Loading...
1/*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5#include <linux/export.h>
6#include <linux/fs.h>
7#include <linux/mm.h>
8#include <linux/backing-dev.h>
9#include <linux/hash.h>
10#include <linux/swap.h>
11#include <linux/security.h>
12#include <linux/cdev.h>
13#include <linux/bootmem.h>
14#include <linux/fsnotify.h>
15#include <linux/mount.h>
16#include <linux/posix_acl.h>
17#include <linux/prefetch.h>
18#include <linux/buffer_head.h> /* for inode_has_buffers */
19#include <linux/ratelimit.h>
20#include <linux/list_lru.h>
21#include <linux/iversion.h>
22#include <trace/events/writeback.h>
23#include "internal.h"
24
25/*
26 * Inode locking rules:
27 *
28 * inode->i_lock protects:
29 * inode->i_state, inode->i_hash, __iget()
30 * Inode LRU list locks protect:
31 * inode->i_sb->s_inode_lru, inode->i_lru
32 * inode->i_sb->s_inode_list_lock protects:
33 * inode->i_sb->s_inodes, inode->i_sb_list
34 * bdi->wb.list_lock protects:
35 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
36 * inode_hash_lock protects:
37 * inode_hashtable, inode->i_hash
38 *
39 * Lock ordering:
40 *
41 * inode->i_sb->s_inode_list_lock
42 * inode->i_lock
43 * Inode LRU list locks
44 *
45 * bdi->wb.list_lock
46 * inode->i_lock
47 *
48 * inode_hash_lock
49 * inode->i_sb->s_inode_list_lock
50 * inode->i_lock
51 *
52 * iunique_lock
53 * inode_hash_lock
54 */
55
56static unsigned int i_hash_mask __read_mostly;
57static unsigned int i_hash_shift __read_mostly;
58static struct hlist_head *inode_hashtable __read_mostly;
59static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
60
61/*
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
64 */
65const struct address_space_operations empty_aops = {
66};
67EXPORT_SYMBOL(empty_aops);
68
69/*
70 * Statistics gathering..
71 */
72struct inodes_stat_t inodes_stat;
73
74static DEFINE_PER_CPU(unsigned long, nr_inodes);
75static DEFINE_PER_CPU(unsigned long, nr_unused);
76
77static struct kmem_cache *inode_cachep __read_mostly;
78
79static long get_nr_inodes(void)
80{
81 int i;
82 long sum = 0;
83 for_each_possible_cpu(i)
84 sum += per_cpu(nr_inodes, i);
85 return sum < 0 ? 0 : sum;
86}
87
88static inline long get_nr_inodes_unused(void)
89{
90 int i;
91 long sum = 0;
92 for_each_possible_cpu(i)
93 sum += per_cpu(nr_unused, i);
94 return sum < 0 ? 0 : sum;
95}
96
97long get_nr_dirty_inodes(void)
98{
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty > 0 ? nr_dirty : 0;
102}
103
104/*
105 * Handle nr_inode sysctl
106 */
107#ifdef CONFIG_SYSCTL
108int proc_nr_inodes(struct ctl_table *table, int write,
109 void __user *buffer, size_t *lenp, loff_t *ppos)
110{
111 inodes_stat.nr_inodes = get_nr_inodes();
112 inodes_stat.nr_unused = get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114}
115#endif
116
117static int no_open(struct inode *inode, struct file *file)
118{
119 return -ENXIO;
120}
121
122/**
123 * inode_init_always - perform inode structure initialisation
124 * @sb: superblock inode belongs to
125 * @inode: inode to initialise
126 *
127 * These are initializations that need to be done on every inode
128 * allocation as the fields are not initialised by slab allocation.
129 */
130int inode_init_always(struct super_block *sb, struct inode *inode)
131{
132 static const struct inode_operations empty_iops;
133 static const struct file_operations no_open_fops = {.open = no_open};
134 struct address_space *const mapping = &inode->i_data;
135
136 inode->i_sb = sb;
137 inode->i_blkbits = sb->s_blocksize_bits;
138 inode->i_flags = 0;
139 atomic_set(&inode->i_count, 1);
140 inode->i_op = &empty_iops;
141 inode->i_fop = &no_open_fops;
142 inode->__i_nlink = 1;
143 inode->i_opflags = 0;
144 if (sb->s_xattr)
145 inode->i_opflags |= IOP_XATTR;
146 i_uid_write(inode, 0);
147 i_gid_write(inode, 0);
148 atomic_set(&inode->i_writecount, 0);
149 inode->i_size = 0;
150 inode->i_write_hint = WRITE_LIFE_NOT_SET;
151 inode->i_blocks = 0;
152 inode->i_bytes = 0;
153 inode->i_generation = 0;
154 inode->i_pipe = NULL;
155 inode->i_bdev = NULL;
156 inode->i_cdev = NULL;
157 inode->i_link = NULL;
158 inode->i_dir_seq = 0;
159 inode->i_rdev = 0;
160 inode->dirtied_when = 0;
161
162#ifdef CONFIG_CGROUP_WRITEBACK
163 inode->i_wb_frn_winner = 0;
164 inode->i_wb_frn_avg_time = 0;
165 inode->i_wb_frn_history = 0;
166#endif
167
168 if (security_inode_alloc(inode))
169 goto out;
170 spin_lock_init(&inode->i_lock);
171 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
172
173 init_rwsem(&inode->i_rwsem);
174 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
175
176 atomic_set(&inode->i_dio_count, 0);
177
178 mapping->a_ops = &empty_aops;
179 mapping->host = inode;
180 mapping->flags = 0;
181 mapping->wb_err = 0;
182 atomic_set(&mapping->i_mmap_writable, 0);
183 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
184 mapping->private_data = NULL;
185 mapping->writeback_index = 0;
186 inode->i_private = NULL;
187 inode->i_mapping = mapping;
188 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
189#ifdef CONFIG_FS_POSIX_ACL
190 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
191#endif
192
193#ifdef CONFIG_FSNOTIFY
194 inode->i_fsnotify_mask = 0;
195#endif
196 inode->i_flctx = NULL;
197 this_cpu_inc(nr_inodes);
198
199 return 0;
200out:
201 return -ENOMEM;
202}
203EXPORT_SYMBOL(inode_init_always);
204
205static struct inode *alloc_inode(struct super_block *sb)
206{
207 struct inode *inode;
208
209 if (sb->s_op->alloc_inode)
210 inode = sb->s_op->alloc_inode(sb);
211 else
212 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
213
214 if (!inode)
215 return NULL;
216
217 if (unlikely(inode_init_always(sb, inode))) {
218 if (inode->i_sb->s_op->destroy_inode)
219 inode->i_sb->s_op->destroy_inode(inode);
220 else
221 kmem_cache_free(inode_cachep, inode);
222 return NULL;
223 }
224
225 return inode;
226}
227
228void free_inode_nonrcu(struct inode *inode)
229{
230 kmem_cache_free(inode_cachep, inode);
231}
232EXPORT_SYMBOL(free_inode_nonrcu);
233
234void __destroy_inode(struct inode *inode)
235{
236 BUG_ON(inode_has_buffers(inode));
237 inode_detach_wb(inode);
238 security_inode_free(inode);
239 fsnotify_inode_delete(inode);
240 locks_free_lock_context(inode);
241 if (!inode->i_nlink) {
242 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
243 atomic_long_dec(&inode->i_sb->s_remove_count);
244 }
245
246#ifdef CONFIG_FS_POSIX_ACL
247 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
248 posix_acl_release(inode->i_acl);
249 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
250 posix_acl_release(inode->i_default_acl);
251#endif
252 this_cpu_dec(nr_inodes);
253}
254EXPORT_SYMBOL(__destroy_inode);
255
256static void i_callback(struct rcu_head *head)
257{
258 struct inode *inode = container_of(head, struct inode, i_rcu);
259 kmem_cache_free(inode_cachep, inode);
260}
261
262static void destroy_inode(struct inode *inode)
263{
264 BUG_ON(!list_empty(&inode->i_lru));
265 __destroy_inode(inode);
266 if (inode->i_sb->s_op->destroy_inode)
267 inode->i_sb->s_op->destroy_inode(inode);
268 else
269 call_rcu(&inode->i_rcu, i_callback);
270}
271
272/**
273 * drop_nlink - directly drop an inode's link count
274 * @inode: inode
275 *
276 * This is a low-level filesystem helper to replace any
277 * direct filesystem manipulation of i_nlink. In cases
278 * where we are attempting to track writes to the
279 * filesystem, a decrement to zero means an imminent
280 * write when the file is truncated and actually unlinked
281 * on the filesystem.
282 */
283void drop_nlink(struct inode *inode)
284{
285 WARN_ON(inode->i_nlink == 0);
286 inode->__i_nlink--;
287 if (!inode->i_nlink)
288 atomic_long_inc(&inode->i_sb->s_remove_count);
289}
290EXPORT_SYMBOL(drop_nlink);
291
292/**
293 * clear_nlink - directly zero an inode's link count
294 * @inode: inode
295 *
296 * This is a low-level filesystem helper to replace any
297 * direct filesystem manipulation of i_nlink. See
298 * drop_nlink() for why we care about i_nlink hitting zero.
299 */
300void clear_nlink(struct inode *inode)
301{
302 if (inode->i_nlink) {
303 inode->__i_nlink = 0;
304 atomic_long_inc(&inode->i_sb->s_remove_count);
305 }
306}
307EXPORT_SYMBOL(clear_nlink);
308
309/**
310 * set_nlink - directly set an inode's link count
311 * @inode: inode
312 * @nlink: new nlink (should be non-zero)
313 *
314 * This is a low-level filesystem helper to replace any
315 * direct filesystem manipulation of i_nlink.
316 */
317void set_nlink(struct inode *inode, unsigned int nlink)
318{
319 if (!nlink) {
320 clear_nlink(inode);
321 } else {
322 /* Yes, some filesystems do change nlink from zero to one */
323 if (inode->i_nlink == 0)
324 atomic_long_dec(&inode->i_sb->s_remove_count);
325
326 inode->__i_nlink = nlink;
327 }
328}
329EXPORT_SYMBOL(set_nlink);
330
331/**
332 * inc_nlink - directly increment an inode's link count
333 * @inode: inode
334 *
335 * This is a low-level filesystem helper to replace any
336 * direct filesystem manipulation of i_nlink. Currently,
337 * it is only here for parity with dec_nlink().
338 */
339void inc_nlink(struct inode *inode)
340{
341 if (unlikely(inode->i_nlink == 0)) {
342 WARN_ON(!(inode->i_state & I_LINKABLE));
343 atomic_long_dec(&inode->i_sb->s_remove_count);
344 }
345
346 inode->__i_nlink++;
347}
348EXPORT_SYMBOL(inc_nlink);
349
350static void __address_space_init_once(struct address_space *mapping)
351{
352 INIT_RADIX_TREE(&mapping->i_pages, GFP_ATOMIC | __GFP_ACCOUNT);
353 init_rwsem(&mapping->i_mmap_rwsem);
354 INIT_LIST_HEAD(&mapping->private_list);
355 spin_lock_init(&mapping->private_lock);
356 mapping->i_mmap = RB_ROOT_CACHED;
357}
358
359void address_space_init_once(struct address_space *mapping)
360{
361 memset(mapping, 0, sizeof(*mapping));
362 __address_space_init_once(mapping);
363}
364EXPORT_SYMBOL(address_space_init_once);
365
366/*
367 * These are initializations that only need to be done
368 * once, because the fields are idempotent across use
369 * of the inode, so let the slab aware of that.
370 */
371void inode_init_once(struct inode *inode)
372{
373 memset(inode, 0, sizeof(*inode));
374 INIT_HLIST_NODE(&inode->i_hash);
375 INIT_LIST_HEAD(&inode->i_devices);
376 INIT_LIST_HEAD(&inode->i_io_list);
377 INIT_LIST_HEAD(&inode->i_wb_list);
378 INIT_LIST_HEAD(&inode->i_lru);
379 __address_space_init_once(&inode->i_data);
380 i_size_ordered_init(inode);
381}
382EXPORT_SYMBOL(inode_init_once);
383
384static void init_once(void *foo)
385{
386 struct inode *inode = (struct inode *) foo;
387
388 inode_init_once(inode);
389}
390
391/*
392 * inode->i_lock must be held
393 */
394void __iget(struct inode *inode)
395{
396 atomic_inc(&inode->i_count);
397}
398
399/*
400 * get additional reference to inode; caller must already hold one.
401 */
402void ihold(struct inode *inode)
403{
404 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
405}
406EXPORT_SYMBOL(ihold);
407
408static void inode_lru_list_add(struct inode *inode)
409{
410 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
411 this_cpu_inc(nr_unused);
412 else
413 inode->i_state |= I_REFERENCED;
414}
415
416/*
417 * Add inode to LRU if needed (inode is unused and clean).
418 *
419 * Needs inode->i_lock held.
420 */
421void inode_add_lru(struct inode *inode)
422{
423 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
424 I_FREEING | I_WILL_FREE)) &&
425 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
426 inode_lru_list_add(inode);
427}
428
429
430static void inode_lru_list_del(struct inode *inode)
431{
432
433 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
434 this_cpu_dec(nr_unused);
435}
436
437/**
438 * inode_sb_list_add - add inode to the superblock list of inodes
439 * @inode: inode to add
440 */
441void inode_sb_list_add(struct inode *inode)
442{
443 spin_lock(&inode->i_sb->s_inode_list_lock);
444 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
445 spin_unlock(&inode->i_sb->s_inode_list_lock);
446}
447EXPORT_SYMBOL_GPL(inode_sb_list_add);
448
449static inline void inode_sb_list_del(struct inode *inode)
450{
451 if (!list_empty(&inode->i_sb_list)) {
452 spin_lock(&inode->i_sb->s_inode_list_lock);
453 list_del_init(&inode->i_sb_list);
454 spin_unlock(&inode->i_sb->s_inode_list_lock);
455 }
456}
457
458static unsigned long hash(struct super_block *sb, unsigned long hashval)
459{
460 unsigned long tmp;
461
462 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
463 L1_CACHE_BYTES;
464 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
465 return tmp & i_hash_mask;
466}
467
468/**
469 * __insert_inode_hash - hash an inode
470 * @inode: unhashed inode
471 * @hashval: unsigned long value used to locate this object in the
472 * inode_hashtable.
473 *
474 * Add an inode to the inode hash for this superblock.
475 */
476void __insert_inode_hash(struct inode *inode, unsigned long hashval)
477{
478 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
479
480 spin_lock(&inode_hash_lock);
481 spin_lock(&inode->i_lock);
482 hlist_add_head(&inode->i_hash, b);
483 spin_unlock(&inode->i_lock);
484 spin_unlock(&inode_hash_lock);
485}
486EXPORT_SYMBOL(__insert_inode_hash);
487
488/**
489 * __remove_inode_hash - remove an inode from the hash
490 * @inode: inode to unhash
491 *
492 * Remove an inode from the superblock.
493 */
494void __remove_inode_hash(struct inode *inode)
495{
496 spin_lock(&inode_hash_lock);
497 spin_lock(&inode->i_lock);
498 hlist_del_init(&inode->i_hash);
499 spin_unlock(&inode->i_lock);
500 spin_unlock(&inode_hash_lock);
501}
502EXPORT_SYMBOL(__remove_inode_hash);
503
504void clear_inode(struct inode *inode)
505{
506 /*
507 * We have to cycle the i_pages lock here because reclaim can be in the
508 * process of removing the last page (in __delete_from_page_cache())
509 * and we must not free the mapping under it.
