889 ext4_xattr_destroy_cache(sbi->s_mb_cache);
890 sbi->s_mb_cache = NULL;
891 }
892 if (sbi->s_mmp_tsk)
893 kthread_stop(sbi->s_mmp_tsk);
894 sb->s_fs_info = NULL;
895 /*
896 * Now that we are completely done shutting down the
897 * superblock, we need to actually destroy the kobject.
898 */
899 kobject_put(&sbi->s_kobj);
900 wait_for_completion(&sbi->s_kobj_unregister);
901 if (sbi->s_chksum_driver)
902 crypto_free_shash(sbi->s_chksum_driver);
903 kfree(sbi->s_blockgroup_lock);
904 kfree(sbi);
905}
906
907static struct kmem_cache *ext4_inode_cachep;
908
909/*
910 * Called inside transaction, so use GFP_NOFS
911 */
912static struct inode *ext4_alloc_inode(struct super_block *sb)
913{
914 struct ext4_inode_info *ei;
915
916 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
917 if (!ei)
918 return NULL;
919
920 ei->vfs_inode.i_version = 1;
921 spin_lock_init(&ei->i_raw_lock);
922 INIT_LIST_HEAD(&ei->i_prealloc_list);
923 spin_lock_init(&ei->i_prealloc_lock);
924 ext4_es_init_tree(&ei->i_es_tree);
925 rwlock_init(&ei->i_es_lock);
926 INIT_LIST_HEAD(&ei->i_es_list);
927 ei->i_es_all_nr = 0;
928 ei->i_es_shk_nr = 0;
929 ei->i_es_shrink_lblk = 0;
930 ei->i_reserved_data_blocks = 0;
931 ei->i_reserved_meta_blocks = 0;
932 ei->i_allocated_meta_blocks = 0;
933 ei->i_da_metadata_calc_len = 0;
934 ei->i_da_metadata_calc_last_lblock = 0;
935 spin_lock_init(&(ei->i_block_reservation_lock));
936#ifdef CONFIG_QUOTA
937 ei->i_reserved_quota = 0;
938 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
939#endif
940 ei->jinode = NULL;
941 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
942 spin_lock_init(&ei->i_completed_io_lock);
943 ei->i_sync_tid = 0;
944 ei->i_datasync_tid = 0;
945 atomic_set(&ei->i_unwritten, 0);
946 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
947#ifdef CONFIG_EXT4_FS_ENCRYPTION
948 ei->i_crypt_info = NULL;
949#endif
950 return &ei->vfs_inode;
951}
952
953static int ext4_drop_inode(struct inode *inode)
954{
955 int drop = generic_drop_inode(inode);
956
957 trace_ext4_drop_inode(inode, drop);
958 return drop;
959}
960
961static void ext4_i_callback(struct rcu_head *head)
962{
963 struct inode *inode = container_of(head, struct inode, i_rcu);
964 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
965}
966
967static void ext4_destroy_inode(struct inode *inode)
968{
969 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
970 ext4_msg(inode->i_sb, KERN_ERR,
971 "Inode %lu (%p): orphan list check failed!",
972 inode->i_ino, EXT4_I(inode));
973 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
974 EXT4_I(inode), sizeof(struct ext4_inode_info),
975 true);
976 dump_stack();
977 }
978 call_rcu(&inode->i_rcu, ext4_i_callback);
979}
980
981static void init_once(void *foo)
982{
983 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
984
985 INIT_LIST_HEAD(&ei->i_orphan);
986 init_rwsem(&ei->xattr_sem);
987 init_rwsem(&ei->i_data_sem);
988 init_rwsem(&ei->i_mmap_sem);
989 inode_init_once(&ei->vfs_inode);
990}
991
992static int __init init_inodecache(void)
993{
994 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
995 sizeof(struct ext4_inode_info),
996 0, (SLAB_RECLAIM_ACCOUNT|
997 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
998 init_once);
999 if (ext4_inode_cachep == NULL)
1000 return -ENOMEM;
1001 return 0;
1002}
1003
1004static void destroy_inodecache(void)
1005{
1006 /*
1007 * Make sure all delayed rcu free inodes are flushed before we
1008 * destroy cache.
1009 */
1010 rcu_barrier();
1011 kmem_cache_destroy(ext4_inode_cachep);
1012}
1013
1014void ext4_clear_inode(struct inode *inode)
1015{
1016 invalidate_inode_buffers(inode);
1017 clear_inode(inode);
1018 dquot_drop(inode);
1019 ext4_discard_preallocations(inode);
1020 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1021 if (EXT4_I(inode)->jinode) {
1022 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1023 EXT4_I(inode)->jinode);
1024 jbd2_free_inode(EXT4_I(inode)->jinode);
1025 EXT4_I(inode)->jinode = NULL;
1026 }
1027#ifdef CONFIG_EXT4_FS_ENCRYPTION
1028 if (EXT4_I(inode)->i_crypt_info)
1029 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info);
1030#endif
1031}
1032
1033static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1034 u64 ino, u32 generation)
1035{
1036 struct inode *inode;
1037
1038 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1039 return ERR_PTR(-ESTALE);
1040 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1041 return ERR_PTR(-ESTALE);
1042
1043 /* iget isn't really right if the inode is currently unallocated!!
1044 *
1045 * ext4_read_inode will return a bad_inode if the inode had been
1046 * deleted, so we should be safe.
1047 *
1048 * Currently we don't know the generation for parent directory, so
1049 * a generation of 0 means "accept any"
1050 */
1051 inode = ext4_iget_normal(sb, ino);
1052 if (IS_ERR(inode))
1053 return ERR_CAST(inode);
1054 if (generation && inode->i_generation != generation) {
1055 iput(inode);
1056 return ERR_PTR(-ESTALE);
1057 }
1058
1059 return inode;
1060}
1061
1062static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1063 int fh_len, int fh_type)
1064{
1065 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1066 ext4_nfs_get_inode);
1067}
1068
1069static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1070 int fh_len, int fh_type)
1071{
1072 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1073 ext4_nfs_get_inode);
1074}
1075
1076/*
1077 * Try to release metadata pages (indirect blocks, directories) which are
1078 * mapped via the block device. Since these pages could have journal heads
1079 * which would prevent try_to_free_buffers() from freeing them, we must use
1080 * jbd2 layer's try_to_free_buffers() function to release them.
1081 */
1082static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1083 gfp_t wait)
1084{
1085 journal_t *journal = EXT4_SB(sb)->s_journal;
1086
1087 WARN_ON(PageChecked(page));
1088 if (!page_has_buffers(page))
1089 return 0;
1090 if (journal)
1091 return jbd2_journal_try_to_free_buffers(journal, page,
1092 wait & ~__GFP_DIRECT_RECLAIM);
1093 return try_to_free_buffers(page);
1094}
1095
1096#ifdef CONFIG_QUOTA
1097static char *quotatypes[] = INITQFNAMES;
1098#define QTYPE2NAME(t) (quotatypes[t])
1099
1100static int ext4_write_dquot(struct dquot *dquot);
1101static int ext4_acquire_dquot(struct dquot *dquot);
1102static int ext4_release_dquot(struct dquot *dquot);
1103static int ext4_mark_dquot_dirty(struct dquot *dquot);
1104static int ext4_write_info(struct super_block *sb, int type);
1105static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1106 struct path *path);
1107static int ext4_quota_off(struct super_block *sb, int type);
1108static int ext4_quota_on_mount(struct super_block *sb, int type);
1109static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1110 size_t len, loff_t off);
1111static ssize_t ext4_quota_write(struct super_block *sb, int type,
1112 const char *data, size_t len, loff_t off);
1113static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1114 unsigned int flags);
1115static int ext4_enable_quotas(struct super_block *sb);
1116static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1117
1118static struct dquot **ext4_get_dquots(struct inode *inode)
1119{
1120 return EXT4_I(inode)->i_dquot;
1121}
1122
1123static const struct dquot_operations ext4_quota_operations = {
1124 .get_reserved_space = ext4_get_reserved_space,
1125 .write_dquot = ext4_write_dquot,
1126 .acquire_dquot = ext4_acquire_dquot,
1127 .release_dquot = ext4_release_dquot,
1128 .mark_dirty = ext4_mark_dquot_dirty,
1129 .write_info = ext4_write_info,
1130 .alloc_dquot = dquot_alloc,
1131 .destroy_dquot = dquot_destroy,
1132 .get_projid = ext4_get_projid,
1133 .get_next_id = ext4_get_next_id,
1134};
1135
1136static const struct quotactl_ops ext4_qctl_operations = {
1137 .quota_on = ext4_quota_on,
1138 .quota_off = ext4_quota_off,
1139 .quota_sync = dquot_quota_sync,
1140 .get_state = dquot_get_state,
1141 .set_info = dquot_set_dqinfo,
1142 .get_dqblk = dquot_get_dqblk,
1143 .set_dqblk = dquot_set_dqblk,
1144 .get_nextdqblk = dquot_get_next_dqblk,
1145};
1146#endif
1147
1148static const struct super_operations ext4_sops = {
1149 .alloc_inode = ext4_alloc_inode,
1150 .destroy_inode = ext4_destroy_inode,
1151 .write_inode = ext4_write_inode,
1152 .dirty_inode = ext4_dirty_inode,
1153 .drop_inode = ext4_drop_inode,
1154 .evict_inode = ext4_evict_inode,
1155 .put_super = ext4_put_super,
1156 .sync_fs = ext4_sync_fs,
1157 .freeze_fs = ext4_freeze,
1158 .unfreeze_fs = ext4_unfreeze,
1159 .statfs = ext4_statfs,
1160 .remount_fs = ext4_remount,
1161 .show_options = ext4_show_options,
1162#ifdef CONFIG_QUOTA
1163 .quota_read = ext4_quota_read,
1164 .quota_write = ext4_quota_write,
1165 .get_dquots = ext4_get_dquots,
1166#endif
1167 .bdev_try_to_free_page = bdev_try_to_free_page,
1168};
1169
1170static const struct export_operations ext4_export_ops = {
1171 .fh_to_dentry = ext4_fh_to_dentry,
1172 .fh_to_parent = ext4_fh_to_parent,
1173 .get_parent = ext4_get_parent,
1174};
1175
1176enum {
1177 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1178 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1179 Opt_nouid32, Opt_debug, Opt_removed,
1180 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1181 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1182 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1183 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1184 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1185 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1186 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1187 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1188 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1189 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1190 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1191 Opt_lazytime, Opt_nolazytime,
1192 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1193 Opt_inode_readahead_blks, Opt_journal_ioprio,
1194 Opt_dioread_nolock, Opt_dioread_lock,
1195 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1196 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1197};
1198
1199static const match_table_t tokens = {
1200 {Opt_bsd_df, "bsddf"},
1201 {Opt_minix_df, "minixdf"},
1202 {Opt_grpid, "grpid"},
1203 {Opt_grpid, "bsdgroups"},
1204 {Opt_nogrpid, "nogrpid"},
1205 {Opt_nogrpid, "sysvgroups"},
1206 {Opt_resgid, "resgid=%u"},
1207 {Opt_resuid, "resuid=%u"},
1208 {Opt_sb, "sb=%u"},
1209 {Opt_err_cont, "errors=continue"},
1210 {Opt_err_panic, "errors=panic"},
1211 {Opt_err_ro, "errors=remount-ro"},
1212 {Opt_nouid32, "nouid32"},
1213 {Opt_debug, "debug"},
1214 {Opt_removed, "oldalloc"},
1215 {Opt_removed, "orlov"},
1216 {Opt_user_xattr, "user_xattr"},
1217 {Opt_nouser_xattr, "nouser_xattr"},
1218 {Opt_acl, "acl"},
1219 {Opt_noacl, "noacl"},
1220 {Opt_noload, "norecovery"},
1221 {Opt_noload, "noload"},
1222 {Opt_removed, "nobh"},
1223 {Opt_removed, "bh"},
1224 {Opt_commit, "commit=%u"},
1225 {Opt_min_batch_time, "min_batch_time=%u"},
1226 {Opt_max_batch_time, "max_batch_time=%u"},
1227 {Opt_journal_dev, "journal_dev=%u"},
1228 {Opt_journal_path, "journal_path=%s"},
1229 {Opt_journal_checksum, "journal_checksum"},
1230 {Opt_nojournal_checksum, "nojournal_checksum"},
1231 {Opt_journal_async_commit, "journal_async_commit"},
1232 {Opt_abort, "abort"},
1233 {Opt_data_journal, "data=journal"},
1234 {Opt_data_ordered, "data=ordered"},
1235 {Opt_data_writeback, "data=writeback"},
1236 {Opt_data_err_abort, "data_err=abort"},
1237 {Opt_data_err_ignore, "data_err=ignore"},
1238 {Opt_offusrjquota, "usrjquota="},
1239 {Opt_usrjquota, "usrjquota=%s"},
1240 {Opt_offgrpjquota, "grpjquota="},
1241 {Opt_grpjquota, "grpjquota=%s"},
1242 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1243 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1244 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1245 {Opt_grpquota, "grpquota"},
1246 {Opt_noquota, "noquota"},
1247 {Opt_quota, "quota"},
1248 {Opt_usrquota, "usrquota"},
1249 {Opt_barrier, "barrier=%u"},
1250 {Opt_barrier, "barrier"},
1251 {Opt_nobarrier, "nobarrier"},
1252 {Opt_i_version, "i_version"},
1253 {Opt_dax, "dax"},
1254 {Opt_stripe, "stripe=%u"},
1255 {Opt_delalloc, "delalloc"},
1256 {Opt_lazytime, "lazytime"},
1257 {Opt_nolazytime, "nolazytime"},
1258 {Opt_nodelalloc, "nodelalloc"},
1259 {Opt_removed, "mblk_io_submit"},
1260 {Opt_removed, "nomblk_io_submit"},
1261 {Opt_block_validity, "block_validity"},
1262 {Opt_noblock_validity, "noblock_validity"},
1263 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1264 {Opt_journal_ioprio, "journal_ioprio=%u"},
1265 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1266 {Opt_auto_da_alloc, "auto_da_alloc"},
1267 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1268 {Opt_dioread_nolock, "dioread_nolock"},
1269 {Opt_dioread_lock, "dioread_lock"},
1270 {Opt_discard, "discard"},
1271 {Opt_nodiscard, "nodiscard"},
1272 {Opt_init_itable, "init_itable=%u"},
1273 {Opt_init_itable, "init_itable"},
1274 {Opt_noinit_itable, "noinit_itable"},
1275 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1276 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1277 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1278 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1279 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1280 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1281 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1282 {Opt_err, NULL},
1283};
1284
1285static ext4_fsblk_t get_sb_block(void **data)
1286{
1287 ext4_fsblk_t sb_block;
1288 char *options = (char *) *data;
1289
1290 if (!options || strncmp(options, "sb=", 3) != 0)
1291 return 1; /* Default location */
1292
1293 options += 3;
1294 /* TODO: use simple_strtoll with >32bit ext4 */
1295 sb_block = simple_strtoul(options, &options, 0);
1296 if (*options && *options != ',') {
1297 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1298 (char *) *data);
1299 return 1;
1300 }
1301 if (*options == ',')
1302 options++;
1303 *data = (void *) options;
1304
1305 return sb_block;
1306}
1307
1308#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1309static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1310 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1311
1312#ifdef CONFIG_QUOTA
1313static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1314{
1315 struct ext4_sb_info *sbi = EXT4_SB(sb);
1316 char *qname;
1317 int ret = -1;
1318
1319 if (sb_any_quota_loaded(sb) &&
1320 !sbi->s_qf_names[qtype]) {
1321 ext4_msg(sb, KERN_ERR,
1322 "Cannot change journaled "
1323 "quota options when quota turned on");
1324 return -1;
1325 }
1326 if (ext4_has_feature_quota(sb)) {
1327 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1328 "ignored when QUOTA feature is enabled");
1329 return 1;
1330 }
1331 qname = match_strdup(args);
1332 if (!qname) {
1333 ext4_msg(sb, KERN_ERR,
1334 "Not enough memory for storing quotafile name");
1335 return -1;
1336 }
1337 if (sbi->s_qf_names[qtype]) {
1338 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1339 ret = 1;
1340 else
1341 ext4_msg(sb, KERN_ERR,
1342 "%s quota file already specified",
1343 QTYPE2NAME(qtype));
1344 goto errout;
1345 }
1346 if (strchr(qname, '/')) {
1347 ext4_msg(sb, KERN_ERR,
1348 "quotafile must be on filesystem root");
1349 goto errout;
1350 }
1351 sbi->s_qf_names[qtype] = qname;
1352 set_opt(sb, QUOTA);
1353 return 1;
1354errout:
1355 kfree(qname);
1356 return ret;
1357}
1358
1359static int clear_qf_name(struct super_block *sb, int qtype)
1360{
1361
1362 struct ext4_sb_info *sbi = EXT4_SB(sb);
1363
1364 if (sb_any_quota_loaded(sb) &&
1365 sbi->s_qf_names[qtype]) {
1366 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1367 " when quota turned on");
1368 return -1;
1369 }
1370 kfree(sbi->s_qf_names[qtype]);
1371 sbi->s_qf_names[qtype] = NULL;
1372 return 1;
1373}
1374#endif
1375
1376#define MOPT_SET 0x0001
1377#define MOPT_CLEAR 0x0002
1378#define MOPT_NOSUPPORT 0x0004
1379#define MOPT_EXPLICIT 0x0008
1380#define MOPT_CLEAR_ERR 0x0010
1381#define MOPT_GTE0 0x0020
1382#ifdef CONFIG_QUOTA
1383#define MOPT_Q 0
1384#define MOPT_QFMT 0x0040
1385#else
1386#define MOPT_Q MOPT_NOSUPPORT
1387#define MOPT_QFMT MOPT_NOSUPPORT
1388#endif
1389#define MOPT_DATAJ 0x0080
1390#define MOPT_NO_EXT2 0x0100
1391#define MOPT_NO_EXT3 0x0200
1392#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1393#define MOPT_STRING 0x0400
1394
1395static const struct mount_opts {
1396 int token;
1397 int mount_opt;
1398 int flags;
1399} ext4_mount_opts[] = {
1400 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1401 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1402 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1403 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1404 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1405 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1406 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1407 MOPT_EXT4_ONLY | MOPT_SET},
1408 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1409 MOPT_EXT4_ONLY | MOPT_CLEAR},
1410 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1411 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1412 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1413 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1414 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1415 MOPT_EXT4_ONLY | MOPT_CLEAR},
1416 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1417 MOPT_EXT4_ONLY | MOPT_CLEAR},
1418 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1419 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1420 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1421 EXT4_MOUNT_JOURNAL_CHECKSUM),
