Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   5 *
   6 * Right now, I am very wasteful with the buffers.  I allocate memory
   7 * pages and then divide them into 2K frame buffers.  This way I know I
   8 * have buffers large enough to hold one frame within one buffer descriptor.
   9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  10 * will be much more memory efficient and will easily handle lots of
  11 * small packets.
  12 *
  13 * Much better multiple PHY support by Magnus Damm.
  14 * Copyright (c) 2000 Ericsson Radio Systems AB.
  15 *
  16 * Support for FEC controller of ColdFire processors.
  17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  18 *
  19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  20 * Copyright (c) 2004-2006 Macq Electronique SA.
  21 *
  22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/kernel.h>
  27#include <linux/string.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/ptrace.h>
  30#include <linux/errno.h>
  31#include <linux/ioport.h>
  32#include <linux/slab.h>
  33#include <linux/interrupt.h>
  34#include <linux/delay.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/skbuff.h>
  38#include <linux/in.h>
  39#include <linux/ip.h>
  40#include <net/ip.h>
  41#include <net/tso.h>
  42#include <linux/tcp.h>
  43#include <linux/udp.h>
  44#include <linux/icmp.h>
  45#include <linux/spinlock.h>
  46#include <linux/workqueue.h>
  47#include <linux/bitops.h>
  48#include <linux/io.h>
  49#include <linux/irq.h>
  50#include <linux/clk.h>
  51#include <linux/platform_device.h>
  52#include <linux/mdio.h>
  53#include <linux/phy.h>
  54#include <linux/fec.h>
  55#include <linux/of.h>
  56#include <linux/of_device.h>
  57#include <linux/of_gpio.h>
  58#include <linux/of_mdio.h>
  59#include <linux/of_net.h>
  60#include <linux/regulator/consumer.h>
  61#include <linux/if_vlan.h>
  62#include <linux/pinctrl/consumer.h>
  63#include <linux/prefetch.h>
  64#include <soc/imx/cpuidle.h>
  65
  66#include <asm/cacheflush.h>
  67
  68#include "fec.h"
  69
  70static void set_multicast_list(struct net_device *ndev);
  71static void fec_enet_itr_coal_init(struct net_device *ndev);
  72
  73#define DRIVER_NAME	"fec"
 
 
 
 
  74
  75#define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
  76
  77/* Pause frame feild and FIFO threshold */
  78#define FEC_ENET_FCE	(1 << 5)
  79#define FEC_ENET_RSEM_V	0x84
  80#define FEC_ENET_RSFL_V	16
  81#define FEC_ENET_RAEM_V	0x8
  82#define FEC_ENET_RAFL_V	0x8
  83#define FEC_ENET_OPD_V	0xFFF0
  84#define FEC_MDIO_PM_TIMEOUT  100 /* ms */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85
  86static struct platform_device_id fec_devtype[] = {
  87	{
  88		/* keep it for coldfire */
  89		.name = DRIVER_NAME,
  90		.driver_data = 0,
  91	}, {
  92		.name = "imx25-fec",
  93		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR,
  94	}, {
  95		.name = "imx27-fec",
  96		.driver_data = FEC_QUIRK_MIB_CLEAR,
  97	}, {
  98		.name = "imx28-fec",
  99		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
 100				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
 101	}, {
 102		.name = "imx6q-fec",
 103		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 104				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 105				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
 106				FEC_QUIRK_HAS_RACC,
 107	}, {
 108		.name = "mvf600-fec",
 109		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
 110	}, {
 111		.name = "imx6sx-fec",
 112		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 113				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 114				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 115				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 116				FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
 117	}, {
 118		.name = "imx6ul-fec",
 119		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 120				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 121				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
 122				FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
 123				FEC_QUIRK_HAS_COALESCE,
 124	}, {
 125		/* sentinel */
 126	}
 127};
 128MODULE_DEVICE_TABLE(platform, fec_devtype);
 129
 130enum imx_fec_type {
 131	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
 132	IMX27_FEC,	/* runs on i.mx27/35/51 */
 133	IMX28_FEC,
 134	IMX6Q_FEC,
 135	MVF600_FEC,
 136	IMX6SX_FEC,
 137	IMX6UL_FEC,
 138};
 139
 140static const struct of_device_id fec_dt_ids[] = {
 141	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
 142	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
 143	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
 144	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
 145	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
 146	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
 147	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
 148	{ /* sentinel */ }
 149};
 150MODULE_DEVICE_TABLE(of, fec_dt_ids);
 151
 152static unsigned char macaddr[ETH_ALEN];
 153module_param_array(macaddr, byte, NULL, 0);
 154MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 155
 156#if defined(CONFIG_M5272)
 157/*
 158 * Some hardware gets it MAC address out of local flash memory.
 159 * if this is non-zero then assume it is the address to get MAC from.
 160 */
 161#if defined(CONFIG_NETtel)
 162#define	FEC_FLASHMAC	0xf0006006
 163#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 164#define	FEC_FLASHMAC	0xf0006000
 165#elif defined(CONFIG_CANCam)
 166#define	FEC_FLASHMAC	0xf0020000
 167#elif defined (CONFIG_M5272C3)
 168#define	FEC_FLASHMAC	(0xffe04000 + 4)
 169#elif defined(CONFIG_MOD5272)
 170#define FEC_FLASHMAC	0xffc0406b
 171#else
 172#define	FEC_FLASHMAC	0
 173#endif
 174#endif /* CONFIG_M5272 */
 175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 176/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 177 *
 178 * 2048 byte skbufs are allocated. However, alignment requirements
 179 * varies between FEC variants. Worst case is 64, so round down by 64.
 180 */
 181#define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
 182#define PKT_MINBUF_SIZE		64
 
