Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  3 *		operating system.  INET is implemented using the  BSD Socket
  4 *		interface as the means of communication with the user level.
  5 *
  6 *		Implementation of the Transmission Control Protocol(TCP).
  7 *
  8 * Authors:	Ross Biro
  9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 12 *		Florian La Roche, <flla@stud.uni-sb.de>
 13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 18 *		Jorge Cwik, <jorge@laser.satlink.net>
 19 */
 20
 21#include <linux/mm.h>
 22#include <linux/module.h>
 23#include <linux/slab.h>
 24#include <linux/sysctl.h>
 25#include <linux/workqueue.h>
 26#include <linux/static_key.h>
 27#include <net/tcp.h>
 28#include <net/inet_common.h>
 29#include <net/xfrm.h>
 30#include <net/busy_poll.h>
 
 
 
 
 
 
 
 31
 32static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 33{
 34	if (seq == s_win)
 35		return true;
 36	if (after(end_seq, s_win) && before(seq, e_win))
 37		return true;
 38	return seq == e_win && seq == end_seq;
 39}
 40
 41static enum tcp_tw_status
 42tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 43				  const struct sk_buff *skb, int mib_idx)
 44{
 45	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 46
 47	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 48				  &tcptw->tw_last_oow_ack_time)) {
 49		/* Send ACK. Note, we do not put the bucket,
 50		 * it will be released by caller.
 51		 */
 52		return TCP_TW_ACK;
 53	}
 54
 55	/* We are rate-limiting, so just release the tw sock and drop skb. */
 56	inet_twsk_put(tw);
 57	return TCP_TW_SUCCESS;
 58}
 59
 60/*
 61 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 62 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 63 *   (and, probably, tail of data) and one or more our ACKs are lost.
 64 * * What is TIME-WAIT timeout? It is associated with maximal packet
 65 *   lifetime in the internet, which results in wrong conclusion, that
 66 *   it is set to catch "old duplicate segments" wandering out of their path.
 67 *   It is not quite correct. This timeout is calculated so that it exceeds
 68 *   maximal retransmission timeout enough to allow to lose one (or more)
 69 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 70 * * When TIME-WAIT socket receives RST, it means that another end
 71 *   finally closed and we are allowed to kill TIME-WAIT too.
 72 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 73 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 74 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 75 * * If we invented some more clever way to catch duplicates
 76 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 77 *
 78 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 79 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 80 * from the very beginning.
 81 *
 82 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 83 * is _not_ stateless. It means, that strictly speaking we must
 84 * spinlock it. I do not want! Well, probability of misbehaviour
 85 * is ridiculously low and, seems, we could use some mb() tricks
 86 * to avoid misread sequence numbers, states etc.  --ANK
 87 *
 88 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 89 */
 90enum tcp_tw_status
 91tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 92			   const struct tcphdr *th)
 93{
 94	struct tcp_options_received tmp_opt;
 95	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 96	bool paws_reject = false;
 97
 98	tmp_opt.saw_tstamp = 0;
 99	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
100		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
101
102		if (tmp_opt.saw_tstamp) {
103			if (tmp_opt.rcv_tsecr)
104				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
105			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
106			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
107			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
108		}
109	}
110
111	if (tw->tw_substate == TCP_FIN_WAIT2) {
112		/* Just repeat all the checks of tcp_rcv_state_process() */
113
114		/* Out of window, send ACK */
115		if (paws_reject ||
116		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
117				   tcptw->tw_rcv_nxt,
118				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
119			return tcp_timewait_check_oow_rate_limit(
120				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
121
122		if (th->rst)
123			goto kill;
124
125		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
126			return TCP_TW_RST;
127
128		/* Dup ACK? */
129		if (!th->ack ||
130		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
131		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
132			inet_twsk_put(tw);
133			return TCP_TW_SUCCESS;
134		}
135
136		/* New data or FIN. If new data arrive after half-duplex close,
137		 * reset.
138		 */
139		if (!th->fin ||
140		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
141			return TCP_TW_RST;
142
143		/* FIN arrived, enter true time-wait state. */
144		tw->tw_substate	  = TCP_TIME_WAIT;
145		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
146		if (tmp_opt.saw_tstamp) {
147			tcptw->tw_ts_recent_stamp = get_seconds();
148			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
149		}
150
151		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 
 
 
 
 
152		return TCP_TW_ACK;
153	}
154
155	/*
156	 *	Now real TIME-WAIT state.
157	 *
158	 *	RFC 1122:
159	 *	"When a connection is [...] on TIME-WAIT state [...]
160	 *	[a TCP] MAY accept a new SYN from the remote TCP to
161	 *	reopen the connection directly, if it:
162	 *
163	 *	(1)  assigns its initial sequence number for the new
164	 *	connection to be larger than the largest sequence
165	 *	number it used on the previous connection incarnation,
166	 *	and
167	 *
168	 *	(2)  returns to TIME-WAIT state if the SYN turns out
169	 *	to be an old duplicate".
170	 */
171
172	if (!paws_reject &&
173	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
174	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
175		/* In window segment, it may be only reset or bare ack. */
176
177		if (th->rst) {
178			/* This is TIME_WAIT assassination, in two flavors.
179			 * Oh well... nobody has a sufficient solution to this
180			 * protocol bug yet.
181			 */
182			if (twsk_net(tw)->ipv4.sysctl_tcp_rfc1337 == 0) {
183kill:
184				inet_twsk_deschedule_put(tw);
185				return TCP_TW_SUCCESS;
186			}
187		}
188		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
189
190		if (tmp_opt.saw_tstamp) {
191			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
192			tcptw->tw_ts_recent_stamp = get_seconds();
193		}
194
195		inet_twsk_put(tw);
196		return TCP_TW_SUCCESS;
197	}
198
199	/* Out of window segment.
200
201	   All the segments are ACKed immediately.
202
203	   The only exception is new SYN. We accept it, if it is
204	   not old duplicate and we are not in danger to be killed
205	   by delayed old duplicates. RFC check is that it has
206	   newer sequence number works at rates <40Mbit/sec.
207	   However, if paws works, it is reliable AND even more,
208	   we even may relax silly seq space cutoff.
209
210	   RED-PEN: we violate main RFC requirement, if this SYN will appear
211	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
212	   we must return socket to time-wait state. It is not good,
213	   but not fatal yet.
214	 */
215
216	if (th->syn && !th->rst && !th->ack && !paws_reject &&
217	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
218	     (tmp_opt.saw_tstamp &&
219	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
220		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
221		if (isn == 0)
222			isn++;
223		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
224		return TCP_TW_SYN;
225	}
226
227	if (paws_reject)
228		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
229
230	if (!th->rst) {
231		/* In this case we must reset the TIMEWAIT timer.
232		 *
233		 * If it is ACKless SYN it may be both old duplicate
234		 * and new good SYN with random sequence number <rcv_nxt.
235		 * Do not reschedule in the last case.
236		 */
237		if (paws_reject || th->ack)
238			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
239
240		return tcp_timewait_check_oow_rate_limit(
241			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
242	}
243	inet_twsk_put(tw);
244	return TCP_TW_SUCCESS;
245}
246EXPORT_SYMBOL(tcp_timewait_state_process);
247
248/*
249 * Move a socket to time-wait or dead fin-wait-2 state.
250 */
251void tcp_time_wait(struct sock *sk, int state, int timeo)
252{
253	const struct inet_connection_sock *icsk = inet_csk(sk);
254	const struct tcp_sock *tp = tcp_sk(sk);
255	struct inet_timewait_sock *tw;
256	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
 
