Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20#include <linux/module.h>
21#include <linux/string.h>
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/vmalloc.h>
25#include <linux/slab.h>
26#include <linux/init.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
29#include <linux/parser.h>
30#include <linux/buffer_head.h>
31#include <linux/exportfs.h>
32#include <linux/vfs.h>
33#include <linux/random.h>
34#include <linux/mount.h>
35#include <linux/namei.h>
36#include <linux/quotaops.h>
37#include <linux/seq_file.h>
38#include <linux/ctype.h>
39#include <linux/log2.h>
40#include <linux/crc16.h>
41#include <linux/dax.h>
42#include <linux/cleancache.h>
43#include <linux/uaccess.h>
44#include <linux/iversion.h>
45
46#include <linux/kthread.h>
47#include <linux/freezer.h>
48
49#include "ext4.h"
50#include "ext4_extents.h" /* Needed for trace points definition */
51#include "ext4_jbd2.h"
52#include "xattr.h"
53#include "acl.h"
54#include "mballoc.h"
55#include "fsmap.h"
56
57#define CREATE_TRACE_POINTS
58#include <trace/events/ext4.h>
59
60static struct ext4_lazy_init *ext4_li_info;
61static struct mutex ext4_li_mtx;
62static struct ratelimit_state ext4_mount_msg_ratelimit;
63
64static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67static int ext4_commit_super(struct super_block *sb, int sync);
68static void ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70static void ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72static int ext4_sync_fs(struct super_block *sb, int wait);
73static int ext4_remount(struct super_block *sb, int *flags, char *data);
74static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75static int ext4_unfreeze(struct super_block *sb);
76static int ext4_freeze(struct super_block *sb);
77static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79static inline int ext2_feature_set_ok(struct super_block *sb);
80static inline int ext3_feature_set_ok(struct super_block *sb);
81static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82static void ext4_destroy_lazyinit_thread(void);
83static void ext4_unregister_li_request(struct super_block *sb);
84static void ext4_clear_request_list(void);
85static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87
88/*
89 * Lock ordering
90 *
91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
92 * i_mmap_rwsem (inode->i_mmap_rwsem)!
93 *
94 * page fault path:
95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
96 * page lock -> i_data_sem (rw)
97 *
98 * buffered write path:
99 * sb_start_write -> i_mutex -> mmap_sem
100 * sb_start_write -> i_mutex -> transaction start -> page lock ->
101 * i_data_sem (rw)
102 *
103 * truncate:
104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
106 * i_data_sem (rw)
107 *
108 * direct IO:
109 * sb_start_write -> i_mutex -> mmap_sem
110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
111 *
112 * writepages:
113 * transaction start -> page lock(s) -> i_data_sem (rw)
114 */
115
116#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117static struct file_system_type ext2_fs_type = {
118 .owner = THIS_MODULE,
119 .name = "ext2",
120 .mount = ext4_mount,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
123};
124MODULE_ALIAS_FS("ext2");
125MODULE_ALIAS("ext2");
126#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127#else
128#define IS_EXT2_SB(sb) (0)
129#endif
130
131
132static struct file_system_type ext3_fs_type = {
133 .owner = THIS_MODULE,
134 .name = "ext3",
135 .mount = ext4_mount,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
138};
139MODULE_ALIAS_FS("ext3");
140MODULE_ALIAS("ext3");
141#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
142
143static int ext4_verify_csum_type(struct super_block *sb,
144 struct ext4_super_block *es)
145{
146 if (!ext4_has_feature_metadata_csum(sb))
147 return 1;
148
149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
150}
151
152static __le32 ext4_superblock_csum(struct super_block *sb,
153 struct ext4_super_block *es)
154{
155 struct ext4_sb_info *sbi = EXT4_SB(sb);
156 int offset = offsetof(struct ext4_super_block, s_checksum);
157 __u32 csum;
158
159 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
160
161 return cpu_to_le32(csum);
162}
163
164static int ext4_superblock_csum_verify(struct super_block *sb,
165 struct ext4_super_block *es)
166{
167 if (!ext4_has_metadata_csum(sb))
168 return 1;
169
170 return es->s_checksum == ext4_superblock_csum(sb, es);
171}
172
173void ext4_superblock_csum_set(struct super_block *sb)
174{
175 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
176
177 if (!ext4_has_metadata_csum(sb))
178 return;
179
180 es->s_checksum = ext4_superblock_csum(sb, es);
181}
182
183void *ext4_kvmalloc(size_t size, gfp_t flags)
184{
185 void *ret;
186
187 ret = kmalloc(size, flags | __GFP_NOWARN);
188 if (!ret)
189 ret = __vmalloc(size, flags, PAGE_KERNEL);
190 return ret;
191}
192
193void *ext4_kvzalloc(size_t size, gfp_t flags)
194{
195 void *ret;
196
197 ret = kzalloc(size, flags | __GFP_NOWARN);
198 if (!ret)
199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
200 return ret;
201}
202
203ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204 struct ext4_group_desc *bg)
205{
206 return le32_to_cpu(bg->bg_block_bitmap_lo) |
207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
209}
210
211ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212 struct ext4_group_desc *bg)
213{
214 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
217}
218
219ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220 struct ext4_group_desc *bg)
221{
222 return le32_to_cpu(bg->bg_inode_table_lo) |
223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
225}
226
227__u32 ext4_free_group_clusters(struct super_block *sb,
228 struct ext4_group_desc *bg)
229{
230 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
233}
234
235__u32 ext4_free_inodes_count(struct super_block *sb,
236 struct ext4_group_desc *bg)
237{
238 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
241}
242
243__u32 ext4_used_dirs_count(struct super_block *sb,
244 struct ext4_group_desc *bg)
245{
246 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
249}
250
251__u32 ext4_itable_unused_count(struct super_block *sb,
252 struct ext4_group_desc *bg)
253{
254 return le16_to_cpu(bg->bg_itable_unused_lo) |
255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
257}
258
259void ext4_block_bitmap_set(struct super_block *sb,
260 struct ext4_group_desc *bg, ext4_fsblk_t blk)
261{
262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
265}
266
267void ext4_inode_bitmap_set(struct super_block *sb,
268 struct ext4_group_desc *bg, ext4_fsblk_t blk)
269{
270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
273}
274
275void ext4_inode_table_set(struct super_block *sb,
276 struct ext4_group_desc *bg, ext4_fsblk_t blk)
277{
278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
281}
282
283void ext4_free_group_clusters_set(struct super_block *sb,
284 struct ext4_group_desc *bg, __u32 count)
285{
286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
289}
290
291void ext4_free_inodes_set(struct super_block *sb,
292 struct ext4_group_desc *bg, __u32 count)
293{
294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
297}
298
299void ext4_used_dirs_set(struct super_block *sb,
300 struct ext4_group_desc *bg, __u32 count)
301{
302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
305}
306
307void ext4_itable_unused_set(struct super_block *sb,
308 struct ext4_group_desc *bg, __u32 count)
309{
310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
313}
314
315
316static void __save_error_info(struct super_block *sb, const char *func,
317 unsigned int line)
318{
319 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
320
321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
322 if (bdev_read_only(sb->s_bdev))
323 return;
324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
325 es->s_last_error_time = cpu_to_le32(get_seconds());
326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
327 es->s_last_error_line = cpu_to_le32(line);
328 if (!es->s_first_error_time) {
329 es->s_first_error_time = es->s_last_error_time;
330 strncpy(es->s_first_error_func, func,
331 sizeof(es->s_first_error_func));
332 es->s_first_error_line = cpu_to_le32(line);
333 es->s_first_error_ino = es->s_last_error_ino;
334 es->s_first_error_block = es->s_last_error_block;
335 }
336 /*
337 * Start the daily error reporting function if it hasn't been
338 * started already
339 */
340 if (!es->s_error_count)
341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
342 le32_add_cpu(&es->s_error_count, 1);
343}
344
345static void save_error_info(struct super_block *sb, const char *func,
346 unsigned int line)
347{
348 __save_error_info(sb, func, line);
349 ext4_commit_super(sb, 1);
350}
351
352/*
353 * The del_gendisk() function uninitializes the disk-specific data
354 * structures, including the bdi structure, without telling anyone
355 * else. Once this happens, any attempt to call mark_buffer_dirty()
356 * (for example, by ext4_commit_super), will cause a kernel OOPS.
357 * This is a kludge to prevent these oops until we can put in a proper
358 * hook in del_gendisk() to inform the VFS and file system layers.
359 */
360static int block_device_ejected(struct super_block *sb)
361{
362 struct inode *bd_inode = sb->s_bdev->bd_inode;
363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
364
365 return bdi->dev == NULL;
366}
367
368static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
369{
370 struct super_block *sb = journal->j_private;
371 struct ext4_sb_info *sbi = EXT4_SB(sb);
372 int error = is_journal_aborted(journal);
373 struct ext4_journal_cb_entry *jce;
374
375 BUG_ON(txn->t_state == T_FINISHED);
376
377 ext4_process_freed_data(sb, txn->t_tid);
378
379 spin_lock(&sbi->s_md_lock);
380 while (!list_empty(&txn->t_private_list)) {
381 jce = list_entry(txn->t_private_list.next,
382 struct ext4_journal_cb_entry, jce_list);
383 list_del_init(&jce->jce_list);
384 spin_unlock(&sbi->s_md_lock);
385 jce->jce_func(sb, jce, error);
386 spin_lock(&sbi->s_md_lock);
387 }
388 spin_unlock(&sbi->s_md_lock);
389}
390
391/* Deal with the reporting of failure conditions on a filesystem such as
392 * inconsistencies detected or read IO failures.
393 *
394 * On ext2, we can store the error state of the filesystem in the
395 * superblock. That is not possible on ext4, because we may have other
396 * write ordering constraints on the superblock which prevent us from
397 * writing it out straight away; and given that the journal is about to
398 * be aborted, we can't rely on the current, or future, transactions to
399 * write out the superblock safely.
400 *
401 * We'll just use the jbd2_journal_abort() error code to record an error in
402 * the journal instead. On recovery, the journal will complain about
403 * that error until we've noted it down and cleared it.
404 */
405
406static void ext4_handle_error(struct super_block *sb)
407{
408 if (sb_rdonly(sb))
409 return;
410
411 if (!test_opt(sb, ERRORS_CONT)) {
412 journal_t *journal = EXT4_SB(sb)->s_journal;
413
414 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
415 if (journal)
416 jbd2_journal_abort(journal, -EIO);
417 }
418 if (test_opt(sb, ERRORS_RO)) {
419 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
420 /*
421 * Make sure updated value of ->s_mount_flags will be visible
422 * before ->s_flags update
423 */
424 smp_wmb();
425 sb->s_flags |= SB_RDONLY;
426 }
427 if (test_opt(sb, ERRORS_PANIC)) {
428 if (EXT4_SB(sb)->s_journal &&
429 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
430 return;
431 panic("EXT4-fs (device %s): panic forced after error\n",
432 sb->s_id);
433 }
434}
435
436#define ext4_error_ratelimit(sb) \
437 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
438 "EXT4-fs error")
439
440void __ext4_error(struct super_block *sb, const char *function,
441 unsigned int line, const char *fmt, ...)
442{
443 struct va_format vaf;
444 va_list args;
445
446 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
447 return;
448
449 trace_ext4_error(sb, function, line);
450 if (ext4_error_ratelimit(sb)) {
451 va_start(args, fmt);
452 vaf.fmt = fmt;
453 vaf.va = &args;
454 printk(KERN_CRIT
455 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
456 sb->s_id, function, line, current->comm, &vaf);
457 va_end(args);
458 }
459 save_error_info(sb, function, line);
460 ext4_handle_error(sb);
461}
462
463void __ext4_error_inode(struct inode *inode, const char *function,
464 unsigned int line, ext4_fsblk_t block,
465 const char *fmt, ...)
466{
467 va_list args;
468 struct va_format vaf;
469 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
470
471 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
472 return;
473
474 trace_ext4_error(inode->i_sb, function, line);
475 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
476 es->s_last_error_block = cpu_to_le64(block);
477 if (ext4_error_ratelimit(inode->i_sb)) {
478 va_start(args, fmt);
479 vaf.fmt = fmt;
480 vaf.va = &args;
481 if (block)
482 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
483 "inode #%lu: block %llu: comm %s: %pV\n",
484 inode->i_sb->s_id, function, line, inode->i_ino,
485 block, current->comm, &vaf);
486 else
487 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
488 "inode #%lu: comm %s: %pV\n",
489 inode->i_sb->s_id, function, line, inode->i_ino,
490 current->comm, &vaf);
491 va_end(args);
492 }
493 save_error_info(inode->i_sb, function, line);
494 ext4_handle_error(inode->i_sb);
495}
496
497void __ext4_error_file(struct file *file, const char *function,
498 unsigned int line, ext4_fsblk_t block,
499 const char *fmt, ...)
500{
501 va_list args;
502 struct va_format vaf;
503 struct ext4_super_block *es;
504 struct inode *inode = file_inode(file);
505 char pathname[80], *path;
506
507 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
508 return;
509
510 trace_ext4_error(inode->i_sb, function, line);
511 es = EXT4_SB(inode->i_sb)->s_es;
512 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
513 if (ext4_error_ratelimit(inode->i_sb)) {
514 path = file_path(file, pathname, sizeof(pathname));
515 if (IS_ERR(path))
516 path = "(unknown)";
517 va_start(args, fmt);
518 vaf.fmt = fmt;
519 vaf.va = &args;
520 if (block)
521 printk(KERN_CRIT
522 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
523 "block %llu: comm %s: path %s: %pV\n",
524 inode->i_sb->s_id, function, line, inode->i_ino,
525 block, current->comm, path, &vaf);
526 else
527 printk(KERN_CRIT
528 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
529 "comm %s: path %s: %pV\n",
530 inode->i_sb->s_id, function, line, inode->i_ino,
531 current->comm, path, &vaf);
532 va_end(args);
533 }
534 save_error_info(inode->i_sb, function, line);
535 ext4_handle_error(inode->i_sb);
536}
537
538const char *ext4_decode_error(struct super_block *sb, int errno,
539 char nbuf[16])
540{
541 char *errstr = NULL;
542
543 switch (errno) {
544 case -EFSCORRUPTED:
545 errstr = "Corrupt filesystem";
546 break;
547 case -EFSBADCRC:
548 errstr = "Filesystem failed CRC";
549 break;
550 case -EIO:
551 errstr = "IO failure";
552 break;
553 case -ENOMEM:
554 errstr = "Out of memory";
555 break;
556 case -EROFS:
557 if (!sb || (EXT4_SB(sb)->s_journal &&
558 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
559 errstr = "Journal has aborted";
560 else
561 errstr = "Readonly filesystem";
562 break;
563 default:
564 /* If the caller passed in an extra buffer for unknown
565 * errors, textualise them now. Else we just return
566 * NULL. */
567 if (nbuf) {
568 /* Check for truncated error codes... */
569 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
570 errstr = nbuf;
571 }
572 break;
573 }
574
575 return errstr;
576}
577
578/* __ext4_std_error decodes expected errors from journaling functions
579 * automatically and invokes the appropriate error response. */
580
581void __ext4_std_error(struct super_block *sb, const char *function,
582 unsigned int line, int errno)
583{
584 char nbuf[16];
585 const char *errstr;
586
587 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
588 return;
589
590 /* Special case: if the error is EROFS, and we're not already
591 * inside a transaction, then there's really no point in logging
592 * an error. */
593 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
594 return;
595
596 if (ext4_error_ratelimit(sb)) {
597 errstr = ext4_decode_error(sb, errno, nbuf);
598 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
599 sb->s_id, function, line, errstr);
600 }
601
602 save_error_info(sb, function, line);
603 ext4_handle_error(sb);
604}
605
606/*
607 * ext4_abort is a much stronger failure handler than ext4_error. The
608 * abort function may be used to deal with unrecoverable failures such
609 * as journal IO errors or ENOMEM at a critical moment in log management.
610 *
611 * We unconditionally force the filesystem into an ABORT|READONLY state,
612 * unless the error response on the fs has been set to panic in which
613 * case we take the easy way out and panic immediately.
614 */
615
616void __ext4_abort(struct super_block *sb, const char *function,
617 unsigned int line, const char *fmt, ...)
618{
619 struct va_format vaf;
620 va_list args;
621
622 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
623 return;
624
625 save_error_info(sb, function, line);
626 va_start(args, fmt);
627 vaf.fmt = fmt;
628 vaf.va = &args;
629 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
630 sb->s_id, function, line, &vaf);
631 va_end(args);
632
633 if (sb_rdonly(sb) == 0) {
634 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
635 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
636 /*
637 * Make sure updated value of ->s_mount_flags will be visible
638 * before ->s_flags update
639 */
640 smp_wmb();
641 sb->s_flags |= SB_RDONLY;
642 if (EXT4_SB(sb)->s_journal)
643 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
644 save_error_info(sb, function, line);
645 }
646 if (test_opt(sb, ERRORS_PANIC)) {
647 if (EXT4_SB(sb)->s_journal &&
648 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
649 return;
650 panic("EXT4-fs panic from previous error\n");
651 }
652}
653
654void __ext4_msg(struct super_block *sb,
655 const char *prefix, const char *fmt, ...)
656{
657 struct va_format vaf;
658 va_list args;
659
660 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
661 return;
662
663 va_start(args, fmt);
664 vaf.fmt = fmt;
665 vaf.va = &args;
666 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
667 va_end(args);
668}
669
670#define ext4_warning_ratelimit(sb) \
671 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
672 "EXT4-fs warning")
673
674void __ext4_warning(struct super_block *sb, const char *function,
675 unsigned int line, const char *fmt, ...)
676{
677 struct va_format vaf;
678 va_list args;
679
680 if (!ext4_warning_ratelimit(sb))
681 return;
682
683 va_start(args, fmt);
684 vaf.fmt = fmt;
685 vaf.va = &args;
686 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
687 sb->s_id, function, line, &vaf);
688 va_end(args);
689}
690
691void __ext4_warning_inode(const struct inode *inode, const char *function,
692 unsigned int line, const char *fmt, ...)
693{
694 struct va_format vaf;
695 va_list args;
696
697 if (!ext4_warning_ratelimit(inode->i_sb))
698 return;
699
700 va_start(args, fmt);
701 vaf.fmt = fmt;
702 vaf.va = &args;
703 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
704 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
705 function, line, inode->i_ino, current->comm, &vaf);
706 va_end(args);
707}
708
709void __ext4_grp_locked_error(const char *function, unsigned int line,
710 struct super_block *sb, ext4_group_t grp,
711 unsigned long ino, ext4_fsblk_t block,
712 const char *fmt, ...)
713__releases(bitlock)
714__acquires(bitlock)
715{
716 struct va_format vaf;
717 va_list args;
718 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
719
720 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
721 return;
722
723 trace_ext4_error(sb, function, line);
724 es->s_last_error_ino = cpu_to_le32(ino);
725 es->s_last_error_block = cpu_to_le64(block);
726 __save_error_info(sb, function, line);
727
728 if (ext4_error_ratelimit(sb)) {
729 va_start(args, fmt);
730 vaf.fmt = fmt;
731 vaf.va = &args;
732 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
733 sb->s_id, function, line, grp);
734 if (ino)
735 printk(KERN_CONT "inode %lu: ", ino);
736 if (block)
737 printk(KERN_CONT "block %llu:",
738 (unsigned long long) block);
739 printk(KERN_CONT "%pV\n", &vaf);
740 va_end(args);
741 }
742
743 if (test_opt(sb, ERRORS_CONT)) {
744 ext4_commit_super(sb, 0);
745 return;
746 }
747
748 ext4_unlock_group(sb, grp);
749 ext4_commit_super(sb, 1);
750 ext4_handle_error(sb);
751 /*
752 * We only get here in the ERRORS_RO case; relocking the group
753 * may be dangerous, but nothing bad will happen since the
754 * filesystem will have already been marked read/only and the
755 * journal has been aborted. We return 1 as a hint to callers
756 * who might what to use the return value from
757 * ext4_grp_locked_error() to distinguish between the
758 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
759 * aggressively from the ext4 function in question, with a
760 * more appropriate error code.
761 */
762 ext4_lock_group(sb, grp);
763 return;
764}
765
766void ext4_update_dynamic_rev(struct super_block *sb)
767{
768 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
769
770 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
771 return;
772
773 ext4_warning(sb,
774 "updating to rev %d because of new feature flag, "
775 "running e2fsck is recommended",
776 EXT4_DYNAMIC_REV);
777
778 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
779 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
780 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
781 /* leave es->s_feature_*compat flags alone */
782 /* es->s_uuid will be set by e2fsck if empty */
783
784 /*
785 * The rest of the superblock fields should be zero, and if not it
786 * means they are likely already in use, so leave them alone. We
787 * can leave it up to e2fsck to clean up any inconsistencies there.
788 */
789}
790
791/*
792 * Open the external journal device
793 */
794static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
795{
796 struct block_device *bdev;
797 char b[BDEVNAME_SIZE];
798
799 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
800 if (IS_ERR(bdev))
801 goto fail;
802 return bdev;
803
804fail:
805 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
806 __bdevname(dev, b), PTR_ERR(bdev));
807 return NULL;
808}
809
810/*
811 * Release the journal device
812 */
813static void ext4_blkdev_put(struct block_device *bdev)
814{
815 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
816}
817
818static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
819{
820 struct block_device *bdev;
821 bdev = sbi->journal_bdev;
822 if (bdev) {
823 ext4_blkdev_put(bdev);
824 sbi->journal_bdev = NULL;
825 }
826}
827
828static inline struct inode *orphan_list_entry(struct list_head *l)
829{
830 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
831}
832
833static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
834{
835 struct list_head *l;
836
837 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
838 le32_to_cpu(sbi->s_es->s_last_orphan));
839
840 printk(KERN_ERR "sb_info orphan list:\n");
841 list_for_each(l, &sbi->s_orphan) {
842 struct inode *inode = orphan_list_entry(l);
843 printk(KERN_ERR " "
844 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
845 inode->i_sb->s_id, inode->i_ino, inode,
846 inode->i_mode, inode->i_nlink,
847 NEXT_ORPHAN(inode));
848 }
849}
850
851#ifdef CONFIG_QUOTA
852static int ext4_quota_off(struct super_block *sb, int type);
853
854static inline void ext4_quota_off_umount(struct super_block *sb)
855{
856 int type;
857
858 /* Use our quota_off function to clear inode flags etc. */
859 for (type = 0; type < EXT4_MAXQUOTAS; type++)
860 ext4_quota_off(sb, type);
861}
862#else
863static inline void ext4_quota_off_umount(struct super_block *sb)
864{
865}
866#endif
867
868static void ext4_put_super(struct super_block *sb)
869{
870 struct ext4_sb_info *sbi = EXT4_SB(sb);
871 struct ext4_super_block *es = sbi->s_es;
872 int aborted = 0;
873 int i, err;
874
875 ext4_unregister_li_request(sb);
876 ext4_quota_off_umount(sb);
877
878 destroy_workqueue(sbi->rsv_conversion_wq);
879
880 if (sbi->s_journal) {
881 aborted = is_journal_aborted(sbi->s_journal);
882 err = jbd2_journal_destroy(sbi->s_journal);
883 sbi->s_journal = NULL;
884 if ((err < 0) && !aborted)
885 ext4_abort(sb, "Couldn't clean up the journal");
886 }
887
888 ext4_unregister_sysfs(sb);
889 ext4_es_unregister_shrinker(sbi);
890 del_timer_sync(&sbi->s_err_report);
891 ext4_release_system_zone(sb);
892 ext4_mb_release(sb);
893 ext4_ext_release(sb);
894
895 if (!sb_rdonly(sb) && !aborted) {
896 ext4_clear_feature_journal_needs_recovery(sb);
897 es->s_state = cpu_to_le16(sbi->s_mount_state);
898 }
899 if (!sb_rdonly(sb))
900 ext4_commit_super(sb, 1);
901
902 for (i = 0; i < sbi->s_gdb_count; i++)
903 brelse(sbi->s_group_desc[i]);
904 kvfree(sbi->s_group_desc);
905 kvfree(sbi->s_flex_groups);
906 percpu_counter_destroy(&sbi->s_freeclusters_counter);
907 percpu_counter_destroy(&sbi->s_freeinodes_counter);
908 percpu_counter_destroy(&sbi->s_dirs_counter);
909 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
910 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
911#ifdef CONFIG_QUOTA
912 for (i = 0; i < EXT4_MAXQUOTAS; i++)
913 kfree(sbi->s_qf_names[i]);
914#endif
915
916 /* Debugging code just in case the in-memory inode orphan list
917 * isn't empty. The on-disk one can be non-empty if we've
918 * detected an error and taken the fs readonly, but the
919 * in-memory list had better be clean by this point. */
920 if (!list_empty(&sbi->s_orphan))
921 dump_orphan_list(sb, sbi);
922 J_ASSERT(list_empty(&sbi->s_orphan));
923
924 sync_blockdev(sb->s_bdev);
925 invalidate_bdev(sb->s_bdev);
926 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
927 /*
928 * Invalidate the journal device's buffers. We don't want them
929 * floating about in memory - the physical journal device may
930 * hotswapped, and it breaks the `ro-after' testing code.
931 */
932 sync_blockdev(sbi->journal_bdev);
933 invalidate_bdev(sbi->journal_bdev);
934 ext4_blkdev_remove(sbi);
935 }
936 if (sbi->s_ea_inode_cache) {
937 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
938 sbi->s_ea_inode_cache = NULL;
939 }
940 if (sbi->s_ea_block_cache) {
941 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
942 sbi->s_ea_block_cache = NULL;
943 }
944 if (sbi->s_mmp_tsk)
945 kthread_stop(sbi->s_mmp_tsk);
946 brelse(sbi->s_sbh);
947 sb->s_fs_info = NULL;
948 /*
949 * Now that we are completely done shutting down the
950 * superblock, we need to actually destroy the kobject.
951 */
952 kobject_put(&sbi->s_kobj);
953 wait_for_completion(&sbi->s_kobj_unregister);
954 if (sbi->s_chksum_driver)
955 crypto_free_shash(sbi->s_chksum_driver);
956 kfree(sbi->s_blockgroup_lock);
957 fs_put_dax(sbi->s_daxdev);
958 kfree(sbi);
959}
960
961static struct kmem_cache *ext4_inode_cachep;
962
963/*
964 * Called inside transaction, so use GFP_NOFS
965 */
966static struct inode *ext4_alloc_inode(struct super_block *sb)
967{
968 struct ext4_inode_info *ei;
969
970 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
971 if (!ei)
972 return NULL;
973
974 inode_set_iversion(&ei->vfs_inode, 1);
975 spin_lock_init(&ei->i_raw_lock);
976 INIT_LIST_HEAD(&ei->i_prealloc_list);
977 spin_lock_init(&ei->i_prealloc_lock);
978 ext4_es_init_tree(&ei->i_es_tree);
979 rwlock_init(&ei->i_es_lock);
980 INIT_LIST_HEAD(&ei->i_es_list);
981 ei->i_es_all_nr = 0;
982 ei->i_es_shk_nr = 0;
983 ei->i_es_shrink_lblk = 0;
984 ei->i_reserved_data_blocks = 0;
985 ei->i_da_metadata_calc_len = 0;
986 ei->i_da_metadata_calc_last_lblock = 0;
987 spin_lock_init(&(ei->i_block_reservation_lock));
988#ifdef CONFIG_QUOTA
989 ei->i_reserved_quota = 0;
990 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
991#endif
992 ei->jinode = NULL;
993 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
994 spin_lock_init(&ei->i_completed_io_lock);
995 ei->i_sync_tid = 0;
996 ei->i_datasync_tid = 0;
997 atomic_set(&ei->i_unwritten, 0);
998 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
999 return &ei->vfs_inode;
1000}
1001
1002static int ext4_drop_inode(struct inode *inode)
1003{
1004 int drop = generic_drop_inode(inode);
1005
1006 trace_ext4_drop_inode(inode, drop);
1007 return drop;
1008}
1009
1010static void ext4_i_callback(struct rcu_head *head)
1011{
1012 struct inode *inode = container_of(head, struct inode, i_rcu);
1013 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1014}
1015
1016static void ext4_destroy_inode(struct inode *inode)
1017{
1018 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1019 ext4_msg(inode->i_sb, KERN_ERR,
1020 "Inode %lu (%p): orphan list check failed!",
1021 inode->i_ino, EXT4_I(inode));
1022 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1023 EXT4_I(inode), sizeof(struct ext4_inode_info),
1024 true);
1025 dump_stack();
1026 }
1027 call_rcu(&inode->i_rcu, ext4_i_callback);
1028}
1029
1030static void init_once(void *foo)
1031{
1032 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1033
1034 INIT_LIST_HEAD(&ei->i_orphan);
1035 init_rwsem(&ei->xattr_sem);
1036 init_rwsem(&ei->i_data_sem);
1037 init_rwsem(&ei->i_mmap_sem);
1038 inode_init_once(&ei->vfs_inode);
1039}
1040
1041static int __init init_inodecache(void)
1042{
1043 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1044 sizeof(struct ext4_inode_info), 0,
1045 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1046 SLAB_ACCOUNT),
1047 offsetof(struct ext4_inode_info, i_data),
1048 sizeof_field(struct ext4_inode_info, i_data),
1049 init_once);
1050 if (ext4_inode_cachep == NULL)
1051 return -ENOMEM;
1052 return 0;
1053}
1054
1055static void destroy_inodecache(void)
1056{
1057 /*
1058 * Make sure all delayed rcu free inodes are flushed before we
1059 * destroy cache.
1060 */
1061 rcu_barrier();
1062 kmem_cache_destroy(ext4_inode_cachep);
1063}
1064
1065void ext4_clear_inode(struct inode *inode)
1066{
1067 invalidate_inode_buffers(inode);
1068 clear_inode(inode);
1069 dquot_drop(inode);
1070 ext4_discard_preallocations(inode);
1071 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1072 if (EXT4_I(inode)->jinode) {
1073 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1074 EXT4_I(inode)->jinode);
1075 jbd2_free_inode(EXT4_I(inode)->jinode);
1076 EXT4_I(inode)->jinode = NULL;
1077 }
1078 fscrypt_put_encryption_info(inode);
1079}
1080
1081static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1082 u64 ino, u32 generation)
1083{
1084 struct inode *inode;
1085
1086 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1087 return ERR_PTR(-ESTALE);
1088 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1089 return ERR_PTR(-ESTALE);
1090
1091 /* iget isn't really right if the inode is currently unallocated!!
1092 *
1093 * ext4_read_inode will return a bad_inode if the inode had been
1094 * deleted, so we should be safe.
1095 *
1096 * Currently we don't know the generation for parent directory, so
1097 * a generation of 0 means "accept any"
1098 */
1099 inode = ext4_iget_normal(sb, ino);
1100 if (IS_ERR(inode))
1101 return ERR_CAST(inode);
1102 if (generation && inode->i_generation != generation) {
1103 iput(inode);
1104 return ERR_PTR(-ESTALE);
1105 }
1106
1107 return inode;
1108}
1109
1110static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1111 int fh_len, int fh_type)
1112{
1113 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1114 ext4_nfs_get_inode);
1115}
1116
1117static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1118 int fh_len, int fh_type)
1119{
1120 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1121 ext4_nfs_get_inode);
1122}
1123
1124/*
1125 * Try to release metadata pages (indirect blocks, directories) which are
1126 * mapped via the block device. Since these pages could have journal heads
1127 * which would prevent try_to_free_buffers() from freeing them, we must use
1128 * jbd2 layer's try_to_free_buffers() function to release them.
1129 */
1130static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1131 gfp_t wait)
1132{
1133 journal_t *journal = EXT4_SB(sb)->s_journal;
1134
1135 WARN_ON(PageChecked(page));
1136 if (!page_has_buffers(page))
1137 return 0;
1138 if (journal)
1139 return jbd2_journal_try_to_free_buffers(journal, page,
1140 wait & ~__GFP_DIRECT_RECLAIM);
1141 return try_to_free_buffers(page);
1142}
1143
1144#ifdef CONFIG_EXT4_FS_ENCRYPTION
1145static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1146{
1147 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1148 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1149}
1150
1151static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1152 void *fs_data)
1153{
1154 handle_t *handle = fs_data;
1155 int res, res2, credits, retries = 0;
1156
1157 /*
1158 * Encrypting the root directory is not allowed because e2fsck expects
1159 * lost+found to exist and be unencrypted, and encrypting the root
1160 * directory would imply encrypting the lost+found directory as well as
1161 * the filename "lost+found" itself.
1162 */
1163 if (inode->i_ino == EXT4_ROOT_INO)
1164 return -EPERM;
1165
1166 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1167 return -EINVAL;
1168
1169 res = ext4_convert_inline_data(inode);
1170 if (res)
1171 return res;
1172
1173 /*
1174 * If a journal handle was specified, then the encryption context is
1175 * being set on a new inode via inheritance and is part of a larger
1176 * transaction to create the inode. Otherwise the encryption context is
1177 * being set on an existing inode in its own transaction. Only in the
1178 * latter case should the "retry on ENOSPC" logic be used.