510 */
511 xa_lock_irq(&inode->i_data.i_pages);
512 BUG_ON(inode->i_data.nrpages);
513 BUG_ON(inode->i_data.nrexceptional);
514 xa_unlock_irq(&inode->i_data.i_pages);
515 BUG_ON(!list_empty(&inode->i_data.private_list));
516 BUG_ON(!(inode->i_state & I_FREEING));
517 BUG_ON(inode->i_state & I_CLEAR);
518 BUG_ON(!list_empty(&inode->i_wb_list));
519 /* don't need i_lock here, no concurrent mods to i_state */
520 inode->i_state = I_FREEING | I_CLEAR;
521}
522EXPORT_SYMBOL(clear_inode);
523
524/*
525 * Free the inode passed in, removing it from the lists it is still connected
526 * to. We remove any pages still attached to the inode and wait for any IO that
527 * is still in progress before finally destroying the inode.
528 *
529 * An inode must already be marked I_FREEING so that we avoid the inode being
530 * moved back onto lists if we race with other code that manipulates the lists
531 * (e.g. writeback_single_inode). The caller is responsible for setting this.
532 *
533 * An inode must already be removed from the LRU list before being evicted from
534 * the cache. This should occur atomically with setting the I_FREEING state
535 * flag, so no inodes here should ever be on the LRU when being evicted.
536 */
537static void evict(struct inode *inode)
538{
539 const struct super_operations *op = inode->i_sb->s_op;
540
541 BUG_ON(!(inode->i_state & I_FREEING));
542 BUG_ON(!list_empty(&inode->i_lru));
543
544 if (!list_empty(&inode->i_io_list))
545 inode_io_list_del(inode);
546
547 inode_sb_list_del(inode);
548
549 /*
550 * Wait for flusher thread to be done with the inode so that filesystem
551 * does not start destroying it while writeback is still running. Since
552 * the inode has I_FREEING set, flusher thread won't start new work on
553 * the inode. We just have to wait for running writeback to finish.
554 */
555 inode_wait_for_writeback(inode);
556
557 if (op->evict_inode) {
558 op->evict_inode(inode);
559 } else {
560 truncate_inode_pages_final(&inode->i_data);
561 clear_inode(inode);
562 }
563 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
564 bd_forget(inode);
565 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
566 cd_forget(inode);
567
568 remove_inode_hash(inode);
569
570 spin_lock(&inode->i_lock);
571 wake_up_bit(&inode->i_state, __I_NEW);
572 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
573 spin_unlock(&inode->i_lock);
574
575 destroy_inode(inode);
576}
577
578/*
579 * dispose_list - dispose of the contents of a local list
580 * @head: the head of the list to free
581 *
582 * Dispose-list gets a local list with local inodes in it, so it doesn't
583 * need to worry about list corruption and SMP locks.
584 */
585static void dispose_list(struct list_head *head)
586{
587 while (!list_empty(head)) {
588 struct inode *inode;
589
590 inode = list_first_entry(head, struct inode, i_lru);
591 list_del_init(&inode->i_lru);
592
593 evict(inode);
594 cond_resched();
595 }
596}
597
598/**
599 * evict_inodes - evict all evictable inodes for a superblock
600 * @sb: superblock to operate on
601 *
602 * Make sure that no inodes with zero refcount are retained. This is
603 * called by superblock shutdown after having SB_ACTIVE flag removed,
604 * so any inode reaching zero refcount during or after that call will
605 * be immediately evicted.
606 */
607void evict_inodes(struct super_block *sb)
608{
609 struct inode *inode, *next;
610 LIST_HEAD(dispose);
611
612again:
613 spin_lock(&sb->s_inode_list_lock);
614 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
615 if (atomic_read(&inode->i_count))
616 continue;
617
618 spin_lock(&inode->i_lock);
619 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
620 spin_unlock(&inode->i_lock);
621 continue;
622 }
623
624 inode->i_state |= I_FREEING;
625 inode_lru_list_del(inode);
626 spin_unlock(&inode->i_lock);
627 list_add(&inode->i_lru, &dispose);
628
629 /*
630 * We can have a ton of inodes to evict at unmount time given
631 * enough memory, check to see if we need to go to sleep for a
632 * bit so we don't livelock.
633 */
634 if (need_resched()) {
635 spin_unlock(&sb->s_inode_list_lock);
636 cond_resched();
637 dispose_list(&dispose);
638 goto again;
639 }
640 }
641 spin_unlock(&sb->s_inode_list_lock);
642
643 dispose_list(&dispose);
644}
645EXPORT_SYMBOL_GPL(evict_inodes);
646
647/**
648 * invalidate_inodes - attempt to free all inodes on a superblock
649 * @sb: superblock to operate on
650 * @kill_dirty: flag to guide handling of dirty inodes
651 *
652 * Attempts to free all inodes for a given superblock. If there were any
653 * busy inodes return a non-zero value, else zero.
654 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
655 * them as busy.
656 */
657int invalidate_inodes(struct super_block *sb, bool kill_dirty)
658{
659 int busy = 0;
660 struct inode *inode, *next;
661 LIST_HEAD(dispose);
662
663 spin_lock(&sb->s_inode_list_lock);
664 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
665 spin_lock(&inode->i_lock);
666 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
667 spin_unlock(&inode->i_lock);
668 continue;
669 }
670 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
671 spin_unlock(&inode->i_lock);
672 busy = 1;
673 continue;
674 }
675 if (atomic_read(&inode->i_count)) {
676 spin_unlock(&inode->i_lock);
677 busy = 1;
678 continue;
679 }
680
681 inode->i_state |= I_FREEING;
682 inode_lru_list_del(inode);
683 spin_unlock(&inode->i_lock);
684 list_add(&inode->i_lru, &dispose);
685 }
686 spin_unlock(&sb->s_inode_list_lock);
687
688 dispose_list(&dispose);
689
690 return busy;
691}
692
693/*
694 * Isolate the inode from the LRU in preparation for freeing it.
695 *
696 * Any inodes which are pinned purely because of attached pagecache have their
697 * pagecache removed. If the inode has metadata buffers attached to
698 * mapping->private_list then try to remove them.
699 *
700 * If the inode has the I_REFERENCED flag set, then it means that it has been
701 * used recently - the flag is set in iput_final(). When we encounter such an
702 * inode, clear the flag and move it to the back of the LRU so it gets another
703 * pass through the LRU before it gets reclaimed. This is necessary because of
704 * the fact we are doing lazy LRU updates to minimise lock contention so the
705 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
706 * with this flag set because they are the inodes that are out of order.
707 */
708static enum lru_status inode_lru_isolate(struct list_head *item,
709 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
710{
711 struct list_head *freeable = arg;
712 struct inode *inode = container_of(item, struct inode, i_lru);
713
714 /*
715 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
716 * If we fail to get the lock, just skip it.
717 */
718 if (!spin_trylock(&inode->i_lock))
719 return LRU_SKIP;
720
721 /*
722 * Referenced or dirty inodes are still in use. Give them another pass
723 * through the LRU as we canot reclaim them now.
724 */
725 if (atomic_read(&inode->i_count) ||
726 (inode->i_state & ~I_REFERENCED)) {
727 list_lru_isolate(lru, &inode->i_lru);
728 spin_unlock(&inode->i_lock);
729 this_cpu_dec(nr_unused);
730 return LRU_REMOVED;
731 }
732
733 /* recently referenced inodes get one more pass */
734 if (inode->i_state & I_REFERENCED) {
735 inode->i_state &= ~I_REFERENCED;
736 spin_unlock(&inode->i_lock);
737 return LRU_ROTATE;
738 }
739
740 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
741 __iget(inode);
742 spin_unlock(&inode->i_lock);
743 spin_unlock(lru_lock);
744 if (remove_inode_buffers(inode)) {
745 unsigned long reap;
746 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
747 if (current_is_kswapd())
748 __count_vm_events(KSWAPD_INODESTEAL, reap);
749 else
750 __count_vm_events(PGINODESTEAL, reap);
751 if (current->reclaim_state)
752 current->reclaim_state->reclaimed_slab += reap;
753 }
754 iput(inode);
755 spin_lock(lru_lock);
756 return LRU_RETRY;
757 }
758
759 WARN_ON(inode->i_state & I_NEW);
760 inode->i_state |= I_FREEING;
761 list_lru_isolate_move(lru, &inode->i_lru, freeable);
762 spin_unlock(&inode->i_lock);
763
764 this_cpu_dec(nr_unused);
765 return LRU_REMOVED;
766}
767
768/*
769 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
770 * This is called from the superblock shrinker function with a number of inodes
771 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
772 * then are freed outside inode_lock by dispose_list().
773 */
774long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
775{
776 LIST_HEAD(freeable);
777 long freed;
778
779 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
780 inode_lru_isolate, &freeable);
781 dispose_list(&freeable);
782 return freed;
783}
784
785static void __wait_on_freeing_inode(struct inode *inode);
786/*
787 * Called with the inode lock held.
788 */
789static struct inode *find_inode(struct super_block *sb,
790 struct hlist_head *head,
791 int (*test)(struct inode *, void *),
792 void *data)
793{
794 struct inode *inode = NULL;
795
796repeat:
797 hlist_for_each_entry(inode, head, i_hash) {
798 if (inode->i_sb != sb)
799 continue;
800 if (!test(inode, data))
801 continue;
802 spin_lock(&inode->i_lock);
803 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
804 __wait_on_freeing_inode(inode);
805 goto repeat;
806 }
807 __iget(inode);
808 spin_unlock(&inode->i_lock);
809 return inode;
810 }
811 return NULL;
812}
813
814/*
815 * find_inode_fast is the fast path version of find_inode, see the comment at
816 * iget_locked for details.
817 */
818static struct inode *find_inode_fast(struct super_block *sb,
819 struct hlist_head *head, unsigned long ino)
820{
821 struct inode *inode = NULL;
822
823repeat:
824 hlist_for_each_entry(inode, head, i_hash) {
825 if (inode->i_ino != ino)
826 continue;
827 if (inode->i_sb != sb)
828 continue;
829 spin_lock(&inode->i_lock);
830 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
831 __wait_on_freeing_inode(inode);
832 goto repeat;
833 }
834 __iget(inode);
835 spin_unlock(&inode->i_lock);
836 return inode;
837 }
838 return NULL;
839}
840
841/*
842 * Each cpu owns a range of LAST_INO_BATCH numbers.
843 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
844 * to renew the exhausted range.
845 *
846 * This does not significantly increase overflow rate because every CPU can
847 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
848 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
849 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
850 * overflow rate by 2x, which does not seem too significant.
851 *
852 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
853 * error if st_ino won't fit in target struct field. Use 32bit counter
854 * here to attempt to avoid that.
855 */
856#define LAST_INO_BATCH 1024
857static DEFINE_PER_CPU(unsigned int, last_ino);
858
859unsigned int get_next_ino(void)
860{
861 unsigned int *p = &get_cpu_var(last_ino);
862 unsigned int res = *p;
863
864#ifdef CONFIG_SMP
865 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
866 static atomic_t shared_last_ino;
867 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
868
869 res = next - LAST_INO_BATCH;
870 }
871#endif
872
873 res++;
874 /* get_next_ino should not provide a 0 inode number */
875 if (unlikely(!res))
876 res++;
877 *p = res;
878 put_cpu_var(last_ino);
879 return res;
880}
881EXPORT_SYMBOL(get_next_ino);
882
883/**
884 * new_inode_pseudo - obtain an inode
885 * @sb: superblock
886 *
887 * Allocates a new inode for given superblock.
888 * Inode wont be chained in superblock s_inodes list
889 * This means :
890 * - fs can't be unmount
891 * - quotas, fsnotify, writeback can't work
892 */
893struct inode *new_inode_pseudo(struct super_block *sb)
894{
895 struct inode *inode = alloc_inode(sb);
896
897 if (inode) {
898 spin_lock(&inode->i_lock);
899 inode->i_state = 0;
900 spin_unlock(&inode->i_lock);
901 INIT_LIST_HEAD(&inode->i_sb_list);
902 }
903 return inode;
904}
905
906/**
907 * new_inode - obtain an inode
908 * @sb: superblock
909 *
910 * Allocates a new inode for given superblock. The default gfp_mask
911 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
912 * If HIGHMEM pages are unsuitable or it is known that pages allocated
913 * for the page cache are not reclaimable or migratable,
914 * mapping_set_gfp_mask() must be called with suitable flags on the
915 * newly created inode's mapping
916 *
917 */
918struct inode *new_inode(struct super_block *sb)
919{
920 struct inode *inode;
921
922 spin_lock_prefetch(&sb->s_inode_list_lock);
923
924 inode = new_inode_pseudo(sb);
925 if (inode)
926 inode_sb_list_add(inode);
927 return inode;
928}
929EXPORT_SYMBOL(new_inode);
930
931#ifdef CONFIG_DEBUG_LOCK_ALLOC
932void lockdep_annotate_inode_mutex_key(struct inode *inode)
933{
934 if (S_ISDIR(inode->i_mode)) {
935 struct file_system_type *type = inode->i_sb->s_type;
936
937 /* Set new key only if filesystem hasn't already changed it */
938 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
939 /*
940 * ensure nobody is actually holding i_mutex
941 */
942 // mutex_destroy(&inode->i_mutex);
943 init_rwsem(&inode->i_rwsem);
944 lockdep_set_class(&inode->i_rwsem,
945 &type->i_mutex_dir_key);
946 }
947 }
948}
949EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
950#endif
951
952/**
953 * unlock_new_inode - clear the I_NEW state and wake up any waiters
954 * @inode: new inode to unlock
955 *
956 * Called when the inode is fully initialised to clear the new state of the
957 * inode and wake up anyone waiting for the inode to finish initialisation.
958 */
959void unlock_new_inode(struct inode *inode)
960{
961 lockdep_annotate_inode_mutex_key(inode);
962 spin_lock(&inode->i_lock);
963 WARN_ON(!(inode->i_state & I_NEW));
964 inode->i_state &= ~I_NEW;
965 smp_mb();
966 wake_up_bit(&inode->i_state, __I_NEW);
967 spin_unlock(&inode->i_lock);
968}
969EXPORT_SYMBOL(unlock_new_inode);
970
971/**
972 * lock_two_nondirectories - take two i_mutexes on non-directory objects
973 *
974 * Lock any non-NULL argument that is not a directory.
975 * Zero, one or two objects may be locked by this function.
976 *
977 * @inode1: first inode to lock
978 * @inode2: second inode to lock
979 */
980void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
981{
982 if (inode1 > inode2)
983 swap(inode1, inode2);
984
985 if (inode1 && !S_ISDIR(inode1->i_mode))
986 inode_lock(inode1);
987 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
988 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
989}
990EXPORT_SYMBOL(lock_two_nondirectories);
991
992/**
993 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
994 * @inode1: first inode to unlock
995 * @inode2: second inode to unlock
996 */
997void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
998{
999 if (inode1 && !S_ISDIR(inode1->i_mode))
1000 inode_unlock(inode1);
1001 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1002 inode_unlock(inode2);
1003}
1004EXPORT_SYMBOL(unlock_two_nondirectories);
1005
1006/**
1007 * iget5_locked - obtain an inode from a mounted file system
1008 * @sb: super block of file system
1009 * @hashval: hash value (usually inode number) to get
1010 * @test: callback used for comparisons between inodes
1011 * @set: callback used to initialize a new struct inode
1012 * @data: opaque data pointer to pass to @test and @set
1013 *
1014 * Search for the inode specified by @hashval and @data in the inode cache,
1015 * and if present it is return it with an increased reference count. This is
1016 * a generalized version of iget_locked() for file systems where the inode
1017 * number is not sufficient for unique identification of an inode.
1018 *
1019 * If the inode is not in cache, allocate a new inode and return it locked,
1020 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1021 * before unlocking it via unlock_new_inode().
1022 *
1023 * Note both @test and @set are called with the inode_hash_lock held, so can't
1024 * sleep.
