Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   5 *
   6 * Right now, I am very wasteful with the buffers.  I allocate memory
   7 * pages and then divide them into 2K frame buffers.  This way I know I
   8 * have buffers large enough to hold one frame within one buffer descriptor.
   9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  10 * will be much more memory efficient and will easily handle lots of
  11 * small packets.
  12 *
  13 * Much better multiple PHY support by Magnus Damm.
  14 * Copyright (c) 2000 Ericsson Radio Systems AB.
  15 *
  16 * Support for FEC controller of ColdFire processors.
  17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  18 *
  19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  20 * Copyright (c) 2004-2006 Macq Electronique SA.
  21 *
  22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/kernel.h>
  27#include <linux/string.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/ptrace.h>
  30#include <linux/errno.h>
  31#include <linux/ioport.h>
  32#include <linux/slab.h>
  33#include <linux/interrupt.h>
  34#include <linux/delay.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/skbuff.h>
  38#include <linux/in.h>
  39#include <linux/ip.h>
  40#include <net/ip.h>
 
 
  41#include <net/tso.h>
  42#include <linux/tcp.h>
  43#include <linux/udp.h>
  44#include <linux/icmp.h>
  45#include <linux/spinlock.h>
  46#include <linux/workqueue.h>
  47#include <linux/bitops.h>
  48#include <linux/io.h>
  49#include <linux/irq.h>
  50#include <linux/clk.h>
 
  51#include <linux/platform_device.h>
 
  52#include <linux/mdio.h>
  53#include <linux/phy.h>
  54#include <linux/fec.h>
  55#include <linux/of.h>
  56#include <linux/of_device.h>
  57#include <linux/of_gpio.h>
  58#include <linux/of_mdio.h>
  59#include <linux/of_net.h>
  60#include <linux/regulator/consumer.h>
  61#include <linux/if_vlan.h>
  62#include <linux/pinctrl/consumer.h>
 
  63#include <linux/prefetch.h>
 
 
  64#include <soc/imx/cpuidle.h>
 
 
 
  65
  66#include <asm/cacheflush.h>
  67
  68#include "fec.h"
  69
  70static void set_multicast_list(struct net_device *ndev);
  71static void fec_enet_itr_coal_init(struct net_device *ndev);
 
 
 
  72
  73#define DRIVER_NAME	"fec"
  74
  75#define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
  76
  77/* Pause frame feild and FIFO threshold */
  78#define FEC_ENET_FCE	(1 << 5)
  79#define FEC_ENET_RSEM_V	0x84
  80#define FEC_ENET_RSFL_V	16
  81#define FEC_ENET_RAEM_V	0x8
  82#define FEC_ENET_RAFL_V	0x8
  83#define FEC_ENET_OPD_V	0xFFF0
  84#define FEC_MDIO_PM_TIMEOUT  100 /* ms */
  85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86static struct platform_device_id fec_devtype[] = {
  87	{
  88		/* keep it for coldfire */
  89		.name = DRIVER_NAME,
  90		.driver_data = 0,
  91	}, {
  92		.name = "imx25-fec",
  93		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR,
  94	}, {
  95		.name = "imx27-fec",
  96		.driver_data = FEC_QUIRK_MIB_CLEAR,
  97	}, {
  98		.name = "imx28-fec",
  99		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
 100				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
 101	}, {
 102		.name = "imx6q-fec",
 103		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 104				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 105				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
 106				FEC_QUIRK_HAS_RACC,
 107	}, {
 108		.name = "mvf600-fec",
 109		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
 110	}, {
 111		.name = "imx6sx-fec",
 112		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 113				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 114				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 115				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 116				FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
 117	}, {
 118		.name = "imx6ul-fec",
 119		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 120				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 121				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
 122				FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
 123				FEC_QUIRK_HAS_COALESCE,
 124	}, {
 125		/* sentinel */
 126	}
 127};
 128MODULE_DEVICE_TABLE(platform, fec_devtype);
 129
 130enum imx_fec_type {
 131	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
 132	IMX27_FEC,	/* runs on i.mx27/35/51 */
 133	IMX28_FEC,
 134	IMX6Q_FEC,
 135	MVF600_FEC,
 136	IMX6SX_FEC,
 137	IMX6UL_FEC,
 138};
 139
 140static const struct of_device_id fec_dt_ids[] = {
 141	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
 142	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
 143	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
 144	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
 145	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
 146	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
 147	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
 
 
 
 148	{ /* sentinel */ }
 149};
 150MODULE_DEVICE_TABLE(of, fec_dt_ids);
 151
 152static unsigned char macaddr[ETH_ALEN];
 153module_param_array(macaddr, byte, NULL, 0);
 154MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 155
 156#if defined(CONFIG_M5272)
 157/*
 158 * Some hardware gets it MAC address out of local flash memory.
 159 * if this is non-zero then assume it is the address to get MAC from.
 160 */
 161#if defined(CONFIG_NETtel)
 162#define	FEC_FLASHMAC	0xf0006006
 163#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 164#define	FEC_FLASHMAC	0xf0006000
 165#elif defined(CONFIG_CANCam)
 166#define	FEC_FLASHMAC	0xf0020000
 167#elif defined (CONFIG_M5272C3)
 168#define	FEC_FLASHMAC	(0xffe04000 + 4)
 169#elif defined(CONFIG_MOD5272)
 170#define FEC_FLASHMAC	0xffc0406b
 171#else
 172#define	FEC_FLASHMAC	0
 173#endif
 174#endif /* CONFIG_M5272 */
 175
 176/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 177 *
 178 * 2048 byte skbufs are allocated. However, alignment requirements
 179 * varies between FEC variants. Worst case is 64, so round down by 64.
 180 */
 181#define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
 182#define PKT_MINBUF_SIZE		64
 183
 184/* FEC receive acceleration */
 185#define FEC_RACC_IPDIS		(1 << 1)
 186#define FEC_RACC_PRODIS		(1 << 2)
 187#define FEC_RACC_SHIFT16	BIT(7)
 188#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 189
 190/* MIB Control Register */
 191#define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
 192
 193/*
 194 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 195 * size bits. Other FEC hardware does not, so we need to take that into
 196 * account when setting it.
 197 */
 198#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 199    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
 200    defined(CONFIG_ARM64)
 201#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 202#else
 203#define	OPT_FRAME_SIZE	0
 204#endif
 205
 206/* FEC MII MMFR bits definition */
 207#define FEC_MMFR_ST		(1 << 30)
 
 208#define FEC_MMFR_OP_READ	(2 << 28)
 
 209#define FEC_MMFR_OP_WRITE	(1 << 28)
 
 210#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
 211#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
 212#define FEC_MMFR_TA		(2 << 16)
 213#define FEC_MMFR_DATA(v)	(v & 0xffff)
 214/* FEC ECR bits definition */
 215#define FEC_ECR_MAGICEN		(1 << 2)
 216#define FEC_ECR_SLEEP		(1 << 3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 217
 218#define FEC_MII_TIMEOUT		30000 /* us */
 219
 220/* Transmitter timeout */
 221#define TX_TIMEOUT (2 * HZ)
 222
 223#define FEC_PAUSE_FLAG_AUTONEG	0x1
 224#define FEC_PAUSE_FLAG_ENABLE	0x2
 225#define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
 226#define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
 227#define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
 228
 229#define COPYBREAK_DEFAULT	256
 230
 231/* Max number of allowed TCP segments for software TSO */
 232#define FEC_MAX_TSO_SEGS	100
 233#define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 234
 235#define IS_TSO_HEADER(txq, addr) \
 236	((addr >= txq->tso_hdrs_dma) && \
 237	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
 238
 239static int mii_cnt;
 240
 241static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
 242					     struct bufdesc_prop *bd)
 243{
 244	return (bdp >= bd->last) ? bd->base
 245			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
 246}
 247
 248static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
 249					     struct bufdesc_prop *bd)
 250{
 251	return (bdp <= bd->base) ? bd->last
 252			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
 253}
 254
 255static int fec_enet_get_bd_index(struct bufdesc *bdp,
 256				 struct bufdesc_prop *bd)
 257{
 258	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
 259}
 260
 261static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
 262{
 263	int entries;
 264
 265	entries = (((const char *)txq->dirty_tx -
 266			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
 267
 268	return entries >= 0 ? entries : entries + txq->bd.ring_size;
 269}
 270
 271static void swap_buffer(void *bufaddr, int len)
 272{
 273	int i;
 274	unsigned int *buf = bufaddr;
 275
 276	for (i = 0; i < len; i += 4, buf++)
 277		swab32s(buf);
 278}
 279
 280static void swap_buffer2(void *dst_buf, void *src_buf, int len)
 281{
 282	int i;
 283	unsigned int *src = src_buf;
 284	unsigned int *dst = dst_buf;
 285
 286	for (i = 0; i < len; i += 4, src++, dst++)
 287		*dst = swab32p(src);
 288}
 289
 290static void fec_dump(struct net_device *ndev)
 291{
 292	struct fec_enet_private *fep = netdev_priv(ndev);
 293	struct bufdesc *bdp;
 294	struct fec_enet_priv_tx_q *txq;
 295	int index = 0;
 296
 297	netdev_info(ndev, "TX ring dump\n");
 298	pr_info("Nr     SC     addr       len  SKB\n");
 299
 300	txq = fep->tx_queue[0];
 301	bdp = txq->bd.base;
 302
 303	do {
 304		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
 305			index,
 306			bdp == txq->bd.cur ? 'S' : ' ',
 307			bdp == txq->dirty_tx ? 'H' : ' ',
 308			fec16_to_cpu(bdp->cbd_sc),
 309			fec32_to_cpu(bdp->cbd_bufaddr),
 310			fec16_to_cpu(bdp->cbd_datlen),
 311			txq->tx_skbuff[index]);
 312		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 313		index++;
 314	} while (bdp != txq->bd.base);
 315}
 316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317static inline bool is_ipv4_pkt(struct sk_buff *skb)
 318{
 319	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
 320}
 321
 322static int
 323fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 324{
 325	/* Only run for packets requiring a checksum. */
 326	if (skb->ip_summed != CHECKSUM_PARTIAL)
 327		return 0;
 328
 329	if (unlikely(skb_cow_head(skb, 0)))
 330		return -1;
 331
 332	if (is_ipv4_pkt(skb))
 333		ip_hdr(skb)->check = 0;
 334	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 335
 336	return 0;
 337}
 338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 339static struct bufdesc *
 340fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
 341			     struct sk_buff *skb,
 342			     struct net_device *ndev)
 343{
 344	struct fec_enet_private *fep = netdev_priv(ndev);
 345	struct bufdesc *bdp = txq->bd.cur;
 346	struct bufdesc_ex *ebdp;
 347	int nr_frags = skb_shinfo(skb)->nr_frags;
 348	int frag, frag_len;
 349	unsigned short status;
 350	unsigned int estatus = 0;
 351	skb_frag_t *this_frag;
 352	unsigned int index;
 353	void *bufaddr;
 354	dma_addr_t addr;
 355	int i;
 356
 357	for (frag = 0; frag < nr_frags; frag++) {
 358		this_frag = &skb_shinfo(skb)->frags[frag];
 359		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 360		ebdp = (struct bufdesc_ex *)bdp;
 361
 362		status = fec16_to_cpu(bdp->cbd_sc);
 363		status &= ~BD_ENET_TX_STATS;
 364		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 365		frag_len = skb_shinfo(skb)->frags[frag].size;
 366
 367		/* Handle the last BD specially */
 368		if (frag == nr_frags - 1) {
 369			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 370			if (fep->bufdesc_ex) {
 371				estatus |= BD_ENET_TX_INT;
 372				if (unlikely(skb_shinfo(skb)->tx_flags &
 373					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 374					estatus |= BD_ENET_TX_TS;
 375			}
 376		}
 377
 378		if (fep->bufdesc_ex) {
 379			if (fep->quirks & FEC_QUIRK_HAS_AVB)
 380				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 381			if (skb->ip_summed == CHECKSUM_PARTIAL)
 382				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 
 383			ebdp->cbd_bdu = 0;
 384			ebdp->cbd_esc = cpu_to_fec32(estatus);
 385		}
 386
 387		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
 388
 389		index = fec_enet_get_bd_index(bdp, &txq->bd);
 390		if (((unsigned long) bufaddr) & fep->tx_align ||
 391			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 392			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
 393			bufaddr = txq->tx_bounce[index];
 394
 395			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 396				swap_buffer(bufaddr, frag_len);
 397		}
 398
 399		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
 400				      DMA_TO_DEVICE);
 401		if (dma_mapping_error(&fep->pdev->dev, addr)) {
 402			if (net_ratelimit())
 403				netdev_err(ndev, "Tx DMA memory map failed\n");
 404			goto dma_mapping_error;
 405		}
 406
 407		bdp->cbd_bufaddr = cpu_to_fec32(addr);
 408		bdp->cbd_datlen = cpu_to_fec16(frag_len);
 409		/* Make sure the updates to rest of the descriptor are
 410		 * performed before transferring ownership.
 411		 */
 412		wmb();
 413		bdp->cbd_sc = cpu_to_fec16(status);
 414	}
 415
 416	return bdp;
 417dma_mapping_error:
 418	bdp = txq->bd.cur;
 419	for (i = 0; i < frag; i++) {
 420		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 421		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
 422				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
 423	}
 424	return ERR_PTR(-ENOMEM);
 425}
 426
 427static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
 428				   struct sk_buff *skb, struct net_device *ndev)
 429{
 430	struct fec_enet_private *fep = netdev_priv(ndev);
 431	int nr_frags = skb_shinfo(skb)->nr_frags;
 432	struct bufdesc *bdp, *last_bdp;
 433	void *bufaddr;
 434	dma_addr_t addr;
 435	unsigned short status;
 436	unsigned short buflen;
 437	unsigned int estatus = 0;
 438	unsigned int index;
 439	int entries_free;
 440
 441	entries_free = fec_enet_get_free_txdesc_num(txq);
 442	if (entries_free < MAX_SKB_FRAGS + 1) {
 443		dev_kfree_skb_any(skb);
 444		if (net_ratelimit())
 445			netdev_err(ndev, "NOT enough BD for SG!\n");
 446		return NETDEV_TX_OK;
 447	}
 448
 449	/* Protocol checksum off-load for TCP and UDP. */
 450	if (fec_enet_clear_csum(skb, ndev)) {
 451		dev_kfree_skb_any(skb);
 452		return NETDEV_TX_OK;
 453	}
 454
 455	/* Fill in a Tx ring entry */
 456	bdp = txq->bd.cur;
 457	last_bdp = bdp;
 458	status = fec16_to_cpu(bdp->cbd_sc);
 459	status &= ~BD_ENET_TX_STATS;
 460
 461	/* Set buffer length and buffer pointer */
 462	bufaddr = skb->data;
 463	buflen = skb_headlen(skb);
 464
 465	index = fec_enet_get_bd_index(bdp, &txq->bd);
 466	if (((unsigned long) bufaddr) & fep->tx_align ||
 467		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 468		memcpy(txq->tx_bounce[index], skb->data, buflen);
 469		bufaddr = txq->tx_bounce[index];
 470
 471		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 472			swap_buffer(bufaddr, buflen);
 473	}
 474
 475	/* Push the data cache so the CPM does not get stale memory data. */
 476	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
 477	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 478		dev_kfree_skb_any(skb);
 479		if (net_ratelimit())
 480			netdev_err(ndev, "Tx DMA memory map failed\n");
 481		return NETDEV_TX_OK;
 482	}
 483
 484	if (nr_frags) {
 485		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
 486		if (IS_ERR(last_bdp)) {
 487			dma_unmap_single(&fep->pdev->dev, addr,
 488					 buflen, DMA_TO_DEVICE);
 489			dev_kfree_skb_any(skb);
 490			return NETDEV_TX_OK;
 491		}
 492	} else {
 493		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 494		if (fep->bufdesc_ex) {
 495			estatus = BD_ENET_TX_INT;
 496			if (unlikely(skb_shinfo(skb)->tx_flags &
 497				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 498				estatus |= BD_ENET_TX_TS;
 499		}
 500	}
 501	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 502	bdp->cbd_datlen = cpu_to_fec16(buflen);
 503
 504	if (fep->bufdesc_ex) {
 505
 506		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 507
 508		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 509			fep->hwts_tx_en))
 510			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 511
 512		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 513			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 514
 515		if (skb->ip_summed == CHECKSUM_PARTIAL)
 516			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 517
 518		ebdp->cbd_bdu = 0;
 519		ebdp->cbd_esc = cpu_to_fec32(estatus);
 520	}
 521
 522	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
 523	/* Save skb pointer */
 524	txq->tx_skbuff[index] = skb;
 525
 526	/* Make sure the updates to rest of the descriptor are performed before
 527	 * transferring ownership.
 528	 */
 529	wmb();
 530
 531	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 532	 * it's the last BD of the frame, and to put the CRC on the end.
 533	 */
 534	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
 535	bdp->cbd_sc = cpu_to_fec16(status);
 536
 537	/* If this was the last BD in the ring, start at the beginning again. */
 538	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
 539
 540	skb_tx_timestamp(skb);
 541
 542	/* Make sure the update to bdp and tx_skbuff are performed before
 543	 * txq->bd.cur.
 544	 */
 545	wmb();
 546	txq->bd.cur = bdp;
 547
 548	/* Trigger transmission start */
 549	writel(0, txq->bd.reg_desc_active);
 550
 551	return 0;
 552}
 553
 554static int
 555fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
 556			  struct net_device *ndev,
 557			  struct bufdesc *bdp, int index, char *data,
 558			  int size, bool last_tcp, bool is_last)
 559{
 560	struct fec_enet_private *fep = netdev_priv(ndev);
 561	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 562	unsigned short status;
 563	unsigned int estatus = 0;
 564	dma_addr_t addr;
 565
 566	status = fec16_to_cpu(bdp->cbd_sc);
 567	status &= ~BD_ENET_TX_STATS;
 568
 569	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 570
 571	if (((unsigned long) data) & fep->tx_align ||
 572		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 573		memcpy(txq->tx_bounce[index], data, size);
 574		data = txq->tx_bounce[index];
 575
 576		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 577			swap_buffer(data, size);
 578	}
 579
 580	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
 581	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 582		dev_kfree_skb_any(skb);
 583		if (net_ratelimit())
 584			netdev_err(ndev, "Tx DMA memory map failed\n");
 585		return NETDEV_TX_BUSY;
 586	}
 587
 588	bdp->cbd_datlen = cpu_to_fec16(size);
 589	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 590
 591	if (fep->bufdesc_ex) {
 592		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 593			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 594		if (skb->ip_summed == CHECKSUM_PARTIAL)
 595			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 596		ebdp->cbd_bdu = 0;
 597		ebdp->cbd_esc = cpu_to_fec32(estatus);
 598	}
 599
 600	/* Handle the last BD specially */
 601	if (last_tcp)
 602		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
 603	if (is_last) {
 604		status |= BD_ENET_TX_INTR;
 605		if (fep->bufdesc_ex)
 606			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
 607	}
 608
 609	bdp->cbd_sc = cpu_to_fec16(status);
 610
 611	return 0;
 612}
 613
 614static int
 615fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
 616			 struct sk_buff *skb, struct net_device *ndev,
 617			 struct bufdesc *bdp, int index)
 618{
 619	struct fec_enet_private *fep = netdev_priv(ndev);
 620	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 621	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 622	void *bufaddr;
 623	unsigned long dmabuf;
 624	unsigned short status;
 625	unsigned int estatus = 0;
 626
 627	status = fec16_to_cpu(bdp->cbd_sc);
 628	status &= ~BD_ENET_TX_STATS;
 629	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 630
 631	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 632	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
 633	if (((unsigned long)bufaddr) & fep->tx_align ||
 634		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 635		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
 636		bufaddr = txq->tx_bounce[index];
 637
 638		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 639			swap_buffer(bufaddr, hdr_len);
 640
 641		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
 642					hdr_len, DMA_TO_DEVICE);
 643		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
 644			dev_kfree_skb_any(skb);
 645			if (net_ratelimit())
 646				netdev_err(ndev, "Tx DMA memory map failed\n");
 647			return NETDEV_TX_BUSY;
 648		}
 649	}
 650
 651	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
 652	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
 653
 654	if (fep->bufdesc_ex) {
 655		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 656			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 657		if (skb->ip_summed == CHECKSUM_PARTIAL)
 658			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 659		ebdp->cbd_bdu = 0;
 660		ebdp->cbd_esc = cpu_to_fec32(estatus);
 661	}
 662
 663	bdp->cbd_sc = cpu_to_fec16(status);
 664
 665	return 0;
 666}
 667
 668static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
 669				   struct sk_buff *skb,
 670				   struct net_device *ndev)
 671{
 672	struct fec_enet_private *fep = netdev_priv(ndev);
 673	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 674	int total_len, data_left;
 675	struct bufdesc *bdp = txq->bd.cur;
 676	struct tso_t tso;
 677	unsigned int index = 0;
 678	int ret;
 679
 680	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
 681		dev_kfree_skb_any(skb);
 682		if (net_ratelimit())
 683			netdev_err(ndev, "NOT enough BD for TSO!\n");
 684		return NETDEV_TX_OK;
 685	}
 686
 687	/* Protocol checksum off-load for TCP and UDP. */
 688	if (fec_enet_clear_csum(skb, ndev)) {
 689		dev_kfree_skb_any(skb);
 690		return NETDEV_TX_OK;
 691	}
 692
 693	/* Initialize the TSO handler, and prepare the first payload */
 694	tso_start(skb, &tso);
 695
 696	total_len = skb->len - hdr_len;
 697	while (total_len > 0) {
 698		char *hdr;
 699
 700		index = fec_enet_get_bd_index(bdp, &txq->bd);
 701		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
 702		total_len -= data_left;
 703
 704		/* prepare packet headers: MAC + IP + TCP */
 705		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 706		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
 707		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
 708		if (ret)
 709			goto err_release;
 710
 711		while (data_left > 0) {
 712			int size;
 713
 714			size = min_t(int, tso.size, data_left);
 715			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 716			index = fec_enet_get_bd_index(bdp, &txq->bd);
 717			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
 718							bdp, index,
 719							tso.data, size,
 720							size == data_left,
 721							total_len == 0);
 722			if (ret)
 723				goto err_release;
 724
 725			data_left -= size;
 726			tso_build_data(skb, &tso, size);
 727		}
 728
 729		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 730	}
 731
 732	/* Save skb pointer */
 733	txq->tx_skbuff[index] = skb;
 734
 735	skb_tx_timestamp(skb);
 736	txq->bd.cur = bdp;
 737
 738	/* Trigger transmission start */
 739	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
 740	    !readl(txq->bd.reg_desc_active) ||
 741	    !readl(txq->bd.reg_desc_active) ||
 742	    !readl(txq->bd.reg_desc_active) ||
 743	    !readl(txq->bd.reg_desc_active))
 744		writel(0, txq->bd.reg_desc_active);
 745
 746	return 0;
 747
 748err_release:
 749	/* TODO: Release all used data descriptors for TSO */
 750	return ret;
 751}
 752
 753static netdev_tx_t
 754fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 755{
 756	struct fec_enet_private *fep = netdev_priv(ndev);
 757	int entries_free;
 758	unsigned short queue;
 759	struct fec_enet_priv_tx_q *txq;
 760	struct netdev_queue *nq;
 761	int ret;
 762
 763	queue = skb_get_queue_mapping(skb);
 764	txq = fep->tx_queue[queue];
 765	nq = netdev_get_tx_queue(ndev, queue);
 766
 767	if (skb_is_gso(skb))
 768		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
 769	else
 770		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
 771	if (ret)
 772		return ret;
 773
 774	entries_free = fec_enet_get_free_txdesc_num(txq);
 775	if (entries_free <= txq->tx_stop_threshold)
 776		netif_tx_stop_queue(nq);
 777
 778	return NETDEV_TX_OK;
 779}
 780
 781/* Init RX & TX buffer descriptors
 782 */
 783static void fec_enet_bd_init(struct net_device *dev)
 784{
 785	struct fec_enet_private *fep = netdev_priv(dev);
 786	struct fec_enet_priv_tx_q *txq;
 787	struct fec_enet_priv_rx_q *rxq;
 788	struct bufdesc *bdp;
 789	unsigned int i;
 790	unsigned int q;
 791
 792	for (q = 0; q < fep->num_rx_queues; q++) {
 793		/* Initialize the receive buffer descriptors. */
 794		rxq = fep->rx_queue[q];
 795		bdp = rxq->bd.base;
 796
 797		for (i = 0; i < rxq->bd.ring_size; i++) {
 798
 799			/* Initialize the BD for every fragment in the page. */
 800			if (bdp->cbd_bufaddr)
 801				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
 802			else
 803				bdp->cbd_sc = cpu_to_fec16(0);
 804			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
 805		}
 806
 807		/* Set the last buffer to wrap */
 808		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
 809		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 810
 811		rxq->bd.cur = rxq->bd.base;
 812	}
 813
 814	for (q = 0; q < fep->num_tx_queues; q++) {
 815		/* ...and the same for transmit */
 816		txq = fep->tx_queue[q];
 817		bdp = txq->bd.base;
 818		txq->bd.cur = bdp;
 819
 820		for (i = 0; i < txq->bd.ring_size; i++) {
 821			/* Initialize the BD for every fragment in the page. */
 822			bdp->cbd_sc = cpu_to_fec16(0);
 823			if (bdp->cbd_bufaddr &&
 824			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
 825				dma_unmap_single(&fep->pdev->dev,
 826						 fec32_to_cpu(bdp->cbd_bufaddr),
 827						 fec16_to_cpu(bdp->cbd_datlen),
 828						 DMA_TO_DEVICE);
 829			if (txq->tx_skbuff[i]) {
 830				dev_kfree_skb_any(txq->tx_skbuff[i]);
 831				txq->tx_skbuff[i] = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 832			}
 
 
 
 
 833			bdp->cbd_bufaddr = cpu_to_fec32(0);
 834			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 835		}
 836
 837		/* Set the last buffer to wrap */
 838		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
 839		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 840		txq->dirty_tx = bdp;
 841	}
 842}
 843
 844static void fec_enet_active_rxring(struct net_device *ndev)
 845{
 846	struct fec_enet_private *fep = netdev_priv(ndev);
 847	int i;
 848
 849	for (i = 0; i < fep->num_rx_queues; i++)
 850		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
 851}
 852
 853static void fec_enet_enable_ring(struct net_device *ndev)
 854{
 855	struct fec_enet_private *fep = netdev_priv(ndev);
 856	struct fec_enet_priv_tx_q *txq;
 857	struct fec_enet_priv_rx_q *rxq;
 858	int i;
 859
 860	for (i = 0; i < fep->num_rx_queues; i++) {
 861		rxq = fep->rx_queue[i];
 862		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
 863		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
 864
 865		/* enable DMA1/2 */
 866		if (i)
 867			writel(RCMR_MATCHEN | RCMR_CMP(i),
 868			       fep->hwp + FEC_RCMR(i));
 869	}
 870
 871	for (i = 0; i < fep->num_tx_queues; i++) {
 872		txq = fep->tx_queue[i];
 873		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
 874
 875		/* enable DMA1/2 */
 876		if (i)
 877			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
 878			       fep->hwp + FEC_DMA_CFG(i));
 879	}
 880}
 881
 882static void fec_enet_reset_skb(struct net_device *ndev)
 883{
 884	struct fec_enet_private *fep = netdev_priv(ndev);
 885	struct fec_enet_priv_tx_q *txq;
 886	int i, j;
 887
 888	for (i = 0; i < fep->num_tx_queues; i++) {
 889		txq = fep->tx_queue[i];
 890
 891		for (j = 0; j < txq->bd.ring_size; j++) {
 892			if (txq->tx_skbuff[j]) {
 893				dev_kfree_skb_any(txq->tx_skbuff[j]);
 894				txq->tx_skbuff[j] = NULL;
 895			}
 896		}
 897	}
 898}
 899
 900/*
 901 * This function is called to start or restart the FEC during a link
 902 * change, transmit timeout, or to reconfigure the FEC.  The network
 903 * packet processing for this device must be stopped before this call.
 904 */
 905static void
 906fec_restart(struct net_device *ndev)
 907{
 908	struct fec_enet_private *fep = netdev_priv(ndev);
 909	u32 val;
 910	u32 temp_mac[2];
 911	u32 rcntl = OPT_FRAME_SIZE | 0x04;
 912	u32 ecntl = 0x2; /* ETHEREN */
 913
 914	/* Whack a reset.  We should wait for this.
 915	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
 916	 * instead of reset MAC itself.
 917	 */
 918	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
 
 919		writel(0, fep->hwp + FEC_ECNTRL);
 920	} else {
 921		writel(1, fep->hwp + FEC_ECNTRL);
 922		udelay(10);
 923	}
 924
 925	/*
 926	 * enet-mac reset will reset mac address registers too,
 927	 * so need to reconfigure it.
 928	 */
 929	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
 930	writel((__force u32)cpu_to_be32(temp_mac[0]),
 931	       fep->hwp + FEC_ADDR_LOW);
 932	writel((__force u32)cpu_to_be32(temp_mac[1]),
 933	       fep->hwp + FEC_ADDR_HIGH);
 934
 935	/* Clear any outstanding interrupt. */
 936	writel(0xffffffff, fep->hwp + FEC_IEVENT);
 937
 938	fec_enet_bd_init(ndev);
 939
 940	fec_enet_enable_ring(ndev);
 941
 942	/* Reset tx SKB buffers. */
 943	fec_enet_reset_skb(ndev);
 944
 945	/* Enable MII mode */
 946	if (fep->full_duplex == DUPLEX_FULL) {
 947		/* FD enable */
 948		writel(0x04, fep->hwp + FEC_X_CNTRL);
 949	} else {
 950		/* No Rcv on Xmit */
 951		rcntl |= 0x02;
 952		writel(0x0, fep->hwp + FEC_X_CNTRL);
 953	}
 954
 955	/* Set MII speed */
 956	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 957
 958#if !defined(CONFIG_M5272)
 959	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
 960		val = readl(fep->hwp + FEC_RACC);
 
 961		/* align IP header */
 962		val |= FEC_RACC_SHIFT16;
 963		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
 964			/* set RX checksum */
 965			val |= FEC_RACC_OPTIONS;
 966		else
 967			val &= ~FEC_RACC_OPTIONS;
 968		writel(val, fep->hwp + FEC_RACC);
 969		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
 970	}
 971#endif
 972
 973	/*
 974	 * The phy interface and speed need to get configured
 975	 * differently on enet-mac.
 976	 */
 977	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
 978		/* Enable flow control and length check */
 979		rcntl |= 0x40000000 | 0x00000020;
 980
 981		/* RGMII, RMII or MII */
 982		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
 983		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
 984		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
 985		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
 986			rcntl |= (1 << 6);
 987		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 988			rcntl |= (1 << 8);
 989		else
 990			rcntl &= ~(1 << 8);
 991
 992		/* 1G, 100M or 10M */
 993		if (ndev->phydev) {
 994			if (ndev->phydev->speed == SPEED_1000)
 995				ecntl |= (1 << 5);
 996			else if (ndev->phydev->speed == SPEED_100)
 997				rcntl &= ~(1 << 9);
 998			else
 999				rcntl |= (1 << 9);
1000		}
1001	} else {
1002#ifdef FEC_MIIGSK_ENR
1003		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1004			u32 cfgr;
1005			/* disable the gasket and wait */
1006			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1007			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1008				udelay(1);
1009
1010			/*
1011			 * configure the gasket:
1012			 *   RMII, 50 MHz, no loopback, no echo
1013			 *   MII, 25 MHz, no loopback, no echo
1014			 */
1015			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1016				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1017			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1018				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1019			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1020
1021			/* re-enable the gasket */
1022			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1023		}
1024#endif
1025	}
1026
1027#if !defined(CONFIG_M5272)
1028	/* enable pause frame*/
1029	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1030	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1031	     ndev->phydev && ndev->phydev->pause)) {
1032		rcntl |= FEC_ENET_FCE;
1033
1034		/* set FIFO threshold parameter to reduce overrun */
1035		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1036		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1037		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1038		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1039
1040		/* OPD */
1041		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1042	} else {
1043		rcntl &= ~FEC_ENET_FCE;
1044	}
1045#endif /* !defined(CONFIG_M5272) */
1046
1047	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1048
1049	/* Setup multicast filter. */
1050	set_multicast_list(ndev);
1051#ifndef CONFIG_M5272
1052	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1053	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1054#endif
1055
1056	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1057		/* enable ENET endian swap */
1058		ecntl |= (1 << 8);
1059		/* enable ENET store and forward mode */
1060		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1061	}
1062
1063	if (fep->bufdesc_ex)
1064		ecntl |= (1 << 4);
 