 183
 184/* FEC receive acceleration */
 185#define FEC_RACC_IPDIS		(1 << 1)
 186#define FEC_RACC_PRODIS		(1 << 2)
 187#define FEC_RACC_SHIFT16	BIT(7)
 188#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 189
 190/* MIB Control Register */
 191#define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
 192
 193/*
 194 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 195 * size bits. Other FEC hardware does not, so we need to take that into
 196 * account when setting it.
 197 */
 198#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 199    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
 200    defined(CONFIG_ARM64)
 201#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 202#else
 203#define	OPT_FRAME_SIZE	0
 204#endif
 205
 206/* FEC MII MMFR bits definition */
 207#define FEC_MMFR_ST		(1 << 30)
 208#define FEC_MMFR_OP_READ	(2 << 28)
 209#define FEC_MMFR_OP_WRITE	(1 << 28)
 210#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
 211#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
 212#define FEC_MMFR_TA		(2 << 16)
 213#define FEC_MMFR_DATA(v)	(v & 0xffff)
 214/* FEC ECR bits definition */
 215#define FEC_ECR_MAGICEN		(1 << 2)
 216#define FEC_ECR_SLEEP		(1 << 3)
 217
 218#define FEC_MII_TIMEOUT		30000 /* us */
 219
 220/* Transmitter timeout */
 221#define TX_TIMEOUT (2 * HZ)
 222
 223#define FEC_PAUSE_FLAG_AUTONEG	0x1
 224#define FEC_PAUSE_FLAG_ENABLE	0x2
 225#define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
 226#define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
 227#define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
 228
 229#define COPYBREAK_DEFAULT	256
 230
 231/* Max number of allowed TCP segments for software TSO */
 232#define FEC_MAX_TSO_SEGS	100
 233#define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 234
 235#define IS_TSO_HEADER(txq, addr) \
 236	((addr >= txq->tso_hdrs_dma) && \
 237	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
 238
 239static int mii_cnt;
 240
 241static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
 242					     struct bufdesc_prop *bd)
 243{
 244	return (bdp >= bd->last) ? bd->base
 245			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
 246}
 247
 248static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
 249					     struct bufdesc_prop *bd)
 250{
 251	return (bdp <= bd->base) ? bd->last
 252			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
 253}
 
 
 
 
 
 
 
 
 
 
 
 
 254
 255static int fec_enet_get_bd_index(struct bufdesc *bdp,
 256				 struct bufdesc_prop *bd)
 257{
 258	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
 
 
 259}
 260
 261static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
 
 262{
 263	int entries;
 264
 265	entries = (((const char *)txq->dirty_tx -
 266			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
 
 
 
 
 
 
 
 
 
 
 
 267
 268	return entries >= 0 ? entries : entries + txq->bd.ring_size;
 
 
 
 
 269}
 270
 271static void swap_buffer(void *bufaddr, int len)
 272{
 273	int i;
 274	unsigned int *buf = bufaddr;
 275
 276	for (i = 0; i < len; i += 4, buf++)
 277		swab32s(buf);
 278}
 279
 280static void swap_buffer2(void *dst_buf, void *src_buf, int len)
 281{
 282	int i;
 283	unsigned int *src = src_buf;
 284	unsigned int *dst = dst_buf;
 285
 286	for (i = 0; i < len; i += 4, src++, dst++)
 287		*dst = swab32p(src);
 288}
 289
 290static void fec_dump(struct net_device *ndev)
 291{
 292	struct fec_enet_private *fep = netdev_priv(ndev);
 293	struct bufdesc *bdp;
 294	struct fec_enet_priv_tx_q *txq;
 295	int index = 0;
 296
 297	netdev_info(ndev, "TX ring dump\n");
 298	pr_info("Nr     SC     addr       len  SKB\n");
 299
 300	txq = fep->tx_queue[0];
 301	bdp = txq->bd.base;
 302
 303	do {
 304		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
 305			index,
 306			bdp == txq->bd.cur ? 'S' : ' ',
 307			bdp == txq->dirty_tx ? 'H' : ' ',
 308			fec16_to_cpu(bdp->cbd_sc),
 309			fec32_to_cpu(bdp->cbd_bufaddr),
 310			fec16_to_cpu(bdp->cbd_datlen),
 311			txq->tx_skbuff[index]);
 312		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 313		index++;
 314	} while (bdp != txq->bd.base);
 315}
 316
 317static inline bool is_ipv4_pkt(struct sk_buff *skb)
 318{
 319	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
 320}
 321
 322static int
 323fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 324{
 325	/* Only run for packets requiring a checksum. */
 326	if (skb->ip_summed != CHECKSUM_PARTIAL)
 327		return 0;
 328
 329	if (unlikely(skb_cow_head(skb, 0)))
 330		return -1;
 331
 332	if (is_ipv4_pkt(skb))
 333		ip_hdr(skb)->check = 0;
 334	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 335
 336	return 0;
 337}
 338
 339static struct bufdesc *
 340fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
 341			     struct sk_buff *skb,
 342			     struct net_device *ndev)
 343{
 344	struct fec_enet_private *fep = netdev_priv(ndev);
 345	struct bufdesc *bdp = txq->bd.cur;
 346	struct bufdesc_ex *ebdp;
 347	int nr_frags = skb_shinfo(skb)->nr_frags;
 348	int frag, frag_len;
 349	unsigned short status;
 350	unsigned int estatus = 0;
 351	skb_frag_t *this_frag;
 352	unsigned int index;
 353	void *bufaddr;
 354	dma_addr_t addr;
 355	int i;
 356
 357	for (frag = 0; frag < nr_frags; frag++) {
 358		this_frag = &skb_shinfo(skb)->frags[frag];
 359		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 360		ebdp = (struct bufdesc_ex *)bdp;
 361
 362		status = fec16_to_cpu(bdp->cbd_sc);
 363		status &= ~BD_ENET_TX_STATS;
 364		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 365		frag_len = skb_shinfo(skb)->frags[frag].size;
 366
 367		/* Handle the last BD specially */
 368		if (frag == nr_frags - 1) {
 369			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 370			if (fep->bufdesc_ex) {
 371				estatus |= BD_ENET_TX_INT;
 372				if (unlikely(skb_shinfo(skb)->tx_flags &
 373					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 374					estatus |= BD_ENET_TX_TS;
 375			}
 376		}
 377
 378		if (fep->bufdesc_ex) {
 379			if (fep->quirks & FEC_QUIRK_HAS_AVB)
 380				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 381			if (skb->ip_summed == CHECKSUM_PARTIAL)
 382				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 383			ebdp->cbd_bdu = 0;
 384			ebdp->cbd_esc = cpu_to_fec32(estatus);
 385		}
 386
 387		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
 388
 389		index = fec_enet_get_bd_index(bdp, &txq->bd);
 390		if (((unsigned long) bufaddr) & fep->tx_align ||
 391			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 392			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
 393			bufaddr = txq->tx_bounce[index];
 394
 395			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 396				swap_buffer(bufaddr, frag_len);
 397		}
 398
 399		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
 400				      DMA_TO_DEVICE);
 401		if (dma_mapping_error(&fep->pdev->dev, addr)) {
 402			if (net_ratelimit())
 403				netdev_err(ndev, "Tx DMA memory map failed\n");
 404			goto dma_mapping_error;
 405		}
 406
 407		bdp->cbd_bufaddr = cpu_to_fec32(addr);
 408		bdp->cbd_datlen = cpu_to_fec16(frag_len);
 409		/* Make sure the updates to rest of the descriptor are
 410		 * performed before transferring ownership.
 411		 */
 412		wmb();
 413		bdp->cbd_sc = cpu_to_fec16(status);
 414	}
 415
 416	return bdp;
 417dma_mapping_error:
 418	bdp = txq->bd.cur;
 419	for (i = 0; i < frag; i++) {
 420		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 421		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
 422				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
 423	}
 424	return ERR_PTR(-ENOMEM);
 425}
 426
 427static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
 428				   struct sk_buff *skb, struct net_device *ndev)
 429{
 430	struct fec_enet_private *fep = netdev_priv(ndev);
 431	int nr_frags = skb_shinfo(skb)->nr_frags;
 432	struct bufdesc *bdp, *last_bdp;
 433	void *bufaddr;
 434	dma_addr_t addr;
 435	unsigned short status;
 436	unsigned short buflen;
 437	unsigned int estatus = 0;
 438	unsigned int index;
 439	int entries_free;
 440
 441	entries_free = fec_enet_get_free_txdesc_num(txq);
 442	if (entries_free < MAX_SKB_FRAGS + 1) {
 443		dev_kfree_skb_any(skb);
 444		if (net_ratelimit())
 445			netdev_err(ndev, "NOT enough BD for SG!\n");
 446		return NETDEV_TX_OK;
 447	}
 448
 449	/* Protocol checksum off-load for TCP and UDP. */
 450	if (fec_enet_clear_csum(skb, ndev)) {
 451		dev_kfree_skb_any(skb);
 452		return NETDEV_TX_OK;
 453	}
 454
 455	/* Fill in a Tx ring entry */
 456	bdp = txq->bd.cur;
 457	last_bdp = bdp;
 458	status = fec16_to_cpu(bdp->cbd_sc);
 459	status &= ~BD_ENET_TX_STATS;
 460
 461	/* Set buffer length and buffer pointer */
 462	bufaddr = skb->data;
 463	buflen = skb_headlen(skb);
 464
 465	index = fec_enet_get_bd_index(bdp, &txq->bd);
 466	if (((unsigned long) bufaddr) & fep->tx_align ||
 467		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 468		memcpy(txq->tx_bounce[index], skb->data, buflen);
 469		bufaddr = txq->tx_bounce[index];
 