1025 */
1026struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1027 int (*test)(struct inode *, void *),
1028 int (*set)(struct inode *, void *), void *data)
1029{
1030 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1031 struct inode *inode;
1032again:
1033 spin_lock(&inode_hash_lock);
1034 inode = find_inode(sb, head, test, data);
1035 spin_unlock(&inode_hash_lock);
1036
1037 if (inode) {
1038 wait_on_inode(inode);
1039 if (unlikely(inode_unhashed(inode))) {
1040 iput(inode);
1041 goto again;
1042 }
1043 return inode;
1044 }
1045
1046 inode = alloc_inode(sb);
1047 if (inode) {
1048 struct inode *old;
1049
1050 spin_lock(&inode_hash_lock);
1051 /* We released the lock, so.. */
1052 old = find_inode(sb, head, test, data);
1053 if (!old) {
1054 if (set(inode, data))
1055 goto set_failed;
1056
1057 spin_lock(&inode->i_lock);
1058 inode->i_state = I_NEW;
1059 hlist_add_head(&inode->i_hash, head);
1060 spin_unlock(&inode->i_lock);
1061 inode_sb_list_add(inode);
1062 spin_unlock(&inode_hash_lock);
1063
1064 /* Return the locked inode with I_NEW set, the
1065 * caller is responsible for filling in the contents
1066 */
1067 return inode;
1068 }
1069
1070 /*
1071 * Uhhuh, somebody else created the same inode under
1072 * us. Use the old inode instead of the one we just
1073 * allocated.
1074 */
1075 spin_unlock(&inode_hash_lock);
1076 destroy_inode(inode);
1077 inode = old;
1078 wait_on_inode(inode);
1079 if (unlikely(inode_unhashed(inode))) {
1080 iput(inode);
1081 goto again;
1082 }
1083 }
1084 return inode;
1085
1086set_failed:
1087 spin_unlock(&inode_hash_lock);
1088 destroy_inode(inode);
1089 return NULL;
1090}
1091EXPORT_SYMBOL(iget5_locked);
1092
1093/**
1094 * iget_locked - obtain an inode from a mounted file system
1095 * @sb: super block of file system
1096 * @ino: inode number to get
1097 *
1098 * Search for the inode specified by @ino in the inode cache and if present
1099 * return it with an increased reference count. This is for file systems
1100 * where the inode number is sufficient for unique identification of an inode.
1101 *
1102 * If the inode is not in cache, allocate a new inode and return it locked,
1103 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1104 * before unlocking it via unlock_new_inode().
1105 */
1106struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1107{
1108 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1109 struct inode *inode;
1110again:
1111 spin_lock(&inode_hash_lock);
1112 inode = find_inode_fast(sb, head, ino);
1113 spin_unlock(&inode_hash_lock);
1114 if (inode) {
1115 wait_on_inode(inode);
1116 if (unlikely(inode_unhashed(inode))) {
1117 iput(inode);
1118 goto again;
1119 }
1120 return inode;
1121 }
1122
1123 inode = alloc_inode(sb);
1124 if (inode) {
1125 struct inode *old;
1126
1127 spin_lock(&inode_hash_lock);
1128 /* We released the lock, so.. */
1129 old = find_inode_fast(sb, head, ino);
1130 if (!old) {
1131 inode->i_ino = ino;
1132 spin_lock(&inode->i_lock);
1133 inode->i_state = I_NEW;
1134 hlist_add_head(&inode->i_hash, head);
1135 spin_unlock(&inode->i_lock);
1136 inode_sb_list_add(inode);
1137 spin_unlock(&inode_hash_lock);
1138
1139 /* Return the locked inode with I_NEW set, the
1140 * caller is responsible for filling in the contents
1141 */
1142 return inode;
1143 }
1144
1145 /*
1146 * Uhhuh, somebody else created the same inode under
1147 * us. Use the old inode instead of the one we just
1148 * allocated.
1149 */
1150 spin_unlock(&inode_hash_lock);
1151 destroy_inode(inode);
1152 inode = old;
1153 wait_on_inode(inode);
1154 if (unlikely(inode_unhashed(inode))) {
1155 iput(inode);
1156 goto again;
1157 }
1158 }
1159 return inode;
1160}
1161EXPORT_SYMBOL(iget_locked);
1162
1163/*
1164 * search the inode cache for a matching inode number.
1165 * If we find one, then the inode number we are trying to
1166 * allocate is not unique and so we should not use it.
1167 *
1168 * Returns 1 if the inode number is unique, 0 if it is not.
1169 */
1170static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1171{
1172 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1173 struct inode *inode;
1174
1175 spin_lock(&inode_hash_lock);
1176 hlist_for_each_entry(inode, b, i_hash) {
1177 if (inode->i_ino == ino && inode->i_sb == sb) {
1178 spin_unlock(&inode_hash_lock);
1179 return 0;
1180 }
1181 }
1182 spin_unlock(&inode_hash_lock);
1183
1184 return 1;
1185}
1186
1187/**
1188 * iunique - get a unique inode number
1189 * @sb: superblock
1190 * @max_reserved: highest reserved inode number
1191 *
1192 * Obtain an inode number that is unique on the system for a given
1193 * superblock. This is used by file systems that have no natural
1194 * permanent inode numbering system. An inode number is returned that
1195 * is higher than the reserved limit but unique.
1196 *
1197 * BUGS:
1198 * With a large number of inodes live on the file system this function
1199 * currently becomes quite slow.
1200 */
1201ino_t iunique(struct super_block *sb, ino_t max_reserved)
1202{
1203 /*
1204 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1205 * error if st_ino won't fit in target struct field. Use 32bit counter
1206 * here to attempt to avoid that.
1207 */
1208 static DEFINE_SPINLOCK(iunique_lock);
1209 static unsigned int counter;
1210 ino_t res;
1211
1212 spin_lock(&iunique_lock);
1213 do {
1214 if (counter <= max_reserved)
1215 counter = max_reserved + 1;
1216 res = counter++;
1217 } while (!test_inode_iunique(sb, res));
1218 spin_unlock(&iunique_lock);
1219
1220 return res;
1221}
1222EXPORT_SYMBOL(iunique);
1223
1224struct inode *igrab(struct inode *inode)
1225{
1226 spin_lock(&inode->i_lock);
1227 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1228 __iget(inode);
1229 spin_unlock(&inode->i_lock);
1230 } else {
1231 spin_unlock(&inode->i_lock);
1232 /*
1233 * Handle the case where s_op->clear_inode is not been
1234 * called yet, and somebody is calling igrab
1235 * while the inode is getting freed.
1236 */
1237 inode = NULL;
1238 }
1239 return inode;
1240}
1241EXPORT_SYMBOL(igrab);
1242
1243/**
1244 * ilookup5_nowait - search for an inode in the inode cache
1245 * @sb: super block of file system to search
1246 * @hashval: hash value (usually inode number) to search for
1247 * @test: callback used for comparisons between inodes
1248 * @data: opaque data pointer to pass to @test
1249 *
1250 * Search for the inode specified by @hashval and @data in the inode cache.
1251 * If the inode is in the cache, the inode is returned with an incremented
1252 * reference count.
1253 *
1254 * Note: I_NEW is not waited upon so you have to be very careful what you do
1255 * with the returned inode. You probably should be using ilookup5() instead.
1256 *
1257 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1258 */
1259struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1260 int (*test)(struct inode *, void *), void *data)
1261{
1262 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1263 struct inode *inode;
1264
1265 spin_lock(&inode_hash_lock);
1266 inode = find_inode(sb, head, test, data);
1267 spin_unlock(&inode_hash_lock);
1268
1269 return inode;
1270}
1271EXPORT_SYMBOL(ilookup5_nowait);
1272
1273/**
1274 * ilookup5 - search for an inode in the inode cache
1275 * @sb: super block of file system to search
1276 * @hashval: hash value (usually inode number) to search for
1277 * @test: callback used for comparisons between inodes
1278 * @data: opaque data pointer to pass to @test
1279 *
1280 * Search for the inode specified by @hashval and @data in the inode cache,
1281 * and if the inode is in the cache, return the inode with an incremented
1282 * reference count. Waits on I_NEW before returning the inode.
1283 * returned with an incremented reference count.
1284 *
1285 * This is a generalized version of ilookup() for file systems where the
1286 * inode number is not sufficient for unique identification of an inode.
1287 *
1288 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1289 */
1290struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1291 int (*test)(struct inode *, void *), void *data)
1292{
1293 struct inode *inode;
1294again:
1295 inode = ilookup5_nowait(sb, hashval, test, data);
1296 if (inode) {
1297 wait_on_inode(inode);
1298 if (unlikely(inode_unhashed(inode))) {
1299 iput(inode);
1300 goto again;
1301 }
1302 }
1303 return inode;
1304}
1305EXPORT_SYMBOL(ilookup5);
1306
1307/**
1308 * ilookup - search for an inode in the inode cache
1309 * @sb: super block of file system to search
1310 * @ino: inode number to search for
1311 *
1312 * Search for the inode @ino in the inode cache, and if the inode is in the
1313 * cache, the inode is returned with an incremented reference count.
1314 */
1315struct inode *ilookup(struct super_block *sb, unsigned long ino)
1316{
1317 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1318 struct inode *inode;
1319again:
1320 spin_lock(&inode_hash_lock);
1321 inode = find_inode_fast(sb, head, ino);
1322 spin_unlock(&inode_hash_lock);
1323
1324 if (inode) {
1325 wait_on_inode(inode);
1326 if (unlikely(inode_unhashed(inode))) {
1327 iput(inode);
1328 goto again;
1329 }
1330 }
1331 return inode;
1332}
1333EXPORT_SYMBOL(ilookup);
1334
1335/**
1336 * find_inode_nowait - find an inode in the inode cache
1337 * @sb: super block of file system to search
1338 * @hashval: hash value (usually inode number) to search for
1339 * @match: callback used for comparisons between inodes
1340 * @data: opaque data pointer to pass to @match
1341 *
1342 * Search for the inode specified by @hashval and @data in the inode
1343 * cache, where the helper function @match will return 0 if the inode
1344 * does not match, 1 if the inode does match, and -1 if the search
1345 * should be stopped. The @match function must be responsible for
1346 * taking the i_lock spin_lock and checking i_state for an inode being
1347 * freed or being initialized, and incrementing the reference count
1348 * before returning 1. It also must not sleep, since it is called with
1349 * the inode_hash_lock spinlock held.
1350 *
1351 * This is a even more generalized version of ilookup5() when the
1352 * function must never block --- find_inode() can block in
1353 * __wait_on_freeing_inode() --- or when the caller can not increment
1354 * the reference count because the resulting iput() might cause an
1355 * inode eviction. The tradeoff is that the @match funtion must be
1356 * very carefully implemented.
1357 */
1358struct inode *find_inode_nowait(struct super_block *sb,
1359 unsigned long hashval,
1360 int (*match)(struct inode *, unsigned long,
1361 void *),
1362 void *data)
1363{
1364 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1365 struct inode *inode, *ret_inode = NULL;
1366 int mval;
1367
1368 spin_lock(&inode_hash_lock);
1369 hlist_for_each_entry(inode, head, i_hash) {
1370 if (inode->i_sb != sb)
1371 continue;
1372 mval = match(inode, hashval, data);
1373 if (mval == 0)
1374 continue;
1375 if (mval == 1)
1376 ret_inode = inode;
1377 goto out;
1378 }
1379out:
1380 spin_unlock(&inode_hash_lock);
1381 return ret_inode;
1382}
1383EXPORT_SYMBOL(find_inode_nowait);
1384
1385int insert_inode_locked(struct inode *inode)
1386{
1387 struct super_block *sb = inode->i_sb;
1388 ino_t ino = inode->i_ino;
1389 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1390
1391 while (1) {
1392 struct inode *old = NULL;
1393 spin_lock(&inode_hash_lock);
1394 hlist_for_each_entry(old, head, i_hash) {
1395 if (old->i_ino != ino)
1396 continue;
1397 if (old->i_sb != sb)
1398 continue;
1399 spin_lock(&old->i_lock);
1400 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1401 spin_unlock(&old->i_lock);
1402 continue;
1403 }
1404 break;
1405 }
1406 if (likely(!old)) {
1407 spin_lock(&inode->i_lock);
1408 inode->i_state |= I_NEW;
1409 hlist_add_head(&inode->i_hash, head);
1410 spin_unlock(&inode->i_lock);
1411 spin_unlock(&inode_hash_lock);
1412 return 0;
1413 }
1414 __iget(old);
1415 spin_unlock(&old->i_lock);
1416 spin_unlock(&inode_hash_lock);
1417 wait_on_inode(old);
1418 if (unlikely(!inode_unhashed(old))) {
1419 iput(old);
1420 return -EBUSY;
1421 }
1422 iput(old);
1423 }
1424}
1425EXPORT_SYMBOL(insert_inode_locked);
1426
1427int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1428 int (*test)(struct inode *, void *), void *data)
1429{
1430 struct super_block *sb = inode->i_sb;
1431 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1432
1433 while (1) {
1434 struct inode *old = NULL;
1435
1436 spin_lock(&inode_hash_lock);
1437 hlist_for_each_entry(old, head, i_hash) {
1438 if (old->i_sb != sb)
1439 continue;
1440 if (!test(old, data))
1441 continue;
1442 spin_lock(&old->i_lock);
1443 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1444 spin_unlock(&old->i_lock);
1445 continue;
1446 }
1447 break;
1448 }
1449 if (likely(!old)) {
1450 spin_lock(&inode->i_lock);
1451 inode->i_state |= I_NEW;
1452 hlist_add_head(&inode->i_hash, head);
1453 spin_unlock(&inode->i_lock);
1454 spin_unlock(&inode_hash_lock);
1455 return 0;
1456 }
1457 __iget(old);
1458 spin_unlock(&old->i_lock);
1459 spin_unlock(&inode_hash_lock);
1460 wait_on_inode(old);
1461 if (unlikely(!inode_unhashed(old))) {
1462 iput(old);
1463 return -EBUSY;
1464 }
1465 iput(old);
1466 }
1467}
1468EXPORT_SYMBOL(insert_inode_locked4);
1469
1470
1471int generic_delete_inode(struct inode *inode)
1472{
1473 return 1;
1474}
1475EXPORT_SYMBOL(generic_delete_inode);
1476
1477/*
1478 * Called when we're dropping the last reference
1479 * to an inode.
1480 *
1481 * Call the FS "drop_inode()" function, defaulting to
1482 * the legacy UNIX filesystem behaviour. If it tells
1483 * us to evict inode, do so. Otherwise, retain inode
1484 * in cache if fs is alive, sync and evict if fs is
1485 * shutting down.
1486 */
1487static void iput_final(struct inode *inode)
1488{
1489 struct super_block *sb = inode->i_sb;
1490 const struct super_operations *op = inode->i_sb->s_op;
1491 int drop;
1492
1493 WARN_ON(inode->i_state & I_NEW);
1494
1495 if (op->drop_inode)
1496 drop = op->drop_inode(inode);
1497 else
1498 drop = generic_drop_inode(inode);
1499
1500 if (!drop && (sb->s_flags & SB_ACTIVE)) {
1501 inode_add_lru(inode);
1502 spin_unlock(&inode->i_lock);
1503 return;
1504 }
1505
1506 if (!drop) {
1507 inode->i_state |= I_WILL_FREE;
1508 spin_unlock(&inode->i_lock);
1509 write_inode_now(inode, 1);
1510 spin_lock(&inode->i_lock);
1511 WARN_ON(inode->i_state & I_NEW);
1512 inode->i_state &= ~I_WILL_FREE;
1513 }
1514
1515 inode->i_state |= I_FREEING;
1516 if (!list_empty(&inode->i_lru))
1517 inode_lru_list_del(inode);
1518 spin_unlock(&inode->i_lock);
1519
1520 evict(inode);
1521}
1522
1523/**
1524 * iput - put an inode
1525 * @inode: inode to put
1526 *
1527 * Puts an inode, dropping its usage count. If the inode use count hits
1528 * zero, the inode is then freed and may also be destroyed.
1529 *
1530 * Consequently, iput() can sleep.
