Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  3 *		operating system.  INET is implemented using the  BSD Socket
  4 *		interface as the means of communication with the user level.
  5 *
  6 *		Implementation of the Transmission Control Protocol(TCP).
  7 *
  8 * Authors:	Ross Biro
  9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 12 *		Florian La Roche, <flla@stud.uni-sb.de>
 13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 18 *		Jorge Cwik, <jorge@laser.satlink.net>
 19 */
 20
 21#include <linux/mm.h>
 22#include <linux/module.h>
 23#include <linux/slab.h>
 24#include <linux/sysctl.h>
 25#include <linux/workqueue.h>
 26#include <linux/static_key.h>
 27#include <net/tcp.h>
 28#include <net/inet_common.h>
 29#include <net/xfrm.h>
 30#include <net/busy_poll.h>
 31
 32static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 33{
 34	if (seq == s_win)
 35		return true;
 36	if (after(end_seq, s_win) && before(seq, e_win))
 37		return true;
 38	return seq == e_win && seq == end_seq;
 39}
 40
 41static enum tcp_tw_status
 42tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 43				  const struct sk_buff *skb, int mib_idx)
 44{
 45	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 46
 47	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 48				  &tcptw->tw_last_oow_ack_time)) {
 49		/* Send ACK. Note, we do not put the bucket,
 50		 * it will be released by caller.
 51		 */
 52		return TCP_TW_ACK;
 53	}
 54
 55	/* We are rate-limiting, so just release the tw sock and drop skb. */
 56	inet_twsk_put(tw);
 57	return TCP_TW_SUCCESS;
 58}
 59
 
 
 
 
 
 
 
 
 
 
 
 
 60/*
 61 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 62 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 63 *   (and, probably, tail of data) and one or more our ACKs are lost.
 64 * * What is TIME-WAIT timeout? It is associated with maximal packet
 65 *   lifetime in the internet, which results in wrong conclusion, that
 66 *   it is set to catch "old duplicate segments" wandering out of their path.
 67 *   It is not quite correct. This timeout is calculated so that it exceeds
 68 *   maximal retransmission timeout enough to allow to lose one (or more)
 69 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 70 * * When TIME-WAIT socket receives RST, it means that another end
 71 *   finally closed and we are allowed to kill TIME-WAIT too.
 72 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 73 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 74 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 75 * * If we invented some more clever way to catch duplicates
 76 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 77 *
 78 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 79 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 80 * from the very beginning.
 81 *
 82 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 83 * is _not_ stateless. It means, that strictly speaking we must
 84 * spinlock it. I do not want! Well, probability of misbehaviour
 85 * is ridiculously low and, seems, we could use some mb() tricks
 86 * to avoid misread sequence numbers, states etc.  --ANK
 87 *
 88 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 89 */
 90enum tcp_tw_status
 91tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 92			   const struct tcphdr *th)
 93{
 94	struct tcp_options_received tmp_opt;
 95	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 96	bool paws_reject = false;
 97
 98	tmp_opt.saw_tstamp = 0;
 99	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
100		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
101
102		if (tmp_opt.saw_tstamp) {
103			if (tmp_opt.rcv_tsecr)
104				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
105			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
106			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
107			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
108		}
109	}
110
111	if (tw->tw_substate == TCP_FIN_WAIT2) {
112		/* Just repeat all the checks of tcp_rcv_state_process() */
113
114		/* Out of window, send ACK */
115		if (paws_reject ||
116		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
117				   tcptw->tw_rcv_nxt,
118				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
119			return tcp_timewait_check_oow_rate_limit(
120				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
121
122		if (th->rst)
123			goto kill;
124
125		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
126			return TCP_TW_RST;
127
128		/* Dup ACK? */
129		if (!th->ack ||
130		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
131		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
132			inet_twsk_put(tw);
133			return TCP_TW_SUCCESS;
134		}
135
136		/* New data or FIN. If new data arrive after half-duplex close,
137		 * reset.
138		 */
139		if (!th->fin ||
140		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
141			return TCP_TW_RST;
142
143		/* FIN arrived, enter true time-wait state. */
144		tw->tw_substate	  = TCP_TIME_WAIT;
145		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
 
146		if (tmp_opt.saw_tstamp) {
147			tcptw->tw_ts_recent_stamp = get_seconds();
148			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
149		}
150
151		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
152		return TCP_TW_ACK;
153	}
154
155	/*
156	 *	Now real TIME-WAIT state.
157	 *
158	 *	RFC 1122:
159	 *	"When a connection is [...] on TIME-WAIT state [...]
160	 *	[a TCP] MAY accept a new SYN from the remote TCP to
161	 *	reopen the connection directly, if it:
162	 *
163	 *	(1)  assigns its initial sequence number for the new
164	 *	connection to be larger than the largest sequence
165	 *	number it used on the previous connection incarnation,
166	 *	and
167	 *
168	 *	(2)  returns to TIME-WAIT state if the SYN turns out
169	 *	to be an old duplicate".
170	 */
171
172	if (!paws_reject &&
173	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
174	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
175		/* In window segment, it may be only reset or bare ack. */
176
177		if (th->rst) {
178			/* This is TIME_WAIT assassination, in two flavors.
179			 * Oh well... nobody has a sufficient solution to this
180			 * protocol bug yet.
181			 */
182			if (twsk_net(tw)->ipv4.sysctl_tcp_rfc1337 == 0) {
183kill:
184				inet_twsk_deschedule_put(tw);
185				return TCP_TW_SUCCESS;
186			}
 
 
187		}
188		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
189
190		if (tmp_opt.saw_tstamp) {
191			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
192			tcptw->tw_ts_recent_stamp = get_seconds();
193		}
194
195		inet_twsk_put(tw);
196		return TCP_TW_SUCCESS;
197	}
198
199	/* Out of window segment.
200
201	   All the segments are ACKed immediately.
202
203	   The only exception is new SYN. We accept it, if it is
204	   not old duplicate and we are not in danger to be killed
205	   by delayed old duplicates. RFC check is that it has
206	   newer sequence number works at rates <40Mbit/sec.
207	   However, if paws works, it is reliable AND even more,
208	   we even may relax silly seq space cutoff.
209
210	   RED-PEN: we violate main RFC requirement, if this SYN will appear
211	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
212	   we must return socket to time-wait state. It is not good,
213	   but not fatal yet.
214	 */
215
216	if (th->syn && !th->rst && !th->ack && !paws_reject &&
217	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
218	     (tmp_opt.saw_tstamp &&
219	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
220		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
221		if (isn == 0)
222			isn++;
223		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
224		return TCP_TW_SYN;
225	}
226
227	if (paws_reject)
228		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
229
230	if (!th->rst) {
231		/* In this case we must reset the TIMEWAIT timer.
232		 *
233		 * If it is ACKless SYN it may be both old duplicate
234		 * and new good SYN with random sequence number <rcv_nxt.
235		 * Do not reschedule in the last case.
236		 */
237		if (paws_reject || th->ack)
238			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
239
240		return tcp_timewait_check_oow_rate_limit(
241			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
242	}
243	inet_twsk_put(tw);
244	return TCP_TW_SUCCESS;
245}
246EXPORT_SYMBOL(tcp_timewait_state_process);
247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248/*
249 * Move a socket to time-wait or dead fin-wait-2 state.
250 */
251void tcp_time_wait(struct sock *sk, int state, int timeo)
252{
253	const struct inet_connection_sock *icsk = inet_csk(sk);
254	const struct tcp_sock *tp = tcp_sk(sk);
 