 
 
257
258	tw = inet_twsk_alloc(sk, tcp_death_row, state);
259
260	if (tw) {
261		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
262		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
263		struct inet_sock *inet = inet_sk(sk);
264
265		tw->tw_transparent	= inet->transparent;
266		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
267		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
268		tcptw->tw_snd_nxt	= tp->snd_nxt;
269		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
270		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
271		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
272		tcptw->tw_ts_offset	= tp->tsoffset;
273		tcptw->tw_last_oow_ack_time = 0;
274
275#if IS_ENABLED(CONFIG_IPV6)
276		if (tw->tw_family == PF_INET6) {
277			struct ipv6_pinfo *np = inet6_sk(sk);
278
279			tw->tw_v6_daddr = sk->sk_v6_daddr;
280			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
281			tw->tw_tclass = np->tclass;
282			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
283			tw->tw_ipv6only = sk->sk_ipv6only;
284		}
285#endif
286
287#ifdef CONFIG_TCP_MD5SIG
288		/*
289		 * The timewait bucket does not have the key DB from the
290		 * sock structure. We just make a quick copy of the
291		 * md5 key being used (if indeed we are using one)
292		 * so the timewait ack generating code has the key.
293		 */
294		do {
295			struct tcp_md5sig_key *key;
296			tcptw->tw_md5_key = NULL;
297			key = tp->af_specific->md5_lookup(sk, sk);
298			if (key) {
299				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
300				BUG_ON(tcptw->tw_md5_key && !tcp_alloc_md5sig_pool());
 
301			}
302		} while (0);
303#endif
304
305		/* Get the TIME_WAIT timeout firing. */
306		if (timeo < rto)
307			timeo = rto;
308
309		tw->tw_timeout = TCP_TIMEWAIT_LEN;
310		if (state == TCP_TIME_WAIT)
311			timeo = TCP_TIMEWAIT_LEN;
312
313		/* tw_timer is pinned, so we need to make sure BH are disabled
314		 * in following section, otherwise timer handler could run before
315		 * we complete the initialization.
316		 */
317		local_bh_disable();
318		inet_twsk_schedule(tw, timeo);
319		/* Linkage updates.
320		 * Note that access to tw after this point is illegal.
321		 */
322		inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
323		local_bh_enable();
324	} else {
325		/* Sorry, if we're out of memory, just CLOSE this
326		 * socket up.  We've got bigger problems than
327		 * non-graceful socket closings.
328		 */
329		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
330	}
331
332	tcp_update_metrics(sk);
333	tcp_done(sk);
334}
335EXPORT_SYMBOL(tcp_time_wait);
336
337void tcp_twsk_destructor(struct sock *sk)
338{
339#ifdef CONFIG_TCP_MD5SIG
340	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
341
342	if (twsk->tw_md5_key)
343		kfree_rcu(twsk->tw_md5_key, rcu);
344#endif
345}
346EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
347
348/* Warning : This function is called without sk_listener being locked.
349 * Be sure to read socket fields once, as their value could change under us.
350 */
351void tcp_openreq_init_rwin(struct request_sock *req,
352			   const struct sock *sk_listener,
353			   const struct dst_entry *dst)
354{
355	struct inet_request_sock *ireq = inet_rsk(req);
356	const struct tcp_sock *tp = tcp_sk(sk_listener);
 
357	int full_space = tcp_full_space(sk_listener);
 
358	u32 window_clamp;
359	__u8 rcv_wscale;
360	u32 rcv_wnd;
361	int mss;
362
363	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
 
 
364	window_clamp = READ_ONCE(tp->window_clamp);
365	/* Set this up on the first call only */
366	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
367
368	/* limit the window selection if the user enforce a smaller rx buffer */
369	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
370	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
371		req->rsk_window_clamp = full_space;
372
373	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
374	if (rcv_wnd == 0)
375		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
376	else if (full_space < rcv_wnd * mss)
377		full_space = rcv_wnd * mss;
378
379	/* tcp_full_space because it is guaranteed to be the first packet */
380	tcp_select_initial_window(sk_listener, full_space,
381		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
382		&req->rsk_rcv_wnd,
383		&req->rsk_window_clamp,
384		ireq->wscale_ok,
385		&rcv_wscale,
386		rcv_wnd);
387	ireq->rcv_wscale = rcv_wscale;
388}
389EXPORT_SYMBOL(tcp_openreq_init_rwin);
390
391static void tcp_ecn_openreq_child(struct tcp_sock *tp,
392				  const struct request_sock *req)
393{
394	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
395}
396
397void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
398{
399	struct inet_connection_sock *icsk = inet_csk(sk);
400	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
401	bool ca_got_dst = false;
402
403	if (ca_key != TCP_CA_UNSPEC) {
404		const struct tcp_congestion_ops *ca;
405
406		rcu_read_lock();
407		ca = tcp_ca_find_key(ca_key);
408		if (likely(ca && try_module_get(ca->owner))) {
409			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
410			icsk->icsk_ca_ops = ca;
411			ca_got_dst = true;
412		}
413		rcu_read_unlock();
414	}
415
416	/* If no valid choice made yet, assign current system default ca. */
417	if (!ca_got_dst &&
418	    (!icsk->icsk_ca_setsockopt ||
419	     !try_module_get(icsk->icsk_ca_ops->owner)))
420		tcp_assign_congestion_control(sk);
421
422	tcp_set_ca_state(sk, TCP_CA_Open);
423}
424EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
425
426static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
427				    struct request_sock *req,
428				    struct tcp_sock *newtp)
429{
430#if IS_ENABLED(CONFIG_SMC)
431	struct inet_request_sock *ireq;
432
433	if (static_branch_unlikely(&tcp_have_smc)) {
434		ireq = inet_rsk(req);
435		if (oldtp->syn_smc && !ireq->smc_ok)
436			newtp->syn_smc = 0;
437	}
438#endif
439}
440
441/* This is not only more efficient than what we used to do, it eliminates
442 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
443 *
444 * Actually, we could lots of memory writes here. tp of listening
445 * socket contains all necessary default parameters.
446 */
447struct sock *tcp_create_openreq_child(const struct sock *sk,
448				      struct request_sock *req,
449				      struct sk_buff *skb)
450{
451	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
452
453	if (newsk) {
454		const struct inet_request_sock *ireq = inet_rsk(req);
455		struct tcp_request_sock *treq = tcp_rsk(req);
456		struct inet_connection_sock *newicsk = inet_csk(newsk);
457		struct tcp_sock *newtp = tcp_sk(newsk);
458		struct tcp_sock *oldtp = tcp_sk(sk);
459
460		smc_check_reset_syn_req(oldtp, req, newtp);
461
462		/* Now setup tcp_sock */
463		newtp->pred_flags = 0;
464
465		newtp->rcv_wup = newtp->copied_seq =
466		newtp->rcv_nxt = treq->rcv_isn + 1;
467		newtp->segs_in = 1;
468
469		newtp->snd_sml = newtp->snd_una =
470		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
471
 
