Loading...
Note: File does not exist in v3.5.6.
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 *
6 * Right now, I am very wasteful with the buffers. I allocate memory
7 * pages and then divide them into 2K frame buffers. This way I know I
8 * have buffers large enough to hold one frame within one buffer descriptor.
9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10 * will be much more memory efficient and will easily handle lots of
11 * small packets.
12 *
13 * Much better multiple PHY support by Magnus Damm.
14 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 *
16 * Support for FEC controller of ColdFire processors.
17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 *
19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20 * Copyright (c) 2004-2006 Macq Electronique SA.
21 *
22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23 */
24
25#include <linux/module.h>
26#include <linux/kernel.h>
27#include <linux/string.h>
28#include <linux/pm_runtime.h>
29#include <linux/ptrace.h>
30#include <linux/errno.h>
31#include <linux/ioport.h>
32#include <linux/slab.h>
33#include <linux/interrupt.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/skbuff.h>
38#include <linux/in.h>
39#include <linux/ip.h>
40#include <net/ip.h>
41#include <net/tso.h>
42#include <linux/tcp.h>
43#include <linux/udp.h>
44#include <linux/icmp.h>
45#include <linux/spinlock.h>
46#include <linux/workqueue.h>
47#include <linux/bitops.h>
48#include <linux/io.h>
49#include <linux/irq.h>
50#include <linux/clk.h>
51#include <linux/platform_device.h>
52#include <linux/mdio.h>
53#include <linux/phy.h>
54#include <linux/fec.h>
55#include <linux/of.h>
56#include <linux/of_device.h>
57#include <linux/of_gpio.h>
58#include <linux/of_mdio.h>
59#include <linux/of_net.h>
60#include <linux/regulator/consumer.h>
61#include <linux/if_vlan.h>
62#include <linux/pinctrl/consumer.h>
63#include <linux/prefetch.h>
64#include <soc/imx/cpuidle.h>
65
66#include <asm/cacheflush.h>
67
68#include "fec.h"
69
70static void set_multicast_list(struct net_device *ndev);
71static void fec_enet_itr_coal_init(struct net_device *ndev);
72
73#define DRIVER_NAME "fec"
74
75#define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
76
77/* Pause frame feild and FIFO threshold */
78#define FEC_ENET_FCE (1 << 5)
79#define FEC_ENET_RSEM_V 0x84
80#define FEC_ENET_RSFL_V 16
81#define FEC_ENET_RAEM_V 0x8
82#define FEC_ENET_RAFL_V 0x8
83#define FEC_ENET_OPD_V 0xFFF0
84#define FEC_MDIO_PM_TIMEOUT 100 /* ms */
85
86static struct platform_device_id fec_devtype[] = {
87 {
88 /* keep it for coldfire */
89 .name = DRIVER_NAME,
90 .driver_data = 0,
91 }, {
92 .name = "imx25-fec",
93 .driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR,
94 }, {
95 .name = "imx27-fec",
96 .driver_data = FEC_QUIRK_MIB_CLEAR,
97 }, {
98 .name = "imx28-fec",
99 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
100 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
101 }, {
102 .name = "imx6q-fec",
103 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
104 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
105 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
106 FEC_QUIRK_HAS_RACC,
107 }, {
108 .name = "mvf600-fec",
109 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
110 }, {
111 .name = "imx6sx-fec",
112 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
113 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
114 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
115 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
116 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
117 }, {
118 .name = "imx6ul-fec",
119 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
120 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
121 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
122 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
123 FEC_QUIRK_HAS_COALESCE,
124 }, {
125 /* sentinel */
126 }
127};
128MODULE_DEVICE_TABLE(platform, fec_devtype);
129
130enum imx_fec_type {
131 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
132 IMX27_FEC, /* runs on i.mx27/35/51 */
133 IMX28_FEC,
134 IMX6Q_FEC,
135 MVF600_FEC,
136 IMX6SX_FEC,
137 IMX6UL_FEC,
138};
139
140static const struct of_device_id fec_dt_ids[] = {
141 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
142 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
143 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
144 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
145 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
146 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
147 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
148 { /* sentinel */ }
149};
150MODULE_DEVICE_TABLE(of, fec_dt_ids);
151
152static unsigned char macaddr[ETH_ALEN];
153module_param_array(macaddr, byte, NULL, 0);
154MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
155
156#if defined(CONFIG_M5272)
157/*
158 * Some hardware gets it MAC address out of local flash memory.
159 * if this is non-zero then assume it is the address to get MAC from.
160 */
161#if defined(CONFIG_NETtel)
162#define FEC_FLASHMAC 0xf0006006
163#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
164#define FEC_FLASHMAC 0xf0006000
165#elif defined(CONFIG_CANCam)
166#define FEC_FLASHMAC 0xf0020000
167#elif defined (CONFIG_M5272C3)
168#define FEC_FLASHMAC (0xffe04000 + 4)
169#elif defined(CONFIG_MOD5272)
170#define FEC_FLASHMAC 0xffc0406b
171#else
172#define FEC_FLASHMAC 0
173#endif
174#endif /* CONFIG_M5272 */
175
176/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
177 *
178 * 2048 byte skbufs are allocated. However, alignment requirements
179 * varies between FEC variants. Worst case is 64, so round down by 64.
180 */
181#define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
182#define PKT_MINBUF_SIZE 64
183
184/* FEC receive acceleration */
185#define FEC_RACC_IPDIS (1 << 1)
186#define FEC_RACC_PRODIS (1 << 2)
187#define FEC_RACC_SHIFT16 BIT(7)
188#define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
189
190/* MIB Control Register */
191#define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
192
193/*
194 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
195 * size bits. Other FEC hardware does not, so we need to take that into
196 * account when setting it.
197 */
198#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
199 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
200 defined(CONFIG_ARM64)
201#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
202#else
203#define OPT_FRAME_SIZE 0
204#endif
205
206/* FEC MII MMFR bits definition */
207#define FEC_MMFR_ST (1 << 30)
208#define FEC_MMFR_OP_READ (2 << 28)
209#define FEC_MMFR_OP_WRITE (1 << 28)
210#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
211#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
212#define FEC_MMFR_TA (2 << 16)
213#define FEC_MMFR_DATA(v) (v & 0xffff)
214/* FEC ECR bits definition */
215#define FEC_ECR_MAGICEN (1 << 2)
216#define FEC_ECR_SLEEP (1 << 3)
217
218#define FEC_MII_TIMEOUT 30000 /* us */
219
220/* Transmitter timeout */
221#define TX_TIMEOUT (2 * HZ)
222
223#define FEC_PAUSE_FLAG_AUTONEG 0x1
224#define FEC_PAUSE_FLAG_ENABLE 0x2
225#define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
226#define FEC_WOL_FLAG_ENABLE (0x1 << 1)
227#define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
228
229#define COPYBREAK_DEFAULT 256
230
231/* Max number of allowed TCP segments for software TSO */
232#define FEC_MAX_TSO_SEGS 100
233#define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
234
235#define IS_TSO_HEADER(txq, addr) \
236 ((addr >= txq->tso_hdrs_dma) && \
237 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
238
239static int mii_cnt;
240
241static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
242 struct bufdesc_prop *bd)
243{
244 return (bdp >= bd->last) ? bd->base
245 : (struct bufdesc *)(((void *)bdp) + bd->dsize);
246}
247
248static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
249 struct bufdesc_prop *bd)
250{
251 return (bdp <= bd->base) ? bd->last
252 : (struct bufdesc *)(((void *)bdp) - bd->dsize);
253}
254
255static int fec_enet_get_bd_index(struct bufdesc *bdp,
256 struct bufdesc_prop *bd)
257{
258 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
259}
260
261static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
262{
263 int entries;
264
265 entries = (((const char *)txq->dirty_tx -
266 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
267
268 return entries >= 0 ? entries : entries + txq->bd.ring_size;
269}
270
271static void swap_buffer(void *bufaddr, int len)
272{
273 int i;
274 unsigned int *buf = bufaddr;
275
276 for (i = 0; i < len; i += 4, buf++)
277 swab32s(buf);
278}
279
280static void swap_buffer2(void *dst_buf, void *src_buf, int len)
281{
282 int i;
283 unsigned int *src = src_buf;
284 unsigned int *dst = dst_buf;
285
286 for (i = 0; i < len; i += 4, src++, dst++)
287 *dst = swab32p(src);
288}
289
290static void fec_dump(struct net_device *ndev)
291{
292 struct fec_enet_private *fep = netdev_priv(ndev);
293 struct bufdesc *bdp;
294 struct fec_enet_priv_tx_q *txq;
295 int index = 0;
296
297 netdev_info(ndev, "TX ring dump\n");
298 pr_info("Nr SC addr len SKB\n");
299
300 txq = fep->tx_queue[0];
301 bdp = txq->bd.base;
302
303 do {
304 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
305 index,
306 bdp == txq->bd.cur ? 'S' : ' ',
307 bdp == txq->dirty_tx ? 'H' : ' ',
308 fec16_to_cpu(bdp->cbd_sc),
309 fec32_to_cpu(bdp->cbd_bufaddr),
310 fec16_to_cpu(bdp->cbd_datlen),
311 txq->tx_skbuff[index]);
312 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
313 index++;
314 } while (bdp != txq->bd.base);
315}
316
317static inline bool is_ipv4_pkt(struct sk_buff *skb)
318{
319 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
320}
321
322static int
323fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
324{
325 /* Only run for packets requiring a checksum. */
326 if (skb->ip_summed != CHECKSUM_PARTIAL)
327 return 0;
328
329 if (unlikely(skb_cow_head(skb, 0)))
330 return -1;
331
332 if (is_ipv4_pkt(skb))
333 ip_hdr(skb)->check = 0;
334 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
335
336 return 0;
337}
338
339static struct bufdesc *
340fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
341 struct sk_buff *skb,
342 struct net_device *ndev)
343{
344 struct fec_enet_private *fep = netdev_priv(ndev);
345 struct bufdesc *bdp = txq->bd.cur;
346 struct bufdesc_ex *ebdp;
347 int nr_frags = skb_shinfo(skb)->nr_frags;
348 int frag, frag_len;
349 unsigned short status;
350 unsigned int estatus = 0;
351 skb_frag_t *this_frag;
352 unsigned int index;
353 void *bufaddr;
354 dma_addr_t addr;
355 int i;
356
357 for (frag = 0; frag < nr_frags; frag++) {
358 this_frag = &skb_shinfo(skb)->frags[frag];
359 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
360 ebdp = (struct bufdesc_ex *)bdp;
361
362 status = fec16_to_cpu(bdp->cbd_sc);
363 status &= ~BD_ENET_TX_STATS;
364 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
365 frag_len = skb_shinfo(skb)->frags[frag].size;
366
367 /* Handle the last BD specially */
368 if (frag == nr_frags - 1) {
369 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
370 if (fep->bufdesc_ex) {
371 estatus |= BD_ENET_TX_INT;
372 if (unlikely(skb_shinfo(skb)->tx_flags &
373 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
374 estatus |= BD_ENET_TX_TS;
375 }
376 }
377
378 if (fep->bufdesc_ex) {
379 if (fep->quirks & FEC_QUIRK_HAS_AVB)
380 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
381 if (skb->ip_summed == CHECKSUM_PARTIAL)
382 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
383 ebdp->cbd_bdu = 0;
384 ebdp->cbd_esc = cpu_to_fec32(estatus);
385 }
386
387 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
388
389 index = fec_enet_get_bd_index(bdp, &txq->bd);
390 if (((unsigned long) bufaddr) & fep->tx_align ||
391 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
392 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
393 bufaddr = txq->tx_bounce[index];
394
395 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
396 swap_buffer(bufaddr, frag_len);
397 }
398
399 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
400 DMA_TO_DEVICE);
401 if (dma_mapping_error(&fep->pdev->dev, addr)) {
402 if (net_ratelimit())
403 netdev_err(ndev, "Tx DMA memory map failed\n");
404 goto dma_mapping_error;
405 }
406
407 bdp->cbd_bufaddr = cpu_to_fec32(addr);
408 bdp->cbd_datlen = cpu_to_fec16(frag_len);
409 /* Make sure the updates to rest of the descriptor are
410 * performed before transferring ownership.
411 */
412 wmb();
413 bdp->cbd_sc = cpu_to_fec16(status);
414 }
415
416 return bdp;
417dma_mapping_error:
418 bdp = txq->bd.cur;
419 for (i = 0; i < frag; i++) {
420 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
421 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
422 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
423 }
424 return ERR_PTR(-ENOMEM);
425}
426
427static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
428 struct sk_buff *skb, struct net_device *ndev)
429{
430 struct fec_enet_private *fep = netdev_priv(ndev);
431 int nr_frags = skb_shinfo(skb)->nr_frags;
432 struct bufdesc *bdp, *last_bdp;
433 void *bufaddr;
434 dma_addr_t addr;
435 unsigned short status;
436 unsigned short buflen;
437 unsigned int estatus = 0;
438 unsigned int index;
439 int entries_free;
440
441 entries_free = fec_enet_get_free_txdesc_num(txq);
442 if (entries_free < MAX_SKB_FRAGS + 1) {
443 dev_kfree_skb_any(skb);
444 if (net_ratelimit())
445 netdev_err(ndev, "NOT enough BD for SG!\n");
446 return NETDEV_TX_OK;
447 }
448
449 /* Protocol checksum off-load for TCP and UDP. */
450 if (fec_enet_clear_csum(skb, ndev)) {
451 dev_kfree_skb_any(skb);
452 return NETDEV_TX_OK;
453 }
454
455 /* Fill in a Tx ring entry */
456 bdp = txq->bd.cur;
457 last_bdp = bdp;
458 status = fec16_to_cpu(bdp->cbd_sc);
459 status &= ~BD_ENET_TX_STATS;
460
461 /* Set buffer length and buffer pointer */
462 bufaddr = skb->data;
463 buflen = skb_headlen(skb);
464
465 index = fec_enet_get_bd_index(bdp, &txq->bd);
466 if (((unsigned long) bufaddr) & fep->tx_align ||
467 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
468 memcpy(txq->tx_bounce[index], skb->data, buflen);
469 bufaddr = txq->tx_bounce[index];
470
471 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
472 swap_buffer(bufaddr, buflen);
473 }
474
475 /* Push the data cache so the CPM does not get stale memory data. */
476 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
477 if (dma_mapping_error(&fep->pdev->dev, addr)) {
478 dev_kfree_skb_any(skb);
479 if (net_ratelimit())
480 netdev_err(ndev, "Tx DMA memory map failed\n");
481 return NETDEV_TX_OK;
482 }
483
484 if (nr_frags) {
485 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
486 if (IS_ERR(last_bdp)) {
487 dma_unmap_single(&fep->pdev->dev, addr,
488 buflen, DMA_TO_DEVICE);
489 dev_kfree_skb_any(skb);
490 return NETDEV_TX_OK;
491 }
492 } else {
493 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
494 if (fep->bufdesc_ex) {
495 estatus = BD_ENET_TX_INT;
496 if (unlikely(skb_shinfo(skb)->tx_flags &
497 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
498 estatus |= BD_ENET_TX_TS;
499 }
500 }
501 bdp->cbd_bufaddr = cpu_to_fec32(addr);
502 bdp->cbd_datlen = cpu_to_fec16(buflen);
503
504 if (fep->bufdesc_ex) {
505
506 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
507
508 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
509 fep->hwts_tx_en))
510 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
511
512 if (fep->quirks & FEC_QUIRK_HAS_AVB)
513 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
514
515 if (skb->ip_summed == CHECKSUM_PARTIAL)
516 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
517
518 ebdp->cbd_bdu = 0;
519 ebdp->cbd_esc = cpu_to_fec32(estatus);
520 }
521
522 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
523 /* Save skb pointer */
524 txq->tx_skbuff[index] = skb;
525
526 /* Make sure the updates to rest of the descriptor are performed before
527 * transferring ownership.