1531 */
1532void iput(struct inode *inode)
1533{
1534 if (!inode)
1535 return;
1536 BUG_ON(inode->i_state & I_CLEAR);
1537retry:
1538 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1539 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1540 atomic_inc(&inode->i_count);
1541 spin_unlock(&inode->i_lock);
1542 trace_writeback_lazytime_iput(inode);
1543 mark_inode_dirty_sync(inode);
1544 goto retry;
1545 }
1546 iput_final(inode);
1547 }
1548}
1549EXPORT_SYMBOL(iput);
1550
1551/**
1552 * bmap - find a block number in a file
1553 * @inode: inode of file
1554 * @block: block to find
1555 *
1556 * Returns the block number on the device holding the inode that
1557 * is the disk block number for the block of the file requested.
1558 * That is, asked for block 4 of inode 1 the function will return the
1559 * disk block relative to the disk start that holds that block of the
1560 * file.
1561 */
1562sector_t bmap(struct inode *inode, sector_t block)
1563{
1564 sector_t res = 0;
1565 if (inode->i_mapping->a_ops->bmap)
1566 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1567 return res;
1568}
1569EXPORT_SYMBOL(bmap);
1570
1571/*
1572 * Update times in overlayed inode from underlying real inode
1573 */
1574static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1575 bool rcu)
1576{
1577 struct dentry *upperdentry;
1578
1579 /*
1580 * Nothing to do if in rcu or if non-overlayfs
1581 */
1582 if (rcu || likely(!(dentry->d_flags & DCACHE_OP_REAL)))
1583 return;
1584
1585 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
1586
1587 /*
1588 * If file is on lower then we can't update atime, so no worries about
1589 * stale mtime/ctime.
1590 */
1591 if (upperdentry) {
1592 struct inode *realinode = d_inode(upperdentry);
1593
1594 if ((!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1595 !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1596 inode->i_mtime = realinode->i_mtime;
1597 inode->i_ctime = realinode->i_ctime;
1598 }
1599 }
1600}
1601
1602/*
1603 * With relative atime, only update atime if the previous atime is
1604 * earlier than either the ctime or mtime or if at least a day has
1605 * passed since the last atime update.
1606 */
1607static int relatime_need_update(const struct path *path, struct inode *inode,
1608 struct timespec now, bool rcu)
1609{
1610
1611 if (!(path->mnt->mnt_flags & MNT_RELATIME))
1612 return 1;
1613
1614 update_ovl_inode_times(path->dentry, inode, rcu);
1615 /*
1616 * Is mtime younger than atime? If yes, update atime:
1617 */
1618 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1619 return 1;
1620 /*
1621 * Is ctime younger than atime? If yes, update atime:
1622 */
1623 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1624 return 1;
1625
1626 /*
1627 * Is the previous atime value older than a day? If yes,
1628 * update atime:
1629 */
1630 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1631 return 1;
1632 /*
1633 * Good, we can skip the atime update:
1634 */
1635 return 0;
1636}
1637
1638int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1639{
1640 int iflags = I_DIRTY_TIME;
1641 bool dirty = false;
1642
1643 if (flags & S_ATIME)
1644 inode->i_atime = *time;
1645 if (flags & S_VERSION)
1646 dirty = inode_maybe_inc_iversion(inode, false);
1647 if (flags & S_CTIME)
1648 inode->i_ctime = *time;
1649 if (flags & S_MTIME)
1650 inode->i_mtime = *time;
1651 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1652 !(inode->i_sb->s_flags & SB_LAZYTIME))
1653 dirty = true;
1654
1655 if (dirty)
1656 iflags |= I_DIRTY_SYNC;
1657 __mark_inode_dirty(inode, iflags);
1658 return 0;
1659}
1660EXPORT_SYMBOL(generic_update_time);
1661
1662/*
1663 * This does the actual work of updating an inodes time or version. Must have
1664 * had called mnt_want_write() before calling this.
1665 */
1666static int update_time(struct inode *inode, struct timespec *time, int flags)
1667{
1668 int (*update_time)(struct inode *, struct timespec *, int);
1669
1670 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1671 generic_update_time;
1672
1673 return update_time(inode, time, flags);
1674}
1675
1676/**
1677 * touch_atime - update the access time
1678 * @path: the &struct path to update
1679 * @inode: inode to update
1680 *
1681 * Update the accessed time on an inode and mark it for writeback.
1682 * This function automatically handles read only file systems and media,
1683 * as well as the "noatime" flag and inode specific "noatime" markers.
1684 */
1685bool __atime_needs_update(const struct path *path, struct inode *inode,
1686 bool rcu)
1687{
1688 struct vfsmount *mnt = path->mnt;
1689 struct timespec now;
1690
1691 if (inode->i_flags & S_NOATIME)
1692 return false;
1693
1694 /* Atime updates will likely cause i_uid and i_gid to be written
1695 * back improprely if their true value is unknown to the vfs.
1696 */
1697 if (HAS_UNMAPPED_ID(inode))
1698 return false;
1699
1700 if (IS_NOATIME(inode))
1701 return false;
1702 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1703 return false;
1704
1705 if (mnt->mnt_flags & MNT_NOATIME)
1706 return false;
1707 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1708 return false;
1709
1710 now = current_time(inode);
1711
1712 if (!relatime_need_update(path, inode, now, rcu))
1713 return false;
1714
1715 if (timespec_equal(&inode->i_atime, &now))
1716 return false;
1717
1718 return true;
1719}
1720
1721void touch_atime(const struct path *path)
1722{
1723 struct vfsmount *mnt = path->mnt;
1724 struct inode *inode = d_inode(path->dentry);
1725 struct timespec now;
1726
1727 if (!__atime_needs_update(path, inode, false))
1728 return;
1729
1730 if (!sb_start_write_trylock(inode->i_sb))
1731 return;
1732
1733 if (__mnt_want_write(mnt) != 0)
1734 goto skip_update;
1735 /*
1736 * File systems can error out when updating inodes if they need to
1737 * allocate new space to modify an inode (such is the case for
1738 * Btrfs), but since we touch atime while walking down the path we
1739 * really don't care if we failed to update the atime of the file,
1740 * so just ignore the return value.
1741 * We may also fail on filesystems that have the ability to make parts
1742 * of the fs read only, e.g. subvolumes in Btrfs.
1743 */
1744 now = current_time(inode);
1745 update_time(inode, &now, S_ATIME);
1746 __mnt_drop_write(mnt);
1747skip_update:
1748 sb_end_write(inode->i_sb);
1749}
1750EXPORT_SYMBOL(touch_atime);
1751
1752/*
1753 * The logic we want is
1754 *
1755 * if suid or (sgid and xgrp)
1756 * remove privs
1757 */
1758int should_remove_suid(struct dentry *dentry)
1759{
1760 umode_t mode = d_inode(dentry)->i_mode;
1761 int kill = 0;
1762
1763 /* suid always must be killed */
1764 if (unlikely(mode & S_ISUID))
1765 kill = ATTR_KILL_SUID;
1766
1767 /*
1768 * sgid without any exec bits is just a mandatory locking mark; leave
1769 * it alone. If some exec bits are set, it's a real sgid; kill it.
1770 */
1771 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1772 kill |= ATTR_KILL_SGID;
1773
1774 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1775 return kill;
1776
1777 return 0;
1778}
1779EXPORT_SYMBOL(should_remove_suid);
1780
1781/*
1782 * Return mask of changes for notify_change() that need to be done as a
1783 * response to write or truncate. Return 0 if nothing has to be changed.
1784 * Negative value on error (change should be denied).
1785 */
1786int dentry_needs_remove_privs(struct dentry *dentry)
1787{
1788 struct inode *inode = d_inode(dentry);
1789 int mask = 0;
1790 int ret;
1791
1792 if (IS_NOSEC(inode))
1793 return 0;
1794
1795 mask = should_remove_suid(dentry);
1796 ret = security_inode_need_killpriv(dentry);
1797 if (ret < 0)
1798 return ret;
1799 if (ret)
1800 mask |= ATTR_KILL_PRIV;
1801 return mask;
1802}
1803
1804static int __remove_privs(struct dentry *dentry, int kill)
1805{
1806 struct iattr newattrs;
1807
1808 newattrs.ia_valid = ATTR_FORCE | kill;
1809 /*
1810 * Note we call this on write, so notify_change will not
1811 * encounter any conflicting delegations:
1812 */
1813 return notify_change(dentry, &newattrs, NULL);
1814}
1815
1816/*
1817 * Remove special file priviledges (suid, capabilities) when file is written
1818 * to or truncated.
1819 */
1820int file_remove_privs(struct file *file)
1821{
1822 struct dentry *dentry = file_dentry(file);
1823 struct inode *inode = file_inode(file);
1824 int kill;
1825 int error = 0;
1826
1827 /* Fast path for nothing security related */
1828 if (IS_NOSEC(inode))
1829 return 0;
1830
1831 kill = dentry_needs_remove_privs(dentry);
1832 if (kill < 0)
1833 return kill;
1834 if (kill)
1835 error = __remove_privs(dentry, kill);
1836 if (!error)
1837 inode_has_no_xattr(inode);
1838
1839 return error;
1840}
1841EXPORT_SYMBOL(file_remove_privs);
1842
1843/**
1844 * file_update_time - update mtime and ctime time
1845 * @file: file accessed
1846 *
1847 * Update the mtime and ctime members of an inode and mark the inode
1848 * for writeback. Note that this function is meant exclusively for
1849 * usage in the file write path of filesystems, and filesystems may
1850 * choose to explicitly ignore update via this function with the
1851 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1852 * timestamps are handled by the server. This can return an error for
1853 * file systems who need to allocate space in order to update an inode.
1854 */
1855
1856int file_update_time(struct file *file)
1857{
1858 struct inode *inode = file_inode(file);
1859 struct timespec now;
1860 int sync_it = 0;
1861 int ret;
1862
1863 /* First try to exhaust all avenues to not sync */
1864 if (IS_NOCMTIME(inode))
1865 return 0;
1866
1867 now = current_time(inode);
1868 if (!timespec_equal(&inode->i_mtime, &now))
1869 sync_it = S_MTIME;
1870
1871 if (!timespec_equal(&inode->i_ctime, &now))
1872 sync_it |= S_CTIME;
1873
1874 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1875 sync_it |= S_VERSION;
1876
1877 if (!sync_it)
1878 return 0;
1879
1880 /* Finally allowed to write? Takes lock. */
1881 if (__mnt_want_write_file(file))
1882 return 0;
1883
1884 ret = update_time(inode, &now, sync_it);
1885 __mnt_drop_write_file(file);
1886
1887 return ret;
1888}
1889EXPORT_SYMBOL(file_update_time);
1890
1891int inode_needs_sync(struct inode *inode)
1892{
1893 if (IS_SYNC(inode))
1894 return 1;
1895 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1896 return 1;
1897 return 0;
1898}
1899EXPORT_SYMBOL(inode_needs_sync);
1900
1901/*
1902 * If we try to find an inode in the inode hash while it is being
1903 * deleted, we have to wait until the filesystem completes its
1904 * deletion before reporting that it isn't found. This function waits
1905 * until the deletion _might_ have completed. Callers are responsible
1906 * to recheck inode state.
1907 *
1908 * It doesn't matter if I_NEW is not set initially, a call to
1909 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1910 * will DTRT.
1911 */
1912static void __wait_on_freeing_inode(struct inode *inode)
1913{
1914 wait_queue_head_t *wq;
1915 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1916 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1917 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1918 spin_unlock(&inode->i_lock);
1919 spin_unlock(&inode_hash_lock);
1920 schedule();
1921 finish_wait(wq, &wait.wq_entry);
1922 spin_lock(&inode_hash_lock);
1923}
1924
1925static __initdata unsigned long ihash_entries;
1926static int __init set_ihash_entries(char *str)
1927{
1928 if (!str)
1929 return 0;
1930 ihash_entries = simple_strtoul(str, &str, 0);
1931 return 1;
1932}
1933__setup("ihash_entries=", set_ihash_entries);
1934
1935/*
1936 * Initialize the waitqueues and inode hash table.
1937 */
1938void __init inode_init_early(void)
1939{
1940 /* If hashes are distributed across NUMA nodes, defer
1941 * hash allocation until vmalloc space is available.
1942 */
1943 if (hashdist)
1944 return;
1945
1946 inode_hashtable =
1947 alloc_large_system_hash("Inode-cache",
1948 sizeof(struct hlist_head),
1949 ihash_entries,
1950 14,
1951 HASH_EARLY | HASH_ZERO,
1952 &i_hash_shift,
1953 &i_hash_mask,
1954 0,
1955 0);
1956}
1957
1958void __init inode_init(void)
1959{
1960 /* inode slab cache */
1961 inode_cachep = kmem_cache_create("inode_cache",
1962 sizeof(struct inode),
1963 0,
1964 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1965 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1966 init_once);
1967
1968 /* Hash may have been set up in inode_init_early */
1969 if (!hashdist)
1970 return;
1971
1972 inode_hashtable =
1973 alloc_large_system_hash("Inode-cache",
1974 sizeof(struct hlist_head),
1975 ihash_entries,
1976 14,
1977 HASH_ZERO,
1978 &i_hash_shift,
1979 &i_hash_mask,
1980 0,
1981 0);
1982}
1983
1984void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1985{
1986 inode->i_mode = mode;
1987 if (S_ISCHR(mode)) {
1988 inode->i_fop = &def_chr_fops;
1989 inode->i_rdev = rdev;
1990 } else if (S_ISBLK(mode)) {
1991 inode->i_fop = &def_blk_fops;
1992 inode->i_rdev = rdev;
1993 } else if (S_ISFIFO(mode))
1994 inode->i_fop = &pipefifo_fops;
1995 else if (S_ISSOCK(mode))
1996 ; /* leave it no_open_fops */
1997 else
1998 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1999 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2000 inode->i_ino);
2001}
2002EXPORT_SYMBOL(init_special_inode);
2003
2004/**
2005 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2006 * @inode: New inode
2007 * @dir: Directory inode
2008 * @mode: mode of the new inode
2009 */
2010void inode_init_owner(struct inode *inode, const struct inode *dir,
2011 umode_t mode)
2012{
2013 inode->i_uid = current_fsuid();
2014 if (dir && dir->i_mode & S_ISGID) {
2015 inode->i_gid = dir->i_gid;
2016 if (S_ISDIR(mode))
2017 mode |= S_ISGID;
2018 } else
2019 inode->i_gid = current_fsgid();
2020 inode->i_mode = mode;
2021}
2022EXPORT_SYMBOL(inode_init_owner);
2023
2024/**
2025 * inode_owner_or_capable - check current task permissions to inode
2026 * @inode: inode being checked
2027 *
2028 * Return true if current either has CAP_FOWNER in a namespace with the
2029 * inode owner uid mapped, or owns the file.
2030 */
2031bool inode_owner_or_capable(const struct inode *inode)
2032{
2033 struct user_namespace *ns;
2034
2035 if (uid_eq(current_fsuid(), inode->i_uid))
2036 return true;
2037
2038 ns = current_user_ns();
2039 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2040 return true;
2041 return false;
2042}
2043EXPORT_SYMBOL(inode_owner_or_capable);
2044
2045/*
2046 * Direct i/o helper functions
2047 */
2048static void __inode_dio_wait(struct inode *inode)
2049{
2050 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2051 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2052
2053 do {
2054 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2055 if (atomic_read(&inode->i_dio_count))
2056 schedule();
2057 } while (atomic_read(&inode->i_dio_count));
2058 finish_wait(wq, &q.wq_entry);
2059}
2060
2061/**
2062 * inode_dio_wait - wait for outstanding DIO requests to finish
2063 * @inode: inode to wait for
2064 *
2065 * Waits for all pending direct I/O requests to finish so that we can
2066 * proceed with a truncate or equivalent operation.
2067 *
2068 * Must be called under a lock that serializes taking new references
2069 * to i_dio_count, usually by inode->i_mutex.