472		INIT_LIST_HEAD(&newtp->tsq_node);
473		INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
474
475		tcp_init_wl(newtp, treq->rcv_isn);
476
477		newtp->srtt_us = 0;
478		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
479		minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
480		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
481		newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
482
483		newtp->packets_out = 0;
484		newtp->retrans_out = 0;
485		newtp->sacked_out = 0;
 
486		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 
487		newtp->tlp_high_seq = 0;
488		newtp->lsndtime = tcp_jiffies32;
489		newsk->sk_txhash = treq->txhash;
490		newtp->last_oow_ack_time = 0;
491		newtp->total_retrans = req->num_retrans;
492
493		/* So many TCP implementations out there (incorrectly) count the
494		 * initial SYN frame in their delayed-ACK and congestion control
495		 * algorithms that we must have the following bandaid to talk
496		 * efficiently to them.  -DaveM
497		 */
498		newtp->snd_cwnd = TCP_INIT_CWND;
499		newtp->snd_cwnd_cnt = 0;
500
501		/* There's a bubble in the pipe until at least the first ACK. */
502		newtp->app_limited = ~0U;
503
504		tcp_init_xmit_timers(newsk);
 
505		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
506
507		newtp->rx_opt.saw_tstamp = 0;
508
509		newtp->rx_opt.dsack = 0;
510		newtp->rx_opt.num_sacks = 0;
511
512		newtp->urg_data = 0;
513
514		if (sock_flag(newsk, SOCK_KEEPOPEN))
515			inet_csk_reset_keepalive_timer(newsk,
516						       keepalive_time_when(newtp));
517
518		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
519		newtp->rx_opt.sack_ok = ireq->sack_ok;
 
 
 
