Loading...
1/*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5#include <linux/export.h>
6#include <linux/fs.h>
7#include <linux/mm.h>
8#include <linux/backing-dev.h>
9#include <linux/hash.h>
10#include <linux/swap.h>
11#include <linux/security.h>
12#include <linux/cdev.h>
13#include <linux/bootmem.h>
14#include <linux/fsnotify.h>
15#include <linux/mount.h>
16#include <linux/posix_acl.h>
17#include <linux/prefetch.h>
18#include <linux/buffer_head.h> /* for inode_has_buffers */
19#include <linux/ratelimit.h>
20#include <linux/list_lru.h>
21#include <linux/iversion.h>
22#include <trace/events/writeback.h>
23#include "internal.h"
24
25/*
26 * Inode locking rules:
27 *
28 * inode->i_lock protects:
29 * inode->i_state, inode->i_hash, __iget()
30 * Inode LRU list locks protect:
31 * inode->i_sb->s_inode_lru, inode->i_lru
32 * inode->i_sb->s_inode_list_lock protects:
33 * inode->i_sb->s_inodes, inode->i_sb_list
34 * bdi->wb.list_lock protects:
35 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
36 * inode_hash_lock protects:
37 * inode_hashtable, inode->i_hash
38 *
39 * Lock ordering:
40 *
41 * inode->i_sb->s_inode_list_lock
42 * inode->i_lock
43 * Inode LRU list locks
44 *
45 * bdi->wb.list_lock
46 * inode->i_lock
47 *
48 * inode_hash_lock
49 * inode->i_sb->s_inode_list_lock
50 * inode->i_lock
51 *
52 * iunique_lock
53 * inode_hash_lock
54 */
55
56static unsigned int i_hash_mask __read_mostly;
57static unsigned int i_hash_shift __read_mostly;
58static struct hlist_head *inode_hashtable __read_mostly;
59static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
60
61/*
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
64 */
65const struct address_space_operations empty_aops = {
66};
67EXPORT_SYMBOL(empty_aops);
68
69/*
70 * Statistics gathering..
71 */
72struct inodes_stat_t inodes_stat;
73
74static DEFINE_PER_CPU(unsigned long, nr_inodes);
75static DEFINE_PER_CPU(unsigned long, nr_unused);
76
77static struct kmem_cache *inode_cachep __read_mostly;
78
79static long get_nr_inodes(void)
80{
81 int i;
82 long sum = 0;
83 for_each_possible_cpu(i)
84 sum += per_cpu(nr_inodes, i);
85 return sum < 0 ? 0 : sum;
86}
87
88static inline long get_nr_inodes_unused(void)
89{
90 int i;
91 long sum = 0;
92 for_each_possible_cpu(i)
93 sum += per_cpu(nr_unused, i);
94 return sum < 0 ? 0 : sum;
95}
96
97long get_nr_dirty_inodes(void)
98{
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty > 0 ? nr_dirty : 0;
102}
103
104/*
105 * Handle nr_inode sysctl
106 */
107#ifdef CONFIG_SYSCTL
108int proc_nr_inodes(struct ctl_table *table, int write,
109 void __user *buffer, size_t *lenp, loff_t *ppos)
110{
111 inodes_stat.nr_inodes = get_nr_inodes();
112 inodes_stat.nr_unused = get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114}
115#endif
116
117static int no_open(struct inode *inode, struct file *file)
118{
119 return -ENXIO;
120}
121
122/**
123 * inode_init_always - perform inode structure initialisation
124 * @sb: superblock inode belongs to
125 * @inode: inode to initialise
126 *
127 * These are initializations that need to be done on every inode
128 * allocation as the fields are not initialised by slab allocation.
129 */
130int inode_init_always(struct super_block *sb, struct inode *inode)
131{
132 static const struct inode_operations empty_iops;
133 static const struct file_operations no_open_fops = {.open = no_open};
134 struct address_space *const mapping = &inode->i_data;
135
136 inode->i_sb = sb;
137 inode->i_blkbits = sb->s_blocksize_bits;
138 inode->i_flags = 0;
139 atomic_set(&inode->i_count, 1);
140 inode->i_op = &empty_iops;
141 inode->i_fop = &no_open_fops;
142 inode->__i_nlink = 1;
143 inode->i_opflags = 0;
144 if (sb->s_xattr)
145 inode->i_opflags |= IOP_XATTR;
146 i_uid_write(inode, 0);
147 i_gid_write(inode, 0);
148 atomic_set(&inode->i_writecount, 0);
149 inode->i_size = 0;
150 inode->i_write_hint = WRITE_LIFE_NOT_SET;
151 inode->i_blocks = 0;
152 inode->i_bytes = 0;
153 inode->i_generation = 0;
154 inode->i_pipe = NULL;
155 inode->i_bdev = NULL;
156 inode->i_cdev = NULL;
157 inode->i_link = NULL;
158 inode->i_dir_seq = 0;
159 inode->i_rdev = 0;
160 inode->dirtied_when = 0;
161
162#ifdef CONFIG_CGROUP_WRITEBACK
163 inode->i_wb_frn_winner = 0;
164 inode->i_wb_frn_avg_time = 0;
165 inode->i_wb_frn_history = 0;
166#endif
167
168 if (security_inode_alloc(inode))
169 goto out;
170 spin_lock_init(&inode->i_lock);
171 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
172
173 init_rwsem(&inode->i_rwsem);
174 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
175
176 atomic_set(&inode->i_dio_count, 0);
177
178 mapping->a_ops = &empty_aops;
179 mapping->host = inode;
180 mapping->flags = 0;
181 mapping->wb_err = 0;
182 atomic_set(&mapping->i_mmap_writable, 0);
183 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
184 mapping->private_data = NULL;
185 mapping->writeback_index = 0;
186 inode->i_private = NULL;
187 inode->i_mapping = mapping;
188 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
189#ifdef CONFIG_FS_POSIX_ACL
190 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
191#endif
192
193#ifdef CONFIG_FSNOTIFY
194 inode->i_fsnotify_mask = 0;
195#endif
196 inode->i_flctx = NULL;
197 this_cpu_inc(nr_inodes);
198
199 return 0;
200out:
201 return -ENOMEM;
202}
203EXPORT_SYMBOL(inode_init_always);
204
205static struct inode *alloc_inode(struct super_block *sb)
206{
207 struct inode *inode;
208
209 if (sb->s_op->alloc_inode)
210 inode = sb->s_op->alloc_inode(sb);
211 else
212 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
213
214 if (!inode)
215 return NULL;
216
217 if (unlikely(inode_init_always(sb, inode))) {
218 if (inode->i_sb->s_op->destroy_inode)
219 inode->i_sb->s_op->destroy_inode(inode);
220 else
221 kmem_cache_free(inode_cachep, inode);
222 return NULL;
223 }
224
225 return inode;
226}
227
228void free_inode_nonrcu(struct inode *inode)
229{
230 kmem_cache_free(inode_cachep, inode);
231}
232EXPORT_SYMBOL(free_inode_nonrcu);
233
234void __destroy_inode(struct inode *inode)
235{
236 BUG_ON(inode_has_buffers(inode));
237 inode_detach_wb(inode);
238 security_inode_free(inode);
239 fsnotify_inode_delete(inode);
240 locks_free_lock_context(inode);
241 if (!inode->i_nlink) {
242 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
243 atomic_long_dec(&inode->i_sb->s_remove_count);
244 }
245
246#ifdef CONFIG_FS_POSIX_ACL
247 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
248 posix_acl_release(inode->i_acl);
249 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
250 posix_acl_release(inode->i_default_acl);
251#endif
252 this_cpu_dec(nr_inodes);
253}
254EXPORT_SYMBOL(__destroy_inode);
255
256static void i_callback(struct rcu_head *head)
257{
258 struct inode *inode = container_of(head, struct inode, i_rcu);
259 kmem_cache_free(inode_cachep, inode);
260}
261
262static void destroy_inode(struct inode *inode)
263{
264 BUG_ON(!list_empty(&inode->i_lru));
265 __destroy_inode(inode);
266 if (inode->i_sb->s_op->destroy_inode)
267 inode->i_sb->s_op->destroy_inode(inode);
268 else
269 call_rcu(&inode->i_rcu, i_callback);
270}
271
272/**
273 * drop_nlink - directly drop an inode's link count
274 * @inode: inode
275 *
276 * This is a low-level filesystem helper to replace any
277 * direct filesystem manipulation of i_nlink. In cases
278 * where we are attempting to track writes to the
279 * filesystem, a decrement to zero means an imminent
280 * write when the file is truncated and actually unlinked
281 * on the filesystem.
282 */
283void drop_nlink(struct inode *inode)
284{
285 WARN_ON(inode->i_nlink == 0);
286 inode->__i_nlink--;
287 if (!inode->i_nlink)
288 atomic_long_inc(&inode->i_sb->s_remove_count);
289}
290EXPORT_SYMBOL(drop_nlink);
291
292/**
293 * clear_nlink - directly zero an inode's link count
294 * @inode: inode
295 *
296 * This is a low-level filesystem helper to replace any
297 * direct filesystem manipulation of i_nlink. See
298 * drop_nlink() for why we care about i_nlink hitting zero.
299 */
300void clear_nlink(struct inode *inode)
301{
302 if (inode->i_nlink) {
303 inode->__i_nlink = 0;
304 atomic_long_inc(&inode->i_sb->s_remove_count);
305 }
306}
307EXPORT_SYMBOL(clear_nlink);
308
309/**
310 * set_nlink - directly set an inode's link count
311 * @inode: inode
312 * @nlink: new nlink (should be non-zero)
313 *
314 * This is a low-level filesystem helper to replace any
315 * direct filesystem manipulation of i_nlink.
316 */
317void set_nlink(struct inode *inode, unsigned int nlink)
318{
319 if (!nlink) {
320 clear_nlink(inode);
321 } else {
322 /* Yes, some filesystems do change nlink from zero to one */
323 if (inode->i_nlink == 0)
324 atomic_long_dec(&inode->i_sb->s_remove_count);
325
326 inode->__i_nlink = nlink;
327 }
328}
329EXPORT_SYMBOL(set_nlink);
330
331/**
332 * inc_nlink - directly increment an inode's link count
333 * @inode: inode
334 *
335 * This is a low-level filesystem helper to replace any
336 * direct filesystem manipulation of i_nlink. Currently,
337 * it is only here for parity with dec_nlink().
338 */
339void inc_nlink(struct inode *inode)
340{
341 if (unlikely(inode->i_nlink == 0)) {
342 WARN_ON(!(inode->i_state & I_LINKABLE));
343 atomic_long_dec(&inode->i_sb->s_remove_count);
344 }
345
346 inode->__i_nlink++;
347}
348EXPORT_SYMBOL(inc_nlink);
349
350static void __address_space_init_once(struct address_space *mapping)
351{
352 INIT_RADIX_TREE(&mapping->i_pages, GFP_ATOMIC | __GFP_ACCOUNT);
353 init_rwsem(&mapping->i_mmap_rwsem);
354 INIT_LIST_HEAD(&mapping->private_list);
355 spin_lock_init(&mapping->private_lock);
356 mapping->i_mmap = RB_ROOT_CACHED;
357}
358
359void address_space_init_once(struct address_space *mapping)
360{
361 memset(mapping, 0, sizeof(*mapping));
362 __address_space_init_once(mapping);
363}
364EXPORT_SYMBOL(address_space_init_once);
365
366/*
367 * These are initializations that only need to be done
368 * once, because the fields are idempotent across use
369 * of the inode, so let the slab aware of that.
370 */
371void inode_init_once(struct inode *inode)
372{
373 memset(inode, 0, sizeof(*inode));
374 INIT_HLIST_NODE(&inode->i_hash);
375 INIT_LIST_HEAD(&inode->i_devices);
376 INIT_LIST_HEAD(&inode->i_io_list);
377 INIT_LIST_HEAD(&inode->i_wb_list);
378 INIT_LIST_HEAD(&inode->i_lru);
379 __address_space_init_once(&inode->i_data);
380 i_size_ordered_init(inode);
381}
382EXPORT_SYMBOL(inode_init_once);
383
384static void init_once(void *foo)
385{
386 struct inode *inode = (struct inode *) foo;
387
388 inode_init_once(inode);
389}
390
391/*
392 * inode->i_lock must be held
393 */
394void __iget(struct inode *inode)
395{
396 atomic_inc(&inode->i_count);
397}
398
399/*
400 * get additional reference to inode; caller must already hold one.
401 */
402void ihold(struct inode *inode)
403{
404 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
405}
406EXPORT_SYMBOL(ihold);
407
408static void inode_lru_list_add(struct inode *inode)
409{
410 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
411 this_cpu_inc(nr_unused);
412 else
413 inode->i_state |= I_REFERENCED;
414}
415
416/*
417 * Add inode to LRU if needed (inode is unused and clean).
418 *
419 * Needs inode->i_lock held.
420 */
421void inode_add_lru(struct inode *inode)
422{
423 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
424 I_FREEING | I_WILL_FREE)) &&
425 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
426 inode_lru_list_add(inode);
427}
428
429
430static void inode_lru_list_del(struct inode *inode)
431{
432
433 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
434 this_cpu_dec(nr_unused);
435}
436
437/**
438 * inode_sb_list_add - add inode to the superblock list of inodes
439 * @inode: inode to add
440 */
441void inode_sb_list_add(struct inode *inode)
442{
443 spin_lock(&inode->i_sb->s_inode_list_lock);
444 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
445 spin_unlock(&inode->i_sb->s_inode_list_lock);
446}
447EXPORT_SYMBOL_GPL(inode_sb_list_add);
448
449static inline void inode_sb_list_del(struct inode *inode)
450{
451 if (!list_empty(&inode->i_sb_list)) {
452 spin_lock(&inode->i_sb->s_inode_list_lock);
453 list_del_init(&inode->i_sb_list);
454 spin_unlock(&inode->i_sb->s_inode_list_lock);
455 }
456}
457
458static unsigned long hash(struct super_block *sb, unsigned long hashval)
459{
460 unsigned long tmp;
461
462 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
463 L1_CACHE_BYTES;
464 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
465 return tmp & i_hash_mask;
466}
467
468/**
469 * __insert_inode_hash - hash an inode
470 * @inode: unhashed inode
471 * @hashval: unsigned long value used to locate this object in the
472 * inode_hashtable.
473 *
474 * Add an inode to the inode hash for this superblock.
475 */
476void __insert_inode_hash(struct inode *inode, unsigned long hashval)
477{
478 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
479
480 spin_lock(&inode_hash_lock);
481 spin_lock(&inode->i_lock);
482 hlist_add_head(&inode->i_hash, b);
483 spin_unlock(&inode->i_lock);
484 spin_unlock(&inode_hash_lock);
485}
486EXPORT_SYMBOL(__insert_inode_hash);
487
488/**
489 * __remove_inode_hash - remove an inode from the hash
490 * @inode: inode to unhash
491 *
492 * Remove an inode from the superblock.
493 */
494void __remove_inode_hash(struct inode *inode)
495{
496 spin_lock(&inode_hash_lock);
497 spin_lock(&inode->i_lock);
498 hlist_del_init(&inode->i_hash);
499 spin_unlock(&inode->i_lock);
500 spin_unlock(&inode_hash_lock);
501}
502EXPORT_SYMBOL(__remove_inode_hash);
503
504void clear_inode(struct inode *inode)
505{
506 /*
507 * We have to cycle the i_pages lock here because reclaim can be in the
508 * process of removing the last page (in __delete_from_page_cache())
509 * and we must not free the mapping under it.