1422 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1423 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1424 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1425 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1426 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1427 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1428 MOPT_NO_EXT2},
1429 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1430 MOPT_NO_EXT2},
1431 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1432 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1433 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1434 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1435 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1436 {Opt_commit, 0, MOPT_GTE0},
1437 {Opt_max_batch_time, 0, MOPT_GTE0},
1438 {Opt_min_batch_time, 0, MOPT_GTE0},
1439 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1440 {Opt_init_itable, 0, MOPT_GTE0},
1441 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1442 {Opt_stripe, 0, MOPT_GTE0},
1443 {Opt_resuid, 0, MOPT_GTE0},
1444 {Opt_resgid, 0, MOPT_GTE0},
1445 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1446 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1447 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1448 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1449 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1450 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1451 MOPT_NO_EXT2 | MOPT_DATAJ},
1452 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1453 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1454#ifdef CONFIG_EXT4_FS_POSIX_ACL
1455 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1456 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1457#else
1458 {Opt_acl, 0, MOPT_NOSUPPORT},
1459 {Opt_noacl, 0, MOPT_NOSUPPORT},
1460#endif
1461 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1462 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1463 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1464 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1465 MOPT_SET | MOPT_Q},
1466 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1467 MOPT_SET | MOPT_Q},
1468 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1469 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1470 {Opt_usrjquota, 0, MOPT_Q},
1471 {Opt_grpjquota, 0, MOPT_Q},
1472 {Opt_offusrjquota, 0, MOPT_Q},
1473 {Opt_offgrpjquota, 0, MOPT_Q},
1474 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1475 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1476 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1477 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1478 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1479 {Opt_err, 0, 0}
1480};
1481
1482static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1483 substring_t *args, unsigned long *journal_devnum,
1484 unsigned int *journal_ioprio, int is_remount)
1485{
1486 struct ext4_sb_info *sbi = EXT4_SB(sb);
1487 const struct mount_opts *m;
1488 kuid_t uid;
1489 kgid_t gid;
1490 int arg = 0;
1491
1492#ifdef CONFIG_QUOTA
1493 if (token == Opt_usrjquota)
1494 return set_qf_name(sb, USRQUOTA, &args[0]);
1495 else if (token == Opt_grpjquota)
1496 return set_qf_name(sb, GRPQUOTA, &args[0]);
1497 else if (token == Opt_offusrjquota)
1498 return clear_qf_name(sb, USRQUOTA);
1499 else if (token == Opt_offgrpjquota)
1500 return clear_qf_name(sb, GRPQUOTA);
1501#endif
1502 switch (token) {
1503 case Opt_noacl:
1504 case Opt_nouser_xattr:
1505 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1506 break;
1507 case Opt_sb:
1508 return 1; /* handled by get_sb_block() */
1509 case Opt_removed:
1510 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1511 return 1;
1512 case Opt_abort:
1513 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1514 return 1;
1515 case Opt_i_version:
1516 sb->s_flags |= MS_I_VERSION;
1517 return 1;
1518 case Opt_lazytime:
1519 sb->s_flags |= MS_LAZYTIME;
1520 return 1;
1521 case Opt_nolazytime:
1522 sb->s_flags &= ~MS_LAZYTIME;
1523 return 1;
1524 }
1525
1526 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1527 if (token == m->token)
1528 break;
1529
1530 if (m->token == Opt_err) {
1531 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1532 "or missing value", opt);
1533 return -1;
1534 }
1535
1536 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1537 ext4_msg(sb, KERN_ERR,
1538 "Mount option \"%s\" incompatible with ext2", opt);
1539 return -1;
1540 }
1541 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1542 ext4_msg(sb, KERN_ERR,
1543 "Mount option \"%s\" incompatible with ext3", opt);
1544 return -1;
1545 }
1546
1547 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1548 return -1;
1549 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1550 return -1;
1551 if (m->flags & MOPT_EXPLICIT) {
1552 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1553 set_opt2(sb, EXPLICIT_DELALLOC);
1554 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1555 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1556 } else
1557 return -1;
1558 }
1559 if (m->flags & MOPT_CLEAR_ERR)
1560 clear_opt(sb, ERRORS_MASK);
1561 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1562 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1563 "options when quota turned on");
1564 return -1;
1565 }
1566
1567 if (m->flags & MOPT_NOSUPPORT) {
1568 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1569 } else if (token == Opt_commit) {
1570 if (arg == 0)
1571 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1572 sbi->s_commit_interval = HZ * arg;
1573 } else if (token == Opt_max_batch_time) {
1574 sbi->s_max_batch_time = arg;
1575 } else if (token == Opt_min_batch_time) {
1576 sbi->s_min_batch_time = arg;
1577 } else if (token == Opt_inode_readahead_blks) {
1578 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1579 ext4_msg(sb, KERN_ERR,
1580 "EXT4-fs: inode_readahead_blks must be "
1581 "0 or a power of 2 smaller than 2^31");
1582 return -1;
1583 }
1584 sbi->s_inode_readahead_blks = arg;
1585 } else if (token == Opt_init_itable) {
1586 set_opt(sb, INIT_INODE_TABLE);
1587 if (!args->from)
1588 arg = EXT4_DEF_LI_WAIT_MULT;
1589 sbi->s_li_wait_mult = arg;
1590 } else if (token == Opt_max_dir_size_kb) {
1591 sbi->s_max_dir_size_kb = arg;
1592 } else if (token == Opt_stripe) {
1593 sbi->s_stripe = arg;
1594 } else if (token == Opt_resuid) {
1595 uid = make_kuid(current_user_ns(), arg);
1596 if (!uid_valid(uid)) {
1597 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1598 return -1;
1599 }
1600 sbi->s_resuid = uid;
1601 } else if (token == Opt_resgid) {
1602 gid = make_kgid(current_user_ns(), arg);
1603 if (!gid_valid(gid)) {
1604 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1605 return -1;
1606 }
1607 sbi->s_resgid = gid;
1608 } else if (token == Opt_journal_dev) {
1609 if (is_remount) {
1610 ext4_msg(sb, KERN_ERR,
1611 "Cannot specify journal on remount");
1612 return -1;
1613 }
1614 *journal_devnum = arg;
1615 } else if (token == Opt_journal_path) {
1616 char *journal_path;
1617 struct inode *journal_inode;
1618 struct path path;
1619 int error;
1620
1621 if (is_remount) {
1622 ext4_msg(sb, KERN_ERR,
1623 "Cannot specify journal on remount");
1624 return -1;
1625 }
1626 journal_path = match_strdup(&args[0]);
1627 if (!journal_path) {
1628 ext4_msg(sb, KERN_ERR, "error: could not dup "
1629 "journal device string");
1630 return -1;
1631 }
1632
1633 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1634 if (error) {
1635 ext4_msg(sb, KERN_ERR, "error: could not find "
1636 "journal device path: error %d", error);
1637 kfree(journal_path);
1638 return -1;
1639 }
1640
1641 journal_inode = d_inode(path.dentry);
1642 if (!S_ISBLK(journal_inode->i_mode)) {
1643 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1644 "is not a block device", journal_path);
1645 path_put(&path);
1646 kfree(journal_path);
1647 return -1;
1648 }
1649
1650 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1651 path_put(&path);
1652 kfree(journal_path);
1653 } else if (token == Opt_journal_ioprio) {
1654 if (arg > 7) {
1655 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1656 " (must be 0-7)");
1657 return -1;
1658 }
1659 *journal_ioprio =
1660 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1661 } else if (token == Opt_test_dummy_encryption) {
1662#ifdef CONFIG_EXT4_FS_ENCRYPTION
1663 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1664 ext4_msg(sb, KERN_WARNING,
1665 "Test dummy encryption mode enabled");
1666#else
1667 ext4_msg(sb, KERN_WARNING,
1668 "Test dummy encryption mount option ignored");
1669#endif
1670 } else if (m->flags & MOPT_DATAJ) {
1671 if (is_remount) {
1672 if (!sbi->s_journal)
1673 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1674 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1675 ext4_msg(sb, KERN_ERR,
1676 "Cannot change data mode on remount");
1677 return -1;
1678 }
1679 } else {
1680 clear_opt(sb, DATA_FLAGS);
1681 sbi->s_mount_opt |= m->mount_opt;
1682 }
1683#ifdef CONFIG_QUOTA
1684 } else if (m->flags & MOPT_QFMT) {
1685 if (sb_any_quota_loaded(sb) &&
1686 sbi->s_jquota_fmt != m->mount_opt) {
1687 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1688 "quota options when quota turned on");
1689 return -1;
1690 }
1691 if (ext4_has_feature_quota(sb)) {
1692 ext4_msg(sb, KERN_INFO,
1693 "Quota format mount options ignored "
1694 "when QUOTA feature is enabled");
1695 return 1;
1696 }
1697 sbi->s_jquota_fmt = m->mount_opt;
1698#endif
1699 } else if (token == Opt_dax) {
1700#ifdef CONFIG_FS_DAX
1701 ext4_msg(sb, KERN_WARNING,
1702 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1703 sbi->s_mount_opt |= m->mount_opt;
1704#else
1705 ext4_msg(sb, KERN_INFO, "dax option not supported");
1706 return -1;
1707#endif
1708 } else if (token == Opt_data_err_abort) {
1709 sbi->s_mount_opt |= m->mount_opt;
1710 } else if (token == Opt_data_err_ignore) {
1711 sbi->s_mount_opt &= ~m->mount_opt;
1712 } else {
1713 if (!args->from)
1714 arg = 1;
1715 if (m->flags & MOPT_CLEAR)
1716 arg = !arg;
1717 else if (unlikely(!(m->flags & MOPT_SET))) {
1718 ext4_msg(sb, KERN_WARNING,
1719 "buggy handling of option %s", opt);
1720 WARN_ON(1);
1721 return -1;
1722 }
1723 if (arg != 0)
1724 sbi->s_mount_opt |= m->mount_opt;
1725 else
1726 sbi->s_mount_opt &= ~m->mount_opt;
1727 }
1728 return 1;
1729}
1730
1731static int parse_options(char *options, struct super_block *sb,
1732 unsigned long *journal_devnum,
1733 unsigned int *journal_ioprio,
1734 int is_remount)
1735{
1736 struct ext4_sb_info *sbi = EXT4_SB(sb);
1737 char *p;
1738 substring_t args[MAX_OPT_ARGS];
1739 int token;
1740
1741 if (!options)
1742 return 1;
1743
1744 while ((p = strsep(&options, ",")) != NULL) {
1745 if (!*p)
1746 continue;
1747 /*
1748 * Initialize args struct so we know whether arg was
1749 * found; some options take optional arguments.
1750 */
1751 args[0].to = args[0].from = NULL;
1752 token = match_token(p, tokens, args);
1753 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1754 journal_ioprio, is_remount) < 0)
1755 return 0;
1756 }
1757#ifdef CONFIG_QUOTA
1758 if (ext4_has_feature_quota(sb) &&
1759 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1760 ext4_msg(sb, KERN_INFO, "Quota feature enabled, usrquota and grpquota "
1761 "mount options ignored.");
1762 clear_opt(sb, USRQUOTA);
1763 clear_opt(sb, GRPQUOTA);
1764 } else if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1765 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1766 clear_opt(sb, USRQUOTA);
1767
1768 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1769 clear_opt(sb, GRPQUOTA);
1770
1771 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1772 ext4_msg(sb, KERN_ERR, "old and new quota "
1773 "format mixing");
1774 return 0;
1775 }
1776
1777 if (!sbi->s_jquota_fmt) {
1778 ext4_msg(sb, KERN_ERR, "journaled quota format "
1779 "not specified");
1780 return 0;
1781 }
1782 }
1783#endif
1784 if (test_opt(sb, DIOREAD_NOLOCK)) {
1785 int blocksize =
1786 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1787
1788 if (blocksize < PAGE_SIZE) {
1789 ext4_msg(sb, KERN_ERR, "can't mount with "
1790 "dioread_nolock if block size != PAGE_SIZE");
1791 return 0;
1792 }
1793 }
1794 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1795 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1796 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1797 "in data=ordered mode");
1798 return 0;
1799 }
1800 return 1;
1801}
1802
1803static inline void ext4_show_quota_options(struct seq_file *seq,
1804 struct super_block *sb)
1805{
1806#if defined(CONFIG_QUOTA)
1807 struct ext4_sb_info *sbi = EXT4_SB(sb);
1808
1809 if (sbi->s_jquota_fmt) {
1810 char *fmtname = "";
1811
1812 switch (sbi->s_jquota_fmt) {
1813 case QFMT_VFS_OLD:
1814 fmtname = "vfsold";
1815 break;
1816 case QFMT_VFS_V0:
1817 fmtname = "vfsv0";
1818 break;
1819 case QFMT_VFS_V1:
1820 fmtname = "vfsv1";
1821 break;
1822 }
1823 seq_printf(seq, ",jqfmt=%s", fmtname);
1824 }
1825
1826 if (sbi->s_qf_names[USRQUOTA])
1827 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1828
1829 if (sbi->s_qf_names[GRPQUOTA])
1830 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1831#endif
1832}
1833
1834static const char *token2str(int token)
1835{
1836 const struct match_token *t;
1837
1838 for (t = tokens; t->token != Opt_err; t++)
1839 if (t->token == token && !strchr(t->pattern, '='))
1840 break;
1841 return t->pattern;
1842}
1843
1844/*
1845 * Show an option if
1846 * - it's set to a non-default value OR
1847 * - if the per-sb default is different from the global default
1848 */
1849static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1850 int nodefs)
1851{
1852 struct ext4_sb_info *sbi = EXT4_SB(sb);
1853 struct ext4_super_block *es = sbi->s_es;
1854 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1855 const struct mount_opts *m;
1856 char sep = nodefs ? '\n' : ',';
1857
1858#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1859#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1860
1861 if (sbi->s_sb_block != 1)
1862 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1863
1864 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1865 int want_set = m->flags & MOPT_SET;
1866 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1867 (m->flags & MOPT_CLEAR_ERR))
1868 continue;
1869 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1870 continue; /* skip if same as the default */
1871 if ((want_set &&
1872 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1873 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1874 continue; /* select Opt_noFoo vs Opt_Foo */
1875 SEQ_OPTS_PRINT("%s", token2str(m->token));
1876 }
1877
1878 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1879 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1880 SEQ_OPTS_PRINT("resuid=%u",
1881 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1882 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1883 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1884 SEQ_OPTS_PRINT("resgid=%u",
1885 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1886 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1887 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1888 SEQ_OPTS_PUTS("errors=remount-ro");
1889 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1890 SEQ_OPTS_PUTS("errors=continue");
1891 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1892 SEQ_OPTS_PUTS("errors=panic");
1893 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1894 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1895 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1896 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1897 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1898 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1899 if (sb->s_flags & MS_I_VERSION)
1900 SEQ_OPTS_PUTS("i_version");
1901 if (nodefs || sbi->s_stripe)
1902 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1903 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1904 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1905 SEQ_OPTS_PUTS("data=journal");
1906 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1907 SEQ_OPTS_PUTS("data=ordered");
1908 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1909 SEQ_OPTS_PUTS("data=writeback");
1910 }
1911 if (nodefs ||
1912 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1913 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1914 sbi->s_inode_readahead_blks);
1915
1916 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1917 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1918 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1919 if (nodefs || sbi->s_max_dir_size_kb)
1920 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1921 if (test_opt(sb, DATA_ERR_ABORT))
1922 SEQ_OPTS_PUTS("data_err=abort");
1923
1924 ext4_show_quota_options(seq, sb);
1925 return 0;
1926}
1927
1928static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1929{
1930 return _ext4_show_options(seq, root->d_sb, 0);
1931}
1932
1933int ext4_seq_options_show(struct seq_file *seq, void *offset)
1934{
1935 struct super_block *sb = seq->private;
1936 int rc;
1937
1938 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1939 rc = _ext4_show_options(seq, sb, 1);
1940 seq_puts(seq, "\n");
1941 return rc;
1942}
1943
1944static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1945 int read_only)
1946{
1947 struct ext4_sb_info *sbi = EXT4_SB(sb);
1948 int res = 0;
1949
1950 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1951 ext4_msg(sb, KERN_ERR, "revision level too high, "
1952 "forcing read-only mode");
1953 res = MS_RDONLY;
1954 }
1955 if (read_only)
1956 goto done;
1957 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1958 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1959 "running e2fsck is recommended");
1960 else if (sbi->s_mount_state & EXT4_ERROR_FS)
1961 ext4_msg(sb, KERN_WARNING,