 
 
 
 
 
 
1065
1066#ifndef CONFIG_M5272
1067	/* Enable the MIB statistic event counters */
1068	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1069#endif
1070
1071	/* And last, enable the transmit and receive processing */
1072	writel(ecntl, fep->hwp + FEC_ECNTRL);
1073	fec_enet_active_rxring(ndev);
1074
1075	if (fep->bufdesc_ex)
1076		fec_ptp_start_cyclecounter(ndev);
1077
1078	/* Enable interrupts we wish to service */
1079	if (fep->link)
1080		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1081	else
1082		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1083
1084	/* Init the interrupt coalescing */
1085	fec_enet_itr_coal_init(ndev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1087}
1088
1089static void
1090fec_stop(struct net_device *ndev)
1091{
1092	struct fec_enet_private *fep = netdev_priv(ndev);
1093	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1094	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1095	u32 val;
1096
1097	/* We cannot expect a graceful transmit stop without link !!! */
1098	if (fep->link) {
1099		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1100		udelay(10);
1101		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1102			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1103	}
1104
1105	/* Whack a reset.  We should wait for this.
1106	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1107	 * instead of reset MAC itself.
1108	 */
1109	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1110		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1111			writel(0, fep->hwp + FEC_ECNTRL);
1112		} else {
1113			writel(1, fep->hwp + FEC_ECNTRL);
1114			udelay(10);
1115		}
1116		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1117	} else {
1118		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1119		val = readl(fep->hwp + FEC_ECNTRL);
1120		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1121		writel(val, fep->hwp + FEC_ECNTRL);
1122
1123		if (pdata && pdata->sleep_mode_enable)
1124			pdata->sleep_mode_enable(true);
1125	}
1126	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 
1127
1128	/* We have to keep ENET enabled to have MII interrupt stay working */
1129	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1130		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1131		writel(2, fep->hwp + FEC_ECNTRL);
1132		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1133	}
1134}
1135
1136
1137static void
1138fec_timeout(struct net_device *ndev)
1139{
1140	struct fec_enet_private *fep = netdev_priv(ndev);
1141
1142	fec_dump(ndev);
1143
1144	ndev->stats.tx_errors++;
1145
1146	schedule_work(&fep->tx_timeout_work);
1147}
1148
1149static void fec_enet_timeout_work(struct work_struct *work)
1150{
1151	struct fec_enet_private *fep =
1152		container_of(work, struct fec_enet_private, tx_timeout_work);
1153	struct net_device *ndev = fep->netdev;
1154
1155	rtnl_lock();
1156	if (netif_device_present(ndev) || netif_running(ndev)) {
1157		napi_disable(&fep->napi);
1158		netif_tx_lock_bh(ndev);
1159		fec_restart(ndev);
1160		netif_wake_queue(ndev);
1161		netif_tx_unlock_bh(ndev);
1162		napi_enable(&fep->napi);
1163	}
1164	rtnl_unlock();
1165}
1166
1167static void
1168fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1169	struct skb_shared_hwtstamps *hwtstamps)
1170{
1171	unsigned long flags;
1172	u64 ns;
1173
1174	spin_lock_irqsave(&fep->tmreg_lock, flags);
1175	ns = timecounter_cyc2time(&fep->tc, ts);
1176	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1177
1178	memset(hwtstamps, 0, sizeof(*hwtstamps));
1179	hwtstamps->hwtstamp = ns_to_ktime(ns);
1180}
1181
1182static void
1183fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1184{
1185	struct	fec_enet_private *fep;
 
1186	struct bufdesc *bdp;
1187	unsigned short status;
1188	struct	sk_buff	*skb;
1189	struct fec_enet_priv_tx_q *txq;
1190	struct netdev_queue *nq;
1191	int	index = 0;
1192	int	entries_free;
 
 
1193
1194	fep = netdev_priv(ndev);
1195
1196	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1197
1198	txq = fep->tx_queue[queue_id];
1199	/* get next bdp of dirty_tx */
1200	nq = netdev_get_tx_queue(ndev, queue_id);
1201	bdp = txq->dirty_tx;
1202
1203	/* get next bdp of dirty_tx */
1204	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1205
1206	while (bdp != READ_ONCE(txq->bd.cur)) {
1207		/* Order the load of bd.cur and cbd_sc */
1208		rmb();
1209		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1210		if (status & BD_ENET_TX_READY)
1211			break;
1212
1213		index = fec_enet_get_bd_index(bdp, &txq->bd);
1214
1215		skb = txq->tx_skbuff[index];
1216		txq->tx_skbuff[index] = NULL;
1217		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1218			dma_unmap_single(&fep->pdev->dev,
1219					 fec32_to_cpu(bdp->cbd_bufaddr),
1220					 fec16_to_cpu(bdp->cbd_datlen),
1221					 DMA_TO_DEVICE);
1222		bdp->cbd_bufaddr = cpu_to_fec32(0);
1223		if (!skb)
1224			goto skb_done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1225
1226		/* Check for errors. */
1227		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1228				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1229				   BD_ENET_TX_CSL)) {
1230			ndev->stats.tx_errors++;
1231			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1232				ndev->stats.tx_heartbeat_errors++;
1233			if (status & BD_ENET_TX_LC)  /* Late collision */
1234				ndev->stats.tx_window_errors++;
1235			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1236				ndev->stats.tx_aborted_errors++;
1237			if (status & BD_ENET_TX_UN)  /* Underrun */
1238				ndev->stats.tx_fifo_errors++;
1239			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1240				ndev->stats.tx_carrier_errors++;
1241		} else {
1242			ndev->stats.tx_packets++;
1243			ndev->stats.tx_bytes += skb->len;
1244		}
1245
1246		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1247			fep->bufdesc_ex) {
1248			struct skb_shared_hwtstamps shhwtstamps;
1249			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1250
1251			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1252			skb_tstamp_tx(skb, &shhwtstamps);
 
 
1253		}
1254
1255		/* Deferred means some collisions occurred during transmit,
1256		 * but we eventually sent the packet OK.
1257		 */
1258		if (status & BD_ENET_TX_DEF)
1259			ndev->stats.collisions++;
1260
1261		/* Free the sk buffer associated with this last transmit */
1262		dev_kfree_skb_any(skb);
1263skb_done:
1264		/* Make sure the update to bdp and tx_skbuff are performed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265		 * before dirty_tx
1266		 */
1267		wmb();
1268		txq->dirty_tx = bdp;
1269
1270		/* Update pointer to next buffer descriptor to be transmitted */
1271		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1272
1273		/* Since we have freed up a buffer, the ring is no longer full
1274		 */
1275		if (netif_queue_stopped(ndev)) {
1276			entries_free = fec_enet_get_free_txdesc_num(txq);
1277			if (entries_free >= txq->tx_wake_threshold)
1278				netif_tx_wake_queue(nq);
1279		}
1280	}
1281
1282	/* ERR006358: Keep the transmitter going */
1283	if (bdp != txq->bd.cur &&
1284	    readl(txq->bd.reg_desc_active) == 0)
1285		writel(0, txq->bd.reg_desc_active);
1286}
1287
1288static void
1289fec_enet_tx(struct net_device *ndev)
1290{
1291	struct fec_enet_private *fep = netdev_priv(ndev);
1292	u16 queue_id;
1293	/* First process class A queue, then Class B and Best Effort queue */
1294	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1295		clear_bit(queue_id, &fep->work_tx);
1296		fec_enet_tx_queue(ndev, queue_id);
1297	}
1298	return;
1299}
1300
1301static int
1302fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1303{
1304	struct  fec_enet_private *fep = netdev_priv(ndev);
1305	int off;
1306
1307	off = ((unsigned long)skb->data) & fep->rx_align;
1308	if (off)
1309		skb_reserve(skb, fep->rx_align + 1 - off);
1310
1311	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1312	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1313		if (net_ratelimit())
1314			netdev_err(ndev, "Rx DMA memory map failed\n");
1315		return -ENOMEM;
1316	}
1317
1318	return 0;
 
 
1319}
1320
1321static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1322			       struct bufdesc *bdp, u32 length, bool swap)
 
1323{
1324	struct  fec_enet_private *fep = netdev_priv(ndev);
1325	struct sk_buff *new_skb;
 
 
 
1326
1327	if (length > fep->rx_copybreak)
1328		return false;
1329
1330	new_skb = netdev_alloc_skb(ndev, length);
1331	if (!new_skb)
1332		return false;
1333
1334	dma_sync_single_for_cpu(&fep->pdev->dev,
1335				fec32_to_cpu(bdp->cbd_bufaddr),
1336				FEC_ENET_RX_FRSIZE - fep->rx_align,
1337				DMA_FROM_DEVICE);
1338	if (!swap)
1339		memcpy(new_skb->data, (*skb)->data, length);
1340	else
1341		swap_buffer2(new_skb->data, (*skb)->data, length);
1342	*skb = new_skb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1343
1344	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1345}
1346
1347/* During a receive, the bd_rx.cur points to the current incoming buffer.
1348 * When we update through the ring, if the next incoming buffer has
1349 * not been given to the system, we just set the empty indicator,
1350 * effectively tossing the packet.
1351 */
1352static int
1353fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1354{
1355	struct fec_enet_private *fep = netdev_priv(ndev);
1356	struct fec_enet_priv_rx_q *rxq;
1357	struct bufdesc *bdp;
1358	unsigned short status;
1359	struct  sk_buff *skb_new = NULL;
1360	struct  sk_buff *skb;
1361	ushort	pkt_len;
1362	__u8 *data;
1363	int	pkt_received = 0;
1364	struct	bufdesc_ex *ebdp = NULL;
1365	bool	vlan_packet_rcvd = false;
1366	u16	vlan_tag;
1367	int	index = 0;
1368	bool	is_copybreak;
1369	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1370
1371#ifdef CONFIG_M532x
 
 
 
 
1372	flush_cache_all();
1373#endif
1374	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1375	rxq = fep->rx_queue[queue_id];
1376
1377	/* First, grab all of the stats for the incoming packet.
1378	 * These get messed up if we get called due to a busy condition.
1379	 */
1380	bdp = rxq->bd.cur;
 
1381
1382	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1383
1384		if (pkt_received >= budget)
1385			break;
1386		pkt_received++;
1387
1388		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1389
1390		/* Check for errors. */
1391		status ^= BD_ENET_RX_LAST;
1392		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1393			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1394			   BD_ENET_RX_CL)) {
1395			ndev->stats.rx_errors++;
1396			if (status & BD_ENET_RX_OV) {
1397				/* FIFO overrun */
1398				ndev->stats.rx_fifo_errors++;
1399				goto rx_processing_done;
1400			}
1401			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1402						| BD_ENET_RX_LAST)) {
1403				/* Frame too long or too short. */
1404				ndev->stats.rx_length_errors++;
1405				if (status & BD_ENET_RX_LAST)
1406					netdev_err(ndev, "rcv is not +last\n");
1407			}
1408			if (status & BD_ENET_RX_CR)	/* CRC Error */
1409				ndev->stats.rx_crc_errors++;
1410			/* Report late collisions as a frame error. */
1411			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1412				ndev->stats.rx_frame_errors++;
1413			goto rx_processing_done;
1414		}
1415
1416		/* Process the incoming frame. */
1417		ndev->stats.rx_packets++;
1418		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1419		ndev->stats.rx_bytes += pkt_len;
1420
1421		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1422		skb = rxq->rx_skbuff[index];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1423
1424		/* The packet length includes FCS, but we don't want to
1425		 * include that when passing upstream as it messes up
1426		 * bridging applications.
1427		 */
1428		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1429						  need_swap);
1430		if (!is_copybreak) {
1431			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1432			if (unlikely(!skb_new)) {
1433				ndev->stats.rx_dropped++;
1434				goto rx_processing_done;
1435			}
1436			dma_unmap_single(&fep->pdev->dev,
1437					 fec32_to_cpu(bdp->cbd_bufaddr),
1438					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1439					 DMA_FROM_DEVICE);
1440		}
1441
1442		prefetch(skb->data - NET_IP_ALIGN);
1443		skb_put(skb, pkt_len - 4);
1444		data = skb->data;
1445
1446		if (!is_copybreak && need_swap)
 
1447			swap_buffer(data, pkt_len);
1448
1449#if !defined(CONFIG_M5272)
1450		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1451			data = skb_pull_inline(skb, 2);
1452#endif
1453
1454		/* Extract the enhanced buffer descriptor */
1455		ebdp = NULL;
1456		if (fep->bufdesc_ex)
1457			ebdp = (struct bufdesc_ex *)bdp;
1458
1459		/* If this is a VLAN packet remove the VLAN Tag */
1460		vlan_packet_rcvd = false;
1461		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1462		    fep->bufdesc_ex &&
1463		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1464			/* Push and remove the vlan tag */
1465			struct vlan_hdr *vlan_header =
1466					(struct vlan_hdr *) (data + ETH_HLEN);
1467			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1468
1469			vlan_packet_rcvd = true;
1470
1471			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1472			skb_pull(skb, VLAN_HLEN);
1473		}
1474
1475		skb->protocol = eth_type_trans(skb, ndev);
1476
1477		/* Get receive timestamp from the skb */
1478		if (fep->hwts_rx_en && fep->bufdesc_ex)
1479			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1480					  skb_hwtstamps(skb));
1481
1482		if (fep->bufdesc_ex &&
1483		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1484			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1485				/* don't check it */
1486				skb->ip_summed = CHECKSUM_UNNECESSARY;
1487			} else {
1488				skb_checksum_none_assert(skb);
1489			}
1490		}
1491
1492		/* Handle received VLAN packets */
1493		if (vlan_packet_rcvd)
1494			__vlan_hwaccel_put_tag(skb,
1495					       htons(ETH_P_8021Q),
1496					       vlan_tag);
1497
 
1498		napi_gro_receive(&fep->napi, skb);
1499
1500		if (is_copybreak) {
1501			dma_sync_single_for_device(&fep->pdev->dev,
1502						   fec32_to_cpu(bdp->cbd_bufaddr),
1503						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1504						   DMA_FROM_DEVICE);
1505		} else {
1506			rxq->rx_skbuff[index] = skb_new;
1507			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1508		}
1509
1510rx_processing_done:
1511		/* Clear the status flags for this buffer */
1512		status &= ~BD_ENET_RX_STATS;
1513
1514		/* Mark the buffer empty */
1515		status |= BD_ENET_RX_EMPTY;
1516
1517		if (fep->bufdesc_ex) {
1518			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1519
1520			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1521			ebdp->cbd_prot = 0;
1522			ebdp->cbd_bdu = 0;
1523		}
1524		/* Make sure the updates to rest of the descriptor are
1525		 * performed before transferring ownership.
1526		 */
1527		wmb();
1528		bdp->cbd_sc = cpu_to_fec16(status);
1529
1530		/* Update BD pointer to next entry */
1531		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1532
1533		/* Doing this here will keep the FEC running while we process
1534		 * incoming frames.  On a heavily loaded network, we should be
1535		 * able to keep up at the expense of system resources.
1536		 */
1537		writel(0, rxq->bd.reg_desc_active);
1538	}
1539	rxq->bd.cur = bdp;
 
 
 
 
1540	return pkt_received;
1541}
1542
1543static int
1544fec_enet_rx(struct net_device *ndev, int budget)
1545{
1546	int     pkt_received = 0;
1547	u16	queue_id;
1548	struct fec_enet_private *fep = netdev_priv(ndev);
 
1549
1550	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1551		int ret;
1552
1553		ret = fec_enet_rx_queue(ndev,
1554					budget - pkt_received, queue_id);
1555
1556		if (ret < budget - pkt_received)
1557			clear_bit(queue_id, &fep->work_rx);
1558
1559		pkt_received += ret;
1560	}
1561	return pkt_received;
1562}
1563
1564static bool
1565fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1566{
1567	if (int_events == 0)
1568		return false;
 
1569
1570	if (int_events & FEC_ENET_RXF_0)
1571		fep->work_rx |= (1 << 2);
1572	if (int_events & FEC_ENET_RXF_1)
1573		fep->work_rx |= (1 << 0);
1574	if (int_events & FEC_ENET_RXF_2)
1575		fep->work_rx |= (1 << 1);
1576
1577	if (int_events & FEC_ENET_TXF_0)
1578		fep->work_tx |= (1 << 2);
1579	if (int_events & FEC_ENET_TXF_1)
1580		fep->work_tx |= (1 << 0);
1581	if (int_events & FEC_ENET_TXF_2)
1582		fep->work_tx |= (1 << 1);
1583
1584	return true;
 
 
1585}
1586
1587static irqreturn_t
1588fec_enet_interrupt(int irq, void *dev_id)
1589{
1590	struct net_device *ndev = dev_id;
1591	struct fec_enet_private *fep = netdev_priv(ndev);
1592	uint int_events;
1593	irqreturn_t ret = IRQ_NONE;
1594
1595	int_events = readl(fep->hwp + FEC_IEVENT);
1596	writel(int_events, fep->hwp + FEC_IEVENT);
1597	fec_enet_collect_events(fep, int_events);
1598
1599	if ((fep->work_tx || fep->work_rx) && fep->link) {
1600		ret = IRQ_HANDLED;
1601
1602		if (napi_schedule_prep(&fep->napi)) {
1603			/* Disable the NAPI interrupts */
1604			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1605			__napi_schedule(&fep->napi);
1606		}
1607	}
1608
1609	if (int_events & FEC_ENET_MII) {
1610		ret = IRQ_HANDLED;
1611		complete(&fep->mdio_done);
1612	}
1613	return ret;
1614}
1615
1616static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1617{
1618	struct net_device *ndev = napi->dev;
1619	struct fec_enet_private *fep = netdev_priv(ndev);
1620	int pkts;
1621
1622	pkts = fec_enet_rx(ndev, budget);
1623
1624	fec_enet_tx(ndev);
 
 
 
1625
1626	if (pkts < budget) {
1627		napi_complete_done(napi, pkts);
1628		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1629	}
1630	return pkts;
 
1631}
1632
1633/* ------------------------------------------------------------------------- */
1634static void fec_get_mac(struct net_device *ndev)
1635{
1636	struct fec_enet_private *fep = netdev_priv(ndev);
1637	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1638	unsigned char *iap, tmpaddr[ETH_ALEN];
 
1639
1640	/*
1641	 * try to get mac address in following order:
1642	 *
1643	 * 1) module parameter via kernel command line in form
1644	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1645	 */
1646	iap = macaddr;
1647
1648	/*
1649	 * 2) from device tree data
1650	 */
1651	if (!is_valid_ether_addr(iap)) {
1652		struct device_node *np = fep->pdev->dev.of_node;
1653		if (np) {
1654			const char *mac = of_get_mac_address(np);
1655			if (mac)
1656				iap = (unsigned char *) mac;
 
 
1657		}
1658	}
1659
1660	/*
1661	 * 3) from flash or fuse (via platform data)
1662	 */
1663	if (!is_valid_ether_addr(iap)) {
1664#ifdef CONFIG_M5272
1665		if (FEC_FLASHMAC)
1666			iap = (unsigned char *)FEC_FLASHMAC;
1667#else
 
 
1668		if (pdata)
1669			iap = (unsigned char *)&pdata->mac;
1670#endif
1671	}
1672
1673	/*
1674	 * 4) FEC mac registers set by bootloader
1675	 */
1676	if (!is_valid_ether_addr(iap)) {
1677		*((__be32 *) &tmpaddr[0]) =
1678			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1679		*((__be16 *) &tmpaddr[4]) =
1680			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1681		iap = &tmpaddr[0];
1682	}
1683
1684	/*
1685	 * 5) random mac address
1686	 */
1687	if (!is_valid_ether_addr(iap)) {
1688		/* Report it and use a random ethernet address instead */
1689		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1690		eth_hw_addr_random(ndev);
1691		netdev_info(ndev, "Using random MAC address: %pM\n",
1692			    ndev->dev_addr);
1693		return;
1694	}
1695
1696	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1697
1698	/* Adjust MAC if using macaddr */
1699	if (iap == macaddr)
1700		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
 
1701}
1702
1703/* ------------------------------------------------------------------------- */
1704
1705/*
1706 * Phy section
1707 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708static void fec_enet_adjust_link(struct net_device *ndev)
1709{
1710	struct fec_enet_private *fep = netdev_priv(ndev);
1711	struct phy_device *phy_dev = ndev->phydev;
1712	int status_change = 0;
1713
1714	/* Prevent a state halted on mii error */
1715	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1716		phy_dev->state = PHY_RESUMING;
1717		return;
1718	}
1719
1720	/*
1721	 * If the netdev is down, or is going down, we're not interested
1722	 * in link state events, so just mark our idea of the link as down
1723	 * and ignore the event.
1724	 */
1725	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1726		fep->link = 0;
1727	} else if (phy_dev->link) {
1728		if (!fep->link) {
1729			fep->link = phy_dev->link;
1730			status_change = 1;
1731		}
1732
1733		if (fep->full_duplex != phy_dev->duplex) {
1734			fep->full_duplex = phy_dev->duplex;
1735			status_change = 1;
1736		}
1737
1738		if (phy_dev->speed != fep->speed) {
1739			fep->speed = phy_dev->speed;
1740			status_change = 1;
1741		}
1742
1743		/* if any of the above changed restart the FEC */
1744		if (status_change) {
 
1745			napi_disable(&fep->napi);
1746			netif_tx_lock_bh(ndev);
1747			fec_restart(ndev);
1748			netif_wake_queue(ndev);
1749			netif_tx_unlock_bh(ndev);
1750			napi_enable(&fep->napi);
1751		}
 
 
1752	} else {
1753		if (fep->link) {
 
1754			napi_disable(&fep->napi);
1755			netif_tx_lock_bh(ndev);
1756			fec_stop(ndev);
1757			netif_tx_unlock_bh(ndev);
1758			napi_enable(&fep->napi);
1759			fep->link = phy_dev->link;
1760			status_change = 1;
1761		}
1762	}
1763
1764	if (status_change)
1765		phy_print_status(phy_dev);
1766}
1767
1768static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1769{
1770	struct fec_enet_private *fep = bus->priv;
1771	struct device *dev = &fep->pdev->dev;
1772	unsigned long time_left;
1773	int ret = 0;
1774
1775	ret = pm_runtime_get_sync(dev);
1776	if (ret < 0)
1777		return ret;
1778
1779	fep->mii_timeout = 0;
1780	reinit_completion(&fep->mdio_done);
 
 
1781
1782	/* start a read op */
1783	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1784		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1785		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1786
1787	/* wait for end of transfer */
1788	time_left = wait_for_completion_timeout(&fep->mdio_done,
1789			usecs_to_jiffies(FEC_MII_TIMEOUT));
1790	if (time_left == 0) {
1791		fep->mii_timeout = 1;
1792		netdev_err(fep->netdev, "MDIO read timeout\n");
1793		ret = -ETIMEDOUT;
1794		goto out;
1795	}
1796
1797	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1798
1799out:
1800	pm_runtime_mark_last_busy(dev);
1801	pm_runtime_put_autosuspend(dev);
1802
1803	return ret;
1804}
1805
1806static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1807			   u16 value)
1808{
1809	struct fec_enet_private *fep = bus->priv;
1810	struct device *dev = &fep->pdev->dev;
1811	unsigned long time_left;
1812	int ret;
1813
1814	ret = pm_runtime_get_sync(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815	if (ret < 0)
1816		return ret;
1817	else
1818		ret = 0;
1819
1820	fep->mii_timeout = 0;
1821	reinit_completion(&fep->mdio_done);
 
1822
1823	/* start a write op */
1824	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1825		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1826		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1827		fep->hwp + FEC_MII_DATA);
1828
1829	/* wait for end of transfer */
1830	time_left = wait_for_completion_timeout(&fep->mdio_done,
1831			usecs_to_jiffies(FEC_MII_TIMEOUT));
1832	if (time_left == 0) {
1833		fep->mii_timeout = 1;
1834		netdev_err(fep->netdev, "MDIO write timeout\n");
1835		ret  = -ETIMEDOUT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1836	}
1837
 
 
 
 
 
 
 
 
 
 
 
 
1838	pm_runtime_mark_last_busy(dev);
1839	pm_runtime_put_autosuspend(dev);
1840
1841	return ret;
1842}
1843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1844static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1845{
1846	struct fec_enet_private *fep = netdev_priv(ndev);
1847	int ret;
1848
1849	if (enable) {
1850		ret = clk_prepare_enable(fep->clk_ahb);
1851		if (ret)
1852			return ret;
1853
1854		ret = clk_prepare_enable(fep->clk_enet_out);
1855		if (ret)
1856			goto failed_clk_enet_out;
1857
1858		if (fep->clk_ptp) {
1859			mutex_lock(&fep->ptp_clk_mutex);
1860			ret = clk_prepare_enable(fep->clk_ptp);
1861			if (ret) {
1862				mutex_unlock(&fep->ptp_clk_mutex);
1863				goto failed_clk_ptp;
1864			} else {
1865				fep->ptp_clk_on = true;
1866			}
1867			mutex_unlock(&fep->ptp_clk_mutex);
1868		}
1869
1870		ret = clk_prepare_enable(fep->clk_ref);
1871		if (ret)
1872			goto failed_clk_ref;
1873
1874		phy_reset_after_clk_enable(ndev->phydev);
 
 
 
 
1875	} else {
1876		clk_disable_unprepare(fep->clk_ahb);
1877		clk_disable_unprepare(fep->clk_enet_out);
1878		if (fep->clk_ptp) {
1879			mutex_lock(&fep->ptp_clk_mutex);
1880			clk_disable_unprepare(fep->clk_ptp);
1881			fep->ptp_clk_on = false;
1882			mutex_unlock(&fep->ptp_clk_mutex);
1883		}
1884		clk_disable_unprepare(fep->clk_ref);
 
1885	}
1886
1887	return 0;
1888
1889failed_clk_ref:
1890	if (fep->clk_ref)
1891		clk_disable_unprepare(fep->clk_ref);
 
 
 
 
 
 
 
1892failed_clk_ptp:
1893	if (fep->clk_enet_out)
1894		clk_disable_unprepare(fep->clk_enet_out);
1895failed_clk_enet_out:
1896		clk_disable_unprepare(fep->clk_ahb);
1897
1898	return ret;
1899}
1900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1901static int fec_enet_mii_probe(struct net_device *ndev)
1902{
1903	struct fec_enet_private *fep = netdev_priv(ndev);
1904	struct phy_device *phy_dev = NULL;
1905	char mdio_bus_id[MII_BUS_ID_SIZE];
1906	char phy_name[MII_BUS_ID_SIZE + 3];
1907	int phy_id;
1908	int dev_id = fep->dev_id;
1909
1910	if (fep->phy_node) {
1911		phy_dev = of_phy_connect(ndev, fep->phy_node,
1912					 &fec_enet_adjust_link, 0,
1913					 fep->phy_interface);
1914		if (!phy_dev) {
1915			netdev_err(ndev, "Unable to connect to phy\n");
1916			return -ENODEV;
1917		}
1918	} else {
1919		/* check for attached phy */
1920		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1921			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1922				continue;
1923			if (dev_id--)
1924				continue;
1925			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1926			break;
1927		}
1928
1929		if (phy_id >= PHY_MAX_ADDR) {
1930			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1931			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1932			phy_id = 0;
1933		}
1934
1935		snprintf(phy_name, sizeof(phy_name),
1936			 PHY_ID_FMT, mdio_bus_id, phy_id);
1937		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1938				      fep->phy_interface);
1939	}
1940
1941	if (IS_ERR(phy_dev)) {
1942		netdev_err(ndev, "could not attach to PHY\n");
1943		return PTR_ERR(phy_dev);
1944	}
1945
1946	/* mask with MAC supported features */
1947	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1948		phy_dev->supported &= PHY_GBIT_FEATURES;
1949		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
 
1950#if !defined(CONFIG_M5272)
1951		phy_dev->supported |= SUPPORTED_Pause;
1952#endif
1953	}
1954	else
1955		phy_dev->supported &= PHY_BASIC_FEATURES;
1956
1957	phy_dev->advertising = phy_dev->supported;
 
1958
1959	fep->link = 0;
1960	fep->full_duplex = 0;
1961
1962	phy_attached_info(phy_dev);
1963
1964	return 0;
1965}
1966
1967static int fec_enet_mii_init(struct platform_device *pdev)
1968{
1969	static struct mii_bus *fec0_mii_bus;
1970	struct net_device *ndev = platform_get_drvdata(pdev);
1971	struct fec_enet_private *fep = netdev_priv(ndev);
 
 
1972	struct device_node *node;
1973	int err = -ENXIO;
1974	u32 mii_speed, holdtime;
 
 
1975
1976	/*
1977	 * The i.MX28 dual fec interfaces are not equal.
1978	 * Here are the differences:
1979	 *
1980	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1981	 *  - fec0 acts as the 1588 time master while fec1 is slave
1982	 *  - external phys can only be configured by fec0
1983	 *
1984	 * That is to say fec1 can not work independently. It only works
1985	 * when fec0 is working. The reason behind this design is that the
1986	 * second interface is added primarily for Switch mode.
1987	 *
1988	 * Because of the last point above, both phys are attached on fec0
1989	 * mdio interface in board design, and need to be configured by
1990	 * fec0 mii_bus.
1991	 */
1992	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1993		/* fec1 uses fec0 mii_bus */
1994		if (mii_cnt && fec0_mii_bus) {
1995			fep->mii_bus = fec0_mii_bus;
1996			mii_cnt++;
1997			return 0;
1998		}
1999		return -ENOENT;
2000	}
2001
2002	fep->mii_timeout = 0;
 
 
 
 
 
 
2003
2004	/*
2005	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2006	 *
2007	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2008	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2009	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2010	 * document.
2011	 */
2012	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2013	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2014		mii_speed--;
2015	if (mii_speed > 63) {
2016		dev_err(&pdev->dev,
2017			"fec clock (%lu) too fast to get right mii speed\n",
2018			clk_get_rate(fep->clk_ipg));
2019		err = -EINVAL;
2020		goto err_out;
2021	}
2022
2023	/*
2024	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2025	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2026	 * versions are RAZ there, so just ignore the difference and write the
2027	 * register always.
2028	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2029	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2030	 * output.
2031	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2032	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2033	 * holdtime cannot result in a value greater than 3.
2034	 */
2035	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2036
2037	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2039	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2040
 
 
 
2041	fep->mii_bus = mdiobus_alloc();
2042	if (fep->mii_bus == NULL) {
2043		err = -ENOMEM;
2044		goto err_out;
2045	}
2046
2047	fep->mii_bus->name = "fec_enet_mii_bus";
2048	fep->mii_bus->read = fec_enet_mdio_read;
2049	fep->mii_bus->write = fec_enet_mdio_write;
 
 
 
 
2050	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2051		pdev->name, fep->dev_id + 1);
2052	fep->mii_bus->priv = fep;
2053	fep->mii_bus->parent = &pdev->dev;
2054
2055	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2056	if (node) {
2057		err = of_mdiobus_register(fep->mii_bus, node);
2058		of_node_put(node);
2059	} else {
2060		err = mdiobus_register(fep->mii_bus);
2061	}
2062
2063	if (err)
2064		goto err_out_free_mdiobus;
 
 
 
 
 
 
 
 
2065
2066	mii_cnt++;
2067
2068	/* save fec0 mii_bus */
2069	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2070		fec0_mii_bus = fep->mii_bus;
2071
2072	return 0;
2073
2074err_out_free_mdiobus:
2075	mdiobus_free(fep->mii_bus);
2076err_out:
 
2077	return err;
2078}
2079
2080static void fec_enet_mii_remove(struct fec_enet_private *fep)
2081{
2082	if (--mii_cnt == 0) {
2083		mdiobus_unregister(fep->mii_bus);
2084		mdiobus_free(fep->mii_bus);
2085	}
2086}
2087
2088static void fec_enet_get_drvinfo(struct net_device *ndev,
2089				 struct ethtool_drvinfo *info)
2090{
2091	struct fec_enet_private *fep = netdev_priv(ndev);
2092
2093	strlcpy(info->driver, fep->pdev->dev.driver->name,
2094		sizeof(info->driver));
2095	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2096	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2097}
2098
2099static int fec_enet_get_regs_len(struct net_device *ndev)
2100{
2101	struct fec_enet_private *fep = netdev_priv(ndev);
2102	struct resource *r;
2103	int s = 0;
2104
2105	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2106	if (r)
2107		s = resource_size(r);
2108
2109	return s;
2110}
2111
2112/* List of registers that can be safety be read to dump them with ethtool */
2113#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2114	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2115	defined(CONFIG_ARM64)
 