 
 
 
 
 470
 471		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 472			swap_buffer(bufaddr, buflen);
 
 473	}
 474
 475	/* Push the data cache so the CPM does not get stale memory data. */
 476	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
 477	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478		dev_kfree_skb_any(skb);
 479		if (net_ratelimit())
 480			netdev_err(ndev, "Tx DMA memory map failed\n");
 481		return NETDEV_TX_OK;
 482	}
 483
 484	if (nr_frags) {
 485		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
 486		if (IS_ERR(last_bdp)) {
 487			dma_unmap_single(&fep->pdev->dev, addr,
 488					 buflen, DMA_TO_DEVICE);
 489			dev_kfree_skb_any(skb);
 490			return NETDEV_TX_OK;
 491		}
 492	} else {
 493		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 494		if (fep->bufdesc_ex) {
 495			estatus = BD_ENET_TX_INT;
 496			if (unlikely(skb_shinfo(skb)->tx_flags &
 497				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 498				estatus |= BD_ENET_TX_TS;
 499		}
 500	}
 501	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 502	bdp->cbd_datlen = cpu_to_fec16(buflen);
 503
 504	if (fep->bufdesc_ex) {
 505
 506		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 507
 508		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 509			fep->hwts_tx_en))
 
 510			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 
 
 511
 512		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 513			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 514
 515		if (skb->ip_summed == CHECKSUM_PARTIAL)
 516			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 517
 518		ebdp->cbd_bdu = 0;
 519		ebdp->cbd_esc = cpu_to_fec32(estatus);
 520	}
 521
 522	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
 523	/* Save skb pointer */
 524	txq->tx_skbuff[index] = skb;
 525
 526	/* Make sure the updates to rest of the descriptor are performed before
 527	 * transferring ownership.
 528	 */
 529	wmb();
 530
 531	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 532	 * it's the last BD of the frame, and to put the CRC on the end.
 533	 */
 534	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
 535	bdp->cbd_sc = cpu_to_fec16(status);
 
 
 
 
 
 
 
 
 