528 */
529 wmb();
530
531 /* Send it on its way. Tell FEC it's ready, interrupt when done,
532 * it's the last BD of the frame, and to put the CRC on the end.
533 */
534 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
535 bdp->cbd_sc = cpu_to_fec16(status);
536
537 /* If this was the last BD in the ring, start at the beginning again. */
538 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
539
540 skb_tx_timestamp(skb);
541
542 /* Make sure the update to bdp and tx_skbuff are performed before
543 * txq->bd.cur.
544 */
545 wmb();
546 txq->bd.cur = bdp;
547
548 /* Trigger transmission start */
549 writel(0, txq->bd.reg_desc_active);
550
551 return 0;
552}
553
554static int
555fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
556 struct net_device *ndev,
557 struct bufdesc *bdp, int index, char *data,
558 int size, bool last_tcp, bool is_last)
559{
560 struct fec_enet_private *fep = netdev_priv(ndev);
561 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
562 unsigned short status;
563 unsigned int estatus = 0;
564 dma_addr_t addr;
565
566 status = fec16_to_cpu(bdp->cbd_sc);
567 status &= ~BD_ENET_TX_STATS;
568
569 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
570
571 if (((unsigned long) data) & fep->tx_align ||
572 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
573 memcpy(txq->tx_bounce[index], data, size);
574 data = txq->tx_bounce[index];
575
576 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
577 swap_buffer(data, size);
578 }
579
580 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
581 if (dma_mapping_error(&fep->pdev->dev, addr)) {
582 dev_kfree_skb_any(skb);
583 if (net_ratelimit())
584 netdev_err(ndev, "Tx DMA memory map failed\n");
585 return NETDEV_TX_BUSY;
586 }
587
588 bdp->cbd_datlen = cpu_to_fec16(size);
589 bdp->cbd_bufaddr = cpu_to_fec32(addr);
590
591 if (fep->bufdesc_ex) {
592 if (fep->quirks & FEC_QUIRK_HAS_AVB)
593 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
594 if (skb->ip_summed == CHECKSUM_PARTIAL)
595 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
596 ebdp->cbd_bdu = 0;
597 ebdp->cbd_esc = cpu_to_fec32(estatus);
598 }
599
600 /* Handle the last BD specially */
601 if (last_tcp)
602 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
603 if (is_last) {
604 status |= BD_ENET_TX_INTR;
605 if (fep->bufdesc_ex)
606 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
607 }
608
609 bdp->cbd_sc = cpu_to_fec16(status);
610
611 return 0;
612}
613
614static int
615fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
616 struct sk_buff *skb, struct net_device *ndev,
617 struct bufdesc *bdp, int index)
618{
619 struct fec_enet_private *fep = netdev_priv(ndev);
620 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
621 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
622 void *bufaddr;
623 unsigned long dmabuf;
624 unsigned short status;
625 unsigned int estatus = 0;
626
627 status = fec16_to_cpu(bdp->cbd_sc);
628 status &= ~BD_ENET_TX_STATS;
629 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
630
631 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
632 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
633 if (((unsigned long)bufaddr) & fep->tx_align ||
634 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
635 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
636 bufaddr = txq->tx_bounce[index];
637
638 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
639 swap_buffer(bufaddr, hdr_len);
640
641 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
642 hdr_len, DMA_TO_DEVICE);
643 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
644 dev_kfree_skb_any(skb);
645 if (net_ratelimit())
646 netdev_err(ndev, "Tx DMA memory map failed\n");
647 return NETDEV_TX_BUSY;
648 }
649 }
650
651 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
652 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
653
654 if (fep->bufdesc_ex) {
655 if (fep->quirks & FEC_QUIRK_HAS_AVB)
656 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
657 if (skb->ip_summed == CHECKSUM_PARTIAL)
658 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
659 ebdp->cbd_bdu = 0;
660 ebdp->cbd_esc = cpu_to_fec32(estatus);
661 }
662
663 bdp->cbd_sc = cpu_to_fec16(status);
664
665 return 0;
666}
667
668static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
669 struct sk_buff *skb,
670 struct net_device *ndev)
671{
672 struct fec_enet_private *fep = netdev_priv(ndev);
673 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
674 int total_len, data_left;
675 struct bufdesc *bdp = txq->bd.cur;
676 struct tso_t tso;
677 unsigned int index = 0;
678 int ret;
679
680 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
681 dev_kfree_skb_any(skb);
682 if (net_ratelimit())
683 netdev_err(ndev, "NOT enough BD for TSO!\n");
684 return NETDEV_TX_OK;
685 }
686
687 /* Protocol checksum off-load for TCP and UDP. */
688 if (fec_enet_clear_csum(skb, ndev)) {
689 dev_kfree_skb_any(skb);
690 return NETDEV_TX_OK;
691 }
692
693 /* Initialize the TSO handler, and prepare the first payload */
694 tso_start(skb, &tso);
695
696 total_len = skb->len - hdr_len;
697 while (total_len > 0) {
698 char *hdr;
699
700 index = fec_enet_get_bd_index(bdp, &txq->bd);
701 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
702 total_len -= data_left;
703
704 /* prepare packet headers: MAC + IP + TCP */
705 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
706 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
707 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
708 if (ret)
709 goto err_release;
710
711 while (data_left > 0) {
712 int size;
713
714 size = min_t(int, tso.size, data_left);
715 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
716 index = fec_enet_get_bd_index(bdp, &txq->bd);
717 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
718 bdp, index,
719 tso.data, size,
720 size == data_left,
721 total_len == 0);
722 if (ret)
723 goto err_release;
724
725 data_left -= size;
726 tso_build_data(skb, &tso, size);
727 }
728
729 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
730 }
731
732 /* Save skb pointer */
733 txq->tx_skbuff[index] = skb;
734
735 skb_tx_timestamp(skb);
736 txq->bd.cur = bdp;
737
738 /* Trigger transmission start */
739 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
740 !readl(txq->bd.reg_desc_active) ||
741 !readl(txq->bd.reg_desc_active) ||
742 !readl(txq->bd.reg_desc_active) ||
743 !readl(txq->bd.reg_desc_active))
744 writel(0, txq->bd.reg_desc_active);
745
746 return 0;
747
748err_release:
749 /* TODO: Release all used data descriptors for TSO */
750 return ret;
751}
752
753static netdev_tx_t
754fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
755{
756 struct fec_enet_private *fep = netdev_priv(ndev);
757 int entries_free;
758 unsigned short queue;
759 struct fec_enet_priv_tx_q *txq;
760 struct netdev_queue *nq;
761 int ret;
762
763 queue = skb_get_queue_mapping(skb);
764 txq = fep->tx_queue[queue];
765 nq = netdev_get_tx_queue(ndev, queue);
766
767 if (skb_is_gso(skb))
768 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
769 else
770 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
771 if (ret)
772 return ret;
773
774 entries_free = fec_enet_get_free_txdesc_num(txq);
775 if (entries_free <= txq->tx_stop_threshold)
776 netif_tx_stop_queue(nq);
777
778 return NETDEV_TX_OK;
779}
780
781/* Init RX & TX buffer descriptors
782 */
783static void fec_enet_bd_init(struct net_device *dev)
784{
785 struct fec_enet_private *fep = netdev_priv(dev);
786 struct fec_enet_priv_tx_q *txq;
787 struct fec_enet_priv_rx_q *rxq;
788 struct bufdesc *bdp;
789 unsigned int i;
790 unsigned int q;
791
792 for (q = 0; q < fep->num_rx_queues; q++) {
793 /* Initialize the receive buffer descriptors. */
794 rxq = fep->rx_queue[q];
795 bdp = rxq->bd.base;
796
797 for (i = 0; i < rxq->bd.ring_size; i++) {
798
799 /* Initialize the BD for every fragment in the page. */
800 if (bdp->cbd_bufaddr)
801 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
802 else
803 bdp->cbd_sc = cpu_to_fec16(0);
804 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
805 }
806
807 /* Set the last buffer to wrap */
808 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
809 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
810
811 rxq->bd.cur = rxq->bd.base;
812 }
813
814 for (q = 0; q < fep->num_tx_queues; q++) {
815 /* ...and the same for transmit */
816 txq = fep->tx_queue[q];
817 bdp = txq->bd.base;
818 txq->bd.cur = bdp;
819
820 for (i = 0; i < txq->bd.ring_size; i++) {
821 /* Initialize the BD for every fragment in the page. */
822 bdp->cbd_sc = cpu_to_fec16(0);
823 if (bdp->cbd_bufaddr &&
824 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
825 dma_unmap_single(&fep->pdev->dev,
826 fec32_to_cpu(bdp->cbd_bufaddr),
827 fec16_to_cpu(bdp->cbd_datlen),
828 DMA_TO_DEVICE);
829 if (txq->tx_skbuff[i]) {
830 dev_kfree_skb_any(txq->tx_skbuff[i]);
831 txq->tx_skbuff[i] = NULL;
832 }
833 bdp->cbd_bufaddr = cpu_to_fec32(0);
834 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
835 }
836
837 /* Set the last buffer to wrap */
838 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
839 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
840 txq->dirty_tx = bdp;
841 }
842}
843
844static void fec_enet_active_rxring(struct net_device *ndev)
845{
846 struct fec_enet_private *fep = netdev_priv(ndev);
847 int i;
848
849 for (i = 0; i < fep->num_rx_queues; i++)
850 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
851}
852
853static void fec_enet_enable_ring(struct net_device *ndev)
854{
855 struct fec_enet_private *fep = netdev_priv(ndev);
856 struct fec_enet_priv_tx_q *txq;
857 struct fec_enet_priv_rx_q *rxq;
858 int i;
859
860 for (i = 0; i < fep->num_rx_queues; i++) {
861 rxq = fep->rx_queue[i];
862 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
863 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
864
865 /* enable DMA1/2 */
866 if (i)
867 writel(RCMR_MATCHEN | RCMR_CMP(i),
868 fep->hwp + FEC_RCMR(i));
869 }
870
871 for (i = 0; i < fep->num_tx_queues; i++) {
872 txq = fep->tx_queue[i];
873 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
874
875 /* enable DMA1/2 */
876 if (i)
877 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
878 fep->hwp + FEC_DMA_CFG(i));
879 }
880}
881
882static void fec_enet_reset_skb(struct net_device *ndev)
883{
884 struct fec_enet_private *fep = netdev_priv(ndev);
885 struct fec_enet_priv_tx_q *txq;
886 int i, j;
887
888 for (i = 0; i < fep->num_tx_queues; i++) {
889 txq = fep->tx_queue[i];
890
891 for (j = 0; j < txq->bd.ring_size; j++) {
892 if (txq->tx_skbuff[j]) {
893 dev_kfree_skb_any(txq->tx_skbuff[j]);
894 txq->tx_skbuff[j] = NULL;
895 }
896 }
897 }
898}
899
900/*
901 * This function is called to start or restart the FEC during a link
902 * change, transmit timeout, or to reconfigure the FEC. The network
903 * packet processing for this device must be stopped before this call.
904 */
905static void
906fec_restart(struct net_device *ndev)
907{
908 struct fec_enet_private *fep = netdev_priv(ndev);
909 u32 val;
910 u32 temp_mac[2];
911 u32 rcntl = OPT_FRAME_SIZE | 0x04;
912 u32 ecntl = 0x2; /* ETHEREN */
913
914 /* Whack a reset. We should wait for this.
915 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
916 * instead of reset MAC itself.
917 */
918 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
919 writel(0, fep->hwp + FEC_ECNTRL);
920 } else {
921 writel(1, fep->hwp + FEC_ECNTRL);
922 udelay(10);
923 }
924
925 /*
926 * enet-mac reset will reset mac address registers too,
927 * so need to reconfigure it.
928 */
929 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
930 writel((__force u32)cpu_to_be32(temp_mac[0]),
931 fep->hwp + FEC_ADDR_LOW);
932 writel((__force u32)cpu_to_be32(temp_mac[1]),
933 fep->hwp + FEC_ADDR_HIGH);
934
935 /* Clear any outstanding interrupt. */
936 writel(0xffffffff, fep->hwp + FEC_IEVENT);
937
938 fec_enet_bd_init(ndev);
939
940 fec_enet_enable_ring(ndev);
941
942 /* Reset tx SKB buffers. */
943 fec_enet_reset_skb(ndev);
944
945 /* Enable MII mode */
946 if (fep->full_duplex == DUPLEX_FULL) {
947 /* FD enable */
948 writel(0x04, fep->hwp + FEC_X_CNTRL);
949 } else {
950 /* No Rcv on Xmit */
951 rcntl |= 0x02;
952 writel(0x0, fep->hwp + FEC_X_CNTRL);
953 }
954
955 /* Set MII speed */
956 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
957
958#if !defined(CONFIG_M5272)
959 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
960 val = readl(fep->hwp + FEC_RACC);
961 /* align IP header */
962 val |= FEC_RACC_SHIFT16;
963 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
964 /* set RX checksum */
965 val |= FEC_RACC_OPTIONS;
966 else
967 val &= ~FEC_RACC_OPTIONS;
968 writel(val, fep->hwp + FEC_RACC);
969 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
970 }
971#endif
972
973 /*
974 * The phy interface and speed need to get configured
975 * differently on enet-mac.