520		newtp->window_clamp = req->rsk_window_clamp;
521		newtp->rcv_ssthresh = req->rsk_rcv_wnd;
522		newtp->rcv_wnd = req->rsk_rcv_wnd;
523		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
524		if (newtp->rx_opt.wscale_ok) {
525			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
526			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
527		} else {
528			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
529			newtp->window_clamp = min(newtp->window_clamp, 65535U);
530		}
531		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
532				  newtp->rx_opt.snd_wscale);
533		newtp->max_window = newtp->snd_wnd;
534
535		if (newtp->rx_opt.tstamp_ok) {
536			newtp->rx_opt.ts_recent = req->ts_recent;
537			newtp->rx_opt.ts_recent_stamp = get_seconds();
538			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
539		} else {
540			newtp->rx_opt.ts_recent_stamp = 0;
541			newtp->tcp_header_len = sizeof(struct tcphdr);
542		}
543		newtp->tsoffset = treq->ts_off;
544#ifdef CONFIG_TCP_MD5SIG
545		newtp->md5sig_info = NULL;	/*XXX*/
546		if (newtp->af_specific->md5_lookup(sk, newsk))
547			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
548#endif
549		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
550			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
551		newtp->rx_opt.mss_clamp = req->mss;
552		tcp_ecn_openreq_child(newtp, req);
553		newtp->fastopen_req = NULL;
554		newtp->fastopen_rsk = NULL;
555		newtp->syn_data_acked = 0;
556		newtp->rack.mstamp = 0;
557		newtp->rack.advanced = 0;
558		newtp->rack.reo_wnd_steps = 1;
559		newtp->rack.last_delivered = 0;
560		newtp->rack.reo_wnd_persist = 0;
561		newtp->rack.dsack_seen = 0;
562
563		__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
564	}
565	return newsk;
566}
567EXPORT_SYMBOL(tcp_create_openreq_child);
568
569/*
570 * Process an incoming packet for SYN_RECV sockets represented as a
571 * request_sock. Normally sk is the listener socket but for TFO it
572 * points to the child socket.
573 *
574 * XXX (TFO) - The current impl contains a special check for ack
575 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
576 *
577 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
578 */
579
580struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
581			   struct request_sock *req,
582			   bool fastopen, bool *req_stolen)
583{
584	struct tcp_options_received tmp_opt;
585	struct sock *child;
586	const struct tcphdr *th = tcp_hdr(skb);
587	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
588	bool paws_reject = false;
589	bool own_req;
590
591	tmp_opt.saw_tstamp = 0;
592	if (th->doff > (sizeof(struct tcphdr)>>2)) {
593		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
594
595		if (tmp_opt.saw_tstamp) {
596			tmp_opt.ts_recent = req->ts_recent;
597			if (tmp_opt.rcv_tsecr)
598				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
599			/* We do not store true stamp, but it is not required,
600			 * it can be estimated (approximately)
601			 * from another data.
602			 */
603			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
604			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
605		}
606	}
607
608	/* Check for pure retransmitted SYN. */
609	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
610	    flg == TCP_FLAG_SYN &&
611	    !paws_reject) {
612		/*
613		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
614		 * this case on figure 6 and figure 8, but formal
615		 * protocol description says NOTHING.
616		 * To be more exact, it says that we should send ACK,
617		 * because this segment (at least, if it has no data)
618		 * is out of window.
619		 *
620		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
621		 *  describe SYN-RECV state. All the description
622		 *  is wrong, we cannot believe to it and should
623		 *  rely only on common sense and implementation
624		 *  experience.
625		 *
626		 * Enforce "SYN-ACK" according to figure 8, figure 6
627		 * of RFC793, fixed by RFC1122.
628		 *
629		 * Note that even if there is new data in the SYN packet
630		 * they will be thrown away too.
631		 *
632		 * Reset timer after retransmitting SYNACK, similar to
633		 * the idea of fast retransmit in recovery.
634		 */
635		if (!tcp_oow_rate_limited(sock_net(sk), skb,
636					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
637					  &tcp_rsk(req)->last_oow_ack_time) &&
638
639		    !inet_rtx_syn_ack(sk, req)) {
640			unsigned long expires = jiffies;
641
642			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
643				       TCP_RTO_MAX);
644			if (!fastopen)
645				mod_timer_pending(&req->rsk_timer, expires);
646			else
647				req->rsk_timer.expires = expires;
648		}
649		return NULL;
650	}
651
652	/* Further reproduces section "SEGMENT ARRIVES"
653	   for state SYN-RECEIVED of RFC793.
654	   It is broken, however, it does not work only
655	   when SYNs are crossed.
656
657	   You would think that SYN crossing is impossible here, since
658	   we should have a SYN_SENT socket (from connect()) on our end,
659	   but this is not true if the crossed SYNs were sent to both
660	   ends by a malicious third party.  We must defend against this,
661	   and to do that we first verify the ACK (as per RFC793, page
662	   36) and reset if it is invalid.  Is this a true full defense?
663	   To convince ourselves, let us consider a way in which the ACK
664	   test can still pass in this 'malicious crossed SYNs' case.
665	   Malicious sender sends identical SYNs (and thus identical sequence
666	   numbers) to both A and B:
667
668		A: gets SYN, seq=7
669		B: gets SYN, seq=7
670
671	   By our good fortune, both A and B select the same initial
672	   send sequence number of seven :-)
673
674		A: sends SYN|ACK, seq=7, ack_seq=8
675		B: sends SYN|ACK, seq=7, ack_seq=8
676
677	   So we are now A eating this SYN|ACK, ACK test passes.  So
678	   does sequence test, SYN is truncated, and thus we consider
679	   it a bare ACK.
680
681	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
682	   bare ACK.  Otherwise, we create an established connection.  Both
683	   ends (listening sockets) accept the new incoming connection and try
684	   to talk to each other. 8-)
685
686	   Note: This case is both harmless, and rare.  Possibility is about the
687	   same as us discovering intelligent life on another plant tomorrow.
688
689	   But generally, we should (RFC lies!) to accept ACK
690	   from SYNACK both here and in tcp_rcv_state_process().
691	   tcp_rcv_state_process() does not, hence, we do not too.
692
693	   Note that the case is absolutely generic:
694	   we cannot optimize anything here without
695	   violating protocol. All the checks must be made
696	   before attempt to create socket.
697	 */
698
699	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
700	 *                  and the incoming segment acknowledges something not yet
701	 *                  sent (the segment carries an unacceptable ACK) ...
702	 *                  a reset is sent."
703	 *
704	 * Invalid ACK: reset will be sent by listening socket.
705	 * Note that the ACK validity check for a Fast Open socket is done
706	 * elsewhere and is checked directly against the child socket rather
707	 * than req because user data may have been sent out.
708	 */
709	if ((flg & TCP_FLAG_ACK) && !fastopen &&
710	    (TCP_SKB_CB(skb)->ack_seq !=
711	     tcp_rsk(req)->snt_isn + 1))
712		return sk;
713
714	/* Also, it would be not so bad idea to check rcv_tsecr, which
715	 * is essentially ACK extension and too early or too late values
716	 * should cause reset in unsynchronized states.
717	 */
718
719	/* RFC793: "first check sequence number". */
720
721	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
722					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
723		/* Out of window: send ACK and drop. */
724		if (!(flg & TCP_FLAG_RST) &&
725		    !tcp_oow_rate_limited(sock_net(sk), skb,
726					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
727					  &tcp_rsk(req)->last_oow_ack_time))
728			req->rsk_ops->send_ack(sk, skb, req);
729		if (paws_reject)
730			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
731		return NULL;
732	}
733
734	/* In sequence, PAWS is OK. */
735
736	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
737		req->ts_recent = tmp_opt.rcv_tsval;
738
739	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
740		/* Truncate SYN, it is out of window starting
741		   at tcp_rsk(req)->rcv_isn + 1. */
742		flg &= ~TCP_FLAG_SYN;
743	}
744
745	/* RFC793: "second check the RST bit" and
746	 *	   "fourth, check the SYN bit"
747	 */
748	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
749		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
750		goto embryonic_reset;
751	}
752
753	/* ACK sequence verified above, just make sure ACK is
754	 * set.  If ACK not set, just silently drop the packet.
755	 *
756	 * XXX (TFO) - if we ever allow "data after SYN", the
757	 * following check needs to be removed.
758	 */
759	if (!(flg & TCP_FLAG_ACK))
760		return NULL;
761
762	/* For Fast Open no more processing is needed (sk is the
763	 * child socket).
764	 */
765	if (fastopen)
766		return sk;
767
768	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
769	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
770	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
771		inet_rsk(req)->acked = 1;
772		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
773		return NULL;
774	}
775
776	/* OK, ACK is valid, create big socket and
777	 * feed this segment to it. It will repeat all
778	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
779	 * ESTABLISHED STATE. If it will be dropped after
780	 * socket is created, wait for troubles.
781	 */
782	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
783							 req, &own_req);
784	if (!child)
785		goto listen_overflow;
786
787	sock_rps_save_rxhash(child, skb);
788	tcp_synack_rtt_meas(child, req);
789	*req_stolen = !own_req;
790	return inet_csk_complete_hashdance(sk, child, req, own_req);
791
792listen_overflow:
793	if (!sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow) {
794		inet_rsk(req)->acked = 1;
795		return NULL;
796	}
797
798embryonic_reset:
799	if (!(flg & TCP_FLAG_RST)) {
800		/* Received a bad SYN pkt - for TFO We try not to reset
801		 * the local connection unless it's really necessary to
802		 * avoid becoming vulnerable to outside attack aiming at
803		 * resetting legit local connections.
804		 */
805		req->rsk_ops->send_reset(sk, skb);
806	} else if (fastopen) { /* received a valid RST pkt */
807		reqsk_fastopen_remove(sk, req, true);
808		tcp_reset(sk);
809	}
810	if (!fastopen) {
811		inet_csk_reqsk_queue_drop(sk, req);
812		__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
813	}
814	return NULL;
815}
816EXPORT_SYMBOL(tcp_check_req);
817
818/*
819 * Queue segment on the new socket if the new socket is active,
820 * otherwise we just shortcircuit this and continue with
821 * the new socket.
822 *
823 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
824 * when entering. But other states are possible due to a race condition
825 * where after __inet_lookup_established() fails but before the listener
826 * locked is obtained, other packets cause the same connection to
827 * be created.
828 */
829
830int tcp_child_process(struct sock *parent, struct sock *child,
831		      struct sk_buff *skb)
832{
833	int ret = 0;
834	int state = child->sk_state;
835
836	/* record NAPI ID of child */
837	sk_mark_napi_id(child, skb);
838
839	tcp_segs_in(tcp_sk(child), skb);
840	if (!sock_owned_by_user(child)) {
841		ret = tcp_rcv_state_process(child, skb);
842		/* Wakeup parent, send SIGIO */
843		if (state == TCP_SYN_RECV && child->sk_state != state)
844			parent->sk_data_ready(parent);
845	} else {
846		/* Alas, it is possible again, because we do lookup
847		 * in main socket hash table and lock on listening
848		 * socket does not protect us more.
849		 */
850		__sk_add_backlog(child, skb);
851	}
852
853	bh_unlock_sock(child);
854	sock_put(child);
855	return ret;
856}
857EXPORT_SYMBOL(tcp_child_process);
v4.6
  1/*
  2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  3 *		operating system.  INET is implemented using the  BSD Socket
  4 *		interface as the means of communication with the user level.
  5 *
  6 *		Implementation of the Transmission Control Protocol(TCP).
  7 *
  8 * Authors:	Ross Biro
  9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 12 *		Florian La Roche, <flla@stud.uni-sb.de>
 13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 18 *		Jorge Cwik, <jorge@laser.satlink.net>
 19 */
 20
 21#include <linux/mm.h>
 22#include <linux/module.h>
 23#include <linux/slab.h>
 24#include <linux/sysctl.h>
 25#include <linux/workqueue.h>
 
