Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  3 *		operating system.  INET is implemented using the  BSD Socket
  4 *		interface as the means of communication with the user level.
  5 *
  6 *		Implementation of the Transmission Control Protocol(TCP).
  7 *
  8 * Authors:	Ross Biro
  9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 12 *		Florian La Roche, <flla@stud.uni-sb.de>
 13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 18 *		Jorge Cwik, <jorge@laser.satlink.net>
 19 */
 20
 21#include <linux/mm.h>
 22#include <linux/module.h>
 23#include <linux/slab.h>
 24#include <linux/sysctl.h>
 25#include <linux/workqueue.h>
 26#include <linux/static_key.h>
 27#include <net/tcp.h>
 28#include <net/inet_common.h>
 29#include <net/xfrm.h>
 30#include <net/busy_poll.h>
 31
 32static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 33{
 34	if (seq == s_win)
 35		return true;
 36	if (after(end_seq, s_win) && before(seq, e_win))
 37		return true;
 38	return seq == e_win && seq == end_seq;
 39}
 40
 41static enum tcp_tw_status
 42tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 43				  const struct sk_buff *skb, int mib_idx)
 44{
 45	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 46
 47	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 48				  &tcptw->tw_last_oow_ack_time)) {
 49		/* Send ACK. Note, we do not put the bucket,
 50		 * it will be released by caller.
 51		 */
 52		return TCP_TW_ACK;
 53	}
 54
 55	/* We are rate-limiting, so just release the tw sock and drop skb. */
 56	inet_twsk_put(tw);
 57	return TCP_TW_SUCCESS;
 58}
 59
 60/*
 61 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 62 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 63 *   (and, probably, tail of data) and one or more our ACKs are lost.
 64 * * What is TIME-WAIT timeout? It is associated with maximal packet
 65 *   lifetime in the internet, which results in wrong conclusion, that
 66 *   it is set to catch "old duplicate segments" wandering out of their path.
 67 *   It is not quite correct. This timeout is calculated so that it exceeds
 68 *   maximal retransmission timeout enough to allow to lose one (or more)
 69 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 70 * * When TIME-WAIT socket receives RST, it means that another end
 71 *   finally closed and we are allowed to kill TIME-WAIT too.
 72 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 73 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 74 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 75 * * If we invented some more clever way to catch duplicates
 76 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 77 *
 78 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 79 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 80 * from the very beginning.
 81 *
 82 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 83 * is _not_ stateless. It means, that strictly speaking we must
 84 * spinlock it. I do not want! Well, probability of misbehaviour
 85 * is ridiculously low and, seems, we could use some mb() tricks
 86 * to avoid misread sequence numbers, states etc.  --ANK
 87 *
 88 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 89 */
 90enum tcp_tw_status
 91tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 92			   const struct tcphdr *th)
 93{
 94	struct tcp_options_received tmp_opt;
 95	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 96	bool paws_reject = false;
 97
 98	tmp_opt.saw_tstamp = 0;
 99	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
100		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
101
102		if (tmp_opt.saw_tstamp) {
103			if (tmp_opt.rcv_tsecr)
104				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
105			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
106			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
107			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
108		}
109	}
110
111	if (tw->tw_substate == TCP_FIN_WAIT2) {
112		/* Just repeat all the checks of tcp_rcv_state_process() */
113
114		/* Out of window, send ACK */
115		if (paws_reject ||
116		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
117				   tcptw->tw_rcv_nxt,
118				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
119			return tcp_timewait_check_oow_rate_limit(
120				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
121
122		if (th->rst)
123			goto kill;
124
125		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
126			return TCP_TW_RST;
127
128		/* Dup ACK? */
129		if (!th->ack ||
130		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
131		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
132			inet_twsk_put(tw);
133			return TCP_TW_SUCCESS;
134		}
135
136		/* New data or FIN. If new data arrive after half-duplex close,
137		 * reset.
138		 */
139		if (!th->fin ||
140		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
141			return TCP_TW_RST;
142
143		/* FIN arrived, enter true time-wait state. */
144		tw->tw_substate	  = TCP_TIME_WAIT;
145		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
146		if (tmp_opt.saw_tstamp) {
147			tcptw->tw_ts_recent_stamp = get_seconds();
148			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
149		}
150
151		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
152		return TCP_TW_ACK;
153	}
154
155	/*
156	 *	Now real TIME-WAIT state.
157	 *
158	 *	RFC 1122:
159	 *	"When a connection is [...] on TIME-WAIT state [...]
160	 *	[a TCP] MAY accept a new SYN from the remote TCP to
161	 *	reopen the connection directly, if it:
162	 *
163	 *	(1)  assigns its initial sequence number for the new
164	 *	connection to be larger than the largest sequence
165	 *	number it used on the previous connection incarnation,
166	 *	and
167	 *
168	 *	(2)  returns to TIME-WAIT state if the SYN turns out
169	 *	to be an old duplicate".
170	 */
171
172	if (!paws_reject &&
173	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
174	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
175		/* In window segment, it may be only reset or bare ack. */
176
177		if (th->rst) {
178			/* This is TIME_WAIT assassination, in two flavors.
179			 * Oh well... nobody has a sufficient solution to this
180			 * protocol bug yet.
181			 */
182			if (twsk_net(tw)->ipv4.sysctl_tcp_rfc1337 == 0) {
183kill:
184				inet_twsk_deschedule_put(tw);
185				return TCP_TW_SUCCESS;
186			}
 
 
187		}
188		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
189
190		if (tmp_opt.saw_tstamp) {
191			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
192			tcptw->tw_ts_recent_stamp = get_seconds();
193		}
194
195		inet_twsk_put(tw);
196		return TCP_TW_SUCCESS;
197	}
198
199	/* Out of window segment.
200
201	   All the segments are ACKed immediately.
202
203	   The only exception is new SYN. We accept it, if it is
204	   not old duplicate and we are not in danger to be killed
205	   by delayed old duplicates. RFC check is that it has
206	   newer sequence number works at rates <40Mbit/sec.
207	   However, if paws works, it is reliable AND even more,
208	   we even may relax silly seq space cutoff.
209
210	   RED-PEN: we violate main RFC requirement, if this SYN will appear
211	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
212	   we must return socket to time-wait state. It is not good,
213	   but not fatal yet.
214	 */
215
216	if (th->syn && !th->rst && !th->ack && !paws_reject &&
217	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
218	     (tmp_opt.saw_tstamp &&
219	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
220		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
221		if (isn == 0)
222			isn++;
223		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
224		return TCP_TW_SYN;
225	}
226
227	if (paws_reject)
228		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
229
230	if (!th->rst) {
231		/* In this case we must reset the TIMEWAIT timer.
232		 *
233		 * If it is ACKless SYN it may be both old duplicate
234		 * and new good SYN with random sequence number <rcv_nxt.
235		 * Do not reschedule in the last case.
236		 */
237		if (paws_reject || th->ack)
238			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
239
240		return tcp_timewait_check_oow_rate_limit(
241			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
242	}
243	inet_twsk_put(tw);
244	return TCP_TW_SUCCESS;
245}
246EXPORT_SYMBOL(tcp_timewait_state_process);
247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248/*
249 * Move a socket to time-wait or dead fin-wait-2 state.
250 */
251void tcp_time_wait(struct sock *sk, int state, int timeo)
252{
253	const struct inet_connection_sock *icsk = inet_csk(sk);
254	const struct tcp_sock *tp = tcp_sk(sk);
 