976 */
977 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
978 /* Enable flow control and length check */
979 rcntl |= 0x40000000 | 0x00000020;
980
981 /* RGMII, RMII or MII */
982 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
983 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
984 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
985 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
986 rcntl |= (1 << 6);
987 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
988 rcntl |= (1 << 8);
989 else
990 rcntl &= ~(1 << 8);
991
992 /* 1G, 100M or 10M */
993 if (ndev->phydev) {
994 if (ndev->phydev->speed == SPEED_1000)
995 ecntl |= (1 << 5);
996 else if (ndev->phydev->speed == SPEED_100)
997 rcntl &= ~(1 << 9);
998 else
999 rcntl |= (1 << 9);
1000 }
1001 } else {
1002#ifdef FEC_MIIGSK_ENR
1003 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1004 u32 cfgr;
1005 /* disable the gasket and wait */
1006 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1007 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1008 udelay(1);
1009
1010 /*
1011 * configure the gasket:
1012 * RMII, 50 MHz, no loopback, no echo
1013 * MII, 25 MHz, no loopback, no echo
1014 */
1015 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1016 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1017 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1018 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1019 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1020
1021 /* re-enable the gasket */
1022 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1023 }
1024#endif
1025 }
1026
1027#if !defined(CONFIG_M5272)
1028 /* enable pause frame*/
1029 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1030 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1031 ndev->phydev && ndev->phydev->pause)) {
1032 rcntl |= FEC_ENET_FCE;
1033
1034 /* set FIFO threshold parameter to reduce overrun */
1035 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1036 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1037 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1038 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1039
1040 /* OPD */
1041 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1042 } else {
1043 rcntl &= ~FEC_ENET_FCE;
1044 }
1045#endif /* !defined(CONFIG_M5272) */
1046
1047 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1048
1049 /* Setup multicast filter. */
1050 set_multicast_list(ndev);
1051#ifndef CONFIG_M5272
1052 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1053 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1054#endif
1055
1056 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1057 /* enable ENET endian swap */
1058 ecntl |= (1 << 8);
1059 /* enable ENET store and forward mode */
1060 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1061 }
1062
1063 if (fep->bufdesc_ex)
1064 ecntl |= (1 << 4);
1065
1066#ifndef CONFIG_M5272
1067 /* Enable the MIB statistic event counters */
1068 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1069#endif
1070
1071 /* And last, enable the transmit and receive processing */
1072 writel(ecntl, fep->hwp + FEC_ECNTRL);
1073 fec_enet_active_rxring(ndev);
1074
1075 if (fep->bufdesc_ex)
1076 fec_ptp_start_cyclecounter(ndev);
1077
1078 /* Enable interrupts we wish to service */
1079 if (fep->link)
1080 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1081 else
1082 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1083
1084 /* Init the interrupt coalescing */
1085 fec_enet_itr_coal_init(ndev);
1086
1087}
1088
1089static void
1090fec_stop(struct net_device *ndev)
1091{
1092 struct fec_enet_private *fep = netdev_priv(ndev);
1093 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1094 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1095 u32 val;
1096
1097 /* We cannot expect a graceful transmit stop without link !!! */
1098 if (fep->link) {
1099 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1100 udelay(10);
1101 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1102 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1103 }
1104
1105 /* Whack a reset. We should wait for this.
1106 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1107 * instead of reset MAC itself.
1108 */
1109 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1110 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1111 writel(0, fep->hwp + FEC_ECNTRL);
1112 } else {
1113 writel(1, fep->hwp + FEC_ECNTRL);
1114 udelay(10);
1115 }
1116 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1117 } else {
1118 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1119 val = readl(fep->hwp + FEC_ECNTRL);
1120 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1121 writel(val, fep->hwp + FEC_ECNTRL);
1122
1123 if (pdata && pdata->sleep_mode_enable)
1124 pdata->sleep_mode_enable(true);
1125 }
1126 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1127
1128 /* We have to keep ENET enabled to have MII interrupt stay working */
1129 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1130 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1131 writel(2, fep->hwp + FEC_ECNTRL);
1132 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1133 }
1134}
1135
1136
1137static void
1138fec_timeout(struct net_device *ndev)
1139{
1140 struct fec_enet_private *fep = netdev_priv(ndev);
1141
1142 fec_dump(ndev);
1143
1144 ndev->stats.tx_errors++;
1145
1146 schedule_work(&fep->tx_timeout_work);
1147}
1148
1149static void fec_enet_timeout_work(struct work_struct *work)
1150{
1151 struct fec_enet_private *fep =
1152 container_of(work, struct fec_enet_private, tx_timeout_work);
1153 struct net_device *ndev = fep->netdev;
1154
1155 rtnl_lock();
1156 if (netif_device_present(ndev) || netif_running(ndev)) {
1157 napi_disable(&fep->napi);
1158 netif_tx_lock_bh(ndev);
1159 fec_restart(ndev);
1160 netif_wake_queue(ndev);
1161 netif_tx_unlock_bh(ndev);
1162 napi_enable(&fep->napi);
1163 }
1164 rtnl_unlock();
1165}
1166
1167static void
1168fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1169 struct skb_shared_hwtstamps *hwtstamps)
1170{
1171 unsigned long flags;
1172 u64 ns;
1173
1174 spin_lock_irqsave(&fep->tmreg_lock, flags);
1175 ns = timecounter_cyc2time(&fep->tc, ts);
1176 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1177
1178 memset(hwtstamps, 0, sizeof(*hwtstamps));
1179 hwtstamps->hwtstamp = ns_to_ktime(ns);
1180}
1181
1182static void
1183fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1184{
1185 struct fec_enet_private *fep;
1186 struct bufdesc *bdp;
1187 unsigned short status;
1188 struct sk_buff *skb;
1189 struct fec_enet_priv_tx_q *txq;
1190 struct netdev_queue *nq;
1191 int index = 0;
1192 int entries_free;
1193
1194 fep = netdev_priv(ndev);
1195
1196 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1197
1198 txq = fep->tx_queue[queue_id];
1199 /* get next bdp of dirty_tx */
1200 nq = netdev_get_tx_queue(ndev, queue_id);
1201 bdp = txq->dirty_tx;
1202
1203 /* get next bdp of dirty_tx */
1204 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1205
1206 while (bdp != READ_ONCE(txq->bd.cur)) {
1207 /* Order the load of bd.cur and cbd_sc */
1208 rmb();
1209 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1210 if (status & BD_ENET_TX_READY)
1211 break;
1212
1213 index = fec_enet_get_bd_index(bdp, &txq->bd);
1214
1215 skb = txq->tx_skbuff[index];
1216 txq->tx_skbuff[index] = NULL;
1217 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1218 dma_unmap_single(&fep->pdev->dev,
1219 fec32_to_cpu(bdp->cbd_bufaddr),
1220 fec16_to_cpu(bdp->cbd_datlen),
1221 DMA_TO_DEVICE);
1222 bdp->cbd_bufaddr = cpu_to_fec32(0);
1223 if (!skb)
1224 goto skb_done;
1225
1226 /* Check for errors. */
1227 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1228 BD_ENET_TX_RL | BD_ENET_TX_UN |
1229 BD_ENET_TX_CSL)) {
1230 ndev->stats.tx_errors++;
1231 if (status & BD_ENET_TX_HB) /* No heartbeat */
1232 ndev->stats.tx_heartbeat_errors++;
1233 if (status & BD_ENET_TX_LC) /* Late collision */
1234 ndev->stats.tx_window_errors++;
1235 if (status & BD_ENET_TX_RL) /* Retrans limit */
1236 ndev->stats.tx_aborted_errors++;
1237 if (status & BD_ENET_TX_UN) /* Underrun */
1238 ndev->stats.tx_fifo_errors++;
1239 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1240 ndev->stats.tx_carrier_errors++;
1241 } else {
1242 ndev->stats.tx_packets++;
1243 ndev->stats.tx_bytes += skb->len;
1244 }
1245
1246 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1247 fep->bufdesc_ex) {
1248 struct skb_shared_hwtstamps shhwtstamps;
1249 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1250
1251 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1252 skb_tstamp_tx(skb, &shhwtstamps);
1253 }
1254
1255 /* Deferred means some collisions occurred during transmit,
1256 * but we eventually sent the packet OK.
1257 */
1258 if (status & BD_ENET_TX_DEF)
1259 ndev->stats.collisions++;
1260
1261 /* Free the sk buffer associated with this last transmit */
1262 dev_kfree_skb_any(skb);
1263skb_done:
1264 /* Make sure the update to bdp and tx_skbuff are performed
1265 * before dirty_tx
1266 */
1267 wmb();
1268 txq->dirty_tx = bdp;
1269
1270 /* Update pointer to next buffer descriptor to be transmitted */
1271 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1272
1273 /* Since we have freed up a buffer, the ring is no longer full
1274 */
1275 if (netif_queue_stopped(ndev)) {
1276 entries_free = fec_enet_get_free_txdesc_num(txq);
1277 if (entries_free >= txq->tx_wake_threshold)
1278 netif_tx_wake_queue(nq);
1279 }
1280 }
1281
1282 /* ERR006358: Keep the transmitter going */
1283 if (bdp != txq->bd.cur &&
1284 readl(txq->bd.reg_desc_active) == 0)
1285 writel(0, txq->bd.reg_desc_active);
1286}
1287
1288static void
1289fec_enet_tx(struct net_device *ndev)
1290{
1291 struct fec_enet_private *fep = netdev_priv(ndev);
1292 u16 queue_id;
1293 /* First process class A queue, then Class B and Best Effort queue */
1294 for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1295 clear_bit(queue_id, &fep->work_tx);
1296 fec_enet_tx_queue(ndev, queue_id);
1297 }
1298 return;
1299}
1300
1301static int
1302fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1303{
1304 struct fec_enet_private *fep = netdev_priv(ndev);
1305 int off;
1306
1307 off = ((unsigned long)skb->data) & fep->rx_align;
1308 if (off)
1309 skb_reserve(skb, fep->rx_align + 1 - off);
1310
1311 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1312 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1313 if (net_ratelimit())
1314 netdev_err(ndev, "Rx DMA memory map failed\n");
1315 return -ENOMEM;
1316 }
1317
1318 return 0;
1319}
1320
1321static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1322 struct bufdesc *bdp, u32 length, bool swap)
1323{
1324 struct fec_enet_private *fep = netdev_priv(ndev);
1325 struct sk_buff *new_skb;
1326
1327 if (length > fep->rx_copybreak)
1328 return false;
1329
1330 new_skb = netdev_alloc_skb(ndev, length);
1331 if (!new_skb)
1332 return false;
1333
1334 dma_sync_single_for_cpu(&fep->pdev->dev,
1335 fec32_to_cpu(bdp->cbd_bufaddr),
1336 FEC_ENET_RX_FRSIZE - fep->rx_align,
1337 DMA_FROM_DEVICE);
1338 if (!swap)
1339 memcpy(new_skb->data, (*skb)->data, length);
1340 else
1341 swap_buffer2(new_skb->data, (*skb)->data, length);
1342 *skb = new_skb;
1343
1344 return true;
1345}
1346
1347/* During a receive, the bd_rx.cur points to the current incoming buffer.
1348 * When we update through the ring, if the next incoming buffer has
1349 * not been given to the system, we just set the empty indicator,
1350 * effectively tossing the packet.
1351 */
1352static int
1353fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1354{
1355 struct fec_enet_private *fep = netdev_priv(ndev);
1356 struct fec_enet_priv_rx_q *rxq;
1357 struct bufdesc *bdp;
1358 unsigned short status;
1359 struct sk_buff *skb_new = NULL;
1360 struct sk_buff *skb;
1361 ushort pkt_len;
1362 __u8 *data;
1363 int pkt_received = 0;
1364 struct bufdesc_ex *ebdp = NULL;
1365 bool vlan_packet_rcvd = false;
1366 u16 vlan_tag;
1367 int index = 0;
1368 bool is_copybreak;
1369 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1370
1371#ifdef CONFIG_M532x
1372 flush_cache_all();
1373#endif
1374 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1375 rxq = fep->rx_queue[queue_id];
1376
1377 /* First, grab all of the stats for the incoming packet.
1378 * These get messed up if we get called due to a busy condition.
1379 */
1380 bdp = rxq->bd.cur;
1381
1382 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1383
1384 if (pkt_received >= budget)
1385 break;
1386 pkt_received++;
1387
1388 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1389
1390 /* Check for errors. */
1391 status ^= BD_ENET_RX_LAST;
1392 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1393 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1394 BD_ENET_RX_CL)) {
1395 ndev->stats.rx_errors++;
1396 if (status & BD_ENET_RX_OV) {
1397 /* FIFO overrun */
1398 ndev->stats.rx_fifo_errors++;
1399 goto rx_processing_done;
1400 }
1401 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1402 | BD_ENET_RX_LAST)) {
1403 /* Frame too long or too short. */
1404 ndev->stats.rx_length_errors++;
1405 if (status & BD_ENET_RX_LAST)
1406 netdev_err(ndev, "rcv is not +last\n");
1407 }
1408 if (status & BD_ENET_RX_CR) /* CRC Error */
1409 ndev->stats.rx_crc_errors++;
1410 /* Report late collisions as a frame error. */
1411 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1412 ndev->stats.rx_frame_errors++;
1413 goto rx_processing_done;
1414 }
1415
1416 /* Process the incoming frame. */
1417 ndev->stats.rx_packets++;
1418 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1419 ndev->stats.rx_bytes += pkt_len;
1420
1421 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1422 skb = rxq->rx_skbuff[index];
1423
1424 /* The packet length includes FCS, but we don't want to
1425 * include that when passing upstream as it messes up
1426 * bridging applications.