2116static u32 fec_enet_register_offset[] = {
2117	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2118	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2119	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2120	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2121	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2122	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2123	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2124	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2125	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2126	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2127	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2128	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2129	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2130	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2131	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2132	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2133	RMON_T_P_GTE2048, RMON_T_OCTETS,
2134	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2135	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2136	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2137	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2138	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2139	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2140	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2141	RMON_R_P_GTE2048, RMON_R_OCTETS,
2142	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2143	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2144};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145#else
 
2146static u32 fec_enet_register_offset[] = {
2147	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2148	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2149	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2150	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2151	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2152	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2153	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2154	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2155	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2156};
2157#endif
2158
2159static void fec_enet_get_regs(struct net_device *ndev,
2160			      struct ethtool_regs *regs, void *regbuf)
2161{
2162	struct fec_enet_private *fep = netdev_priv(ndev);
2163	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
 
2164	u32 *buf = (u32 *)regbuf;
2165	u32 i, off;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2166
2167	memset(buf, 0, regs->len);
2168
2169	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2170		off = fec_enet_register_offset[i] / 4;
 
 
 
 
 
 
2171		buf[off] = readl(&theregs[off]);
2172	}
 
 
 
2173}
2174
2175static int fec_enet_get_ts_info(struct net_device *ndev,
2176				struct ethtool_ts_info *info)
2177{
2178	struct fec_enet_private *fep = netdev_priv(ndev);
2179
2180	if (fep->bufdesc_ex) {
2181
2182		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2183					SOF_TIMESTAMPING_RX_SOFTWARE |
2184					SOF_TIMESTAMPING_SOFTWARE |
2185					SOF_TIMESTAMPING_TX_HARDWARE |
2186					SOF_TIMESTAMPING_RX_HARDWARE |
2187					SOF_TIMESTAMPING_RAW_HARDWARE;
2188		if (fep->ptp_clock)
2189			info->phc_index = ptp_clock_index(fep->ptp_clock);
2190		else
2191			info->phc_index = -1;
2192
2193		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2194				 (1 << HWTSTAMP_TX_ON);
2195
2196		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2197				   (1 << HWTSTAMP_FILTER_ALL);
2198		return 0;
2199	} else {
2200		return ethtool_op_get_ts_info(ndev, info);
2201	}
2202}
2203
2204#if !defined(CONFIG_M5272)
2205
2206static void fec_enet_get_pauseparam(struct net_device *ndev,
2207				    struct ethtool_pauseparam *pause)
2208{
2209	struct fec_enet_private *fep = netdev_priv(ndev);
2210
2211	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2212	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2213	pause->rx_pause = pause->tx_pause;
2214}
2215
2216static int fec_enet_set_pauseparam(struct net_device *ndev,
2217				   struct ethtool_pauseparam *pause)
2218{
2219	struct fec_enet_private *fep = netdev_priv(ndev);
2220
2221	if (!ndev->phydev)
2222		return -ENODEV;
2223
2224	if (pause->tx_pause != pause->rx_pause) {
2225		netdev_info(ndev,
2226			"hardware only support enable/disable both tx and rx");
2227		return -EINVAL;
2228	}
2229
2230	fep->pause_flag = 0;
2231
2232	/* tx pause must be same as rx pause */
2233	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2234	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2235
2236	if (pause->rx_pause || pause->autoneg) {
2237		ndev->phydev->supported |= ADVERTISED_Pause;
2238		ndev->phydev->advertising |= ADVERTISED_Pause;
2239	} else {
2240		ndev->phydev->supported &= ~ADVERTISED_Pause;
2241		ndev->phydev->advertising &= ~ADVERTISED_Pause;
2242	}
2243
2244	if (pause->autoneg) {
2245		if (netif_running(ndev))
2246			fec_stop(ndev);
2247		phy_start_aneg(ndev->phydev);
2248	}
2249	if (netif_running(ndev)) {
2250		napi_disable(&fep->napi);
2251		netif_tx_lock_bh(ndev);
2252		fec_restart(ndev);
2253		netif_wake_queue(ndev);
2254		netif_tx_unlock_bh(ndev);
2255		napi_enable(&fep->napi);
2256	}
2257
2258	return 0;
2259}
2260
2261static const struct fec_stat {
2262	char name[ETH_GSTRING_LEN];
2263	u16 offset;
2264} fec_stats[] = {
2265	/* RMON TX */
2266	{ "tx_dropped", RMON_T_DROP },
2267	{ "tx_packets", RMON_T_PACKETS },
2268	{ "tx_broadcast", RMON_T_BC_PKT },
2269	{ "tx_multicast", RMON_T_MC_PKT },
2270	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2271	{ "tx_undersize", RMON_T_UNDERSIZE },
2272	{ "tx_oversize", RMON_T_OVERSIZE },
2273	{ "tx_fragment", RMON_T_FRAG },
2274	{ "tx_jabber", RMON_T_JAB },
2275	{ "tx_collision", RMON_T_COL },
2276	{ "tx_64byte", RMON_T_P64 },
2277	{ "tx_65to127byte", RMON_T_P65TO127 },
2278	{ "tx_128to255byte", RMON_T_P128TO255 },
2279	{ "tx_256to511byte", RMON_T_P256TO511 },
2280	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2281	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2282	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2283	{ "tx_octets", RMON_T_OCTETS },
2284
2285	/* IEEE TX */
2286	{ "IEEE_tx_drop", IEEE_T_DROP },
2287	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2288	{ "IEEE_tx_1col", IEEE_T_1COL },
2289	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2290	{ "IEEE_tx_def", IEEE_T_DEF },
2291	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2292	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2293	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2294	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2295	{ "IEEE_tx_sqe", IEEE_T_SQE },
2296	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2297	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2298
2299	/* RMON RX */
2300	{ "rx_packets", RMON_R_PACKETS },
2301	{ "rx_broadcast", RMON_R_BC_PKT },
2302	{ "rx_multicast", RMON_R_MC_PKT },
2303	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2304	{ "rx_undersize", RMON_R_UNDERSIZE },
2305	{ "rx_oversize", RMON_R_OVERSIZE },
2306	{ "rx_fragment", RMON_R_FRAG },
2307	{ "rx_jabber", RMON_R_JAB },
2308	{ "rx_64byte", RMON_R_P64 },
2309	{ "rx_65to127byte", RMON_R_P65TO127 },
2310	{ "rx_128to255byte", RMON_R_P128TO255 },
2311	{ "rx_256to511byte", RMON_R_P256TO511 },
2312	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2313	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2314	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2315	{ "rx_octets", RMON_R_OCTETS },
2316
2317	/* IEEE RX */
2318	{ "IEEE_rx_drop", IEEE_R_DROP },
2319	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2320	{ "IEEE_rx_crc", IEEE_R_CRC },
2321	{ "IEEE_rx_align", IEEE_R_ALIGN },
2322	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2323	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2324	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2325};
2326
2327#define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2328
 
 
 
 
 
 
 
 
 
 
2329static void fec_enet_update_ethtool_stats(struct net_device *dev)
2330{
2331	struct fec_enet_private *fep = netdev_priv(dev);
2332	int i;
2333
2334	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2335		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2336}
2337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2338static void fec_enet_get_ethtool_stats(struct net_device *dev,
2339				       struct ethtool_stats *stats, u64 *data)
2340{
2341	struct fec_enet_private *fep = netdev_priv(dev);
2342
2343	if (netif_running(dev))
2344		fec_enet_update_ethtool_stats(dev);
2345
2346	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
 
 
 
 
 
 
2347}
2348
2349static void fec_enet_get_strings(struct net_device *netdev,
2350	u32 stringset, u8 *data)
2351{
2352	int i;
2353	switch (stringset) {
2354	case ETH_SS_STATS:
2355		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2356			memcpy(data + i * ETH_GSTRING_LEN,
2357				fec_stats[i].name, ETH_GSTRING_LEN);
 
 
 
 
 
 
 
 
2358		break;
2359	}
2360}
2361
2362static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2363{
 
 
2364	switch (sset) {
2365	case ETH_SS_STATS:
2366		return ARRAY_SIZE(fec_stats);
 
 
 
 
 
2367	default:
2368		return -EOPNOTSUPP;
2369	}
2370}
2371
2372static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2373{
2374	struct fec_enet_private *fep = netdev_priv(dev);
2375	int i;
 
2376
2377	/* Disable MIB statistics counters */
2378	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2379
2380	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2381		writel(0, fep->hwp + fec_stats[i].offset);
2382
 
 
 
 
 
 
2383	/* Don't disable MIB statistics counters */
2384	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2385}
2386
2387#else	/* !defined(CONFIG_M5272) */
2388#define FEC_STATS_SIZE	0
2389static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2390{
2391}
2392
2393static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2394{
2395}
2396#endif /* !defined(CONFIG_M5272) */
2397
2398/* ITR clock source is enet system clock (clk_ahb).
2399 * TCTT unit is cycle_ns * 64 cycle
2400 * So, the ICTT value = X us / (cycle_ns * 64)
2401 */
2402static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2403{
2404	struct fec_enet_private *fep = netdev_priv(ndev);
2405
2406	return us * (fep->itr_clk_rate / 64000) / 1000;
2407}
2408
2409/* Set threshold for interrupt coalescing */
2410static void fec_enet_itr_coal_set(struct net_device *ndev)
2411{
2412	struct fec_enet_private *fep = netdev_priv(ndev);
2413	int rx_itr, tx_itr;
2414
2415	/* Must be greater than zero to avoid unpredictable behavior */
2416	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2417	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2418		return;
2419
2420	/* Select enet system clock as Interrupt Coalescing
2421	 * timer Clock Source
2422	 */
2423	rx_itr = FEC_ITR_CLK_SEL;
2424	tx_itr = FEC_ITR_CLK_SEL;
2425
2426	/* set ICFT and ICTT */
2427	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2428	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2429	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2430	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2431
2432	rx_itr |= FEC_ITR_EN;
2433	tx_itr |= FEC_ITR_EN;
2434
2435	writel(tx_itr, fep->hwp + FEC_TXIC0);
2436	writel(rx_itr, fep->hwp + FEC_RXIC0);
2437	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2438		writel(tx_itr, fep->hwp + FEC_TXIC1);
2439		writel(rx_itr, fep->hwp + FEC_RXIC1);
2440		writel(tx_itr, fep->hwp + FEC_TXIC2);
2441		writel(rx_itr, fep->hwp + FEC_RXIC2);
2442	}
2443}
2444
2445static int
2446fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
 
 
2447{
2448	struct fec_enet_private *fep = netdev_priv(ndev);
2449
2450	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2451		return -EOPNOTSUPP;
2452
2453	ec->rx_coalesce_usecs = fep->rx_time_itr;
2454	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2455
2456	ec->tx_coalesce_usecs = fep->tx_time_itr;
2457	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2458
2459	return 0;
2460}
2461
2462static int
2463fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
 
 
2464{
2465	struct fec_enet_private *fep = netdev_priv(ndev);
 
2466	unsigned int cycle;
2467
2468	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2469		return -EOPNOTSUPP;
2470
2471	if (ec->rx_max_coalesced_frames > 255) {
2472		pr_err("Rx coalesced frames exceed hardware limitation\n");
2473		return -EINVAL;
2474	}
2475
2476	if (ec->tx_max_coalesced_frames > 255) {
2477		pr_err("Tx coalesced frame exceed hardware limitation\n");
2478		return -EINVAL;
2479	}
2480
2481	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2482	if (cycle > 0xFFFF) {
2483		pr_err("Rx coalesced usec exceed hardware limitation\n");
2484		return -EINVAL;
2485	}
2486
2487	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2488	if (cycle > 0xFFFF) {
2489		pr_err("Rx coalesced usec exceed hardware limitation\n");
2490		return -EINVAL;
2491	}
2492
2493	fep->rx_time_itr = ec->rx_coalesce_usecs;
2494	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2495
2496	fep->tx_time_itr = ec->tx_coalesce_usecs;
2497	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2498
2499	fec_enet_itr_coal_set(ndev);
2500
2501	return 0;
2502}
2503
2504static void fec_enet_itr_coal_init(struct net_device *ndev)
 
2505{
2506	struct ethtool_coalesce ec;
 
2507
2508	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2509	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2510
2511	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2512	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
 
 
2513
2514	fec_enet_set_coalesce(ndev, &ec);
2515}
2516
2517static int fec_enet_get_tunable(struct net_device *netdev,
2518				const struct ethtool_tunable *tuna,
2519				void *data)
2520{
2521	struct fec_enet_private *fep = netdev_priv(netdev);
2522	int ret = 0;
2523
2524	switch (tuna->id) {
2525	case ETHTOOL_RX_COPYBREAK:
2526		*(u32 *)data = fep->rx_copybreak;
2527		break;
2528	default:
2529		ret = -EINVAL;
2530		break;
2531	}
2532
2533	return ret;
2534}
2535
2536static int fec_enet_set_tunable(struct net_device *netdev,
2537				const struct ethtool_tunable *tuna,
2538				const void *data)
2539{
2540	struct fec_enet_private *fep = netdev_priv(netdev);
2541	int ret = 0;
2542
2543	switch (tuna->id) {
2544	case ETHTOOL_RX_COPYBREAK:
2545		fep->rx_copybreak = *(u32 *)data;
2546		break;
2547	default:
2548		ret = -EINVAL;
2549		break;
2550	}
2551
2552	return ret;
2553}
2554
2555static void
2556fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2557{
2558	struct fec_enet_private *fep = netdev_priv(ndev);
2559
2560	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2561		wol->supported = WAKE_MAGIC;
2562		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2563	} else {
2564		wol->supported = wol->wolopts = 0;
2565	}
2566}
2567
2568static int
2569fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2570{
2571	struct fec_enet_private *fep = netdev_priv(ndev);
2572
2573	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2574		return -EINVAL;
2575
2576	if (wol->wolopts & ~WAKE_MAGIC)
2577		return -EINVAL;
2578
2579	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2580	if (device_may_wakeup(&ndev->dev)) {
2581		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2582		if (fep->irq[0] > 0)
2583			enable_irq_wake(fep->irq[0]);
2584	} else {
2585		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2586		if (fep->irq[0] > 0)
2587			disable_irq_wake(fep->irq[0]);
2588	}
2589
2590	return 0;
2591}
2592
2593static const struct ethtool_ops fec_enet_ethtool_ops = {
 
 
2594	.get_drvinfo		= fec_enet_get_drvinfo,
2595	.get_regs_len		= fec_enet_get_regs_len,
2596	.get_regs		= fec_enet_get_regs,
2597	.nway_reset		= phy_ethtool_nway_reset,
2598	.get_link		= ethtool_op_get_link,
2599	.get_coalesce		= fec_enet_get_coalesce,
2600	.set_coalesce		= fec_enet_set_coalesce,
2601#ifndef CONFIG_M5272
2602	.get_pauseparam		= fec_enet_get_pauseparam,
2603	.set_pauseparam		= fec_enet_set_pauseparam,
2604	.get_strings		= fec_enet_get_strings,
2605	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2606	.get_sset_count		= fec_enet_get_sset_count,
2607#endif
2608	.get_ts_info		= fec_enet_get_ts_info,
2609	.get_tunable		= fec_enet_get_tunable,
2610	.set_tunable		= fec_enet_set_tunable,
2611	.get_wol		= fec_enet_get_wol,
2612	.set_wol		= fec_enet_set_wol,
 
 
2613	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2614	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
 
2615};
2616
2617static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2618{
2619	struct fec_enet_private *fep = netdev_priv(ndev);
2620	struct phy_device *phydev = ndev->phydev;
2621
2622	if (!netif_running(ndev))
2623		return -EINVAL;
2624
2625	if (!phydev)
2626		return -ENODEV;
2627
2628	if (fep->bufdesc_ex) {
2629		if (cmd == SIOCSHWTSTAMP)
2630			return fec_ptp_set(ndev, rq);
2631		if (cmd == SIOCGHWTSTAMP)
2632			return fec_ptp_get(ndev, rq);
2633	}
2634
2635	return phy_mii_ioctl(phydev, rq, cmd);
2636}
2637
2638static void fec_enet_free_buffers(struct net_device *ndev)
2639{
2640	struct fec_enet_private *fep = netdev_priv(ndev);
2641	unsigned int i;
2642	struct sk_buff *skb;
2643	struct bufdesc	*bdp;
2644	struct fec_enet_priv_tx_q *txq;
2645	struct fec_enet_priv_rx_q *rxq;
2646	unsigned int q;
2647
2648	for (q = 0; q < fep->num_rx_queues; q++) {
2649		rxq = fep->rx_queue[q];
2650		bdp = rxq->bd.base;
2651		for (i = 0; i < rxq->bd.ring_size; i++) {
2652			skb = rxq->rx_skbuff[i];
2653			rxq->rx_skbuff[i] = NULL;
2654			if (skb) {
2655				dma_unmap_single(&fep->pdev->dev,
2656						 fec32_to_cpu(bdp->cbd_bufaddr),
2657						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2658						 DMA_FROM_DEVICE);
2659				dev_kfree_skb(skb);
2660			}
2661			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2662		}
2663	}
2664
2665	for (q = 0; q < fep->num_tx_queues; q++) {
2666		txq = fep->tx_queue[q];
2667		bdp = txq->bd.base;
2668		for (i = 0; i < txq->bd.ring_size; i++) {
2669			kfree(txq->tx_bounce[i]);
2670			txq->tx_bounce[i] = NULL;
2671			skb = txq->tx_skbuff[i];
2672			txq->tx_skbuff[i] = NULL;
2673			dev_kfree_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2674		}
2675	}
2676}
2677
2678static void fec_enet_free_queue(struct net_device *ndev)
2679{
2680	struct fec_enet_private *fep = netdev_priv(ndev);
2681	int i;
2682	struct fec_enet_priv_tx_q *txq;
2683
2684	for (i = 0; i < fep->num_tx_queues; i++)
2685		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2686			txq = fep->tx_queue[i];
2687			dma_free_coherent(&fep->pdev->dev,
2688					  txq->bd.ring_size * TSO_HEADER_SIZE,
2689					  txq->tso_hdrs,
2690					  txq->tso_hdrs_dma);
2691		}
2692
2693	for (i = 0; i < fep->num_rx_queues; i++)
2694		kfree(fep->rx_queue[i]);
2695	for (i = 0; i < fep->num_tx_queues; i++)
2696		kfree(fep->tx_queue[i]);
2697}
2698
2699static int fec_enet_alloc_queue(struct net_device *ndev)
2700{
2701	struct fec_enet_private *fep = netdev_priv(ndev);
2702	int i;
2703	int ret = 0;
2704	struct fec_enet_priv_tx_q *txq;
2705
2706	for (i = 0; i < fep->num_tx_queues; i++) {
2707		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2708		if (!txq) {
2709			ret = -ENOMEM;
2710			goto alloc_failed;
2711		}
2712
2713		fep->tx_queue[i] = txq;
2714		txq->bd.ring_size = TX_RING_SIZE;
2715		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2716
2717		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2718		txq->tx_wake_threshold =
2719			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2720
2721		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2722					txq->bd.ring_size * TSO_HEADER_SIZE,
2723					&txq->tso_hdrs_dma,
2724					GFP_KERNEL);
2725		if (!txq->tso_hdrs) {
2726			ret = -ENOMEM;
2727			goto alloc_failed;
2728		}
2729	}
2730
2731	for (i = 0; i < fep->num_rx_queues; i++) {
2732		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2733					   GFP_KERNEL);
2734		if (!fep->rx_queue[i]) {
2735			ret = -ENOMEM;
2736			goto alloc_failed;
2737		}
2738
2739		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2740		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2741	}
2742	return ret;
2743
2744alloc_failed:
2745	fec_enet_free_queue(ndev);
2746	return ret;
2747}
2748
2749static int
2750fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2751{
2752	struct fec_enet_private *fep = netdev_priv(ndev);
2753	unsigned int i;
2754	struct sk_buff *skb;
2755	struct bufdesc	*bdp;
2756	struct fec_enet_priv_rx_q *rxq;
 
 
 
 
2757
2758	rxq = fep->rx_queue[queue];
2759	bdp = rxq->bd.base;
 
 
 
 
 
 
 
2760	for (i = 0; i < rxq->bd.ring_size; i++) {
2761		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2762		if (!skb)
2763			goto err_alloc;
2764
2765		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2766			dev_kfree_skb(skb);
2767			goto err_alloc;
2768		}
2769
2770		rxq->rx_skbuff[i] = skb;
 
2771		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2772
2773		if (fep->bufdesc_ex) {
2774			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2775			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2776		}
2777
2778		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2779	}
2780
2781	/* Set the last buffer to wrap. */
2782	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2783	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2784	return 0;
2785
2786 err_alloc:
2787	fec_enet_free_buffers(ndev);
2788	return -ENOMEM;
2789}
2790
2791static int
2792fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2793{
2794	struct fec_enet_private *fep = netdev_priv(ndev);
2795	unsigned int i;
2796	struct bufdesc  *bdp;
2797	struct fec_enet_priv_tx_q *txq;
2798
2799	txq = fep->tx_queue[queue];
2800	bdp = txq->bd.base;
2801	for (i = 0; i < txq->bd.ring_size; i++) {
2802		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2803		if (!txq->tx_bounce[i])
2804			goto err_alloc;
2805
2806		bdp->cbd_sc = cpu_to_fec16(0);
2807		bdp->cbd_bufaddr = cpu_to_fec32(0);
2808
2809		if (fep->bufdesc_ex) {
2810			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2811			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2812		}
2813
2814		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2815	}
2816
2817	/* Set the last buffer to wrap. */
2818	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2819	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2820
2821	return 0;
2822
2823 err_alloc:
2824	fec_enet_free_buffers(ndev);
2825	return -ENOMEM;
2826}
2827
2828static int fec_enet_alloc_buffers(struct net_device *ndev)
2829{
2830	struct fec_enet_private *fep = netdev_priv(ndev);
2831	unsigned int i;
2832
2833	for (i = 0; i < fep->num_rx_queues; i++)
2834		if (fec_enet_alloc_rxq_buffers(ndev, i))
2835			return -ENOMEM;
2836
2837	for (i = 0; i < fep->num_tx_queues; i++)
2838		if (fec_enet_alloc_txq_buffers(ndev, i))
2839			return -ENOMEM;
2840	return 0;
2841}
2842
2843static int
2844fec_enet_open(struct net_device *ndev)
2845{
2846	struct fec_enet_private *fep = netdev_priv(ndev);
2847	int ret;
2848	bool reset_again;
2849
2850	ret = pm_runtime_get_sync(&fep->pdev->dev);
2851	if (ret < 0)
2852		return ret;
2853
2854	pinctrl_pm_select_default_state(&fep->pdev->dev);
2855	ret = fec_enet_clk_enable(ndev, true);
2856	if (ret)
2857		goto clk_enable;
2858
2859	/* During the first fec_enet_open call the PHY isn't probed at this
2860	 * point. Therefore the phy_reset_after_clk_enable() call within
2861	 * fec_enet_clk_enable() fails. As we need this reset in order to be
2862	 * sure the PHY is working correctly we check if we need to reset again
2863	 * later when the PHY is probed
2864	 */
2865	if (ndev->phydev && ndev->phydev->drv)
2866		reset_again = false;
2867	else
2868		reset_again = true;
2869
2870	/* I should reset the ring buffers here, but I don't yet know
2871	 * a simple way to do that.
2872	 */
2873
2874	ret = fec_enet_alloc_buffers(ndev);
2875	if (ret)
2876		goto err_enet_alloc;
2877
2878	/* Init MAC prior to mii bus probe */
2879	fec_restart(ndev);
2880
2881	/* Probe and connect to PHY when open the interface */
2882	ret = fec_enet_mii_probe(ndev);
2883	if (ret)
2884		goto err_enet_mii_probe;
2885
2886	/* Call phy_reset_after_clk_enable() again if it failed during
2887	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2888	 */
2889	if (reset_again)
2890		phy_reset_after_clk_enable(ndev->phydev);
 
 
 
 
 
2891
2892	if (fep->quirks & FEC_QUIRK_ERR006687)
2893		imx6q_cpuidle_fec_irqs_used();
2894
 
 
 
2895	napi_enable(&fep->napi);
2896	phy_start(ndev->phydev);
2897	netif_tx_start_all_queues(ndev);
2898
2899	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2900				 FEC_WOL_FLAG_ENABLE);
2901
2902	return 0;
2903
2904err_enet_mii_probe:
2905	fec_enet_free_buffers(ndev);
2906err_enet_alloc:
2907	fec_enet_clk_enable(ndev, false);
2908clk_enable:
2909	pm_runtime_mark_last_busy(&fep->pdev->dev);
2910	pm_runtime_put_autosuspend(&fep->pdev->dev);
2911	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2912	return ret;
2913}
2914
2915static int
2916fec_enet_close(struct net_device *ndev)
2917{
2918	struct fec_enet_private *fep = netdev_priv(ndev);
2919
2920	phy_stop(ndev->phydev);
2921
2922	if (netif_device_present(ndev)) {
2923		napi_disable(&fep->napi);
2924		netif_tx_disable(ndev);
2925		fec_stop(ndev);
2926	}
2927
2928	phy_disconnect(ndev->phydev);
2929
2930	if (fep->quirks & FEC_QUIRK_ERR006687)
2931		imx6q_cpuidle_fec_irqs_unused();
2932
2933	fec_enet_update_ethtool_stats(ndev);
2934
2935	fec_enet_clk_enable(ndev, false);
 
 
 
2936	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2937	pm_runtime_mark_last_busy(&fep->pdev->dev);
2938	pm_runtime_put_autosuspend(&fep->pdev->dev);
2939
2940	fec_enet_free_buffers(ndev);
2941
2942	return 0;
2943}
2944
2945/* Set or clear the multicast filter for this adaptor.
2946 * Skeleton taken from sunlance driver.
2947 * The CPM Ethernet implementation allows Multicast as well as individual
2948 * MAC address filtering.  Some of the drivers check to make sure it is
2949 * a group multicast address, and discard those that are not.  I guess I
2950 * will do the same for now, but just remove the test if you want
2951 * individual filtering as well (do the upper net layers want or support
2952 * this kind of feature?).
2953 */
2954
2955#define FEC_HASH_BITS	6		/* #bits in hash */
2956#define CRC32_POLY	0xEDB88320
2957
2958static void set_multicast_list(struct net_device *ndev)
2959{
2960	struct fec_enet_private *fep = netdev_priv(ndev);
2961	struct netdev_hw_addr *ha;
2962	unsigned int i, bit, data, crc, tmp;
2963	unsigned char hash;
2964	unsigned int hash_high = 0, hash_low = 0;
2965
2966	if (ndev->flags & IFF_PROMISC) {
2967		tmp = readl(fep->hwp + FEC_R_CNTRL);
2968		tmp |= 0x8;
2969		writel(tmp, fep->hwp + FEC_R_CNTRL);
2970		return;
2971	}
2972
2973	tmp = readl(fep->hwp + FEC_R_CNTRL);
2974	tmp &= ~0x8;
2975	writel(tmp, fep->hwp + FEC_R_CNTRL);
2976
2977	if (ndev->flags & IFF_ALLMULTI) {
2978		/* Catch all multicast addresses, so set the
2979		 * filter to all 1's
2980		 */
2981		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2982		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2983
2984		return;
2985	}
2986
2987	/* Add the addresses in hash register */
2988	netdev_for_each_mc_addr(ha, ndev) {
2989		/* calculate crc32 value of mac address */
2990		crc = 0xffffffff;
2991
2992		for (i = 0; i < ndev->addr_len; i++) {
2993			data = ha->addr[i];
2994			for (bit = 0; bit < 8; bit++, data >>= 1) {
2995				crc = (crc >> 1) ^
2996				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2997			}
2998		}
2999
3000		/* only upper 6 bits (FEC_HASH_BITS) are used
3001		 * which point to specific bit in the hash registers
3002		 */
3003		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3004
3005		if (hash > 31)
3006			hash_high |= 1 << (hash - 32);
3007		else
3008			hash_low |= 1 << hash;
3009	}
3010
3011	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3012	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3013}
3014
3015/* Set a MAC change in hardware. */
3016static int
3017fec_set_mac_address(struct net_device *ndev, void *p)
3018{
3019	struct fec_enet_private *fep = netdev_priv(ndev);
3020	struct sockaddr *addr = p;
3021
3022	if (addr) {
3023		if (!is_valid_ether_addr(addr->sa_data))
3024			return -EADDRNOTAVAIL;
3025		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3026	}
3027
3028	/* Add netif status check here to avoid system hang in below case:
3029	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3030	 * After ethx down, fec all clocks are gated off and then register
3031	 * access causes system hang.
3032	 */
3033	if (!netif_running(ndev))
3034		return 0;
3035
3036	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3037		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3038		fep->hwp + FEC_ADDR_LOW);
3039	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3040		fep->hwp + FEC_ADDR_HIGH);
3041	return 0;
3042}
3043
3044#ifdef CONFIG_NET_POLL_CONTROLLER
3045/**
3046 * fec_poll_controller - FEC Poll controller function
3047 * @dev: The FEC network adapter
3048 *
3049 * Polled functionality used by netconsole and others in non interrupt mode
3050 *
3051 */
3052static void fec_poll_controller(struct net_device *dev)
3053{
3054	int i;
3055	struct fec_enet_private *fep = netdev_priv(dev);
3056
3057	for (i = 0; i < FEC_IRQ_NUM; i++) {
3058		if (fep->irq[i] > 0) {
3059			disable_irq(fep->irq[i]);
3060			fec_enet_interrupt(fep->irq[i], dev);
3061			enable_irq(fep->irq[i]);
3062		}
3063	}
3064}
3065#endif
3066
3067static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3068	netdev_features_t features)
3069{
3070	struct fec_enet_private *fep = netdev_priv(netdev);
3071	netdev_features_t changed = features ^ netdev->features;
3072
3073	netdev->features = features;
3074
3075	/* Receive checksum has been changed */
3076	if (changed & NETIF_F_RXCSUM) {
3077		if (features & NETIF_F_RXCSUM)
3078			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3079		else
3080			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3081	}
3082}
3083
3084static int fec_set_features(struct net_device *netdev,
3085	netdev_features_t features)
3086{
3087	struct fec_enet_private *fep = netdev_priv(netdev);
3088	netdev_features_t changed = features ^ netdev->features;
3089
3090	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3091		napi_disable(&fep->napi);
3092		netif_tx_lock_bh(netdev);
3093		fec_stop(netdev);
3094		fec_enet_set_netdev_features(netdev, features);
3095		fec_restart(netdev);
3096		netif_tx_wake_all_queues(netdev);
3097		netif_tx_unlock_bh(netdev);
3098		napi_enable(&fep->napi);
3099	} else {
3100		fec_enet_set_netdev_features(netdev, features);
3101	}
3102
3103	return 0;
3104}
3105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3106static const struct net_device_ops fec_netdev_ops = {
3107	.ndo_open		= fec_enet_open,
3108	.ndo_stop		= fec_enet_close,
3109	.ndo_start_xmit		= fec_enet_start_xmit,
 
3110	.ndo_set_rx_mode	= set_multicast_list,
3111	.ndo_validate_addr	= eth_validate_addr,
3112	.ndo_tx_timeout		= fec_timeout,
3113	.ndo_set_mac_address	= fec_set_mac_address,
3114	.ndo_do_ioctl		= fec_enet_ioctl,
3115#ifdef CONFIG_NET_POLL_CONTROLLER
3116	.ndo_poll_controller	= fec_poll_controller,
3117#endif
3118	.ndo_set_features	= fec_set_features,
 
 
 