255	struct inet_timewait_sock *tw;
256	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
257
258	tw = inet_twsk_alloc(sk, tcp_death_row, state);
259
260	if (tw) {
261		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
262		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
263		struct inet_sock *inet = inet_sk(sk);
264
265		tw->tw_transparent	= inet->transparent;
 
 
266		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
267		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
268		tcptw->tw_snd_nxt	= tp->snd_nxt;
269		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
270		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
271		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
272		tcptw->tw_ts_offset	= tp->tsoffset;
 
273		tcptw->tw_last_oow_ack_time = 0;
274
 
275#if IS_ENABLED(CONFIG_IPV6)
276		if (tw->tw_family == PF_INET6) {
277			struct ipv6_pinfo *np = inet6_sk(sk);
278
279			tw->tw_v6_daddr = sk->sk_v6_daddr;
280			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
281			tw->tw_tclass = np->tclass;
282			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
283			tw->tw_ipv6only = sk->sk_ipv6only;
284		}
285#endif
286
287#ifdef CONFIG_TCP_MD5SIG
288		/*
289		 * The timewait bucket does not have the key DB from the
290		 * sock structure. We just make a quick copy of the
291		 * md5 key being used (if indeed we are using one)
292		 * so the timewait ack generating code has the key.
293		 */
294		do {
295			struct tcp_md5sig_key *key;
296			tcptw->tw_md5_key = NULL;
297			key = tp->af_specific->md5_lookup(sk, sk);
298			if (key) {
299				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
300				BUG_ON(tcptw->tw_md5_key && !tcp_alloc_md5sig_pool());
301			}
302		} while (0);
303#endif
304
305		/* Get the TIME_WAIT timeout firing. */
306		if (timeo < rto)
307			timeo = rto;
308
309		tw->tw_timeout = TCP_TIMEWAIT_LEN;
310		if (state == TCP_TIME_WAIT)
311			timeo = TCP_TIMEWAIT_LEN;
312
313		/* tw_timer is pinned, so we need to make sure BH are disabled
314		 * in following section, otherwise timer handler could run before
315		 * we complete the initialization.
316		 */
317		local_bh_disable();
318		inet_twsk_schedule(tw, timeo);
319		/* Linkage updates.
320		 * Note that access to tw after this point is illegal.
321		 */
322		inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
323		local_bh_enable();
324	} else {
325		/* Sorry, if we're out of memory, just CLOSE this
326		 * socket up.  We've got bigger problems than
327		 * non-graceful socket closings.
328		 */
329		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
330	}
331
332	tcp_update_metrics(sk);
333	tcp_done(sk);
334}
335EXPORT_SYMBOL(tcp_time_wait);
336
 
 
 
 
 
 
 
 
 
 
 
 
337void tcp_twsk_destructor(struct sock *sk)
338{
339#ifdef CONFIG_TCP_MD5SIG
340	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
 
341
342	if (twsk->tw_md5_key)
343		kfree_rcu(twsk->tw_md5_key, rcu);
 
344#endif
 
345}
346EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348/* Warning : This function is called without sk_listener being locked.
349 * Be sure to read socket fields once, as their value could change under us.
350 */
351void tcp_openreq_init_rwin(struct request_sock *req,
352			   const struct sock *sk_listener,
353			   const struct dst_entry *dst)
354{
355	struct inet_request_sock *ireq = inet_rsk(req);
356	const struct tcp_sock *tp = tcp_sk(sk_listener);
357	int full_space = tcp_full_space(sk_listener);
358	u32 window_clamp;
359	__u8 rcv_wscale;
360	u32 rcv_wnd;
361	int mss;
362
363	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
364	window_clamp = READ_ONCE(tp->window_clamp);
365	/* Set this up on the first call only */
366	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
367
368	/* limit the window selection if the user enforce a smaller rx buffer */
369	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
370	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
371		req->rsk_window_clamp = full_space;
372
373	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
374	if (rcv_wnd == 0)
375		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
376	else if (full_space < rcv_wnd * mss)
377		full_space = rcv_wnd * mss;
378
379	/* tcp_full_space because it is guaranteed to be the first packet */
380	tcp_select_initial_window(sk_listener, full_space,
381		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
382		&req->rsk_rcv_wnd,
383		&req->rsk_window_clamp,
384		ireq->wscale_ok,
385		&rcv_wscale,
386		rcv_wnd);
387	ireq->rcv_wscale = rcv_wscale;
388}
389EXPORT_SYMBOL(tcp_openreq_init_rwin);
390
391static void tcp_ecn_openreq_child(struct tcp_sock *tp,
392				  const struct request_sock *req)
393{
394	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
395}
396
397void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
398{
399	struct inet_connection_sock *icsk = inet_csk(sk);
400	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
401	bool ca_got_dst = false;
402
403	if (ca_key != TCP_CA_UNSPEC) {
404		const struct tcp_congestion_ops *ca;
405
406		rcu_read_lock();
407		ca = tcp_ca_find_key(ca_key);
408		if (likely(ca && try_module_get(ca->owner))) {
409			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
410			icsk->icsk_ca_ops = ca;
411			ca_got_dst = true;
412		}
413		rcu_read_unlock();
414	}
415
416	/* If no valid choice made yet, assign current system default ca. */
417	if (!ca_got_dst &&
418	    (!icsk->icsk_ca_setsockopt ||
419	     !try_module_get(icsk->icsk_ca_ops->owner)))
420		tcp_assign_congestion_control(sk);
421
422	tcp_set_ca_state(sk, TCP_CA_Open);
423}
424EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
425
426static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
427				    struct request_sock *req,
428				    struct tcp_sock *newtp)
429{
430#if IS_ENABLED(CONFIG_SMC)
431	struct inet_request_sock *ireq;
432
433	if (static_branch_unlikely(&tcp_have_smc)) {
434		ireq = inet_rsk(req);
435		if (oldtp->syn_smc && !ireq->smc_ok)
436			newtp->syn_smc = 0;
437	}
438#endif
439}
440
441/* This is not only more efficient than what we used to do, it eliminates
442 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
443 *
444 * Actually, we could lots of memory writes here. tp of listening
445 * socket contains all necessary default parameters.
446 */
447struct sock *tcp_create_openreq_child(const struct sock *sk,
448				      struct request_sock *req,
449				      struct sk_buff *skb)
450{
451	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
 
 
 
 
 
 
 
 
 
