Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * (C) 1997 Linus Torvalds
   3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   4 */
   5#include <linux/export.h>
   6#include <linux/fs.h>
 
   7#include <linux/mm.h>
   8#include <linux/backing-dev.h>
   9#include <linux/hash.h>
  10#include <linux/swap.h>
  11#include <linux/security.h>
  12#include <linux/cdev.h>
  13#include <linux/bootmem.h>
  14#include <linux/fsnotify.h>
  15#include <linux/mount.h>
  16#include <linux/posix_acl.h>
  17#include <linux/prefetch.h>
  18#include <linux/buffer_head.h> /* for inode_has_buffers */
  19#include <linux/ratelimit.h>
  20#include <linux/list_lru.h>
  21#include <linux/iversion.h>
 
  22#include <trace/events/writeback.h>
  23#include "internal.h"
  24
  25/*
  26 * Inode locking rules:
  27 *
  28 * inode->i_lock protects:
  29 *   inode->i_state, inode->i_hash, __iget()
  30 * Inode LRU list locks protect:
  31 *   inode->i_sb->s_inode_lru, inode->i_lru
  32 * inode->i_sb->s_inode_list_lock protects:
  33 *   inode->i_sb->s_inodes, inode->i_sb_list
  34 * bdi->wb.list_lock protects:
  35 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
  36 * inode_hash_lock protects:
  37 *   inode_hashtable, inode->i_hash
  38 *
  39 * Lock ordering:
  40 *
  41 * inode->i_sb->s_inode_list_lock
  42 *   inode->i_lock
  43 *     Inode LRU list locks
  44 *
  45 * bdi->wb.list_lock
  46 *   inode->i_lock
  47 *
  48 * inode_hash_lock
  49 *   inode->i_sb->s_inode_list_lock
  50 *   inode->i_lock
  51 *
  52 * iunique_lock
  53 *   inode_hash_lock
  54 */
  55
  56static unsigned int i_hash_mask __read_mostly;
  57static unsigned int i_hash_shift __read_mostly;
  58static struct hlist_head *inode_hashtable __read_mostly;
  59static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  60
  61/*
  62 * Empty aops. Can be used for the cases where the user does not
  63 * define any of the address_space operations.
  64 */
  65const struct address_space_operations empty_aops = {
  66};
  67EXPORT_SYMBOL(empty_aops);
  68
  69/*
  70 * Statistics gathering..
  71 */
  72struct inodes_stat_t inodes_stat;
  73
  74static DEFINE_PER_CPU(unsigned long, nr_inodes);
  75static DEFINE_PER_CPU(unsigned long, nr_unused);
  76
  77static struct kmem_cache *inode_cachep __read_mostly;
  78
  79static long get_nr_inodes(void)
  80{
  81	int i;
  82	long sum = 0;
  83	for_each_possible_cpu(i)
  84		sum += per_cpu(nr_inodes, i);
  85	return sum < 0 ? 0 : sum;
  86}
  87
  88static inline long get_nr_inodes_unused(void)
  89{
  90	int i;
  91	long sum = 0;
  92	for_each_possible_cpu(i)
  93		sum += per_cpu(nr_unused, i);
  94	return sum < 0 ? 0 : sum;
  95}
  96
  97long get_nr_dirty_inodes(void)
  98{
  99	/* not actually dirty inodes, but a wild approximation */
 100	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 101	return nr_dirty > 0 ? nr_dirty : 0;
 102}
 103
 104/*
 105 * Handle nr_inode sysctl
 106 */
 107#ifdef CONFIG_SYSCTL
 108int proc_nr_inodes(struct ctl_table *table, int write,
 109		   void __user *buffer, size_t *lenp, loff_t *ppos)
 
 
 
 
 
 110{
 111	inodes_stat.nr_inodes = get_nr_inodes();
 112	inodes_stat.nr_unused = get_nr_inodes_unused();
 113	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 114}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115#endif
 116
 117static int no_open(struct inode *inode, struct file *file)
 118{
 119	return -ENXIO;
 120}
 121
 122/**
 123 * inode_init_always - perform inode structure initialisation
 124 * @sb: superblock inode belongs to
 125 * @inode: inode to initialise
 126 *
 127 * These are initializations that need to be done on every inode
 128 * allocation as the fields are not initialised by slab allocation.
 129 */
 130int inode_init_always(struct super_block *sb, struct inode *inode)
 131{
 132	static const struct inode_operations empty_iops;
 133	static const struct file_operations no_open_fops = {.open = no_open};
 134	struct address_space *const mapping = &inode->i_data;
 135
 136	inode->i_sb = sb;
 137	inode->i_blkbits = sb->s_blocksize_bits;
 138	inode->i_flags = 0;
 
 139	atomic_set(&inode->i_count, 1);
 140	inode->i_op = &empty_iops;
 141	inode->i_fop = &no_open_fops;
 
 142	inode->__i_nlink = 1;
 143	inode->i_opflags = 0;
 144	if (sb->s_xattr)
 145		inode->i_opflags |= IOP_XATTR;
 146	i_uid_write(inode, 0);
 147	i_gid_write(inode, 0);
 148	atomic_set(&inode->i_writecount, 0);
 149	inode->i_size = 0;
 150	inode->i_write_hint = WRITE_LIFE_NOT_SET;
 151	inode->i_blocks = 0;
 152	inode->i_bytes = 0;
 153	inode->i_generation = 0;
 154	inode->i_pipe = NULL;
 155	inode->i_bdev = NULL;
 156	inode->i_cdev = NULL;
 157	inode->i_link = NULL;
 158	inode->i_dir_seq = 0;
 159	inode->i_rdev = 0;
 160	inode->dirtied_when = 0;
 161
 162#ifdef CONFIG_CGROUP_WRITEBACK
 163	inode->i_wb_frn_winner = 0;
 164	inode->i_wb_frn_avg_time = 0;
 165	inode->i_wb_frn_history = 0;
 166#endif
 167
 168	if (security_inode_alloc(inode))
 169		goto out;
 170	spin_lock_init(&inode->i_lock);
 171	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 172
 173	init_rwsem(&inode->i_rwsem);
 174	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
 175
 176	atomic_set(&inode->i_dio_count, 0);
 177
 178	mapping->a_ops = &empty_aops;
 179	mapping->host = inode;
 180	mapping->flags = 0;
 181	mapping->wb_err = 0;
 182	atomic_set(&mapping->i_mmap_writable, 0);
 
 
 
 183	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 184	mapping->private_data = NULL;
 185	mapping->writeback_index = 0;
 
 
 
 
 
 
 186	inode->i_private = NULL;
 187	inode->i_mapping = mapping;
 188	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
 189#ifdef CONFIG_FS_POSIX_ACL
 190	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 191#endif
 192
 193#ifdef CONFIG_FSNOTIFY
 194	inode->i_fsnotify_mask = 0;
 195#endif
 196	inode->i_flctx = NULL;
 
 
 
 197	this_cpu_inc(nr_inodes);
 198
 199	return 0;
 200out:
 201	return -ENOMEM;
 202}
 203EXPORT_SYMBOL(inode_init_always);
 204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205static struct inode *alloc_inode(struct super_block *sb)
 206{
 
 207	struct inode *inode;
 208
 209	if (sb->s_op->alloc_inode)
 210		inode = sb->s_op->alloc_inode(sb);
 211	else
 212		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 213
 214	if (!inode)
 215		return NULL;
 216
 217	if (unlikely(inode_init_always(sb, inode))) {
 218		if (inode->i_sb->s_op->destroy_inode)
 219			inode->i_sb->s_op->destroy_inode(inode);
 220		else
 221			kmem_cache_free(inode_cachep, inode);
 
 
 
 222		return NULL;
 223	}
 224
 225	return inode;
 226}
 227
 228void free_inode_nonrcu(struct inode *inode)
 229{
 230	kmem_cache_free(inode_cachep, inode);
 231}
 232EXPORT_SYMBOL(free_inode_nonrcu);
 233
 234void __destroy_inode(struct inode *inode)
 235{
 236	BUG_ON(inode_has_buffers(inode));
 237	inode_detach_wb(inode);
 238	security_inode_free(inode);
 239	fsnotify_inode_delete(inode);
 240	locks_free_lock_context(inode);
 241	if (!inode->i_nlink) {
 242		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 243		atomic_long_dec(&inode->i_sb->s_remove_count);
 244	}
 245
 246#ifdef CONFIG_FS_POSIX_ACL
 247	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
 248		posix_acl_release(inode->i_acl);
 249	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
 250		posix_acl_release(inode->i_default_acl);
 251#endif
 252	this_cpu_dec(nr_inodes);
 253}
 254EXPORT_SYMBOL(__destroy_inode);
 255
 256static void i_callback(struct rcu_head *head)
 257{
 258	struct inode *inode = container_of(head, struct inode, i_rcu);
 259	kmem_cache_free(inode_cachep, inode);
 260}
 261
 262static void destroy_inode(struct inode *inode)
 263{
 
 
 264	BUG_ON(!list_empty(&inode->i_lru));
 265	__destroy_inode(inode);
 266	if (inode->i_sb->s_op->destroy_inode)
 267		inode->i_sb->s_op->destroy_inode(inode);
 268	else
 269		call_rcu(&inode->i_rcu, i_callback);
 
 
 
 270}
 271
 272/**
 273 * drop_nlink - directly drop an inode's link count
 274 * @inode: inode
 275 *
 276 * This is a low-level filesystem helper to replace any
 277 * direct filesystem manipulation of i_nlink.  In cases
 278 * where we are attempting to track writes to the
 279 * filesystem, a decrement to zero means an imminent
 280 * write when the file is truncated and actually unlinked
 281 * on the filesystem.
 282 */
 283void drop_nlink(struct inode *inode)
 284{
 285	WARN_ON(inode->i_nlink == 0);
 286	inode->__i_nlink--;
 287	if (!inode->i_nlink)
 288		atomic_long_inc(&inode->i_sb->s_remove_count);
 289}
 290EXPORT_SYMBOL(drop_nlink);
 291
 292/**
 293 * clear_nlink - directly zero an inode's link count
 294 * @inode: inode
 295 *
 296 * This is a low-level filesystem helper to replace any
 297 * direct filesystem manipulation of i_nlink.  See
 298 * drop_nlink() for why we care about i_nlink hitting zero.
 299 */
 300void clear_nlink(struct inode *inode)
 301{
 302	if (inode->i_nlink) {
 303		inode->__i_nlink = 0;
 304		atomic_long_inc(&inode->i_sb->s_remove_count);
 305	}
 306}
 307EXPORT_SYMBOL(clear_nlink);
 308
 309/**
 310 * set_nlink - directly set an inode's link count
 311 * @inode: inode
 312 * @nlink: new nlink (should be non-zero)
 313 *
 314 * This is a low-level filesystem helper to replace any
 315 * direct filesystem manipulation of i_nlink.
 316 */
 317void set_nlink(struct inode *inode, unsigned int nlink)
 318{
 319	if (!nlink) {
 320		clear_nlink(inode);
 321	} else {
 322		/* Yes, some filesystems do change nlink from zero to one */
 323		if (inode->i_nlink == 0)
 324			atomic_long_dec(&inode->i_sb->s_remove_count);
 325
 326		inode->__i_nlink = nlink;
 327	}
 328}
 329EXPORT_SYMBOL(set_nlink);
 330
 331/**
 332 * inc_nlink - directly increment an inode's link count
 333 * @inode: inode
 334 *
 335 * This is a low-level filesystem helper to replace any
 336 * direct filesystem manipulation of i_nlink.  Currently,
 337 * it is only here for parity with dec_nlink().
 338 */
 339void inc_nlink(struct inode *inode)
 340{
 341	if (unlikely(inode->i_nlink == 0)) {
 342		WARN_ON(!(inode->i_state & I_LINKABLE));
 343		atomic_long_dec(&inode->i_sb->s_remove_count);
 344	}
 345
 346	inode->__i_nlink++;
 347}
 348EXPORT_SYMBOL(inc_nlink);
 349
 350static void __address_space_init_once(struct address_space *mapping)
 351{
 352	INIT_RADIX_TREE(&mapping->i_pages, GFP_ATOMIC | __GFP_ACCOUNT);
 353	init_rwsem(&mapping->i_mmap_rwsem);
 354	INIT_LIST_HEAD(&mapping->private_list);
 355	spin_lock_init(&mapping->private_lock);
 356	mapping->i_mmap = RB_ROOT_CACHED;
 357}
 358
 359void address_space_init_once(struct address_space *mapping)
 360{
 361	memset(mapping, 0, sizeof(*mapping));
 362	__address_space_init_once(mapping);
 363}
 364EXPORT_SYMBOL(address_space_init_once);
 365
 366/*
 367 * These are initializations that only need to be done
 368 * once, because the fields are idempotent across use
 369 * of the inode, so let the slab aware of that.
 370 */
 371void inode_init_once(struct inode *inode)
 372{
 373	memset(inode, 0, sizeof(*inode));
 374	INIT_HLIST_NODE(&inode->i_hash);
 375	INIT_LIST_HEAD(&inode->i_devices);
 376	INIT_LIST_HEAD(&inode->i_io_list);
 377	INIT_LIST_HEAD(&inode->i_wb_list);
 378	INIT_LIST_HEAD(&inode->i_lru);
 
 379	__address_space_init_once(&inode->i_data);
 380	i_size_ordered_init(inode);
 381}
 382EXPORT_SYMBOL(inode_init_once);
 383
 384static void init_once(void *foo)
 385{
 386	struct inode *inode = (struct inode *) foo;
 387
 388	inode_init_once(inode);
 389}
 390
 391/*
 392 * inode->i_lock must be held
 393 */
 394void __iget(struct inode *inode)
 395{
 396	atomic_inc(&inode->i_count);
 397}
 398
 399/*
 400 * get additional reference to inode; caller must already hold one.
 401 */
 402void ihold(struct inode *inode)
 403{
 404	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 405}
 406EXPORT_SYMBOL(ihold);
 407
 408static void inode_lru_list_add(struct inode *inode)
 409{
 410	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
 
 
 
 
 
 
 
 
 
 411		this_cpu_inc(nr_unused);
 412	else
 413		inode->i_state |= I_REFERENCED;
 414}
 415
 416/*
 417 * Add inode to LRU if needed (inode is unused and clean).
 418 *
 419 * Needs inode->i_lock held.
 420 */
 421void inode_add_lru(struct inode *inode)
 422{
 423	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
 424				I_FREEING | I_WILL_FREE)) &&
 425	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
 426		inode_lru_list_add(inode);
 427}
 428
 429
 430static void inode_lru_list_del(struct inode *inode)
 431{
 432
 433	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
 434		this_cpu_dec(nr_unused);
 435}
 436
 437/**
 438 * inode_sb_list_add - add inode to the superblock list of inodes
 439 * @inode: inode to add
 440 */
 441void inode_sb_list_add(struct inode *inode)
 442{
 443	spin_lock(&inode->i_sb->s_inode_list_lock);
 444	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 445	spin_unlock(&inode->i_sb->s_inode_list_lock);
 446}
 447EXPORT_SYMBOL_GPL(inode_sb_list_add);
 448
 449static inline void inode_sb_list_del(struct inode *inode)
 450{
 451	if (!list_empty(&inode->i_sb_list)) {
 452		spin_lock(&inode->i_sb->s_inode_list_lock);
 453		list_del_init(&inode->i_sb_list);
 454		spin_unlock(&inode->i_sb->s_inode_list_lock);
 455	}
 456}
 457
 458static unsigned long hash(struct super_block *sb, unsigned long hashval)
 459{
 460	unsigned long tmp;
 461
 462	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 463			L1_CACHE_BYTES;
 464	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 465	return tmp & i_hash_mask;
 466}
 467
 468/**
 469 *	__insert_inode_hash - hash an inode
 470 *	@inode: unhashed inode
 471 *	@hashval: unsigned long value used to locate this object in the
 472 *		inode_hashtable.
 473 *
 474 *	Add an inode to the inode hash for this superblock.
 475 */
 476void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 477{
 478	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 479
 480	spin_lock(&inode_hash_lock);
 481	spin_lock(&inode->i_lock);
 482	hlist_add_head(&inode->i_hash, b);
 483	spin_unlock(&inode->i_lock);
 484	spin_unlock(&inode_hash_lock);
 485}
 486EXPORT_SYMBOL(__insert_inode_hash);
 487
 488/**
 489 *	__remove_inode_hash - remove an inode from the hash
 490 *	@inode: inode to unhash
 491 *
 492 *	Remove an inode from the superblock.
 493 */
 494void __remove_inode_hash(struct inode *inode)
 495{
 496	spin_lock(&inode_hash_lock);
 497	spin_lock(&inode->i_lock);
 498	hlist_del_init(&inode->i_hash);
 499	spin_unlock(&inode->i_lock);
 500	spin_unlock(&inode_hash_lock);
 501}
 502EXPORT_SYMBOL(__remove_inode_hash);
 503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504void clear_inode(struct inode *inode)
 505{
 506	/*
 507	 * We have to cycle the i_pages lock here because reclaim can be in the
 508	 * process of removing the last page (in __delete_from_page_cache())
 509	 * and we must not free the mapping under it.
 510	 */
 511	xa_lock_irq(&inode->i_data.i_pages);
 512	BUG_ON(inode->i_data.nrpages);
 513	BUG_ON(inode->i_data.nrexceptional);
 
 
 
 
 
 
 