 536
 537	/* If this was the last BD in the ring, start at the beginning again. */
 538	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
 539
 540	skb_tx_timestamp(skb);
 541
 542	/* Make sure the update to bdp and tx_skbuff are performed before
 543	 * txq->bd.cur.
 544	 */
 545	wmb();
 546	txq->bd.cur = bdp;
 547
 548	/* Trigger transmission start */
 549	writel(0, txq->bd.reg_desc_active);
 550
 551	return 0;
 552}
 553
 554static int
 555fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
 556			  struct net_device *ndev,
 557			  struct bufdesc *bdp, int index, char *data,
 558			  int size, bool last_tcp, bool is_last)
 559{
 560	struct fec_enet_private *fep = netdev_priv(ndev);
 561	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 562	unsigned short status;
 563	unsigned int estatus = 0;
 564	dma_addr_t addr;
 565
 566	status = fec16_to_cpu(bdp->cbd_sc);
 567	status &= ~BD_ENET_TX_STATS;
 568
 569	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 570
 571	if (((unsigned long) data) & fep->tx_align ||
 572		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 573		memcpy(txq->tx_bounce[index], data, size);
 574		data = txq->tx_bounce[index];
 575
 576		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 577			swap_buffer(data, size);
 578	}
 579
 580	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
 581	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 582		dev_kfree_skb_any(skb);
 583		if (net_ratelimit())
 584			netdev_err(ndev, "Tx DMA memory map failed\n");
 585		return NETDEV_TX_BUSY;
 586	}
 587
 588	bdp->cbd_datlen = cpu_to_fec16(size);
 589	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 590
 591	if (fep->bufdesc_ex) {
 592		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 593			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 594		if (skb->ip_summed == CHECKSUM_PARTIAL)
 595			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 596		ebdp->cbd_bdu = 0;
 597		ebdp->cbd_esc = cpu_to_fec32(estatus);
 598	}
 599
 600	/* Handle the last BD specially */
 601	if (last_tcp)
 602		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
 603	if (is_last) {
 604		status |= BD_ENET_TX_INTR;
 605		if (fep->bufdesc_ex)
 606			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
 607	}
 608
 609	bdp->cbd_sc = cpu_to_fec16(status);
 610
 611	return 0;
 612}
 613
 614static int
 615fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
 616			 struct sk_buff *skb, struct net_device *ndev,
 617			 struct bufdesc *bdp, int index)
 618{
 619	struct fec_enet_private *fep = netdev_priv(ndev);
 620	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 621	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 622	void *bufaddr;
 623	unsigned long dmabuf;
 624	unsigned short status;
 625	unsigned int estatus = 0;
 626
 627	status = fec16_to_cpu(bdp->cbd_sc);
 628	status &= ~BD_ENET_TX_STATS;
 629	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 630
 631	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 632	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
 633	if (((unsigned long)bufaddr) & fep->tx_align ||
 634		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 635		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
 636		bufaddr = txq->tx_bounce[index];
 637
 638		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 639			swap_buffer(bufaddr, hdr_len);
 640
 641		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
 642					hdr_len, DMA_TO_DEVICE);
 643		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
 644			dev_kfree_skb_any(skb);
 645			if (net_ratelimit())
 646				netdev_err(ndev, "Tx DMA memory map failed\n");
 647			return NETDEV_TX_BUSY;
 648		}
 649	}
 650
 651	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
 652	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
 653
 654	if (fep->bufdesc_ex) {
 655		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 656			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 657		if (skb->ip_summed == CHECKSUM_PARTIAL)
 658			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 659		ebdp->cbd_bdu = 0;
 660		ebdp->cbd_esc = cpu_to_fec32(estatus);
 661	}
 662
 663	bdp->cbd_sc = cpu_to_fec16(status);
 664
 665	return 0;
 666}
 667
 668static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
 669				   struct sk_buff *skb,
 670				   struct net_device *ndev)
 671{
 672	struct fec_enet_private *fep = netdev_priv(ndev);
 673	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 674	int total_len, data_left;
 675	struct bufdesc *bdp = txq->bd.cur;
 676	struct tso_t tso;
 677	unsigned int index = 0;
 678	int ret;
 679
 680	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
 681		dev_kfree_skb_any(skb);
 682		if (net_ratelimit())
 683			netdev_err(ndev, "NOT enough BD for TSO!\n");
 684		return NETDEV_TX_OK;
 685	}
 686
 687	/* Protocol checksum off-load for TCP and UDP. */
 688	if (fec_enet_clear_csum(skb, ndev)) {
 689		dev_kfree_skb_any(skb);
 690		return NETDEV_TX_OK;
 691	}
 692
 693	/* Initialize the TSO handler, and prepare the first payload */
 694	tso_start(skb, &tso);
 695
 696	total_len = skb->len - hdr_len;
 697	while (total_len > 0) {
 698		char *hdr;
 699
 700		index = fec_enet_get_bd_index(bdp, &txq->bd);
 701		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
 702		total_len -= data_left;
 703
 704		/* prepare packet headers: MAC + IP + TCP */
 705		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 706		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
 707		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
 708		if (ret)
 709			goto err_release;
 710
 711		while (data_left > 0) {
 712			int size;
 713
 714			size = min_t(int, tso.size, data_left);
 715			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 716			index = fec_enet_get_bd_index(bdp, &txq->bd);
 717			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
 718							bdp, index,
 719							tso.data, size,
 720							size == data_left,
 721							total_len == 0);
 722			if (ret)
 723				goto err_release;
 724
 725			data_left -= size;
 726			tso_build_data(skb, &tso, size);
 727		}
 728
 729		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 730	}
 731
 732	/* Save skb pointer */
 733	txq->tx_skbuff[index] = skb;
 734
 735	skb_tx_timestamp(skb);
 736	txq->bd.cur = bdp;
 737
 738	/* Trigger transmission start */
 739	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
 740	    !readl(txq->bd.reg_desc_active) ||
 741	    !readl(txq->bd.reg_desc_active) ||
 742	    !readl(txq->bd.reg_desc_active) ||
 743	    !readl(txq->bd.reg_desc_active))
 744		writel(0, txq->bd.reg_desc_active);
 745
 746	return 0;
 747
 748err_release:
 749	/* TODO: Release all used data descriptors for TSO */
 750	return ret;
 751}
 752
 753static netdev_tx_t
 754fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 755{
 756	struct fec_enet_private *fep = netdev_priv(ndev);
 757	int entries_free;
 758	unsigned short queue;
 759	struct fec_enet_priv_tx_q *txq;
 760	struct netdev_queue *nq;
 761	int ret;
 762
 763	queue = skb_get_queue_mapping(skb);
 764	txq = fep->tx_queue[queue];
 765	nq = netdev_get_tx_queue(ndev, queue);
 766
 767	if (skb_is_gso(skb))
 768		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
 769	else
 770		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
 771	if (ret)
 772		return ret;
 773
 774	entries_free = fec_enet_get_free_txdesc_num(txq);
 775	if (entries_free <= txq->tx_stop_threshold)
 776		netif_tx_stop_queue(nq);
 777
 778	return NETDEV_TX_OK;
 779}
 780
 781/* Init RX & TX buffer descriptors
 782 */
 783static void fec_enet_bd_init(struct net_device *dev)
 784{
 785	struct fec_enet_private *fep = netdev_priv(dev);
 786	struct fec_enet_priv_tx_q *txq;
 787	struct fec_enet_priv_rx_q *rxq;
 788	struct bufdesc *bdp;
 789	unsigned int i;
 790	unsigned int q;
 791
 792	for (q = 0; q < fep->num_rx_queues; q++) {
 793		/* Initialize the receive buffer descriptors. */
 794		rxq = fep->rx_queue[q];
 795		bdp = rxq->bd.base;
 796
 797		for (i = 0; i < rxq->bd.ring_size; i++) {
 798
 799			/* Initialize the BD for every fragment in the page. */
 800			if (bdp->cbd_bufaddr)
 801				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
 802			else
 803				bdp->cbd_sc = cpu_to_fec16(0);
 804			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
 805		}
 806
 807		/* Set the last buffer to wrap */
 808		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
 809		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 810
 811		rxq->bd.cur = rxq->bd.base;
 812	}
 813
 814	for (q = 0; q < fep->num_tx_queues; q++) {
 815		/* ...and the same for transmit */
 816		txq = fep->tx_queue[q];
 817		bdp = txq->bd.base;
 818		txq->bd.cur = bdp;
 819
 820		for (i = 0; i < txq->bd.ring_size; i++) {
 821			/* Initialize the BD for every fragment in the page. */
 822			bdp->cbd_sc = cpu_to_fec16(0);
 823			if (bdp->cbd_bufaddr &&
 824			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
 825				dma_unmap_single(&fep->pdev->dev,
 826						 fec32_to_cpu(bdp->cbd_bufaddr),
 827						 fec16_to_cpu(bdp->cbd_datlen),
 828						 DMA_TO_DEVICE);
 829			if (txq->tx_skbuff[i]) {
 830				dev_kfree_skb_any(txq->tx_skbuff[i]);
 831				txq->tx_skbuff[i] = NULL;
 832			}
 833			bdp->cbd_bufaddr = cpu_to_fec32(0);
 834			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 835		}
 836
 837		/* Set the last buffer to wrap */
 838		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
 839		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 840		txq->dirty_tx = bdp;
 841	}
 842}
 843
 844static void fec_enet_active_rxring(struct net_device *ndev)
 845{
 846	struct fec_enet_private *fep = netdev_priv(ndev);
 847	int i;
 848
 849	for (i = 0; i < fep->num_rx_queues; i++)
 850		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
 851}
 852
 853static void fec_enet_enable_ring(struct net_device *ndev)
 854{
 855	struct fec_enet_private *fep = netdev_priv(ndev);
 856	struct fec_enet_priv_tx_q *txq;
 857	struct fec_enet_priv_rx_q *rxq;
 858	int i;
 859
 860	for (i = 0; i < fep->num_rx_queues; i++) {
 861		rxq = fep->rx_queue[i];
 862		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
 863		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
 864
 865		/* enable DMA1/2 */
 866		if (i)
 867			writel(RCMR_MATCHEN | RCMR_CMP(i),
 868			       fep->hwp + FEC_RCMR(i));
 869	}
 870
 871	for (i = 0; i < fep->num_tx_queues; i++) {
 872		txq = fep->tx_queue[i];
 873		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
 874
 875		/* enable DMA1/2 */
 876		if (i)
 877			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
 878			       fep->hwp + FEC_DMA_CFG(i));
 879	}
 880}
 881
 882static void fec_enet_reset_skb(struct net_device *ndev)
 883{
 884	struct fec_enet_private *fep = netdev_priv(ndev);
 885	struct fec_enet_priv_tx_q *txq;
 886	int i, j;
 887
 888	for (i = 0; i < fep->num_tx_queues; i++) {
 889		txq = fep->tx_queue[i];
 890
 891		for (j = 0; j < txq->bd.ring_size; j++) {
 892			if (txq->tx_skbuff[j]) {
 893				dev_kfree_skb_any(txq->tx_skbuff[j]);
 894				txq->tx_skbuff[j] = NULL;
 895			}
 896		}
 