452
453	if (newsk) {
454		const struct inet_request_sock *ireq = inet_rsk(req);
455		struct tcp_request_sock *treq = tcp_rsk(req);
456		struct inet_connection_sock *newicsk = inet_csk(newsk);
457		struct tcp_sock *newtp = tcp_sk(newsk);
458		struct tcp_sock *oldtp = tcp_sk(sk);
459
460		smc_check_reset_syn_req(oldtp, req, newtp);
461
462		/* Now setup tcp_sock */
463		newtp->pred_flags = 0;
464
465		newtp->rcv_wup = newtp->copied_seq =
466		newtp->rcv_nxt = treq->rcv_isn + 1;
467		newtp->segs_in = 1;
468
469		newtp->snd_sml = newtp->snd_una =
470		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
471
472		INIT_LIST_HEAD(&newtp->tsq_node);
473		INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
474
475		tcp_init_wl(newtp, treq->rcv_isn);
476
477		newtp->srtt_us = 0;
478		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
479		minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
480		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
481		newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
482
483		newtp->packets_out = 0;
484		newtp->retrans_out = 0;
485		newtp->sacked_out = 0;
486		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
487		newtp->tlp_high_seq = 0;
488		newtp->lsndtime = tcp_jiffies32;
489		newsk->sk_txhash = treq->txhash;
490		newtp->last_oow_ack_time = 0;
491		newtp->total_retrans = req->num_retrans;
492
493		/* So many TCP implementations out there (incorrectly) count the
494		 * initial SYN frame in their delayed-ACK and congestion control
495		 * algorithms that we must have the following bandaid to talk
496		 * efficiently to them.  -DaveM
497		 */
498		newtp->snd_cwnd = TCP_INIT_CWND;
499		newtp->snd_cwnd_cnt = 0;
500
501		/* There's a bubble in the pipe until at least the first ACK. */
502		newtp->app_limited = ~0U;
503
504		tcp_init_xmit_timers(newsk);
505		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
506
507		newtp->rx_opt.saw_tstamp = 0;
508
509		newtp->rx_opt.dsack = 0;
510		newtp->rx_opt.num_sacks = 0;
511
512		newtp->urg_data = 0;
513
514		if (sock_flag(newsk, SOCK_KEEPOPEN))
515			inet_csk_reset_keepalive_timer(newsk,
516						       keepalive_time_when(newtp));
517
518		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
519		newtp->rx_opt.sack_ok = ireq->sack_ok;
520		newtp->window_clamp = req->rsk_window_clamp;
521		newtp->rcv_ssthresh = req->rsk_rcv_wnd;
522		newtp->rcv_wnd = req->rsk_rcv_wnd;
523		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
524		if (newtp->rx_opt.wscale_ok) {
525			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
526			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
527		} else {
528			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
529			newtp->window_clamp = min(newtp->window_clamp, 65535U);
530		}
531		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
532				  newtp->rx_opt.snd_wscale);
533		newtp->max_window = newtp->snd_wnd;
534
535		if (newtp->rx_opt.tstamp_ok) {
536			newtp->rx_opt.ts_recent = req->ts_recent;
537			newtp->rx_opt.ts_recent_stamp = get_seconds();
538			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
539		} else {
540			newtp->rx_opt.ts_recent_stamp = 0;
541			newtp->tcp_header_len = sizeof(struct tcphdr);
 
 
542		}
543		newtp->tsoffset = treq->ts_off;
 
 
544#ifdef CONFIG_TCP_MD5SIG
545		newtp->md5sig_info = NULL;	/*XXX*/
546		if (newtp->af_specific->md5_lookup(sk, newsk))
547			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
548#endif
549		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
550			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
551		newtp->rx_opt.mss_clamp = req->mss;
552		tcp_ecn_openreq_child(newtp, req);
553		newtp->fastopen_req = NULL;
554		newtp->fastopen_rsk = NULL;
555		newtp->syn_data_acked = 0;
556		newtp->rack.mstamp = 0;
557		newtp->rack.advanced = 0;
558		newtp->rack.reo_wnd_steps = 1;
559		newtp->rack.last_delivered = 0;
560		newtp->rack.reo_wnd_persist = 0;
561		newtp->rack.dsack_seen = 0;
 
 
 
 
 
562
563		__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
564	}
565	return newsk;
566}
567EXPORT_SYMBOL(tcp_create_openreq_child);
568
569/*
570 * Process an incoming packet for SYN_RECV sockets represented as a
571 * request_sock. Normally sk is the listener socket but for TFO it
572 * points to the child socket.
573 *
574 * XXX (TFO) - The current impl contains a special check for ack
575 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
576 *
577 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
 
 
 
578 */
579
580struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
581			   struct request_sock *req,
582			   bool fastopen, bool *req_stolen)
583{
584	struct tcp_options_received tmp_opt;
585	struct sock *child;
586	const struct tcphdr *th = tcp_hdr(skb);
587	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
588	bool paws_reject = false;
589	bool own_req;
590
591	tmp_opt.saw_tstamp = 0;
592	if (th->doff > (sizeof(struct tcphdr)>>2)) {
593		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
594
595		if (tmp_opt.saw_tstamp) {
596			tmp_opt.ts_recent = req->ts_recent;
597			if (tmp_opt.rcv_tsecr)
598				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
599			/* We do not store true stamp, but it is not required,
600			 * it can be estimated (approximately)
601			 * from another data.
602			 */
603			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
604			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
605		}
606	}
607
608	/* Check for pure retransmitted SYN. */
609	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
610	    flg == TCP_FLAG_SYN &&
611	    !paws_reject) {
612		/*
613		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
614		 * this case on figure 6 and figure 8, but formal
615		 * protocol description says NOTHING.
616		 * To be more exact, it says that we should send ACK,
617		 * because this segment (at least, if it has no data)
618		 * is out of window.
619		 *
620		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
621		 *  describe SYN-RECV state. All the description
622		 *  is wrong, we cannot believe to it and should
623		 *  rely only on common sense and implementation
624		 *  experience.
625		 *
626		 * Enforce "SYN-ACK" according to figure 8, figure 6
627		 * of RFC793, fixed by RFC1122.
628		 *
629		 * Note that even if there is new data in the SYN packet
630		 * they will be thrown away too.
631		 *
632		 * Reset timer after retransmitting SYNACK, similar to
633		 * the idea of fast retransmit in recovery.
634		 */
635		if (!tcp_oow_rate_limited(sock_net(sk), skb,
636					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
637					  &tcp_rsk(req)->last_oow_ack_time) &&
638
639		    !inet_rtx_syn_ack(sk, req)) {
640			unsigned long expires = jiffies;
641
642			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
643				       TCP_RTO_MAX);
644			if (!fastopen)
645				mod_timer_pending(&req->rsk_timer, expires);
646			else
647				req->rsk_timer.expires = expires;
648		}
649		return NULL;
650	}
651
652	/* Further reproduces section "SEGMENT ARRIVES"
653	   for state SYN-RECEIVED of RFC793.
654	   It is broken, however, it does not work only
655	   when SYNs are crossed.
656
657	   You would think that SYN crossing is impossible here, since
658	   we should have a SYN_SENT socket (from connect()) on our end,
659	   but this is not true if the crossed SYNs were sent to both
660	   ends by a malicious third party.  We must defend against this,
661	   and to do that we first verify the ACK (as per RFC793, page
662	   36) and reset if it is invalid.  Is this a true full defense?
663	   To convince ourselves, let us consider a way in which the ACK
664	   test can still pass in this 'malicious crossed SYNs' case.
665	   Malicious sender sends identical SYNs (and thus identical sequence
666	   numbers) to both A and B:
667
668		A: gets SYN, seq=7
669		B: gets SYN, seq=7
670
671	   By our good fortune, both A and B select the same initial
672	   send sequence number of seven :-)
673
674		A: sends SYN|ACK, seq=7, ack_seq=8
675		B: sends SYN|ACK, seq=7, ack_seq=8
676
677	   So we are now A eating this SYN|ACK, ACK test passes.  So
678	   does sequence test, SYN is truncated, and thus we consider
679	   it a bare ACK.
680
681	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
682	   bare ACK.  Otherwise, we create an established connection.  Both
683	   ends (listening sockets) accept the new incoming connection and try
684	   to talk to each other. 8-)
685
686	   Note: This case is both harmless, and rare.  Possibility is about the
687	   same as us discovering intelligent life on another plant tomorrow.
688
689	   But generally, we should (RFC lies!) to accept ACK
690	   from SYNACK both here and in tcp_rcv_state_process().
691	   tcp_rcv_state_process() does not, hence, we do not too.
692
693	   Note that the case is absolutely generic:
694	   we cannot optimize anything here without
695	   violating protocol. All the checks must be made
696	   before attempt to create socket.
697	 */
698
699	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
700	 *                  and the incoming segment acknowledges something not yet
701	 *                  sent (the segment carries an unacceptable ACK) ...
702	 *                  a reset is sent."
703	 *
704	 * Invalid ACK: reset will be sent by listening socket.
705	 * Note that the ACK validity check for a Fast Open socket is done
706	 * elsewhere and is checked directly against the child socket rather
707	 * than req because user data may have been sent out.
708	 */
709	if ((flg & TCP_FLAG_ACK) && !fastopen &&
710	    (TCP_SKB_CB(skb)->ack_seq !=
711	     tcp_rsk(req)->snt_isn + 1))
712		return sk;
713
714	/* Also, it would be not so bad idea to check rcv_tsecr, which
715	 * is essentially ACK extension and too early or too late values
716	 * should cause reset in unsynchronized states.
717	 */
718
719	/* RFC793: "first check sequence number". */
720
721	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
722					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
723		/* Out of window: send ACK and drop. */
724		if (!(flg & TCP_FLAG_RST) &&
725		    !tcp_oow_rate_limited(sock_net(sk), skb,
726					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
727					  &tcp_rsk(req)->last_oow_ack_time))
728			req->rsk_ops->send_ack(sk, skb, req);
729		if (paws_reject)
730			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
731		return NULL;
732	}
733
734	/* In sequence, PAWS is OK. */
735
 