510 */
511 xa_lock_irq(&inode->i_data.i_pages);
512 BUG_ON(inode->i_data.nrpages);
513 BUG_ON(inode->i_data.nrexceptional);
514 xa_unlock_irq(&inode->i_data.i_pages);
515 BUG_ON(!list_empty(&inode->i_data.private_list));
516 BUG_ON(!(inode->i_state & I_FREEING));
517 BUG_ON(inode->i_state & I_CLEAR);
518 BUG_ON(!list_empty(&inode->i_wb_list));
519 /* don't need i_lock here, no concurrent mods to i_state */
520 inode->i_state = I_FREEING | I_CLEAR;
521}
522EXPORT_SYMBOL(clear_inode);
523
524/*
525 * Free the inode passed in, removing it from the lists it is still connected
526 * to. We remove any pages still attached to the inode and wait for any IO that
527 * is still in progress before finally destroying the inode.
528 *
529 * An inode must already be marked I_FREEING so that we avoid the inode being
530 * moved back onto lists if we race with other code that manipulates the lists
531 * (e.g. writeback_single_inode). The caller is responsible for setting this.
532 *
533 * An inode must already be removed from the LRU list before being evicted from
534 * the cache. This should occur atomically with setting the I_FREEING state
535 * flag, so no inodes here should ever be on the LRU when being evicted.
536 */
537static void evict(struct inode *inode)
538{
539 const struct super_operations *op = inode->i_sb->s_op;
540
541 BUG_ON(!(inode->i_state & I_FREEING));
542 BUG_ON(!list_empty(&inode->i_lru));
543
544 if (!list_empty(&inode->i_io_list))
545 inode_io_list_del(inode);
546
547 inode_sb_list_del(inode);
548
549 /*
550 * Wait for flusher thread to be done with the inode so that filesystem
551 * does not start destroying it while writeback is still running. Since
552 * the inode has I_FREEING set, flusher thread won't start new work on
553 * the inode. We just have to wait for running writeback to finish.
554 */
555 inode_wait_for_writeback(inode);
556
557 if (op->evict_inode) {
558 op->evict_inode(inode);
559 } else {
560 truncate_inode_pages_final(&inode->i_data);
561 clear_inode(inode);
562 }
563 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
564 bd_forget(inode);
565 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
566 cd_forget(inode);
567
568 remove_inode_hash(inode);
569
570 spin_lock(&inode->i_lock);
571 wake_up_bit(&inode->i_state, __I_NEW);
572 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
573 spin_unlock(&inode->i_lock);
574
575 destroy_inode(inode);
576}
577
578/*
579 * dispose_list - dispose of the contents of a local list
580 * @head: the head of the list to free
581 *
582 * Dispose-list gets a local list with local inodes in it, so it doesn't
583 * need to worry about list corruption and SMP locks.
584 */
585static void dispose_list(struct list_head *head)
586{
587 while (!list_empty(head)) {
588 struct inode *inode;
589
590 inode = list_first_entry(head, struct inode, i_lru);
591 list_del_init(&inode->i_lru);
592
593 evict(inode);
594 cond_resched();
595 }
596}
597
598/**
599 * evict_inodes - evict all evictable inodes for a superblock
600 * @sb: superblock to operate on
601 *
602 * Make sure that no inodes with zero refcount are retained. This is
603 * called by superblock shutdown after having SB_ACTIVE flag removed,
604 * so any inode reaching zero refcount during or after that call will
605 * be immediately evicted.
606 */
607void evict_inodes(struct super_block *sb)
608{
609 struct inode *inode, *next;
610 LIST_HEAD(dispose);
611
612again:
613 spin_lock(&sb->s_inode_list_lock);
614 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
615 if (atomic_read(&inode->i_count))
616 continue;
617
618 spin_lock(&inode->i_lock);
619 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
620 spin_unlock(&inode->i_lock);
621 continue;
622 }
623
624 inode->i_state |= I_FREEING;
625 inode_lru_list_del(inode);
626 spin_unlock(&inode->i_lock);
627 list_add(&inode->i_lru, &dispose);
628
629 /*
630 * We can have a ton of inodes to evict at unmount time given
631 * enough memory, check to see if we need to go to sleep for a
632 * bit so we don't livelock.
633 */
634 if (need_resched()) {
635 spin_unlock(&sb->s_inode_list_lock);
636 cond_resched();
637 dispose_list(&dispose);
638 goto again;
639 }
640 }
641 spin_unlock(&sb->s_inode_list_lock);
642
643 dispose_list(&dispose);
644}
645EXPORT_SYMBOL_GPL(evict_inodes);
646
647/**
648 * invalidate_inodes - attempt to free all inodes on a superblock
649 * @sb: superblock to operate on
650 * @kill_dirty: flag to guide handling of dirty inodes
651 *
652 * Attempts to free all inodes for a given superblock. If there were any
653 * busy inodes return a non-zero value, else zero.
654 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
655 * them as busy.
656 */
657int invalidate_inodes(struct super_block *sb, bool kill_dirty)
658{
659 int busy = 0;
660 struct inode *inode, *next;
661 LIST_HEAD(dispose);
662
663 spin_lock(&sb->s_inode_list_lock);
664 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
665 spin_lock(&inode->i_lock);
666 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
667 spin_unlock(&inode->i_lock);
668 continue;
669 }
670 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
671 spin_unlock(&inode->i_lock);
672 busy = 1;
673 continue;
674 }
675 if (atomic_read(&inode->i_count)) {
676 spin_unlock(&inode->i_lock);
677 busy = 1;
678 continue;
679 }
680
681 inode->i_state |= I_FREEING;
682 inode_lru_list_del(inode);
683 spin_unlock(&inode->i_lock);
684 list_add(&inode->i_lru, &dispose);
685 }
686 spin_unlock(&sb->s_inode_list_lock);
687
688 dispose_list(&dispose);
689
690 return busy;
691}
692
693/*
694 * Isolate the inode from the LRU in preparation for freeing it.
695 *
696 * Any inodes which are pinned purely because of attached pagecache have their
697 * pagecache removed. If the inode has metadata buffers attached to
698 * mapping->private_list then try to remove them.
699 *
700 * If the inode has the I_REFERENCED flag set, then it means that it has been
701 * used recently - the flag is set in iput_final(). When we encounter such an
702 * inode, clear the flag and move it to the back of the LRU so it gets another
703 * pass through the LRU before it gets reclaimed. This is necessary because of
704 * the fact we are doing lazy LRU updates to minimise lock contention so the
705 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
706 * with this flag set because they are the inodes that are out of order.
707 */
708static enum lru_status inode_lru_isolate(struct list_head *item,
709 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
710{
711 struct list_head *freeable = arg;
712 struct inode *inode = container_of(item, struct inode, i_lru);
713
714 /*
715 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
716 * If we fail to get the lock, just skip it.
717 */
718 if (!spin_trylock(&inode->i_lock))
719 return LRU_SKIP;
720
721 /*
722 * Referenced or dirty inodes are still in use. Give them another pass
723 * through the LRU as we canot reclaim them now.
724 */
725 if (atomic_read(&inode->i_count) ||
726 (inode->i_state & ~I_REFERENCED)) {
727 list_lru_isolate(lru, &inode->i_lru);
728 spin_unlock(&inode->i_lock);
729 this_cpu_dec(nr_unused);
730 return LRU_REMOVED;
731 }
732
733 /* recently referenced inodes get one more pass */
734 if (inode->i_state & I_REFERENCED) {
735 inode->i_state &= ~I_REFERENCED;
736 spin_unlock(&inode->i_lock);
737 return LRU_ROTATE;
738 }
739
740 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
741 __iget(inode);
742 spin_unlock(&inode->i_lock);
743 spin_unlock(lru_lock);
744 if (remove_inode_buffers(inode)) {
745 unsigned long reap;
746 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
747 if (current_is_kswapd())
748 __count_vm_events(KSWAPD_INODESTEAL, reap);
749 else
750 __count_vm_events(PGINODESTEAL, reap);
751 if (current->reclaim_state)
752 current->reclaim_state->reclaimed_slab += reap;
753 }
754 iput(inode);
755 spin_lock(lru_lock);
756 return LRU_RETRY;
757 }
758
759 WARN_ON(inode->i_state & I_NEW);
760 inode->i_state |= I_FREEING;
761 list_lru_isolate_move(lru, &inode->i_lru, freeable);
762 spin_unlock(&inode->i_lock);
763
764 this_cpu_dec(nr_unused);
765 return LRU_REMOVED;
766}
767
768/*
769 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
770 * This is called from the superblock shrinker function with a number of inodes
771 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
772 * then are freed outside inode_lock by dispose_list().
773 */
774long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
775{
776 LIST_HEAD(freeable);
777 long freed;
778
779 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
780 inode_lru_isolate, &freeable);
781 dispose_list(&freeable);
782 return freed;
783}
784
785static void __wait_on_freeing_inode(struct inode *inode);
786/*
787 * Called with the inode lock held.
788 */
789static struct inode *find_inode(struct super_block *sb,
790 struct hlist_head *head,
791 int (*test)(struct inode *, void *),
792 void *data)
793{
794 struct inode *inode = NULL;
795
796repeat:
797 hlist_for_each_entry(inode, head, i_hash) {
798 if (inode->i_sb != sb)
799 continue;
800 if (!test(inode, data))
801 continue;
802 spin_lock(&inode->i_lock);
803 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
804 __wait_on_freeing_inode(inode);
805 goto repeat;
806 }
807 __iget(inode);
808 spin_unlock(&inode->i_lock);
809 return inode;
810 }
811 return NULL;
812}
813
814/*
815 * find_inode_fast is the fast path version of find_inode, see the comment at
816 * iget_locked for details.
817 */
818static struct inode *find_inode_fast(struct super_block *sb,
819 struct hlist_head *head, unsigned long ino)
820{
821 struct inode *inode = NULL;
822
823repeat:
824 hlist_for_each_entry(inode, head, i_hash) {
825 if (inode->i_ino != ino)
826 continue;
827 if (inode->i_sb != sb)
828 continue;
829 spin_lock(&inode->i_lock);
830 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
831 __wait_on_freeing_inode(inode);
832 goto repeat;
833 }
834 __iget(inode);
835 spin_unlock(&inode->i_lock);
836 return inode;
837 }
838 return NULL;
839}
840
841/*
842 * Each cpu owns a range of LAST_INO_BATCH numbers.
843 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
844 * to renew the exhausted range.
845 *
846 * This does not significantly increase overflow rate because every CPU can
847 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
848 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
849 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
850 * overflow rate by 2x, which does not seem too significant.
851 *
852 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
853 * error if st_ino won't fit in target struct field. Use 32bit counter
854 * here to attempt to avoid that.
855 */
856#define LAST_INO_BATCH 1024
857static DEFINE_PER_CPU(unsigned int, last_ino);
858
859unsigned int get_next_ino(void)
860{
861 unsigned int *p = &get_cpu_var(last_ino);
862 unsigned int res = *p;
863
864#ifdef CONFIG_SMP
865 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
866 static atomic_t shared_last_ino;
867 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
868
869 res = next - LAST_INO_BATCH;
870 }
871#endif
872
873 res++;
874 /* get_next_ino should not provide a 0 inode number */
875 if (unlikely(!res))
876 res++;
877 *p = res;
878 put_cpu_var(last_ino);
879 return res;
880}
881EXPORT_SYMBOL(get_next_ino);
882
883/**
884 * new_inode_pseudo - obtain an inode
885 * @sb: superblock
886 *
887 * Allocates a new inode for given superblock.
888 * Inode wont be chained in superblock s_inodes list
889 * This means :
890 * - fs can't be unmount
891 * - quotas, fsnotify, writeback can't work
892 */
893struct inode *new_inode_pseudo(struct super_block *sb)
894{
895 struct inode *inode = alloc_inode(sb);
896
897 if (inode) {
898 spin_lock(&inode->i_lock);
899 inode->i_state = 0;
900 spin_unlock(&inode->i_lock);
901 INIT_LIST_HEAD(&inode->i_sb_list);
902 }
903 return inode;
904}
905
906/**
907 * new_inode - obtain an inode
908 * @sb: superblock
909 *
910 * Allocates a new inode for given superblock. The default gfp_mask
911 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
912 * If HIGHMEM pages are unsuitable or it is known that pages allocated
913 * for the page cache are not reclaimable or migratable,
914 * mapping_set_gfp_mask() must be called with suitable flags on the
915 * newly created inode's mapping
916 *
917 */
918struct inode *new_inode(struct super_block *sb)
919{
920 struct inode *inode;
921
922 spin_lock_prefetch(&sb->s_inode_list_lock);
923
924 inode = new_inode_pseudo(sb);
925 if (inode)
926 inode_sb_list_add(inode);
927 return inode;
928}
929EXPORT_SYMBOL(new_inode);
930
931#ifdef CONFIG_DEBUG_LOCK_ALLOC
932void lockdep_annotate_inode_mutex_key(struct inode *inode)
933{
934 if (S_ISDIR(inode->i_mode)) {
935 struct file_system_type *type = inode->i_sb->s_type;
936
937 /* Set new key only if filesystem hasn't already changed it */
938 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
939 /*
940 * ensure nobody is actually holding i_mutex
941 */
942 // mutex_destroy(&inode->i_mutex);
943 init_rwsem(&inode->i_rwsem);
944 lockdep_set_class(&inode->i_rwsem,
945 &type->i_mutex_dir_key);
946 }
947 }
948}
949EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
950#endif
951
952/**
953 * unlock_new_inode - clear the I_NEW state and wake up any waiters
954 * @inode: new inode to unlock
955 *
956 * Called when the inode is fully initialised to clear the new state of the
957 * inode and wake up anyone waiting for the inode to finish initialisation.
958 */
959void unlock_new_inode(struct inode *inode)
960{
961 lockdep_annotate_inode_mutex_key(inode);
962 spin_lock(&inode->i_lock);
963 WARN_ON(!(inode->i_state & I_NEW));
964 inode->i_state &= ~I_NEW;
965 smp_mb();
966 wake_up_bit(&inode->i_state, __I_NEW);
967 spin_unlock(&inode->i_lock);
968}
969EXPORT_SYMBOL(unlock_new_inode);
970
971/**
972 * lock_two_nondirectories - take two i_mutexes on non-directory objects
973 *
974 * Lock any non-NULL argument that is not a directory.
975 * Zero, one or two objects may be locked by this function.
976 *
977 * @inode1: first inode to lock
978 * @inode2: second inode to lock
979 */
980void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
981{
982 if (inode1 > inode2)
983 swap(inode1, inode2);
984
985 if (inode1 && !S_ISDIR(inode1->i_mode))
986 inode_lock(inode1);
987 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
988 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
989}
990EXPORT_SYMBOL(lock_two_nondirectories);
991
992/**
993 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
994 * @inode1: first inode to unlock
995 * @inode2: second inode to unlock
996 */
997void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
998{
999 if (inode1 && !S_ISDIR(inode1->i_mode))
1000 inode_unlock(inode1);
1001 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1002 inode_unlock(inode2);
1003}
1004EXPORT_SYMBOL(unlock_two_nondirectories);
1005
1006/**
1007 * iget5_locked - obtain an inode from a mounted file system
1008 * @sb: super block of file system
1009 * @hashval: hash value (usually inode number) to get
1010 * @test: callback used for comparisons between inodes
1011 * @set: callback used to initialize a new struct inode
1012 * @data: opaque data pointer to pass to @test and @set
1013 *
1014 * Search for the inode specified by @hashval and @data in the inode cache,
1015 * and if present it is return it with an increased reference count. This is
1016 * a generalized version of iget_locked() for file systems where the inode
1017 * number is not sufficient for unique identification of an inode.