 
 897	}
 
 
 
 
 
 898}
 899
 900/*
 901 * This function is called to start or restart the FEC during a link
 902 * change, transmit timeout, or to reconfigure the FEC.  The network
 903 * packet processing for this device must be stopped before this call.
 904 */
 905static void
 906fec_restart(struct net_device *ndev)
 907{
 908	struct fec_enet_private *fep = netdev_priv(ndev);
 
 
 
 909	u32 val;
 910	u32 temp_mac[2];
 911	u32 rcntl = OPT_FRAME_SIZE | 0x04;
 912	u32 ecntl = 0x2; /* ETHEREN */
 913
 914	/* Whack a reset.  We should wait for this.
 915	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
 916	 * instead of reset MAC itself.
 917	 */
 918	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
 919		writel(0, fep->hwp + FEC_ECNTRL);
 920	} else {
 921		writel(1, fep->hwp + FEC_ECNTRL);
 922		udelay(10);
 923	}
 924
 
 
 
 
 925	/*
 926	 * enet-mac reset will reset mac address registers too,
 927	 * so need to reconfigure it.
 928	 */
 929	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
 930	writel((__force u32)cpu_to_be32(temp_mac[0]),
 931	       fep->hwp + FEC_ADDR_LOW);
 932	writel((__force u32)cpu_to_be32(temp_mac[1]),
 933	       fep->hwp + FEC_ADDR_HIGH);
 934
 935	/* Clear any outstanding interrupt. */
 936	writel(0xffffffff, fep->hwp + FEC_IEVENT);
 
 
 
 937
 938	fec_enet_bd_init(ndev);
 939
 940	fec_enet_enable_ring(ndev);
 
 
 
 
 
 
 
 941
 942	/* Reset tx SKB buffers. */
 943	fec_enet_reset_skb(ndev);
 
 
 
 
 
 944
 945	/* Enable MII mode */
 946	if (fep->full_duplex == DUPLEX_FULL) {
 947		/* FD enable */
 948		writel(0x04, fep->hwp + FEC_X_CNTRL);
 949	} else {
 950		/* No Rcv on Xmit */
 951		rcntl |= 0x02;
 952		writel(0x0, fep->hwp + FEC_X_CNTRL);
 953	}
 954
 
 
 955	/* Set MII speed */
 956	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 957
 958#if !defined(CONFIG_M5272)
 959	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
 960		val = readl(fep->hwp + FEC_RACC);
 961		/* align IP header */
 962		val |= FEC_RACC_SHIFT16;
 963		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
 964			/* set RX checksum */
 965			val |= FEC_RACC_OPTIONS;
 966		else
 967			val &= ~FEC_RACC_OPTIONS;
 968		writel(val, fep->hwp + FEC_RACC);
 969		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
 970	}
 971#endif
 972
 973	/*
 974	 * The phy interface and speed need to get configured
 975	 * differently on enet-mac.
 976	 */
 977	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
 978		/* Enable flow control and length check */
 979		rcntl |= 0x40000000 | 0x00000020;
 980
 981		/* RGMII, RMII or MII */
 982		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
 983		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
 984		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
 985		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
 986			rcntl |= (1 << 6);
 987		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 988			rcntl |= (1 << 8);
 989		else
 990			rcntl &= ~(1 << 8);
 991
 992		/* 1G, 100M or 10M */
 993		if (ndev->phydev) {
 994			if (ndev->phydev->speed == SPEED_1000)
 995				ecntl |= (1 << 5);
 996			else if (ndev->phydev->speed == SPEED_100)
 997				rcntl &= ~(1 << 9);
 998			else
 999				rcntl |= (1 << 9);
1000		}
1001	} else {
1002#ifdef FEC_MIIGSK_ENR
1003		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1004			u32 cfgr;
1005			/* disable the gasket and wait */
1006			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1007			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1008				udelay(1);
1009
1010			/*
1011			 * configure the gasket:
1012			 *   RMII, 50 MHz, no loopback, no echo
1013			 *   MII, 25 MHz, no loopback, no echo
1014			 */
1015			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1016				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1017			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1018				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1019			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1020
1021			/* re-enable the gasket */
1022			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1023		}
1024#endif
1025	}
1026
1027#if !defined(CONFIG_M5272)
1028	/* enable pause frame*/
1029	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1030	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1031	     ndev->phydev && ndev->phydev->pause)) {
1032		rcntl |= FEC_ENET_FCE;
1033
1034		/* set FIFO threshold parameter to reduce overrun */
1035		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1036		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1037		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1038		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1039
1040		/* OPD */
1041		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1042	} else {
1043		rcntl &= ~FEC_ENET_FCE;
1044	}
1045#endif /* !defined(CONFIG_M5272) */
1046
1047	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1048
1049	/* Setup multicast filter. */
1050	set_multicast_list(ndev);
1051#ifndef CONFIG_M5272
1052	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1053	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1054#endif
1055
1056	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1057		/* enable ENET endian swap */
1058		ecntl |= (1 << 8);
1059		/* enable ENET store and forward mode */
1060		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1061	}
1062
1063	if (fep->bufdesc_ex)
1064		ecntl |= (1 << 4);
1065
1066#ifndef CONFIG_M5272
1067	/* Enable the MIB statistic event counters */
1068	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1069#endif
1070
1071	/* And last, enable the transmit and receive processing */
1072	writel(ecntl, fep->hwp + FEC_ECNTRL);
1073	fec_enet_active_rxring(ndev);
1074
1075	if (fep->bufdesc_ex)
1076		fec_ptp_start_cyclecounter(ndev);
1077
1078	/* Enable interrupts we wish to service */
1079	if (fep->link)
1080		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1081	else
1082		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1083
1084	/* Init the interrupt coalescing */
1085	fec_enet_itr_coal_init(ndev);
1086
 