255	struct inet_timewait_sock *tw;
256	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
257
258	tw = inet_twsk_alloc(sk, tcp_death_row, state);
259
260	if (tw) {
261		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
262		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
263		struct inet_sock *inet = inet_sk(sk);
264
265		tw->tw_transparent	= inet->transparent;
 
 
266		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
267		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
268		tcptw->tw_snd_nxt	= tp->snd_nxt;
269		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
270		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
271		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
272		tcptw->tw_ts_offset	= tp->tsoffset;
273		tcptw->tw_last_oow_ack_time = 0;
274
275#if IS_ENABLED(CONFIG_IPV6)
276		if (tw->tw_family == PF_INET6) {
277			struct ipv6_pinfo *np = inet6_sk(sk);
278
279			tw->tw_v6_daddr = sk->sk_v6_daddr;
280			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
281			tw->tw_tclass = np->tclass;
282			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
 
283			tw->tw_ipv6only = sk->sk_ipv6only;
284		}
285#endif
286
287#ifdef CONFIG_TCP_MD5SIG
288		/*
289		 * The timewait bucket does not have the key DB from the
290		 * sock structure. We just make a quick copy of the
291		 * md5 key being used (if indeed we are using one)
292		 * so the timewait ack generating code has the key.
293		 */
294		do {
295			struct tcp_md5sig_key *key;
296			tcptw->tw_md5_key = NULL;
297			key = tp->af_specific->md5_lookup(sk, sk);
298			if (key) {
299				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
300				BUG_ON(tcptw->tw_md5_key && !tcp_alloc_md5sig_pool());
301			}
302		} while (0);
303#endif
304
305		/* Get the TIME_WAIT timeout firing. */
306		if (timeo < rto)
307			timeo = rto;
308
309		tw->tw_timeout = TCP_TIMEWAIT_LEN;
310		if (state == TCP_TIME_WAIT)
311			timeo = TCP_TIMEWAIT_LEN;
312
313		/* tw_timer is pinned, so we need to make sure BH are disabled
314		 * in following section, otherwise timer handler could run before
315		 * we complete the initialization.
316		 */
317		local_bh_disable();
318		inet_twsk_schedule(tw, timeo);
319		/* Linkage updates.
320		 * Note that access to tw after this point is illegal.
321		 */
322		inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
323		local_bh_enable();
324	} else {
325		/* Sorry, if we're out of memory, just CLOSE this
326		 * socket up.  We've got bigger problems than
327		 * non-graceful socket closings.
328		 */
329		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
330	}
331
332	tcp_update_metrics(sk);
333	tcp_done(sk);
334}
335EXPORT_SYMBOL(tcp_time_wait);
336
337void tcp_twsk_destructor(struct sock *sk)
338{
339#ifdef CONFIG_TCP_MD5SIG
340	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
 
341
342	if (twsk->tw_md5_key)
343		kfree_rcu(twsk->tw_md5_key, rcu);
 
 
 
344#endif
345}
346EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348/* Warning : This function is called without sk_listener being locked.
349 * Be sure to read socket fields once, as their value could change under us.
350 */
351void tcp_openreq_init_rwin(struct request_sock *req,
352			   const struct sock *sk_listener,
353			   const struct dst_entry *dst)
354{
355	struct inet_request_sock *ireq = inet_rsk(req);
356	const struct tcp_sock *tp = tcp_sk(sk_listener);
357	int full_space = tcp_full_space(sk_listener);
358	u32 window_clamp;
359	__u8 rcv_wscale;
360	u32 rcv_wnd;
361	int mss;
362
363	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
364	window_clamp = READ_ONCE(tp->window_clamp);
365	/* Set this up on the first call only */
366	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
367
368	/* limit the window selection if the user enforce a smaller rx buffer */
369	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
370	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
371		req->rsk_window_clamp = full_space;
372
373	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
374	if (rcv_wnd == 0)
375		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
376	else if (full_space < rcv_wnd * mss)
377		full_space = rcv_wnd * mss;
378
379	/* tcp_full_space because it is guaranteed to be the first packet */
380	tcp_select_initial_window(sk_listener, full_space,
381		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
382		&req->rsk_rcv_wnd,
383		&req->rsk_window_clamp,
384		ireq->wscale_ok,
385		&rcv_wscale,
386		rcv_wnd);
387	ireq->rcv_wscale = rcv_wscale;
388}
389EXPORT_SYMBOL(tcp_openreq_init_rwin);
390
391static void tcp_ecn_openreq_child(struct tcp_sock *tp,
392				  const struct request_sock *req)
393{
394	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
395}
396
397void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
398{
399	struct inet_connection_sock *icsk = inet_csk(sk);
400	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
401	bool ca_got_dst = false;
402
403	if (ca_key != TCP_CA_UNSPEC) {
404		const struct tcp_congestion_ops *ca;
405
406		rcu_read_lock();
407		ca = tcp_ca_find_key(ca_key);
408		if (likely(ca && try_module_get(ca->owner))) {
409			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
410			icsk->icsk_ca_ops = ca;
411			ca_got_dst = true;
412		}
413		rcu_read_unlock();
414	}
415
416	/* If no valid choice made yet, assign current system default ca. */
417	if (!ca_got_dst &&
418	    (!icsk->icsk_ca_setsockopt ||
419	     !try_module_get(icsk->icsk_ca_ops->owner)))
420		tcp_assign_congestion_control(sk);
421
422	tcp_set_ca_state(sk, TCP_CA_Open);
423}
424EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
425
426static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
427				    struct request_sock *req,
428				    struct tcp_sock *newtp)
429{
430#if IS_ENABLED(CONFIG_SMC)
431	struct inet_request_sock *ireq;
432
433	if (static_branch_unlikely(&tcp_have_smc)) {
434		ireq = inet_rsk(req);
435		if (oldtp->syn_smc && !ireq->smc_ok)
436			newtp->syn_smc = 0;
437	}
438#endif
439}
440
441/* This is not only more efficient than what we used to do, it eliminates
442 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
443 *
444 * Actually, we could lots of memory writes here. tp of listening
445 * socket contains all necessary default parameters.
446 */
447struct sock *tcp_create_openreq_child(const struct sock *sk,
448				      struct request_sock *req,
449				      struct sk_buff *skb)
450{
451	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
 
 
 
 
 