1427 */
1428 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1429 need_swap);
1430 if (!is_copybreak) {
1431 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1432 if (unlikely(!skb_new)) {
1433 ndev->stats.rx_dropped++;
1434 goto rx_processing_done;
1435 }
1436 dma_unmap_single(&fep->pdev->dev,
1437 fec32_to_cpu(bdp->cbd_bufaddr),
1438 FEC_ENET_RX_FRSIZE - fep->rx_align,
1439 DMA_FROM_DEVICE);
1440 }
1441
1442 prefetch(skb->data - NET_IP_ALIGN);
1443 skb_put(skb, pkt_len - 4);
1444 data = skb->data;
1445
1446 if (!is_copybreak && need_swap)
1447 swap_buffer(data, pkt_len);
1448
1449#if !defined(CONFIG_M5272)
1450 if (fep->quirks & FEC_QUIRK_HAS_RACC)
1451 data = skb_pull_inline(skb, 2);
1452#endif
1453
1454 /* Extract the enhanced buffer descriptor */
1455 ebdp = NULL;
1456 if (fep->bufdesc_ex)
1457 ebdp = (struct bufdesc_ex *)bdp;
1458
1459 /* If this is a VLAN packet remove the VLAN Tag */
1460 vlan_packet_rcvd = false;
1461 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1462 fep->bufdesc_ex &&
1463 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1464 /* Push and remove the vlan tag */
1465 struct vlan_hdr *vlan_header =
1466 (struct vlan_hdr *) (data + ETH_HLEN);
1467 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1468
1469 vlan_packet_rcvd = true;
1470
1471 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1472 skb_pull(skb, VLAN_HLEN);
1473 }
1474
1475 skb->protocol = eth_type_trans(skb, ndev);
1476
1477 /* Get receive timestamp from the skb */
1478 if (fep->hwts_rx_en && fep->bufdesc_ex)
1479 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1480 skb_hwtstamps(skb));
1481
1482 if (fep->bufdesc_ex &&
1483 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1484 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1485 /* don't check it */
1486 skb->ip_summed = CHECKSUM_UNNECESSARY;
1487 } else {
1488 skb_checksum_none_assert(skb);
1489 }
1490 }
1491
1492 /* Handle received VLAN packets */
1493 if (vlan_packet_rcvd)
1494 __vlan_hwaccel_put_tag(skb,
1495 htons(ETH_P_8021Q),
1496 vlan_tag);
1497
1498 napi_gro_receive(&fep->napi, skb);
1499
1500 if (is_copybreak) {
1501 dma_sync_single_for_device(&fep->pdev->dev,
1502 fec32_to_cpu(bdp->cbd_bufaddr),
1503 FEC_ENET_RX_FRSIZE - fep->rx_align,
1504 DMA_FROM_DEVICE);
1505 } else {
1506 rxq->rx_skbuff[index] = skb_new;
1507 fec_enet_new_rxbdp(ndev, bdp, skb_new);
1508 }
1509
1510rx_processing_done:
1511 /* Clear the status flags for this buffer */
1512 status &= ~BD_ENET_RX_STATS;
1513
1514 /* Mark the buffer empty */
1515 status |= BD_ENET_RX_EMPTY;
1516
1517 if (fep->bufdesc_ex) {
1518 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1519
1520 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1521 ebdp->cbd_prot = 0;
1522 ebdp->cbd_bdu = 0;
1523 }
1524 /* Make sure the updates to rest of the descriptor are
1525 * performed before transferring ownership.
1526 */
1527 wmb();
1528 bdp->cbd_sc = cpu_to_fec16(status);
1529
1530 /* Update BD pointer to next entry */
1531 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1532
1533 /* Doing this here will keep the FEC running while we process
1534 * incoming frames. On a heavily loaded network, we should be
1535 * able to keep up at the expense of system resources.
1536 */
1537 writel(0, rxq->bd.reg_desc_active);
1538 }
1539 rxq->bd.cur = bdp;
1540 return pkt_received;
1541}
1542
1543static int
1544fec_enet_rx(struct net_device *ndev, int budget)
1545{
1546 int pkt_received = 0;
1547 u16 queue_id;
1548 struct fec_enet_private *fep = netdev_priv(ndev);
1549
1550 for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1551 int ret;
1552
1553 ret = fec_enet_rx_queue(ndev,
1554 budget - pkt_received, queue_id);
1555
1556 if (ret < budget - pkt_received)
1557 clear_bit(queue_id, &fep->work_rx);
1558
1559 pkt_received += ret;
1560 }
1561 return pkt_received;
1562}
1563
1564static bool
1565fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1566{
1567 if (int_events == 0)
1568 return false;
1569
1570 if (int_events & FEC_ENET_RXF_0)
1571 fep->work_rx |= (1 << 2);
1572 if (int_events & FEC_ENET_RXF_1)
1573 fep->work_rx |= (1 << 0);
1574 if (int_events & FEC_ENET_RXF_2)
1575 fep->work_rx |= (1 << 1);
1576
1577 if (int_events & FEC_ENET_TXF_0)
1578 fep->work_tx |= (1 << 2);
1579 if (int_events & FEC_ENET_TXF_1)
1580 fep->work_tx |= (1 << 0);
1581 if (int_events & FEC_ENET_TXF_2)
1582 fep->work_tx |= (1 << 1);
1583
1584 return true;
1585}
1586
1587static irqreturn_t
1588fec_enet_interrupt(int irq, void *dev_id)
1589{
1590 struct net_device *ndev = dev_id;
1591 struct fec_enet_private *fep = netdev_priv(ndev);
1592 uint int_events;
1593 irqreturn_t ret = IRQ_NONE;
1594
1595 int_events = readl(fep->hwp + FEC_IEVENT);
1596 writel(int_events, fep->hwp + FEC_IEVENT);
1597 fec_enet_collect_events(fep, int_events);
1598
1599 if ((fep->work_tx || fep->work_rx) && fep->link) {
1600 ret = IRQ_HANDLED;
1601
1602 if (napi_schedule_prep(&fep->napi)) {
1603 /* Disable the NAPI interrupts */
1604 writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1605 __napi_schedule(&fep->napi);
1606 }
1607 }
1608
1609 if (int_events & FEC_ENET_MII) {
1610 ret = IRQ_HANDLED;
1611 complete(&fep->mdio_done);
1612 }
1613 return ret;
1614}
1615
1616static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1617{
1618 struct net_device *ndev = napi->dev;
1619 struct fec_enet_private *fep = netdev_priv(ndev);
1620 int pkts;
1621
1622 pkts = fec_enet_rx(ndev, budget);
1623
1624 fec_enet_tx(ndev);
1625
1626 if (pkts < budget) {
1627 napi_complete_done(napi, pkts);
1628 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1629 }
1630 return pkts;
1631}
1632
1633/* ------------------------------------------------------------------------- */
1634static void fec_get_mac(struct net_device *ndev)
1635{
1636 struct fec_enet_private *fep = netdev_priv(ndev);
1637 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1638 unsigned char *iap, tmpaddr[ETH_ALEN];
1639
1640 /*
1641 * try to get mac address in following order:
1642 *
1643 * 1) module parameter via kernel command line in form
1644 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1645 */
1646 iap = macaddr;
1647
1648 /*
1649 * 2) from device tree data
1650 */
1651 if (!is_valid_ether_addr(iap)) {
1652 struct device_node *np = fep->pdev->dev.of_node;
1653 if (np) {
1654 const char *mac = of_get_mac_address(np);
1655 if (mac)
1656 iap = (unsigned char *) mac;
1657 }
1658 }
1659
1660 /*
1661 * 3) from flash or fuse (via platform data)
1662 */
1663 if (!is_valid_ether_addr(iap)) {
1664#ifdef CONFIG_M5272
1665 if (FEC_FLASHMAC)
1666 iap = (unsigned char *)FEC_FLASHMAC;
1667#else
1668 if (pdata)
1669 iap = (unsigned char *)&pdata->mac;
1670#endif
1671 }
1672
1673 /*
1674 * 4) FEC mac registers set by bootloader
1675 */
1676 if (!is_valid_ether_addr(iap)) {
1677 *((__be32 *) &tmpaddr[0]) =
1678 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1679 *((__be16 *) &tmpaddr[4]) =
1680 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1681 iap = &tmpaddr[0];
1682 }
1683
1684 /*
1685 * 5) random mac address
1686 */
1687 if (!is_valid_ether_addr(iap)) {
1688 /* Report it and use a random ethernet address instead */
1689 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1690 eth_hw_addr_random(ndev);
1691 netdev_info(ndev, "Using random MAC address: %pM\n",
1692 ndev->dev_addr);
1693 return;
1694 }
1695
1696 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1697
1698 /* Adjust MAC if using macaddr */
1699 if (iap == macaddr)
1700 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1701}
1702
1703/* ------------------------------------------------------------------------- */
1704
1705/*
1706 * Phy section
1707 */
1708static void fec_enet_adjust_link(struct net_device *ndev)
1709{
1710 struct fec_enet_private *fep = netdev_priv(ndev);
1711 struct phy_device *phy_dev = ndev->phydev;
1712 int status_change = 0;
1713
1714 /* Prevent a state halted on mii error */
1715 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1716 phy_dev->state = PHY_RESUMING;
1717 return;
1718 }
1719
1720 /*
1721 * If the netdev is down, or is going down, we're not interested
1722 * in link state events, so just mark our idea of the link as down
1723 * and ignore the event.
1724 */
1725 if (!netif_running(ndev) || !netif_device_present(ndev)) {
1726 fep->link = 0;
1727 } else if (phy_dev->link) {
1728 if (!fep->link) {
1729 fep->link = phy_dev->link;
1730 status_change = 1;
1731 }
1732
1733 if (fep->full_duplex != phy_dev->duplex) {
1734 fep->full_duplex = phy_dev->duplex;
1735 status_change = 1;
1736 }
1737
1738 if (phy_dev->speed != fep->speed) {
1739 fep->speed = phy_dev->speed;
1740 status_change = 1;
1741 }
1742
1743 /* if any of the above changed restart the FEC */
1744 if (status_change) {
1745 napi_disable(&fep->napi);
1746 netif_tx_lock_bh(ndev);
1747 fec_restart(ndev);
1748 netif_wake_queue(ndev);
1749 netif_tx_unlock_bh(ndev);
1750 napi_enable(&fep->napi);
1751 }
1752 } else {
1753 if (fep->link) {
1754 napi_disable(&fep->napi);
1755 netif_tx_lock_bh(ndev);
1756 fec_stop(ndev);
1757 netif_tx_unlock_bh(ndev);
1758 napi_enable(&fep->napi);
1759 fep->link = phy_dev->link;
1760 status_change = 1;
1761 }
1762 }
1763
1764 if (status_change)
1765 phy_print_status(phy_dev);
1766}
1767
1768static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1769{
1770 struct fec_enet_private *fep = bus->priv;
1771 struct device *dev = &fep->pdev->dev;
1772 unsigned long time_left;
1773 int ret = 0;
1774
1775 ret = pm_runtime_get_sync(dev);
1776 if (ret < 0)
1777 return ret;
1778
1779 fep->mii_timeout = 0;
1780 reinit_completion(&fep->mdio_done);
1781
1782 /* start a read op */
1783 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1784 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1785 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1786
1787 /* wait for end of transfer */
1788 time_left = wait_for_completion_timeout(&fep->mdio_done,
1789 usecs_to_jiffies(FEC_MII_TIMEOUT));
1790 if (time_left == 0) {
1791 fep->mii_timeout = 1;
1792 netdev_err(fep->netdev, "MDIO read timeout\n");
1793 ret = -ETIMEDOUT;
1794 goto out;
1795 }
1796
1797 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1798
1799out:
1800 pm_runtime_mark_last_busy(dev);
1801 pm_runtime_put_autosuspend(dev);
1802
1803 return ret;
1804}
1805
1806static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1807 u16 value)
1808{
1809 struct fec_enet_private *fep = bus->priv;
1810 struct device *dev = &fep->pdev->dev;
1811 unsigned long time_left;
1812 int ret;
1813
1814 ret = pm_runtime_get_sync(dev);
1815 if (ret < 0)
1816 return ret;
1817 else
1818 ret = 0;
1819
1820 fep->mii_timeout = 0;
1821 reinit_completion(&fep->mdio_done);
1822
1823 /* start a write op */
1824 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1825 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1826 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1827 fep->hwp + FEC_MII_DATA);
1828
1829 /* wait for end of transfer */
1830 time_left = wait_for_completion_timeout(&fep->mdio_done,
1831 usecs_to_jiffies(FEC_MII_TIMEOUT));
1832 if (time_left == 0) {
1833 fep->mii_timeout = 1;
1834 netdev_err(fep->netdev, "MDIO write timeout\n");
1835 ret = -ETIMEDOUT;
1836 }
1837
1838 pm_runtime_mark_last_busy(dev);
1839 pm_runtime_put_autosuspend(dev);
1840
1841 return ret;
1842}
1843
1844static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1845{
1846 struct fec_enet_private *fep = netdev_priv(ndev);
1847 int ret;
1848
1849 if (enable) {
1850 ret = clk_prepare_enable(fep->clk_ahb);
1851 if (ret)
1852 return ret;
1853
1854 ret = clk_prepare_enable(fep->clk_enet_out);
1855 if (ret)
1856 goto failed_clk_enet_out;
1857
1858 if (fep->clk_ptp) {
1859 mutex_lock(&fep->ptp_clk_mutex);
1860 ret = clk_prepare_enable(fep->clk_ptp);
1861 if (ret) {
1862 mutex_unlock(&fep->ptp_clk_mutex);
1863 goto failed_clk_ptp;
1864 } else {
1865 fep->ptp_clk_on = true;
1866 }
1867 mutex_unlock(&fep->ptp_clk_mutex);
1868 }
1869
1870 ret = clk_prepare_enable(fep->clk_ref);
1871 if (ret)
1872 goto failed_clk_ref;
1873
1874 phy_reset_after_clk_enable(ndev->phydev);
1875 } else {
1876 clk_disable_unprepare(fep->clk_ahb);
1877 clk_disable_unprepare(fep->clk_enet_out);
1878 if (fep->clk_ptp) {
1879 mutex_lock(&fep->ptp_clk_mutex);
1880 clk_disable_unprepare(fep->clk_ptp);
1881 fep->ptp_clk_on = false;
1882 mutex_unlock(&fep->ptp_clk_mutex);
1883 }
1884 clk_disable_unprepare(fep->clk_ref);
1885 }
1886
1887 return 0;
1888
1889failed_clk_ref:
1890 if (fep->clk_ref)
1891 clk_disable_unprepare(fep->clk_ref);
1892failed_clk_ptp:
1893 if (fep->clk_enet_out)
1894 clk_disable_unprepare(fep->clk_enet_out);
1895failed_clk_enet_out:
1896 clk_disable_unprepare(fep->clk_ahb);
1897
1898 return ret;
1899}
1900
1901static int fec_enet_mii_probe(struct net_device *ndev)
1902{
1903 struct fec_enet_private *fep = netdev_priv(ndev);
1904 struct phy_device *phy_dev = NULL;
1905 char mdio_bus_id[MII_BUS_ID_SIZE];
1906 char phy_name[MII_BUS_ID_SIZE + 3];
1907 int phy_id;
1908 int dev_id = fep->dev_id;
1909
1910 if (fep->phy_node) {
1911 phy_dev = of_phy_connect(ndev, fep->phy_node,
1912 &fec_enet_adjust_link, 0,
1913 fep->phy_interface);
1914 if (!phy_dev) {
1915 netdev_err(ndev, "Unable to connect to phy\n");
1916 return -ENODEV;
1917 }
1918 } else {
1919 /* check for attached phy */
1920 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1921 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1922 continue;
1923 if (dev_id--)
1924 continue;
1925 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1926 break;
1927 }
1928
1929 if (phy_id >= PHY_MAX_ADDR) {
1930 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1931 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1932 phy_id = 0;
1933 }
1934
1935 snprintf(phy_name, sizeof(phy_name),
1936 PHY_ID_FMT, mdio_bus_id, phy_id);
1937 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1938 fep->phy_interface);
1939 }
1940
1941 if (IS_ERR(phy_dev)) {
1942 netdev_err(ndev, "could not attach to PHY\n");
1943 return PTR_ERR(phy_dev);
1944 }
1945
1946 /* mask with MAC supported features */
1947 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1948 phy_dev->supported &= PHY_GBIT_FEATURES;
1949 phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1950#if !defined(CONFIG_M5272)
1951 phy_dev->supported |= SUPPORTED_Pause;
1952#endif
1953 }
1954 else
1955 phy_dev->supported &= PHY_BASIC_FEATURES;
1956
1957 phy_dev->advertising = phy_dev->supported;
1958
1959 fep->link = 0;
1960 fep->full_duplex = 0;
1961
1962 phy_attached_info(phy_dev);
1963
1964 return 0;
1965}
1966
1967static int fec_enet_mii_init(struct platform_device *pdev)
1968{
1969 static struct mii_bus *fec0_mii_bus;
1970 struct net_device *ndev = platform_get_drvdata(pdev);
1971 struct fec_enet_private *fep = netdev_priv(ndev);
1972 struct device_node *node;
1973 int err = -ENXIO;
1974 u32 mii_speed, holdtime;
1975
1976 /*
1977 * The i.MX28 dual fec interfaces are not equal.