1018 *
1019 * If the inode is not in cache, allocate a new inode and return it locked,
1020 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1021 * before unlocking it via unlock_new_inode().
1022 *
1023 * Note both @test and @set are called with the inode_hash_lock held, so can't
1024 * sleep.
1025 */
1026struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1027 int (*test)(struct inode *, void *),
1028 int (*set)(struct inode *, void *), void *data)
1029{
1030 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1031 struct inode *inode;
1032again:
1033 spin_lock(&inode_hash_lock);
1034 inode = find_inode(sb, head, test, data);
1035 spin_unlock(&inode_hash_lock);
1036
1037 if (inode) {
1038 wait_on_inode(inode);
1039 if (unlikely(inode_unhashed(inode))) {
1040 iput(inode);
1041 goto again;
1042 }
1043 return inode;
1044 }
1045
1046 inode = alloc_inode(sb);
1047 if (inode) {
1048 struct inode *old;
1049
1050 spin_lock(&inode_hash_lock);
1051 /* We released the lock, so.. */
1052 old = find_inode(sb, head, test, data);
1053 if (!old) {
1054 if (set(inode, data))
1055 goto set_failed;
1056
1057 spin_lock(&inode->i_lock);
1058 inode->i_state = I_NEW;
1059 hlist_add_head(&inode->i_hash, head);
1060 spin_unlock(&inode->i_lock);
1061 inode_sb_list_add(inode);
1062 spin_unlock(&inode_hash_lock);
1063
1064 /* Return the locked inode with I_NEW set, the
1065 * caller is responsible for filling in the contents
1066 */
1067 return inode;
1068 }
1069
1070 /*
1071 * Uhhuh, somebody else created the same inode under
1072 * us. Use the old inode instead of the one we just
1073 * allocated.
1074 */
1075 spin_unlock(&inode_hash_lock);
1076 destroy_inode(inode);
1077 inode = old;
1078 wait_on_inode(inode);
1079 if (unlikely(inode_unhashed(inode))) {
1080 iput(inode);
1081 goto again;
1082 }
1083 }
1084 return inode;
1085
1086set_failed:
1087 spin_unlock(&inode_hash_lock);
1088 destroy_inode(inode);
1089 return NULL;
1090}
1091EXPORT_SYMBOL(iget5_locked);
1092
1093/**
1094 * iget_locked - obtain an inode from a mounted file system
1095 * @sb: super block of file system
1096 * @ino: inode number to get
1097 *
1098 * Search for the inode specified by @ino in the inode cache and if present
1099 * return it with an increased reference count. This is for file systems
1100 * where the inode number is sufficient for unique identification of an inode.
1101 *
1102 * If the inode is not in cache, allocate a new inode and return it locked,
1103 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1104 * before unlocking it via unlock_new_inode().
1105 */
1106struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1107{
1108 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1109 struct inode *inode;
1110again:
1111 spin_lock(&inode_hash_lock);
1112 inode = find_inode_fast(sb, head, ino);
1113 spin_unlock(&inode_hash_lock);
1114 if (inode) {
1115 wait_on_inode(inode);
1116 if (unlikely(inode_unhashed(inode))) {
1117 iput(inode);
1118 goto again;
1119 }
1120 return inode;
1121 }
1122
1123 inode = alloc_inode(sb);
1124 if (inode) {
1125 struct inode *old;
1126
1127 spin_lock(&inode_hash_lock);
1128 /* We released the lock, so.. */
1129 old = find_inode_fast(sb, head, ino);
1130 if (!old) {
1131 inode->i_ino = ino;
1132 spin_lock(&inode->i_lock);
1133 inode->i_state = I_NEW;
1134 hlist_add_head(&inode->i_hash, head);
1135 spin_unlock(&inode->i_lock);
1136 inode_sb_list_add(inode);
1137 spin_unlock(&inode_hash_lock);
1138
1139 /* Return the locked inode with I_NEW set, the
1140 * caller is responsible for filling in the contents
1141 */
1142 return inode;
1143 }
1144
1145 /*
1146 * Uhhuh, somebody else created the same inode under
1147 * us. Use the old inode instead of the one we just
1148 * allocated.
1149 */
1150 spin_unlock(&inode_hash_lock);
1151 destroy_inode(inode);
1152 inode = old;
1153 wait_on_inode(inode);
1154 if (unlikely(inode_unhashed(inode))) {
1155 iput(inode);
1156 goto again;
1157 }
1158 }
1159 return inode;
1160}
1161EXPORT_SYMBOL(iget_locked);
1162
1163/*
1164 * search the inode cache for a matching inode number.
1165 * If we find one, then the inode number we are trying to
1166 * allocate is not unique and so we should not use it.
1167 *
1168 * Returns 1 if the inode number is unique, 0 if it is not.
1169 */
1170static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1171{
1172 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1173 struct inode *inode;
1174
1175 spin_lock(&inode_hash_lock);
1176 hlist_for_each_entry(inode, b, i_hash) {
1177 if (inode->i_ino == ino && inode->i_sb == sb) {
1178 spin_unlock(&inode_hash_lock);
1179 return 0;
1180 }
1181 }
1182 spin_unlock(&inode_hash_lock);
1183
1184 return 1;
1185}
1186
1187/**
1188 * iunique - get a unique inode number
1189 * @sb: superblock
1190 * @max_reserved: highest reserved inode number
1191 *
1192 * Obtain an inode number that is unique on the system for a given
1193 * superblock. This is used by file systems that have no natural
1194 * permanent inode numbering system. An inode number is returned that
1195 * is higher than the reserved limit but unique.
1196 *
1197 * BUGS:
1198 * With a large number of inodes live on the file system this function
1199 * currently becomes quite slow.
1200 */
1201ino_t iunique(struct super_block *sb, ino_t max_reserved)
1202{
1203 /*
1204 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1205 * error if st_ino won't fit in target struct field. Use 32bit counter
1206 * here to attempt to avoid that.
1207 */
1208 static DEFINE_SPINLOCK(iunique_lock);
1209 static unsigned int counter;
1210 ino_t res;
1211
1212 spin_lock(&iunique_lock);
1213 do {
1214 if (counter <= max_reserved)
1215 counter = max_reserved + 1;
1216 res = counter++;
1217 } while (!test_inode_iunique(sb, res));
1218 spin_unlock(&iunique_lock);
1219
1220 return res;
1221}
1222EXPORT_SYMBOL(iunique);
1223
1224struct inode *igrab(struct inode *inode)
1225{
1226 spin_lock(&inode->i_lock);
1227 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1228 __iget(inode);
1229 spin_unlock(&inode->i_lock);
1230 } else {
1231 spin_unlock(&inode->i_lock);
1232 /*
1233 * Handle the case where s_op->clear_inode is not been
1234 * called yet, and somebody is calling igrab
1235 * while the inode is getting freed.
1236 */
1237 inode = NULL;
1238 }
1239 return inode;
1240}
1241EXPORT_SYMBOL(igrab);
1242
1243/**
1244 * ilookup5_nowait - search for an inode in the inode cache
1245 * @sb: super block of file system to search
1246 * @hashval: hash value (usually inode number) to search for
1247 * @test: callback used for comparisons between inodes
1248 * @data: opaque data pointer to pass to @test
1249 *
1250 * Search for the inode specified by @hashval and @data in the inode cache.
1251 * If the inode is in the cache, the inode is returned with an incremented
1252 * reference count.
1253 *
1254 * Note: I_NEW is not waited upon so you have to be very careful what you do
1255 * with the returned inode. You probably should be using ilookup5() instead.
1256 *
1257 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1258 */
1259struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1260 int (*test)(struct inode *, void *), void *data)
1261{
1262 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1263 struct inode *inode;
1264
1265 spin_lock(&inode_hash_lock);
1266 inode = find_inode(sb, head, test, data);
1267 spin_unlock(&inode_hash_lock);
1268
1269 return inode;
1270}
1271EXPORT_SYMBOL(ilookup5_nowait);
1272
1273/**
1274 * ilookup5 - search for an inode in the inode cache
1275 * @sb: super block of file system to search
1276 * @hashval: hash value (usually inode number) to search for
1277 * @test: callback used for comparisons between inodes
1278 * @data: opaque data pointer to pass to @test
1279 *
1280 * Search for the inode specified by @hashval and @data in the inode cache,
1281 * and if the inode is in the cache, return the inode with an incremented
1282 * reference count. Waits on I_NEW before returning the inode.
1283 * returned with an incremented reference count.
1284 *
1285 * This is a generalized version of ilookup() for file systems where the
1286 * inode number is not sufficient for unique identification of an inode.
1287 *
1288 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1289 */
1290struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1291 int (*test)(struct inode *, void *), void *data)
1292{
1293 struct inode *inode;
1294again:
1295 inode = ilookup5_nowait(sb, hashval, test, data);
1296 if (inode) {
1297 wait_on_inode(inode);
1298 if (unlikely(inode_unhashed(inode))) {
1299 iput(inode);
1300 goto again;
1301 }
1302 }
1303 return inode;
1304}
1305EXPORT_SYMBOL(ilookup5);
1306
1307/**
1308 * ilookup - search for an inode in the inode cache
1309 * @sb: super block of file system to search
1310 * @ino: inode number to search for
1311 *
1312 * Search for the inode @ino in the inode cache, and if the inode is in the
1313 * cache, the inode is returned with an incremented reference count.
1314 */
1315struct inode *ilookup(struct super_block *sb, unsigned long ino)
1316{
1317 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1318 struct inode *inode;
1319again:
1320 spin_lock(&inode_hash_lock);
1321 inode = find_inode_fast(sb, head, ino);
1322 spin_unlock(&inode_hash_lock);
1323
1324 if (inode) {
1325 wait_on_inode(inode);
1326 if (unlikely(inode_unhashed(inode))) {
1327 iput(inode);
1328 goto again;
1329 }
1330 }
1331 return inode;
1332}
1333EXPORT_SYMBOL(ilookup);
1334
1335/**
1336 * find_inode_nowait - find an inode in the inode cache
1337 * @sb: super block of file system to search
1338 * @hashval: hash value (usually inode number) to search for
1339 * @match: callback used for comparisons between inodes
1340 * @data: opaque data pointer to pass to @match
1341 *
1342 * Search for the inode specified by @hashval and @data in the inode
1343 * cache, where the helper function @match will return 0 if the inode
1344 * does not match, 1 if the inode does match, and -1 if the search
1345 * should be stopped. The @match function must be responsible for
1346 * taking the i_lock spin_lock and checking i_state for an inode being
1347 * freed or being initialized, and incrementing the reference count
1348 * before returning 1. It also must not sleep, since it is called with
1349 * the inode_hash_lock spinlock held.
1350 *
1351 * This is a even more generalized version of ilookup5() when the
1352 * function must never block --- find_inode() can block in
1353 * __wait_on_freeing_inode() --- or when the caller can not increment
1354 * the reference count because the resulting iput() might cause an
1355 * inode eviction. The tradeoff is that the @match funtion must be
1356 * very carefully implemented.
1357 */
1358struct inode *find_inode_nowait(struct super_block *sb,
1359 unsigned long hashval,
1360 int (*match)(struct inode *, unsigned long,
1361 void *),
1362 void *data)
1363{
1364 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1365 struct inode *inode, *ret_inode = NULL;
1366 int mval;
1367
1368 spin_lock(&inode_hash_lock);
1369 hlist_for_each_entry(inode, head, i_hash) {
1370 if (inode->i_sb != sb)
1371 continue;
1372 mval = match(inode, hashval, data);
1373 if (mval == 0)
1374 continue;
1375 if (mval == 1)
1376 ret_inode = inode;
1377 goto out;
1378 }
1379out:
1380 spin_unlock(&inode_hash_lock);
1381 return ret_inode;
1382}
1383EXPORT_SYMBOL(find_inode_nowait);
1384
1385int insert_inode_locked(struct inode *inode)
1386{
1387 struct super_block *sb = inode->i_sb;
1388 ino_t ino = inode->i_ino;
1389 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1390
1391 while (1) {
1392 struct inode *old = NULL;
1393 spin_lock(&inode_hash_lock);
1394 hlist_for_each_entry(old, head, i_hash) {
1395 if (old->i_ino != ino)
1396 continue;
1397 if (old->i_sb != sb)
1398 continue;
1399 spin_lock(&old->i_lock);
1400 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1401 spin_unlock(&old->i_lock);
1402 continue;
1403 }
1404 break;
1405 }
1406 if (likely(!old)) {
1407 spin_lock(&inode->i_lock);
1408 inode->i_state |= I_NEW;
1409 hlist_add_head(&inode->i_hash, head);
1410 spin_unlock(&inode->i_lock);
1411 spin_unlock(&inode_hash_lock);
1412 return 0;
1413 }
1414 __iget(old);
1415 spin_unlock(&old->i_lock);
1416 spin_unlock(&inode_hash_lock);
1417 wait_on_inode(old);
1418 if (unlikely(!inode_unhashed(old))) {
1419 iput(old);
1420 return -EBUSY;
1421 }
1422 iput(old);
1423 }
1424}
1425EXPORT_SYMBOL(insert_inode_locked);
1426
1427int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1428 int (*test)(struct inode *, void *), void *data)
1429{
1430 struct super_block *sb = inode->i_sb;
1431 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1432
1433 while (1) {
1434 struct inode *old = NULL;
1435
1436 spin_lock(&inode_hash_lock);
1437 hlist_for_each_entry(old, head, i_hash) {
1438 if (old->i_sb != sb)
1439 continue;
1440 if (!test(old, data))
1441 continue;
1442 spin_lock(&old->i_lock);
1443 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1444 spin_unlock(&old->i_lock);
1445 continue;
1446 }
1447 break;
1448 }
1449 if (likely(!old)) {
1450 spin_lock(&inode->i_lock);
1451 inode->i_state |= I_NEW;
1452 hlist_add_head(&inode->i_hash, head);
1453 spin_unlock(&inode->i_lock);
1454 spin_unlock(&inode_hash_lock);
1455 return 0;
1456 }
1457 __iget(old);
1458 spin_unlock(&old->i_lock);
1459 spin_unlock(&inode_hash_lock);
1460 wait_on_inode(old);
1461 if (unlikely(!inode_unhashed(old))) {
1462 iput(old);
1463 return -EBUSY;
1464 }
1465 iput(old);
1466 }
1467}
1468EXPORT_SYMBOL(insert_inode_locked4);
1469
1470
1471int generic_delete_inode(struct inode *inode)
1472{
1473 return 1;
1474}
1475EXPORT_SYMBOL(generic_delete_inode);
1476
1477/*
1478 * Called when we're dropping the last reference
1479 * to an inode.
1480 *
1481 * Call the FS "drop_inode()" function, defaulting to
1482 * the legacy UNIX filesystem behaviour. If it tells
1483 * us to evict inode, do so. Otherwise, retain inode
1484 * in cache if fs is alive, sync and evict if fs is
1485 * shutting down.