1179 */
1180
1181 if (handle) {
1182 res = ext4_xattr_set_handle(handle, inode,
1183 EXT4_XATTR_INDEX_ENCRYPTION,
1184 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1185 ctx, len, 0);
1186 if (!res) {
1187 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1188 ext4_clear_inode_state(inode,
1189 EXT4_STATE_MAY_INLINE_DATA);
1190 /*
1191 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1192 * S_DAX may be disabled
1193 */
1194 ext4_set_inode_flags(inode);
1195 }
1196 return res;
1197 }
1198
1199 res = dquot_initialize(inode);
1200 if (res)
1201 return res;
1202retry:
1203 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1204 &credits);
1205 if (res)
1206 return res;
1207
1208 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1209 if (IS_ERR(handle))
1210 return PTR_ERR(handle);
1211
1212 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1213 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1214 ctx, len, 0);
1215 if (!res) {
1216 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1217 /*
1218 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1219 * S_DAX may be disabled
1220 */
1221 ext4_set_inode_flags(inode);
1222 res = ext4_mark_inode_dirty(handle, inode);
1223 if (res)
1224 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1225 }
1226 res2 = ext4_journal_stop(handle);
1227
1228 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1229 goto retry;
1230 if (!res)
1231 res = res2;
1232 return res;
1233}
1234
1235static bool ext4_dummy_context(struct inode *inode)
1236{
1237 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1238}
1239
1240static unsigned ext4_max_namelen(struct inode *inode)
1241{
1242 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1243 EXT4_NAME_LEN;
1244}
1245
1246static const struct fscrypt_operations ext4_cryptops = {
1247 .key_prefix = "ext4:",
1248 .get_context = ext4_get_context,
1249 .set_context = ext4_set_context,
1250 .dummy_context = ext4_dummy_context,
1251 .empty_dir = ext4_empty_dir,
1252 .max_namelen = ext4_max_namelen,
1253};
1254#endif
1255
1256#ifdef CONFIG_QUOTA
1257static const char * const quotatypes[] = INITQFNAMES;
1258#define QTYPE2NAME(t) (quotatypes[t])
1259
1260static int ext4_write_dquot(struct dquot *dquot);
1261static int ext4_acquire_dquot(struct dquot *dquot);
1262static int ext4_release_dquot(struct dquot *dquot);
1263static int ext4_mark_dquot_dirty(struct dquot *dquot);
1264static int ext4_write_info(struct super_block *sb, int type);
1265static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1266 const struct path *path);
1267static int ext4_quota_on_mount(struct super_block *sb, int type);
1268static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1269 size_t len, loff_t off);
1270static ssize_t ext4_quota_write(struct super_block *sb, int type,
1271 const char *data, size_t len, loff_t off);
1272static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1273 unsigned int flags);
1274static int ext4_enable_quotas(struct super_block *sb);
1275static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1276
1277static struct dquot **ext4_get_dquots(struct inode *inode)
1278{
1279 return EXT4_I(inode)->i_dquot;
1280}
1281
1282static const struct dquot_operations ext4_quota_operations = {
1283 .get_reserved_space = ext4_get_reserved_space,
1284 .write_dquot = ext4_write_dquot,
1285 .acquire_dquot = ext4_acquire_dquot,
1286 .release_dquot = ext4_release_dquot,
1287 .mark_dirty = ext4_mark_dquot_dirty,
1288 .write_info = ext4_write_info,
1289 .alloc_dquot = dquot_alloc,
1290 .destroy_dquot = dquot_destroy,
1291 .get_projid = ext4_get_projid,
1292 .get_inode_usage = ext4_get_inode_usage,
1293 .get_next_id = ext4_get_next_id,
1294};
1295
1296static const struct quotactl_ops ext4_qctl_operations = {
1297 .quota_on = ext4_quota_on,
1298 .quota_off = ext4_quota_off,
1299 .quota_sync = dquot_quota_sync,
1300 .get_state = dquot_get_state,
1301 .set_info = dquot_set_dqinfo,
1302 .get_dqblk = dquot_get_dqblk,
1303 .set_dqblk = dquot_set_dqblk,
1304 .get_nextdqblk = dquot_get_next_dqblk,
1305};
1306#endif
1307
1308static const struct super_operations ext4_sops = {
1309 .alloc_inode = ext4_alloc_inode,
1310 .destroy_inode = ext4_destroy_inode,
1311 .write_inode = ext4_write_inode,
1312 .dirty_inode = ext4_dirty_inode,
1313 .drop_inode = ext4_drop_inode,
1314 .evict_inode = ext4_evict_inode,
1315 .put_super = ext4_put_super,
1316 .sync_fs = ext4_sync_fs,
1317 .freeze_fs = ext4_freeze,
1318 .unfreeze_fs = ext4_unfreeze,
1319 .statfs = ext4_statfs,
1320 .remount_fs = ext4_remount,
1321 .show_options = ext4_show_options,
1322#ifdef CONFIG_QUOTA
1323 .quota_read = ext4_quota_read,
1324 .quota_write = ext4_quota_write,
1325 .get_dquots = ext4_get_dquots,
1326#endif
1327 .bdev_try_to_free_page = bdev_try_to_free_page,
1328};
1329
1330static const struct export_operations ext4_export_ops = {
1331 .fh_to_dentry = ext4_fh_to_dentry,
1332 .fh_to_parent = ext4_fh_to_parent,
1333 .get_parent = ext4_get_parent,
1334};
1335
1336enum {
1337 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1338 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1339 Opt_nouid32, Opt_debug, Opt_removed,
1340 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1341 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1342 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1343 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1344 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1345 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1346 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1347 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1348 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1349 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1350 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1351 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1352 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1353 Opt_inode_readahead_blks, Opt_journal_ioprio,
1354 Opt_dioread_nolock, Opt_dioread_lock,
1355 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1356 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1357};
1358
1359static const match_table_t tokens = {
1360 {Opt_bsd_df, "bsddf"},
1361 {Opt_minix_df, "minixdf"},
1362 {Opt_grpid, "grpid"},
1363 {Opt_grpid, "bsdgroups"},
1364 {Opt_nogrpid, "nogrpid"},
1365 {Opt_nogrpid, "sysvgroups"},
1366 {Opt_resgid, "resgid=%u"},
1367 {Opt_resuid, "resuid=%u"},
1368 {Opt_sb, "sb=%u"},
1369 {Opt_err_cont, "errors=continue"},
1370 {Opt_err_panic, "errors=panic"},
1371 {Opt_err_ro, "errors=remount-ro"},
1372 {Opt_nouid32, "nouid32"},
1373 {Opt_debug, "debug"},
1374 {Opt_removed, "oldalloc"},
1375 {Opt_removed, "orlov"},
1376 {Opt_user_xattr, "user_xattr"},
1377 {Opt_nouser_xattr, "nouser_xattr"},
1378 {Opt_acl, "acl"},
1379 {Opt_noacl, "noacl"},
1380 {Opt_noload, "norecovery"},
1381 {Opt_noload, "noload"},
1382 {Opt_removed, "nobh"},
1383 {Opt_removed, "bh"},
1384 {Opt_commit, "commit=%u"},
1385 {Opt_min_batch_time, "min_batch_time=%u"},
1386 {Opt_max_batch_time, "max_batch_time=%u"},
1387 {Opt_journal_dev, "journal_dev=%u"},
1388 {Opt_journal_path, "journal_path=%s"},
1389 {Opt_journal_checksum, "journal_checksum"},
1390 {Opt_nojournal_checksum, "nojournal_checksum"},
1391 {Opt_journal_async_commit, "journal_async_commit"},
1392 {Opt_abort, "abort"},
1393 {Opt_data_journal, "data=journal"},
1394 {Opt_data_ordered, "data=ordered"},
1395 {Opt_data_writeback, "data=writeback"},
1396 {Opt_data_err_abort, "data_err=abort"},
1397 {Opt_data_err_ignore, "data_err=ignore"},
1398 {Opt_offusrjquota, "usrjquota="},
1399 {Opt_usrjquota, "usrjquota=%s"},
1400 {Opt_offgrpjquota, "grpjquota="},
1401 {Opt_grpjquota, "grpjquota=%s"},
1402 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1403 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1404 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1405 {Opt_grpquota, "grpquota"},
1406 {Opt_noquota, "noquota"},
1407 {Opt_quota, "quota"},
1408 {Opt_usrquota, "usrquota"},
1409 {Opt_prjquota, "prjquota"},
1410 {Opt_barrier, "barrier=%u"},
1411 {Opt_barrier, "barrier"},
1412 {Opt_nobarrier, "nobarrier"},
1413 {Opt_i_version, "i_version"},
1414 {Opt_dax, "dax"},
1415 {Opt_stripe, "stripe=%u"},
1416 {Opt_delalloc, "delalloc"},
1417 {Opt_lazytime, "lazytime"},
1418 {Opt_nolazytime, "nolazytime"},
1419 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1420 {Opt_nodelalloc, "nodelalloc"},
1421 {Opt_removed, "mblk_io_submit"},
1422 {Opt_removed, "nomblk_io_submit"},
1423 {Opt_block_validity, "block_validity"},
1424 {Opt_noblock_validity, "noblock_validity"},
1425 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1426 {Opt_journal_ioprio, "journal_ioprio=%u"},
1427 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1428 {Opt_auto_da_alloc, "auto_da_alloc"},
1429 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1430 {Opt_dioread_nolock, "dioread_nolock"},
1431 {Opt_dioread_lock, "dioread_lock"},
1432 {Opt_discard, "discard"},
1433 {Opt_nodiscard, "nodiscard"},
1434 {Opt_init_itable, "init_itable=%u"},
1435 {Opt_init_itable, "init_itable"},
1436 {Opt_noinit_itable, "noinit_itable"},
1437 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1438 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1439 {Opt_nombcache, "nombcache"},
1440 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1441 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1442 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1443 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1444 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1445 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1446 {Opt_err, NULL},
1447};
1448
1449static ext4_fsblk_t get_sb_block(void **data)
1450{
1451 ext4_fsblk_t sb_block;
1452 char *options = (char *) *data;
1453
1454 if (!options || strncmp(options, "sb=", 3) != 0)
1455 return 1; /* Default location */
1456
1457 options += 3;
1458 /* TODO: use simple_strtoll with >32bit ext4 */
1459 sb_block = simple_strtoul(options, &options, 0);
1460 if (*options && *options != ',') {
1461 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1462 (char *) *data);
1463 return 1;
1464 }
1465 if (*options == ',')
1466 options++;
1467 *data = (void *) options;
1468
1469 return sb_block;
1470}
1471
1472#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1473static const char deprecated_msg[] =
1474 "Mount option \"%s\" will be removed by %s\n"
1475 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1476
1477#ifdef CONFIG_QUOTA
1478static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1479{
1480 struct ext4_sb_info *sbi = EXT4_SB(sb);
1481 char *qname;
1482 int ret = -1;
1483
1484 if (sb_any_quota_loaded(sb) &&
1485 !sbi->s_qf_names[qtype]) {
1486 ext4_msg(sb, KERN_ERR,
1487 "Cannot change journaled "
1488 "quota options when quota turned on");
1489 return -1;
1490 }
1491 if (ext4_has_feature_quota(sb)) {
1492 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1493 "ignored when QUOTA feature is enabled");
1494 return 1;
1495 }
1496 qname = match_strdup(args);
1497 if (!qname) {
1498 ext4_msg(sb, KERN_ERR,
1499 "Not enough memory for storing quotafile name");
1500 return -1;
1501 }
1502 if (sbi->s_qf_names[qtype]) {
1503 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1504 ret = 1;
1505 else
1506 ext4_msg(sb, KERN_ERR,
1507 "%s quota file already specified",
1508 QTYPE2NAME(qtype));
1509 goto errout;
1510 }
1511 if (strchr(qname, '/')) {
1512 ext4_msg(sb, KERN_ERR,
1513 "quotafile must be on filesystem root");
1514 goto errout;
1515 }
1516 sbi->s_qf_names[qtype] = qname;
1517 set_opt(sb, QUOTA);
1518 return 1;
1519errout:
1520 kfree(qname);
1521 return ret;
1522}
1523
1524static int clear_qf_name(struct super_block *sb, int qtype)
1525{
1526
1527 struct ext4_sb_info *sbi = EXT4_SB(sb);
1528
1529 if (sb_any_quota_loaded(sb) &&
1530 sbi->s_qf_names[qtype]) {
1531 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1532 " when quota turned on");
1533 return -1;
1534 }
1535 kfree(sbi->s_qf_names[qtype]);
1536 sbi->s_qf_names[qtype] = NULL;
1537 return 1;
1538}
1539#endif
1540
1541#define MOPT_SET 0x0001
1542#define MOPT_CLEAR 0x0002
1543#define MOPT_NOSUPPORT 0x0004
1544#define MOPT_EXPLICIT 0x0008
1545#define MOPT_CLEAR_ERR 0x0010
1546#define MOPT_GTE0 0x0020
1547#ifdef CONFIG_QUOTA
1548#define MOPT_Q 0
1549#define MOPT_QFMT 0x0040
1550#else
1551#define MOPT_Q MOPT_NOSUPPORT
1552#define MOPT_QFMT MOPT_NOSUPPORT
1553#endif
1554#define MOPT_DATAJ 0x0080
1555#define MOPT_NO_EXT2 0x0100
1556#define MOPT_NO_EXT3 0x0200
1557#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1558#define MOPT_STRING 0x0400
1559
1560static const struct mount_opts {
1561 int token;
1562 int mount_opt;
1563 int flags;
1564} ext4_mount_opts[] = {
1565 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1566 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1567 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1568 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1569 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1570 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1571 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1572 MOPT_EXT4_ONLY | MOPT_SET},
1573 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1574 MOPT_EXT4_ONLY | MOPT_CLEAR},
1575 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1576 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1577 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1578 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1579 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1580 MOPT_EXT4_ONLY | MOPT_CLEAR},
1581 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1582 MOPT_EXT4_ONLY | MOPT_CLEAR},
1583 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1584 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1585 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1586 EXT4_MOUNT_JOURNAL_CHECKSUM),
1587 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1588 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1589 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1590 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1591 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1592 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1593 MOPT_NO_EXT2},
1594 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1595 MOPT_NO_EXT2},
1596 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1597 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1598 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1599 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1600 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1601 {Opt_commit, 0, MOPT_GTE0},
1602 {Opt_max_batch_time, 0, MOPT_GTE0},
1603 {Opt_min_batch_time, 0, MOPT_GTE0},
1604 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1605 {Opt_init_itable, 0, MOPT_GTE0},
1606 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1607 {Opt_stripe, 0, MOPT_GTE0},
1608 {Opt_resuid, 0, MOPT_GTE0},
1609 {Opt_resgid, 0, MOPT_GTE0},
1610 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1611 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1612 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1613 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1614 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1615 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1616 MOPT_NO_EXT2 | MOPT_DATAJ},
1617 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1618 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1619#ifdef CONFIG_EXT4_FS_POSIX_ACL
1620 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1621 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1622#else
1623 {Opt_acl, 0, MOPT_NOSUPPORT},
1624 {Opt_noacl, 0, MOPT_NOSUPPORT},
1625#endif
1626 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1627 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1628 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1629 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1630 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1631 MOPT_SET | MOPT_Q},
1632 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1633 MOPT_SET | MOPT_Q},
1634 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1635 MOPT_SET | MOPT_Q},
1636 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1637 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1638 MOPT_CLEAR | MOPT_Q},
1639 {Opt_usrjquota, 0, MOPT_Q},
1640 {Opt_grpjquota, 0, MOPT_Q},
1641 {Opt_offusrjquota, 0, MOPT_Q},
1642 {Opt_offgrpjquota, 0, MOPT_Q},
1643 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1644 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1645 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1646 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1647 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1648 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1649 {Opt_err, 0, 0}
1650};
1651
1652static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1653 substring_t *args, unsigned long *journal_devnum,
1654 unsigned int *journal_ioprio, int is_remount)
1655{
1656 struct ext4_sb_info *sbi = EXT4_SB(sb);
1657 const struct mount_opts *m;
1658 kuid_t uid;
1659 kgid_t gid;
1660 int arg = 0;
1661
1662#ifdef CONFIG_QUOTA
1663 if (token == Opt_usrjquota)
1664 return set_qf_name(sb, USRQUOTA, &args[0]);
1665 else if (token == Opt_grpjquota)
1666 return set_qf_name(sb, GRPQUOTA, &args[0]);
1667 else if (token == Opt_offusrjquota)
1668 return clear_qf_name(sb, USRQUOTA);
1669 else if (token == Opt_offgrpjquota)
1670 return clear_qf_name(sb, GRPQUOTA);
1671#endif
1672 switch (token) {
1673 case Opt_noacl:
1674 case Opt_nouser_xattr:
1675 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1676 break;
1677 case Opt_sb:
1678 return 1; /* handled by get_sb_block() */
1679 case Opt_removed:
1680 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1681 return 1;
1682 case Opt_abort:
1683 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1684 return 1;
1685 case Opt_i_version:
1686 sb->s_flags |= SB_I_VERSION;
1687 return 1;
1688 case Opt_lazytime:
1689 sb->s_flags |= SB_LAZYTIME;
1690 return 1;
1691 case Opt_nolazytime:
1692 sb->s_flags &= ~SB_LAZYTIME;
1693 return 1;
1694 }
1695
1696 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1697 if (token == m->token)
1698 break;
1699
1700 if (m->token == Opt_err) {
1701 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1702 "or missing value", opt);
1703 return -1;
1704 }
1705
1706 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1707 ext4_msg(sb, KERN_ERR,
1708 "Mount option \"%s\" incompatible with ext2", opt);
1709 return -1;
1710 }
1711 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1712 ext4_msg(sb, KERN_ERR,
1713 "Mount option \"%s\" incompatible with ext3", opt);
1714 return -1;
1715 }
1716
1717 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1718 return -1;
1719 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1720 return -1;
1721 if (m->flags & MOPT_EXPLICIT) {
1722 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1723 set_opt2(sb, EXPLICIT_DELALLOC);
1724 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1725 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1726 } else
1727 return -1;
1728 }
1729 if (m->flags & MOPT_CLEAR_ERR)
1730 clear_opt(sb, ERRORS_MASK);
1731 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1732 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1733 "options when quota turned on");
1734 return -1;
1735 }
1736
1737 if (m->flags & MOPT_NOSUPPORT) {
1738 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1739 } else if (token == Opt_commit) {
1740 if (arg == 0)
1741 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1742 sbi->s_commit_interval = HZ * arg;
1743 } else if (token == Opt_debug_want_extra_isize) {
1744 sbi->s_want_extra_isize = arg;
1745 } else if (token == Opt_max_batch_time) {
1746 sbi->s_max_batch_time = arg;
1747 } else if (token == Opt_min_batch_time) {
1748 sbi->s_min_batch_time = arg;
1749 } else if (token == Opt_inode_readahead_blks) {
1750 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1751 ext4_msg(sb, KERN_ERR,
1752 "EXT4-fs: inode_readahead_blks must be "
1753 "0 or a power of 2 smaller than 2^31");
1754 return -1;
1755 }
1756 sbi->s_inode_readahead_blks = arg;
1757 } else if (token == Opt_init_itable) {
1758 set_opt(sb, INIT_INODE_TABLE);
1759 if (!args->from)
1760 arg = EXT4_DEF_LI_WAIT_MULT;
1761 sbi->s_li_wait_mult = arg;
1762 } else if (token == Opt_max_dir_size_kb) {
1763 sbi->s_max_dir_size_kb = arg;
1764 } else if (token == Opt_stripe) {
1765 sbi->s_stripe = arg;
1766 } else if (token == Opt_resuid) {
1767 uid = make_kuid(current_user_ns(), arg);
1768 if (!uid_valid(uid)) {
1769 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1770 return -1;
1771 }
1772 sbi->s_resuid = uid;
1773 } else if (token == Opt_resgid) {
1774 gid = make_kgid(current_user_ns(), arg);
1775 if (!gid_valid(gid)) {
1776 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1777 return -1;
1778 }
1779 sbi->s_resgid = gid;
1780 } else if (token == Opt_journal_dev) {
1781 if (is_remount) {
1782 ext4_msg(sb, KERN_ERR,
1783 "Cannot specify journal on remount");
1784 return -1;
1785 }
1786 *journal_devnum = arg;
1787 } else if (token == Opt_journal_path) {
1788 char *journal_path;
1789 struct inode *journal_inode;
1790 struct path path;
1791 int error;
1792
1793 if (is_remount) {
1794 ext4_msg(sb, KERN_ERR,
1795 "Cannot specify journal on remount");
1796 return -1;
1797 }
1798 journal_path = match_strdup(&args[0]);
1799 if (!journal_path) {
1800 ext4_msg(sb, KERN_ERR, "error: could not dup "
1801 "journal device string");
1802 return -1;
1803 }
1804
1805 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1806 if (error) {
1807 ext4_msg(sb, KERN_ERR, "error: could not find "
1808 "journal device path: error %d", error);
1809 kfree(journal_path);
1810 return -1;
1811 }
1812
1813 journal_inode = d_inode(path.dentry);
1814 if (!S_ISBLK(journal_inode->i_mode)) {
1815 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1816 "is not a block device", journal_path);
1817 path_put(&path);
1818 kfree(journal_path);
1819 return -1;
1820 }
1821
1822 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1823 path_put(&path);
1824 kfree(journal_path);
1825 } else if (token == Opt_journal_ioprio) {
1826 if (arg > 7) {
1827 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1828 " (must be 0-7)");
1829 return -1;
1830 }
1831 *journal_ioprio =
1832 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1833 } else if (token == Opt_test_dummy_encryption) {
1834#ifdef CONFIG_EXT4_FS_ENCRYPTION
1835 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1836 ext4_msg(sb, KERN_WARNING,
1837 "Test dummy encryption mode enabled");
1838#else
1839 ext4_msg(sb, KERN_WARNING,
1840 "Test dummy encryption mount option ignored");
1841#endif
1842 } else if (m->flags & MOPT_DATAJ) {
1843 if (is_remount) {
1844 if (!sbi->s_journal)
1845 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1846 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1847 ext4_msg(sb, KERN_ERR,
1848 "Cannot change data mode on remount");
1849 return -1;
1850 }
1851 } else {
1852 clear_opt(sb, DATA_FLAGS);
1853 sbi->s_mount_opt |= m->mount_opt;
1854 }
1855#ifdef CONFIG_QUOTA
1856 } else if (m->flags & MOPT_QFMT) {
1857 if (sb_any_quota_loaded(sb) &&
1858 sbi->s_jquota_fmt != m->mount_opt) {
1859 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1860 "quota options when quota turned on");
1861 return -1;
1862 }
1863 if (ext4_has_feature_quota(sb)) {
1864 ext4_msg(sb, KERN_INFO,
1865 "Quota format mount options ignored "
1866 "when QUOTA feature is enabled");
1867 return 1;
1868 }
1869 sbi->s_jquota_fmt = m->mount_opt;
1870#endif
1871 } else if (token == Opt_dax) {
1872#ifdef CONFIG_FS_DAX
1873 ext4_msg(sb, KERN_WARNING,
1874 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1875 sbi->s_mount_opt |= m->mount_opt;
1876#else
1877 ext4_msg(sb, KERN_INFO, "dax option not supported");
1878 return -1;
1879#endif
1880 } else if (token == Opt_data_err_abort) {
1881 sbi->s_mount_opt |= m->mount_opt;
1882 } else if (token == Opt_data_err_ignore) {
1883 sbi->s_mount_opt &= ~m->mount_opt;
1884 } else {
1885 if (!args->from)
1886 arg = 1;
1887 if (m->flags & MOPT_CLEAR)
1888 arg = !arg;
1889 else if (unlikely(!(m->flags & MOPT_SET))) {
1890 ext4_msg(sb, KERN_WARNING,
1891 "buggy handling of option %s", opt);
1892 WARN_ON(1);
1893 return -1;
1894 }
1895 if (arg != 0)
1896 sbi->s_mount_opt |= m->mount_opt;
1897 else
1898 sbi->s_mount_opt &= ~m->mount_opt;
1899 }
1900 return 1;
1901}
1902
1903static int parse_options(char *options, struct super_block *sb,
1904 unsigned long *journal_devnum,
1905 unsigned int *journal_ioprio,
1906 int is_remount)
1907{
1908 struct ext4_sb_info *sbi = EXT4_SB(sb);
1909 char *p;
1910 substring_t args[MAX_OPT_ARGS];
1911 int token;
1912
1913 if (!options)
1914 return 1;
1915
1916 while ((p = strsep(&options, ",")) != NULL) {
1917 if (!*p)
1918 continue;
1919 /*
1920 * Initialize args struct so we know whether arg was
1921 * found; some options take optional arguments.
1922 */
1923 args[0].to = args[0].from = NULL;
1924 token = match_token(p, tokens, args);
1925 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1926 journal_ioprio, is_remount) < 0)
1927 return 0;
1928 }
1929#ifdef CONFIG_QUOTA
1930 /*
1931 * We do the test below only for project quotas. 'usrquota' and
1932 * 'grpquota' mount options are allowed even without quota feature
1933 * to support legacy quotas in quota files.
1934 */
1935 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1936 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1937 "Cannot enable project quota enforcement.");
1938 return 0;
1939 }
1940 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1941 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1942 clear_opt(sb, USRQUOTA);
1943
1944 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1945 clear_opt(sb, GRPQUOTA);
1946
1947 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1948 ext4_msg(sb, KERN_ERR, "old and new quota "
1949 "format mixing");
1950 return 0;
1951 }
1952
1953 if (!sbi->s_jquota_fmt) {
1954 ext4_msg(sb, KERN_ERR, "journaled quota format "
1955 "not specified");
1956 return 0;
1957 }
1958 }
1959#endif
1960 if (test_opt(sb, DIOREAD_NOLOCK)) {
1961 int blocksize =
1962 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1963
1964 if (blocksize < PAGE_SIZE) {
1965 ext4_msg(sb, KERN_ERR, "can't mount with "
1966 "dioread_nolock if block size != PAGE_SIZE");
1967 return 0;
1968 }
1969 }
1970 return 1;
1971}
1972
1973static inline void ext4_show_quota_options(struct seq_file *seq,
1974 struct super_block *sb)
1975{
1976#if defined(CONFIG_QUOTA)
1977 struct ext4_sb_info *sbi = EXT4_SB(sb);
1978
1979 if (sbi->s_jquota_fmt) {
1980 char *fmtname = "";
1981
1982 switch (sbi->s_jquota_fmt) {
1983 case QFMT_VFS_OLD:
1984 fmtname = "vfsold";
1985 break;
1986 case QFMT_VFS_V0:
1987 fmtname = "vfsv0";
1988 break;
1989 case QFMT_VFS_V1:
1990 fmtname = "vfsv1";
1991 break;
1992 }
1993 seq_printf(seq, ",jqfmt=%s", fmtname);
1994 }
1995
1996 if (sbi->s_qf_names[USRQUOTA])
1997 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1998
1999 if (sbi->s_qf_names[GRPQUOTA])
2000 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
2001#endif
2002}
2003
2004static const char *token2str(int token)
2005{
2006 const struct match_token *t;
2007
2008 for (t = tokens; t->token != Opt_err; t++)
2009 if (t->token == token && !strchr(t->pattern, '='))
2010 break;
2011 return t->pattern;
2012}
2013
2014/*
2015 * Show an option if
2016 * - it's set to a non-default value OR
2017 * - if the per-sb default is different from the global default
2018 */
2019static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2020 int nodefs)
2021{
2022 struct ext4_sb_info *sbi = EXT4_SB(sb);
2023 struct ext4_super_block *es = sbi->s_es;
2024 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2025 const struct mount_opts *m;
2026 char sep = nodefs ? '\n' : ',';
2027
2028#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2029#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2030
2031 if (sbi->s_sb_block != 1)
2032 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2033
2034 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2035 int want_set = m->flags & MOPT_SET;
2036 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2037 (m->flags & MOPT_CLEAR_ERR))
2038 continue;
2039 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2040 continue; /* skip if same as the default */
2041 if ((want_set &&
2042 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2043 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2044 continue; /* select Opt_noFoo vs Opt_Foo */
2045 SEQ_OPTS_PRINT("%s", token2str(m->token));
2046 }
2047
2048 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2049 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2050 SEQ_OPTS_PRINT("resuid=%u",
2051 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2052 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2053 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2054 SEQ_OPTS_PRINT("resgid=%u",
2055 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2056 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2057 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2058 SEQ_OPTS_PUTS("errors=remount-ro");
2059 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2060 SEQ_OPTS_PUTS("errors=continue");
2061 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2062 SEQ_OPTS_PUTS("errors=panic");
2063 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2064 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2065 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2066 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2067 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2068 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2069 if (sb->s_flags & SB_I_VERSION)
2070 SEQ_OPTS_PUTS("i_version");
2071 if (nodefs || sbi->s_stripe)
2072 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2073 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2074 (sbi->s_mount_opt ^ def_mount_opt)) {
2075 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2076 SEQ_OPTS_PUTS("data=journal");
2077 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2078 SEQ_OPTS_PUTS("data=ordered");
2079 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2080 SEQ_OPTS_PUTS("data=writeback");
2081 }
2082 if (nodefs ||
2083 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2084 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2085 sbi->s_inode_readahead_blks);
2086
2087 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2088 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2089 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2090 if (nodefs || sbi->s_max_dir_size_kb)
2091 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2092 if (test_opt(sb, DATA_ERR_ABORT))
2093 SEQ_OPTS_PUTS("data_err=abort");
2094
2095 ext4_show_quota_options(seq, sb);
2096 return 0;
2097}
2098
2099static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2100{
2101 return _ext4_show_options(seq, root->d_sb, 0);
2102}
2103
2104int ext4_seq_options_show(struct seq_file *seq, void *offset)
2105{
2106 struct super_block *sb = seq->private;
2107 int rc;
2108
2109 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2110 rc = _ext4_show_options(seq, sb, 1);
2111 seq_puts(seq, "\n");
2112 return rc;
2113}
2114
2115static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2116 int read_only)
2117{
2118 struct ext4_sb_info *sbi = EXT4_SB(sb);
2119 int res = 0;
2120
2121 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2122 ext4_msg(sb, KERN_ERR, "revision level too high, "
2123 "forcing read-only mode");
2124 res = SB_RDONLY;
2125 }
2126 if (read_only)
2127 goto done;
2128 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2129 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2130 "running e2fsck is recommended");
2131 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2132 ext4_msg(sb, KERN_WARNING,
2133 "warning: mounting fs with errors, "
2134 "running e2fsck is recommended");
2135 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2136 le16_to_cpu(es->s_mnt_count) >=
2137 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2138 ext4_msg(sb, KERN_WARNING,
2139 "warning: maximal mount count reached, "
2140 "running e2fsck is recommended");
2141 else if (le32_to_cpu(es->s_checkinterval) &&
2142 (le32_to_cpu(es->s_lastcheck) +
2143 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2144 ext4_msg(sb, KERN_WARNING,
2145 "warning: checktime reached, "
2146 "running e2fsck is recommended");
2147 if (!sbi->s_journal)
2148 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2149 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2150 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2151 le16_add_cpu(&es->s_mnt_count, 1);
2152 es->s_mtime = cpu_to_le32(get_seconds());
2153 ext4_update_dynamic_rev(sb);
2154 if (sbi->s_journal)
2155 ext4_set_feature_journal_needs_recovery(sb);
2156
2157 ext4_commit_super(sb, 1);
2158done:
2159 if (test_opt(sb, DEBUG))
2160 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2161 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2162 sb->s_blocksize,
2163 sbi->s_groups_count,
2164 EXT4_BLOCKS_PER_GROUP(sb),
2165 EXT4_INODES_PER_GROUP(sb),
2166 sbi->s_mount_opt, sbi->s_mount_opt2);
2167
2168 cleancache_init_fs(sb);
2169 return res;
2170}
2171
2172int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2173{
2174 struct ext4_sb_info *sbi = EXT4_SB(sb);
2175 struct flex_groups *new_groups;
2176 int size;
2177
2178 if (!sbi->s_log_groups_per_flex)
2179 return 0;
2180
2181 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2182 if (size <= sbi->s_flex_groups_allocated)
2183 return 0;
2184
2185 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2186 new_groups = kvzalloc(size, GFP_KERNEL);
2187 if (!new_groups) {
2188 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2189 size / (int) sizeof(struct flex_groups));
2190 return -ENOMEM;
2191 }
2192
2193 if (sbi->s_flex_groups) {
2194 memcpy(new_groups, sbi->s_flex_groups,
2195 (sbi->s_flex_groups_allocated *
2196 sizeof(struct flex_groups)));
2197 kvfree(sbi->s_flex_groups);
2198 }
2199 sbi->s_flex_groups = new_groups;
2200 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2201 return 0;
2202}
2203
2204static int ext4_fill_flex_info(struct super_block *sb)
2205{
2206 struct ext4_sb_info *sbi = EXT4_SB(sb);
2207 struct ext4_group_desc *gdp = NULL;
2208 ext4_group_t flex_group;
2209 int i, err;
2210
2211 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2212 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2213 sbi->s_log_groups_per_flex = 0;
2214 return 1;
2215 }
2216
2217 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2218 if (err)
2219 goto failed;
2220
2221 for (i = 0; i < sbi->s_groups_count; i++) {
2222 gdp = ext4_get_group_desc(sb, i, NULL);
2223
2224 flex_group = ext4_flex_group(sbi, i);
2225 atomic_add(ext4_free_inodes_count(sb, gdp),
2226 &sbi->s_flex_groups[flex_group].free_inodes);
2227 atomic64_add(ext4_free_group_clusters(sb, gdp),
2228 &sbi->s_flex_groups[flex_group].free_clusters);
2229 atomic_add(ext4_used_dirs_count(sb, gdp),
2230 &sbi->s_flex_groups[flex_group].used_dirs);
2231 }
2232
2233 return 1;
2234failed:
2235 return 0;
2236}
2237
2238static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2239 struct ext4_group_desc *gdp)
2240{
2241 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2242 __u16 crc = 0;
2243 __le32 le_group = cpu_to_le32(block_group);
2244 struct ext4_sb_info *sbi = EXT4_SB(sb);
2245
2246 if (ext4_has_metadata_csum(sbi->s_sb)) {
2247 /* Use new metadata_csum algorithm */
2248 __u32 csum32;
2249 __u16 dummy_csum = 0;
2250
2251 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2252 sizeof(le_group));
2253 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2254 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2255 sizeof(dummy_csum));
2256 offset += sizeof(dummy_csum);
2257 if (offset < sbi->s_desc_size)
2258 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2259 sbi->s_desc_size - offset);
2260
2261 crc = csum32 & 0xFFFF;
2262 goto out;
2263 }
2264
2265 /* old crc16 code */
2266 if (!ext4_has_feature_gdt_csum(sb))
2267 return 0;
2268
2269 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2270 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2271 crc = crc16(crc, (__u8 *)gdp, offset);
2272 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2273 /* for checksum of struct ext4_group_desc do the rest...*/
2274 if (ext4_has_feature_64bit(sb) &&
2275 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2276 crc = crc16(crc, (__u8 *)gdp + offset,
2277 le16_to_cpu(sbi->s_es->s_desc_size) -
2278 offset);
2279
2280out:
2281 return cpu_to_le16(crc);
2282}
2283
2284int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2285 struct ext4_group_desc *gdp)
2286{
2287 if (ext4_has_group_desc_csum(sb) &&
2288 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2289 return 0;
2290
2291 return 1;
2292}
2293
2294void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2295 struct ext4_group_desc *gdp)
2296{
2297 if (!ext4_has_group_desc_csum(sb))
2298 return;
2299 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2300}
2301
2302/* Called at mount-time, super-block is locked */
2303static int ext4_check_descriptors(struct super_block *sb,
2304 ext4_fsblk_t sb_block,
2305 ext4_group_t *first_not_zeroed)
2306{
2307 struct ext4_sb_info *sbi = EXT4_SB(sb);
2308 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2309 ext4_fsblk_t last_block;
2310 ext4_fsblk_t block_bitmap;
2311 ext4_fsblk_t inode_bitmap;
2312 ext4_fsblk_t inode_table;
2313 int flexbg_flag = 0;
2314 ext4_group_t i, grp = sbi->s_groups_count;
2315
2316 if (ext4_has_feature_flex_bg(sb))
2317 flexbg_flag = 1;
2318
2319 ext4_debug("Checking group descriptors");
2320
2321 for (i = 0; i < sbi->s_groups_count; i++) {
2322 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2323
2324 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2325 last_block = ext4_blocks_count(sbi->s_es) - 1;
2326 else
2327 last_block = first_block +
2328 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2329
2330 if ((grp == sbi->s_groups_count) &&
2331 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2332 grp = i;
2333
2334 block_bitmap = ext4_block_bitmap(sb, gdp);
2335 if (block_bitmap == sb_block) {
2336 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2337 "Block bitmap for group %u overlaps "
2338 "superblock", i);
2339 if (!sb_rdonly(sb))
2340 return 0;
2341 }
2342 if (block_bitmap < first_block || block_bitmap > last_block) {
2343 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2344 "Block bitmap for group %u not in group "
2345 "(block %llu)!", i, block_bitmap);
2346 return 0;
2347 }
2348 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2349 if (inode_bitmap == sb_block) {
2350 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2351 "Inode bitmap for group %u overlaps "
2352 "superblock", i);
2353 if (!sb_rdonly(sb))
2354 return 0;
2355 }
2356 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2357 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2358 "Inode bitmap for group %u not in group "
2359 "(block %llu)!", i, inode_bitmap);
2360 return 0;
2361 }
2362 inode_table = ext4_inode_table(sb, gdp);
2363 if (inode_table == sb_block) {
2364 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2365 "Inode table for group %u overlaps "
2366 "superblock", i);
2367 if (!sb_rdonly(sb))
2368 return 0;
2369 }
2370 if (inode_table < first_block ||
2371 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2372 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2373 "Inode table for group %u not in group "
2374 "(block %llu)!", i, inode_table);
2375 return 0;
2376 }
2377 ext4_lock_group(sb, i);
2378 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2379 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2380 "Checksum for group %u failed (%u!=%u)",
2381 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2382 gdp)), le16_to_cpu(gdp->bg_checksum));
2383 if (!sb_rdonly(sb)) {
2384 ext4_unlock_group(sb, i);
2385 return 0;
2386 }
2387 }
2388 ext4_unlock_group(sb, i);
2389 if (!flexbg_flag)
2390 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2391 }
2392 if (NULL != first_not_zeroed)
2393 *first_not_zeroed = grp;
2394 return 1;
2395}
2396
2397/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2398 * the superblock) which were deleted from all directories, but held open by
2399 * a process at the time of a crash. We walk the list and try to delete these
2400 * inodes at recovery time (only with a read-write filesystem).
2401 *
2402 * In order to keep the orphan inode chain consistent during traversal (in
2403 * case of crash during recovery), we link each inode into the superblock
2404 * orphan list_head and handle it the same way as an inode deletion during
2405 * normal operation (which journals the operations for us).
2406 *
2407 * We only do an iget() and an iput() on each inode, which is very safe if we
2408 * accidentally point at an in-use or already deleted inode. The worst that
2409 * can happen in this case is that we get a "bit already cleared" message from
2410 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2411 * e2fsck was run on this filesystem, and it must have already done the orphan
2412 * inode cleanup for us, so we can safely abort without any further action.
2413 */
2414static void ext4_orphan_cleanup(struct super_block *sb,
2415 struct ext4_super_block *es)
2416{
2417 unsigned int s_flags = sb->s_flags;
2418 int ret, nr_orphans = 0, nr_truncates = 0;
2419#ifdef CONFIG_QUOTA
2420 int quota_update = 0;
2421 int i;
2422#endif
2423 if (!es->s_last_orphan) {
2424 jbd_debug(4, "no orphan inodes to clean up\n");
2425 return;
2426 }
2427
2428 if (bdev_read_only(sb->s_bdev)) {
2429 ext4_msg(sb, KERN_ERR, "write access "
2430 "unavailable, skipping orphan cleanup");
2431 return;
2432 }
2433
2434 /* Check if feature set would not allow a r/w mount */
2435 if (!ext4_feature_set_ok(sb, 0)) {
2436 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2437 "unknown ROCOMPAT features");
2438 return;
2439 }
2440
2441 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2442 /* don't clear list on RO mount w/ errors */
2443 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2444 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2445 "clearing orphan list.\n");
2446 es->s_last_orphan = 0;
2447 }
2448 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2449 return;
2450 }
2451
2452 if (s_flags & SB_RDONLY) {
2453 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2454 sb->s_flags &= ~SB_RDONLY;
2455 }
2456#ifdef CONFIG_QUOTA
2457 /* Needed for iput() to work correctly and not trash data */
2458 sb->s_flags |= SB_ACTIVE;
2459
2460 /*
2461 * Turn on quotas which were not enabled for read-only mounts if
2462 * filesystem has quota feature, so that they are updated correctly.
2463 */
2464 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2465 int ret = ext4_enable_quotas(sb);
2466
2467 if (!ret)
2468 quota_update = 1;
2469 else
2470 ext4_msg(sb, KERN_ERR,
2471 "Cannot turn on quotas: error %d", ret);
2472 }
2473
2474 /* Turn on journaled quotas used for old sytle */
2475 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2476 if (EXT4_SB(sb)->s_qf_names[i]) {
2477 int ret = ext4_quota_on_mount(sb, i);
2478
2479 if (!ret)
2480 quota_update = 1;
2481 else
2482 ext4_msg(sb, KERN_ERR,
2483 "Cannot turn on journaled "
2484 "quota: type %d: error %d", i, ret);
2485 }
2486 }
2487#endif
2488
2489 while (es->s_last_orphan) {
2490 struct inode *inode;
2491
2492 /*
2493 * We may have encountered an error during cleanup; if
2494 * so, skip the rest.
2495 */
2496 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2497 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2498 es->s_last_orphan = 0;
2499 break;
2500 }
2501
2502 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2503 if (IS_ERR(inode)) {
2504 es->s_last_orphan = 0;
2505 break;
2506 }
2507
2508 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2509 dquot_initialize(inode);
2510 if (inode->i_nlink) {
2511 if (test_opt(sb, DEBUG))
2512 ext4_msg(sb, KERN_DEBUG,
2513 "%s: truncating inode %lu to %lld bytes",
2514 __func__, inode->i_ino, inode->i_size);
2515 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2516 inode->i_ino, inode->i_size);
2517 inode_lock(inode);
2518 truncate_inode_pages(inode->i_mapping, inode->i_size);
2519 ret = ext4_truncate(inode);
2520 if (ret)
2521 ext4_std_error(inode->i_sb, ret);
2522 inode_unlock(inode);
2523 nr_truncates++;
2524 } else {
2525 if (test_opt(sb, DEBUG))
2526 ext4_msg(sb, KERN_DEBUG,
2527 "%s: deleting unreferenced inode %lu",
2528 __func__, inode->i_ino);
2529 jbd_debug(2, "deleting unreferenced inode %lu\n",
2530 inode->i_ino);
2531 nr_orphans++;
2532 }
2533 iput(inode); /* The delete magic happens here! */
2534 }
2535
2536#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2537
2538 if (nr_orphans)
2539 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2540 PLURAL(nr_orphans));
2541 if (nr_truncates)
2542 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2543 PLURAL(nr_truncates));
2544#ifdef CONFIG_QUOTA
2545 /* Turn off quotas if they were enabled for orphan cleanup */
2546 if (quota_update) {
2547 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2548 if (sb_dqopt(sb)->files[i])
2549 dquot_quota_off(sb, i);
2550 }
2551 }
2552#endif
2553 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2554}
2555
2556/*
2557 * Maximal extent format file size.
2558 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2559 * extent format containers, within a sector_t, and within i_blocks
2560 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2561 * so that won't be a limiting factor.
2562 *
2563 * However there is other limiting factor. We do store extents in the form
2564 * of starting block and length, hence the resulting length of the extent
2565 * covering maximum file size must fit into on-disk format containers as
2566 * well. Given that length is always by 1 unit bigger than max unit (because
2567 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2568 *
2569 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2570 */
2571static loff_t ext4_max_size(int blkbits, int has_huge_files)
2572{
2573 loff_t res;
2574 loff_t upper_limit = MAX_LFS_FILESIZE;
2575
2576 /* small i_blocks in vfs inode? */
2577 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2578 /*
2579 * CONFIG_LBDAF is not enabled implies the inode
2580 * i_block represent total blocks in 512 bytes
2581 * 32 == size of vfs inode i_blocks * 8
2582 */
2583 upper_limit = (1LL << 32) - 1;
2584
2585 /* total blocks in file system block size */
2586 upper_limit >>= (blkbits - 9);
2587 upper_limit <<= blkbits;
2588 }
2589
2590 /*
2591 * 32-bit extent-start container, ee_block. We lower the maxbytes
2592 * by one fs block, so ee_len can cover the extent of maximum file
2593 * size
2594 */
2595 res = (1LL << 32) - 1;
2596 res <<= blkbits;
2597
2598 /* Sanity check against vm- & vfs- imposed limits */
2599 if (res > upper_limit)
2600 res = upper_limit;
2601
2602 return res;
2603}
2604
2605/*
2606 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2607 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2608 * We need to be 1 filesystem block less than the 2^48 sector limit.
2609 */
2610static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2611{
2612 loff_t res = EXT4_NDIR_BLOCKS;
2613 int meta_blocks;
2614 loff_t upper_limit;
2615 /* This is calculated to be the largest file size for a dense, block
2616 * mapped file such that the file's total number of 512-byte sectors,
2617 * including data and all indirect blocks, does not exceed (2^48 - 1).
2618 *
2619 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2620 * number of 512-byte sectors of the file.
2621 */
2622
2623 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2624 /*
2625 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2626 * the inode i_block field represents total file blocks in
2627 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2628 */
2629 upper_limit = (1LL << 32) - 1;
2630
2631 /* total blocks in file system block size */
2632 upper_limit >>= (bits - 9);
2633
2634 } else {
2635 /*
2636 * We use 48 bit ext4_inode i_blocks
2637 * With EXT4_HUGE_FILE_FL set the i_blocks
2638 * represent total number of blocks in
2639 * file system block size
2640 */
2641 upper_limit = (1LL << 48) - 1;
2642
2643 }
2644
2645 /* indirect blocks */
2646 meta_blocks = 1;
2647 /* double indirect blocks */
2648 meta_blocks += 1 + (1LL << (bits-2));
2649 /* tripple indirect blocks */
2650 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2651
2652 upper_limit -= meta_blocks;
2653 upper_limit <<= bits;
2654
2655 res += 1LL << (bits-2);
2656 res += 1LL << (2*(bits-2));
2657 res += 1LL << (3*(bits-2));
2658 res <<= bits;
2659 if (res > upper_limit)
2660 res = upper_limit;
2661
2662 if (res > MAX_LFS_FILESIZE)
2663 res = MAX_LFS_FILESIZE;
2664
2665 return res;
2666}
2667
2668static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2669 ext4_fsblk_t logical_sb_block, int nr)
2670{
2671 struct ext4_sb_info *sbi = EXT4_SB(sb);
2672 ext4_group_t bg, first_meta_bg;
2673 int has_super = 0;
2674
2675 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2676
2677 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2678 return logical_sb_block + nr + 1;
2679 bg = sbi->s_desc_per_block * nr;
2680 if (ext4_bg_has_super(sb, bg))
2681 has_super = 1;
2682
2683 /*
2684 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2685 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2686 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2687 * compensate.
2688 */
2689 if (sb->s_blocksize == 1024 && nr == 0 &&
2690 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2691 has_super++;
2692
2693 return (has_super + ext4_group_first_block_no(sb, bg));
2694}
2695
2696/**
2697 * ext4_get_stripe_size: Get the stripe size.
2698 * @sbi: In memory super block info
2699 *
2700 * If we have specified it via mount option, then
2701 * use the mount option value. If the value specified at mount time is
2702 * greater than the blocks per group use the super block value.
2703 * If the super block value is greater than blocks per group return 0.
2704 * Allocator needs it be less than blocks per group.
2705 *
2706 */
2707static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2708{
2709 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2710 unsigned long stripe_width =
2711 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2712 int ret;
2713
2714 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2715 ret = sbi->s_stripe;
2716 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2717 ret = stripe_width;
2718 else if (stride && stride <= sbi->s_blocks_per_group)
2719 ret = stride;
2720 else
2721 ret = 0;
2722
2723 /*
2724 * If the stripe width is 1, this makes no sense and
2725 * we set it to 0 to turn off stripe handling code.
2726 */
2727 if (ret <= 1)
2728 ret = 0;
2729
2730 return ret;
2731}
2732
2733/*
2734 * Check whether this filesystem can be mounted based on
2735 * the features present and the RDONLY/RDWR mount requested.
2736 * Returns 1 if this filesystem can be mounted as requested,
2737 * 0 if it cannot be.
2738 */
2739static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2740{
2741 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2742 ext4_msg(sb, KERN_ERR,
2743 "Couldn't mount because of "
2744 "unsupported optional features (%x)",
2745 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2746 ~EXT4_FEATURE_INCOMPAT_SUPP));
2747 return 0;
2748 }
2749
2750 if (readonly)
2751 return 1;
2752
2753 if (ext4_has_feature_readonly(sb)) {
2754 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2755 sb->s_flags |= SB_RDONLY;
2756 return 1;
2757 }
2758
2759 /* Check that feature set is OK for a read-write mount */
2760 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2761 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2762 "unsupported optional features (%x)",
2763 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2764 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2765 return 0;
2766 }
2767 /*
2768 * Large file size enabled file system can only be mounted
2769 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2770 */
2771 if (ext4_has_feature_huge_file(sb)) {
2772 if (sizeof(blkcnt_t) < sizeof(u64)) {
2773 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2774 "cannot be mounted RDWR without "
2775 "CONFIG_LBDAF");
2776 return 0;
2777 }
2778 }
2779 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2780 ext4_msg(sb, KERN_ERR,
2781 "Can't support bigalloc feature without "
2782 "extents feature\n");
2783 return 0;
2784 }
2785
2786#ifndef CONFIG_QUOTA
2787 if (ext4_has_feature_quota(sb) && !readonly) {
2788 ext4_msg(sb, KERN_ERR,
2789 "Filesystem with quota feature cannot be mounted RDWR "
2790 "without CONFIG_QUOTA");
2791 return 0;
2792 }
2793 if (ext4_has_feature_project(sb) && !readonly) {
2794 ext4_msg(sb, KERN_ERR,
2795 "Filesystem with project quota feature cannot be mounted RDWR "
2796 "without CONFIG_QUOTA");
2797 return 0;
2798 }
2799#endif /* CONFIG_QUOTA */
2800 return 1;
2801}
2802
2803/*
2804 * This function is called once a day if we have errors logged
2805 * on the file system
2806 */
2807static void print_daily_error_info(struct timer_list *t)
2808{
2809 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2810 struct super_block *sb = sbi->s_sb;
2811 struct ext4_super_block *es = sbi->s_es;
2812
2813 if (es->s_error_count)
2814 /* fsck newer than v1.41.13 is needed to clean this condition. */
2815 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2816 le32_to_cpu(es->s_error_count));
2817 if (es->s_first_error_time) {
2818 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2819 sb->s_id, le32_to_cpu(es->s_first_error_time),
2820 (int) sizeof(es->s_first_error_func),
2821 es->s_first_error_func,
2822 le32_to_cpu(es->s_first_error_line));
2823 if (es->s_first_error_ino)
2824 printk(KERN_CONT ": inode %u",
2825 le32_to_cpu(es->s_first_error_ino));
2826 if (es->s_first_error_block)
2827 printk(KERN_CONT ": block %llu", (unsigned long long)
2828 le64_to_cpu(es->s_first_error_block));
2829 printk(KERN_CONT "\n");
2830 }
2831 if (es->s_last_error_time) {
2832 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2833 sb->s_id, le32_to_cpu(es->s_last_error_time),
2834 (int) sizeof(es->s_last_error_func),
2835 es->s_last_error_func,
2836 le32_to_cpu(es->s_last_error_line));
2837 if (es->s_last_error_ino)
2838 printk(KERN_CONT ": inode %u",
2839 le32_to_cpu(es->s_last_error_ino));
2840 if (es->s_last_error_block)
2841 printk(KERN_CONT ": block %llu", (unsigned long long)
2842 le64_to_cpu(es->s_last_error_block));
2843 printk(KERN_CONT "\n");
2844 }
2845 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2846}
2847
2848/* Find next suitable group and run ext4_init_inode_table */
2849static int ext4_run_li_request(struct ext4_li_request *elr)
2850{
2851 struct ext4_group_desc *gdp = NULL;
2852 ext4_group_t group, ngroups;
2853 struct super_block *sb;
2854 unsigned long timeout = 0;
2855 int ret = 0;
2856
2857 sb = elr->lr_super;
2858 ngroups = EXT4_SB(sb)->s_groups_count;
2859
2860 for (group = elr->lr_next_group; group < ngroups; group++) {
2861 gdp = ext4_get_group_desc(sb, group, NULL);
2862 if (!gdp) {
2863 ret = 1;
2864 break;
2865 }
2866
2867 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2868 break;
2869 }
2870
2871 if (group >= ngroups)
2872 ret = 1;
2873
2874 if (!ret) {
2875 timeout = jiffies;
2876 ret = ext4_init_inode_table(sb, group,
2877 elr->lr_timeout ? 0 : 1);
2878 if (elr->lr_timeout == 0) {
2879 timeout = (jiffies - timeout) *
2880 elr->lr_sbi->s_li_wait_mult;
2881 elr->lr_timeout = timeout;
2882 }
2883 elr->lr_next_sched = jiffies + elr->lr_timeout;
2884 elr->lr_next_group = group + 1;
2885 }
2886 return ret;
2887}
2888
2889/*
2890 * Remove lr_request from the list_request and free the
2891 * request structure. Should be called with li_list_mtx held
2892 */
2893static void ext4_remove_li_request(struct ext4_li_request *elr)
2894{
2895 struct ext4_sb_info *sbi;
2896
2897 if (!elr)
2898 return;
2899
2900 sbi = elr->lr_sbi;
2901
2902 list_del(&elr->lr_request);
2903 sbi->s_li_request = NULL;
2904 kfree(elr);
2905}
2906
2907static void ext4_unregister_li_request(struct super_block *sb)
2908{
2909 mutex_lock(&ext4_li_mtx);
2910 if (!ext4_li_info) {
2911 mutex_unlock(&ext4_li_mtx);
2912 return;
2913 }
2914
2915 mutex_lock(&ext4_li_info->li_list_mtx);
2916 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2917 mutex_unlock(&ext4_li_info->li_list_mtx);
2918 mutex_unlock(&ext4_li_mtx);
2919}
2920
2921static struct task_struct *ext4_lazyinit_task;
2922
2923/*
2924 * This is the function where ext4lazyinit thread lives. It walks
2925 * through the request list searching for next scheduled filesystem.