 26#include <net/tcp.h>
 27#include <net/inet_common.h>
 28#include <net/xfrm.h>
 29
 30int sysctl_tcp_abort_on_overflow __read_mostly;
 31
 32struct inet_timewait_death_row tcp_death_row = {
 33	.sysctl_max_tw_buckets = NR_FILE * 2,
 34	.hashinfo	= &tcp_hashinfo,
 35};
 36EXPORT_SYMBOL_GPL(tcp_death_row);
 37
 38static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 39{
 40	if (seq == s_win)
 41		return true;
 42	if (after(end_seq, s_win) && before(seq, e_win))
 43		return true;
 44	return seq == e_win && seq == end_seq;
 45}
 46
 47static enum tcp_tw_status
 48tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 49				  const struct sk_buff *skb, int mib_idx)
 50{
 51	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 52
 53	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 54				  &tcptw->tw_last_oow_ack_time)) {
 55		/* Send ACK. Note, we do not put the bucket,
 56		 * it will be released by caller.
 57		 */
 58		return TCP_TW_ACK;
 59	}
 60
 61	/* We are rate-limiting, so just release the tw sock and drop skb. */
 62	inet_twsk_put(tw);
 63	return TCP_TW_SUCCESS;
 64}
 65
 66/*
 67 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 68 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 69 *   (and, probably, tail of data) and one or more our ACKs are lost.
 70 * * What is TIME-WAIT timeout? It is associated with maximal packet
 71 *   lifetime in the internet, which results in wrong conclusion, that
 72 *   it is set to catch "old duplicate segments" wandering out of their path.
 73 *   It is not quite correct. This timeout is calculated so that it exceeds
 74 *   maximal retransmission timeout enough to allow to lose one (or more)
 75 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 76 * * When TIME-WAIT socket receives RST, it means that another end
 77 *   finally closed and we are allowed to kill TIME-WAIT too.
 78 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 79 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 80 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 81 * * If we invented some more clever way to catch duplicates
 82 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 83 *
 84 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 85 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 86 * from the very beginning.
 87 *
 88 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 89 * is _not_ stateless. It means, that strictly speaking we must
 90 * spinlock it. I do not want! Well, probability of misbehaviour
 91 * is ridiculously low and, seems, we could use some mb() tricks
 92 * to avoid misread sequence numbers, states etc.  --ANK
 93 *
 94 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 95 */
 96enum tcp_tw_status
 97tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 98			   const struct tcphdr *th)
 99{
100	struct tcp_options_received tmp_opt;
101	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
102	bool paws_reject = false;
103
104	tmp_opt.saw_tstamp = 0;
105	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
106		tcp_parse_options(skb, &tmp_opt, 0, NULL);
107
108		if (tmp_opt.saw_tstamp) {
109			tmp_opt.rcv_tsecr	-= tcptw->tw_ts_offset;
 