 
3119};
3120
3121static const unsigned short offset_des_active_rxq[] = {
3122	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3123};
3124
3125static const unsigned short offset_des_active_txq[] = {
3126	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3127};
3128
3129 /*
3130  * XXX:  We need to clean up on failure exits here.
3131  *
3132  */
3133static int fec_enet_init(struct net_device *ndev)
3134{
3135	struct fec_enet_private *fep = netdev_priv(ndev);
3136	struct bufdesc *cbd_base;
3137	dma_addr_t bd_dma;
3138	int bd_size;
3139	unsigned int i;
3140	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3141			sizeof(struct bufdesc);
3142	unsigned dsize_log2 = __fls(dsize);
 
3143
3144	WARN_ON(dsize != (1 << dsize_log2));
3145#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3146	fep->rx_align = 0xf;
3147	fep->tx_align = 0xf;
3148#else
3149	fep->rx_align = 0x3;
3150	fep->tx_align = 0x3;
3151#endif
 
 
 
 
 
 
 
 
 
 
 
3152
3153	fec_enet_alloc_queue(ndev);
 
 
3154
3155	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3156
3157	/* Allocate memory for buffer descriptors. */
3158	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3159				       GFP_KERNEL);
3160	if (!cbd_base) {
3161		return -ENOMEM;
 
3162	}
3163
3164	memset(cbd_base, 0, bd_size);
3165
3166	/* Get the Ethernet address */
3167	fec_get_mac(ndev);
3168	/* make sure MAC we just acquired is programmed into the hw */
3169	fec_set_mac_address(ndev, NULL);
3170
3171	/* Set receive and transmit descriptor base. */
3172	for (i = 0; i < fep->num_rx_queues; i++) {
3173		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3174		unsigned size = dsize * rxq->bd.ring_size;
3175
3176		rxq->bd.qid = i;
3177		rxq->bd.base = cbd_base;
3178		rxq->bd.cur = cbd_base;
3179		rxq->bd.dma = bd_dma;
3180		rxq->bd.dsize = dsize;
3181		rxq->bd.dsize_log2 = dsize_log2;
3182		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3183		bd_dma += size;
3184		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3185		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3186	}
3187
3188	for (i = 0; i < fep->num_tx_queues; i++) {
3189		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3190		unsigned size = dsize * txq->bd.ring_size;
3191
3192		txq->bd.qid = i;
3193		txq->bd.base = cbd_base;
3194		txq->bd.cur = cbd_base;
3195		txq->bd.dma = bd_dma;
3196		txq->bd.dsize = dsize;
3197		txq->bd.dsize_log2 = dsize_log2;
3198		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3199		bd_dma += size;
3200		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3201		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3202	}
3203
3204
3205	/* The FEC Ethernet specific entries in the device structure */
3206	ndev->watchdog_timeo = TX_TIMEOUT;
3207	ndev->netdev_ops = &fec_netdev_ops;
3208	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3209
3210	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3211	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3212
3213	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3214		/* enable hw VLAN support */
3215		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3216
3217	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3218		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3219
3220		/* enable hw accelerator */
3221		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3222				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3223		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3224	}
3225
3226	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3227		fep->tx_align = 0;
3228		fep->rx_align = 0x3f;
3229	}
3230
3231	ndev->hw_features = ndev->features;
3232
 
 
 
 
3233	fec_restart(ndev);
3234
3235	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3236		fec_enet_clear_ethtool_stats(ndev);
3237	else
3238		fec_enet_update_ethtool_stats(ndev);
3239
3240	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
3241}
3242
3243#ifdef CONFIG_OF
3244static int fec_reset_phy(struct platform_device *pdev)
3245{
3246	int err, phy_reset;
3247	bool active_high = false;
3248	int msec = 1, phy_post_delay = 0;
3249	struct device_node *np = pdev->dev.of_node;
 
3250
3251	if (!np)
3252		return 0;
3253
3254	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3255	/* A sane reset duration should not be longer than 1s */
3256	if (!err && msec > 1000)
3257		msec = 1;
3258
3259	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3260	if (phy_reset == -EPROBE_DEFER)
3261		return phy_reset;
3262	else if (!gpio_is_valid(phy_reset))
3263		return 0;
3264
3265	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3266	/* valid reset duration should be less than 1s */
3267	if (!err && phy_post_delay > 1000)
3268		return -EINVAL;
3269
3270	active_high = of_property_read_bool(np, "phy-reset-active-high");
 
 
 
 
3271
3272	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3273			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3274			"phy-reset");
3275	if (err) {
3276		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3277		return err;
3278	}
3279
3280	if (msec > 20)
3281		msleep(msec);
3282	else
3283		usleep_range(msec * 1000, msec * 1000 + 1000);
3284
3285	gpio_set_value_cansleep(phy_reset, !active_high);
3286
3287	if (!phy_post_delay)
3288		return 0;
3289
3290	if (phy_post_delay > 20)
3291		msleep(phy_post_delay);
3292	else
3293		usleep_range(phy_post_delay * 1000,
3294			     phy_post_delay * 1000 + 1000);
3295
3296	return 0;
3297}
3298#else /* CONFIG_OF */
3299static int fec_reset_phy(struct platform_device *pdev)
3300{
3301	/*
3302	 * In case of platform probe, the reset has been done
3303	 * by machine code.
3304	 */
3305	return 0;
3306}
3307#endif /* CONFIG_OF */
3308
3309static void
3310fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3311{
3312	struct device_node *np = pdev->dev.of_node;
3313
3314	*num_tx = *num_rx = 1;
3315
3316	if (!np || !of_device_is_available(np))
3317		return;
3318
3319	/* parse the num of tx and rx queues */
3320	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3321
3322	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3323
3324	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3325		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3326			 *num_tx);
3327		*num_tx = 1;
3328		return;
3329	}
3330
3331	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3332		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3333			 *num_rx);
3334		*num_rx = 1;
3335		return;
3336	}
3337
3338}
3339
3340static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3341{
3342	int irq_cnt = platform_irq_count(pdev);
3343
3344	if (irq_cnt > FEC_IRQ_NUM)
3345		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3346	else if (irq_cnt == 2)
3347		irq_cnt = 1;	/* last for pps */
3348	else if (irq_cnt <= 0)
3349		irq_cnt = 1;	/* At least 1 irq is needed */
3350	return irq_cnt;
3351}
3352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3353static int
3354fec_probe(struct platform_device *pdev)
3355{
3356	struct fec_enet_private *fep;
3357	struct fec_platform_data *pdata;
 
3358	struct net_device *ndev;
3359	int i, irq, ret = 0;
3360	struct resource *r;
3361	const struct of_device_id *of_id;
3362	static int dev_id;
3363	struct device_node *np = pdev->dev.of_node, *phy_node;
3364	int num_tx_qs;
3365	int num_rx_qs;
3366	char irq_name[8];
3367	int irq_cnt;
 
3368
3369	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3370
3371	/* Init network device */
3372	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3373				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3374	if (!ndev)
3375		return -ENOMEM;
3376
3377	SET_NETDEV_DEV(ndev, &pdev->dev);
3378
3379	/* setup board info structure */
3380	fep = netdev_priv(ndev);
3381
3382	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3383	if (of_id)
3384		pdev->id_entry = of_id->data;
3385	fep->quirks = pdev->id_entry->driver_data;
 
3386
3387	fep->netdev = ndev;
3388	fep->num_rx_queues = num_rx_qs;
3389	fep->num_tx_queues = num_tx_qs;
3390
3391#if !defined(CONFIG_M5272)
3392	/* default enable pause frame auto negotiation */
3393	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3394		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3395#endif
3396
3397	/* Select default pin state */
3398	pinctrl_pm_select_default_state(&pdev->dev);
3399
3400	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3401	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3402	if (IS_ERR(fep->hwp)) {
3403		ret = PTR_ERR(fep->hwp);
3404		goto failed_ioremap;
3405	}
3406
3407	fep->pdev = pdev;
3408	fep->dev_id = dev_id++;
3409
3410	platform_set_drvdata(pdev, ndev);
3411
3412	if ((of_machine_is_compatible("fsl,imx6q") ||
3413	     of_machine_is_compatible("fsl,imx6dl")) &&
3414	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3415		fep->quirks |= FEC_QUIRK_ERR006687;
3416
3417	if (of_get_property(np, "fsl,magic-packet", NULL))
 
 
 
 
3418		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3419
 
 
 
 
3420	phy_node = of_parse_phandle(np, "phy-handle", 0);
3421	if (!phy_node && of_phy_is_fixed_link(np)) {
3422		ret = of_phy_register_fixed_link(np);
3423		if (ret < 0) {
3424			dev_err(&pdev->dev,
3425				"broken fixed-link specification\n");
3426			goto failed_phy;
3427		}
3428		phy_node = of_node_get(np);
3429	}
3430	fep->phy_node = phy_node;
3431
3432	ret = of_get_phy_mode(pdev->dev.of_node);
3433	if (ret < 0) {
3434		pdata = dev_get_platdata(&pdev->dev);
3435		if (pdata)
3436			fep->phy_interface = pdata->phy;
3437		else
3438			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3439	} else {
3440		fep->phy_interface = ret;
3441	}
3442
 
 
 
 
3443	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3444	if (IS_ERR(fep->clk_ipg)) {
3445		ret = PTR_ERR(fep->clk_ipg);
3446		goto failed_clk;
3447	}
3448
3449	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3450	if (IS_ERR(fep->clk_ahb)) {
3451		ret = PTR_ERR(fep->clk_ahb);
3452		goto failed_clk;
3453	}
3454
3455	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3456
3457	/* enet_out is optional, depends on board */
3458	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3459	if (IS_ERR(fep->clk_enet_out))
3460		fep->clk_enet_out = NULL;
 
 
3461
3462	fep->ptp_clk_on = false;
3463	mutex_init(&fep->ptp_clk_mutex);
3464
3465	/* clk_ref is optional, depends on board */
3466	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3467	if (IS_ERR(fep->clk_ref))
3468		fep->clk_ref = NULL;
 
 
 
 
 
 
 
 
 
 
3469
3470	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3471	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3472	if (IS_ERR(fep->clk_ptp)) {
3473		fep->clk_ptp = NULL;
3474		fep->bufdesc_ex = false;
3475	}
3476
3477	ret = fec_enet_clk_enable(ndev, true);
3478	if (ret)
3479		goto failed_clk;
3480
3481	ret = clk_prepare_enable(fep->clk_ipg);
3482	if (ret)
3483		goto failed_clk_ipg;
 
 
 
3484
3485	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3486	if (!IS_ERR(fep->reg_phy)) {
3487		ret = regulator_enable(fep->reg_phy);
3488		if (ret) {
3489			dev_err(&pdev->dev,
3490				"Failed to enable phy regulator: %d\n", ret);
3491			clk_disable_unprepare(fep->clk_ipg);
3492			goto failed_regulator;
3493		}
3494	} else {
3495		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3496			ret = -EPROBE_DEFER;
3497			goto failed_regulator;
3498		}
3499		fep->reg_phy = NULL;
3500	}
3501
3502	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3503	pm_runtime_use_autosuspend(&pdev->dev);
3504	pm_runtime_get_noresume(&pdev->dev);
3505	pm_runtime_set_active(&pdev->dev);
3506	pm_runtime_enable(&pdev->dev);
3507
3508	ret = fec_reset_phy(pdev);
3509	if (ret)
3510		goto failed_reset;
3511
3512	irq_cnt = fec_enet_get_irq_cnt(pdev);
3513	if (fep->bufdesc_ex)
3514		fec_ptp_init(pdev, irq_cnt);
3515
3516	ret = fec_enet_init(ndev);
3517	if (ret)
3518		goto failed_init;
3519
3520	for (i = 0; i < irq_cnt; i++) {
3521		sprintf(irq_name, "int%d", i);
3522		irq = platform_get_irq_byname(pdev, irq_name);
3523		if (irq < 0)
3524			irq = platform_get_irq(pdev, i);
3525		if (irq < 0) {
3526			ret = irq;
3527			goto failed_irq;
3528		}
3529		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3530				       0, pdev->name, ndev);
3531		if (ret)
3532			goto failed_irq;
3533
3534		fep->irq[i] = irq;
3535	}
3536
3537	init_completion(&fep->mdio_done);
 
 
3538	ret = fec_enet_mii_init(pdev);
3539	if (ret)
3540		goto failed_mii_init;
3541
3542	/* Carrier starts down, phylib will bring it up */
3543	netif_carrier_off(ndev);
3544	fec_enet_clk_enable(ndev, false);
3545	pinctrl_pm_select_sleep_state(&pdev->dev);
3546
 
 
3547	ret = register_netdev(ndev);
3548	if (ret)
3549		goto failed_register;
3550
3551	device_init_wakeup(&ndev->dev, fep->wol_flag &
3552			   FEC_WOL_HAS_MAGIC_PACKET);
3553
3554	if (fep->bufdesc_ex && fep->ptp_clock)
3555		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3556
3557	fep->rx_copybreak = COPYBREAK_DEFAULT;
3558	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3559
3560	pm_runtime_mark_last_busy(&pdev->dev);
3561	pm_runtime_put_autosuspend(&pdev->dev);
3562
3563	return 0;
3564
3565failed_register:
3566	fec_enet_mii_remove(fep);
3567failed_mii_init:
3568failed_irq:
 
3569failed_init:
3570	fec_ptp_stop(pdev);
3571	if (fep->reg_phy)
3572		regulator_disable(fep->reg_phy);
3573failed_reset:
3574	pm_runtime_put(&pdev->dev);
3575	pm_runtime_disable(&pdev->dev);
 
 
3576failed_regulator:
 
 
 
3577failed_clk_ipg:
3578	fec_enet_clk_enable(ndev, false);
3579failed_clk:
 
3580	if (of_phy_is_fixed_link(np))
3581		of_phy_deregister_fixed_link(np);
3582	of_node_put(phy_node);
 
 
3583failed_phy:
3584	dev_id--;
3585failed_ioremap:
3586	free_netdev(ndev);
3587
3588	return ret;
3589}
3590
3591static int
3592fec_drv_remove(struct platform_device *pdev)
3593{
3594	struct net_device *ndev = platform_get_drvdata(pdev);
3595	struct fec_enet_private *fep = netdev_priv(ndev);
3596	struct device_node *np = pdev->dev.of_node;
 
 
 
 
 
 
 
3597
3598	cancel_work_sync(&fep->tx_timeout_work);
3599	fec_ptp_stop(pdev);
3600	unregister_netdev(ndev);
3601	fec_enet_mii_remove(fep);
3602	if (fep->reg_phy)
3603		regulator_disable(fep->reg_phy);
3604	pm_runtime_put(&pdev->dev);
3605	pm_runtime_disable(&pdev->dev);
3606	if (of_phy_is_fixed_link(np))
3607		of_phy_deregister_fixed_link(np);
3608	of_node_put(fep->phy_node);
3609	free_netdev(ndev);
3610
3611	return 0;
 
 
 
 
 
 
 
 
 
 
 
3612}
3613
3614static int __maybe_unused fec_suspend(struct device *dev)
3615{
3616	struct net_device *ndev = dev_get_drvdata(dev);
3617	struct fec_enet_private *fep = netdev_priv(ndev);
 
3618
3619	rtnl_lock();
3620	if (netif_running(ndev)) {
3621		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3622			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3623		phy_stop(ndev->phydev);
3624		napi_disable(&fep->napi);
3625		netif_tx_lock_bh(ndev);
3626		netif_device_detach(ndev);
3627		netif_tx_unlock_bh(ndev);
3628		fec_stop(ndev);
3629		fec_enet_clk_enable(ndev, false);
3630		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3631			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3632	}
3633	rtnl_unlock();
3634
3635	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3636		regulator_disable(fep->reg_phy);
3637
3638	/* SOC supply clock to phy, when clock is disabled, phy link down
3639	 * SOC control phy regulator, when regulator is disabled, phy link down
3640	 */
3641	if (fep->clk_enet_out || fep->reg_phy)
3642		fep->link = 0;
3643
3644	return 0;
3645}
3646
3647static int __maybe_unused fec_resume(struct device *dev)
3648{
3649	struct net_device *ndev = dev_get_drvdata(dev);
3650	struct fec_enet_private *fep = netdev_priv(ndev);
3651	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3652	int ret;
3653	int val;
3654
3655	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3656		ret = regulator_enable(fep->reg_phy);
3657		if (ret)
3658			return ret;
3659	}
3660
3661	rtnl_lock();
3662	if (netif_running(ndev)) {
 
 
 
3663		ret = fec_enet_clk_enable(ndev, true);
3664		if (ret) {
3665			rtnl_unlock();
3666			goto failed_clk;
3667		}
3668		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3669			if (pdata && pdata->sleep_mode_enable)
3670				pdata->sleep_mode_enable(false);
 
 
 
 
3671			val = readl(fep->hwp + FEC_ECNTRL);
3672			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3673			writel(val, fep->hwp + FEC_ECNTRL);
3674			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3675		} else {
3676			pinctrl_pm_select_default_state(&fep->pdev->dev);
3677		}
3678		fec_restart(ndev);
3679		netif_tx_lock_bh(ndev);
3680		netif_device_attach(ndev);
3681		netif_tx_unlock_bh(ndev);
3682		napi_enable(&fep->napi);
 
3683		phy_start(ndev->phydev);
3684	}
3685	rtnl_unlock();
3686
3687	return 0;
3688
3689failed_clk:
3690	if (fep->reg_phy)
3691		regulator_disable(fep->reg_phy);
3692	return ret;
3693}
3694
3695static int __maybe_unused fec_runtime_suspend(struct device *dev)
3696{
3697	struct net_device *ndev = dev_get_drvdata(dev);
3698	struct fec_enet_private *fep = netdev_priv(ndev);
3699
 
3700	clk_disable_unprepare(fep->clk_ipg);
3701
3702	return 0;
3703}
3704
3705static int __maybe_unused fec_runtime_resume(struct device *dev)
3706{
3707	struct net_device *ndev = dev_get_drvdata(dev);
3708	struct fec_enet_private *fep = netdev_priv(ndev);
 
 
 
 
 
 
 
 
 
 
3709
3710	return clk_prepare_enable(fep->clk_ipg);
 
 
3711}
3712
3713static const struct dev_pm_ops fec_pm_ops = {
3714	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3715	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3716};
3717
3718static struct platform_driver fec_driver = {
3719	.driver	= {
3720		.name	= DRIVER_NAME,
3721		.pm	= &fec_pm_ops,
3722		.of_match_table = fec_dt_ids,
 
3723	},
3724	.id_table = fec_devtype,
3725	.probe	= fec_probe,
3726	.remove	= fec_drv_remove,
3727};
3728
3729module_platform_driver(fec_driver);
3730
3731MODULE_ALIAS("platform:"DRIVER_NAME);
3732MODULE_LICENSE("GPL");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   5 *
   6 * Right now, I am very wasteful with the buffers.  I allocate memory
   7 * pages and then divide them into 2K frame buffers.  This way I know I
   8 * have buffers large enough to hold one frame within one buffer descriptor.
   9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  10 * will be much more memory efficient and will easily handle lots of
  11 * small packets.
  12 *
  13 * Much better multiple PHY support by Magnus Damm.
  14 * Copyright (c) 2000 Ericsson Radio Systems AB.
  15 *
  16 * Support for FEC controller of ColdFire processors.
  17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  18 *
  19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  20 * Copyright (c) 2004-2006 Macq Electronique SA.
  21 *
  22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/kernel.h>
  27#include <linux/string.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/ptrace.h>
  30#include <linux/errno.h>
  31#include <linux/ioport.h>
  32#include <linux/slab.h>
  33#include <linux/interrupt.h>
  34#include <linux/delay.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/skbuff.h>
  38#include <linux/in.h>
  39#include <linux/ip.h>
  40#include <net/ip.h>
  41#include <net/page_pool/helpers.h>
  42#include <net/selftests.h>
  43#include <net/tso.h>
  44#include <linux/tcp.h>
  45#include <linux/udp.h>
  46#include <linux/icmp.h>
  47#include <linux/spinlock.h>
  48#include <linux/workqueue.h>
  49#include <linux/bitops.h>
  50#include <linux/io.h>
  51#include <linux/irq.h>
  52#include <linux/clk.h>
  53#include <linux/crc32.h>
  54#include <linux/platform_device.h>
  55#include <linux/property.h>
  56#include <linux/mdio.h>
  57#include <linux/phy.h>
  58#include <linux/fec.h>
  59#include <linux/of.h>
 
 
  60#include <linux/of_mdio.h>
  61#include <linux/of_net.h>
  62#include <linux/regulator/consumer.h>
  63#include <linux/if_vlan.h>
  64#include <linux/pinctrl/consumer.h>
  65#include <linux/gpio/consumer.h>
  66#include <linux/prefetch.h>
  67#include <linux/mfd/syscon.h>
  68#include <linux/regmap.h>
  69#include <soc/imx/cpuidle.h>
  70#include <linux/filter.h>
  71#include <linux/bpf.h>
  72#include <linux/bpf_trace.h>
  73
  74#include <asm/cacheflush.h>
  75
  76#include "fec.h"
  77
  78static void set_multicast_list(struct net_device *ndev);
  79static void fec_enet_itr_coal_set(struct net_device *ndev);
  80static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
  81				int cpu, struct xdp_buff *xdp,
  82				u32 dma_sync_len);
  83
  84#define DRIVER_NAME	"fec"
  85
  86static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
  87
 
 
  88#define FEC_ENET_RSEM_V	0x84
  89#define FEC_ENET_RSFL_V	16
  90#define FEC_ENET_RAEM_V	0x8
  91#define FEC_ENET_RAFL_V	0x8
  92#define FEC_ENET_OPD_V	0xFFF0
  93#define FEC_MDIO_PM_TIMEOUT  100 /* ms */
  94
  95#define FEC_ENET_XDP_PASS          0
  96#define FEC_ENET_XDP_CONSUMED      BIT(0)
  97#define FEC_ENET_XDP_TX            BIT(1)
  98#define FEC_ENET_XDP_REDIR         BIT(2)
  99
 100struct fec_devinfo {
 101	u32 quirks;
 102};
 103
 104static const struct fec_devinfo fec_imx25_info = {
 105	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
 106		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
 107};
 108
 109static const struct fec_devinfo fec_imx27_info = {
 110	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
 111		  FEC_QUIRK_HAS_MDIO_C45,
 112};
 113
 114static const struct fec_devinfo fec_imx28_info = {
 115	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
 116		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
 117		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
 118		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
 119};
 120
 121static const struct fec_devinfo fec_imx6q_info = {
 122	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 123		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 124		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
 125		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
 126		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
 127};
 128
 129static const struct fec_devinfo fec_mvf600_info = {
 130	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
 131		  FEC_QUIRK_HAS_MDIO_C45,
 132};
 133
 134static const struct fec_devinfo fec_imx6x_info = {
 135	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 136		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 137		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 138		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 139		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
 140		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
 141		  FEC_QUIRK_HAS_MDIO_C45,
 142};
 143
 144static const struct fec_devinfo fec_imx6ul_info = {
 145	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 146		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 147		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
 148		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
 149		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
 150		  FEC_QUIRK_HAS_MDIO_C45,
 151};
 152
 153static const struct fec_devinfo fec_imx8mq_info = {
 154	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 155		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 156		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 157		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 158		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
 159		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
 160		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
 161		  FEC_QUIRK_HAS_MDIO_C45,
 162};
 163
 164static const struct fec_devinfo fec_imx8qm_info = {
 165	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 166		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 167		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 168		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 169		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
 170		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
 171		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
 172};
 173
 174static const struct fec_devinfo fec_s32v234_info = {
 175	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 176		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 177		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 178		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 179		  FEC_QUIRK_HAS_MDIO_C45,
 180};
 181
 182static struct platform_device_id fec_devtype[] = {
 183	{
 184		/* keep it for coldfire */
 185		.name = DRIVER_NAME,
 186		.driver_data = 0,
 187	}, {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188		/* sentinel */
 189	}
 190};
 191MODULE_DEVICE_TABLE(platform, fec_devtype);
 192
 
 
 
 
 
 
 
 
 
 
 193static const struct of_device_id fec_dt_ids[] = {
 194	{ .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
 195	{ .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
 196	{ .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
 197	{ .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
 198	{ .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
 199	{ .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, },
 200	{ .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
 201	{ .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
 202	{ .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
 203	{ .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
 204	{ /* sentinel */ }
 205};
 206MODULE_DEVICE_TABLE(of, fec_dt_ids);
 207
 208static unsigned char macaddr[ETH_ALEN];
 209module_param_array(macaddr, byte, NULL, 0);
 210MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 211
 212#if defined(CONFIG_M5272)
 213/*
 214 * Some hardware gets it MAC address out of local flash memory.
 215 * if this is non-zero then assume it is the address to get MAC from.
 216 */
 217#if defined(CONFIG_NETtel)
 218#define	FEC_FLASHMAC	0xf0006006
 219#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 220#define	FEC_FLASHMAC	0xf0006000
 221#elif defined(CONFIG_CANCam)
 222#define	FEC_FLASHMAC	0xf0020000
 223#elif defined (CONFIG_M5272C3)
 224#define	FEC_FLASHMAC	(0xffe04000 + 4)
 225#elif defined(CONFIG_MOD5272)
 226#define FEC_FLASHMAC	0xffc0406b
 227#else
 228#define	FEC_FLASHMAC	0
 229#endif
 230#endif /* CONFIG_M5272 */
 231
 232/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 233 *
 234 * 2048 byte skbufs are allocated. However, alignment requirements
 235 * varies between FEC variants. Worst case is 64, so round down by 64.
 236 */
 237#define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
 238#define PKT_MINBUF_SIZE		64
 239
 240/* FEC receive acceleration */
 241#define FEC_RACC_IPDIS		BIT(1)
 242#define FEC_RACC_PRODIS		BIT(2)
 243#define FEC_RACC_SHIFT16	BIT(7)
 244#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 245
 246/* MIB Control Register */
 247#define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
 248
 249/*
 250 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 251 * size bits. Other FEC hardware does not, so we need to take that into
 252 * account when setting it.
 253 */
 254#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 255    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
 256    defined(CONFIG_ARM64)
 257#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 258#else
 259#define	OPT_FRAME_SIZE	0
 260#endif
 261
 262/* FEC MII MMFR bits definition */
 263#define FEC_MMFR_ST		(1 << 30)
 264#define FEC_MMFR_ST_C45		(0)
 265#define FEC_MMFR_OP_READ	(2 << 28)
 266#define FEC_MMFR_OP_READ_C45	(3 << 28)
 267#define FEC_MMFR_OP_WRITE	(1 << 28)
 268#define FEC_MMFR_OP_ADDR_WRITE	(0)
 269#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
 270#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
 271#define FEC_MMFR_TA		(2 << 16)
 272#define FEC_MMFR_DATA(v)	(v & 0xffff)
 273/* FEC ECR bits definition */
 274#define FEC_ECR_RESET           BIT(0)
 275#define FEC_ECR_ETHEREN         BIT(1)
 276#define FEC_ECR_MAGICEN         BIT(2)
 277#define FEC_ECR_SLEEP           BIT(3)
 278#define FEC_ECR_EN1588          BIT(4)
 279#define FEC_ECR_BYTESWP         BIT(8)
 280/* FEC RCR bits definition */
 281#define FEC_RCR_LOOP            BIT(0)
 282#define FEC_RCR_HALFDPX         BIT(1)
 283#define FEC_RCR_MII             BIT(2)
 284#define FEC_RCR_PROMISC         BIT(3)
 285#define FEC_RCR_BC_REJ          BIT(4)
 286#define FEC_RCR_FLOWCTL         BIT(5)
 287#define FEC_RCR_RMII            BIT(8)
 288#define FEC_RCR_10BASET         BIT(9)
 289/* TX WMARK bits */
 290#define FEC_TXWMRK_STRFWD       BIT(8)
 291
 292#define FEC_MII_TIMEOUT		30000 /* us */
 293
 294/* Transmitter timeout */
 295#define TX_TIMEOUT (2 * HZ)
 296
 297#define FEC_PAUSE_FLAG_AUTONEG	0x1
 298#define FEC_PAUSE_FLAG_ENABLE	0x2
 299#define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
 300#define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
 301#define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
 302
 
 
 303/* Max number of allowed TCP segments for software TSO */
 304#define FEC_MAX_TSO_SEGS	100
 305#define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 306
 307#define IS_TSO_HEADER(txq, addr) \
 308	((addr >= txq->tso_hdrs_dma) && \
 309	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
 310
 311static int mii_cnt;
 312
 313static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
 314					     struct bufdesc_prop *bd)
 315{
 316	return (bdp >= bd->last) ? bd->base
 317			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
 318}
 319
 320static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
 321					     struct bufdesc_prop *bd)
 322{
 323	return (bdp <= bd->base) ? bd->last
 324			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
 325}
 326
 327static int fec_enet_get_bd_index(struct bufdesc *bdp,
 328				 struct bufdesc_prop *bd)
 329{
 330	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
 331}
 332
 333static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
 334{
 335	int entries;
 336
 337	entries = (((const char *)txq->dirty_tx -
 338			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
 339
 340	return entries >= 0 ? entries : entries + txq->bd.ring_size;
 341}
 342
 343static void swap_buffer(void *bufaddr, int len)
 344{
 345	int i;
 346	unsigned int *buf = bufaddr;
 347
 348	for (i = 0; i < len; i += 4, buf++)
 349		swab32s(buf);
 350}
 351
 
 
 
 
 
 
 
 
 