2070 */
2071void inode_dio_wait(struct inode *inode)
2072{
2073 if (atomic_read(&inode->i_dio_count))
2074 __inode_dio_wait(inode);
2075}
2076EXPORT_SYMBOL(inode_dio_wait);
2077
2078/*
2079 * inode_set_flags - atomically set some inode flags
2080 *
2081 * Note: the caller should be holding i_mutex, or else be sure that
2082 * they have exclusive access to the inode structure (i.e., while the
2083 * inode is being instantiated). The reason for the cmpxchg() loop
2084 * --- which wouldn't be necessary if all code paths which modify
2085 * i_flags actually followed this rule, is that there is at least one
2086 * code path which doesn't today so we use cmpxchg() out of an abundance
2087 * of caution.
2088 *
2089 * In the long run, i_mutex is overkill, and we should probably look
2090 * at using the i_lock spinlock to protect i_flags, and then make sure
2091 * it is so documented in include/linux/fs.h and that all code follows
2092 * the locking convention!!
2093 */
2094void inode_set_flags(struct inode *inode, unsigned int flags,
2095 unsigned int mask)
2096{
2097 unsigned int old_flags, new_flags;
2098
2099 WARN_ON_ONCE(flags & ~mask);
2100 do {
2101 old_flags = READ_ONCE(inode->i_flags);
2102 new_flags = (old_flags & ~mask) | flags;
2103 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2104 new_flags) != old_flags));
2105}
2106EXPORT_SYMBOL(inode_set_flags);
2107
2108void inode_nohighmem(struct inode *inode)
2109{
2110 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2111}
2112EXPORT_SYMBOL(inode_nohighmem);
2113
2114/**
2115 * current_time - Return FS time
2116 * @inode: inode.
2117 *
2118 * Return the current time truncated to the time granularity supported by
2119 * the fs.
2120 *
2121 * Note that inode and inode->sb cannot be NULL.
2122 * Otherwise, the function warns and returns time without truncation.
2123 */
2124struct timespec current_time(struct inode *inode)
2125{
2126 struct timespec now = current_kernel_time();
2127
2128 if (unlikely(!inode->i_sb)) {
2129 WARN(1, "current_time() called with uninitialized super_block in the inode");
2130 return now;
2131 }
2132
2133 return timespec_trunc(now, inode->i_sb->s_time_gran);
2134}
2135EXPORT_SYMBOL(current_time);
1/*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5#include <linux/export.h>
6#include <linux/fs.h>
7#include <linux/mm.h>
8#include <linux/backing-dev.h>
9#include <linux/hash.h>
10#include <linux/swap.h>
11#include <linux/security.h>
12#include <linux/cdev.h>
13#include <linux/bootmem.h>
14#include <linux/fsnotify.h>
15#include <linux/mount.h>
16#include <linux/posix_acl.h>
17#include <linux/prefetch.h>
18#include <linux/buffer_head.h> /* for inode_has_buffers */
19#include <linux/ratelimit.h>
20#include <linux/list_lru.h>
21#include <trace/events/writeback.h>
22#include "internal.h"
23
24/*
25 * Inode locking rules:
26 *
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode->i_sb->s_inode_list_lock protects:
32 * inode->i_sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
37 *
38 * Lock ordering:
39 *
40 * inode->i_sb->s_inode_list_lock
41 * inode->i_lock
42 * Inode LRU list locks
43 *
44 * bdi->wb.list_lock
45 * inode->i_lock
46 *
47 * inode_hash_lock
48 * inode->i_sb->s_inode_list_lock
49 * inode->i_lock
50 *
51 * iunique_lock
52 * inode_hash_lock
53 */
54
55static unsigned int i_hash_mask __read_mostly;
56static unsigned int i_hash_shift __read_mostly;
57static struct hlist_head *inode_hashtable __read_mostly;
58static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59
60/*
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
63 */
64const struct address_space_operations empty_aops = {
65};
66EXPORT_SYMBOL(empty_aops);
67
68/*
69 * Statistics gathering..
70 */
71struct inodes_stat_t inodes_stat;
72
73static DEFINE_PER_CPU(unsigned long, nr_inodes);
74static DEFINE_PER_CPU(unsigned long, nr_unused);
75
76static struct kmem_cache *inode_cachep __read_mostly;
77
78static long get_nr_inodes(void)
79{
80 int i;
81 long sum = 0;
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
85}
86
87static inline long get_nr_inodes_unused(void)
88{
89 int i;
90 long sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
94}
95
96long get_nr_dirty_inodes(void)
97{
98 /* not actually dirty inodes, but a wild approximation */
99 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
101}
102
103/*
104 * Handle nr_inode sysctl
105 */
106#ifdef CONFIG_SYSCTL
107int proc_nr_inodes(struct ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
109{
110 inodes_stat.nr_inodes = get_nr_inodes();
111 inodes_stat.nr_unused = get_nr_inodes_unused();
112 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
113}
114#endif
115
116static int no_open(struct inode *inode, struct file *file)
117{
118 return -ENXIO;
119}
120
121/**
122 * inode_init_always - perform inode structure intialisation
123 * @sb: superblock inode belongs to
124 * @inode: inode to initialise
125 *
126 * These are initializations that need to be done on every inode
127 * allocation as the fields are not initialised by slab allocation.
128 */
129int inode_init_always(struct super_block *sb, struct inode *inode)
130{
131 static const struct inode_operations empty_iops;
132 static const struct file_operations no_open_fops = {.open = no_open};
133 struct address_space *const mapping = &inode->i_data;
134
135 inode->i_sb = sb;
136 inode->i_blkbits = sb->s_blocksize_bits;
137 inode->i_flags = 0;
138 atomic_set(&inode->i_count, 1);
139 inode->i_op = &empty_iops;
140 inode->i_fop = &no_open_fops;
141 inode->__i_nlink = 1;
142 inode->i_opflags = 0;
143 i_uid_write(inode, 0);
144 i_gid_write(inode, 0);
145 atomic_set(&inode->i_writecount, 0);
146 inode->i_size = 0;
147 inode->i_blocks = 0;
148 inode->i_bytes = 0;
149 inode->i_generation = 0;
150 inode->i_pipe = NULL;
151 inode->i_bdev = NULL;
152 inode->i_cdev = NULL;
153 inode->i_link = NULL;
154 inode->i_rdev = 0;
155 inode->dirtied_when = 0;
156
157#ifdef CONFIG_CGROUP_WRITEBACK
158 inode->i_wb_frn_winner = 0;
159 inode->i_wb_frn_avg_time = 0;
160 inode->i_wb_frn_history = 0;
161#endif
162
163 if (security_inode_alloc(inode))
164 goto out;
165 spin_lock_init(&inode->i_lock);
166 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
167
168 mutex_init(&inode->i_mutex);
169 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
170
171 atomic_set(&inode->i_dio_count, 0);
172
173 mapping->a_ops = &empty_aops;
174 mapping->host = inode;
175 mapping->flags = 0;
176 atomic_set(&mapping->i_mmap_writable, 0);
177 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
178 mapping->private_data = NULL;
179 mapping->writeback_index = 0;
180 inode->i_private = NULL;
181 inode->i_mapping = mapping;
182 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
183#ifdef CONFIG_FS_POSIX_ACL
184 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
185#endif
186
187#ifdef CONFIG_FSNOTIFY
188 inode->i_fsnotify_mask = 0;
189#endif
190 inode->i_flctx = NULL;
191 this_cpu_inc(nr_inodes);
192
193 return 0;
194out:
195 return -ENOMEM;
196}
197EXPORT_SYMBOL(inode_init_always);
198
199static struct inode *alloc_inode(struct super_block *sb)
200{
201 struct inode *inode;
202
203 if (sb->s_op->alloc_inode)
204 inode = sb->s_op->alloc_inode(sb);
205 else
206 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
207
208 if (!inode)
209 return NULL;
210
211 if (unlikely(inode_init_always(sb, inode))) {
212 if (inode->i_sb->s_op->destroy_inode)
213 inode->i_sb->s_op->destroy_inode(inode);
214 else
215 kmem_cache_free(inode_cachep, inode);
216 return NULL;
217 }
218
219 return inode;
220}
221
222void free_inode_nonrcu(struct inode *inode)
223{
224 kmem_cache_free(inode_cachep, inode);
225}
226EXPORT_SYMBOL(free_inode_nonrcu);
227
228void __destroy_inode(struct inode *inode)
229{
230 BUG_ON(inode_has_buffers(inode));
231 inode_detach_wb(inode);
232 security_inode_free(inode);
233 fsnotify_inode_delete(inode);
234 locks_free_lock_context(inode);
235 if (!inode->i_nlink) {
236 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
237 atomic_long_dec(&inode->i_sb->s_remove_count);
238 }
239
240#ifdef CONFIG_FS_POSIX_ACL
241 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
242 posix_acl_release(inode->i_acl);
243 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
244 posix_acl_release(inode->i_default_acl);
245#endif
246 this_cpu_dec(nr_inodes);
247}
248EXPORT_SYMBOL(__destroy_inode);
249
250static void i_callback(struct rcu_head *head)
251{
252 struct inode *inode = container_of(head, struct inode, i_rcu);
253 kmem_cache_free(inode_cachep, inode);
254}
255
256static void destroy_inode(struct inode *inode)
257{
258 BUG_ON(!list_empty(&inode->i_lru));
259 __destroy_inode(inode);
260 if (inode->i_sb->s_op->destroy_inode)
261 inode->i_sb->s_op->destroy_inode(inode);
262 else
263 call_rcu(&inode->i_rcu, i_callback);
264}
265
266/**
267 * drop_nlink - directly drop an inode's link count
268 * @inode: inode
269 *
270 * This is a low-level filesystem helper to replace any
271 * direct filesystem manipulation of i_nlink. In cases
272 * where we are attempting to track writes to the
273 * filesystem, a decrement to zero means an imminent
274 * write when the file is truncated and actually unlinked
275 * on the filesystem.
276 */
277void drop_nlink(struct inode *inode)
278{
279 WARN_ON(inode->i_nlink == 0);
280 inode->__i_nlink--;
281 if (!inode->i_nlink)
282 atomic_long_inc(&inode->i_sb->s_remove_count);
283}
284EXPORT_SYMBOL(drop_nlink);
285
286/**
287 * clear_nlink - directly zero an inode's link count
288 * @inode: inode
289 *
290 * This is a low-level filesystem helper to replace any
291 * direct filesystem manipulation of i_nlink. See
292 * drop_nlink() for why we care about i_nlink hitting zero.
293 */
294void clear_nlink(struct inode *inode)
295{
296 if (inode->i_nlink) {
297 inode->__i_nlink = 0;
298 atomic_long_inc(&inode->i_sb->s_remove_count);
299 }
300}
301EXPORT_SYMBOL(clear_nlink);
302
303/**
304 * set_nlink - directly set an inode's link count
305 * @inode: inode
306 * @nlink: new nlink (should be non-zero)
307 *
308 * This is a low-level filesystem helper to replace any
309 * direct filesystem manipulation of i_nlink.
310 */
311void set_nlink(struct inode *inode, unsigned int nlink)
312{
313 if (!nlink) {
314 clear_nlink(inode);
315 } else {
316 /* Yes, some filesystems do change nlink from zero to one */
317 if (inode->i_nlink == 0)
318 atomic_long_dec(&inode->i_sb->s_remove_count);
319
320 inode->__i_nlink = nlink;
321 }
322}
323EXPORT_SYMBOL(set_nlink);
324
325/**
326 * inc_nlink - directly increment an inode's link count
327 * @inode: inode
328 *
329 * This is a low-level filesystem helper to replace any
330 * direct filesystem manipulation of i_nlink. Currently,
331 * it is only here for parity with dec_nlink().
332 */
333void inc_nlink(struct inode *inode)
334{
335 if (unlikely(inode->i_nlink == 0)) {
336 WARN_ON(!(inode->i_state & I_LINKABLE));
337 atomic_long_dec(&inode->i_sb->s_remove_count);
338 }
339
340 inode->__i_nlink++;
341}
342EXPORT_SYMBOL(inc_nlink);
343
344void address_space_init_once(struct address_space *mapping)
345{
346 memset(mapping, 0, sizeof(*mapping));
347 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
348 spin_lock_init(&mapping->tree_lock);
349 init_rwsem(&mapping->i_mmap_rwsem);
350 INIT_LIST_HEAD(&mapping->private_list);
351 spin_lock_init(&mapping->private_lock);
352 mapping->i_mmap = RB_ROOT;
353}
354EXPORT_SYMBOL(address_space_init_once);
355
356/*
357 * These are initializations that only need to be done
358 * once, because the fields are idempotent across use
359 * of the inode, so let the slab aware of that.
360 */
361void inode_init_once(struct inode *inode)
362{
363 memset(inode, 0, sizeof(*inode));
364 INIT_HLIST_NODE(&inode->i_hash);
365 INIT_LIST_HEAD(&inode->i_devices);
366 INIT_LIST_HEAD(&inode->i_io_list);
367 INIT_LIST_HEAD(&inode->i_lru);
368 address_space_init_once(&inode->i_data);
369 i_size_ordered_init(inode);
370#ifdef CONFIG_FSNOTIFY
371 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
372#endif
373}
374EXPORT_SYMBOL(inode_init_once);
375
376static void init_once(void *foo)
377{
378 struct inode *inode = (struct inode *) foo;
379
380 inode_init_once(inode);
381}
382
383/*
384 * inode->i_lock must be held
385 */
386void __iget(struct inode *inode)
387{
388 atomic_inc(&inode->i_count);
389}
390
391/*
392 * get additional reference to inode; caller must already hold one.
393 */
394void ihold(struct inode *inode)
395{
396 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
397}
398EXPORT_SYMBOL(ihold);
399
400static void inode_lru_list_add(struct inode *inode)
401{
402 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
403 this_cpu_inc(nr_unused);
404}
405
406/*
407 * Add inode to LRU if needed (inode is unused and clean).
408 *
409 * Needs inode->i_lock held.
410 */
411void inode_add_lru(struct inode *inode)
412{
413 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
414 I_FREEING | I_WILL_FREE)) &&
415 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
416 inode_lru_list_add(inode);
417}
418
419
420static void inode_lru_list_del(struct inode *inode)
421{
422
423 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
424 this_cpu_dec(nr_unused);
425}
426
427/**
428 * inode_sb_list_add - add inode to the superblock list of inodes
429 * @inode: inode to add
430 */
431void inode_sb_list_add(struct inode *inode)
432{
433 spin_lock(&inode->i_sb->s_inode_list_lock);
434 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
435 spin_unlock(&inode->i_sb->s_inode_list_lock);
436}
437EXPORT_SYMBOL_GPL(inode_sb_list_add);
438
439static inline void inode_sb_list_del(struct inode *inode)
440{
441 if (!list_empty(&inode->i_sb_list)) {
442 spin_lock(&inode->i_sb->s_inode_list_lock);
443 list_del_init(&inode->i_sb_list);
444 spin_unlock(&inode->i_sb->s_inode_list_lock);
445 }
446}
447
448static unsigned long hash(struct super_block *sb, unsigned long hashval)
449{
450 unsigned long tmp;
451
452 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
453 L1_CACHE_BYTES;
454 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
455 return tmp & i_hash_mask;
456}
457
458/**
459 * __insert_inode_hash - hash an inode
460 * @inode: unhashed inode
461 * @hashval: unsigned long value used to locate this object in the
462 * inode_hashtable.
463 *
464 * Add an inode to the inode hash for this superblock.
465 */
466void __insert_inode_hash(struct inode *inode, unsigned long hashval)
467{
468 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
469
470 spin_lock(&inode_hash_lock);
471 spin_lock(&inode->i_lock);
472 hlist_add_head(&inode->i_hash, b);
473 spin_unlock(&inode->i_lock);
474 spin_unlock(&inode_hash_lock);
475}
476EXPORT_SYMBOL(__insert_inode_hash);
477
478/**
479 * __remove_inode_hash - remove an inode from the hash
480 * @inode: inode to unhash
481 *
482 * Remove an inode from the superblock.