1486 */
1487static void iput_final(struct inode *inode)
1488{
1489 struct super_block *sb = inode->i_sb;
1490 const struct super_operations *op = inode->i_sb->s_op;
1491 int drop;
1492
1493 WARN_ON(inode->i_state & I_NEW);
1494
1495 if (op->drop_inode)
1496 drop = op->drop_inode(inode);
1497 else
1498 drop = generic_drop_inode(inode);
1499
1500 if (!drop && (sb->s_flags & SB_ACTIVE)) {
1501 inode_add_lru(inode);
1502 spin_unlock(&inode->i_lock);
1503 return;
1504 }
1505
1506 if (!drop) {
1507 inode->i_state |= I_WILL_FREE;
1508 spin_unlock(&inode->i_lock);
1509 write_inode_now(inode, 1);
1510 spin_lock(&inode->i_lock);
1511 WARN_ON(inode->i_state & I_NEW);
1512 inode->i_state &= ~I_WILL_FREE;
1513 }
1514
1515 inode->i_state |= I_FREEING;
1516 if (!list_empty(&inode->i_lru))
1517 inode_lru_list_del(inode);
1518 spin_unlock(&inode->i_lock);
1519
1520 evict(inode);
1521}
1522
1523/**
1524 * iput - put an inode
1525 * @inode: inode to put
1526 *
1527 * Puts an inode, dropping its usage count. If the inode use count hits
1528 * zero, the inode is then freed and may also be destroyed.
1529 *
1530 * Consequently, iput() can sleep.
1531 */
1532void iput(struct inode *inode)
1533{
1534 if (!inode)
1535 return;
1536 BUG_ON(inode->i_state & I_CLEAR);
1537retry:
1538 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1539 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1540 atomic_inc(&inode->i_count);
1541 spin_unlock(&inode->i_lock);
1542 trace_writeback_lazytime_iput(inode);
1543 mark_inode_dirty_sync(inode);
1544 goto retry;
1545 }
1546 iput_final(inode);
1547 }
1548}
1549EXPORT_SYMBOL(iput);
1550
1551/**
1552 * bmap - find a block number in a file
1553 * @inode: inode of file
1554 * @block: block to find
1555 *
1556 * Returns the block number on the device holding the inode that
1557 * is the disk block number for the block of the file requested.
1558 * That is, asked for block 4 of inode 1 the function will return the
1559 * disk block relative to the disk start that holds that block of the
1560 * file.
1561 */
1562sector_t bmap(struct inode *inode, sector_t block)
1563{
1564 sector_t res = 0;
1565 if (inode->i_mapping->a_ops->bmap)
1566 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1567 return res;
1568}
1569EXPORT_SYMBOL(bmap);
1570
1571/*
1572 * Update times in overlayed inode from underlying real inode
1573 */
1574static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1575 bool rcu)
1576{
1577 struct dentry *upperdentry;
1578
1579 /*
1580 * Nothing to do if in rcu or if non-overlayfs
1581 */
1582 if (rcu || likely(!(dentry->d_flags & DCACHE_OP_REAL)))
1583 return;
1584
1585 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
1586
1587 /*
1588 * If file is on lower then we can't update atime, so no worries about
1589 * stale mtime/ctime.
1590 */
1591 if (upperdentry) {
1592 struct inode *realinode = d_inode(upperdentry);
1593
1594 if ((!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1595 !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1596 inode->i_mtime = realinode->i_mtime;
1597 inode->i_ctime = realinode->i_ctime;
1598 }
1599 }
1600}
1601
1602/*
1603 * With relative atime, only update atime if the previous atime is
1604 * earlier than either the ctime or mtime or if at least a day has
1605 * passed since the last atime update.
1606 */
1607static int relatime_need_update(const struct path *path, struct inode *inode,
1608 struct timespec now, bool rcu)
1609{
1610
1611 if (!(path->mnt->mnt_flags & MNT_RELATIME))
1612 return 1;
1613
1614 update_ovl_inode_times(path->dentry, inode, rcu);
1615 /*
1616 * Is mtime younger than atime? If yes, update atime:
1617 */
1618 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1619 return 1;
1620 /*
1621 * Is ctime younger than atime? If yes, update atime:
1622 */
1623 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1624 return 1;
1625
1626 /*
1627 * Is the previous atime value older than a day? If yes,
1628 * update atime:
1629 */
1630 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1631 return 1;
1632 /*
1633 * Good, we can skip the atime update:
1634 */
1635 return 0;
1636}
1637
1638int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1639{
1640 int iflags = I_DIRTY_TIME;
1641 bool dirty = false;
1642
1643 if (flags & S_ATIME)
1644 inode->i_atime = *time;
1645 if (flags & S_VERSION)
1646 dirty = inode_maybe_inc_iversion(inode, false);
1647 if (flags & S_CTIME)
1648 inode->i_ctime = *time;
1649 if (flags & S_MTIME)
1650 inode->i_mtime = *time;
1651 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1652 !(inode->i_sb->s_flags & SB_LAZYTIME))
1653 dirty = true;
1654
1655 if (dirty)
1656 iflags |= I_DIRTY_SYNC;
1657 __mark_inode_dirty(inode, iflags);
1658 return 0;
1659}
1660EXPORT_SYMBOL(generic_update_time);
1661
1662/*
1663 * This does the actual work of updating an inodes time or version. Must have
1664 * had called mnt_want_write() before calling this.
1665 */
1666static int update_time(struct inode *inode, struct timespec *time, int flags)
1667{
1668 int (*update_time)(struct inode *, struct timespec *, int);
1669
1670 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1671 generic_update_time;
1672
1673 return update_time(inode, time, flags);
1674}
1675
1676/**
1677 * touch_atime - update the access time
1678 * @path: the &struct path to update
1679 * @inode: inode to update
1680 *
1681 * Update the accessed time on an inode and mark it for writeback.
1682 * This function automatically handles read only file systems and media,
1683 * as well as the "noatime" flag and inode specific "noatime" markers.
1684 */
1685bool __atime_needs_update(const struct path *path, struct inode *inode,
1686 bool rcu)
1687{
1688 struct vfsmount *mnt = path->mnt;
1689 struct timespec now;
1690
1691 if (inode->i_flags & S_NOATIME)
1692 return false;
1693
1694 /* Atime updates will likely cause i_uid and i_gid to be written
1695 * back improprely if their true value is unknown to the vfs.
1696 */
1697 if (HAS_UNMAPPED_ID(inode))
1698 return false;
1699
1700 if (IS_NOATIME(inode))
1701 return false;
1702 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1703 return false;
1704
1705 if (mnt->mnt_flags & MNT_NOATIME)
1706 return false;
1707 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1708 return false;
1709
1710 now = current_time(inode);
1711
1712 if (!relatime_need_update(path, inode, now, rcu))
1713 return false;
1714
1715 if (timespec_equal(&inode->i_atime, &now))
1716 return false;
1717
1718 return true;
1719}
1720
1721void touch_atime(const struct path *path)
1722{
1723 struct vfsmount *mnt = path->mnt;
1724 struct inode *inode = d_inode(path->dentry);
1725 struct timespec now;
1726
1727 if (!__atime_needs_update(path, inode, false))
1728 return;
1729
1730 if (!sb_start_write_trylock(inode->i_sb))
1731 return;
1732
1733 if (__mnt_want_write(mnt) != 0)
1734 goto skip_update;
1735 /*
1736 * File systems can error out when updating inodes if they need to
1737 * allocate new space to modify an inode (such is the case for
1738 * Btrfs), but since we touch atime while walking down the path we
1739 * really don't care if we failed to update the atime of the file,
1740 * so just ignore the return value.
1741 * We may also fail on filesystems that have the ability to make parts
1742 * of the fs read only, e.g. subvolumes in Btrfs.
1743 */
1744 now = current_time(inode);
1745 update_time(inode, &now, S_ATIME);
1746 __mnt_drop_write(mnt);
1747skip_update:
1748 sb_end_write(inode->i_sb);
1749}
1750EXPORT_SYMBOL(touch_atime);
1751
1752/*
1753 * The logic we want is
1754 *
1755 * if suid or (sgid and xgrp)
1756 * remove privs
1757 */
1758int should_remove_suid(struct dentry *dentry)
1759{
1760 umode_t mode = d_inode(dentry)->i_mode;
1761 int kill = 0;
1762
1763 /* suid always must be killed */
1764 if (unlikely(mode & S_ISUID))
1765 kill = ATTR_KILL_SUID;
1766
1767 /*
1768 * sgid without any exec bits is just a mandatory locking mark; leave
1769 * it alone. If some exec bits are set, it's a real sgid; kill it.
1770 */
1771 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1772 kill |= ATTR_KILL_SGID;
1773
1774 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1775 return kill;
1776
1777 return 0;
1778}
1779EXPORT_SYMBOL(should_remove_suid);
1780
1781/*
1782 * Return mask of changes for notify_change() that need to be done as a
1783 * response to write or truncate. Return 0 if nothing has to be changed.
1784 * Negative value on error (change should be denied).
1785 */
1786int dentry_needs_remove_privs(struct dentry *dentry)
1787{
1788 struct inode *inode = d_inode(dentry);
1789 int mask = 0;
1790 int ret;
1791
1792 if (IS_NOSEC(inode))
1793 return 0;
1794
1795 mask = should_remove_suid(dentry);
1796 ret = security_inode_need_killpriv(dentry);
1797 if (ret < 0)
1798 return ret;
1799 if (ret)
1800 mask |= ATTR_KILL_PRIV;
1801 return mask;
1802}
1803
1804static int __remove_privs(struct dentry *dentry, int kill)
1805{
1806 struct iattr newattrs;
1807
1808 newattrs.ia_valid = ATTR_FORCE | kill;
1809 /*
1810 * Note we call this on write, so notify_change will not
1811 * encounter any conflicting delegations:
1812 */
1813 return notify_change(dentry, &newattrs, NULL);
1814}
1815
1816/*
1817 * Remove special file priviledges (suid, capabilities) when file is written
1818 * to or truncated.
1819 */
1820int file_remove_privs(struct file *file)
1821{
1822 struct dentry *dentry = file_dentry(file);
1823 struct inode *inode = file_inode(file);
1824 int kill;
1825 int error = 0;
1826
1827 /* Fast path for nothing security related */
1828 if (IS_NOSEC(inode))
1829 return 0;
1830
1831 kill = dentry_needs_remove_privs(dentry);
1832 if (kill < 0)
1833 return kill;
1834 if (kill)
1835 error = __remove_privs(dentry, kill);
1836 if (!error)
1837 inode_has_no_xattr(inode);
1838
1839 return error;
1840}
1841EXPORT_SYMBOL(file_remove_privs);
1842
1843/**
1844 * file_update_time - update mtime and ctime time
1845 * @file: file accessed
1846 *
1847 * Update the mtime and ctime members of an inode and mark the inode
1848 * for writeback. Note that this function is meant exclusively for
1849 * usage in the file write path of filesystems, and filesystems may
1850 * choose to explicitly ignore update via this function with the
1851 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1852 * timestamps are handled by the server. This can return an error for
1853 * file systems who need to allocate space in order to update an inode.
1854 */
1855
1856int file_update_time(struct file *file)
1857{
1858 struct inode *inode = file_inode(file);
1859 struct timespec now;
1860 int sync_it = 0;
1861 int ret;
1862
1863 /* First try to exhaust all avenues to not sync */
1864 if (IS_NOCMTIME(inode))
1865 return 0;
1866
1867 now = current_time(inode);
1868 if (!timespec_equal(&inode->i_mtime, &now))
1869 sync_it = S_MTIME;
1870
1871 if (!timespec_equal(&inode->i_ctime, &now))
1872 sync_it |= S_CTIME;
1873
1874 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1875 sync_it |= S_VERSION;
1876
1877 if (!sync_it)
1878 return 0;
1879
1880 /* Finally allowed to write? Takes lock. */
1881 if (__mnt_want_write_file(file))
1882 return 0;
1883
1884 ret = update_time(inode, &now, sync_it);
1885 __mnt_drop_write_file(file);
1886
1887 return ret;
1888}
1889EXPORT_SYMBOL(file_update_time);
1890
1891int inode_needs_sync(struct inode *inode)
1892{
1893 if (IS_SYNC(inode))
1894 return 1;
1895 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1896 return 1;
1897 return 0;
1898}
1899EXPORT_SYMBOL(inode_needs_sync);
1900
1901/*
1902 * If we try to find an inode in the inode hash while it is being
1903 * deleted, we have to wait until the filesystem completes its
1904 * deletion before reporting that it isn't found. This function waits
1905 * until the deletion _might_ have completed. Callers are responsible
1906 * to recheck inode state.
1907 *
1908 * It doesn't matter if I_NEW is not set initially, a call to
1909 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1910 * will DTRT.
1911 */
1912static void __wait_on_freeing_inode(struct inode *inode)
1913{
1914 wait_queue_head_t *wq;
1915 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1916 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1917 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1918 spin_unlock(&inode->i_lock);
1919 spin_unlock(&inode_hash_lock);
1920 schedule();
1921 finish_wait(wq, &wait.wq_entry);
1922 spin_lock(&inode_hash_lock);
1923}
1924
1925static __initdata unsigned long ihash_entries;
1926static int __init set_ihash_entries(char *str)
1927{
1928 if (!str)
1929 return 0;
1930 ihash_entries = simple_strtoul(str, &str, 0);
1931 return 1;
1932}
1933__setup("ihash_entries=", set_ihash_entries);
1934
1935/*
1936 * Initialize the waitqueues and inode hash table.
1937 */
1938void __init inode_init_early(void)
1939{
1940 /* If hashes are distributed across NUMA nodes, defer
1941 * hash allocation until vmalloc space is available.
1942 */
1943 if (hashdist)
1944 return;
1945
1946 inode_hashtable =
1947 alloc_large_system_hash("Inode-cache",
1948 sizeof(struct hlist_head),
1949 ihash_entries,
1950 14,
1951 HASH_EARLY | HASH_ZERO,
1952 &i_hash_shift,
1953 &i_hash_mask,
1954 0,
1955 0);
1956}
1957
1958void __init inode_init(void)
1959{
1960 /* inode slab cache */
1961 inode_cachep = kmem_cache_create("inode_cache",
1962 sizeof(struct inode),
1963 0,
1964 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1965 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1966 init_once);
1967
1968 /* Hash may have been set up in inode_init_early */
1969 if (!hashdist)
1970 return;
1971
1972 inode_hashtable =
1973 alloc_large_system_hash("Inode-cache",
1974 sizeof(struct hlist_head),
1975 ihash_entries,
1976 14,
1977 HASH_ZERO,
1978 &i_hash_shift,
1979 &i_hash_mask,
1980 0,
1981 0);
1982}
1983
1984void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1985{
1986 inode->i_mode = mode;
1987 if (S_ISCHR(mode)) {
1988 inode->i_fop = &def_chr_fops;
1989 inode->i_rdev = rdev;
1990 } else if (S_ISBLK(mode)) {
1991 inode->i_fop = &def_blk_fops;
1992 inode->i_rdev = rdev;
1993 } else if (S_ISFIFO(mode))
1994 inode->i_fop = &pipefifo_fops;
1995 else if (S_ISSOCK(mode))
1996 ; /* leave it no_open_fops */
1997 else
1998 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1999 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2000 inode->i_ino);
2001}
2002EXPORT_SYMBOL(init_special_inode);
2003
2004/**
2005 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2006 * @inode: New inode
2007 * @dir: Directory inode
2008 * @mode: mode of the new inode
2009 */
2010void inode_init_owner(struct inode *inode, const struct inode *dir,
2011 umode_t mode)
2012{
2013 inode->i_uid = current_fsuid();
2014 if (dir && dir->i_mode & S_ISGID) {
2015 inode->i_gid = dir->i_gid;
2016 if (S_ISDIR(mode))
2017 mode |= S_ISGID;
2018 } else
2019 inode->i_gid = current_fsgid();
2020 inode->i_mode = mode;
2021}
2022EXPORT_SYMBOL(inode_init_owner);
2023
2024/**
2025 * inode_owner_or_capable - check current task permissions to inode
2026 * @inode: inode being checked
2027 *
2028 * Return true if current either has CAP_FOWNER in a namespace with the
2029 * inode owner uid mapped, or owns the file.