1978 * Here are the differences:
1979 *
1980 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1981 * - fec0 acts as the 1588 time master while fec1 is slave
1982 * - external phys can only be configured by fec0
1983 *
1984 * That is to say fec1 can not work independently. It only works
1985 * when fec0 is working. The reason behind this design is that the
1986 * second interface is added primarily for Switch mode.
1987 *
1988 * Because of the last point above, both phys are attached on fec0
1989 * mdio interface in board design, and need to be configured by
1990 * fec0 mii_bus.
1991 */
1992 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1993 /* fec1 uses fec0 mii_bus */
1994 if (mii_cnt && fec0_mii_bus) {
1995 fep->mii_bus = fec0_mii_bus;
1996 mii_cnt++;
1997 return 0;
1998 }
1999 return -ENOENT;
2000 }
2001
2002 fep->mii_timeout = 0;
2003
2004 /*
2005 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2006 *
2007 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2008 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2009 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2010 * document.
2011 */
2012 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2013 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2014 mii_speed--;
2015 if (mii_speed > 63) {
2016 dev_err(&pdev->dev,
2017 "fec clock (%lu) too fast to get right mii speed\n",
2018 clk_get_rate(fep->clk_ipg));
2019 err = -EINVAL;
2020 goto err_out;
2021 }
2022
2023 /*
2024 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2025 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2026 * versions are RAZ there, so just ignore the difference and write the
2027 * register always.
2028 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2029 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2030 * output.
2031 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2032 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2033 * holdtime cannot result in a value greater than 3.
2034 */
2035 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2036
2037 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2038
2039 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2040
2041 fep->mii_bus = mdiobus_alloc();
2042 if (fep->mii_bus == NULL) {
2043 err = -ENOMEM;
2044 goto err_out;
2045 }
2046
2047 fep->mii_bus->name = "fec_enet_mii_bus";
2048 fep->mii_bus->read = fec_enet_mdio_read;
2049 fep->mii_bus->write = fec_enet_mdio_write;
2050 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2051 pdev->name, fep->dev_id + 1);
2052 fep->mii_bus->priv = fep;
2053 fep->mii_bus->parent = &pdev->dev;
2054
2055 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2056 if (node) {
2057 err = of_mdiobus_register(fep->mii_bus, node);
2058 of_node_put(node);
2059 } else {
2060 err = mdiobus_register(fep->mii_bus);
2061 }
2062
2063 if (err)
2064 goto err_out_free_mdiobus;
2065
2066 mii_cnt++;
2067
2068 /* save fec0 mii_bus */
2069 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2070 fec0_mii_bus = fep->mii_bus;
2071
2072 return 0;
2073
2074err_out_free_mdiobus:
2075 mdiobus_free(fep->mii_bus);
2076err_out:
2077 return err;
2078}
2079
2080static void fec_enet_mii_remove(struct fec_enet_private *fep)
2081{
2082 if (--mii_cnt == 0) {
2083 mdiobus_unregister(fep->mii_bus);
2084 mdiobus_free(fep->mii_bus);
2085 }
2086}
2087
2088static void fec_enet_get_drvinfo(struct net_device *ndev,
2089 struct ethtool_drvinfo *info)
2090{
2091 struct fec_enet_private *fep = netdev_priv(ndev);
2092
2093 strlcpy(info->driver, fep->pdev->dev.driver->name,
2094 sizeof(info->driver));
2095 strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2096 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2097}
2098
2099static int fec_enet_get_regs_len(struct net_device *ndev)
2100{
2101 struct fec_enet_private *fep = netdev_priv(ndev);
2102 struct resource *r;
2103 int s = 0;
2104
2105 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2106 if (r)
2107 s = resource_size(r);
2108
2109 return s;
2110}
2111
2112/* List of registers that can be safety be read to dump them with ethtool */
2113#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2114 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2115 defined(CONFIG_ARM64)
2116static u32 fec_enet_register_offset[] = {
2117 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2118 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2119 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2120 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2121 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2122 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2123 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2124 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2125 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2126 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2127 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2128 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2129 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2130 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2131 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2132 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2133 RMON_T_P_GTE2048, RMON_T_OCTETS,
2134 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2135 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2136 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2137 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2138 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2139 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2140 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2141 RMON_R_P_GTE2048, RMON_R_OCTETS,
2142 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2143 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2144};
2145#else
2146static u32 fec_enet_register_offset[] = {
2147 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2148 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2149 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2150 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2151 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2152 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2153 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2154 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2155 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2156};
2157#endif
2158
2159static void fec_enet_get_regs(struct net_device *ndev,
2160 struct ethtool_regs *regs, void *regbuf)
2161{
2162 struct fec_enet_private *fep = netdev_priv(ndev);
2163 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2164 u32 *buf = (u32 *)regbuf;
2165 u32 i, off;
2166
2167 memset(buf, 0, regs->len);
2168
2169 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2170 off = fec_enet_register_offset[i] / 4;
2171 buf[off] = readl(&theregs[off]);
2172 }
2173}
2174
2175static int fec_enet_get_ts_info(struct net_device *ndev,
2176 struct ethtool_ts_info *info)
2177{
2178 struct fec_enet_private *fep = netdev_priv(ndev);
2179
2180 if (fep->bufdesc_ex) {
2181
2182 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2183 SOF_TIMESTAMPING_RX_SOFTWARE |
2184 SOF_TIMESTAMPING_SOFTWARE |
2185 SOF_TIMESTAMPING_TX_HARDWARE |
2186 SOF_TIMESTAMPING_RX_HARDWARE |
2187 SOF_TIMESTAMPING_RAW_HARDWARE;
2188 if (fep->ptp_clock)
2189 info->phc_index = ptp_clock_index(fep->ptp_clock);
2190 else
2191 info->phc_index = -1;
2192
2193 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2194 (1 << HWTSTAMP_TX_ON);
2195
2196 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2197 (1 << HWTSTAMP_FILTER_ALL);
2198 return 0;
2199 } else {
2200 return ethtool_op_get_ts_info(ndev, info);
2201 }
2202}
2203
2204#if !defined(CONFIG_M5272)
2205
2206static void fec_enet_get_pauseparam(struct net_device *ndev,
2207 struct ethtool_pauseparam *pause)
2208{
2209 struct fec_enet_private *fep = netdev_priv(ndev);
2210
2211 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2212 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2213 pause->rx_pause = pause->tx_pause;
2214}
2215
2216static int fec_enet_set_pauseparam(struct net_device *ndev,
2217 struct ethtool_pauseparam *pause)
2218{
2219 struct fec_enet_private *fep = netdev_priv(ndev);
2220
2221 if (!ndev->phydev)
2222 return -ENODEV;
2223
2224 if (pause->tx_pause != pause->rx_pause) {
2225 netdev_info(ndev,
2226 "hardware only support enable/disable both tx and rx");
2227 return -EINVAL;
2228 }
2229
2230 fep->pause_flag = 0;
2231
2232 /* tx pause must be same as rx pause */
2233 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2234 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2235
2236 if (pause->rx_pause || pause->autoneg) {
2237 ndev->phydev->supported |= ADVERTISED_Pause;
2238 ndev->phydev->advertising |= ADVERTISED_Pause;
2239 } else {
2240 ndev->phydev->supported &= ~ADVERTISED_Pause;
2241 ndev->phydev->advertising &= ~ADVERTISED_Pause;
2242 }
2243
2244 if (pause->autoneg) {
2245 if (netif_running(ndev))
2246 fec_stop(ndev);
2247 phy_start_aneg(ndev->phydev);
2248 }
2249 if (netif_running(ndev)) {
2250 napi_disable(&fep->napi);
2251 netif_tx_lock_bh(ndev);
2252 fec_restart(ndev);
2253 netif_wake_queue(ndev);
2254 netif_tx_unlock_bh(ndev);
2255 napi_enable(&fep->napi);
2256 }
2257
2258 return 0;
2259}
2260
2261static const struct fec_stat {
2262 char name[ETH_GSTRING_LEN];
2263 u16 offset;
2264} fec_stats[] = {
2265 /* RMON TX */
2266 { "tx_dropped", RMON_T_DROP },
2267 { "tx_packets", RMON_T_PACKETS },
2268 { "tx_broadcast", RMON_T_BC_PKT },
2269 { "tx_multicast", RMON_T_MC_PKT },
2270 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2271 { "tx_undersize", RMON_T_UNDERSIZE },
2272 { "tx_oversize", RMON_T_OVERSIZE },
2273 { "tx_fragment", RMON_T_FRAG },
2274 { "tx_jabber", RMON_T_JAB },
2275 { "tx_collision", RMON_T_COL },
2276 { "tx_64byte", RMON_T_P64 },
2277 { "tx_65to127byte", RMON_T_P65TO127 },
2278 { "tx_128to255byte", RMON_T_P128TO255 },
2279 { "tx_256to511byte", RMON_T_P256TO511 },
2280 { "tx_512to1023byte", RMON_T_P512TO1023 },
2281 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2282 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2283 { "tx_octets", RMON_T_OCTETS },
2284
2285 /* IEEE TX */
2286 { "IEEE_tx_drop", IEEE_T_DROP },
2287 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2288 { "IEEE_tx_1col", IEEE_T_1COL },
2289 { "IEEE_tx_mcol", IEEE_T_MCOL },
2290 { "IEEE_tx_def", IEEE_T_DEF },
2291 { "IEEE_tx_lcol", IEEE_T_LCOL },
2292 { "IEEE_tx_excol", IEEE_T_EXCOL },
2293 { "IEEE_tx_macerr", IEEE_T_MACERR },
2294 { "IEEE_tx_cserr", IEEE_T_CSERR },
2295 { "IEEE_tx_sqe", IEEE_T_SQE },
2296 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2297 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2298
2299 /* RMON RX */
2300 { "rx_packets", RMON_R_PACKETS },
2301 { "rx_broadcast", RMON_R_BC_PKT },
2302 { "rx_multicast", RMON_R_MC_PKT },
2303 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2304 { "rx_undersize", RMON_R_UNDERSIZE },
2305 { "rx_oversize", RMON_R_OVERSIZE },
2306 { "rx_fragment", RMON_R_FRAG },
2307 { "rx_jabber", RMON_R_JAB },
2308 { "rx_64byte", RMON_R_P64 },
2309 { "rx_65to127byte", RMON_R_P65TO127 },
2310 { "rx_128to255byte", RMON_R_P128TO255 },
2311 { "rx_256to511byte", RMON_R_P256TO511 },
2312 { "rx_512to1023byte", RMON_R_P512TO1023 },
2313 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2314 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2315 { "rx_octets", RMON_R_OCTETS },
2316
2317 /* IEEE RX */
2318 { "IEEE_rx_drop", IEEE_R_DROP },
2319 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2320 { "IEEE_rx_crc", IEEE_R_CRC },
2321 { "IEEE_rx_align", IEEE_R_ALIGN },
2322 { "IEEE_rx_macerr", IEEE_R_MACERR },
2323 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2324 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2325};
2326
2327#define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2328
2329static void fec_enet_update_ethtool_stats(struct net_device *dev)
2330{
2331 struct fec_enet_private *fep = netdev_priv(dev);
2332 int i;
2333
2334 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2335 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2336}
2337
2338static void fec_enet_get_ethtool_stats(struct net_device *dev,
2339 struct ethtool_stats *stats, u64 *data)
2340{
2341 struct fec_enet_private *fep = netdev_priv(dev);
2342
2343 if (netif_running(dev))
2344 fec_enet_update_ethtool_stats(dev);
2345
2346 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2347}
2348
2349static void fec_enet_get_strings(struct net_device *netdev,
2350 u32 stringset, u8 *data)
2351{
2352 int i;
2353 switch (stringset) {
2354 case ETH_SS_STATS:
2355 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2356 memcpy(data + i * ETH_GSTRING_LEN,
2357 fec_stats[i].name, ETH_GSTRING_LEN);
2358 break;
2359 }
2360}
2361
2362static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2363{
2364 switch (sset) {
2365 case ETH_SS_STATS:
2366 return ARRAY_SIZE(fec_stats);
2367 default:
2368 return -EOPNOTSUPP;
2369 }
2370}
2371
2372static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2373{
2374 struct fec_enet_private *fep = netdev_priv(dev);
2375 int i;
2376
2377 /* Disable MIB statistics counters */
2378 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2379
2380 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2381 writel(0, fep->hwp + fec_stats[i].offset);
2382
2383 /* Don't disable MIB statistics counters */
2384 writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2385}
2386
2387#else /* !defined(CONFIG_M5272) */
2388#define FEC_STATS_SIZE 0
2389static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2390{
2391}
2392
2393static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2394{
2395}
2396#endif /* !defined(CONFIG_M5272) */
2397
2398/* ITR clock source is enet system clock (clk_ahb).