483 */
484void __remove_inode_hash(struct inode *inode)
485{
486 spin_lock(&inode_hash_lock);
487 spin_lock(&inode->i_lock);
488 hlist_del_init(&inode->i_hash);
489 spin_unlock(&inode->i_lock);
490 spin_unlock(&inode_hash_lock);
491}
492EXPORT_SYMBOL(__remove_inode_hash);
493
494void clear_inode(struct inode *inode)
495{
496 might_sleep();
497 /*
498 * We have to cycle tree_lock here because reclaim can be still in the
499 * process of removing the last page (in __delete_from_page_cache())
500 * and we must not free mapping under it.
501 */
502 spin_lock_irq(&inode->i_data.tree_lock);
503 BUG_ON(inode->i_data.nrpages);
504 BUG_ON(inode->i_data.nrexceptional);
505 spin_unlock_irq(&inode->i_data.tree_lock);
506 BUG_ON(!list_empty(&inode->i_data.private_list));
507 BUG_ON(!(inode->i_state & I_FREEING));
508 BUG_ON(inode->i_state & I_CLEAR);
509 /* don't need i_lock here, no concurrent mods to i_state */
510 inode->i_state = I_FREEING | I_CLEAR;
511}
512EXPORT_SYMBOL(clear_inode);
513
514/*
515 * Free the inode passed in, removing it from the lists it is still connected
516 * to. We remove any pages still attached to the inode and wait for any IO that
517 * is still in progress before finally destroying the inode.
518 *
519 * An inode must already be marked I_FREEING so that we avoid the inode being
520 * moved back onto lists if we race with other code that manipulates the lists
521 * (e.g. writeback_single_inode). The caller is responsible for setting this.
522 *
523 * An inode must already be removed from the LRU list before being evicted from
524 * the cache. This should occur atomically with setting the I_FREEING state
525 * flag, so no inodes here should ever be on the LRU when being evicted.
526 */
527static void evict(struct inode *inode)
528{
529 const struct super_operations *op = inode->i_sb->s_op;
530
531 BUG_ON(!(inode->i_state & I_FREEING));
532 BUG_ON(!list_empty(&inode->i_lru));
533
534 if (!list_empty(&inode->i_io_list))
535 inode_io_list_del(inode);
536
537 inode_sb_list_del(inode);
538
539 /*
540 * Wait for flusher thread to be done with the inode so that filesystem
541 * does not start destroying it while writeback is still running. Since
542 * the inode has I_FREEING set, flusher thread won't start new work on
543 * the inode. We just have to wait for running writeback to finish.
544 */
545 inode_wait_for_writeback(inode);
546
547 if (op->evict_inode) {
548 op->evict_inode(inode);
549 } else {
550 truncate_inode_pages_final(&inode->i_data);
551 clear_inode(inode);
552 }
553 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
554 bd_forget(inode);
555 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
556 cd_forget(inode);
557
558 remove_inode_hash(inode);
559
560 spin_lock(&inode->i_lock);
561 wake_up_bit(&inode->i_state, __I_NEW);
562 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
563 spin_unlock(&inode->i_lock);
564
565 destroy_inode(inode);
566}
567
568/*
569 * dispose_list - dispose of the contents of a local list
570 * @head: the head of the list to free
571 *
572 * Dispose-list gets a local list with local inodes in it, so it doesn't
573 * need to worry about list corruption and SMP locks.
574 */
575static void dispose_list(struct list_head *head)
576{
577 while (!list_empty(head)) {
578 struct inode *inode;
579
580 inode = list_first_entry(head, struct inode, i_lru);
581 list_del_init(&inode->i_lru);
582
583 evict(inode);
584 cond_resched();
585 }
586}
587
588/**
589 * evict_inodes - evict all evictable inodes for a superblock
590 * @sb: superblock to operate on
591 *
592 * Make sure that no inodes with zero refcount are retained. This is
593 * called by superblock shutdown after having MS_ACTIVE flag removed,
594 * so any inode reaching zero refcount during or after that call will
595 * be immediately evicted.
596 */
597void evict_inodes(struct super_block *sb)
598{
599 struct inode *inode, *next;
600 LIST_HEAD(dispose);
601
602again:
603 spin_lock(&sb->s_inode_list_lock);
604 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
605 if (atomic_read(&inode->i_count))
606 continue;
607
608 spin_lock(&inode->i_lock);
609 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
610 spin_unlock(&inode->i_lock);
611 continue;
612 }
613
614 inode->i_state |= I_FREEING;
615 inode_lru_list_del(inode);
616 spin_unlock(&inode->i_lock);
617 list_add(&inode->i_lru, &dispose);
618
619 /*
620 * We can have a ton of inodes to evict at unmount time given
621 * enough memory, check to see if we need to go to sleep for a
622 * bit so we don't livelock.
623 */
624 if (need_resched()) {
625 spin_unlock(&sb->s_inode_list_lock);
626 cond_resched();
627 dispose_list(&dispose);
628 goto again;
629 }
630 }
631 spin_unlock(&sb->s_inode_list_lock);
632
633 dispose_list(&dispose);
634}
635
636/**
637 * invalidate_inodes - attempt to free all inodes on a superblock
638 * @sb: superblock to operate on
639 * @kill_dirty: flag to guide handling of dirty inodes
640 *
641 * Attempts to free all inodes for a given superblock. If there were any
642 * busy inodes return a non-zero value, else zero.
643 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
644 * them as busy.
645 */
646int invalidate_inodes(struct super_block *sb, bool kill_dirty)
647{
648 int busy = 0;
649 struct inode *inode, *next;
650 LIST_HEAD(dispose);
651
652 spin_lock(&sb->s_inode_list_lock);
653 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
654 spin_lock(&inode->i_lock);
655 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
656 spin_unlock(&inode->i_lock);
657 continue;
658 }
659 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
660 spin_unlock(&inode->i_lock);
661 busy = 1;
662 continue;
663 }
664 if (atomic_read(&inode->i_count)) {
665 spin_unlock(&inode->i_lock);
666 busy = 1;
667 continue;
668 }
669
670 inode->i_state |= I_FREEING;
671 inode_lru_list_del(inode);
672 spin_unlock(&inode->i_lock);
673 list_add(&inode->i_lru, &dispose);
674 }
675 spin_unlock(&sb->s_inode_list_lock);
676
677 dispose_list(&dispose);
678
679 return busy;
680}
681
682/*
683 * Isolate the inode from the LRU in preparation for freeing it.
684 *
685 * Any inodes which are pinned purely because of attached pagecache have their
686 * pagecache removed. If the inode has metadata buffers attached to
687 * mapping->private_list then try to remove them.
688 *
689 * If the inode has the I_REFERENCED flag set, then it means that it has been
690 * used recently - the flag is set in iput_final(). When we encounter such an
691 * inode, clear the flag and move it to the back of the LRU so it gets another
692 * pass through the LRU before it gets reclaimed. This is necessary because of
693 * the fact we are doing lazy LRU updates to minimise lock contention so the
694 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
695 * with this flag set because they are the inodes that are out of order.
696 */
697static enum lru_status inode_lru_isolate(struct list_head *item,
698 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
699{
700 struct list_head *freeable = arg;
701 struct inode *inode = container_of(item, struct inode, i_lru);
702
703 /*
704 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
705 * If we fail to get the lock, just skip it.
706 */
707 if (!spin_trylock(&inode->i_lock))
708 return LRU_SKIP;
709
710 /*
711 * Referenced or dirty inodes are still in use. Give them another pass
712 * through the LRU as we canot reclaim them now.
713 */
714 if (atomic_read(&inode->i_count) ||
715 (inode->i_state & ~I_REFERENCED)) {
716 list_lru_isolate(lru, &inode->i_lru);
717 spin_unlock(&inode->i_lock);
718 this_cpu_dec(nr_unused);
719 return LRU_REMOVED;
720 }
721
722 /* recently referenced inodes get one more pass */
723 if (inode->i_state & I_REFERENCED) {
724 inode->i_state &= ~I_REFERENCED;
725 spin_unlock(&inode->i_lock);
726 return LRU_ROTATE;
727 }
728
729 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
730 __iget(inode);
731 spin_unlock(&inode->i_lock);
732 spin_unlock(lru_lock);
733 if (remove_inode_buffers(inode)) {
734 unsigned long reap;
735 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
736 if (current_is_kswapd())
737 __count_vm_events(KSWAPD_INODESTEAL, reap);
738 else
739 __count_vm_events(PGINODESTEAL, reap);
740 if (current->reclaim_state)
741 current->reclaim_state->reclaimed_slab += reap;
742 }
743 iput(inode);
744 spin_lock(lru_lock);
745 return LRU_RETRY;
746 }
747
748 WARN_ON(inode->i_state & I_NEW);
749 inode->i_state |= I_FREEING;
750 list_lru_isolate_move(lru, &inode->i_lru, freeable);
751 spin_unlock(&inode->i_lock);
752
753 this_cpu_dec(nr_unused);
754 return LRU_REMOVED;
755}
756
757/*
758 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
759 * This is called from the superblock shrinker function with a number of inodes
760 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
761 * then are freed outside inode_lock by dispose_list().
762 */
763long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
764{
765 LIST_HEAD(freeable);
766 long freed;
767
768 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
769 inode_lru_isolate, &freeable);
770 dispose_list(&freeable);
771 return freed;
772}
773
774static void __wait_on_freeing_inode(struct inode *inode);
775/*
776 * Called with the inode lock held.
777 */
778static struct inode *find_inode(struct super_block *sb,
779 struct hlist_head *head,
780 int (*test)(struct inode *, void *),
781 void *data)
782{
783 struct inode *inode = NULL;
784
785repeat:
786 hlist_for_each_entry(inode, head, i_hash) {
787 if (inode->i_sb != sb)
788 continue;
789 if (!test(inode, data))
790 continue;
791 spin_lock(&inode->i_lock);
792 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
793 __wait_on_freeing_inode(inode);
794 goto repeat;
795 }
796 __iget(inode);
797 spin_unlock(&inode->i_lock);
798 return inode;
799 }
800 return NULL;
801}
802
803/*
804 * find_inode_fast is the fast path version of find_inode, see the comment at
805 * iget_locked for details.
806 */
807static struct inode *find_inode_fast(struct super_block *sb,
808 struct hlist_head *head, unsigned long ino)
809{
810 struct inode *inode = NULL;
811
812repeat:
813 hlist_for_each_entry(inode, head, i_hash) {
814 if (inode->i_ino != ino)
815 continue;
816 if (inode->i_sb != sb)
817 continue;
818 spin_lock(&inode->i_lock);
819 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
820 __wait_on_freeing_inode(inode);
821 goto repeat;
822 }
823 __iget(inode);
824 spin_unlock(&inode->i_lock);
825 return inode;
826 }
827 return NULL;
828}
829
830/*
831 * Each cpu owns a range of LAST_INO_BATCH numbers.
832 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
833 * to renew the exhausted range.
834 *
835 * This does not significantly increase overflow rate because every CPU can
836 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
837 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
838 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
839 * overflow rate by 2x, which does not seem too significant.
840 *
841 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
842 * error if st_ino won't fit in target struct field. Use 32bit counter
843 * here to attempt to avoid that.
844 */
845#define LAST_INO_BATCH 1024
846static DEFINE_PER_CPU(unsigned int, last_ino);
847
848unsigned int get_next_ino(void)
849{
850 unsigned int *p = &get_cpu_var(last_ino);
851 unsigned int res = *p;
852
853#ifdef CONFIG_SMP
854 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
855 static atomic_t shared_last_ino;
856 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
857
858 res = next - LAST_INO_BATCH;
859 }
860#endif
861
862 res++;
863 /* get_next_ino should not provide a 0 inode number */
864 if (unlikely(!res))
865 res++;
866 *p = res;
867 put_cpu_var(last_ino);
868 return res;
869}
870EXPORT_SYMBOL(get_next_ino);
871
872/**
873 * new_inode_pseudo - obtain an inode
874 * @sb: superblock
875 *
876 * Allocates a new inode for given superblock.
877 * Inode wont be chained in superblock s_inodes list
878 * This means :
879 * - fs can't be unmount
880 * - quotas, fsnotify, writeback can't work
881 */
882struct inode *new_inode_pseudo(struct super_block *sb)
883{
884 struct inode *inode = alloc_inode(sb);
885
886 if (inode) {
887 spin_lock(&inode->i_lock);
888 inode->i_state = 0;
889 spin_unlock(&inode->i_lock);
890 INIT_LIST_HEAD(&inode->i_sb_list);
891 }
892 return inode;
893}
894
895/**
896 * new_inode - obtain an inode
897 * @sb: superblock
898 *
899 * Allocates a new inode for given superblock. The default gfp_mask
900 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
901 * If HIGHMEM pages are unsuitable or it is known that pages allocated
902 * for the page cache are not reclaimable or migratable,
903 * mapping_set_gfp_mask() must be called with suitable flags on the
904 * newly created inode's mapping
905 *
906 */
907struct inode *new_inode(struct super_block *sb)
908{
909 struct inode *inode;
910
911 spin_lock_prefetch(&sb->s_inode_list_lock);
912
913 inode = new_inode_pseudo(sb);
914 if (inode)
915 inode_sb_list_add(inode);
916 return inode;
917}
918EXPORT_SYMBOL(new_inode);
919
920#ifdef CONFIG_DEBUG_LOCK_ALLOC
921void lockdep_annotate_inode_mutex_key(struct inode *inode)
922{
923 if (S_ISDIR(inode->i_mode)) {
924 struct file_system_type *type = inode->i_sb->s_type;
925
926 /* Set new key only if filesystem hasn't already changed it */
927 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
928 /*
929 * ensure nobody is actually holding i_mutex
930 */
931 mutex_destroy(&inode->i_mutex);
932 mutex_init(&inode->i_mutex);
933 lockdep_set_class(&inode->i_mutex,
934 &type->i_mutex_dir_key);
935 }
936 }
937}
938EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
939#endif
940
941/**
942 * unlock_new_inode - clear the I_NEW state and wake up any waiters
943 * @inode: new inode to unlock
944 *
945 * Called when the inode is fully initialised to clear the new state of the
946 * inode and wake up anyone waiting for the inode to finish initialisation.
947 */
948void unlock_new_inode(struct inode *inode)
949{
950 lockdep_annotate_inode_mutex_key(inode);
951 spin_lock(&inode->i_lock);
952 WARN_ON(!(inode->i_state & I_NEW));
953 inode->i_state &= ~I_NEW;
954 smp_mb();
955 wake_up_bit(&inode->i_state, __I_NEW);
956 spin_unlock(&inode->i_lock);
957}
958EXPORT_SYMBOL(unlock_new_inode);
959
960/**
961 * lock_two_nondirectories - take two i_mutexes on non-directory objects
962 *
963 * Lock any non-NULL argument that is not a directory.
964 * Zero, one or two objects may be locked by this function.
965 *
966 * @inode1: first inode to lock
967 * @inode2: second inode to lock
968 */
969void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
970{
971 if (inode1 > inode2)
972 swap(inode1, inode2);
973
974 if (inode1 && !S_ISDIR(inode1->i_mode))
975 inode_lock(inode1);
976 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
977 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
978}
979EXPORT_SYMBOL(lock_two_nondirectories);
980
981/**
982 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
983 * @inode1: first inode to unlock
984 * @inode2: second inode to unlock
985 */
986void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
987{
988 if (inode1 && !S_ISDIR(inode1->i_mode))
989 inode_unlock(inode1);
990 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
991 inode_unlock(inode2);
992}
993EXPORT_SYMBOL(unlock_two_nondirectories);
994
995/**
996 * iget5_locked - obtain an inode from a mounted file system
997 * @sb: super block of file system
998 * @hashval: hash value (usually inode number) to get
999 * @test: callback used for comparisons between inodes
1000 * @set: callback used to initialize a new struct inode
1001 * @data: opaque data pointer to pass to @test and @set
1002 *
1003 * Search for the inode specified by @hashval and @data in the inode cache,
1004 * and if present it is return it with an increased reference count. This is
1005 * a generalized version of iget_locked() for file systems where the inode
1006 * number is not sufficient for unique identification of an inode.