2030 */
2031bool inode_owner_or_capable(const struct inode *inode)
2032{
2033 struct user_namespace *ns;
2034
2035 if (uid_eq(current_fsuid(), inode->i_uid))
2036 return true;
2037
2038 ns = current_user_ns();
2039 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2040 return true;
2041 return false;
2042}
2043EXPORT_SYMBOL(inode_owner_or_capable);
2044
2045/*
2046 * Direct i/o helper functions
2047 */
2048static void __inode_dio_wait(struct inode *inode)
2049{
2050 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2051 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2052
2053 do {
2054 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2055 if (atomic_read(&inode->i_dio_count))
2056 schedule();
2057 } while (atomic_read(&inode->i_dio_count));
2058 finish_wait(wq, &q.wq_entry);
2059}
2060
2061/**
2062 * inode_dio_wait - wait for outstanding DIO requests to finish
2063 * @inode: inode to wait for
2064 *
2065 * Waits for all pending direct I/O requests to finish so that we can
2066 * proceed with a truncate or equivalent operation.
2067 *
2068 * Must be called under a lock that serializes taking new references
2069 * to i_dio_count, usually by inode->i_mutex.
2070 */
2071void inode_dio_wait(struct inode *inode)
2072{
2073 if (atomic_read(&inode->i_dio_count))
2074 __inode_dio_wait(inode);
2075}
2076EXPORT_SYMBOL(inode_dio_wait);
2077
2078/*
2079 * inode_set_flags - atomically set some inode flags
2080 *
2081 * Note: the caller should be holding i_mutex, or else be sure that
2082 * they have exclusive access to the inode structure (i.e., while the
2083 * inode is being instantiated). The reason for the cmpxchg() loop
2084 * --- which wouldn't be necessary if all code paths which modify
2085 * i_flags actually followed this rule, is that there is at least one
2086 * code path which doesn't today so we use cmpxchg() out of an abundance
2087 * of caution.
2088 *
2089 * In the long run, i_mutex is overkill, and we should probably look
2090 * at using the i_lock spinlock to protect i_flags, and then make sure
2091 * it is so documented in include/linux/fs.h and that all code follows
2092 * the locking convention!!
2093 */
2094void inode_set_flags(struct inode *inode, unsigned int flags,
2095 unsigned int mask)
2096{
2097 unsigned int old_flags, new_flags;
2098
2099 WARN_ON_ONCE(flags & ~mask);
2100 do {
2101 old_flags = READ_ONCE(inode->i_flags);
2102 new_flags = (old_flags & ~mask) | flags;
2103 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2104 new_flags) != old_flags));
2105}
2106EXPORT_SYMBOL(inode_set_flags);
2107
2108void inode_nohighmem(struct inode *inode)
2109{
2110 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2111}
2112EXPORT_SYMBOL(inode_nohighmem);
2113
2114/**
2115 * current_time - Return FS time
2116 * @inode: inode.
2117 *
2118 * Return the current time truncated to the time granularity supported by
2119 * the fs.
2120 *
2121 * Note that inode and inode->sb cannot be NULL.
2122 * Otherwise, the function warns and returns time without truncation.
2123 */
2124struct timespec current_time(struct inode *inode)
2125{
2126 struct timespec now = current_kernel_time();
2127
2128 if (unlikely(!inode->i_sb)) {
2129 WARN(1, "current_time() called with uninitialized super_block in the inode");
2130 return now;
2131 }
2132
2133 return timespec_trunc(now, inode->i_sb->s_time_gran);
2134}
2135EXPORT_SYMBOL(current_time);
1/*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5#include <linux/export.h>
6#include <linux/fs.h>
7#include <linux/mm.h>
8#include <linux/backing-dev.h>
9#include <linux/hash.h>
10#include <linux/swap.h>
11#include <linux/security.h>
12#include <linux/cdev.h>
13#include <linux/bootmem.h>
14#include <linux/fsnotify.h>
15#include <linux/mount.h>
16#include <linux/posix_acl.h>
17#include <linux/prefetch.h>
18#include <linux/buffer_head.h> /* for inode_has_buffers */
19#include <linux/ratelimit.h>
20#include "internal.h"
21
22/*
23 * Inode locking rules:
24 *
25 * inode->i_lock protects:
26 * inode->i_state, inode->i_hash, __iget()
27 * inode->i_sb->s_inode_lru_lock protects:
28 * inode->i_sb->s_inode_lru, inode->i_lru
29 * inode_sb_list_lock protects:
30 * sb->s_inodes, inode->i_sb_list
31 * bdi->wb.list_lock protects:
32 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
33 * inode_hash_lock protects:
34 * inode_hashtable, inode->i_hash
35 *
36 * Lock ordering:
37 *
38 * inode_sb_list_lock
39 * inode->i_lock
40 * inode->i_sb->s_inode_lru_lock
41 *
42 * bdi->wb.list_lock
43 * inode->i_lock
44 *
45 * inode_hash_lock
46 * inode_sb_list_lock
47 * inode->i_lock
48 *
49 * iunique_lock
50 * inode_hash_lock
51 */
52
53static unsigned int i_hash_mask __read_mostly;
54static unsigned int i_hash_shift __read_mostly;
55static struct hlist_head *inode_hashtable __read_mostly;
56static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
57
58__cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
59
60/*
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
63 */
64const struct address_space_operations empty_aops = {
65};
66EXPORT_SYMBOL(empty_aops);
67
68/*
69 * Statistics gathering..
70 */
71struct inodes_stat_t inodes_stat;
72
73static DEFINE_PER_CPU(unsigned int, nr_inodes);
74static DEFINE_PER_CPU(unsigned int, nr_unused);
75
76static struct kmem_cache *inode_cachep __read_mostly;
77
78static int get_nr_inodes(void)
79{
80 int i;
81 int sum = 0;
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
85}
86
87static inline int get_nr_inodes_unused(void)
88{
89 int i;
90 int sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
94}
95
96int get_nr_dirty_inodes(void)
97{
98 /* not actually dirty inodes, but a wild approximation */
99 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
101}
102
103/*
104 * Handle nr_inode sysctl
105 */
106#ifdef CONFIG_SYSCTL
107int proc_nr_inodes(ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
109{
110 inodes_stat.nr_inodes = get_nr_inodes();
111 inodes_stat.nr_unused = get_nr_inodes_unused();
112 return proc_dointvec(table, write, buffer, lenp, ppos);
113}
114#endif
115
116/**
117 * inode_init_always - perform inode structure intialisation
118 * @sb: superblock inode belongs to
119 * @inode: inode to initialise
120 *
121 * These are initializations that need to be done on every inode
122 * allocation as the fields are not initialised by slab allocation.
123 */
124int inode_init_always(struct super_block *sb, struct inode *inode)
125{
126 static const struct inode_operations empty_iops;
127 static const struct file_operations empty_fops;
128 struct address_space *const mapping = &inode->i_data;
129
130 inode->i_sb = sb;
131 inode->i_blkbits = sb->s_blocksize_bits;
132 inode->i_flags = 0;
133 atomic_set(&inode->i_count, 1);
134 inode->i_op = &empty_iops;
135 inode->i_fop = &empty_fops;
136 inode->__i_nlink = 1;
137 inode->i_opflags = 0;
138 i_uid_write(inode, 0);
139 i_gid_write(inode, 0);
140 atomic_set(&inode->i_writecount, 0);
141 inode->i_size = 0;
142 inode->i_blocks = 0;
143 inode->i_bytes = 0;
144 inode->i_generation = 0;
145#ifdef CONFIG_QUOTA
146 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
147#endif
148 inode->i_pipe = NULL;
149 inode->i_bdev = NULL;
150 inode->i_cdev = NULL;
151 inode->i_rdev = 0;
152 inode->dirtied_when = 0;
153
154 if (security_inode_alloc(inode))
155 goto out;
156 spin_lock_init(&inode->i_lock);
157 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
158
159 mutex_init(&inode->i_mutex);
160 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
161
162 atomic_set(&inode->i_dio_count, 0);
163
164 mapping->a_ops = &empty_aops;
165 mapping->host = inode;
166 mapping->flags = 0;
167 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
168 mapping->assoc_mapping = NULL;
169 mapping->backing_dev_info = &default_backing_dev_info;
170 mapping->writeback_index = 0;
171
172 /*
173 * If the block_device provides a backing_dev_info for client
174 * inodes then use that. Otherwise the inode share the bdev's
175 * backing_dev_info.
176 */
177 if (sb->s_bdev) {
178 struct backing_dev_info *bdi;
179
180 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
181 mapping->backing_dev_info = bdi;
182 }
183 inode->i_private = NULL;
184 inode->i_mapping = mapping;
185 INIT_LIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
186#ifdef CONFIG_FS_POSIX_ACL
187 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
188#endif
189
190#ifdef CONFIG_FSNOTIFY
191 inode->i_fsnotify_mask = 0;
192#endif
193
194 this_cpu_inc(nr_inodes);
195
196 return 0;
197out:
198 return -ENOMEM;
199}
200EXPORT_SYMBOL(inode_init_always);
201
202static struct inode *alloc_inode(struct super_block *sb)
203{
204 struct inode *inode;
205
206 if (sb->s_op->alloc_inode)
207 inode = sb->s_op->alloc_inode(sb);
208 else
209 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
210
211 if (!inode)
212 return NULL;
213
214 if (unlikely(inode_init_always(sb, inode))) {
215 if (inode->i_sb->s_op->destroy_inode)
216 inode->i_sb->s_op->destroy_inode(inode);
217 else
218 kmem_cache_free(inode_cachep, inode);
219 return NULL;
220 }
221
222 return inode;
223}
224
225void free_inode_nonrcu(struct inode *inode)
226{
227 kmem_cache_free(inode_cachep, inode);
228}
229EXPORT_SYMBOL(free_inode_nonrcu);
230
231void __destroy_inode(struct inode *inode)
232{
233 BUG_ON(inode_has_buffers(inode));
234 security_inode_free(inode);
235 fsnotify_inode_delete(inode);
236 if (!inode->i_nlink) {
237 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
238 atomic_long_dec(&inode->i_sb->s_remove_count);
239 }
240
241#ifdef CONFIG_FS_POSIX_ACL
242 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
243 posix_acl_release(inode->i_acl);
244 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
245 posix_acl_release(inode->i_default_acl);
246#endif
247 this_cpu_dec(nr_inodes);
248}
249EXPORT_SYMBOL(__destroy_inode);
250
251static void i_callback(struct rcu_head *head)
252{
253 struct inode *inode = container_of(head, struct inode, i_rcu);
254 kmem_cache_free(inode_cachep, inode);
255}
256
257static void destroy_inode(struct inode *inode)
258{
259 BUG_ON(!list_empty(&inode->i_lru));
260 __destroy_inode(inode);
261 if (inode->i_sb->s_op->destroy_inode)
262 inode->i_sb->s_op->destroy_inode(inode);
263 else
264 call_rcu(&inode->i_rcu, i_callback);
265}
266
267/**
268 * drop_nlink - directly drop an inode's link count
269 * @inode: inode
270 *
271 * This is a low-level filesystem helper to replace any
272 * direct filesystem manipulation of i_nlink. In cases
273 * where we are attempting to track writes to the
274 * filesystem, a decrement to zero means an imminent
275 * write when the file is truncated and actually unlinked
276 * on the filesystem.
277 */
278void drop_nlink(struct inode *inode)
279{
280 WARN_ON(inode->i_nlink == 0);
281 inode->__i_nlink--;
282 if (!inode->i_nlink)
283 atomic_long_inc(&inode->i_sb->s_remove_count);
284}
285EXPORT_SYMBOL(drop_nlink);
286
287/**
288 * clear_nlink - directly zero an inode's link count
289 * @inode: inode
290 *
291 * This is a low-level filesystem helper to replace any
292 * direct filesystem manipulation of i_nlink. See
293 * drop_nlink() for why we care about i_nlink hitting zero.
294 */
295void clear_nlink(struct inode *inode)
296{
297 if (inode->i_nlink) {
298 inode->__i_nlink = 0;
299 atomic_long_inc(&inode->i_sb->s_remove_count);
300 }
301}
302EXPORT_SYMBOL(clear_nlink);
303
304/**
305 * set_nlink - directly set an inode's link count
306 * @inode: inode
307 * @nlink: new nlink (should be non-zero)
308 *
309 * This is a low-level filesystem helper to replace any
310 * direct filesystem manipulation of i_nlink.
311 */
312void set_nlink(struct inode *inode, unsigned int nlink)
313{
314 if (!nlink) {
315 clear_nlink(inode);
316 } else {
317 /* Yes, some filesystems do change nlink from zero to one */
318 if (inode->i_nlink == 0)
319 atomic_long_dec(&inode->i_sb->s_remove_count);
320
321 inode->__i_nlink = nlink;
322 }
323}
324EXPORT_SYMBOL(set_nlink);
325
326/**
327 * inc_nlink - directly increment an inode's link count
328 * @inode: inode
329 *
330 * This is a low-level filesystem helper to replace any
331 * direct filesystem manipulation of i_nlink. Currently,
332 * it is only here for parity with dec_nlink().
333 */
334void inc_nlink(struct inode *inode)
335{
336 if (WARN_ON(inode->i_nlink == 0))
337 atomic_long_dec(&inode->i_sb->s_remove_count);
338
339 inode->__i_nlink++;
340}
341EXPORT_SYMBOL(inc_nlink);
342
343void address_space_init_once(struct address_space *mapping)
344{
345 memset(mapping, 0, sizeof(*mapping));
346 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
347 spin_lock_init(&mapping->tree_lock);
348 mutex_init(&mapping->i_mmap_mutex);
349 INIT_LIST_HEAD(&mapping->private_list);
350 spin_lock_init(&mapping->private_lock);
351 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
352 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
353}
354EXPORT_SYMBOL(address_space_init_once);
355
356/*
357 * These are initializations that only need to be done
358 * once, because the fields are idempotent across use
359 * of the inode, so let the slab aware of that.
360 */
361void inode_init_once(struct inode *inode)
362{
363 memset(inode, 0, sizeof(*inode));
364 INIT_HLIST_NODE(&inode->i_hash);
365 INIT_LIST_HEAD(&inode->i_devices);
366 INIT_LIST_HEAD(&inode->i_wb_list);
367 INIT_LIST_HEAD(&inode->i_lru);
368 address_space_init_once(&inode->i_data);
369 i_size_ordered_init(inode);
370#ifdef CONFIG_FSNOTIFY
371 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
372#endif
373}
374EXPORT_SYMBOL(inode_init_once);
375
376static void init_once(void *foo)
377{
378 struct inode *inode = (struct inode *) foo;
379
380 inode_init_once(inode);
381}
382
383/*
384 * inode->i_lock must be held
385 */
386void __iget(struct inode *inode)
387{
388 atomic_inc(&inode->i_count);
389}
390
391/*
392 * get additional reference to inode; caller must already hold one.