 514	xa_unlock_irq(&inode->i_data.i_pages);
 515	BUG_ON(!list_empty(&inode->i_data.private_list));
 516	BUG_ON(!(inode->i_state & I_FREEING));
 517	BUG_ON(inode->i_state & I_CLEAR);
 518	BUG_ON(!list_empty(&inode->i_wb_list));
 519	/* don't need i_lock here, no concurrent mods to i_state */
 520	inode->i_state = I_FREEING | I_CLEAR;
 521}
 522EXPORT_SYMBOL(clear_inode);
 523
 524/*
 525 * Free the inode passed in, removing it from the lists it is still connected
 526 * to. We remove any pages still attached to the inode and wait for any IO that
 527 * is still in progress before finally destroying the inode.
 528 *
 529 * An inode must already be marked I_FREEING so that we avoid the inode being
 530 * moved back onto lists if we race with other code that manipulates the lists
 531 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 532 *
 533 * An inode must already be removed from the LRU list before being evicted from
 534 * the cache. This should occur atomically with setting the I_FREEING state
 535 * flag, so no inodes here should ever be on the LRU when being evicted.
 536 */
 537static void evict(struct inode *inode)
 538{
 539	const struct super_operations *op = inode->i_sb->s_op;
 540
 541	BUG_ON(!(inode->i_state & I_FREEING));
 542	BUG_ON(!list_empty(&inode->i_lru));
 543
 544	if (!list_empty(&inode->i_io_list))
 545		inode_io_list_del(inode);
 546
 547	inode_sb_list_del(inode);
 548
 549	/*
 550	 * Wait for flusher thread to be done with the inode so that filesystem
 551	 * does not start destroying it while writeback is still running. Since
 552	 * the inode has I_FREEING set, flusher thread won't start new work on
 553	 * the inode.  We just have to wait for running writeback to finish.
 554	 */
 555	inode_wait_for_writeback(inode);
 556
 557	if (op->evict_inode) {
 558		op->evict_inode(inode);
 559	} else {
 560		truncate_inode_pages_final(&inode->i_data);
 561		clear_inode(inode);
 562	}
 563	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
 564		bd_forget(inode);
 565	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 566		cd_forget(inode);
 567
 568	remove_inode_hash(inode);
 569
 570	spin_lock(&inode->i_lock);
 571	wake_up_bit(&inode->i_state, __I_NEW);
 572	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 573	spin_unlock(&inode->i_lock);
 574
 575	destroy_inode(inode);
 576}
 577
 578/*
 579 * dispose_list - dispose of the contents of a local list
 580 * @head: the head of the list to free
 581 *
 582 * Dispose-list gets a local list with local inodes in it, so it doesn't
 583 * need to worry about list corruption and SMP locks.
 584 */
 585static void dispose_list(struct list_head *head)
 586{
 587	while (!list_empty(head)) {
 588		struct inode *inode;
 589
 590		inode = list_first_entry(head, struct inode, i_lru);
 591		list_del_init(&inode->i_lru);
 592
 593		evict(inode);
 594		cond_resched();
 595	}
 596}
 597
 598/**
 599 * evict_inodes	- evict all evictable inodes for a superblock
 600 * @sb:		superblock to operate on
 601 *
 602 * Make sure that no inodes with zero refcount are retained.  This is
 603 * called by superblock shutdown after having SB_ACTIVE flag removed,
 604 * so any inode reaching zero refcount during or after that call will
 605 * be immediately evicted.
 606 */
 607void evict_inodes(struct super_block *sb)
 608{
 609	struct inode *inode, *next;
 610	LIST_HEAD(dispose);
 611
 612again:
 613	spin_lock(&sb->s_inode_list_lock);
 614	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 615		if (atomic_read(&inode->i_count))
 616			continue;
 617
 618		spin_lock(&inode->i_lock);
 619		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 620			spin_unlock(&inode->i_lock);
 621			continue;
 622		}
 623
 624		inode->i_state |= I_FREEING;
 625		inode_lru_list_del(inode);
 626		spin_unlock(&inode->i_lock);
 627		list_add(&inode->i_lru, &dispose);
 628
 629		/*
 630		 * We can have a ton of inodes to evict at unmount time given
 631		 * enough memory, check to see if we need to go to sleep for a
 632		 * bit so we don't livelock.
 633		 */
 634		if (need_resched()) {
 635			spin_unlock(&sb->s_inode_list_lock);
 636			cond_resched();
 637			dispose_list(&dispose);
 638			goto again;
 639		}
 640	}
 641	spin_unlock(&sb->s_inode_list_lock);
 642
 643	dispose_list(&dispose);
 644}
 645EXPORT_SYMBOL_GPL(evict_inodes);
 646
 647/**
 648 * invalidate_inodes	- attempt to free all inodes on a superblock
 649 * @sb:		superblock to operate on
 650 * @kill_dirty: flag to guide handling of dirty inodes
 651 *
 652 * Attempts to free all inodes for a given superblock.  If there were any
 653 * busy inodes return a non-zero value, else zero.
 654 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 655 * them as busy.
 656 */
 657int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 658{
 659	int busy = 0;
 660	struct inode *inode, *next;
 661	LIST_HEAD(dispose);
 662
 
 663	spin_lock(&sb->s_inode_list_lock);
 664	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 665		spin_lock(&inode->i_lock);
 666		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 667			spin_unlock(&inode->i_lock);
 668			continue;
 669		}
 670		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
 671			spin_unlock(&inode->i_lock);
 672			busy = 1;
 673			continue;
 674		}
 675		if (atomic_read(&inode->i_count)) {
 676			spin_unlock(&inode->i_lock);
 677			busy = 1;
 678			continue;
 679		}
 680
 681		inode->i_state |= I_FREEING;
 682		inode_lru_list_del(inode);
 683		spin_unlock(&inode->i_lock);
 684		list_add(&inode->i_lru, &dispose);
 
 
 
 
 
 
 685	}
 686	spin_unlock(&sb->s_inode_list_lock);
 687
 688	dispose_list(&dispose);
 689
 690	return busy;
 691}
 692
 693/*
 694 * Isolate the inode from the LRU in preparation for freeing it.
 695 *
 696 * Any inodes which are pinned purely because of attached pagecache have their
 697 * pagecache removed.  If the inode has metadata buffers attached to
 698 * mapping->private_list then try to remove them.
 699 *
 700 * If the inode has the I_REFERENCED flag set, then it means that it has been
 701 * used recently - the flag is set in iput_final(). When we encounter such an
 702 * inode, clear the flag and move it to the back of the LRU so it gets another
 703 * pass through the LRU before it gets reclaimed. This is necessary because of
 704 * the fact we are doing lazy LRU updates to minimise lock contention so the
 705 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 706 * with this flag set because they are the inodes that are out of order.
 707 */
 708static enum lru_status inode_lru_isolate(struct list_head *item,
 709		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 710{
 711	struct list_head *freeable = arg;
 712	struct inode	*inode = container_of(item, struct inode, i_lru);
 713
 714	/*
 715	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
 716	 * If we fail to get the lock, just skip it.
 717	 */
 718	if (!spin_trylock(&inode->i_lock))
 719		return LRU_SKIP;
 720
 721	/*
 722	 * Referenced or dirty inodes are still in use. Give them another pass
 723	 * through the LRU as we canot reclaim them now.
 
 
 724	 */
 725	if (atomic_read(&inode->i_count) ||
 726	    (inode->i_state & ~I_REFERENCED)) {
 
 727		list_lru_isolate(lru, &inode->i_lru);
 728		spin_unlock(&inode->i_lock);
 729		this_cpu_dec(nr_unused);
 730		return LRU_REMOVED;
 731	}
 732
 733	/* recently referenced inodes get one more pass */
 734	if (inode->i_state & I_REFERENCED) {
 735		inode->i_state &= ~I_REFERENCED;
 736		spin_unlock(&inode->i_lock);
 737		return LRU_ROTATE;
 738	}
 739
 740	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
 
 
 
 
 
 741		__iget(inode);
 742		spin_unlock(&inode->i_lock);
 743		spin_unlock(lru_lock);
 744		if (remove_inode_buffers(inode)) {
 745			unsigned long reap;
 746			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 747			if (current_is_kswapd())
 748				__count_vm_events(KSWAPD_INODESTEAL, reap);
 749			else
 750				__count_vm_events(PGINODESTEAL, reap);
 751			if (current->reclaim_state)
 752				current->reclaim_state->reclaimed_slab += reap;
 753		}
 754		iput(inode);
 755		spin_lock(lru_lock);
 756		return LRU_RETRY;
 757	}
 758
 759	WARN_ON(inode->i_state & I_NEW);
 760	inode->i_state |= I_FREEING;
 761	list_lru_isolate_move(lru, &inode->i_lru, freeable);
 762	spin_unlock(&inode->i_lock);
 763
 764	this_cpu_dec(nr_unused);
 765	return LRU_REMOVED;
 766}
 767
 768/*
 769 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 770 * This is called from the superblock shrinker function with a number of inodes
 771 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 772 * then are freed outside inode_lock by dispose_list().
 773 */
 774long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 775{
 776	LIST_HEAD(freeable);
 777	long freed;
 778
 779	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 780				     inode_lru_isolate, &freeable);
 781	dispose_list(&freeable);
 782	return freed;
 783}
 784
 785static void __wait_on_freeing_inode(struct inode *inode);
 786/*
 787 * Called with the inode lock held.
 788 */
 789static struct inode *find_inode(struct super_block *sb,
 790				struct hlist_head *head,
 791				int (*test)(struct inode *, void *),
 792				void *data)
 793{
 794	struct inode *inode = NULL;
 795
 796repeat:
 797	hlist_for_each_entry(inode, head, i_hash) {
 798		if (inode->i_sb != sb)
 799			continue;
 800		if (!test(inode, data))
 801			continue;
 802		spin_lock(&inode->i_lock);
 803		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 804			__wait_on_freeing_inode(inode);
 805			goto repeat;
 806		}
 
 
 
 
 807		__iget(inode);
 808		spin_unlock(&inode->i_lock);
 809		return inode;
 810	}
 811	return NULL;
 812}
 813
 814/*
 815 * find_inode_fast is the fast path version of find_inode, see the comment at
 816 * iget_locked for details.
 817 */
 818static struct inode *find_inode_fast(struct super_block *sb,
 819				struct hlist_head *head, unsigned long ino)
 820{
 821	struct inode *inode = NULL;
 822
 823repeat:
 824	hlist_for_each_entry(inode, head, i_hash) {
 825		if (inode->i_ino != ino)
 826			continue;
 827		if (inode->i_sb != sb)
 828			continue;
 829		spin_lock(&inode->i_lock);
 830		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 831			__wait_on_freeing_inode(inode);
 832			goto repeat;
 833		}
 
 
 
 
 834		__iget(inode);
 835		spin_unlock(&inode->i_lock);
 836		return inode;
 837	}
 838	return NULL;
 839}
 840
 841/*
 842 * Each cpu owns a range of LAST_INO_BATCH numbers.
 843 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 844 * to renew the exhausted range.
 845 *
 846 * This does not significantly increase overflow rate because every CPU can
 847 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 848 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 849 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 850 * overflow rate by 2x, which does not seem too significant.
 851 *
 852 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 853 * error if st_ino won't fit in target struct field. Use 32bit counter
 854 * here to attempt to avoid that.
 855 */
 856#define LAST_INO_BATCH 1024
 857static DEFINE_PER_CPU(unsigned int, last_ino);
 858
 859unsigned int get_next_ino(void)
 860{
 861	unsigned int *p = &get_cpu_var(last_ino);
 862	unsigned int res = *p;
 863
 864#ifdef CONFIG_SMP
 865	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 866		static atomic_t shared_last_ino;
 867		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 868
 869		res = next - LAST_INO_BATCH;
 870	}
 871#endif
 872
 873	res++;
 874	/* get_next_ino should not provide a 0 inode number */
 875	if (unlikely(!res))
 876		res++;
 877	*p = res;
 878	put_cpu_var(last_ino);
 879	return res;
 880}
 881EXPORT_SYMBOL(get_next_ino);
 882
 883/**
 884 *	new_inode_pseudo 	- obtain an inode
 885 *	@sb: superblock
 886 *
 887 *	Allocates a new inode for given superblock.
 888 *	Inode wont be chained in superblock s_inodes list
 889 *	This means :
 890 *	- fs can't be unmount
 891 *	- quotas, fsnotify, writeback can't work
 892 */
 893struct inode *new_inode_pseudo(struct super_block *sb)
 894{
 895	struct inode *inode = alloc_inode(sb);
 896
 897	if (inode) {
 898		spin_lock(&inode->i_lock);
 899		inode->i_state = 0;
 900		spin_unlock(&inode->i_lock);
 901		INIT_LIST_HEAD(&inode->i_sb_list);
 902	}
 903	return inode;
 904}
 905
 906/**
 907 *	new_inode 	- obtain an inode
 908 *	@sb: superblock
 909 *
 910 *	Allocates a new inode for given superblock. The default gfp_mask
 911 *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
 912 *	If HIGHMEM pages are unsuitable or it is known that pages allocated
 913 *	for the page cache are not reclaimable or migratable,
 914 *	mapping_set_gfp_mask() must be called with suitable flags on the
 915 *	newly created inode's mapping
 916 *
 917 */
 918struct inode *new_inode(struct super_block *sb)
 919{
 920	struct inode *inode;
 921
 922	spin_lock_prefetch(&sb->s_inode_list_lock);
 923
 924	inode = new_inode_pseudo(sb);
 925	if (inode)
 926		inode_sb_list_add(inode);
 927	return inode;
 928}
 929EXPORT_SYMBOL(new_inode);
 930
 931#ifdef CONFIG_DEBUG_LOCK_ALLOC
 932void lockdep_annotate_inode_mutex_key(struct inode *inode)
 933{
 934	if (S_ISDIR(inode->i_mode)) {
 935		struct file_system_type *type = inode->i_sb->s_type;
 936
 937		/* Set new key only if filesystem hasn't already changed it */
 938		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
 939			/*
 940			 * ensure nobody is actually holding i_mutex
 941			 */
 942			// mutex_destroy(&inode->i_mutex);
 943			init_rwsem(&inode->i_rwsem);
 944			lockdep_set_class(&inode->i_rwsem,
 945					  &type->i_mutex_dir_key);
 946		}
 947	}
 948}
 949EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
 950#endif
 951
 952/**
 953 * unlock_new_inode - clear the I_NEW state and wake up any waiters
 954 * @inode:	new inode to unlock
 955 *
 956 * Called when the inode is fully initialised to clear the new state of the
 957 * inode and wake up anyone waiting for the inode to finish initialisation.
 958 */
 959void unlock_new_inode(struct inode *inode)
 960{
 961	lockdep_annotate_inode_mutex_key(inode);
 962	spin_lock(&inode->i_lock);
 963	WARN_ON(!(inode->i_state & I_NEW));
 964	inode->i_state &= ~I_NEW;
 965	smp_mb();
 966	wake_up_bit(&inode->i_state, __I_NEW);
 967	spin_unlock(&inode->i_lock);
 968}
 969EXPORT_SYMBOL(unlock_new_inode);
 970
 
 
 
 
 
 
 
 
 
 
 
 
 
 971/**
 972 * lock_two_nondirectories - take two i_mutexes on non-directory objects
 973 *
 974 * Lock any non-NULL argument that is not a directory.
 975 * Zero, one or two objects may be locked by this function.
 976 *
 977 * @inode1: first inode to lock
 978 * @inode2: second inode to lock
 979 */
 980void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
 981{
 
 
 
 
 982	if (inode1 > inode2)
 983		swap(inode1, inode2);
 984
 985	if (inode1 && !S_ISDIR(inode1->i_mode))
 986		inode_lock(inode1);
 987	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
 988		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
 989}
 990EXPORT_SYMBOL(lock_two_nondirectories);
 991
 992/**
 993 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
 994 * @inode1: first inode to unlock
 995 * @inode2: second inode to unlock
 996 */
 997void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
 998{
 999	if (inode1 && !S_ISDIR(inode1->i_mode))
 
1000		inode_unlock(inode1);
1001	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
 
 
1002		inode_unlock(inode2);
 
1003}
1004EXPORT_SYMBOL(unlock_two_nondirectories);
1005
1006/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1007 * iget5_locked - obtain an inode from a mounted file system
1008 * @sb:		super block of file system
1009 * @hashval:	hash value (usually inode number) to get
1010 * @test:	callback used for comparisons between inodes
1011 * @set:	callback used to initialize a new struct inode
1012 * @data:	opaque data pointer to pass to @test and @set
1013 *
1014 * Search for the inode specified by @hashval and @data in the inode cache,
1015 * and if present it is return it with an increased reference count. This is
1016 * a generalized version of iget_locked() for file systems where the inode
1017 * number is not sufficient for unique identification of an inode.
1018 *
1019 * If the inode is not in cache, allocate a new inode and return it locked,
1020 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1021 * before unlocking it via unlock_new_inode().
1022 *
1023 * Note both @test and @set are called with the inode_hash_lock held, so can't
1024 * sleep.
1025 */
1026struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1027		int (*test)(struct inode *, void *),
1028		int (*set)(struct inode *, void *), void *data)
1029{
1030	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1031	struct inode *inode;
1032again:
1033	spin_lock(&inode_hash_lock);
1034	inode = find_inode(sb, head, test, data);
1035	spin_unlock(&inode_hash_lock);
1036
1037	if (inode) {
1038		wait_on_inode(inode);
1039		if (unlikely(inode_unhashed(inode))) {
1040			iput(inode);
1041			goto again;
1042		}
1043		return inode;
1044	}
1045
1046	inode = alloc_inode(sb);
1047	if (inode) {
1048		struct inode *old;
1049
1050		spin_lock(&inode_hash_lock);
1051		/* We released the lock, so.. */
1052		old = find_inode(sb, head, test, data);
1053		if (!old) {
1054			if (set(inode, data))
1055				goto set_failed;
1056
1057			spin_lock(&inode->i_lock);
1058			inode->i_state = I_NEW;
1059			hlist_add_head(&inode->i_hash, head);
1060			spin_unlock(&inode->i_lock);
1061			inode_sb_list_add(inode);
1062			spin_unlock(&inode_hash_lock);
1063
1064			/* Return the locked inode with I_NEW set, the
1065			 * caller is responsible for filling in the contents
1066			 */
1067			return inode;
1068		}
1069
1070		/*
1071		 * Uhhuh, somebody else created the same inode under
1072		 * us. Use the old inode instead of the one we just
1073		 * allocated.
1074		 */
1075		spin_unlock(&inode_hash_lock);
1076		destroy_inode(inode);
1077		inode = old;
1078		wait_on_inode(inode);
1079		if (unlikely(inode_unhashed(inode))) {
1080			iput(inode);
1081			goto again;
1082		}
1083	}
1084	return inode;
1085
1086set_failed:
1087	spin_unlock(&inode_hash_lock);
1088	destroy_inode(inode);
1089	return NULL;
1090}
1091EXPORT_SYMBOL(iget5_locked);
1092
1093/**
1094 * iget_locked - obtain an inode from a mounted file system
1095 * @sb:		super block of file system
1096 * @ino:	inode number to get
1097 *
1098 * Search for the inode specified by @ino in the inode cache and if present
1099 * return it with an increased reference count. This is for file systems
1100 * where the inode number is sufficient for unique identification of an inode.
1101 *
1102 * If the inode is not in cache, allocate a new inode and return it locked,
1103 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1104 * before unlocking it via unlock_new_inode().
1105 */
1106struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1107{
1108	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1109	struct inode *inode;
1110again:
1111	spin_lock(&inode_hash_lock);
1112	inode = find_inode_fast(sb, head, ino);
1113	spin_unlock(&inode_hash_lock);
1114	if (inode) {
 
 
1115		wait_on_inode(inode);
1116		if (unlikely(inode_unhashed(inode))) {
1117			iput(inode);
1118			goto again;
1119		}
1120		return inode;
1121	}
1122
1123	inode = alloc_inode(sb);
1124	if (inode) {
1125		struct inode *old;
1126
1127		spin_lock(&inode_hash_lock);
1128		/* We released the lock, so.. */
1129		old = find_inode_fast(sb, head, ino);
1130		if (!old) {
1131			inode->i_ino = ino;
1132			spin_lock(&inode->i_lock);
1133			inode->i_state = I_NEW;
1134			hlist_add_head(&inode->i_hash, head);
1135			spin_unlock(&inode->i_lock);
1136			inode_sb_list_add(inode);
1137			spin_unlock(&inode_hash_lock);
1138
1139			/* Return the locked inode with I_NEW set, the
1140			 * caller is responsible for filling in the contents
1141			 */
1142			return inode;
1143		}
1144
1145		/*
1146		 * Uhhuh, somebody else created the same inode under
1147		 * us. Use the old inode instead of the one we just
1148		 * allocated.
1149		 */
1150		spin_unlock(&inode_hash_lock);
1151		destroy_inode(inode);
 