1962 "warning: mounting fs with errors, "
1963 "running e2fsck is recommended");
1964 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1965 le16_to_cpu(es->s_mnt_count) >=
1966 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1967 ext4_msg(sb, KERN_WARNING,
1968 "warning: maximal mount count reached, "
1969 "running e2fsck is recommended");
1970 else if (le32_to_cpu(es->s_checkinterval) &&
1971 (le32_to_cpu(es->s_lastcheck) +
1972 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1973 ext4_msg(sb, KERN_WARNING,
1974 "warning: checktime reached, "
1975 "running e2fsck is recommended");
1976 if (!sbi->s_journal)
1977 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1978 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1979 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1980 le16_add_cpu(&es->s_mnt_count, 1);
1981 es->s_mtime = cpu_to_le32(get_seconds());
1982 ext4_update_dynamic_rev(sb);
1983 if (sbi->s_journal)
1984 ext4_set_feature_journal_needs_recovery(sb);
1985
1986 ext4_commit_super(sb, 1);
1987done:
1988 if (test_opt(sb, DEBUG))
1989 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1990 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1991 sb->s_blocksize,
1992 sbi->s_groups_count,
1993 EXT4_BLOCKS_PER_GROUP(sb),
1994 EXT4_INODES_PER_GROUP(sb),
1995 sbi->s_mount_opt, sbi->s_mount_opt2);
1996
1997 cleancache_init_fs(sb);
1998 return res;
1999}
2000
2001int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2002{
2003 struct ext4_sb_info *sbi = EXT4_SB(sb);
2004 struct flex_groups *new_groups;
2005 int size;
2006
2007 if (!sbi->s_log_groups_per_flex)
2008 return 0;
2009
2010 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2011 if (size <= sbi->s_flex_groups_allocated)
2012 return 0;
2013
2014 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2015 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
2016 if (!new_groups) {
2017 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2018 size / (int) sizeof(struct flex_groups));
2019 return -ENOMEM;
2020 }
2021
2022 if (sbi->s_flex_groups) {
2023 memcpy(new_groups, sbi->s_flex_groups,
2024 (sbi->s_flex_groups_allocated *
2025 sizeof(struct flex_groups)));
2026 kvfree(sbi->s_flex_groups);
2027 }
2028 sbi->s_flex_groups = new_groups;
2029 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2030 return 0;
2031}
2032
2033static int ext4_fill_flex_info(struct super_block *sb)
2034{
2035 struct ext4_sb_info *sbi = EXT4_SB(sb);
2036 struct ext4_group_desc *gdp = NULL;
2037 ext4_group_t flex_group;
2038 int i, err;
2039
2040 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2041 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2042 sbi->s_log_groups_per_flex = 0;
2043 return 1;
2044 }
2045
2046 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2047 if (err)
2048 goto failed;
2049
2050 for (i = 0; i < sbi->s_groups_count; i++) {
2051 gdp = ext4_get_group_desc(sb, i, NULL);
2052
2053 flex_group = ext4_flex_group(sbi, i);
2054 atomic_add(ext4_free_inodes_count(sb, gdp),
2055 &sbi->s_flex_groups[flex_group].free_inodes);
2056 atomic64_add(ext4_free_group_clusters(sb, gdp),
2057 &sbi->s_flex_groups[flex_group].free_clusters);
2058 atomic_add(ext4_used_dirs_count(sb, gdp),
2059 &sbi->s_flex_groups[flex_group].used_dirs);
2060 }
2061
2062 return 1;
2063failed:
2064 return 0;
2065}
2066
2067static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2068 struct ext4_group_desc *gdp)
2069{
2070 int offset;
2071 __u16 crc = 0;
2072 __le32 le_group = cpu_to_le32(block_group);
2073 struct ext4_sb_info *sbi = EXT4_SB(sb);
2074
2075 if (ext4_has_metadata_csum(sbi->s_sb)) {
2076 /* Use new metadata_csum algorithm */
2077 __le16 save_csum;
2078 __u32 csum32;
2079
2080 save_csum = gdp->bg_checksum;
2081 gdp->bg_checksum = 0;
2082 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2083 sizeof(le_group));
2084 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2085 sbi->s_desc_size);
2086 gdp->bg_checksum = save_csum;
2087
2088 crc = csum32 & 0xFFFF;
2089 goto out;
2090 }
2091
2092 /* old crc16 code */
2093 if (!ext4_has_feature_gdt_csum(sb))
2094 return 0;
2095
2096 offset = offsetof(struct ext4_group_desc, bg_checksum);
2097
2098 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2099 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2100 crc = crc16(crc, (__u8 *)gdp, offset);
2101 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2102 /* for checksum of struct ext4_group_desc do the rest...*/
2103 if (ext4_has_feature_64bit(sb) &&
2104 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2105 crc = crc16(crc, (__u8 *)gdp + offset,
2106 le16_to_cpu(sbi->s_es->s_desc_size) -
2107 offset);
2108
2109out:
2110 return cpu_to_le16(crc);
2111}
2112
2113int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2114 struct ext4_group_desc *gdp)
2115{
2116 if (ext4_has_group_desc_csum(sb) &&
2117 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2118 return 0;
2119
2120 return 1;
2121}
2122
2123void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2124 struct ext4_group_desc *gdp)
2125{
2126 if (!ext4_has_group_desc_csum(sb))
2127 return;
2128 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2129}
2130
2131/* Called at mount-time, super-block is locked */
2132static int ext4_check_descriptors(struct super_block *sb,
2133 ext4_group_t *first_not_zeroed)
2134{
2135 struct ext4_sb_info *sbi = EXT4_SB(sb);
2136 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2137 ext4_fsblk_t last_block;
2138 ext4_fsblk_t block_bitmap;
2139 ext4_fsblk_t inode_bitmap;
2140 ext4_fsblk_t inode_table;
2141 int flexbg_flag = 0;
2142 ext4_group_t i, grp = sbi->s_groups_count;
2143
2144 if (ext4_has_feature_flex_bg(sb))
2145 flexbg_flag = 1;
2146
2147 ext4_debug("Checking group descriptors");
2148
2149 for (i = 0; i < sbi->s_groups_count; i++) {
2150 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2151
2152 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2153 last_block = ext4_blocks_count(sbi->s_es) - 1;
2154 else
2155 last_block = first_block +
2156 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2157
2158 if ((grp == sbi->s_groups_count) &&
2159 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2160 grp = i;
2161
2162 block_bitmap = ext4_block_bitmap(sb, gdp);
2163 if (block_bitmap < first_block || block_bitmap > last_block) {
2164 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2165 "Block bitmap for group %u not in group "
2166 "(block %llu)!", i, block_bitmap);
2167 return 0;
2168 }
2169 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2170 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2171 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2172 "Inode bitmap for group %u not in group "
2173 "(block %llu)!", i, inode_bitmap);
2174 return 0;
2175 }
2176 inode_table = ext4_inode_table(sb, gdp);
2177 if (inode_table < first_block ||
2178 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2179 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2180 "Inode table for group %u not in group "
2181 "(block %llu)!", i, inode_table);
2182 return 0;
2183 }
2184 ext4_lock_group(sb, i);
2185 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2186 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2187 "Checksum for group %u failed (%u!=%u)",
2188 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2189 gdp)), le16_to_cpu(gdp->bg_checksum));
2190 if (!(sb->s_flags & MS_RDONLY)) {
2191 ext4_unlock_group(sb, i);
2192 return 0;
2193 }
2194 }
2195 ext4_unlock_group(sb, i);
2196 if (!flexbg_flag)
2197 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2198 }
2199 if (NULL != first_not_zeroed)
2200 *first_not_zeroed = grp;
2201 return 1;
2202}
2203
2204/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2205 * the superblock) which were deleted from all directories, but held open by
2206 * a process at the time of a crash. We walk the list and try to delete these
2207 * inodes at recovery time (only with a read-write filesystem).
2208 *
2209 * In order to keep the orphan inode chain consistent during traversal (in
2210 * case of crash during recovery), we link each inode into the superblock
2211 * orphan list_head and handle it the same way as an inode deletion during
2212 * normal operation (which journals the operations for us).
2213 *
2214 * We only do an iget() and an iput() on each inode, which is very safe if we
2215 * accidentally point at an in-use or already deleted inode. The worst that
2216 * can happen in this case is that we get a "bit already cleared" message from
2217 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2218 * e2fsck was run on this filesystem, and it must have already done the orphan
2219 * inode cleanup for us, so we can safely abort without any further action.
2220 */
2221static void ext4_orphan_cleanup(struct super_block *sb,
2222 struct ext4_super_block *es)
2223{
2224 unsigned int s_flags = sb->s_flags;
2225 int nr_orphans = 0, nr_truncates = 0;
2226#ifdef CONFIG_QUOTA
2227 int i;
2228#endif
2229 if (!es->s_last_orphan) {
2230 jbd_debug(4, "no orphan inodes to clean up\n");
2231 return;
2232 }
2233
2234 if (bdev_read_only(sb->s_bdev)) {
2235 ext4_msg(sb, KERN_ERR, "write access "
2236 "unavailable, skipping orphan cleanup");
2237 return;
2238 }
2239
2240 /* Check if feature set would not allow a r/w mount */
2241 if (!ext4_feature_set_ok(sb, 0)) {
2242 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2243 "unknown ROCOMPAT features");
2244 return;
2245 }
2246
2247 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2248 /* don't clear list on RO mount w/ errors */
2249 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2250 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2251 "clearing orphan list.\n");
2252 es->s_last_orphan = 0;
2253 }
2254 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2255 return;
2256 }
2257
2258 if (s_flags & MS_RDONLY) {
2259 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2260 sb->s_flags &= ~MS_RDONLY;
2261 }
2262#ifdef CONFIG_QUOTA
2263 /* Needed for iput() to work correctly and not trash data */
2264 sb->s_flags |= MS_ACTIVE;
2265 /* Turn on quotas so that they are updated correctly */
2266 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2267 if (EXT4_SB(sb)->s_qf_names[i]) {
2268 int ret = ext4_quota_on_mount(sb, i);
2269 if (ret < 0)
2270 ext4_msg(sb, KERN_ERR,
2271 "Cannot turn on journaled "
2272 "quota: error %d", ret);
2273 }
2274 }
2275#endif
2276
2277 while (es->s_last_orphan) {
2278 struct inode *inode;
2279
2280 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2281 if (IS_ERR(inode)) {
2282 es->s_last_orphan = 0;
2283 break;
2284 }
2285
2286 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2287 dquot_initialize(inode);
2288 if (inode->i_nlink) {
2289 if (test_opt(sb, DEBUG))
2290 ext4_msg(sb, KERN_DEBUG,
2291 "%s: truncating inode %lu to %lld bytes",
2292 __func__, inode->i_ino, inode->i_size);
2293 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2294 inode->i_ino, inode->i_size);
2295 inode_lock(inode);
2296 truncate_inode_pages(inode->i_mapping, inode->i_size);
2297 ext4_truncate(inode);
2298 inode_unlock(inode);
2299 nr_truncates++;
2300 } else {
2301 if (test_opt(sb, DEBUG))
2302 ext4_msg(sb, KERN_DEBUG,
2303 "%s: deleting unreferenced inode %lu",
2304 __func__, inode->i_ino);
2305 jbd_debug(2, "deleting unreferenced inode %lu\n",
2306 inode->i_ino);
2307 nr_orphans++;
2308 }
2309 iput(inode); /* The delete magic happens here! */
2310 }
2311
2312#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2313
2314 if (nr_orphans)
2315 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2316 PLURAL(nr_orphans));
2317 if (nr_truncates)
2318 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2319 PLURAL(nr_truncates));
2320#ifdef CONFIG_QUOTA
2321 /* Turn quotas off */
2322 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2323 if (sb_dqopt(sb)->files[i])
2324 dquot_quota_off(sb, i);
2325 }
2326#endif
2327 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2328}
2329
2330/*
2331 * Maximal extent format file size.
2332 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2333 * extent format containers, within a sector_t, and within i_blocks
2334 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2335 * so that won't be a limiting factor.
2336 *
2337 * However there is other limiting factor. We do store extents in the form
2338 * of starting block and length, hence the resulting length of the extent
2339 * covering maximum file size must fit into on-disk format containers as
2340 * well. Given that length is always by 1 unit bigger than max unit (because
2341 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2342 *
2343 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2344 */
2345static loff_t ext4_max_size(int blkbits, int has_huge_files)
2346{
2347 loff_t res;
2348 loff_t upper_limit = MAX_LFS_FILESIZE;
2349
2350 /* small i_blocks in vfs inode? */
2351 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2352 /*
2353 * CONFIG_LBDAF is not enabled implies the inode
2354 * i_block represent total blocks in 512 bytes
2355 * 32 == size of vfs inode i_blocks * 8
2356 */
2357 upper_limit = (1LL << 32) - 1;
2358
2359 /* total blocks in file system block size */
2360 upper_limit >>= (blkbits - 9);
2361 upper_limit <<= blkbits;
2362 }
2363
2364 /*
2365 * 32-bit extent-start container, ee_block. We lower the maxbytes
2366 * by one fs block, so ee_len can cover the extent of maximum file
2367 * size
2368 */
2369 res = (1LL << 32) - 1;
2370 res <<= blkbits;
2371
2372 /* Sanity check against vm- & vfs- imposed limits */
2373 if (res > upper_limit)
2374 res = upper_limit;
2375
2376 return res;
2377}
2378
2379/*
2380 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2381 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2382 * We need to be 1 filesystem block less than the 2^48 sector limit.
2383 */
2384static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2385{
2386 loff_t res = EXT4_NDIR_BLOCKS;
2387 int meta_blocks;
2388 loff_t upper_limit;
2389 /* This is calculated to be the largest file size for a dense, block
2390 * mapped file such that the file's total number of 512-byte sectors,
2391 * including data and all indirect blocks, does not exceed (2^48 - 1).
2392 *
2393 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2394 * number of 512-byte sectors of the file.
2395 */
2396
2397 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2398 /*
2399 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2400 * the inode i_block field represents total file blocks in
2401 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2402 */
2403 upper_limit = (1LL << 32) - 1;
2404
2405 /* total blocks in file system block size */
2406 upper_limit >>= (bits - 9);
2407
2408 } else {
2409 /*
2410 * We use 48 bit ext4_inode i_blocks
2411 * With EXT4_HUGE_FILE_FL set the i_blocks
2412 * represent total number of blocks in
2413 * file system block size
2414 */
2415 upper_limit = (1LL << 48) - 1;
2416
2417 }
2418
2419 /* indirect blocks */
2420 meta_blocks = 1;
2421 /* double indirect blocks */
2422 meta_blocks += 1 + (1LL << (bits-2));
2423 /* tripple indirect blocks */
2424 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2425
2426 upper_limit -= meta_blocks;
2427 upper_limit <<= bits;
2428
2429 res += 1LL << (bits-2);
2430 res += 1LL << (2*(bits-2));
2431 res += 1LL << (3*(bits-2));
2432 res <<= bits;
2433 if (res > upper_limit)
2434 res = upper_limit;
2435
2436 if (res > MAX_LFS_FILESIZE)
2437 res = MAX_LFS_FILESIZE;
2438
2439 return res;
2440}
2441
2442static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2443 ext4_fsblk_t logical_sb_block, int nr)
2444{
2445 struct ext4_sb_info *sbi = EXT4_SB(sb);
2446 ext4_group_t bg, first_meta_bg;
2447 int has_super = 0;
2448
2449 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2450
2451 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2452 return logical_sb_block + nr + 1;
2453 bg = sbi->s_desc_per_block * nr;
2454 if (ext4_bg_has_super(sb, bg))
2455 has_super = 1;
2456
2457 /*
2458 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2459 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2460 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2461 * compensate.
2462 */
2463 if (sb->s_blocksize == 1024 && nr == 0 &&
2464 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2465 has_super++;
2466
2467 return (has_super + ext4_group_first_block_no(sb, bg));
2468}
2469
2470/**
2471 * ext4_get_stripe_size: Get the stripe size.
2472 * @sbi: In memory super block info
2473 *
2474 * If we have specified it via mount option, then
2475 * use the mount option value. If the value specified at mount time is
2476 * greater than the blocks per group use the super block value.
2477 * If the super block value is greater than blocks per group return 0.
2478 * Allocator needs it be less than blocks per group.
2479 *
2480 */
2481static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2482{
2483 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2484 unsigned long stripe_width =
2485 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2486 int ret;
2487
2488 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2489 ret = sbi->s_stripe;
2490 else if (stripe_width <= sbi->s_blocks_per_group)
2491 ret = stripe_width;
2492 else if (stride <= sbi->s_blocks_per_group)
2493 ret = stride;
2494 else
2495 ret = 0;
2496
2497 /*
2498 * If the stripe width is 1, this makes no sense and
2499 * we set it to 0 to turn off stripe handling code.
2500 */
2501 if (ret <= 1)
2502 ret = 0;
2503
2504 return ret;
2505}
2506
2507/*
2508 * Check whether this filesystem can be mounted based on
2509 * the features present and the RDONLY/RDWR mount requested.
2510 * Returns 1 if this filesystem can be mounted as requested,
2511 * 0 if it cannot be.