393 */
394void ihold(struct inode *inode)
395{
396 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
397}
398EXPORT_SYMBOL(ihold);
399
400static void inode_lru_list_add(struct inode *inode)
401{
402 spin_lock(&inode->i_sb->s_inode_lru_lock);
403 if (list_empty(&inode->i_lru)) {
404 list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
405 inode->i_sb->s_nr_inodes_unused++;
406 this_cpu_inc(nr_unused);
407 }
408 spin_unlock(&inode->i_sb->s_inode_lru_lock);
409}
410
411static void inode_lru_list_del(struct inode *inode)
412{
413 spin_lock(&inode->i_sb->s_inode_lru_lock);
414 if (!list_empty(&inode->i_lru)) {
415 list_del_init(&inode->i_lru);
416 inode->i_sb->s_nr_inodes_unused--;
417 this_cpu_dec(nr_unused);
418 }
419 spin_unlock(&inode->i_sb->s_inode_lru_lock);
420}
421
422/**
423 * inode_sb_list_add - add inode to the superblock list of inodes
424 * @inode: inode to add
425 */
426void inode_sb_list_add(struct inode *inode)
427{
428 spin_lock(&inode_sb_list_lock);
429 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
430 spin_unlock(&inode_sb_list_lock);
431}
432EXPORT_SYMBOL_GPL(inode_sb_list_add);
433
434static inline void inode_sb_list_del(struct inode *inode)
435{
436 if (!list_empty(&inode->i_sb_list)) {
437 spin_lock(&inode_sb_list_lock);
438 list_del_init(&inode->i_sb_list);
439 spin_unlock(&inode_sb_list_lock);
440 }
441}
442
443static unsigned long hash(struct super_block *sb, unsigned long hashval)
444{
445 unsigned long tmp;
446
447 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
448 L1_CACHE_BYTES;
449 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
450 return tmp & i_hash_mask;
451}
452
453/**
454 * __insert_inode_hash - hash an inode
455 * @inode: unhashed inode
456 * @hashval: unsigned long value used to locate this object in the
457 * inode_hashtable.
458 *
459 * Add an inode to the inode hash for this superblock.
460 */
461void __insert_inode_hash(struct inode *inode, unsigned long hashval)
462{
463 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
464
465 spin_lock(&inode_hash_lock);
466 spin_lock(&inode->i_lock);
467 hlist_add_head(&inode->i_hash, b);
468 spin_unlock(&inode->i_lock);
469 spin_unlock(&inode_hash_lock);
470}
471EXPORT_SYMBOL(__insert_inode_hash);
472
473/**
474 * __remove_inode_hash - remove an inode from the hash
475 * @inode: inode to unhash
476 *
477 * Remove an inode from the superblock.
478 */
479void __remove_inode_hash(struct inode *inode)
480{
481 spin_lock(&inode_hash_lock);
482 spin_lock(&inode->i_lock);
483 hlist_del_init(&inode->i_hash);
484 spin_unlock(&inode->i_lock);
485 spin_unlock(&inode_hash_lock);
486}
487EXPORT_SYMBOL(__remove_inode_hash);
488
489void clear_inode(struct inode *inode)
490{
491 might_sleep();
492 /*
493 * We have to cycle tree_lock here because reclaim can be still in the
494 * process of removing the last page (in __delete_from_page_cache())
495 * and we must not free mapping under it.
496 */
497 spin_lock_irq(&inode->i_data.tree_lock);
498 BUG_ON(inode->i_data.nrpages);
499 spin_unlock_irq(&inode->i_data.tree_lock);
500 BUG_ON(!list_empty(&inode->i_data.private_list));
501 BUG_ON(!(inode->i_state & I_FREEING));
502 BUG_ON(inode->i_state & I_CLEAR);
503 /* don't need i_lock here, no concurrent mods to i_state */
504 inode->i_state = I_FREEING | I_CLEAR;
505}
506EXPORT_SYMBOL(clear_inode);
507
508/*
509 * Free the inode passed in, removing it from the lists it is still connected
510 * to. We remove any pages still attached to the inode and wait for any IO that
511 * is still in progress before finally destroying the inode.
512 *
513 * An inode must already be marked I_FREEING so that we avoid the inode being
514 * moved back onto lists if we race with other code that manipulates the lists
515 * (e.g. writeback_single_inode). The caller is responsible for setting this.
516 *
517 * An inode must already be removed from the LRU list before being evicted from
518 * the cache. This should occur atomically with setting the I_FREEING state
519 * flag, so no inodes here should ever be on the LRU when being evicted.
520 */
521static void evict(struct inode *inode)
522{
523 const struct super_operations *op = inode->i_sb->s_op;
524
525 BUG_ON(!(inode->i_state & I_FREEING));
526 BUG_ON(!list_empty(&inode->i_lru));
527
528 if (!list_empty(&inode->i_wb_list))
529 inode_wb_list_del(inode);
530
531 inode_sb_list_del(inode);
532
533 /*
534 * Wait for flusher thread to be done with the inode so that filesystem
535 * does not start destroying it while writeback is still running. Since
536 * the inode has I_FREEING set, flusher thread won't start new work on
537 * the inode. We just have to wait for running writeback to finish.
538 */
539 inode_wait_for_writeback(inode);
540
541 if (op->evict_inode) {
542 op->evict_inode(inode);
543 } else {
544 if (inode->i_data.nrpages)
545 truncate_inode_pages(&inode->i_data, 0);
546 clear_inode(inode);
547 }
548 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
549 bd_forget(inode);
550 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
551 cd_forget(inode);
552
553 remove_inode_hash(inode);
554
555 spin_lock(&inode->i_lock);
556 wake_up_bit(&inode->i_state, __I_NEW);
557 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
558 spin_unlock(&inode->i_lock);
559
560 destroy_inode(inode);
561}
562
563/*
564 * dispose_list - dispose of the contents of a local list
565 * @head: the head of the list to free
566 *
567 * Dispose-list gets a local list with local inodes in it, so it doesn't
568 * need to worry about list corruption and SMP locks.
569 */
570static void dispose_list(struct list_head *head)
571{
572 while (!list_empty(head)) {
573 struct inode *inode;
574
575 inode = list_first_entry(head, struct inode, i_lru);
576 list_del_init(&inode->i_lru);
577
578 evict(inode);
579 }
580}
581
582/**
583 * evict_inodes - evict all evictable inodes for a superblock
584 * @sb: superblock to operate on
585 *
586 * Make sure that no inodes with zero refcount are retained. This is
587 * called by superblock shutdown after having MS_ACTIVE flag removed,
588 * so any inode reaching zero refcount during or after that call will
589 * be immediately evicted.
590 */
591void evict_inodes(struct super_block *sb)
592{
593 struct inode *inode, *next;
594 LIST_HEAD(dispose);
595
596 spin_lock(&inode_sb_list_lock);
597 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
598 if (atomic_read(&inode->i_count))
599 continue;
600
601 spin_lock(&inode->i_lock);
602 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
603 spin_unlock(&inode->i_lock);
604 continue;
605 }
606
607 inode->i_state |= I_FREEING;
608 inode_lru_list_del(inode);
609 spin_unlock(&inode->i_lock);
610 list_add(&inode->i_lru, &dispose);
611 }
612 spin_unlock(&inode_sb_list_lock);
613
614 dispose_list(&dispose);
615}
616
617/**
618 * invalidate_inodes - attempt to free all inodes on a superblock
619 * @sb: superblock to operate on
620 * @kill_dirty: flag to guide handling of dirty inodes
621 *
622 * Attempts to free all inodes for a given superblock. If there were any
623 * busy inodes return a non-zero value, else zero.
624 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
625 * them as busy.
626 */
627int invalidate_inodes(struct super_block *sb, bool kill_dirty)
628{
629 int busy = 0;
630 struct inode *inode, *next;
631 LIST_HEAD(dispose);
632
633 spin_lock(&inode_sb_list_lock);
634 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
635 spin_lock(&inode->i_lock);
636 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
637 spin_unlock(&inode->i_lock);
638 continue;
639 }
640 if (inode->i_state & I_DIRTY && !kill_dirty) {
641 spin_unlock(&inode->i_lock);
642 busy = 1;
643 continue;
644 }
645 if (atomic_read(&inode->i_count)) {
646 spin_unlock(&inode->i_lock);
647 busy = 1;
648 continue;
649 }
650
651 inode->i_state |= I_FREEING;
652 inode_lru_list_del(inode);
653 spin_unlock(&inode->i_lock);
654 list_add(&inode->i_lru, &dispose);
655 }
656 spin_unlock(&inode_sb_list_lock);
657
658 dispose_list(&dispose);
659
660 return busy;
661}
662
663static int can_unuse(struct inode *inode)
664{
665 if (inode->i_state & ~I_REFERENCED)
666 return 0;
667 if (inode_has_buffers(inode))
668 return 0;
669 if (atomic_read(&inode->i_count))
670 return 0;
671 if (inode->i_data.nrpages)
672 return 0;
673 return 1;
674}
675
676/*
677 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
678 * This is called from the superblock shrinker function with a number of inodes
679 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
680 * then are freed outside inode_lock by dispose_list().
681 *
682 * Any inodes which are pinned purely because of attached pagecache have their
683 * pagecache removed. If the inode has metadata buffers attached to
684 * mapping->private_list then try to remove them.
685 *
686 * If the inode has the I_REFERENCED flag set, then it means that it has been
687 * used recently - the flag is set in iput_final(). When we encounter such an
688 * inode, clear the flag and move it to the back of the LRU so it gets another
689 * pass through the LRU before it gets reclaimed. This is necessary because of
690 * the fact we are doing lazy LRU updates to minimise lock contention so the
691 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
692 * with this flag set because they are the inodes that are out of order.
693 */
694void prune_icache_sb(struct super_block *sb, int nr_to_scan)
695{
696 LIST_HEAD(freeable);
697 int nr_scanned;
698 unsigned long reap = 0;
699
700 spin_lock(&sb->s_inode_lru_lock);
701 for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
702 struct inode *inode;
703
704 if (list_empty(&sb->s_inode_lru))
705 break;
706
707 inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
708
709 /*
710 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
711 * so use a trylock. If we fail to get the lock, just move the
712 * inode to the back of the list so we don't spin on it.
713 */
714 if (!spin_trylock(&inode->i_lock)) {
715 list_move_tail(&inode->i_lru, &sb->s_inode_lru);
716 continue;
717 }
718
719 /*
720 * Referenced or dirty inodes are still in use. Give them
721 * another pass through the LRU as we canot reclaim them now.
722 */
723 if (atomic_read(&inode->i_count) ||
724 (inode->i_state & ~I_REFERENCED)) {
725 list_del_init(&inode->i_lru);
726 spin_unlock(&inode->i_lock);
727 sb->s_nr_inodes_unused--;
728 this_cpu_dec(nr_unused);
729 continue;
730 }
731
732 /* recently referenced inodes get one more pass */
733 if (inode->i_state & I_REFERENCED) {
734 inode->i_state &= ~I_REFERENCED;
735 list_move(&inode->i_lru, &sb->s_inode_lru);
736 spin_unlock(&inode->i_lock);
737 continue;
738 }
739 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
740 __iget(inode);
741 spin_unlock(&inode->i_lock);
742 spin_unlock(&sb->s_inode_lru_lock);
743 if (remove_inode_buffers(inode))
744 reap += invalidate_mapping_pages(&inode->i_data,
745 0, -1);
746 iput(inode);
747 spin_lock(&sb->s_inode_lru_lock);
748
749 if (inode != list_entry(sb->s_inode_lru.next,
750 struct inode, i_lru))
751 continue; /* wrong inode or list_empty */
752 /* avoid lock inversions with trylock */
753 if (!spin_trylock(&inode->i_lock))
754 continue;
755 if (!can_unuse(inode)) {
756 spin_unlock(&inode->i_lock);
757 continue;
758 }
759 }
760 WARN_ON(inode->i_state & I_NEW);
761 inode->i_state |= I_FREEING;
762 spin_unlock(&inode->i_lock);
763
764 list_move(&inode->i_lru, &freeable);
765 sb->s_nr_inodes_unused--;
766 this_cpu_dec(nr_unused);
767 }
768 if (current_is_kswapd())
769 __count_vm_events(KSWAPD_INODESTEAL, reap);
770 else
771 __count_vm_events(PGINODESTEAL, reap);
772 spin_unlock(&sb->s_inode_lru_lock);
773 if (current->reclaim_state)
774 current->reclaim_state->reclaimed_slab += reap;
775
776 dispose_list(&freeable);
777}
778
779static void __wait_on_freeing_inode(struct inode *inode);
780/*
781 * Called with the inode lock held.
782 */
783static struct inode *find_inode(struct super_block *sb,
784 struct hlist_head *head,
785 int (*test)(struct inode *, void *),
786 void *data)
787{
788 struct hlist_node *node;
789 struct inode *inode = NULL;
790
791repeat:
792 hlist_for_each_entry(inode, node, head, i_hash) {
793 spin_lock(&inode->i_lock);
794 if (inode->i_sb != sb) {
795 spin_unlock(&inode->i_lock);
796 continue;
797 }
798 if (!test(inode, data)) {
799 spin_unlock(&inode->i_lock);
800 continue;
801 }
802 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
803 __wait_on_freeing_inode(inode);
804 goto repeat;
805 }
806 __iget(inode);
807 spin_unlock(&inode->i_lock);
808 return inode;
809 }
810 return NULL;
811}
812
813/*
814 * find_inode_fast is the fast path version of find_inode, see the comment at
815 * iget_locked for details.
816 */
817static struct inode *find_inode_fast(struct super_block *sb,
818 struct hlist_head *head, unsigned long ino)
819{
820 struct hlist_node *node;
821 struct inode *inode = NULL;
822
823repeat:
824 hlist_for_each_entry(inode, node, head, i_hash) {
825 spin_lock(&inode->i_lock);
826 if (inode->i_ino != ino) {
827 spin_unlock(&inode->i_lock);
828 continue;
829 }
830 if (inode->i_sb != sb) {
831 spin_unlock(&inode->i_lock);
832 continue;
833 }
834 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
835 __wait_on_freeing_inode(inode);
836 goto repeat;
837 }
838 __iget(inode);
839 spin_unlock(&inode->i_lock);
840 return inode;
841 }
842 return NULL;
843}
844
845/*
846 * Each cpu owns a range of LAST_INO_BATCH numbers.
847 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
848 * to renew the exhausted range.
849 *
850 * This does not significantly increase overflow rate because every CPU can
851 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
852 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
853 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
854 * overflow rate by 2x, which does not seem too significant.
855 *
856 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
857 * error if st_ino won't fit in target struct field. Use 32bit counter
858 * here to attempt to avoid that.
859 */
860#define LAST_INO_BATCH 1024
861static DEFINE_PER_CPU(unsigned int, last_ino);
862
863unsigned int get_next_ino(void)
864{
865 unsigned int *p = &get_cpu_var(last_ino);
866 unsigned int res = *p;
867
868#ifdef CONFIG_SMP
869 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
870 static atomic_t shared_last_ino;
871 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
872
873 res = next - LAST_INO_BATCH;
874 }
875#endif
876
877 *p = ++res;
878 put_cpu_var(last_ino);
879 return res;
880}
881EXPORT_SYMBOL(get_next_ino);
882
883/**
884 * new_inode_pseudo - obtain an inode
885 * @sb: superblock
886 *
887 * Allocates a new inode for given superblock.