2926 * When such a fs is found, run the lazy initialization request
2927 * (ext4_rn_li_request) and keep track of the time spend in this
2928 * function. Based on that time we compute next schedule time of
2929 * the request. When walking through the list is complete, compute
2930 * next waking time and put itself into sleep.
2931 */
2932static int ext4_lazyinit_thread(void *arg)
2933{
2934 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2935 struct list_head *pos, *n;
2936 struct ext4_li_request *elr;
2937 unsigned long next_wakeup, cur;
2938
2939 BUG_ON(NULL == eli);
2940
2941cont_thread:
2942 while (true) {
2943 next_wakeup = MAX_JIFFY_OFFSET;
2944
2945 mutex_lock(&eli->li_list_mtx);
2946 if (list_empty(&eli->li_request_list)) {
2947 mutex_unlock(&eli->li_list_mtx);
2948 goto exit_thread;
2949 }
2950 list_for_each_safe(pos, n, &eli->li_request_list) {
2951 int err = 0;
2952 int progress = 0;
2953 elr = list_entry(pos, struct ext4_li_request,
2954 lr_request);
2955
2956 if (time_before(jiffies, elr->lr_next_sched)) {
2957 if (time_before(elr->lr_next_sched, next_wakeup))
2958 next_wakeup = elr->lr_next_sched;
2959 continue;
2960 }
2961 if (down_read_trylock(&elr->lr_super->s_umount)) {
2962 if (sb_start_write_trylock(elr->lr_super)) {
2963 progress = 1;
2964 /*
2965 * We hold sb->s_umount, sb can not
2966 * be removed from the list, it is
2967 * now safe to drop li_list_mtx
2968 */
2969 mutex_unlock(&eli->li_list_mtx);
2970 err = ext4_run_li_request(elr);
2971 sb_end_write(elr->lr_super);
2972 mutex_lock(&eli->li_list_mtx);
2973 n = pos->next;
2974 }
2975 up_read((&elr->lr_super->s_umount));
2976 }
2977 /* error, remove the lazy_init job */
2978 if (err) {
2979 ext4_remove_li_request(elr);
2980 continue;
2981 }
2982 if (!progress) {
2983 elr->lr_next_sched = jiffies +
2984 (prandom_u32()
2985 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2986 }
2987 if (time_before(elr->lr_next_sched, next_wakeup))
2988 next_wakeup = elr->lr_next_sched;
2989 }
2990 mutex_unlock(&eli->li_list_mtx);
2991
2992 try_to_freeze();
2993
2994 cur = jiffies;
2995 if ((time_after_eq(cur, next_wakeup)) ||
2996 (MAX_JIFFY_OFFSET == next_wakeup)) {
2997 cond_resched();
2998 continue;
2999 }
3000
3001 schedule_timeout_interruptible(next_wakeup - cur);
3002
3003 if (kthread_should_stop()) {
3004 ext4_clear_request_list();
3005 goto exit_thread;
3006 }
3007 }
3008
3009exit_thread:
3010 /*
3011 * It looks like the request list is empty, but we need
3012 * to check it under the li_list_mtx lock, to prevent any
3013 * additions into it, and of course we should lock ext4_li_mtx
3014 * to atomically free the list and ext4_li_info, because at
3015 * this point another ext4 filesystem could be registering
3016 * new one.
3017 */
3018 mutex_lock(&ext4_li_mtx);
3019 mutex_lock(&eli->li_list_mtx);
3020 if (!list_empty(&eli->li_request_list)) {
3021 mutex_unlock(&eli->li_list_mtx);
3022 mutex_unlock(&ext4_li_mtx);
3023 goto cont_thread;
3024 }
3025 mutex_unlock(&eli->li_list_mtx);
3026 kfree(ext4_li_info);
3027 ext4_li_info = NULL;
3028 mutex_unlock(&ext4_li_mtx);
3029
3030 return 0;
3031}
3032
3033static void ext4_clear_request_list(void)
3034{
3035 struct list_head *pos, *n;
3036 struct ext4_li_request *elr;
3037
3038 mutex_lock(&ext4_li_info->li_list_mtx);
3039 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3040 elr = list_entry(pos, struct ext4_li_request,
3041 lr_request);
3042 ext4_remove_li_request(elr);
3043 }
3044 mutex_unlock(&ext4_li_info->li_list_mtx);
3045}
3046
3047static int ext4_run_lazyinit_thread(void)
3048{
3049 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3050 ext4_li_info, "ext4lazyinit");
3051 if (IS_ERR(ext4_lazyinit_task)) {
3052 int err = PTR_ERR(ext4_lazyinit_task);
3053 ext4_clear_request_list();
3054 kfree(ext4_li_info);
3055 ext4_li_info = NULL;
3056 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3057 "initialization thread\n",
3058 err);
3059 return err;
3060 }
3061 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3062 return 0;
3063}
3064
3065/*
3066 * Check whether it make sense to run itable init. thread or not.
3067 * If there is at least one uninitialized inode table, return
3068 * corresponding group number, else the loop goes through all
3069 * groups and return total number of groups.
3070 */
3071static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3072{
3073 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3074 struct ext4_group_desc *gdp = NULL;
3075
3076 for (group = 0; group < ngroups; group++) {
3077 gdp = ext4_get_group_desc(sb, group, NULL);
3078 if (!gdp)
3079 continue;
3080
3081 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3082 break;
3083 }
3084
3085 return group;
3086}
3087
3088static int ext4_li_info_new(void)
3089{
3090 struct ext4_lazy_init *eli = NULL;
3091
3092 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3093 if (!eli)
3094 return -ENOMEM;
3095
3096 INIT_LIST_HEAD(&eli->li_request_list);
3097 mutex_init(&eli->li_list_mtx);
3098
3099 eli->li_state |= EXT4_LAZYINIT_QUIT;
3100
3101 ext4_li_info = eli;
3102
3103 return 0;
3104}
3105
3106static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3107 ext4_group_t start)
3108{
3109 struct ext4_sb_info *sbi = EXT4_SB(sb);
3110 struct ext4_li_request *elr;
3111
3112 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3113 if (!elr)
3114 return NULL;
3115
3116 elr->lr_super = sb;
3117 elr->lr_sbi = sbi;
3118 elr->lr_next_group = start;
3119
3120 /*
3121 * Randomize first schedule time of the request to
3122 * spread the inode table initialization requests
3123 * better.
3124 */
3125 elr->lr_next_sched = jiffies + (prandom_u32() %
3126 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3127 return elr;
3128}
3129
3130int ext4_register_li_request(struct super_block *sb,
3131 ext4_group_t first_not_zeroed)
3132{
3133 struct ext4_sb_info *sbi = EXT4_SB(sb);
3134 struct ext4_li_request *elr = NULL;
3135 ext4_group_t ngroups = sbi->s_groups_count;
3136 int ret = 0;
3137
3138 mutex_lock(&ext4_li_mtx);
3139 if (sbi->s_li_request != NULL) {
3140 /*
3141 * Reset timeout so it can be computed again, because
3142 * s_li_wait_mult might have changed.
3143 */
3144 sbi->s_li_request->lr_timeout = 0;
3145 goto out;
3146 }
3147
3148 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3149 !test_opt(sb, INIT_INODE_TABLE))
3150 goto out;
3151
3152 elr = ext4_li_request_new(sb, first_not_zeroed);
3153 if (!elr) {
3154 ret = -ENOMEM;
3155 goto out;
3156 }
3157
3158 if (NULL == ext4_li_info) {
3159 ret = ext4_li_info_new();
3160 if (ret)
3161 goto out;
3162 }
3163
3164 mutex_lock(&ext4_li_info->li_list_mtx);
3165 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3166 mutex_unlock(&ext4_li_info->li_list_mtx);
3167
3168 sbi->s_li_request = elr;
3169 /*
3170 * set elr to NULL here since it has been inserted to
3171 * the request_list and the removal and free of it is
3172 * handled by ext4_clear_request_list from now on.
3173 */
3174 elr = NULL;
3175
3176 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3177 ret = ext4_run_lazyinit_thread();
3178 if (ret)
3179 goto out;
3180 }
3181out:
3182 mutex_unlock(&ext4_li_mtx);
3183 if (ret)
3184 kfree(elr);
3185 return ret;
3186}
3187
3188/*
3189 * We do not need to lock anything since this is called on
3190 * module unload.
3191 */
3192static void ext4_destroy_lazyinit_thread(void)
3193{
3194 /*
3195 * If thread exited earlier
3196 * there's nothing to be done.
3197 */
3198 if (!ext4_li_info || !ext4_lazyinit_task)
3199 return;
3200
3201 kthread_stop(ext4_lazyinit_task);
3202}
3203
3204static int set_journal_csum_feature_set(struct super_block *sb)
3205{
3206 int ret = 1;
3207 int compat, incompat;
3208 struct ext4_sb_info *sbi = EXT4_SB(sb);
3209
3210 if (ext4_has_metadata_csum(sb)) {
3211 /* journal checksum v3 */
3212 compat = 0;
3213 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3214 } else {
3215 /* journal checksum v1 */
3216 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3217 incompat = 0;
3218 }
3219
3220 jbd2_journal_clear_features(sbi->s_journal,
3221 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3222 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3223 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3224 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3225 ret = jbd2_journal_set_features(sbi->s_journal,
3226 compat, 0,
3227 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3228 incompat);
3229 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3230 ret = jbd2_journal_set_features(sbi->s_journal,
3231 compat, 0,
3232 incompat);
3233 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3234 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3235 } else {
3236 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3237 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3238 }
3239
3240 return ret;
3241}
3242
3243/*
3244 * Note: calculating the overhead so we can be compatible with
3245 * historical BSD practice is quite difficult in the face of
3246 * clusters/bigalloc. This is because multiple metadata blocks from
3247 * different block group can end up in the same allocation cluster.
3248 * Calculating the exact overhead in the face of clustered allocation
3249 * requires either O(all block bitmaps) in memory or O(number of block
3250 * groups**2) in time. We will still calculate the superblock for
3251 * older file systems --- and if we come across with a bigalloc file
3252 * system with zero in s_overhead_clusters the estimate will be close to
3253 * correct especially for very large cluster sizes --- but for newer
3254 * file systems, it's better to calculate this figure once at mkfs
3255 * time, and store it in the superblock. If the superblock value is
3256 * present (even for non-bigalloc file systems), we will use it.
3257 */
3258static int count_overhead(struct super_block *sb, ext4_group_t grp,
3259 char *buf)
3260{
3261 struct ext4_sb_info *sbi = EXT4_SB(sb);
3262 struct ext4_group_desc *gdp;
3263 ext4_fsblk_t first_block, last_block, b;
3264 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3265 int s, j, count = 0;
3266
3267 if (!ext4_has_feature_bigalloc(sb))
3268 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3269 sbi->s_itb_per_group + 2);
3270
3271 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3272 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3273 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3274 for (i = 0; i < ngroups; i++) {
3275 gdp = ext4_get_group_desc(sb, i, NULL);
3276 b = ext4_block_bitmap(sb, gdp);
3277 if (b >= first_block && b <= last_block) {
3278 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3279 count++;
3280 }
3281 b = ext4_inode_bitmap(sb, gdp);
3282 if (b >= first_block && b <= last_block) {
3283 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3284 count++;
3285 }
3286 b = ext4_inode_table(sb, gdp);
3287 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3288 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3289 int c = EXT4_B2C(sbi, b - first_block);
3290 ext4_set_bit(c, buf);
3291 count++;
3292 }
3293 if (i != grp)
3294 continue;
3295 s = 0;
3296 if (ext4_bg_has_super(sb, grp)) {
3297 ext4_set_bit(s++, buf);
3298 count++;
3299 }
3300 j = ext4_bg_num_gdb(sb, grp);
3301 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3302 ext4_error(sb, "Invalid number of block group "
3303 "descriptor blocks: %d", j);
3304 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3305 }
3306 count += j;
3307 for (; j > 0; j--)
3308 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3309 }
3310 if (!count)
3311 return 0;
3312 return EXT4_CLUSTERS_PER_GROUP(sb) -
3313 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3314}
3315
3316/*
3317 * Compute the overhead and stash it in sbi->s_overhead
3318 */
3319int ext4_calculate_overhead(struct super_block *sb)
3320{
3321 struct ext4_sb_info *sbi = EXT4_SB(sb);
3322 struct ext4_super_block *es = sbi->s_es;
3323 struct inode *j_inode;
3324 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3325 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3326 ext4_fsblk_t overhead = 0;
3327 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3328
3329 if (!buf)
3330 return -ENOMEM;
3331
3332 /*
3333 * Compute the overhead (FS structures). This is constant
3334 * for a given filesystem unless the number of block groups
3335 * changes so we cache the previous value until it does.
3336 */
3337
3338 /*
3339 * All of the blocks before first_data_block are overhead
3340 */
3341 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3342
3343 /*
3344 * Add the overhead found in each block group
3345 */
3346 for (i = 0; i < ngroups; i++) {
3347 int blks;
3348
3349 blks = count_overhead(sb, i, buf);
3350 overhead += blks;
3351 if (blks)
3352 memset(buf, 0, PAGE_SIZE);
3353 cond_resched();
3354 }
3355
3356 /*
3357 * Add the internal journal blocks whether the journal has been
3358 * loaded or not
3359 */
3360 if (sbi->s_journal && !sbi->journal_bdev)
3361 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3362 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3363 j_inode = ext4_get_journal_inode(sb, j_inum);
3364 if (j_inode) {
3365 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3366 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3367 iput(j_inode);
3368 } else {
3369 ext4_msg(sb, KERN_ERR, "can't get journal size");
3370 }
3371 }
3372 sbi->s_overhead = overhead;
3373 smp_wmb();
3374 free_page((unsigned long) buf);
3375 return 0;
3376}
3377
3378static void ext4_set_resv_clusters(struct super_block *sb)
3379{
3380 ext4_fsblk_t resv_clusters;
3381 struct ext4_sb_info *sbi = EXT4_SB(sb);
3382
3383 /*
3384 * There's no need to reserve anything when we aren't using extents.
3385 * The space estimates are exact, there are no unwritten extents,
3386 * hole punching doesn't need new metadata... This is needed especially
3387 * to keep ext2/3 backward compatibility.
3388 */
3389 if (!ext4_has_feature_extents(sb))
3390 return;
3391 /*
3392 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3393 * This should cover the situations where we can not afford to run
3394 * out of space like for example punch hole, or converting
3395 * unwritten extents in delalloc path. In most cases such
3396 * allocation would require 1, or 2 blocks, higher numbers are
3397 * very rare.
3398 */
3399 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3400 sbi->s_cluster_bits);
3401
3402 do_div(resv_clusters, 50);
3403 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3404
3405 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3406}
3407
3408static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3409{
3410 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3411 char *orig_data = kstrdup(data, GFP_KERNEL);
3412 struct buffer_head *bh;
3413 struct ext4_super_block *es = NULL;
3414 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3415 ext4_fsblk_t block;
3416 ext4_fsblk_t sb_block = get_sb_block(&data);
3417 ext4_fsblk_t logical_sb_block;
3418 unsigned long offset = 0;
3419 unsigned long journal_devnum = 0;
3420 unsigned long def_mount_opts;
3421 struct inode *root;
3422 const char *descr;
3423 int ret = -ENOMEM;
3424 int blocksize, clustersize;
3425 unsigned int db_count;
3426 unsigned int i;
3427 int needs_recovery, has_huge_files, has_bigalloc;
3428 __u64 blocks_count;
3429 int err = 0;
3430 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3431 ext4_group_t first_not_zeroed;
3432
3433 if ((data && !orig_data) || !sbi)
3434 goto out_free_base;
3435
3436 sbi->s_daxdev = dax_dev;
3437 sbi->s_blockgroup_lock =
3438 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3439 if (!sbi->s_blockgroup_lock)
3440 goto out_free_base;
3441
3442 sb->s_fs_info = sbi;
3443 sbi->s_sb = sb;
3444 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3445 sbi->s_sb_block = sb_block;
3446 if (sb->s_bdev->bd_part)
3447 sbi->s_sectors_written_start =
3448 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3449
3450 /* Cleanup superblock name */
3451 strreplace(sb->s_id, '/', '!');
3452
3453 /* -EINVAL is default */
3454 ret = -EINVAL;
3455 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3456 if (!blocksize) {
3457 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3458 goto out_fail;
3459 }
3460
3461 /*
3462 * The ext4 superblock will not be buffer aligned for other than 1kB
3463 * block sizes. We need to calculate the offset from buffer start.
3464 */
3465 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3466 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3467 offset = do_div(logical_sb_block, blocksize);
3468 } else {
3469 logical_sb_block = sb_block;
3470 }
3471
3472 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3473 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3474 goto out_fail;
3475 }
3476 /*
3477 * Note: s_es must be initialized as soon as possible because
3478 * some ext4 macro-instructions depend on its value
3479 */
3480 es = (struct ext4_super_block *) (bh->b_data + offset);
3481 sbi->s_es = es;
3482 sb->s_magic = le16_to_cpu(es->s_magic);
3483 if (sb->s_magic != EXT4_SUPER_MAGIC)
3484 goto cantfind_ext4;
3485 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3486
3487 /* Warn if metadata_csum and gdt_csum are both set. */
3488 if (ext4_has_feature_metadata_csum(sb) &&
3489 ext4_has_feature_gdt_csum(sb))
3490 ext4_warning(sb, "metadata_csum and uninit_bg are "
3491 "redundant flags; please run fsck.");
3492
3493 /* Check for a known checksum algorithm */
3494 if (!ext4_verify_csum_type(sb, es)) {
3495 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3496 "unknown checksum algorithm.");
3497 silent = 1;
3498 goto cantfind_ext4;
3499 }
3500
3501 /* Load the checksum driver */
3502 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3503 if (IS_ERR(sbi->s_chksum_driver)) {
3504 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3505 ret = PTR_ERR(sbi->s_chksum_driver);
3506 sbi->s_chksum_driver = NULL;
3507 goto failed_mount;
3508 }
3509
3510 /* Check superblock checksum */
3511 if (!ext4_superblock_csum_verify(sb, es)) {
3512 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3513 "invalid superblock checksum. Run e2fsck?");
3514 silent = 1;
3515 ret = -EFSBADCRC;
3516 goto cantfind_ext4;
3517 }
3518
3519 /* Precompute checksum seed for all metadata */
3520 if (ext4_has_feature_csum_seed(sb))
3521 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3522 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3523 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3524 sizeof(es->s_uuid));
3525
3526 /* Set defaults before we parse the mount options */
3527 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3528 set_opt(sb, INIT_INODE_TABLE);
3529 if (def_mount_opts & EXT4_DEFM_DEBUG)
3530 set_opt(sb, DEBUG);
3531 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3532 set_opt(sb, GRPID);
3533 if (def_mount_opts & EXT4_DEFM_UID16)
3534 set_opt(sb, NO_UID32);
3535 /* xattr user namespace & acls are now defaulted on */
3536 set_opt(sb, XATTR_USER);
3537#ifdef CONFIG_EXT4_FS_POSIX_ACL
3538 set_opt(sb, POSIX_ACL);
3539#endif
3540 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3541 if (ext4_has_metadata_csum(sb))
3542 set_opt(sb, JOURNAL_CHECKSUM);
3543
3544 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3545 set_opt(sb, JOURNAL_DATA);
3546 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3547 set_opt(sb, ORDERED_DATA);
3548 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3549 set_opt(sb, WRITEBACK_DATA);
3550
3551 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3552 set_opt(sb, ERRORS_PANIC);
3553 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3554 set_opt(sb, ERRORS_CONT);
3555 else
3556 set_opt(sb, ERRORS_RO);
3557 /* block_validity enabled by default; disable with noblock_validity */
3558 set_opt(sb, BLOCK_VALIDITY);
3559 if (def_mount_opts & EXT4_DEFM_DISCARD)
3560 set_opt(sb, DISCARD);
3561
3562 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3563 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3564 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3565 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3566 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3567
3568 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3569 set_opt(sb, BARRIER);
3570
3571 /*
3572 * enable delayed allocation by default
3573 * Use -o nodelalloc to turn it off
3574 */
3575 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3576 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3577 set_opt(sb, DELALLOC);
3578
3579 /*
3580 * set default s_li_wait_mult for lazyinit, for the case there is
3581 * no mount option specified.
3582 */
3583 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3584
3585 if (sbi->s_es->s_mount_opts[0]) {
3586 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3587 sizeof(sbi->s_es->s_mount_opts),
3588 GFP_KERNEL);
3589 if (!s_mount_opts)
3590 goto failed_mount;
3591 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3592 &journal_ioprio, 0)) {
3593 ext4_msg(sb, KERN_WARNING,
3594 "failed to parse options in superblock: %s",
3595 s_mount_opts);
3596 }
3597 kfree(s_mount_opts);
3598 }
3599 sbi->s_def_mount_opt = sbi->s_mount_opt;
3600 if (!parse_options((char *) data, sb, &journal_devnum,
3601 &journal_ioprio, 0))
3602 goto failed_mount;
3603
3604 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3605 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3606 "with data=journal disables delayed "
3607 "allocation and O_DIRECT support!\n");
3608 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3609 ext4_msg(sb, KERN_ERR, "can't mount with "
3610 "both data=journal and delalloc");
3611 goto failed_mount;
3612 }
3613 if (test_opt(sb, DIOREAD_NOLOCK)) {
3614 ext4_msg(sb, KERN_ERR, "can't mount with "
3615 "both data=journal and dioread_nolock");
3616 goto failed_mount;
3617 }
3618 if (test_opt(sb, DAX)) {
3619 ext4_msg(sb, KERN_ERR, "can't mount with "
3620 "both data=journal and dax");
3621 goto failed_mount;
3622 }
3623 if (ext4_has_feature_encrypt(sb)) {
3624 ext4_msg(sb, KERN_WARNING,
3625 "encrypted files will use data=ordered "
3626 "instead of data journaling mode");
3627 }
3628 if (test_opt(sb, DELALLOC))
3629 clear_opt(sb, DELALLOC);
3630 } else {
3631 sb->s_iflags |= SB_I_CGROUPWB;
3632 }
3633
3634 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3635 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3636
3637 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3638 (ext4_has_compat_features(sb) ||
3639 ext4_has_ro_compat_features(sb) ||
3640 ext4_has_incompat_features(sb)))
3641 ext4_msg(sb, KERN_WARNING,
3642 "feature flags set on rev 0 fs, "
3643 "running e2fsck is recommended");
3644
3645 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3646 set_opt2(sb, HURD_COMPAT);
3647 if (ext4_has_feature_64bit(sb)) {
3648 ext4_msg(sb, KERN_ERR,
3649 "The Hurd can't support 64-bit file systems");
3650 goto failed_mount;
3651 }
3652
3653 /*
3654 * ea_inode feature uses l_i_version field which is not
3655 * available in HURD_COMPAT mode.
3656 */
3657 if (ext4_has_feature_ea_inode(sb)) {
3658 ext4_msg(sb, KERN_ERR,
3659 "ea_inode feature is not supported for Hurd");
3660 goto failed_mount;
3661 }
3662 }
3663
3664 if (IS_EXT2_SB(sb)) {
3665 if (ext2_feature_set_ok(sb))
3666 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3667 "using the ext4 subsystem");
3668 else {
3669 /*
3670 * If we're probing be silent, if this looks like
3671 * it's actually an ext[34] filesystem.
3672 */
3673 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3674 goto failed_mount;
3675 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3676 "to feature incompatibilities");
3677 goto failed_mount;
3678 }
3679 }
3680
3681 if (IS_EXT3_SB(sb)) {
3682 if (ext3_feature_set_ok(sb))
3683 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3684 "using the ext4 subsystem");
3685 else {
3686 /*
3687 * If we're probing be silent, if this looks like
3688 * it's actually an ext4 filesystem.
3689 */
3690 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3691 goto failed_mount;
3692 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3693 "to feature incompatibilities");
3694 goto failed_mount;
3695 }
3696 }
3697
3698 /*
3699 * Check feature flags regardless of the revision level, since we
3700 * previously didn't change the revision level when setting the flags,
3701 * so there is a chance incompat flags are set on a rev 0 filesystem.
3702 */
3703 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3704 goto failed_mount;
3705
3706 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3707 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3708 blocksize > EXT4_MAX_BLOCK_SIZE) {
3709 ext4_msg(sb, KERN_ERR,
3710 "Unsupported filesystem blocksize %d (%d log_block_size)",
3711 blocksize, le32_to_cpu(es->s_log_block_size));
3712 goto failed_mount;
3713 }
3714 if (le32_to_cpu(es->s_log_block_size) >
3715 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3716 ext4_msg(sb, KERN_ERR,
3717 "Invalid log block size: %u",
3718 le32_to_cpu(es->s_log_block_size));
3719 goto failed_mount;
3720 }
3721
3722 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3723 ext4_msg(sb, KERN_ERR,
3724 "Number of reserved GDT blocks insanely large: %d",
3725 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3726 goto failed_mount;
3727 }
3728
3729 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3730 if (ext4_has_feature_inline_data(sb)) {
3731 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3732 " that may contain inline data");
3733 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3734 }
3735 err = bdev_dax_supported(sb, blocksize);
3736 if (err) {
3737 ext4_msg(sb, KERN_ERR,
3738 "DAX unsupported by block device. Turning off DAX.");
3739 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3740 }
3741 }
3742
3743 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3744 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3745 es->s_encryption_level);
3746 goto failed_mount;
3747 }
3748
3749 if (sb->s_blocksize != blocksize) {
3750 /* Validate the filesystem blocksize */
3751 if (!sb_set_blocksize(sb, blocksize)) {
3752 ext4_msg(sb, KERN_ERR, "bad block size %d",
3753 blocksize);
3754 goto failed_mount;
3755 }
3756
3757 brelse(bh);
3758 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3759 offset = do_div(logical_sb_block, blocksize);
3760 bh = sb_bread_unmovable(sb, logical_sb_block);
3761 if (!bh) {
3762 ext4_msg(sb, KERN_ERR,
3763 "Can't read superblock on 2nd try");
3764 goto failed_mount;
3765 }
3766 es = (struct ext4_super_block *)(bh->b_data + offset);
3767 sbi->s_es = es;
3768 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3769 ext4_msg(sb, KERN_ERR,
3770 "Magic mismatch, very weird!");
3771 goto failed_mount;
3772 }
3773 }
3774
3775 has_huge_files = ext4_has_feature_huge_file(sb);
3776 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3777 has_huge_files);
3778 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3779
3780 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3781 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3782 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3783 } else {
3784 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3785 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3786 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3787 (!is_power_of_2(sbi->s_inode_size)) ||
3788 (sbi->s_inode_size > blocksize)) {
3789 ext4_msg(sb, KERN_ERR,
3790 "unsupported inode size: %d",
3791 sbi->s_inode_size);
3792 goto failed_mount;
3793 }
3794 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3795 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3796 }
3797
3798 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3799 if (ext4_has_feature_64bit(sb)) {
3800 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3801 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3802 !is_power_of_2(sbi->s_desc_size)) {
3803 ext4_msg(sb, KERN_ERR,
3804 "unsupported descriptor size %lu",
3805 sbi->s_desc_size);
3806 goto failed_mount;
3807 }
3808 } else
3809 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3810
3811 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3812 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3813
3814 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3815 if (sbi->s_inodes_per_block == 0)
3816 goto cantfind_ext4;
3817 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3818 sbi->s_inodes_per_group > blocksize * 8) {
3819 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3820 sbi->s_blocks_per_group);
3821 goto failed_mount;
3822 }
3823 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3824 sbi->s_inodes_per_block;
3825 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3826 sbi->s_sbh = bh;
3827 sbi->s_mount_state = le16_to_cpu(es->s_state);
3828 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3829 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3830
3831 for (i = 0; i < 4; i++)
3832 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3833 sbi->s_def_hash_version = es->s_def_hash_version;
3834 if (ext4_has_feature_dir_index(sb)) {
3835 i = le32_to_cpu(es->s_flags);
3836 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3837 sbi->s_hash_unsigned = 3;
3838 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3839#ifdef __CHAR_UNSIGNED__
3840 if (!sb_rdonly(sb))
3841 es->s_flags |=
3842 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3843 sbi->s_hash_unsigned = 3;
3844#else
3845 if (!sb_rdonly(sb))
3846 es->s_flags |=
3847 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3848#endif
3849 }
3850 }
3851
3852 /* Handle clustersize */
3853 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3854 has_bigalloc = ext4_has_feature_bigalloc(sb);
3855 if (has_bigalloc) {
3856 if (clustersize < blocksize) {
3857 ext4_msg(sb, KERN_ERR,
3858 "cluster size (%d) smaller than "
3859 "block size (%d)", clustersize, blocksize);
3860 goto failed_mount;
3861 }
3862 if (le32_to_cpu(es->s_log_cluster_size) >
3863 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3864 ext4_msg(sb, KERN_ERR,
3865 "Invalid log cluster size: %u",
3866 le32_to_cpu(es->s_log_cluster_size));
3867 goto failed_mount;
3868 }
3869 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3870 le32_to_cpu(es->s_log_block_size);
3871 sbi->s_clusters_per_group =
3872 le32_to_cpu(es->s_clusters_per_group);
3873 if (sbi->s_clusters_per_group > blocksize * 8) {
3874 ext4_msg(sb, KERN_ERR,
3875 "#clusters per group too big: %lu",
3876 sbi->s_clusters_per_group);
3877 goto failed_mount;
3878 }
3879 if (sbi->s_blocks_per_group !=
3880 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3881 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3882 "clusters per group (%lu) inconsistent",
3883 sbi->s_blocks_per_group,
3884 sbi->s_clusters_per_group);
3885 goto failed_mount;
3886 }
3887 } else {
3888 if (clustersize != blocksize) {
3889 ext4_warning(sb, "fragment/cluster size (%d) != "
3890 "block size (%d)", clustersize,
3891 blocksize);
3892 clustersize = blocksize;
3893 }
3894 if (sbi->s_blocks_per_group > blocksize * 8) {
3895 ext4_msg(sb, KERN_ERR,
3896 "#blocks per group too big: %lu",
3897 sbi->s_blocks_per_group);
3898 goto failed_mount;
3899 }
3900 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3901 sbi->s_cluster_bits = 0;
3902 }
3903 sbi->s_cluster_ratio = clustersize / blocksize;
3904
3905 /* Do we have standard group size of clustersize * 8 blocks ? */
3906 if (sbi->s_blocks_per_group == clustersize << 3)
3907 set_opt2(sb, STD_GROUP_SIZE);
3908
3909 /*
3910 * Test whether we have more sectors than will fit in sector_t,
3911 * and whether the max offset is addressable by the page cache.
3912 */
3913 err = generic_check_addressable(sb->s_blocksize_bits,
3914 ext4_blocks_count(es));
3915 if (err) {
3916 ext4_msg(sb, KERN_ERR, "filesystem"
3917 " too large to mount safely on this system");
3918 if (sizeof(sector_t) < 8)
3919 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3920 goto failed_mount;
3921 }
3922
3923 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3924 goto cantfind_ext4;
3925
3926 /* check blocks count against device size */
3927 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3928 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3929 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3930 "exceeds size of device (%llu blocks)",
3931 ext4_blocks_count(es), blocks_count);
3932 goto failed_mount;
3933 }
3934
3935 /*
3936 * It makes no sense for the first data block to be beyond the end
3937 * of the filesystem.
3938 */
3939 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3940 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3941 "block %u is beyond end of filesystem (%llu)",
3942 le32_to_cpu(es->s_first_data_block),
3943 ext4_blocks_count(es));
3944 goto failed_mount;
3945 }
3946 blocks_count = (ext4_blocks_count(es) -
3947 le32_to_cpu(es->s_first_data_block) +
3948 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3949 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3950 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3951 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3952 "(block count %llu, first data block %u, "
3953 "blocks per group %lu)", sbi->s_groups_count,
3954 ext4_blocks_count(es),
3955 le32_to_cpu(es->s_first_data_block),
3956 EXT4_BLOCKS_PER_GROUP(sb));
3957 goto failed_mount;
3958 }
3959 sbi->s_groups_count = blocks_count;
3960 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3961 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3962 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3963 EXT4_DESC_PER_BLOCK(sb);
3964 if (ext4_has_feature_meta_bg(sb)) {
3965 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3966 ext4_msg(sb, KERN_WARNING,
3967 "first meta block group too large: %u "
3968 "(group descriptor block count %u)",
3969 le32_to_cpu(es->s_first_meta_bg), db_count);
3970 goto failed_mount;
3971 }
3972 }
3973 sbi->s_group_desc = kvmalloc(db_count *
3974 sizeof(struct buffer_head *),
3975 GFP_KERNEL);
3976 if (sbi->s_group_desc == NULL) {
3977 ext4_msg(sb, KERN_ERR, "not enough memory");
3978 ret = -ENOMEM;
3979 goto failed_mount;
3980 }
3981
3982 bgl_lock_init(sbi->s_blockgroup_lock);
3983
3984 /* Pre-read the descriptors into the buffer cache */
3985 for (i = 0; i < db_count; i++) {
3986 block = descriptor_loc(sb, logical_sb_block, i);
3987 sb_breadahead(sb, block);
3988 }
3989
3990 for (i = 0; i < db_count; i++) {
3991 block = descriptor_loc(sb, logical_sb_block, i);
3992 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3993 if (!sbi->s_group_desc[i]) {
3994 ext4_msg(sb, KERN_ERR,
3995 "can't read group descriptor %d", i);
3996 db_count = i;
3997 goto failed_mount2;
3998 }
3999 }
4000 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4001 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4002 ret = -EFSCORRUPTED;
4003 goto failed_mount2;
4004 }
4005
4006 sbi->s_gdb_count = db_count;
4007
4008 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4009
4010 /* Register extent status tree shrinker */
4011 if (ext4_es_register_shrinker(sbi))
4012 goto failed_mount3;
4013
4014 sbi->s_stripe = ext4_get_stripe_size(sbi);
4015 sbi->s_extent_max_zeroout_kb = 32;
4016
4017 /*
4018 * set up enough so that it can read an inode
4019 */
4020 sb->s_op = &ext4_sops;
4021 sb->s_export_op = &ext4_export_ops;
4022 sb->s_xattr = ext4_xattr_handlers;
4023#ifdef CONFIG_EXT4_FS_ENCRYPTION
4024 sb->s_cop = &ext4_cryptops;
4025#endif
4026#ifdef CONFIG_QUOTA
4027 sb->dq_op = &ext4_quota_operations;
4028 if (ext4_has_feature_quota(sb))
4029 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4030 else
4031 sb->s_qcop = &ext4_qctl_operations;
4032 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4033#endif
4034 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4035
4036 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4037 mutex_init(&sbi->s_orphan_lock);
4038
4039 sb->s_root = NULL;
4040
4041 needs_recovery = (es->s_last_orphan != 0 ||
4042 ext4_has_feature_journal_needs_recovery(sb));
4043
4044 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4045 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4046 goto failed_mount3a;
4047
4048 /*
4049 * The first inode we look at is the journal inode. Don't try
4050 * root first: it may be modified in the journal!
4051 */
4052 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4053 err = ext4_load_journal(sb, es, journal_devnum);
4054 if (err)
4055 goto failed_mount3a;
4056 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4057 ext4_has_feature_journal_needs_recovery(sb)) {
4058 ext4_msg(sb, KERN_ERR, "required journal recovery "
4059 "suppressed and not mounted read-only");
4060 goto failed_mount_wq;
4061 } else {
4062 /* Nojournal mode, all journal mount options are illegal */
4063 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4064 ext4_msg(sb, KERN_ERR, "can't mount with "
4065 "journal_checksum, fs mounted w/o journal");
4066 goto failed_mount_wq;
4067 }
4068 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4069 ext4_msg(sb, KERN_ERR, "can't mount with "
4070 "journal_async_commit, fs mounted w/o journal");
4071 goto failed_mount_wq;
4072 }
4073 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4074 ext4_msg(sb, KERN_ERR, "can't mount with "
4075 "commit=%lu, fs mounted w/o journal",
4076 sbi->s_commit_interval / HZ);
4077 goto failed_mount_wq;
4078 }
4079 if (EXT4_MOUNT_DATA_FLAGS &
4080 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4081 ext4_msg(sb, KERN_ERR, "can't mount with "
4082 "data=, fs mounted w/o journal");
4083 goto failed_mount_wq;
4084 }
4085 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4086 clear_opt(sb, JOURNAL_CHECKSUM);
4087 clear_opt(sb, DATA_FLAGS);
4088 sbi->s_journal = NULL;
4089 needs_recovery = 0;
4090 goto no_journal;
4091 }
4092
4093 if (ext4_has_feature_64bit(sb) &&
4094 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4095 JBD2_FEATURE_INCOMPAT_64BIT)) {
4096 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4097 goto failed_mount_wq;
4098 }
4099
4100 if (!set_journal_csum_feature_set(sb)) {
4101 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4102 "feature set");
4103 goto failed_mount_wq;
4104 }
4105
4106 /* We have now updated the journal if required, so we can
4107 * validate the data journaling mode. */
4108 switch (test_opt(sb, DATA_FLAGS)) {
4109 case 0:
4110 /* No mode set, assume a default based on the journal
4111 * capabilities: ORDERED_DATA if the journal can
4112 * cope, else JOURNAL_DATA
4113 */
4114 if (jbd2_journal_check_available_features
4115 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4116 set_opt(sb, ORDERED_DATA);
4117 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4118 } else {
4119 set_opt(sb, JOURNAL_DATA);
4120 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4121 }
4122 break;
4123
4124 case EXT4_MOUNT_ORDERED_DATA:
4125 case EXT4_MOUNT_WRITEBACK_DATA:
4126 if (!jbd2_journal_check_available_features
4127 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4128 ext4_msg(sb, KERN_ERR, "Journal does not support "
4129 "requested data journaling mode");
4130 goto failed_mount_wq;
4131 }
4132 default:
4133 break;
4134 }
4135
4136 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4137 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4138 ext4_msg(sb, KERN_ERR, "can't mount with "
4139 "journal_async_commit in data=ordered mode");
4140 goto failed_mount_wq;
4141 }
4142
4143 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4144
4145 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4146
4147no_journal:
4148 if (!test_opt(sb, NO_MBCACHE)) {
4149 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4150 if (!sbi->s_ea_block_cache) {
4151 ext4_msg(sb, KERN_ERR,
4152 "Failed to create ea_block_cache");
4153 goto failed_mount_wq;
4154 }
4155
4156 if (ext4_has_feature_ea_inode(sb)) {
4157 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4158 if (!sbi->s_ea_inode_cache) {
4159 ext4_msg(sb, KERN_ERR,
4160 "Failed to create ea_inode_cache");
4161 goto failed_mount_wq;
4162 }
4163 }
4164 }
4165
4166 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4167 (blocksize != PAGE_SIZE)) {
4168 ext4_msg(sb, KERN_ERR,
4169 "Unsupported blocksize for fs encryption");
4170 goto failed_mount_wq;
4171 }
4172
4173 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4174 !ext4_has_feature_encrypt(sb)) {
4175 ext4_set_feature_encrypt(sb);
4176 ext4_commit_super(sb, 1);
4177 }
4178
4179 /*
4180 * Get the # of file system overhead blocks from the
4181 * superblock if present.
4182 */
4183 if (es->s_overhead_clusters)
4184 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4185 else {
4186 err = ext4_calculate_overhead(sb);
4187 if (err)
4188 goto failed_mount_wq;
4189 }
4190
4191 /*
4192 * The maximum number of concurrent works can be high and
4193 * concurrency isn't really necessary. Limit it to 1.
4194 */
4195 EXT4_SB(sb)->rsv_conversion_wq =
4196 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4197 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4198 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4199 ret = -ENOMEM;
4200 goto failed_mount4;
4201 }
4202
4203 /*
4204 * The jbd2_journal_load will have done any necessary log recovery,
4205 * so we can safely mount the rest of the filesystem now.