 
1152		inode = old;
1153		wait_on_inode(inode);
1154		if (unlikely(inode_unhashed(inode))) {
1155			iput(inode);
1156			goto again;
1157		}
1158	}
1159	return inode;
1160}
1161EXPORT_SYMBOL(iget_locked);
1162
1163/*
1164 * search the inode cache for a matching inode number.
1165 * If we find one, then the inode number we are trying to
1166 * allocate is not unique and so we should not use it.
1167 *
1168 * Returns 1 if the inode number is unique, 0 if it is not.
1169 */
1170static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1171{
1172	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1173	struct inode *inode;
1174
1175	spin_lock(&inode_hash_lock);
1176	hlist_for_each_entry(inode, b, i_hash) {
1177		if (inode->i_ino == ino && inode->i_sb == sb) {
1178			spin_unlock(&inode_hash_lock);
1179			return 0;
1180		}
1181	}
1182	spin_unlock(&inode_hash_lock);
1183
1184	return 1;
1185}
1186
1187/**
1188 *	iunique - get a unique inode number
1189 *	@sb: superblock
1190 *	@max_reserved: highest reserved inode number
1191 *
1192 *	Obtain an inode number that is unique on the system for a given
1193 *	superblock. This is used by file systems that have no natural
1194 *	permanent inode numbering system. An inode number is returned that
1195 *	is higher than the reserved limit but unique.
1196 *
1197 *	BUGS:
1198 *	With a large number of inodes live on the file system this function
1199 *	currently becomes quite slow.
1200 */
1201ino_t iunique(struct super_block *sb, ino_t max_reserved)
1202{
1203	/*
1204	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1205	 * error if st_ino won't fit in target struct field. Use 32bit counter
1206	 * here to attempt to avoid that.
1207	 */
1208	static DEFINE_SPINLOCK(iunique_lock);
1209	static unsigned int counter;
1210	ino_t res;
1211
 
1212	spin_lock(&iunique_lock);
1213	do {
1214		if (counter <= max_reserved)
1215			counter = max_reserved + 1;
1216		res = counter++;
1217	} while (!test_inode_iunique(sb, res));
1218	spin_unlock(&iunique_lock);
 
1219
1220	return res;
1221}
1222EXPORT_SYMBOL(iunique);
1223
1224struct inode *igrab(struct inode *inode)
1225{
1226	spin_lock(&inode->i_lock);
1227	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1228		__iget(inode);
1229		spin_unlock(&inode->i_lock);
1230	} else {
1231		spin_unlock(&inode->i_lock);
1232		/*
1233		 * Handle the case where s_op->clear_inode is not been
1234		 * called yet, and somebody is calling igrab
1235		 * while the inode is getting freed.
1236		 */
1237		inode = NULL;
1238	}
1239	return inode;
1240}
1241EXPORT_SYMBOL(igrab);
1242
1243/**
1244 * ilookup5_nowait - search for an inode in the inode cache
1245 * @sb:		super block of file system to search
1246 * @hashval:	hash value (usually inode number) to search for
1247 * @test:	callback used for comparisons between inodes
1248 * @data:	opaque data pointer to pass to @test
1249 *
1250 * Search for the inode specified by @hashval and @data in the inode cache.
1251 * If the inode is in the cache, the inode is returned with an incremented
1252 * reference count.
1253 *
1254 * Note: I_NEW is not waited upon so you have to be very careful what you do
1255 * with the returned inode.  You probably should be using ilookup5() instead.
1256 *
1257 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1258 */
1259struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1260		int (*test)(struct inode *, void *), void *data)
1261{
1262	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1263	struct inode *inode;
1264
1265	spin_lock(&inode_hash_lock);
1266	inode = find_inode(sb, head, test, data);
1267	spin_unlock(&inode_hash_lock);
1268
1269	return inode;
1270}
1271EXPORT_SYMBOL(ilookup5_nowait);
1272
1273/**
1274 * ilookup5 - search for an inode in the inode cache
1275 * @sb:		super block of file system to search
1276 * @hashval:	hash value (usually inode number) to search for
1277 * @test:	callback used for comparisons between inodes
1278 * @data:	opaque data pointer to pass to @test
1279 *
1280 * Search for the inode specified by @hashval and @data in the inode cache,
1281 * and if the inode is in the cache, return the inode with an incremented
1282 * reference count.  Waits on I_NEW before returning the inode.
1283 * returned with an incremented reference count.
1284 *
1285 * This is a generalized version of ilookup() for file systems where the
1286 * inode number is not sufficient for unique identification of an inode.
1287 *
1288 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1289 */
1290struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1291		int (*test)(struct inode *, void *), void *data)
1292{
1293	struct inode *inode;
1294again:
1295	inode = ilookup5_nowait(sb, hashval, test, data);
1296	if (inode) {
1297		wait_on_inode(inode);
1298		if (unlikely(inode_unhashed(inode))) {
1299			iput(inode);
1300			goto again;
1301		}
1302	}
1303	return inode;
1304}
1305EXPORT_SYMBOL(ilookup5);
1306
1307/**
1308 * ilookup - search for an inode in the inode cache
1309 * @sb:		super block of file system to search
1310 * @ino:	inode number to search for
1311 *
1312 * Search for the inode @ino in the inode cache, and if the inode is in the
1313 * cache, the inode is returned with an incremented reference count.
1314 */
1315struct inode *ilookup(struct super_block *sb, unsigned long ino)
1316{
1317	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1318	struct inode *inode;
1319again:
1320	spin_lock(&inode_hash_lock);
1321	inode = find_inode_fast(sb, head, ino);
1322	spin_unlock(&inode_hash_lock);
1323
1324	if (inode) {
 
 
1325		wait_on_inode(inode);
1326		if (unlikely(inode_unhashed(inode))) {
1327			iput(inode);
1328			goto again;
1329		}
1330	}
1331	return inode;
1332}
1333EXPORT_SYMBOL(ilookup);
1334
1335/**
1336 * find_inode_nowait - find an inode in the inode cache
1337 * @sb:		super block of file system to search
1338 * @hashval:	hash value (usually inode number) to search for
1339 * @match:	callback used for comparisons between inodes
1340 * @data:	opaque data pointer to pass to @match
1341 *
1342 * Search for the inode specified by @hashval and @data in the inode
1343 * cache, where the helper function @match will return 0 if the inode
1344 * does not match, 1 if the inode does match, and -1 if the search
1345 * should be stopped.  The @match function must be responsible for
1346 * taking the i_lock spin_lock and checking i_state for an inode being
1347 * freed or being initialized, and incrementing the reference count
1348 * before returning 1.  It also must not sleep, since it is called with
1349 * the inode_hash_lock spinlock held.
1350 *
1351 * This is a even more generalized version of ilookup5() when the
1352 * function must never block --- find_inode() can block in
1353 * __wait_on_freeing_inode() --- or when the caller can not increment
1354 * the reference count because the resulting iput() might cause an
1355 * inode eviction.  The tradeoff is that the @match funtion must be
1356 * very carefully implemented.
1357 */
1358struct inode *find_inode_nowait(struct super_block *sb,
1359				unsigned long hashval,
1360				int (*match)(struct inode *, unsigned long,
1361					     void *),
1362				void *data)
1363{
1364	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1365	struct inode *inode, *ret_inode = NULL;
1366	int mval;
1367
1368	spin_lock(&inode_hash_lock);
1369	hlist_for_each_entry(inode, head, i_hash) {
1370		if (inode->i_sb != sb)
1371			continue;
1372		mval = match(inode, hashval, data);
1373		if (mval == 0)
1374			continue;
1375		if (mval == 1)
1376			ret_inode = inode;
1377		goto out;
1378	}
1379out:
1380	spin_unlock(&inode_hash_lock);
1381	return ret_inode;
1382}
1383EXPORT_SYMBOL(find_inode_nowait);
1384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385int insert_inode_locked(struct inode *inode)
1386{
1387	struct super_block *sb = inode->i_sb;
1388	ino_t ino = inode->i_ino;
1389	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1390
1391	while (1) {
1392		struct inode *old = NULL;
1393		spin_lock(&inode_hash_lock);
1394		hlist_for_each_entry(old, head, i_hash) {
1395			if (old->i_ino != ino)
1396				continue;
1397			if (old->i_sb != sb)
1398				continue;
1399			spin_lock(&old->i_lock);
1400			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1401				spin_unlock(&old->i_lock);
1402				continue;
1403			}
1404			break;
1405		}
1406		if (likely(!old)) {
1407			spin_lock(&inode->i_lock);
1408			inode->i_state |= I_NEW;
1409			hlist_add_head(&inode->i_hash, head);
1410			spin_unlock(&inode->i_lock);
1411			spin_unlock(&inode_hash_lock);
1412			return 0;
1413		}
 
 
 
 
 
1414		__iget(old);
1415		spin_unlock(&old->i_lock);
1416		spin_unlock(&inode_hash_lock);
1417		wait_on_inode(old);
1418		if (unlikely(!inode_unhashed(old))) {
1419			iput(old);
1420			return -EBUSY;
1421		}
1422		iput(old);
1423	}
1424}
1425EXPORT_SYMBOL(insert_inode_locked);
1426
1427int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1428		int (*test)(struct inode *, void *), void *data)
1429{
1430	struct super_block *sb = inode->i_sb;
1431	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1432
1433	while (1) {
1434		struct inode *old = NULL;
1435
1436		spin_lock(&inode_hash_lock);
1437		hlist_for_each_entry(old, head, i_hash) {
1438			if (old->i_sb != sb)
1439				continue;
1440			if (!test(old, data))
1441				continue;
1442			spin_lock(&old->i_lock);
1443			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1444				spin_unlock(&old->i_lock);
1445				continue;
1446			}
1447			break;
1448		}
1449		if (likely(!old)) {
1450			spin_lock(&inode->i_lock);
1451			inode->i_state |= I_NEW;
1452			hlist_add_head(&inode->i_hash, head);
1453			spin_unlock(&inode->i_lock);
1454			spin_unlock(&inode_hash_lock);
1455			return 0;
1456		}
1457		__iget(old);
1458		spin_unlock(&old->i_lock);
1459		spin_unlock(&inode_hash_lock);
1460		wait_on_inode(old);
1461		if (unlikely(!inode_unhashed(old))) {
1462			iput(old);
1463			return -EBUSY;
1464		}
1465		iput(old);
 
1466	}
 
1467}
1468EXPORT_SYMBOL(insert_inode_locked4);
1469
1470
1471int generic_delete_inode(struct inode *inode)
1472{
1473	return 1;
1474}
1475EXPORT_SYMBOL(generic_delete_inode);
1476
1477/*
1478 * Called when we're dropping the last reference
1479 * to an inode.
1480 *
1481 * Call the FS "drop_inode()" function, defaulting to
1482 * the legacy UNIX filesystem behaviour.  If it tells
1483 * us to evict inode, do so.  Otherwise, retain inode
1484 * in cache if fs is alive, sync and evict if fs is
1485 * shutting down.
1486 */
1487static void iput_final(struct inode *inode)
1488{
1489	struct super_block *sb = inode->i_sb;
1490	const struct super_operations *op = inode->i_sb->s_op;
 
1491	int drop;
1492
1493	WARN_ON(inode->i_state & I_NEW);
1494
1495	if (op->drop_inode)
1496		drop = op->drop_inode(inode);
1497	else
1498		drop = generic_drop_inode(inode);
1499
1500	if (!drop && (sb->s_flags & SB_ACTIVE)) {
1501		inode_add_lru(inode);
 
 
1502		spin_unlock(&inode->i_lock);
1503		return;
1504	}
1505
 
1506	if (!drop) {
1507		inode->i_state |= I_WILL_FREE;
1508		spin_unlock(&inode->i_lock);
 
1509		write_inode_now(inode, 1);
 
1510		spin_lock(&inode->i_lock);
1511		WARN_ON(inode->i_state & I_NEW);
1512		inode->i_state &= ~I_WILL_FREE;
 
1513	}
1514
1515	inode->i_state |= I_FREEING;
1516	if (!list_empty(&inode->i_lru))
1517		inode_lru_list_del(inode);
1518	spin_unlock(&inode->i_lock);
1519
1520	evict(inode);
1521}
1522
1523/**
1524 *	iput	- put an inode
1525 *	@inode: inode to put
1526 *
1527 *	Puts an inode, dropping its usage count. If the inode use count hits
1528 *	zero, the inode is then freed and may also be destroyed.
1529 *
1530 *	Consequently, iput() can sleep.
1531 */
1532void iput(struct inode *inode)
1533{
1534	if (!inode)
1535		return;
1536	BUG_ON(inode->i_state & I_CLEAR);
1537retry:
1538	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1539		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1540			atomic_inc(&inode->i_count);
1541			spin_unlock(&inode->i_lock);
1542			trace_writeback_lazytime_iput(inode);
1543			mark_inode_dirty_sync(inode);
1544			goto retry;
1545		}
1546		iput_final(inode);
1547	}
1548}
1549EXPORT_SYMBOL(iput);
1550
 
1551/**
1552 *	bmap	- find a block number in a file
1553 *	@inode: inode of file
1554 *	@block: block to find
1555 *
1556 *	Returns the block number on the device holding the inode that
1557 *	is the disk block number for the block of the file requested.
1558 *	That is, asked for block 4 of inode 1 the function will return the
1559 *	disk block relative to the disk start that holds that block of the
1560 *	file.
1561 */
1562sector_t bmap(struct inode *inode, sector_t block)
1563{
1564	sector_t res = 0;
1565	if (inode->i_mapping->a_ops->bmap)
1566		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1567	return res;
1568}
1569EXPORT_SYMBOL(bmap);
1570
1571/*
1572 * Update times in overlayed inode from underlying real inode
1573 */
1574static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1575			       bool rcu)
1576{
1577	struct dentry *upperdentry;
1578
1579	/*
1580	 * Nothing to do if in rcu or if non-overlayfs
1581	 */
1582	if (rcu || likely(!(dentry->d_flags & DCACHE_OP_REAL)))
1583		return;
1584
1585	upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
1586
1587	/*
1588	 * If file is on lower then we can't update atime, so no worries about
1589	 * stale mtime/ctime.
1590	 */
1591	if (upperdentry) {
1592		struct inode *realinode = d_inode(upperdentry);
1593
1594		if ((!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1595		     !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1596			inode->i_mtime = realinode->i_mtime;
1597			inode->i_ctime = realinode->i_ctime;
1598		}
1599	}
1600}
 
 
1601
1602/*
1603 * With relative atime, only update atime if the previous atime is
1604 * earlier than either the ctime or mtime or if at least a day has
1605 * passed since the last atime update.
1606 */
1607static int relatime_need_update(const struct path *path, struct inode *inode,
1608				struct timespec now, bool rcu)
1609{
 
1610
1611	if (!(path->mnt->mnt_flags & MNT_RELATIME))
1612		return 1;
1613
1614	update_ovl_inode_times(path->dentry, inode, rcu);
1615	/*
1616	 * Is mtime younger than atime? If yes, update atime:
1617	 */
1618	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1619		return 1;
 
 
1620	/*
1621	 * Is ctime younger than atime? If yes, update atime:
1622	 */
1623	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1624		return 1;
 
1625
1626	/*
1627	 * Is the previous atime value older than a day? If yes,
1628	 * update atime:
1629	 */
1630	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1631		return 1;
1632	/*
1633	 * Good, we can skip the atime update:
1634	 */
1635	return 0;
1636}
1637
1638int generic_update_time(struct inode *inode, struct timespec *time, int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1639{
1640	int iflags = I_DIRTY_TIME;
1641	bool dirty = false;
1642
1643	if (flags & S_ATIME)
1644		inode->i_atime = *time;
1645	if (flags & S_VERSION)
1646		dirty = inode_maybe_inc_iversion(inode, false);
1647	if (flags & S_CTIME)
1648		inode->i_ctime = *time;
1649	if (flags & S_MTIME)
1650		inode->i_mtime = *time;
1651	if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1652	    !(inode->i_sb->s_flags & SB_LAZYTIME))
1653		dirty = true;
1654
1655	if (dirty)
1656		iflags |= I_DIRTY_SYNC;
1657	__mark_inode_dirty(inode, iflags);
1658	return 0;
1659}
1660EXPORT_SYMBOL(generic_update_time);
1661
1662/*
1663 * This does the actual work of updating an inodes time or version.  Must have
1664 * had called mnt_want_write() before calling this.
1665 */
1666static int update_time(struct inode *inode, struct timespec *time, int flags)
1667{
1668	int (*update_time)(struct inode *, struct timespec *, int);
1669
1670	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1671		generic_update_time;
1672
1673	return update_time(inode, time, flags);
1674}
 
1675
1676/**
1677 *	touch_atime	-	update the access time
1678 *	@path: the &struct path to update
1679 *	@inode: inode to update
1680 *
1681 *	Update the accessed time on an inode and mark it for writeback.
1682 *	This function automatically handles read only file systems and media,
1683 *	as well as the "noatime" flag and inode specific "noatime" markers.
1684 */
1685bool __atime_needs_update(const struct path *path, struct inode *inode,
1686			  bool rcu)
1687{
1688	struct vfsmount *mnt = path->mnt;
1689	struct timespec now;
1690
1691	if (inode->i_flags & S_NOATIME)
1692		return false;
1693
1694	/* Atime updates will likely cause i_uid and i_gid to be written
1695	 * back improprely if their true value is unknown to the vfs.
1696	 */
1697	if (HAS_UNMAPPED_ID(inode))
1698		return false;
1699
1700	if (IS_NOATIME(inode))
1701		return false;
1702	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1703		return false;
1704
1705	if (mnt->mnt_flags & MNT_NOATIME)
1706		return false;
1707	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1708		return false;
1709
1710	now = current_time(inode);
1711
1712	if (!relatime_need_update(path, inode, now, rcu))
1713		return false;
1714
1715	if (timespec_equal(&inode->i_atime, &now))
 
1716		return false;
1717
1718	return true;
1719}
1720
1721void touch_atime(const struct path *path)
1722{
1723	struct vfsmount *mnt = path->mnt;
1724	struct inode *inode = d_inode(path->dentry);
1725	struct timespec now;
1726
1727	if (!__atime_needs_update(path, inode, false))
1728		return;
1729
1730	if (!sb_start_write_trylock(inode->i_sb))
1731		return;
1732
1733	if (__mnt_want_write(mnt) != 0)
1734		goto skip_update;
1735	/*
1736	 * File systems can error out when updating inodes if they need to
1737	 * allocate new space to modify an inode (such is the case for
1738	 * Btrfs), but since we touch atime while walking down the path we
1739	 * really don't care if we failed to update the atime of the file,
1740	 * so just ignore the return value.
1741	 * We may also fail on filesystems that have the ability to make parts
1742	 * of the fs read only, e.g. subvolumes in Btrfs.
1743	 */
1744	now = current_time(inode);
1745	update_time(inode, &now, S_ATIME);
1746	__mnt_drop_write(mnt);
1747skip_update:
1748	sb_end_write(inode->i_sb);
1749}
1750EXPORT_SYMBOL(touch_atime);
1751
1752/*
1753 * The logic we want is
1754 *
1755 *	if suid or (sgid and xgrp)
1756 *		remove privs
1757 */
1758int should_remove_suid(struct dentry *dentry)
1759{
1760	umode_t mode = d_inode(dentry)->i_mode;
1761	int kill = 0;
1762
1763	/* suid always must be killed */
1764	if (unlikely(mode & S_ISUID))
1765		kill = ATTR_KILL_SUID;
1766
1767	/*
1768	 * sgid without any exec bits is just a mandatory locking mark; leave
1769	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1770	 */
1771	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1772		kill |= ATTR_KILL_SGID;
1773
1774	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1775		return kill;
1776
1777	return 0;
1778}
1779EXPORT_SYMBOL(should_remove_suid);
1780
1781/*
1782 * Return mask of changes for notify_change() that need to be done as a
1783 * response to write or truncate. Return 0 if nothing has to be changed.
1784 * Negative value on error (change should be denied).
1785 */
1786int dentry_needs_remove_privs(struct dentry *dentry)
 