2399 * TCTT unit is cycle_ns * 64 cycle
2400 * So, the ICTT value = X us / (cycle_ns * 64)
2401 */
2402static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2403{
2404 struct fec_enet_private *fep = netdev_priv(ndev);
2405
2406 return us * (fep->itr_clk_rate / 64000) / 1000;
2407}
2408
2409/* Set threshold for interrupt coalescing */
2410static void fec_enet_itr_coal_set(struct net_device *ndev)
2411{
2412 struct fec_enet_private *fep = netdev_priv(ndev);
2413 int rx_itr, tx_itr;
2414
2415 /* Must be greater than zero to avoid unpredictable behavior */
2416 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2417 !fep->tx_time_itr || !fep->tx_pkts_itr)
2418 return;
2419
2420 /* Select enet system clock as Interrupt Coalescing
2421 * timer Clock Source
2422 */
2423 rx_itr = FEC_ITR_CLK_SEL;
2424 tx_itr = FEC_ITR_CLK_SEL;
2425
2426 /* set ICFT and ICTT */
2427 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2428 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2429 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2430 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2431
2432 rx_itr |= FEC_ITR_EN;
2433 tx_itr |= FEC_ITR_EN;
2434
2435 writel(tx_itr, fep->hwp + FEC_TXIC0);
2436 writel(rx_itr, fep->hwp + FEC_RXIC0);
2437 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2438 writel(tx_itr, fep->hwp + FEC_TXIC1);
2439 writel(rx_itr, fep->hwp + FEC_RXIC1);
2440 writel(tx_itr, fep->hwp + FEC_TXIC2);
2441 writel(rx_itr, fep->hwp + FEC_RXIC2);
2442 }
2443}
2444
2445static int
2446fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2447{
2448 struct fec_enet_private *fep = netdev_priv(ndev);
2449
2450 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2451 return -EOPNOTSUPP;
2452
2453 ec->rx_coalesce_usecs = fep->rx_time_itr;
2454 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2455
2456 ec->tx_coalesce_usecs = fep->tx_time_itr;
2457 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2458
2459 return 0;
2460}
2461
2462static int
2463fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2464{
2465 struct fec_enet_private *fep = netdev_priv(ndev);
2466 unsigned int cycle;
2467
2468 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2469 return -EOPNOTSUPP;
2470
2471 if (ec->rx_max_coalesced_frames > 255) {
2472 pr_err("Rx coalesced frames exceed hardware limitation\n");
2473 return -EINVAL;
2474 }
2475
2476 if (ec->tx_max_coalesced_frames > 255) {
2477 pr_err("Tx coalesced frame exceed hardware limitation\n");
2478 return -EINVAL;
2479 }
2480
2481 cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2482 if (cycle > 0xFFFF) {
2483 pr_err("Rx coalesced usec exceed hardware limitation\n");
2484 return -EINVAL;
2485 }
2486
2487 cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2488 if (cycle > 0xFFFF) {
2489 pr_err("Rx coalesced usec exceed hardware limitation\n");
2490 return -EINVAL;
2491 }
2492
2493 fep->rx_time_itr = ec->rx_coalesce_usecs;
2494 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2495
2496 fep->tx_time_itr = ec->tx_coalesce_usecs;
2497 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2498
2499 fec_enet_itr_coal_set(ndev);
2500
2501 return 0;
2502}
2503
2504static void fec_enet_itr_coal_init(struct net_device *ndev)
2505{
2506 struct ethtool_coalesce ec;
2507
2508 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2509 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2510
2511 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2512 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2513
2514 fec_enet_set_coalesce(ndev, &ec);
2515}
2516
2517static int fec_enet_get_tunable(struct net_device *netdev,
2518 const struct ethtool_tunable *tuna,
2519 void *data)
2520{
2521 struct fec_enet_private *fep = netdev_priv(netdev);
2522 int ret = 0;
2523
2524 switch (tuna->id) {
2525 case ETHTOOL_RX_COPYBREAK:
2526 *(u32 *)data = fep->rx_copybreak;
2527 break;
2528 default:
2529 ret = -EINVAL;
2530 break;
2531 }
2532
2533 return ret;
2534}
2535
2536static int fec_enet_set_tunable(struct net_device *netdev,
2537 const struct ethtool_tunable *tuna,
2538 const void *data)
2539{
2540 struct fec_enet_private *fep = netdev_priv(netdev);
2541 int ret = 0;
2542
2543 switch (tuna->id) {
2544 case ETHTOOL_RX_COPYBREAK:
2545 fep->rx_copybreak = *(u32 *)data;
2546 break;
2547 default:
2548 ret = -EINVAL;
2549 break;
2550 }
2551
2552 return ret;
2553}
2554
2555static void
2556fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2557{
2558 struct fec_enet_private *fep = netdev_priv(ndev);
2559
2560 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2561 wol->supported = WAKE_MAGIC;
2562 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2563 } else {
2564 wol->supported = wol->wolopts = 0;
2565 }
2566}
2567
2568static int
2569fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2570{
2571 struct fec_enet_private *fep = netdev_priv(ndev);
2572
2573 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2574 return -EINVAL;
2575
2576 if (wol->wolopts & ~WAKE_MAGIC)
2577 return -EINVAL;
2578
2579 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2580 if (device_may_wakeup(&ndev->dev)) {
2581 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2582 if (fep->irq[0] > 0)
2583 enable_irq_wake(fep->irq[0]);
2584 } else {
2585 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2586 if (fep->irq[0] > 0)
2587 disable_irq_wake(fep->irq[0]);
2588 }
2589
2590 return 0;
2591}
2592
2593static const struct ethtool_ops fec_enet_ethtool_ops = {
2594 .get_drvinfo = fec_enet_get_drvinfo,
2595 .get_regs_len = fec_enet_get_regs_len,
2596 .get_regs = fec_enet_get_regs,
2597 .nway_reset = phy_ethtool_nway_reset,
2598 .get_link = ethtool_op_get_link,
2599 .get_coalesce = fec_enet_get_coalesce,
2600 .set_coalesce = fec_enet_set_coalesce,
2601#ifndef CONFIG_M5272
2602 .get_pauseparam = fec_enet_get_pauseparam,
2603 .set_pauseparam = fec_enet_set_pauseparam,
2604 .get_strings = fec_enet_get_strings,
2605 .get_ethtool_stats = fec_enet_get_ethtool_stats,
2606 .get_sset_count = fec_enet_get_sset_count,
2607#endif
2608 .get_ts_info = fec_enet_get_ts_info,
2609 .get_tunable = fec_enet_get_tunable,
2610 .set_tunable = fec_enet_set_tunable,
2611 .get_wol = fec_enet_get_wol,
2612 .set_wol = fec_enet_set_wol,
2613 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2614 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2615};
2616
2617static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2618{
2619 struct fec_enet_private *fep = netdev_priv(ndev);
2620 struct phy_device *phydev = ndev->phydev;
2621
2622 if (!netif_running(ndev))
2623 return -EINVAL;
2624
2625 if (!phydev)
2626 return -ENODEV;
2627
2628 if (fep->bufdesc_ex) {
2629 if (cmd == SIOCSHWTSTAMP)
2630 return fec_ptp_set(ndev, rq);
2631 if (cmd == SIOCGHWTSTAMP)
2632 return fec_ptp_get(ndev, rq);
2633 }
2634
2635 return phy_mii_ioctl(phydev, rq, cmd);
2636}
2637
2638static void fec_enet_free_buffers(struct net_device *ndev)
2639{
2640 struct fec_enet_private *fep = netdev_priv(ndev);
2641 unsigned int i;
2642 struct sk_buff *skb;
2643 struct bufdesc *bdp;
2644 struct fec_enet_priv_tx_q *txq;
2645 struct fec_enet_priv_rx_q *rxq;
2646 unsigned int q;
2647
2648 for (q = 0; q < fep->num_rx_queues; q++) {
2649 rxq = fep->rx_queue[q];
2650 bdp = rxq->bd.base;
2651 for (i = 0; i < rxq->bd.ring_size; i++) {
2652 skb = rxq->rx_skbuff[i];
2653 rxq->rx_skbuff[i] = NULL;
2654 if (skb) {
2655 dma_unmap_single(&fep->pdev->dev,
2656 fec32_to_cpu(bdp->cbd_bufaddr),
2657 FEC_ENET_RX_FRSIZE - fep->rx_align,
2658 DMA_FROM_DEVICE);
2659 dev_kfree_skb(skb);
2660 }
2661 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2662 }
2663 }
2664
2665 for (q = 0; q < fep->num_tx_queues; q++) {
2666 txq = fep->tx_queue[q];
2667 bdp = txq->bd.base;
2668 for (i = 0; i < txq->bd.ring_size; i++) {
2669 kfree(txq->tx_bounce[i]);
2670 txq->tx_bounce[i] = NULL;
2671 skb = txq->tx_skbuff[i];
2672 txq->tx_skbuff[i] = NULL;
2673 dev_kfree_skb(skb);
2674 }
2675 }
2676}
2677
2678static void fec_enet_free_queue(struct net_device *ndev)
2679{
2680 struct fec_enet_private *fep = netdev_priv(ndev);
2681 int i;
2682 struct fec_enet_priv_tx_q *txq;
2683
2684 for (i = 0; i < fep->num_tx_queues; i++)
2685 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2686 txq = fep->tx_queue[i];
2687 dma_free_coherent(&fep->pdev->dev,
2688 txq->bd.ring_size * TSO_HEADER_SIZE,
2689 txq->tso_hdrs,
2690 txq->tso_hdrs_dma);
2691 }
2692
2693 for (i = 0; i < fep->num_rx_queues; i++)
2694 kfree(fep->rx_queue[i]);
2695 for (i = 0; i < fep->num_tx_queues; i++)
2696 kfree(fep->tx_queue[i]);
2697}
2698
2699static int fec_enet_alloc_queue(struct net_device *ndev)
2700{
2701 struct fec_enet_private *fep = netdev_priv(ndev);
2702 int i;
2703 int ret = 0;
2704 struct fec_enet_priv_tx_q *txq;
2705
2706 for (i = 0; i < fep->num_tx_queues; i++) {
2707 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2708 if (!txq) {
2709 ret = -ENOMEM;
2710 goto alloc_failed;
2711 }
2712
2713 fep->tx_queue[i] = txq;
2714 txq->bd.ring_size = TX_RING_SIZE;
2715 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2716
2717 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2718 txq->tx_wake_threshold =
2719 (txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2720
2721 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2722 txq->bd.ring_size * TSO_HEADER_SIZE,
2723 &txq->tso_hdrs_dma,
2724 GFP_KERNEL);
2725 if (!txq->tso_hdrs) {
2726 ret = -ENOMEM;
2727 goto alloc_failed;
2728 }
2729 }
2730
2731 for (i = 0; i < fep->num_rx_queues; i++) {
2732 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2733 GFP_KERNEL);
2734 if (!fep->rx_queue[i]) {
2735 ret = -ENOMEM;
2736 goto alloc_failed;
2737 }
2738
2739 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2740 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2741 }
2742 return ret;
2743
2744alloc_failed:
2745 fec_enet_free_queue(ndev);
2746 return ret;
2747}
2748
2749static int
2750fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2751{
2752 struct fec_enet_private *fep = netdev_priv(ndev);
2753 unsigned int i;
2754 struct sk_buff *skb;
2755 struct bufdesc *bdp;
2756 struct fec_enet_priv_rx_q *rxq;
2757
2758 rxq = fep->rx_queue[queue];
2759 bdp = rxq->bd.base;
2760 for (i = 0; i < rxq->bd.ring_size; i++) {
2761 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2762 if (!skb)
2763 goto err_alloc;
2764
2765 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2766 dev_kfree_skb(skb);
2767 goto err_alloc;
2768 }
2769
2770 rxq->rx_skbuff[i] = skb;
2771 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2772
2773 if (fep->bufdesc_ex) {
2774 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2775 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2776 }
2777
2778 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2779 }
2780
2781 /* Set the last buffer to wrap. */
2782 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2783 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2784 return 0;
2785
2786 err_alloc:
2787 fec_enet_free_buffers(ndev);
2788 return -ENOMEM;
2789}
2790
2791static int
2792fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2793{
2794 struct fec_enet_private *fep = netdev_priv(ndev);
2795 unsigned int i;
2796 struct bufdesc *bdp;
2797 struct fec_enet_priv_tx_q *txq;
2798
2799 txq = fep->tx_queue[queue];
2800 bdp = txq->bd.base;
2801 for (i = 0; i < txq->bd.ring_size; i++) {
2802 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2803 if (!txq->tx_bounce[i])
2804 goto err_alloc;
2805
2806 bdp->cbd_sc = cpu_to_fec16(0);
2807 bdp->cbd_bufaddr = cpu_to_fec32(0);
2808
2809 if (fep->bufdesc_ex) {
2810 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2811 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2812 }
2813
2814 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2815 }
2816
2817 /* Set the last buffer to wrap. */
2818 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2819 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2820
2821 return 0;
2822
2823 err_alloc:
2824 fec_enet_free_buffers(ndev);
2825 return -ENOMEM;
2826}
2827
2828static int fec_enet_alloc_buffers(struct net_device *ndev)
2829{
2830 struct fec_enet_private *fep = netdev_priv(ndev);
2831 unsigned int i;
2832
2833 for (i = 0; i < fep->num_rx_queues; i++)
2834 if (fec_enet_alloc_rxq_buffers(ndev, i))
2835 return -ENOMEM;
2836
2837 for (i = 0; i < fep->num_tx_queues; i++)
2838 if (fec_enet_alloc_txq_buffers(ndev, i))
2839 return -ENOMEM;
2840 return 0;
2841}
2842
2843static int
2844fec_enet_open(struct net_device *ndev)
2845{
2846 struct fec_enet_private *fep = netdev_priv(ndev);
2847 int ret;
2848 bool reset_again;
2849
2850 ret = pm_runtime_get_sync(&fep->pdev->dev);
2851 if (ret < 0)
2852 return ret;
2853
2854 pinctrl_pm_select_default_state(&fep->pdev->dev);
2855 ret = fec_enet_clk_enable(ndev, true);
2856 if (ret)
2857 goto clk_enable;
2858
2859 /* During the first fec_enet_open call the PHY isn't probed at this
2860 * point. Therefore the phy_reset_after_clk_enable() call within
2861 * fec_enet_clk_enable() fails. As we need this reset in order to be
2862 * sure the PHY is working correctly we check if we need to reset again
2863 * later when the PHY is probed
2864 */
2865 if (ndev->phydev && ndev->phydev->drv)
2866 reset_again = false;
2867 else
2868 reset_again = true;
2869
2870 /* I should reset the ring buffers here, but I don't yet know
2871 * a simple way to do that.