4206 */
4207
4208 root = ext4_iget(sb, EXT4_ROOT_INO);
4209 if (IS_ERR(root)) {
4210 ext4_msg(sb, KERN_ERR, "get root inode failed");
4211 ret = PTR_ERR(root);
4212 root = NULL;
4213 goto failed_mount4;
4214 }
4215 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4216 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4217 iput(root);
4218 goto failed_mount4;
4219 }
4220 sb->s_root = d_make_root(root);
4221 if (!sb->s_root) {
4222 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4223 ret = -ENOMEM;
4224 goto failed_mount4;
4225 }
4226
4227 if (ext4_setup_super(sb, es, sb_rdonly(sb)))
4228 sb->s_flags |= SB_RDONLY;
4229
4230 /* determine the minimum size of new large inodes, if present */
4231 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4232 sbi->s_want_extra_isize == 0) {
4233 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4234 EXT4_GOOD_OLD_INODE_SIZE;
4235 if (ext4_has_feature_extra_isize(sb)) {
4236 if (sbi->s_want_extra_isize <
4237 le16_to_cpu(es->s_want_extra_isize))
4238 sbi->s_want_extra_isize =
4239 le16_to_cpu(es->s_want_extra_isize);
4240 if (sbi->s_want_extra_isize <
4241 le16_to_cpu(es->s_min_extra_isize))
4242 sbi->s_want_extra_isize =
4243 le16_to_cpu(es->s_min_extra_isize);
4244 }
4245 }
4246 /* Check if enough inode space is available */
4247 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4248 sbi->s_inode_size) {
4249 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4250 EXT4_GOOD_OLD_INODE_SIZE;
4251 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4252 "available");
4253 }
4254
4255 ext4_set_resv_clusters(sb);
4256
4257 err = ext4_setup_system_zone(sb);
4258 if (err) {
4259 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4260 "zone (%d)", err);
4261 goto failed_mount4a;
4262 }
4263
4264 ext4_ext_init(sb);
4265 err = ext4_mb_init(sb);
4266 if (err) {
4267 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4268 err);
4269 goto failed_mount5;
4270 }
4271
4272 block = ext4_count_free_clusters(sb);
4273 ext4_free_blocks_count_set(sbi->s_es,
4274 EXT4_C2B(sbi, block));
4275 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4276 GFP_KERNEL);
4277 if (!err) {
4278 unsigned long freei = ext4_count_free_inodes(sb);
4279 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4280 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4281 GFP_KERNEL);
4282 }
4283 if (!err)
4284 err = percpu_counter_init(&sbi->s_dirs_counter,
4285 ext4_count_dirs(sb), GFP_KERNEL);
4286 if (!err)
4287 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4288 GFP_KERNEL);
4289 if (!err)
4290 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4291
4292 if (err) {
4293 ext4_msg(sb, KERN_ERR, "insufficient memory");
4294 goto failed_mount6;
4295 }
4296
4297 if (ext4_has_feature_flex_bg(sb))
4298 if (!ext4_fill_flex_info(sb)) {
4299 ext4_msg(sb, KERN_ERR,
4300 "unable to initialize "
4301 "flex_bg meta info!");
4302 goto failed_mount6;
4303 }
4304
4305 err = ext4_register_li_request(sb, first_not_zeroed);
4306 if (err)
4307 goto failed_mount6;
4308
4309 err = ext4_register_sysfs(sb);
4310 if (err)
4311 goto failed_mount7;
4312
4313#ifdef CONFIG_QUOTA
4314 /* Enable quota usage during mount. */
4315 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4316 err = ext4_enable_quotas(sb);
4317 if (err)
4318 goto failed_mount8;
4319 }
4320#endif /* CONFIG_QUOTA */
4321
4322 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4323 ext4_orphan_cleanup(sb, es);
4324 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4325 if (needs_recovery) {
4326 ext4_msg(sb, KERN_INFO, "recovery complete");
4327 ext4_mark_recovery_complete(sb, es);
4328 }
4329 if (EXT4_SB(sb)->s_journal) {
4330 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4331 descr = " journalled data mode";
4332 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4333 descr = " ordered data mode";
4334 else
4335 descr = " writeback data mode";
4336 } else
4337 descr = "out journal";
4338
4339 if (test_opt(sb, DISCARD)) {
4340 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4341 if (!blk_queue_discard(q))
4342 ext4_msg(sb, KERN_WARNING,
4343 "mounting with \"discard\" option, but "
4344 "the device does not support discard");
4345 }
4346
4347 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4348 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4349 "Opts: %.*s%s%s", descr,
4350 (int) sizeof(sbi->s_es->s_mount_opts),
4351 sbi->s_es->s_mount_opts,
4352 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4353
4354 if (es->s_error_count)
4355 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4356
4357 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4358 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4359 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4360 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4361
4362 kfree(orig_data);
4363 return 0;
4364
4365cantfind_ext4:
4366 if (!silent)
4367 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4368 goto failed_mount;
4369
4370#ifdef CONFIG_QUOTA
4371failed_mount8:
4372 ext4_unregister_sysfs(sb);
4373#endif
4374failed_mount7:
4375 ext4_unregister_li_request(sb);
4376failed_mount6:
4377 ext4_mb_release(sb);
4378 if (sbi->s_flex_groups)
4379 kvfree(sbi->s_flex_groups);
4380 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4381 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4382 percpu_counter_destroy(&sbi->s_dirs_counter);
4383 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4384failed_mount5:
4385 ext4_ext_release(sb);
4386 ext4_release_system_zone(sb);
4387failed_mount4a:
4388 dput(sb->s_root);
4389 sb->s_root = NULL;
4390failed_mount4:
4391 ext4_msg(sb, KERN_ERR, "mount failed");
4392 if (EXT4_SB(sb)->rsv_conversion_wq)
4393 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4394failed_mount_wq:
4395 if (sbi->s_ea_inode_cache) {
4396 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4397 sbi->s_ea_inode_cache = NULL;
4398 }
4399 if (sbi->s_ea_block_cache) {
4400 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4401 sbi->s_ea_block_cache = NULL;
4402 }
4403 if (sbi->s_journal) {
4404 jbd2_journal_destroy(sbi->s_journal);
4405 sbi->s_journal = NULL;
4406 }
4407failed_mount3a:
4408 ext4_es_unregister_shrinker(sbi);
4409failed_mount3:
4410 del_timer_sync(&sbi->s_err_report);
4411 if (sbi->s_mmp_tsk)
4412 kthread_stop(sbi->s_mmp_tsk);
4413failed_mount2:
4414 for (i = 0; i < db_count; i++)
4415 brelse(sbi->s_group_desc[i]);
4416 kvfree(sbi->s_group_desc);
4417failed_mount:
4418 if (sbi->s_chksum_driver)
4419 crypto_free_shash(sbi->s_chksum_driver);
4420#ifdef CONFIG_QUOTA
4421 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4422 kfree(sbi->s_qf_names[i]);
4423#endif
4424 ext4_blkdev_remove(sbi);
4425 brelse(bh);
4426out_fail:
4427 sb->s_fs_info = NULL;
4428 kfree(sbi->s_blockgroup_lock);
4429out_free_base:
4430 kfree(sbi);
4431 kfree(orig_data);
4432 fs_put_dax(dax_dev);
4433 return err ? err : ret;
4434}
4435
4436/*
4437 * Setup any per-fs journal parameters now. We'll do this both on
4438 * initial mount, once the journal has been initialised but before we've
4439 * done any recovery; and again on any subsequent remount.
4440 */
4441static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4442{
4443 struct ext4_sb_info *sbi = EXT4_SB(sb);
4444
4445 journal->j_commit_interval = sbi->s_commit_interval;
4446 journal->j_min_batch_time = sbi->s_min_batch_time;
4447 journal->j_max_batch_time = sbi->s_max_batch_time;
4448
4449 write_lock(&journal->j_state_lock);
4450 if (test_opt(sb, BARRIER))
4451 journal->j_flags |= JBD2_BARRIER;
4452 else
4453 journal->j_flags &= ~JBD2_BARRIER;
4454 if (test_opt(sb, DATA_ERR_ABORT))
4455 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4456 else
4457 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4458 write_unlock(&journal->j_state_lock);
4459}
4460
4461static struct inode *ext4_get_journal_inode(struct super_block *sb,
4462 unsigned int journal_inum)
4463{
4464 struct inode *journal_inode;
4465
4466 /*
4467 * Test for the existence of a valid inode on disk. Bad things
4468 * happen if we iget() an unused inode, as the subsequent iput()
4469 * will try to delete it.
4470 */
4471 journal_inode = ext4_iget(sb, journal_inum);
4472 if (IS_ERR(journal_inode)) {
4473 ext4_msg(sb, KERN_ERR, "no journal found");
4474 return NULL;
4475 }
4476 if (!journal_inode->i_nlink) {
4477 make_bad_inode(journal_inode);
4478 iput(journal_inode);
4479 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4480 return NULL;
4481 }
4482
4483 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4484 journal_inode, journal_inode->i_size);
4485 if (!S_ISREG(journal_inode->i_mode)) {
4486 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4487 iput(journal_inode);
4488 return NULL;
4489 }
4490 return journal_inode;
4491}
4492
4493static journal_t *ext4_get_journal(struct super_block *sb,
4494 unsigned int journal_inum)
4495{
4496 struct inode *journal_inode;
4497 journal_t *journal;
4498
4499 BUG_ON(!ext4_has_feature_journal(sb));
4500
4501 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4502 if (!journal_inode)
4503 return NULL;
4504
4505 journal = jbd2_journal_init_inode(journal_inode);
4506 if (!journal) {
4507 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4508 iput(journal_inode);
4509 return NULL;
4510 }
4511 journal->j_private = sb;
4512 ext4_init_journal_params(sb, journal);
4513 return journal;
4514}
4515
4516static journal_t *ext4_get_dev_journal(struct super_block *sb,
4517 dev_t j_dev)
4518{
4519 struct buffer_head *bh;
4520 journal_t *journal;
4521 ext4_fsblk_t start;
4522 ext4_fsblk_t len;
4523 int hblock, blocksize;
4524 ext4_fsblk_t sb_block;
4525 unsigned long offset;
4526 struct ext4_super_block *es;
4527 struct block_device *bdev;
4528
4529 BUG_ON(!ext4_has_feature_journal(sb));
4530
4531 bdev = ext4_blkdev_get(j_dev, sb);
4532 if (bdev == NULL)
4533 return NULL;
4534
4535 blocksize = sb->s_blocksize;
4536 hblock = bdev_logical_block_size(bdev);
4537 if (blocksize < hblock) {
4538 ext4_msg(sb, KERN_ERR,
4539 "blocksize too small for journal device");
4540 goto out_bdev;
4541 }
4542
4543 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4544 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4545 set_blocksize(bdev, blocksize);
4546 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4547 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4548 "external journal");
4549 goto out_bdev;
4550 }
4551
4552 es = (struct ext4_super_block *) (bh->b_data + offset);
4553 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4554 !(le32_to_cpu(es->s_feature_incompat) &
4555 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4556 ext4_msg(sb, KERN_ERR, "external journal has "
4557 "bad superblock");
4558 brelse(bh);
4559 goto out_bdev;
4560 }
4561
4562 if ((le32_to_cpu(es->s_feature_ro_compat) &
4563 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4564 es->s_checksum != ext4_superblock_csum(sb, es)) {
4565 ext4_msg(sb, KERN_ERR, "external journal has "
4566 "corrupt superblock");
4567 brelse(bh);
4568 goto out_bdev;
4569 }
4570
4571 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4572 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4573 brelse(bh);
4574 goto out_bdev;
4575 }
4576
4577 len = ext4_blocks_count(es);
4578 start = sb_block + 1;
4579 brelse(bh); /* we're done with the superblock */
4580
4581 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4582 start, len, blocksize);
4583 if (!journal) {
4584 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4585 goto out_bdev;
4586 }
4587 journal->j_private = sb;
4588 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4589 wait_on_buffer(journal->j_sb_buffer);
4590 if (!buffer_uptodate(journal->j_sb_buffer)) {
4591 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4592 goto out_journal;
4593 }
4594 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4595 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4596 "user (unsupported) - %d",
4597 be32_to_cpu(journal->j_superblock->s_nr_users));
4598 goto out_journal;
4599 }
4600 EXT4_SB(sb)->journal_bdev = bdev;
4601 ext4_init_journal_params(sb, journal);
4602 return journal;
4603
4604out_journal:
4605 jbd2_journal_destroy(journal);
4606out_bdev:
4607 ext4_blkdev_put(bdev);
4608 return NULL;
4609}
4610
4611static int ext4_load_journal(struct super_block *sb,
4612 struct ext4_super_block *es,
4613 unsigned long journal_devnum)
4614{
4615 journal_t *journal;
4616 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4617 dev_t journal_dev;
4618 int err = 0;
4619 int really_read_only;
4620
4621 BUG_ON(!ext4_has_feature_journal(sb));
4622
4623 if (journal_devnum &&
4624 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4625 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4626 "numbers have changed");
4627 journal_dev = new_decode_dev(journal_devnum);
4628 } else
4629 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4630
4631 really_read_only = bdev_read_only(sb->s_bdev);
4632
4633 /*
4634 * Are we loading a blank journal or performing recovery after a
4635 * crash? For recovery, we need to check in advance whether we
4636 * can get read-write access to the device.
4637 */
4638 if (ext4_has_feature_journal_needs_recovery(sb)) {
4639 if (sb_rdonly(sb)) {
4640 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4641 "required on readonly filesystem");
4642 if (really_read_only) {
4643 ext4_msg(sb, KERN_ERR, "write access "
4644 "unavailable, cannot proceed "
4645 "(try mounting with noload)");
4646 return -EROFS;
4647 }
4648 ext4_msg(sb, KERN_INFO, "write access will "
4649 "be enabled during recovery");
4650 }
4651 }
4652
4653 if (journal_inum && journal_dev) {
4654 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4655 "and inode journals!");
4656 return -EINVAL;
4657 }
4658
4659 if (journal_inum) {
4660 if (!(journal = ext4_get_journal(sb, journal_inum)))
4661 return -EINVAL;
4662 } else {
4663 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4664 return -EINVAL;
4665 }
4666
4667 if (!(journal->j_flags & JBD2_BARRIER))
4668 ext4_msg(sb, KERN_INFO, "barriers disabled");
4669
4670 if (!ext4_has_feature_journal_needs_recovery(sb))
4671 err = jbd2_journal_wipe(journal, !really_read_only);
4672 if (!err) {
4673 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4674 if (save)
4675 memcpy(save, ((char *) es) +
4676 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4677 err = jbd2_journal_load(journal);
4678 if (save)
4679 memcpy(((char *) es) + EXT4_S_ERR_START,
4680 save, EXT4_S_ERR_LEN);
4681 kfree(save);
4682 }
4683
4684 if (err) {
4685 ext4_msg(sb, KERN_ERR, "error loading journal");
4686 jbd2_journal_destroy(journal);
4687 return err;
4688 }
4689
4690 EXT4_SB(sb)->s_journal = journal;
4691 ext4_clear_journal_err(sb, es);
4692
4693 if (!really_read_only && journal_devnum &&
4694 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4695 es->s_journal_dev = cpu_to_le32(journal_devnum);
4696
4697 /* Make sure we flush the recovery flag to disk. */
4698 ext4_commit_super(sb, 1);
4699 }
4700
4701 return 0;
4702}
4703
4704static int ext4_commit_super(struct super_block *sb, int sync)
4705{
4706 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4707 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4708 int error = 0;
4709
4710 if (!sbh || block_device_ejected(sb))
4711 return error;
4712 /*
4713 * If the file system is mounted read-only, don't update the
4714 * superblock write time. This avoids updating the superblock
4715 * write time when we are mounting the root file system
4716 * read/only but we need to replay the journal; at that point,
4717 * for people who are east of GMT and who make their clock
4718 * tick in localtime for Windows bug-for-bug compatibility,
4719 * the clock is set in the future, and this will cause e2fsck
4720 * to complain and force a full file system check.
4721 */
4722 if (!(sb->s_flags & SB_RDONLY))
4723 es->s_wtime = cpu_to_le32(get_seconds());
4724 if (sb->s_bdev->bd_part)
4725 es->s_kbytes_written =
4726 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4727 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4728 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4729 else
4730 es->s_kbytes_written =
4731 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4732 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4733 ext4_free_blocks_count_set(es,
4734 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4735 &EXT4_SB(sb)->s_freeclusters_counter)));
4736 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4737 es->s_free_inodes_count =
4738 cpu_to_le32(percpu_counter_sum_positive(
4739 &EXT4_SB(sb)->s_freeinodes_counter));
4740 BUFFER_TRACE(sbh, "marking dirty");
4741 ext4_superblock_csum_set(sb);
4742 if (sync)
4743 lock_buffer(sbh);
4744 if (buffer_write_io_error(sbh)) {
4745 /*
4746 * Oh, dear. A previous attempt to write the
4747 * superblock failed. This could happen because the
4748 * USB device was yanked out. Or it could happen to
4749 * be a transient write error and maybe the block will
4750 * be remapped. Nothing we can do but to retry the
4751 * write and hope for the best.
4752 */
4753 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4754 "superblock detected");
4755 clear_buffer_write_io_error(sbh);
4756 set_buffer_uptodate(sbh);
4757 }
4758 mark_buffer_dirty(sbh);
4759 if (sync) {
4760 unlock_buffer(sbh);
4761 error = __sync_dirty_buffer(sbh,
4762 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4763 if (error)
4764 return error;
4765
4766 error = buffer_write_io_error(sbh);
4767 if (error) {
4768 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4769 "superblock");
4770 clear_buffer_write_io_error(sbh);
4771 set_buffer_uptodate(sbh);
4772 }
4773 }
4774 return error;
4775}
4776
4777/*
4778 * Have we just finished recovery? If so, and if we are mounting (or
4779 * remounting) the filesystem readonly, then we will end up with a
4780 * consistent fs on disk. Record that fact.
4781 */
4782static void ext4_mark_recovery_complete(struct super_block *sb,
4783 struct ext4_super_block *es)
4784{
4785 journal_t *journal = EXT4_SB(sb)->s_journal;
4786
4787 if (!ext4_has_feature_journal(sb)) {
4788 BUG_ON(journal != NULL);
4789 return;
4790 }
4791 jbd2_journal_lock_updates(journal);
4792 if (jbd2_journal_flush(journal) < 0)
4793 goto out;
4794
4795 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
4796 ext4_clear_feature_journal_needs_recovery(sb);
4797 ext4_commit_super(sb, 1);
4798 }
4799
4800out:
4801 jbd2_journal_unlock_updates(journal);
4802}
4803
4804/*
4805 * If we are mounting (or read-write remounting) a filesystem whose journal
4806 * has recorded an error from a previous lifetime, move that error to the
4807 * main filesystem now.
4808 */
4809static void ext4_clear_journal_err(struct super_block *sb,
4810 struct ext4_super_block *es)
4811{
4812 journal_t *journal;
4813 int j_errno;
4814 const char *errstr;
4815
4816 BUG_ON(!ext4_has_feature_journal(sb));
4817
4818 journal = EXT4_SB(sb)->s_journal;
4819
4820 /*
4821 * Now check for any error status which may have been recorded in the
4822 * journal by a prior ext4_error() or ext4_abort()
4823 */
4824
4825 j_errno = jbd2_journal_errno(journal);
4826 if (j_errno) {
4827 char nbuf[16];
4828
4829 errstr = ext4_decode_error(sb, j_errno, nbuf);
4830 ext4_warning(sb, "Filesystem error recorded "
4831 "from previous mount: %s", errstr);
4832 ext4_warning(sb, "Marking fs in need of filesystem check.");
4833
4834 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4835 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4836 ext4_commit_super(sb, 1);
4837
4838 jbd2_journal_clear_err(journal);
4839 jbd2_journal_update_sb_errno(journal);
4840 }
4841}
4842
4843/*
4844 * Force the running and committing transactions to commit,
4845 * and wait on the commit.
4846 */
4847int ext4_force_commit(struct super_block *sb)
4848{
4849 journal_t *journal;
4850
4851 if (sb_rdonly(sb))
4852 return 0;
4853
4854 journal = EXT4_SB(sb)->s_journal;
4855 return ext4_journal_force_commit(journal);
4856}
4857
4858static int ext4_sync_fs(struct super_block *sb, int wait)
4859{
4860 int ret = 0;
4861 tid_t target;
4862 bool needs_barrier = false;
4863 struct ext4_sb_info *sbi = EXT4_SB(sb);
4864
4865 if (unlikely(ext4_forced_shutdown(sbi)))
4866 return 0;
4867
4868 trace_ext4_sync_fs(sb, wait);
4869 flush_workqueue(sbi->rsv_conversion_wq);
4870 /*
4871 * Writeback quota in non-journalled quota case - journalled quota has
4872 * no dirty dquots
4873 */
4874 dquot_writeback_dquots(sb, -1);
4875 /*
4876 * Data writeback is possible w/o journal transaction, so barrier must
4877 * being sent at the end of the function. But we can skip it if
4878 * transaction_commit will do it for us.
4879 */
4880 if (sbi->s_journal) {
4881 target = jbd2_get_latest_transaction(sbi->s_journal);
4882 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4883 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4884 needs_barrier = true;
4885
4886 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4887 if (wait)
4888 ret = jbd2_log_wait_commit(sbi->s_journal,
4889 target);
4890 }
4891 } else if (wait && test_opt(sb, BARRIER))
4892 needs_barrier = true;
4893 if (needs_barrier) {
4894 int err;
4895 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4896 if (!ret)
4897 ret = err;
4898 }
4899
4900 return ret;
4901}
4902
4903/*
4904 * LVM calls this function before a (read-only) snapshot is created. This
4905 * gives us a chance to flush the journal completely and mark the fs clean.
4906 *
4907 * Note that only this function cannot bring a filesystem to be in a clean
4908 * state independently. It relies on upper layer to stop all data & metadata
4909 * modifications.
4910 */
4911static int ext4_freeze(struct super_block *sb)
4912{
4913 int error = 0;
4914 journal_t *journal;
4915
4916 if (sb_rdonly(sb))
4917 return 0;
4918
4919 journal = EXT4_SB(sb)->s_journal;
4920
4921 if (journal) {
4922 /* Now we set up the journal barrier. */
4923 jbd2_journal_lock_updates(journal);
4924
4925 /*
4926 * Don't clear the needs_recovery flag if we failed to
4927 * flush the journal.
4928 */
4929 error = jbd2_journal_flush(journal);
4930 if (error < 0)
4931 goto out;
4932
4933 /* Journal blocked and flushed, clear needs_recovery flag. */
4934 ext4_clear_feature_journal_needs_recovery(sb);
4935 }
4936
4937 error = ext4_commit_super(sb, 1);
4938out:
4939 if (journal)
4940 /* we rely on upper layer to stop further updates */
4941 jbd2_journal_unlock_updates(journal);
4942 return error;
4943}
4944
4945/*
4946 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4947 * flag here, even though the filesystem is not technically dirty yet.
4948 */
4949static int ext4_unfreeze(struct super_block *sb)
4950{
4951 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
4952 return 0;
4953
4954 if (EXT4_SB(sb)->s_journal) {
4955 /* Reset the needs_recovery flag before the fs is unlocked. */
4956 ext4_set_feature_journal_needs_recovery(sb);
4957 }
4958
4959 ext4_commit_super(sb, 1);
4960 return 0;
4961}
4962
4963/*
4964 * Structure to save mount options for ext4_remount's benefit
4965 */
4966struct ext4_mount_options {
4967 unsigned long s_mount_opt;
4968 unsigned long s_mount_opt2;
4969 kuid_t s_resuid;
4970 kgid_t s_resgid;
4971 unsigned long s_commit_interval;
4972 u32 s_min_batch_time, s_max_batch_time;
4973#ifdef CONFIG_QUOTA
4974 int s_jquota_fmt;
4975 char *s_qf_names[EXT4_MAXQUOTAS];
4976#endif
4977};
4978
4979static int ext4_remount(struct super_block *sb, int *flags, char *data)
4980{
4981 struct ext4_super_block *es;
4982 struct ext4_sb_info *sbi = EXT4_SB(sb);
4983 unsigned long old_sb_flags;
4984 struct ext4_mount_options old_opts;
4985 int enable_quota = 0;
4986 ext4_group_t g;
4987 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4988 int err = 0;
4989#ifdef CONFIG_QUOTA
4990 int i, j;
4991#endif
4992 char *orig_data = kstrdup(data, GFP_KERNEL);
4993
4994 /* Store the original options */
4995 old_sb_flags = sb->s_flags;
4996 old_opts.s_mount_opt = sbi->s_mount_opt;
4997 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4998 old_opts.s_resuid = sbi->s_resuid;
4999 old_opts.s_resgid = sbi->s_resgid;
5000 old_opts.s_commit_interval = sbi->s_commit_interval;
5001 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5002 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5003#ifdef CONFIG_QUOTA
5004 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5005 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5006 if (sbi->s_qf_names[i]) {
5007 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
5008 GFP_KERNEL);
5009 if (!old_opts.s_qf_names[i]) {
5010 for (j = 0; j < i; j++)
5011 kfree(old_opts.s_qf_names[j]);
5012 kfree(orig_data);
5013 return -ENOMEM;
5014 }
5015 } else
5016 old_opts.s_qf_names[i] = NULL;
5017#endif
5018 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5019 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5020
5021 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5022 err = -EINVAL;
5023 goto restore_opts;
5024 }
5025
5026 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5027 test_opt(sb, JOURNAL_CHECKSUM)) {
5028 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5029 "during remount not supported; ignoring");
5030 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5031 }
5032
5033 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5034 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5035 ext4_msg(sb, KERN_ERR, "can't mount with "
5036 "both data=journal and delalloc");
5037 err = -EINVAL;
5038 goto restore_opts;
5039 }
5040 if (test_opt(sb, DIOREAD_NOLOCK)) {
5041 ext4_msg(sb, KERN_ERR, "can't mount with "
5042 "both data=journal and dioread_nolock");
5043 err = -EINVAL;
5044 goto restore_opts;
5045 }
5046 if (test_opt(sb, DAX)) {
5047 ext4_msg(sb, KERN_ERR, "can't mount with "
5048 "both data=journal and dax");
5049 err = -EINVAL;
5050 goto restore_opts;
5051 }
5052 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5053 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5054 ext4_msg(sb, KERN_ERR, "can't mount with "
5055 "journal_async_commit in data=ordered mode");
5056 err = -EINVAL;
5057 goto restore_opts;
5058 }
5059 }
5060
5061 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5062 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5063 err = -EINVAL;
5064 goto restore_opts;
5065 }
5066
5067 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5068 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5069 "dax flag with busy inodes while remounting");
5070 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5071 }
5072
5073 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5074 ext4_abort(sb, "Abort forced by user");
5075
5076 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5077 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5078
5079 es = sbi->s_es;
5080
5081 if (sbi->s_journal) {
5082 ext4_init_journal_params(sb, sbi->s_journal);
5083 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5084 }
5085
5086 if (*flags & SB_LAZYTIME)
5087 sb->s_flags |= SB_LAZYTIME;
5088
5089 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5090 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5091 err = -EROFS;
5092 goto restore_opts;
5093 }
5094
5095 if (*flags & SB_RDONLY) {
5096 err = sync_filesystem(sb);
5097 if (err < 0)
5098 goto restore_opts;
5099 err = dquot_suspend(sb, -1);
5100 if (err < 0)
5101 goto restore_opts;
5102
5103 /*
5104 * First of all, the unconditional stuff we have to do
5105 * to disable replay of the journal when we next remount
5106 */
5107 sb->s_flags |= SB_RDONLY;
5108
5109 /*
5110 * OK, test if we are remounting a valid rw partition
5111 * readonly, and if so set the rdonly flag and then
5112 * mark the partition as valid again.
5113 */
5114 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5115 (sbi->s_mount_state & EXT4_VALID_FS))
5116 es->s_state = cpu_to_le16(sbi->s_mount_state);
5117
5118 if (sbi->s_journal)
5119 ext4_mark_recovery_complete(sb, es);
5120 } else {
5121 /* Make sure we can mount this feature set readwrite */
5122 if (ext4_has_feature_readonly(sb) ||
5123 !ext4_feature_set_ok(sb, 0)) {
5124 err = -EROFS;
5125 goto restore_opts;
5126 }
5127 /*
5128 * Make sure the group descriptor checksums
5129 * are sane. If they aren't, refuse to remount r/w.
5130 */
5131 for (g = 0; g < sbi->s_groups_count; g++) {
5132 struct ext4_group_desc *gdp =
5133 ext4_get_group_desc(sb, g, NULL);
5134
5135 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5136 ext4_msg(sb, KERN_ERR,
5137 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5138 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5139 le16_to_cpu(gdp->bg_checksum));
5140 err = -EFSBADCRC;
5141 goto restore_opts;
5142 }
5143 }
5144
5145 /*
5146 * If we have an unprocessed orphan list hanging
5147 * around from a previously readonly bdev mount,
5148 * require a full umount/remount for now.
5149 */
5150 if (es->s_last_orphan) {
5151 ext4_msg(sb, KERN_WARNING, "Couldn't "
5152 "remount RDWR because of unprocessed "
5153 "orphan inode list. Please "
5154 "umount/remount instead");
5155 err = -EINVAL;
5156 goto restore_opts;
5157 }
5158
5159 /*
5160 * Mounting a RDONLY partition read-write, so reread
5161 * and store the current valid flag. (It may have
5162 * been changed by e2fsck since we originally mounted
5163 * the partition.)
5164 */
5165 if (sbi->s_journal)
5166 ext4_clear_journal_err(sb, es);
5167 sbi->s_mount_state = le16_to_cpu(es->s_state);
5168 if (!ext4_setup_super(sb, es, 0))
5169 sb->s_flags &= ~SB_RDONLY;
5170 if (ext4_has_feature_mmp(sb))
5171 if (ext4_multi_mount_protect(sb,
5172 le64_to_cpu(es->s_mmp_block))) {
5173 err = -EROFS;
5174 goto restore_opts;
5175 }
5176 enable_quota = 1;
5177 }
5178 }
5179
5180 /*
5181 * Reinitialize lazy itable initialization thread based on
5182 * current settings
5183 */
5184 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5185 ext4_unregister_li_request(sb);
5186 else {
5187 ext4_group_t first_not_zeroed;
5188 first_not_zeroed = ext4_has_uninit_itable(sb);
5189 ext4_register_li_request(sb, first_not_zeroed);
5190 }
5191
5192 ext4_setup_system_zone(sb);
5193 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY))
5194 ext4_commit_super(sb, 1);
5195
5196#ifdef CONFIG_QUOTA
5197 /* Release old quota file names */
5198 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5199 kfree(old_opts.s_qf_names[i]);
5200 if (enable_quota) {
5201 if (sb_any_quota_suspended(sb))
5202 dquot_resume(sb, -1);
5203 else if (ext4_has_feature_quota(sb)) {
5204 err = ext4_enable_quotas(sb);
5205 if (err)
5206 goto restore_opts;
5207 }
5208 }
5209#endif
5210
5211 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5212 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5213 kfree(orig_data);
5214 return 0;
5215
5216restore_opts:
5217 sb->s_flags = old_sb_flags;
5218 sbi->s_mount_opt = old_opts.s_mount_opt;
5219 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5220 sbi->s_resuid = old_opts.s_resuid;
5221 sbi->s_resgid = old_opts.s_resgid;
5222 sbi->s_commit_interval = old_opts.s_commit_interval;
5223 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5224 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5225#ifdef CONFIG_QUOTA
5226 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5227 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5228 kfree(sbi->s_qf_names[i]);
5229 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5230 }
5231#endif
5232 kfree(orig_data);
5233 return err;
5234}
5235
5236#ifdef CONFIG_QUOTA
5237static int ext4_statfs_project(struct super_block *sb,
5238 kprojid_t projid, struct kstatfs *buf)
5239{
5240 struct kqid qid;
5241 struct dquot *dquot;
5242 u64 limit;
5243 u64 curblock;
5244
5245 qid = make_kqid_projid(projid);
5246 dquot = dqget(sb, qid);
5247 if (IS_ERR(dquot))
5248 return PTR_ERR(dquot);
5249 spin_lock(&dquot->dq_dqb_lock);
5250
5251 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5252 dquot->dq_dqb.dqb_bsoftlimit :
5253 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5254 if (limit && buf->f_blocks > limit) {
5255 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5256 buf->f_blocks = limit;
5257 buf->f_bfree = buf->f_bavail =
5258 (buf->f_blocks > curblock) ?
5259 (buf->f_blocks - curblock) : 0;
5260 }
5261
5262 limit = dquot->dq_dqb.dqb_isoftlimit ?
5263 dquot->dq_dqb.dqb_isoftlimit :
5264 dquot->dq_dqb.dqb_ihardlimit;
5265 if (limit && buf->f_files > limit) {
5266 buf->f_files = limit;
5267 buf->f_ffree =
5268 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5269 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5270 }
5271
5272 spin_unlock(&dquot->dq_dqb_lock);
5273 dqput(dquot);
5274 return 0;
5275}
5276#endif
5277
5278static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5279{
5280 struct super_block *sb = dentry->d_sb;
5281 struct ext4_sb_info *sbi = EXT4_SB(sb);
5282 struct ext4_super_block *es = sbi->s_es;
5283 ext4_fsblk_t overhead = 0, resv_blocks;
5284 u64 fsid;
5285 s64 bfree;
5286 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5287
5288 if (!test_opt(sb, MINIX_DF))
5289 overhead = sbi->s_overhead;
5290
5291 buf->f_type = EXT4_SUPER_MAGIC;
5292 buf->f_bsize = sb->s_blocksize;
5293 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5294 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5295 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5296 /* prevent underflow in case that few free space is available */
5297 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5298 buf->f_bavail = buf->f_bfree -
5299 (ext4_r_blocks_count(es) + resv_blocks);
5300 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5301 buf->f_bavail = 0;
5302 buf->f_files = le32_to_cpu(es->s_inodes_count);
5303 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5304 buf->f_namelen = EXT4_NAME_LEN;
5305 fsid = le64_to_cpup((void *)es->s_uuid) ^
5306 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5307 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5308 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5309
5310#ifdef CONFIG_QUOTA
5311 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5312 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5313 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5314#endif
5315 return 0;
5316}
5317
5318
5319#ifdef CONFIG_QUOTA
5320
5321/*
5322 * Helper functions so that transaction is started before we acquire dqio_sem
5323 * to keep correct lock ordering of transaction > dqio_sem
5324 */
5325static inline struct inode *dquot_to_inode(struct dquot *dquot)
5326{
5327 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5328}
5329
5330static int ext4_write_dquot(struct dquot *dquot)
5331{
5332 int ret, err;
5333 handle_t *handle;
5334 struct inode *inode;
5335
5336 inode = dquot_to_inode(dquot);
5337 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5338 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5339 if (IS_ERR(handle))
5340 return PTR_ERR(handle);
5341 ret = dquot_commit(dquot);
5342 err = ext4_journal_stop(handle);
5343 if (!ret)
5344 ret = err;
5345 return ret;
5346}
5347
5348static int ext4_acquire_dquot(struct dquot *dquot)
5349{
5350 int ret, err;
5351 handle_t *handle;
5352
5353 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5354 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5355 if (IS_ERR(handle))
5356 return PTR_ERR(handle);
5357 ret = dquot_acquire(dquot);
5358 err = ext4_journal_stop(handle);
5359 if (!ret)
5360 ret = err;
5361 return ret;
5362}
5363
5364static int ext4_release_dquot(struct dquot *dquot)
5365{
5366 int ret, err;
5367 handle_t *handle;
5368
5369 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5370 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5371 if (IS_ERR(handle)) {
5372 /* Release dquot anyway to avoid endless cycle in dqput() */
5373 dquot_release(dquot);
5374 return PTR_ERR(handle);
5375 }
5376 ret = dquot_release(dquot);
5377 err = ext4_journal_stop(handle);
5378 if (!ret)
5379 ret = err;
5380 return ret;
5381}
5382
5383static int ext4_mark_dquot_dirty(struct dquot *dquot)
5384{
5385 struct super_block *sb = dquot->dq_sb;
5386 struct ext4_sb_info *sbi = EXT4_SB(sb);
5387
5388 /* Are we journaling quotas? */
5389 if (ext4_has_feature_quota(sb) ||
5390 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5391 dquot_mark_dquot_dirty(dquot);
5392 return ext4_write_dquot(dquot);
5393 } else {
5394 return dquot_mark_dquot_dirty(dquot);
5395 }
5396}
5397
5398static int ext4_write_info(struct super_block *sb, int type)
5399{
5400 int ret, err;
5401 handle_t *handle;
5402
5403 /* Data block + inode block */
5404 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5405 if (IS_ERR(handle))
5406 return PTR_ERR(handle);
5407 ret = dquot_commit_info(sb, type);
5408 err = ext4_journal_stop(handle);
5409 if (!ret)
5410 ret = err;
5411 return ret;
5412}
5413
5414/*
5415 * Turn on quotas during mount time - we need to find
5416 * the quota file and such...
5417 */
5418static int ext4_quota_on_mount(struct super_block *sb, int type)
5419{
5420 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5421 EXT4_SB(sb)->s_jquota_fmt, type);
5422}
5423
5424static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5425{
5426 struct ext4_inode_info *ei = EXT4_I(inode);
5427
5428 /* The first argument of lockdep_set_subclass has to be
5429 * *exactly* the same as the argument to init_rwsem() --- in
5430 * this case, in init_once() --- or lockdep gets unhappy
5431 * because the name of the lock is set using the
5432 * stringification of the argument to init_rwsem().
5433 */
5434 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5435 lockdep_set_subclass(&ei->i_data_sem, subclass);
5436}
5437
5438/*
5439 * Standard function to be called on quota_on
5440 */
5441static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5442 const struct path *path)
5443{
5444 int err;
5445
5446 if (!test_opt(sb, QUOTA))
5447 return -EINVAL;
5448
5449 /* Quotafile not on the same filesystem? */
5450 if (path->dentry->d_sb != sb)
5451 return -EXDEV;
5452 /* Journaling quota? */
5453 if (EXT4_SB(sb)->s_qf_names[type]) {
5454 /* Quotafile not in fs root? */
5455 if (path->dentry->d_parent != sb->s_root)
5456 ext4_msg(sb, KERN_WARNING,
5457 "Quota file not on filesystem root. "
5458 "Journaled quota will not work");
5459 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5460 } else {
5461 /*
5462 * Clear the flag just in case mount options changed since
5463 * last time.
5464 */
5465 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5466 }
5467
5468 /*
5469 * When we journal data on quota file, we have to flush journal to see
5470 * all updates to the file when we bypass pagecache...
5471 */
5472 if (EXT4_SB(sb)->s_journal &&
5473 ext4_should_journal_data(d_inode(path->dentry))) {
5474 /*
5475 * We don't need to lock updates but journal_flush() could
5476 * otherwise be livelocked...
5477 */
5478 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5479 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5480 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5481 if (err)
5482 return err;
5483 }
5484
5485 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5486 err = dquot_quota_on(sb, type, format_id, path);
5487 if (err) {
5488 lockdep_set_quota_inode(path->dentry->d_inode,
5489 I_DATA_SEM_NORMAL);
5490 } else {
5491 struct inode *inode = d_inode(path->dentry);
5492 handle_t *handle;
5493
5494 /*
5495 * Set inode flags to prevent userspace from messing with quota
5496 * files. If this fails, we return success anyway since quotas
5497 * are already enabled and this is not a hard failure.
5498 */
5499 inode_lock(inode);
5500 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5501 if (IS_ERR(handle))
5502 goto unlock_inode;
5503 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5504 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5505 S_NOATIME | S_IMMUTABLE);
5506 ext4_mark_inode_dirty(handle, inode);
5507 ext4_journal_stop(handle);
5508 unlock_inode:
5509 inode_unlock(inode);
5510 }
5511 return err;
5512}
5513
5514static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5515 unsigned int flags)
5516{
5517 int err;
5518 struct inode *qf_inode;
5519 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5520 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5521 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5522 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5523 };
5524
5525 BUG_ON(!ext4_has_feature_quota(sb));
5526
5527 if (!qf_inums[type])
5528 return -EPERM;
5529
5530 qf_inode = ext4_iget(sb, qf_inums[type]);
5531 if (IS_ERR(qf_inode)) {
5532 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5533 return PTR_ERR(qf_inode);
5534 }
5535
5536 /* Don't account quota for quota files to avoid recursion */
5537 qf_inode->i_flags |= S_NOQUOTA;
5538 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5539 err = dquot_enable(qf_inode, type, format_id, flags);
5540 iput(qf_inode);
5541 if (err)
5542 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5543
5544 return err;
5545}
5546
5547/* Enable usage tracking for all quota types. */
5548static int ext4_enable_quotas(struct super_block *sb)
5549{
5550 int type, err = 0;
5551 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5552 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5553 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5554 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5555 };
5556 bool quota_mopt[EXT4_MAXQUOTAS] = {
5557 test_opt(sb, USRQUOTA),
5558 test_opt(sb, GRPQUOTA),
5559 test_opt(sb, PRJQUOTA),
5560 };
5561
5562 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5563 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5564 if (qf_inums[type]) {
5565 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5566 DQUOT_USAGE_ENABLED |
5567 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5568 if (err) {
5569 for (type--; type >= 0; type--)
5570 dquot_quota_off(sb, type);
5571
5572 ext4_warning(sb,
5573 "Failed to enable quota tracking "
5574 "(type=%d, err=%d). Please run "
5575 "e2fsck to fix.", type, err);
5576 return err;
5577 }
5578 }
5579 }
5580 return 0;
5581}
5582
5583static int ext4_quota_off(struct super_block *sb, int type)
5584{
5585 struct inode *inode = sb_dqopt(sb)->files[type];
5586 handle_t *handle;
5587 int err;
5588
5589 /* Force all delayed allocation blocks to be allocated.
5590 * Caller already holds s_umount sem */
5591 if (test_opt(sb, DELALLOC))
5592 sync_filesystem(sb);
5593
5594 if (!inode || !igrab(inode))
5595 goto out;
5596
5597 err = dquot_quota_off(sb, type);
5598 if (err || ext4_has_feature_quota(sb))
5599 goto out_put;
5600
5601 inode_lock(inode);
5602 /*
5603 * Update modification times of quota files when userspace can
5604 * start looking at them. If we fail, we return success anyway since
5605 * this is not a hard failure and quotas are already disabled.
5606 */
5607 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5608 if (IS_ERR(handle))
5609 goto out_unlock;
5610 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5611 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5612 inode->i_mtime = inode->i_ctime = current_time(inode);
5613 ext4_mark_inode_dirty(handle, inode);
5614 ext4_journal_stop(handle);
5615out_unlock:
5616 inode_unlock(inode);
5617out_put:
5618 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5619 iput(inode);
5620 return err;
5621out:
5622 return dquot_quota_off(sb, type);
5623}
5624
5625/* Read data from quotafile - avoid pagecache and such because we cannot afford
5626 * acquiring the locks... As quota files are never truncated and quota code
5627 * itself serializes the operations (and no one else should touch the files)
5628 * we don't have to be afraid of races */
5629static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5630 size_t len, loff_t off)
5631{
5632 struct inode *inode = sb_dqopt(sb)->files[type];
5633 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5634 int offset = off & (sb->s_blocksize - 1);
5635 int tocopy;
5636 size_t toread;
5637 struct buffer_head *bh;
5638 loff_t i_size = i_size_read(inode);
5639
5640 if (off > i_size)
5641 return 0;
5642 if (off+len > i_size)
5643 len = i_size-off;
5644 toread = len;
5645 while (toread > 0) {
5646 tocopy = sb->s_blocksize - offset < toread ?
5647 sb->s_blocksize - offset : toread;
5648 bh = ext4_bread(NULL, inode, blk, 0);
5649 if (IS_ERR(bh))
5650 return PTR_ERR(bh);
5651 if (!bh) /* A hole? */
5652 memset(data, 0, tocopy);
5653 else
5654 memcpy(data, bh->b_data+offset, tocopy);
5655 brelse(bh);
5656 offset = 0;
5657 toread -= tocopy;
5658 data += tocopy;
5659 blk++;
5660 }
5661 return len;
5662}
5663
5664/* Write to quotafile (we know the transaction is already started and has
5665 * enough credits) */
5666static ssize_t ext4_quota_write(struct super_block *sb, int type,
5667 const char *data, size_t len, loff_t off)
5668{
5669 struct inode *inode = sb_dqopt(sb)->files[type];
5670 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5671 int err, offset = off & (sb->s_blocksize - 1);
5672 int retries = 0;
5673 struct buffer_head *bh;
5674 handle_t *handle = journal_current_handle();
5675
5676 if (EXT4_SB(sb)->s_journal && !handle) {
5677 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5678 " cancelled because transaction is not started",
5679 (unsigned long long)off, (unsigned long long)len);
5680 return -EIO;
5681 }
5682 /*
5683 * Since we account only one data block in transaction credits,
5684 * then it is impossible to cross a block boundary.