 
 352static void fec_dump(struct net_device *ndev)
 353{
 354	struct fec_enet_private *fep = netdev_priv(ndev);
 355	struct bufdesc *bdp;
 356	struct fec_enet_priv_tx_q *txq;
 357	int index = 0;
 358
 359	netdev_info(ndev, "TX ring dump\n");
 360	pr_info("Nr     SC     addr       len  SKB\n");
 361
 362	txq = fep->tx_queue[0];
 363	bdp = txq->bd.base;
 364
 365	do {
 366		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
 367			index,
 368			bdp == txq->bd.cur ? 'S' : ' ',
 369			bdp == txq->dirty_tx ? 'H' : ' ',
 370			fec16_to_cpu(bdp->cbd_sc),
 371			fec32_to_cpu(bdp->cbd_bufaddr),
 372			fec16_to_cpu(bdp->cbd_datlen),
 373			txq->tx_buf[index].buf_p);
 374		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 375		index++;
 376	} while (bdp != txq->bd.base);
 377}
 378
 379/*
 380 * Coldfire does not support DMA coherent allocations, and has historically used
 381 * a band-aid with a manual flush in fec_enet_rx_queue.
 382 */
 383#if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
 384static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 385		gfp_t gfp)
 386{
 387	return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
 388}
 389
 390static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
 391		dma_addr_t handle)
 392{
 393	dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
 394}
 395#else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
 396static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 397		gfp_t gfp)
 398{
 399	return dma_alloc_coherent(dev, size, handle, gfp);
 400}
 401
 402static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
 403		dma_addr_t handle)
 404{
 405	dma_free_coherent(dev, size, cpu_addr, handle);
 406}
 407#endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
 408
 409struct fec_dma_devres {
 410	size_t		size;
 411	void		*vaddr;
 412	dma_addr_t	dma_handle;
 413};
 414
 415static void fec_dmam_release(struct device *dev, void *res)
 416{
 417	struct fec_dma_devres *this = res;
 418
 419	fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
 420}
 421
 422static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 423		gfp_t gfp)
 424{
 425	struct fec_dma_devres *dr;
 426	void *vaddr;
 427
 428	dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
 429	if (!dr)
 430		return NULL;
 431	vaddr = fec_dma_alloc(dev, size, handle, gfp);
 432	if (!vaddr) {
 433		devres_free(dr);
 434		return NULL;
 435	}
 436	dr->vaddr = vaddr;
 437	dr->dma_handle = *handle;
 438	dr->size = size;
 439	devres_add(dev, dr);
 440	return vaddr;
 441}
 442
 443static inline bool is_ipv4_pkt(struct sk_buff *skb)
 444{
 445	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
 446}
 447
 448static int
 449fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 450{
 451	/* Only run for packets requiring a checksum. */
 452	if (skb->ip_summed != CHECKSUM_PARTIAL)
 453		return 0;
 454
 455	if (unlikely(skb_cow_head(skb, 0)))
 456		return -1;
 457
 458	if (is_ipv4_pkt(skb))
 459		ip_hdr(skb)->check = 0;
 460	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 461
 462	return 0;
 463}
 464
 465static int
 466fec_enet_create_page_pool(struct fec_enet_private *fep,
 467			  struct fec_enet_priv_rx_q *rxq, int size)
 468{
 469	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
 470	struct page_pool_params pp_params = {
 471		.order = 0,
 472		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
 473		.pool_size = size,
 474		.nid = dev_to_node(&fep->pdev->dev),
 475		.dev = &fep->pdev->dev,
 476		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
 477		.offset = FEC_ENET_XDP_HEADROOM,
 478		.max_len = FEC_ENET_RX_FRSIZE,
 479	};
 480	int err;
 481
 482	rxq->page_pool = page_pool_create(&pp_params);
 483	if (IS_ERR(rxq->page_pool)) {
 484		err = PTR_ERR(rxq->page_pool);
 485		rxq->page_pool = NULL;
 486		return err;
 487	}
 488
 489	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
 490	if (err < 0)
 491		goto err_free_pp;
 492
 493	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
 494					 rxq->page_pool);
 495	if (err)
 496		goto err_unregister_rxq;
 497
 498	return 0;
 499
 500err_unregister_rxq:
 501	xdp_rxq_info_unreg(&rxq->xdp_rxq);
 502err_free_pp:
 503	page_pool_destroy(rxq->page_pool);
 504	rxq->page_pool = NULL;
 505	return err;
 506}
 507
 508static struct bufdesc *
 509fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
 510			     struct sk_buff *skb,
 511			     struct net_device *ndev)
 512{
 513	struct fec_enet_private *fep = netdev_priv(ndev);
 514	struct bufdesc *bdp = txq->bd.cur;
 515	struct bufdesc_ex *ebdp;
 516	int nr_frags = skb_shinfo(skb)->nr_frags;
 517	int frag, frag_len;
 518	unsigned short status;
 519	unsigned int estatus = 0;
 520	skb_frag_t *this_frag;
 521	unsigned int index;
 522	void *bufaddr;
 523	dma_addr_t addr;
 524	int i;
 525
 526	for (frag = 0; frag < nr_frags; frag++) {
 527		this_frag = &skb_shinfo(skb)->frags[frag];
 528		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 529		ebdp = (struct bufdesc_ex *)bdp;
 530
 531		status = fec16_to_cpu(bdp->cbd_sc);
 532		status &= ~BD_ENET_TX_STATS;
 533		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 534		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
 535
 536		/* Handle the last BD specially */
 537		if (frag == nr_frags - 1) {
 538			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 539			if (fep->bufdesc_ex) {
 540				estatus |= BD_ENET_TX_INT;
 541				if (unlikely(skb_shinfo(skb)->tx_flags &
 542					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 543					estatus |= BD_ENET_TX_TS;
 544			}
 545		}
 546
 547		if (fep->bufdesc_ex) {
 548			if (fep->quirks & FEC_QUIRK_HAS_AVB)
 549				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 550			if (skb->ip_summed == CHECKSUM_PARTIAL)
 551				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 552
 553			ebdp->cbd_bdu = 0;
 554			ebdp->cbd_esc = cpu_to_fec32(estatus);
 555		}
 556
 557		bufaddr = skb_frag_address(this_frag);
 558
 559		index = fec_enet_get_bd_index(bdp, &txq->bd);
 560		if (((unsigned long) bufaddr) & fep->tx_align ||
 561			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 562			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
 563			bufaddr = txq->tx_bounce[index];
 564
 565			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 566				swap_buffer(bufaddr, frag_len);
 567		}
 568
 569		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
 570				      DMA_TO_DEVICE);
 571		if (dma_mapping_error(&fep->pdev->dev, addr)) {
 572			if (net_ratelimit())
 573				netdev_err(ndev, "Tx DMA memory map failed\n");
 574			goto dma_mapping_error;
 575		}
 576
 577		bdp->cbd_bufaddr = cpu_to_fec32(addr);
 578		bdp->cbd_datlen = cpu_to_fec16(frag_len);
 579		/* Make sure the updates to rest of the descriptor are
 580		 * performed before transferring ownership.
 581		 */
 582		wmb();
 583		bdp->cbd_sc = cpu_to_fec16(status);
 584	}
 585
 586	return bdp;
 587dma_mapping_error:
 588	bdp = txq->bd.cur;
 589	for (i = 0; i < frag; i++) {
 590		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 591		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
 592				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
 593	}
 594	return ERR_PTR(-ENOMEM);
 595}
 596
 597static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
 598				   struct sk_buff *skb, struct net_device *ndev)
 599{
 600	struct fec_enet_private *fep = netdev_priv(ndev);
 601	int nr_frags = skb_shinfo(skb)->nr_frags;
 602	struct bufdesc *bdp, *last_bdp;
 603	void *bufaddr;
 604	dma_addr_t addr;
 605	unsigned short status;
 606	unsigned short buflen;
 607	unsigned int estatus = 0;
 608	unsigned int index;
 609	int entries_free;
 610
 611	entries_free = fec_enet_get_free_txdesc_num(txq);
 612	if (entries_free < MAX_SKB_FRAGS + 1) {
 613		dev_kfree_skb_any(skb);
 614		if (net_ratelimit())
 615			netdev_err(ndev, "NOT enough BD for SG!\n");
 616		return NETDEV_TX_OK;
 617	}
 618
 619	/* Protocol checksum off-load for TCP and UDP. */
 620	if (fec_enet_clear_csum(skb, ndev)) {
 621		dev_kfree_skb_any(skb);
 622		return NETDEV_TX_OK;
 623	}
 624
 625	/* Fill in a Tx ring entry */
 626	bdp = txq->bd.cur;
 627	last_bdp = bdp;
 628	status = fec16_to_cpu(bdp->cbd_sc);
 629	status &= ~BD_ENET_TX_STATS;
 630
 631	/* Set buffer length and buffer pointer */
 632	bufaddr = skb->data;
 633	buflen = skb_headlen(skb);
 634
 635	index = fec_enet_get_bd_index(bdp, &txq->bd);
 636	if (((unsigned long) bufaddr) & fep->tx_align ||
 637		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 638		memcpy(txq->tx_bounce[index], skb->data, buflen);
 639		bufaddr = txq->tx_bounce[index];
 640
 641		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 642			swap_buffer(bufaddr, buflen);
 643	}
 644
 645	/* Push the data cache so the CPM does not get stale memory data. */
 646	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
 647	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 648		dev_kfree_skb_any(skb);
 649		if (net_ratelimit())
 650			netdev_err(ndev, "Tx DMA memory map failed\n");
 651		return NETDEV_TX_OK;
 652	}
 653
 654	if (nr_frags) {
 655		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
 656		if (IS_ERR(last_bdp)) {
 657			dma_unmap_single(&fep->pdev->dev, addr,
 658					 buflen, DMA_TO_DEVICE);
 659			dev_kfree_skb_any(skb);
 660			return NETDEV_TX_OK;
 661		}
 662	} else {
 663		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 664		if (fep->bufdesc_ex) {
 665			estatus = BD_ENET_TX_INT;
 666			if (unlikely(skb_shinfo(skb)->tx_flags &
 667				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 668				estatus |= BD_ENET_TX_TS;
 669		}
 670	}
 671	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 672	bdp->cbd_datlen = cpu_to_fec16(buflen);
 673
 674	if (fep->bufdesc_ex) {
 675
 676		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 677
 678		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 679			fep->hwts_tx_en))
 680			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 681
 682		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 683			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 684
 685		if (skb->ip_summed == CHECKSUM_PARTIAL)
 686			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 687
 688		ebdp->cbd_bdu = 0;
 689		ebdp->cbd_esc = cpu_to_fec32(estatus);
 690	}
 691
 692	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
 693	/* Save skb pointer */
 694	txq->tx_buf[index].buf_p = skb;
 695
 696	/* Make sure the updates to rest of the descriptor are performed before
 697	 * transferring ownership.
 698	 */
 699	wmb();
 700
 701	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 702	 * it's the last BD of the frame, and to put the CRC on the end.
 703	 */
 704	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
 705	bdp->cbd_sc = cpu_to_fec16(status);
 706
 707	/* If this was the last BD in the ring, start at the beginning again. */
 708	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
 709
 710	skb_tx_timestamp(skb);
 711
 712	/* Make sure the update to bdp is performed before txq->bd.cur. */
 
 
 713	wmb();
 714	txq->bd.cur = bdp;
 715
 716	/* Trigger transmission start */
 717	writel(0, txq->bd.reg_desc_active);
 718
 719	return 0;
 720}
 721
 722static int
 723fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
 724			  struct net_device *ndev,
 725			  struct bufdesc *bdp, int index, char *data,
 726			  int size, bool last_tcp, bool is_last)
 727{
 728	struct fec_enet_private *fep = netdev_priv(ndev);
 729	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 730	unsigned short status;
 731	unsigned int estatus = 0;
 732	dma_addr_t addr;
 733
 734	status = fec16_to_cpu(bdp->cbd_sc);
 735	status &= ~BD_ENET_TX_STATS;
 736
 737	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 738
 739	if (((unsigned long) data) & fep->tx_align ||
 740		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 741		memcpy(txq->tx_bounce[index], data, size);
 742		data = txq->tx_bounce[index];
 743
 744		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 745			swap_buffer(data, size);
 746	}
 747
 748	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
 749	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 750		dev_kfree_skb_any(skb);
 751		if (net_ratelimit())
 752			netdev_err(ndev, "Tx DMA memory map failed\n");
 753		return NETDEV_TX_OK;
 754	}
 755
 756	bdp->cbd_datlen = cpu_to_fec16(size);
 757	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 758
 759	if (fep->bufdesc_ex) {
 760		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 761			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 762		if (skb->ip_summed == CHECKSUM_PARTIAL)
 763			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 764		ebdp->cbd_bdu = 0;
 765		ebdp->cbd_esc = cpu_to_fec32(estatus);
 766	}
 767
 768	/* Handle the last BD specially */
 769	if (last_tcp)
 770		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
 771	if (is_last) {
 772		status |= BD_ENET_TX_INTR;
 773		if (fep->bufdesc_ex)
 774			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
 775	}
 776
 777	bdp->cbd_sc = cpu_to_fec16(status);
 778
 779	return 0;
 780}
 781
 782static int
 783fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
 784			 struct sk_buff *skb, struct net_device *ndev,
 785			 struct bufdesc *bdp, int index)
 786{
 787	struct fec_enet_private *fep = netdev_priv(ndev);
 788	int hdr_len = skb_tcp_all_headers(skb);
 789	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 790	void *bufaddr;
 791	unsigned long dmabuf;
 792	unsigned short status;
 793	unsigned int estatus = 0;
 794
 795	status = fec16_to_cpu(bdp->cbd_sc);
 796	status &= ~BD_ENET_TX_STATS;
 797	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 798
 799	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 800	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
 801	if (((unsigned long)bufaddr) & fep->tx_align ||
 802		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 803		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
 804		bufaddr = txq->tx_bounce[index];
 805
 806		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 807			swap_buffer(bufaddr, hdr_len);
 808
 809		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
 810					hdr_len, DMA_TO_DEVICE);
 811		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
 812			dev_kfree_skb_any(skb);
 813			if (net_ratelimit())
 814				netdev_err(ndev, "Tx DMA memory map failed\n");
 815			return NETDEV_TX_OK;
 816		}
 817	}
 818
 819	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
 820	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
 821
 822	if (fep->bufdesc_ex) {
 823		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 824			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 825		if (skb->ip_summed == CHECKSUM_PARTIAL)
 826			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 827		ebdp->cbd_bdu = 0;
 828		ebdp->cbd_esc = cpu_to_fec32(estatus);
 829	}
 830
 831	bdp->cbd_sc = cpu_to_fec16(status);
 832
 833	return 0;
 834}
 835
 836static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
 837				   struct sk_buff *skb,
 838				   struct net_device *ndev)
 839{
 840	struct fec_enet_private *fep = netdev_priv(ndev);
 841	int hdr_len, total_len, data_left;
 
 842	struct bufdesc *bdp = txq->bd.cur;
 843	struct tso_t tso;
 844	unsigned int index = 0;
 845	int ret;
 846
 847	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
 848		dev_kfree_skb_any(skb);
 849		if (net_ratelimit())
 850			netdev_err(ndev, "NOT enough BD for TSO!\n");
 851		return NETDEV_TX_OK;
 852	}
 853
 854	/* Protocol checksum off-load for TCP and UDP. */
 855	if (fec_enet_clear_csum(skb, ndev)) {
 856		dev_kfree_skb_any(skb);
 857		return NETDEV_TX_OK;
 858	}
 859
 860	/* Initialize the TSO handler, and prepare the first payload */
 861	hdr_len = tso_start(skb, &tso);
 862
 863	total_len = skb->len - hdr_len;
 864	while (total_len > 0) {
 865		char *hdr;
 866
 867		index = fec_enet_get_bd_index(bdp, &txq->bd);
 868		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
 869		total_len -= data_left;
 870
 871		/* prepare packet headers: MAC + IP + TCP */
 872		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 873		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
 874		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
 875		if (ret)
 876			goto err_release;
 877
 878		while (data_left > 0) {
 879			int size;
 880
 881			size = min_t(int, tso.size, data_left);
 882			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 883			index = fec_enet_get_bd_index(bdp, &txq->bd);
 884			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
 885							bdp, index,
 886							tso.data, size,
 887							size == data_left,
 888							total_len == 0);
 889			if (ret)
 890				goto err_release;
 891
 892			data_left -= size;
 893			tso_build_data(skb, &tso, size);
 894		}
 895
 896		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 897	}
 898
 899	/* Save skb pointer */
 900	txq->tx_buf[index].buf_p = skb;
 901
 902	skb_tx_timestamp(skb);
 903	txq->bd.cur = bdp;
 904
 905	/* Trigger transmission start */
 906	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
 907	    !readl(txq->bd.reg_desc_active) ||
 908	    !readl(txq->bd.reg_desc_active) ||
 909	    !readl(txq->bd.reg_desc_active) ||
 910	    !readl(txq->bd.reg_desc_active))
 911		writel(0, txq->bd.reg_desc_active);
 912
 913	return 0;
 914
 915err_release:
 916	/* TODO: Release all used data descriptors for TSO */
 917	return ret;
 918}
 919
 920static netdev_tx_t
 921fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 922{
 923	struct fec_enet_private *fep = netdev_priv(ndev);
 924	int entries_free;
 925	unsigned short queue;
 926	struct fec_enet_priv_tx_q *txq;
 927	struct netdev_queue *nq;
 928	int ret;
 929
 930	queue = skb_get_queue_mapping(skb);
 931	txq = fep->tx_queue[queue];
 932	nq = netdev_get_tx_queue(ndev, queue);
 933
 934	if (skb_is_gso(skb))
 935		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
 936	else
 937		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
 938	if (ret)
 939		return ret;
 940
 941	entries_free = fec_enet_get_free_txdesc_num(txq);
 942	if (entries_free <= txq->tx_stop_threshold)
 943		netif_tx_stop_queue(nq);
 944
 945	return NETDEV_TX_OK;
 946}
 947
 948/* Init RX & TX buffer descriptors
 949 */
 950static void fec_enet_bd_init(struct net_device *dev)
 951{
 952	struct fec_enet_private *fep = netdev_priv(dev);
 953	struct fec_enet_priv_tx_q *txq;
 954	struct fec_enet_priv_rx_q *rxq;
 955	struct bufdesc *bdp;
 956	unsigned int i;
 957	unsigned int q;
 958
 959	for (q = 0; q < fep->num_rx_queues; q++) {
 960		/* Initialize the receive buffer descriptors. */
 961		rxq = fep->rx_queue[q];
 962		bdp = rxq->bd.base;
 963
 964		for (i = 0; i < rxq->bd.ring_size; i++) {
 965
 966			/* Initialize the BD for every fragment in the page. */
 967			if (bdp->cbd_bufaddr)
 968				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
 969			else
 970				bdp->cbd_sc = cpu_to_fec16(0);
 971			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
 972		}
 973
 974		/* Set the last buffer to wrap */
 975		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
 976		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 977
 978		rxq->bd.cur = rxq->bd.base;
 979	}
 980
 981	for (q = 0; q < fep->num_tx_queues; q++) {
 982		/* ...and the same for transmit */
 983		txq = fep->tx_queue[q];
 984		bdp = txq->bd.base;
 985		txq->bd.cur = bdp;
 986
 987		for (i = 0; i < txq->bd.ring_size; i++) {
 988			/* Initialize the BD for every fragment in the page. */
 989			bdp->cbd_sc = cpu_to_fec16(0);
 990			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
 991				if (bdp->cbd_bufaddr &&
 992				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
 993					dma_unmap_single(&fep->pdev->dev,
 994							 fec32_to_cpu(bdp->cbd_bufaddr),
 995							 fec16_to_cpu(bdp->cbd_datlen),
 996							 DMA_TO_DEVICE);
 997				if (txq->tx_buf[i].buf_p)
 998					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
 999			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1000				if (bdp->cbd_bufaddr)
1001					dma_unmap_single(&fep->pdev->dev,
1002							 fec32_to_cpu(bdp->cbd_bufaddr),
1003							 fec16_to_cpu(bdp->cbd_datlen),
1004							 DMA_TO_DEVICE);
1005
1006				if (txq->tx_buf[i].buf_p)
1007					xdp_return_frame(txq->tx_buf[i].buf_p);
1008			} else {
1009				struct page *page = txq->tx_buf[i].buf_p;
1010
1011				if (page)
1012					page_pool_put_page(page->pp, page, 0, false);
1013			}
1014
1015			txq->tx_buf[i].buf_p = NULL;
1016			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1017			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1018			bdp->cbd_bufaddr = cpu_to_fec32(0);
1019			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1020		}
1021
1022		/* Set the last buffer to wrap */
1023		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1024		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1025		txq->dirty_tx = bdp;
1026	}
1027}
1028
1029static void fec_enet_active_rxring(struct net_device *ndev)
1030{
1031	struct fec_enet_private *fep = netdev_priv(ndev);
1032	int i;
1033
1034	for (i = 0; i < fep->num_rx_queues; i++)
1035		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1036}
1037
1038static void fec_enet_enable_ring(struct net_device *ndev)
1039{
1040	struct fec_enet_private *fep = netdev_priv(ndev);
1041	struct fec_enet_priv_tx_q *txq;
1042	struct fec_enet_priv_rx_q *rxq;
1043	int i;
1044
1045	for (i = 0; i < fep->num_rx_queues; i++) {
1046		rxq = fep->rx_queue[i];
1047		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1048		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1049
1050		/* enable DMA1/2 */
1051		if (i)
1052			writel(RCMR_MATCHEN | RCMR_CMP(i),
1053			       fep->hwp + FEC_RCMR(i));
1054	}
1055
1056	for (i = 0; i < fep->num_tx_queues; i++) {
1057		txq = fep->tx_queue[i];
1058		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1059
1060		/* enable DMA1/2 */
1061		if (i)
1062			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1063			       fep->hwp + FEC_DMA_CFG(i));
1064	}
1065}
1066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1067/*
1068 * This function is called to start or restart the FEC during a link
1069 * change, transmit timeout, or to reconfigure the FEC.  The network
1070 * packet processing for this device must be stopped before this call.
1071 */
1072static void
1073fec_restart(struct net_device *ndev)
1074{
1075	struct fec_enet_private *fep = netdev_priv(ndev);
 
1076	u32 temp_mac[2];
1077	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1078	u32 ecntl = FEC_ECR_ETHEREN;
1079
1080	/* Whack a reset.  We should wait for this.
1081	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1082	 * instead of reset MAC itself.
1083	 */
1084	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1085	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1086		writel(0, fep->hwp + FEC_ECNTRL);
1087	} else {
1088		writel(1, fep->hwp + FEC_ECNTRL);
1089		udelay(10);
1090	}
1091
1092	/*
1093	 * enet-mac reset will reset mac address registers too,
1094	 * so need to reconfigure it.
1095	 */
1096	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1097	writel((__force u32)cpu_to_be32(temp_mac[0]),
1098	       fep->hwp + FEC_ADDR_LOW);
1099	writel((__force u32)cpu_to_be32(temp_mac[1]),
1100	       fep->hwp + FEC_ADDR_HIGH);
1101
1102	/* Clear any outstanding interrupt, except MDIO. */
1103	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1104
1105	fec_enet_bd_init(ndev);
1106
1107	fec_enet_enable_ring(ndev);
1108
 
 
 
1109	/* Enable MII mode */
1110	if (fep->full_duplex == DUPLEX_FULL) {
1111		/* FD enable */
1112		writel(0x04, fep->hwp + FEC_X_CNTRL);
1113	} else {
1114		/* No Rcv on Xmit */
1115		rcntl |= 0x02;
1116		writel(0x0, fep->hwp + FEC_X_CNTRL);
1117	}
1118
1119	/* Set MII speed */
1120	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1121
1122#if !defined(CONFIG_M5272)
1123	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1124		u32 val = readl(fep->hwp + FEC_RACC);
1125
1126		/* align IP header */
1127		val |= FEC_RACC_SHIFT16;
1128		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1129			/* set RX checksum */
1130			val |= FEC_RACC_OPTIONS;
1131		else
1132			val &= ~FEC_RACC_OPTIONS;
1133		writel(val, fep->hwp + FEC_RACC);
1134		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1135	}
1136#endif
1137
1138	/*
1139	 * The phy interface and speed need to get configured
1140	 * differently on enet-mac.
1141	 */
1142	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1143		/* Enable flow control and length check */
1144		rcntl |= 0x40000000 | 0x00000020;
1145
1146		/* RGMII, RMII or MII */
1147		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1148		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1149		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1150		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1151			rcntl |= (1 << 6);
1152		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1153			rcntl |= FEC_RCR_RMII;
1154		else
1155			rcntl &= ~FEC_RCR_RMII;
1156
1157		/* 1G, 100M or 10M */
1158		if (ndev->phydev) {
1159			if (ndev->phydev->speed == SPEED_1000)
1160				ecntl |= (1 << 5);
1161			else if (ndev->phydev->speed == SPEED_100)
1162				rcntl &= ~FEC_RCR_10BASET;
1163			else
1164				rcntl |= FEC_RCR_10BASET;
1165		}
1166	} else {
1167#ifdef FEC_MIIGSK_ENR
1168		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1169			u32 cfgr;
1170			/* disable the gasket and wait */
1171			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1172			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1173				udelay(1);
1174
1175			/*
1176			 * configure the gasket:
1177			 *   RMII, 50 MHz, no loopback, no echo
1178			 *   MII, 25 MHz, no loopback, no echo
1179			 */
1180			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1181				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1182			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1183				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1184			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1185
1186			/* re-enable the gasket */
1187			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1188		}
1189#endif
1190	}
1191
1192#if !defined(CONFIG_M5272)
1193	/* enable pause frame*/
1194	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1195	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1196	     ndev->phydev && ndev->phydev->pause)) {
1197		rcntl |= FEC_RCR_FLOWCTL;
1198
1199		/* set FIFO threshold parameter to reduce overrun */
1200		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1201		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1202		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1203		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1204
1205		/* OPD */
1206		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1207	} else {
1208		rcntl &= ~FEC_RCR_FLOWCTL;
1209	}
1210#endif /* !defined(CONFIG_M5272) */
1211
1212	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1213
1214	/* Setup multicast filter. */
1215	set_multicast_list(ndev);
1216#ifndef CONFIG_M5272
1217	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1218	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1219#endif
1220
1221	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1222		/* enable ENET endian swap */
1223		ecntl |= FEC_ECR_BYTESWP;
1224		/* enable ENET store and forward mode */
1225		writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1226	}
1227
1228	if (fep->bufdesc_ex)
1229		ecntl |= FEC_ECR_EN1588;
1230
1231	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1232	    fep->rgmii_txc_dly)
1233		ecntl |= FEC_ENET_TXC_DLY;
1234	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1235	    fep->rgmii_rxc_dly)
1236		ecntl |= FEC_ENET_RXC_DLY;
1237
1238#ifndef CONFIG_M5272
1239	/* Enable the MIB statistic event counters */
1240	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1241#endif
1242
1243	/* And last, enable the transmit and receive processing */
1244	writel(ecntl, fep->hwp + FEC_ECNTRL);
1245	fec_enet_active_rxring(ndev);
1246
1247	if (fep->bufdesc_ex)
1248		fec_ptp_start_cyclecounter(ndev);
1249
1250	/* Enable interrupts we wish to service */
1251	if (fep->link)
1252		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1253	else
1254		writel(0, fep->hwp + FEC_IMASK);
1255
1256	/* Init the interrupt coalescing */
1257	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1258		fec_enet_itr_coal_set(ndev);
1259}
1260
1261static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1262{
1263	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1264	      of_machine_is_compatible("fsl,imx8qxp") ||
1265	      of_machine_is_compatible("fsl,imx8dxl")))
1266		return 0;
1267
1268	return imx_scu_get_handle(&fep->ipc_handle);
1269}
1270
1271static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1272{
1273	struct device_node *np = fep->pdev->dev.of_node;
1274	u32 rsrc_id, val;
1275	int idx;
1276
1277	if (!np || !fep->ipc_handle)
1278		return;
1279
1280	idx = of_alias_get_id(np, "ethernet");
1281	if (idx < 0)
1282		idx = 0;
1283	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1284
1285	val = enabled ? 1 : 0;
1286	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1287}
1288
1289static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1290{
1291	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1292	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1293
1294	if (stop_gpr->gpr) {
1295		if (enabled)
1296			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1297					   BIT(stop_gpr->bit),
1298					   BIT(stop_gpr->bit));
1299		else
1300			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1301					   BIT(stop_gpr->bit), 0);
1302	} else if (pdata && pdata->sleep_mode_enable) {
1303		pdata->sleep_mode_enable(enabled);
1304	} else {
1305		fec_enet_ipg_stop_set(fep, enabled);
1306	}
1307}
1308
1309static void fec_irqs_disable(struct net_device *ndev)
1310{
1311	struct fec_enet_private *fep = netdev_priv(ndev);
1312
1313	writel(0, fep->hwp + FEC_IMASK);
1314}
1315
1316static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1317{
1318	struct fec_enet_private *fep = netdev_priv(ndev);
1319
1320	writel(0, fep->hwp + FEC_IMASK);
1321	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1322}
1323
1324static void
1325fec_stop(struct net_device *ndev)
1326{
1327	struct fec_enet_private *fep = netdev_priv(ndev);
1328	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
 
1329	u32 val;
1330
1331	/* We cannot expect a graceful transmit stop without link !!! */
1332	if (fep->link) {
1333		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1334		udelay(10);
1335		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1336			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1337	}
1338
1339	/* Whack a reset.  We should wait for this.
1340	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1341	 * instead of reset MAC itself.
1342	 */
1343	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1344		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1345			writel(0, fep->hwp + FEC_ECNTRL);
1346		} else {
1347			writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1348			udelay(10);
1349		}
 
1350	} else {
 
1351		val = readl(fep->hwp + FEC_ECNTRL);
1352		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1353		writel(val, fep->hwp + FEC_ECNTRL);
 
 
 
1354	}
1355	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1356	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1357
1358	/* We have to keep ENET enabled to have MII interrupt stay working */
1359	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1360		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1361		writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1362		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1363	}
1364}
1365
 
1366static void
1367fec_timeout(struct net_device *ndev, unsigned int txqueue)
1368{
1369	struct fec_enet_private *fep = netdev_priv(ndev);
1370
1371	fec_dump(ndev);
1372
1373	ndev->stats.tx_errors++;
1374
1375	schedule_work(&fep->tx_timeout_work);
1376}
1377
1378static void fec_enet_timeout_work(struct work_struct *work)
1379{
1380	struct fec_enet_private *fep =
1381		container_of(work, struct fec_enet_private, tx_timeout_work);
1382	struct net_device *ndev = fep->netdev;
1383
1384	rtnl_lock();
1385	if (netif_device_present(ndev) || netif_running(ndev)) {
1386		napi_disable(&fep->napi);
1387		netif_tx_lock_bh(ndev);
1388		fec_restart(ndev);
1389		netif_tx_wake_all_queues(ndev);
1390		netif_tx_unlock_bh(ndev);
1391		napi_enable(&fep->napi);
1392	}
1393	rtnl_unlock();
1394}
1395
1396static void
1397fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1398	struct skb_shared_hwtstamps *hwtstamps)
1399{
1400	unsigned long flags;
1401	u64 ns;
1402
1403	spin_lock_irqsave(&fep->tmreg_lock, flags);
1404	ns = timecounter_cyc2time(&fep->tc, ts);
1405	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1406
1407	memset(hwtstamps, 0, sizeof(*hwtstamps));
1408	hwtstamps->hwtstamp = ns_to_ktime(ns);
1409}
1410
1411static void
1412fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1413{
1414	struct	fec_enet_private *fep;
1415	struct xdp_frame *xdpf;
1416	struct bufdesc *bdp;
1417	unsigned short status;
1418	struct	sk_buff	*skb;
1419	struct fec_enet_priv_tx_q *txq;
1420	struct netdev_queue *nq;
1421	int	index = 0;
1422	int	entries_free;
1423	struct page *page;
1424	int frame_len;
1425
1426	fep = netdev_priv(ndev);
1427
 
 
1428	txq = fep->tx_queue[queue_id];
1429	/* get next bdp of dirty_tx */
1430	nq = netdev_get_tx_queue(ndev, queue_id);
1431	bdp = txq->dirty_tx;
1432
1433	/* get next bdp of dirty_tx */
1434	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1435
1436	while (bdp != READ_ONCE(txq->bd.cur)) {
1437		/* Order the load of bd.cur and cbd_sc */
1438		rmb();
1439		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1440		if (status & BD_ENET_TX_READY)
1441			break;
1442
1443		index = fec_enet_get_bd_index(bdp, &txq->bd);
1444
1445		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1446			skb = txq->tx_buf[index].buf_p;
1447			if (bdp->cbd_bufaddr &&
1448			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1449				dma_unmap_single(&fep->pdev->dev,
1450						 fec32_to_cpu(bdp->cbd_bufaddr),
1451						 fec16_to_cpu(bdp->cbd_datlen),
1452						 DMA_TO_DEVICE);
1453			bdp->cbd_bufaddr = cpu_to_fec32(0);
1454			if (!skb)
1455				goto tx_buf_done;
1456		} else {
1457			/* Tx processing cannot call any XDP (or page pool) APIs if
1458			 * the "budget" is 0. Because NAPI is called with budget of
1459			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1460			 * however, we can't use the page pool from IRQ context.
1461			 */
1462			if (unlikely(!budget))
1463				break;
1464
1465			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1466				xdpf = txq->tx_buf[index].buf_p;
1467				if (bdp->cbd_bufaddr)
1468					dma_unmap_single(&fep->pdev->dev,
1469							 fec32_to_cpu(bdp->cbd_bufaddr),
1470							 fec16_to_cpu(bdp->cbd_datlen),
1471							 DMA_TO_DEVICE);
1472			} else {
1473				page = txq->tx_buf[index].buf_p;
1474			}
1475
1476			bdp->cbd_bufaddr = cpu_to_fec32(0);
1477			if (unlikely(!txq->tx_buf[index].buf_p)) {
1478				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1479				goto tx_buf_done;
1480			}
1481
1482			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1483		}
1484
1485		/* Check for errors. */
1486		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1487				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1488				   BD_ENET_TX_CSL)) {
1489			ndev->stats.tx_errors++;
1490			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1491				ndev->stats.tx_heartbeat_errors++;
1492			if (status & BD_ENET_TX_LC)  /* Late collision */
1493				ndev->stats.tx_window_errors++;
1494			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1495				ndev->stats.tx_aborted_errors++;
1496			if (status & BD_ENET_TX_UN)  /* Underrun */
1497				ndev->stats.tx_fifo_errors++;
1498			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1499				ndev->stats.tx_carrier_errors++;
1500		} else {
1501			ndev->stats.tx_packets++;
 
 
 
 
 
 
 