1007 *
1008 * If the inode is not in cache, allocate a new inode and return it locked,
1009 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1010 * before unlocking it via unlock_new_inode().
1011 *
1012 * Note both @test and @set are called with the inode_hash_lock held, so can't
1013 * sleep.
1014 */
1015struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1016 int (*test)(struct inode *, void *),
1017 int (*set)(struct inode *, void *), void *data)
1018{
1019 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1020 struct inode *inode;
1021
1022 spin_lock(&inode_hash_lock);
1023 inode = find_inode(sb, head, test, data);
1024 spin_unlock(&inode_hash_lock);
1025
1026 if (inode) {
1027 wait_on_inode(inode);
1028 return inode;
1029 }
1030
1031 inode = alloc_inode(sb);
1032 if (inode) {
1033 struct inode *old;
1034
1035 spin_lock(&inode_hash_lock);
1036 /* We released the lock, so.. */
1037 old = find_inode(sb, head, test, data);
1038 if (!old) {
1039 if (set(inode, data))
1040 goto set_failed;
1041
1042 spin_lock(&inode->i_lock);
1043 inode->i_state = I_NEW;
1044 hlist_add_head(&inode->i_hash, head);
1045 spin_unlock(&inode->i_lock);
1046 inode_sb_list_add(inode);
1047 spin_unlock(&inode_hash_lock);
1048
1049 /* Return the locked inode with I_NEW set, the
1050 * caller is responsible for filling in the contents
1051 */
1052 return inode;
1053 }
1054
1055 /*
1056 * Uhhuh, somebody else created the same inode under
1057 * us. Use the old inode instead of the one we just
1058 * allocated.
1059 */
1060 spin_unlock(&inode_hash_lock);
1061 destroy_inode(inode);
1062 inode = old;
1063 wait_on_inode(inode);
1064 }
1065 return inode;
1066
1067set_failed:
1068 spin_unlock(&inode_hash_lock);
1069 destroy_inode(inode);
1070 return NULL;
1071}
1072EXPORT_SYMBOL(iget5_locked);
1073
1074/**
1075 * iget_locked - obtain an inode from a mounted file system
1076 * @sb: super block of file system
1077 * @ino: inode number to get
1078 *
1079 * Search for the inode specified by @ino in the inode cache and if present
1080 * return it with an increased reference count. This is for file systems
1081 * where the inode number is sufficient for unique identification of an inode.
1082 *
1083 * If the inode is not in cache, allocate a new inode and return it locked,
1084 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1085 * before unlocking it via unlock_new_inode().
1086 */
1087struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1088{
1089 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1090 struct inode *inode;
1091
1092 spin_lock(&inode_hash_lock);
1093 inode = find_inode_fast(sb, head, ino);
1094 spin_unlock(&inode_hash_lock);
1095 if (inode) {
1096 wait_on_inode(inode);
1097 return inode;
1098 }
1099
1100 inode = alloc_inode(sb);
1101 if (inode) {
1102 struct inode *old;
1103
1104 spin_lock(&inode_hash_lock);
1105 /* We released the lock, so.. */
1106 old = find_inode_fast(sb, head, ino);
1107 if (!old) {
1108 inode->i_ino = ino;
1109 spin_lock(&inode->i_lock);
1110 inode->i_state = I_NEW;
1111 hlist_add_head(&inode->i_hash, head);
1112 spin_unlock(&inode->i_lock);
1113 inode_sb_list_add(inode);
1114 spin_unlock(&inode_hash_lock);
1115
1116 /* Return the locked inode with I_NEW set, the
1117 * caller is responsible for filling in the contents
1118 */
1119 return inode;
1120 }
1121
1122 /*
1123 * Uhhuh, somebody else created the same inode under
1124 * us. Use the old inode instead of the one we just
1125 * allocated.
1126 */
1127 spin_unlock(&inode_hash_lock);
1128 destroy_inode(inode);
1129 inode = old;
1130 wait_on_inode(inode);
1131 }
1132 return inode;
1133}
1134EXPORT_SYMBOL(iget_locked);
1135
1136/*
1137 * search the inode cache for a matching inode number.
1138 * If we find one, then the inode number we are trying to
1139 * allocate is not unique and so we should not use it.
1140 *
1141 * Returns 1 if the inode number is unique, 0 if it is not.
1142 */
1143static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1144{
1145 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1146 struct inode *inode;
1147
1148 spin_lock(&inode_hash_lock);
1149 hlist_for_each_entry(inode, b, i_hash) {
1150 if (inode->i_ino == ino && inode->i_sb == sb) {
1151 spin_unlock(&inode_hash_lock);
1152 return 0;
1153 }
1154 }
1155 spin_unlock(&inode_hash_lock);
1156
1157 return 1;
1158}
1159
1160/**
1161 * iunique - get a unique inode number
1162 * @sb: superblock
1163 * @max_reserved: highest reserved inode number
1164 *
1165 * Obtain an inode number that is unique on the system for a given
1166 * superblock. This is used by file systems that have no natural
1167 * permanent inode numbering system. An inode number is returned that
1168 * is higher than the reserved limit but unique.
1169 *
1170 * BUGS:
1171 * With a large number of inodes live on the file system this function
1172 * currently becomes quite slow.
1173 */
1174ino_t iunique(struct super_block *sb, ino_t max_reserved)
1175{
1176 /*
1177 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1178 * error if st_ino won't fit in target struct field. Use 32bit counter
1179 * here to attempt to avoid that.
1180 */
1181 static DEFINE_SPINLOCK(iunique_lock);
1182 static unsigned int counter;
1183 ino_t res;
1184
1185 spin_lock(&iunique_lock);
1186 do {
1187 if (counter <= max_reserved)
1188 counter = max_reserved + 1;
1189 res = counter++;
1190 } while (!test_inode_iunique(sb, res));
1191 spin_unlock(&iunique_lock);
1192
1193 return res;
1194}
1195EXPORT_SYMBOL(iunique);
1196
1197struct inode *igrab(struct inode *inode)
1198{
1199 spin_lock(&inode->i_lock);
1200 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1201 __iget(inode);
1202 spin_unlock(&inode->i_lock);
1203 } else {
1204 spin_unlock(&inode->i_lock);
1205 /*
1206 * Handle the case where s_op->clear_inode is not been
1207 * called yet, and somebody is calling igrab
1208 * while the inode is getting freed.
1209 */
1210 inode = NULL;
1211 }
1212 return inode;
1213}
1214EXPORT_SYMBOL(igrab);
1215
1216/**
1217 * ilookup5_nowait - search for an inode in the inode cache
1218 * @sb: super block of file system to search
1219 * @hashval: hash value (usually inode number) to search for
1220 * @test: callback used for comparisons between inodes
1221 * @data: opaque data pointer to pass to @test
1222 *
1223 * Search for the inode specified by @hashval and @data in the inode cache.
1224 * If the inode is in the cache, the inode is returned with an incremented
1225 * reference count.
1226 *
1227 * Note: I_NEW is not waited upon so you have to be very careful what you do
1228 * with the returned inode. You probably should be using ilookup5() instead.
1229 *
1230 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1231 */
1232struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1233 int (*test)(struct inode *, void *), void *data)
1234{
1235 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1236 struct inode *inode;
1237
1238 spin_lock(&inode_hash_lock);
1239 inode = find_inode(sb, head, test, data);
1240 spin_unlock(&inode_hash_lock);
1241
1242 return inode;
1243}
1244EXPORT_SYMBOL(ilookup5_nowait);
1245
1246/**
1247 * ilookup5 - search for an inode in the inode cache
1248 * @sb: super block of file system to search
1249 * @hashval: hash value (usually inode number) to search for
1250 * @test: callback used for comparisons between inodes
1251 * @data: opaque data pointer to pass to @test
1252 *
1253 * Search for the inode specified by @hashval and @data in the inode cache,
1254 * and if the inode is in the cache, return the inode with an incremented
1255 * reference count. Waits on I_NEW before returning the inode.
1256 * returned with an incremented reference count.
1257 *
1258 * This is a generalized version of ilookup() for file systems where the
1259 * inode number is not sufficient for unique identification of an inode.
1260 *
1261 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1262 */
1263struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1264 int (*test)(struct inode *, void *), void *data)
1265{
1266 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1267
1268 if (inode)
1269 wait_on_inode(inode);
1270 return inode;
1271}
1272EXPORT_SYMBOL(ilookup5);
1273
1274/**
1275 * ilookup - search for an inode in the inode cache
1276 * @sb: super block of file system to search
1277 * @ino: inode number to search for
1278 *
1279 * Search for the inode @ino in the inode cache, and if the inode is in the
1280 * cache, the inode is returned with an incremented reference count.
1281 */
1282struct inode *ilookup(struct super_block *sb, unsigned long ino)
1283{
1284 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1285 struct inode *inode;
1286
1287 spin_lock(&inode_hash_lock);
1288 inode = find_inode_fast(sb, head, ino);
1289 spin_unlock(&inode_hash_lock);
1290
1291 if (inode)
1292 wait_on_inode(inode);
1293 return inode;
1294}
1295EXPORT_SYMBOL(ilookup);
1296
1297/**
1298 * find_inode_nowait - find an inode in the inode cache
1299 * @sb: super block of file system to search
1300 * @hashval: hash value (usually inode number) to search for
1301 * @match: callback used for comparisons between inodes
1302 * @data: opaque data pointer to pass to @match
1303 *
1304 * Search for the inode specified by @hashval and @data in the inode
1305 * cache, where the helper function @match will return 0 if the inode
1306 * does not match, 1 if the inode does match, and -1 if the search
1307 * should be stopped. The @match function must be responsible for
1308 * taking the i_lock spin_lock and checking i_state for an inode being
1309 * freed or being initialized, and incrementing the reference count
1310 * before returning 1. It also must not sleep, since it is called with
1311 * the inode_hash_lock spinlock held.
1312 *
1313 * This is a even more generalized version of ilookup5() when the
1314 * function must never block --- find_inode() can block in
1315 * __wait_on_freeing_inode() --- or when the caller can not increment
1316 * the reference count because the resulting iput() might cause an
1317 * inode eviction. The tradeoff is that the @match funtion must be
1318 * very carefully implemented.
1319 */
1320struct inode *find_inode_nowait(struct super_block *sb,
1321 unsigned long hashval,
1322 int (*match)(struct inode *, unsigned long,
1323 void *),
1324 void *data)
1325{
1326 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1327 struct inode *inode, *ret_inode = NULL;
1328 int mval;
1329
1330 spin_lock(&inode_hash_lock);
1331 hlist_for_each_entry(inode, head, i_hash) {
1332 if (inode->i_sb != sb)
1333 continue;
1334 mval = match(inode, hashval, data);
1335 if (mval == 0)
1336 continue;
1337 if (mval == 1)
1338 ret_inode = inode;
1339 goto out;
1340 }
1341out:
1342 spin_unlock(&inode_hash_lock);
1343 return ret_inode;
1344}
1345EXPORT_SYMBOL(find_inode_nowait);
1346
1347int insert_inode_locked(struct inode *inode)
1348{
1349 struct super_block *sb = inode->i_sb;
1350 ino_t ino = inode->i_ino;
1351 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1352
1353 while (1) {
1354 struct inode *old = NULL;
1355 spin_lock(&inode_hash_lock);
1356 hlist_for_each_entry(old, head, i_hash) {
1357 if (old->i_ino != ino)
1358 continue;
1359 if (old->i_sb != sb)
1360 continue;
1361 spin_lock(&old->i_lock);
1362 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1363 spin_unlock(&old->i_lock);
1364 continue;
1365 }
1366 break;
1367 }
1368 if (likely(!old)) {
1369 spin_lock(&inode->i_lock);
1370 inode->i_state |= I_NEW;
1371 hlist_add_head(&inode->i_hash, head);
1372 spin_unlock(&inode->i_lock);
1373 spin_unlock(&inode_hash_lock);
1374 return 0;
1375 }
1376 __iget(old);
1377 spin_unlock(&old->i_lock);
1378 spin_unlock(&inode_hash_lock);
1379 wait_on_inode(old);
1380 if (unlikely(!inode_unhashed(old))) {
1381 iput(old);
1382 return -EBUSY;
1383 }
1384 iput(old);
1385 }
1386}
1387EXPORT_SYMBOL(insert_inode_locked);
1388
1389int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1390 int (*test)(struct inode *, void *), void *data)
1391{
1392 struct super_block *sb = inode->i_sb;
1393 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1394
1395 while (1) {
1396 struct inode *old = NULL;
1397
1398 spin_lock(&inode_hash_lock);
1399 hlist_for_each_entry(old, head, i_hash) {
1400 if (old->i_sb != sb)
1401 continue;
1402 if (!test(old, data))
1403 continue;
1404 spin_lock(&old->i_lock);
1405 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1406 spin_unlock(&old->i_lock);
1407 continue;
1408 }
1409 break;
1410 }
1411 if (likely(!old)) {
1412 spin_lock(&inode->i_lock);
1413 inode->i_state |= I_NEW;
1414 hlist_add_head(&inode->i_hash, head);
1415 spin_unlock(&inode->i_lock);
1416 spin_unlock(&inode_hash_lock);
1417 return 0;
1418 }
1419 __iget(old);
1420 spin_unlock(&old->i_lock);
1421 spin_unlock(&inode_hash_lock);
1422 wait_on_inode(old);
1423 if (unlikely(!inode_unhashed(old))) {
1424 iput(old);
1425 return -EBUSY;
1426 }
1427 iput(old);
1428 }
1429}
1430EXPORT_SYMBOL(insert_inode_locked4);
1431
1432
1433int generic_delete_inode(struct inode *inode)
1434{
1435 return 1;
1436}
1437EXPORT_SYMBOL(generic_delete_inode);
1438
1439/*
1440 * Called when we're dropping the last reference
1441 * to an inode.
1442 *
1443 * Call the FS "drop_inode()" function, defaulting to
1444 * the legacy UNIX filesystem behaviour. If it tells
1445 * us to evict inode, do so. Otherwise, retain inode
1446 * in cache if fs is alive, sync and evict if fs is
1447 * shutting down.
1448 */
1449static void iput_final(struct inode *inode)
1450{
1451 struct super_block *sb = inode->i_sb;
1452 const struct super_operations *op = inode->i_sb->s_op;
1453 int drop;
1454
1455 WARN_ON(inode->i_state & I_NEW);
1456
1457 if (op->drop_inode)
1458 drop = op->drop_inode(inode);
1459 else
1460 drop = generic_drop_inode(inode);
1461
1462 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1463 inode->i_state |= I_REFERENCED;
1464 inode_add_lru(inode);
1465 spin_unlock(&inode->i_lock);
1466 return;
1467 }
1468
1469 if (!drop) {
1470 inode->i_state |= I_WILL_FREE;
1471 spin_unlock(&inode->i_lock);
1472 write_inode_now(inode, 1);
1473 spin_lock(&inode->i_lock);
1474 WARN_ON(inode->i_state & I_NEW);
1475 inode->i_state &= ~I_WILL_FREE;
1476 }
1477
1478 inode->i_state |= I_FREEING;
1479 if (!list_empty(&inode->i_lru))
1480 inode_lru_list_del(inode);
1481 spin_unlock(&inode->i_lock);
1482
1483 evict(inode);
1484}
1485
1486/**
1487 * iput - put an inode
1488 * @inode: inode to put
1489 *
1490 * Puts an inode, dropping its usage count. If the inode use count hits
1491 * zero, the inode is then freed and may also be destroyed.
1492 *
1493 * Consequently, iput() can sleep.
1494 */
1495void iput(struct inode *inode)
1496{
1497 if (!inode)
1498 return;
1499 BUG_ON(inode->i_state & I_CLEAR);
1500retry:
1501 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1502 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1503 atomic_inc(&inode->i_count);
1504 inode->i_state &= ~I_DIRTY_TIME;
1505 spin_unlock(&inode->i_lock);
1506 trace_writeback_lazytime_iput(inode);
1507 mark_inode_dirty_sync(inode);
1508 goto retry;
1509 }
1510 iput_final(inode);
1511 }
1512}
1513EXPORT_SYMBOL(iput);
1514
1515/**
1516 * bmap - find a block number in a file
1517 * @inode: inode of file
1518 * @block: block to find
1519 *
1520 * Returns the block number on the device holding the inode that
1521 * is the disk block number for the block of the file requested.