2512 */
2513static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2514{
2515 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2516 ext4_msg(sb, KERN_ERR,
2517 "Couldn't mount because of "
2518 "unsupported optional features (%x)",
2519 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2520 ~EXT4_FEATURE_INCOMPAT_SUPP));
2521 return 0;
2522 }
2523
2524 if (readonly)
2525 return 1;
2526
2527 if (ext4_has_feature_readonly(sb)) {
2528 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2529 sb->s_flags |= MS_RDONLY;
2530 return 1;
2531 }
2532
2533 /* Check that feature set is OK for a read-write mount */
2534 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2535 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2536 "unsupported optional features (%x)",
2537 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2538 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2539 return 0;
2540 }
2541 /*
2542 * Large file size enabled file system can only be mounted
2543 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2544 */
2545 if (ext4_has_feature_huge_file(sb)) {
2546 if (sizeof(blkcnt_t) < sizeof(u64)) {
2547 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2548 "cannot be mounted RDWR without "
2549 "CONFIG_LBDAF");
2550 return 0;
2551 }
2552 }
2553 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2554 ext4_msg(sb, KERN_ERR,
2555 "Can't support bigalloc feature without "
2556 "extents feature\n");
2557 return 0;
2558 }
2559
2560#ifndef CONFIG_QUOTA
2561 if (ext4_has_feature_quota(sb) && !readonly) {
2562 ext4_msg(sb, KERN_ERR,
2563 "Filesystem with quota feature cannot be mounted RDWR "
2564 "without CONFIG_QUOTA");
2565 return 0;
2566 }
2567 if (ext4_has_feature_project(sb) && !readonly) {
2568 ext4_msg(sb, KERN_ERR,
2569 "Filesystem with project quota feature cannot be mounted RDWR "
2570 "without CONFIG_QUOTA");
2571 return 0;
2572 }
2573#endif /* CONFIG_QUOTA */
2574 return 1;
2575}
2576
2577/*
2578 * This function is called once a day if we have errors logged
2579 * on the file system
2580 */
2581static void print_daily_error_info(unsigned long arg)
2582{
2583 struct super_block *sb = (struct super_block *) arg;
2584 struct ext4_sb_info *sbi;
2585 struct ext4_super_block *es;
2586
2587 sbi = EXT4_SB(sb);
2588 es = sbi->s_es;
2589
2590 if (es->s_error_count)
2591 /* fsck newer than v1.41.13 is needed to clean this condition. */
2592 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2593 le32_to_cpu(es->s_error_count));
2594 if (es->s_first_error_time) {
2595 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2596 sb->s_id, le32_to_cpu(es->s_first_error_time),
2597 (int) sizeof(es->s_first_error_func),
2598 es->s_first_error_func,
2599 le32_to_cpu(es->s_first_error_line));
2600 if (es->s_first_error_ino)
2601 printk(": inode %u",
2602 le32_to_cpu(es->s_first_error_ino));
2603 if (es->s_first_error_block)
2604 printk(": block %llu", (unsigned long long)
2605 le64_to_cpu(es->s_first_error_block));
2606 printk("\n");
2607 }
2608 if (es->s_last_error_time) {
2609 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2610 sb->s_id, le32_to_cpu(es->s_last_error_time),
2611 (int) sizeof(es->s_last_error_func),
2612 es->s_last_error_func,
2613 le32_to_cpu(es->s_last_error_line));
2614 if (es->s_last_error_ino)
2615 printk(": inode %u",
2616 le32_to_cpu(es->s_last_error_ino));
2617 if (es->s_last_error_block)
2618 printk(": block %llu", (unsigned long long)
2619 le64_to_cpu(es->s_last_error_block));
2620 printk("\n");
2621 }
2622 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2623}
2624
2625/* Find next suitable group and run ext4_init_inode_table */
2626static int ext4_run_li_request(struct ext4_li_request *elr)
2627{
2628 struct ext4_group_desc *gdp = NULL;
2629 ext4_group_t group, ngroups;
2630 struct super_block *sb;
2631 unsigned long timeout = 0;
2632 int ret = 0;
2633
2634 sb = elr->lr_super;
2635 ngroups = EXT4_SB(sb)->s_groups_count;
2636
2637 sb_start_write(sb);
2638 for (group = elr->lr_next_group; group < ngroups; group++) {
2639 gdp = ext4_get_group_desc(sb, group, NULL);
2640 if (!gdp) {
2641 ret = 1;
2642 break;
2643 }
2644
2645 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2646 break;
2647 }
2648
2649 if (group >= ngroups)
2650 ret = 1;
2651
2652 if (!ret) {
2653 timeout = jiffies;
2654 ret = ext4_init_inode_table(sb, group,
2655 elr->lr_timeout ? 0 : 1);
2656 if (elr->lr_timeout == 0) {
2657 timeout = (jiffies - timeout) *
2658 elr->lr_sbi->s_li_wait_mult;
2659 elr->lr_timeout = timeout;
2660 }
2661 elr->lr_next_sched = jiffies + elr->lr_timeout;
2662 elr->lr_next_group = group + 1;
2663 }
2664 sb_end_write(sb);
2665
2666 return ret;
2667}
2668
2669/*
2670 * Remove lr_request from the list_request and free the
2671 * request structure. Should be called with li_list_mtx held
2672 */
2673static void ext4_remove_li_request(struct ext4_li_request *elr)
2674{
2675 struct ext4_sb_info *sbi;
2676
2677 if (!elr)
2678 return;
2679
2680 sbi = elr->lr_sbi;
2681
2682 list_del(&elr->lr_request);
2683 sbi->s_li_request = NULL;
2684 kfree(elr);
2685}
2686
2687static void ext4_unregister_li_request(struct super_block *sb)
2688{
2689 mutex_lock(&ext4_li_mtx);
2690 if (!ext4_li_info) {
2691 mutex_unlock(&ext4_li_mtx);
2692 return;
2693 }
2694
2695 mutex_lock(&ext4_li_info->li_list_mtx);
2696 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2697 mutex_unlock(&ext4_li_info->li_list_mtx);
2698 mutex_unlock(&ext4_li_mtx);
2699}
2700
2701static struct task_struct *ext4_lazyinit_task;
2702
2703/*
2704 * This is the function where ext4lazyinit thread lives. It walks
2705 * through the request list searching for next scheduled filesystem.
2706 * When such a fs is found, run the lazy initialization request
2707 * (ext4_rn_li_request) and keep track of the time spend in this
2708 * function. Based on that time we compute next schedule time of
2709 * the request. When walking through the list is complete, compute
2710 * next waking time and put itself into sleep.
2711 */
2712static int ext4_lazyinit_thread(void *arg)
2713{
2714 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2715 struct list_head *pos, *n;
2716 struct ext4_li_request *elr;
2717 unsigned long next_wakeup, cur;
2718
2719 BUG_ON(NULL == eli);
2720
2721cont_thread:
2722 while (true) {
2723 next_wakeup = MAX_JIFFY_OFFSET;
2724
2725 mutex_lock(&eli->li_list_mtx);
2726 if (list_empty(&eli->li_request_list)) {
2727 mutex_unlock(&eli->li_list_mtx);
2728 goto exit_thread;
2729 }
2730
2731 list_for_each_safe(pos, n, &eli->li_request_list) {
2732 elr = list_entry(pos, struct ext4_li_request,
2733 lr_request);
2734
2735 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2736 if (ext4_run_li_request(elr) != 0) {
2737 /* error, remove the lazy_init job */
2738 ext4_remove_li_request(elr);
2739 continue;
2740 }
2741 }
2742
2743 if (time_before(elr->lr_next_sched, next_wakeup))
2744 next_wakeup = elr->lr_next_sched;
2745 }
2746 mutex_unlock(&eli->li_list_mtx);
2747
2748 try_to_freeze();
2749
2750 cur = jiffies;
2751 if ((time_after_eq(cur, next_wakeup)) ||
2752 (MAX_JIFFY_OFFSET == next_wakeup)) {
2753 cond_resched();
2754 continue;
2755 }
2756
2757 schedule_timeout_interruptible(next_wakeup - cur);
2758
2759 if (kthread_should_stop()) {
2760 ext4_clear_request_list();
2761 goto exit_thread;
2762 }
2763 }
2764
2765exit_thread:
2766 /*
2767 * It looks like the request list is empty, but we need
2768 * to check it under the li_list_mtx lock, to prevent any
2769 * additions into it, and of course we should lock ext4_li_mtx
2770 * to atomically free the list and ext4_li_info, because at
2771 * this point another ext4 filesystem could be registering
2772 * new one.
2773 */
2774 mutex_lock(&ext4_li_mtx);
2775 mutex_lock(&eli->li_list_mtx);
2776 if (!list_empty(&eli->li_request_list)) {
2777 mutex_unlock(&eli->li_list_mtx);
2778 mutex_unlock(&ext4_li_mtx);
2779 goto cont_thread;
2780 }
2781 mutex_unlock(&eli->li_list_mtx);
2782 kfree(ext4_li_info);
2783 ext4_li_info = NULL;
2784 mutex_unlock(&ext4_li_mtx);
2785
2786 return 0;
2787}
2788
2789static void ext4_clear_request_list(void)
2790{
2791 struct list_head *pos, *n;
2792 struct ext4_li_request *elr;
2793
2794 mutex_lock(&ext4_li_info->li_list_mtx);
2795 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2796 elr = list_entry(pos, struct ext4_li_request,
2797 lr_request);
2798 ext4_remove_li_request(elr);
2799 }
2800 mutex_unlock(&ext4_li_info->li_list_mtx);
2801}
2802
2803static int ext4_run_lazyinit_thread(void)
2804{
2805 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2806 ext4_li_info, "ext4lazyinit");
2807 if (IS_ERR(ext4_lazyinit_task)) {
2808 int err = PTR_ERR(ext4_lazyinit_task);
2809 ext4_clear_request_list();
2810 kfree(ext4_li_info);
2811 ext4_li_info = NULL;
2812 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2813 "initialization thread\n",
2814 err);
2815 return err;
2816 }
2817 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2818 return 0;
2819}
2820
2821/*
2822 * Check whether it make sense to run itable init. thread or not.
2823 * If there is at least one uninitialized inode table, return
2824 * corresponding group number, else the loop goes through all
2825 * groups and return total number of groups.
2826 */
2827static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2828{
2829 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2830 struct ext4_group_desc *gdp = NULL;
2831
2832 for (group = 0; group < ngroups; group++) {
2833 gdp = ext4_get_group_desc(sb, group, NULL);
2834 if (!gdp)
2835 continue;
2836
2837 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2838 break;
2839 }
2840
2841 return group;
2842}
2843
2844static int ext4_li_info_new(void)
2845{
2846 struct ext4_lazy_init *eli = NULL;
2847
2848 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2849 if (!eli)
2850 return -ENOMEM;
2851
2852 INIT_LIST_HEAD(&eli->li_request_list);
2853 mutex_init(&eli->li_list_mtx);
2854
2855 eli->li_state |= EXT4_LAZYINIT_QUIT;
2856
2857 ext4_li_info = eli;
2858
2859 return 0;
2860}
2861
2862static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2863 ext4_group_t start)
2864{
2865 struct ext4_sb_info *sbi = EXT4_SB(sb);
2866 struct ext4_li_request *elr;
2867
2868 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2869 if (!elr)
2870 return NULL;
2871
2872 elr->lr_super = sb;
2873 elr->lr_sbi = sbi;
2874 elr->lr_next_group = start;
2875
2876 /*
2877 * Randomize first schedule time of the request to
2878 * spread the inode table initialization requests
2879 * better.
2880 */
2881 elr->lr_next_sched = jiffies + (prandom_u32() %
2882 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2883 return elr;
2884}
2885
2886int ext4_register_li_request(struct super_block *sb,
2887 ext4_group_t first_not_zeroed)
2888{
2889 struct ext4_sb_info *sbi = EXT4_SB(sb);
2890 struct ext4_li_request *elr = NULL;
2891 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2892 int ret = 0;
2893
2894 mutex_lock(&ext4_li_mtx);
2895 if (sbi->s_li_request != NULL) {
2896 /*
2897 * Reset timeout so it can be computed again, because
2898 * s_li_wait_mult might have changed.
2899 */
2900 sbi->s_li_request->lr_timeout = 0;
2901 goto out;
2902 }
2903
2904 if (first_not_zeroed == ngroups ||
2905 (sb->s_flags & MS_RDONLY) ||
2906 !test_opt(sb, INIT_INODE_TABLE))
2907 goto out;
2908
2909 elr = ext4_li_request_new(sb, first_not_zeroed);
2910 if (!elr) {
2911 ret = -ENOMEM;
2912 goto out;
2913 }
2914
2915 if (NULL == ext4_li_info) {
2916 ret = ext4_li_info_new();
2917 if (ret)
2918 goto out;
2919 }
2920
2921 mutex_lock(&ext4_li_info->li_list_mtx);
2922 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2923 mutex_unlock(&ext4_li_info->li_list_mtx);
2924
2925 sbi->s_li_request = elr;
2926 /*
2927 * set elr to NULL here since it has been inserted to
2928 * the request_list and the removal and free of it is
2929 * handled by ext4_clear_request_list from now on.
2930 */
2931 elr = NULL;
2932
2933 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2934 ret = ext4_run_lazyinit_thread();
2935 if (ret)
2936 goto out;
2937 }
2938out:
2939 mutex_unlock(&ext4_li_mtx);
2940 if (ret)
2941 kfree(elr);
2942 return ret;
2943}
2944
2945/*
2946 * We do not need to lock anything since this is called on
2947 * module unload.
2948 */
2949static void ext4_destroy_lazyinit_thread(void)
2950{
2951 /*
2952 * If thread exited earlier
2953 * there's nothing to be done.
2954 */
2955 if (!ext4_li_info || !ext4_lazyinit_task)
2956 return;
2957
2958 kthread_stop(ext4_lazyinit_task);
2959}
2960
2961static int set_journal_csum_feature_set(struct super_block *sb)
2962{
2963 int ret = 1;
2964 int compat, incompat;
2965 struct ext4_sb_info *sbi = EXT4_SB(sb);
2966
2967 if (ext4_has_metadata_csum(sb)) {
2968 /* journal checksum v3 */
2969 compat = 0;
2970 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
2971 } else {
2972 /* journal checksum v1 */
2973 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
2974 incompat = 0;
2975 }
2976
2977 jbd2_journal_clear_features(sbi->s_journal,
2978 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2979 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
2980 JBD2_FEATURE_INCOMPAT_CSUM_V2);
2981 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
2982 ret = jbd2_journal_set_features(sbi->s_journal,
2983 compat, 0,
2984 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
2985 incompat);
2986 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
2987 ret = jbd2_journal_set_features(sbi->s_journal,
2988 compat, 0,
2989 incompat);
2990 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2991 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2992 } else {
2993 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2994 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2995 }
2996
2997 return ret;
2998}
2999
3000/*
3001 * Note: calculating the overhead so we can be compatible with
3002 * historical BSD practice is quite difficult in the face of
3003 * clusters/bigalloc. This is because multiple metadata blocks from
3004 * different block group can end up in the same allocation cluster.
3005 * Calculating the exact overhead in the face of clustered allocation
3006 * requires either O(all block bitmaps) in memory or O(number of block
3007 * groups**2) in time. We will still calculate the superblock for
3008 * older file systems --- and if we come across with a bigalloc file
3009 * system with zero in s_overhead_clusters the estimate will be close to
3010 * correct especially for very large cluster sizes --- but for newer
3011 * file systems, it's better to calculate this figure once at mkfs
3012 * time, and store it in the superblock. If the superblock value is
3013 * present (even for non-bigalloc file systems), we will use it.
3014 */
3015static int count_overhead(struct super_block *sb, ext4_group_t grp,
3016 char *buf)
3017{
3018 struct ext4_sb_info *sbi = EXT4_SB(sb);
3019 struct ext4_group_desc *gdp;
3020 ext4_fsblk_t first_block, last_block, b;
3021 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3022 int s, j, count = 0;
3023
3024 if (!ext4_has_feature_bigalloc(sb))
3025 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3026 sbi->s_itb_per_group + 2);
3027
3028 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3029 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3030 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3031 for (i = 0; i < ngroups; i++) {
3032 gdp = ext4_get_group_desc(sb, i, NULL);
3033 b = ext4_block_bitmap(sb, gdp);
3034 if (b >= first_block && b <= last_block) {
3035 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3036 count++;
3037 }
3038 b = ext4_inode_bitmap(sb, gdp);
3039 if (b >= first_block && b <= last_block) {
3040 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3041 count++;
3042 }
3043 b = ext4_inode_table(sb, gdp);
3044 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3045 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3046 int c = EXT4_B2C(sbi, b - first_block);
3047 ext4_set_bit(c, buf);
3048 count++;
3049 }
3050 if (i != grp)
3051 continue;
3052 s = 0;
3053 if (ext4_bg_has_super(sb, grp)) {
3054 ext4_set_bit(s++, buf);
3055 count++;
3056 }
3057 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3058 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3059 count++;
3060 }
3061 }
3062 if (!count)
3063 return 0;
3064 return EXT4_CLUSTERS_PER_GROUP(sb) -
3065 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3066}
3067
3068/*
3069 * Compute the overhead and stash it in sbi->s_overhead
3070 */
3071int ext4_calculate_overhead(struct super_block *sb)
3072{
3073 struct ext4_sb_info *sbi = EXT4_SB(sb);
3074 struct ext4_super_block *es = sbi->s_es;
3075 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3076 ext4_fsblk_t overhead = 0;
3077 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3078
3079 if (!buf)
3080 return -ENOMEM;
3081
3082 /*
3083 * Compute the overhead (FS structures). This is constant
3084 * for a given filesystem unless the number of block groups
3085 * changes so we cache the previous value until it does.
3086 */
3087
3088 /*
3089 * All of the blocks before first_data_block are overhead
3090 */
3091 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3092
3093 /*
3094 * Add the overhead found in each block group
3095 */
3096 for (i = 0; i < ngroups; i++) {
3097 int blks;
3098
3099 blks = count_overhead(sb, i, buf);
3100 overhead += blks;
3101 if (blks)
3102 memset(buf, 0, PAGE_SIZE);
3103 cond_resched();
3104 }
3105 /* Add the internal journal blocks as well */
3106 if (sbi->s_journal && !sbi->journal_bdev)
3107 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3108
3109 sbi->s_overhead = overhead;
3110 smp_wmb();
3111 free_page((unsigned long) buf);
3112 return 0;
3113}
3114
3115static void ext4_set_resv_clusters(struct super_block *sb)
3116{
3117 ext4_fsblk_t resv_clusters;
3118 struct ext4_sb_info *sbi = EXT4_SB(sb);
3119
3120 /*
3121 * There's no need to reserve anything when we aren't using extents.
3122 * The space estimates are exact, there are no unwritten extents,
3123 * hole punching doesn't need new metadata... This is needed especially
3124 * to keep ext2/3 backward compatibility.
3125 */
3126 if (!ext4_has_feature_extents(sb))
3127 return;
3128 /*
3129 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3130 * This should cover the situations where we can not afford to run
3131 * out of space like for example punch hole, or converting
3132 * unwritten extents in delalloc path. In most cases such
3133 * allocation would require 1, or 2 blocks, higher numbers are
3134 * very rare.