5685 */
5686 if (sb->s_blocksize - offset < len) {
5687 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5688 " cancelled because not block aligned",
5689 (unsigned long long)off, (unsigned long long)len);
5690 return -EIO;
5691 }
5692
5693 do {
5694 bh = ext4_bread(handle, inode, blk,
5695 EXT4_GET_BLOCKS_CREATE |
5696 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5697 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5698 ext4_should_retry_alloc(inode->i_sb, &retries));
5699 if (IS_ERR(bh))
5700 return PTR_ERR(bh);
5701 if (!bh)
5702 goto out;
5703 BUFFER_TRACE(bh, "get write access");
5704 err = ext4_journal_get_write_access(handle, bh);
5705 if (err) {
5706 brelse(bh);
5707 return err;
5708 }
5709 lock_buffer(bh);
5710 memcpy(bh->b_data+offset, data, len);
5711 flush_dcache_page(bh->b_page);
5712 unlock_buffer(bh);
5713 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5714 brelse(bh);
5715out:
5716 if (inode->i_size < off + len) {
5717 i_size_write(inode, off + len);
5718 EXT4_I(inode)->i_disksize = inode->i_size;
5719 ext4_mark_inode_dirty(handle, inode);
5720 }
5721 return len;
5722}
5723
5724static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5725{
5726 const struct quota_format_ops *ops;
5727
5728 if (!sb_has_quota_loaded(sb, qid->type))
5729 return -ESRCH;
5730 ops = sb_dqopt(sb)->ops[qid->type];
5731 if (!ops || !ops->get_next_id)
5732 return -ENOSYS;
5733 return dquot_get_next_id(sb, qid);
5734}
5735#endif
5736
5737static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5738 const char *dev_name, void *data)
5739{
5740 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5741}
5742
5743#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5744static inline void register_as_ext2(void)
5745{
5746 int err = register_filesystem(&ext2_fs_type);
5747 if (err)
5748 printk(KERN_WARNING
5749 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5750}
5751
5752static inline void unregister_as_ext2(void)
5753{
5754 unregister_filesystem(&ext2_fs_type);
5755}
5756
5757static inline int ext2_feature_set_ok(struct super_block *sb)
5758{
5759 if (ext4_has_unknown_ext2_incompat_features(sb))
5760 return 0;
5761 if (sb_rdonly(sb))
5762 return 1;
5763 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5764 return 0;
5765 return 1;
5766}
5767#else
5768static inline void register_as_ext2(void) { }
5769static inline void unregister_as_ext2(void) { }
5770static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5771#endif
5772
5773static inline void register_as_ext3(void)
5774{
5775 int err = register_filesystem(&ext3_fs_type);
5776 if (err)
5777 printk(KERN_WARNING
5778 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5779}
5780
5781static inline void unregister_as_ext3(void)
5782{
5783 unregister_filesystem(&ext3_fs_type);
5784}
5785
5786static inline int ext3_feature_set_ok(struct super_block *sb)
5787{
5788 if (ext4_has_unknown_ext3_incompat_features(sb))
5789 return 0;
5790 if (!ext4_has_feature_journal(sb))
5791 return 0;
5792 if (sb_rdonly(sb))
5793 return 1;
5794 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5795 return 0;
5796 return 1;
5797}
5798
5799static struct file_system_type ext4_fs_type = {
5800 .owner = THIS_MODULE,
5801 .name = "ext4",
5802 .mount = ext4_mount,
5803 .kill_sb = kill_block_super,
5804 .fs_flags = FS_REQUIRES_DEV,
5805};
5806MODULE_ALIAS_FS("ext4");
5807
5808/* Shared across all ext4 file systems */
5809wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5810
5811static int __init ext4_init_fs(void)
5812{
5813 int i, err;
5814
5815 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5816 ext4_li_info = NULL;
5817 mutex_init(&ext4_li_mtx);
5818
5819 /* Build-time check for flags consistency */
5820 ext4_check_flag_values();
5821
5822 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5823 init_waitqueue_head(&ext4__ioend_wq[i]);
5824
5825 err = ext4_init_es();
5826 if (err)
5827 return err;
5828
5829 err = ext4_init_pageio();
5830 if (err)
5831 goto out5;
5832
5833 err = ext4_init_system_zone();
5834 if (err)
5835 goto out4;
5836
5837 err = ext4_init_sysfs();
5838 if (err)
5839 goto out3;
5840
5841 err = ext4_init_mballoc();
5842 if (err)
5843 goto out2;
5844 err = init_inodecache();
5845 if (err)
5846 goto out1;
5847 register_as_ext3();
5848 register_as_ext2();
5849 err = register_filesystem(&ext4_fs_type);
5850 if (err)
5851 goto out;
5852
5853 return 0;
5854out:
5855 unregister_as_ext2();
5856 unregister_as_ext3();
5857 destroy_inodecache();
5858out1:
5859 ext4_exit_mballoc();
5860out2:
5861 ext4_exit_sysfs();
5862out3:
5863 ext4_exit_system_zone();
5864out4:
5865 ext4_exit_pageio();
5866out5:
5867 ext4_exit_es();
5868
5869 return err;
5870}
5871
5872static void __exit ext4_exit_fs(void)
5873{
5874 ext4_destroy_lazyinit_thread();
5875 unregister_as_ext2();
5876 unregister_as_ext3();
5877 unregister_filesystem(&ext4_fs_type);
5878 destroy_inodecache();
5879 ext4_exit_mballoc();
5880 ext4_exit_sysfs();
5881 ext4_exit_system_zone();
5882 ext4_exit_pageio();
5883 ext4_exit_es();
5884}
5885
5886MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5887MODULE_DESCRIPTION("Fourth Extended Filesystem");
5888MODULE_LICENSE("GPL");
5889MODULE_SOFTDEP("pre: crc32c");
5890module_init(ext4_init_fs)
5891module_exit(ext4_exit_fs)
1/*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19#include <linux/module.h>
20#include <linux/string.h>
21#include <linux/fs.h>
22#include <linux/time.h>
23#include <linux/vmalloc.h>
24#include <linux/jbd2.h>
25#include <linux/slab.h>
26#include <linux/init.h>
27#include <linux/blkdev.h>
28#include <linux/parser.h>
29#include <linux/buffer_head.h>
30#include <linux/exportfs.h>
31#include <linux/vfs.h>
32#include <linux/random.h>
33#include <linux/mount.h>
34#include <linux/namei.h>
35#include <linux/quotaops.h>
36#include <linux/seq_file.h>
37#include <linux/proc_fs.h>
38#include <linux/ctype.h>
39#include <linux/log2.h>
40#include <linux/crc16.h>
41#include <linux/cleancache.h>
42#include <asm/uaccess.h>
43
44#include <linux/kthread.h>
45#include <linux/freezer.h>
46
47#include "ext4.h"
48#include "ext4_extents.h" /* Needed for trace points definition */
49#include "ext4_jbd2.h"
50#include "xattr.h"
51#include "acl.h"
52#include "mballoc.h"
53
54#define CREATE_TRACE_POINTS
55#include <trace/events/ext4.h>
56
57static struct proc_dir_entry *ext4_proc_root;
58static struct kset *ext4_kset;
59static struct ext4_lazy_init *ext4_li_info;
60static struct mutex ext4_li_mtx;
61static struct ext4_features *ext4_feat;
62static int ext4_mballoc_ready;
63
64static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67static int ext4_commit_super(struct super_block *sb, int sync);
68static void ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70static void ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72static int ext4_sync_fs(struct super_block *sb, int wait);
73static int ext4_sync_fs_nojournal(struct super_block *sb, int wait);
74static int ext4_remount(struct super_block *sb, int *flags, char *data);
75static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76static int ext4_unfreeze(struct super_block *sb);
77static int ext4_freeze(struct super_block *sb);
78static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 const char *dev_name, void *data);
80static inline int ext2_feature_set_ok(struct super_block *sb);
81static inline int ext3_feature_set_ok(struct super_block *sb);
82static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83static void ext4_destroy_lazyinit_thread(void);
84static void ext4_unregister_li_request(struct super_block *sb);
85static void ext4_clear_request_list(void);
86static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
87
88#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
89static struct file_system_type ext2_fs_type = {
90 .owner = THIS_MODULE,
91 .name = "ext2",
92 .mount = ext4_mount,
93 .kill_sb = kill_block_super,
94 .fs_flags = FS_REQUIRES_DEV,
95};
96MODULE_ALIAS_FS("ext2");
97MODULE_ALIAS("ext2");
98#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
99#else
100#define IS_EXT2_SB(sb) (0)
101#endif
102
103
104#if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
105static struct file_system_type ext3_fs_type = {
106 .owner = THIS_MODULE,
107 .name = "ext3",
108 .mount = ext4_mount,
109 .kill_sb = kill_block_super,
110 .fs_flags = FS_REQUIRES_DEV,
111};
112MODULE_ALIAS_FS("ext3");
113MODULE_ALIAS("ext3");
114#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
115#else
116#define IS_EXT3_SB(sb) (0)
117#endif
118
119static int ext4_verify_csum_type(struct super_block *sb,
120 struct ext4_super_block *es)
121{
122 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
123 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
124 return 1;
125
126 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
127}
128
129static __le32 ext4_superblock_csum(struct super_block *sb,
130 struct ext4_super_block *es)
131{
132 struct ext4_sb_info *sbi = EXT4_SB(sb);
133 int offset = offsetof(struct ext4_super_block, s_checksum);
134 __u32 csum;
135
136 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
137
138 return cpu_to_le32(csum);
139}
140
141int ext4_superblock_csum_verify(struct super_block *sb,
142 struct ext4_super_block *es)
143{
144 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
145 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
146 return 1;
147
148 return es->s_checksum == ext4_superblock_csum(sb, es);
149}
150
151void ext4_superblock_csum_set(struct super_block *sb)
152{
153 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
154
155 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
156 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
157 return;
158
159 es->s_checksum = ext4_superblock_csum(sb, es);
160}
161
162void *ext4_kvmalloc(size_t size, gfp_t flags)
163{
164 void *ret;
165
166 ret = kmalloc(size, flags | __GFP_NOWARN);
167 if (!ret)
168 ret = __vmalloc(size, flags, PAGE_KERNEL);
169 return ret;
170}
171
172void *ext4_kvzalloc(size_t size, gfp_t flags)
173{
174 void *ret;
175
176 ret = kzalloc(size, flags | __GFP_NOWARN);
177 if (!ret)
178 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
179 return ret;
180}
181
182void ext4_kvfree(void *ptr)
183{
184 if (is_vmalloc_addr(ptr))
185 vfree(ptr);
186 else
187 kfree(ptr);
188
189}
190
191ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
192 struct ext4_group_desc *bg)
193{
194 return le32_to_cpu(bg->bg_block_bitmap_lo) |
195 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
196 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
197}
198
199ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
200 struct ext4_group_desc *bg)
201{
202 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
203 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
204 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
205}
206
207ext4_fsblk_t ext4_inode_table(struct super_block *sb,
208 struct ext4_group_desc *bg)
209{
210 return le32_to_cpu(bg->bg_inode_table_lo) |
211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
212 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
213}
214
215__u32 ext4_free_group_clusters(struct super_block *sb,
216 struct ext4_group_desc *bg)
217{
218 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
220 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
221}
222
223__u32 ext4_free_inodes_count(struct super_block *sb,
224 struct ext4_group_desc *bg)
225{
226 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
228 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
229}
230
231__u32 ext4_used_dirs_count(struct super_block *sb,
232 struct ext4_group_desc *bg)
233{
234 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
236 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
237}
238
239__u32 ext4_itable_unused_count(struct super_block *sb,
240 struct ext4_group_desc *bg)
241{
242 return le16_to_cpu(bg->bg_itable_unused_lo) |
243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
244 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
245}
246
247void ext4_block_bitmap_set(struct super_block *sb,
248 struct ext4_group_desc *bg, ext4_fsblk_t blk)
249{
250 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
251 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
252 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
253}
254
255void ext4_inode_bitmap_set(struct super_block *sb,
256 struct ext4_group_desc *bg, ext4_fsblk_t blk)
257{
258 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
259 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
260 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
261}
262
263void ext4_inode_table_set(struct super_block *sb,
264 struct ext4_group_desc *bg, ext4_fsblk_t blk)
265{
266 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
268 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
269}
270
271void ext4_free_group_clusters_set(struct super_block *sb,
272 struct ext4_group_desc *bg, __u32 count)
273{
274 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
276 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
277}
278
279void ext4_free_inodes_set(struct super_block *sb,
280 struct ext4_group_desc *bg, __u32 count)
281{
282 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
284 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
285}
286
287void ext4_used_dirs_set(struct super_block *sb,
288 struct ext4_group_desc *bg, __u32 count)
289{
290 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
292 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
293}
294
295void ext4_itable_unused_set(struct super_block *sb,
296 struct ext4_group_desc *bg, __u32 count)
297{
298 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
300 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
301}
302
303
304static void __save_error_info(struct super_block *sb, const char *func,
305 unsigned int line)
306{
307 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
308
309 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
310 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
311 es->s_last_error_time = cpu_to_le32(get_seconds());
312 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
313 es->s_last_error_line = cpu_to_le32(line);
314 if (!es->s_first_error_time) {
315 es->s_first_error_time = es->s_last_error_time;
316 strncpy(es->s_first_error_func, func,
317 sizeof(es->s_first_error_func));
318 es->s_first_error_line = cpu_to_le32(line);
319 es->s_first_error_ino = es->s_last_error_ino;
320 es->s_first_error_block = es->s_last_error_block;
321 }
322 /*
323 * Start the daily error reporting function if it hasn't been
324 * started already
325 */
326 if (!es->s_error_count)
327 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
328 le32_add_cpu(&es->s_error_count, 1);
329}
330
331static void save_error_info(struct super_block *sb, const char *func,
332 unsigned int line)
333{
334 __save_error_info(sb, func, line);
335 ext4_commit_super(sb, 1);
336}
337
338/*
339 * The del_gendisk() function uninitializes the disk-specific data
340 * structures, including the bdi structure, without telling anyone
341 * else. Once this happens, any attempt to call mark_buffer_dirty()
342 * (for example, by ext4_commit_super), will cause a kernel OOPS.
343 * This is a kludge to prevent these oops until we can put in a proper
344 * hook in del_gendisk() to inform the VFS and file system layers.
345 */
346static int block_device_ejected(struct super_block *sb)
347{
348 struct inode *bd_inode = sb->s_bdev->bd_inode;
349 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
350
351 return bdi->dev == NULL;
352}
353
354static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
355{
356 struct super_block *sb = journal->j_private;
357 struct ext4_sb_info *sbi = EXT4_SB(sb);
358 int error = is_journal_aborted(journal);
359 struct ext4_journal_cb_entry *jce;
360
361 BUG_ON(txn->t_state == T_FINISHED);
362 spin_lock(&sbi->s_md_lock);
363 while (!list_empty(&txn->t_private_list)) {
364 jce = list_entry(txn->t_private_list.next,
365 struct ext4_journal_cb_entry, jce_list);
366 list_del_init(&jce->jce_list);
367 spin_unlock(&sbi->s_md_lock);
368 jce->jce_func(sb, jce, error);
369 spin_lock(&sbi->s_md_lock);
370 }
371 spin_unlock(&sbi->s_md_lock);
372}
373
374/* Deal with the reporting of failure conditions on a filesystem such as
375 * inconsistencies detected or read IO failures.
376 *
377 * On ext2, we can store the error state of the filesystem in the
378 * superblock. That is not possible on ext4, because we may have other
379 * write ordering constraints on the superblock which prevent us from
380 * writing it out straight away; and given that the journal is about to
381 * be aborted, we can't rely on the current, or future, transactions to
382 * write out the superblock safely.
383 *
384 * We'll just use the jbd2_journal_abort() error code to record an error in
385 * the journal instead. On recovery, the journal will complain about
386 * that error until we've noted it down and cleared it.
387 */
388
389static void ext4_handle_error(struct super_block *sb)
390{
391 if (sb->s_flags & MS_RDONLY)
392 return;
393
394 if (!test_opt(sb, ERRORS_CONT)) {
395 journal_t *journal = EXT4_SB(sb)->s_journal;
396
397 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
398 if (journal)
399 jbd2_journal_abort(journal, -EIO);
400 }
401 if (test_opt(sb, ERRORS_RO)) {
402 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
403 /*
404 * Make sure updated value of ->s_mount_flags will be visible
405 * before ->s_flags update
406 */
407 smp_wmb();
408 sb->s_flags |= MS_RDONLY;
409 }
410 if (test_opt(sb, ERRORS_PANIC))
411 panic("EXT4-fs (device %s): panic forced after error\n",
412 sb->s_id);
413}
414
415#define ext4_error_ratelimit(sb) \
416 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
417 "EXT4-fs error")
418
419void __ext4_error(struct super_block *sb, const char *function,
420 unsigned int line, const char *fmt, ...)
421{
422 struct va_format vaf;
423 va_list args;
424
425 if (ext4_error_ratelimit(sb)) {
426 va_start(args, fmt);
427 vaf.fmt = fmt;
428 vaf.va = &args;
429 printk(KERN_CRIT
430 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
431 sb->s_id, function, line, current->comm, &vaf);
432 va_end(args);
433 }
434 save_error_info(sb, function, line);
435 ext4_handle_error(sb);
436}
437
438void __ext4_error_inode(struct inode *inode, const char *function,
439 unsigned int line, ext4_fsblk_t block,
440 const char *fmt, ...)
441{
442 va_list args;
443 struct va_format vaf;
444 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
445
446 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
447 es->s_last_error_block = cpu_to_le64(block);
448 if (ext4_error_ratelimit(inode->i_sb)) {
449 va_start(args, fmt);
450 vaf.fmt = fmt;
451 vaf.va = &args;
452 if (block)
453 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
454 "inode #%lu: block %llu: comm %s: %pV\n",
455 inode->i_sb->s_id, function, line, inode->i_ino,
456 block, current->comm, &vaf);
457 else
458 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
459 "inode #%lu: comm %s: %pV\n",
460 inode->i_sb->s_id, function, line, inode->i_ino,
461 current->comm, &vaf);
462 va_end(args);
463 }
464 save_error_info(inode->i_sb, function, line);
465 ext4_handle_error(inode->i_sb);
466}
467
468void __ext4_error_file(struct file *file, const char *function,
469 unsigned int line, ext4_fsblk_t block,
470 const char *fmt, ...)
471{
472 va_list args;
473 struct va_format vaf;
474 struct ext4_super_block *es;
475 struct inode *inode = file_inode(file);
476 char pathname[80], *path;
477
478 es = EXT4_SB(inode->i_sb)->s_es;
479 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
480 if (ext4_error_ratelimit(inode->i_sb)) {
481 path = d_path(&(file->f_path), pathname, sizeof(pathname));
482 if (IS_ERR(path))
483 path = "(unknown)";
484 va_start(args, fmt);
485 vaf.fmt = fmt;
486 vaf.va = &args;
487 if (block)
488 printk(KERN_CRIT
489 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
490 "block %llu: comm %s: path %s: %pV\n",
491 inode->i_sb->s_id, function, line, inode->i_ino,
492 block, current->comm, path, &vaf);
493 else
494 printk(KERN_CRIT
495 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
496 "comm %s: path %s: %pV\n",
497 inode->i_sb->s_id, function, line, inode->i_ino,
498 current->comm, path, &vaf);
499 va_end(args);
500 }
501 save_error_info(inode->i_sb, function, line);
502 ext4_handle_error(inode->i_sb);
503}
504
505const char *ext4_decode_error(struct super_block *sb, int errno,
506 char nbuf[16])
507{
508 char *errstr = NULL;
509
510 switch (errno) {
511 case -EIO:
512 errstr = "IO failure";
513 break;
514 case -ENOMEM:
515 errstr = "Out of memory";
516 break;
517 case -EROFS:
518 if (!sb || (EXT4_SB(sb)->s_journal &&
519 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
520 errstr = "Journal has aborted";
521 else
522 errstr = "Readonly filesystem";
523 break;
524 default:
525 /* If the caller passed in an extra buffer for unknown
526 * errors, textualise them now. Else we just return
527 * NULL. */
528 if (nbuf) {
529 /* Check for truncated error codes... */
530 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
531 errstr = nbuf;
532 }
533 break;
534 }
535
536 return errstr;
537}
538
539/* __ext4_std_error decodes expected errors from journaling functions
540 * automatically and invokes the appropriate error response. */
541
542void __ext4_std_error(struct super_block *sb, const char *function,
543 unsigned int line, int errno)
544{
545 char nbuf[16];
546 const char *errstr;
547
548 /* Special case: if the error is EROFS, and we're not already
549 * inside a transaction, then there's really no point in logging
550 * an error. */
551 if (errno == -EROFS && journal_current_handle() == NULL &&
552 (sb->s_flags & MS_RDONLY))
553 return;
554
555 if (ext4_error_ratelimit(sb)) {
556 errstr = ext4_decode_error(sb, errno, nbuf);
557 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
558 sb->s_id, function, line, errstr);
559 }
560
561 save_error_info(sb, function, line);
562 ext4_handle_error(sb);
563}
564
565/*
566 * ext4_abort is a much stronger failure handler than ext4_error. The
567 * abort function may be used to deal with unrecoverable failures such
568 * as journal IO errors or ENOMEM at a critical moment in log management.
569 *
570 * We unconditionally force the filesystem into an ABORT|READONLY state,
571 * unless the error response on the fs has been set to panic in which
572 * case we take the easy way out and panic immediately.
573 */
574
575void __ext4_abort(struct super_block *sb, const char *function,
576 unsigned int line, const char *fmt, ...)
577{
578 va_list args;
579
580 save_error_info(sb, function, line);
581 va_start(args, fmt);
582 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
583 function, line);
584 vprintk(fmt, args);
585 printk("\n");
586 va_end(args);
587
588 if ((sb->s_flags & MS_RDONLY) == 0) {
589 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
590 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
591 /*
592 * Make sure updated value of ->s_mount_flags will be visible
593 * before ->s_flags update
594 */
595 smp_wmb();
596 sb->s_flags |= MS_RDONLY;
597 if (EXT4_SB(sb)->s_journal)
598 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
599 save_error_info(sb, function, line);
600 }
601 if (test_opt(sb, ERRORS_PANIC))
602 panic("EXT4-fs panic from previous error\n");
603}
604
605void __ext4_msg(struct super_block *sb,
606 const char *prefix, const char *fmt, ...)
607{
608 struct va_format vaf;
609 va_list args;
610
611 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
612 return;
613
614 va_start(args, fmt);
615 vaf.fmt = fmt;
616 vaf.va = &args;
617 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
618 va_end(args);
619}
620
621void __ext4_warning(struct super_block *sb, const char *function,
622 unsigned int line, const char *fmt, ...)
623{
624 struct va_format vaf;
625 va_list args;
626
627 if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
628 "EXT4-fs warning"))
629 return;
630
631 va_start(args, fmt);
632 vaf.fmt = fmt;
633 vaf.va = &args;
634 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
635 sb->s_id, function, line, &vaf);
636 va_end(args);
637}
638
639void __ext4_grp_locked_error(const char *function, unsigned int line,
640 struct super_block *sb, ext4_group_t grp,
641 unsigned long ino, ext4_fsblk_t block,
642 const char *fmt, ...)
643__releases(bitlock)
644__acquires(bitlock)
645{
646 struct va_format vaf;
647 va_list args;
648 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
649
650 es->s_last_error_ino = cpu_to_le32(ino);
651 es->s_last_error_block = cpu_to_le64(block);
652 __save_error_info(sb, function, line);
653
654 if (ext4_error_ratelimit(sb)) {
655 va_start(args, fmt);
656 vaf.fmt = fmt;
657 vaf.va = &args;
658 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
659 sb->s_id, function, line, grp);
660 if (ino)
661 printk(KERN_CONT "inode %lu: ", ino);
662 if (block)
663 printk(KERN_CONT "block %llu:",
664 (unsigned long long) block);
665 printk(KERN_CONT "%pV\n", &vaf);
666 va_end(args);
667 }
668
669 if (test_opt(sb, ERRORS_CONT)) {
670 ext4_commit_super(sb, 0);
671 return;
672 }
673
674 ext4_unlock_group(sb, grp);
675 ext4_handle_error(sb);
676 /*
677 * We only get here in the ERRORS_RO case; relocking the group
678 * may be dangerous, but nothing bad will happen since the
679 * filesystem will have already been marked read/only and the
680 * journal has been aborted. We return 1 as a hint to callers
681 * who might what to use the return value from
682 * ext4_grp_locked_error() to distinguish between the
683 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
684 * aggressively from the ext4 function in question, with a
685 * more appropriate error code.
686 */
687 ext4_lock_group(sb, grp);
688 return;
689}
690
691void ext4_update_dynamic_rev(struct super_block *sb)
692{
693 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
694
695 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
696 return;
697
698 ext4_warning(sb,
699 "updating to rev %d because of new feature flag, "
700 "running e2fsck is recommended",
701 EXT4_DYNAMIC_REV);
702
703 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
704 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
705 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
706 /* leave es->s_feature_*compat flags alone */
707 /* es->s_uuid will be set by e2fsck if empty */
708
709 /*
710 * The rest of the superblock fields should be zero, and if not it
711 * means they are likely already in use, so leave them alone. We
712 * can leave it up to e2fsck to clean up any inconsistencies there.
713 */
714}
715
716/*
717 * Open the external journal device
718 */
719static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
720{
721 struct block_device *bdev;
722 char b[BDEVNAME_SIZE];
723
724 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
725 if (IS_ERR(bdev))
726 goto fail;
727 return bdev;
728
729fail:
730 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
731 __bdevname(dev, b), PTR_ERR(bdev));
732 return NULL;
733}
734
735/*
736 * Release the journal device
737 */
738static void ext4_blkdev_put(struct block_device *bdev)
739{
740 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
741}
742
743static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
744{
745 struct block_device *bdev;
746 bdev = sbi->journal_bdev;
747 if (bdev) {
748 ext4_blkdev_put(bdev);
749 sbi->journal_bdev = NULL;
750 }
751}
752
753static inline struct inode *orphan_list_entry(struct list_head *l)
754{
755 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
756}
757
758static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
759{
760 struct list_head *l;
761
762 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
763 le32_to_cpu(sbi->s_es->s_last_orphan));
764
765 printk(KERN_ERR "sb_info orphan list:\n");
766 list_for_each(l, &sbi->s_orphan) {
767 struct inode *inode = orphan_list_entry(l);
768 printk(KERN_ERR " "
769 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
770 inode->i_sb->s_id, inode->i_ino, inode,
771 inode->i_mode, inode->i_nlink,
772 NEXT_ORPHAN(inode));
773 }
774}
775
776static void ext4_put_super(struct super_block *sb)
777{
778 struct ext4_sb_info *sbi = EXT4_SB(sb);
779 struct ext4_super_block *es = sbi->s_es;
780 int i, err;
781
782 ext4_unregister_li_request(sb);
783 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
784
785 flush_workqueue(sbi->rsv_conversion_wq);
786 destroy_workqueue(sbi->rsv_conversion_wq);
787
788 if (sbi->s_journal) {
789 err = jbd2_journal_destroy(sbi->s_journal);
790 sbi->s_journal = NULL;
791 if (err < 0)
792 ext4_abort(sb, "Couldn't clean up the journal");
793 }
794
795 ext4_es_unregister_shrinker(sbi);
796 del_timer_sync(&sbi->s_err_report);
797 ext4_release_system_zone(sb);
798 ext4_mb_release(sb);
799 ext4_ext_release(sb);
800 ext4_xattr_put_super(sb);
801
802 if (!(sb->s_flags & MS_RDONLY)) {
803 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
804 es->s_state = cpu_to_le16(sbi->s_mount_state);
805 }
806 if (!(sb->s_flags & MS_RDONLY))
807 ext4_commit_super(sb, 1);
808
809 if (sbi->s_proc) {
810 remove_proc_entry("options", sbi->s_proc);
811 remove_proc_entry(sb->s_id, ext4_proc_root);
812 }
813 kobject_del(&sbi->s_kobj);
814
815 for (i = 0; i < sbi->s_gdb_count; i++)
816 brelse(sbi->s_group_desc[i]);
817 ext4_kvfree(sbi->s_group_desc);
818 ext4_kvfree(sbi->s_flex_groups);
819 percpu_counter_destroy(&sbi->s_freeclusters_counter);
820 percpu_counter_destroy(&sbi->s_freeinodes_counter);
821 percpu_counter_destroy(&sbi->s_dirs_counter);
822 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
823 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
824 brelse(sbi->s_sbh);
825#ifdef CONFIG_QUOTA
826 for (i = 0; i < MAXQUOTAS; i++)
827 kfree(sbi->s_qf_names[i]);
828#endif
829
830 /* Debugging code just in case the in-memory inode orphan list
831 * isn't empty. The on-disk one can be non-empty if we've
832 * detected an error and taken the fs readonly, but the
833 * in-memory list had better be clean by this point. */
834 if (!list_empty(&sbi->s_orphan))
835 dump_orphan_list(sb, sbi);
836 J_ASSERT(list_empty(&sbi->s_orphan));
837
838 invalidate_bdev(sb->s_bdev);
839 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
840 /*
841 * Invalidate the journal device's buffers. We don't want them
842 * floating about in memory - the physical journal device may
843 * hotswapped, and it breaks the `ro-after' testing code.
844 */
845 sync_blockdev(sbi->journal_bdev);
846 invalidate_bdev(sbi->journal_bdev);
847 ext4_blkdev_remove(sbi);
848 }
849 if (sbi->s_mb_cache) {
850 ext4_xattr_destroy_cache(sbi->s_mb_cache);
851 sbi->s_mb_cache = NULL;
852 }
853 if (sbi->s_mmp_tsk)
854 kthread_stop(sbi->s_mmp_tsk);
855 sb->s_fs_info = NULL;
856 /*
857 * Now that we are completely done shutting down the
858 * superblock, we need to actually destroy the kobject.
859 */
860 kobject_put(&sbi->s_kobj);
861 wait_for_completion(&sbi->s_kobj_unregister);
862 if (sbi->s_chksum_driver)
863 crypto_free_shash(sbi->s_chksum_driver);
864 kfree(sbi->s_blockgroup_lock);
865 kfree(sbi);
866}
867
868static struct kmem_cache *ext4_inode_cachep;
869
870/*
871 * Called inside transaction, so use GFP_NOFS
872 */
873static struct inode *ext4_alloc_inode(struct super_block *sb)
874{
875 struct ext4_inode_info *ei;
876
877 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
878 if (!ei)
879 return NULL;
880
881 ei->vfs_inode.i_version = 1;
882 INIT_LIST_HEAD(&ei->i_prealloc_list);
883 spin_lock_init(&ei->i_prealloc_lock);
884 ext4_es_init_tree(&ei->i_es_tree);
885 rwlock_init(&ei->i_es_lock);
886 INIT_LIST_HEAD(&ei->i_es_lru);
887 ei->i_es_lru_nr = 0;
888 ei->i_touch_when = 0;
889 ei->i_reserved_data_blocks = 0;
890 ei->i_reserved_meta_blocks = 0;
891 ei->i_allocated_meta_blocks = 0;
892 ei->i_da_metadata_calc_len = 0;
893 ei->i_da_metadata_calc_last_lblock = 0;
894 spin_lock_init(&(ei->i_block_reservation_lock));
895#ifdef CONFIG_QUOTA
896 ei->i_reserved_quota = 0;
897#endif
898 ei->jinode = NULL;
899 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
900 spin_lock_init(&ei->i_completed_io_lock);
901 ei->i_sync_tid = 0;
902 ei->i_datasync_tid = 0;
903 atomic_set(&ei->i_ioend_count, 0);
904 atomic_set(&ei->i_unwritten, 0);
905 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
906
907 return &ei->vfs_inode;
908}
909
910static int ext4_drop_inode(struct inode *inode)
911{
912 int drop = generic_drop_inode(inode);
913
914 trace_ext4_drop_inode(inode, drop);
915 return drop;
916}
917
918static void ext4_i_callback(struct rcu_head *head)
919{
920 struct inode *inode = container_of(head, struct inode, i_rcu);
921 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
922}
923
924static void ext4_destroy_inode(struct inode *inode)
925{
926 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
927 ext4_msg(inode->i_sb, KERN_ERR,
928 "Inode %lu (%p): orphan list check failed!",
929 inode->i_ino, EXT4_I(inode));
930 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
931 EXT4_I(inode), sizeof(struct ext4_inode_info),
932 true);
933 dump_stack();
934 }
935 call_rcu(&inode->i_rcu, ext4_i_callback);
936}
937
938static void init_once(void *foo)
939{
940 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
941
942 INIT_LIST_HEAD(&ei->i_orphan);
943 init_rwsem(&ei->xattr_sem);
944 init_rwsem(&ei->i_data_sem);
945 inode_init_once(&ei->vfs_inode);
946}
947
948static int __init init_inodecache(void)
949{
950 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
951 sizeof(struct ext4_inode_info),
952 0, (SLAB_RECLAIM_ACCOUNT|
953 SLAB_MEM_SPREAD),
954 init_once);
955 if (ext4_inode_cachep == NULL)
956 return -ENOMEM;
957 return 0;
958}
959
960static void destroy_inodecache(void)
961{
962 /*
963 * Make sure all delayed rcu free inodes are flushed before we
964 * destroy cache.
965 */
966 rcu_barrier();
967 kmem_cache_destroy(ext4_inode_cachep);
968}
969
970void ext4_clear_inode(struct inode *inode)
971{
972 invalidate_inode_buffers(inode);
973 clear_inode(inode);
974 dquot_drop(inode);
975 ext4_discard_preallocations(inode);
976 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
977 ext4_es_lru_del(inode);
978 if (EXT4_I(inode)->jinode) {
979 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
980 EXT4_I(inode)->jinode);
981 jbd2_free_inode(EXT4_I(inode)->jinode);
982 EXT4_I(inode)->jinode = NULL;
983 }
984}
985
986static struct inode *ext4_nfs_get_inode(struct super_block *sb,
987 u64 ino, u32 generation)
988{
989 struct inode *inode;
990
991 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
992 return ERR_PTR(-ESTALE);
993 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
994 return ERR_PTR(-ESTALE);
995
996 /* iget isn't really right if the inode is currently unallocated!!
997 *
998 * ext4_read_inode will return a bad_inode if the inode had been
999 * deleted, so we should be safe.
1000 *
1001 * Currently we don't know the generation for parent directory, so
1002 * a generation of 0 means "accept any"
1003 */
1004 inode = ext4_iget(sb, ino);
1005 if (IS_ERR(inode))
1006 return ERR_CAST(inode);
1007 if (generation && inode->i_generation != generation) {
1008 iput(inode);
1009 return ERR_PTR(-ESTALE);
1010 }
1011
1012 return inode;
1013}
1014
1015static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1016 int fh_len, int fh_type)
1017{
1018 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1019 ext4_nfs_get_inode);
1020}
1021
1022static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1023 int fh_len, int fh_type)
1024{
1025 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1026 ext4_nfs_get_inode);
1027}
1028
1029/*
1030 * Try to release metadata pages (indirect blocks, directories) which are
1031 * mapped via the block device. Since these pages could have journal heads
1032 * which would prevent try_to_free_buffers() from freeing them, we must use
1033 * jbd2 layer's try_to_free_buffers() function to release them.