2872 */
2873
2874 ret = fec_enet_alloc_buffers(ndev);
2875 if (ret)
2876 goto err_enet_alloc;
2877
2878 /* Init MAC prior to mii bus probe */
2879 fec_restart(ndev);
2880
2881 /* Probe and connect to PHY when open the interface */
2882 ret = fec_enet_mii_probe(ndev);
2883 if (ret)
2884 goto err_enet_mii_probe;
2885
2886 /* Call phy_reset_after_clk_enable() again if it failed during
2887 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2888 */
2889 if (reset_again)
2890 phy_reset_after_clk_enable(ndev->phydev);
2891
2892 if (fep->quirks & FEC_QUIRK_ERR006687)
2893 imx6q_cpuidle_fec_irqs_used();
2894
2895 napi_enable(&fep->napi);
2896 phy_start(ndev->phydev);
2897 netif_tx_start_all_queues(ndev);
2898
2899 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2900 FEC_WOL_FLAG_ENABLE);
2901
2902 return 0;
2903
2904err_enet_mii_probe:
2905 fec_enet_free_buffers(ndev);
2906err_enet_alloc:
2907 fec_enet_clk_enable(ndev, false);
2908clk_enable:
2909 pm_runtime_mark_last_busy(&fep->pdev->dev);
2910 pm_runtime_put_autosuspend(&fep->pdev->dev);
2911 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2912 return ret;
2913}
2914
2915static int
2916fec_enet_close(struct net_device *ndev)
2917{
2918 struct fec_enet_private *fep = netdev_priv(ndev);
2919
2920 phy_stop(ndev->phydev);
2921
2922 if (netif_device_present(ndev)) {
2923 napi_disable(&fep->napi);
2924 netif_tx_disable(ndev);
2925 fec_stop(ndev);
2926 }
2927
2928 phy_disconnect(ndev->phydev);
2929
2930 if (fep->quirks & FEC_QUIRK_ERR006687)
2931 imx6q_cpuidle_fec_irqs_unused();
2932
2933 fec_enet_update_ethtool_stats(ndev);
2934
2935 fec_enet_clk_enable(ndev, false);
2936 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2937 pm_runtime_mark_last_busy(&fep->pdev->dev);
2938 pm_runtime_put_autosuspend(&fep->pdev->dev);
2939
2940 fec_enet_free_buffers(ndev);
2941
2942 return 0;
2943}
2944
2945/* Set or clear the multicast filter for this adaptor.
2946 * Skeleton taken from sunlance driver.
2947 * The CPM Ethernet implementation allows Multicast as well as individual
2948 * MAC address filtering. Some of the drivers check to make sure it is
2949 * a group multicast address, and discard those that are not. I guess I
2950 * will do the same for now, but just remove the test if you want
2951 * individual filtering as well (do the upper net layers want or support
2952 * this kind of feature?).
2953 */
2954
2955#define FEC_HASH_BITS 6 /* #bits in hash */
2956#define CRC32_POLY 0xEDB88320
2957
2958static void set_multicast_list(struct net_device *ndev)
2959{
2960 struct fec_enet_private *fep = netdev_priv(ndev);
2961 struct netdev_hw_addr *ha;
2962 unsigned int i, bit, data, crc, tmp;
2963 unsigned char hash;
2964 unsigned int hash_high = 0, hash_low = 0;
2965
2966 if (ndev->flags & IFF_PROMISC) {
2967 tmp = readl(fep->hwp + FEC_R_CNTRL);
2968 tmp |= 0x8;
2969 writel(tmp, fep->hwp + FEC_R_CNTRL);
2970 return;
2971 }
2972
2973 tmp = readl(fep->hwp + FEC_R_CNTRL);
2974 tmp &= ~0x8;
2975 writel(tmp, fep->hwp + FEC_R_CNTRL);
2976
2977 if (ndev->flags & IFF_ALLMULTI) {
2978 /* Catch all multicast addresses, so set the
2979 * filter to all 1's
2980 */
2981 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2982 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2983
2984 return;
2985 }
2986
2987 /* Add the addresses in hash register */
2988 netdev_for_each_mc_addr(ha, ndev) {
2989 /* calculate crc32 value of mac address */
2990 crc = 0xffffffff;
2991
2992 for (i = 0; i < ndev->addr_len; i++) {
2993 data = ha->addr[i];
2994 for (bit = 0; bit < 8; bit++, data >>= 1) {
2995 crc = (crc >> 1) ^
2996 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2997 }
2998 }
2999
3000 /* only upper 6 bits (FEC_HASH_BITS) are used
3001 * which point to specific bit in the hash registers
3002 */
3003 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3004
3005 if (hash > 31)
3006 hash_high |= 1 << (hash - 32);
3007 else
3008 hash_low |= 1 << hash;
3009 }
3010
3011 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3012 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3013}
3014
3015/* Set a MAC change in hardware. */
3016static int
3017fec_set_mac_address(struct net_device *ndev, void *p)
3018{
3019 struct fec_enet_private *fep = netdev_priv(ndev);
3020 struct sockaddr *addr = p;
3021
3022 if (addr) {
3023 if (!is_valid_ether_addr(addr->sa_data))
3024 return -EADDRNOTAVAIL;
3025 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3026 }
3027
3028 /* Add netif status check here to avoid system hang in below case:
3029 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3030 * After ethx down, fec all clocks are gated off and then register
3031 * access causes system hang.
3032 */
3033 if (!netif_running(ndev))
3034 return 0;
3035
3036 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3037 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3038 fep->hwp + FEC_ADDR_LOW);
3039 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3040 fep->hwp + FEC_ADDR_HIGH);
3041 return 0;
3042}
3043
3044#ifdef CONFIG_NET_POLL_CONTROLLER
3045/**
3046 * fec_poll_controller - FEC Poll controller function
3047 * @dev: The FEC network adapter
3048 *
3049 * Polled functionality used by netconsole and others in non interrupt mode
3050 *
3051 */
3052static void fec_poll_controller(struct net_device *dev)
3053{
3054 int i;
3055 struct fec_enet_private *fep = netdev_priv(dev);
3056
3057 for (i = 0; i < FEC_IRQ_NUM; i++) {
3058 if (fep->irq[i] > 0) {
3059 disable_irq(fep->irq[i]);
3060 fec_enet_interrupt(fep->irq[i], dev);
3061 enable_irq(fep->irq[i]);
3062 }
3063 }
3064}
3065#endif
3066
3067static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3068 netdev_features_t features)
3069{
3070 struct fec_enet_private *fep = netdev_priv(netdev);
3071 netdev_features_t changed = features ^ netdev->features;
3072
3073 netdev->features = features;
3074
3075 /* Receive checksum has been changed */
3076 if (changed & NETIF_F_RXCSUM) {
3077 if (features & NETIF_F_RXCSUM)
3078 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3079 else
3080 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3081 }
3082}
3083
3084static int fec_set_features(struct net_device *netdev,
3085 netdev_features_t features)
3086{
3087 struct fec_enet_private *fep = netdev_priv(netdev);
3088 netdev_features_t changed = features ^ netdev->features;
3089
3090 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3091 napi_disable(&fep->napi);
3092 netif_tx_lock_bh(netdev);
3093 fec_stop(netdev);
3094 fec_enet_set_netdev_features(netdev, features);
3095 fec_restart(netdev);
3096 netif_tx_wake_all_queues(netdev);
3097 netif_tx_unlock_bh(netdev);
3098 napi_enable(&fep->napi);
3099 } else {
3100 fec_enet_set_netdev_features(netdev, features);
3101 }
3102
3103 return 0;
3104}
3105
3106static const struct net_device_ops fec_netdev_ops = {
3107 .ndo_open = fec_enet_open,
3108 .ndo_stop = fec_enet_close,
3109 .ndo_start_xmit = fec_enet_start_xmit,
3110 .ndo_set_rx_mode = set_multicast_list,
3111 .ndo_validate_addr = eth_validate_addr,
3112 .ndo_tx_timeout = fec_timeout,
3113 .ndo_set_mac_address = fec_set_mac_address,
3114 .ndo_do_ioctl = fec_enet_ioctl,
3115#ifdef CONFIG_NET_POLL_CONTROLLER
3116 .ndo_poll_controller = fec_poll_controller,
3117#endif
3118 .ndo_set_features = fec_set_features,
3119};
3120
3121static const unsigned short offset_des_active_rxq[] = {
3122 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3123};
3124
3125static const unsigned short offset_des_active_txq[] = {
3126 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3127};
3128
3129 /*
3130 * XXX: We need to clean up on failure exits here.
3131 *
3132 */
3133static int fec_enet_init(struct net_device *ndev)
3134{
3135 struct fec_enet_private *fep = netdev_priv(ndev);
3136 struct bufdesc *cbd_base;
3137 dma_addr_t bd_dma;
3138 int bd_size;
3139 unsigned int i;
3140 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3141 sizeof(struct bufdesc);
3142 unsigned dsize_log2 = __fls(dsize);
3143
3144 WARN_ON(dsize != (1 << dsize_log2));
3145#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3146 fep->rx_align = 0xf;
3147 fep->tx_align = 0xf;
3148#else
3149 fep->rx_align = 0x3;
3150 fep->tx_align = 0x3;
3151#endif
3152
3153 fec_enet_alloc_queue(ndev);
3154
3155 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3156
3157 /* Allocate memory for buffer descriptors. */
3158 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3159 GFP_KERNEL);
3160 if (!cbd_base) {
3161 return -ENOMEM;
3162 }
3163
3164 memset(cbd_base, 0, bd_size);
3165
3166 /* Get the Ethernet address */
3167 fec_get_mac(ndev);
3168 /* make sure MAC we just acquired is programmed into the hw */
3169 fec_set_mac_address(ndev, NULL);
3170
3171 /* Set receive and transmit descriptor base. */
3172 for (i = 0; i < fep->num_rx_queues; i++) {
3173 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3174 unsigned size = dsize * rxq->bd.ring_size;
3175
3176 rxq->bd.qid = i;
3177 rxq->bd.base = cbd_base;
3178 rxq->bd.cur = cbd_base;
3179 rxq->bd.dma = bd_dma;
3180 rxq->bd.dsize = dsize;
3181 rxq->bd.dsize_log2 = dsize_log2;
3182 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3183 bd_dma += size;
3184 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3185 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3186 }
3187
3188 for (i = 0; i < fep->num_tx_queues; i++) {
3189 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3190 unsigned size = dsize * txq->bd.ring_size;
3191
3192 txq->bd.qid = i;
3193 txq->bd.base = cbd_base;
3194 txq->bd.cur = cbd_base;
3195 txq->bd.dma = bd_dma;
3196 txq->bd.dsize = dsize;
3197 txq->bd.dsize_log2 = dsize_log2;
3198 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3199 bd_dma += size;
3200 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3201 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3202 }
3203
3204
3205 /* The FEC Ethernet specific entries in the device structure */
3206 ndev->watchdog_timeo = TX_TIMEOUT;
3207 ndev->netdev_ops = &fec_netdev_ops;
3208 ndev->ethtool_ops = &fec_enet_ethtool_ops;
3209
3210 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3211 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3212
3213 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3214 /* enable hw VLAN support */
3215 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3216
3217 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3218 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3219
3220 /* enable hw accelerator */
3221 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3222 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3223 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3224 }
3225
3226 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3227 fep->tx_align = 0;
3228 fep->rx_align = 0x3f;
3229 }
3230
3231 ndev->hw_features = ndev->features;
3232
3233 fec_restart(ndev);
3234
3235 if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3236 fec_enet_clear_ethtool_stats(ndev);
3237 else
3238 fec_enet_update_ethtool_stats(ndev);
3239
3240 return 0;
3241}
3242
3243#ifdef CONFIG_OF
3244static int fec_reset_phy(struct platform_device *pdev)
3245{
3246 int err, phy_reset;
3247 bool active_high = false;
3248 int msec = 1, phy_post_delay = 0;
3249 struct device_node *np = pdev->dev.of_node;
3250
3251 if (!np)
3252 return 0;
3253
3254 err = of_property_read_u32(np, "phy-reset-duration", &msec);
3255 /* A sane reset duration should not be longer than 1s */
3256 if (!err && msec > 1000)
3257 msec = 1;
3258
3259 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3260 if (phy_reset == -EPROBE_DEFER)
3261 return phy_reset;
3262 else if (!gpio_is_valid(phy_reset))
3263 return 0;
3264
3265 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3266 /* valid reset duration should be less than 1s */
3267 if (!err && phy_post_delay > 1000)
3268 return -EINVAL;
3269
3270 active_high = of_property_read_bool(np, "phy-reset-active-high");
3271
3272 err = devm_gpio_request_one(&pdev->dev, phy_reset,
3273 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3274 "phy-reset");
3275 if (err) {
3276 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3277 return err;
3278 }
3279
3280 if (msec > 20)
3281 msleep(msec);
3282 else
3283 usleep_range(msec * 1000, msec * 1000 + 1000);
3284
3285 gpio_set_value_cansleep(phy_reset, !active_high);
3286
3287 if (!phy_post_delay)
3288 return 0;
3289
3290 if (phy_post_delay > 20)
3291 msleep(phy_post_delay);
3292 else
3293 usleep_range(phy_post_delay * 1000,
3294 phy_post_delay * 1000 + 1000);
3295
3296 return 0;
3297}
3298#else /* CONFIG_OF */
3299static int fec_reset_phy(struct platform_device *pdev)
3300{
3301 /*
3302 * In case of platform probe, the reset has been done
3303 * by machine code.