 
 
 
 
 
1087}
1088
1089static void
1090fec_stop(struct net_device *ndev)
1091{
1092	struct fec_enet_private *fep = netdev_priv(ndev);
1093	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
 
1094	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1095	u32 val;
1096
1097	/* We cannot expect a graceful transmit stop without link !!! */
1098	if (fep->link) {
1099		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1100		udelay(10);
1101		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1102			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1103	}
1104
1105	/* Whack a reset.  We should wait for this.
1106	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1107	 * instead of reset MAC itself.
1108	 */
1109	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1110		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1111			writel(0, fep->hwp + FEC_ECNTRL);
1112		} else {
1113			writel(1, fep->hwp + FEC_ECNTRL);
1114			udelay(10);
1115		}
1116		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1117	} else {
1118		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1119		val = readl(fep->hwp + FEC_ECNTRL);
1120		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1121		writel(val, fep->hwp + FEC_ECNTRL);
1122
1123		if (pdata && pdata->sleep_mode_enable)
1124			pdata->sleep_mode_enable(true);
1125	}
1126	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 
1127
1128	/* We have to keep ENET enabled to have MII interrupt stay working */
1129	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1130		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1131		writel(2, fep->hwp + FEC_ECNTRL);
1132		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1133	}
1134}
1135
1136
1137static void
1138fec_timeout(struct net_device *ndev)
1139{
1140	struct fec_enet_private *fep = netdev_priv(ndev);
1141
1142	fec_dump(ndev);
1143
1144	ndev->stats.tx_errors++;
1145
1146	schedule_work(&fep->tx_timeout_work);
 
1147}
1148
1149static void fec_enet_timeout_work(struct work_struct *work)
1150{
1151	struct fec_enet_private *fep =
1152		container_of(work, struct fec_enet_private, tx_timeout_work);
1153	struct net_device *ndev = fep->netdev;
1154
1155	rtnl_lock();
1156	if (netif_device_present(ndev) || netif_running(ndev)) {
1157		napi_disable(&fep->napi);
1158		netif_tx_lock_bh(ndev);
1159		fec_restart(ndev);
1160		netif_wake_queue(ndev);
1161		netif_tx_unlock_bh(ndev);
1162		napi_enable(&fep->napi);
1163	}
1164	rtnl_unlock();
1165}
1166
1167static void
1168fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1169	struct skb_shared_hwtstamps *hwtstamps)
1170{
1171	unsigned long flags;
1172	u64 ns;
1173
1174	spin_lock_irqsave(&fep->tmreg_lock, flags);
1175	ns = timecounter_cyc2time(&fep->tc, ts);
1176	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1177
1178	memset(hwtstamps, 0, sizeof(*hwtstamps));
1179	hwtstamps->hwtstamp = ns_to_ktime(ns);
1180}
1181
1182static void
1183fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1184{
1185	struct	fec_enet_private *fep;
1186	struct bufdesc *bdp;
1187	unsigned short status;
1188	struct	sk_buff	*skb;
1189	struct fec_enet_priv_tx_q *txq;
1190	struct netdev_queue *nq;
1191	int	index = 0;
1192	int	entries_free;
1193
1194	fep = netdev_priv(ndev);
 
1195
1196	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1197
1198	txq = fep->tx_queue[queue_id];
1199	/* get next bdp of dirty_tx */
1200	nq = netdev_get_tx_queue(ndev, queue_id);
1201	bdp = txq->dirty_tx;
1202
1203	/* get next bdp of dirty_tx */
1204	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1205
1206	while (bdp != READ_ONCE(txq->bd.cur)) {
1207		/* Order the load of bd.cur and cbd_sc */
1208		rmb();
1209		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1210		if (status & BD_ENET_TX_READY)
1211			break;
1212
1213		index = fec_enet_get_bd_index(bdp, &txq->bd);
 
 
 
 
1214
1215		skb = txq->tx_skbuff[index];
1216		txq->tx_skbuff[index] = NULL;
1217		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1218			dma_unmap_single(&fep->pdev->dev,
1219					 fec32_to_cpu(bdp->cbd_bufaddr),
1220					 fec16_to_cpu(bdp->cbd_datlen),
1221					 DMA_TO_DEVICE);
1222		bdp->cbd_bufaddr = cpu_to_fec32(0);
1223		if (!skb)
1224			goto skb_done;
1225
1226		/* Check for errors. */
1227		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1228				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1229				   BD_ENET_TX_CSL)) {
1230			ndev->stats.tx_errors++;
1231			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1232				ndev->stats.tx_heartbeat_errors++;
1233			if (status & BD_ENET_TX_LC)  /* Late collision */
1234				ndev->stats.tx_window_errors++;
1235			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1236				ndev->stats.tx_aborted_errors++;
1237			if (status & BD_ENET_TX_UN)  /* Underrun */
1238				ndev->stats.tx_fifo_errors++;
1239			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1240				ndev->stats.tx_carrier_errors++;
1241		} else {
1242			ndev->stats.tx_packets++;
1243			ndev->stats.tx_bytes += skb->len;
1244		}
1245
1246		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1247			fep->bufdesc_ex) {
1248			struct skb_shared_hwtstamps shhwtstamps;
 
1249			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1250
1251			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
 
 
 
 
1252			skb_tstamp_tx(skb, &shhwtstamps);
1253		}
1254
 
 
 