888 * Inode wont be chained in superblock s_inodes list
889 * This means :
890 * - fs can't be unmount
891 * - quotas, fsnotify, writeback can't work
892 */
893struct inode *new_inode_pseudo(struct super_block *sb)
894{
895 struct inode *inode = alloc_inode(sb);
896
897 if (inode) {
898 spin_lock(&inode->i_lock);
899 inode->i_state = 0;
900 spin_unlock(&inode->i_lock);
901 INIT_LIST_HEAD(&inode->i_sb_list);
902 }
903 return inode;
904}
905
906/**
907 * new_inode - obtain an inode
908 * @sb: superblock
909 *
910 * Allocates a new inode for given superblock. The default gfp_mask
911 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
912 * If HIGHMEM pages are unsuitable or it is known that pages allocated
913 * for the page cache are not reclaimable or migratable,
914 * mapping_set_gfp_mask() must be called with suitable flags on the
915 * newly created inode's mapping
916 *
917 */
918struct inode *new_inode(struct super_block *sb)
919{
920 struct inode *inode;
921
922 spin_lock_prefetch(&inode_sb_list_lock);
923
924 inode = new_inode_pseudo(sb);
925 if (inode)
926 inode_sb_list_add(inode);
927 return inode;
928}
929EXPORT_SYMBOL(new_inode);
930
931#ifdef CONFIG_DEBUG_LOCK_ALLOC
932void lockdep_annotate_inode_mutex_key(struct inode *inode)
933{
934 if (S_ISDIR(inode->i_mode)) {
935 struct file_system_type *type = inode->i_sb->s_type;
936
937 /* Set new key only if filesystem hasn't already changed it */
938 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
939 /*
940 * ensure nobody is actually holding i_mutex
941 */
942 mutex_destroy(&inode->i_mutex);
943 mutex_init(&inode->i_mutex);
944 lockdep_set_class(&inode->i_mutex,
945 &type->i_mutex_dir_key);
946 }
947 }
948}
949EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
950#endif
951
952/**
953 * unlock_new_inode - clear the I_NEW state and wake up any waiters
954 * @inode: new inode to unlock
955 *
956 * Called when the inode is fully initialised to clear the new state of the
957 * inode and wake up anyone waiting for the inode to finish initialisation.
958 */
959void unlock_new_inode(struct inode *inode)
960{
961 lockdep_annotate_inode_mutex_key(inode);
962 spin_lock(&inode->i_lock);
963 WARN_ON(!(inode->i_state & I_NEW));
964 inode->i_state &= ~I_NEW;
965 smp_mb();
966 wake_up_bit(&inode->i_state, __I_NEW);
967 spin_unlock(&inode->i_lock);
968}
969EXPORT_SYMBOL(unlock_new_inode);
970
971/**
972 * iget5_locked - obtain an inode from a mounted file system
973 * @sb: super block of file system
974 * @hashval: hash value (usually inode number) to get
975 * @test: callback used for comparisons between inodes
976 * @set: callback used to initialize a new struct inode
977 * @data: opaque data pointer to pass to @test and @set
978 *
979 * Search for the inode specified by @hashval and @data in the inode cache,
980 * and if present it is return it with an increased reference count. This is
981 * a generalized version of iget_locked() for file systems where the inode
982 * number is not sufficient for unique identification of an inode.
983 *
984 * If the inode is not in cache, allocate a new inode and return it locked,
985 * hashed, and with the I_NEW flag set. The file system gets to fill it in
986 * before unlocking it via unlock_new_inode().
987 *
988 * Note both @test and @set are called with the inode_hash_lock held, so can't
989 * sleep.
990 */
991struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
992 int (*test)(struct inode *, void *),
993 int (*set)(struct inode *, void *), void *data)
994{
995 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
996 struct inode *inode;
997
998 spin_lock(&inode_hash_lock);
999 inode = find_inode(sb, head, test, data);
1000 spin_unlock(&inode_hash_lock);
1001
1002 if (inode) {
1003 wait_on_inode(inode);
1004 return inode;
1005 }
1006
1007 inode = alloc_inode(sb);
1008 if (inode) {
1009 struct inode *old;
1010
1011 spin_lock(&inode_hash_lock);
1012 /* We released the lock, so.. */
1013 old = find_inode(sb, head, test, data);
1014 if (!old) {
1015 if (set(inode, data))
1016 goto set_failed;
1017
1018 spin_lock(&inode->i_lock);
1019 inode->i_state = I_NEW;
1020 hlist_add_head(&inode->i_hash, head);
1021 spin_unlock(&inode->i_lock);
1022 inode_sb_list_add(inode);
1023 spin_unlock(&inode_hash_lock);
1024
1025 /* Return the locked inode with I_NEW set, the
1026 * caller is responsible for filling in the contents
1027 */
1028 return inode;
1029 }
1030
1031 /*
1032 * Uhhuh, somebody else created the same inode under
1033 * us. Use the old inode instead of the one we just
1034 * allocated.
1035 */
1036 spin_unlock(&inode_hash_lock);
1037 destroy_inode(inode);
1038 inode = old;
1039 wait_on_inode(inode);
1040 }
1041 return inode;
1042
1043set_failed:
1044 spin_unlock(&inode_hash_lock);
1045 destroy_inode(inode);
1046 return NULL;
1047}
1048EXPORT_SYMBOL(iget5_locked);
1049
1050/**
1051 * iget_locked - obtain an inode from a mounted file system
1052 * @sb: super block of file system
1053 * @ino: inode number to get
1054 *
1055 * Search for the inode specified by @ino in the inode cache and if present
1056 * return it with an increased reference count. This is for file systems
1057 * where the inode number is sufficient for unique identification of an inode.
1058 *
1059 * If the inode is not in cache, allocate a new inode and return it locked,
1060 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1061 * before unlocking it via unlock_new_inode().
1062 */
1063struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1064{
1065 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1066 struct inode *inode;
1067
1068 spin_lock(&inode_hash_lock);
1069 inode = find_inode_fast(sb, head, ino);
1070 spin_unlock(&inode_hash_lock);
1071 if (inode) {
1072 wait_on_inode(inode);
1073 return inode;
1074 }
1075
1076 inode = alloc_inode(sb);
1077 if (inode) {
1078 struct inode *old;
1079
1080 spin_lock(&inode_hash_lock);
1081 /* We released the lock, so.. */
1082 old = find_inode_fast(sb, head, ino);
1083 if (!old) {
1084 inode->i_ino = ino;
1085 spin_lock(&inode->i_lock);
1086 inode->i_state = I_NEW;
1087 hlist_add_head(&inode->i_hash, head);
1088 spin_unlock(&inode->i_lock);
1089 inode_sb_list_add(inode);
1090 spin_unlock(&inode_hash_lock);
1091
1092 /* Return the locked inode with I_NEW set, the
1093 * caller is responsible for filling in the contents
1094 */
1095 return inode;
1096 }
1097
1098 /*
1099 * Uhhuh, somebody else created the same inode under
1100 * us. Use the old inode instead of the one we just
1101 * allocated.
1102 */
1103 spin_unlock(&inode_hash_lock);
1104 destroy_inode(inode);
1105 inode = old;
1106 wait_on_inode(inode);
1107 }
1108 return inode;
1109}
1110EXPORT_SYMBOL(iget_locked);
1111
1112/*
1113 * search the inode cache for a matching inode number.
1114 * If we find one, then the inode number we are trying to
1115 * allocate is not unique and so we should not use it.
1116 *
1117 * Returns 1 if the inode number is unique, 0 if it is not.
1118 */
1119static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1120{
1121 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1122 struct hlist_node *node;
1123 struct inode *inode;
1124
1125 spin_lock(&inode_hash_lock);
1126 hlist_for_each_entry(inode, node, b, i_hash) {
1127 if (inode->i_ino == ino && inode->i_sb == sb) {
1128 spin_unlock(&inode_hash_lock);
1129 return 0;
1130 }
1131 }
1132 spin_unlock(&inode_hash_lock);
1133
1134 return 1;
1135}
1136
1137/**
1138 * iunique - get a unique inode number
1139 * @sb: superblock
1140 * @max_reserved: highest reserved inode number
1141 *
1142 * Obtain an inode number that is unique on the system for a given
1143 * superblock. This is used by file systems that have no natural
1144 * permanent inode numbering system. An inode number is returned that
1145 * is higher than the reserved limit but unique.
1146 *
1147 * BUGS:
1148 * With a large number of inodes live on the file system this function
1149 * currently becomes quite slow.
1150 */
1151ino_t iunique(struct super_block *sb, ino_t max_reserved)
1152{
1153 /*
1154 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1155 * error if st_ino won't fit in target struct field. Use 32bit counter
1156 * here to attempt to avoid that.
1157 */
1158 static DEFINE_SPINLOCK(iunique_lock);
1159 static unsigned int counter;
1160 ino_t res;
1161
1162 spin_lock(&iunique_lock);
1163 do {
1164 if (counter <= max_reserved)
1165 counter = max_reserved + 1;
1166 res = counter++;
1167 } while (!test_inode_iunique(sb, res));
1168 spin_unlock(&iunique_lock);
1169
1170 return res;
1171}
1172EXPORT_SYMBOL(iunique);
1173
1174struct inode *igrab(struct inode *inode)
1175{
1176 spin_lock(&inode->i_lock);
1177 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1178 __iget(inode);
1179 spin_unlock(&inode->i_lock);
1180 } else {
1181 spin_unlock(&inode->i_lock);
1182 /*
1183 * Handle the case where s_op->clear_inode is not been
1184 * called yet, and somebody is calling igrab
1185 * while the inode is getting freed.
1186 */
1187 inode = NULL;
1188 }
1189 return inode;
1190}
1191EXPORT_SYMBOL(igrab);
1192
1193/**
1194 * ilookup5_nowait - search for an inode in the inode cache
1195 * @sb: super block of file system to search
1196 * @hashval: hash value (usually inode number) to search for
1197 * @test: callback used for comparisons between inodes
1198 * @data: opaque data pointer to pass to @test
1199 *
1200 * Search for the inode specified by @hashval and @data in the inode cache.
1201 * If the inode is in the cache, the inode is returned with an incremented
1202 * reference count.
1203 *
1204 * Note: I_NEW is not waited upon so you have to be very careful what you do
1205 * with the returned inode. You probably should be using ilookup5() instead.
1206 *
1207 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1208 */
1209struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1210 int (*test)(struct inode *, void *), void *data)
1211{
1212 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1213 struct inode *inode;
1214
1215 spin_lock(&inode_hash_lock);
1216 inode = find_inode(sb, head, test, data);
1217 spin_unlock(&inode_hash_lock);
1218
1219 return inode;
1220}
1221EXPORT_SYMBOL(ilookup5_nowait);
1222
1223/**
1224 * ilookup5 - search for an inode in the inode cache
1225 * @sb: super block of file system to search
1226 * @hashval: hash value (usually inode number) to search for
1227 * @test: callback used for comparisons between inodes
1228 * @data: opaque data pointer to pass to @test
1229 *
1230 * Search for the inode specified by @hashval and @data in the inode cache,
1231 * and if the inode is in the cache, return the inode with an incremented
1232 * reference count. Waits on I_NEW before returning the inode.
1233 * returned with an incremented reference count.
1234 *
1235 * This is a generalized version of ilookup() for file systems where the
1236 * inode number is not sufficient for unique identification of an inode.
1237 *
1238 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1239 */
1240struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1241 int (*test)(struct inode *, void *), void *data)
1242{
1243 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1244
1245 if (inode)
1246 wait_on_inode(inode);
1247 return inode;
1248}
1249EXPORT_SYMBOL(ilookup5);
1250
1251/**
1252 * ilookup - search for an inode in the inode cache
1253 * @sb: super block of file system to search
1254 * @ino: inode number to search for
1255 *
1256 * Search for the inode @ino in the inode cache, and if the inode is in the
1257 * cache, the inode is returned with an incremented reference count.
1258 */
1259struct inode *ilookup(struct super_block *sb, unsigned long ino)
1260{
1261 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1262 struct inode *inode;
1263
1264 spin_lock(&inode_hash_lock);
1265 inode = find_inode_fast(sb, head, ino);
1266 spin_unlock(&inode_hash_lock);
1267
1268 if (inode)
1269 wait_on_inode(inode);
1270 return inode;
1271}
1272EXPORT_SYMBOL(ilookup);
1273
1274int insert_inode_locked(struct inode *inode)
1275{
1276 struct super_block *sb = inode->i_sb;
1277 ino_t ino = inode->i_ino;
1278 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1279
1280 while (1) {
1281 struct hlist_node *node;
1282 struct inode *old = NULL;
1283 spin_lock(&inode_hash_lock);
1284 hlist_for_each_entry(old, node, head, i_hash) {
1285 if (old->i_ino != ino)
1286 continue;
1287 if (old->i_sb != sb)
1288 continue;
1289 spin_lock(&old->i_lock);
1290 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1291 spin_unlock(&old->i_lock);
1292 continue;
1293 }
1294 break;
1295 }
1296 if (likely(!node)) {
1297 spin_lock(&inode->i_lock);
1298 inode->i_state |= I_NEW;
1299 hlist_add_head(&inode->i_hash, head);
1300 spin_unlock(&inode->i_lock);
1301 spin_unlock(&inode_hash_lock);
1302 return 0;
1303 }
1304 __iget(old);
1305 spin_unlock(&old->i_lock);
1306 spin_unlock(&inode_hash_lock);
1307 wait_on_inode(old);
1308 if (unlikely(!inode_unhashed(old))) {
1309 iput(old);
1310 return -EBUSY;
1311 }
1312 iput(old);
1313 }
1314}
1315EXPORT_SYMBOL(insert_inode_locked);
1316
1317int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1318 int (*test)(struct inode *, void *), void *data)
1319{
1320 struct super_block *sb = inode->i_sb;
1321 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1322
1323 while (1) {
1324 struct hlist_node *node;
1325 struct inode *old = NULL;
1326
1327 spin_lock(&inode_hash_lock);
1328 hlist_for_each_entry(old, node, head, i_hash) {
1329 if (old->i_sb != sb)
1330 continue;
1331 if (!test(old, data))
1332 continue;
1333 spin_lock(&old->i_lock);
1334 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1335 spin_unlock(&old->i_lock);
1336 continue;
1337 }
1338 break;
1339 }
1340 if (likely(!node)) {
1341 spin_lock(&inode->i_lock);
1342 inode->i_state |= I_NEW;
1343 hlist_add_head(&inode->i_hash, head);
1344 spin_unlock(&inode->i_lock);
1345 spin_unlock(&inode_hash_lock);
1346 return 0;
1347 }
1348 __iget(old);
1349 spin_unlock(&old->i_lock);
1350 spin_unlock(&inode_hash_lock);
1351 wait_on_inode(old);
1352 if (unlikely(!inode_unhashed(old))) {
1353 iput(old);
1354 return -EBUSY;
1355 }
1356 iput(old);
1357 }
1358}
1359EXPORT_SYMBOL(insert_inode_locked4);
1360
1361
1362int generic_delete_inode(struct inode *inode)
1363{
1364 return 1;
1365}
1366EXPORT_SYMBOL(generic_delete_inode);
1367
1368/*
1369 * Called when we're dropping the last reference
1370 * to an inode.