110			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
111			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
112			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
113		}
114	}
115
116	if (tw->tw_substate == TCP_FIN_WAIT2) {
117		/* Just repeat all the checks of tcp_rcv_state_process() */
118
119		/* Out of window, send ACK */
120		if (paws_reject ||
121		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
122				   tcptw->tw_rcv_nxt,
123				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
124			return tcp_timewait_check_oow_rate_limit(
125				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
126
127		if (th->rst)
128			goto kill;
129
130		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
131			return TCP_TW_RST;
132
133		/* Dup ACK? */
134		if (!th->ack ||
135		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
136		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
137			inet_twsk_put(tw);
138			return TCP_TW_SUCCESS;
139		}
140
141		/* New data or FIN. If new data arrive after half-duplex close,
142		 * reset.
143		 */
144		if (!th->fin ||
145		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
146			return TCP_TW_RST;
147
148		/* FIN arrived, enter true time-wait state. */
149		tw->tw_substate	  = TCP_TIME_WAIT;
150		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
151		if (tmp_opt.saw_tstamp) {
152			tcptw->tw_ts_recent_stamp = get_seconds();
153			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
154		}
155
156		if (tcp_death_row.sysctl_tw_recycle &&
157		    tcptw->tw_ts_recent_stamp &&
158		    tcp_tw_remember_stamp(tw))
159			inet_twsk_reschedule(tw, tw->tw_timeout);
160		else
161			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
162		return TCP_TW_ACK;
163	}
164
165	/*
166	 *	Now real TIME-WAIT state.
167	 *
168	 *	RFC 1122:
169	 *	"When a connection is [...] on TIME-WAIT state [...]
170	 *	[a TCP] MAY accept a new SYN from the remote TCP to
171	 *	reopen the connection directly, if it:
172	 *
173	 *	(1)  assigns its initial sequence number for the new
174	 *	connection to be larger than the largest sequence
175	 *	number it used on the previous connection incarnation,
176	 *	and
177	 *
178	 *	(2)  returns to TIME-WAIT state if the SYN turns out
179	 *	to be an old duplicate".
180	 */
181
182	if (!paws_reject &&
183	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
184	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
185		/* In window segment, it may be only reset or bare ack. */
186
187		if (th->rst) {
188			/* This is TIME_WAIT assassination, in two flavors.
189			 * Oh well... nobody has a sufficient solution to this
190			 * protocol bug yet.
191			 */
192			if (sysctl_tcp_rfc1337 == 0) {
193kill:
194				inet_twsk_deschedule_put(tw);
195				return TCP_TW_SUCCESS;
196			}
197		}
198		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
199
200		if (tmp_opt.saw_tstamp) {
201			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
202			tcptw->tw_ts_recent_stamp = get_seconds();
203		}
204
205		inet_twsk_put(tw);
206		return TCP_TW_SUCCESS;
207	}
208
209	/* Out of window segment.
210
211	   All the segments are ACKed immediately.
212
213	   The only exception is new SYN. We accept it, if it is
214	   not old duplicate and we are not in danger to be killed
215	   by delayed old duplicates. RFC check is that it has
216	   newer sequence number works at rates <40Mbit/sec.
217	   However, if paws works, it is reliable AND even more,
218	   we even may relax silly seq space cutoff.
219
220	   RED-PEN: we violate main RFC requirement, if this SYN will appear
221	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
222	   we must return socket to time-wait state. It is not good,
223	   but not fatal yet.
224	 */
225
226	if (th->syn && !th->rst && !th->ack && !paws_reject &&
227	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
228	     (tmp_opt.saw_tstamp &&
229	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
230		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
231		if (isn == 0)
232			isn++;
233		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
234		return TCP_TW_SYN;
235	}
236
237	if (paws_reject)
238		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
239
240	if (!th->rst) {
241		/* In this case we must reset the TIMEWAIT timer.
242		 *
243		 * If it is ACKless SYN it may be both old duplicate
244		 * and new good SYN with random sequence number <rcv_nxt.
245		 * Do not reschedule in the last case.
246		 */
247		if (paws_reject || th->ack)
248			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
249
250		return tcp_timewait_check_oow_rate_limit(
251			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
252	}
253	inet_twsk_put(tw);
254	return TCP_TW_SUCCESS;
255}
256EXPORT_SYMBOL(tcp_timewait_state_process);
257
258/*
259 * Move a socket to time-wait or dead fin-wait-2 state.
260 */
261void tcp_time_wait(struct sock *sk, int state, int timeo)
262{
263	const struct inet_connection_sock *icsk = inet_csk(sk);
264	const struct tcp_sock *tp = tcp_sk(sk);
265	struct inet_timewait_sock *tw;
266	bool recycle_ok = false;
267
268	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
269		recycle_ok = tcp_remember_stamp(sk);
270
271	tw = inet_twsk_alloc(sk, &tcp_death_row, state);
272
273	if (tw) {
274		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
275		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
276		struct inet_sock *inet = inet_sk(sk);
277
278		tw->tw_transparent	= inet->transparent;
279		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
280		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
281		tcptw->tw_snd_nxt	= tp->snd_nxt;
282		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
283		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
284		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
285		tcptw->tw_ts_offset	= tp->tsoffset;
286		tcptw->tw_last_oow_ack_time = 0;
287
288#if IS_ENABLED(CONFIG_IPV6)
289		if (tw->tw_family == PF_INET6) {
290			struct ipv6_pinfo *np = inet6_sk(sk);
291
292			tw->tw_v6_daddr = sk->sk_v6_daddr;
293			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
294			tw->tw_tclass = np->tclass;
295			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
296			tw->tw_ipv6only = sk->sk_ipv6only;
297		}
298#endif
299
300#ifdef CONFIG_TCP_MD5SIG
301		/*
302		 * The timewait bucket does not have the key DB from the
303		 * sock structure. We just make a quick copy of the
304		 * md5 key being used (if indeed we are using one)
305		 * so the timewait ack generating code has the key.
306		 */
307		do {
308			struct tcp_md5sig_key *key;
309			tcptw->tw_md5_key = NULL;
310			key = tp->af_specific->md5_lookup(sk, sk);
311			if (key) {
312				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
313				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
314					BUG();
315			}
316		} while (0);
317#endif
318
319		/* Get the TIME_WAIT timeout firing. */
320		if (timeo < rto)
321			timeo = rto;
322
323		if (recycle_ok) {
324			tw->tw_timeout = rto;
325		} else {
326			tw->tw_timeout = TCP_TIMEWAIT_LEN;
327			if (state == TCP_TIME_WAIT)
328				timeo = TCP_TIMEWAIT_LEN;
329		}
330
 
331		inet_twsk_schedule(tw, timeo);
332		/* Linkage updates. */
333		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
334		inet_twsk_put(tw);
 
 
335	} else {
336		/* Sorry, if we're out of memory, just CLOSE this
337		 * socket up.  We've got bigger problems than
338		 * non-graceful socket closings.
339		 */
340		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
341	}
342
343	tcp_update_metrics(sk);
344	tcp_done(sk);
345}
 
346
347void tcp_twsk_destructor(struct sock *sk)
348{
349#ifdef CONFIG_TCP_MD5SIG
350	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
351
352	if (twsk->tw_md5_key)
353		kfree_rcu(twsk->tw_md5_key, rcu);
354#endif
355}
356EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
357
358/* Warning : This function is called without sk_listener being locked.
359 * Be sure to read socket fields once, as their value could change under us.
360 */
361void tcp_openreq_init_rwin(struct request_sock *req,
362			   const struct sock *sk_listener,
363			   const struct dst_entry *dst)
364{
365	struct inet_request_sock *ireq = inet_rsk(req);
366	const struct tcp_sock *tp = tcp_sk(sk_listener);
367	u16 user_mss = READ_ONCE(tp->rx_opt.user_mss);
368	int full_space = tcp_full_space(sk_listener);
369	int mss = dst_metric_advmss(dst);
370	u32 window_clamp;
371	__u8 rcv_wscale;
 
 
372
373	if (user_mss && user_mss < mss)
374		mss = user_mss;
375
376	window_clamp = READ_ONCE(tp->window_clamp);
377	/* Set this up on the first call only */
378	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
379
380	/* limit the window selection if the user enforce a smaller rx buffer */
381	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
382	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
383		req->rsk_window_clamp = full_space;
384
 
 
 
 
 
 
385	/* tcp_full_space because it is guaranteed to be the first packet */
386	tcp_select_initial_window(full_space,
387		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
388		&req->rsk_rcv_wnd,
389		&req->rsk_window_clamp,
390		ireq->wscale_ok,
391		&rcv_wscale,
392		dst_metric(dst, RTAX_INITRWND));
393	ireq->rcv_wscale = rcv_wscale;
394}
395EXPORT_SYMBOL(tcp_openreq_init_rwin);
396
397static void tcp_ecn_openreq_child(struct tcp_sock *tp,
398				  const struct request_sock *req)
399{
400	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
401}
402
403void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
404{
405	struct inet_connection_sock *icsk = inet_csk(sk);
406	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
407	bool ca_got_dst = false;
408
409	if (ca_key != TCP_CA_UNSPEC) {
410		const struct tcp_congestion_ops *ca;
411
412		rcu_read_lock();
413		ca = tcp_ca_find_key(ca_key);
414		if (likely(ca && try_module_get(ca->owner))) {
415			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
416			icsk->icsk_ca_ops = ca;
417			ca_got_dst = true;
418		}
419		rcu_read_unlock();
420	}
421
422	/* If no valid choice made yet, assign current system default ca. */
423	if (!ca_got_dst &&
424	    (!icsk->icsk_ca_setsockopt ||
425	     !try_module_get(icsk->icsk_ca_ops->owner)))
426		tcp_assign_congestion_control(sk);
427
428	tcp_set_ca_state(sk, TCP_CA_Open);
429}
430EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432/* This is not only more efficient than what we used to do, it eliminates
433 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
434 *
435 * Actually, we could lots of memory writes here. tp of listening
436 * socket contains all necessary default parameters.
437 */
438struct sock *tcp_create_openreq_child(const struct sock *sk,
439				      struct request_sock *req,
440				      struct sk_buff *skb)
441{
442	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
443
444	if (newsk) {
445		const struct inet_request_sock *ireq = inet_rsk(req);
446		struct tcp_request_sock *treq = tcp_rsk(req);
447		struct inet_connection_sock *newicsk = inet_csk(newsk);
448		struct tcp_sock *newtp = tcp_sk(newsk);
 