1255		/* Deferred means some collisions occurred during transmit,
1256		 * but we eventually sent the packet OK.
1257		 */
1258		if (status & BD_ENET_TX_DEF)
1259			ndev->stats.collisions++;
1260
1261		/* Free the sk buffer associated with this last transmit */
1262		dev_kfree_skb_any(skb);
1263skb_done:
1264		/* Make sure the update to bdp and tx_skbuff are performed
1265		 * before dirty_tx
1266		 */
1267		wmb();
1268		txq->dirty_tx = bdp;
1269
1270		/* Update pointer to next buffer descriptor to be transmitted */
1271		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1272
1273		/* Since we have freed up a buffer, the ring is no longer full
1274		 */
1275		if (netif_queue_stopped(ndev)) {
1276			entries_free = fec_enet_get_free_txdesc_num(txq);
1277			if (entries_free >= txq->tx_wake_threshold)
1278				netif_tx_wake_queue(nq);
1279		}
1280	}
1281
1282	/* ERR006358: Keep the transmitter going */
1283	if (bdp != txq->bd.cur &&
1284	    readl(txq->bd.reg_desc_active) == 0)
1285		writel(0, txq->bd.reg_desc_active);
1286}
1287
1288static void
1289fec_enet_tx(struct net_device *ndev)
1290{
1291	struct fec_enet_private *fep = netdev_priv(ndev);
1292	u16 queue_id;
1293	/* First process class A queue, then Class B and Best Effort queue */
1294	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1295		clear_bit(queue_id, &fep->work_tx);
1296		fec_enet_tx_queue(ndev, queue_id);
1297	}
1298	return;
1299}
1300
1301static int
1302fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1303{
1304	struct  fec_enet_private *fep = netdev_priv(ndev);
1305	int off;
1306
1307	off = ((unsigned long)skb->data) & fep->rx_align;
1308	if (off)
1309		skb_reserve(skb, fep->rx_align + 1 - off);
1310
1311	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1312	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1313		if (net_ratelimit())
1314			netdev_err(ndev, "Rx DMA memory map failed\n");
1315		return -ENOMEM;
1316	}
1317
1318	return 0;
1319}
1320
1321static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1322			       struct bufdesc *bdp, u32 length, bool swap)
1323{
1324	struct  fec_enet_private *fep = netdev_priv(ndev);
1325	struct sk_buff *new_skb;
1326
1327	if (length > fep->rx_copybreak)
1328		return false;
1329
1330	new_skb = netdev_alloc_skb(ndev, length);
1331	if (!new_skb)
1332		return false;
1333
1334	dma_sync_single_for_cpu(&fep->pdev->dev,
1335				fec32_to_cpu(bdp->cbd_bufaddr),
1336				FEC_ENET_RX_FRSIZE - fep->rx_align,
1337				DMA_FROM_DEVICE);
1338	if (!swap)
1339		memcpy(new_skb->data, (*skb)->data, length);
1340	else
1341		swap_buffer2(new_skb->data, (*skb)->data, length);
1342	*skb = new_skb;
1343
1344	return true;
1345}
1346
1347/* During a receive, the bd_rx.cur points to the current incoming buffer.
1348 * When we update through the ring, if the next incoming buffer has
1349 * not been given to the system, we just set the empty indicator,
1350 * effectively tossing the packet.
1351 */
1352static int
1353fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1354{
1355	struct fec_enet_private *fep = netdev_priv(ndev);
1356	struct fec_enet_priv_rx_q *rxq;
 
1357	struct bufdesc *bdp;
1358	unsigned short status;
1359	struct  sk_buff *skb_new = NULL;
1360	struct  sk_buff *skb;
1361	ushort	pkt_len;
1362	__u8 *data;
1363	int	pkt_received = 0;
1364	struct	bufdesc_ex *ebdp = NULL;
1365	bool	vlan_packet_rcvd = false;
1366	u16	vlan_tag;
1367	int	index = 0;
1368	bool	is_copybreak;
1369	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1370
1371#ifdef CONFIG_M532x
1372	flush_cache_all();
1373#endif
1374	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1375	rxq = fep->rx_queue[queue_id];
1376
1377	/* First, grab all of the stats for the incoming packet.
1378	 * These get messed up if we get called due to a busy condition.
1379	 */
1380	bdp = rxq->bd.cur;
1381
1382	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1383
1384		if (pkt_received >= budget)
1385			break;
1386		pkt_received++;
1387
1388		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
 
 
 
 
 
 
 
1389
1390		/* Check for errors. */
1391		status ^= BD_ENET_RX_LAST;
1392		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1393			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1394			   BD_ENET_RX_CL)) {
1395			ndev->stats.rx_errors++;
1396			if (status & BD_ENET_RX_OV) {
1397				/* FIFO overrun */
1398				ndev->stats.rx_fifo_errors++;
1399				goto rx_processing_done;
1400			}
1401			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1402						| BD_ENET_RX_LAST)) {
1403				/* Frame too long or too short. */
1404				ndev->stats.rx_length_errors++;
1405				if (status & BD_ENET_RX_LAST)
1406					netdev_err(ndev, "rcv is not +last\n");
1407			}
 
 
1408			if (status & BD_ENET_RX_CR)	/* CRC Error */
1409				ndev->stats.rx_crc_errors++;
1410			/* Report late collisions as a frame error. */
1411			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1412				ndev->stats.rx_frame_errors++;
 
 
 
 
 
 
 
 
1413			goto rx_processing_done;
1414		}
1415
1416		/* Process the incoming frame. */
1417		ndev->stats.rx_packets++;
1418		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1419		ndev->stats.rx_bytes += pkt_len;
1420
1421		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1422		skb = rxq->rx_skbuff[index];
1423
1424		/* The packet length includes FCS, but we don't want to
1425		 * include that when passing upstream as it messes up
1426		 * bridging applications.
1427		 */
1428		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1429						  need_swap);
1430		if (!is_copybreak) {
1431			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1432			if (unlikely(!skb_new)) {
1433				ndev->stats.rx_dropped++;
1434				goto rx_processing_done;
1435			}
1436			dma_unmap_single(&fep->pdev->dev,
1437					 fec32_to_cpu(bdp->cbd_bufaddr),
1438					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1439					 DMA_FROM_DEVICE);
1440		}
1441
1442		prefetch(skb->data - NET_IP_ALIGN);
1443		skb_put(skb, pkt_len - 4);
1444		data = skb->data;
1445
1446		if (!is_copybreak && need_swap)
1447			swap_buffer(data, pkt_len);
1448
1449#if !defined(CONFIG_M5272)
1450		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1451			data = skb_pull_inline(skb, 2);
1452#endif
1453
1454		/* Extract the enhanced buffer descriptor */
1455		ebdp = NULL;
1456		if (fep->bufdesc_ex)
1457			ebdp = (struct bufdesc_ex *)bdp;
1458
1459		/* If this is a VLAN packet remove the VLAN Tag */
1460		vlan_packet_rcvd = false;
1461		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1462		    fep->bufdesc_ex &&
1463		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1464			/* Push and remove the vlan tag */
1465			struct vlan_hdr *vlan_header =
1466					(struct vlan_hdr *) (data + ETH_HLEN);
1467			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
 