1034 */
1035static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1036 gfp_t wait)
1037{
1038 journal_t *journal = EXT4_SB(sb)->s_journal;
1039
1040 WARN_ON(PageChecked(page));
1041 if (!page_has_buffers(page))
1042 return 0;
1043 if (journal)
1044 return jbd2_journal_try_to_free_buffers(journal, page,
1045 wait & ~__GFP_WAIT);
1046 return try_to_free_buffers(page);
1047}
1048
1049#ifdef CONFIG_QUOTA
1050#define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1051#define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1052
1053static int ext4_write_dquot(struct dquot *dquot);
1054static int ext4_acquire_dquot(struct dquot *dquot);
1055static int ext4_release_dquot(struct dquot *dquot);
1056static int ext4_mark_dquot_dirty(struct dquot *dquot);
1057static int ext4_write_info(struct super_block *sb, int type);
1058static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1059 struct path *path);
1060static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1061 int format_id);
1062static int ext4_quota_off(struct super_block *sb, int type);
1063static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1064static int ext4_quota_on_mount(struct super_block *sb, int type);
1065static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1066 size_t len, loff_t off);
1067static ssize_t ext4_quota_write(struct super_block *sb, int type,
1068 const char *data, size_t len, loff_t off);
1069static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1070 unsigned int flags);
1071static int ext4_enable_quotas(struct super_block *sb);
1072
1073static const struct dquot_operations ext4_quota_operations = {
1074 .get_reserved_space = ext4_get_reserved_space,
1075 .write_dquot = ext4_write_dquot,
1076 .acquire_dquot = ext4_acquire_dquot,
1077 .release_dquot = ext4_release_dquot,
1078 .mark_dirty = ext4_mark_dquot_dirty,
1079 .write_info = ext4_write_info,
1080 .alloc_dquot = dquot_alloc,
1081 .destroy_dquot = dquot_destroy,
1082};
1083
1084static const struct quotactl_ops ext4_qctl_operations = {
1085 .quota_on = ext4_quota_on,
1086 .quota_off = ext4_quota_off,
1087 .quota_sync = dquot_quota_sync,
1088 .get_info = dquot_get_dqinfo,
1089 .set_info = dquot_set_dqinfo,
1090 .get_dqblk = dquot_get_dqblk,
1091 .set_dqblk = dquot_set_dqblk
1092};
1093
1094static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1095 .quota_on_meta = ext4_quota_on_sysfile,
1096 .quota_off = ext4_quota_off_sysfile,
1097 .quota_sync = dquot_quota_sync,
1098 .get_info = dquot_get_dqinfo,
1099 .set_info = dquot_set_dqinfo,
1100 .get_dqblk = dquot_get_dqblk,
1101 .set_dqblk = dquot_set_dqblk
1102};
1103#endif
1104
1105static const struct super_operations ext4_sops = {
1106 .alloc_inode = ext4_alloc_inode,
1107 .destroy_inode = ext4_destroy_inode,
1108 .write_inode = ext4_write_inode,
1109 .dirty_inode = ext4_dirty_inode,
1110 .drop_inode = ext4_drop_inode,
1111 .evict_inode = ext4_evict_inode,
1112 .put_super = ext4_put_super,
1113 .sync_fs = ext4_sync_fs,
1114 .freeze_fs = ext4_freeze,
1115 .unfreeze_fs = ext4_unfreeze,
1116 .statfs = ext4_statfs,
1117 .remount_fs = ext4_remount,
1118 .show_options = ext4_show_options,
1119#ifdef CONFIG_QUOTA
1120 .quota_read = ext4_quota_read,
1121 .quota_write = ext4_quota_write,
1122#endif
1123 .bdev_try_to_free_page = bdev_try_to_free_page,
1124};
1125
1126static const struct super_operations ext4_nojournal_sops = {
1127 .alloc_inode = ext4_alloc_inode,
1128 .destroy_inode = ext4_destroy_inode,
1129 .write_inode = ext4_write_inode,
1130 .dirty_inode = ext4_dirty_inode,
1131 .drop_inode = ext4_drop_inode,
1132 .evict_inode = ext4_evict_inode,
1133 .sync_fs = ext4_sync_fs_nojournal,
1134 .put_super = ext4_put_super,
1135 .statfs = ext4_statfs,
1136 .remount_fs = ext4_remount,
1137 .show_options = ext4_show_options,
1138#ifdef CONFIG_QUOTA
1139 .quota_read = ext4_quota_read,
1140 .quota_write = ext4_quota_write,
1141#endif
1142 .bdev_try_to_free_page = bdev_try_to_free_page,
1143};
1144
1145static const struct export_operations ext4_export_ops = {
1146 .fh_to_dentry = ext4_fh_to_dentry,
1147 .fh_to_parent = ext4_fh_to_parent,
1148 .get_parent = ext4_get_parent,
1149};
1150
1151enum {
1152 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1153 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1154 Opt_nouid32, Opt_debug, Opt_removed,
1155 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1156 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1157 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1158 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1159 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1160 Opt_data_err_abort, Opt_data_err_ignore,
1161 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1162 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1163 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1164 Opt_usrquota, Opt_grpquota, Opt_i_version,
1165 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1166 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1167 Opt_inode_readahead_blks, Opt_journal_ioprio,
1168 Opt_dioread_nolock, Opt_dioread_lock,
1169 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1170 Opt_max_dir_size_kb,
1171};
1172
1173static const match_table_t tokens = {
1174 {Opt_bsd_df, "bsddf"},
1175 {Opt_minix_df, "minixdf"},
1176 {Opt_grpid, "grpid"},
1177 {Opt_grpid, "bsdgroups"},
1178 {Opt_nogrpid, "nogrpid"},
1179 {Opt_nogrpid, "sysvgroups"},
1180 {Opt_resgid, "resgid=%u"},
1181 {Opt_resuid, "resuid=%u"},
1182 {Opt_sb, "sb=%u"},
1183 {Opt_err_cont, "errors=continue"},
1184 {Opt_err_panic, "errors=panic"},
1185 {Opt_err_ro, "errors=remount-ro"},
1186 {Opt_nouid32, "nouid32"},
1187 {Opt_debug, "debug"},
1188 {Opt_removed, "oldalloc"},
1189 {Opt_removed, "orlov"},
1190 {Opt_user_xattr, "user_xattr"},
1191 {Opt_nouser_xattr, "nouser_xattr"},
1192 {Opt_acl, "acl"},
1193 {Opt_noacl, "noacl"},
1194 {Opt_noload, "norecovery"},
1195 {Opt_noload, "noload"},
1196 {Opt_removed, "nobh"},
1197 {Opt_removed, "bh"},
1198 {Opt_commit, "commit=%u"},
1199 {Opt_min_batch_time, "min_batch_time=%u"},
1200 {Opt_max_batch_time, "max_batch_time=%u"},
1201 {Opt_journal_dev, "journal_dev=%u"},
1202 {Opt_journal_path, "journal_path=%s"},
1203 {Opt_journal_checksum, "journal_checksum"},
1204 {Opt_journal_async_commit, "journal_async_commit"},
1205 {Opt_abort, "abort"},
1206 {Opt_data_journal, "data=journal"},
1207 {Opt_data_ordered, "data=ordered"},
1208 {Opt_data_writeback, "data=writeback"},
1209 {Opt_data_err_abort, "data_err=abort"},
1210 {Opt_data_err_ignore, "data_err=ignore"},
1211 {Opt_offusrjquota, "usrjquota="},
1212 {Opt_usrjquota, "usrjquota=%s"},
1213 {Opt_offgrpjquota, "grpjquota="},
1214 {Opt_grpjquota, "grpjquota=%s"},
1215 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1216 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1217 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1218 {Opt_grpquota, "grpquota"},
1219 {Opt_noquota, "noquota"},
1220 {Opt_quota, "quota"},
1221 {Opt_usrquota, "usrquota"},
1222 {Opt_barrier, "barrier=%u"},
1223 {Opt_barrier, "barrier"},
1224 {Opt_nobarrier, "nobarrier"},
1225 {Opt_i_version, "i_version"},
1226 {Opt_stripe, "stripe=%u"},
1227 {Opt_delalloc, "delalloc"},
1228 {Opt_nodelalloc, "nodelalloc"},
1229 {Opt_removed, "mblk_io_submit"},
1230 {Opt_removed, "nomblk_io_submit"},
1231 {Opt_block_validity, "block_validity"},
1232 {Opt_noblock_validity, "noblock_validity"},
1233 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1234 {Opt_journal_ioprio, "journal_ioprio=%u"},
1235 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1236 {Opt_auto_da_alloc, "auto_da_alloc"},
1237 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1238 {Opt_dioread_nolock, "dioread_nolock"},
1239 {Opt_dioread_lock, "dioread_lock"},
1240 {Opt_discard, "discard"},
1241 {Opt_nodiscard, "nodiscard"},
1242 {Opt_init_itable, "init_itable=%u"},
1243 {Opt_init_itable, "init_itable"},
1244 {Opt_noinit_itable, "noinit_itable"},
1245 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1246 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1247 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1248 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1249 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1250 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1251 {Opt_err, NULL},
1252};
1253
1254static ext4_fsblk_t get_sb_block(void **data)
1255{
1256 ext4_fsblk_t sb_block;
1257 char *options = (char *) *data;
1258
1259 if (!options || strncmp(options, "sb=", 3) != 0)
1260 return 1; /* Default location */
1261
1262 options += 3;
1263 /* TODO: use simple_strtoll with >32bit ext4 */
1264 sb_block = simple_strtoul(options, &options, 0);
1265 if (*options && *options != ',') {
1266 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1267 (char *) *data);
1268 return 1;
1269 }
1270 if (*options == ',')
1271 options++;
1272 *data = (void *) options;
1273
1274 return sb_block;
1275}
1276
1277#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1278static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1279 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1280
1281#ifdef CONFIG_QUOTA
1282static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1283{
1284 struct ext4_sb_info *sbi = EXT4_SB(sb);
1285 char *qname;
1286 int ret = -1;
1287
1288 if (sb_any_quota_loaded(sb) &&
1289 !sbi->s_qf_names[qtype]) {
1290 ext4_msg(sb, KERN_ERR,
1291 "Cannot change journaled "
1292 "quota options when quota turned on");
1293 return -1;
1294 }
1295 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1296 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1297 "when QUOTA feature is enabled");
1298 return -1;
1299 }
1300 qname = match_strdup(args);
1301 if (!qname) {
1302 ext4_msg(sb, KERN_ERR,
1303 "Not enough memory for storing quotafile name");
1304 return -1;
1305 }
1306 if (sbi->s_qf_names[qtype]) {
1307 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1308 ret = 1;
1309 else
1310 ext4_msg(sb, KERN_ERR,
1311 "%s quota file already specified",
1312 QTYPE2NAME(qtype));
1313 goto errout;
1314 }
1315 if (strchr(qname, '/')) {
1316 ext4_msg(sb, KERN_ERR,
1317 "quotafile must be on filesystem root");
1318 goto errout;
1319 }
1320 sbi->s_qf_names[qtype] = qname;
1321 set_opt(sb, QUOTA);
1322 return 1;
1323errout:
1324 kfree(qname);
1325 return ret;
1326}
1327
1328static int clear_qf_name(struct super_block *sb, int qtype)
1329{
1330
1331 struct ext4_sb_info *sbi = EXT4_SB(sb);
1332
1333 if (sb_any_quota_loaded(sb) &&
1334 sbi->s_qf_names[qtype]) {
1335 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1336 " when quota turned on");
1337 return -1;
1338 }
1339 kfree(sbi->s_qf_names[qtype]);
1340 sbi->s_qf_names[qtype] = NULL;
1341 return 1;
1342}
1343#endif
1344
1345#define MOPT_SET 0x0001
1346#define MOPT_CLEAR 0x0002
1347#define MOPT_NOSUPPORT 0x0004
1348#define MOPT_EXPLICIT 0x0008
1349#define MOPT_CLEAR_ERR 0x0010
1350#define MOPT_GTE0 0x0020
1351#ifdef CONFIG_QUOTA
1352#define MOPT_Q 0
1353#define MOPT_QFMT 0x0040
1354#else
1355#define MOPT_Q MOPT_NOSUPPORT
1356#define MOPT_QFMT MOPT_NOSUPPORT
1357#endif
1358#define MOPT_DATAJ 0x0080
1359#define MOPT_NO_EXT2 0x0100
1360#define MOPT_NO_EXT3 0x0200
1361#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1362#define MOPT_STRING 0x0400
1363
1364static const struct mount_opts {
1365 int token;
1366 int mount_opt;
1367 int flags;
1368} ext4_mount_opts[] = {
1369 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1370 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1371 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1372 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1373 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1374 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1375 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1376 MOPT_EXT4_ONLY | MOPT_SET},
1377 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1378 MOPT_EXT4_ONLY | MOPT_CLEAR},
1379 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1380 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1381 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1382 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1383 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1384 MOPT_EXT4_ONLY | MOPT_CLEAR},
1385 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1386 MOPT_EXT4_ONLY | MOPT_SET},
1387 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1388 EXT4_MOUNT_JOURNAL_CHECKSUM),
1389 MOPT_EXT4_ONLY | MOPT_SET},
1390 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1391 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1392 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1393 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1394 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1395 MOPT_NO_EXT2 | MOPT_SET},
1396 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1397 MOPT_NO_EXT2 | MOPT_CLEAR},
1398 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1399 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1400 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1401 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1402 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1403 {Opt_commit, 0, MOPT_GTE0},
1404 {Opt_max_batch_time, 0, MOPT_GTE0},
1405 {Opt_min_batch_time, 0, MOPT_GTE0},
1406 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1407 {Opt_init_itable, 0, MOPT_GTE0},
1408 {Opt_stripe, 0, MOPT_GTE0},
1409 {Opt_resuid, 0, MOPT_GTE0},
1410 {Opt_resgid, 0, MOPT_GTE0},
1411 {Opt_journal_dev, 0, MOPT_GTE0},
1412 {Opt_journal_path, 0, MOPT_STRING},
1413 {Opt_journal_ioprio, 0, MOPT_GTE0},
1414 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1415 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1416 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1417 MOPT_NO_EXT2 | MOPT_DATAJ},
1418 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1419 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1420#ifdef CONFIG_EXT4_FS_POSIX_ACL
1421 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1422 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1423#else
1424 {Opt_acl, 0, MOPT_NOSUPPORT},
1425 {Opt_noacl, 0, MOPT_NOSUPPORT},
1426#endif
1427 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1428 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1429 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1430 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1431 MOPT_SET | MOPT_Q},
1432 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1433 MOPT_SET | MOPT_Q},
1434 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1435 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1436 {Opt_usrjquota, 0, MOPT_Q},
1437 {Opt_grpjquota, 0, MOPT_Q},
1438 {Opt_offusrjquota, 0, MOPT_Q},
1439 {Opt_offgrpjquota, 0, MOPT_Q},
1440 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1441 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1442 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1443 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1444 {Opt_err, 0, 0}
1445};
1446
1447static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1448 substring_t *args, unsigned long *journal_devnum,
1449 unsigned int *journal_ioprio, int is_remount)
1450{
1451 struct ext4_sb_info *sbi = EXT4_SB(sb);
1452 const struct mount_opts *m;
1453 kuid_t uid;
1454 kgid_t gid;
1455 int arg = 0;
1456
1457#ifdef CONFIG_QUOTA
1458 if (token == Opt_usrjquota)
1459 return set_qf_name(sb, USRQUOTA, &args[0]);
1460 else if (token == Opt_grpjquota)
1461 return set_qf_name(sb, GRPQUOTA, &args[0]);
1462 else if (token == Opt_offusrjquota)
1463 return clear_qf_name(sb, USRQUOTA);
1464 else if (token == Opt_offgrpjquota)
1465 return clear_qf_name(sb, GRPQUOTA);
1466#endif
1467 switch (token) {
1468 case Opt_noacl:
1469 case Opt_nouser_xattr:
1470 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1471 break;
1472 case Opt_sb:
1473 return 1; /* handled by get_sb_block() */
1474 case Opt_removed:
1475 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1476 return 1;
1477 case Opt_abort:
1478 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1479 return 1;
1480 case Opt_i_version:
1481 sb->s_flags |= MS_I_VERSION;
1482 return 1;
1483 }
1484
1485 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1486 if (token == m->token)
1487 break;
1488
1489 if (m->token == Opt_err) {
1490 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1491 "or missing value", opt);
1492 return -1;
1493 }
1494
1495 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1496 ext4_msg(sb, KERN_ERR,
1497 "Mount option \"%s\" incompatible with ext2", opt);
1498 return -1;
1499 }
1500 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1501 ext4_msg(sb, KERN_ERR,
1502 "Mount option \"%s\" incompatible with ext3", opt);
1503 return -1;
1504 }
1505
1506 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1507 return -1;
1508 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1509 return -1;
1510 if (m->flags & MOPT_EXPLICIT)
1511 set_opt2(sb, EXPLICIT_DELALLOC);
1512 if (m->flags & MOPT_CLEAR_ERR)
1513 clear_opt(sb, ERRORS_MASK);
1514 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1515 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1516 "options when quota turned on");
1517 return -1;
1518 }
1519
1520 if (m->flags & MOPT_NOSUPPORT) {
1521 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1522 } else if (token == Opt_commit) {
1523 if (arg == 0)
1524 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1525 sbi->s_commit_interval = HZ * arg;
1526 } else if (token == Opt_max_batch_time) {
1527 if (arg == 0)
1528 arg = EXT4_DEF_MAX_BATCH_TIME;
1529 sbi->s_max_batch_time = arg;
1530 } else if (token == Opt_min_batch_time) {
1531 sbi->s_min_batch_time = arg;
1532 } else if (token == Opt_inode_readahead_blks) {
1533 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1534 ext4_msg(sb, KERN_ERR,
1535 "EXT4-fs: inode_readahead_blks must be "
1536 "0 or a power of 2 smaller than 2^31");
1537 return -1;
1538 }
1539 sbi->s_inode_readahead_blks = arg;
1540 } else if (token == Opt_init_itable) {
1541 set_opt(sb, INIT_INODE_TABLE);
1542 if (!args->from)
1543 arg = EXT4_DEF_LI_WAIT_MULT;
1544 sbi->s_li_wait_mult = arg;
1545 } else if (token == Opt_max_dir_size_kb) {
1546 sbi->s_max_dir_size_kb = arg;
1547 } else if (token == Opt_stripe) {
1548 sbi->s_stripe = arg;
1549 } else if (token == Opt_resuid) {
1550 uid = make_kuid(current_user_ns(), arg);
1551 if (!uid_valid(uid)) {
1552 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1553 return -1;
1554 }
1555 sbi->s_resuid = uid;
1556 } else if (token == Opt_resgid) {
1557 gid = make_kgid(current_user_ns(), arg);
1558 if (!gid_valid(gid)) {
1559 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1560 return -1;
1561 }
1562 sbi->s_resgid = gid;
1563 } else if (token == Opt_journal_dev) {
1564 if (is_remount) {
1565 ext4_msg(sb, KERN_ERR,
1566 "Cannot specify journal on remount");
1567 return -1;
1568 }
1569 *journal_devnum = arg;
1570 } else if (token == Opt_journal_path) {
1571 char *journal_path;
1572 struct inode *journal_inode;
1573 struct path path;
1574 int error;
1575
1576 if (is_remount) {
1577 ext4_msg(sb, KERN_ERR,
1578 "Cannot specify journal on remount");
1579 return -1;
1580 }
1581 journal_path = match_strdup(&args[0]);
1582 if (!journal_path) {
1583 ext4_msg(sb, KERN_ERR, "error: could not dup "
1584 "journal device string");
1585 return -1;
1586 }
1587
1588 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1589 if (error) {
1590 ext4_msg(sb, KERN_ERR, "error: could not find "
1591 "journal device path: error %d", error);
1592 kfree(journal_path);
1593 return -1;
1594 }
1595
1596 journal_inode = path.dentry->d_inode;
1597 if (!S_ISBLK(journal_inode->i_mode)) {
1598 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1599 "is not a block device", journal_path);
1600 path_put(&path);
1601 kfree(journal_path);
1602 return -1;
1603 }
1604
1605 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1606 path_put(&path);
1607 kfree(journal_path);
1608 } else if (token == Opt_journal_ioprio) {
1609 if (arg > 7) {
1610 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1611 " (must be 0-7)");
1612 return -1;
1613 }
1614 *journal_ioprio =
1615 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1616 } else if (m->flags & MOPT_DATAJ) {
1617 if (is_remount) {
1618 if (!sbi->s_journal)
1619 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1620 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1621 ext4_msg(sb, KERN_ERR,
1622 "Cannot change data mode on remount");
1623 return -1;
1624 }
1625 } else {
1626 clear_opt(sb, DATA_FLAGS);
1627 sbi->s_mount_opt |= m->mount_opt;
1628 }
1629#ifdef CONFIG_QUOTA
1630 } else if (m->flags & MOPT_QFMT) {
1631 if (sb_any_quota_loaded(sb) &&
1632 sbi->s_jquota_fmt != m->mount_opt) {
1633 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1634 "quota options when quota turned on");
1635 return -1;
1636 }
1637 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1638 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1639 ext4_msg(sb, KERN_ERR,
1640 "Cannot set journaled quota options "
1641 "when QUOTA feature is enabled");
1642 return -1;
1643 }
1644 sbi->s_jquota_fmt = m->mount_opt;
1645#endif
1646 } else {
1647 if (!args->from)
1648 arg = 1;
1649 if (m->flags & MOPT_CLEAR)
1650 arg = !arg;
1651 else if (unlikely(!(m->flags & MOPT_SET))) {
1652 ext4_msg(sb, KERN_WARNING,
1653 "buggy handling of option %s", opt);
1654 WARN_ON(1);
1655 return -1;
1656 }
1657 if (arg != 0)
1658 sbi->s_mount_opt |= m->mount_opt;
1659 else
1660 sbi->s_mount_opt &= ~m->mount_opt;
1661 }
1662 return 1;
1663}
1664
1665static int parse_options(char *options, struct super_block *sb,
1666 unsigned long *journal_devnum,
1667 unsigned int *journal_ioprio,
1668 int is_remount)
1669{
1670 struct ext4_sb_info *sbi = EXT4_SB(sb);
1671 char *p;
1672 substring_t args[MAX_OPT_ARGS];
1673 int token;
1674
1675 if (!options)
1676 return 1;
1677
1678 while ((p = strsep(&options, ",")) != NULL) {
1679 if (!*p)
1680 continue;
1681 /*
1682 * Initialize args struct so we know whether arg was
1683 * found; some options take optional arguments.
1684 */
1685 args[0].to = args[0].from = NULL;
1686 token = match_token(p, tokens, args);
1687 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1688 journal_ioprio, is_remount) < 0)
1689 return 0;
1690 }
1691#ifdef CONFIG_QUOTA
1692 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1693 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1694 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1695 "feature is enabled");
1696 return 0;
1697 }
1698 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1699 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1700 clear_opt(sb, USRQUOTA);
1701
1702 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1703 clear_opt(sb, GRPQUOTA);
1704
1705 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1706 ext4_msg(sb, KERN_ERR, "old and new quota "
1707 "format mixing");
1708 return 0;
1709 }
1710
1711 if (!sbi->s_jquota_fmt) {
1712 ext4_msg(sb, KERN_ERR, "journaled quota format "
1713 "not specified");
1714 return 0;
1715 }
1716 } else {
1717 if (sbi->s_jquota_fmt) {
1718 ext4_msg(sb, KERN_ERR, "journaled quota format "
1719 "specified with no journaling "
1720 "enabled");
1721 return 0;
1722 }
1723 }
1724#endif
1725 if (test_opt(sb, DIOREAD_NOLOCK)) {
1726 int blocksize =
1727 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1728
1729 if (blocksize < PAGE_CACHE_SIZE) {
1730 ext4_msg(sb, KERN_ERR, "can't mount with "
1731 "dioread_nolock if block size != PAGE_SIZE");
1732 return 0;
1733 }
1734 }
1735 return 1;
1736}
1737
1738static inline void ext4_show_quota_options(struct seq_file *seq,
1739 struct super_block *sb)
1740{
1741#if defined(CONFIG_QUOTA)
1742 struct ext4_sb_info *sbi = EXT4_SB(sb);
1743
1744 if (sbi->s_jquota_fmt) {
1745 char *fmtname = "";
1746
1747 switch (sbi->s_jquota_fmt) {
1748 case QFMT_VFS_OLD:
1749 fmtname = "vfsold";
1750 break;
1751 case QFMT_VFS_V0:
1752 fmtname = "vfsv0";
1753 break;
1754 case QFMT_VFS_V1:
1755 fmtname = "vfsv1";
1756 break;
1757 }
1758 seq_printf(seq, ",jqfmt=%s", fmtname);
1759 }
1760
1761 if (sbi->s_qf_names[USRQUOTA])
1762 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1763
1764 if (sbi->s_qf_names[GRPQUOTA])
1765 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1766#endif
1767}
1768
1769static const char *token2str(int token)
1770{
1771 const struct match_token *t;
1772
1773 for (t = tokens; t->token != Opt_err; t++)
1774 if (t->token == token && !strchr(t->pattern, '='))
1775 break;
1776 return t->pattern;
1777}
1778
1779/*
1780 * Show an option if
1781 * - it's set to a non-default value OR
1782 * - if the per-sb default is different from the global default
1783 */
1784static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1785 int nodefs)
1786{
1787 struct ext4_sb_info *sbi = EXT4_SB(sb);
1788 struct ext4_super_block *es = sbi->s_es;
1789 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1790 const struct mount_opts *m;
1791 char sep = nodefs ? '\n' : ',';
1792
1793#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1794#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1795
1796 if (sbi->s_sb_block != 1)
1797 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1798
1799 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1800 int want_set = m->flags & MOPT_SET;
1801 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1802 (m->flags & MOPT_CLEAR_ERR))
1803 continue;
1804 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1805 continue; /* skip if same as the default */
1806 if ((want_set &&
1807 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1808 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1809 continue; /* select Opt_noFoo vs Opt_Foo */
1810 SEQ_OPTS_PRINT("%s", token2str(m->token));
1811 }
1812
1813 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1814 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1815 SEQ_OPTS_PRINT("resuid=%u",
1816 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1817 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1818 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1819 SEQ_OPTS_PRINT("resgid=%u",
1820 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1821 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1822 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1823 SEQ_OPTS_PUTS("errors=remount-ro");
1824 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1825 SEQ_OPTS_PUTS("errors=continue");
1826 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1827 SEQ_OPTS_PUTS("errors=panic");
1828 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1829 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1830 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1831 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1832 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1833 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1834 if (sb->s_flags & MS_I_VERSION)
1835 SEQ_OPTS_PUTS("i_version");
1836 if (nodefs || sbi->s_stripe)
1837 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1838 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1839 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1840 SEQ_OPTS_PUTS("data=journal");
1841 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1842 SEQ_OPTS_PUTS("data=ordered");
1843 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1844 SEQ_OPTS_PUTS("data=writeback");
1845 }
1846 if (nodefs ||
1847 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1848 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1849 sbi->s_inode_readahead_blks);
1850
1851 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1852 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1853 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1854 if (nodefs || sbi->s_max_dir_size_kb)
1855 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1856
1857 ext4_show_quota_options(seq, sb);
1858 return 0;
1859}
1860
1861static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1862{
1863 return _ext4_show_options(seq, root->d_sb, 0);
1864}
1865
1866static int options_seq_show(struct seq_file *seq, void *offset)
1867{
1868 struct super_block *sb = seq->private;
1869 int rc;
1870
1871 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1872 rc = _ext4_show_options(seq, sb, 1);
1873 seq_puts(seq, "\n");
1874 return rc;
1875}
1876
1877static int options_open_fs(struct inode *inode, struct file *file)
1878{
1879 return single_open(file, options_seq_show, PDE_DATA(inode));
1880}
1881
1882static const struct file_operations ext4_seq_options_fops = {
1883 .owner = THIS_MODULE,
1884 .open = options_open_fs,
1885 .read = seq_read,
1886 .llseek = seq_lseek,
1887 .release = single_release,
1888};
1889
1890static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1891 int read_only)
1892{
1893 struct ext4_sb_info *sbi = EXT4_SB(sb);
1894 int res = 0;
1895
1896 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1897 ext4_msg(sb, KERN_ERR, "revision level too high, "
1898 "forcing read-only mode");
1899 res = MS_RDONLY;
1900 }
1901 if (read_only)
1902 goto done;
1903 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1904 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1905 "running e2fsck is recommended");
1906 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1907 ext4_msg(sb, KERN_WARNING,
1908 "warning: mounting fs with errors, "
1909 "running e2fsck is recommended");
1910 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1911 le16_to_cpu(es->s_mnt_count) >=
1912 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1913 ext4_msg(sb, KERN_WARNING,
1914 "warning: maximal mount count reached, "
1915 "running e2fsck is recommended");
1916 else if (le32_to_cpu(es->s_checkinterval) &&
1917 (le32_to_cpu(es->s_lastcheck) +
1918 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1919 ext4_msg(sb, KERN_WARNING,
1920 "warning: checktime reached, "
1921 "running e2fsck is recommended");
1922 if (!sbi->s_journal)
1923 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1924 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1925 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1926 le16_add_cpu(&es->s_mnt_count, 1);
1927 es->s_mtime = cpu_to_le32(get_seconds());
1928 ext4_update_dynamic_rev(sb);
1929 if (sbi->s_journal)
1930 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1931
1932 ext4_commit_super(sb, 1);
1933done:
1934 if (test_opt(sb, DEBUG))
1935 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1936 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1937 sb->s_blocksize,
1938 sbi->s_groups_count,
1939 EXT4_BLOCKS_PER_GROUP(sb),
1940 EXT4_INODES_PER_GROUP(sb),
1941 sbi->s_mount_opt, sbi->s_mount_opt2);
1942
1943 cleancache_init_fs(sb);
1944 return res;
1945}
1946
1947int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1948{
1949 struct ext4_sb_info *sbi = EXT4_SB(sb);
1950 struct flex_groups *new_groups;
1951 int size;
1952
1953 if (!sbi->s_log_groups_per_flex)
1954 return 0;
1955
1956 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1957 if (size <= sbi->s_flex_groups_allocated)
1958 return 0;
1959
1960 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1961 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1962 if (!new_groups) {
1963 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1964 size / (int) sizeof(struct flex_groups));
1965 return -ENOMEM;
1966 }
1967
1968 if (sbi->s_flex_groups) {
1969 memcpy(new_groups, sbi->s_flex_groups,
1970 (sbi->s_flex_groups_allocated *
1971 sizeof(struct flex_groups)));
1972 ext4_kvfree(sbi->s_flex_groups);
1973 }
1974 sbi->s_flex_groups = new_groups;
1975 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1976 return 0;
1977}
1978
1979static int ext4_fill_flex_info(struct super_block *sb)
1980{
1981 struct ext4_sb_info *sbi = EXT4_SB(sb);
1982 struct ext4_group_desc *gdp = NULL;
1983 ext4_group_t flex_group;
1984 int i, err;
1985
1986 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1987 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1988 sbi->s_log_groups_per_flex = 0;
1989 return 1;
1990 }
1991
1992 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1993 if (err)
1994 goto failed;
1995
1996 for (i = 0; i < sbi->s_groups_count; i++) {
1997 gdp = ext4_get_group_desc(sb, i, NULL);
1998
1999 flex_group = ext4_flex_group(sbi, i);
2000 atomic_add(ext4_free_inodes_count(sb, gdp),
2001 &sbi->s_flex_groups[flex_group].free_inodes);
2002 atomic64_add(ext4_free_group_clusters(sb, gdp),
2003 &sbi->s_flex_groups[flex_group].free_clusters);
2004 atomic_add(ext4_used_dirs_count(sb, gdp),
2005 &sbi->s_flex_groups[flex_group].used_dirs);
2006 }
2007
2008 return 1;
2009failed:
2010 return 0;
2011}
2012
2013static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
2014 struct ext4_group_desc *gdp)
2015{
2016 int offset;
2017 __u16 crc = 0;
2018 __le32 le_group = cpu_to_le32(block_group);
2019
2020 if ((sbi->s_es->s_feature_ro_compat &
2021 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
2022 /* Use new metadata_csum algorithm */
2023 __le16 save_csum;
2024 __u32 csum32;
2025
2026 save_csum = gdp->bg_checksum;
2027 gdp->bg_checksum = 0;
2028 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2029 sizeof(le_group));
2030 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2031 sbi->s_desc_size);
2032 gdp->bg_checksum = save_csum;
2033
2034 crc = csum32 & 0xFFFF;
2035 goto out;
2036 }
2037
2038 /* old crc16 code */
2039 offset = offsetof(struct ext4_group_desc, bg_checksum);
2040
2041 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2042 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2043 crc = crc16(crc, (__u8 *)gdp, offset);
2044 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2045 /* for checksum of struct ext4_group_desc do the rest...*/
2046 if ((sbi->s_es->s_feature_incompat &
2047 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2048 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2049 crc = crc16(crc, (__u8 *)gdp + offset,
2050 le16_to_cpu(sbi->s_es->s_desc_size) -
2051 offset);
2052
2053out:
2054 return cpu_to_le16(crc);
2055}
2056
2057int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2058 struct ext4_group_desc *gdp)
2059{
2060 if (ext4_has_group_desc_csum(sb) &&
2061 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2062 block_group, gdp)))
2063 return 0;
2064
2065 return 1;
2066}
2067
2068void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2069 struct ext4_group_desc *gdp)
2070{
2071 if (!ext4_has_group_desc_csum(sb))
2072 return;
2073 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2074}
2075
2076/* Called at mount-time, super-block is locked */
2077static int ext4_check_descriptors(struct super_block *sb,
2078 ext4_group_t *first_not_zeroed)
2079{
2080 struct ext4_sb_info *sbi = EXT4_SB(sb);
2081 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2082 ext4_fsblk_t last_block;
2083 ext4_fsblk_t block_bitmap;
2084 ext4_fsblk_t inode_bitmap;
2085 ext4_fsblk_t inode_table;
2086 int flexbg_flag = 0;
2087 ext4_group_t i, grp = sbi->s_groups_count;
2088
2089 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2090 flexbg_flag = 1;
2091
2092 ext4_debug("Checking group descriptors");
2093
2094 for (i = 0; i < sbi->s_groups_count; i++) {
2095 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2096
2097 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2098 last_block = ext4_blocks_count(sbi->s_es) - 1;
2099 else
2100 last_block = first_block +
2101 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2102
2103 if ((grp == sbi->s_groups_count) &&
2104 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2105 grp = i;
2106
2107 block_bitmap = ext4_block_bitmap(sb, gdp);
2108 if (block_bitmap < first_block || block_bitmap > last_block) {
2109 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2110 "Block bitmap for group %u not in group "
2111 "(block %llu)!", i, block_bitmap);
2112 return 0;
2113 }
2114 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2115 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2116 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2117 "Inode bitmap for group %u not in group "
2118 "(block %llu)!", i, inode_bitmap);
2119 return 0;
2120 }
2121 inode_table = ext4_inode_table(sb, gdp);
2122 if (inode_table < first_block ||
2123 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2124 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2125 "Inode table for group %u not in group "
2126 "(block %llu)!", i, inode_table);
2127 return 0;
2128 }
2129 ext4_lock_group(sb, i);
2130 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2131 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2132 "Checksum for group %u failed (%u!=%u)",
2133 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2134 gdp)), le16_to_cpu(gdp->bg_checksum));
2135 if (!(sb->s_flags & MS_RDONLY)) {
2136 ext4_unlock_group(sb, i);
2137 return 0;
2138 }
2139 }
2140 ext4_unlock_group(sb, i);
2141 if (!flexbg_flag)
2142 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2143 }
2144 if (NULL != first_not_zeroed)
2145 *first_not_zeroed = grp;
2146
2147 ext4_free_blocks_count_set(sbi->s_es,
2148 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2149 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2150 return 1;
2151}
2152
2153/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2154 * the superblock) which were deleted from all directories, but held open by
2155 * a process at the time of a crash. We walk the list and try to delete these
2156 * inodes at recovery time (only with a read-write filesystem).
2157 *
2158 * In order to keep the orphan inode chain consistent during traversal (in
2159 * case of crash during recovery), we link each inode into the superblock
2160 * orphan list_head and handle it the same way as an inode deletion during
2161 * normal operation (which journals the operations for us).
2162 *
2163 * We only do an iget() and an iput() on each inode, which is very safe if we
2164 * accidentally point at an in-use or already deleted inode. The worst that
2165 * can happen in this case is that we get a "bit already cleared" message from
2166 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2167 * e2fsck was run on this filesystem, and it must have already done the orphan
2168 * inode cleanup for us, so we can safely abort without any further action.
2169 */
2170static void ext4_orphan_cleanup(struct super_block *sb,
2171 struct ext4_super_block *es)
2172{
2173 unsigned int s_flags = sb->s_flags;
2174 int nr_orphans = 0, nr_truncates = 0;
2175#ifdef CONFIG_QUOTA
2176 int i;
2177#endif
2178 if (!es->s_last_orphan) {
2179 jbd_debug(4, "no orphan inodes to clean up\n");
2180 return;
2181 }
2182
2183 if (bdev_read_only(sb->s_bdev)) {
2184 ext4_msg(sb, KERN_ERR, "write access "
2185 "unavailable, skipping orphan cleanup");
2186 return;
2187 }
2188
2189 /* Check if feature set would not allow a r/w mount */
2190 if (!ext4_feature_set_ok(sb, 0)) {
2191 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2192 "unknown ROCOMPAT features");
2193 return;
2194 }
2195
2196 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2197 /* don't clear list on RO mount w/ errors */
2198 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2199 jbd_debug(1, "Errors on filesystem, "
2200 "clearing orphan list.\n");
2201 es->s_last_orphan = 0;
2202 }
2203 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2204 return;
2205 }
2206
2207 if (s_flags & MS_RDONLY) {
2208 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2209 sb->s_flags &= ~MS_RDONLY;
2210 }
2211#ifdef CONFIG_QUOTA
2212 /* Needed for iput() to work correctly and not trash data */
2213 sb->s_flags |= MS_ACTIVE;
2214 /* Turn on quotas so that they are updated correctly */
2215 for (i = 0; i < MAXQUOTAS; i++) {
2216 if (EXT4_SB(sb)->s_qf_names[i]) {
2217 int ret = ext4_quota_on_mount(sb, i);
2218 if (ret < 0)
2219 ext4_msg(sb, KERN_ERR,
2220 "Cannot turn on journaled "
2221 "quota: error %d", ret);
2222 }
2223 }
2224#endif
2225
2226 while (es->s_last_orphan) {
2227 struct inode *inode;
2228
2229 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2230 if (IS_ERR(inode)) {
2231 es->s_last_orphan = 0;
2232 break;
2233 }
2234
2235 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2236 dquot_initialize(inode);
2237 if (inode->i_nlink) {
2238 if (test_opt(sb, DEBUG))
2239 ext4_msg(sb, KERN_DEBUG,
2240 "%s: truncating inode %lu to %lld bytes",
2241 __func__, inode->i_ino, inode->i_size);
2242 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2243 inode->i_ino, inode->i_size);
2244 mutex_lock(&inode->i_mutex);
2245 truncate_inode_pages(inode->i_mapping, inode->i_size);
2246 ext4_truncate(inode);
2247 mutex_unlock(&inode->i_mutex);
2248 nr_truncates++;
2249 } else {
2250 if (test_opt(sb, DEBUG))
2251 ext4_msg(sb, KERN_DEBUG,
2252 "%s: deleting unreferenced inode %lu",
2253 __func__, inode->i_ino);
2254 jbd_debug(2, "deleting unreferenced inode %lu\n",
2255 inode->i_ino);
2256 nr_orphans++;
2257 }
2258 iput(inode); /* The delete magic happens here! */
2259 }
2260
2261#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2262
2263 if (nr_orphans)
2264 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2265 PLURAL(nr_orphans));
2266 if (nr_truncates)
2267 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2268 PLURAL(nr_truncates));
2269#ifdef CONFIG_QUOTA
2270 /* Turn quotas off */
2271 for (i = 0; i < MAXQUOTAS; i++) {
2272 if (sb_dqopt(sb)->files[i])
2273 dquot_quota_off(sb, i);
2274 }
2275#endif
2276 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2277}
2278
2279/*
2280 * Maximal extent format file size.
2281 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2282 * extent format containers, within a sector_t, and within i_blocks
2283 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2284 * so that won't be a limiting factor.
2285 *
2286 * However there is other limiting factor. We do store extents in the form
2287 * of starting block and length, hence the resulting length of the extent
2288 * covering maximum file size must fit into on-disk format containers as
2289 * well. Given that length is always by 1 unit bigger than max unit (because
2290 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2291 *
2292 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2293 */
2294static loff_t ext4_max_size(int blkbits, int has_huge_files)
2295{
2296 loff_t res;
2297 loff_t upper_limit = MAX_LFS_FILESIZE;
2298
2299 /* small i_blocks in vfs inode? */
2300 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2301 /*
2302 * CONFIG_LBDAF is not enabled implies the inode
2303 * i_block represent total blocks in 512 bytes
2304 * 32 == size of vfs inode i_blocks * 8
2305 */
2306 upper_limit = (1LL << 32) - 1;
2307
2308 /* total blocks in file system block size */
2309 upper_limit >>= (blkbits - 9);
2310 upper_limit <<= blkbits;
2311 }
2312
2313 /*
2314 * 32-bit extent-start container, ee_block. We lower the maxbytes
2315 * by one fs block, so ee_len can cover the extent of maximum file
2316 * size
2317 */
2318 res = (1LL << 32) - 1;
2319 res <<= blkbits;
2320
2321 /* Sanity check against vm- & vfs- imposed limits */
2322 if (res > upper_limit)
2323 res = upper_limit;
2324
2325 return res;
2326}
2327
2328/*
2329 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2330 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2331 * We need to be 1 filesystem block less than the 2^48 sector limit.
2332 */
2333static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2334{
2335 loff_t res = EXT4_NDIR_BLOCKS;
2336 int meta_blocks;
2337 loff_t upper_limit;
2338 /* This is calculated to be the largest file size for a dense, block
2339 * mapped file such that the file's total number of 512-byte sectors,
2340 * including data and all indirect blocks, does not exceed (2^48 - 1).
2341 *
2342 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2343 * number of 512-byte sectors of the file.
2344 */
2345
2346 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2347 /*
2348 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2349 * the inode i_block field represents total file blocks in
2350 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2351 */
2352 upper_limit = (1LL << 32) - 1;
2353
2354 /* total blocks in file system block size */
2355 upper_limit >>= (bits - 9);
2356
2357 } else {
2358 /*
2359 * We use 48 bit ext4_inode i_blocks
2360 * With EXT4_HUGE_FILE_FL set the i_blocks
2361 * represent total number of blocks in
2362 * file system block size
2363 */
2364 upper_limit = (1LL << 48) - 1;
2365
2366 }
2367
2368 /* indirect blocks */
2369 meta_blocks = 1;
2370 /* double indirect blocks */
2371 meta_blocks += 1 + (1LL << (bits-2));
2372 /* tripple indirect blocks */
2373 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2374
2375 upper_limit -= meta_blocks;
2376 upper_limit <<= bits;
2377
2378 res += 1LL << (bits-2);
2379 res += 1LL << (2*(bits-2));
2380 res += 1LL << (3*(bits-2));
2381 res <<= bits;
2382 if (res > upper_limit)
2383 res = upper_limit;
2384
2385 if (res > MAX_LFS_FILESIZE)
2386 res = MAX_LFS_FILESIZE;
2387
2388 return res;
2389}
2390
2391static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2392 ext4_fsblk_t logical_sb_block, int nr)
2393{
2394 struct ext4_sb_info *sbi = EXT4_SB(sb);
2395 ext4_group_t bg, first_meta_bg;
2396 int has_super = 0;
2397
2398 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2399
2400 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2401 nr < first_meta_bg)
2402 return logical_sb_block + nr + 1;
2403 bg = sbi->s_desc_per_block * nr;
2404 if (ext4_bg_has_super(sb, bg))
2405 has_super = 1;
2406
2407 return (has_super + ext4_group_first_block_no(sb, bg));
2408}
2409
2410/**
2411 * ext4_get_stripe_size: Get the stripe size.
2412 * @sbi: In memory super block info
2413 *
2414 * If we have specified it via mount option, then
2415 * use the mount option value. If the value specified at mount time is
2416 * greater than the blocks per group use the super block value.
2417 * If the super block value is greater than blocks per group return 0.
2418 * Allocator needs it be less than blocks per group.
2419 *
2420 */
2421static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2422{
2423 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2424 unsigned long stripe_width =
2425 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2426 int ret;
2427
2428 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2429 ret = sbi->s_stripe;
2430 else if (stripe_width <= sbi->s_blocks_per_group)
2431 ret = stripe_width;
2432 else if (stride <= sbi->s_blocks_per_group)
2433 ret = stride;
2434 else
2435 ret = 0;
2436
2437 /*
2438 * If the stripe width is 1, this makes no sense and
2439 * we set it to 0 to turn off stripe handling code.
2440 */
2441 if (ret <= 1)
2442 ret = 0;
2443
2444 return ret;
2445}
2446
2447/* sysfs supprt */
2448
2449struct ext4_attr {
2450 struct attribute attr;
2451 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2452 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2453 const char *, size_t);
2454 union {
2455 int offset;
2456 int deprecated_val;
2457 } u;
2458};
2459
2460static int parse_strtoull(const char *buf,
2461 unsigned long long max, unsigned long long *value)
2462{
2463 int ret;
2464
2465 ret = kstrtoull(skip_spaces(buf), 0, value);
2466 if (!ret && *value > max)
2467 ret = -EINVAL;
2468 return ret;
2469}
2470
2471static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2472 struct ext4_sb_info *sbi,
2473 char *buf)
2474{
2475 return snprintf(buf, PAGE_SIZE, "%llu\n",
2476 (s64) EXT4_C2B(sbi,
2477 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2478}
2479
2480static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2481 struct ext4_sb_info *sbi, char *buf)
2482{
2483 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2484
2485 if (!sb->s_bdev->bd_part)
2486 return snprintf(buf, PAGE_SIZE, "0\n");
2487 return snprintf(buf, PAGE_SIZE, "%lu\n",
2488 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2489 sbi->s_sectors_written_start) >> 1);
2490}
2491
2492static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2493 struct ext4_sb_info *sbi, char *buf)
2494{
2495 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2496
2497 if (!sb->s_bdev->bd_part)
2498 return snprintf(buf, PAGE_SIZE, "0\n");
2499 return snprintf(buf, PAGE_SIZE, "%llu\n",
2500 (unsigned long long)(sbi->s_kbytes_written +
2501 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2502 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2503}
2504
2505static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2506 struct ext4_sb_info *sbi,
2507 const char *buf, size_t count)
2508{
2509 unsigned long t;
2510 int ret;
2511
2512 ret = kstrtoul(skip_spaces(buf), 0, &t);
2513 if (ret)
2514 return ret;
2515
2516 if (t && (!is_power_of_2(t) || t > 0x40000000))
2517 return -EINVAL;
2518
2519 sbi->s_inode_readahead_blks = t;
2520 return count;
2521}
2522
2523static ssize_t sbi_ui_show(struct ext4_attr *a,
2524 struct ext4_sb_info *sbi, char *buf)
2525{
2526 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2527
2528 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2529}
2530
2531static ssize_t sbi_ui_store(struct ext4_attr *a,
2532 struct ext4_sb_info *sbi,
2533 const char *buf, size_t count)
2534{
2535 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2536 unsigned long t;
2537 int ret;
2538
2539 ret = kstrtoul(skip_spaces(buf), 0, &t);
2540 if (ret)
2541 return ret;
2542 *ui = t;
2543 return count;
2544}
2545
2546static ssize_t reserved_clusters_show(struct ext4_attr *a,
2547 struct ext4_sb_info *sbi, char *buf)
2548{
2549 return snprintf(buf, PAGE_SIZE, "%llu\n",
2550 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2551}
2552
2553static ssize_t reserved_clusters_store(struct ext4_attr *a,
2554 struct ext4_sb_info *sbi,
2555 const char *buf, size_t count)
2556{
2557 unsigned long long val;
2558 int ret;
2559
2560 if (parse_strtoull(buf, -1ULL, &val))
2561 return -EINVAL;
2562 ret = ext4_reserve_clusters(sbi, val);
2563
2564 return ret ? ret : count;
2565}
2566
2567static ssize_t trigger_test_error(struct ext4_attr *a,
2568 struct ext4_sb_info *sbi,
2569 const char *buf, size_t count)
2570{
2571 int len = count;
2572
2573 if (!capable(CAP_SYS_ADMIN))
2574 return -EPERM;
2575
2576 if (len && buf[len-1] == '\n')
2577 len--;
2578
2579 if (len)
2580 ext4_error(sbi->s_sb, "%.*s", len, buf);
2581 return count;
2582}
2583
2584static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2585 struct ext4_sb_info *sbi, char *buf)
2586{
2587 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2588}
2589
2590#define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2591static struct ext4_attr ext4_attr_##_name = { \
2592 .attr = {.name = __stringify(_name), .mode = _mode }, \
2593 .show = _show, \
2594 .store = _store, \
2595 .u = { \
2596 .offset = offsetof(struct ext4_sb_info, _elname),\
2597 }, \
2598}
2599#define EXT4_ATTR(name, mode, show, store) \
2600static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2601
2602#define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2603#define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2604#define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2605#define EXT4_RW_ATTR_SBI_UI(name, elname) \
2606 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2607#define ATTR_LIST(name) &ext4_attr_##name.attr
2608#define EXT4_DEPRECATED_ATTR(_name, _val) \
2609static struct ext4_attr ext4_attr_##_name = { \
2610 .attr = {.name = __stringify(_name), .mode = 0444 }, \
2611 .show = sbi_deprecated_show, \
2612 .u = { \
2613 .deprecated_val = _val, \
2614 }, \
2615}
2616
2617EXT4_RO_ATTR(delayed_allocation_blocks);
2618EXT4_RO_ATTR(session_write_kbytes);
2619EXT4_RO_ATTR(lifetime_write_kbytes);
2620EXT4_RW_ATTR(reserved_clusters);
2621EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2622 inode_readahead_blks_store, s_inode_readahead_blks);
2623EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2624EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2625EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2626EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2627EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2628EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2629EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2630EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2631EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2632EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2633EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval);
2634EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst);
2635EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval);
2636EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst);
2637EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval);
2638EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst);
2639
2640static struct attribute *ext4_attrs[] = {
2641 ATTR_LIST(delayed_allocation_blocks),
2642 ATTR_LIST(session_write_kbytes),
2643 ATTR_LIST(lifetime_write_kbytes),
2644 ATTR_LIST(reserved_clusters),
2645 ATTR_LIST(inode_readahead_blks),
2646 ATTR_LIST(inode_goal),
2647 ATTR_LIST(mb_stats),
2648 ATTR_LIST(mb_max_to_scan),
2649 ATTR_LIST(mb_min_to_scan),
2650 ATTR_LIST(mb_order2_req),
2651 ATTR_LIST(mb_stream_req),
2652 ATTR_LIST(mb_group_prealloc),
2653 ATTR_LIST(max_writeback_mb_bump),
2654 ATTR_LIST(extent_max_zeroout_kb),
2655 ATTR_LIST(trigger_fs_error),
2656 ATTR_LIST(err_ratelimit_interval_ms),
2657 ATTR_LIST(err_ratelimit_burst),
2658 ATTR_LIST(warning_ratelimit_interval_ms),
2659 ATTR_LIST(warning_ratelimit_burst),
2660 ATTR_LIST(msg_ratelimit_interval_ms),
2661 ATTR_LIST(msg_ratelimit_burst),
2662 NULL,
2663};
2664
2665/* Features this copy of ext4 supports */
2666EXT4_INFO_ATTR(lazy_itable_init);
2667EXT4_INFO_ATTR(batched_discard);
2668EXT4_INFO_ATTR(meta_bg_resize);
2669
2670static struct attribute *ext4_feat_attrs[] = {
2671 ATTR_LIST(lazy_itable_init),
2672 ATTR_LIST(batched_discard),
2673 ATTR_LIST(meta_bg_resize),
2674 NULL,
2675};
2676
2677static ssize_t ext4_attr_show(struct kobject *kobj,
2678 struct attribute *attr, char *buf)
2679{
2680 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2681 s_kobj);
2682 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2683
2684 return a->show ? a->show(a, sbi, buf) : 0;
2685}
2686
2687static ssize_t ext4_attr_store(struct kobject *kobj,
2688 struct attribute *attr,
2689 const char *buf, size_t len)
2690{
2691 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2692 s_kobj);
2693 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2694
2695 return a->store ? a->store(a, sbi, buf, len) : 0;
2696}
2697
2698static void ext4_sb_release(struct kobject *kobj)
2699{
2700 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2701 s_kobj);
2702 complete(&sbi->s_kobj_unregister);
2703}
2704
2705static const struct sysfs_ops ext4_attr_ops = {
2706 .show = ext4_attr_show,
2707 .store = ext4_attr_store,
2708};
2709
2710static struct kobj_type ext4_ktype = {
2711 .default_attrs = ext4_attrs,
2712 .sysfs_ops = &ext4_attr_ops,
2713 .release = ext4_sb_release,
2714};
2715
2716static void ext4_feat_release(struct kobject *kobj)
2717{
2718 complete(&ext4_feat->f_kobj_unregister);
2719}
2720
2721static struct kobj_type ext4_feat_ktype = {
2722 .default_attrs = ext4_feat_attrs,
2723 .sysfs_ops = &ext4_attr_ops,
2724 .release = ext4_feat_release,
2725};
2726
2727/*
2728 * Check whether this filesystem can be mounted based on
2729 * the features present and the RDONLY/RDWR mount requested.