1502
1503			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1504				ndev->stats.tx_bytes += skb->len;
1505			else
1506				ndev->stats.tx_bytes += frame_len;
1507		}
1508
1509		/* Deferred means some collisions occurred during transmit,
1510		 * but we eventually sent the packet OK.
1511		 */
1512		if (status & BD_ENET_TX_DEF)
1513			ndev->stats.collisions++;
1514
1515		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1516			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1517			 * are to time stamp the packet, so we still need to check time
1518			 * stamping enabled flag.
1519			 */
1520			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1521				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1522				struct skb_shared_hwtstamps shhwtstamps;
1523				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1524
1525				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1526				skb_tstamp_tx(skb, &shhwtstamps);
1527			}
1528
1529			/* Free the sk buffer associated with this last transmit */
1530			napi_consume_skb(skb, budget);
1531		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1532			xdp_return_frame_rx_napi(xdpf);
1533		} else { /* recycle pages of XDP_TX frames */
1534			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1535			page_pool_put_page(page->pp, page, 0, true);
1536		}
1537
1538		txq->tx_buf[index].buf_p = NULL;
1539		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1540		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1541
1542tx_buf_done:
1543		/* Make sure the update to bdp and tx_buf are performed
1544		 * before dirty_tx
1545		 */
1546		wmb();
1547		txq->dirty_tx = bdp;
1548
1549		/* Update pointer to next buffer descriptor to be transmitted */
1550		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1551
1552		/* Since we have freed up a buffer, the ring is no longer full
1553		 */
1554		if (netif_tx_queue_stopped(nq)) {
1555			entries_free = fec_enet_get_free_txdesc_num(txq);
1556			if (entries_free >= txq->tx_wake_threshold)
1557				netif_tx_wake_queue(nq);
1558		}
1559	}
1560
1561	/* ERR006358: Keep the transmitter going */
1562	if (bdp != txq->bd.cur &&
1563	    readl(txq->bd.reg_desc_active) == 0)
1564		writel(0, txq->bd.reg_desc_active);
1565}
1566
1567static void fec_enet_tx(struct net_device *ndev, int budget)
 
1568{
1569	struct fec_enet_private *fep = netdev_priv(ndev);
1570	int i;
1571
1572	/* Make sure that AVB queues are processed first. */
1573	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1574		fec_enet_tx_queue(ndev, i, budget);
 
 
1575}
1576
1577static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1578				struct bufdesc *bdp, int index)
1579{
1580	struct page *new_page;
1581	dma_addr_t phys_addr;
 
 
 
 
1582
1583	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1584	WARN_ON(!new_page);
1585	rxq->rx_skb_info[index].page = new_page;
 
 
 
1586
1587	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1588	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1589	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1590}
1591
1592static u32
1593fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1594		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1595{
1596	unsigned int sync, len = xdp->data_end - xdp->data;
1597	u32 ret = FEC_ENET_XDP_PASS;
1598	struct page *page;
1599	int err;
1600	u32 act;
1601
1602	act = bpf_prog_run_xdp(prog, xdp);
 
1603
1604	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1605	 * max len CPU touch
1606	 */
1607	sync = xdp->data_end - xdp->data;
1608	sync = max(sync, len);
1609
1610	switch (act) {
1611	case XDP_PASS:
1612		rxq->stats[RX_XDP_PASS]++;
1613		ret = FEC_ENET_XDP_PASS;
1614		break;
1615
1616	case XDP_REDIRECT:
1617		rxq->stats[RX_XDP_REDIRECT]++;
1618		err = xdp_do_redirect(fep->netdev, xdp, prog);
1619		if (unlikely(err))
1620			goto xdp_err;
1621
1622		ret = FEC_ENET_XDP_REDIR;
1623		break;
1624
1625	case XDP_TX:
1626		rxq->stats[RX_XDP_TX]++;
1627		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1628		if (unlikely(err)) {
1629			rxq->stats[RX_XDP_TX_ERRORS]++;
1630			goto xdp_err;
1631		}
1632
1633		ret = FEC_ENET_XDP_TX;
1634		break;
1635
1636	default:
1637		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1638		fallthrough;
1639
1640	case XDP_ABORTED:
1641		fallthrough;    /* handle aborts by dropping packet */
1642
1643	case XDP_DROP:
1644		rxq->stats[RX_XDP_DROP]++;
1645xdp_err:
1646		ret = FEC_ENET_XDP_CONSUMED;
1647		page = virt_to_head_page(xdp->data);
1648		page_pool_put_page(rxq->page_pool, page, sync, true);
1649		if (act != XDP_DROP)
1650			trace_xdp_exception(fep->netdev, prog, act);
1651		break;
1652	}
1653
1654	return ret;
1655}
1656
1657/* During a receive, the bd_rx.cur points to the current incoming buffer.
1658 * When we update through the ring, if the next incoming buffer has
1659 * not been given to the system, we just set the empty indicator,
1660 * effectively tossing the packet.
1661 */
1662static int
1663fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1664{
1665	struct fec_enet_private *fep = netdev_priv(ndev);
1666	struct fec_enet_priv_rx_q *rxq;
1667	struct bufdesc *bdp;
1668	unsigned short status;
 
1669	struct  sk_buff *skb;
1670	ushort	pkt_len;
1671	__u8 *data;
1672	int	pkt_received = 0;
1673	struct	bufdesc_ex *ebdp = NULL;
1674	bool	vlan_packet_rcvd = false;
1675	u16	vlan_tag;
1676	int	index = 0;
 
1677	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1678	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1679	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1680	u32 data_start = FEC_ENET_XDP_HEADROOM;
1681	int cpu = smp_processor_id();
1682	struct xdp_buff xdp;
1683	struct page *page;
1684	u32 sub_len = 4;
1685
1686#if !defined(CONFIG_M5272)
1687	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1688	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1689	 */
1690	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1691		data_start += 2;
1692		sub_len += 2;
1693	}
1694#endif
1695
1696#if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1697	/*
1698	 * Hacky flush of all caches instead of using the DMA API for the TSO
1699	 * headers.
1700	 */
1701	flush_cache_all();
1702#endif
 
1703	rxq = fep->rx_queue[queue_id];
1704
1705	/* First, grab all of the stats for the incoming packet.
1706	 * These get messed up if we get called due to a busy condition.
1707	 */
1708	bdp = rxq->bd.cur;
1709	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1710
1711	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1712
1713		if (pkt_received >= budget)
1714			break;
1715		pkt_received++;
1716
1717		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1718
1719		/* Check for errors. */
1720		status ^= BD_ENET_RX_LAST;
1721		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1722			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1723			   BD_ENET_RX_CL)) {
1724			ndev->stats.rx_errors++;
1725			if (status & BD_ENET_RX_OV) {
1726				/* FIFO overrun */
1727				ndev->stats.rx_fifo_errors++;
1728				goto rx_processing_done;
1729			}
1730			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1731						| BD_ENET_RX_LAST)) {
1732				/* Frame too long or too short. */
1733				ndev->stats.rx_length_errors++;
1734				if (status & BD_ENET_RX_LAST)
1735					netdev_err(ndev, "rcv is not +last\n");
1736			}
1737			if (status & BD_ENET_RX_CR)	/* CRC Error */
1738				ndev->stats.rx_crc_errors++;
1739			/* Report late collisions as a frame error. */
1740			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1741				ndev->stats.rx_frame_errors++;
1742			goto rx_processing_done;
1743		}
1744
1745		/* Process the incoming frame. */
1746		ndev->stats.rx_packets++;
1747		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1748		ndev->stats.rx_bytes += pkt_len;
1749
1750		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1751		page = rxq->rx_skb_info[index].page;
1752		dma_sync_single_for_cpu(&fep->pdev->dev,
1753					fec32_to_cpu(bdp->cbd_bufaddr),
1754					pkt_len,
1755					DMA_FROM_DEVICE);
1756		prefetch(page_address(page));
1757		fec_enet_update_cbd(rxq, bdp, index);
1758
1759		if (xdp_prog) {
1760			xdp_buff_clear_frags_flag(&xdp);
1761			/* subtract 16bit shift and FCS */
1762			xdp_prepare_buff(&xdp, page_address(page),
1763					 data_start, pkt_len - sub_len, false);
1764			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1765			xdp_result |= ret;
1766			if (ret != FEC_ENET_XDP_PASS)
1767				goto rx_processing_done;
1768		}
1769
1770		/* The packet length includes FCS, but we don't want to
1771		 * include that when passing upstream as it messes up
1772		 * bridging applications.
1773		 */
1774		skb = build_skb(page_address(page), PAGE_SIZE);
1775		if (unlikely(!skb)) {
1776			page_pool_recycle_direct(rxq->page_pool, page);
1777			ndev->stats.rx_dropped++;
1778
1779			netdev_err_once(ndev, "build_skb failed!\n");
1780			goto rx_processing_done;
 
 
 
 
 
1781		}
1782
1783		skb_reserve(skb, data_start);
1784		skb_put(skb, pkt_len - sub_len);
1785		skb_mark_for_recycle(skb);
1786
1787		if (unlikely(need_swap)) {
1788			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1789			swap_buffer(data, pkt_len);
1790		}
1791		data = skb->data;
 
 
 
1792
1793		/* Extract the enhanced buffer descriptor */
1794		ebdp = NULL;
1795		if (fep->bufdesc_ex)
1796			ebdp = (struct bufdesc_ex *)bdp;
1797
1798		/* If this is a VLAN packet remove the VLAN Tag */
1799		vlan_packet_rcvd = false;
1800		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1801		    fep->bufdesc_ex &&
1802		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1803			/* Push and remove the vlan tag */
1804			struct vlan_hdr *vlan_header =
1805					(struct vlan_hdr *) (data + ETH_HLEN);
1806			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1807
1808			vlan_packet_rcvd = true;
1809
1810			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1811			skb_pull(skb, VLAN_HLEN);
1812		}
1813
1814		skb->protocol = eth_type_trans(skb, ndev);
1815
1816		/* Get receive timestamp from the skb */
1817		if (fep->hwts_rx_en && fep->bufdesc_ex)
1818			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1819					  skb_hwtstamps(skb));
1820
1821		if (fep->bufdesc_ex &&
1822		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1823			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1824				/* don't check it */
1825				skb->ip_summed = CHECKSUM_UNNECESSARY;
1826			} else {
1827				skb_checksum_none_assert(skb);
1828			}
1829		}
1830
1831		/* Handle received VLAN packets */
1832		if (vlan_packet_rcvd)
1833			__vlan_hwaccel_put_tag(skb,
1834					       htons(ETH_P_8021Q),
1835					       vlan_tag);
1836
1837		skb_record_rx_queue(skb, queue_id);
1838		napi_gro_receive(&fep->napi, skb);
1839
 
 
 
 
 
 
 
 
 
 
1840rx_processing_done:
1841		/* Clear the status flags for this buffer */
1842		status &= ~BD_ENET_RX_STATS;
1843
1844		/* Mark the buffer empty */
1845		status |= BD_ENET_RX_EMPTY;
1846
1847		if (fep->bufdesc_ex) {
1848			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1849
1850			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1851			ebdp->cbd_prot = 0;
1852			ebdp->cbd_bdu = 0;
1853		}
1854		/* Make sure the updates to rest of the descriptor are
1855		 * performed before transferring ownership.
1856		 */
1857		wmb();
1858		bdp->cbd_sc = cpu_to_fec16(status);
1859
1860		/* Update BD pointer to next entry */
1861		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1862
1863		/* Doing this here will keep the FEC running while we process
1864		 * incoming frames.  On a heavily loaded network, we should be
1865		 * able to keep up at the expense of system resources.
1866		 */
1867		writel(0, rxq->bd.reg_desc_active);
1868	}
1869	rxq->bd.cur = bdp;
1870
1871	if (xdp_result & FEC_ENET_XDP_REDIR)
1872		xdp_do_flush();
1873
1874	return pkt_received;
1875}
1876
1877static int fec_enet_rx(struct net_device *ndev, int budget)
 
1878{
 
 
1879	struct fec_enet_private *fep = netdev_priv(ndev);
1880	int i, done = 0;
1881
1882	/* Make sure that AVB queues are processed first. */
1883	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1884		done += fec_enet_rx_queue(ndev, budget - done, i);
 
 
1885
1886	return done;
 
 
 
 
 
1887}
1888
1889static bool fec_enet_collect_events(struct fec_enet_private *fep)
 
1890{
1891	uint int_events;
1892
1893	int_events = readl(fep->hwp + FEC_IEVENT);
1894
1895	/* Don't clear MDIO events, we poll for those */
1896	int_events &= ~FEC_ENET_MII;
 
 
 
 
 
 
 
 
 
 
 
1897
1898	writel(int_events, fep->hwp + FEC_IEVENT);
1899
1900	return int_events != 0;
1901}
1902
1903static irqreturn_t
1904fec_enet_interrupt(int irq, void *dev_id)
1905{
1906	struct net_device *ndev = dev_id;
1907	struct fec_enet_private *fep = netdev_priv(ndev);
 
1908	irqreturn_t ret = IRQ_NONE;
1909
1910	if (fec_enet_collect_events(fep) && fep->link) {
 
 
 
 
1911		ret = IRQ_HANDLED;
1912
1913		if (napi_schedule_prep(&fep->napi)) {
1914			/* Disable interrupts */
1915			writel(0, fep->hwp + FEC_IMASK);
1916			__napi_schedule(&fep->napi);
1917		}
1918	}
1919
 
 
 
 
1920	return ret;
1921}
1922
1923static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1924{
1925	struct net_device *ndev = napi->dev;
1926	struct fec_enet_private *fep = netdev_priv(ndev);
1927	int done = 0;
 
 
1928
1929	do {
1930		done += fec_enet_rx(ndev, budget - done);
1931		fec_enet_tx(ndev, budget);
1932	} while ((done < budget) && fec_enet_collect_events(fep));
1933
1934	if (done < budget) {
1935		napi_complete_done(napi, done);
1936		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1937	}
1938
1939	return done;
1940}
1941
1942/* ------------------------------------------------------------------------- */
1943static int fec_get_mac(struct net_device *ndev)
1944{
1945	struct fec_enet_private *fep = netdev_priv(ndev);
 
1946	unsigned char *iap, tmpaddr[ETH_ALEN];
1947	int ret;
1948
1949	/*
1950	 * try to get mac address in following order:
1951	 *
1952	 * 1) module parameter via kernel command line in form
1953	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1954	 */
1955	iap = macaddr;
1956
1957	/*
1958	 * 2) from device tree data
1959	 */
1960	if (!is_valid_ether_addr(iap)) {
1961		struct device_node *np = fep->pdev->dev.of_node;
1962		if (np) {
1963			ret = of_get_mac_address(np, tmpaddr);
1964			if (!ret)
1965				iap = tmpaddr;
1966			else if (ret == -EPROBE_DEFER)
1967				return ret;
1968		}
1969	}
1970
1971	/*
1972	 * 3) from flash or fuse (via platform data)
1973	 */
1974	if (!is_valid_ether_addr(iap)) {
1975#ifdef CONFIG_M5272
1976		if (FEC_FLASHMAC)
1977			iap = (unsigned char *)FEC_FLASHMAC;
1978#else
1979		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1980
1981		if (pdata)
1982			iap = (unsigned char *)&pdata->mac;
1983#endif
1984	}
1985
1986	/*
1987	 * 4) FEC mac registers set by bootloader
1988	 */
1989	if (!is_valid_ether_addr(iap)) {
1990		*((__be32 *) &tmpaddr[0]) =
1991			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1992		*((__be16 *) &tmpaddr[4]) =
1993			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1994		iap = &tmpaddr[0];
1995	}
1996
1997	/*
1998	 * 5) random mac address
1999	 */
2000	if (!is_valid_ether_addr(iap)) {
2001		/* Report it and use a random ethernet address instead */
2002		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2003		eth_hw_addr_random(ndev);
2004		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2005			 ndev->dev_addr);
2006		return 0;
2007	}
2008
 
 
2009	/* Adjust MAC if using macaddr */
2010	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2011
2012	return 0;
2013}
2014
2015/* ------------------------------------------------------------------------- */
2016
2017/*
2018 * Phy section
2019 */
2020
2021/* LPI Sleep Ts count base on tx clk (clk_ref).
2022 * The lpi sleep cnt value = X us / (cycle_ns).
2023 */
2024static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2025{
2026	struct fec_enet_private *fep = netdev_priv(ndev);
2027
2028	return us * (fep->clk_ref_rate / 1000) / 1000;
2029}
2030
2031static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
2032{
2033	struct fec_enet_private *fep = netdev_priv(ndev);
2034	struct ethtool_keee *p = &fep->eee;
2035	unsigned int sleep_cycle, wake_cycle;
2036
2037	if (enable) {
2038		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
2039		wake_cycle = sleep_cycle;
2040	} else {
2041		sleep_cycle = 0;
2042		wake_cycle = 0;
2043	}
2044
2045	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2046	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2047
2048	return 0;
2049}
2050
2051static void fec_enet_adjust_link(struct net_device *ndev)
2052{
2053	struct fec_enet_private *fep = netdev_priv(ndev);
2054	struct phy_device *phy_dev = ndev->phydev;
2055	int status_change = 0;
2056
 
 
 
 
 
 
2057	/*
2058	 * If the netdev is down, or is going down, we're not interested
2059	 * in link state events, so just mark our idea of the link as down
2060	 * and ignore the event.
2061	 */
2062	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2063		fep->link = 0;
2064	} else if (phy_dev->link) {
2065		if (!fep->link) {
2066			fep->link = phy_dev->link;
2067			status_change = 1;
2068		}
2069
2070		if (fep->full_duplex != phy_dev->duplex) {
2071			fep->full_duplex = phy_dev->duplex;
2072			status_change = 1;
2073		}
2074
2075		if (phy_dev->speed != fep->speed) {
2076			fep->speed = phy_dev->speed;
2077			status_change = 1;
2078		}
2079
2080		/* if any of the above changed restart the FEC */
2081		if (status_change) {
2082			netif_stop_queue(ndev);
2083			napi_disable(&fep->napi);
2084			netif_tx_lock_bh(ndev);
2085			fec_restart(ndev);
2086			netif_tx_wake_all_queues(ndev);
2087			netif_tx_unlock_bh(ndev);
2088			napi_enable(&fep->napi);
2089		}
2090		if (fep->quirks & FEC_QUIRK_HAS_EEE)
2091			fec_enet_eee_mode_set(ndev, phy_dev->enable_tx_lpi);
2092	} else {
2093		if (fep->link) {
2094			netif_stop_queue(ndev);
2095			napi_disable(&fep->napi);
2096			netif_tx_lock_bh(ndev);
2097			fec_stop(ndev);
2098			netif_tx_unlock_bh(ndev);
2099			napi_enable(&fep->napi);
2100			fep->link = phy_dev->link;
2101			status_change = 1;
2102		}
2103	}
2104
2105	if (status_change)
2106		phy_print_status(phy_dev);
2107}
2108
2109static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2110{
2111	uint ievent;
2112	int ret;
2113
2114	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2115					ievent & FEC_ENET_MII, 2, 30000);
2116
2117	if (!ret)
2118		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2119
2120	return ret;
2121}
2122
2123static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2124{
2125	struct fec_enet_private *fep = bus->priv;
2126	struct device *dev = &fep->pdev->dev;
2127	int ret = 0, frame_start, frame_addr, frame_op;
 
2128
2129	ret = pm_runtime_resume_and_get(dev);
2130	if (ret < 0)
2131		return ret;
2132
2133	/* C22 read */
2134	frame_op = FEC_MMFR_OP_READ;
2135	frame_start = FEC_MMFR_ST;
2136	frame_addr = regnum;
2137
2138	/* start a read op */
2139	writel(frame_start | frame_op |
2140	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2141	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2142
2143	/* wait for end of transfer */
2144	ret = fec_enet_mdio_wait(fep);
2145	if (ret) {
 
 
2146		netdev_err(fep->netdev, "MDIO read timeout\n");
 
2147		goto out;
2148	}
2149
2150	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2151
2152out:
2153	pm_runtime_mark_last_busy(dev);
2154	pm_runtime_put_autosuspend(dev);
2155
2156	return ret;
2157}
2158
2159static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2160				  int devad, int regnum)
2161{
2162	struct fec_enet_private *fep = bus->priv;
2163	struct device *dev = &fep->pdev->dev;
2164	int ret = 0, frame_start, frame_op;
 
2165
2166	ret = pm_runtime_resume_and_get(dev);
2167	if (ret < 0)
2168		return ret;
2169
2170	frame_start = FEC_MMFR_ST_C45;
2171
2172	/* write address */
2173	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2174	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2175	       FEC_MMFR_TA | (regnum & 0xFFFF),
2176	       fep->hwp + FEC_MII_DATA);
2177
2178	/* wait for end of transfer */
2179	ret = fec_enet_mdio_wait(fep);
2180	if (ret) {
2181		netdev_err(fep->netdev, "MDIO address write timeout\n");
2182		goto out;
2183	}
2184
2185	frame_op = FEC_MMFR_OP_READ_C45;
2186
2187	/* start a read op */
2188	writel(frame_start | frame_op |
2189	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2190	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2191
2192	/* wait for end of transfer */
2193	ret = fec_enet_mdio_wait(fep);
2194	if (ret) {
2195		netdev_err(fep->netdev, "MDIO read timeout\n");
2196		goto out;
2197	}
2198
2199	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2200
2201out:
2202	pm_runtime_mark_last_busy(dev);
2203	pm_runtime_put_autosuspend(dev);
2204
2205	return ret;
2206}
2207
2208static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2209				   u16 value)
2210{
2211	struct fec_enet_private *fep = bus->priv;
2212	struct device *dev = &fep->pdev->dev;
2213	int ret, frame_start, frame_addr;
2214
2215	ret = pm_runtime_resume_and_get(dev);
2216	if (ret < 0)
2217		return ret;
 
 
2218
2219	/* C22 write */
2220	frame_start = FEC_MMFR_ST;
2221	frame_addr = regnum;
2222
2223	/* start a write op */
2224	writel(frame_start | FEC_MMFR_OP_WRITE |
2225	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2226	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2227	       fep->hwp + FEC_MII_DATA);
2228
2229	/* wait for end of transfer */
2230	ret = fec_enet_mdio_wait(fep);
2231	if (ret)
 
 
2232		netdev_err(fep->netdev, "MDIO write timeout\n");
2233
2234	pm_runtime_mark_last_busy(dev);
2235	pm_runtime_put_autosuspend(dev);
2236
2237	return ret;
2238}
2239
2240static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2241				   int devad, int regnum, u16 value)
2242{
2243	struct fec_enet_private *fep = bus->priv;
2244	struct device *dev = &fep->pdev->dev;
2245	int ret, frame_start;
2246
2247	ret = pm_runtime_resume_and_get(dev);
2248	if (ret < 0)
2249		return ret;
2250
2251	frame_start = FEC_MMFR_ST_C45;
2252
2253	/* write address */
2254	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2255	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2256	       FEC_MMFR_TA | (regnum & 0xFFFF),
2257	       fep->hwp + FEC_MII_DATA);
2258
2259	/* wait for end of transfer */
2260	ret = fec_enet_mdio_wait(fep);
2261	if (ret) {
2262		netdev_err(fep->netdev, "MDIO address write timeout\n");
2263		goto out;
2264	}
2265
2266	/* start a write op */
2267	writel(frame_start | FEC_MMFR_OP_WRITE |
2268	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2269	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2270	       fep->hwp + FEC_MII_DATA);
2271
2272	/* wait for end of transfer */
2273	ret = fec_enet_mdio_wait(fep);
2274	if (ret)
2275		netdev_err(fep->netdev, "MDIO write timeout\n");
2276
2277out:
2278	pm_runtime_mark_last_busy(dev);
2279	pm_runtime_put_autosuspend(dev);
2280
2281	return ret;
2282}
2283
2284static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2285{
2286	struct fec_enet_private *fep = netdev_priv(ndev);
2287	struct phy_device *phy_dev = ndev->phydev;
2288
2289	if (phy_dev) {
2290		phy_reset_after_clk_enable(phy_dev);
2291	} else if (fep->phy_node) {
2292		/*
2293		 * If the PHY still is not bound to the MAC, but there is
2294		 * OF PHY node and a matching PHY device instance already,
2295		 * use the OF PHY node to obtain the PHY device instance,
2296		 * and then use that PHY device instance when triggering
2297		 * the PHY reset.
2298		 */
2299		phy_dev = of_phy_find_device(fep->phy_node);
2300		phy_reset_after_clk_enable(phy_dev);
2301		put_device(&phy_dev->mdio.dev);
2302	}
2303}
2304
2305static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2306{
2307	struct fec_enet_private *fep = netdev_priv(ndev);
2308	int ret;
2309
2310	if (enable) {
 
 
 
 
2311		ret = clk_prepare_enable(fep->clk_enet_out);
2312		if (ret)
2313			return ret;
2314
2315		if (fep->clk_ptp) {
2316			mutex_lock(&fep->ptp_clk_mutex);
2317			ret = clk_prepare_enable(fep->clk_ptp);
2318			if (ret) {
2319				mutex_unlock(&fep->ptp_clk_mutex);
2320				goto failed_clk_ptp;
2321			} else {
2322				fep->ptp_clk_on = true;
2323			}
2324			mutex_unlock(&fep->ptp_clk_mutex);
2325		}
2326
2327		ret = clk_prepare_enable(fep->clk_ref);
2328		if (ret)
2329			goto failed_clk_ref;
2330
2331		ret = clk_prepare_enable(fep->clk_2x_txclk);
2332		if (ret)
2333			goto failed_clk_2x_txclk;
2334
2335		fec_enet_phy_reset_after_clk_enable(ndev);
2336	} else {
 
2337		clk_disable_unprepare(fep->clk_enet_out);
2338		if (fep->clk_ptp) {
2339			mutex_lock(&fep->ptp_clk_mutex);
2340			clk_disable_unprepare(fep->clk_ptp);
2341			fep->ptp_clk_on = false;
2342			mutex_unlock(&fep->ptp_clk_mutex);
2343		}
2344		clk_disable_unprepare(fep->clk_ref);
2345		clk_disable_unprepare(fep->clk_2x_txclk);
2346	}
2347
2348	return 0;
2349
2350failed_clk_2x_txclk:
2351	if (fep->clk_ref)
2352		clk_disable_unprepare(fep->clk_ref);
2353failed_clk_ref:
2354	if (fep->clk_ptp) {
2355		mutex_lock(&fep->ptp_clk_mutex);
2356		clk_disable_unprepare(fep->clk_ptp);
2357		fep->ptp_clk_on = false;
2358		mutex_unlock(&fep->ptp_clk_mutex);
2359	}
2360failed_clk_ptp:
2361	clk_disable_unprepare(fep->clk_enet_out);
 
 
 
2362
2363	return ret;
2364}
2365
2366static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2367				      struct device_node *np)
2368{
2369	u32 rgmii_tx_delay, rgmii_rx_delay;
2370
2371	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2372	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2373		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2374			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2375			return -EINVAL;
2376		} else if (rgmii_tx_delay == 2000) {
2377			fep->rgmii_txc_dly = true;
2378		}
2379	}
2380
2381	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2382	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2383		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2384			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2385			return -EINVAL;
2386		} else if (rgmii_rx_delay == 2000) {
2387			fep->rgmii_rxc_dly = true;
2388		}
2389	}
2390
2391	return 0;
2392}
2393
2394static int fec_enet_mii_probe(struct net_device *ndev)
2395{
2396	struct fec_enet_private *fep = netdev_priv(ndev);
2397	struct phy_device *phy_dev = NULL;
2398	char mdio_bus_id[MII_BUS_ID_SIZE];
2399	char phy_name[MII_BUS_ID_SIZE + 3];
2400	int phy_id;
2401	int dev_id = fep->dev_id;
2402
2403	if (fep->phy_node) {
2404		phy_dev = of_phy_connect(ndev, fep->phy_node,
2405					 &fec_enet_adjust_link, 0,
2406					 fep->phy_interface);
2407		if (!phy_dev) {
2408			netdev_err(ndev, "Unable to connect to phy\n");
2409			return -ENODEV;
2410		}
2411	} else {
2412		/* check for attached phy */
2413		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2414			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2415				continue;
2416			if (dev_id--)
2417				continue;
2418			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2419			break;
2420		}
2421
2422		if (phy_id >= PHY_MAX_ADDR) {
2423			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2424			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2425			phy_id = 0;
2426		}
2427
2428		snprintf(phy_name, sizeof(phy_name),
2429			 PHY_ID_FMT, mdio_bus_id, phy_id);
2430		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2431				      fep->phy_interface);
2432	}
2433
2434	if (IS_ERR(phy_dev)) {
2435		netdev_err(ndev, "could not attach to PHY\n");
2436		return PTR_ERR(phy_dev);
2437	}
2438
2439	/* mask with MAC supported features */
2440	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2441		phy_set_max_speed(phy_dev, 1000);
2442		phy_remove_link_mode(phy_dev,
2443				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2444#if !defined(CONFIG_M5272)
2445		phy_support_sym_pause(phy_dev);
2446#endif
2447	}
2448	else
2449		phy_set_max_speed(phy_dev, 100);
2450
2451	if (fep->quirks & FEC_QUIRK_HAS_EEE)
2452		phy_support_eee(phy_dev);
2453
2454	fep->link = 0;
2455	fep->full_duplex = 0;
2456
2457	phy_attached_info(phy_dev);
2458
2459	return 0;
2460}
2461
2462static int fec_enet_mii_init(struct platform_device *pdev)
2463{
2464	static struct mii_bus *fec0_mii_bus;
2465	struct net_device *ndev = platform_get_drvdata(pdev);
2466	struct fec_enet_private *fep = netdev_priv(ndev);
2467	bool suppress_preamble = false;
2468	struct phy_device *phydev;
2469	struct device_node *node;
2470	int err = -ENXIO;
2471	u32 mii_speed, holdtime;
2472	u32 bus_freq;
2473	int addr;
2474
2475	/*
2476	 * The i.MX28 dual fec interfaces are not equal.
2477	 * Here are the differences:
2478	 *
2479	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2480	 *  - fec0 acts as the 1588 time master while fec1 is slave
2481	 *  - external phys can only be configured by fec0
2482	 *
2483	 * That is to say fec1 can not work independently. It only works
2484	 * when fec0 is working. The reason behind this design is that the
2485	 * second interface is added primarily for Switch mode.
2486	 *
2487	 * Because of the last point above, both phys are attached on fec0
2488	 * mdio interface in board design, and need to be configured by
2489	 * fec0 mii_bus.
2490	 */
2491	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2492		/* fec1 uses fec0 mii_bus */
2493		if (mii_cnt && fec0_mii_bus) {
2494			fep->mii_bus = fec0_mii_bus;
2495			mii_cnt++;
2496			return 0;
2497		}
2498		return -ENOENT;
2499	}
2500
2501	bus_freq = 2500000; /* 2.5MHz by default */
2502	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2503	if (node) {
2504		of_property_read_u32(node, "clock-frequency", &bus_freq);
2505		suppress_preamble = of_property_read_bool(node,
2506							  "suppress-preamble");
2507	}
2508
2509	/*
2510	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2511	 *
2512	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2513	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2514	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2515	 * document.
2516	 */
2517	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2518	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2519		mii_speed--;
2520	if (mii_speed > 63) {
2521		dev_err(&pdev->dev,
2522			"fec clock (%lu) too fast to get right mii speed\n",
2523			clk_get_rate(fep->clk_ipg));
2524		err = -EINVAL;
2525		goto err_out;
2526	}
2527
2528	/*
2529	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2530	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2531	 * versions are RAZ there, so just ignore the difference and write the
2532	 * register always.
2533	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2534	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2535	 * output.
2536	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2537	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2538	 * holdtime cannot result in a value greater than 3.
2539	 */
2540	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2541
2542	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2543
2544	if (suppress_preamble)
2545		fep->phy_speed |= BIT(7);
2546
2547	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2548		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2549		 * MII event generation condition:
2550		 * - writing MSCR:
2551		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2552		 *	  mscr_reg_data_in[7:0] != 0
2553		 * - writing MMFR:
2554		 *	- mscr[7:0]_not_zero
2555		 */
2556		writel(0, fep->hwp + FEC_MII_DATA);
2557	}
2558
2559	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2560
2561	/* Clear any pending transaction complete indication */
2562	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2563
2564	fep->mii_bus = mdiobus_alloc();
2565	if (fep->mii_bus == NULL) {
2566		err = -ENOMEM;
2567		goto err_out;
2568	}
2569
2570	fep->mii_bus->name = "fec_enet_mii_bus";
2571	fep->mii_bus->read = fec_enet_mdio_read_c22;
2572	fep->mii_bus->write = fec_enet_mdio_write_c22;
2573	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2574		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2575		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2576	}
2577	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2578		pdev->name, fep->dev_id + 1);
2579	fep->mii_bus->priv = fep;
2580	fep->mii_bus->parent = &pdev->dev;
2581
2582	err = of_mdiobus_register(fep->mii_bus, node);
 