452
453	if (newsk) {
454		const struct inet_request_sock *ireq = inet_rsk(req);
455		struct tcp_request_sock *treq = tcp_rsk(req);
456		struct inet_connection_sock *newicsk = inet_csk(newsk);
457		struct tcp_sock *newtp = tcp_sk(newsk);
458		struct tcp_sock *oldtp = tcp_sk(sk);
459
460		smc_check_reset_syn_req(oldtp, req, newtp);
461
462		/* Now setup tcp_sock */
463		newtp->pred_flags = 0;
464
465		newtp->rcv_wup = newtp->copied_seq =
466		newtp->rcv_nxt = treq->rcv_isn + 1;
467		newtp->segs_in = 1;
468
469		newtp->snd_sml = newtp->snd_una =
470		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
471
472		INIT_LIST_HEAD(&newtp->tsq_node);
473		INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
474
475		tcp_init_wl(newtp, treq->rcv_isn);
476
477		newtp->srtt_us = 0;
478		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
479		minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
480		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
481		newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
482
483		newtp->packets_out = 0;
484		newtp->retrans_out = 0;
485		newtp->sacked_out = 0;
486		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
487		newtp->tlp_high_seq = 0;
488		newtp->lsndtime = tcp_jiffies32;
489		newsk->sk_txhash = treq->txhash;
490		newtp->last_oow_ack_time = 0;
491		newtp->total_retrans = req->num_retrans;
492
493		/* So many TCP implementations out there (incorrectly) count the
494		 * initial SYN frame in their delayed-ACK and congestion control
495		 * algorithms that we must have the following bandaid to talk
496		 * efficiently to them.  -DaveM
497		 */
498		newtp->snd_cwnd = TCP_INIT_CWND;
499		newtp->snd_cwnd_cnt = 0;
500
501		/* There's a bubble in the pipe until at least the first ACK. */
502		newtp->app_limited = ~0U;
503
504		tcp_init_xmit_timers(newsk);
505		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
506
507		newtp->rx_opt.saw_tstamp = 0;
508
509		newtp->rx_opt.dsack = 0;
510		newtp->rx_opt.num_sacks = 0;
511
512		newtp->urg_data = 0;
513
514		if (sock_flag(newsk, SOCK_KEEPOPEN))
515			inet_csk_reset_keepalive_timer(newsk,
516						       keepalive_time_when(newtp));
517
518		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
519		newtp->rx_opt.sack_ok = ireq->sack_ok;
520		newtp->window_clamp = req->rsk_window_clamp;
521		newtp->rcv_ssthresh = req->rsk_rcv_wnd;
522		newtp->rcv_wnd = req->rsk_rcv_wnd;
523		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
524		if (newtp->rx_opt.wscale_ok) {
525			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
526			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
527		} else {
528			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
529			newtp->window_clamp = min(newtp->window_clamp, 65535U);
530		}
531		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
532				  newtp->rx_opt.snd_wscale);
533		newtp->max_window = newtp->snd_wnd;
534
535		if (newtp->rx_opt.tstamp_ok) {
536			newtp->rx_opt.ts_recent = req->ts_recent;
537			newtp->rx_opt.ts_recent_stamp = get_seconds();
538			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
539		} else {
540			newtp->rx_opt.ts_recent_stamp = 0;
541			newtp->tcp_header_len = sizeof(struct tcphdr);
542		}
543		newtp->tsoffset = treq->ts_off;
544#ifdef CONFIG_TCP_MD5SIG
545		newtp->md5sig_info = NULL;	/*XXX*/
546		if (newtp->af_specific->md5_lookup(sk, newsk))
547			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
548#endif
549		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
550			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
551		newtp->rx_opt.mss_clamp = req->mss;
552		tcp_ecn_openreq_child(newtp, req);
553		newtp->fastopen_req = NULL;
554		newtp->fastopen_rsk = NULL;
555		newtp->syn_data_acked = 0;
556		newtp->rack.mstamp = 0;
557		newtp->rack.advanced = 0;
558		newtp->rack.reo_wnd_steps = 1;
559		newtp->rack.last_delivered = 0;
560		newtp->rack.reo_wnd_persist = 0;
561		newtp->rack.dsack_seen = 0;
562
563		__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
564	}
565	return newsk;
566}
567EXPORT_SYMBOL(tcp_create_openreq_child);
568
569/*
570 * Process an incoming packet for SYN_RECV sockets represented as a
571 * request_sock. Normally sk is the listener socket but for TFO it
572 * points to the child socket.
573 *
574 * XXX (TFO) - The current impl contains a special check for ack
575 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
576 *
577 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
578 */
579
580struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
581			   struct request_sock *req,
582			   bool fastopen, bool *req_stolen)
583{
584	struct tcp_options_received tmp_opt;
585	struct sock *child;
586	const struct tcphdr *th = tcp_hdr(skb);
587	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
588	bool paws_reject = false;
589	bool own_req;
590
591	tmp_opt.saw_tstamp = 0;
592	if (th->doff > (sizeof(struct tcphdr)>>2)) {
593		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
594
595		if (tmp_opt.saw_tstamp) {
596			tmp_opt.ts_recent = req->ts_recent;
597			if (tmp_opt.rcv_tsecr)
598				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
599			/* We do not store true stamp, but it is not required,
600			 * it can be estimated (approximately)
601			 * from another data.
602			 */
603			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
604			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
605		}
606	}
607
608	/* Check for pure retransmitted SYN. */
609	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
610	    flg == TCP_FLAG_SYN &&
611	    !paws_reject) {
612		/*
613		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
614		 * this case on figure 6 and figure 8, but formal
615		 * protocol description says NOTHING.
616		 * To be more exact, it says that we should send ACK,
617		 * because this segment (at least, if it has no data)
618		 * is out of window.
619		 *
620		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
621		 *  describe SYN-RECV state. All the description
622		 *  is wrong, we cannot believe to it and should
623		 *  rely only on common sense and implementation
624		 *  experience.
625		 *
626		 * Enforce "SYN-ACK" according to figure 8, figure 6
627		 * of RFC793, fixed by RFC1122.
628		 *
629		 * Note that even if there is new data in the SYN packet
630		 * they will be thrown away too.
631		 *
632		 * Reset timer after retransmitting SYNACK, similar to
633		 * the idea of fast retransmit in recovery.
634		 */
635		if (!tcp_oow_rate_limited(sock_net(sk), skb,
636					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
637					  &tcp_rsk(req)->last_oow_ack_time) &&
638
639		    !inet_rtx_syn_ack(sk, req)) {
640			unsigned long expires = jiffies;
641
642			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
643				       TCP_RTO_MAX);
644			if (!fastopen)
645				mod_timer_pending(&req->rsk_timer, expires);
646			else
647				req->rsk_timer.expires = expires;
648		}
649		return NULL;
650	}
651
652	/* Further reproduces section "SEGMENT ARRIVES"
653	   for state SYN-RECEIVED of RFC793.
654	   It is broken, however, it does not work only
655	   when SYNs are crossed.
656
657	   You would think that SYN crossing is impossible here, since
658	   we should have a SYN_SENT socket (from connect()) on our end,
659	   but this is not true if the crossed SYNs were sent to both
660	   ends by a malicious third party.  We must defend against this,
661	   and to do that we first verify the ACK (as per RFC793, page
662	   36) and reset if it is invalid.  Is this a true full defense?
663	   To convince ourselves, let us consider a way in which the ACK
664	   test can still pass in this 'malicious crossed SYNs' case.
665	   Malicious sender sends identical SYNs (and thus identical sequence
666	   numbers) to both A and B:
667
668		A: gets SYN, seq=7
669		B: gets SYN, seq=7
670
671	   By our good fortune, both A and B select the same initial
672	   send sequence number of seven :-)
673
674		A: sends SYN|ACK, seq=7, ack_seq=8
675		B: sends SYN|ACK, seq=7, ack_seq=8
676
677	   So we are now A eating this SYN|ACK, ACK test passes.  So
678	   does sequence test, SYN is truncated, and thus we consider
679	   it a bare ACK.
680
681	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
682	   bare ACK.  Otherwise, we create an established connection.  Both
683	   ends (listening sockets) accept the new incoming connection and try
684	   to talk to each other. 8-)
685
686	   Note: This case is both harmless, and rare.  Possibility is about the
687	   same as us discovering intelligent life on another plant tomorrow.
688
689	   But generally, we should (RFC lies!) to accept ACK
690	   from SYNACK both here and in tcp_rcv_state_process().
691	   tcp_rcv_state_process() does not, hence, we do not too.
692
693	   Note that the case is absolutely generic:
694	   we cannot optimize anything here without
695	   violating protocol. All the checks must be made
696	   before attempt to create socket.
697	 */
698
699	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
700	 *                  and the incoming segment acknowledges something not yet
701	 *                  sent (the segment carries an unacceptable ACK) ...
702	 *                  a reset is sent."
703	 *
704	 * Invalid ACK: reset will be sent by listening socket.
705	 * Note that the ACK validity check for a Fast Open socket is done
706	 * elsewhere and is checked directly against the child socket rather
707	 * than req because user data may have been sent out.
708	 */
709	if ((flg & TCP_FLAG_ACK) && !fastopen &&
710	    (TCP_SKB_CB(skb)->ack_seq !=
711	     tcp_rsk(req)->snt_isn + 1))
712		return sk;
713
714	/* Also, it would be not so bad idea to check rcv_tsecr, which
715	 * is essentially ACK extension and too early or too late values
716	 * should cause reset in unsynchronized states.
717	 */
718
719	/* RFC793: "first check sequence number". */
720
721	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
722					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
723		/* Out of window: send ACK and drop. */
724		if (!(flg & TCP_FLAG_RST) &&
725		    !tcp_oow_rate_limited(sock_net(sk), skb,
726					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
727					  &tcp_rsk(req)->last_oow_ack_time))
728			req->rsk_ops->send_ack(sk, skb, req);
729		if (paws_reject)
730			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
731		return NULL;
732	}
733
734	/* In sequence, PAWS is OK. */
735
736	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
737		req->ts_recent = tmp_opt.rcv_tsval;
738
739	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
740		/* Truncate SYN, it is out of window starting
741		   at tcp_rsk(req)->rcv_isn + 1. */
742		flg &= ~TCP_FLAG_SYN;
743	}
744
745	/* RFC793: "second check the RST bit" and
746	 *	   "fourth, check the SYN bit"
747	 */
748	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
749		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
750		goto embryonic_reset;
751	}
752
753	/* ACK sequence verified above, just make sure ACK is
754	 * set.  If ACK not set, just silently drop the packet.
755	 *
756	 * XXX (TFO) - if we ever allow "data after SYN", the
757	 * following check needs to be removed.
758	 */
759	if (!(flg & TCP_FLAG_ACK))
760		return NULL;
761
762	/* For Fast Open no more processing is needed (sk is the
763	 * child socket).
764	 */
765	if (fastopen)
766		return sk;
767
768	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
769	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
770	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
771		inet_rsk(req)->acked = 1;
772		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
773		return NULL;
774	}
775
776	/* OK, ACK is valid, create big socket and
777	 * feed this segment to it. It will repeat all
778	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
779	 * ESTABLISHED STATE. If it will be dropped after
780	 * socket is created, wait for troubles.
781	 */
782	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
783							 req, &own_req);
784	if (!child)
785		goto listen_overflow;
786
 