3304 */
3305 return 0;
3306}
3307#endif /* CONFIG_OF */
3308
3309static void
3310fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3311{
3312 struct device_node *np = pdev->dev.of_node;
3313
3314 *num_tx = *num_rx = 1;
3315
3316 if (!np || !of_device_is_available(np))
3317 return;
3318
3319 /* parse the num of tx and rx queues */
3320 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3321
3322 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3323
3324 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3325 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3326 *num_tx);
3327 *num_tx = 1;
3328 return;
3329 }
3330
3331 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3332 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3333 *num_rx);
3334 *num_rx = 1;
3335 return;
3336 }
3337
3338}
3339
3340static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3341{
3342 int irq_cnt = platform_irq_count(pdev);
3343
3344 if (irq_cnt > FEC_IRQ_NUM)
3345 irq_cnt = FEC_IRQ_NUM; /* last for pps */
3346 else if (irq_cnt == 2)
3347 irq_cnt = 1; /* last for pps */
3348 else if (irq_cnt <= 0)
3349 irq_cnt = 1; /* At least 1 irq is needed */
3350 return irq_cnt;
3351}
3352
3353static int
3354fec_probe(struct platform_device *pdev)
3355{
3356 struct fec_enet_private *fep;
3357 struct fec_platform_data *pdata;
3358 struct net_device *ndev;
3359 int i, irq, ret = 0;
3360 struct resource *r;
3361 const struct of_device_id *of_id;
3362 static int dev_id;
3363 struct device_node *np = pdev->dev.of_node, *phy_node;
3364 int num_tx_qs;
3365 int num_rx_qs;
3366 char irq_name[8];
3367 int irq_cnt;
3368
3369 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3370
3371 /* Init network device */
3372 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3373 FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3374 if (!ndev)
3375 return -ENOMEM;
3376
3377 SET_NETDEV_DEV(ndev, &pdev->dev);
3378
3379 /* setup board info structure */
3380 fep = netdev_priv(ndev);
3381
3382 of_id = of_match_device(fec_dt_ids, &pdev->dev);
3383 if (of_id)
3384 pdev->id_entry = of_id->data;
3385 fep->quirks = pdev->id_entry->driver_data;
3386
3387 fep->netdev = ndev;
3388 fep->num_rx_queues = num_rx_qs;
3389 fep->num_tx_queues = num_tx_qs;
3390
3391#if !defined(CONFIG_M5272)
3392 /* default enable pause frame auto negotiation */
3393 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3394 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3395#endif
3396
3397 /* Select default pin state */
3398 pinctrl_pm_select_default_state(&pdev->dev);
3399
3400 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3401 fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3402 if (IS_ERR(fep->hwp)) {
3403 ret = PTR_ERR(fep->hwp);
3404 goto failed_ioremap;
3405 }
3406
3407 fep->pdev = pdev;
3408 fep->dev_id = dev_id++;
3409
3410 platform_set_drvdata(pdev, ndev);
3411
3412 if ((of_machine_is_compatible("fsl,imx6q") ||
3413 of_machine_is_compatible("fsl,imx6dl")) &&
3414 !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3415 fep->quirks |= FEC_QUIRK_ERR006687;
3416
3417 if (of_get_property(np, "fsl,magic-packet", NULL))
3418 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3419
3420 phy_node = of_parse_phandle(np, "phy-handle", 0);
3421 if (!phy_node && of_phy_is_fixed_link(np)) {
3422 ret = of_phy_register_fixed_link(np);
3423 if (ret < 0) {
3424 dev_err(&pdev->dev,
3425 "broken fixed-link specification\n");
3426 goto failed_phy;
3427 }
3428 phy_node = of_node_get(np);
3429 }
3430 fep->phy_node = phy_node;
3431
3432 ret = of_get_phy_mode(pdev->dev.of_node);
3433 if (ret < 0) {
3434 pdata = dev_get_platdata(&pdev->dev);
3435 if (pdata)
3436 fep->phy_interface = pdata->phy;
3437 else
3438 fep->phy_interface = PHY_INTERFACE_MODE_MII;
3439 } else {
3440 fep->phy_interface = ret;
3441 }
3442
3443 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3444 if (IS_ERR(fep->clk_ipg)) {
3445 ret = PTR_ERR(fep->clk_ipg);
3446 goto failed_clk;
3447 }
3448
3449 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3450 if (IS_ERR(fep->clk_ahb)) {
3451 ret = PTR_ERR(fep->clk_ahb);
3452 goto failed_clk;
3453 }
3454
3455 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3456
3457 /* enet_out is optional, depends on board */
3458 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3459 if (IS_ERR(fep->clk_enet_out))
3460 fep->clk_enet_out = NULL;
3461
3462 fep->ptp_clk_on = false;
3463 mutex_init(&fep->ptp_clk_mutex);
3464
3465 /* clk_ref is optional, depends on board */
3466 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3467 if (IS_ERR(fep->clk_ref))
3468 fep->clk_ref = NULL;
3469
3470 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3471 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3472 if (IS_ERR(fep->clk_ptp)) {
3473 fep->clk_ptp = NULL;
3474 fep->bufdesc_ex = false;
3475 }
3476
3477 ret = fec_enet_clk_enable(ndev, true);
3478 if (ret)
3479 goto failed_clk;
3480
3481 ret = clk_prepare_enable(fep->clk_ipg);
3482 if (ret)
3483 goto failed_clk_ipg;
3484
3485 fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3486 if (!IS_ERR(fep->reg_phy)) {
3487 ret = regulator_enable(fep->reg_phy);
3488 if (ret) {
3489 dev_err(&pdev->dev,
3490 "Failed to enable phy regulator: %d\n", ret);
3491 clk_disable_unprepare(fep->clk_ipg);
3492 goto failed_regulator;
3493 }
3494 } else {
3495 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3496 ret = -EPROBE_DEFER;
3497 goto failed_regulator;
3498 }
3499 fep->reg_phy = NULL;
3500 }
3501
3502 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3503 pm_runtime_use_autosuspend(&pdev->dev);
3504 pm_runtime_get_noresume(&pdev->dev);
3505 pm_runtime_set_active(&pdev->dev);
3506 pm_runtime_enable(&pdev->dev);
3507
3508 ret = fec_reset_phy(pdev);
3509 if (ret)
3510 goto failed_reset;
3511
3512 irq_cnt = fec_enet_get_irq_cnt(pdev);
3513 if (fep->bufdesc_ex)
3514 fec_ptp_init(pdev, irq_cnt);
3515
3516 ret = fec_enet_init(ndev);
3517 if (ret)
3518 goto failed_init;
3519
3520 for (i = 0; i < irq_cnt; i++) {
3521 sprintf(irq_name, "int%d", i);
3522 irq = platform_get_irq_byname(pdev, irq_name);
3523 if (irq < 0)
3524 irq = platform_get_irq(pdev, i);
3525 if (irq < 0) {
3526 ret = irq;
3527 goto failed_irq;
3528 }
3529 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3530 0, pdev->name, ndev);
3531 if (ret)
3532 goto failed_irq;
3533
3534 fep->irq[i] = irq;
3535 }
3536
3537 init_completion(&fep->mdio_done);
3538 ret = fec_enet_mii_init(pdev);
3539 if (ret)
3540 goto failed_mii_init;
3541
3542 /* Carrier starts down, phylib will bring it up */
3543 netif_carrier_off(ndev);
3544 fec_enet_clk_enable(ndev, false);
3545 pinctrl_pm_select_sleep_state(&pdev->dev);
3546
3547 ret = register_netdev(ndev);
3548 if (ret)
3549 goto failed_register;
3550
3551 device_init_wakeup(&ndev->dev, fep->wol_flag &
3552 FEC_WOL_HAS_MAGIC_PACKET);
3553
3554 if (fep->bufdesc_ex && fep->ptp_clock)
3555 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3556
3557 fep->rx_copybreak = COPYBREAK_DEFAULT;
3558 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3559
3560 pm_runtime_mark_last_busy(&pdev->dev);
3561 pm_runtime_put_autosuspend(&pdev->dev);
3562
3563 return 0;
3564
3565failed_register:
3566 fec_enet_mii_remove(fep);
3567failed_mii_init:
3568failed_irq:
3569failed_init:
3570 fec_ptp_stop(pdev);
3571 if (fep->reg_phy)
3572 regulator_disable(fep->reg_phy);
3573failed_reset:
3574 pm_runtime_put(&pdev->dev);
3575 pm_runtime_disable(&pdev->dev);
3576failed_regulator:
3577failed_clk_ipg:
3578 fec_enet_clk_enable(ndev, false);
3579failed_clk:
3580 if (of_phy_is_fixed_link(np))
3581 of_phy_deregister_fixed_link(np);
3582 of_node_put(phy_node);
3583failed_phy:
3584 dev_id--;
3585failed_ioremap:
3586 free_netdev(ndev);
3587
3588 return ret;
3589}
3590
3591static int
3592fec_drv_remove(struct platform_device *pdev)
3593{
3594 struct net_device *ndev = platform_get_drvdata(pdev);
3595 struct fec_enet_private *fep = netdev_priv(ndev);
3596 struct device_node *np = pdev->dev.of_node;
3597
3598 cancel_work_sync(&fep->tx_timeout_work);
3599 fec_ptp_stop(pdev);
3600 unregister_netdev(ndev);
3601 fec_enet_mii_remove(fep);
3602 if (fep->reg_phy)
3603 regulator_disable(fep->reg_phy);
3604 pm_runtime_put(&pdev->dev);
3605 pm_runtime_disable(&pdev->dev);
3606 if (of_phy_is_fixed_link(np))
3607 of_phy_deregister_fixed_link(np);
3608 of_node_put(fep->phy_node);
3609 free_netdev(ndev);
3610
3611 return 0;
3612}
3613
3614static int __maybe_unused fec_suspend(struct device *dev)
3615{
3616 struct net_device *ndev = dev_get_drvdata(dev);
3617 struct fec_enet_private *fep = netdev_priv(ndev);
3618
3619 rtnl_lock();
3620 if (netif_running(ndev)) {
3621 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3622 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3623 phy_stop(ndev->phydev);
3624 napi_disable(&fep->napi);
3625 netif_tx_lock_bh(ndev);
3626 netif_device_detach(ndev);
3627 netif_tx_unlock_bh(ndev);
3628 fec_stop(ndev);
3629 fec_enet_clk_enable(ndev, false);
3630 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3631 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3632 }
3633 rtnl_unlock();
3634
3635 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3636 regulator_disable(fep->reg_phy);
3637
3638 /* SOC supply clock to phy, when clock is disabled, phy link down
3639 * SOC control phy regulator, when regulator is disabled, phy link down
3640 */
3641 if (fep->clk_enet_out || fep->reg_phy)
3642 fep->link = 0;
3643
3644 return 0;
3645}
3646
3647static int __maybe_unused fec_resume(struct device *dev)
3648{
3649 struct net_device *ndev = dev_get_drvdata(dev);
3650 struct fec_enet_private *fep = netdev_priv(ndev);
3651 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3652 int ret;
3653 int val;
3654
3655 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3656 ret = regulator_enable(fep->reg_phy);
3657 if (ret)
3658 return ret;
3659 }
3660
3661 rtnl_lock();
3662 if (netif_running(ndev)) {
3663 ret = fec_enet_clk_enable(ndev, true);
3664 if (ret) {
3665 rtnl_unlock();
3666 goto failed_clk;
3667 }
3668 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3669 if (pdata && pdata->sleep_mode_enable)
3670 pdata->sleep_mode_enable(false);
3671 val = readl(fep->hwp + FEC_ECNTRL);
3672 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3673 writel(val, fep->hwp + FEC_ECNTRL);
3674 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3675 } else {
3676 pinctrl_pm_select_default_state(&fep->pdev->dev);
3677 }
3678 fec_restart(ndev);
3679 netif_tx_lock_bh(ndev);
3680 netif_device_attach(ndev);
3681 netif_tx_unlock_bh(ndev);
3682 napi_enable(&fep->napi);
3683 phy_start(ndev->phydev);
3684 }
3685 rtnl_unlock();
3686
3687 return 0;
3688
3689failed_clk:
3690 if (fep->reg_phy)
3691 regulator_disable(fep->reg_phy);
3692 return ret;
3693}
3694
3695static int __maybe_unused fec_runtime_suspend(struct device *dev)
3696{
3697 struct net_device *ndev = dev_get_drvdata(dev);
3698 struct fec_enet_private *fep = netdev_priv(ndev);
3699
3700 clk_disable_unprepare(fep->clk_ipg);
3701
3702 return 0;
3703}
3704
3705static int __maybe_unused fec_runtime_resume(struct device *dev)
3706{
3707 struct net_device *ndev = dev_get_drvdata(dev);
3708 struct fec_enet_private *fep = netdev_priv(ndev);
3709
3710 return clk_prepare_enable(fep->clk_ipg);
3711}
3712
3713static const struct dev_pm_ops fec_pm_ops = {
3714 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3715 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3716};
3717
3718static struct platform_driver fec_driver = {
3719 .driver = {
3720 .name = DRIVER_NAME,
3721 .pm = &fec_pm_ops,
3722 .of_match_table = fec_dt_ids,
3723 },
3724 .id_table = fec_devtype,
3725 .probe = fec_probe,
3726 .remove = fec_drv_remove,
3727};
3728
3729module_platform_driver(fec_driver);
3730
3731MODULE_ALIAS("platform:"DRIVER_NAME);
3732MODULE_LICENSE("GPL");