 
 
 
 
 
 
2583	if (err)
2584		goto err_out_free_mdiobus;
2585	of_node_put(node);
2586
2587	/* find all the PHY devices on the bus and set mac_managed_pm to true */
2588	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2589		phydev = mdiobus_get_phy(fep->mii_bus, addr);
2590		if (phydev)
2591			phydev->mac_managed_pm = true;
2592	}
2593
2594	mii_cnt++;
2595
2596	/* save fec0 mii_bus */
2597	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2598		fec0_mii_bus = fep->mii_bus;
2599
2600	return 0;
2601
2602err_out_free_mdiobus:
2603	mdiobus_free(fep->mii_bus);
2604err_out:
2605	of_node_put(node);
2606	return err;
2607}
2608
2609static void fec_enet_mii_remove(struct fec_enet_private *fep)
2610{
2611	if (--mii_cnt == 0) {
2612		mdiobus_unregister(fep->mii_bus);
2613		mdiobus_free(fep->mii_bus);
2614	}
2615}
2616
2617static void fec_enet_get_drvinfo(struct net_device *ndev,
2618				 struct ethtool_drvinfo *info)
2619{
2620	struct fec_enet_private *fep = netdev_priv(ndev);
2621
2622	strscpy(info->driver, fep->pdev->dev.driver->name,
2623		sizeof(info->driver));
2624	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
 
2625}
2626
2627static int fec_enet_get_regs_len(struct net_device *ndev)
2628{
2629	struct fec_enet_private *fep = netdev_priv(ndev);
2630	struct resource *r;
2631	int s = 0;
2632
2633	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2634	if (r)
2635		s = resource_size(r);
2636
2637	return s;
2638}
2639
2640/* List of registers that can be safety be read to dump them with ethtool */
2641#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2642	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2643	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2644static __u32 fec_enet_register_version = 2;
2645static u32 fec_enet_register_offset[] = {
2646	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2647	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2648	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2649	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2650	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2651	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2652	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2653	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2654	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2655	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2656	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2657	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2658	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2659	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2660	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2661	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2662	RMON_T_P_GTE2048, RMON_T_OCTETS,
2663	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2664	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2665	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2666	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2667	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2668	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2669	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2670	RMON_R_P_GTE2048, RMON_R_OCTETS,
2671	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2672	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2673};
2674/* for i.MX6ul */
2675static u32 fec_enet_register_offset_6ul[] = {
2676	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2677	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2678	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2679	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2680	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2681	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2682	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2683	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2684	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2685	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2686	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2687	RMON_T_P_GTE2048, RMON_T_OCTETS,
2688	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2689	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2690	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2691	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2692	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2693	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2694	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2695	RMON_R_P_GTE2048, RMON_R_OCTETS,
2696	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2697	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2698};
2699#else
2700static __u32 fec_enet_register_version = 1;
2701static u32 fec_enet_register_offset[] = {
2702	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2703	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2704	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2705	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2706	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2707	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2708	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2709	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2710	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2711};
2712#endif
2713
2714static void fec_enet_get_regs(struct net_device *ndev,
2715			      struct ethtool_regs *regs, void *regbuf)
2716{
2717	struct fec_enet_private *fep = netdev_priv(ndev);
2718	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2719	struct device *dev = &fep->pdev->dev;
2720	u32 *buf = (u32 *)regbuf;
2721	u32 i, off;
2722	int ret;
2723#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2724	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2725	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2726	u32 *reg_list;
2727	u32 reg_cnt;
2728
2729	if (!of_machine_is_compatible("fsl,imx6ul")) {
2730		reg_list = fec_enet_register_offset;
2731		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2732	} else {
2733		reg_list = fec_enet_register_offset_6ul;
2734		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2735	}
2736#else
2737	/* coldfire */
2738	static u32 *reg_list = fec_enet_register_offset;
2739	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2740#endif
2741	ret = pm_runtime_resume_and_get(dev);
2742	if (ret < 0)
2743		return;
2744
2745	regs->version = fec_enet_register_version;
2746
2747	memset(buf, 0, regs->len);
2748
2749	for (i = 0; i < reg_cnt; i++) {
2750		off = reg_list[i];
2751
2752		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2753		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2754			continue;
2755
2756		off >>= 2;
2757		buf[off] = readl(&theregs[off]);
2758	}
2759
2760	pm_runtime_mark_last_busy(dev);
2761	pm_runtime_put_autosuspend(dev);
2762}
2763
2764static int fec_enet_get_ts_info(struct net_device *ndev,
2765				struct ethtool_ts_info *info)
2766{
2767	struct fec_enet_private *fep = netdev_priv(ndev);
2768
2769	if (fep->bufdesc_ex) {
2770
2771		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2772					SOF_TIMESTAMPING_RX_SOFTWARE |
2773					SOF_TIMESTAMPING_SOFTWARE |
2774					SOF_TIMESTAMPING_TX_HARDWARE |
2775					SOF_TIMESTAMPING_RX_HARDWARE |
2776					SOF_TIMESTAMPING_RAW_HARDWARE;
2777		if (fep->ptp_clock)
2778			info->phc_index = ptp_clock_index(fep->ptp_clock);
2779		else
2780			info->phc_index = -1;
2781
2782		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2783				 (1 << HWTSTAMP_TX_ON);
2784
2785		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2786				   (1 << HWTSTAMP_FILTER_ALL);
2787		return 0;
2788	} else {
2789		return ethtool_op_get_ts_info(ndev, info);
2790	}
2791}
2792
2793#if !defined(CONFIG_M5272)
2794
2795static void fec_enet_get_pauseparam(struct net_device *ndev,
2796				    struct ethtool_pauseparam *pause)
2797{
2798	struct fec_enet_private *fep = netdev_priv(ndev);
2799
2800	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2801	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2802	pause->rx_pause = pause->tx_pause;
2803}
2804
2805static int fec_enet_set_pauseparam(struct net_device *ndev,
2806				   struct ethtool_pauseparam *pause)
2807{
2808	struct fec_enet_private *fep = netdev_priv(ndev);
2809
2810	if (!ndev->phydev)
2811		return -ENODEV;
2812
2813	if (pause->tx_pause != pause->rx_pause) {
2814		netdev_info(ndev,
2815			"hardware only support enable/disable both tx and rx");
2816		return -EINVAL;
2817	}
2818
2819	fep->pause_flag = 0;
2820
2821	/* tx pause must be same as rx pause */
2822	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2823	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2824
2825	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2826			  pause->autoneg);
 
 
 
 
 
2827
2828	if (pause->autoneg) {
2829		if (netif_running(ndev))
2830			fec_stop(ndev);
2831		phy_start_aneg(ndev->phydev);
2832	}
2833	if (netif_running(ndev)) {
2834		napi_disable(&fep->napi);
2835		netif_tx_lock_bh(ndev);
2836		fec_restart(ndev);
2837		netif_tx_wake_all_queues(ndev);
2838		netif_tx_unlock_bh(ndev);
2839		napi_enable(&fep->napi);
2840	}
2841
2842	return 0;
2843}
2844
2845static const struct fec_stat {
2846	char name[ETH_GSTRING_LEN];
2847	u16 offset;
2848} fec_stats[] = {
2849	/* RMON TX */
2850	{ "tx_dropped", RMON_T_DROP },
2851	{ "tx_packets", RMON_T_PACKETS },
2852	{ "tx_broadcast", RMON_T_BC_PKT },
2853	{ "tx_multicast", RMON_T_MC_PKT },
2854	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2855	{ "tx_undersize", RMON_T_UNDERSIZE },
2856	{ "tx_oversize", RMON_T_OVERSIZE },
2857	{ "tx_fragment", RMON_T_FRAG },
2858	{ "tx_jabber", RMON_T_JAB },
2859	{ "tx_collision", RMON_T_COL },
2860	{ "tx_64byte", RMON_T_P64 },
2861	{ "tx_65to127byte", RMON_T_P65TO127 },
2862	{ "tx_128to255byte", RMON_T_P128TO255 },
2863	{ "tx_256to511byte", RMON_T_P256TO511 },
2864	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2865	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2866	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2867	{ "tx_octets", RMON_T_OCTETS },
2868
2869	/* IEEE TX */
2870	{ "IEEE_tx_drop", IEEE_T_DROP },
2871	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2872	{ "IEEE_tx_1col", IEEE_T_1COL },
2873	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2874	{ "IEEE_tx_def", IEEE_T_DEF },
2875	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2876	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2877	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2878	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2879	{ "IEEE_tx_sqe", IEEE_T_SQE },
2880	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2881	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2882
2883	/* RMON RX */
2884	{ "rx_packets", RMON_R_PACKETS },
2885	{ "rx_broadcast", RMON_R_BC_PKT },
2886	{ "rx_multicast", RMON_R_MC_PKT },
2887	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2888	{ "rx_undersize", RMON_R_UNDERSIZE },
2889	{ "rx_oversize", RMON_R_OVERSIZE },
2890	{ "rx_fragment", RMON_R_FRAG },
2891	{ "rx_jabber", RMON_R_JAB },
2892	{ "rx_64byte", RMON_R_P64 },
2893	{ "rx_65to127byte", RMON_R_P65TO127 },
2894	{ "rx_128to255byte", RMON_R_P128TO255 },
2895	{ "rx_256to511byte", RMON_R_P256TO511 },
2896	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2897	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2898	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2899	{ "rx_octets", RMON_R_OCTETS },
2900
2901	/* IEEE RX */
2902	{ "IEEE_rx_drop", IEEE_R_DROP },
2903	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2904	{ "IEEE_rx_crc", IEEE_R_CRC },
2905	{ "IEEE_rx_align", IEEE_R_ALIGN },
2906	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2907	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2908	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2909};
2910
2911#define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2912
2913static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2914	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2915	"rx_xdp_pass",               /* RX_XDP_PASS, */
2916	"rx_xdp_drop",               /* RX_XDP_DROP, */
2917	"rx_xdp_tx",                 /* RX_XDP_TX, */
2918	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2919	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2920	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2921};
2922
2923static void fec_enet_update_ethtool_stats(struct net_device *dev)
2924{
2925	struct fec_enet_private *fep = netdev_priv(dev);
2926	int i;
2927
2928	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2929		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2930}
2931
2932static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2933{
2934	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2935	struct fec_enet_priv_rx_q *rxq;
2936	int i, j;
2937
2938	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2939		rxq = fep->rx_queue[i];
2940
2941		for (j = 0; j < XDP_STATS_TOTAL; j++)
2942			xdp_stats[j] += rxq->stats[j];
2943	}
2944
2945	memcpy(data, xdp_stats, sizeof(xdp_stats));
2946}
2947
2948static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2949{
2950#ifdef CONFIG_PAGE_POOL_STATS
2951	struct page_pool_stats stats = {};
2952	struct fec_enet_priv_rx_q *rxq;
2953	int i;
2954
2955	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2956		rxq = fep->rx_queue[i];
2957
2958		if (!rxq->page_pool)
2959			continue;
2960
2961		page_pool_get_stats(rxq->page_pool, &stats);
2962	}
2963
2964	page_pool_ethtool_stats_get(data, &stats);
2965#endif
2966}
2967
2968static void fec_enet_get_ethtool_stats(struct net_device *dev,
2969				       struct ethtool_stats *stats, u64 *data)
2970{
2971	struct fec_enet_private *fep = netdev_priv(dev);
2972
2973	if (netif_running(dev))
2974		fec_enet_update_ethtool_stats(dev);
2975
2976	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2977	data += FEC_STATS_SIZE / sizeof(u64);
2978
2979	fec_enet_get_xdp_stats(fep, data);
2980	data += XDP_STATS_TOTAL;
2981
2982	fec_enet_page_pool_stats(fep, data);
2983}
2984
2985static void fec_enet_get_strings(struct net_device *netdev,
2986	u32 stringset, u8 *data)
2987{
2988	int i;
2989	switch (stringset) {
2990	case ETH_SS_STATS:
2991		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2992			ethtool_puts(&data, fec_stats[i].name);
2993		}
2994		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2995			ethtool_puts(&data, fec_xdp_stat_strs[i]);
2996		}
2997		page_pool_ethtool_stats_get_strings(data);
2998
2999		break;
3000	case ETH_SS_TEST:
3001		net_selftest_get_strings(data);
3002		break;
3003	}
3004}
3005
3006static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3007{
3008	int count;
3009
3010	switch (sset) {
3011	case ETH_SS_STATS:
3012		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3013		count += page_pool_ethtool_stats_get_count();
3014		return count;
3015
3016	case ETH_SS_TEST:
3017		return net_selftest_get_count();
3018	default:
3019		return -EOPNOTSUPP;
3020	}
3021}
3022
3023static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3024{
3025	struct fec_enet_private *fep = netdev_priv(dev);
3026	struct fec_enet_priv_rx_q *rxq;
3027	int i, j;
3028
3029	/* Disable MIB statistics counters */
3030	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3031
3032	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3033		writel(0, fep->hwp + fec_stats[i].offset);
3034
3035	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3036		rxq = fep->rx_queue[i];
3037		for (j = 0; j < XDP_STATS_TOTAL; j++)
3038			rxq->stats[j] = 0;
3039	}
3040
3041	/* Don't disable MIB statistics counters */
3042	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3043}
3044
3045#else	/* !defined(CONFIG_M5272) */
3046#define FEC_STATS_SIZE	0
3047static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3048{
3049}
3050
3051static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3052{
3053}
3054#endif /* !defined(CONFIG_M5272) */
3055
3056/* ITR clock source is enet system clock (clk_ahb).
3057 * TCTT unit is cycle_ns * 64 cycle
3058 * So, the ICTT value = X us / (cycle_ns * 64)
3059 */
3060static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3061{
3062	struct fec_enet_private *fep = netdev_priv(ndev);
3063
3064	return us * (fep->itr_clk_rate / 64000) / 1000;
3065}
3066
3067/* Set threshold for interrupt coalescing */
3068static void fec_enet_itr_coal_set(struct net_device *ndev)
3069{
3070	struct fec_enet_private *fep = netdev_priv(ndev);
3071	int rx_itr, tx_itr;
3072
3073	/* Must be greater than zero to avoid unpredictable behavior */
3074	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3075	    !fep->tx_time_itr || !fep->tx_pkts_itr)
3076		return;
3077
3078	/* Select enet system clock as Interrupt Coalescing
3079	 * timer Clock Source
3080	 */
3081	rx_itr = FEC_ITR_CLK_SEL;
3082	tx_itr = FEC_ITR_CLK_SEL;
3083
3084	/* set ICFT and ICTT */
3085	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3086	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3087	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3088	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3089
3090	rx_itr |= FEC_ITR_EN;
3091	tx_itr |= FEC_ITR_EN;
3092
3093	writel(tx_itr, fep->hwp + FEC_TXIC0);
3094	writel(rx_itr, fep->hwp + FEC_RXIC0);
3095	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3096		writel(tx_itr, fep->hwp + FEC_TXIC1);
3097		writel(rx_itr, fep->hwp + FEC_RXIC1);
3098		writel(tx_itr, fep->hwp + FEC_TXIC2);
3099		writel(rx_itr, fep->hwp + FEC_RXIC2);
3100	}
3101}
3102
3103static int fec_enet_get_coalesce(struct net_device *ndev,
3104				 struct ethtool_coalesce *ec,
3105				 struct kernel_ethtool_coalesce *kernel_coal,
3106				 struct netlink_ext_ack *extack)
3107{
3108	struct fec_enet_private *fep = netdev_priv(ndev);
3109
3110	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3111		return -EOPNOTSUPP;
3112
3113	ec->rx_coalesce_usecs = fep->rx_time_itr;
3114	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3115
3116	ec->tx_coalesce_usecs = fep->tx_time_itr;
3117	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3118
3119	return 0;
3120}
3121
3122static int fec_enet_set_coalesce(struct net_device *ndev,
3123				 struct ethtool_coalesce *ec,
3124				 struct kernel_ethtool_coalesce *kernel_coal,
3125				 struct netlink_ext_ack *extack)
3126{
3127	struct fec_enet_private *fep = netdev_priv(ndev);
3128	struct device *dev = &fep->pdev->dev;
3129	unsigned int cycle;
3130
3131	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3132		return -EOPNOTSUPP;
3133
3134	if (ec->rx_max_coalesced_frames > 255) {
3135		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3136		return -EINVAL;
3137	}
3138
3139	if (ec->tx_max_coalesced_frames > 255) {
3140		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3141		return -EINVAL;
3142	}
3143
3144	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3145	if (cycle > 0xFFFF) {
3146		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3147		return -EINVAL;
3148	}
3149
3150	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3151	if (cycle > 0xFFFF) {
3152		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3153		return -EINVAL;
3154	}
3155
3156	fep->rx_time_itr = ec->rx_coalesce_usecs;
3157	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3158
3159	fep->tx_time_itr = ec->tx_coalesce_usecs;
3160	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3161
3162	fec_enet_itr_coal_set(ndev);
3163
3164	return 0;
3165}
3166
3167static int
3168fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3169{
3170	struct fec_enet_private *fep = netdev_priv(ndev);
3171	struct ethtool_keee *p = &fep->eee;
3172
3173	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3174		return -EOPNOTSUPP;
3175
3176	if (!netif_running(ndev))
3177		return -ENETDOWN;
3178
3179	edata->tx_lpi_timer = p->tx_lpi_timer;
3180
3181	return phy_ethtool_get_eee(ndev->phydev, edata);
3182}
3183
3184static int
3185fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
 
3186{
3187	struct fec_enet_private *fep = netdev_priv(ndev);
3188	struct ethtool_keee *p = &fep->eee;
 
 
 
 
 
 
 
 
 
3189
3190	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3191		return -EOPNOTSUPP;
3192
3193	if (!netif_running(ndev))
3194		return -ENETDOWN;
 
 
 
 
3195
3196	p->tx_lpi_timer = edata->tx_lpi_timer;
 
 
 
 
 
 
 
3197
3198	return phy_ethtool_set_eee(ndev->phydev, edata);
3199}
3200
3201static void
3202fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3203{
3204	struct fec_enet_private *fep = netdev_priv(ndev);
3205
3206	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3207		wol->supported = WAKE_MAGIC;
3208		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3209	} else {
3210		wol->supported = wol->wolopts = 0;
3211	}
3212}
3213
3214static int
3215fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3216{
3217	struct fec_enet_private *fep = netdev_priv(ndev);
3218
3219	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3220		return -EINVAL;
3221
3222	if (wol->wolopts & ~WAKE_MAGIC)
3223		return -EINVAL;
3224
3225	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3226	if (device_may_wakeup(&ndev->dev))
3227		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3228	else
 
 
3229		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
 
 
 
3230
3231	return 0;
3232}
3233
3234static const struct ethtool_ops fec_enet_ethtool_ops = {
3235	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3236				     ETHTOOL_COALESCE_MAX_FRAMES,
3237	.get_drvinfo		= fec_enet_get_drvinfo,
3238	.get_regs_len		= fec_enet_get_regs_len,
3239	.get_regs		= fec_enet_get_regs,
3240	.nway_reset		= phy_ethtool_nway_reset,
3241	.get_link		= ethtool_op_get_link,
3242	.get_coalesce		= fec_enet_get_coalesce,
3243	.set_coalesce		= fec_enet_set_coalesce,
3244#ifndef CONFIG_M5272
3245	.get_pauseparam		= fec_enet_get_pauseparam,
3246	.set_pauseparam		= fec_enet_set_pauseparam,
3247	.get_strings		= fec_enet_get_strings,
3248	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3249	.get_sset_count		= fec_enet_get_sset_count,
3250#endif
3251	.get_ts_info		= fec_enet_get_ts_info,
 
 
3252	.get_wol		= fec_enet_get_wol,
3253	.set_wol		= fec_enet_set_wol,
3254	.get_eee		= fec_enet_get_eee,
3255	.set_eee		= fec_enet_set_eee,
3256	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3257	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3258	.self_test		= net_selftest,
3259};
3260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3261static void fec_enet_free_buffers(struct net_device *ndev)
3262{
3263	struct fec_enet_private *fep = netdev_priv(ndev);
3264	unsigned int i;
 
 
3265	struct fec_enet_priv_tx_q *txq;
3266	struct fec_enet_priv_rx_q *rxq;
3267	unsigned int q;
3268
3269	for (q = 0; q < fep->num_rx_queues; q++) {
3270		rxq = fep->rx_queue[q];
3271		for (i = 0; i < rxq->bd.ring_size; i++)
3272			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3273
3274		for (i = 0; i < XDP_STATS_TOTAL; i++)
3275			rxq->stats[i] = 0;
3276
3277		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3278			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3279		page_pool_destroy(rxq->page_pool);
3280		rxq->page_pool = NULL;
 
 
 
3281	}
3282
3283	for (q = 0; q < fep->num_tx_queues; q++) {
3284		txq = fep->tx_queue[q];
 
3285		for (i = 0; i < txq->bd.ring_size; i++) {
3286			kfree(txq->tx_bounce[i]);
3287			txq->tx_bounce[i] = NULL;
3288
3289			if (!txq->tx_buf[i].buf_p) {
3290				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3291				continue;
3292			}
3293
3294			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3295				dev_kfree_skb(txq->tx_buf[i].buf_p);
3296			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3297				xdp_return_frame(txq->tx_buf[i].buf_p);
3298			} else {
3299				struct page *page = txq->tx_buf[i].buf_p;
3300
3301				page_pool_put_page(page->pp, page, 0, false);
3302			}
3303
3304			txq->tx_buf[i].buf_p = NULL;
3305			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3306		}
3307	}
3308}
3309
3310static void fec_enet_free_queue(struct net_device *ndev)
3311{
3312	struct fec_enet_private *fep = netdev_priv(ndev);
3313	int i;
3314	struct fec_enet_priv_tx_q *txq;
3315
3316	for (i = 0; i < fep->num_tx_queues; i++)
3317		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3318			txq = fep->tx_queue[i];
3319			fec_dma_free(&fep->pdev->dev,
3320				     txq->bd.ring_size * TSO_HEADER_SIZE,
3321				     txq->tso_hdrs, txq->tso_hdrs_dma);
 
3322		}
3323
3324	for (i = 0; i < fep->num_rx_queues; i++)
3325		kfree(fep->rx_queue[i]);
3326	for (i = 0; i < fep->num_tx_queues; i++)
3327		kfree(fep->tx_queue[i]);
3328}
3329
3330static int fec_enet_alloc_queue(struct net_device *ndev)
3331{
3332	struct fec_enet_private *fep = netdev_priv(ndev);
3333	int i;
3334	int ret = 0;
3335	struct fec_enet_priv_tx_q *txq;
3336
3337	for (i = 0; i < fep->num_tx_queues; i++) {
3338		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3339		if (!txq) {
3340			ret = -ENOMEM;
3341			goto alloc_failed;
3342		}
3343
3344		fep->tx_queue[i] = txq;
3345		txq->bd.ring_size = TX_RING_SIZE;
3346		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3347
3348		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3349		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
 
3350
3351		txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3352					txq->bd.ring_size * TSO_HEADER_SIZE,
3353					&txq->tso_hdrs_dma, GFP_KERNEL);
 
3354		if (!txq->tso_hdrs) {
3355			ret = -ENOMEM;
3356			goto alloc_failed;
3357		}
3358	}
3359
3360	for (i = 0; i < fep->num_rx_queues; i++) {
3361		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3362					   GFP_KERNEL);
3363		if (!fep->rx_queue[i]) {
3364			ret = -ENOMEM;
3365			goto alloc_failed;
3366		}
3367
3368		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3369		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3370	}
3371	return ret;
3372
3373alloc_failed:
3374	fec_enet_free_queue(ndev);
3375	return ret;
3376}
3377
3378static int
3379fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3380{
3381	struct fec_enet_private *fep = netdev_priv(ndev);
 
 
 
3382	struct fec_enet_priv_rx_q *rxq;
3383	dma_addr_t phys_addr;
3384	struct bufdesc	*bdp;
3385	struct page *page;
3386	int i, err;
3387
3388	rxq = fep->rx_queue[queue];
3389	bdp = rxq->bd.base;
3390
3391	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3392	if (err < 0) {
3393		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3394		return err;
3395	}
3396
3397	for (i = 0; i < rxq->bd.ring_size; i++) {
3398		page = page_pool_dev_alloc_pages(rxq->page_pool);
3399		if (!page)
3400			goto err_alloc;
3401
3402		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3403		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
 
 
3404
3405		rxq->rx_skb_info[i].page = page;
3406		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3407		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3408
3409		if (fep->bufdesc_ex) {
3410			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3411			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3412		}
3413
3414		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3415	}
3416
3417	/* Set the last buffer to wrap. */
3418	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3419	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3420	return 0;
3421
3422 err_alloc:
3423	fec_enet_free_buffers(ndev);
3424	return -ENOMEM;
3425}
3426
3427static int
3428fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3429{
3430	struct fec_enet_private *fep = netdev_priv(ndev);
3431	unsigned int i;
3432	struct bufdesc  *bdp;
3433	struct fec_enet_priv_tx_q *txq;
3434
3435	txq = fep->tx_queue[queue];
3436	bdp = txq->bd.base;
3437	for (i = 0; i < txq->bd.ring_size; i++) {
3438		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3439		if (!txq->tx_bounce[i])
3440			goto err_alloc;
3441
3442		bdp->cbd_sc = cpu_to_fec16(0);
3443		bdp->cbd_bufaddr = cpu_to_fec32(0);
3444
3445		if (fep->bufdesc_ex) {
3446			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3447			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3448		}
3449
3450		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3451	}
3452
3453	/* Set the last buffer to wrap. */
3454	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3455	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3456
3457	return 0;
3458
3459 err_alloc:
3460	fec_enet_free_buffers(ndev);
3461	return -ENOMEM;
3462}
3463
3464static int fec_enet_alloc_buffers(struct net_device *ndev)
3465{
3466	struct fec_enet_private *fep = netdev_priv(ndev);
3467	unsigned int i;
3468
3469	for (i = 0; i < fep->num_rx_queues; i++)
3470		if (fec_enet_alloc_rxq_buffers(ndev, i))
3471			return -ENOMEM;
3472
3473	for (i = 0; i < fep->num_tx_queues; i++)
3474		if (fec_enet_alloc_txq_buffers(ndev, i))
3475			return -ENOMEM;
3476	return 0;
3477}
3478
3479static int
3480fec_enet_open(struct net_device *ndev)
3481{
3482	struct fec_enet_private *fep = netdev_priv(ndev);
3483	int ret;
3484	bool reset_again;
3485
3486	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3487	if (ret < 0)
3488		return ret;
3489
3490	pinctrl_pm_select_default_state(&fep->pdev->dev);
3491	ret = fec_enet_clk_enable(ndev, true);
3492	if (ret)
3493		goto clk_enable;
3494
3495	/* During the first fec_enet_open call the PHY isn't probed at this
3496	 * point. Therefore the phy_reset_after_clk_enable() call within
3497	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3498	 * sure the PHY is working correctly we check if we need to reset again
3499	 * later when the PHY is probed
3500	 */
3501	if (ndev->phydev && ndev->phydev->drv)
3502		reset_again = false;
3503	else
3504		reset_again = true;
3505
3506	/* I should reset the ring buffers here, but I don't yet know
3507	 * a simple way to do that.
3508	 */
3509
3510	ret = fec_enet_alloc_buffers(ndev);
3511	if (ret)
3512		goto err_enet_alloc;
3513
3514	/* Init MAC prior to mii bus probe */
3515	fec_restart(ndev);
3516
 
 
 
 
 
3517	/* Call phy_reset_after_clk_enable() again if it failed during
3518	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3519	 */
3520	if (reset_again)
3521		fec_enet_phy_reset_after_clk_enable(ndev);
3522
3523	/* Probe and connect to PHY when open the interface */
3524	ret = fec_enet_mii_probe(ndev);
3525	if (ret)
3526		goto err_enet_mii_probe;
3527
3528	if (fep->quirks & FEC_QUIRK_ERR006687)
3529		imx6q_cpuidle_fec_irqs_used();
3530
3531	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3532		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3533
3534	napi_enable(&fep->napi);
3535	phy_start(ndev->phydev);
3536	netif_tx_start_all_queues(ndev);
3537
3538	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3539				 FEC_WOL_FLAG_ENABLE);
3540
3541	return 0;
3542
3543err_enet_mii_probe:
3544	fec_enet_free_buffers(ndev);
3545err_enet_alloc:
3546	fec_enet_clk_enable(ndev, false);
3547clk_enable:
3548	pm_runtime_mark_last_busy(&fep->pdev->dev);
3549	pm_runtime_put_autosuspend(&fep->pdev->dev);
3550	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3551	return ret;
3552}
3553
3554static int
3555fec_enet_close(struct net_device *ndev)
3556{
3557	struct fec_enet_private *fep = netdev_priv(ndev);
3558
3559	phy_stop(ndev->phydev);
3560
3561	if (netif_device_present(ndev)) {
3562		napi_disable(&fep->napi);
3563		netif_tx_disable(ndev);
3564		fec_stop(ndev);
3565	}
3566
3567	phy_disconnect(ndev->phydev);
3568
3569	if (fep->quirks & FEC_QUIRK_ERR006687)
3570		imx6q_cpuidle_fec_irqs_unused();
3571
3572	fec_enet_update_ethtool_stats(ndev);
3573
3574	fec_enet_clk_enable(ndev, false);
3575	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3576		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3577
3578	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3579	pm_runtime_mark_last_busy(&fep->pdev->dev);
3580	pm_runtime_put_autosuspend(&fep->pdev->dev);
3581
3582	fec_enet_free_buffers(ndev);
3583
3584	return 0;
3585}
3586
3587/* Set or clear the multicast filter for this adaptor.
3588 * Skeleton taken from sunlance driver.
3589 * The CPM Ethernet implementation allows Multicast as well as individual
3590 * MAC address filtering.  Some of the drivers check to make sure it is
3591 * a group multicast address, and discard those that are not.  I guess I
3592 * will do the same for now, but just remove the test if you want
3593 * individual filtering as well (do the upper net layers want or support
3594 * this kind of feature?).
3595 */
3596
3597#define FEC_HASH_BITS	6		/* #bits in hash */
 
3598
3599static void set_multicast_list(struct net_device *ndev)
3600{
3601	struct fec_enet_private *fep = netdev_priv(ndev);
3602	struct netdev_hw_addr *ha;
3603	unsigned int crc, tmp;
3604	unsigned char hash;
3605	unsigned int hash_high = 0, hash_low = 0;
3606
3607	if (ndev->flags & IFF_PROMISC) {
3608		tmp = readl(fep->hwp + FEC_R_CNTRL);
3609		tmp |= 0x8;
3610		writel(tmp, fep->hwp + FEC_R_CNTRL);
3611		return;
3612	}
3613
3614	tmp = readl(fep->hwp + FEC_R_CNTRL);
3615	tmp &= ~0x8;
3616	writel(tmp, fep->hwp + FEC_R_CNTRL);
3617
3618	if (ndev->flags & IFF_ALLMULTI) {
3619		/* Catch all multicast addresses, so set the
3620		 * filter to all 1's
3621		 */
3622		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3623		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3624
3625		return;
3626	}
3627
3628	/* Add the addresses in hash register */
3629	netdev_for_each_mc_addr(ha, ndev) {
3630		/* calculate crc32 value of mac address */
3631		crc = ether_crc_le(ndev->addr_len, ha->addr);
 
 
 
 
 
 
 