 
 
736	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
737		req->ts_recent = tmp_opt.rcv_tsval;
738
739	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
740		/* Truncate SYN, it is out of window starting
741		   at tcp_rsk(req)->rcv_isn + 1. */
742		flg &= ~TCP_FLAG_SYN;
743	}
744
745	/* RFC793: "second check the RST bit" and
746	 *	   "fourth, check the SYN bit"
747	 */
748	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
749		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
750		goto embryonic_reset;
751	}
752
753	/* ACK sequence verified above, just make sure ACK is
754	 * set.  If ACK not set, just silently drop the packet.
755	 *
756	 * XXX (TFO) - if we ever allow "data after SYN", the
757	 * following check needs to be removed.
758	 */
759	if (!(flg & TCP_FLAG_ACK))
760		return NULL;
761
762	/* For Fast Open no more processing is needed (sk is the
763	 * child socket).
764	 */
765	if (fastopen)
766		return sk;
767
768	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
769	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
770	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
771		inet_rsk(req)->acked = 1;
772		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
773		return NULL;
774	}
775
776	/* OK, ACK is valid, create big socket and
777	 * feed this segment to it. It will repeat all
778	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
779	 * ESTABLISHED STATE. If it will be dropped after
780	 * socket is created, wait for troubles.
781	 */
782	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
783							 req, &own_req);
784	if (!child)
785		goto listen_overflow;
786
 
 
 
 
 
 
787	sock_rps_save_rxhash(child, skb);
788	tcp_synack_rtt_meas(child, req);
789	*req_stolen = !own_req;
790	return inet_csk_complete_hashdance(sk, child, req, own_req);
791
792listen_overflow:
793	if (!sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow) {
 
 
 
794		inet_rsk(req)->acked = 1;
795		return NULL;
796	}
797
798embryonic_reset:
799	if (!(flg & TCP_FLAG_RST)) {
800		/* Received a bad SYN pkt - for TFO We try not to reset
801		 * the local connection unless it's really necessary to
802		 * avoid becoming vulnerable to outside attack aiming at
803		 * resetting legit local connections.
804		 */
805		req->rsk_ops->send_reset(sk, skb);
806	} else if (fastopen) { /* received a valid RST pkt */
807		reqsk_fastopen_remove(sk, req, true);
808		tcp_reset(sk);
809	}
810	if (!fastopen) {
811		inet_csk_reqsk_queue_drop(sk, req);
812		__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
 
 
 
813	}
814	return NULL;
815}
816EXPORT_SYMBOL(tcp_check_req);
817
818/*
819 * Queue segment on the new socket if the new socket is active,
820 * otherwise we just shortcircuit this and continue with
821 * the new socket.
822 *
823 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
824 * when entering. But other states are possible due to a race condition
825 * where after __inet_lookup_established() fails but before the listener
826 * locked is obtained, other packets cause the same connection to
827 * be created.
828 */
829
830int tcp_child_process(struct sock *parent, struct sock *child,
831		      struct sk_buff *skb)
 
832{
833	int ret = 0;
834	int state = child->sk_state;
835
836	/* record NAPI ID of child */
837	sk_mark_napi_id(child, skb);
838
839	tcp_segs_in(tcp_sk(child), skb);
840	if (!sock_owned_by_user(child)) {
841		ret = tcp_rcv_state_process(child, skb);
842		/* Wakeup parent, send SIGIO */
843		if (state == TCP_SYN_RECV && child->sk_state != state)
844			parent->sk_data_ready(parent);
845	} else {
846		/* Alas, it is possible again, because we do lookup
847		 * in main socket hash table and lock on listening
848		 * socket does not protect us more.
849		 */
850		__sk_add_backlog(child, skb);
851	}
852
853	bh_unlock_sock(child);
854	sock_put(child);
855	return ret;
856}
857EXPORT_SYMBOL(tcp_child_process);
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  4 *		operating system.  INET is implemented using the  BSD Socket
  5 *		interface as the means of communication with the user level.
  6 *
  7 *		Implementation of the Transmission Control Protocol(TCP).
  8 *
  9 * Authors:	Ross Biro
 10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 13 *		Florian La Roche, <flla@stud.uni-sb.de>
 14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 19 *		Jorge Cwik, <jorge@laser.satlink.net>
 20 */
 21
 
 
 
 
 