3135 */
3136 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3137 sbi->s_cluster_bits);
3138
3139 do_div(resv_clusters, 50);
3140 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3141
3142 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3143}
3144
3145static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3146{
3147 char *orig_data = kstrdup(data, GFP_KERNEL);
3148 struct buffer_head *bh;
3149 struct ext4_super_block *es = NULL;
3150 struct ext4_sb_info *sbi;
3151 ext4_fsblk_t block;
3152 ext4_fsblk_t sb_block = get_sb_block(&data);
3153 ext4_fsblk_t logical_sb_block;
3154 unsigned long offset = 0;
3155 unsigned long journal_devnum = 0;
3156 unsigned long def_mount_opts;
3157 struct inode *root;
3158 const char *descr;
3159 int ret = -ENOMEM;
3160 int blocksize, clustersize;
3161 unsigned int db_count;
3162 unsigned int i;
3163 int needs_recovery, has_huge_files, has_bigalloc;
3164 __u64 blocks_count;
3165 int err = 0;
3166 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3167 ext4_group_t first_not_zeroed;
3168
3169 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3170 if (!sbi)
3171 goto out_free_orig;
3172
3173 sbi->s_blockgroup_lock =
3174 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3175 if (!sbi->s_blockgroup_lock) {
3176 kfree(sbi);
3177 goto out_free_orig;
3178 }
3179 sb->s_fs_info = sbi;
3180 sbi->s_sb = sb;
3181 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3182 sbi->s_sb_block = sb_block;
3183 if (sb->s_bdev->bd_part)
3184 sbi->s_sectors_written_start =
3185 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3186
3187 /* Cleanup superblock name */
3188 strreplace(sb->s_id, '/', '!');
3189
3190 /* -EINVAL is default */
3191 ret = -EINVAL;
3192 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3193 if (!blocksize) {
3194 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3195 goto out_fail;
3196 }
3197
3198 /*
3199 * The ext4 superblock will not be buffer aligned for other than 1kB
3200 * block sizes. We need to calculate the offset from buffer start.
3201 */
3202 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3203 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3204 offset = do_div(logical_sb_block, blocksize);
3205 } else {
3206 logical_sb_block = sb_block;
3207 }
3208
3209 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3210 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3211 goto out_fail;
3212 }
3213 /*
3214 * Note: s_es must be initialized as soon as possible because
3215 * some ext4 macro-instructions depend on its value
3216 */
3217 es = (struct ext4_super_block *) (bh->b_data + offset);
3218 sbi->s_es = es;
3219 sb->s_magic = le16_to_cpu(es->s_magic);
3220 if (sb->s_magic != EXT4_SUPER_MAGIC)
3221 goto cantfind_ext4;
3222 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3223
3224 /* Warn if metadata_csum and gdt_csum are both set. */
3225 if (ext4_has_feature_metadata_csum(sb) &&
3226 ext4_has_feature_gdt_csum(sb))
3227 ext4_warning(sb, "metadata_csum and uninit_bg are "
3228 "redundant flags; please run fsck.");
3229
3230 /* Check for a known checksum algorithm */
3231 if (!ext4_verify_csum_type(sb, es)) {
3232 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3233 "unknown checksum algorithm.");
3234 silent = 1;
3235 goto cantfind_ext4;
3236 }
3237
3238 /* Load the checksum driver */
3239 if (ext4_has_feature_metadata_csum(sb)) {
3240 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3241 if (IS_ERR(sbi->s_chksum_driver)) {
3242 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3243 ret = PTR_ERR(sbi->s_chksum_driver);
3244 sbi->s_chksum_driver = NULL;
3245 goto failed_mount;
3246 }
3247 }
3248
3249 /* Check superblock checksum */
3250 if (!ext4_superblock_csum_verify(sb, es)) {
3251 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3252 "invalid superblock checksum. Run e2fsck?");
3253 silent = 1;
3254 ret = -EFSBADCRC;
3255 goto cantfind_ext4;
3256 }
3257
3258 /* Precompute checksum seed for all metadata */
3259 if (ext4_has_feature_csum_seed(sb))
3260 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3261 else if (ext4_has_metadata_csum(sb))
3262 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3263 sizeof(es->s_uuid));
3264
3265 /* Set defaults before we parse the mount options */
3266 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3267 set_opt(sb, INIT_INODE_TABLE);
3268 if (def_mount_opts & EXT4_DEFM_DEBUG)
3269 set_opt(sb, DEBUG);
3270 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3271 set_opt(sb, GRPID);
3272 if (def_mount_opts & EXT4_DEFM_UID16)
3273 set_opt(sb, NO_UID32);
3274 /* xattr user namespace & acls are now defaulted on */
3275 set_opt(sb, XATTR_USER);
3276#ifdef CONFIG_EXT4_FS_POSIX_ACL
3277 set_opt(sb, POSIX_ACL);
3278#endif
3279 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3280 if (ext4_has_metadata_csum(sb))
3281 set_opt(sb, JOURNAL_CHECKSUM);
3282
3283 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3284 set_opt(sb, JOURNAL_DATA);
3285 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3286 set_opt(sb, ORDERED_DATA);
3287 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3288 set_opt(sb, WRITEBACK_DATA);
3289
3290 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3291 set_opt(sb, ERRORS_PANIC);
3292 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3293 set_opt(sb, ERRORS_CONT);
3294 else
3295 set_opt(sb, ERRORS_RO);
3296 /* block_validity enabled by default; disable with noblock_validity */
3297 set_opt(sb, BLOCK_VALIDITY);
3298 if (def_mount_opts & EXT4_DEFM_DISCARD)
3299 set_opt(sb, DISCARD);
3300
3301 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3302 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3303 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3304 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3305 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3306
3307 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3308 set_opt(sb, BARRIER);
3309
3310 /*
3311 * enable delayed allocation by default
3312 * Use -o nodelalloc to turn it off
3313 */
3314 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3315 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3316 set_opt(sb, DELALLOC);
3317
3318 /*
3319 * set default s_li_wait_mult for lazyinit, for the case there is
3320 * no mount option specified.
3321 */
3322 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3323
3324 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3325 &journal_devnum, &journal_ioprio, 0)) {
3326 ext4_msg(sb, KERN_WARNING,
3327 "failed to parse options in superblock: %s",
3328 sbi->s_es->s_mount_opts);
3329 }
3330 sbi->s_def_mount_opt = sbi->s_mount_opt;
3331 if (!parse_options((char *) data, sb, &journal_devnum,
3332 &journal_ioprio, 0))
3333 goto failed_mount;
3334
3335 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3336 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3337 "with data=journal disables delayed "
3338 "allocation and O_DIRECT support!\n");
3339 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3340 ext4_msg(sb, KERN_ERR, "can't mount with "
3341 "both data=journal and delalloc");
3342 goto failed_mount;
3343 }
3344 if (test_opt(sb, DIOREAD_NOLOCK)) {
3345 ext4_msg(sb, KERN_ERR, "can't mount with "
3346 "both data=journal and dioread_nolock");
3347 goto failed_mount;
3348 }
3349 if (test_opt(sb, DAX)) {
3350 ext4_msg(sb, KERN_ERR, "can't mount with "
3351 "both data=journal and dax");
3352 goto failed_mount;
3353 }
3354 if (test_opt(sb, DELALLOC))
3355 clear_opt(sb, DELALLOC);
3356 } else {
3357 sb->s_iflags |= SB_I_CGROUPWB;
3358 }
3359
3360 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3361 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3362
3363 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3364 (ext4_has_compat_features(sb) ||
3365 ext4_has_ro_compat_features(sb) ||
3366 ext4_has_incompat_features(sb)))
3367 ext4_msg(sb, KERN_WARNING,
3368 "feature flags set on rev 0 fs, "
3369 "running e2fsck is recommended");
3370
3371 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3372 set_opt2(sb, HURD_COMPAT);
3373 if (ext4_has_feature_64bit(sb)) {
3374 ext4_msg(sb, KERN_ERR,
3375 "The Hurd can't support 64-bit file systems");
3376 goto failed_mount;
3377 }
3378 }
3379
3380 if (IS_EXT2_SB(sb)) {
3381 if (ext2_feature_set_ok(sb))
3382 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3383 "using the ext4 subsystem");
3384 else {
3385 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3386 "to feature incompatibilities");
3387 goto failed_mount;
3388 }
3389 }
3390
3391 if (IS_EXT3_SB(sb)) {
3392 if (ext3_feature_set_ok(sb))
3393 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3394 "using the ext4 subsystem");
3395 else {
3396 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3397 "to feature incompatibilities");
3398 goto failed_mount;
3399 }
3400 }
3401
3402 /*
3403 * Check feature flags regardless of the revision level, since we
3404 * previously didn't change the revision level when setting the flags,
3405 * so there is a chance incompat flags are set on a rev 0 filesystem.
3406 */
3407 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3408 goto failed_mount;
3409
3410 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3411 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3412 blocksize > EXT4_MAX_BLOCK_SIZE) {
3413 ext4_msg(sb, KERN_ERR,
3414 "Unsupported filesystem blocksize %d", blocksize);
3415 goto failed_mount;
3416 }
3417
3418 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3419 if (blocksize != PAGE_SIZE) {
3420 ext4_msg(sb, KERN_ERR,
3421 "error: unsupported blocksize for dax");
3422 goto failed_mount;
3423 }
3424 if (!sb->s_bdev->bd_disk->fops->direct_access) {
3425 ext4_msg(sb, KERN_ERR,
3426 "error: device does not support dax");
3427 goto failed_mount;
3428 }
3429 }
3430
3431 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3432 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3433 es->s_encryption_level);
3434 goto failed_mount;
3435 }
3436
3437 if (sb->s_blocksize != blocksize) {
3438 /* Validate the filesystem blocksize */
3439 if (!sb_set_blocksize(sb, blocksize)) {
3440 ext4_msg(sb, KERN_ERR, "bad block size %d",
3441 blocksize);
3442 goto failed_mount;
3443 }
3444
3445 brelse(bh);
3446 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3447 offset = do_div(logical_sb_block, blocksize);
3448 bh = sb_bread_unmovable(sb, logical_sb_block);
3449 if (!bh) {
3450 ext4_msg(sb, KERN_ERR,
3451 "Can't read superblock on 2nd try");
3452 goto failed_mount;
3453 }
3454 es = (struct ext4_super_block *)(bh->b_data + offset);
3455 sbi->s_es = es;
3456 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3457 ext4_msg(sb, KERN_ERR,
3458 "Magic mismatch, very weird!");
3459 goto failed_mount;
3460 }
3461 }
3462
3463 has_huge_files = ext4_has_feature_huge_file(sb);
3464 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3465 has_huge_files);
3466 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3467
3468 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3469 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3470 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3471 } else {
3472 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3473 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3474 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3475 (!is_power_of_2(sbi->s_inode_size)) ||
3476 (sbi->s_inode_size > blocksize)) {
3477 ext4_msg(sb, KERN_ERR,
3478 "unsupported inode size: %d",
3479 sbi->s_inode_size);
3480 goto failed_mount;
3481 }
3482 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3483 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3484 }
3485
3486 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3487 if (ext4_has_feature_64bit(sb)) {
3488 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3489 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3490 !is_power_of_2(sbi->s_desc_size)) {
3491 ext4_msg(sb, KERN_ERR,
3492 "unsupported descriptor size %lu",
3493 sbi->s_desc_size);
3494 goto failed_mount;
3495 }
3496 } else
3497 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3498
3499 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3500 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3501 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3502 goto cantfind_ext4;
3503
3504 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3505 if (sbi->s_inodes_per_block == 0)
3506 goto cantfind_ext4;
3507 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3508 sbi->s_inodes_per_block;
3509 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3510 sbi->s_sbh = bh;
3511 sbi->s_mount_state = le16_to_cpu(es->s_state);
3512 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3513 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3514
3515 for (i = 0; i < 4; i++)
3516 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3517 sbi->s_def_hash_version = es->s_def_hash_version;
3518 if (ext4_has_feature_dir_index(sb)) {
3519 i = le32_to_cpu(es->s_flags);
3520 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3521 sbi->s_hash_unsigned = 3;
3522 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3523#ifdef __CHAR_UNSIGNED__
3524 if (!(sb->s_flags & MS_RDONLY))
3525 es->s_flags |=
3526 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3527 sbi->s_hash_unsigned = 3;
3528#else
3529 if (!(sb->s_flags & MS_RDONLY))
3530 es->s_flags |=
3531 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3532#endif
3533 }
3534 }
3535
3536 /* Handle clustersize */
3537 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3538 has_bigalloc = ext4_has_feature_bigalloc(sb);
3539 if (has_bigalloc) {
3540 if (clustersize < blocksize) {
3541 ext4_msg(sb, KERN_ERR,
3542 "cluster size (%d) smaller than "
3543 "block size (%d)", clustersize, blocksize);
3544 goto failed_mount;
3545 }
3546 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3547 le32_to_cpu(es->s_log_block_size);
3548 sbi->s_clusters_per_group =
3549 le32_to_cpu(es->s_clusters_per_group);
3550 if (sbi->s_clusters_per_group > blocksize * 8) {
3551 ext4_msg(sb, KERN_ERR,
3552 "#clusters per group too big: %lu",
3553 sbi->s_clusters_per_group);
3554 goto failed_mount;
3555 }
3556 if (sbi->s_blocks_per_group !=
3557 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3558 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3559 "clusters per group (%lu) inconsistent",
3560 sbi->s_blocks_per_group,
3561 sbi->s_clusters_per_group);
3562 goto failed_mount;
3563 }
3564 } else {
3565 if (clustersize != blocksize) {
3566 ext4_warning(sb, "fragment/cluster size (%d) != "
3567 "block size (%d)", clustersize,
3568 blocksize);
3569 clustersize = blocksize;
3570 }
3571 if (sbi->s_blocks_per_group > blocksize * 8) {
3572 ext4_msg(sb, KERN_ERR,
3573 "#blocks per group too big: %lu",
3574 sbi->s_blocks_per_group);
3575 goto failed_mount;
3576 }
3577 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3578 sbi->s_cluster_bits = 0;
3579 }
3580 sbi->s_cluster_ratio = clustersize / blocksize;
3581
3582 if (sbi->s_inodes_per_group > blocksize * 8) {
3583 ext4_msg(sb, KERN_ERR,
3584 "#inodes per group too big: %lu",
3585 sbi->s_inodes_per_group);
3586 goto failed_mount;
3587 }
3588
3589 /* Do we have standard group size of clustersize * 8 blocks ? */
3590 if (sbi->s_blocks_per_group == clustersize << 3)
3591 set_opt2(sb, STD_GROUP_SIZE);
3592
3593 /*
3594 * Test whether we have more sectors than will fit in sector_t,
3595 * and whether the max offset is addressable by the page cache.
3596 */
3597 err = generic_check_addressable(sb->s_blocksize_bits,
3598 ext4_blocks_count(es));
3599 if (err) {
3600 ext4_msg(sb, KERN_ERR, "filesystem"
3601 " too large to mount safely on this system");
3602 if (sizeof(sector_t) < 8)
3603 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3604 goto failed_mount;
3605 }
3606
3607 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3608 goto cantfind_ext4;
3609
3610 /* check blocks count against device size */
3611 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3612 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3613 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3614 "exceeds size of device (%llu blocks)",
3615 ext4_blocks_count(es), blocks_count);
3616 goto failed_mount;
3617 }
3618
3619 /*
3620 * It makes no sense for the first data block to be beyond the end
3621 * of the filesystem.
3622 */
3623 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3624 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3625 "block %u is beyond end of filesystem (%llu)",
3626 le32_to_cpu(es->s_first_data_block),
3627 ext4_blocks_count(es));
3628 goto failed_mount;
3629 }
3630 blocks_count = (ext4_blocks_count(es) -
3631 le32_to_cpu(es->s_first_data_block) +
3632 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3633 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3634 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3635 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3636 "(block count %llu, first data block %u, "
3637 "blocks per group %lu)", sbi->s_groups_count,
3638 ext4_blocks_count(es),
3639 le32_to_cpu(es->s_first_data_block),
3640 EXT4_BLOCKS_PER_GROUP(sb));
3641 goto failed_mount;
3642 }
3643 sbi->s_groups_count = blocks_count;
3644 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3645 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3646 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3647 EXT4_DESC_PER_BLOCK(sb);
3648 sbi->s_group_desc = ext4_kvmalloc(db_count *
3649 sizeof(struct buffer_head *),
3650 GFP_KERNEL);
3651 if (sbi->s_group_desc == NULL) {
3652 ext4_msg(sb, KERN_ERR, "not enough memory");
3653 ret = -ENOMEM;
3654 goto failed_mount;
3655 }
3656
3657 bgl_lock_init(sbi->s_blockgroup_lock);
3658
3659 for (i = 0; i < db_count; i++) {
3660 block = descriptor_loc(sb, logical_sb_block, i);
3661 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3662 if (!sbi->s_group_desc[i]) {
3663 ext4_msg(sb, KERN_ERR,
3664 "can't read group descriptor %d", i);
3665 db_count = i;
3666 goto failed_mount2;
3667 }
3668 }
3669 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3670 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3671 ret = -EFSCORRUPTED;
3672 goto failed_mount2;
3673 }
3674
3675 sbi->s_gdb_count = db_count;
3676 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3677 spin_lock_init(&sbi->s_next_gen_lock);
3678
3679 setup_timer(&sbi->s_err_report, print_daily_error_info,
3680 (unsigned long) sb);
3681
3682 /* Register extent status tree shrinker */
3683 if (ext4_es_register_shrinker(sbi))
3684 goto failed_mount3;
3685
3686 sbi->s_stripe = ext4_get_stripe_size(sbi);
3687 sbi->s_extent_max_zeroout_kb = 32;
3688
3689 /*
3690 * set up enough so that it can read an inode
3691 */
3692 sb->s_op = &ext4_sops;
3693 sb->s_export_op = &ext4_export_ops;
3694 sb->s_xattr = ext4_xattr_handlers;
3695#ifdef CONFIG_QUOTA
3696 sb->dq_op = &ext4_quota_operations;
3697 if (ext4_has_feature_quota(sb))
3698 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3699 else
3700 sb->s_qcop = &ext4_qctl_operations;
3701 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3702#endif
3703 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3704
3705 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3706 mutex_init(&sbi->s_orphan_lock);
3707
3708 sb->s_root = NULL;
3709
3710 needs_recovery = (es->s_last_orphan != 0 ||
3711 ext4_has_feature_journal_needs_recovery(sb));
3712
3713 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3714 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3715 goto failed_mount3a;
3716
3717 /*
3718 * The first inode we look at is the journal inode. Don't try
3719 * root first: it may be modified in the journal!