 
3632
3633		/* only upper 6 bits (FEC_HASH_BITS) are used
3634		 * which point to specific bit in the hash registers
3635		 */
3636		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3637
3638		if (hash > 31)
3639			hash_high |= 1 << (hash - 32);
3640		else
3641			hash_low |= 1 << hash;
3642	}
3643
3644	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3645	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3646}
3647
3648/* Set a MAC change in hardware. */
3649static int
3650fec_set_mac_address(struct net_device *ndev, void *p)
3651{
3652	struct fec_enet_private *fep = netdev_priv(ndev);
3653	struct sockaddr *addr = p;
3654
3655	if (addr) {
3656		if (!is_valid_ether_addr(addr->sa_data))
3657			return -EADDRNOTAVAIL;
3658		eth_hw_addr_set(ndev, addr->sa_data);
3659	}
3660
3661	/* Add netif status check here to avoid system hang in below case:
3662	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3663	 * After ethx down, fec all clocks are gated off and then register
3664	 * access causes system hang.
3665	 */
3666	if (!netif_running(ndev))
3667		return 0;
3668
3669	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3670		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3671		fep->hwp + FEC_ADDR_LOW);
3672	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3673		fep->hwp + FEC_ADDR_HIGH);
3674	return 0;
3675}
3676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3677static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3678	netdev_features_t features)
3679{
3680	struct fec_enet_private *fep = netdev_priv(netdev);
3681	netdev_features_t changed = features ^ netdev->features;
3682
3683	netdev->features = features;
3684
3685	/* Receive checksum has been changed */
3686	if (changed & NETIF_F_RXCSUM) {
3687		if (features & NETIF_F_RXCSUM)
3688			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3689		else
3690			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3691	}
3692}
3693
3694static int fec_set_features(struct net_device *netdev,
3695	netdev_features_t features)
3696{
3697	struct fec_enet_private *fep = netdev_priv(netdev);
3698	netdev_features_t changed = features ^ netdev->features;
3699
3700	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3701		napi_disable(&fep->napi);
3702		netif_tx_lock_bh(netdev);
3703		fec_stop(netdev);
3704		fec_enet_set_netdev_features(netdev, features);
3705		fec_restart(netdev);
3706		netif_tx_wake_all_queues(netdev);
3707		netif_tx_unlock_bh(netdev);
3708		napi_enable(&fep->napi);
3709	} else {
3710		fec_enet_set_netdev_features(netdev, features);
3711	}
3712
3713	return 0;
3714}
3715
3716static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3717				 struct net_device *sb_dev)
3718{
3719	struct fec_enet_private *fep = netdev_priv(ndev);
3720	u16 vlan_tag = 0;
3721
3722	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3723		return netdev_pick_tx(ndev, skb, NULL);
3724
3725	/* VLAN is present in the payload.*/
3726	if (eth_type_vlan(skb->protocol)) {
3727		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3728
3729		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3730	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3731	} else if (skb_vlan_tag_present(skb)) {
3732		vlan_tag = skb->vlan_tci;
3733	} else {
3734		return vlan_tag;
3735	}
3736
3737	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3738}
3739
3740static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3741{
3742	struct fec_enet_private *fep = netdev_priv(dev);
3743	bool is_run = netif_running(dev);
3744	struct bpf_prog *old_prog;
3745
3746	switch (bpf->command) {
3747	case XDP_SETUP_PROG:
3748		/* No need to support the SoCs that require to
3749		 * do the frame swap because the performance wouldn't be
3750		 * better than the skb mode.
3751		 */
3752		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3753			return -EOPNOTSUPP;
3754
3755		if (!bpf->prog)
3756			xdp_features_clear_redirect_target(dev);
3757
3758		if (is_run) {
3759			napi_disable(&fep->napi);
3760			netif_tx_disable(dev);
3761		}
3762
3763		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3764		if (old_prog)
3765			bpf_prog_put(old_prog);
3766
3767		fec_restart(dev);
3768
3769		if (is_run) {
3770			napi_enable(&fep->napi);
3771			netif_tx_start_all_queues(dev);
3772		}
3773
3774		if (bpf->prog)
3775			xdp_features_set_redirect_target(dev, false);
3776
3777		return 0;
3778
3779	case XDP_SETUP_XSK_POOL:
3780		return -EOPNOTSUPP;
3781
3782	default:
3783		return -EOPNOTSUPP;
3784	}
3785}
3786
3787static int
3788fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3789{
3790	if (unlikely(index < 0))
3791		return 0;
3792
3793	return (index % fep->num_tx_queues);
3794}
3795
3796static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3797				   struct fec_enet_priv_tx_q *txq,
3798				   void *frame, u32 dma_sync_len,
3799				   bool ndo_xmit)
3800{
3801	unsigned int index, status, estatus;
3802	struct bufdesc *bdp;
3803	dma_addr_t dma_addr;
3804	int entries_free;
3805	u16 frame_len;
3806
3807	entries_free = fec_enet_get_free_txdesc_num(txq);
3808	if (entries_free < MAX_SKB_FRAGS + 1) {
3809		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3810		return -EBUSY;
3811	}
3812
3813	/* Fill in a Tx ring entry */
3814	bdp = txq->bd.cur;
3815	status = fec16_to_cpu(bdp->cbd_sc);
3816	status &= ~BD_ENET_TX_STATS;
3817
3818	index = fec_enet_get_bd_index(bdp, &txq->bd);
3819
3820	if (ndo_xmit) {
3821		struct xdp_frame *xdpf = frame;
3822
3823		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3824					  xdpf->len, DMA_TO_DEVICE);
3825		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3826			return -ENOMEM;
3827
3828		frame_len = xdpf->len;
3829		txq->tx_buf[index].buf_p = xdpf;
3830		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3831	} else {
3832		struct xdp_buff *xdpb = frame;
3833		struct page *page;
3834
3835		page = virt_to_page(xdpb->data);
3836		dma_addr = page_pool_get_dma_addr(page) +
3837			   (xdpb->data - xdpb->data_hard_start);
3838		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3839					   dma_sync_len, DMA_BIDIRECTIONAL);
3840		frame_len = xdpb->data_end - xdpb->data;
3841		txq->tx_buf[index].buf_p = page;
3842		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3843	}
3844
3845	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3846	if (fep->bufdesc_ex)
3847		estatus = BD_ENET_TX_INT;
3848
3849	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3850	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3851
3852	if (fep->bufdesc_ex) {
3853		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3854
3855		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3856			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3857
3858		ebdp->cbd_bdu = 0;
3859		ebdp->cbd_esc = cpu_to_fec32(estatus);
3860	}
3861
3862	/* Make sure the updates to rest of the descriptor are performed before
3863	 * transferring ownership.
3864	 */
3865	dma_wmb();
3866
3867	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3868	 * it's the last BD of the frame, and to put the CRC on the end.
3869	 */
3870	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3871	bdp->cbd_sc = cpu_to_fec16(status);
3872
3873	/* If this was the last BD in the ring, start at the beginning again. */
3874	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3875
3876	/* Make sure the update to bdp are performed before txq->bd.cur. */
3877	dma_wmb();
3878
3879	txq->bd.cur = bdp;
3880
3881	/* Trigger transmission start */
3882	writel(0, txq->bd.reg_desc_active);
3883
3884	return 0;
3885}
3886
3887static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3888				int cpu, struct xdp_buff *xdp,
3889				u32 dma_sync_len)
3890{
3891	struct fec_enet_priv_tx_q *txq;
3892	struct netdev_queue *nq;
3893	int queue, ret;
3894
3895	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3896	txq = fep->tx_queue[queue];
3897	nq = netdev_get_tx_queue(fep->netdev, queue);
3898
3899	__netif_tx_lock(nq, cpu);
3900
3901	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3902	txq_trans_cond_update(nq);
3903	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3904
3905	__netif_tx_unlock(nq);
3906
3907	return ret;
3908}
3909
3910static int fec_enet_xdp_xmit(struct net_device *dev,
3911			     int num_frames,
3912			     struct xdp_frame **frames,
3913			     u32 flags)
3914{
3915	struct fec_enet_private *fep = netdev_priv(dev);
3916	struct fec_enet_priv_tx_q *txq;
3917	int cpu = smp_processor_id();
3918	unsigned int sent_frames = 0;
3919	struct netdev_queue *nq;
3920	unsigned int queue;
3921	int i;
3922
3923	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3924	txq = fep->tx_queue[queue];
3925	nq = netdev_get_tx_queue(fep->netdev, queue);
3926
3927	__netif_tx_lock(nq, cpu);
3928
3929	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3930	txq_trans_cond_update(nq);
3931	for (i = 0; i < num_frames; i++) {
3932		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3933			break;
3934		sent_frames++;
3935	}
3936
3937	__netif_tx_unlock(nq);
3938
3939	return sent_frames;
3940}
3941
3942static int fec_hwtstamp_get(struct net_device *ndev,
3943			    struct kernel_hwtstamp_config *config)
3944{
3945	struct fec_enet_private *fep = netdev_priv(ndev);
3946
3947	if (!netif_running(ndev))
3948		return -EINVAL;
3949
3950	if (!fep->bufdesc_ex)
3951		return -EOPNOTSUPP;
3952
3953	fec_ptp_get(ndev, config);
3954
3955	return 0;
3956}
3957
3958static int fec_hwtstamp_set(struct net_device *ndev,
3959			    struct kernel_hwtstamp_config *config,
3960			    struct netlink_ext_ack *extack)
3961{
3962	struct fec_enet_private *fep = netdev_priv(ndev);
3963
3964	if (!netif_running(ndev))
3965		return -EINVAL;
3966
3967	if (!fep->bufdesc_ex)
3968		return -EOPNOTSUPP;
3969
3970	return fec_ptp_set(ndev, config, extack);
3971}
3972
3973static const struct net_device_ops fec_netdev_ops = {
3974	.ndo_open		= fec_enet_open,
3975	.ndo_stop		= fec_enet_close,
3976	.ndo_start_xmit		= fec_enet_start_xmit,
3977	.ndo_select_queue       = fec_enet_select_queue,
3978	.ndo_set_rx_mode	= set_multicast_list,
3979	.ndo_validate_addr	= eth_validate_addr,
3980	.ndo_tx_timeout		= fec_timeout,
3981	.ndo_set_mac_address	= fec_set_mac_address,
3982	.ndo_eth_ioctl		= phy_do_ioctl_running,
 
 
 
3983	.ndo_set_features	= fec_set_features,
3984	.ndo_bpf		= fec_enet_bpf,
3985	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
3986	.ndo_hwtstamp_get	= fec_hwtstamp_get,
3987	.ndo_hwtstamp_set	= fec_hwtstamp_set,
3988};
3989
3990static const unsigned short offset_des_active_rxq[] = {
3991	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3992};
3993
3994static const unsigned short offset_des_active_txq[] = {
3995	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3996};
3997
3998 /*
3999  * XXX:  We need to clean up on failure exits here.
4000  *
4001  */
4002static int fec_enet_init(struct net_device *ndev)
4003{
4004	struct fec_enet_private *fep = netdev_priv(ndev);
4005	struct bufdesc *cbd_base;
4006	dma_addr_t bd_dma;
4007	int bd_size;
4008	unsigned int i;
4009	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4010			sizeof(struct bufdesc);
4011	unsigned dsize_log2 = __fls(dsize);
4012	int ret;
4013
4014	WARN_ON(dsize != (1 << dsize_log2));
4015#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4016	fep->rx_align = 0xf;
4017	fep->tx_align = 0xf;
4018#else
4019	fep->rx_align = 0x3;
4020	fep->tx_align = 0x3;
4021#endif
4022	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4023	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4024	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4025	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4026
4027	/* Check mask of the streaming and coherent API */
4028	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4029	if (ret < 0) {
4030		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4031		return ret;
4032	}
4033
4034	ret = fec_enet_alloc_queue(ndev);
4035	if (ret)
4036		return ret;
4037
4038	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4039
4040	/* Allocate memory for buffer descriptors. */
4041	cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4042				  GFP_KERNEL);
4043	if (!cbd_base) {
4044		ret = -ENOMEM;
4045		goto free_queue_mem;
4046	}
4047
 
 
4048	/* Get the Ethernet address */
4049	ret = fec_get_mac(ndev);
4050	if (ret)
4051		goto free_queue_mem;
4052
4053	/* Set receive and transmit descriptor base. */
4054	for (i = 0; i < fep->num_rx_queues; i++) {
4055		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4056		unsigned size = dsize * rxq->bd.ring_size;
4057
4058		rxq->bd.qid = i;
4059		rxq->bd.base = cbd_base;
4060		rxq->bd.cur = cbd_base;
4061		rxq->bd.dma = bd_dma;
4062		rxq->bd.dsize = dsize;
4063		rxq->bd.dsize_log2 = dsize_log2;
4064		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4065		bd_dma += size;
4066		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4067		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4068	}
4069
4070	for (i = 0; i < fep->num_tx_queues; i++) {
4071		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4072		unsigned size = dsize * txq->bd.ring_size;
4073
4074		txq->bd.qid = i;
4075		txq->bd.base = cbd_base;
4076		txq->bd.cur = cbd_base;
4077		txq->bd.dma = bd_dma;
4078		txq->bd.dsize = dsize;
4079		txq->bd.dsize_log2 = dsize_log2;
4080		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4081		bd_dma += size;
4082		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4083		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4084	}
4085
4086
4087	/* The FEC Ethernet specific entries in the device structure */
4088	ndev->watchdog_timeo = TX_TIMEOUT;
4089	ndev->netdev_ops = &fec_netdev_ops;
4090	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4091
4092	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4093	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4094
4095	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4096		/* enable hw VLAN support */
4097		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4098
4099	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4100		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4101
4102		/* enable hw accelerator */
4103		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4104				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4105		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4106	}
4107
4108	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4109		fep->tx_align = 0;
4110		fep->rx_align = 0x3f;
4111	}
4112
4113	ndev->hw_features = ndev->features;
4114
4115	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4116		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4117				     NETDEV_XDP_ACT_REDIRECT;
4118
4119	fec_restart(ndev);
4120
4121	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4122		fec_enet_clear_ethtool_stats(ndev);
4123	else
4124		fec_enet_update_ethtool_stats(ndev);
4125
4126	return 0;
4127
4128free_queue_mem:
4129	fec_enet_free_queue(ndev);
4130	return ret;
4131}
4132
4133static void fec_enet_deinit(struct net_device *ndev)
4134{
4135	struct fec_enet_private *fep = netdev_priv(ndev);
4136
4137	netif_napi_del(&fep->napi);
4138	fec_enet_free_queue(ndev);
4139}
4140
4141#ifdef CONFIG_OF
4142static int fec_reset_phy(struct platform_device *pdev)
4143{
4144	struct gpio_desc *phy_reset;
 
4145	int msec = 1, phy_post_delay = 0;
4146	struct device_node *np = pdev->dev.of_node;
4147	int err;
4148
4149	if (!np)
4150		return 0;
4151
4152	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4153	/* A sane reset duration should not be longer than 1s */
4154	if (!err && msec > 1000)
4155		msec = 1;
4156
 
 
 
 
 
 
4157	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4158	/* valid reset duration should be less than 1s */
4159	if (!err && phy_post_delay > 1000)
4160		return -EINVAL;
4161
4162	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4163					    GPIOD_OUT_HIGH);
4164	if (IS_ERR(phy_reset))
4165		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4166				     "failed to get phy-reset-gpios\n");
4167
4168	if (!phy_reset)
4169		return 0;
 
 
 
 
 
4170
4171	if (msec > 20)
4172		msleep(msec);
4173	else
4174		usleep_range(msec * 1000, msec * 1000 + 1000);
4175
4176	gpiod_set_value_cansleep(phy_reset, 0);
4177
4178	if (!phy_post_delay)
4179		return 0;
4180
4181	if (phy_post_delay > 20)
4182		msleep(phy_post_delay);
4183	else
4184		usleep_range(phy_post_delay * 1000,
4185			     phy_post_delay * 1000 + 1000);
4186
4187	return 0;
4188}
4189#else /* CONFIG_OF */
4190static int fec_reset_phy(struct platform_device *pdev)
4191{
4192	/*
4193	 * In case of platform probe, the reset has been done
4194	 * by machine code.
4195	 */
4196	return 0;
4197}
4198#endif /* CONFIG_OF */
4199
4200static void
4201fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4202{
4203	struct device_node *np = pdev->dev.of_node;
4204
4205	*num_tx = *num_rx = 1;
4206
4207	if (!np || !of_device_is_available(np))
4208		return;
4209
4210	/* parse the num of tx and rx queues */
4211	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4212
4213	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4214
4215	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4216		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4217			 *num_tx);
4218		*num_tx = 1;
4219		return;
4220	}
4221
4222	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4223		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4224			 *num_rx);
4225		*num_rx = 1;
4226		return;
4227	}
4228
4229}
4230
4231static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4232{
4233	int irq_cnt = platform_irq_count(pdev);
4234
4235	if (irq_cnt > FEC_IRQ_NUM)
4236		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4237	else if (irq_cnt == 2)
4238		irq_cnt = 1;	/* last for pps */
4239	else if (irq_cnt <= 0)
4240		irq_cnt = 1;	/* At least 1 irq is needed */
4241	return irq_cnt;
4242}
4243
4244static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4245{
4246	struct net_device *ndev = platform_get_drvdata(pdev);
4247	struct fec_enet_private *fep = netdev_priv(ndev);
4248
4249	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4250		fep->wake_irq = fep->irq[2];
4251	else
4252		fep->wake_irq = fep->irq[0];
4253}
4254
4255static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4256				   struct device_node *np)
4257{
4258	struct device_node *gpr_np;
4259	u32 out_val[3];
4260	int ret = 0;
4261
4262	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4263	if (!gpr_np)
4264		return 0;
4265
4266	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4267					 ARRAY_SIZE(out_val));
4268	if (ret) {
4269		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4270		goto out;
4271	}
4272
4273	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4274	if (IS_ERR(fep->stop_gpr.gpr)) {
4275		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4276		ret = PTR_ERR(fep->stop_gpr.gpr);
4277		fep->stop_gpr.gpr = NULL;
4278		goto out;
4279	}
4280
4281	fep->stop_gpr.reg = out_val[1];
4282	fep->stop_gpr.bit = out_val[2];
4283
4284out:
4285	of_node_put(gpr_np);
4286
4287	return ret;
4288}
4289
4290static int
4291fec_probe(struct platform_device *pdev)
4292{
4293	struct fec_enet_private *fep;
4294	struct fec_platform_data *pdata;
4295	phy_interface_t interface;
4296	struct net_device *ndev;
4297	int i, irq, ret = 0;
 
 
4298	static int dev_id;
4299	struct device_node *np = pdev->dev.of_node, *phy_node;
4300	int num_tx_qs;
4301	int num_rx_qs;
4302	char irq_name[8];
4303	int irq_cnt;
4304	const struct fec_devinfo *dev_info;
4305
4306	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4307
4308	/* Init network device */
4309	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4310				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4311	if (!ndev)
4312		return -ENOMEM;
4313
4314	SET_NETDEV_DEV(ndev, &pdev->dev);
4315
4316	/* setup board info structure */
4317	fep = netdev_priv(ndev);
4318
4319	dev_info = device_get_match_data(&pdev->dev);
4320	if (!dev_info)
4321		dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4322	if (dev_info)
4323		fep->quirks = dev_info->quirks;
4324
4325	fep->netdev = ndev;
4326	fep->num_rx_queues = num_rx_qs;
4327	fep->num_tx_queues = num_tx_qs;
4328
4329#if !defined(CONFIG_M5272)
4330	/* default enable pause frame auto negotiation */
4331	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4332		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4333#endif
4334
4335	/* Select default pin state */
4336	pinctrl_pm_select_default_state(&pdev->dev);
4337
4338	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
 
4339	if (IS_ERR(fep->hwp)) {
4340		ret = PTR_ERR(fep->hwp);
4341		goto failed_ioremap;
4342	}
4343
4344	fep->pdev = pdev;
4345	fep->dev_id = dev_id++;
4346
4347	platform_set_drvdata(pdev, ndev);
4348
4349	if ((of_machine_is_compatible("fsl,imx6q") ||
4350	     of_machine_is_compatible("fsl,imx6dl")) &&
4351	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4352		fep->quirks |= FEC_QUIRK_ERR006687;
4353
4354	ret = fec_enet_ipc_handle_init(fep);
4355	if (ret)
4356		goto failed_ipc_init;
4357
4358	if (of_property_read_bool(np, "fsl,magic-packet"))
4359		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4360
4361	ret = fec_enet_init_stop_mode(fep, np);
4362	if (ret)
4363		goto failed_stop_mode;
4364
4365	phy_node = of_parse_phandle(np, "phy-handle", 0);
4366	if (!phy_node && of_phy_is_fixed_link(np)) {
4367		ret = of_phy_register_fixed_link(np);
4368		if (ret < 0) {
4369			dev_err(&pdev->dev,
4370				"broken fixed-link specification\n");
4371			goto failed_phy;
4372		}
4373		phy_node = of_node_get(np);
4374	}
4375	fep->phy_node = phy_node;
4376
4377	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4378	if (ret) {
4379		pdata = dev_get_platdata(&pdev->dev);
4380		if (pdata)
4381			fep->phy_interface = pdata->phy;
4382		else
4383			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4384	} else {
4385		fep->phy_interface = interface;
4386	}
4387
4388	ret = fec_enet_parse_rgmii_delay(fep, np);
4389	if (ret)
4390		goto failed_rgmii_delay;
4391
4392	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4393	if (IS_ERR(fep->clk_ipg)) {
4394		ret = PTR_ERR(fep->clk_ipg);
4395		goto failed_clk;
4396	}
4397
4398	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4399	if (IS_ERR(fep->clk_ahb)) {
4400		ret = PTR_ERR(fep->clk_ahb);
4401		goto failed_clk;
4402	}
4403
4404	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4405
4406	/* enet_out is optional, depends on board */
4407	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4408	if (IS_ERR(fep->clk_enet_out)) {
4409		ret = PTR_ERR(fep->clk_enet_out);
4410		goto failed_clk;
4411	}
4412
4413	fep->ptp_clk_on = false;
4414	mutex_init(&fep->ptp_clk_mutex);
4415
4416	/* clk_ref is optional, depends on board */
4417	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4418	if (IS_ERR(fep->clk_ref)) {
4419		ret = PTR_ERR(fep->clk_ref);
4420		goto failed_clk;
4421	}
4422	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4423
4424	/* clk_2x_txclk is optional, depends on board */
4425	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4426		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4427		if (IS_ERR(fep->clk_2x_txclk))
4428			fep->clk_2x_txclk = NULL;
4429	}
4430
4431	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4432	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4433	if (IS_ERR(fep->clk_ptp)) {
4434		fep->clk_ptp = NULL;
4435		fep->bufdesc_ex = false;
4436	}
4437
4438	ret = fec_enet_clk_enable(ndev, true);
4439	if (ret)
4440		goto failed_clk;
4441
4442	ret = clk_prepare_enable(fep->clk_ipg);
4443	if (ret)
4444		goto failed_clk_ipg;
4445	ret = clk_prepare_enable(fep->clk_ahb);
4446	if (ret)
4447		goto failed_clk_ahb;
4448
4449	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4450	if (!IS_ERR(fep->reg_phy)) {
4451		ret = regulator_enable(fep->reg_phy);
4452		if (ret) {
4453			dev_err(&pdev->dev,
4454				"Failed to enable phy regulator: %d\n", ret);
 
4455			goto failed_regulator;
4456		}
4457	} else {
4458		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4459			ret = -EPROBE_DEFER;
4460			goto failed_regulator;
4461		}
4462		fep->reg_phy = NULL;
4463	}
4464
4465	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4466	pm_runtime_use_autosuspend(&pdev->dev);
4467	pm_runtime_get_noresume(&pdev->dev);
4468	pm_runtime_set_active(&pdev->dev);
4469	pm_runtime_enable(&pdev->dev);
4470
4471	ret = fec_reset_phy(pdev);
4472	if (ret)
4473		goto failed_reset;
4474
4475	irq_cnt = fec_enet_get_irq_cnt(pdev);
4476	if (fep->bufdesc_ex)
4477		fec_ptp_init(pdev, irq_cnt);
4478
4479	ret = fec_enet_init(ndev);
4480	if (ret)
4481		goto failed_init;
4482
4483	for (i = 0; i < irq_cnt; i++) {
4484		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4485		irq = platform_get_irq_byname_optional(pdev, irq_name);
4486		if (irq < 0)
4487			irq = platform_get_irq(pdev, i);
4488		if (irq < 0) {
4489			ret = irq;
4490			goto failed_irq;
4491		}
4492		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4493				       0, pdev->name, ndev);
4494		if (ret)
4495			goto failed_irq;
4496
4497		fep->irq[i] = irq;
4498	}
4499
4500	/* Decide which interrupt line is wakeup capable */
4501	fec_enet_get_wakeup_irq(pdev);
4502
4503	ret = fec_enet_mii_init(pdev);
4504	if (ret)
4505		goto failed_mii_init;
4506
4507	/* Carrier starts down, phylib will bring it up */
4508	netif_carrier_off(ndev);
4509	fec_enet_clk_enable(ndev, false);
4510	pinctrl_pm_select_sleep_state(&pdev->dev);
4511
4512	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4513
4514	ret = register_netdev(ndev);
4515	if (ret)
4516		goto failed_register;
4517
4518	device_init_wakeup(&ndev->dev, fep->wol_flag &
4519			   FEC_WOL_HAS_MAGIC_PACKET);
4520
4521	if (fep->bufdesc_ex && fep->ptp_clock)
4522		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4523
 
4524	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4525
4526	pm_runtime_mark_last_busy(&pdev->dev);
4527	pm_runtime_put_autosuspend(&pdev->dev);
4528
4529	return 0;
4530
4531failed_register:
4532	fec_enet_mii_remove(fep);
4533failed_mii_init:
4534failed_irq:
4535	fec_enet_deinit(ndev);
4536failed_init:
4537	fec_ptp_stop(pdev);
 
 
4538failed_reset:
4539	pm_runtime_put_noidle(&pdev->dev);
4540	pm_runtime_disable(&pdev->dev);
4541	if (fep->reg_phy)
4542		regulator_disable(fep->reg_phy);
4543failed_regulator:
4544	clk_disable_unprepare(fep->clk_ahb);
4545failed_clk_ahb:
4546	clk_disable_unprepare(fep->clk_ipg);
4547failed_clk_ipg:
4548	fec_enet_clk_enable(ndev, false);
4549failed_clk:
4550failed_rgmii_delay:
4551	if (of_phy_is_fixed_link(np))
4552		of_phy_deregister_fixed_link(np);
4553	of_node_put(phy_node);
4554failed_stop_mode:
4555failed_ipc_init:
4556failed_phy:
4557	dev_id--;
4558failed_ioremap:
4559	free_netdev(ndev);
4560
4561	return ret;
4562}
4563
4564static void
4565fec_drv_remove(struct platform_device *pdev)
4566{
4567	struct net_device *ndev = platform_get_drvdata(pdev);
4568	struct fec_enet_private *fep = netdev_priv(ndev);
4569	struct device_node *np = pdev->dev.of_node;
4570	int ret;
4571
4572	ret = pm_runtime_get_sync(&pdev->dev);
4573	if (ret < 0)
4574		dev_err(&pdev->dev,
4575			"Failed to resume device in remove callback (%pe)\n",
4576			ERR_PTR(ret));
4577
4578	cancel_work_sync(&fep->tx_timeout_work);
4579	fec_ptp_stop(pdev);
4580	unregister_netdev(ndev);
4581	fec_enet_mii_remove(fep);
4582	if (fep->reg_phy)
4583		regulator_disable(fep->reg_phy);
4584
 
4585	if (of_phy_is_fixed_link(np))
4586		of_phy_deregister_fixed_link(np);
4587	of_node_put(fep->phy_node);
 
4588
4589	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4590	 * disabling them again.
4591	 */
4592	if (ret >= 0) {
4593		clk_disable_unprepare(fep->clk_ahb);
4594		clk_disable_unprepare(fep->clk_ipg);
4595	}
4596	pm_runtime_put_noidle(&pdev->dev);
4597	pm_runtime_disable(&pdev->dev);
4598
4599	fec_enet_deinit(ndev);
4600	free_netdev(ndev);
4601}
4602
4603static int __maybe_unused fec_suspend(struct device *dev)
4604{
4605	struct net_device *ndev = dev_get_drvdata(dev);
4606	struct fec_enet_private *fep = netdev_priv(ndev);
4607	int ret;
4608
4609	rtnl_lock();
4610	if (netif_running(ndev)) {
4611		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4612			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4613		phy_stop(ndev->phydev);
4614		napi_disable(&fep->napi);
4615		netif_tx_lock_bh(ndev);
4616		netif_device_detach(ndev);
4617		netif_tx_unlock_bh(ndev);
4618		fec_stop(ndev);
4619		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4620			fec_irqs_disable(ndev);
4621			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4622		} else {
4623			fec_irqs_disable_except_wakeup(ndev);
4624			if (fep->wake_irq > 0) {
4625				disable_irq(fep->wake_irq);
4626				enable_irq_wake(fep->wake_irq);
4627			}
4628			fec_enet_stop_mode(fep, true);
4629		}
4630		/* It's safe to disable clocks since interrupts are masked */
4631		fec_enet_clk_enable(ndev, false);
4632
4633		fep->rpm_active = !pm_runtime_status_suspended(dev);
4634		if (fep->rpm_active) {
4635			ret = pm_runtime_force_suspend(dev);
4636			if (ret < 0) {
4637				rtnl_unlock();
4638				return ret;
4639			}
4640		}
4641	}
4642	rtnl_unlock();
4643
4644	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4645		regulator_disable(fep->reg_phy);
4646
4647	/* SOC supply clock to phy, when clock is disabled, phy link down
4648	 * SOC control phy regulator, when regulator is disabled, phy link down
4649	 */
4650	if (fep->clk_enet_out || fep->reg_phy)
4651		fep->link = 0;
4652
4653	return 0;
4654}
4655
4656static int __maybe_unused fec_resume(struct device *dev)
4657{
4658	struct net_device *ndev = dev_get_drvdata(dev);
4659	struct fec_enet_private *fep = netdev_priv(ndev);
 
4660	int ret;
4661	int val;
4662
4663	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4664		ret = regulator_enable(fep->reg_phy);
4665		if (ret)
4666			return ret;
4667	}
4668
4669	rtnl_lock();
4670	if (netif_running(ndev)) {
4671		if (fep->rpm_active)
4672			pm_runtime_force_resume(dev);
4673
4674		ret = fec_enet_clk_enable(ndev, true);
4675		if (ret) {
4676			rtnl_unlock();
4677			goto failed_clk;
4678		}
4679		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4680			fec_enet_stop_mode(fep, false);
4681			if (fep->wake_irq) {
4682				disable_irq_wake(fep->wake_irq);
4683				enable_irq(fep->wake_irq);
4684			}
4685
4686			val = readl(fep->hwp + FEC_ECNTRL);
4687			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4688			writel(val, fep->hwp + FEC_ECNTRL);
4689			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4690		} else {
4691			pinctrl_pm_select_default_state(&fep->pdev->dev);
4692		}
4693		fec_restart(ndev);
4694		netif_tx_lock_bh(ndev);
4695		netif_device_attach(ndev);
4696		netif_tx_unlock_bh(ndev);
4697		napi_enable(&fep->napi);
4698		phy_init_hw(ndev->phydev);
4699		phy_start(ndev->phydev);
4700	}
4701	rtnl_unlock();
4702
4703	return 0;
4704
4705failed_clk:
4706	if (fep->reg_phy)
4707		regulator_disable(fep->reg_phy);
4708	return ret;
4709}
4710
4711static int __maybe_unused fec_runtime_suspend(struct device *dev)
4712{
4713	struct net_device *ndev = dev_get_drvdata(dev);
4714	struct fec_enet_private *fep = netdev_priv(ndev);
4715
4716	clk_disable_unprepare(fep->clk_ahb);
4717	clk_disable_unprepare(fep->clk_ipg);
4718
4719	return 0;
4720}
4721
4722static int __maybe_unused fec_runtime_resume(struct device *dev)
4723{
4724	struct net_device *ndev = dev_get_drvdata(dev);
4725	struct fec_enet_private *fep = netdev_priv(ndev);
4726	int ret;
4727
4728	ret = clk_prepare_enable(fep->clk_ahb);
4729	if (ret)
4730		return ret;
4731	ret = clk_prepare_enable(fep->clk_ipg);
4732	if (ret)
4733		goto failed_clk_ipg;
4734
4735	return 0;
4736
4737failed_clk_ipg:
4738	clk_disable_unprepare(fep->clk_ahb);
4739	return ret;
4740}
4741
4742static const struct dev_pm_ops fec_pm_ops = {
4743	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4744	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4745};
4746
4747static struct platform_driver fec_driver = {
4748	.driver	= {
4749		.name	= DRIVER_NAME,
4750		.pm	= &fec_pm_ops,
4751		.of_match_table = fec_dt_ids,
4752		.suppress_bind_attrs = true,
4753	},
4754	.id_table = fec_devtype,
4755	.probe	= fec_probe,
4756	.remove_new = fec_drv_remove,
4757};
4758
4759module_platform_driver(fec_driver);
4760
4761MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4762MODULE_LICENSE("GPL");