 
 22#include <net/tcp.h>
 
 23#include <net/xfrm.h>
 24#include <net/busy_poll.h>
 25
 26static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 27{
 28	if (seq == s_win)
 29		return true;
 30	if (after(end_seq, s_win) && before(seq, e_win))
 31		return true;
 32	return seq == e_win && seq == end_seq;
 33}
 34
 35static enum tcp_tw_status
 36tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 37				  const struct sk_buff *skb, int mib_idx)
 38{
 39	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 40
 41	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 42				  &tcptw->tw_last_oow_ack_time)) {
 43		/* Send ACK. Note, we do not put the bucket,
 44		 * it will be released by caller.
 45		 */
 46		return TCP_TW_ACK;
 47	}
 48
 49	/* We are rate-limiting, so just release the tw sock and drop skb. */
 50	inet_twsk_put(tw);
 51	return TCP_TW_SUCCESS;
 52}
 53
 54static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq)
 55{
 56#ifdef CONFIG_TCP_AO
 57	struct tcp_ao_info *ao;
 58
 59	ao = rcu_dereference(tcptw->ao_info);
 60	if (unlikely(ao && seq < tcptw->tw_rcv_nxt))
 61		WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
 62#endif
 63	tcptw->tw_rcv_nxt = seq;
 64}
 65
 66/*
 67 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 68 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 69 *   (and, probably, tail of data) and one or more our ACKs are lost.
 70 * * What is TIME-WAIT timeout? It is associated with maximal packet
 71 *   lifetime in the internet, which results in wrong conclusion, that
 72 *   it is set to catch "old duplicate segments" wandering out of their path.
 73 *   It is not quite correct. This timeout is calculated so that it exceeds
 74 *   maximal retransmission timeout enough to allow to lose one (or more)
 75 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 76 * * When TIME-WAIT socket receives RST, it means that another end
 77 *   finally closed and we are allowed to kill TIME-WAIT too.
 78 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 79 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 80 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 81 * * If we invented some more clever way to catch duplicates
 82 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 83 *
 84 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 85 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 86 * from the very beginning.
 87 *
 88 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 89 * is _not_ stateless. It means, that strictly speaking we must
 90 * spinlock it. I do not want! Well, probability of misbehaviour
 91 * is ridiculously low and, seems, we could use some mb() tricks
 92 * to avoid misread sequence numbers, states etc.  --ANK
 93 *
 94 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 95 */
 96enum tcp_tw_status
 97tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 98			   const struct tcphdr *th)
 99{
100	struct tcp_options_received tmp_opt;
101	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
102	bool paws_reject = false;
103
104	tmp_opt.saw_tstamp = 0;
105	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
106		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
107
108		if (tmp_opt.saw_tstamp) {
109			if (tmp_opt.rcv_tsecr)
110				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
111			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
112			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
113			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
114		}
115	}
116
117	if (tw->tw_substate == TCP_FIN_WAIT2) {
118		/* Just repeat all the checks of tcp_rcv_state_process() */
119
120		/* Out of window, send ACK */
121		if (paws_reject ||
122		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
123				   tcptw->tw_rcv_nxt,
124				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
125			return tcp_timewait_check_oow_rate_limit(
126				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
127
128		if (th->rst)
129			goto kill;
130
131		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
132			return TCP_TW_RST;
133
134		/* Dup ACK? */
135		if (!th->ack ||
136		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
137		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
138			inet_twsk_put(tw);
139			return TCP_TW_SUCCESS;
140		}
141
142		/* New data or FIN. If new data arrive after half-duplex close,
143		 * reset.
144		 */
145		if (!th->fin ||
146		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
147			return TCP_TW_RST;
148
149		/* FIN arrived, enter true time-wait state. */
150		tw->tw_substate	  = TCP_TIME_WAIT;
151		twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq);
152
153		if (tmp_opt.saw_tstamp) {
154			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
155			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
156		}
157
158		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
159		return TCP_TW_ACK;
160	}
161
162	/*
163	 *	Now real TIME-WAIT state.
164	 *
165	 *	RFC 1122:
166	 *	"When a connection is [...] on TIME-WAIT state [...]
167	 *	[a TCP] MAY accept a new SYN from the remote TCP to
168	 *	reopen the connection directly, if it:
169	 *
170	 *	(1)  assigns its initial sequence number for the new
171	 *	connection to be larger than the largest sequence
172	 *	number it used on the previous connection incarnation,
173	 *	and
174	 *
175	 *	(2)  returns to TIME-WAIT state if the SYN turns out
176	 *	to be an old duplicate".
177	 */
178
179	if (!paws_reject &&
180	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
181	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
182		/* In window segment, it may be only reset or bare ack. */
183
184		if (th->rst) {
185			/* This is TIME_WAIT assassination, in two flavors.
186			 * Oh well... nobody has a sufficient solution to this
187			 * protocol bug yet.
188			 */
189			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
190kill:
191				inet_twsk_deschedule_put(tw);
192				return TCP_TW_SUCCESS;
193			}
194		} else {
195			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
196		}
 
197
198		if (tmp_opt.saw_tstamp) {
199			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
200			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
201		}
202
203		inet_twsk_put(tw);
204		return TCP_TW_SUCCESS;
205	}
206
207	/* Out of window segment.
208
209	   All the segments are ACKed immediately.
210
211	   The only exception is new SYN. We accept it, if it is
212	   not old duplicate and we are not in danger to be killed
213	   by delayed old duplicates. RFC check is that it has
214	   newer sequence number works at rates <40Mbit/sec.
215	   However, if paws works, it is reliable AND even more,
216	   we even may relax silly seq space cutoff.
217
218	   RED-PEN: we violate main RFC requirement, if this SYN will appear
219	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
220	   we must return socket to time-wait state. It is not good,
221	   but not fatal yet.
222	 */
223
224	if (th->syn && !th->rst && !th->ack && !paws_reject &&
225	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
226	     (tmp_opt.saw_tstamp &&
227	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
228		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
229		if (isn == 0)
230			isn++;
231		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
232		return TCP_TW_SYN;
233	}
234
235	if (paws_reject)
236		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
237
238	if (!th->rst) {
239		/* In this case we must reset the TIMEWAIT timer.
240		 *
241		 * If it is ACKless SYN it may be both old duplicate
242		 * and new good SYN with random sequence number <rcv_nxt.
243		 * Do not reschedule in the last case.
244		 */
245		if (paws_reject || th->ack)
246			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
247
248		return tcp_timewait_check_oow_rate_limit(
249			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
250	}
251	inet_twsk_put(tw);
252	return TCP_TW_SUCCESS;
253}
254EXPORT_SYMBOL(tcp_timewait_state_process);
255
256static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
257{
258#ifdef CONFIG_TCP_MD5SIG
259	const struct tcp_sock *tp = tcp_sk(sk);
260	struct tcp_md5sig_key *key;
261
262	/*
263	 * The timewait bucket does not have the key DB from the
264	 * sock structure. We just make a quick copy of the
265	 * md5 key being used (if indeed we are using one)
266	 * so the timewait ack generating code has the key.
267	 */
268	tcptw->tw_md5_key = NULL;
269	if (!static_branch_unlikely(&tcp_md5_needed.key))
270		return;
271
272	key = tp->af_specific->md5_lookup(sk, sk);
273	if (key) {
274		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
275		if (!tcptw->tw_md5_key)
276			return;
277		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
278			goto out_free;
279		tcp_md5_add_sigpool();
280	}
281	return;
282out_free:
283	WARN_ON_ONCE(1);
284	kfree(tcptw->tw_md5_key);
285	tcptw->tw_md5_key = NULL;
286#endif
287}
288
289/*
290 * Move a socket to time-wait or dead fin-wait-2 state.
291 */
292void tcp_time_wait(struct sock *sk, int state, int timeo)
293{
294	const struct inet_connection_sock *icsk = inet_csk(sk);
295	struct tcp_sock *tp = tcp_sk(sk);
296	struct net *net = sock_net(sk);
297	struct inet_timewait_sock *tw;
 