 
 
 
 
 
787	sock_rps_save_rxhash(child, skb);
788	tcp_synack_rtt_meas(child, req);
789	*req_stolen = !own_req;
790	return inet_csk_complete_hashdance(sk, child, req, own_req);
791
792listen_overflow:
793	if (!sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow) {
 
 
 
794		inet_rsk(req)->acked = 1;
795		return NULL;
796	}
797
798embryonic_reset:
799	if (!(flg & TCP_FLAG_RST)) {
800		/* Received a bad SYN pkt - for TFO We try not to reset
801		 * the local connection unless it's really necessary to
802		 * avoid becoming vulnerable to outside attack aiming at
803		 * resetting legit local connections.
804		 */
805		req->rsk_ops->send_reset(sk, skb);
806	} else if (fastopen) { /* received a valid RST pkt */
807		reqsk_fastopen_remove(sk, req, true);
808		tcp_reset(sk);
809	}
810	if (!fastopen) {
811		inet_csk_reqsk_queue_drop(sk, req);
812		__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
 
 
 
813	}
814	return NULL;
815}
816EXPORT_SYMBOL(tcp_check_req);
817
818/*
819 * Queue segment on the new socket if the new socket is active,
820 * otherwise we just shortcircuit this and continue with
821 * the new socket.
822 *
823 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
824 * when entering. But other states are possible due to a race condition
825 * where after __inet_lookup_established() fails but before the listener
826 * locked is obtained, other packets cause the same connection to
827 * be created.
828 */
829
830int tcp_child_process(struct sock *parent, struct sock *child,
831		      struct sk_buff *skb)
 
832{
833	int ret = 0;
834	int state = child->sk_state;
835
836	/* record NAPI ID of child */
837	sk_mark_napi_id(child, skb);
838
839	tcp_segs_in(tcp_sk(child), skb);
840	if (!sock_owned_by_user(child)) {
841		ret = tcp_rcv_state_process(child, skb);
842		/* Wakeup parent, send SIGIO */
843		if (state == TCP_SYN_RECV && child->sk_state != state)
844			parent->sk_data_ready(parent);
845	} else {
846		/* Alas, it is possible again, because we do lookup
847		 * in main socket hash table and lock on listening
848		 * socket does not protect us more.
849		 */
850		__sk_add_backlog(child, skb);
851	}
852
853	bh_unlock_sock(child);
854	sock_put(child);
855	return ret;
856}
857EXPORT_SYMBOL(tcp_child_process);
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  4 *		operating system.  INET is implemented using the  BSD Socket
  5 *		interface as the means of communication with the user level.
  6 *
  7 *		Implementation of the Transmission Control Protocol(TCP).
  8 *
  9 * Authors:	Ross Biro
 10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 13 *		Florian La Roche, <flla@stud.uni-sb.de>
 14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 19 *		Jorge Cwik, <jorge@laser.satlink.net>
 20 */
 21
 