3720 */
3721 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3722 if (ext4_load_journal(sb, es, journal_devnum))
3723 goto failed_mount3a;
3724 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3725 ext4_has_feature_journal_needs_recovery(sb)) {
3726 ext4_msg(sb, KERN_ERR, "required journal recovery "
3727 "suppressed and not mounted read-only");
3728 goto failed_mount_wq;
3729 } else {
3730 /* Nojournal mode, all journal mount options are illegal */
3731 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3732 ext4_msg(sb, KERN_ERR, "can't mount with "
3733 "journal_checksum, fs mounted w/o journal");
3734 goto failed_mount_wq;
3735 }
3736 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3737 ext4_msg(sb, KERN_ERR, "can't mount with "
3738 "journal_async_commit, fs mounted w/o journal");
3739 goto failed_mount_wq;
3740 }
3741 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3742 ext4_msg(sb, KERN_ERR, "can't mount with "
3743 "commit=%lu, fs mounted w/o journal",
3744 sbi->s_commit_interval / HZ);
3745 goto failed_mount_wq;
3746 }
3747 if (EXT4_MOUNT_DATA_FLAGS &
3748 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3749 ext4_msg(sb, KERN_ERR, "can't mount with "
3750 "data=, fs mounted w/o journal");
3751 goto failed_mount_wq;
3752 }
3753 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
3754 clear_opt(sb, JOURNAL_CHECKSUM);
3755 clear_opt(sb, DATA_FLAGS);
3756 sbi->s_journal = NULL;
3757 needs_recovery = 0;
3758 goto no_journal;
3759 }
3760
3761 if (ext4_has_feature_64bit(sb) &&
3762 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3763 JBD2_FEATURE_INCOMPAT_64BIT)) {
3764 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3765 goto failed_mount_wq;
3766 }
3767
3768 if (!set_journal_csum_feature_set(sb)) {
3769 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3770 "feature set");
3771 goto failed_mount_wq;
3772 }
3773
3774 /* We have now updated the journal if required, so we can
3775 * validate the data journaling mode. */
3776 switch (test_opt(sb, DATA_FLAGS)) {
3777 case 0:
3778 /* No mode set, assume a default based on the journal
3779 * capabilities: ORDERED_DATA if the journal can
3780 * cope, else JOURNAL_DATA
3781 */
3782 if (jbd2_journal_check_available_features
3783 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3784 set_opt(sb, ORDERED_DATA);
3785 else
3786 set_opt(sb, JOURNAL_DATA);
3787 break;
3788
3789 case EXT4_MOUNT_ORDERED_DATA:
3790 case EXT4_MOUNT_WRITEBACK_DATA:
3791 if (!jbd2_journal_check_available_features
3792 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3793 ext4_msg(sb, KERN_ERR, "Journal does not support "
3794 "requested data journaling mode");
3795 goto failed_mount_wq;
3796 }
3797 default:
3798 break;
3799 }
3800 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3801
3802 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3803
3804no_journal:
3805 sbi->s_mb_cache = ext4_xattr_create_cache();
3806 if (!sbi->s_mb_cache) {
3807 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
3808 goto failed_mount_wq;
3809 }
3810
3811 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
3812 (blocksize != PAGE_SIZE)) {
3813 ext4_msg(sb, KERN_ERR,
3814 "Unsupported blocksize for fs encryption");
3815 goto failed_mount_wq;
3816 }
3817
3818 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
3819 !ext4_has_feature_encrypt(sb)) {
3820 ext4_set_feature_encrypt(sb);
3821 ext4_commit_super(sb, 1);
3822 }
3823
3824 /*
3825 * Get the # of file system overhead blocks from the
3826 * superblock if present.
3827 */
3828 if (es->s_overhead_clusters)
3829 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3830 else {
3831 err = ext4_calculate_overhead(sb);
3832 if (err)
3833 goto failed_mount_wq;
3834 }
3835
3836 /*
3837 * The maximum number of concurrent works can be high and
3838 * concurrency isn't really necessary. Limit it to 1.
3839 */
3840 EXT4_SB(sb)->rsv_conversion_wq =
3841 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3842 if (!EXT4_SB(sb)->rsv_conversion_wq) {
3843 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
3844 ret = -ENOMEM;
3845 goto failed_mount4;
3846 }
3847
3848 /*
3849 * The jbd2_journal_load will have done any necessary log recovery,
3850 * so we can safely mount the rest of the filesystem now.
3851 */
3852
3853 root = ext4_iget(sb, EXT4_ROOT_INO);
3854 if (IS_ERR(root)) {
3855 ext4_msg(sb, KERN_ERR, "get root inode failed");
3856 ret = PTR_ERR(root);
3857 root = NULL;
3858 goto failed_mount4;
3859 }
3860 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3861 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3862 iput(root);
3863 goto failed_mount4;
3864 }
3865 sb->s_root = d_make_root(root);
3866 if (!sb->s_root) {
3867 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3868 ret = -ENOMEM;
3869 goto failed_mount4;
3870 }
3871
3872 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3873 sb->s_flags |= MS_RDONLY;
3874
3875 /* determine the minimum size of new large inodes, if present */
3876 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3877 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3878 EXT4_GOOD_OLD_INODE_SIZE;
3879 if (ext4_has_feature_extra_isize(sb)) {
3880 if (sbi->s_want_extra_isize <
3881 le16_to_cpu(es->s_want_extra_isize))
3882 sbi->s_want_extra_isize =
3883 le16_to_cpu(es->s_want_extra_isize);
3884 if (sbi->s_want_extra_isize <
3885 le16_to_cpu(es->s_min_extra_isize))
3886 sbi->s_want_extra_isize =
3887 le16_to_cpu(es->s_min_extra_isize);
3888 }
3889 }
3890 /* Check if enough inode space is available */
3891 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3892 sbi->s_inode_size) {
3893 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3894 EXT4_GOOD_OLD_INODE_SIZE;
3895 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3896 "available");
3897 }
3898
3899 ext4_set_resv_clusters(sb);
3900
3901 err = ext4_setup_system_zone(sb);
3902 if (err) {
3903 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3904 "zone (%d)", err);
3905 goto failed_mount4a;
3906 }
3907
3908 ext4_ext_init(sb);
3909 err = ext4_mb_init(sb);
3910 if (err) {
3911 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3912 err);
3913 goto failed_mount5;
3914 }
3915
3916 block = ext4_count_free_clusters(sb);
3917 ext4_free_blocks_count_set(sbi->s_es,
3918 EXT4_C2B(sbi, block));
3919 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
3920 GFP_KERNEL);
3921 if (!err) {
3922 unsigned long freei = ext4_count_free_inodes(sb);
3923 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
3924 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
3925 GFP_KERNEL);
3926 }
3927 if (!err)
3928 err = percpu_counter_init(&sbi->s_dirs_counter,
3929 ext4_count_dirs(sb), GFP_KERNEL);
3930 if (!err)
3931 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
3932 GFP_KERNEL);
3933 if (err) {
3934 ext4_msg(sb, KERN_ERR, "insufficient memory");
3935 goto failed_mount6;
3936 }
3937
3938 if (ext4_has_feature_flex_bg(sb))
3939 if (!ext4_fill_flex_info(sb)) {
3940 ext4_msg(sb, KERN_ERR,
3941 "unable to initialize "
3942 "flex_bg meta info!");
3943 goto failed_mount6;
3944 }
3945
3946 err = ext4_register_li_request(sb, first_not_zeroed);
3947 if (err)
3948 goto failed_mount6;
3949
3950 err = ext4_register_sysfs(sb);
3951 if (err)
3952 goto failed_mount7;
3953
3954#ifdef CONFIG_QUOTA
3955 /* Enable quota usage during mount. */
3956 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
3957 err = ext4_enable_quotas(sb);
3958 if (err)
3959 goto failed_mount8;
3960 }
3961#endif /* CONFIG_QUOTA */
3962
3963 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3964 ext4_orphan_cleanup(sb, es);
3965 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3966 if (needs_recovery) {
3967 ext4_msg(sb, KERN_INFO, "recovery complete");
3968 ext4_mark_recovery_complete(sb, es);
3969 }
3970 if (EXT4_SB(sb)->s_journal) {
3971 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3972 descr = " journalled data mode";
3973 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3974 descr = " ordered data mode";
3975 else
3976 descr = " writeback data mode";
3977 } else
3978 descr = "out journal";
3979
3980 if (test_opt(sb, DISCARD)) {
3981 struct request_queue *q = bdev_get_queue(sb->s_bdev);
3982 if (!blk_queue_discard(q))
3983 ext4_msg(sb, KERN_WARNING,
3984 "mounting with \"discard\" option, but "
3985 "the device does not support discard");
3986 }
3987
3988 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
3989 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3990 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3991 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3992
3993 if (es->s_error_count)
3994 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3995
3996 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
3997 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
3998 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
3999 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4000
4001 kfree(orig_data);
4002 return 0;
4003
4004cantfind_ext4:
4005 if (!silent)
4006 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4007 goto failed_mount;
4008
4009#ifdef CONFIG_QUOTA
4010failed_mount8:
4011 ext4_unregister_sysfs(sb);
4012#endif
4013failed_mount7:
4014 ext4_unregister_li_request(sb);
4015failed_mount6:
4016 ext4_mb_release(sb);
4017 if (sbi->s_flex_groups)
4018 kvfree(sbi->s_flex_groups);
4019 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4020 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4021 percpu_counter_destroy(&sbi->s_dirs_counter);
4022 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4023failed_mount5:
4024 ext4_ext_release(sb);
4025 ext4_release_system_zone(sb);
4026failed_mount4a:
4027 dput(sb->s_root);
4028 sb->s_root = NULL;
4029failed_mount4:
4030 ext4_msg(sb, KERN_ERR, "mount failed");
4031 if (EXT4_SB(sb)->rsv_conversion_wq)
4032 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4033failed_mount_wq:
4034 if (sbi->s_mb_cache) {
4035 ext4_xattr_destroy_cache(sbi->s_mb_cache);
4036 sbi->s_mb_cache = NULL;
4037 }
4038 if (sbi->s_journal) {
4039 jbd2_journal_destroy(sbi->s_journal);
4040 sbi->s_journal = NULL;
4041 }
4042failed_mount3a:
4043 ext4_es_unregister_shrinker(sbi);
4044failed_mount3:
4045 del_timer_sync(&sbi->s_err_report);
4046 if (sbi->s_mmp_tsk)
4047 kthread_stop(sbi->s_mmp_tsk);
4048failed_mount2:
4049 for (i = 0; i < db_count; i++)
4050 brelse(sbi->s_group_desc[i]);
4051 kvfree(sbi->s_group_desc);
4052failed_mount:
4053 if (sbi->s_chksum_driver)
4054 crypto_free_shash(sbi->s_chksum_driver);
4055#ifdef CONFIG_QUOTA
4056 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4057 kfree(sbi->s_qf_names[i]);
4058#endif
4059 ext4_blkdev_remove(sbi);
4060 brelse(bh);
4061out_fail:
4062 sb->s_fs_info = NULL;
4063 kfree(sbi->s_blockgroup_lock);
4064 kfree(sbi);
4065out_free_orig:
4066 kfree(orig_data);
4067 return err ? err : ret;
4068}
4069
4070/*
4071 * Setup any per-fs journal parameters now. We'll do this both on
4072 * initial mount, once the journal has been initialised but before we've
4073 * done any recovery; and again on any subsequent remount.
4074 */
4075static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4076{
4077 struct ext4_sb_info *sbi = EXT4_SB(sb);
4078
4079 journal->j_commit_interval = sbi->s_commit_interval;
4080 journal->j_min_batch_time = sbi->s_min_batch_time;
4081 journal->j_max_batch_time = sbi->s_max_batch_time;
4082
4083 write_lock(&journal->j_state_lock);
4084 if (test_opt(sb, BARRIER))
4085 journal->j_flags |= JBD2_BARRIER;
4086 else
4087 journal->j_flags &= ~JBD2_BARRIER;
4088 if (test_opt(sb, DATA_ERR_ABORT))
4089 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4090 else
4091 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4092 write_unlock(&journal->j_state_lock);
4093}
4094
4095static journal_t *ext4_get_journal(struct super_block *sb,
4096 unsigned int journal_inum)
4097{
4098 struct inode *journal_inode;
4099 journal_t *journal;
4100
4101 BUG_ON(!ext4_has_feature_journal(sb));
4102
4103 /* First, test for the existence of a valid inode on disk. Bad
4104 * things happen if we iget() an unused inode, as the subsequent
4105 * iput() will try to delete it. */
4106
4107 journal_inode = ext4_iget(sb, journal_inum);
4108 if (IS_ERR(journal_inode)) {
4109 ext4_msg(sb, KERN_ERR, "no journal found");
4110 return NULL;
4111 }
4112 if (!journal_inode->i_nlink) {
4113 make_bad_inode(journal_inode);
4114 iput(journal_inode);
4115 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4116 return NULL;
4117 }
4118
4119 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4120 journal_inode, journal_inode->i_size);
4121 if (!S_ISREG(journal_inode->i_mode)) {
4122 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4123 iput(journal_inode);
4124 return NULL;
4125 }
4126
4127 journal = jbd2_journal_init_inode(journal_inode);
4128 if (!journal) {
4129 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4130 iput(journal_inode);
4131 return NULL;
4132 }
4133 journal->j_private = sb;
4134 ext4_init_journal_params(sb, journal);
4135 return journal;
4136}
4137
4138static journal_t *ext4_get_dev_journal(struct super_block *sb,
4139 dev_t j_dev)
4140{
4141 struct buffer_head *bh;
4142 journal_t *journal;
4143 ext4_fsblk_t start;
4144 ext4_fsblk_t len;
4145 int hblock, blocksize;
4146 ext4_fsblk_t sb_block;
4147 unsigned long offset;
4148 struct ext4_super_block *es;
4149 struct block_device *bdev;
4150
4151 BUG_ON(!ext4_has_feature_journal(sb));
4152
4153 bdev = ext4_blkdev_get(j_dev, sb);
4154 if (bdev == NULL)
4155 return NULL;
4156
4157 blocksize = sb->s_blocksize;
4158 hblock = bdev_logical_block_size(bdev);
4159 if (blocksize < hblock) {
4160 ext4_msg(sb, KERN_ERR,
4161 "blocksize too small for journal device");
4162 goto out_bdev;
4163 }
4164
4165 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4166 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4167 set_blocksize(bdev, blocksize);
4168 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4169 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4170 "external journal");
4171 goto out_bdev;
4172 }
4173
4174 es = (struct ext4_super_block *) (bh->b_data + offset);
4175 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4176 !(le32_to_cpu(es->s_feature_incompat) &
4177 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4178 ext4_msg(sb, KERN_ERR, "external journal has "
4179 "bad superblock");
4180 brelse(bh);
4181 goto out_bdev;
4182 }
4183
4184 if ((le32_to_cpu(es->s_feature_ro_compat) &
4185 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4186 es->s_checksum != ext4_superblock_csum(sb, es)) {
4187 ext4_msg(sb, KERN_ERR, "external journal has "
4188 "corrupt superblock");
4189 brelse(bh);
4190 goto out_bdev;
4191 }
4192
4193 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4194 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4195 brelse(bh);
4196 goto out_bdev;
4197 }
4198
4199 len = ext4_blocks_count(es);
4200 start = sb_block + 1;
4201 brelse(bh); /* we're done with the superblock */
4202
4203 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4204 start, len, blocksize);
4205 if (!journal) {
4206 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4207 goto out_bdev;
4208 }
4209 journal->j_private = sb;
4210 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4211 wait_on_buffer(journal->j_sb_buffer);
4212 if (!buffer_uptodate(journal->j_sb_buffer)) {
4213 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4214 goto out_journal;
4215 }
4216 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4217 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4218 "user (unsupported) - %d",
4219 be32_to_cpu(journal->j_superblock->s_nr_users));
4220 goto out_journal;
4221 }
4222 EXT4_SB(sb)->journal_bdev = bdev;
4223 ext4_init_journal_params(sb, journal);
4224 return journal;
4225
4226out_journal:
4227 jbd2_journal_destroy(journal);
4228out_bdev:
4229 ext4_blkdev_put(bdev);
4230 return NULL;
4231}
4232
4233static int ext4_load_journal(struct super_block *sb,
4234 struct ext4_super_block *es,
4235 unsigned long journal_devnum)
4236{
4237 journal_t *journal;
4238 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4239 dev_t journal_dev;
4240 int err = 0;
4241 int really_read_only;
4242
4243 BUG_ON(!ext4_has_feature_journal(sb));
4244
4245 if (journal_devnum &&
4246 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4247 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4248 "numbers have changed");
4249 journal_dev = new_decode_dev(journal_devnum);
4250 } else
4251 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4252
4253 really_read_only = bdev_read_only(sb->s_bdev);
4254
4255 /*
4256 * Are we loading a blank journal or performing recovery after a
4257 * crash? For recovery, we need to check in advance whether we
4258 * can get read-write access to the device.