1787{
1788	struct inode *inode = d_inode(dentry);
1789	int mask = 0;
1790	int ret;
1791
1792	if (IS_NOSEC(inode))
1793		return 0;
1794
1795	mask = should_remove_suid(dentry);
1796	ret = security_inode_need_killpriv(dentry);
1797	if (ret < 0)
1798		return ret;
1799	if (ret)
1800		mask |= ATTR_KILL_PRIV;
1801	return mask;
1802}
1803
1804static int __remove_privs(struct dentry *dentry, int kill)
 
1805{
1806	struct iattr newattrs;
1807
1808	newattrs.ia_valid = ATTR_FORCE | kill;
1809	/*
1810	 * Note we call this on write, so notify_change will not
1811	 * encounter any conflicting delegations:
1812	 */
1813	return notify_change(dentry, &newattrs, NULL);
1814}
1815
1816/*
1817 * Remove special file priviledges (suid, capabilities) when file is written
1818 * to or truncated.
1819 */
1820int file_remove_privs(struct file *file)
1821{
1822	struct dentry *dentry = file_dentry(file);
1823	struct inode *inode = file_inode(file);
1824	int kill;
1825	int error = 0;
 
1826
1827	/* Fast path for nothing security related */
1828	if (IS_NOSEC(inode))
1829		return 0;
1830
1831	kill = dentry_needs_remove_privs(dentry);
1832	if (kill < 0)
1833		return kill;
1834	if (kill)
1835		error = __remove_privs(dentry, kill);
 
 
 
 
 
 
1836	if (!error)
1837		inode_has_no_xattr(inode);
1838
1839	return error;
1840}
1841EXPORT_SYMBOL(file_remove_privs);
1842
1843/**
1844 *	file_update_time	-	update mtime and ctime time
1845 *	@file: file accessed
 
 
 
1846 *
1847 *	Update the mtime and ctime members of an inode and mark the inode
1848 *	for writeback.  Note that this function is meant exclusively for
1849 *	usage in the file write path of filesystems, and filesystems may
1850 *	choose to explicitly ignore update via this function with the
1851 *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1852 *	timestamps are handled by the server.  This can return an error for
1853 *	file systems who need to allocate space in order to update an inode.
1854 */
 
 
 
 
 
1855
1856int file_update_time(struct file *file)
1857{
1858	struct inode *inode = file_inode(file);
1859	struct timespec now;
1860	int sync_it = 0;
1861	int ret;
 
1862
1863	/* First try to exhaust all avenues to not sync */
1864	if (IS_NOCMTIME(inode))
1865		return 0;
1866
1867	now = current_time(inode);
1868	if (!timespec_equal(&inode->i_mtime, &now))
1869		sync_it = S_MTIME;
1870
1871	if (!timespec_equal(&inode->i_ctime, &now))
 
1872		sync_it |= S_CTIME;
1873
1874	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1875		sync_it |= S_VERSION;
1876
1877	if (!sync_it)
1878		return 0;
1879
1880	/* Finally allowed to write? Takes lock. */
1881	if (__mnt_want_write_file(file))
1882		return 0;
 
1883
1884	ret = update_time(inode, &now, sync_it);
1885	__mnt_drop_write_file(file);
 
 
 
1886
1887	return ret;
1888}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889EXPORT_SYMBOL(file_update_time);
1890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1891int inode_needs_sync(struct inode *inode)
1892{
1893	if (IS_SYNC(inode))
1894		return 1;
1895	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1896		return 1;
1897	return 0;
1898}
1899EXPORT_SYMBOL(inode_needs_sync);
1900
1901/*
1902 * If we try to find an inode in the inode hash while it is being
1903 * deleted, we have to wait until the filesystem completes its
1904 * deletion before reporting that it isn't found.  This function waits
1905 * until the deletion _might_ have completed.  Callers are responsible
1906 * to recheck inode state.
1907 *
1908 * It doesn't matter if I_NEW is not set initially, a call to
1909 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1910 * will DTRT.
1911 */
1912static void __wait_on_freeing_inode(struct inode *inode)
1913{
1914	wait_queue_head_t *wq;
1915	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1916	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1917	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1918	spin_unlock(&inode->i_lock);
1919	spin_unlock(&inode_hash_lock);
1920	schedule();
1921	finish_wait(wq, &wait.wq_entry);
1922	spin_lock(&inode_hash_lock);
1923}
1924
1925static __initdata unsigned long ihash_entries;
1926static int __init set_ihash_entries(char *str)
1927{
1928	if (!str)
1929		return 0;
1930	ihash_entries = simple_strtoul(str, &str, 0);
1931	return 1;
1932}
1933__setup("ihash_entries=", set_ihash_entries);
1934
1935/*
1936 * Initialize the waitqueues and inode hash table.
1937 */
1938void __init inode_init_early(void)
1939{
1940	/* If hashes are distributed across NUMA nodes, defer
1941	 * hash allocation until vmalloc space is available.
1942	 */
1943	if (hashdist)
1944		return;
1945
1946	inode_hashtable =
1947		alloc_large_system_hash("Inode-cache",
1948					sizeof(struct hlist_head),
1949					ihash_entries,
1950					14,
1951					HASH_EARLY | HASH_ZERO,
1952					&i_hash_shift,
1953					&i_hash_mask,
1954					0,
1955					0);
1956}
1957
1958void __init inode_init(void)
1959{
1960	/* inode slab cache */
1961	inode_cachep = kmem_cache_create("inode_cache",
1962					 sizeof(struct inode),
1963					 0,
1964					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1965					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1966					 init_once);
1967
1968	/* Hash may have been set up in inode_init_early */
1969	if (!hashdist)
1970		return;
1971
1972	inode_hashtable =
1973		alloc_large_system_hash("Inode-cache",
1974					sizeof(struct hlist_head),
1975					ihash_entries,
1976					14,
1977					HASH_ZERO,
1978					&i_hash_shift,
1979					&i_hash_mask,
1980					0,
1981					0);
1982}
1983
1984void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1985{
1986	inode->i_mode = mode;
1987	if (S_ISCHR(mode)) {
1988		inode->i_fop = &def_chr_fops;
1989		inode->i_rdev = rdev;
1990	} else if (S_ISBLK(mode)) {
1991		inode->i_fop = &def_blk_fops;
 
1992		inode->i_rdev = rdev;
1993	} else if (S_ISFIFO(mode))
1994		inode->i_fop = &pipefifo_fops;
1995	else if (S_ISSOCK(mode))
1996		;	/* leave it no_open_fops */
1997	else
1998		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1999				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2000				  inode->i_ino);
2001}
2002EXPORT_SYMBOL(init_special_inode);
2003
2004/**
2005 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
 
2006 * @inode: New inode
2007 * @dir: Directory inode
2008 * @mode: mode of the new inode
 
 
 
 
 
 
2009 */
2010void inode_init_owner(struct inode *inode, const struct inode *dir,
2011			umode_t mode)
2012{
2013	inode->i_uid = current_fsuid();
2014	if (dir && dir->i_mode & S_ISGID) {
2015		inode->i_gid = dir->i_gid;
 
 
2016		if (S_ISDIR(mode))
2017			mode |= S_ISGID;
2018	} else
2019		inode->i_gid = current_fsgid();
2020	inode->i_mode = mode;
2021}
2022EXPORT_SYMBOL(inode_init_owner);
2023
2024/**
2025 * inode_owner_or_capable - check current task permissions to inode
 
2026 * @inode: inode being checked
2027 *
2028 * Return true if current either has CAP_FOWNER in a namespace with the
2029 * inode owner uid mapped, or owns the file.
 
 
 
 
 
 
2030 */
2031bool inode_owner_or_capable(const struct inode *inode)
 
2032{
 
2033	struct user_namespace *ns;
2034
2035	if (uid_eq(current_fsuid(), inode->i_uid))
 
2036		return true;
2037
2038	ns = current_user_ns();
2039	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2040		return true;
2041	return false;
2042}
2043EXPORT_SYMBOL(inode_owner_or_capable);
2044
2045/*
2046 * Direct i/o helper functions
2047 */
2048static void __inode_dio_wait(struct inode *inode)
2049{
2050	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2051	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2052
2053	do {
2054		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2055		if (atomic_read(&inode->i_dio_count))
2056			schedule();
2057	} while (atomic_read(&inode->i_dio_count));
2058	finish_wait(wq, &q.wq_entry);
2059}
2060
2061/**
2062 * inode_dio_wait - wait for outstanding DIO requests to finish
2063 * @inode: inode to wait for
2064 *
2065 * Waits for all pending direct I/O requests to finish so that we can
2066 * proceed with a truncate or equivalent operation.
2067 *
2068 * Must be called under a lock that serializes taking new references
2069 * to i_dio_count, usually by inode->i_mutex.
2070 */
2071void inode_dio_wait(struct inode *inode)
2072{
2073	if (atomic_read(&inode->i_dio_count))
2074		__inode_dio_wait(inode);
2075}
2076EXPORT_SYMBOL(inode_dio_wait);
2077
2078/*
2079 * inode_set_flags - atomically set some inode flags
2080 *
2081 * Note: the caller should be holding i_mutex, or else be sure that
2082 * they have exclusive access to the inode structure (i.e., while the
2083 * inode is being instantiated).  The reason for the cmpxchg() loop
2084 * --- which wouldn't be necessary if all code paths which modify
2085 * i_flags actually followed this rule, is that there is at least one
2086 * code path which doesn't today so we use cmpxchg() out of an abundance
2087 * of caution.
2088 *
2089 * In the long run, i_mutex is overkill, and we should probably look
2090 * at using the i_lock spinlock to protect i_flags, and then make sure
2091 * it is so documented in include/linux/fs.h and that all code follows
2092 * the locking convention!!
2093 */
2094void inode_set_flags(struct inode *inode, unsigned int flags,
2095		     unsigned int mask)
2096{
2097	unsigned int old_flags, new_flags;
2098
2099	WARN_ON_ONCE(flags & ~mask);
2100	do {
2101		old_flags = READ_ONCE(inode->i_flags);
2102		new_flags = (old_flags & ~mask) | flags;
2103	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2104				  new_flags) != old_flags));
2105}
2106EXPORT_SYMBOL(inode_set_flags);
2107
2108void inode_nohighmem(struct inode *inode)
2109{
2110	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2111}
2112EXPORT_SYMBOL(inode_nohighmem);
2113
2114/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2115 * current_time - Return FS time
2116 * @inode: inode.
2117 *
2118 * Return the current time truncated to the time granularity supported by
2119 * the fs.
2120 *
2121 * Note that inode and inode->sb cannot be NULL.
2122 * Otherwise, the function warns and returns time without truncation.
2123 */
2124struct timespec current_time(struct inode *inode)
2125{
2126	struct timespec now = current_kernel_time();
2127
2128	if (unlikely(!inode->i_sb)) {
2129		WARN(1, "current_time() called with uninitialized super_block in the inode");
2130		return now;
2131	}
2132
2133	return timespec_trunc(now, inode->i_sb->s_time_gran);
 
2134}
2135EXPORT_SYMBOL(current_time);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * (C) 1997 Linus Torvalds
   4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   5 */
   6#include <linux/export.h>
   7#include <linux/fs.h>
   8#include <linux/filelock.h>
   9#include <linux/mm.h>
  10#include <linux/backing-dev.h>
  11#include <linux/hash.h>
  12#include <linux/swap.h>
  13#include <linux/security.h>
  14#include <linux/cdev.h>
  15#include <linux/memblock.h>
  16#include <linux/fsnotify.h>
  17#include <linux/mount.h>
  18#include <linux/posix_acl.h>
 
  19#include <linux/buffer_head.h> /* for inode_has_buffers */
  20#include <linux/ratelimit.h>
  21#include <linux/list_lru.h>
  22#include <linux/iversion.h>
  23#include <linux/rw_hint.h>
  24#include <trace/events/writeback.h>
  25#include "internal.h"
  26
  27/*
  28 * Inode locking rules:
  29 *
  30 * inode->i_lock protects:
  31 *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
  32 * Inode LRU list locks protect:
  33 *   inode->i_sb->s_inode_lru, inode->i_lru
  34 * inode->i_sb->s_inode_list_lock protects:
  35 *   inode->i_sb->s_inodes, inode->i_sb_list
  36 * bdi->wb.list_lock protects:
  37 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
  38 * inode_hash_lock protects:
  39 *   inode_hashtable, inode->i_hash
  40 *
  41 * Lock ordering:
  42 *
  43 * inode->i_sb->s_inode_list_lock
  44 *   inode->i_lock
  45 *     Inode LRU list locks
  46 *
  47 * bdi->wb.list_lock
  48 *   inode->i_lock
  49 *
  50 * inode_hash_lock
  51 *   inode->i_sb->s_inode_list_lock
  52 *   inode->i_lock
  53 *
  54 * iunique_lock
  55 *   inode_hash_lock
  56 */
  57
  58static unsigned int i_hash_mask __ro_after_init;
  59static unsigned int i_hash_shift __ro_after_init;
  60static struct hlist_head *inode_hashtable __ro_after_init;
  61static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  62
  63/*
  64 * Empty aops. Can be used for the cases where the user does not
  65 * define any of the address_space operations.
  66 */
  67const struct address_space_operations empty_aops = {
  68};
  69EXPORT_SYMBOL(empty_aops);
  70
 
 
 
 
 
  71static DEFINE_PER_CPU(unsigned long, nr_inodes);
  72static DEFINE_PER_CPU(unsigned long, nr_unused);
  73
  74static struct kmem_cache *inode_cachep __ro_after_init;
  75
  76static long get_nr_inodes(void)
  77{
  78	int i;
  79	long sum = 0;
  80	for_each_possible_cpu(i)
  81		sum += per_cpu(nr_inodes, i);
  82	return sum < 0 ? 0 : sum;
  83}
  84
  85static inline long get_nr_inodes_unused(void)
  86{
  87	int i;
  88	long sum = 0;
  89	for_each_possible_cpu(i)
  90		sum += per_cpu(nr_unused, i);
  91	return sum < 0 ? 0 : sum;
  92}
  93
  94long get_nr_dirty_inodes(void)
  95{
  96	/* not actually dirty inodes, but a wild approximation */
  97	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
  98	return nr_dirty > 0 ? nr_dirty : 0;
  99}
 100
 101/*
 102 * Handle nr_inode sysctl
 103 */
 104#ifdef CONFIG_SYSCTL
 105/*
 106 * Statistics gathering..
 107 */
 108static struct inodes_stat_t inodes_stat;
 109
 110static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
 111			  size_t *lenp, loff_t *ppos)
 112{
 113	inodes_stat.nr_inodes = get_nr_inodes();
 114	inodes_stat.nr_unused = get_nr_inodes_unused();
 115	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 116}
 117
 118static struct ctl_table inodes_sysctls[] = {
 119	{
 120		.procname	= "inode-nr",
 121		.data		= &inodes_stat,
 122		.maxlen		= 2*sizeof(long),
 123		.mode		= 0444,
 124		.proc_handler	= proc_nr_inodes,
 125	},
 126	{
 127		.procname	= "inode-state",
 128		.data		= &inodes_stat,
 129		.maxlen		= 7*sizeof(long),
 130		.mode		= 0444,
 131		.proc_handler	= proc_nr_inodes,
 132	},
 133};
 134
 135static int __init init_fs_inode_sysctls(void)
 136{
 137	register_sysctl_init("fs", inodes_sysctls);
 138	return 0;
 139}
 140early_initcall(init_fs_inode_sysctls);
 141#endif
 142
 143static int no_open(struct inode *inode, struct file *file)
 144{
 145	return -ENXIO;
 146}
 147
 148/**
 149 * inode_init_always - perform inode structure initialisation
 150 * @sb: superblock inode belongs to
 151 * @inode: inode to initialise
 152 *
 153 * These are initializations that need to be done on every inode
 154 * allocation as the fields are not initialised by slab allocation.
 155 */
 156int inode_init_always(struct super_block *sb, struct inode *inode)
 157{
 158	static const struct inode_operations empty_iops;
 159	static const struct file_operations no_open_fops = {.open = no_open};
 160	struct address_space *const mapping = &inode->i_data;
 161
 162	inode->i_sb = sb;
 163	inode->i_blkbits = sb->s_blocksize_bits;
 164	inode->i_flags = 0;
 165	atomic64_set(&inode->i_sequence, 0);
 166	atomic_set(&inode->i_count, 1);
 167	inode->i_op = &empty_iops;
 168	inode->i_fop = &no_open_fops;
 169	inode->i_ino = 0;
 170	inode->__i_nlink = 1;
 171	inode->i_opflags = 0;
 172	if (sb->s_xattr)
 173		inode->i_opflags |= IOP_XATTR;
 174	i_uid_write(inode, 0);
 175	i_gid_write(inode, 0);
 176	atomic_set(&inode->i_writecount, 0);
 177	inode->i_size = 0;
 178	inode->i_write_hint = WRITE_LIFE_NOT_SET;
 179	inode->i_blocks = 0;
 180	inode->i_bytes = 0;
 181	inode->i_generation = 0;
 182	inode->i_pipe = NULL;
 
 183	inode->i_cdev = NULL;
 184	inode->i_link = NULL;
 185	inode->i_dir_seq = 0;
 186	inode->i_rdev = 0;
 187	inode->dirtied_when = 0;
 188
 189#ifdef CONFIG_CGROUP_WRITEBACK
 190	inode->i_wb_frn_winner = 0;
 191	inode->i_wb_frn_avg_time = 0;
 192	inode->i_wb_frn_history = 0;
 193#endif
 194
 
 
 195	spin_lock_init(&inode->i_lock);
 196	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 197
 198	init_rwsem(&inode->i_rwsem);
 199	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
 200
 201	atomic_set(&inode->i_dio_count, 0);
 202
 203	mapping->a_ops = &empty_aops;
 204	mapping->host = inode;
 205	mapping->flags = 0;
 206	mapping->wb_err = 0;
 207	atomic_set(&mapping->i_mmap_writable, 0);
 208#ifdef CONFIG_READ_ONLY_THP_FOR_FS
 209	atomic_set(&mapping->nr_thps, 0);
 210#endif
 211	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 212	mapping->i_private_data = NULL;
 213	mapping->writeback_index = 0;
 214	init_rwsem(&mapping->invalidate_lock);
 215	lockdep_set_class_and_name(&mapping->invalidate_lock,
 216				   &sb->s_type->invalidate_lock_key,
 217				   "mapping.invalidate_lock");
 218	if (sb->s_iflags & SB_I_STABLE_WRITES)
 219		mapping_set_stable_writes(mapping);
 220	inode->i_private = NULL;
 221	inode->i_mapping = mapping;
 222	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
 223#ifdef CONFIG_FS_POSIX_ACL
 224	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 225#endif
 226
 227#ifdef CONFIG_FSNOTIFY
 228	inode->i_fsnotify_mask = 0;
 229#endif
 230	inode->i_flctx = NULL;
 231
 232	if (unlikely(security_inode_alloc(inode)))
 233		return -ENOMEM;
 234	this_cpu_inc(nr_inodes);
 235
 236	return 0;
 