 
 
 
 
 
 22#include <net/tcp.h>
 
 23#include <net/xfrm.h>
 24#include <net/busy_poll.h>
 25
 26static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 27{
 28	if (seq == s_win)
 29		return true;
 30	if (after(end_seq, s_win) && before(seq, e_win))
 31		return true;
 32	return seq == e_win && seq == end_seq;
 33}
 34
 35static enum tcp_tw_status
 36tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 37				  const struct sk_buff *skb, int mib_idx)
 38{
 39	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 40
 41	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 42				  &tcptw->tw_last_oow_ack_time)) {
 43		/* Send ACK. Note, we do not put the bucket,
 44		 * it will be released by caller.
 45		 */
 46		return TCP_TW_ACK;
 47	}
 48
 49	/* We are rate-limiting, so just release the tw sock and drop skb. */
 50	inet_twsk_put(tw);
 51	return TCP_TW_SUCCESS;
 52}
 53
 54/*
 55 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 56 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 57 *   (and, probably, tail of data) and one or more our ACKs are lost.
 58 * * What is TIME-WAIT timeout? It is associated with maximal packet
 59 *   lifetime in the internet, which results in wrong conclusion, that
 60 *   it is set to catch "old duplicate segments" wandering out of their path.
 61 *   It is not quite correct. This timeout is calculated so that it exceeds
 62 *   maximal retransmission timeout enough to allow to lose one (or more)
 63 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 64 * * When TIME-WAIT socket receives RST, it means that another end
 65 *   finally closed and we are allowed to kill TIME-WAIT too.
 66 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 67 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 68 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 69 * * If we invented some more clever way to catch duplicates
 70 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 71 *
 72 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 73 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 74 * from the very beginning.
 75 *
 76 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 77 * is _not_ stateless. It means, that strictly speaking we must
 78 * spinlock it. I do not want! Well, probability of misbehaviour
 79 * is ridiculously low and, seems, we could use some mb() tricks
 80 * to avoid misread sequence numbers, states etc.  --ANK
 81 *
 82 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 83 */
 84enum tcp_tw_status
 85tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 86			   const struct tcphdr *th)
 87{
 88	struct tcp_options_received tmp_opt;
 89	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 90	bool paws_reject = false;
 91
 92	tmp_opt.saw_tstamp = 0;
 93	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
 94		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
 95
 96		if (tmp_opt.saw_tstamp) {
 97			if (tmp_opt.rcv_tsecr)
 98				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
 99			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
100			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
101			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
102		}
103	}
104
105	if (tw->tw_substate == TCP_FIN_WAIT2) {
106		/* Just repeat all the checks of tcp_rcv_state_process() */
107
108		/* Out of window, send ACK */
109		if (paws_reject ||
110		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
111				   tcptw->tw_rcv_nxt,
112				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
113			return tcp_timewait_check_oow_rate_limit(
114				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
115
116		if (th->rst)
117			goto kill;
118
119		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
120			return TCP_TW_RST;
121
122		/* Dup ACK? */
123		if (!th->ack ||
124		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
125		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
126			inet_twsk_put(tw);
127			return TCP_TW_SUCCESS;
128		}
129
130		/* New data or FIN. If new data arrive after half-duplex close,
131		 * reset.
132		 */
133		if (!th->fin ||
134		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
135			return TCP_TW_RST;
136
137		/* FIN arrived, enter true time-wait state. */
138		tw->tw_substate	  = TCP_TIME_WAIT;
139		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
140		if (tmp_opt.saw_tstamp) {
141			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
142			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
143		}
144
145		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
146		return TCP_TW_ACK;
147	}
148
149	/*
150	 *	Now real TIME-WAIT state.
151	 *
152	 *	RFC 1122:
153	 *	"When a connection is [...] on TIME-WAIT state [...]
154	 *	[a TCP] MAY accept a new SYN from the remote TCP to
155	 *	reopen the connection directly, if it:
156	 *
157	 *	(1)  assigns its initial sequence number for the new
158	 *	connection to be larger than the largest sequence
159	 *	number it used on the previous connection incarnation,
160	 *	and
161	 *
162	 *	(2)  returns to TIME-WAIT state if the SYN turns out
163	 *	to be an old duplicate".
164	 */
165
166	if (!paws_reject &&
167	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
168	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
169		/* In window segment, it may be only reset or bare ack. */
170
171		if (th->rst) {
172			/* This is TIME_WAIT assassination, in two flavors.
173			 * Oh well... nobody has a sufficient solution to this
174			 * protocol bug yet.
175			 */
176			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
177kill:
178				inet_twsk_deschedule_put(tw);
179				return TCP_TW_SUCCESS;
180			}
181		} else {
182			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
183		}
 
184
185		if (tmp_opt.saw_tstamp) {
186			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
187			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
188		}
189
190		inet_twsk_put(tw);
191		return TCP_TW_SUCCESS;
192	}
193
194	/* Out of window segment.
195
196	   All the segments are ACKed immediately.
197
198	   The only exception is new SYN. We accept it, if it is
199	   not old duplicate and we are not in danger to be killed
200	   by delayed old duplicates. RFC check is that it has
201	   newer sequence number works at rates <40Mbit/sec.
202	   However, if paws works, it is reliable AND even more,
203	   we even may relax silly seq space cutoff.
204
205	   RED-PEN: we violate main RFC requirement, if this SYN will appear
206	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
207	   we must return socket to time-wait state. It is not good,
208	   but not fatal yet.
209	 */
210
211	if (th->syn && !th->rst && !th->ack && !paws_reject &&
212	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
213	     (tmp_opt.saw_tstamp &&
214	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
215		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
216		if (isn == 0)
217			isn++;
218		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
219		return TCP_TW_SYN;
220	}
221
222	if (paws_reject)
223		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
224
225	if (!th->rst) {
226		/* In this case we must reset the TIMEWAIT timer.
227		 *
228		 * If it is ACKless SYN it may be both old duplicate
229		 * and new good SYN with random sequence number <rcv_nxt.
230		 * Do not reschedule in the last case.
231		 */
232		if (paws_reject || th->ack)
233			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
234
235		return tcp_timewait_check_oow_rate_limit(
236			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
237	}
238	inet_twsk_put(tw);
239	return TCP_TW_SUCCESS;
240}
241EXPORT_SYMBOL(tcp_timewait_state_process);
242
243static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
244{
245#ifdef CONFIG_TCP_MD5SIG
246	const struct tcp_sock *tp = tcp_sk(sk);
247	struct tcp_md5sig_key *key;
248
249	/*
250	 * The timewait bucket does not have the key DB from the
251	 * sock structure. We just make a quick copy of the
252	 * md5 key being used (if indeed we are using one)
253	 * so the timewait ack generating code has the key.
254	 */
255	tcptw->tw_md5_key = NULL;
256	if (!static_branch_unlikely(&tcp_md5_needed.key))
257		return;
258
259	key = tp->af_specific->md5_lookup(sk, sk);
260	if (key) {
261		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
262		if (!tcptw->tw_md5_key)
263			return;
264		if (!tcp_alloc_md5sig_pool())
265			goto out_free;
266		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
267			goto out_free;
268	}
269	return;
270out_free:
271	WARN_ON_ONCE(1);
272	kfree(tcptw->tw_md5_key);
273	tcptw->tw_md5_key = NULL;
274#endif
275}
276
277/*
278 * Move a socket to time-wait or dead fin-wait-2 state.
279 */
280void tcp_time_wait(struct sock *sk, int state, int timeo)
281{
282	const struct inet_connection_sock *icsk = inet_csk(sk);
283	const struct tcp_sock *tp = tcp_sk(sk);
284	struct net *net = sock_net(sk);
285	struct inet_timewait_sock *tw;
 