 
 
449
450		/* Now setup tcp_sock */
451		newtp->pred_flags = 0;
452
453		newtp->rcv_wup = newtp->copied_seq =
454		newtp->rcv_nxt = treq->rcv_isn + 1;
455		newtp->segs_in = 1;
456
457		newtp->snd_sml = newtp->snd_una =
458		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
459
460		tcp_prequeue_init(newtp);
461		INIT_LIST_HEAD(&newtp->tsq_node);
 
462
463		tcp_init_wl(newtp, treq->rcv_isn);
464
465		newtp->srtt_us = 0;
466		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
467		newtp->rtt_min[0].rtt = ~0U;
468		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
 
469
470		newtp->packets_out = 0;
471		newtp->retrans_out = 0;
472		newtp->sacked_out = 0;
473		newtp->fackets_out = 0;
474		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
475		tcp_enable_early_retrans(newtp);
476		newtp->tlp_high_seq = 0;
477		newtp->lsndtime = treq->snt_synack.stamp_jiffies;
478		newsk->sk_txhash = treq->txhash;
479		newtp->last_oow_ack_time = 0;
480		newtp->total_retrans = req->num_retrans;
481
482		/* So many TCP implementations out there (incorrectly) count the
483		 * initial SYN frame in their delayed-ACK and congestion control
484		 * algorithms that we must have the following bandaid to talk
485		 * efficiently to them.  -DaveM
486		 */
487		newtp->snd_cwnd = TCP_INIT_CWND;
488		newtp->snd_cwnd_cnt = 0;
489
 
 
 
490		tcp_init_xmit_timers(newsk);
491		__skb_queue_head_init(&newtp->out_of_order_queue);
492		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
493
494		newtp->rx_opt.saw_tstamp = 0;
495
496		newtp->rx_opt.dsack = 0;
497		newtp->rx_opt.num_sacks = 0;
498
499		newtp->urg_data = 0;
500
501		if (sock_flag(newsk, SOCK_KEEPOPEN))
502			inet_csk_reset_keepalive_timer(newsk,
503						       keepalive_time_when(newtp));
504
505		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
506		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
507			if (sysctl_tcp_fack)
508				tcp_enable_fack(newtp);
509		}
510		newtp->window_clamp = req->rsk_window_clamp;
511		newtp->rcv_ssthresh = req->rsk_rcv_wnd;
512		newtp->rcv_wnd = req->rsk_rcv_wnd;
513		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
514		if (newtp->rx_opt.wscale_ok) {
515			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
516			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
517		} else {
518			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
519			newtp->window_clamp = min(newtp->window_clamp, 65535U);
520		}
521		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
522				  newtp->rx_opt.snd_wscale);
523		newtp->max_window = newtp->snd_wnd;
524
525		if (newtp->rx_opt.tstamp_ok) {
526			newtp->rx_opt.ts_recent = req->ts_recent;
527			newtp->rx_opt.ts_recent_stamp = get_seconds();
528			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
529		} else {
530			newtp->rx_opt.ts_recent_stamp = 0;
531			newtp->tcp_header_len = sizeof(struct tcphdr);
532		}
533		newtp->tsoffset = 0;
534#ifdef CONFIG_TCP_MD5SIG
535		newtp->md5sig_info = NULL;	/*XXX*/
536		if (newtp->af_specific->md5_lookup(sk, newsk))
537			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
538#endif
539		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
540			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
541		newtp->rx_opt.mss_clamp = req->mss;
542		tcp_ecn_openreq_child(newtp, req);
 
543		newtp->fastopen_rsk = NULL;
544		newtp->syn_data_acked = 0;
545		newtp->rack.mstamp.v64 = 0;
546		newtp->rack.advanced = 0;
 
 
 
 
547
548		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
549	}
550	return newsk;
551}
552EXPORT_SYMBOL(tcp_create_openreq_child);
553
554/*
555 * Process an incoming packet for SYN_RECV sockets represented as a
556 * request_sock. Normally sk is the listener socket but for TFO it
557 * points to the child socket.
558 *
559 * XXX (TFO) - The current impl contains a special check for ack
560 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
561 *
562 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
563 */
564
565struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
566			   struct request_sock *req,
567			   bool fastopen)
568{
569	struct tcp_options_received tmp_opt;
570	struct sock *child;
571	const struct tcphdr *th = tcp_hdr(skb);
572	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
573	bool paws_reject = false;
574	bool own_req;
575
576	tmp_opt.saw_tstamp = 0;
577	if (th->doff > (sizeof(struct tcphdr)>>2)) {
578		tcp_parse_options(skb, &tmp_opt, 0, NULL);
579
580		if (tmp_opt.saw_tstamp) {
581			tmp_opt.ts_recent = req->ts_recent;
 