 
 237}
 238EXPORT_SYMBOL(inode_init_always);
 239
 240void free_inode_nonrcu(struct inode *inode)
 241{
 242	kmem_cache_free(inode_cachep, inode);
 243}
 244EXPORT_SYMBOL(free_inode_nonrcu);
 245
 246static void i_callback(struct rcu_head *head)
 247{
 248	struct inode *inode = container_of(head, struct inode, i_rcu);
 249	if (inode->free_inode)
 250		inode->free_inode(inode);
 251	else
 252		free_inode_nonrcu(inode);
 253}
 254
 255static struct inode *alloc_inode(struct super_block *sb)
 256{
 257	const struct super_operations *ops = sb->s_op;
 258	struct inode *inode;
 259
 260	if (ops->alloc_inode)
 261		inode = ops->alloc_inode(sb);
 262	else
 263		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
 264
 265	if (!inode)
 266		return NULL;
 267
 268	if (unlikely(inode_init_always(sb, inode))) {
 269		if (ops->destroy_inode) {
 270			ops->destroy_inode(inode);
 271			if (!ops->free_inode)
 272				return NULL;
 273		}
 274		inode->free_inode = ops->free_inode;
 275		i_callback(&inode->i_rcu);
 276		return NULL;
 277	}
 278
 279	return inode;
 280}
 281
 
 
 
 
 
 
 282void __destroy_inode(struct inode *inode)
 283{
 284	BUG_ON(inode_has_buffers(inode));
 285	inode_detach_wb(inode);
 286	security_inode_free(inode);
 287	fsnotify_inode_delete(inode);
 288	locks_free_lock_context(inode);
 289	if (!inode->i_nlink) {
 290		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 291		atomic_long_dec(&inode->i_sb->s_remove_count);
 292	}
 293
 294#ifdef CONFIG_FS_POSIX_ACL
 295	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
 296		posix_acl_release(inode->i_acl);
 297	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
 298		posix_acl_release(inode->i_default_acl);
 299#endif
 300	this_cpu_dec(nr_inodes);
 301}
 302EXPORT_SYMBOL(__destroy_inode);
 303
 
 
 
 
 
 
 304static void destroy_inode(struct inode *inode)
 305{
 306	const struct super_operations *ops = inode->i_sb->s_op;
 307
 308	BUG_ON(!list_empty(&inode->i_lru));
 309	__destroy_inode(inode);
 310	if (ops->destroy_inode) {
 311		ops->destroy_inode(inode);
 312		if (!ops->free_inode)
 313			return;
 314	}
 315	inode->free_inode = ops->free_inode;
 316	call_rcu(&inode->i_rcu, i_callback);
 317}
 318
 319/**
 320 * drop_nlink - directly drop an inode's link count
 321 * @inode: inode
 322 *
 323 * This is a low-level filesystem helper to replace any
 324 * direct filesystem manipulation of i_nlink.  In cases
 325 * where we are attempting to track writes to the
 326 * filesystem, a decrement to zero means an imminent
 327 * write when the file is truncated and actually unlinked
 328 * on the filesystem.
 329 */
 330void drop_nlink(struct inode *inode)
 331{
 332	WARN_ON(inode->i_nlink == 0);
 333	inode->__i_nlink--;
 334	if (!inode->i_nlink)
 335		atomic_long_inc(&inode->i_sb->s_remove_count);
 336}
 337EXPORT_SYMBOL(drop_nlink);
 338
 339/**
 340 * clear_nlink - directly zero an inode's link count
 341 * @inode: inode
 342 *
 343 * This is a low-level filesystem helper to replace any
 344 * direct filesystem manipulation of i_nlink.  See
 345 * drop_nlink() for why we care about i_nlink hitting zero.
 346 */
 347void clear_nlink(struct inode *inode)
 348{
 349	if (inode->i_nlink) {
 350		inode->__i_nlink = 0;
 351		atomic_long_inc(&inode->i_sb->s_remove_count);
 352	}
 353}
 354EXPORT_SYMBOL(clear_nlink);
 355
 356/**
 357 * set_nlink - directly set an inode's link count
 358 * @inode: inode
 359 * @nlink: new nlink (should be non-zero)
 360 *
 361 * This is a low-level filesystem helper to replace any
 362 * direct filesystem manipulation of i_nlink.
 363 */
 364void set_nlink(struct inode *inode, unsigned int nlink)
 365{
 366	if (!nlink) {
 367		clear_nlink(inode);
 368	} else {
 369		/* Yes, some filesystems do change nlink from zero to one */
 370		if (inode->i_nlink == 0)
 371			atomic_long_dec(&inode->i_sb->s_remove_count);
 372
 373		inode->__i_nlink = nlink;
 374	}
 375}
 376EXPORT_SYMBOL(set_nlink);
 377
 378/**
 379 * inc_nlink - directly increment an inode's link count
 380 * @inode: inode
 381 *
 382 * This is a low-level filesystem helper to replace any
 383 * direct filesystem manipulation of i_nlink.  Currently,
 384 * it is only here for parity with dec_nlink().
 385 */
 386void inc_nlink(struct inode *inode)
 387{
 388	if (unlikely(inode->i_nlink == 0)) {
 389		WARN_ON(!(inode->i_state & I_LINKABLE));
 390		atomic_long_dec(&inode->i_sb->s_remove_count);
 391	}
 392
 393	inode->__i_nlink++;
 394}
 395EXPORT_SYMBOL(inc_nlink);
 396
 397static void __address_space_init_once(struct address_space *mapping)
 398{
 399	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
 400	init_rwsem(&mapping->i_mmap_rwsem);
 401	INIT_LIST_HEAD(&mapping->i_private_list);
 402	spin_lock_init(&mapping->i_private_lock);
 403	mapping->i_mmap = RB_ROOT_CACHED;
 404}
 405
 406void address_space_init_once(struct address_space *mapping)
 407{
 408	memset(mapping, 0, sizeof(*mapping));
 409	__address_space_init_once(mapping);
 410}
 411EXPORT_SYMBOL(address_space_init_once);
 412
 413/*
 414 * These are initializations that only need to be done
 415 * once, because the fields are idempotent across use
 416 * of the inode, so let the slab aware of that.
 417 */
 418void inode_init_once(struct inode *inode)
 419{
 420	memset(inode, 0, sizeof(*inode));
 421	INIT_HLIST_NODE(&inode->i_hash);
 422	INIT_LIST_HEAD(&inode->i_devices);
 423	INIT_LIST_HEAD(&inode->i_io_list);
 424	INIT_LIST_HEAD(&inode->i_wb_list);
 425	INIT_LIST_HEAD(&inode->i_lru);
 426	INIT_LIST_HEAD(&inode->i_sb_list);
 427	__address_space_init_once(&inode->i_data);
 428	i_size_ordered_init(inode);
 429}
 430EXPORT_SYMBOL(inode_init_once);
 431
 432static void init_once(void *foo)
 433{
 434	struct inode *inode = (struct inode *) foo;
 435
 436	inode_init_once(inode);
 437}
 438
 439/*
 440 * inode->i_lock must be held
 441 */
 442void __iget(struct inode *inode)
 443{
 444	atomic_inc(&inode->i_count);
 445}
 446
 447/*
 448 * get additional reference to inode; caller must already hold one.
 449 */
 450void ihold(struct inode *inode)
 451{
 452	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 453}
 454EXPORT_SYMBOL(ihold);
 455
 456static void __inode_add_lru(struct inode *inode, bool rotate)
 457{
 458	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
 459		return;
 460	if (atomic_read(&inode->i_count))
 461		return;
 462	if (!(inode->i_sb->s_flags & SB_ACTIVE))
 463		return;
 464	if (!mapping_shrinkable(&inode->i_data))
 465		return;
 466
 467	if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
 468		this_cpu_inc(nr_unused);
 469	else if (rotate)
 470		inode->i_state |= I_REFERENCED;
 471}
 472
 473/*
 474 * Add inode to LRU if needed (inode is unused and clean).
 475 *
 476 * Needs inode->i_lock held.
 477 */
 478void inode_add_lru(struct inode *inode)
 479{
 480	__inode_add_lru(inode, false);
 
 
 
 481}
 482
 
 483static void inode_lru_list_del(struct inode *inode)
 484{
 485	if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
 
 486		this_cpu_dec(nr_unused);
 487}
 488
 489/**
 490 * inode_sb_list_add - add inode to the superblock list of inodes
 491 * @inode: inode to add
 492 */
 493void inode_sb_list_add(struct inode *inode)
 494{
 495	spin_lock(&inode->i_sb->s_inode_list_lock);
 496	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 497	spin_unlock(&inode->i_sb->s_inode_list_lock);
 498}
 499EXPORT_SYMBOL_GPL(inode_sb_list_add);
 500
 501static inline void inode_sb_list_del(struct inode *inode)
 502{
 503	if (!list_empty(&inode->i_sb_list)) {
 504		spin_lock(&inode->i_sb->s_inode_list_lock);
 505		list_del_init(&inode->i_sb_list);
 506		spin_unlock(&inode->i_sb->s_inode_list_lock);
 507	}
 508}
 509
 510static unsigned long hash(struct super_block *sb, unsigned long hashval)
 511{
 512	unsigned long tmp;
 513
 514	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 515			L1_CACHE_BYTES;
 516	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 517	return tmp & i_hash_mask;
 518}
 519
 520/**
 521 *	__insert_inode_hash - hash an inode
 522 *	@inode: unhashed inode
 523 *	@hashval: unsigned long value used to locate this object in the
 524 *		inode_hashtable.
 525 *
 526 *	Add an inode to the inode hash for this superblock.
 527 */
 528void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 529{
 530	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 531
 532	spin_lock(&inode_hash_lock);
 533	spin_lock(&inode->i_lock);
 534	hlist_add_head_rcu(&inode->i_hash, b);
 535	spin_unlock(&inode->i_lock);
 536	spin_unlock(&inode_hash_lock);
 537}
 538EXPORT_SYMBOL(__insert_inode_hash);
 539
 540/**
 541 *	__remove_inode_hash - remove an inode from the hash
 542 *	@inode: inode to unhash
 543 *
 544 *	Remove an inode from the superblock.
 545 */
 546void __remove_inode_hash(struct inode *inode)
 547{
 548	spin_lock(&inode_hash_lock);
 549	spin_lock(&inode->i_lock);
 550	hlist_del_init_rcu(&inode->i_hash);
 551	spin_unlock(&inode->i_lock);
 552	spin_unlock(&inode_hash_lock);
 553}
 554EXPORT_SYMBOL(__remove_inode_hash);
 555
 556void dump_mapping(const struct address_space *mapping)
 557{
 558	struct inode *host;
 559	const struct address_space_operations *a_ops;
 560	struct hlist_node *dentry_first;
 561	struct dentry *dentry_ptr;
 562	struct dentry dentry;
 563	unsigned long ino;
 564
 565	/*
 566	 * If mapping is an invalid pointer, we don't want to crash
 567	 * accessing it, so probe everything depending on it carefully.
 568	 */
 569	if (get_kernel_nofault(host, &mapping->host) ||
 570	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
 571		pr_warn("invalid mapping:%px\n", mapping);
 572		return;
 573	}
 574
 575	if (!host) {
 576		pr_warn("aops:%ps\n", a_ops);
 577		return;
 578	}
 579
 580	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
 581	    get_kernel_nofault(ino, &host->i_ino)) {
 582		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
 583		return;
 584	}
 585
 586	if (!dentry_first) {
 587		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
 588		return;
 589	}
 590
 591	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
 592	if (get_kernel_nofault(dentry, dentry_ptr) ||
 593	    !dentry.d_parent || !dentry.d_name.name) {
 594		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
 595				a_ops, ino, dentry_ptr);
 596		return;
 597	}
 598
 599	/*
 600	 * if dentry is corrupted, the %pd handler may still crash,
 601	 * but it's unlikely that we reach here with a corrupt mapping
 602	 */
 603	pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
 604}
 605
 606void clear_inode(struct inode *inode)
 607{
 608	/*
 609	 * We have to cycle the i_pages lock here because reclaim can be in the
 610	 * process of removing the last page (in __filemap_remove_folio())
 611	 * and we must not free the mapping under it.
 612	 */
 613	xa_lock_irq(&inode->i_data.i_pages);
 614	BUG_ON(inode->i_data.nrpages);
 615	/*
 616	 * Almost always, mapping_empty(&inode->i_data) here; but there are
 617	 * two known and long-standing ways in which nodes may get left behind
 618	 * (when deep radix-tree node allocation failed partway; or when THP
 619	 * collapse_file() failed). Until those two known cases are cleaned up,
 620	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
 621	 * nor even WARN_ON(!mapping_empty).
 622	 */
 623	xa_unlock_irq(&inode->i_data.i_pages);
 624	BUG_ON(!list_empty(&inode->i_data.i_private_list));
 625	BUG_ON(!(inode->i_state & I_FREEING));
 626	BUG_ON(inode->i_state & I_CLEAR);
 627	BUG_ON(!list_empty(&inode->i_wb_list));
 628	/* don't need i_lock here, no concurrent mods to i_state */
 629	inode->i_state = I_FREEING | I_CLEAR;
 630}
 631EXPORT_SYMBOL(clear_inode);
 632
 633/*
 634 * Free the inode passed in, removing it from the lists it is still connected
 635 * to. We remove any pages still attached to the inode and wait for any IO that
 636 * is still in progress before finally destroying the inode.
 637 *
 638 * An inode must already be marked I_FREEING so that we avoid the inode being
 639 * moved back onto lists if we race with other code that manipulates the lists
 640 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 641 *
 642 * An inode must already be removed from the LRU list before being evicted from
 643 * the cache. This should occur atomically with setting the I_FREEING state
 644 * flag, so no inodes here should ever be on the LRU when being evicted.
 645 */
 646static void evict(struct inode *inode)
 647{
 648	const struct super_operations *op = inode->i_sb->s_op;
 649
 650	BUG_ON(!(inode->i_state & I_FREEING));
 651	BUG_ON(!list_empty(&inode->i_lru));
 652
 653	if (!list_empty(&inode->i_io_list))
 654		inode_io_list_del(inode);
 655
 656	inode_sb_list_del(inode);
 657
 658	/*
 659	 * Wait for flusher thread to be done with the inode so that filesystem
 660	 * does not start destroying it while writeback is still running. Since
 661	 * the inode has I_FREEING set, flusher thread won't start new work on
 662	 * the inode.  We just have to wait for running writeback to finish.
 663	 */
 664	inode_wait_for_writeback(inode);
 665
 666	if (op->evict_inode) {
 667		op->evict_inode(inode);
 668	} else {
 669		truncate_inode_pages_final(&inode->i_data);
 670		clear_inode(inode);
 671	}
 
 
 672	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 673		cd_forget(inode);
 674
 675	remove_inode_hash(inode);
 676
 677	spin_lock(&inode->i_lock);
 678	wake_up_bit(&inode->i_state, __I_NEW);
 679	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 680	spin_unlock(&inode->i_lock);
 681
 682	destroy_inode(inode);
 683}
 684
 685/*
 686 * dispose_list - dispose of the contents of a local list
 687 * @head: the head of the list to free
 688 *
 689 * Dispose-list gets a local list with local inodes in it, so it doesn't
 690 * need to worry about list corruption and SMP locks.
 691 */
 692static void dispose_list(struct list_head *head)
 693{
 694	while (!list_empty(head)) {
 695		struct inode *inode;
 696
 697		inode = list_first_entry(head, struct inode, i_lru);
 698		list_del_init(&inode->i_lru);
 699
 700		evict(inode);
 701		cond_resched();
 702	}
 703}
 704
 705/**
 706 * evict_inodes	- evict all evictable inodes for a superblock
 707 * @sb:		superblock to operate on
 708 *
 709 * Make sure that no inodes with zero refcount are retained.  This is
 710 * called by superblock shutdown after having SB_ACTIVE flag removed,
 711 * so any inode reaching zero refcount during or after that call will
 712 * be immediately evicted.
 713 */
 714void evict_inodes(struct super_block *sb)
 715{
 716	struct inode *inode, *next;
 717	LIST_HEAD(dispose);
 718
 719again:
 720	spin_lock(&sb->s_inode_list_lock);
 721	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 722		if (atomic_read(&inode->i_count))
 723			continue;
 724
 725		spin_lock(&inode->i_lock);
 726		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 727			spin_unlock(&inode->i_lock);
 728			continue;
 729		}
 730
 731		inode->i_state |= I_FREEING;
 732		inode_lru_list_del(inode);
 733		spin_unlock(&inode->i_lock);
 734		list_add(&inode->i_lru, &dispose);
 735
 736		/*
 737		 * We can have a ton of inodes to evict at unmount time given
 738		 * enough memory, check to see if we need to go to sleep for a
 739		 * bit so we don't livelock.
 740		 */
 741		if (need_resched()) {
 742			spin_unlock(&sb->s_inode_list_lock);
 743			cond_resched();
 744			dispose_list(&dispose);
 745			goto again;
 746		}
 747	}
 748	spin_unlock(&sb->s_inode_list_lock);
 749
 750	dispose_list(&dispose);
 751}
 752EXPORT_SYMBOL_GPL(evict_inodes);
 753
 754/**
 755 * invalidate_inodes	- attempt to free all inodes on a superblock
 756 * @sb:		superblock to operate on
 
 757 *
 758 * Attempts to free all inodes (including dirty inodes) for a given superblock.
 