4259 */
4260 if (ext4_has_feature_journal_needs_recovery(sb)) {
4261 if (sb->s_flags & MS_RDONLY) {
4262 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4263 "required on readonly filesystem");
4264 if (really_read_only) {
4265 ext4_msg(sb, KERN_ERR, "write access "
4266 "unavailable, cannot proceed");
4267 return -EROFS;
4268 }
4269 ext4_msg(sb, KERN_INFO, "write access will "
4270 "be enabled during recovery");
4271 }
4272 }
4273
4274 if (journal_inum && journal_dev) {
4275 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4276 "and inode journals!");
4277 return -EINVAL;
4278 }
4279
4280 if (journal_inum) {
4281 if (!(journal = ext4_get_journal(sb, journal_inum)))
4282 return -EINVAL;
4283 } else {
4284 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4285 return -EINVAL;
4286 }
4287
4288 if (!(journal->j_flags & JBD2_BARRIER))
4289 ext4_msg(sb, KERN_INFO, "barriers disabled");
4290
4291 if (!ext4_has_feature_journal_needs_recovery(sb))
4292 err = jbd2_journal_wipe(journal, !really_read_only);
4293 if (!err) {
4294 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4295 if (save)
4296 memcpy(save, ((char *) es) +
4297 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4298 err = jbd2_journal_load(journal);
4299 if (save)
4300 memcpy(((char *) es) + EXT4_S_ERR_START,
4301 save, EXT4_S_ERR_LEN);
4302 kfree(save);
4303 }
4304
4305 if (err) {
4306 ext4_msg(sb, KERN_ERR, "error loading journal");
4307 jbd2_journal_destroy(journal);
4308 return err;
4309 }
4310
4311 EXT4_SB(sb)->s_journal = journal;
4312 ext4_clear_journal_err(sb, es);
4313
4314 if (!really_read_only && journal_devnum &&
4315 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4316 es->s_journal_dev = cpu_to_le32(journal_devnum);
4317
4318 /* Make sure we flush the recovery flag to disk. */
4319 ext4_commit_super(sb, 1);
4320 }
4321
4322 return 0;
4323}
4324
4325static int ext4_commit_super(struct super_block *sb, int sync)
4326{
4327 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4328 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4329 int error = 0;
4330
4331 if (!sbh || block_device_ejected(sb))
4332 return error;
4333 if (buffer_write_io_error(sbh)) {
4334 /*
4335 * Oh, dear. A previous attempt to write the
4336 * superblock failed. This could happen because the
4337 * USB device was yanked out. Or it could happen to
4338 * be a transient write error and maybe the block will
4339 * be remapped. Nothing we can do but to retry the
4340 * write and hope for the best.
4341 */
4342 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4343 "superblock detected");
4344 clear_buffer_write_io_error(sbh);
4345 set_buffer_uptodate(sbh);
4346 }
4347 /*
4348 * If the file system is mounted read-only, don't update the
4349 * superblock write time. This avoids updating the superblock
4350 * write time when we are mounting the root file system
4351 * read/only but we need to replay the journal; at that point,
4352 * for people who are east of GMT and who make their clock
4353 * tick in localtime for Windows bug-for-bug compatibility,
4354 * the clock is set in the future, and this will cause e2fsck
4355 * to complain and force a full file system check.
4356 */
4357 if (!(sb->s_flags & MS_RDONLY))
4358 es->s_wtime = cpu_to_le32(get_seconds());
4359 if (sb->s_bdev->bd_part)
4360 es->s_kbytes_written =
4361 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4362 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4363 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4364 else
4365 es->s_kbytes_written =
4366 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4367 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4368 ext4_free_blocks_count_set(es,
4369 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4370 &EXT4_SB(sb)->s_freeclusters_counter)));
4371 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4372 es->s_free_inodes_count =
4373 cpu_to_le32(percpu_counter_sum_positive(
4374 &EXT4_SB(sb)->s_freeinodes_counter));
4375 BUFFER_TRACE(sbh, "marking dirty");
4376 ext4_superblock_csum_set(sb);
4377 mark_buffer_dirty(sbh);
4378 if (sync) {
4379 error = __sync_dirty_buffer(sbh,
4380 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC);
4381 if (error)
4382 return error;
4383
4384 error = buffer_write_io_error(sbh);
4385 if (error) {
4386 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4387 "superblock");
4388 clear_buffer_write_io_error(sbh);
4389 set_buffer_uptodate(sbh);
4390 }
4391 }
4392 return error;
4393}
4394
4395/*
4396 * Have we just finished recovery? If so, and if we are mounting (or
4397 * remounting) the filesystem readonly, then we will end up with a
4398 * consistent fs on disk. Record that fact.
4399 */
4400static void ext4_mark_recovery_complete(struct super_block *sb,
4401 struct ext4_super_block *es)
4402{
4403 journal_t *journal = EXT4_SB(sb)->s_journal;
4404
4405 if (!ext4_has_feature_journal(sb)) {
4406 BUG_ON(journal != NULL);
4407 return;
4408 }
4409 jbd2_journal_lock_updates(journal);
4410 if (jbd2_journal_flush(journal) < 0)
4411 goto out;
4412
4413 if (ext4_has_feature_journal_needs_recovery(sb) &&
4414 sb->s_flags & MS_RDONLY) {
4415 ext4_clear_feature_journal_needs_recovery(sb);
4416 ext4_commit_super(sb, 1);
4417 }
4418
4419out:
4420 jbd2_journal_unlock_updates(journal);
4421}
4422
4423/*
4424 * If we are mounting (or read-write remounting) a filesystem whose journal
4425 * has recorded an error from a previous lifetime, move that error to the
4426 * main filesystem now.
4427 */
4428static void ext4_clear_journal_err(struct super_block *sb,
4429 struct ext4_super_block *es)
4430{
4431 journal_t *journal;
4432 int j_errno;
4433 const char *errstr;
4434
4435 BUG_ON(!ext4_has_feature_journal(sb));
4436
4437 journal = EXT4_SB(sb)->s_journal;
4438
4439 /*
4440 * Now check for any error status which may have been recorded in the
4441 * journal by a prior ext4_error() or ext4_abort()
4442 */
4443
4444 j_errno = jbd2_journal_errno(journal);
4445 if (j_errno) {
4446 char nbuf[16];
4447
4448 errstr = ext4_decode_error(sb, j_errno, nbuf);
4449 ext4_warning(sb, "Filesystem error recorded "
4450 "from previous mount: %s", errstr);
4451 ext4_warning(sb, "Marking fs in need of filesystem check.");
4452
4453 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4454 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4455 ext4_commit_super(sb, 1);
4456
4457 jbd2_journal_clear_err(journal);
4458 jbd2_journal_update_sb_errno(journal);
4459 }
4460}
4461
4462/*
4463 * Force the running and committing transactions to commit,
4464 * and wait on the commit.
4465 */
4466int ext4_force_commit(struct super_block *sb)
4467{
4468 journal_t *journal;
4469
4470 if (sb->s_flags & MS_RDONLY)
4471 return 0;
4472
4473 journal = EXT4_SB(sb)->s_journal;
4474 return ext4_journal_force_commit(journal);
4475}
4476
4477static int ext4_sync_fs(struct super_block *sb, int wait)
4478{
4479 int ret = 0;
4480 tid_t target;
4481 bool needs_barrier = false;
4482 struct ext4_sb_info *sbi = EXT4_SB(sb);
4483
4484 trace_ext4_sync_fs(sb, wait);
4485 flush_workqueue(sbi->rsv_conversion_wq);
4486 /*
4487 * Writeback quota in non-journalled quota case - journalled quota has
4488 * no dirty dquots
4489 */
4490 dquot_writeback_dquots(sb, -1);
4491 /*
4492 * Data writeback is possible w/o journal transaction, so barrier must
4493 * being sent at the end of the function. But we can skip it if
4494 * transaction_commit will do it for us.
4495 */
4496 if (sbi->s_journal) {
4497 target = jbd2_get_latest_transaction(sbi->s_journal);
4498 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4499 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4500 needs_barrier = true;
4501
4502 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4503 if (wait)
4504 ret = jbd2_log_wait_commit(sbi->s_journal,
4505 target);
4506 }
4507 } else if (wait && test_opt(sb, BARRIER))
4508 needs_barrier = true;
4509 if (needs_barrier) {
4510 int err;
4511 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4512 if (!ret)
4513 ret = err;
4514 }
4515
4516 return ret;
4517}
4518
4519/*
4520 * LVM calls this function before a (read-only) snapshot is created. This
4521 * gives us a chance to flush the journal completely and mark the fs clean.
4522 *
4523 * Note that only this function cannot bring a filesystem to be in a clean
4524 * state independently. It relies on upper layer to stop all data & metadata
4525 * modifications.
4526 */
4527static int ext4_freeze(struct super_block *sb)
4528{
4529 int error = 0;
4530 journal_t *journal;
4531
4532 if (sb->s_flags & MS_RDONLY)
4533 return 0;
4534
4535 journal = EXT4_SB(sb)->s_journal;
4536
4537 if (journal) {
4538 /* Now we set up the journal barrier. */
4539 jbd2_journal_lock_updates(journal);
4540
4541 /*
4542 * Don't clear the needs_recovery flag if we failed to
4543 * flush the journal.
4544 */
4545 error = jbd2_journal_flush(journal);
4546 if (error < 0)
4547 goto out;
4548
4549 /* Journal blocked and flushed, clear needs_recovery flag. */
4550 ext4_clear_feature_journal_needs_recovery(sb);
4551 }
4552
4553 error = ext4_commit_super(sb, 1);
4554out:
4555 if (journal)
4556 /* we rely on upper layer to stop further updates */
4557 jbd2_journal_unlock_updates(journal);
4558 return error;
4559}
4560
4561/*
4562 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4563 * flag here, even though the filesystem is not technically dirty yet.
4564 */
4565static int ext4_unfreeze(struct super_block *sb)
4566{
4567 if (sb->s_flags & MS_RDONLY)
4568 return 0;
4569
4570 if (EXT4_SB(sb)->s_journal) {
4571 /* Reset the needs_recovery flag before the fs is unlocked. */
4572 ext4_set_feature_journal_needs_recovery(sb);
4573 }
4574
4575 ext4_commit_super(sb, 1);
4576 return 0;
4577}
4578
4579/*
4580 * Structure to save mount options for ext4_remount's benefit
4581 */
4582struct ext4_mount_options {
4583 unsigned long s_mount_opt;
4584 unsigned long s_mount_opt2;
4585 kuid_t s_resuid;
4586 kgid_t s_resgid;
4587 unsigned long s_commit_interval;
4588 u32 s_min_batch_time, s_max_batch_time;
4589#ifdef CONFIG_QUOTA
4590 int s_jquota_fmt;
4591 char *s_qf_names[EXT4_MAXQUOTAS];
4592#endif
4593};
4594
4595static int ext4_remount(struct super_block *sb, int *flags, char *data)
4596{
4597 struct ext4_super_block *es;
4598 struct ext4_sb_info *sbi = EXT4_SB(sb);
4599 unsigned long old_sb_flags;
4600 struct ext4_mount_options old_opts;
4601 int enable_quota = 0;
4602 ext4_group_t g;
4603 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4604 int err = 0;
4605#ifdef CONFIG_QUOTA
4606 int i, j;
4607#endif
4608 char *orig_data = kstrdup(data, GFP_KERNEL);
4609
4610 /* Store the original options */
4611 old_sb_flags = sb->s_flags;
4612 old_opts.s_mount_opt = sbi->s_mount_opt;
4613 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4614 old_opts.s_resuid = sbi->s_resuid;
4615 old_opts.s_resgid = sbi->s_resgid;
4616 old_opts.s_commit_interval = sbi->s_commit_interval;
4617 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4618 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4619#ifdef CONFIG_QUOTA
4620 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4621 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4622 if (sbi->s_qf_names[i]) {
4623 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4624 GFP_KERNEL);
4625 if (!old_opts.s_qf_names[i]) {
4626 for (j = 0; j < i; j++)
4627 kfree(old_opts.s_qf_names[j]);
4628 kfree(orig_data);
4629 return -ENOMEM;
4630 }
4631 } else
4632 old_opts.s_qf_names[i] = NULL;
4633#endif
4634 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4635 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4636
4637 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4638 err = -EINVAL;
4639 goto restore_opts;
4640 }
4641
4642 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4643 test_opt(sb, JOURNAL_CHECKSUM)) {
4644 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4645 "during remount not supported; ignoring");
4646 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4647 }
4648
4649 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4650 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4651 ext4_msg(sb, KERN_ERR, "can't mount with "
4652 "both data=journal and delalloc");
4653 err = -EINVAL;
4654 goto restore_opts;
4655 }
4656 if (test_opt(sb, DIOREAD_NOLOCK)) {
4657 ext4_msg(sb, KERN_ERR, "can't mount with "
4658 "both data=journal and dioread_nolock");
4659 err = -EINVAL;
4660 goto restore_opts;
4661 }
4662 if (test_opt(sb, DAX)) {
4663 ext4_msg(sb, KERN_ERR, "can't mount with "
4664 "both data=journal and dax");
4665 err = -EINVAL;
4666 goto restore_opts;
4667 }
4668 }
4669
4670 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4671 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4672 "dax flag with busy inodes while remounting");
4673 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4674 }
4675
4676 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4677 ext4_abort(sb, "Abort forced by user");
4678
4679 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4680 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4681
4682 es = sbi->s_es;
4683
4684 if (sbi->s_journal) {
4685 ext4_init_journal_params(sb, sbi->s_journal);
4686 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4687 }
4688
4689 if (*flags & MS_LAZYTIME)
4690 sb->s_flags |= MS_LAZYTIME;
4691
4692 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4693 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4694 err = -EROFS;
4695 goto restore_opts;
4696 }
4697
4698 if (*flags & MS_RDONLY) {
4699 err = sync_filesystem(sb);
4700 if (err < 0)
4701 goto restore_opts;
4702 err = dquot_suspend(sb, -1);
4703 if (err < 0)
4704 goto restore_opts;
4705
4706 /*
4707 * First of all, the unconditional stuff we have to do
4708 * to disable replay of the journal when we next remount
4709 */
4710 sb->s_flags |= MS_RDONLY;
4711
4712 /*
4713 * OK, test if we are remounting a valid rw partition
4714 * readonly, and if so set the rdonly flag and then
4715 * mark the partition as valid again.
4716 */
4717 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4718 (sbi->s_mount_state & EXT4_VALID_FS))
4719 es->s_state = cpu_to_le16(sbi->s_mount_state);
4720
4721 if (sbi->s_journal)
4722 ext4_mark_recovery_complete(sb, es);
4723 } else {
4724 /* Make sure we can mount this feature set readwrite */
4725 if (ext4_has_feature_readonly(sb) ||
4726 !ext4_feature_set_ok(sb, 0)) {
4727 err = -EROFS;
4728 goto restore_opts;
4729 }
4730 /*
4731 * Make sure the group descriptor checksums
4732 * are sane. If they aren't, refuse to remount r/w.
4733 */
4734 for (g = 0; g < sbi->s_groups_count; g++) {
4735 struct ext4_group_desc *gdp =
4736 ext4_get_group_desc(sb, g, NULL);
4737
4738 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4739 ext4_msg(sb, KERN_ERR,
4740 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4741 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4742 le16_to_cpu(gdp->bg_checksum));
4743 err = -EFSBADCRC;
4744 goto restore_opts;
4745 }
4746 }
4747
4748 /*
4749 * If we have an unprocessed orphan list hanging
4750 * around from a previously readonly bdev mount,
4751 * require a full umount/remount for now.
4752 */
4753 if (es->s_last_orphan) {
4754 ext4_msg(sb, KERN_WARNING, "Couldn't "
4755 "remount RDWR because of unprocessed "
4756 "orphan inode list. Please "
4757 "umount/remount instead");
4758 err = -EINVAL;
4759 goto restore_opts;
4760 }
4761
4762 /*
4763 * Mounting a RDONLY partition read-write, so reread
4764 * and store the current valid flag. (It may have
4765 * been changed by e2fsck since we originally mounted
4766 * the partition.)
4767 */
4768 if (sbi->s_journal)
4769 ext4_clear_journal_err(sb, es);
4770 sbi->s_mount_state = le16_to_cpu(es->s_state);
4771 if (!ext4_setup_super(sb, es, 0))
4772 sb->s_flags &= ~MS_RDONLY;
4773 if (ext4_has_feature_mmp(sb))
4774 if (ext4_multi_mount_protect(sb,
4775 le64_to_cpu(es->s_mmp_block))) {
4776 err = -EROFS;
4777 goto restore_opts;
4778 }
4779 enable_quota = 1;
4780 }
4781 }
4782
4783 /*
4784 * Reinitialize lazy itable initialization thread based on
4785 * current settings
4786 */
4787 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4788 ext4_unregister_li_request(sb);
4789 else {
4790 ext4_group_t first_not_zeroed;
4791 first_not_zeroed = ext4_has_uninit_itable(sb);
4792 ext4_register_li_request(sb, first_not_zeroed);
4793 }
4794
4795 ext4_setup_system_zone(sb);
4796 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4797 ext4_commit_super(sb, 1);
4798
4799#ifdef CONFIG_QUOTA
4800 /* Release old quota file names */
4801 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4802 kfree(old_opts.s_qf_names[i]);
4803 if (enable_quota) {
4804 if (sb_any_quota_suspended(sb))
4805 dquot_resume(sb, -1);
4806 else if (ext4_has_feature_quota(sb)) {
4807 err = ext4_enable_quotas(sb);
4808 if (err)
4809 goto restore_opts;
4810 }
4811 }
4812#endif
4813
4814 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
4815 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4816 kfree(orig_data);
4817 return 0;
4818
4819restore_opts:
4820 sb->s_flags = old_sb_flags;
4821 sbi->s_mount_opt = old_opts.s_mount_opt;
4822 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4823 sbi->s_resuid = old_opts.s_resuid;
4824 sbi->s_resgid = old_opts.s_resgid;
4825 sbi->s_commit_interval = old_opts.s_commit_interval;
4826 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4827 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4828#ifdef CONFIG_QUOTA
4829 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4830 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
4831 kfree(sbi->s_qf_names[i]);
4832 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4833 }
4834#endif
4835 kfree(orig_data);
4836 return err;
4837}
4838
4839#ifdef CONFIG_QUOTA
4840static int ext4_statfs_project(struct super_block *sb,
4841 kprojid_t projid, struct kstatfs *buf)
4842{
4843 struct kqid qid;
4844 struct dquot *dquot;
4845 u64 limit;
4846 u64 curblock;
4847
4848 qid = make_kqid_projid(projid);
4849 dquot = dqget(sb, qid);
4850 if (IS_ERR(dquot))
4851 return PTR_ERR(dquot);
4852 spin_lock(&dq_data_lock);
4853
4854 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
4855 dquot->dq_dqb.dqb_bsoftlimit :
4856 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
4857 if (limit && buf->f_blocks > limit) {
4858 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
4859 buf->f_blocks = limit;
4860 buf->f_bfree = buf->f_bavail =
4861 (buf->f_blocks > curblock) ?