2730 * Returns 1 if this filesystem can be mounted as requested,
2731 * 0 if it cannot be.
2732 */
2733static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2734{
2735 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2736 ext4_msg(sb, KERN_ERR,
2737 "Couldn't mount because of "
2738 "unsupported optional features (%x)",
2739 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2740 ~EXT4_FEATURE_INCOMPAT_SUPP));
2741 return 0;
2742 }
2743
2744 if (readonly)
2745 return 1;
2746
2747 /* Check that feature set is OK for a read-write mount */
2748 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2749 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2750 "unsupported optional features (%x)",
2751 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2752 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2753 return 0;
2754 }
2755 /*
2756 * Large file size enabled file system can only be mounted
2757 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2758 */
2759 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2760 if (sizeof(blkcnt_t) < sizeof(u64)) {
2761 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2762 "cannot be mounted RDWR without "
2763 "CONFIG_LBDAF");
2764 return 0;
2765 }
2766 }
2767 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2768 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2769 ext4_msg(sb, KERN_ERR,
2770 "Can't support bigalloc feature without "
2771 "extents feature\n");
2772 return 0;
2773 }
2774
2775#ifndef CONFIG_QUOTA
2776 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2777 !readonly) {
2778 ext4_msg(sb, KERN_ERR,
2779 "Filesystem with quota feature cannot be mounted RDWR "
2780 "without CONFIG_QUOTA");
2781 return 0;
2782 }
2783#endif /* CONFIG_QUOTA */
2784 return 1;
2785}
2786
2787/*
2788 * This function is called once a day if we have errors logged
2789 * on the file system
2790 */
2791static void print_daily_error_info(unsigned long arg)
2792{
2793 struct super_block *sb = (struct super_block *) arg;
2794 struct ext4_sb_info *sbi;
2795 struct ext4_super_block *es;
2796
2797 sbi = EXT4_SB(sb);
2798 es = sbi->s_es;
2799
2800 if (es->s_error_count)
2801 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2802 le32_to_cpu(es->s_error_count));
2803 if (es->s_first_error_time) {
2804 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2805 sb->s_id, le32_to_cpu(es->s_first_error_time),
2806 (int) sizeof(es->s_first_error_func),
2807 es->s_first_error_func,
2808 le32_to_cpu(es->s_first_error_line));
2809 if (es->s_first_error_ino)
2810 printk(": inode %u",
2811 le32_to_cpu(es->s_first_error_ino));
2812 if (es->s_first_error_block)
2813 printk(": block %llu", (unsigned long long)
2814 le64_to_cpu(es->s_first_error_block));
2815 printk("\n");
2816 }
2817 if (es->s_last_error_time) {
2818 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2819 sb->s_id, le32_to_cpu(es->s_last_error_time),
2820 (int) sizeof(es->s_last_error_func),
2821 es->s_last_error_func,
2822 le32_to_cpu(es->s_last_error_line));
2823 if (es->s_last_error_ino)
2824 printk(": inode %u",
2825 le32_to_cpu(es->s_last_error_ino));
2826 if (es->s_last_error_block)
2827 printk(": block %llu", (unsigned long long)
2828 le64_to_cpu(es->s_last_error_block));
2829 printk("\n");
2830 }
2831 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2832}
2833
2834/* Find next suitable group and run ext4_init_inode_table */
2835static int ext4_run_li_request(struct ext4_li_request *elr)
2836{
2837 struct ext4_group_desc *gdp = NULL;
2838 ext4_group_t group, ngroups;
2839 struct super_block *sb;
2840 unsigned long timeout = 0;
2841 int ret = 0;
2842
2843 sb = elr->lr_super;
2844 ngroups = EXT4_SB(sb)->s_groups_count;
2845
2846 sb_start_write(sb);
2847 for (group = elr->lr_next_group; group < ngroups; group++) {
2848 gdp = ext4_get_group_desc(sb, group, NULL);
2849 if (!gdp) {
2850 ret = 1;
2851 break;
2852 }
2853
2854 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2855 break;
2856 }
2857
2858 if (group >= ngroups)
2859 ret = 1;
2860
2861 if (!ret) {
2862 timeout = jiffies;
2863 ret = ext4_init_inode_table(sb, group,
2864 elr->lr_timeout ? 0 : 1);
2865 if (elr->lr_timeout == 0) {
2866 timeout = (jiffies - timeout) *
2867 elr->lr_sbi->s_li_wait_mult;
2868 elr->lr_timeout = timeout;
2869 }
2870 elr->lr_next_sched = jiffies + elr->lr_timeout;
2871 elr->lr_next_group = group + 1;
2872 }
2873 sb_end_write(sb);
2874
2875 return ret;
2876}
2877
2878/*
2879 * Remove lr_request from the list_request and free the
2880 * request structure. Should be called with li_list_mtx held
2881 */
2882static void ext4_remove_li_request(struct ext4_li_request *elr)
2883{
2884 struct ext4_sb_info *sbi;
2885
2886 if (!elr)
2887 return;
2888
2889 sbi = elr->lr_sbi;
2890
2891 list_del(&elr->lr_request);
2892 sbi->s_li_request = NULL;
2893 kfree(elr);
2894}
2895
2896static void ext4_unregister_li_request(struct super_block *sb)
2897{
2898 mutex_lock(&ext4_li_mtx);
2899 if (!ext4_li_info) {
2900 mutex_unlock(&ext4_li_mtx);
2901 return;
2902 }
2903
2904 mutex_lock(&ext4_li_info->li_list_mtx);
2905 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2906 mutex_unlock(&ext4_li_info->li_list_mtx);
2907 mutex_unlock(&ext4_li_mtx);
2908}
2909
2910static struct task_struct *ext4_lazyinit_task;
2911
2912/*
2913 * This is the function where ext4lazyinit thread lives. It walks
2914 * through the request list searching for next scheduled filesystem.
2915 * When such a fs is found, run the lazy initialization request
2916 * (ext4_rn_li_request) and keep track of the time spend in this
2917 * function. Based on that time we compute next schedule time of
2918 * the request. When walking through the list is complete, compute
2919 * next waking time and put itself into sleep.
2920 */
2921static int ext4_lazyinit_thread(void *arg)
2922{
2923 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2924 struct list_head *pos, *n;
2925 struct ext4_li_request *elr;
2926 unsigned long next_wakeup, cur;
2927
2928 BUG_ON(NULL == eli);
2929
2930cont_thread:
2931 while (true) {
2932 next_wakeup = MAX_JIFFY_OFFSET;
2933
2934 mutex_lock(&eli->li_list_mtx);
2935 if (list_empty(&eli->li_request_list)) {
2936 mutex_unlock(&eli->li_list_mtx);
2937 goto exit_thread;
2938 }
2939
2940 list_for_each_safe(pos, n, &eli->li_request_list) {
2941 elr = list_entry(pos, struct ext4_li_request,
2942 lr_request);
2943
2944 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2945 if (ext4_run_li_request(elr) != 0) {
2946 /* error, remove the lazy_init job */
2947 ext4_remove_li_request(elr);
2948 continue;
2949 }
2950 }
2951
2952 if (time_before(elr->lr_next_sched, next_wakeup))
2953 next_wakeup = elr->lr_next_sched;
2954 }
2955 mutex_unlock(&eli->li_list_mtx);
2956
2957 try_to_freeze();
2958
2959 cur = jiffies;
2960 if ((time_after_eq(cur, next_wakeup)) ||
2961 (MAX_JIFFY_OFFSET == next_wakeup)) {
2962 cond_resched();
2963 continue;
2964 }
2965
2966 schedule_timeout_interruptible(next_wakeup - cur);
2967
2968 if (kthread_should_stop()) {
2969 ext4_clear_request_list();
2970 goto exit_thread;
2971 }
2972 }
2973
2974exit_thread:
2975 /*
2976 * It looks like the request list is empty, but we need
2977 * to check it under the li_list_mtx lock, to prevent any
2978 * additions into it, and of course we should lock ext4_li_mtx
2979 * to atomically free the list and ext4_li_info, because at
2980 * this point another ext4 filesystem could be registering
2981 * new one.
2982 */
2983 mutex_lock(&ext4_li_mtx);
2984 mutex_lock(&eli->li_list_mtx);
2985 if (!list_empty(&eli->li_request_list)) {
2986 mutex_unlock(&eli->li_list_mtx);
2987 mutex_unlock(&ext4_li_mtx);
2988 goto cont_thread;
2989 }
2990 mutex_unlock(&eli->li_list_mtx);
2991 kfree(ext4_li_info);
2992 ext4_li_info = NULL;
2993 mutex_unlock(&ext4_li_mtx);
2994
2995 return 0;
2996}
2997
2998static void ext4_clear_request_list(void)
2999{
3000 struct list_head *pos, *n;
3001 struct ext4_li_request *elr;
3002
3003 mutex_lock(&ext4_li_info->li_list_mtx);
3004 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3005 elr = list_entry(pos, struct ext4_li_request,
3006 lr_request);
3007 ext4_remove_li_request(elr);
3008 }
3009 mutex_unlock(&ext4_li_info->li_list_mtx);
3010}
3011
3012static int ext4_run_lazyinit_thread(void)
3013{
3014 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3015 ext4_li_info, "ext4lazyinit");
3016 if (IS_ERR(ext4_lazyinit_task)) {
3017 int err = PTR_ERR(ext4_lazyinit_task);
3018 ext4_clear_request_list();
3019 kfree(ext4_li_info);
3020 ext4_li_info = NULL;
3021 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3022 "initialization thread\n",
3023 err);
3024 return err;
3025 }
3026 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3027 return 0;
3028}
3029
3030/*
3031 * Check whether it make sense to run itable init. thread or not.
3032 * If there is at least one uninitialized inode table, return
3033 * corresponding group number, else the loop goes through all
3034 * groups and return total number of groups.
3035 */
3036static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3037{
3038 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3039 struct ext4_group_desc *gdp = NULL;
3040
3041 for (group = 0; group < ngroups; group++) {
3042 gdp = ext4_get_group_desc(sb, group, NULL);
3043 if (!gdp)
3044 continue;
3045
3046 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3047 break;
3048 }
3049
3050 return group;
3051}
3052
3053static int ext4_li_info_new(void)
3054{
3055 struct ext4_lazy_init *eli = NULL;
3056
3057 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3058 if (!eli)
3059 return -ENOMEM;
3060
3061 INIT_LIST_HEAD(&eli->li_request_list);
3062 mutex_init(&eli->li_list_mtx);
3063
3064 eli->li_state |= EXT4_LAZYINIT_QUIT;
3065
3066 ext4_li_info = eli;
3067
3068 return 0;
3069}
3070
3071static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3072 ext4_group_t start)
3073{
3074 struct ext4_sb_info *sbi = EXT4_SB(sb);
3075 struct ext4_li_request *elr;
3076
3077 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3078 if (!elr)
3079 return NULL;
3080
3081 elr->lr_super = sb;
3082 elr->lr_sbi = sbi;
3083 elr->lr_next_group = start;
3084
3085 /*
3086 * Randomize first schedule time of the request to
3087 * spread the inode table initialization requests
3088 * better.
3089 */
3090 elr->lr_next_sched = jiffies + (prandom_u32() %
3091 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3092 return elr;
3093}
3094
3095int ext4_register_li_request(struct super_block *sb,
3096 ext4_group_t first_not_zeroed)
3097{
3098 struct ext4_sb_info *sbi = EXT4_SB(sb);
3099 struct ext4_li_request *elr = NULL;
3100 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3101 int ret = 0;
3102
3103 mutex_lock(&ext4_li_mtx);
3104 if (sbi->s_li_request != NULL) {
3105 /*
3106 * Reset timeout so it can be computed again, because
3107 * s_li_wait_mult might have changed.
3108 */
3109 sbi->s_li_request->lr_timeout = 0;
3110 goto out;
3111 }
3112
3113 if (first_not_zeroed == ngroups ||
3114 (sb->s_flags & MS_RDONLY) ||
3115 !test_opt(sb, INIT_INODE_TABLE))
3116 goto out;
3117
3118 elr = ext4_li_request_new(sb, first_not_zeroed);
3119 if (!elr) {
3120 ret = -ENOMEM;
3121 goto out;
3122 }
3123
3124 if (NULL == ext4_li_info) {
3125 ret = ext4_li_info_new();
3126 if (ret)
3127 goto out;
3128 }
3129
3130 mutex_lock(&ext4_li_info->li_list_mtx);
3131 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3132 mutex_unlock(&ext4_li_info->li_list_mtx);
3133
3134 sbi->s_li_request = elr;
3135 /*
3136 * set elr to NULL here since it has been inserted to
3137 * the request_list and the removal and free of it is
3138 * handled by ext4_clear_request_list from now on.
3139 */
3140 elr = NULL;
3141
3142 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3143 ret = ext4_run_lazyinit_thread();
3144 if (ret)
3145 goto out;
3146 }
3147out:
3148 mutex_unlock(&ext4_li_mtx);
3149 if (ret)
3150 kfree(elr);
3151 return ret;
3152}
3153
3154/*
3155 * We do not need to lock anything since this is called on
3156 * module unload.
3157 */
3158static void ext4_destroy_lazyinit_thread(void)
3159{
3160 /*
3161 * If thread exited earlier
3162 * there's nothing to be done.
3163 */
3164 if (!ext4_li_info || !ext4_lazyinit_task)
3165 return;
3166
3167 kthread_stop(ext4_lazyinit_task);
3168}
3169
3170static int set_journal_csum_feature_set(struct super_block *sb)
3171{
3172 int ret = 1;
3173 int compat, incompat;
3174 struct ext4_sb_info *sbi = EXT4_SB(sb);
3175
3176 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3177 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3178 /* journal checksum v2 */
3179 compat = 0;
3180 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3181 } else {
3182 /* journal checksum v1 */
3183 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3184 incompat = 0;
3185 }
3186
3187 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3188 ret = jbd2_journal_set_features(sbi->s_journal,
3189 compat, 0,
3190 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3191 incompat);
3192 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3193 ret = jbd2_journal_set_features(sbi->s_journal,
3194 compat, 0,
3195 incompat);
3196 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3197 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3198 } else {
3199 jbd2_journal_clear_features(sbi->s_journal,
3200 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3201 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3202 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3203 }
3204
3205 return ret;
3206}
3207
3208/*
3209 * Note: calculating the overhead so we can be compatible with
3210 * historical BSD practice is quite difficult in the face of
3211 * clusters/bigalloc. This is because multiple metadata blocks from
3212 * different block group can end up in the same allocation cluster.
3213 * Calculating the exact overhead in the face of clustered allocation
3214 * requires either O(all block bitmaps) in memory or O(number of block
3215 * groups**2) in time. We will still calculate the superblock for
3216 * older file systems --- and if we come across with a bigalloc file
3217 * system with zero in s_overhead_clusters the estimate will be close to
3218 * correct especially for very large cluster sizes --- but for newer
3219 * file systems, it's better to calculate this figure once at mkfs
3220 * time, and store it in the superblock. If the superblock value is
3221 * present (even for non-bigalloc file systems), we will use it.
3222 */
3223static int count_overhead(struct super_block *sb, ext4_group_t grp,
3224 char *buf)
3225{
3226 struct ext4_sb_info *sbi = EXT4_SB(sb);
3227 struct ext4_group_desc *gdp;
3228 ext4_fsblk_t first_block, last_block, b;
3229 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3230 int s, j, count = 0;
3231
3232 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3233 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3234 sbi->s_itb_per_group + 2);
3235
3236 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3237 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3238 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3239 for (i = 0; i < ngroups; i++) {
3240 gdp = ext4_get_group_desc(sb, i, NULL);
3241 b = ext4_block_bitmap(sb, gdp);
3242 if (b >= first_block && b <= last_block) {
3243 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3244 count++;
3245 }
3246 b = ext4_inode_bitmap(sb, gdp);
3247 if (b >= first_block && b <= last_block) {
3248 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3249 count++;
3250 }
3251 b = ext4_inode_table(sb, gdp);
3252 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3253 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3254 int c = EXT4_B2C(sbi, b - first_block);
3255 ext4_set_bit(c, buf);
3256 count++;
3257 }
3258 if (i != grp)
3259 continue;
3260 s = 0;
3261 if (ext4_bg_has_super(sb, grp)) {
3262 ext4_set_bit(s++, buf);
3263 count++;
3264 }
3265 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3266 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3267 count++;
3268 }
3269 }
3270 if (!count)
3271 return 0;
3272 return EXT4_CLUSTERS_PER_GROUP(sb) -
3273 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3274}
3275
3276/*
3277 * Compute the overhead and stash it in sbi->s_overhead
3278 */
3279int ext4_calculate_overhead(struct super_block *sb)
3280{
3281 struct ext4_sb_info *sbi = EXT4_SB(sb);
3282 struct ext4_super_block *es = sbi->s_es;
3283 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3284 ext4_fsblk_t overhead = 0;
3285 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3286
3287 if (!buf)
3288 return -ENOMEM;
3289
3290 /*
3291 * Compute the overhead (FS structures). This is constant
3292 * for a given filesystem unless the number of block groups
3293 * changes so we cache the previous value until it does.
3294 */
3295
3296 /*
3297 * All of the blocks before first_data_block are overhead
3298 */
3299 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3300
3301 /*
3302 * Add the overhead found in each block group
3303 */
3304 for (i = 0; i < ngroups; i++) {
3305 int blks;
3306
3307 blks = count_overhead(sb, i, buf);
3308 overhead += blks;
3309 if (blks)
3310 memset(buf, 0, PAGE_SIZE);
3311 cond_resched();
3312 }
3313 /* Add the journal blocks as well */
3314 if (sbi->s_journal)
3315 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3316
3317 sbi->s_overhead = overhead;
3318 smp_wmb();
3319 free_page((unsigned long) buf);
3320 return 0;
3321}
3322
3323
3324static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3325{
3326 ext4_fsblk_t resv_clusters;
3327
3328 /*
3329 * There's no need to reserve anything when we aren't using extents.
3330 * The space estimates are exact, there are no unwritten extents,
3331 * hole punching doesn't need new metadata... This is needed especially
3332 * to keep ext2/3 backward compatibility.
3333 */
3334 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3335 return 0;
3336 /*
3337 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3338 * This should cover the situations where we can not afford to run
3339 * out of space like for example punch hole, or converting
3340 * uninitialized extents in delalloc path. In most cases such
3341 * allocation would require 1, or 2 blocks, higher numbers are
3342 * very rare.
3343 */
3344 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3345 EXT4_SB(sb)->s_cluster_bits;
3346
3347 do_div(resv_clusters, 50);
3348 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3349
3350 return resv_clusters;
3351}
3352
3353
3354static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3355{
3356 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3357 sbi->s_cluster_bits;
3358
3359 if (count >= clusters)
3360 return -EINVAL;
3361
3362 atomic64_set(&sbi->s_resv_clusters, count);
3363 return 0;
3364}
3365
3366static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3367{
3368 char *orig_data = kstrdup(data, GFP_KERNEL);
3369 struct buffer_head *bh;
3370 struct ext4_super_block *es = NULL;
3371 struct ext4_sb_info *sbi;
3372 ext4_fsblk_t block;
3373 ext4_fsblk_t sb_block = get_sb_block(&data);
3374 ext4_fsblk_t logical_sb_block;
3375 unsigned long offset = 0;
3376 unsigned long journal_devnum = 0;
3377 unsigned long def_mount_opts;
3378 struct inode *root;
3379 char *cp;
3380 const char *descr;
3381 int ret = -ENOMEM;
3382 int blocksize, clustersize;
3383 unsigned int db_count;
3384 unsigned int i;
3385 int needs_recovery, has_huge_files, has_bigalloc;
3386 __u64 blocks_count;
3387 int err = 0;
3388 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3389 ext4_group_t first_not_zeroed;
3390
3391 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3392 if (!sbi)
3393 goto out_free_orig;
3394
3395 sbi->s_blockgroup_lock =
3396 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3397 if (!sbi->s_blockgroup_lock) {
3398 kfree(sbi);
3399 goto out_free_orig;
3400 }
3401 sb->s_fs_info = sbi;
3402 sbi->s_sb = sb;
3403 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3404 sbi->s_sb_block = sb_block;
3405 if (sb->s_bdev->bd_part)
3406 sbi->s_sectors_written_start =
3407 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3408
3409 /* Cleanup superblock name */
3410 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3411 *cp = '!';
3412
3413 /* -EINVAL is default */
3414 ret = -EINVAL;
3415 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3416 if (!blocksize) {
3417 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3418 goto out_fail;
3419 }
3420
3421 /*
3422 * The ext4 superblock will not be buffer aligned for other than 1kB
3423 * block sizes. We need to calculate the offset from buffer start.
3424 */
3425 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3426 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3427 offset = do_div(logical_sb_block, blocksize);
3428 } else {
3429 logical_sb_block = sb_block;
3430 }
3431
3432 if (!(bh = sb_bread(sb, logical_sb_block))) {
3433 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3434 goto out_fail;
3435 }
3436 /*
3437 * Note: s_es must be initialized as soon as possible because
3438 * some ext4 macro-instructions depend on its value
3439 */
3440 es = (struct ext4_super_block *) (bh->b_data + offset);
3441 sbi->s_es = es;
3442 sb->s_magic = le16_to_cpu(es->s_magic);
3443 if (sb->s_magic != EXT4_SUPER_MAGIC)
3444 goto cantfind_ext4;
3445 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3446
3447 /* Warn if metadata_csum and gdt_csum are both set. */
3448 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3449 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3450 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3451 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3452 "redundant flags; please run fsck.");
3453
3454 /* Check for a known checksum algorithm */
3455 if (!ext4_verify_csum_type(sb, es)) {
3456 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3457 "unknown checksum algorithm.");
3458 silent = 1;
3459 goto cantfind_ext4;
3460 }
3461
3462 /* Load the checksum driver */
3463 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3464 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3465 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3466 if (IS_ERR(sbi->s_chksum_driver)) {
3467 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3468 ret = PTR_ERR(sbi->s_chksum_driver);
3469 sbi->s_chksum_driver = NULL;
3470 goto failed_mount;
3471 }
3472 }
3473
3474 /* Check superblock checksum */
3475 if (!ext4_superblock_csum_verify(sb, es)) {
3476 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3477 "invalid superblock checksum. Run e2fsck?");
3478 silent = 1;
3479 goto cantfind_ext4;
3480 }
3481
3482 /* Precompute checksum seed for all metadata */
3483 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3484 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3485 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3486 sizeof(es->s_uuid));
3487
3488 /* Set defaults before we parse the mount options */
3489 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3490 set_opt(sb, INIT_INODE_TABLE);
3491 if (def_mount_opts & EXT4_DEFM_DEBUG)
3492 set_opt(sb, DEBUG);
3493 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3494 set_opt(sb, GRPID);
3495 if (def_mount_opts & EXT4_DEFM_UID16)
3496 set_opt(sb, NO_UID32);
3497 /* xattr user namespace & acls are now defaulted on */
3498 set_opt(sb, XATTR_USER);
3499#ifdef CONFIG_EXT4_FS_POSIX_ACL
3500 set_opt(sb, POSIX_ACL);
3501#endif
3502 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3503 set_opt(sb, JOURNAL_DATA);
3504 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3505 set_opt(sb, ORDERED_DATA);
3506 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3507 set_opt(sb, WRITEBACK_DATA);
3508
3509 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3510 set_opt(sb, ERRORS_PANIC);
3511 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3512 set_opt(sb, ERRORS_CONT);
3513 else
3514 set_opt(sb, ERRORS_RO);
3515 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3516 set_opt(sb, BLOCK_VALIDITY);
3517 if (def_mount_opts & EXT4_DEFM_DISCARD)
3518 set_opt(sb, DISCARD);
3519
3520 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3521 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3522 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3523 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3524 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3525
3526 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3527 set_opt(sb, BARRIER);
3528
3529 /*
3530 * enable delayed allocation by default
3531 * Use -o nodelalloc to turn it off
3532 */
3533 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3534 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3535 set_opt(sb, DELALLOC);
3536
3537 /*
3538 * set default s_li_wait_mult for lazyinit, for the case there is
3539 * no mount option specified.
3540 */
3541 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3542
3543 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3544 &journal_devnum, &journal_ioprio, 0)) {
3545 ext4_msg(sb, KERN_WARNING,
3546 "failed to parse options in superblock: %s",
3547 sbi->s_es->s_mount_opts);
3548 }
3549 sbi->s_def_mount_opt = sbi->s_mount_opt;
3550 if (!parse_options((char *) data, sb, &journal_devnum,
3551 &journal_ioprio, 0))
3552 goto failed_mount;
3553
3554 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3555 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3556 "with data=journal disables delayed "
3557 "allocation and O_DIRECT support!\n");
3558 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3559 ext4_msg(sb, KERN_ERR, "can't mount with "
3560 "both data=journal and delalloc");
3561 goto failed_mount;
3562 }
3563 if (test_opt(sb, DIOREAD_NOLOCK)) {
3564 ext4_msg(sb, KERN_ERR, "can't mount with "
3565 "both data=journal and dioread_nolock");
3566 goto failed_mount;
3567 }
3568 if (test_opt(sb, DELALLOC))
3569 clear_opt(sb, DELALLOC);
3570 }
3571
3572 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3573 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3574
3575 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3576 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3577 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3578 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3579 ext4_msg(sb, KERN_WARNING,
3580 "feature flags set on rev 0 fs, "
3581 "running e2fsck is recommended");
3582
3583 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3584 set_opt2(sb, HURD_COMPAT);
3585 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
3586 EXT4_FEATURE_INCOMPAT_64BIT)) {
3587 ext4_msg(sb, KERN_ERR,
3588 "The Hurd can't support 64-bit file systems");
3589 goto failed_mount;
3590 }
3591 }
3592
3593 if (IS_EXT2_SB(sb)) {
3594 if (ext2_feature_set_ok(sb))
3595 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3596 "using the ext4 subsystem");
3597 else {
3598 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3599 "to feature incompatibilities");
3600 goto failed_mount;
3601 }
3602 }
3603
3604 if (IS_EXT3_SB(sb)) {
3605 if (ext3_feature_set_ok(sb))
3606 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3607 "using the ext4 subsystem");
3608 else {
3609 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3610 "to feature incompatibilities");
3611 goto failed_mount;
3612 }
3613 }
3614
3615 /*
3616 * Check feature flags regardless of the revision level, since we
3617 * previously didn't change the revision level when setting the flags,
3618 * so there is a chance incompat flags are set on a rev 0 filesystem.
3619 */
3620 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3621 goto failed_mount;
3622
3623 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3624 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3625 blocksize > EXT4_MAX_BLOCK_SIZE) {
3626 ext4_msg(sb, KERN_ERR,
3627 "Unsupported filesystem blocksize %d", blocksize);
3628 goto failed_mount;
3629 }
3630
3631 if (sb->s_blocksize != blocksize) {
3632 /* Validate the filesystem blocksize */
3633 if (!sb_set_blocksize(sb, blocksize)) {
3634 ext4_msg(sb, KERN_ERR, "bad block size %d",
3635 blocksize);
3636 goto failed_mount;
3637 }
3638
3639 brelse(bh);
3640 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3641 offset = do_div(logical_sb_block, blocksize);
3642 bh = sb_bread(sb, logical_sb_block);
3643 if (!bh) {
3644 ext4_msg(sb, KERN_ERR,
3645 "Can't read superblock on 2nd try");
3646 goto failed_mount;
3647 }
3648 es = (struct ext4_super_block *)(bh->b_data + offset);
3649 sbi->s_es = es;
3650 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3651 ext4_msg(sb, KERN_ERR,
3652 "Magic mismatch, very weird!");
3653 goto failed_mount;
3654 }
3655 }
3656
3657 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3658 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3659 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3660 has_huge_files);
3661 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3662
3663 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3664 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3665 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3666 } else {
3667 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3668 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3669 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3670 (!is_power_of_2(sbi->s_inode_size)) ||
3671 (sbi->s_inode_size > blocksize)) {
3672 ext4_msg(sb, KERN_ERR,
3673 "unsupported inode size: %d",
3674 sbi->s_inode_size);
3675 goto failed_mount;
3676 }
3677 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3678 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3679 }
3680
3681 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3682 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3683 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3684 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3685 !is_power_of_2(sbi->s_desc_size)) {
3686 ext4_msg(sb, KERN_ERR,
3687 "unsupported descriptor size %lu",
3688 sbi->s_desc_size);
3689 goto failed_mount;
3690 }
3691 } else
3692 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3693
3694 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3695 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3696 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3697 goto cantfind_ext4;
3698
3699 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3700 if (sbi->s_inodes_per_block == 0)
3701 goto cantfind_ext4;
3702 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3703 sbi->s_inodes_per_block;
3704 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3705 sbi->s_sbh = bh;
3706 sbi->s_mount_state = le16_to_cpu(es->s_state);
3707 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3708 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3709
3710 for (i = 0; i < 4; i++)
3711 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3712 sbi->s_def_hash_version = es->s_def_hash_version;
3713 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3714 i = le32_to_cpu(es->s_flags);
3715 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3716 sbi->s_hash_unsigned = 3;
3717 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3718#ifdef __CHAR_UNSIGNED__
3719 if (!(sb->s_flags & MS_RDONLY))
3720 es->s_flags |=
3721 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3722 sbi->s_hash_unsigned = 3;
3723#else
3724 if (!(sb->s_flags & MS_RDONLY))
3725 es->s_flags |=
3726 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3727#endif
3728 }
3729 }
3730
3731 /* Handle clustersize */
3732 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3733 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3734 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3735 if (has_bigalloc) {
3736 if (clustersize < blocksize) {
3737 ext4_msg(sb, KERN_ERR,
3738 "cluster size (%d) smaller than "
3739 "block size (%d)", clustersize, blocksize);
3740 goto failed_mount;
3741 }
3742 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3743 le32_to_cpu(es->s_log_block_size);
3744 sbi->s_clusters_per_group =
3745 le32_to_cpu(es->s_clusters_per_group);
3746 if (sbi->s_clusters_per_group > blocksize * 8) {
3747 ext4_msg(sb, KERN_ERR,
3748 "#clusters per group too big: %lu",
3749 sbi->s_clusters_per_group);
3750 goto failed_mount;
3751 }
3752 if (sbi->s_blocks_per_group !=
3753 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3754 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3755 "clusters per group (%lu) inconsistent",
3756 sbi->s_blocks_per_group,
3757 sbi->s_clusters_per_group);
3758 goto failed_mount;
3759 }
3760 } else {
3761 if (clustersize != blocksize) {
3762 ext4_warning(sb, "fragment/cluster size (%d) != "
3763 "block size (%d)", clustersize,
3764 blocksize);
3765 clustersize = blocksize;
3766 }
3767 if (sbi->s_blocks_per_group > blocksize * 8) {
3768 ext4_msg(sb, KERN_ERR,
3769 "#blocks per group too big: %lu",
3770 sbi->s_blocks_per_group);
3771 goto failed_mount;
3772 }
3773 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3774 sbi->s_cluster_bits = 0;
3775 }
3776 sbi->s_cluster_ratio = clustersize / blocksize;
3777
3778 if (sbi->s_inodes_per_group > blocksize * 8) {
3779 ext4_msg(sb, KERN_ERR,
3780 "#inodes per group too big: %lu",
3781 sbi->s_inodes_per_group);
3782 goto failed_mount;
3783 }
3784
3785 /* Do we have standard group size of clustersize * 8 blocks ? */
3786 if (sbi->s_blocks_per_group == clustersize << 3)
3787 set_opt2(sb, STD_GROUP_SIZE);
3788
3789 /*
3790 * Test whether we have more sectors than will fit in sector_t,
3791 * and whether the max offset is addressable by the page cache.
3792 */
3793 err = generic_check_addressable(sb->s_blocksize_bits,
3794 ext4_blocks_count(es));
3795 if (err) {
3796 ext4_msg(sb, KERN_ERR, "filesystem"
3797 " too large to mount safely on this system");
3798 if (sizeof(sector_t) < 8)
3799 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3800 goto failed_mount;
3801 }
3802
3803 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3804 goto cantfind_ext4;
3805
3806 /* check blocks count against device size */
3807 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3808 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3809 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3810 "exceeds size of device (%llu blocks)",
3811 ext4_blocks_count(es), blocks_count);
3812 goto failed_mount;
3813 }
3814
3815 /*
3816 * It makes no sense for the first data block to be beyond the end
3817 * of the filesystem.
3818 */
3819 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3820 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3821 "block %u is beyond end of filesystem (%llu)",
3822 le32_to_cpu(es->s_first_data_block),
3823 ext4_blocks_count(es));
3824 goto failed_mount;
3825 }
3826 blocks_count = (ext4_blocks_count(es) -
3827 le32_to_cpu(es->s_first_data_block) +
3828 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3829 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3830 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3831 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3832 "(block count %llu, first data block %u, "
3833 "blocks per group %lu)", sbi->s_groups_count,
3834 ext4_blocks_count(es),
3835 le32_to_cpu(es->s_first_data_block),
3836 EXT4_BLOCKS_PER_GROUP(sb));
3837 goto failed_mount;
3838 }
3839 sbi->s_groups_count = blocks_count;
3840 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3841 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3842 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3843 EXT4_DESC_PER_BLOCK(sb);
3844 sbi->s_group_desc = ext4_kvmalloc(db_count *
3845 sizeof(struct buffer_head *),
3846 GFP_KERNEL);
3847 if (sbi->s_group_desc == NULL) {
3848 ext4_msg(sb, KERN_ERR, "not enough memory");
3849 ret = -ENOMEM;
3850 goto failed_mount;
3851 }
3852
3853 if (ext4_proc_root)
3854 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3855
3856 if (sbi->s_proc)
3857 proc_create_data("options", S_IRUGO, sbi->s_proc,
3858 &ext4_seq_options_fops, sb);
3859
3860 bgl_lock_init(sbi->s_blockgroup_lock);
3861
3862 for (i = 0; i < db_count; i++) {
3863 block = descriptor_loc(sb, logical_sb_block, i);
3864 sbi->s_group_desc[i] = sb_bread(sb, block);
3865 if (!sbi->s_group_desc[i]) {
3866 ext4_msg(sb, KERN_ERR,
3867 "can't read group descriptor %d", i);
3868 db_count = i;
3869 goto failed_mount2;
3870 }
3871 }
3872
3873 /*
3874 * set up enough so that it can read an inode,
3875 * and create new inode for buddy allocator
3876 */
3877 sbi->s_gdb_count = db_count;
3878 if (!test_opt(sb, NOLOAD) &&
3879 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3880 sb->s_op = &ext4_sops;
3881 else
3882 sb->s_op = &ext4_nojournal_sops;
3883
3884 ext4_ext_init(sb);
3885 err = ext4_mb_init(sb);
3886 if (err) {
3887 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3888 err);
3889 goto failed_mount2;
3890 }
3891
3892 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3893 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3894 goto failed_mount2a;
3895 }
3896 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3897 if (!ext4_fill_flex_info(sb)) {
3898 ext4_msg(sb, KERN_ERR,
3899 "unable to initialize "
3900 "flex_bg meta info!");
3901 goto failed_mount2a;
3902 }
3903
3904 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3905 spin_lock_init(&sbi->s_next_gen_lock);
3906
3907 init_timer(&sbi->s_err_report);
3908 sbi->s_err_report.function = print_daily_error_info;
3909 sbi->s_err_report.data = (unsigned long) sb;
3910
3911 /* Register extent status tree shrinker */
3912 ext4_es_register_shrinker(sbi);
3913
3914 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3915 ext4_count_free_clusters(sb));
3916 if (!err) {
3917 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3918 ext4_count_free_inodes(sb));
3919 }
3920 if (!err) {
3921 err = percpu_counter_init(&sbi->s_dirs_counter,
3922 ext4_count_dirs(sb));
3923 }
3924 if (!err) {
3925 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3926 }
3927 if (!err) {
3928 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0);
3929 }
3930 if (err) {
3931 ext4_msg(sb, KERN_ERR, "insufficient memory");
3932 goto failed_mount3;
3933 }
3934
3935 sbi->s_stripe = ext4_get_stripe_size(sbi);
3936 sbi->s_extent_max_zeroout_kb = 32;
3937
3938 sb->s_export_op = &ext4_export_ops;
3939 sb->s_xattr = ext4_xattr_handlers;
3940#ifdef CONFIG_QUOTA
3941 sb->dq_op = &ext4_quota_operations;
3942 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3943 sb->s_qcop = &ext4_qctl_sysfile_operations;
3944 else
3945 sb->s_qcop = &ext4_qctl_operations;
3946#endif
3947 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3948
3949 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3950 mutex_init(&sbi->s_orphan_lock);
3951
3952 sb->s_root = NULL;
3953
3954 needs_recovery = (es->s_last_orphan != 0 ||
3955 EXT4_HAS_INCOMPAT_FEATURE(sb,
3956 EXT4_FEATURE_INCOMPAT_RECOVER));
3957
3958 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3959 !(sb->s_flags & MS_RDONLY))
3960 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3961 goto failed_mount3;
3962
3963 /*
3964 * The first inode we look at is the journal inode. Don't try
3965 * root first: it may be modified in the journal!
3966 */
3967 if (!test_opt(sb, NOLOAD) &&
3968 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3969 if (ext4_load_journal(sb, es, journal_devnum))
3970 goto failed_mount3;
3971 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3972 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3973 ext4_msg(sb, KERN_ERR, "required journal recovery "
3974 "suppressed and not mounted read-only");
3975 goto failed_mount_wq;
3976 } else {
3977 clear_opt(sb, DATA_FLAGS);
3978 sbi->s_journal = NULL;
3979 needs_recovery = 0;
3980 goto no_journal;
3981 }
3982
3983 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3984 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3985 JBD2_FEATURE_INCOMPAT_64BIT)) {
3986 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3987 goto failed_mount_wq;
3988 }
3989
3990 if (!set_journal_csum_feature_set(sb)) {
3991 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3992 "feature set");
3993 goto failed_mount_wq;
3994 }
3995
3996 /* We have now updated the journal if required, so we can
3997 * validate the data journaling mode. */
3998 switch (test_opt(sb, DATA_FLAGS)) {
3999 case 0:
4000 /* No mode set, assume a default based on the journal
4001 * capabilities: ORDERED_DATA if the journal can
4002 * cope, else JOURNAL_DATA
4003 */
4004 if (jbd2_journal_check_available_features
4005 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4006 set_opt(sb, ORDERED_DATA);
4007 else
4008 set_opt(sb, JOURNAL_DATA);
4009 break;
4010
4011 case EXT4_MOUNT_ORDERED_DATA:
4012 case EXT4_MOUNT_WRITEBACK_DATA:
4013 if (!jbd2_journal_check_available_features
4014 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4015 ext4_msg(sb, KERN_ERR, "Journal does not support "
4016 "requested data journaling mode");
4017 goto failed_mount_wq;
4018 }
4019 default:
4020 break;
4021 }
4022 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4023
4024 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4025
4026 /*
4027 * The journal may have updated the bg summary counts, so we
4028 * need to update the global counters.
4029 */
4030 percpu_counter_set(&sbi->s_freeclusters_counter,
4031 ext4_count_free_clusters(sb));
4032 percpu_counter_set(&sbi->s_freeinodes_counter,
4033 ext4_count_free_inodes(sb));
4034 percpu_counter_set(&sbi->s_dirs_counter,
4035 ext4_count_dirs(sb));
4036 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
4037
4038no_journal:
4039 if (ext4_mballoc_ready) {
4040 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
4041 if (!sbi->s_mb_cache) {
4042 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4043 goto failed_mount_wq;
4044 }
4045 }
4046
4047 /*
4048 * Get the # of file system overhead blocks from the
4049 * superblock if present.
4050 */
4051 if (es->s_overhead_clusters)
4052 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4053 else {
4054 err = ext4_calculate_overhead(sb);
4055 if (err)
4056 goto failed_mount_wq;
4057 }
4058
4059 /*
4060 * The maximum number of concurrent works can be high and
4061 * concurrency isn't really necessary. Limit it to 1.
4062 */
4063 EXT4_SB(sb)->rsv_conversion_wq =
4064 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4065 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4066 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4067 ret = -ENOMEM;
4068 goto failed_mount4;
4069 }
4070
4071 /*
4072 * The jbd2_journal_load will have done any necessary log recovery,
4073 * so we can safely mount the rest of the filesystem now.