286
287	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
288
289	if (tw) {
290		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
291		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
292		struct inet_sock *inet = inet_sk(sk);
293
294		tw->tw_transparent	= inet->transparent;
295		tw->tw_mark		= sk->sk_mark;
296		tw->tw_priority		= sk->sk_priority;
297		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
298		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
299		tcptw->tw_snd_nxt	= tp->snd_nxt;
300		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
301		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
302		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
303		tcptw->tw_ts_offset	= tp->tsoffset;
304		tcptw->tw_last_oow_ack_time = 0;
305		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
306#if IS_ENABLED(CONFIG_IPV6)
307		if (tw->tw_family == PF_INET6) {
308			struct ipv6_pinfo *np = inet6_sk(sk);
309
310			tw->tw_v6_daddr = sk->sk_v6_daddr;
311			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
312			tw->tw_tclass = np->tclass;
313			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
314			tw->tw_txhash = sk->sk_txhash;
315			tw->tw_ipv6only = sk->sk_ipv6only;
316		}
317#endif
318
319		tcp_time_wait_init(sk, tcptw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320
321		/* Get the TIME_WAIT timeout firing. */
322		if (timeo < rto)
323			timeo = rto;
324
 
325		if (state == TCP_TIME_WAIT)
326			timeo = TCP_TIMEWAIT_LEN;
327
328		/* tw_timer is pinned, so we need to make sure BH are disabled
329		 * in following section, otherwise timer handler could run before
330		 * we complete the initialization.
331		 */
332		local_bh_disable();
333		inet_twsk_schedule(tw, timeo);
334		/* Linkage updates.
335		 * Note that access to tw after this point is illegal.
336		 */
337		inet_twsk_hashdance(tw, sk, net->ipv4.tcp_death_row.hashinfo);
338		local_bh_enable();
339	} else {
340		/* Sorry, if we're out of memory, just CLOSE this
341		 * socket up.  We've got bigger problems than
342		 * non-graceful socket closings.
343		 */
344		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
345	}
346
347	tcp_update_metrics(sk);
348	tcp_done(sk);
349}
350EXPORT_SYMBOL(tcp_time_wait);
351
352void tcp_twsk_destructor(struct sock *sk)
353{
354#ifdef CONFIG_TCP_MD5SIG
355	if (static_branch_unlikely(&tcp_md5_needed.key)) {
356		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
357
358		if (twsk->tw_md5_key) {
359			kfree_rcu(twsk->tw_md5_key, rcu);
360			static_branch_slow_dec_deferred(&tcp_md5_needed);
361		}
362	}
363#endif
364}
365EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
366
367void tcp_twsk_purge(struct list_head *net_exit_list, int family)
368{
369	bool purged_once = false;
370	struct net *net;
371
372	list_for_each_entry(net, net_exit_list, exit_list) {
373		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
374			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
375			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo, family);
376		} else if (!purged_once) {
377			/* The last refcount is decremented in tcp_sk_exit_batch() */
378			if (refcount_read(&net->ipv4.tcp_death_row.tw_refcount) == 1)
379				continue;
380
381			inet_twsk_purge(&tcp_hashinfo, family);
382			purged_once = true;
383		}
384	}
385}
386EXPORT_SYMBOL_GPL(tcp_twsk_purge);
387
388/* Warning : This function is called without sk_listener being locked.
389 * Be sure to read socket fields once, as their value could change under us.
390 */
391void tcp_openreq_init_rwin(struct request_sock *req,
392			   const struct sock *sk_listener,
393			   const struct dst_entry *dst)
394{
395	struct inet_request_sock *ireq = inet_rsk(req);
396	const struct tcp_sock *tp = tcp_sk(sk_listener);
397	int full_space = tcp_full_space(sk_listener);
398	u32 window_clamp;
399	__u8 rcv_wscale;
400	u32 rcv_wnd;
401	int mss;
402
403	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
404	window_clamp = READ_ONCE(tp->window_clamp);
405	/* Set this up on the first call only */
406	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
407
408	/* limit the window selection if the user enforce a smaller rx buffer */
409	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
410	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
411		req->rsk_window_clamp = full_space;
412
413	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
414	if (rcv_wnd == 0)
415		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
416	else if (full_space < rcv_wnd * mss)
417		full_space = rcv_wnd * mss;
418
419	/* tcp_full_space because it is guaranteed to be the first packet */
420	tcp_select_initial_window(sk_listener, full_space,
421		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
422		&req->rsk_rcv_wnd,
423		&req->rsk_window_clamp,
424		ireq->wscale_ok,
425		&rcv_wscale,
426		rcv_wnd);
427	ireq->rcv_wscale = rcv_wscale;
428}
429EXPORT_SYMBOL(tcp_openreq_init_rwin);
430
431static void tcp_ecn_openreq_child(struct tcp_sock *tp,
432				  const struct request_sock *req)
433{
434	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
435}
436
437void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
438{
439	struct inet_connection_sock *icsk = inet_csk(sk);
440	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
441	bool ca_got_dst = false;
442
443	if (ca_key != TCP_CA_UNSPEC) {
444		const struct tcp_congestion_ops *ca;
445
446		rcu_read_lock();
447		ca = tcp_ca_find_key(ca_key);
448		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
449			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
450			icsk->icsk_ca_ops = ca;
451			ca_got_dst = true;
452		}
453		rcu_read_unlock();
454	}
455
456	/* If no valid choice made yet, assign current system default ca. */
457	if (!ca_got_dst &&
458	    (!icsk->icsk_ca_setsockopt ||
459	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
460		tcp_assign_congestion_control(sk);
461
462	tcp_set_ca_state(sk, TCP_CA_Open);
463}
464EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
465
466static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
467				    struct request_sock *req,
468				    struct tcp_sock *newtp)
469{
470#if IS_ENABLED(CONFIG_SMC)
471	struct inet_request_sock *ireq;
472
473	if (static_branch_unlikely(&tcp_have_smc)) {
474		ireq = inet_rsk(req);
475		if (oldtp->syn_smc && !ireq->smc_ok)
476			newtp->syn_smc = 0;
477	}
478#endif
479}
480
481/* This is not only more efficient than what we used to do, it eliminates
482 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
483 *
484 * Actually, we could lots of memory writes here. tp of listening
485 * socket contains all necessary default parameters.
486 */
487struct sock *tcp_create_openreq_child(const struct sock *sk,
488				      struct request_sock *req,
489				      struct sk_buff *skb)
490{
491	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
492	const struct inet_request_sock *ireq = inet_rsk(req);
493	struct tcp_request_sock *treq = tcp_rsk(req);
494	struct inet_connection_sock *newicsk;
495	struct tcp_sock *oldtp, *newtp;
496	u32 seq;
497
498	if (!newsk)
499		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500
501	newicsk = inet_csk(newsk);
502	newtp = tcp_sk(newsk);
503	oldtp = tcp_sk(sk);
504
505	smc_check_reset_syn_req(oldtp, req, newtp);
506
507	/* Now setup tcp_sock */
508	newtp->pred_flags = 0;
509
510	seq = treq->rcv_isn + 1;
511	newtp->rcv_wup = seq;
512	WRITE_ONCE(newtp->copied_seq, seq);
513	WRITE_ONCE(newtp->rcv_nxt, seq);
514	newtp->segs_in = 1;
515
516	seq = treq->snt_isn + 1;
517	newtp->snd_sml = newtp->snd_una = seq;
518	WRITE_ONCE(newtp->snd_nxt, seq);
519	newtp->snd_up = seq;
520
521	INIT_LIST_HEAD(&newtp->tsq_node);
522	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
523
524	tcp_init_wl(newtp, treq->rcv_isn);
525
526	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
527	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
528
529	newtp->lsndtime = tcp_jiffies32;
530	newsk->sk_txhash = treq->txhash;
531	newtp->total_retrans = req->num_retrans;
532
533	tcp_init_xmit_timers(newsk);
534	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
535
536	if (sock_flag(newsk, SOCK_KEEPOPEN))
537		inet_csk_reset_keepalive_timer(newsk,
538					       keepalive_time_when(newtp));
539
540	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
541	newtp->rx_opt.sack_ok = ireq->sack_ok;
542	newtp->window_clamp = req->rsk_window_clamp;
543	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
544	newtp->rcv_wnd = req->rsk_rcv_wnd;
545	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
546	if (newtp->rx_opt.wscale_ok) {
547		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
548		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
549	} else {
550		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
551		newtp->window_clamp = min(newtp->window_clamp, 65535U);
552	}
553	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
554	newtp->max_window = newtp->snd_wnd;
555
556	if (newtp->rx_opt.tstamp_ok) {
557		newtp->rx_opt.ts_recent = req->ts_recent;
558		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
559		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
560	} else {
561		newtp->rx_opt.ts_recent_stamp = 0;
562		newtp->tcp_header_len = sizeof(struct tcphdr);
563	}
564	if (req->num_timeout) {
565		newtp->undo_marker = treq->snt_isn;
566		newtp->retrans_stamp = div_u64(treq->snt_synack,
567					       USEC_PER_SEC / TCP_TS_HZ);
568	}
569	newtp->tsoffset = treq->ts_off;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
570#ifdef CONFIG_TCP_MD5SIG
571	newtp->md5sig_info = NULL;	/*XXX*/
572	if (treq->af_specific->req_md5_lookup(sk, req_to_sk(req)))
573		newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
574#endif
575	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
576		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
577	newtp->rx_opt.mss_clamp = req->mss;
578	tcp_ecn_openreq_child(newtp, req);
579	newtp->fastopen_req = NULL;
580	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
581
582	newtp->bpf_chg_cc_inprogress = 0;
583	tcp_bpf_clone(sk, newsk);
584
585	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
 