298
299	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
300
301	if (tw) {
302		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
303		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
 
304
305		tw->tw_transparent	= inet_test_bit(TRANSPARENT, sk);
306		tw->tw_mark		= sk->sk_mark;
307		tw->tw_priority		= READ_ONCE(sk->sk_priority);
308		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
309		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
310		tcptw->tw_snd_nxt	= tp->snd_nxt;
311		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
312		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
313		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
314		tcptw->tw_ts_offset	= tp->tsoffset;
315		tw->tw_usec_ts		= tp->tcp_usec_ts;
316		tcptw->tw_last_oow_ack_time = 0;
317		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
318		tw->tw_txhash		= sk->sk_txhash;
319#if IS_ENABLED(CONFIG_IPV6)
320		if (tw->tw_family == PF_INET6) {
321			struct ipv6_pinfo *np = inet6_sk(sk);
322
323			tw->tw_v6_daddr = sk->sk_v6_daddr;
324			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
325			tw->tw_tclass = np->tclass;
326			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
327			tw->tw_ipv6only = sk->sk_ipv6only;
328		}
329#endif
330
331		tcp_time_wait_init(sk, tcptw);
332		tcp_ao_time_wait(tcptw, tp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333
334		/* Get the TIME_WAIT timeout firing. */
335		if (timeo < rto)
336			timeo = rto;
337
 
338		if (state == TCP_TIME_WAIT)
339			timeo = TCP_TIMEWAIT_LEN;
340
341		/* tw_timer is pinned, so we need to make sure BH are disabled
342		 * in following section, otherwise timer handler could run before
343		 * we complete the initialization.
344		 */
345		local_bh_disable();
346		inet_twsk_schedule(tw, timeo);
347		/* Linkage updates.
348		 * Note that access to tw after this point is illegal.
349		 */
350		inet_twsk_hashdance(tw, sk, net->ipv4.tcp_death_row.hashinfo);
351		local_bh_enable();
352	} else {
353		/* Sorry, if we're out of memory, just CLOSE this
354		 * socket up.  We've got bigger problems than
355		 * non-graceful socket closings.
356		 */
357		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
358	}
359
360	tcp_update_metrics(sk);
361	tcp_done(sk);
362}
363EXPORT_SYMBOL(tcp_time_wait);
364
365#ifdef CONFIG_TCP_MD5SIG
366static void tcp_md5_twsk_free_rcu(struct rcu_head *head)
367{
368	struct tcp_md5sig_key *key;
369
370	key = container_of(head, struct tcp_md5sig_key, rcu);
371	kfree(key);
372	static_branch_slow_dec_deferred(&tcp_md5_needed);
373	tcp_md5_release_sigpool();
374}
375#endif
376
377void tcp_twsk_destructor(struct sock *sk)
378{
379#ifdef CONFIG_TCP_MD5SIG
380	if (static_branch_unlikely(&tcp_md5_needed.key)) {
381		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
382
383		if (twsk->tw_md5_key)
384			call_rcu(&twsk->tw_md5_key->rcu, tcp_md5_twsk_free_rcu);
385	}
386#endif
387	tcp_ao_destroy_sock(sk, true);
388}
389EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
390
391void tcp_twsk_purge(struct list_head *net_exit_list, int family)
392{
393	bool purged_once = false;
394	struct net *net;
395
396	list_for_each_entry(net, net_exit_list, exit_list) {
397		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
398			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
399			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo, family);
400		} else if (!purged_once) {
401			inet_twsk_purge(&tcp_hashinfo, family);
402			purged_once = true;
403		}
404	}
405}
406EXPORT_SYMBOL_GPL(tcp_twsk_purge);
407
408/* Warning : This function is called without sk_listener being locked.
409 * Be sure to read socket fields once, as their value could change under us.
410 */
411void tcp_openreq_init_rwin(struct request_sock *req,
412			   const struct sock *sk_listener,
413			   const struct dst_entry *dst)
414{
415	struct inet_request_sock *ireq = inet_rsk(req);
416	const struct tcp_sock *tp = tcp_sk(sk_listener);
417	int full_space = tcp_full_space(sk_listener);
418	u32 window_clamp;
419	__u8 rcv_wscale;
420	u32 rcv_wnd;
421	int mss;
422
423	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
424	window_clamp = READ_ONCE(tp->window_clamp);
425	/* Set this up on the first call only */
426	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
427
428	/* limit the window selection if the user enforce a smaller rx buffer */
429	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
430	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
431		req->rsk_window_clamp = full_space;
432
433	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
434	if (rcv_wnd == 0)
435		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
436	else if (full_space < rcv_wnd * mss)
437		full_space = rcv_wnd * mss;
438
439	/* tcp_full_space because it is guaranteed to be the first packet */
440	tcp_select_initial_window(sk_listener, full_space,
441		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
442		&req->rsk_rcv_wnd,
443		&req->rsk_window_clamp,
444		ireq->wscale_ok,
445		&rcv_wscale,
446		rcv_wnd);
447	ireq->rcv_wscale = rcv_wscale;
448}
449EXPORT_SYMBOL(tcp_openreq_init_rwin);
450
451static void tcp_ecn_openreq_child(struct tcp_sock *tp,
452				  const struct request_sock *req)
453{
454	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
455}
456
457void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
458{
459	struct inet_connection_sock *icsk = inet_csk(sk);
460	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
461	bool ca_got_dst = false;
462
463	if (ca_key != TCP_CA_UNSPEC) {
464		const struct tcp_congestion_ops *ca;
465
466		rcu_read_lock();
467		ca = tcp_ca_find_key(ca_key);
468		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
469			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
470			icsk->icsk_ca_ops = ca;
471			ca_got_dst = true;
472		}
473		rcu_read_unlock();
474	}
475
476	/* If no valid choice made yet, assign current system default ca. */
477	if (!ca_got_dst &&
478	    (!icsk->icsk_ca_setsockopt ||
479	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
480		tcp_assign_congestion_control(sk);
481
482	tcp_set_ca_state(sk, TCP_CA_Open);
483}
484EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
485
486static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
487				    struct request_sock *req,
488				    struct tcp_sock *newtp)
489{
490#if IS_ENABLED(CONFIG_SMC)
491	struct inet_request_sock *ireq;
492
493	if (static_branch_unlikely(&tcp_have_smc)) {
494		ireq = inet_rsk(req);
495		if (oldtp->syn_smc && !ireq->smc_ok)
496			newtp->syn_smc = 0;
497	}
498#endif
499}
500
501/* This is not only more efficient than what we used to do, it eliminates
502 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
503 *
504 * Actually, we could lots of memory writes here. tp of listening
505 * socket contains all necessary default parameters.
506 */
507struct sock *tcp_create_openreq_child(const struct sock *sk,
508				      struct request_sock *req,
509				      struct sk_buff *skb)
510{
511	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
512	const struct inet_request_sock *ireq = inet_rsk(req);
513	struct tcp_request_sock *treq = tcp_rsk(req);
514	struct inet_connection_sock *newicsk;
515	const struct tcp_sock *oldtp;
516	struct tcp_sock *newtp;
517	u32 seq;
518#ifdef CONFIG_TCP_AO
519	struct tcp_ao_key *ao_key;
520#endif
521
522	if (!newsk)
523		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524
525	newicsk = inet_csk(newsk);
526	newtp = tcp_sk(newsk);
527	oldtp = tcp_sk(sk);
528
529	smc_check_reset_syn_req(oldtp, req, newtp);
530
531	/* Now setup tcp_sock */
532	newtp->pred_flags = 0;
533
534	seq = treq->rcv_isn + 1;
535	newtp->rcv_wup = seq;
536	WRITE_ONCE(newtp->copied_seq, seq);
537	WRITE_ONCE(newtp->rcv_nxt, seq);
538	newtp->segs_in = 1;
539
540	seq = treq->snt_isn + 1;
541	newtp->snd_sml = newtp->snd_una = seq;
542	WRITE_ONCE(newtp->snd_nxt, seq);
543	newtp->snd_up = seq;
544
545	INIT_LIST_HEAD(&newtp->tsq_node);
546	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
547
548	tcp_init_wl(newtp, treq->rcv_isn);
549
550	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
551	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
552
553	newtp->lsndtime = tcp_jiffies32;
554	newsk->sk_txhash = READ_ONCE(treq->txhash);
555	newtp->total_retrans = req->num_retrans;
556
557	tcp_init_xmit_timers(newsk);
558	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
559
560	if (sock_flag(newsk, SOCK_KEEPOPEN))
561		inet_csk_reset_keepalive_timer(newsk,
562					       keepalive_time_when(newtp));
563
564	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
565	newtp->rx_opt.sack_ok = ireq->sack_ok;
566	newtp->window_clamp = req->rsk_window_clamp;
567	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
568	newtp->rcv_wnd = req->rsk_rcv_wnd;
569	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
570	if (newtp->rx_opt.wscale_ok) {
571		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
572		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
573	} else {
574		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
575		newtp->window_clamp = min(newtp->window_clamp, 65535U);
576	}
577	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
578	newtp->max_window = newtp->snd_wnd;
579
580	if (newtp->rx_opt.tstamp_ok) {
581		newtp->tcp_usec_ts = treq->req_usec_ts;
582		newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
583		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
584		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
585	} else {
586		newtp->tcp_usec_ts = 0;
587		newtp->rx_opt.ts_recent_stamp = 0;
588		newtp->tcp_header_len = sizeof(struct tcphdr);
589	}
590	if (req->num_timeout) {
591		newtp->total_rto = req->num_timeout;
592		newtp->undo_marker = treq->snt_isn;
593		if (newtp->tcp_usec_ts) {
594			newtp->retrans_stamp = treq->snt_synack;
595			newtp->total_rto_time = (u32)(tcp_clock_us() -
596						      newtp->retrans_stamp) / USEC_PER_MSEC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597		} else {
598			newtp->retrans_stamp = div_u64(treq->snt_synack,
599						       USEC_PER_SEC / TCP_TS_HZ);
600			newtp->total_rto_time = tcp_clock_ms() -
601						newtp->retrans_stamp;
602		}
603		newtp->total_rto_recoveries = 1;
604	}
605	newtp->tsoffset = treq->ts_off;
606#ifdef CONFIG_TCP_MD5SIG
607	newtp->md5sig_info = NULL;	/*XXX*/
 