 
 
 759 */
 760void invalidate_inodes(struct super_block *sb)
 761{
 
 762	struct inode *inode, *next;
 763	LIST_HEAD(dispose);
 764
 765again:
 766	spin_lock(&sb->s_inode_list_lock);
 767	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 768		spin_lock(&inode->i_lock);
 769		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 770			spin_unlock(&inode->i_lock);
 771			continue;
 772		}
 
 
 
 
 
 773		if (atomic_read(&inode->i_count)) {
 774			spin_unlock(&inode->i_lock);
 
 775			continue;
 776		}
 777
 778		inode->i_state |= I_FREEING;
 779		inode_lru_list_del(inode);
 780		spin_unlock(&inode->i_lock);
 781		list_add(&inode->i_lru, &dispose);
 782		if (need_resched()) {
 783			spin_unlock(&sb->s_inode_list_lock);
 784			cond_resched();
 785			dispose_list(&dispose);
 786			goto again;
 787		}
 788	}
 789	spin_unlock(&sb->s_inode_list_lock);
 790
 791	dispose_list(&dispose);
 
 
 792}
 793
 794/*
 795 * Isolate the inode from the LRU in preparation for freeing it.
 796 *
 
 
 
 
 797 * If the inode has the I_REFERENCED flag set, then it means that it has been
 798 * used recently - the flag is set in iput_final(). When we encounter such an
 799 * inode, clear the flag and move it to the back of the LRU so it gets another
 800 * pass through the LRU before it gets reclaimed. This is necessary because of
 801 * the fact we are doing lazy LRU updates to minimise lock contention so the
 802 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 803 * with this flag set because they are the inodes that are out of order.
 804 */
 805static enum lru_status inode_lru_isolate(struct list_head *item,
 806		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 807{
 808	struct list_head *freeable = arg;
 809	struct inode	*inode = container_of(item, struct inode, i_lru);
 810
 811	/*
 812	 * We are inverting the lru lock/inode->i_lock here, so use a
 813	 * trylock. If we fail to get the lock, just skip it.
 814	 */
 815	if (!spin_trylock(&inode->i_lock))
 816		return LRU_SKIP;
 817
 818	/*
 819	 * Inodes can get referenced, redirtied, or repopulated while
 820	 * they're already on the LRU, and this can make them
 821	 * unreclaimable for a while. Remove them lazily here; iput,
 822	 * sync, or the last page cache deletion will requeue them.
 823	 */
 824	if (atomic_read(&inode->i_count) ||
 825	    (inode->i_state & ~I_REFERENCED) ||
 826	    !mapping_shrinkable(&inode->i_data)) {
 827		list_lru_isolate(lru, &inode->i_lru);
 828		spin_unlock(&inode->i_lock);
 829		this_cpu_dec(nr_unused);
 830		return LRU_REMOVED;
 831	}
 832
 833	/* Recently referenced inodes get one more pass */
 834	if (inode->i_state & I_REFERENCED) {
 835		inode->i_state &= ~I_REFERENCED;
 836		spin_unlock(&inode->i_lock);
 837		return LRU_ROTATE;
 838	}
 839
 840	/*
 841	 * On highmem systems, mapping_shrinkable() permits dropping
 842	 * page cache in order to free up struct inodes: lowmem might
 843	 * be under pressure before the cache inside the highmem zone.
 844	 */
 845	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
 846		__iget(inode);
 847		spin_unlock(&inode->i_lock);
 848		spin_unlock(lru_lock);
 849		if (remove_inode_buffers(inode)) {
 850			unsigned long reap;
 851			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 852			if (current_is_kswapd())
 853				__count_vm_events(KSWAPD_INODESTEAL, reap);
 854			else
 855				__count_vm_events(PGINODESTEAL, reap);
 856			mm_account_reclaimed_pages(reap);
 
 857		}
 858		iput(inode);
 859		spin_lock(lru_lock);
 860		return LRU_RETRY;
 861	}
 862
 863	WARN_ON(inode->i_state & I_NEW);
 864	inode->i_state |= I_FREEING;
 865	list_lru_isolate_move(lru, &inode->i_lru, freeable);
 866	spin_unlock(&inode->i_lock);
 867
 868	this_cpu_dec(nr_unused);
 869	return LRU_REMOVED;
 870}
 871
 872/*
 873 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 874 * This is called from the superblock shrinker function with a number of inodes
 875 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 876 * then are freed outside inode_lock by dispose_list().
 877 */
 878long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 879{
 880	LIST_HEAD(freeable);
 881	long freed;
 882
 883	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 884				     inode_lru_isolate, &freeable);
 885	dispose_list(&freeable);
 886	return freed;
 887}
 888
 889static void __wait_on_freeing_inode(struct inode *inode);
 890/*
 891 * Called with the inode lock held.
 892 */
 893static struct inode *find_inode(struct super_block *sb,
 894				struct hlist_head *head,
 895				int (*test)(struct inode *, void *),
 896				void *data)
 897{
 898	struct inode *inode = NULL;
 899
 900repeat:
 901	hlist_for_each_entry(inode, head, i_hash) {
 902		if (inode->i_sb != sb)
 903			continue;
 904		if (!test(inode, data))
 905			continue;
 906		spin_lock(&inode->i_lock);
 907		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 908			__wait_on_freeing_inode(inode);
 909			goto repeat;
 910		}
 911		if (unlikely(inode->i_state & I_CREATING)) {
 912			spin_unlock(&inode->i_lock);
 913			return ERR_PTR(-ESTALE);
 914		}
 915		__iget(inode);
 916		spin_unlock(&inode->i_lock);
 917		return inode;
 918	}
 919	return NULL;
 920}
 921
 922/*
 923 * find_inode_fast is the fast path version of find_inode, see the comment at
 924 * iget_locked for details.
 925 */
 926static struct inode *find_inode_fast(struct super_block *sb,
 927				struct hlist_head *head, unsigned long ino)
 928{
 929	struct inode *inode = NULL;
 930
 931repeat:
 932	hlist_for_each_entry(inode, head, i_hash) {
 933		if (inode->i_ino != ino)
 934			continue;
 935		if (inode->i_sb != sb)
 936			continue;
 937		spin_lock(&inode->i_lock);
 938		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 939			__wait_on_freeing_inode(inode);
 940			goto repeat;
 941		}
 942		if (unlikely(inode->i_state & I_CREATING)) {
 943			spin_unlock(&inode->i_lock);
 944			return ERR_PTR(-ESTALE);
 945		}
 946		__iget(inode);
 947		spin_unlock(&inode->i_lock);
 948		return inode;
 949	}
 950	return NULL;
 951}
 952
 953/*
 954 * Each cpu owns a range of LAST_INO_BATCH numbers.
 955 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 956 * to renew the exhausted range.
 957 *
 958 * This does not significantly increase overflow rate because every CPU can
 959 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 960 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 961 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 962 * overflow rate by 2x, which does not seem too significant.
 963 *
 964 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 965 * error if st_ino won't fit in target struct field. Use 32bit counter
 966 * here to attempt to avoid that.
 967 */
 968#define LAST_INO_BATCH 1024
 969static DEFINE_PER_CPU(unsigned int, last_ino);
 970
 971unsigned int get_next_ino(void)
 972{
 973	unsigned int *p = &get_cpu_var(last_ino);
 974	unsigned int res = *p;
 975
 976#ifdef CONFIG_SMP
 977	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 978		static atomic_t shared_last_ino;
 979		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 980
 981		res = next - LAST_INO_BATCH;
 982	}
 983#endif
 984
 985	res++;
 986	/* get_next_ino should not provide a 0 inode number */
 987	if (unlikely(!res))
 988		res++;
 989	*p = res;
 990	put_cpu_var(last_ino);
 991	return res;
 992}
 993EXPORT_SYMBOL(get_next_ino);
 994
 995/**
 996 *	new_inode_pseudo 	- obtain an inode
 997 *	@sb: superblock
 998 *
 999 *	Allocates a new inode for given superblock.
1000 *	Inode wont be chained in superblock s_inodes list
1001 *	This means :
1002 *	- fs can't be unmount
1003 *	- quotas, fsnotify, writeback can't work
1004 */
1005struct inode *new_inode_pseudo(struct super_block *sb)
1006{
1007	struct inode *inode = alloc_inode(sb);
1008
1009	if (inode) {
1010		spin_lock(&inode->i_lock);
1011		inode->i_state = 0;
1012		spin_unlock(&inode->i_lock);
 
1013	}
1014	return inode;
1015}
1016
1017/**
1018 *	new_inode 	- obtain an inode
1019 *	@sb: superblock
1020 *
1021 *	Allocates a new inode for given superblock. The default gfp_mask
1022 *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1023 *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1024 *	for the page cache are not reclaimable or migratable,
1025 *	mapping_set_gfp_mask() must be called with suitable flags on the
1026 *	newly created inode's mapping
1027 *
1028 */
1029struct inode *new_inode(struct super_block *sb)
1030{
1031	struct inode *inode;
1032
 
 
1033	inode = new_inode_pseudo(sb);
1034	if (inode)
1035		inode_sb_list_add(inode);
1036	return inode;
1037}
1038EXPORT_SYMBOL(new_inode);
1039
1040#ifdef CONFIG_DEBUG_LOCK_ALLOC
1041void lockdep_annotate_inode_mutex_key(struct inode *inode)
1042{
1043	if (S_ISDIR(inode->i_mode)) {
1044		struct file_system_type *type = inode->i_sb->s_type;
1045
1046		/* Set new key only if filesystem hasn't already changed it */
1047		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1048			/*
1049			 * ensure nobody is actually holding i_mutex
1050			 */
1051			// mutex_destroy(&inode->i_mutex);
1052			init_rwsem(&inode->i_rwsem);
1053			lockdep_set_class(&inode->i_rwsem,
1054					  &type->i_mutex_dir_key);
1055		}
1056	}
1057}
1058EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1059#endif
1060
1061/**
1062 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1063 * @inode:	new inode to unlock
1064 *
1065 * Called when the inode is fully initialised to clear the new state of the
1066 * inode and wake up anyone waiting for the inode to finish initialisation.
1067 */
1068void unlock_new_inode(struct inode *inode)
1069{
1070	lockdep_annotate_inode_mutex_key(inode);
1071	spin_lock(&inode->i_lock);
1072	WARN_ON(!(inode->i_state & I_NEW));
1073	inode->i_state &= ~I_NEW & ~I_CREATING;
1074	smp_mb();
1075	wake_up_bit(&inode->i_state, __I_NEW);
1076	spin_unlock(&inode->i_lock);
1077}
1078EXPORT_SYMBOL(unlock_new_inode);
1079
1080void discard_new_inode(struct inode *inode)
1081{
1082	lockdep_annotate_inode_mutex_key(inode);
1083	spin_lock(&inode->i_lock);
1084	WARN_ON(!(inode->i_state & I_NEW));
1085	inode->i_state &= ~I_NEW;
1086	smp_mb();
1087	wake_up_bit(&inode->i_state, __I_NEW);
1088	spin_unlock(&inode->i_lock);
1089	iput(inode);
1090}
1091EXPORT_SYMBOL(discard_new_inode);
1092
1093/**
1094 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1095 *
1096 * Lock any non-NULL argument. Passed objects must not be directories.
1097 * Zero, one or two objects may be locked by this function.
1098 *
1099 * @inode1: first inode to lock
1100 * @inode2: second inode to lock
1101 */
1102void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1103{
1104	if (inode1)
1105		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1106	if (inode2)
1107		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1108	if (inode1 > inode2)
1109		swap(inode1, inode2);
1110	if (inode1)
 
1111		inode_lock(inode1);
1112	if (inode2 && inode2 != inode1)
1113		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1114}
1115EXPORT_SYMBOL(lock_two_nondirectories);
1116
1117/**
1118 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1119 * @inode1: first inode to unlock
1120 * @inode2: second inode to unlock
1121 */
1122void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1123{
1124	if (inode1) {
1125		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1126		inode_unlock(inode1);
1127	}
1128	if (inode2 && inode2 != inode1) {
1129		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1130		inode_unlock(inode2);
1131	}
1132}
1133EXPORT_SYMBOL(unlock_two_nondirectories);
1134
1135/**
1136 * inode_insert5 - obtain an inode from a mounted file system
1137 * @inode:	pre-allocated inode to use for insert to cache
1138 * @hashval:	hash value (usually inode number) to get
1139 * @test:	callback used for comparisons between inodes
1140 * @set:	callback used to initialize a new struct inode
1141 * @data:	opaque data pointer to pass to @test and @set
1142 *
1143 * Search for the inode specified by @hashval and @data in the inode cache,
1144 * and if present it is return it with an increased reference count. This is
1145 * a variant of iget5_locked() for callers that don't want to fail on memory
1146 * allocation of inode.
1147 *
1148 * If the inode is not in cache, insert the pre-allocated inode to cache and
1149 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1150 * to fill it in before unlocking it via unlock_new_inode().
1151 *
1152 * Note both @test and @set are called with the inode_hash_lock held, so can't
1153 * sleep.
1154 */
1155struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1156			    int (*test)(struct inode *, void *),
1157			    int (*set)(struct inode *, void *), void *data)
1158{
1159	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1160	struct inode *old;
1161
1162again:
1163	spin_lock(&inode_hash_lock);
1164	old = find_inode(inode->i_sb, head, test, data);
1165	if (unlikely(old)) {
1166		/*
1167		 * Uhhuh, somebody else created the same inode under us.
1168		 * Use the old inode instead of the preallocated one.
1169		 */
1170		spin_unlock(&inode_hash_lock);
1171		if (IS_ERR(old))
1172			return NULL;
1173		wait_on_inode(old);
1174		if (unlikely(inode_unhashed(old))) {
1175			iput(old);
1176			goto again;
1177		}
1178		return old;
1179	}
1180
1181	if (set && unlikely(set(inode, data))) {
1182		inode = NULL;
1183		goto unlock;
1184	}
1185
1186	/*
1187	 * Return the locked inode with I_NEW set, the
1188	 * caller is responsible for filling in the contents
1189	 */
1190	spin_lock(&inode->i_lock);
1191	inode->i_state |= I_NEW;
1192	hlist_add_head_rcu(&inode->i_hash, head);
1193	spin_unlock(&inode->i_lock);
1194
1195	/*
1196	 * Add inode to the sb list if it's not already. It has I_NEW at this
1197	 * point, so it should be safe to test i_sb_list locklessly.
1198	 */
1199	if (list_empty(&inode->i_sb_list))
1200		inode_sb_list_add(inode);
1201unlock:
1202	spin_unlock(&inode_hash_lock);
1203
1204	return inode;
1205}
1206EXPORT_SYMBOL(inode_insert5);
1207
1208/**
1209 * iget5_locked - obtain an inode from a mounted file system
1210 * @sb:		super block of file system
1211 * @hashval:	hash value (usually inode number) to get
1212 * @test:	callback used for comparisons between inodes
1213 * @set:	callback used to initialize a new struct inode
1214 * @data:	opaque data pointer to pass to @test and @set
1215 *
1216 * Search for the inode specified by @hashval and @data in the inode cache,
1217 * and if present it is return it with an increased reference count. This is
1218 * a generalized version of iget_locked() for file systems where the inode
1219 * number is not sufficient for unique identification of an inode.
1220 *
1221 * If the inode is not in cache, allocate a new inode and return it locked,
1222 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1223 * before unlocking it via unlock_new_inode().
1224 *
1225 * Note both @test and @set are called with the inode_hash_lock held, so can't
1226 * sleep.
1227 */
1228struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1229		int (*test)(struct inode *, void *),
1230		int (*set)(struct inode *, void *), void *data)
1231{
1232	struct inode *inode = ilookup5(sb, hashval, test, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1233
1234	if (!inode) {
1235		struct inode *new = alloc_inode(sb);
 
 
 
 
1236
1237		if (new) {
1238			new->i_state = 0;
1239			inode = inode_insert5(new, hashval, test, set, data);
1240			if (unlikely(inode != new))
1241				destroy_inode(new);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242		}
1243	}
1244	return inode;
 
 
 
 
 
1245}
1246EXPORT_SYMBOL(iget5_locked);
1247
1248/**
1249 * iget_locked - obtain an inode from a mounted file system
1250 * @sb:		super block of file system
1251 * @ino:	inode number to get
1252 *
1253 * Search for the inode specified by @ino in the inode cache and if present
1254 * return it with an increased reference count. This is for file systems
1255 * where the inode number is sufficient for unique identification of an inode.
1256 *
1257 * If the inode is not in cache, allocate a new inode and return it locked,
1258 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1259 * before unlocking it via unlock_new_inode().
1260 */
1261struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1262{
1263	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1264	struct inode *inode;
1265again:
1266	spin_lock(&inode_hash_lock);
1267	inode = find_inode_fast(sb, head, ino);
1268	spin_unlock(&inode_hash_lock);
1269	if (inode) {
1270		if (IS_ERR(inode))
1271			return NULL;
1272		wait_on_inode(inode);
1273		if (unlikely(inode_unhashed(inode))) {
1274			iput(inode);
1275			goto again;
1276		}
1277		return inode;
1278	}
1279
1280	inode = alloc_inode(sb);
1281	if (inode) {
1282		struct inode *old;
1283
1284		spin_lock(&inode_hash_lock);
1285		/* We released the lock, so.. */
1286		old = find_inode_fast(sb, head, ino);
1287		if (!old) {
1288			inode->i_ino = ino;
1289			spin_lock(&inode->i_lock);
1290			inode->i_state = I_NEW;
1291			hlist_add_head_rcu(&inode->i_hash, head);
1292			spin_unlock(&inode->i_lock);
1293			inode_sb_list_add(inode);
1294			spin_unlock(&inode_hash_lock);
1295
1296			/* Return the locked inode with I_NEW set, the
1297			 * caller is responsible for filling in the contents
1298			 */
1299			return inode;
1300		}
1301
1302		/*
1303		 * Uhhuh, somebody else created the same inode under
1304		 * us. Use the old inode instead of the one we just
1305		 * allocated.
1306		 */
1307		spin_unlock(&inode_hash_lock);
1308		destroy_inode(inode);
1309		if (IS_ERR(old))
1310			return NULL;
1311		inode = old;
1312		wait_on_inode(inode);
1313		if (unlikely(inode_unhashed(inode))) {
1314			iput(inode);
1315			goto again;
1316		}
1317	}
1318	return inode;
1319}
1320EXPORT_SYMBOL(iget_locked);
1321
1322/*
1323 * search the inode cache for a matching inode number.
1324 * If we find one, then the inode number we are trying to
1325 * allocate is not unique and so we should not use it.
1326 *
1327 * Returns 1 if the inode number is unique, 0 if it is not.
1328 */
1329static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1330{
1331	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1332	struct inode *inode;
1333
1334	hlist_for_each_entry_rcu(inode, b, i_hash) {
1335		if (inode->i_ino == ino && inode->i_sb == sb)
 
 
1336			return 0;
 