 
586
 
 
587	return newsk;
588}
589EXPORT_SYMBOL(tcp_create_openreq_child);
590
591/*
592 * Process an incoming packet for SYN_RECV sockets represented as a
593 * request_sock. Normally sk is the listener socket but for TFO it
594 * points to the child socket.
595 *
596 * XXX (TFO) - The current impl contains a special check for ack
597 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
598 *
599 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
600 */
601
602struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
603			   struct request_sock *req,
604			   bool fastopen, bool *req_stolen)
605{
606	struct tcp_options_received tmp_opt;
607	struct sock *child;
608	const struct tcphdr *th = tcp_hdr(skb);
609	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
610	bool paws_reject = false;
611	bool own_req;
612
613	tmp_opt.saw_tstamp = 0;
614	if (th->doff > (sizeof(struct tcphdr)>>2)) {
615		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
616
617		if (tmp_opt.saw_tstamp) {
618			tmp_opt.ts_recent = req->ts_recent;
619			if (tmp_opt.rcv_tsecr)
620				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
621			/* We do not store true stamp, but it is not required,
622			 * it can be estimated (approximately)
623			 * from another data.
624			 */
625			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
626			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
627		}
628	}
629
630	/* Check for pure retransmitted SYN. */
631	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
632	    flg == TCP_FLAG_SYN &&
633	    !paws_reject) {
634		/*
635		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
636		 * this case on figure 6 and figure 8, but formal
637		 * protocol description says NOTHING.
638		 * To be more exact, it says that we should send ACK,
639		 * because this segment (at least, if it has no data)
640		 * is out of window.
641		 *
642		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
643		 *  describe SYN-RECV state. All the description
644		 *  is wrong, we cannot believe to it and should
645		 *  rely only on common sense and implementation
646		 *  experience.
647		 *
648		 * Enforce "SYN-ACK" according to figure 8, figure 6
649		 * of RFC793, fixed by RFC1122.
650		 *
651		 * Note that even if there is new data in the SYN packet
652		 * they will be thrown away too.
653		 *
654		 * Reset timer after retransmitting SYNACK, similar to
655		 * the idea of fast retransmit in recovery.
656		 */
657		if (!tcp_oow_rate_limited(sock_net(sk), skb,
658					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
659					  &tcp_rsk(req)->last_oow_ack_time) &&
660
661		    !inet_rtx_syn_ack(sk, req)) {
662			unsigned long expires = jiffies;
663
664			expires += reqsk_timeout(req, TCP_RTO_MAX);
 