 
608#endif
609#ifdef CONFIG_TCP_AO
610	newtp->ao_info = NULL;
611	ao_key = treq->af_specific->ao_lookup(sk, req,
612				tcp_rsk(req)->ao_keyid, -1);
613	if (ao_key)
614		newtp->tcp_header_len += tcp_ao_len_aligned(ao_key);
615 #endif
616	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
617		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
618	newtp->rx_opt.mss_clamp = req->mss;
619	tcp_ecn_openreq_child(newtp, req);
620	newtp->fastopen_req = NULL;
621	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
622
623	newtp->bpf_chg_cc_inprogress = 0;
624	tcp_bpf_clone(sk, newsk);
625
626	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
627
 
 
628	return newsk;
629}
630EXPORT_SYMBOL(tcp_create_openreq_child);
631
632/*
633 * Process an incoming packet for SYN_RECV sockets represented as a
634 * request_sock. Normally sk is the listener socket but for TFO it
635 * points to the child socket.
636 *
637 * XXX (TFO) - The current impl contains a special check for ack
638 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
639 *
640 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
641 *
642 * Note: If @fastopen is true, this can be called from process context.
643 *       Otherwise, this is from BH context.
644 */
645
646struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
647			   struct request_sock *req,
648			   bool fastopen, bool *req_stolen)
649{
650	struct tcp_options_received tmp_opt;
651	struct sock *child;
652	const struct tcphdr *th = tcp_hdr(skb);
653	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
654	bool paws_reject = false;
655	bool own_req;
656
657	tmp_opt.saw_tstamp = 0;
658	if (th->doff > (sizeof(struct tcphdr)>>2)) {
659		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
660
661		if (tmp_opt.saw_tstamp) {
662			tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
663			if (tmp_opt.rcv_tsecr)
664				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
665			/* We do not store true stamp, but it is not required,
666			 * it can be estimated (approximately)
667			 * from another data.
668			 */
669			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
670			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
671		}
672	}
673
674	/* Check for pure retransmitted SYN. */
675	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
676	    flg == TCP_FLAG_SYN &&
677	    !paws_reject) {
678		/*
679		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
680		 * this case on figure 6 and figure 8, but formal
681		 * protocol description says NOTHING.
682		 * To be more exact, it says that we should send ACK,
683		 * because this segment (at least, if it has no data)
684		 * is out of window.
685		 *
686		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
687		 *  describe SYN-RECV state. All the description
688		 *  is wrong, we cannot believe to it and should
689		 *  rely only on common sense and implementation
690		 *  experience.
691		 *
692		 * Enforce "SYN-ACK" according to figure 8, figure 6
693		 * of RFC793, fixed by RFC1122.
694		 *
695		 * Note that even if there is new data in the SYN packet
696		 * they will be thrown away too.
697		 *
698		 * Reset timer after retransmitting SYNACK, similar to
699		 * the idea of fast retransmit in recovery.
700		 */
701		if (!tcp_oow_rate_limited(sock_net(sk), skb,
702					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
703					  &tcp_rsk(req)->last_oow_ack_time) &&
704
705		    !inet_rtx_syn_ack(sk, req)) {
706			unsigned long expires = jiffies;
707
708			expires += reqsk_timeout(req, TCP_RTO_MAX);
 