1337	}
 
 
1338	return 1;
1339}
1340
1341/**
1342 *	iunique - get a unique inode number
1343 *	@sb: superblock
1344 *	@max_reserved: highest reserved inode number
1345 *
1346 *	Obtain an inode number that is unique on the system for a given
1347 *	superblock. This is used by file systems that have no natural
1348 *	permanent inode numbering system. An inode number is returned that
1349 *	is higher than the reserved limit but unique.
1350 *
1351 *	BUGS:
1352 *	With a large number of inodes live on the file system this function
1353 *	currently becomes quite slow.
1354 */
1355ino_t iunique(struct super_block *sb, ino_t max_reserved)
1356{
1357	/*
1358	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1359	 * error if st_ino won't fit in target struct field. Use 32bit counter
1360	 * here to attempt to avoid that.
1361	 */
1362	static DEFINE_SPINLOCK(iunique_lock);
1363	static unsigned int counter;
1364	ino_t res;
1365
1366	rcu_read_lock();
1367	spin_lock(&iunique_lock);
1368	do {
1369		if (counter <= max_reserved)
1370			counter = max_reserved + 1;
1371		res = counter++;
1372	} while (!test_inode_iunique(sb, res));
1373	spin_unlock(&iunique_lock);
1374	rcu_read_unlock();
1375
1376	return res;
1377}
1378EXPORT_SYMBOL(iunique);
1379
1380struct inode *igrab(struct inode *inode)
1381{
1382	spin_lock(&inode->i_lock);
1383	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1384		__iget(inode);
1385		spin_unlock(&inode->i_lock);
1386	} else {
1387		spin_unlock(&inode->i_lock);
1388		/*
1389		 * Handle the case where s_op->clear_inode is not been
1390		 * called yet, and somebody is calling igrab
1391		 * while the inode is getting freed.
1392		 */
1393		inode = NULL;
1394	}
1395	return inode;
1396}
1397EXPORT_SYMBOL(igrab);
1398
1399/**
1400 * ilookup5_nowait - search for an inode in the inode cache
1401 * @sb:		super block of file system to search
1402 * @hashval:	hash value (usually inode number) to search for
1403 * @test:	callback used for comparisons between inodes
1404 * @data:	opaque data pointer to pass to @test
1405 *
1406 * Search for the inode specified by @hashval and @data in the inode cache.
1407 * If the inode is in the cache, the inode is returned with an incremented
1408 * reference count.
1409 *
1410 * Note: I_NEW is not waited upon so you have to be very careful what you do
1411 * with the returned inode.  You probably should be using ilookup5() instead.
1412 *
1413 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1414 */
1415struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1416		int (*test)(struct inode *, void *), void *data)
1417{
1418	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1419	struct inode *inode;
1420
1421	spin_lock(&inode_hash_lock);
1422	inode = find_inode(sb, head, test, data);
1423	spin_unlock(&inode_hash_lock);
1424
1425	return IS_ERR(inode) ? NULL : inode;
1426}
1427EXPORT_SYMBOL(ilookup5_nowait);
1428
1429/**
1430 * ilookup5 - search for an inode in the inode cache
1431 * @sb:		super block of file system to search
1432 * @hashval:	hash value (usually inode number) to search for
1433 * @test:	callback used for comparisons between inodes
1434 * @data:	opaque data pointer to pass to @test
1435 *
1436 * Search for the inode specified by @hashval and @data in the inode cache,
1437 * and if the inode is in the cache, return the inode with an incremented
1438 * reference count.  Waits on I_NEW before returning the inode.
1439 * returned with an incremented reference count.
1440 *
1441 * This is a generalized version of ilookup() for file systems where the
1442 * inode number is not sufficient for unique identification of an inode.
1443 *
1444 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1445 */
1446struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1447		int (*test)(struct inode *, void *), void *data)
1448{
1449	struct inode *inode;
1450again:
1451	inode = ilookup5_nowait(sb, hashval, test, data);
1452	if (inode) {
1453		wait_on_inode(inode);
1454		if (unlikely(inode_unhashed(inode))) {
1455			iput(inode);
1456			goto again;
1457		}
1458	}
1459	return inode;
1460}
1461EXPORT_SYMBOL(ilookup5);
1462
1463/**
1464 * ilookup - search for an inode in the inode cache
1465 * @sb:		super block of file system to search
1466 * @ino:	inode number to search for
1467 *
1468 * Search for the inode @ino in the inode cache, and if the inode is in the
1469 * cache, the inode is returned with an incremented reference count.
1470 */
1471struct inode *ilookup(struct super_block *sb, unsigned long ino)
1472{
1473	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1474	struct inode *inode;
1475again:
1476	spin_lock(&inode_hash_lock);
1477	inode = find_inode_fast(sb, head, ino);
1478	spin_unlock(&inode_hash_lock);
1479
1480	if (inode) {
1481		if (IS_ERR(inode))
1482			return NULL;
1483		wait_on_inode(inode);
1484		if (unlikely(inode_unhashed(inode))) {
1485			iput(inode);
1486			goto again;
1487		}
1488	}
1489	return inode;
1490}
1491EXPORT_SYMBOL(ilookup);
1492
1493/**
1494 * find_inode_nowait - find an inode in the inode cache
1495 * @sb:		super block of file system to search
1496 * @hashval:	hash value (usually inode number) to search for
1497 * @match:	callback used for comparisons between inodes
1498 * @data:	opaque data pointer to pass to @match
1499 *
1500 * Search for the inode specified by @hashval and @data in the inode
1501 * cache, where the helper function @match will return 0 if the inode
1502 * does not match, 1 if the inode does match, and -1 if the search
1503 * should be stopped.  The @match function must be responsible for
1504 * taking the i_lock spin_lock and checking i_state for an inode being
1505 * freed or being initialized, and incrementing the reference count
1506 * before returning 1.  It also must not sleep, since it is called with
1507 * the inode_hash_lock spinlock held.
1508 *
1509 * This is a even more generalized version of ilookup5() when the
1510 * function must never block --- find_inode() can block in
1511 * __wait_on_freeing_inode() --- or when the caller can not increment
1512 * the reference count because the resulting iput() might cause an
1513 * inode eviction.  The tradeoff is that the @match funtion must be
1514 * very carefully implemented.
1515 */
1516struct inode *find_inode_nowait(struct super_block *sb,
1517				unsigned long hashval,
1518				int (*match)(struct inode *, unsigned long,
1519					     void *),
1520				void *data)
1521{
1522	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1523	struct inode *inode, *ret_inode = NULL;
1524	int mval;
1525
1526	spin_lock(&inode_hash_lock);
1527	hlist_for_each_entry(inode, head, i_hash) {
1528		if (inode->i_sb != sb)
1529			continue;
1530		mval = match(inode, hashval, data);
1531		if (mval == 0)
1532			continue;
1533		if (mval == 1)
1534			ret_inode = inode;
1535		goto out;
1536	}
1537out:
1538	spin_unlock(&inode_hash_lock);
1539	return ret_inode;
1540}
1541EXPORT_SYMBOL(find_inode_nowait);
1542
1543/**
1544 * find_inode_rcu - find an inode in the inode cache
1545 * @sb:		Super block of file system to search
1546 * @hashval:	Key to hash
1547 * @test:	Function to test match on an inode
1548 * @data:	Data for test function
1549 *
1550 * Search for the inode specified by @hashval and @data in the inode cache,
1551 * where the helper function @test will return 0 if the inode does not match
1552 * and 1 if it does.  The @test function must be responsible for taking the
1553 * i_lock spin_lock and checking i_state for an inode being freed or being
1554 * initialized.
1555 *
1556 * If successful, this will return the inode for which the @test function
1557 * returned 1 and NULL otherwise.
1558 *
1559 * The @test function is not permitted to take a ref on any inode presented.
1560 * It is also not permitted to sleep.
1561 *
1562 * The caller must hold the RCU read lock.
1563 */
1564struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1565			     int (*test)(struct inode *, void *), void *data)
1566{
1567	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1568	struct inode *inode;
1569
1570	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1571			 "suspicious find_inode_rcu() usage");
1572
1573	hlist_for_each_entry_rcu(inode, head, i_hash) {
1574		if (inode->i_sb == sb &&
1575		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1576		    test(inode, data))
1577			return inode;
1578	}
1579	return NULL;
1580}
1581EXPORT_SYMBOL(find_inode_rcu);
1582
1583/**
1584 * find_inode_by_ino_rcu - Find an inode in the inode cache
1585 * @sb:		Super block of file system to search
1586 * @ino:	The inode number to match
1587 *
1588 * Search for the inode specified by @hashval and @data in the inode cache,
1589 * where the helper function @test will return 0 if the inode does not match
1590 * and 1 if it does.  The @test function must be responsible for taking the
1591 * i_lock spin_lock and checking i_state for an inode being freed or being
1592 * initialized.
1593 *
1594 * If successful, this will return the inode for which the @test function
1595 * returned 1 and NULL otherwise.
1596 *
1597 * The @test function is not permitted to take a ref on any inode presented.
1598 * It is also not permitted to sleep.
1599 *
1600 * The caller must hold the RCU read lock.
1601 */
1602struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1603				    unsigned long ino)
1604{
1605	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1606	struct inode *inode;
1607
1608	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1609			 "suspicious find_inode_by_ino_rcu() usage");
1610
1611	hlist_for_each_entry_rcu(inode, head, i_hash) {
1612		if (inode->i_ino == ino &&
1613		    inode->i_sb == sb &&
1614		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1615		    return inode;
1616	}
1617	return NULL;
1618}
1619EXPORT_SYMBOL(find_inode_by_ino_rcu);
1620
1621int insert_inode_locked(struct inode *inode)
1622{
1623	struct super_block *sb = inode->i_sb;
1624	ino_t ino = inode->i_ino;
1625	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1626
1627	while (1) {
1628		struct inode *old = NULL;
1629		spin_lock(&inode_hash_lock);
1630		hlist_for_each_entry(old, head, i_hash) {
1631			if (old->i_ino != ino)
1632				continue;
1633			if (old->i_sb != sb)
1634				continue;
1635			spin_lock(&old->i_lock);
1636			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1637				spin_unlock(&old->i_lock);
1638				continue;
1639			}
1640			break;
1641		}
1642		if (likely(!old)) {
1643			spin_lock(&inode->i_lock);
1644			inode->i_state |= I_NEW | I_CREATING;
1645			hlist_add_head_rcu(&inode->i_hash, head);
1646			spin_unlock(&inode->i_lock);
1647			spin_unlock(&inode_hash_lock);
1648			return 0;
1649		}
1650		if (unlikely(old->i_state & I_CREATING)) {
1651			spin_unlock(&old->i_lock);
1652			spin_unlock(&inode_hash_lock);
1653			return -EBUSY;
1654		}
1655		__iget(old);
1656		spin_unlock(&old->i_lock);
1657		spin_unlock(&inode_hash_lock);
1658		wait_on_inode(old);
1659		if (unlikely(!inode_unhashed(old))) {
1660			iput(old);
1661			return -EBUSY;
1662		}
1663		iput(old);
1664	}
1665}
1666EXPORT_SYMBOL(insert_inode_locked);
1667
1668int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1669		int (*test)(struct inode *, void *), void *data)
1670{
1671	struct inode *old;
 
1672
1673	inode->i_state |= I_CREATING;
1674	old = inode_insert5(inode, hashval, test, NULL, data);
1675
1676	if (old != inode) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1677		iput(old);
1678		return -EBUSY;
1679	}
1680	return 0;
1681}
1682EXPORT_SYMBOL(insert_inode_locked4);
1683
1684
1685int generic_delete_inode(struct inode *inode)
1686{
1687	return 1;
1688}
1689EXPORT_SYMBOL(generic_delete_inode);
1690
1691/*
1692 * Called when we're dropping the last reference
1693 * to an inode.
1694 *
1695 * Call the FS "drop_inode()" function, defaulting to
1696 * the legacy UNIX filesystem behaviour.  If it tells
1697 * us to evict inode, do so.  Otherwise, retain inode
1698 * in cache if fs is alive, sync and evict if fs is
1699 * shutting down.
1700 */
1701static void iput_final(struct inode *inode)
1702{
1703	struct super_block *sb = inode->i_sb;
1704	const struct super_operations *op = inode->i_sb->s_op;
1705	unsigned long state;
1706	int drop;
1707
1708	WARN_ON(inode->i_state & I_NEW);
1709
1710	if (op->drop_inode)
1711		drop = op->drop_inode(inode);
1712	else
1713		drop = generic_drop_inode(inode);
1714
1715	if (!drop &&
1716	    !(inode->i_state & I_DONTCACHE) &&
1717	    (sb->s_flags & SB_ACTIVE)) {
1718		__inode_add_lru(inode, true);
1719		spin_unlock(&inode->i_lock);
1720		return;
1721	}
1722
1723	state = inode->i_state;
1724	if (!drop) {
1725		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1726		spin_unlock(&inode->i_lock);
1727
1728		write_inode_now(inode, 1);
1729
1730		spin_lock(&inode->i_lock);
1731		state = inode->i_state;
1732		WARN_ON(state & I_NEW);
1733		state &= ~I_WILL_FREE;
1734	}
1735
1736	WRITE_ONCE(inode->i_state, state | I_FREEING);
1737	if (!list_empty(&inode->i_lru))
1738		inode_lru_list_del(inode);
1739	spin_unlock(&inode->i_lock);
1740
1741	evict(inode);
1742}
1743
1744/**
1745 *	iput	- put an inode
1746 *	@inode: inode to put
1747 *
1748 *	Puts an inode, dropping its usage count. If the inode use count hits
1749 *	zero, the inode is then freed and may also be destroyed.
1750 *
1751 *	Consequently, iput() can sleep.
1752 */
1753void iput(struct inode *inode)
1754{
1755	if (!inode)
1756		return;
1757	BUG_ON(inode->i_state & I_CLEAR);
1758retry:
1759	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1760		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1761			atomic_inc(&inode->i_count);
1762			spin_unlock(&inode->i_lock);
1763			trace_writeback_lazytime_iput(inode);
1764			mark_inode_dirty_sync(inode);
1765			goto retry;
1766		}
1767		iput_final(inode);
1768	}
1769}
1770EXPORT_SYMBOL(iput);
1771
1772#ifdef CONFIG_BLOCK
1773/**
1774 *	bmap	- find a block number in a file
1775 *	@inode:  inode owning the block number being requested
1776 *	@block: pointer containing the block to find
1777 *
1778 *	Replaces the value in ``*block`` with the block number on the device holding
1779 *	corresponding to the requested block number in the file.
1780 *	That is, asked for block 4 of inode 1 the function will replace the
1781 *	4 in ``*block``, with disk block relative to the disk start that holds that
1782 *	block of the file.
1783 *
1784 *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1785 *	hole, returns 0 and ``*block`` is also set to 0.
 
 
 
 
 
 
 
 
 
1786 */
1787int bmap(struct inode *inode, sector_t *block)
 
1788{
1789	if (!inode->i_mapping->a_ops->bmap)
1790		return -EINVAL;
 
 
 
 
 
 
 
1791
1792	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1793	return 0;
 
 
 
 
 
 
 
 
 
 
 
1794}
1795EXPORT_SYMBOL(bmap);
1796#endif
1797
1798/*
1799 * With relative atime, only update atime if the previous atime is
1800 * earlier than or equal to either the ctime or mtime,
1801 * or if at least a day has passed since the last atime update.
1802 */
1803static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1804			     struct timespec64 now)
1805{
1806	struct timespec64 atime, mtime, ctime;
1807
1808	if (!(mnt->mnt_flags & MNT_RELATIME))
1809		return true;
 
 
1810	/*
1811	 * Is mtime younger than or equal to atime? If yes, update atime:
1812	 */
1813	atime = inode_get_atime(inode);
1814	mtime = inode_get_mtime(inode);
1815	if (timespec64_compare(&mtime, &atime) >= 0)
1816		return true;
1817	/*
1818	 * Is ctime younger than or equal to atime? If yes, update atime:
1819	 */
1820	ctime = inode_get_ctime(inode);
1821	if (timespec64_compare(&ctime, &atime) >= 0)
1822		return true;
1823
1824	/*
1825	 * Is the previous atime value older than a day? If yes,
1826	 * update atime:
1827	 */
1828	if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
1829		return true;
1830	/*
1831	 * Good, we can skip the atime update:
1832	 */
1833	return false;
1834}
1835
1836/**
1837 * inode_update_timestamps - update the timestamps on the inode
1838 * @inode: inode to be updated
1839 * @flags: S_* flags that needed to be updated
1840 *
1841 * The update_time function is called when an inode's timestamps need to be
1842 * updated for a read or write operation. This function handles updating the
1843 * actual timestamps. It's up to the caller to ensure that the inode is marked
1844 * dirty appropriately.
1845 *
1846 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
1847 * attempt to update all three of them. S_ATIME updates can be handled
1848 * independently of the rest.
1849 *
1850 * Returns a set of S_* flags indicating which values changed.
1851 */
1852int inode_update_timestamps(struct inode *inode, int flags)
1853{
1854	int updated = 0;
1855	struct timespec64 now;
1856
1857	if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
1858		struct timespec64 ctime = inode_get_ctime(inode);
1859		struct timespec64 mtime = inode_get_mtime(inode);
1860
1861		now = inode_set_ctime_current(inode);
1862		if (!timespec64_equal(&now, &ctime))
1863			updated |= S_CTIME;
1864		if (!timespec64_equal(&now, &mtime)) {
1865			inode_set_mtime_to_ts(inode, now);
1866			updated |= S_MTIME;
1867		}
1868		if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
1869			updated |= S_VERSION;
1870	} else {
1871		now = current_time(inode);
1872	}
1873
1874	if (flags & S_ATIME) {
1875		struct timespec64 atime = inode_get_atime(inode);
1876
1877		if (!timespec64_equal(&now, &atime)) {
1878			inode_set_atime_to_ts(inode, now);
1879			updated |= S_ATIME;
1880		}
1881	}
1882	return updated;
1883}
1884EXPORT_SYMBOL(inode_update_timestamps);
1885
1886/**
1887 * generic_update_time - update the timestamps on the inode
1888 * @inode: inode to be updated
1889 * @flags: S_* flags that needed to be updated
1890 *
1891 * The update_time function is called when an inode's timestamps need to be
1892 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
1893 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
1894 * updates can be handled done independently of the rest.
1895 *
1896 * Returns a S_* mask indicating which fields were updated.
1897 */
1898int generic_update_time(struct inode *inode, int flags)
1899{
1900	int updated = inode_update_timestamps(inode, flags);
1901	int dirty_flags = 0;
1902
1903	if (updated & (S_ATIME|S_MTIME|S_CTIME))
1904		dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
1905	if (updated & S_VERSION)
1906		dirty_flags |= I_DIRTY_SYNC;
1907	__mark_inode_dirty(inode, dirty_flags);
1908	return updated;
 
 
 
 
 
 
 
 
 
 
1909}
1910EXPORT_SYMBOL(generic_update_time);
1911
1912/*
1913 * This does the actual work of updating an inodes time or version.  Must have
1914 * had called mnt_want_write() before calling this.
1915 */
1916int inode_update_time(struct inode *inode, int flags)
1917{
1918	if (inode->i_op->update_time)
1919		return inode->i_op->update_time(inode, flags);
1920	generic_update_time(inode, flags);
1921	return 0;
 
 
1922}
1923EXPORT_SYMBOL(inode_update_time);
1924
1925/**
1926 *	atime_needs_update	-	update the access time
1927 *	@path: the &struct path to update
1928 *	@inode: inode to update
1929 *
1930 *	Update the accessed time on an inode and mark it for writeback.
1931 *	This function automatically handles read only file systems and media,
1932 *	as well as the "noatime" flag and inode specific "noatime" markers.
1933 */
1934bool atime_needs_update(const struct path *path, struct inode *inode)
 
1935{
1936	struct vfsmount *mnt = path->mnt;
1937	struct timespec64 now, atime;
1938
1939	if (inode->i_flags & S_NOATIME)
1940		return false;
1941
1942	/* Atime updates will likely cause i_uid and i_gid to be written
1943	 * back improprely if their true value is unknown to the vfs.
1944	 */
1945	if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
1946		return false;
1947
1948	if (IS_NOATIME(inode))
1949		return false;
1950	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1951		return false;
1952
1953	if (mnt->mnt_flags & MNT_NOATIME)
1954		return false;
1955	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1956		return false;
1957
1958	now = current_time(inode);
1959
1960	if (!relatime_need_update(mnt, inode, now))
1961		return false;
1962
1963	atime = inode_get_atime(inode);
1964	if (timespec64_equal(&atime, &now))
1965		return false;
1966
1967	return true;
1968}
1969
1970void touch_atime(const struct path *path)
1971{
1972	struct vfsmount *mnt = path->mnt;
1973	struct inode *inode = d_inode(path->dentry);
 