665			if (!fastopen)
666				mod_timer_pending(&req->rsk_timer, expires);
667			else
668				req->rsk_timer.expires = expires;
669		}
670		return NULL;
671	}
672
673	/* Further reproduces section "SEGMENT ARRIVES"
674	   for state SYN-RECEIVED of RFC793.
675	   It is broken, however, it does not work only
676	   when SYNs are crossed.
677
678	   You would think that SYN crossing is impossible here, since
679	   we should have a SYN_SENT socket (from connect()) on our end,
680	   but this is not true if the crossed SYNs were sent to both
681	   ends by a malicious third party.  We must defend against this,
682	   and to do that we first verify the ACK (as per RFC793, page
683	   36) and reset if it is invalid.  Is this a true full defense?
684	   To convince ourselves, let us consider a way in which the ACK
685	   test can still pass in this 'malicious crossed SYNs' case.
686	   Malicious sender sends identical SYNs (and thus identical sequence
687	   numbers) to both A and B:
688
689		A: gets SYN, seq=7
690		B: gets SYN, seq=7
691
692	   By our good fortune, both A and B select the same initial
693	   send sequence number of seven :-)
694
695		A: sends SYN|ACK, seq=7, ack_seq=8
696		B: sends SYN|ACK, seq=7, ack_seq=8
697
698	   So we are now A eating this SYN|ACK, ACK test passes.  So
699	   does sequence test, SYN is truncated, and thus we consider
700	   it a bare ACK.
701
702	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
703	   bare ACK.  Otherwise, we create an established connection.  Both
704	   ends (listening sockets) accept the new incoming connection and try
705	   to talk to each other. 8-)
706
707	   Note: This case is both harmless, and rare.  Possibility is about the
708	   same as us discovering intelligent life on another plant tomorrow.
709
710	   But generally, we should (RFC lies!) to accept ACK
711	   from SYNACK both here and in tcp_rcv_state_process().
712	   tcp_rcv_state_process() does not, hence, we do not too.
713
714	   Note that the case is absolutely generic:
715	   we cannot optimize anything here without
716	   violating protocol. All the checks must be made
717	   before attempt to create socket.
718	 */
719
720	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
721	 *                  and the incoming segment acknowledges something not yet
722	 *                  sent (the segment carries an unacceptable ACK) ...
723	 *                  a reset is sent."
724	 *
725	 * Invalid ACK: reset will be sent by listening socket.
726	 * Note that the ACK validity check for a Fast Open socket is done
727	 * elsewhere and is checked directly against the child socket rather
728	 * than req because user data may have been sent out.
729	 */
730	if ((flg & TCP_FLAG_ACK) && !fastopen &&
731	    (TCP_SKB_CB(skb)->ack_seq !=
732	     tcp_rsk(req)->snt_isn + 1))
733		return sk;
734
735	/* Also, it would be not so bad idea to check rcv_tsecr, which
736	 * is essentially ACK extension and too early or too late values
737	 * should cause reset in unsynchronized states.
738	 */
739
740	/* RFC793: "first check sequence number". */
741
742	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
743					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
744		/* Out of window: send ACK and drop. */
745		if (!(flg & TCP_FLAG_RST) &&
746		    !tcp_oow_rate_limited(sock_net(sk), skb,
747					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
748					  &tcp_rsk(req)->last_oow_ack_time))
749			req->rsk_ops->send_ack(sk, skb, req);
750		if (paws_reject)
751			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
752		return NULL;
753	}
754
755	/* In sequence, PAWS is OK. */
756
757	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
758		req->ts_recent = tmp_opt.rcv_tsval;
759
760	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
761		/* Truncate SYN, it is out of window starting
762		   at tcp_rsk(req)->rcv_isn + 1. */
763		flg &= ~TCP_FLAG_SYN;
764	}
765
766	/* RFC793: "second check the RST bit" and
767	 *	   "fourth, check the SYN bit"
768	 */
769	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
770		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
771		goto embryonic_reset;
772	}
773
774	/* ACK sequence verified above, just make sure ACK is
775	 * set.  If ACK not set, just silently drop the packet.
776	 *
777	 * XXX (TFO) - if we ever allow "data after SYN", the
778	 * following check needs to be removed.
779	 */
780	if (!(flg & TCP_FLAG_ACK))
781		return NULL;
782
783	/* For Fast Open no more processing is needed (sk is the
784	 * child socket).
785	 */
786	if (fastopen)
787		return sk;
788
789	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
790	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
791	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
792		inet_rsk(req)->acked = 1;
793		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
794		return NULL;
795	}
796
797	/* OK, ACK is valid, create big socket and
798	 * feed this segment to it. It will repeat all
799	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
800	 * ESTABLISHED STATE. If it will be dropped after
801	 * socket is created, wait for troubles.
802	 */
803	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
804							 req, &own_req);
805	if (!child)
806		goto listen_overflow;
807
808	if (own_req && rsk_drop_req(req)) {
809		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
810		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
811		return child;
812	}
813
814	sock_rps_save_rxhash(child, skb);
815	tcp_synack_rtt_meas(child, req);
816	*req_stolen = !own_req;
817	return inet_csk_complete_hashdance(sk, child, req, own_req);
818
819listen_overflow:
820	if (sk != req->rsk_listener)
821		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
822
823	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
824		inet_rsk(req)->acked = 1;
825		return NULL;
826	}
827
828embryonic_reset:
829	if (!(flg & TCP_FLAG_RST)) {
830		/* Received a bad SYN pkt - for TFO We try not to reset
831		 * the local connection unless it's really necessary to
832		 * avoid becoming vulnerable to outside attack aiming at
833		 * resetting legit local connections.
834		 */
835		req->rsk_ops->send_reset(sk, skb);
836	} else if (fastopen) { /* received a valid RST pkt */
837		reqsk_fastopen_remove(sk, req, true);
838		tcp_reset(sk, skb);
839	}
840	if (!fastopen) {
841		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
842
843		if (unlinked)
844			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
845		*req_stolen = !unlinked;
846	}
847	return NULL;
848}
849EXPORT_SYMBOL(tcp_check_req);
850
851/*
852 * Queue segment on the new socket if the new socket is active,
853 * otherwise we just shortcircuit this and continue with
854 * the new socket.
855 *
856 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
857 * when entering. But other states are possible due to a race condition
858 * where after __inet_lookup_established() fails but before the listener
859 * locked is obtained, other packets cause the same connection to
860 * be created.
861 */
862
863int tcp_child_process(struct sock *parent, struct sock *child,
864		      struct sk_buff *skb)
865	__releases(&((child)->sk_lock.slock))
866{
867	int ret = 0;
868	int state = child->sk_state;
869
870	/* record sk_napi_id and sk_rx_queue_mapping of child. */
871	sk_mark_napi_id_set(child, skb);
872
873	tcp_segs_in(tcp_sk(child), skb);
874	if (!sock_owned_by_user(child)) {
875		ret = tcp_rcv_state_process(child, skb);
876		/* Wakeup parent, send SIGIO */
877		if (state == TCP_SYN_RECV && child->sk_state != state)
878			parent->sk_data_ready(parent);
879	} else {
880		/* Alas, it is possible again, because we do lookup
881		 * in main socket hash table and lock on listening
882		 * socket does not protect us more.
883		 */
884		__sk_add_backlog(child, skb);
885	}
886
887	bh_unlock_sock(child);
888	sock_put(child);
889	return ret;
890}
891EXPORT_SYMBOL(tcp_child_process);