4074 */
4075
4076 root = ext4_iget(sb, EXT4_ROOT_INO);
4077 if (IS_ERR(root)) {
4078 ext4_msg(sb, KERN_ERR, "get root inode failed");
4079 ret = PTR_ERR(root);
4080 root = NULL;
4081 goto failed_mount4;
4082 }
4083 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4084 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4085 iput(root);
4086 goto failed_mount4;
4087 }
4088 sb->s_root = d_make_root(root);
4089 if (!sb->s_root) {
4090 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4091 ret = -ENOMEM;
4092 goto failed_mount4;
4093 }
4094
4095 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4096 sb->s_flags |= MS_RDONLY;
4097
4098 /* determine the minimum size of new large inodes, if present */
4099 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4100 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4101 EXT4_GOOD_OLD_INODE_SIZE;
4102 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4103 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
4104 if (sbi->s_want_extra_isize <
4105 le16_to_cpu(es->s_want_extra_isize))
4106 sbi->s_want_extra_isize =
4107 le16_to_cpu(es->s_want_extra_isize);
4108 if (sbi->s_want_extra_isize <
4109 le16_to_cpu(es->s_min_extra_isize))
4110 sbi->s_want_extra_isize =
4111 le16_to_cpu(es->s_min_extra_isize);
4112 }
4113 }
4114 /* Check if enough inode space is available */
4115 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4116 sbi->s_inode_size) {
4117 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4118 EXT4_GOOD_OLD_INODE_SIZE;
4119 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4120 "available");
4121 }
4122
4123 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
4124 if (err) {
4125 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4126 "reserved pool", ext4_calculate_resv_clusters(sb));
4127 goto failed_mount5;
4128 }
4129
4130 err = ext4_setup_system_zone(sb);
4131 if (err) {
4132 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4133 "zone (%d)", err);
4134 goto failed_mount5;
4135 }
4136
4137 err = ext4_register_li_request(sb, first_not_zeroed);
4138 if (err)
4139 goto failed_mount6;
4140
4141 sbi->s_kobj.kset = ext4_kset;
4142 init_completion(&sbi->s_kobj_unregister);
4143 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4144 "%s", sb->s_id);
4145 if (err)
4146 goto failed_mount7;
4147
4148#ifdef CONFIG_QUOTA
4149 /* Enable quota usage during mount. */
4150 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4151 !(sb->s_flags & MS_RDONLY)) {
4152 err = ext4_enable_quotas(sb);
4153 if (err)
4154 goto failed_mount8;
4155 }
4156#endif /* CONFIG_QUOTA */
4157
4158 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4159 ext4_orphan_cleanup(sb, es);
4160 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4161 if (needs_recovery) {
4162 ext4_msg(sb, KERN_INFO, "recovery complete");
4163 ext4_mark_recovery_complete(sb, es);
4164 }
4165 if (EXT4_SB(sb)->s_journal) {
4166 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4167 descr = " journalled data mode";
4168 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4169 descr = " ordered data mode";
4170 else
4171 descr = " writeback data mode";
4172 } else
4173 descr = "out journal";
4174
4175 if (test_opt(sb, DISCARD)) {
4176 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4177 if (!blk_queue_discard(q))
4178 ext4_msg(sb, KERN_WARNING,
4179 "mounting with \"discard\" option, but "
4180 "the device does not support discard");
4181 }
4182
4183 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4184 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4185 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4186
4187 if (es->s_error_count)
4188 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4189
4190 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4191 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4192 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4193 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4194
4195 kfree(orig_data);
4196 return 0;
4197
4198cantfind_ext4:
4199 if (!silent)
4200 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4201 goto failed_mount;
4202
4203#ifdef CONFIG_QUOTA
4204failed_mount8:
4205 kobject_del(&sbi->s_kobj);
4206#endif
4207failed_mount7:
4208 ext4_unregister_li_request(sb);
4209failed_mount6:
4210 ext4_release_system_zone(sb);
4211failed_mount5:
4212 dput(sb->s_root);
4213 sb->s_root = NULL;
4214failed_mount4:
4215 ext4_msg(sb, KERN_ERR, "mount failed");
4216 if (EXT4_SB(sb)->rsv_conversion_wq)
4217 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4218failed_mount_wq:
4219 if (sbi->s_journal) {
4220 jbd2_journal_destroy(sbi->s_journal);
4221 sbi->s_journal = NULL;
4222 }
4223failed_mount3:
4224 ext4_es_unregister_shrinker(sbi);
4225 del_timer_sync(&sbi->s_err_report);
4226 if (sbi->s_flex_groups)
4227 ext4_kvfree(sbi->s_flex_groups);
4228 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4229 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4230 percpu_counter_destroy(&sbi->s_dirs_counter);
4231 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4232 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
4233 if (sbi->s_mmp_tsk)
4234 kthread_stop(sbi->s_mmp_tsk);
4235failed_mount2a:
4236 ext4_mb_release(sb);
4237failed_mount2:
4238 for (i = 0; i < db_count; i++)
4239 brelse(sbi->s_group_desc[i]);
4240 ext4_kvfree(sbi->s_group_desc);
4241failed_mount:
4242 ext4_ext_release(sb);
4243 if (sbi->s_chksum_driver)
4244 crypto_free_shash(sbi->s_chksum_driver);
4245 if (sbi->s_proc) {
4246 remove_proc_entry("options", sbi->s_proc);
4247 remove_proc_entry(sb->s_id, ext4_proc_root);
4248 }
4249#ifdef CONFIG_QUOTA
4250 for (i = 0; i < MAXQUOTAS; i++)
4251 kfree(sbi->s_qf_names[i]);
4252#endif
4253 ext4_blkdev_remove(sbi);
4254 brelse(bh);
4255out_fail:
4256 sb->s_fs_info = NULL;
4257 kfree(sbi->s_blockgroup_lock);
4258 kfree(sbi);
4259out_free_orig:
4260 kfree(orig_data);
4261 return err ? err : ret;
4262}
4263
4264/*
4265 * Setup any per-fs journal parameters now. We'll do this both on
4266 * initial mount, once the journal has been initialised but before we've
4267 * done any recovery; and again on any subsequent remount.
4268 */
4269static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4270{
4271 struct ext4_sb_info *sbi = EXT4_SB(sb);
4272
4273 journal->j_commit_interval = sbi->s_commit_interval;
4274 journal->j_min_batch_time = sbi->s_min_batch_time;
4275 journal->j_max_batch_time = sbi->s_max_batch_time;
4276
4277 write_lock(&journal->j_state_lock);
4278 if (test_opt(sb, BARRIER))
4279 journal->j_flags |= JBD2_BARRIER;
4280 else
4281 journal->j_flags &= ~JBD2_BARRIER;
4282 if (test_opt(sb, DATA_ERR_ABORT))
4283 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4284 else
4285 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4286 write_unlock(&journal->j_state_lock);
4287}
4288
4289static journal_t *ext4_get_journal(struct super_block *sb,
4290 unsigned int journal_inum)
4291{
4292 struct inode *journal_inode;
4293 journal_t *journal;
4294
4295 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4296
4297 /* First, test for the existence of a valid inode on disk. Bad
4298 * things happen if we iget() an unused inode, as the subsequent
4299 * iput() will try to delete it. */
4300
4301 journal_inode = ext4_iget(sb, journal_inum);
4302 if (IS_ERR(journal_inode)) {
4303 ext4_msg(sb, KERN_ERR, "no journal found");
4304 return NULL;
4305 }
4306 if (!journal_inode->i_nlink) {
4307 make_bad_inode(journal_inode);
4308 iput(journal_inode);
4309 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4310 return NULL;
4311 }
4312
4313 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4314 journal_inode, journal_inode->i_size);
4315 if (!S_ISREG(journal_inode->i_mode)) {
4316 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4317 iput(journal_inode);
4318 return NULL;
4319 }
4320
4321 journal = jbd2_journal_init_inode(journal_inode);
4322 if (!journal) {
4323 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4324 iput(journal_inode);
4325 return NULL;
4326 }
4327 journal->j_private = sb;
4328 ext4_init_journal_params(sb, journal);
4329 return journal;
4330}
4331
4332static journal_t *ext4_get_dev_journal(struct super_block *sb,
4333 dev_t j_dev)
4334{
4335 struct buffer_head *bh;
4336 journal_t *journal;
4337 ext4_fsblk_t start;
4338 ext4_fsblk_t len;
4339 int hblock, blocksize;
4340 ext4_fsblk_t sb_block;
4341 unsigned long offset;
4342 struct ext4_super_block *es;
4343 struct block_device *bdev;
4344
4345 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4346
4347 bdev = ext4_blkdev_get(j_dev, sb);
4348 if (bdev == NULL)
4349 return NULL;
4350
4351 blocksize = sb->s_blocksize;
4352 hblock = bdev_logical_block_size(bdev);
4353 if (blocksize < hblock) {
4354 ext4_msg(sb, KERN_ERR,
4355 "blocksize too small for journal device");
4356 goto out_bdev;
4357 }
4358
4359 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4360 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4361 set_blocksize(bdev, blocksize);
4362 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4363 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4364 "external journal");
4365 goto out_bdev;
4366 }
4367
4368 es = (struct ext4_super_block *) (bh->b_data + offset);
4369 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4370 !(le32_to_cpu(es->s_feature_incompat) &
4371 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4372 ext4_msg(sb, KERN_ERR, "external journal has "
4373 "bad superblock");
4374 brelse(bh);
4375 goto out_bdev;
4376 }
4377
4378 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4379 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4380 brelse(bh);
4381 goto out_bdev;
4382 }
4383
4384 len = ext4_blocks_count(es);
4385 start = sb_block + 1;
4386 brelse(bh); /* we're done with the superblock */
4387
4388 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4389 start, len, blocksize);
4390 if (!journal) {
4391 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4392 goto out_bdev;
4393 }
4394 journal->j_private = sb;
4395 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4396 wait_on_buffer(journal->j_sb_buffer);
4397 if (!buffer_uptodate(journal->j_sb_buffer)) {
4398 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4399 goto out_journal;
4400 }
4401 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4402 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4403 "user (unsupported) - %d",
4404 be32_to_cpu(journal->j_superblock->s_nr_users));
4405 goto out_journal;
4406 }
4407 EXT4_SB(sb)->journal_bdev = bdev;
4408 ext4_init_journal_params(sb, journal);
4409 return journal;
4410
4411out_journal:
4412 jbd2_journal_destroy(journal);
4413out_bdev:
4414 ext4_blkdev_put(bdev);
4415 return NULL;
4416}
4417
4418static int ext4_load_journal(struct super_block *sb,
4419 struct ext4_super_block *es,
4420 unsigned long journal_devnum)
4421{
4422 journal_t *journal;
4423 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4424 dev_t journal_dev;
4425 int err = 0;
4426 int really_read_only;
4427
4428 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4429
4430 if (journal_devnum &&
4431 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4432 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4433 "numbers have changed");
4434 journal_dev = new_decode_dev(journal_devnum);
4435 } else
4436 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4437
4438 really_read_only = bdev_read_only(sb->s_bdev);
4439
4440 /*
4441 * Are we loading a blank journal or performing recovery after a
4442 * crash? For recovery, we need to check in advance whether we
4443 * can get read-write access to the device.
4444 */
4445 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4446 if (sb->s_flags & MS_RDONLY) {
4447 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4448 "required on readonly filesystem");
4449 if (really_read_only) {
4450 ext4_msg(sb, KERN_ERR, "write access "
4451 "unavailable, cannot proceed");
4452 return -EROFS;
4453 }
4454 ext4_msg(sb, KERN_INFO, "write access will "
4455 "be enabled during recovery");
4456 }
4457 }
4458
4459 if (journal_inum && journal_dev) {
4460 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4461 "and inode journals!");
4462 return -EINVAL;
4463 }
4464
4465 if (journal_inum) {
4466 if (!(journal = ext4_get_journal(sb, journal_inum)))
4467 return -EINVAL;
4468 } else {
4469 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4470 return -EINVAL;
4471 }
4472
4473 if (!(journal->j_flags & JBD2_BARRIER))
4474 ext4_msg(sb, KERN_INFO, "barriers disabled");
4475
4476 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4477 err = jbd2_journal_wipe(journal, !really_read_only);
4478 if (!err) {
4479 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4480 if (save)
4481 memcpy(save, ((char *) es) +
4482 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4483 err = jbd2_journal_load(journal);
4484 if (save)
4485 memcpy(((char *) es) + EXT4_S_ERR_START,
4486 save, EXT4_S_ERR_LEN);
4487 kfree(save);
4488 }
4489
4490 if (err) {
4491 ext4_msg(sb, KERN_ERR, "error loading journal");
4492 jbd2_journal_destroy(journal);
4493 return err;
4494 }
4495
4496 EXT4_SB(sb)->s_journal = journal;
4497 ext4_clear_journal_err(sb, es);
4498
4499 if (!really_read_only && journal_devnum &&
4500 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4501 es->s_journal_dev = cpu_to_le32(journal_devnum);
4502
4503 /* Make sure we flush the recovery flag to disk. */
4504 ext4_commit_super(sb, 1);
4505 }
4506
4507 return 0;
4508}
4509
4510static int ext4_commit_super(struct super_block *sb, int sync)
4511{
4512 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4513 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4514 int error = 0;
4515
4516 if (!sbh || block_device_ejected(sb))
4517 return error;
4518 if (buffer_write_io_error(sbh)) {
4519 /*
4520 * Oh, dear. A previous attempt to write the
4521 * superblock failed. This could happen because the
4522 * USB device was yanked out. Or it could happen to
4523 * be a transient write error and maybe the block will
4524 * be remapped. Nothing we can do but to retry the
4525 * write and hope for the best.
4526 */
4527 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4528 "superblock detected");
4529 clear_buffer_write_io_error(sbh);
4530 set_buffer_uptodate(sbh);
4531 }
4532 /*
4533 * If the file system is mounted read-only, don't update the
4534 * superblock write time. This avoids updating the superblock
4535 * write time when we are mounting the root file system
4536 * read/only but we need to replay the journal; at that point,
4537 * for people who are east of GMT and who make their clock
4538 * tick in localtime for Windows bug-for-bug compatibility,
4539 * the clock is set in the future, and this will cause e2fsck
4540 * to complain and force a full file system check.
4541 */
4542 if (!(sb->s_flags & MS_RDONLY))
4543 es->s_wtime = cpu_to_le32(get_seconds());
4544 if (sb->s_bdev->bd_part)
4545 es->s_kbytes_written =
4546 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4547 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4548 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4549 else
4550 es->s_kbytes_written =
4551 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4552 ext4_free_blocks_count_set(es,
4553 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4554 &EXT4_SB(sb)->s_freeclusters_counter)));
4555 es->s_free_inodes_count =
4556 cpu_to_le32(percpu_counter_sum_positive(
4557 &EXT4_SB(sb)->s_freeinodes_counter));
4558 BUFFER_TRACE(sbh, "marking dirty");
4559 ext4_superblock_csum_set(sb);
4560 mark_buffer_dirty(sbh);
4561 if (sync) {
4562 error = sync_dirty_buffer(sbh);
4563 if (error)
4564 return error;
4565
4566 error = buffer_write_io_error(sbh);
4567 if (error) {
4568 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4569 "superblock");
4570 clear_buffer_write_io_error(sbh);
4571 set_buffer_uptodate(sbh);
4572 }
4573 }
4574 return error;
4575}
4576
4577/*
4578 * Have we just finished recovery? If so, and if we are mounting (or
4579 * remounting) the filesystem readonly, then we will end up with a
4580 * consistent fs on disk. Record that fact.
4581 */
4582static void ext4_mark_recovery_complete(struct super_block *sb,
4583 struct ext4_super_block *es)
4584{
4585 journal_t *journal = EXT4_SB(sb)->s_journal;
4586
4587 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4588 BUG_ON(journal != NULL);
4589 return;
4590 }
4591 jbd2_journal_lock_updates(journal);
4592 if (jbd2_journal_flush(journal) < 0)
4593 goto out;
4594
4595 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4596 sb->s_flags & MS_RDONLY) {
4597 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4598 ext4_commit_super(sb, 1);
4599 }
4600
4601out:
4602 jbd2_journal_unlock_updates(journal);
4603}
4604
4605/*
4606 * If we are mounting (or read-write remounting) a filesystem whose journal
4607 * has recorded an error from a previous lifetime, move that error to the
4608 * main filesystem now.
4609 */
4610static void ext4_clear_journal_err(struct super_block *sb,
4611 struct ext4_super_block *es)
4612{
4613 journal_t *journal;
4614 int j_errno;
4615 const char *errstr;
4616
4617 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4618
4619 journal = EXT4_SB(sb)->s_journal;
4620
4621 /*
4622 * Now check for any error status which may have been recorded in the
4623 * journal by a prior ext4_error() or ext4_abort()
4624 */
4625
4626 j_errno = jbd2_journal_errno(journal);
4627 if (j_errno) {
4628 char nbuf[16];
4629
4630 errstr = ext4_decode_error(sb, j_errno, nbuf);
4631 ext4_warning(sb, "Filesystem error recorded "
4632 "from previous mount: %s", errstr);
4633 ext4_warning(sb, "Marking fs in need of filesystem check.");
4634
4635 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4636 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4637 ext4_commit_super(sb, 1);
4638
4639 jbd2_journal_clear_err(journal);
4640 jbd2_journal_update_sb_errno(journal);
4641 }
4642}
4643
4644/*
4645 * Force the running and committing transactions to commit,
4646 * and wait on the commit.
4647 */
4648int ext4_force_commit(struct super_block *sb)
4649{
4650 journal_t *journal;
4651
4652 if (sb->s_flags & MS_RDONLY)
4653 return 0;
4654
4655 journal = EXT4_SB(sb)->s_journal;
4656 return ext4_journal_force_commit(journal);
4657}
4658
4659static int ext4_sync_fs(struct super_block *sb, int wait)
4660{
4661 int ret = 0;
4662 tid_t target;
4663 bool needs_barrier = false;
4664 struct ext4_sb_info *sbi = EXT4_SB(sb);
4665
4666 trace_ext4_sync_fs(sb, wait);
4667 flush_workqueue(sbi->rsv_conversion_wq);
4668 /*
4669 * Writeback quota in non-journalled quota case - journalled quota has
4670 * no dirty dquots
4671 */
4672 dquot_writeback_dquots(sb, -1);
4673 /*
4674 * Data writeback is possible w/o journal transaction, so barrier must
4675 * being sent at the end of the function. But we can skip it if
4676 * transaction_commit will do it for us.
4677 */
4678 target = jbd2_get_latest_transaction(sbi->s_journal);
4679 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4680 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4681 needs_barrier = true;
4682
4683 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4684 if (wait)
4685 ret = jbd2_log_wait_commit(sbi->s_journal, target);
4686 }
4687 if (needs_barrier) {
4688 int err;
4689 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4690 if (!ret)
4691 ret = err;
4692 }
4693
4694 return ret;
4695}
4696
4697static int ext4_sync_fs_nojournal(struct super_block *sb, int wait)
4698{
4699 int ret = 0;
4700
4701 trace_ext4_sync_fs(sb, wait);
4702 flush_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4703 dquot_writeback_dquots(sb, -1);
4704 if (wait && test_opt(sb, BARRIER))
4705 ret = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4706
4707 return ret;
4708}
4709
4710/*
4711 * LVM calls this function before a (read-only) snapshot is created. This
4712 * gives us a chance to flush the journal completely and mark the fs clean.
4713 *
4714 * Note that only this function cannot bring a filesystem to be in a clean
4715 * state independently. It relies on upper layer to stop all data & metadata
4716 * modifications.
4717 */
4718static int ext4_freeze(struct super_block *sb)
4719{
4720 int error = 0;
4721 journal_t *journal;
4722
4723 if (sb->s_flags & MS_RDONLY)
4724 return 0;
4725
4726 journal = EXT4_SB(sb)->s_journal;
4727
4728 /* Now we set up the journal barrier. */
4729 jbd2_journal_lock_updates(journal);
4730
4731 /*
4732 * Don't clear the needs_recovery flag if we failed to flush
4733 * the journal.
4734 */
4735 error = jbd2_journal_flush(journal);
4736 if (error < 0)
4737 goto out;
4738
4739 /* Journal blocked and flushed, clear needs_recovery flag. */
4740 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4741 error = ext4_commit_super(sb, 1);
4742out:
4743 /* we rely on upper layer to stop further updates */
4744 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4745 return error;
4746}
4747
4748/*
4749 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4750 * flag here, even though the filesystem is not technically dirty yet.
4751 */
4752static int ext4_unfreeze(struct super_block *sb)
4753{
4754 if (sb->s_flags & MS_RDONLY)
4755 return 0;
4756
4757 /* Reset the needs_recovery flag before the fs is unlocked. */
4758 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4759 ext4_commit_super(sb, 1);
4760 return 0;
4761}
4762
4763/*
4764 * Structure to save mount options for ext4_remount's benefit
4765 */
4766struct ext4_mount_options {
4767 unsigned long s_mount_opt;
4768 unsigned long s_mount_opt2;
4769 kuid_t s_resuid;
4770 kgid_t s_resgid;
4771 unsigned long s_commit_interval;
4772 u32 s_min_batch_time, s_max_batch_time;
4773#ifdef CONFIG_QUOTA
4774 int s_jquota_fmt;
4775 char *s_qf_names[MAXQUOTAS];
4776#endif
4777};
4778
4779static int ext4_remount(struct super_block *sb, int *flags, char *data)
4780{
4781 struct ext4_super_block *es;
4782 struct ext4_sb_info *sbi = EXT4_SB(sb);
4783 unsigned long old_sb_flags;
4784 struct ext4_mount_options old_opts;
4785 int enable_quota = 0;
4786 ext4_group_t g;
4787 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4788 int err = 0;
4789#ifdef CONFIG_QUOTA
4790 int i, j;
4791#endif
4792 char *orig_data = kstrdup(data, GFP_KERNEL);
4793
4794 /* Store the original options */
4795 old_sb_flags = sb->s_flags;
4796 old_opts.s_mount_opt = sbi->s_mount_opt;
4797 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4798 old_opts.s_resuid = sbi->s_resuid;
4799 old_opts.s_resgid = sbi->s_resgid;
4800 old_opts.s_commit_interval = sbi->s_commit_interval;
4801 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4802 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4803#ifdef CONFIG_QUOTA
4804 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4805 for (i = 0; i < MAXQUOTAS; i++)
4806 if (sbi->s_qf_names[i]) {
4807 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4808 GFP_KERNEL);
4809 if (!old_opts.s_qf_names[i]) {
4810 for (j = 0; j < i; j++)
4811 kfree(old_opts.s_qf_names[j]);
4812 kfree(orig_data);
4813 return -ENOMEM;
4814 }
4815 } else
4816 old_opts.s_qf_names[i] = NULL;
4817#endif
4818 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4819 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4820
4821 /*
4822 * Allow the "check" option to be passed as a remount option.
4823 */
4824 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4825 err = -EINVAL;
4826 goto restore_opts;
4827 }
4828
4829 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4830 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4831 ext4_msg(sb, KERN_ERR, "can't mount with "
4832 "both data=journal and delalloc");
4833 err = -EINVAL;
4834 goto restore_opts;
4835 }
4836 if (test_opt(sb, DIOREAD_NOLOCK)) {
4837 ext4_msg(sb, KERN_ERR, "can't mount with "
4838 "both data=journal and dioread_nolock");
4839 err = -EINVAL;
4840 goto restore_opts;
4841 }
4842 }
4843
4844 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4845 ext4_abort(sb, "Abort forced by user");
4846
4847 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4848 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4849
4850 es = sbi->s_es;
4851
4852 if (sbi->s_journal) {
4853 ext4_init_journal_params(sb, sbi->s_journal);
4854 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4855 }
4856
4857 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4858 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4859 err = -EROFS;
4860 goto restore_opts;
4861 }
4862
4863 if (*flags & MS_RDONLY) {
4864 err = sync_filesystem(sb);
4865 if (err < 0)
4866 goto restore_opts;
4867 err = dquot_suspend(sb, -1);
4868 if (err < 0)
4869 goto restore_opts;
4870
4871 /*
4872 * First of all, the unconditional stuff we have to do
4873 * to disable replay of the journal when we next remount
4874 */
4875 sb->s_flags |= MS_RDONLY;
4876
4877 /*
4878 * OK, test if we are remounting a valid rw partition
4879 * readonly, and if so set the rdonly flag and then
4880 * mark the partition as valid again.
4881 */
4882 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4883 (sbi->s_mount_state & EXT4_VALID_FS))
4884 es->s_state = cpu_to_le16(sbi->s_mount_state);
4885
4886 if (sbi->s_journal)
4887 ext4_mark_recovery_complete(sb, es);
4888 } else {
4889 /* Make sure we can mount this feature set readwrite */
4890 if (!ext4_feature_set_ok(sb, 0)) {
4891 err = -EROFS;
4892 goto restore_opts;
4893 }
4894 /*
4895 * Make sure the group descriptor checksums
4896 * are sane. If they aren't, refuse to remount r/w.
4897 */
4898 for (g = 0; g < sbi->s_groups_count; g++) {
4899 struct ext4_group_desc *gdp =
4900 ext4_get_group_desc(sb, g, NULL);
4901
4902 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4903 ext4_msg(sb, KERN_ERR,
4904 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4905 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4906 le16_to_cpu(gdp->bg_checksum));
4907 err = -EINVAL;
4908 goto restore_opts;
4909 }
4910 }
4911
4912 /*
4913 * If we have an unprocessed orphan list hanging
4914 * around from a previously readonly bdev mount,
4915 * require a full umount/remount for now.
4916 */
4917 if (es->s_last_orphan) {
4918 ext4_msg(sb, KERN_WARNING, "Couldn't "
4919 "remount RDWR because of unprocessed "
4920 "orphan inode list. Please "
4921 "umount/remount instead");
4922 err = -EINVAL;
4923 goto restore_opts;
4924 }
4925
4926 /*
4927 * Mounting a RDONLY partition read-write, so reread
4928 * and store the current valid flag. (It may have
4929 * been changed by e2fsck since we originally mounted
4930 * the partition.)
4931 */
4932 if (sbi->s_journal)
4933 ext4_clear_journal_err(sb, es);
4934 sbi->s_mount_state = le16_to_cpu(es->s_state);
4935 if (!ext4_setup_super(sb, es, 0))
4936 sb->s_flags &= ~MS_RDONLY;
4937 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4938 EXT4_FEATURE_INCOMPAT_MMP))
4939 if (ext4_multi_mount_protect(sb,
4940 le64_to_cpu(es->s_mmp_block))) {
4941 err = -EROFS;
4942 goto restore_opts;
4943 }
4944 enable_quota = 1;
4945 }
4946 }
4947
4948 /*
4949 * Reinitialize lazy itable initialization thread based on
4950 * current settings
4951 */
4952 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4953 ext4_unregister_li_request(sb);
4954 else {
4955 ext4_group_t first_not_zeroed;
4956 first_not_zeroed = ext4_has_uninit_itable(sb);
4957 ext4_register_li_request(sb, first_not_zeroed);
4958 }
4959
4960 ext4_setup_system_zone(sb);
4961 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4962 ext4_commit_super(sb, 1);
4963
4964#ifdef CONFIG_QUOTA
4965 /* Release old quota file names */
4966 for (i = 0; i < MAXQUOTAS; i++)
4967 kfree(old_opts.s_qf_names[i]);
4968 if (enable_quota) {
4969 if (sb_any_quota_suspended(sb))
4970 dquot_resume(sb, -1);
4971 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4972 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4973 err = ext4_enable_quotas(sb);
4974 if (err)
4975 goto restore_opts;
4976 }
4977 }
4978#endif
4979
4980 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4981 kfree(orig_data);
4982 return 0;
4983
4984restore_opts:
4985 sb->s_flags = old_sb_flags;
4986 sbi->s_mount_opt = old_opts.s_mount_opt;
4987 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4988 sbi->s_resuid = old_opts.s_resuid;
4989 sbi->s_resgid = old_opts.s_resgid;
4990 sbi->s_commit_interval = old_opts.s_commit_interval;
4991 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4992 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4993#ifdef CONFIG_QUOTA
4994 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4995 for (i = 0; i < MAXQUOTAS; i++) {
4996 kfree(sbi->s_qf_names[i]);
4997 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4998 }
4999#endif
5000 kfree(orig_data);
5001 return err;
5002}
5003
5004static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5005{
5006 struct super_block *sb = dentry->d_sb;
5007 struct ext4_sb_info *sbi = EXT4_SB(sb);
5008 struct ext4_super_block *es = sbi->s_es;
5009 ext4_fsblk_t overhead = 0, resv_blocks;
5010 u64 fsid;
5011 s64 bfree;
5012 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5013
5014 if (!test_opt(sb, MINIX_DF))
5015 overhead = sbi->s_overhead;
5016
5017 buf->f_type = EXT4_SUPER_MAGIC;
5018 buf->f_bsize = sb->s_blocksize;
5019 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5020 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5021 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5022 /* prevent underflow in case that few free space is available */
5023 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5024 buf->f_bavail = buf->f_bfree -
5025 (ext4_r_blocks_count(es) + resv_blocks);
5026 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5027 buf->f_bavail = 0;
5028 buf->f_files = le32_to_cpu(es->s_inodes_count);
5029 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5030 buf->f_namelen = EXT4_NAME_LEN;
5031 fsid = le64_to_cpup((void *)es->s_uuid) ^
5032 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5033 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5034 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5035
5036 return 0;
5037}
5038
5039/* Helper function for writing quotas on sync - we need to start transaction
5040 * before quota file is locked for write. Otherwise the are possible deadlocks:
5041 * Process 1 Process 2
5042 * ext4_create() quota_sync()
5043 * jbd2_journal_start() write_dquot()
5044 * dquot_initialize() down(dqio_mutex)
5045 * down(dqio_mutex) jbd2_journal_start()
5046 *
5047 */
5048
5049#ifdef CONFIG_QUOTA
5050
5051static inline struct inode *dquot_to_inode(struct dquot *dquot)
5052{
5053 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5054}
5055
5056static int ext4_write_dquot(struct dquot *dquot)
5057{
5058 int ret, err;
5059 handle_t *handle;
5060 struct inode *inode;
5061
5062 inode = dquot_to_inode(dquot);
5063 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5064 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5065 if (IS_ERR(handle))
5066 return PTR_ERR(handle);
5067 ret = dquot_commit(dquot);
5068 err = ext4_journal_stop(handle);
5069 if (!ret)
5070 ret = err;
5071 return ret;
5072}
5073
5074static int ext4_acquire_dquot(struct dquot *dquot)
5075{
5076 int ret, err;
5077 handle_t *handle;
5078
5079 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5080 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5081 if (IS_ERR(handle))
5082 return PTR_ERR(handle);
5083 ret = dquot_acquire(dquot);
5084 err = ext4_journal_stop(handle);
5085 if (!ret)
5086 ret = err;
5087 return ret;
5088}
5089
5090static int ext4_release_dquot(struct dquot *dquot)
5091{
5092 int ret, err;
5093 handle_t *handle;
5094
5095 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5096 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5097 if (IS_ERR(handle)) {
5098 /* Release dquot anyway to avoid endless cycle in dqput() */
5099 dquot_release(dquot);
5100 return PTR_ERR(handle);
5101 }
5102 ret = dquot_release(dquot);
5103 err = ext4_journal_stop(handle);
5104 if (!ret)
5105 ret = err;
5106 return ret;
5107}
5108
5109static int ext4_mark_dquot_dirty(struct dquot *dquot)
5110{
5111 struct super_block *sb = dquot->dq_sb;
5112 struct ext4_sb_info *sbi = EXT4_SB(sb);
5113
5114 /* Are we journaling quotas? */
5115 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
5116 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5117 dquot_mark_dquot_dirty(dquot);
5118 return ext4_write_dquot(dquot);
5119 } else {
5120 return dquot_mark_dquot_dirty(dquot);
5121 }
5122}
5123
5124static int ext4_write_info(struct super_block *sb, int type)
5125{
5126 int ret, err;
5127 handle_t *handle;
5128
5129 /* Data block + inode block */
5130 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
5131 if (IS_ERR(handle))
5132 return PTR_ERR(handle);
5133 ret = dquot_commit_info(sb, type);
5134 err = ext4_journal_stop(handle);
5135 if (!ret)
5136 ret = err;
5137 return ret;
5138}
5139
5140/*
5141 * Turn on quotas during mount time - we need to find
5142 * the quota file and such...
5143 */
5144static int ext4_quota_on_mount(struct super_block *sb, int type)
5145{
5146 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5147 EXT4_SB(sb)->s_jquota_fmt, type);
5148}
5149
5150/*
5151 * Standard function to be called on quota_on
5152 */
5153static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5154 struct path *path)
5155{
5156 int err;
5157
5158 if (!test_opt(sb, QUOTA))
5159 return -EINVAL;
5160
5161 /* Quotafile not on the same filesystem? */
5162 if (path->dentry->d_sb != sb)
5163 return -EXDEV;
5164 /* Journaling quota? */
5165 if (EXT4_SB(sb)->s_qf_names[type]) {
5166 /* Quotafile not in fs root? */
5167 if (path->dentry->d_parent != sb->s_root)
5168 ext4_msg(sb, KERN_WARNING,
5169 "Quota file not on filesystem root. "
5170 "Journaled quota will not work");
5171 }
5172
5173 /*
5174 * When we journal data on quota file, we have to flush journal to see
5175 * all updates to the file when we bypass pagecache...
5176 */
5177 if (EXT4_SB(sb)->s_journal &&
5178 ext4_should_journal_data(path->dentry->d_inode)) {
5179 /*
5180 * We don't need to lock updates but journal_flush() could
5181 * otherwise be livelocked...
5182 */
5183 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5184 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5185 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5186 if (err)
5187 return err;
5188 }
5189
5190 return dquot_quota_on(sb, type, format_id, path);
5191}
5192
5193static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5194 unsigned int flags)
5195{
5196 int err;
5197 struct inode *qf_inode;
5198 unsigned long qf_inums[MAXQUOTAS] = {
5199 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5200 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5201 };
5202
5203 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5204
5205 if (!qf_inums[type])
5206 return -EPERM;
5207
5208 qf_inode = ext4_iget(sb, qf_inums[type]);
5209 if (IS_ERR(qf_inode)) {
5210 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5211 return PTR_ERR(qf_inode);
5212 }
5213
5214 /* Don't account quota for quota files to avoid recursion */
5215 qf_inode->i_flags |= S_NOQUOTA;
5216 err = dquot_enable(qf_inode, type, format_id, flags);
5217 iput(qf_inode);
5218
5219 return err;
5220}
5221
5222/* Enable usage tracking for all quota types. */
5223static int ext4_enable_quotas(struct super_block *sb)
5224{
5225 int type, err = 0;
5226 unsigned long qf_inums[MAXQUOTAS] = {
5227 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5228 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5229 };
5230
5231 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5232 for (type = 0; type < MAXQUOTAS; type++) {
5233 if (qf_inums[type]) {
5234 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5235 DQUOT_USAGE_ENABLED);
5236 if (err) {
5237 ext4_warning(sb,
5238 "Failed to enable quota tracking "
5239 "(type=%d, err=%d). Please run "
5240 "e2fsck to fix.", type, err);
5241 return err;
5242 }
5243 }
5244 }
5245 return 0;
5246}
5247
5248/*
5249 * quota_on function that is used when QUOTA feature is set.
5250 */
5251static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5252 int format_id)
5253{
5254 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5255 return -EINVAL;
5256
5257 /*
5258 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5259 */
5260 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5261}
5262
5263static int ext4_quota_off(struct super_block *sb, int type)
5264{
5265 struct inode *inode = sb_dqopt(sb)->files[type];
5266 handle_t *handle;
5267
5268 /* Force all delayed allocation blocks to be allocated.
5269 * Caller already holds s_umount sem */
5270 if (test_opt(sb, DELALLOC))
5271 sync_filesystem(sb);
5272
5273 if (!inode)
5274 goto out;
5275
5276 /* Update modification times of quota files when userspace can
5277 * start looking at them */
5278 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5279 if (IS_ERR(handle))
5280 goto out;
5281 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5282 ext4_mark_inode_dirty(handle, inode);
5283 ext4_journal_stop(handle);
5284
5285out:
5286 return dquot_quota_off(sb, type);
5287}
5288
5289/*
5290 * quota_off function that is used when QUOTA feature is set.
5291 */
5292static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5293{
5294 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5295 return -EINVAL;
5296
5297 /* Disable only the limits. */
5298 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5299}
5300
5301/* Read data from quotafile - avoid pagecache and such because we cannot afford
5302 * acquiring the locks... As quota files are never truncated and quota code
5303 * itself serializes the operations (and no one else should touch the files)
5304 * we don't have to be afraid of races */
5305static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5306 size_t len, loff_t off)
5307{
5308 struct inode *inode = sb_dqopt(sb)->files[type];
5309 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5310 int err = 0;
5311 int offset = off & (sb->s_blocksize - 1);
5312 int tocopy;
5313 size_t toread;
5314 struct buffer_head *bh;
5315 loff_t i_size = i_size_read(inode);
5316
5317 if (off > i_size)
5318 return 0;
5319 if (off+len > i_size)
5320 len = i_size-off;
5321 toread = len;
5322 while (toread > 0) {
5323 tocopy = sb->s_blocksize - offset < toread ?
5324 sb->s_blocksize - offset : toread;
5325 bh = ext4_bread(NULL, inode, blk, 0, &err);
5326 if (err)
5327 return err;
5328 if (!bh) /* A hole? */
5329 memset(data, 0, tocopy);
5330 else
5331 memcpy(data, bh->b_data+offset, tocopy);
5332 brelse(bh);
5333 offset = 0;
5334 toread -= tocopy;
5335 data += tocopy;
5336 blk++;
5337 }
5338 return len;
5339}
5340
5341/* Write to quotafile (we know the transaction is already started and has
5342 * enough credits) */
5343static ssize_t ext4_quota_write(struct super_block *sb, int type,
5344 const char *data, size_t len, loff_t off)
5345{
5346 struct inode *inode = sb_dqopt(sb)->files[type];
5347 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5348 int err = 0;
5349 int offset = off & (sb->s_blocksize - 1);
5350 struct buffer_head *bh;
5351 handle_t *handle = journal_current_handle();
5352
5353 if (EXT4_SB(sb)->s_journal && !handle) {
5354 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5355 " cancelled because transaction is not started",
5356 (unsigned long long)off, (unsigned long long)len);
5357 return -EIO;
5358 }
5359 /*
5360 * Since we account only one data block in transaction credits,
5361 * then it is impossible to cross a block boundary.
5362 */
5363 if (sb->s_blocksize - offset < len) {
5364 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5365 " cancelled because not block aligned",
5366 (unsigned long long)off, (unsigned long long)len);
5367 return -EIO;
5368 }
5369
5370 bh = ext4_bread(handle, inode, blk, 1, &err);
5371 if (!bh)
5372 goto out;
5373 err = ext4_journal_get_write_access(handle, bh);
5374 if (err) {
5375 brelse(bh);
5376 goto out;
5377 }
5378 lock_buffer(bh);
5379 memcpy(bh->b_data+offset, data, len);
5380 flush_dcache_page(bh->b_page);
5381 unlock_buffer(bh);
5382 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5383 brelse(bh);
5384out:
5385 if (err)
5386 return err;
5387 if (inode->i_size < off + len) {
5388 i_size_write(inode, off + len);
5389 EXT4_I(inode)->i_disksize = inode->i_size;
5390 ext4_mark_inode_dirty(handle, inode);
5391 }
5392 return len;
5393}
5394
5395#endif
5396
5397static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5398 const char *dev_name, void *data)
5399{
5400 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5401}
5402
5403#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5404static inline void register_as_ext2(void)
5405{
5406 int err = register_filesystem(&ext2_fs_type);
5407 if (err)
5408 printk(KERN_WARNING
5409 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5410}
5411
5412static inline void unregister_as_ext2(void)
5413{
5414 unregister_filesystem(&ext2_fs_type);
5415}
5416
5417static inline int ext2_feature_set_ok(struct super_block *sb)
5418{
5419 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5420 return 0;
5421 if (sb->s_flags & MS_RDONLY)
5422 return 1;
5423 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5424 return 0;
5425 return 1;
5426}
5427#else
5428static inline void register_as_ext2(void) { }
5429static inline void unregister_as_ext2(void) { }
5430static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5431#endif
5432
5433#if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5434static inline void register_as_ext3(void)
5435{
5436 int err = register_filesystem(&ext3_fs_type);
5437 if (err)
5438 printk(KERN_WARNING
5439 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5440}
5441
5442static inline void unregister_as_ext3(void)
5443{
5444 unregister_filesystem(&ext3_fs_type);
5445}
5446
5447static inline int ext3_feature_set_ok(struct super_block *sb)
5448{
5449 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5450 return 0;
5451 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5452 return 0;
5453 if (sb->s_flags & MS_RDONLY)
5454 return 1;
5455 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5456 return 0;
5457 return 1;
5458}
5459#else
5460static inline void register_as_ext3(void) { }
5461static inline void unregister_as_ext3(void) { }
5462static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5463#endif
5464
5465static struct file_system_type ext4_fs_type = {
5466 .owner = THIS_MODULE,
5467 .name = "ext4",
5468 .mount = ext4_mount,
5469 .kill_sb = kill_block_super,
5470 .fs_flags = FS_REQUIRES_DEV,
5471};
5472MODULE_ALIAS_FS("ext4");
5473
5474static int __init ext4_init_feat_adverts(void)
5475{
5476 struct ext4_features *ef;
5477 int ret = -ENOMEM;
5478
5479 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5480 if (!ef)
5481 goto out;
5482
5483 ef->f_kobj.kset = ext4_kset;
5484 init_completion(&ef->f_kobj_unregister);
5485 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5486 "features");
5487 if (ret) {
5488 kfree(ef);
5489 goto out;
5490 }
5491
5492 ext4_feat = ef;
5493 ret = 0;
5494out:
5495 return ret;
5496}
5497
5498static void ext4_exit_feat_adverts(void)
5499{
5500 kobject_put(&ext4_feat->f_kobj);
5501 wait_for_completion(&ext4_feat->f_kobj_unregister);
5502 kfree(ext4_feat);
5503}
5504
5505/* Shared across all ext4 file systems */
5506wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5507struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5508
5509static int __init ext4_init_fs(void)
5510{
5511 int i, err;
5512
5513 ext4_li_info = NULL;
5514 mutex_init(&ext4_li_mtx);
5515
5516 /* Build-time check for flags consistency */
5517 ext4_check_flag_values();
5518
5519 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5520 mutex_init(&ext4__aio_mutex[i]);
5521 init_waitqueue_head(&ext4__ioend_wq[i]);
5522 }
5523
5524 err = ext4_init_es();
5525 if (err)
5526 return err;
5527
5528 err = ext4_init_pageio();
5529 if (err)
5530 goto out7;
5531
5532 err = ext4_init_system_zone();
5533 if (err)
5534 goto out6;
5535 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5536 if (!ext4_kset) {
5537 err = -ENOMEM;
5538 goto out5;
5539 }
5540 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5541
5542 err = ext4_init_feat_adverts();
5543 if (err)
5544 goto out4;
5545
5546 err = ext4_init_mballoc();
5547 if (err)
5548 goto out2;
5549 else
5550 ext4_mballoc_ready = 1;
5551 err = init_inodecache();
5552 if (err)
5553 goto out1;
5554 register_as_ext3();
5555 register_as_ext2();
5556 err = register_filesystem(&ext4_fs_type);
5557 if (err)
5558 goto out;
5559
5560 return 0;
5561out:
5562 unregister_as_ext2();
5563 unregister_as_ext3();
5564 destroy_inodecache();
5565out1:
5566 ext4_mballoc_ready = 0;
5567 ext4_exit_mballoc();
5568out2:
5569 ext4_exit_feat_adverts();
5570out4:
5571 if (ext4_proc_root)
5572 remove_proc_entry("fs/ext4", NULL);
5573 kset_unregister(ext4_kset);
5574out5:
5575 ext4_exit_system_zone();
5576out6:
5577 ext4_exit_pageio();
5578out7:
5579 ext4_exit_es();
5580
5581 return err;
5582}
5583
5584static void __exit ext4_exit_fs(void)
5585{
5586 ext4_destroy_lazyinit_thread();
5587 unregister_as_ext2();
5588 unregister_as_ext3();
5589 unregister_filesystem(&ext4_fs_type);
5590 destroy_inodecache();
5591 ext4_exit_mballoc();
5592 ext4_exit_feat_adverts();
5593 remove_proc_entry("fs/ext4", NULL);
5594 kset_unregister(ext4_kset);
5595 ext4_exit_system_zone();
5596 ext4_exit_pageio();
5597 ext4_exit_es();
5598}
5599
5600MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5601MODULE_DESCRIPTION("Fourth Extended Filesystem");
5602MODULE_LICENSE("GPL");
5603module_init(ext4_init_fs)
5604module_exit(ext4_exit_fs)