 
582			/* We do not store true stamp, but it is not required,
583			 * it can be estimated (approximately)
584			 * from another data.
585			 */
586			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
587			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
588		}
589	}
590
591	/* Check for pure retransmitted SYN. */
592	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
593	    flg == TCP_FLAG_SYN &&
594	    !paws_reject) {
595		/*
596		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
597		 * this case on figure 6 and figure 8, but formal
598		 * protocol description says NOTHING.
599		 * To be more exact, it says that we should send ACK,
600		 * because this segment (at least, if it has no data)
601		 * is out of window.
602		 *
603		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
604		 *  describe SYN-RECV state. All the description
605		 *  is wrong, we cannot believe to it and should
606		 *  rely only on common sense and implementation
607		 *  experience.
608		 *
609		 * Enforce "SYN-ACK" according to figure 8, figure 6
610		 * of RFC793, fixed by RFC1122.
611		 *
612		 * Note that even if there is new data in the SYN packet
613		 * they will be thrown away too.
614		 *
615		 * Reset timer after retransmitting SYNACK, similar to
616		 * the idea of fast retransmit in recovery.
617		 */
618		if (!tcp_oow_rate_limited(sock_net(sk), skb,
619					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
620					  &tcp_rsk(req)->last_oow_ack_time) &&
621
622		    !inet_rtx_syn_ack(sk, req)) {
623			unsigned long expires = jiffies;
624
625			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
626				       TCP_RTO_MAX);
627			if (!fastopen)
628				mod_timer_pending(&req->rsk_timer, expires);
629			else
630				req->rsk_timer.expires = expires;
631		}
632		return NULL;
633	}
634
635	/* Further reproduces section "SEGMENT ARRIVES"
636	   for state SYN-RECEIVED of RFC793.
637	   It is broken, however, it does not work only
638	   when SYNs are crossed.
639
640	   You would think that SYN crossing is impossible here, since
641	   we should have a SYN_SENT socket (from connect()) on our end,
642	   but this is not true if the crossed SYNs were sent to both
643	   ends by a malicious third party.  We must defend against this,
644	   and to do that we first verify the ACK (as per RFC793, page
645	   36) and reset if it is invalid.  Is this a true full defense?
646	   To convince ourselves, let us consider a way in which the ACK
647	   test can still pass in this 'malicious crossed SYNs' case.
648	   Malicious sender sends identical SYNs (and thus identical sequence
649	   numbers) to both A and B:
650
651		A: gets SYN, seq=7
652		B: gets SYN, seq=7
653
654	   By our good fortune, both A and B select the same initial
655	   send sequence number of seven :-)
656
657		A: sends SYN|ACK, seq=7, ack_seq=8
658		B: sends SYN|ACK, seq=7, ack_seq=8
659
660	   So we are now A eating this SYN|ACK, ACK test passes.  So
661	   does sequence test, SYN is truncated, and thus we consider
662	   it a bare ACK.
663
664	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
665	   bare ACK.  Otherwise, we create an established connection.  Both
666	   ends (listening sockets) accept the new incoming connection and try
667	   to talk to each other. 8-)
668
669	   Note: This case is both harmless, and rare.  Possibility is about the
670	   same as us discovering intelligent life on another plant tomorrow.
671
672	   But generally, we should (RFC lies!) to accept ACK
673	   from SYNACK both here and in tcp_rcv_state_process().
674	   tcp_rcv_state_process() does not, hence, we do not too.
675
676	   Note that the case is absolutely generic:
677	   we cannot optimize anything here without
678	   violating protocol. All the checks must be made
679	   before attempt to create socket.
680	 */
681
682	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
683	 *                  and the incoming segment acknowledges something not yet
684	 *                  sent (the segment carries an unacceptable ACK) ...
685	 *                  a reset is sent."
686	 *
687	 * Invalid ACK: reset will be sent by listening socket.
688	 * Note that the ACK validity check for a Fast Open socket is done
689	 * elsewhere and is checked directly against the child socket rather
690	 * than req because user data may have been sent out.
691	 */
692	if ((flg & TCP_FLAG_ACK) && !fastopen &&
693	    (TCP_SKB_CB(skb)->ack_seq !=
694	     tcp_rsk(req)->snt_isn + 1))
695		return sk;
696
697	/* Also, it would be not so bad idea to check rcv_tsecr, which
698	 * is essentially ACK extension and too early or too late values
699	 * should cause reset in unsynchronized states.
700	 */
701
702	/* RFC793: "first check sequence number". */
703
704	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
705					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
706		/* Out of window: send ACK and drop. */
707		if (!(flg & TCP_FLAG_RST))
 
 
 
708			req->rsk_ops->send_ack(sk, skb, req);
709		if (paws_reject)
710			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
711		return NULL;
712	}
713
714	/* In sequence, PAWS is OK. */
715
716	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
717		req->ts_recent = tmp_opt.rcv_tsval;
718
719	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
720		/* Truncate SYN, it is out of window starting
721		   at tcp_rsk(req)->rcv_isn + 1. */
722		flg &= ~TCP_FLAG_SYN;
723	}
724
725	/* RFC793: "second check the RST bit" and
726	 *	   "fourth, check the SYN bit"
727	 */
728	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
729		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
730		goto embryonic_reset;
731	}
732
733	/* ACK sequence verified above, just make sure ACK is
734	 * set.  If ACK not set, just silently drop the packet.
735	 *
736	 * XXX (TFO) - if we ever allow "data after SYN", the
737	 * following check needs to be removed.
738	 */
739	if (!(flg & TCP_FLAG_ACK))
740		return NULL;
741
742	/* For Fast Open no more processing is needed (sk is the
743	 * child socket).
744	 */
745	if (fastopen)
746		return sk;
747
748	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
749	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
750	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
751		inet_rsk(req)->acked = 1;
752		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
753		return NULL;
754	}
755
756	/* OK, ACK is valid, create big socket and
757	 * feed this segment to it. It will repeat all
758	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
759	 * ESTABLISHED STATE. If it will be dropped after
760	 * socket is created, wait for troubles.
761	 */
762	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
763							 req, &own_req);
764	if (!child)
765		goto listen_overflow;
766
767	sock_rps_save_rxhash(child, skb);
768	tcp_synack_rtt_meas(child, req);
 
769	return inet_csk_complete_hashdance(sk, child, req, own_req);
770
771listen_overflow:
772	if (!sysctl_tcp_abort_on_overflow) {
773		inet_rsk(req)->acked = 1;
774		return NULL;
775	}
776
777embryonic_reset:
778	if (!(flg & TCP_FLAG_RST)) {
779		/* Received a bad SYN pkt - for TFO We try not to reset
780		 * the local connection unless it's really necessary to
781		 * avoid becoming vulnerable to outside attack aiming at
782		 * resetting legit local connections.
783		 */
784		req->rsk_ops->send_reset(sk, skb);
785	} else if (fastopen) { /* received a valid RST pkt */
786		reqsk_fastopen_remove(sk, req, true);
787		tcp_reset(sk);
788	}
789	if (!fastopen) {
790		inet_csk_reqsk_queue_drop(sk, req);
791		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
792	}
793	return NULL;
794}
795EXPORT_SYMBOL(tcp_check_req);
796
797/*
798 * Queue segment on the new socket if the new socket is active,
799 * otherwise we just shortcircuit this and continue with
800 * the new socket.
801 *
802 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
803 * when entering. But other states are possible due to a race condition
804 * where after __inet_lookup_established() fails but before the listener
805 * locked is obtained, other packets cause the same connection to
806 * be created.
807 */
808
809int tcp_child_process(struct sock *parent, struct sock *child,
810		      struct sk_buff *skb)
811{
812	int ret = 0;
813	int state = child->sk_state;
 
 
 
814
815	tcp_segs_in(tcp_sk(child), skb);
816	if (!sock_owned_by_user(child)) {
817		ret = tcp_rcv_state_process(child, skb);
818		/* Wakeup parent, send SIGIO */
819		if (state == TCP_SYN_RECV && child->sk_state != state)
820			parent->sk_data_ready(parent);
821	} else {
822		/* Alas, it is possible again, because we do lookup
823		 * in main socket hash table and lock on listening
824		 * socket does not protect us more.
825		 */
826		__sk_add_backlog(child, skb);
827	}
828
829	bh_unlock_sock(child);
830	sock_put(child);
831	return ret;
832}
833EXPORT_SYMBOL(tcp_child_process);