1974
1975	if (!atime_needs_update(path, inode))
1976		return;
1977
1978	if (!sb_start_write_trylock(inode->i_sb))
1979		return;
1980
1981	if (mnt_get_write_access(mnt) != 0)
1982		goto skip_update;
1983	/*
1984	 * File systems can error out when updating inodes if they need to
1985	 * allocate new space to modify an inode (such is the case for
1986	 * Btrfs), but since we touch atime while walking down the path we
1987	 * really don't care if we failed to update the atime of the file,
1988	 * so just ignore the return value.
1989	 * We may also fail on filesystems that have the ability to make parts
1990	 * of the fs read only, e.g. subvolumes in Btrfs.
1991	 */
1992	inode_update_time(inode, S_ATIME);
1993	mnt_put_write_access(mnt);
 
1994skip_update:
1995	sb_end_write(inode->i_sb);
1996}
1997EXPORT_SYMBOL(touch_atime);
1998
1999/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2000 * Return mask of changes for notify_change() that need to be done as a
2001 * response to write or truncate. Return 0 if nothing has to be changed.
2002 * Negative value on error (change should be denied).
2003 */
2004int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2005			      struct dentry *dentry)
2006{
2007	struct inode *inode = d_inode(dentry);
2008	int mask = 0;
2009	int ret;
2010
2011	if (IS_NOSEC(inode))
2012		return 0;
2013
2014	mask = setattr_should_drop_suidgid(idmap, inode);
2015	ret = security_inode_need_killpriv(dentry);
2016	if (ret < 0)
2017		return ret;
2018	if (ret)
2019		mask |= ATTR_KILL_PRIV;
2020	return mask;
2021}
2022
2023static int __remove_privs(struct mnt_idmap *idmap,
2024			  struct dentry *dentry, int kill)
2025{
2026	struct iattr newattrs;
2027
2028	newattrs.ia_valid = ATTR_FORCE | kill;
2029	/*
2030	 * Note we call this on write, so notify_change will not
2031	 * encounter any conflicting delegations:
2032	 */
2033	return notify_change(idmap, dentry, &newattrs, NULL);
2034}
2035
2036int file_remove_privs_flags(struct file *file, unsigned int flags)
 
 
 
 
2037{
2038	struct dentry *dentry = file_dentry(file);
2039	struct inode *inode = file_inode(file);
 
2040	int error = 0;
2041	int kill;
2042
2043	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
 
2044		return 0;
2045
2046	kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2047	if (kill < 0)
2048		return kill;
2049
2050	if (kill) {
2051		if (flags & IOCB_NOWAIT)
2052			return -EAGAIN;
2053
2054		error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2055	}
2056
2057	if (!error)
2058		inode_has_no_xattr(inode);
 
2059	return error;
2060}
2061EXPORT_SYMBOL_GPL(file_remove_privs_flags);
2062
2063/**
2064 * file_remove_privs - remove special file privileges (suid, capabilities)
2065 * @file: file to remove privileges from
2066 *
2067 * When file is modified by a write or truncation ensure that special
2068 * file privileges are removed.
2069 *
2070 * Return: 0 on success, negative errno on failure.
 
 
 
 
 
 
2071 */
2072int file_remove_privs(struct file *file)
2073{
2074	return file_remove_privs_flags(file, 0);
2075}
2076EXPORT_SYMBOL(file_remove_privs);
2077
2078static int inode_needs_update_time(struct inode *inode)
2079{
 
 
2080	int sync_it = 0;
2081	struct timespec64 now = current_time(inode);
2082	struct timespec64 ts;
2083
2084	/* First try to exhaust all avenues to not sync */
2085	if (IS_NOCMTIME(inode))
2086		return 0;
2087
2088	ts = inode_get_mtime(inode);
2089	if (!timespec64_equal(&ts, &now))
2090		sync_it = S_MTIME;
2091
2092	ts = inode_get_ctime(inode);
2093	if (!timespec64_equal(&ts, &now))
2094		sync_it |= S_CTIME;
2095
2096	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2097		sync_it |= S_VERSION;
2098
2099	return sync_it;
2100}
2101
2102static int __file_update_time(struct file *file, int sync_mode)
2103{
2104	int ret = 0;
2105	struct inode *inode = file_inode(file);
2106
2107	/* try to update time settings */
2108	if (!mnt_get_write_access_file(file)) {
2109		ret = inode_update_time(inode, sync_mode);
2110		mnt_put_write_access_file(file);
2111	}
2112
2113	return ret;
2114}
2115
2116/**
2117 * file_update_time - update mtime and ctime time
2118 * @file: file accessed
2119 *
2120 * Update the mtime and ctime members of an inode and mark the inode for
2121 * writeback. Note that this function is meant exclusively for usage in
2122 * the file write path of filesystems, and filesystems may choose to
2123 * explicitly ignore updates via this function with the _NOCMTIME inode
2124 * flag, e.g. for network filesystem where these imestamps are handled
2125 * by the server. This can return an error for file systems who need to
2126 * allocate space in order to update an inode.
2127 *
2128 * Return: 0 on success, negative errno on failure.
2129 */
2130int file_update_time(struct file *file)
2131{
2132	int ret;
2133	struct inode *inode = file_inode(file);
2134
2135	ret = inode_needs_update_time(inode);
2136	if (ret <= 0)
2137		return ret;
2138
2139	return __file_update_time(file, ret);
2140}
2141EXPORT_SYMBOL(file_update_time);
2142
2143/**
2144 * file_modified_flags - handle mandated vfs changes when modifying a file
2145 * @file: file that was modified
2146 * @flags: kiocb flags
2147 *
2148 * When file has been modified ensure that special
2149 * file privileges are removed and time settings are updated.
2150 *
2151 * If IOCB_NOWAIT is set, special file privileges will not be removed and
2152 * time settings will not be updated. It will return -EAGAIN.
2153 *
2154 * Context: Caller must hold the file's inode lock.
2155 *
2156 * Return: 0 on success, negative errno on failure.
2157 */
2158static int file_modified_flags(struct file *file, int flags)
2159{
2160	int ret;
2161	struct inode *inode = file_inode(file);
2162
2163	/*
2164	 * Clear the security bits if the process is not being run by root.
2165	 * This keeps people from modifying setuid and setgid binaries.
2166	 */
2167	ret = file_remove_privs_flags(file, flags);
2168	if (ret)
2169		return ret;
2170
2171	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2172		return 0;
2173
2174	ret = inode_needs_update_time(inode);
2175	if (ret <= 0)
2176		return ret;
2177	if (flags & IOCB_NOWAIT)
2178		return -EAGAIN;
2179
2180	return __file_update_time(file, ret);
2181}
2182
2183/**
2184 * file_modified - handle mandated vfs changes when modifying a file
2185 * @file: file that was modified
2186 *
2187 * When file has been modified ensure that special
2188 * file privileges are removed and time settings are updated.
2189 *
2190 * Context: Caller must hold the file's inode lock.
2191 *
2192 * Return: 0 on success, negative errno on failure.
2193 */
2194int file_modified(struct file *file)
2195{
2196	return file_modified_flags(file, 0);
2197}
2198EXPORT_SYMBOL(file_modified);
2199
2200/**
2201 * kiocb_modified - handle mandated vfs changes when modifying a file
2202 * @iocb: iocb that was modified
2203 *
2204 * When file has been modified ensure that special
2205 * file privileges are removed and time settings are updated.
2206 *
2207 * Context: Caller must hold the file's inode lock.
2208 *
2209 * Return: 0 on success, negative errno on failure.
2210 */
2211int kiocb_modified(struct kiocb *iocb)
2212{
2213	return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2214}
2215EXPORT_SYMBOL_GPL(kiocb_modified);
2216
2217int inode_needs_sync(struct inode *inode)
2218{
2219	if (IS_SYNC(inode))
2220		return 1;
2221	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2222		return 1;
2223	return 0;
2224}
2225EXPORT_SYMBOL(inode_needs_sync);
2226
2227/*
2228 * If we try to find an inode in the inode hash while it is being
2229 * deleted, we have to wait until the filesystem completes its
2230 * deletion before reporting that it isn't found.  This function waits
2231 * until the deletion _might_ have completed.  Callers are responsible
2232 * to recheck inode state.
2233 *
2234 * It doesn't matter if I_NEW is not set initially, a call to
2235 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2236 * will DTRT.
2237 */
2238static void __wait_on_freeing_inode(struct inode *inode)
2239{
2240	wait_queue_head_t *wq;
2241	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2242	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2243	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2244	spin_unlock(&inode->i_lock);
2245	spin_unlock(&inode_hash_lock);
2246	schedule();
2247	finish_wait(wq, &wait.wq_entry);
2248	spin_lock(&inode_hash_lock);
2249}
2250
2251static __initdata unsigned long ihash_entries;
2252static int __init set_ihash_entries(char *str)
2253{
2254	if (!str)
2255		return 0;
2256	ihash_entries = simple_strtoul(str, &str, 0);
2257	return 1;
2258}
2259__setup("ihash_entries=", set_ihash_entries);
2260
2261/*
2262 * Initialize the waitqueues and inode hash table.
2263 */
2264void __init inode_init_early(void)
2265{
2266	/* If hashes are distributed across NUMA nodes, defer
2267	 * hash allocation until vmalloc space is available.
2268	 */
2269	if (hashdist)
2270		return;
2271
2272	inode_hashtable =
2273		alloc_large_system_hash("Inode-cache",
2274					sizeof(struct hlist_head),
2275					ihash_entries,
2276					14,
2277					HASH_EARLY | HASH_ZERO,
2278					&i_hash_shift,
2279					&i_hash_mask,
2280					0,
2281					0);
2282}
2283
2284void __init inode_init(void)
2285{
2286	/* inode slab cache */
2287	inode_cachep = kmem_cache_create("inode_cache",
2288					 sizeof(struct inode),
2289					 0,
2290					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2291					 SLAB_ACCOUNT),
2292					 init_once);
2293
2294	/* Hash may have been set up in inode_init_early */
2295	if (!hashdist)
2296		return;
2297
2298	inode_hashtable =
2299		alloc_large_system_hash("Inode-cache",
2300					sizeof(struct hlist_head),
2301					ihash_entries,
2302					14,
2303					HASH_ZERO,
2304					&i_hash_shift,
2305					&i_hash_mask,
2306					0,
2307					0);
2308}
2309
2310void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2311{
2312	inode->i_mode = mode;
2313	if (S_ISCHR(mode)) {
2314		inode->i_fop = &def_chr_fops;
2315		inode->i_rdev = rdev;
2316	} else if (S_ISBLK(mode)) {
2317		if (IS_ENABLED(CONFIG_BLOCK))
2318			inode->i_fop = &def_blk_fops;
2319		inode->i_rdev = rdev;
2320	} else if (S_ISFIFO(mode))
2321		inode->i_fop = &pipefifo_fops;
2322	else if (S_ISSOCK(mode))
2323		;	/* leave it no_open_fops */
2324	else
2325		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2326				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2327				  inode->i_ino);
2328}
2329EXPORT_SYMBOL(init_special_inode);
2330
2331/**
2332 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2333 * @idmap: idmap of the mount the inode was created from
2334 * @inode: New inode
2335 * @dir: Directory inode
2336 * @mode: mode of the new inode
2337 *
2338 * If the inode has been created through an idmapped mount the idmap of
2339 * the vfsmount must be passed through @idmap. This function will then take
2340 * care to map the inode according to @idmap before checking permissions
2341 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2342 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2343 */
2344void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2345		      const struct inode *dir, umode_t mode)
2346{
2347	inode_fsuid_set(inode, idmap);
2348	if (dir && dir->i_mode & S_ISGID) {
2349		inode->i_gid = dir->i_gid;
2350
2351		/* Directories are special, and always inherit S_ISGID */
2352		if (S_ISDIR(mode))
2353			mode |= S_ISGID;
2354	} else
2355		inode_fsgid_set(inode, idmap);
2356	inode->i_mode = mode;
2357}
2358EXPORT_SYMBOL(inode_init_owner);
2359
2360/**
2361 * inode_owner_or_capable - check current task permissions to inode
2362 * @idmap: idmap of the mount the inode was found from
2363 * @inode: inode being checked
2364 *
2365 * Return true if current either has CAP_FOWNER in a namespace with the
2366 * inode owner uid mapped, or owns the file.
2367 *
2368 * If the inode has been found through an idmapped mount the idmap of
2369 * the vfsmount must be passed through @idmap. This function will then take
2370 * care to map the inode according to @idmap before checking permissions.
2371 * On non-idmapped mounts or if permission checking is to be performed on the
2372 * raw inode simply pass @nop_mnt_idmap.
2373 */
2374bool inode_owner_or_capable(struct mnt_idmap *idmap,
2375			    const struct inode *inode)
2376{
2377	vfsuid_t vfsuid;
2378	struct user_namespace *ns;
2379
2380	vfsuid = i_uid_into_vfsuid(idmap, inode);
2381	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2382		return true;
2383
2384	ns = current_user_ns();
2385	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2386		return true;
2387	return false;
2388}
2389EXPORT_SYMBOL(inode_owner_or_capable);
2390
2391/*
2392 * Direct i/o helper functions
2393 */
2394static void __inode_dio_wait(struct inode *inode)
2395{
2396	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2397	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2398
2399	do {
2400		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2401		if (atomic_read(&inode->i_dio_count))
2402			schedule();
2403	} while (atomic_read(&inode->i_dio_count));
2404	finish_wait(wq, &q.wq_entry);
2405}
2406
2407/**
2408 * inode_dio_wait - wait for outstanding DIO requests to finish
2409 * @inode: inode to wait for
2410 *
2411 * Waits for all pending direct I/O requests to finish so that we can
2412 * proceed with a truncate or equivalent operation.
2413 *
2414 * Must be called under a lock that serializes taking new references
2415 * to i_dio_count, usually by inode->i_mutex.
2416 */
2417void inode_dio_wait(struct inode *inode)
2418{
2419	if (atomic_read(&inode->i_dio_count))
2420		__inode_dio_wait(inode);
2421}
2422EXPORT_SYMBOL(inode_dio_wait);
2423
2424/*
2425 * inode_set_flags - atomically set some inode flags
2426 *
2427 * Note: the caller should be holding i_mutex, or else be sure that
2428 * they have exclusive access to the inode structure (i.e., while the
2429 * inode is being instantiated).  The reason for the cmpxchg() loop
2430 * --- which wouldn't be necessary if all code paths which modify
2431 * i_flags actually followed this rule, is that there is at least one
2432 * code path which doesn't today so we use cmpxchg() out of an abundance
2433 * of caution.
2434 *
2435 * In the long run, i_mutex is overkill, and we should probably look
2436 * at using the i_lock spinlock to protect i_flags, and then make sure
2437 * it is so documented in include/linux/fs.h and that all code follows
2438 * the locking convention!!
2439 */
2440void inode_set_flags(struct inode *inode, unsigned int flags,
2441		     unsigned int mask)
2442{
 
 
2443	WARN_ON_ONCE(flags & ~mask);
2444	set_mask_bits(&inode->i_flags, mask, flags);
 
 
 
 
2445}
2446EXPORT_SYMBOL(inode_set_flags);
2447
2448void inode_nohighmem(struct inode *inode)
2449{
2450	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2451}
2452EXPORT_SYMBOL(inode_nohighmem);
2453
2454/**
2455 * timestamp_truncate - Truncate timespec to a granularity
2456 * @t: Timespec
2457 * @inode: inode being updated
2458 *
2459 * Truncate a timespec to the granularity supported by the fs
2460 * containing the inode. Always rounds down. gran must
2461 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2462 */
2463struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2464{
2465	struct super_block *sb = inode->i_sb;
2466	unsigned int gran = sb->s_time_gran;
2467
2468	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2469	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2470		t.tv_nsec = 0;
2471
2472	/* Avoid division in the common cases 1 ns and 1 s. */
2473	if (gran == 1)
2474		; /* nothing */
2475	else if (gran == NSEC_PER_SEC)
2476		t.tv_nsec = 0;
2477	else if (gran > 1 && gran < NSEC_PER_SEC)
2478		t.tv_nsec -= t.tv_nsec % gran;
2479	else
2480		WARN(1, "invalid file time granularity: %u", gran);
2481	return t;
2482}
2483EXPORT_SYMBOL(timestamp_truncate);
2484
2485/**
2486 * current_time - Return FS time
2487 * @inode: inode.
2488 *
2489 * Return the current time truncated to the time granularity supported by
2490 * the fs.
2491 *
2492 * Note that inode and inode->sb cannot be NULL.
2493 * Otherwise, the function warns and returns time without truncation.
2494 */
2495struct timespec64 current_time(struct inode *inode)
2496{
2497	struct timespec64 now;
 
 
 
 
 
2498
2499	ktime_get_coarse_real_ts64(&now);
2500	return timestamp_truncate(now, inode);
2501}
2502EXPORT_SYMBOL(current_time);
2503
2504/**
2505 * inode_set_ctime_current - set the ctime to current_time
2506 * @inode: inode
2507 *
2508 * Set the inode->i_ctime to the current value for the inode. Returns
2509 * the current value that was assigned to i_ctime.
2510 */
2511struct timespec64 inode_set_ctime_current(struct inode *inode)
2512{
2513	struct timespec64 now = current_time(inode);
2514
2515	inode_set_ctime_to_ts(inode, now);
2516	return now;
2517}
2518EXPORT_SYMBOL(inode_set_ctime_current);
2519
2520/**
2521 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2522 * @idmap:	idmap of the mount @inode was found from
2523 * @inode:	inode to check
2524 * @vfsgid:	the new/current vfsgid of @inode
2525 *
2526 * Check wether @vfsgid is in the caller's group list or if the caller is
2527 * privileged with CAP_FSETID over @inode. This can be used to determine
2528 * whether the setgid bit can be kept or must be dropped.
2529 *
2530 * Return: true if the caller is sufficiently privileged, false if not.
2531 */
2532bool in_group_or_capable(struct mnt_idmap *idmap,
2533			 const struct inode *inode, vfsgid_t vfsgid)
2534{
2535	if (vfsgid_in_group_p(vfsgid))
2536		return true;
2537	if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2538		return true;
2539	return false;
2540}
2541
2542/**
2543 * mode_strip_sgid - handle the sgid bit for non-directories
2544 * @idmap: idmap of the mount the inode was created from
2545 * @dir: parent directory inode
2546 * @mode: mode of the file to be created in @dir
2547 *
2548 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2549 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2550 * either in the group of the parent directory or they have CAP_FSETID
2551 * in their user namespace and are privileged over the parent directory.
2552 * In all other cases, strip the S_ISGID bit from @mode.
2553 *
2554 * Return: the new mode to use for the file
2555 */
2556umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2557			const struct inode *dir, umode_t mode)
2558{
2559	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2560		return mode;
2561	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2562		return mode;
2563	if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2564		return mode;
2565	return mode & ~S_ISGID;
2566}
2567EXPORT_SYMBOL(mode_strip_sgid);