709			if (!fastopen)
710				mod_timer_pending(&req->rsk_timer, expires);
711			else
712				req->rsk_timer.expires = expires;
713		}
714		return NULL;
715	}
716
717	/* Further reproduces section "SEGMENT ARRIVES"
718	   for state SYN-RECEIVED of RFC793.
719	   It is broken, however, it does not work only
720	   when SYNs are crossed.
721
722	   You would think that SYN crossing is impossible here, since
723	   we should have a SYN_SENT socket (from connect()) on our end,
724	   but this is not true if the crossed SYNs were sent to both
725	   ends by a malicious third party.  We must defend against this,
726	   and to do that we first verify the ACK (as per RFC793, page
727	   36) and reset if it is invalid.  Is this a true full defense?
728	   To convince ourselves, let us consider a way in which the ACK
729	   test can still pass in this 'malicious crossed SYNs' case.
730	   Malicious sender sends identical SYNs (and thus identical sequence
731	   numbers) to both A and B:
732
733		A: gets SYN, seq=7
734		B: gets SYN, seq=7
735
736	   By our good fortune, both A and B select the same initial
737	   send sequence number of seven :-)
738
739		A: sends SYN|ACK, seq=7, ack_seq=8
740		B: sends SYN|ACK, seq=7, ack_seq=8
741
742	   So we are now A eating this SYN|ACK, ACK test passes.  So
743	   does sequence test, SYN is truncated, and thus we consider
744	   it a bare ACK.
745
746	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
747	   bare ACK.  Otherwise, we create an established connection.  Both
748	   ends (listening sockets) accept the new incoming connection and try
749	   to talk to each other. 8-)
750
751	   Note: This case is both harmless, and rare.  Possibility is about the
752	   same as us discovering intelligent life on another plant tomorrow.
753
754	   But generally, we should (RFC lies!) to accept ACK
755	   from SYNACK both here and in tcp_rcv_state_process().
756	   tcp_rcv_state_process() does not, hence, we do not too.
757
758	   Note that the case is absolutely generic:
759	   we cannot optimize anything here without
760	   violating protocol. All the checks must be made
761	   before attempt to create socket.
762	 */
763
764	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
765	 *                  and the incoming segment acknowledges something not yet
766	 *                  sent (the segment carries an unacceptable ACK) ...
767	 *                  a reset is sent."
768	 *
769	 * Invalid ACK: reset will be sent by listening socket.
770	 * Note that the ACK validity check for a Fast Open socket is done
771	 * elsewhere and is checked directly against the child socket rather
772	 * than req because user data may have been sent out.
773	 */
774	if ((flg & TCP_FLAG_ACK) && !fastopen &&
775	    (TCP_SKB_CB(skb)->ack_seq !=
776	     tcp_rsk(req)->snt_isn + 1))
777		return sk;
778
779	/* Also, it would be not so bad idea to check rcv_tsecr, which
780	 * is essentially ACK extension and too early or too late values
781	 * should cause reset in unsynchronized states.
782	 */
783
784	/* RFC793: "first check sequence number". */
785
786	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
787					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
788		/* Out of window: send ACK and drop. */
789		if (!(flg & TCP_FLAG_RST) &&
790		    !tcp_oow_rate_limited(sock_net(sk), skb,
791					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
792					  &tcp_rsk(req)->last_oow_ack_time))
793			req->rsk_ops->send_ack(sk, skb, req);
794		if (paws_reject)
795			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
796		return NULL;
797	}
798
799	/* In sequence, PAWS is OK. */
800
801	/* TODO: We probably should defer ts_recent change once
802	 * we take ownership of @req.
803	 */
804	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
805		WRITE_ONCE(req->ts_recent, tmp_opt.rcv_tsval);
806
807	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
808		/* Truncate SYN, it is out of window starting
809		   at tcp_rsk(req)->rcv_isn + 1. */
810		flg &= ~TCP_FLAG_SYN;
811	}
812
813	/* RFC793: "second check the RST bit" and
814	 *	   "fourth, check the SYN bit"
815	 */
816	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
817		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
818		goto embryonic_reset;
819	}
820
821	/* ACK sequence verified above, just make sure ACK is
822	 * set.  If ACK not set, just silently drop the packet.
823	 *
824	 * XXX (TFO) - if we ever allow "data after SYN", the
825	 * following check needs to be removed.
826	 */
827	if (!(flg & TCP_FLAG_ACK))
828		return NULL;
829
830	/* For Fast Open no more processing is needed (sk is the
831	 * child socket).
832	 */
833	if (fastopen)
834		return sk;
835
836	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
837	if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
838	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
839		inet_rsk(req)->acked = 1;
840		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
841		return NULL;
842	}
843
844	/* OK, ACK is valid, create big socket and
845	 * feed this segment to it. It will repeat all
846	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
847	 * ESTABLISHED STATE. If it will be dropped after
848	 * socket is created, wait for troubles.
849	 */
850	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
851							 req, &own_req);
852	if (!child)
853		goto listen_overflow;
854
855	if (own_req && rsk_drop_req(req)) {
856		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
857		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
858		return child;
859	}
860
861	sock_rps_save_rxhash(child, skb);
862	tcp_synack_rtt_meas(child, req);
863	*req_stolen = !own_req;
864	return inet_csk_complete_hashdance(sk, child, req, own_req);
865
866listen_overflow:
867	if (sk != req->rsk_listener)
868		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
869
870	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
871		inet_rsk(req)->acked = 1;
872		return NULL;
873	}
874
875embryonic_reset:
876	if (!(flg & TCP_FLAG_RST)) {
877		/* Received a bad SYN pkt - for TFO We try not to reset
878		 * the local connection unless it's really necessary to
879		 * avoid becoming vulnerable to outside attack aiming at
880		 * resetting legit local connections.
881		 */
882		req->rsk_ops->send_reset(sk, skb);
883	} else if (fastopen) { /* received a valid RST pkt */
884		reqsk_fastopen_remove(sk, req, true);
885		tcp_reset(sk, skb);
886	}
887	if (!fastopen) {
888		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
889
890		if (unlinked)
891			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
892		*req_stolen = !unlinked;
893	}
894	return NULL;
895}
896EXPORT_SYMBOL(tcp_check_req);
897
898/*
899 * Queue segment on the new socket if the new socket is active,
900 * otherwise we just shortcircuit this and continue with
901 * the new socket.
902 *
903 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
904 * when entering. But other states are possible due to a race condition
905 * where after __inet_lookup_established() fails but before the listener
906 * locked is obtained, other packets cause the same connection to
907 * be created.
908 */
909
910enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
911				       struct sk_buff *skb)
912	__releases(&((child)->sk_lock.slock))
913{
914	enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
915	int state = child->sk_state;
916
917	/* record sk_napi_id and sk_rx_queue_mapping of child. */
918	sk_mark_napi_id_set(child, skb);
919
920	tcp_segs_in(tcp_sk(child), skb);
921	if (!sock_owned_by_user(child)) {
922		reason = tcp_rcv_state_process(child, skb);
923		/* Wakeup parent, send SIGIO */
924		if (state == TCP_SYN_RECV && child->sk_state != state)
925			parent->sk_data_ready(parent);
926	} else {
927		/* Alas, it is possible again, because we do lookup
928		 * in main socket hash table and lock on listening
929		 * socket does not protect us more.
930		 */
931		__sk_add_backlog(child, skb);
932	}
933
934	bh_unlock_sock(child);
935	sock_put(child);
936	return reason;
937}
938EXPORT_SYMBOL(tcp_child_process);