4862 (buf->f_blocks - curblock) : 0;
4863 }
4864
4865 limit = dquot->dq_dqb.dqb_isoftlimit ?
4866 dquot->dq_dqb.dqb_isoftlimit :
4867 dquot->dq_dqb.dqb_ihardlimit;
4868 if (limit && buf->f_files > limit) {
4869 buf->f_files = limit;
4870 buf->f_ffree =
4871 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
4872 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
4873 }
4874
4875 spin_unlock(&dq_data_lock);
4876 dqput(dquot);
4877 return 0;
4878}
4879#endif
4880
4881static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4882{
4883 struct super_block *sb = dentry->d_sb;
4884 struct ext4_sb_info *sbi = EXT4_SB(sb);
4885 struct ext4_super_block *es = sbi->s_es;
4886 ext4_fsblk_t overhead = 0, resv_blocks;
4887 u64 fsid;
4888 s64 bfree;
4889 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4890
4891 if (!test_opt(sb, MINIX_DF))
4892 overhead = sbi->s_overhead;
4893
4894 buf->f_type = EXT4_SUPER_MAGIC;
4895 buf->f_bsize = sb->s_blocksize;
4896 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4897 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4898 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4899 /* prevent underflow in case that few free space is available */
4900 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4901 buf->f_bavail = buf->f_bfree -
4902 (ext4_r_blocks_count(es) + resv_blocks);
4903 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4904 buf->f_bavail = 0;
4905 buf->f_files = le32_to_cpu(es->s_inodes_count);
4906 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4907 buf->f_namelen = EXT4_NAME_LEN;
4908 fsid = le64_to_cpup((void *)es->s_uuid) ^
4909 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4910 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4911 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4912
4913#ifdef CONFIG_QUOTA
4914 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
4915 sb_has_quota_limits_enabled(sb, PRJQUOTA))
4916 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
4917#endif
4918 return 0;
4919}
4920
4921/* Helper function for writing quotas on sync - we need to start transaction
4922 * before quota file is locked for write. Otherwise the are possible deadlocks:
4923 * Process 1 Process 2
4924 * ext4_create() quota_sync()
4925 * jbd2_journal_start() write_dquot()
4926 * dquot_initialize() down(dqio_mutex)
4927 * down(dqio_mutex) jbd2_journal_start()
4928 *
4929 */
4930
4931#ifdef CONFIG_QUOTA
4932
4933static inline struct inode *dquot_to_inode(struct dquot *dquot)
4934{
4935 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4936}
4937
4938static int ext4_write_dquot(struct dquot *dquot)
4939{
4940 int ret, err;
4941 handle_t *handle;
4942 struct inode *inode;
4943
4944 inode = dquot_to_inode(dquot);
4945 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4946 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4947 if (IS_ERR(handle))
4948 return PTR_ERR(handle);
4949 ret = dquot_commit(dquot);
4950 err = ext4_journal_stop(handle);
4951 if (!ret)
4952 ret = err;
4953 return ret;
4954}
4955
4956static int ext4_acquire_dquot(struct dquot *dquot)
4957{
4958 int ret, err;
4959 handle_t *handle;
4960
4961 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4962 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4963 if (IS_ERR(handle))
4964 return PTR_ERR(handle);
4965 ret = dquot_acquire(dquot);
4966 err = ext4_journal_stop(handle);
4967 if (!ret)
4968 ret = err;
4969 return ret;
4970}
4971
4972static int ext4_release_dquot(struct dquot *dquot)
4973{
4974 int ret, err;
4975 handle_t *handle;
4976
4977 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4978 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4979 if (IS_ERR(handle)) {
4980 /* Release dquot anyway to avoid endless cycle in dqput() */
4981 dquot_release(dquot);
4982 return PTR_ERR(handle);
4983 }
4984 ret = dquot_release(dquot);
4985 err = ext4_journal_stop(handle);
4986 if (!ret)
4987 ret = err;
4988 return ret;
4989}
4990
4991static int ext4_mark_dquot_dirty(struct dquot *dquot)
4992{
4993 struct super_block *sb = dquot->dq_sb;
4994 struct ext4_sb_info *sbi = EXT4_SB(sb);
4995
4996 /* Are we journaling quotas? */
4997 if (ext4_has_feature_quota(sb) ||
4998 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4999 dquot_mark_dquot_dirty(dquot);
5000 return ext4_write_dquot(dquot);
5001 } else {
5002 return dquot_mark_dquot_dirty(dquot);
5003 }
5004}
5005
5006static int ext4_write_info(struct super_block *sb, int type)
5007{
5008 int ret, err;
5009 handle_t *handle;
5010
5011 /* Data block + inode block */
5012 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5013 if (IS_ERR(handle))
5014 return PTR_ERR(handle);
5015 ret = dquot_commit_info(sb, type);
5016 err = ext4_journal_stop(handle);
5017 if (!ret)
5018 ret = err;
5019 return ret;
5020}
5021
5022/*
5023 * Turn on quotas during mount time - we need to find
5024 * the quota file and such...
5025 */
5026static int ext4_quota_on_mount(struct super_block *sb, int type)
5027{
5028 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5029 EXT4_SB(sb)->s_jquota_fmt, type);
5030}
5031
5032static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5033{
5034 struct ext4_inode_info *ei = EXT4_I(inode);
5035
5036 /* The first argument of lockdep_set_subclass has to be
5037 * *exactly* the same as the argument to init_rwsem() --- in
5038 * this case, in init_once() --- or lockdep gets unhappy
5039 * because the name of the lock is set using the
5040 * stringification of the argument to init_rwsem().
5041 */
5042 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5043 lockdep_set_subclass(&ei->i_data_sem, subclass);
5044}
5045
5046/*
5047 * Standard function to be called on quota_on
5048 */
5049static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5050 struct path *path)
5051{
5052 int err;
5053
5054 if (!test_opt(sb, QUOTA))
5055 return -EINVAL;
5056
5057 /* Quotafile not on the same filesystem? */
5058 if (path->dentry->d_sb != sb)
5059 return -EXDEV;
5060 /* Journaling quota? */
5061 if (EXT4_SB(sb)->s_qf_names[type]) {
5062 /* Quotafile not in fs root? */
5063 if (path->dentry->d_parent != sb->s_root)
5064 ext4_msg(sb, KERN_WARNING,
5065 "Quota file not on filesystem root. "
5066 "Journaled quota will not work");
5067 }
5068
5069 /*
5070 * When we journal data on quota file, we have to flush journal to see
5071 * all updates to the file when we bypass pagecache...
5072 */
5073 if (EXT4_SB(sb)->s_journal &&
5074 ext4_should_journal_data(d_inode(path->dentry))) {
5075 /*
5076 * We don't need to lock updates but journal_flush() could
5077 * otherwise be livelocked...
5078 */
5079 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5080 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5081 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5082 if (err)
5083 return err;
5084 }
5085 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5086 err = dquot_quota_on(sb, type, format_id, path);
5087 if (err)
5088 lockdep_set_quota_inode(path->dentry->d_inode,
5089 I_DATA_SEM_NORMAL);
5090 return err;
5091}
5092
5093static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5094 unsigned int flags)
5095{
5096 int err;
5097 struct inode *qf_inode;
5098 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5099 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5100 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5101 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5102 };
5103
5104 BUG_ON(!ext4_has_feature_quota(sb));
5105
5106 if (!qf_inums[type])
5107 return -EPERM;
5108
5109 qf_inode = ext4_iget(sb, qf_inums[type]);
5110 if (IS_ERR(qf_inode)) {
5111 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5112 return PTR_ERR(qf_inode);
5113 }
5114
5115 /* Don't account quota for quota files to avoid recursion */
5116 qf_inode->i_flags |= S_NOQUOTA;
5117 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5118 err = dquot_enable(qf_inode, type, format_id, flags);
5119 iput(qf_inode);
5120 if (err)
5121 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5122
5123 return err;
5124}
5125
5126/* Enable usage tracking for all quota types. */
5127static int ext4_enable_quotas(struct super_block *sb)
5128{
5129 int type, err = 0;
5130 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5131 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5132 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5133 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5134 };
5135
5136 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5137 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5138 if (qf_inums[type]) {
5139 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5140 DQUOT_USAGE_ENABLED);
5141 if (err) {
5142 ext4_warning(sb,
5143 "Failed to enable quota tracking "
5144 "(type=%d, err=%d). Please run "
5145 "e2fsck to fix.", type, err);
5146 return err;
5147 }
5148 }
5149 }
5150 return 0;
5151}
5152
5153static int ext4_quota_off(struct super_block *sb, int type)
5154{
5155 struct inode *inode = sb_dqopt(sb)->files[type];
5156 handle_t *handle;
5157
5158 /* Force all delayed allocation blocks to be allocated.
5159 * Caller already holds s_umount sem */
5160 if (test_opt(sb, DELALLOC))
5161 sync_filesystem(sb);
5162
5163 if (!inode)
5164 goto out;
5165
5166 /* Update modification times of quota files when userspace can
5167 * start looking at them */
5168 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5169 if (IS_ERR(handle))
5170 goto out;
5171 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5172 ext4_mark_inode_dirty(handle, inode);
5173 ext4_journal_stop(handle);
5174
5175out:
5176 return dquot_quota_off(sb, type);
5177}
5178
5179/* Read data from quotafile - avoid pagecache and such because we cannot afford
5180 * acquiring the locks... As quota files are never truncated and quota code
5181 * itself serializes the operations (and no one else should touch the files)
5182 * we don't have to be afraid of races */
5183static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5184 size_t len, loff_t off)
5185{
5186 struct inode *inode = sb_dqopt(sb)->files[type];
5187 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5188 int offset = off & (sb->s_blocksize - 1);
5189 int tocopy;
5190 size_t toread;
5191 struct buffer_head *bh;
5192 loff_t i_size = i_size_read(inode);
5193
5194 if (off > i_size)
5195 return 0;
5196 if (off+len > i_size)
5197 len = i_size-off;
5198 toread = len;
5199 while (toread > 0) {
5200 tocopy = sb->s_blocksize - offset < toread ?
5201 sb->s_blocksize - offset : toread;
5202 bh = ext4_bread(NULL, inode, blk, 0);
5203 if (IS_ERR(bh))
5204 return PTR_ERR(bh);
5205 if (!bh) /* A hole? */
5206 memset(data, 0, tocopy);
5207 else
5208 memcpy(data, bh->b_data+offset, tocopy);
5209 brelse(bh);
5210 offset = 0;
5211 toread -= tocopy;
5212 data += tocopy;
5213 blk++;
5214 }
5215 return len;
5216}
5217
5218/* Write to quotafile (we know the transaction is already started and has
5219 * enough credits) */
5220static ssize_t ext4_quota_write(struct super_block *sb, int type,
5221 const char *data, size_t len, loff_t off)
5222{
5223 struct inode *inode = sb_dqopt(sb)->files[type];
5224 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5225 int err, offset = off & (sb->s_blocksize - 1);
5226 int retries = 0;
5227 struct buffer_head *bh;
5228 handle_t *handle = journal_current_handle();
5229
5230 if (EXT4_SB(sb)->s_journal && !handle) {
5231 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5232 " cancelled because transaction is not started",
5233 (unsigned long long)off, (unsigned long long)len);
5234 return -EIO;
5235 }
5236 /*
5237 * Since we account only one data block in transaction credits,
5238 * then it is impossible to cross a block boundary.
5239 */
5240 if (sb->s_blocksize - offset < len) {
5241 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5242 " cancelled because not block aligned",
5243 (unsigned long long)off, (unsigned long long)len);
5244 return -EIO;
5245 }
5246
5247 do {
5248 bh = ext4_bread(handle, inode, blk,
5249 EXT4_GET_BLOCKS_CREATE |
5250 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5251 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5252 ext4_should_retry_alloc(inode->i_sb, &retries));
5253 if (IS_ERR(bh))
5254 return PTR_ERR(bh);
5255 if (!bh)
5256 goto out;
5257 BUFFER_TRACE(bh, "get write access");
5258 err = ext4_journal_get_write_access(handle, bh);
5259 if (err) {
5260 brelse(bh);
5261 return err;
5262 }
5263 lock_buffer(bh);
5264 memcpy(bh->b_data+offset, data, len);
5265 flush_dcache_page(bh->b_page);
5266 unlock_buffer(bh);
5267 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5268 brelse(bh);
5269out:
5270 if (inode->i_size < off + len) {
5271 i_size_write(inode, off + len);
5272 EXT4_I(inode)->i_disksize = inode->i_size;
5273 ext4_mark_inode_dirty(handle, inode);
5274 }
5275 return len;
5276}
5277
5278static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5279{
5280 const struct quota_format_ops *ops;
5281
5282 if (!sb_has_quota_loaded(sb, qid->type))
5283 return -ESRCH;
5284 ops = sb_dqopt(sb)->ops[qid->type];
5285 if (!ops || !ops->get_next_id)
5286 return -ENOSYS;
5287 return dquot_get_next_id(sb, qid);
5288}
5289#endif
5290
5291static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5292 const char *dev_name, void *data)
5293{
5294 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5295}
5296
5297#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5298static inline void register_as_ext2(void)
5299{
5300 int err = register_filesystem(&ext2_fs_type);
5301 if (err)
5302 printk(KERN_WARNING
5303 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5304}
5305
5306static inline void unregister_as_ext2(void)
5307{
5308 unregister_filesystem(&ext2_fs_type);
5309}
5310
5311static inline int ext2_feature_set_ok(struct super_block *sb)
5312{
5313 if (ext4_has_unknown_ext2_incompat_features(sb))
5314 return 0;
5315 if (sb->s_flags & MS_RDONLY)
5316 return 1;
5317 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5318 return 0;
5319 return 1;
5320}
5321#else
5322static inline void register_as_ext2(void) { }
5323static inline void unregister_as_ext2(void) { }
5324static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5325#endif
5326
5327static inline void register_as_ext3(void)
5328{
5329 int err = register_filesystem(&ext3_fs_type);
5330 if (err)
5331 printk(KERN_WARNING
5332 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5333}
5334
5335static inline void unregister_as_ext3(void)
5336{
5337 unregister_filesystem(&ext3_fs_type);
5338}
5339
5340static inline int ext3_feature_set_ok(struct super_block *sb)
5341{
5342 if (ext4_has_unknown_ext3_incompat_features(sb))
5343 return 0;
5344 if (!ext4_has_feature_journal(sb))
5345 return 0;
5346 if (sb->s_flags & MS_RDONLY)
5347 return 1;
5348 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5349 return 0;
5350 return 1;
5351}
5352
5353static struct file_system_type ext4_fs_type = {
5354 .owner = THIS_MODULE,
5355 .name = "ext4",
5356 .mount = ext4_mount,
5357 .kill_sb = kill_block_super,
5358 .fs_flags = FS_REQUIRES_DEV,
5359};
5360MODULE_ALIAS_FS("ext4");
5361
5362/* Shared across all ext4 file systems */
5363wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5364
5365static int __init ext4_init_fs(void)
5366{
5367 int i, err;
5368
5369 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5370 ext4_li_info = NULL;
5371 mutex_init(&ext4_li_mtx);
5372
5373 /* Build-time check for flags consistency */
5374 ext4_check_flag_values();
5375
5376 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5377 init_waitqueue_head(&ext4__ioend_wq[i]);
5378
5379 err = ext4_init_es();
5380 if (err)
5381 return err;
5382
5383 err = ext4_init_pageio();
5384 if (err)
5385 goto out5;
5386
5387 err = ext4_init_system_zone();
5388 if (err)
5389 goto out4;
5390
5391 err = ext4_init_sysfs();
5392 if (err)
5393 goto out3;
5394
5395 err = ext4_init_mballoc();
5396 if (err)
5397 goto out2;
5398 err = init_inodecache();
5399 if (err)
5400 goto out1;
5401 register_as_ext3();
5402 register_as_ext2();
5403 err = register_filesystem(&ext4_fs_type);
5404 if (err)
5405 goto out;
5406
5407 return 0;
5408out:
5409 unregister_as_ext2();
5410 unregister_as_ext3();
5411 destroy_inodecache();
5412out1:
5413 ext4_exit_mballoc();
5414out2:
5415 ext4_exit_sysfs();
5416out3:
5417 ext4_exit_system_zone();
5418out4:
5419 ext4_exit_pageio();
5420out5:
5421 ext4_exit_es();
5422
5423 return err;
5424}
5425
5426static void __exit ext4_exit_fs(void)
5427{
5428 ext4_exit_crypto();
5429 ext4_destroy_lazyinit_thread();
5430 unregister_as_ext2();
5431 unregister_as_ext3();
5432 unregister_filesystem(&ext4_fs_type);
5433 destroy_inodecache();
5434 ext4_exit_mballoc();
5435 ext4_exit_sysfs();
5436 ext4_exit_system_zone();
5437 ext4_exit_pageio();
5438 ext4_exit_es();
5439}
5440
5441MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5442MODULE_DESCRIPTION("Fourth Extended Filesystem");
5443MODULE_LICENSE("GPL");
5444module_init(ext4_init_fs)
5445module_exit(ext4_exit_fs)