1522 * That is, asked for block 4 of inode 1 the function will return the
1523 * disk block relative to the disk start that holds that block of the
1524 * file.
1525 */
1526sector_t bmap(struct inode *inode, sector_t block)
1527{
1528 sector_t res = 0;
1529 if (inode->i_mapping->a_ops->bmap)
1530 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1531 return res;
1532}
1533EXPORT_SYMBOL(bmap);
1534
1535/*
1536 * With relative atime, only update atime if the previous atime is
1537 * earlier than either the ctime or mtime or if at least a day has
1538 * passed since the last atime update.
1539 */
1540static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1541 struct timespec now)
1542{
1543
1544 if (!(mnt->mnt_flags & MNT_RELATIME))
1545 return 1;
1546 /*
1547 * Is mtime younger than atime? If yes, update atime:
1548 */
1549 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1550 return 1;
1551 /*
1552 * Is ctime younger than atime? If yes, update atime:
1553 */
1554 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1555 return 1;
1556
1557 /*
1558 * Is the previous atime value older than a day? If yes,
1559 * update atime:
1560 */
1561 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1562 return 1;
1563 /*
1564 * Good, we can skip the atime update:
1565 */
1566 return 0;
1567}
1568
1569int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1570{
1571 int iflags = I_DIRTY_TIME;
1572
1573 if (flags & S_ATIME)
1574 inode->i_atime = *time;
1575 if (flags & S_VERSION)
1576 inode_inc_iversion(inode);
1577 if (flags & S_CTIME)
1578 inode->i_ctime = *time;
1579 if (flags & S_MTIME)
1580 inode->i_mtime = *time;
1581
1582 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1583 iflags |= I_DIRTY_SYNC;
1584 __mark_inode_dirty(inode, iflags);
1585 return 0;
1586}
1587EXPORT_SYMBOL(generic_update_time);
1588
1589/*
1590 * This does the actual work of updating an inodes time or version. Must have
1591 * had called mnt_want_write() before calling this.
1592 */
1593static int update_time(struct inode *inode, struct timespec *time, int flags)
1594{
1595 int (*update_time)(struct inode *, struct timespec *, int);
1596
1597 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1598 generic_update_time;
1599
1600 return update_time(inode, time, flags);
1601}
1602
1603/**
1604 * touch_atime - update the access time
1605 * @path: the &struct path to update
1606 * @inode: inode to update
1607 *
1608 * Update the accessed time on an inode and mark it for writeback.
1609 * This function automatically handles read only file systems and media,
1610 * as well as the "noatime" flag and inode specific "noatime" markers.
1611 */
1612bool atime_needs_update(const struct path *path, struct inode *inode)
1613{
1614 struct vfsmount *mnt = path->mnt;
1615 struct timespec now;
1616
1617 if (inode->i_flags & S_NOATIME)
1618 return false;
1619 if (IS_NOATIME(inode))
1620 return false;
1621 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1622 return false;
1623
1624 if (mnt->mnt_flags & MNT_NOATIME)
1625 return false;
1626 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1627 return false;
1628
1629 now = current_fs_time(inode->i_sb);
1630
1631 if (!relatime_need_update(mnt, inode, now))
1632 return false;
1633
1634 if (timespec_equal(&inode->i_atime, &now))
1635 return false;
1636
1637 return true;
1638}
1639
1640void touch_atime(const struct path *path)
1641{
1642 struct vfsmount *mnt = path->mnt;
1643 struct inode *inode = d_inode(path->dentry);
1644 struct timespec now;
1645
1646 if (!atime_needs_update(path, inode))
1647 return;
1648
1649 if (!sb_start_write_trylock(inode->i_sb))
1650 return;
1651
1652 if (__mnt_want_write(mnt) != 0)
1653 goto skip_update;
1654 /*
1655 * File systems can error out when updating inodes if they need to
1656 * allocate new space to modify an inode (such is the case for
1657 * Btrfs), but since we touch atime while walking down the path we
1658 * really don't care if we failed to update the atime of the file,
1659 * so just ignore the return value.
1660 * We may also fail on filesystems that have the ability to make parts
1661 * of the fs read only, e.g. subvolumes in Btrfs.
1662 */
1663 now = current_fs_time(inode->i_sb);
1664 update_time(inode, &now, S_ATIME);
1665 __mnt_drop_write(mnt);
1666skip_update:
1667 sb_end_write(inode->i_sb);
1668}
1669EXPORT_SYMBOL(touch_atime);
1670
1671/*
1672 * The logic we want is
1673 *
1674 * if suid or (sgid and xgrp)
1675 * remove privs
1676 */
1677int should_remove_suid(struct dentry *dentry)
1678{
1679 umode_t mode = d_inode(dentry)->i_mode;
1680 int kill = 0;
1681
1682 /* suid always must be killed */
1683 if (unlikely(mode & S_ISUID))
1684 kill = ATTR_KILL_SUID;
1685
1686 /*
1687 * sgid without any exec bits is just a mandatory locking mark; leave
1688 * it alone. If some exec bits are set, it's a real sgid; kill it.
1689 */
1690 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1691 kill |= ATTR_KILL_SGID;
1692
1693 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1694 return kill;
1695
1696 return 0;
1697}
1698EXPORT_SYMBOL(should_remove_suid);
1699
1700/*
1701 * Return mask of changes for notify_change() that need to be done as a
1702 * response to write or truncate. Return 0 if nothing has to be changed.
1703 * Negative value on error (change should be denied).
1704 */
1705int dentry_needs_remove_privs(struct dentry *dentry)
1706{
1707 struct inode *inode = d_inode(dentry);
1708 int mask = 0;
1709 int ret;
1710
1711 if (IS_NOSEC(inode))
1712 return 0;
1713
1714 mask = should_remove_suid(dentry);
1715 ret = security_inode_need_killpriv(dentry);
1716 if (ret < 0)
1717 return ret;
1718 if (ret)
1719 mask |= ATTR_KILL_PRIV;
1720 return mask;
1721}
1722EXPORT_SYMBOL(dentry_needs_remove_privs);
1723
1724static int __remove_privs(struct dentry *dentry, int kill)
1725{
1726 struct iattr newattrs;
1727
1728 newattrs.ia_valid = ATTR_FORCE | kill;
1729 /*
1730 * Note we call this on write, so notify_change will not
1731 * encounter any conflicting delegations:
1732 */
1733 return notify_change(dentry, &newattrs, NULL);
1734}
1735
1736/*
1737 * Remove special file priviledges (suid, capabilities) when file is written
1738 * to or truncated.
1739 */
1740int file_remove_privs(struct file *file)
1741{
1742 struct dentry *dentry = file->f_path.dentry;
1743 struct inode *inode = d_inode(dentry);
1744 int kill;
1745 int error = 0;
1746
1747 /* Fast path for nothing security related */
1748 if (IS_NOSEC(inode))
1749 return 0;
1750
1751 kill = file_needs_remove_privs(file);
1752 if (kill < 0)
1753 return kill;
1754 if (kill)
1755 error = __remove_privs(dentry, kill);
1756 if (!error)
1757 inode_has_no_xattr(inode);
1758
1759 return error;
1760}
1761EXPORT_SYMBOL(file_remove_privs);
1762
1763/**
1764 * file_update_time - update mtime and ctime time
1765 * @file: file accessed
1766 *
1767 * Update the mtime and ctime members of an inode and mark the inode
1768 * for writeback. Note that this function is meant exclusively for
1769 * usage in the file write path of filesystems, and filesystems may
1770 * choose to explicitly ignore update via this function with the
1771 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1772 * timestamps are handled by the server. This can return an error for
1773 * file systems who need to allocate space in order to update an inode.
1774 */
1775
1776int file_update_time(struct file *file)
1777{
1778 struct inode *inode = file_inode(file);
1779 struct timespec now;
1780 int sync_it = 0;
1781 int ret;
1782
1783 /* First try to exhaust all avenues to not sync */
1784 if (IS_NOCMTIME(inode))
1785 return 0;
1786
1787 now = current_fs_time(inode->i_sb);
1788 if (!timespec_equal(&inode->i_mtime, &now))
1789 sync_it = S_MTIME;
1790
1791 if (!timespec_equal(&inode->i_ctime, &now))
1792 sync_it |= S_CTIME;
1793
1794 if (IS_I_VERSION(inode))
1795 sync_it |= S_VERSION;
1796
1797 if (!sync_it)
1798 return 0;
1799
1800 /* Finally allowed to write? Takes lock. */
1801 if (__mnt_want_write_file(file))
1802 return 0;
1803
1804 ret = update_time(inode, &now, sync_it);
1805 __mnt_drop_write_file(file);
1806
1807 return ret;
1808}
1809EXPORT_SYMBOL(file_update_time);
1810
1811int inode_needs_sync(struct inode *inode)
1812{
1813 if (IS_SYNC(inode))
1814 return 1;
1815 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1816 return 1;
1817 return 0;
1818}
1819EXPORT_SYMBOL(inode_needs_sync);
1820
1821/*
1822 * If we try to find an inode in the inode hash while it is being
1823 * deleted, we have to wait until the filesystem completes its
1824 * deletion before reporting that it isn't found. This function waits
1825 * until the deletion _might_ have completed. Callers are responsible
1826 * to recheck inode state.
1827 *
1828 * It doesn't matter if I_NEW is not set initially, a call to
1829 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1830 * will DTRT.
1831 */
1832static void __wait_on_freeing_inode(struct inode *inode)
1833{
1834 wait_queue_head_t *wq;
1835 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1836 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1837 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1838 spin_unlock(&inode->i_lock);
1839 spin_unlock(&inode_hash_lock);
1840 schedule();
1841 finish_wait(wq, &wait.wait);
1842 spin_lock(&inode_hash_lock);
1843}
1844
1845static __initdata unsigned long ihash_entries;
1846static int __init set_ihash_entries(char *str)
1847{
1848 if (!str)
1849 return 0;
1850 ihash_entries = simple_strtoul(str, &str, 0);
1851 return 1;
1852}
1853__setup("ihash_entries=", set_ihash_entries);
1854
1855/*
1856 * Initialize the waitqueues and inode hash table.
1857 */
1858void __init inode_init_early(void)
1859{
1860 unsigned int loop;
1861
1862 /* If hashes are distributed across NUMA nodes, defer
1863 * hash allocation until vmalloc space is available.
1864 */
1865 if (hashdist)
1866 return;
1867
1868 inode_hashtable =
1869 alloc_large_system_hash("Inode-cache",
1870 sizeof(struct hlist_head),
1871 ihash_entries,
1872 14,
1873 HASH_EARLY,
1874 &i_hash_shift,
1875 &i_hash_mask,
1876 0,
1877 0);
1878
1879 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1880 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1881}
1882
1883void __init inode_init(void)
1884{
1885 unsigned int loop;
1886
1887 /* inode slab cache */
1888 inode_cachep = kmem_cache_create("inode_cache",
1889 sizeof(struct inode),
1890 0,
1891 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1892 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1893 init_once);
1894
1895 /* Hash may have been set up in inode_init_early */
1896 if (!hashdist)
1897 return;
1898
1899 inode_hashtable =
1900 alloc_large_system_hash("Inode-cache",
1901 sizeof(struct hlist_head),
1902 ihash_entries,
1903 14,
1904 0,
1905 &i_hash_shift,
1906 &i_hash_mask,
1907 0,
1908 0);
1909
1910 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1911 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1912}
1913
1914void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1915{
1916 inode->i_mode = mode;
1917 if (S_ISCHR(mode)) {
1918 inode->i_fop = &def_chr_fops;
1919 inode->i_rdev = rdev;
1920 } else if (S_ISBLK(mode)) {
1921 inode->i_fop = &def_blk_fops;
1922 inode->i_rdev = rdev;
1923 } else if (S_ISFIFO(mode))
1924 inode->i_fop = &pipefifo_fops;
1925 else if (S_ISSOCK(mode))
1926 ; /* leave it no_open_fops */
1927 else
1928 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1929 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1930 inode->i_ino);
1931}
1932EXPORT_SYMBOL(init_special_inode);
1933
1934/**
1935 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1936 * @inode: New inode
1937 * @dir: Directory inode
1938 * @mode: mode of the new inode
1939 */
1940void inode_init_owner(struct inode *inode, const struct inode *dir,
1941 umode_t mode)
1942{
1943 inode->i_uid = current_fsuid();
1944 if (dir && dir->i_mode & S_ISGID) {
1945 inode->i_gid = dir->i_gid;
1946 if (S_ISDIR(mode))
1947 mode |= S_ISGID;
1948 } else
1949 inode->i_gid = current_fsgid();
1950 inode->i_mode = mode;
1951}
1952EXPORT_SYMBOL(inode_init_owner);
1953
1954/**
1955 * inode_owner_or_capable - check current task permissions to inode
1956 * @inode: inode being checked
1957 *
1958 * Return true if current either has CAP_FOWNER in a namespace with the
1959 * inode owner uid mapped, or owns the file.
1960 */
1961bool inode_owner_or_capable(const struct inode *inode)
1962{
1963 struct user_namespace *ns;
1964
1965 if (uid_eq(current_fsuid(), inode->i_uid))
1966 return true;
1967
1968 ns = current_user_ns();
1969 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1970 return true;
1971 return false;
1972}
1973EXPORT_SYMBOL(inode_owner_or_capable);
1974
1975/*
1976 * Direct i/o helper functions
1977 */
1978static void __inode_dio_wait(struct inode *inode)
1979{
1980 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1981 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1982
1983 do {
1984 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1985 if (atomic_read(&inode->i_dio_count))
1986 schedule();
1987 } while (atomic_read(&inode->i_dio_count));
1988 finish_wait(wq, &q.wait);
1989}
1990
1991/**
1992 * inode_dio_wait - wait for outstanding DIO requests to finish
1993 * @inode: inode to wait for
1994 *
1995 * Waits for all pending direct I/O requests to finish so that we can
1996 * proceed with a truncate or equivalent operation.
1997 *
1998 * Must be called under a lock that serializes taking new references
1999 * to i_dio_count, usually by inode->i_mutex.
2000 */
2001void inode_dio_wait(struct inode *inode)
2002{
2003 if (atomic_read(&inode->i_dio_count))
2004 __inode_dio_wait(inode);
2005}
2006EXPORT_SYMBOL(inode_dio_wait);
2007
2008/*
2009 * inode_set_flags - atomically set some inode flags
2010 *
2011 * Note: the caller should be holding i_mutex, or else be sure that
2012 * they have exclusive access to the inode structure (i.e., while the
2013 * inode is being instantiated). The reason for the cmpxchg() loop
2014 * --- which wouldn't be necessary if all code paths which modify
2015 * i_flags actually followed this rule, is that there is at least one
2016 * code path which doesn't today so we use cmpxchg() out of an abundance
2017 * of caution.
2018 *
2019 * In the long run, i_mutex is overkill, and we should probably look
2020 * at using the i_lock spinlock to protect i_flags, and then make sure
2021 * it is so documented in include/linux/fs.h and that all code follows
2022 * the locking convention!!
2023 */
2024void inode_set_flags(struct inode *inode, unsigned int flags,
2025 unsigned int mask)
2026{
2027 unsigned int old_flags, new_flags;
2028
2029 WARN_ON_ONCE(flags & ~mask);
2030 do {
2031 old_flags = ACCESS_ONCE(inode->i_flags);
2032 new_flags = (old_flags & ~mask) | flags;
2033 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2034 new_flags) != old_flags));
2035}
2036EXPORT_SYMBOL(inode_set_flags);
2037
2038void inode_nohighmem(struct inode *inode)
2039{
2040 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2041}
2042EXPORT_SYMBOL(inode_nohighmem);