1371 *
1372 * Call the FS "drop_inode()" function, defaulting to
1373 * the legacy UNIX filesystem behaviour. If it tells
1374 * us to evict inode, do so. Otherwise, retain inode
1375 * in cache if fs is alive, sync and evict if fs is
1376 * shutting down.
1377 */
1378static void iput_final(struct inode *inode)
1379{
1380 struct super_block *sb = inode->i_sb;
1381 const struct super_operations *op = inode->i_sb->s_op;
1382 int drop;
1383
1384 WARN_ON(inode->i_state & I_NEW);
1385
1386 if (op->drop_inode)
1387 drop = op->drop_inode(inode);
1388 else
1389 drop = generic_drop_inode(inode);
1390
1391 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1392 inode->i_state |= I_REFERENCED;
1393 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1394 inode_lru_list_add(inode);
1395 spin_unlock(&inode->i_lock);
1396 return;
1397 }
1398
1399 if (!drop) {
1400 inode->i_state |= I_WILL_FREE;
1401 spin_unlock(&inode->i_lock);
1402 write_inode_now(inode, 1);
1403 spin_lock(&inode->i_lock);
1404 WARN_ON(inode->i_state & I_NEW);
1405 inode->i_state &= ~I_WILL_FREE;
1406 }
1407
1408 inode->i_state |= I_FREEING;
1409 if (!list_empty(&inode->i_lru))
1410 inode_lru_list_del(inode);
1411 spin_unlock(&inode->i_lock);
1412
1413 evict(inode);
1414}
1415
1416/**
1417 * iput - put an inode
1418 * @inode: inode to put
1419 *
1420 * Puts an inode, dropping its usage count. If the inode use count hits
1421 * zero, the inode is then freed and may also be destroyed.
1422 *
1423 * Consequently, iput() can sleep.
1424 */
1425void iput(struct inode *inode)
1426{
1427 if (inode) {
1428 BUG_ON(inode->i_state & I_CLEAR);
1429
1430 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1431 iput_final(inode);
1432 }
1433}
1434EXPORT_SYMBOL(iput);
1435
1436/**
1437 * bmap - find a block number in a file
1438 * @inode: inode of file
1439 * @block: block to find
1440 *
1441 * Returns the block number on the device holding the inode that
1442 * is the disk block number for the block of the file requested.
1443 * That is, asked for block 4 of inode 1 the function will return the
1444 * disk block relative to the disk start that holds that block of the
1445 * file.
1446 */
1447sector_t bmap(struct inode *inode, sector_t block)
1448{
1449 sector_t res = 0;
1450 if (inode->i_mapping->a_ops->bmap)
1451 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1452 return res;
1453}
1454EXPORT_SYMBOL(bmap);
1455
1456/*
1457 * With relative atime, only update atime if the previous atime is
1458 * earlier than either the ctime or mtime or if at least a day has
1459 * passed since the last atime update.
1460 */
1461static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1462 struct timespec now)
1463{
1464
1465 if (!(mnt->mnt_flags & MNT_RELATIME))
1466 return 1;
1467 /*
1468 * Is mtime younger than atime? If yes, update atime:
1469 */
1470 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1471 return 1;
1472 /*
1473 * Is ctime younger than atime? If yes, update atime:
1474 */
1475 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1476 return 1;
1477
1478 /*
1479 * Is the previous atime value older than a day? If yes,
1480 * update atime:
1481 */
1482 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1483 return 1;
1484 /*
1485 * Good, we can skip the atime update:
1486 */
1487 return 0;
1488}
1489
1490/*
1491 * This does the actual work of updating an inodes time or version. Must have
1492 * had called mnt_want_write() before calling this.
1493 */
1494static int update_time(struct inode *inode, struct timespec *time, int flags)
1495{
1496 if (inode->i_op->update_time)
1497 return inode->i_op->update_time(inode, time, flags);
1498
1499 if (flags & S_ATIME)
1500 inode->i_atime = *time;
1501 if (flags & S_VERSION)
1502 inode_inc_iversion(inode);
1503 if (flags & S_CTIME)
1504 inode->i_ctime = *time;
1505 if (flags & S_MTIME)
1506 inode->i_mtime = *time;
1507 mark_inode_dirty_sync(inode);
1508 return 0;
1509}
1510
1511/**
1512 * touch_atime - update the access time
1513 * @path: the &struct path to update
1514 *
1515 * Update the accessed time on an inode and mark it for writeback.
1516 * This function automatically handles read only file systems and media,
1517 * as well as the "noatime" flag and inode specific "noatime" markers.
1518 */
1519void touch_atime(struct path *path)
1520{
1521 struct vfsmount *mnt = path->mnt;
1522 struct inode *inode = path->dentry->d_inode;
1523 struct timespec now;
1524
1525 if (inode->i_flags & S_NOATIME)
1526 return;
1527 if (IS_NOATIME(inode))
1528 return;
1529 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1530 return;
1531
1532 if (mnt->mnt_flags & MNT_NOATIME)
1533 return;
1534 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1535 return;
1536
1537 now = current_fs_time(inode->i_sb);
1538
1539 if (!relatime_need_update(mnt, inode, now))
1540 return;
1541
1542 if (timespec_equal(&inode->i_atime, &now))
1543 return;
1544
1545 if (mnt_want_write(mnt))
1546 return;
1547
1548 /*
1549 * File systems can error out when updating inodes if they need to
1550 * allocate new space to modify an inode (such is the case for
1551 * Btrfs), but since we touch atime while walking down the path we
1552 * really don't care if we failed to update the atime of the file,
1553 * so just ignore the return value.
1554 */
1555 update_time(inode, &now, S_ATIME);
1556 mnt_drop_write(mnt);
1557}
1558EXPORT_SYMBOL(touch_atime);
1559
1560/*
1561 * The logic we want is
1562 *
1563 * if suid or (sgid and xgrp)
1564 * remove privs
1565 */
1566int should_remove_suid(struct dentry *dentry)
1567{
1568 umode_t mode = dentry->d_inode->i_mode;
1569 int kill = 0;
1570
1571 /* suid always must be killed */
1572 if (unlikely(mode & S_ISUID))
1573 kill = ATTR_KILL_SUID;
1574
1575 /*
1576 * sgid without any exec bits is just a mandatory locking mark; leave
1577 * it alone. If some exec bits are set, it's a real sgid; kill it.
1578 */
1579 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1580 kill |= ATTR_KILL_SGID;
1581
1582 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1583 return kill;
1584
1585 return 0;
1586}
1587EXPORT_SYMBOL(should_remove_suid);
1588
1589static int __remove_suid(struct dentry *dentry, int kill)
1590{
1591 struct iattr newattrs;
1592
1593 newattrs.ia_valid = ATTR_FORCE | kill;
1594 return notify_change(dentry, &newattrs);
1595}
1596
1597int file_remove_suid(struct file *file)
1598{
1599 struct dentry *dentry = file->f_path.dentry;
1600 struct inode *inode = dentry->d_inode;
1601 int killsuid;
1602 int killpriv;
1603 int error = 0;
1604
1605 /* Fast path for nothing security related */
1606 if (IS_NOSEC(inode))
1607 return 0;
1608
1609 killsuid = should_remove_suid(dentry);
1610 killpriv = security_inode_need_killpriv(dentry);
1611
1612 if (killpriv < 0)
1613 return killpriv;
1614 if (killpriv)
1615 error = security_inode_killpriv(dentry);
1616 if (!error && killsuid)
1617 error = __remove_suid(dentry, killsuid);
1618 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1619 inode->i_flags |= S_NOSEC;
1620
1621 return error;
1622}
1623EXPORT_SYMBOL(file_remove_suid);
1624
1625/**
1626 * file_update_time - update mtime and ctime time
1627 * @file: file accessed
1628 *
1629 * Update the mtime and ctime members of an inode and mark the inode
1630 * for writeback. Note that this function is meant exclusively for
1631 * usage in the file write path of filesystems, and filesystems may
1632 * choose to explicitly ignore update via this function with the
1633 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1634 * timestamps are handled by the server. This can return an error for
1635 * file systems who need to allocate space in order to update an inode.
1636 */
1637
1638int file_update_time(struct file *file)
1639{
1640 struct inode *inode = file->f_path.dentry->d_inode;
1641 struct timespec now;
1642 int sync_it = 0;
1643 int ret;
1644
1645 /* First try to exhaust all avenues to not sync */
1646 if (IS_NOCMTIME(inode))
1647 return 0;
1648
1649 now = current_fs_time(inode->i_sb);
1650 if (!timespec_equal(&inode->i_mtime, &now))
1651 sync_it = S_MTIME;
1652
1653 if (!timespec_equal(&inode->i_ctime, &now))
1654 sync_it |= S_CTIME;
1655
1656 if (IS_I_VERSION(inode))
1657 sync_it |= S_VERSION;
1658
1659 if (!sync_it)
1660 return 0;
1661
1662 /* Finally allowed to write? Takes lock. */
1663 if (mnt_want_write_file(file))
1664 return 0;
1665
1666 ret = update_time(inode, &now, sync_it);
1667 mnt_drop_write_file(file);
1668
1669 return ret;
1670}
1671EXPORT_SYMBOL(file_update_time);
1672
1673int inode_needs_sync(struct inode *inode)
1674{
1675 if (IS_SYNC(inode))
1676 return 1;
1677 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1678 return 1;
1679 return 0;
1680}
1681EXPORT_SYMBOL(inode_needs_sync);
1682
1683int inode_wait(void *word)
1684{
1685 schedule();
1686 return 0;
1687}
1688EXPORT_SYMBOL(inode_wait);
1689
1690/*
1691 * If we try to find an inode in the inode hash while it is being
1692 * deleted, we have to wait until the filesystem completes its
1693 * deletion before reporting that it isn't found. This function waits
1694 * until the deletion _might_ have completed. Callers are responsible
1695 * to recheck inode state.
1696 *
1697 * It doesn't matter if I_NEW is not set initially, a call to
1698 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1699 * will DTRT.
1700 */
1701static void __wait_on_freeing_inode(struct inode *inode)
1702{
1703 wait_queue_head_t *wq;
1704 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1705 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1706 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1707 spin_unlock(&inode->i_lock);
1708 spin_unlock(&inode_hash_lock);
1709 schedule();
1710 finish_wait(wq, &wait.wait);
1711 spin_lock(&inode_hash_lock);
1712}
1713
1714static __initdata unsigned long ihash_entries;
1715static int __init set_ihash_entries(char *str)
1716{
1717 if (!str)
1718 return 0;
1719 ihash_entries = simple_strtoul(str, &str, 0);
1720 return 1;
1721}
1722__setup("ihash_entries=", set_ihash_entries);
1723
1724/*
1725 * Initialize the waitqueues and inode hash table.
1726 */
1727void __init inode_init_early(void)
1728{
1729 unsigned int loop;
1730
1731 /* If hashes are distributed across NUMA nodes, defer
1732 * hash allocation until vmalloc space is available.
1733 */
1734 if (hashdist)
1735 return;
1736
1737 inode_hashtable =
1738 alloc_large_system_hash("Inode-cache",
1739 sizeof(struct hlist_head),
1740 ihash_entries,
1741 14,
1742 HASH_EARLY,
1743 &i_hash_shift,
1744 &i_hash_mask,
1745 0,
1746 0);
1747
1748 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1749 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1750}
1751
1752void __init inode_init(void)
1753{
1754 unsigned int loop;
1755
1756 /* inode slab cache */
1757 inode_cachep = kmem_cache_create("inode_cache",
1758 sizeof(struct inode),
1759 0,
1760 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1761 SLAB_MEM_SPREAD),
1762 init_once);
1763
1764 /* Hash may have been set up in inode_init_early */
1765 if (!hashdist)
1766 return;
1767
1768 inode_hashtable =
1769 alloc_large_system_hash("Inode-cache",
1770 sizeof(struct hlist_head),
1771 ihash_entries,
1772 14,
1773 0,
1774 &i_hash_shift,
1775 &i_hash_mask,
1776 0,
1777 0);
1778
1779 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1780 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1781}
1782
1783void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1784{
1785 inode->i_mode = mode;
1786 if (S_ISCHR(mode)) {
1787 inode->i_fop = &def_chr_fops;
1788 inode->i_rdev = rdev;
1789 } else if (S_ISBLK(mode)) {
1790 inode->i_fop = &def_blk_fops;
1791 inode->i_rdev = rdev;
1792 } else if (S_ISFIFO(mode))
1793 inode->i_fop = &def_fifo_fops;
1794 else if (S_ISSOCK(mode))
1795 inode->i_fop = &bad_sock_fops;
1796 else
1797 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1798 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1799 inode->i_ino);
1800}
1801EXPORT_SYMBOL(init_special_inode);
1802
1803/**
1804 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1805 * @inode: New inode
1806 * @dir: Directory inode
1807 * @mode: mode of the new inode
1808 */
1809void inode_init_owner(struct inode *inode, const struct inode *dir,
1810 umode_t mode)
1811{
1812 inode->i_uid = current_fsuid();
1813 if (dir && dir->i_mode & S_ISGID) {
1814 inode->i_gid = dir->i_gid;
1815 if (S_ISDIR(mode))
1816 mode |= S_ISGID;
1817 } else
1818 inode->i_gid = current_fsgid();
1819 inode->i_mode = mode;
1820}
1821EXPORT_SYMBOL(inode_init_owner);
1822
1823/**
1824 * inode_owner_or_capable - check current task permissions to inode
1825 * @inode: inode being checked
1826 *
1827 * Return true if current either has CAP_FOWNER to the inode, or
1828 * owns the file.
1829 */
1830bool inode_owner_or_capable(const struct inode *inode)
1831{
1832 if (uid_eq(current_fsuid(), inode->i_uid))
1833 return true;
1834 if (inode_capable(inode, CAP_FOWNER))
1835 return true;
1836 return false;
1837}
1838EXPORT_SYMBOL(inode_owner_or_capable);
1839
1840/*
1841 * Direct i/o helper functions
1842 */
1843static void __inode_dio_wait(struct inode *inode)
1844{
1845 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1846 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1847
1848 do {
1849 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1850 if (atomic_read(&inode->i_dio_count))
1851 schedule();
1852 } while (atomic_read(&inode->i_dio_count));
1853 finish_wait(wq, &q.wait);
1854}
1855
1856/**
1857 * inode_dio_wait - wait for outstanding DIO requests to finish
1858 * @inode: inode to wait for
1859 *
1860 * Waits for all pending direct I/O requests to finish so that we can
1861 * proceed with a truncate or equivalent operation.
1862 *
1863 * Must be called under a lock that serializes taking new references
1864 * to i_dio_count, usually by inode->i_mutex.
1865 */
1866void inode_dio_wait(struct inode *inode)
1867{
1868 if (atomic_read(&inode->i_dio_count))
1869 __inode_dio_wait(inode);
1870}
1871EXPORT_SYMBOL(inode_dio_wait);
1872
1873/*
1874 * inode_dio_done - signal finish of a direct I/O requests
1875 * @inode: inode the direct I/O happens on
1876 *
1877 * This is called once we've finished processing a direct I/O request,
1878 * and is used to wake up callers waiting for direct I/O to be quiesced.
1879 */
1880void inode_dio_done(struct inode *inode)
1881{
1882 if (atomic_dec_and_test(&inode->i_dio_count))
1883 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1884}
1885EXPORT_SYMBOL(inode_dio_done);