1468
1469			vlan_packet_rcvd = true;
1470
1471			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1472			skb_pull(skb, VLAN_HLEN);
1473		}
1474
1475		skb->protocol = eth_type_trans(skb, ndev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1476
1477		/* Get receive timestamp from the skb */
1478		if (fep->hwts_rx_en && fep->bufdesc_ex)
1479			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1480					  skb_hwtstamps(skb));
1481
1482		if (fep->bufdesc_ex &&
1483		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1484			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1485				/* don't check it */
1486				skb->ip_summed = CHECKSUM_UNNECESSARY;
1487			} else {
1488				skb_checksum_none_assert(skb);
1489			}
1490		}
1491
1492		/* Handle received VLAN packets */
1493		if (vlan_packet_rcvd)
1494			__vlan_hwaccel_put_tag(skb,
1495					       htons(ETH_P_8021Q),
1496					       vlan_tag);
1497
1498		napi_gro_receive(&fep->napi, skb);
1499
1500		if (is_copybreak) {
1501			dma_sync_single_for_device(&fep->pdev->dev,
1502						   fec32_to_cpu(bdp->cbd_bufaddr),
1503						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1504						   DMA_FROM_DEVICE);
1505		} else {
1506			rxq->rx_skbuff[index] = skb_new;
1507			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1508		}
1509
 
 
1510rx_processing_done:
1511		/* Clear the status flags for this buffer */
1512		status &= ~BD_ENET_RX_STATS;
1513
1514		/* Mark the buffer empty */
1515		status |= BD_ENET_RX_EMPTY;
 
1516
1517		if (fep->bufdesc_ex) {
1518			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1519
1520			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1521			ebdp->cbd_prot = 0;
1522			ebdp->cbd_bdu = 0;
1523		}
1524		/* Make sure the updates to rest of the descriptor are
1525		 * performed before transferring ownership.
1526		 */
1527		wmb();
1528		bdp->cbd_sc = cpu_to_fec16(status);
1529
1530		/* Update BD pointer to next entry */
1531		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1532
1533		/* Doing this here will keep the FEC running while we process
1534		 * incoming frames.  On a heavily loaded network, we should be
1535		 * able to keep up at the expense of system resources.
1536		 */
1537		writel(0, rxq->bd.reg_desc_active);
1538	}
1539	rxq->bd.cur = bdp;
1540	return pkt_received;
1541}
1542
1543static int
1544fec_enet_rx(struct net_device *ndev, int budget)
1545{
1546	int     pkt_received = 0;
1547	u16	queue_id;
1548	struct fec_enet_private *fep = netdev_priv(ndev);
1549
1550	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1551		int ret;
1552
1553		ret = fec_enet_rx_queue(ndev,
1554					budget - pkt_received, queue_id);
1555
1556		if (ret < budget - pkt_received)
1557			clear_bit(queue_id, &fep->work_rx);
1558
1559		pkt_received += ret;
1560	}
1561	return pkt_received;
1562}
1563
1564static bool
1565fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1566{
1567	if (int_events == 0)
1568		return false;
1569
1570	if (int_events & FEC_ENET_RXF_0)
1571		fep->work_rx |= (1 << 2);
1572	if (int_events & FEC_ENET_RXF_1)
1573		fep->work_rx |= (1 << 0);
1574	if (int_events & FEC_ENET_RXF_2)
1575		fep->work_rx |= (1 << 1);
1576
1577	if (int_events & FEC_ENET_TXF_0)
1578		fep->work_tx |= (1 << 2);
1579	if (int_events & FEC_ENET_TXF_1)
1580		fep->work_tx |= (1 << 0);
1581	if (int_events & FEC_ENET_TXF_2)
1582		fep->work_tx |= (1 << 1);
1583
1584	return true;
1585}
1586
1587static irqreturn_t
1588fec_enet_interrupt(int irq, void *dev_id)
1589{
1590	struct net_device *ndev = dev_id;
1591	struct fec_enet_private *fep = netdev_priv(ndev);
1592	uint int_events;
1593	irqreturn_t ret = IRQ_NONE;
1594
1595	int_events = readl(fep->hwp + FEC_IEVENT);
1596	writel(int_events, fep->hwp + FEC_IEVENT);
1597	fec_enet_collect_events(fep, int_events);
1598
1599	if ((fep->work_tx || fep->work_rx) && fep->link) {
1600		ret = IRQ_HANDLED;
1601
1602		if (napi_schedule_prep(&fep->napi)) {
1603			/* Disable the NAPI interrupts */
1604			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1605			__napi_schedule(&fep->napi);
 
 
1606		}
1607	}
1608
1609	if (int_events & FEC_ENET_MII) {
1610		ret = IRQ_HANDLED;
1611		complete(&fep->mdio_done);
1612	}
 
 
1613	return ret;
1614}
1615
1616static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1617{
1618	struct net_device *ndev = napi->dev;
 
1619	struct fec_enet_private *fep = netdev_priv(ndev);
1620	int pkts;
1621
1622	pkts = fec_enet_rx(ndev, budget);
1623
1624	fec_enet_tx(ndev);
1625
1626	if (pkts < budget) {
1627		napi_complete_done(napi, pkts);
1628		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1629	}
1630	return pkts;
1631}
1632
1633/* ------------------------------------------------------------------------- */
1634static void fec_get_mac(struct net_device *ndev)
1635{
1636	struct fec_enet_private *fep = netdev_priv(ndev);
1637	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1638	unsigned char *iap, tmpaddr[ETH_ALEN];
1639
1640	/*
1641	 * try to get mac address in following order:
1642	 *
1643	 * 1) module parameter via kernel command line in form
1644	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1645	 */
1646	iap = macaddr;
1647
1648	/*
1649	 * 2) from device tree data
1650	 */
1651	if (!is_valid_ether_addr(iap)) {
1652		struct device_node *np = fep->pdev->dev.of_node;
1653		if (np) {
1654			const char *mac = of_get_mac_address(np);
1655			if (mac)
1656				iap = (unsigned char *) mac;
1657		}
1658	}
1659
1660	/*
1661	 * 3) from flash or fuse (via platform data)
1662	 */
1663	if (!is_valid_ether_addr(iap)) {
1664#ifdef CONFIG_M5272
1665		if (FEC_FLASHMAC)
1666			iap = (unsigned char *)FEC_FLASHMAC;
1667#else
1668		if (pdata)
1669			iap = (unsigned char *)&pdata->mac;
1670#endif
1671	}
1672
1673	/*
1674	 * 4) FEC mac registers set by bootloader
1675	 */
1676	if (!is_valid_ether_addr(iap)) {
1677		*((__be32 *) &tmpaddr[0]) =
1678			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1679		*((__be16 *) &tmpaddr[4]) =
1680			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1681		iap = &tmpaddr[0];
1682	}
1683
1684	/*
1685	 * 5) random mac address
1686	 */
1687	if (!is_valid_ether_addr(iap)) {
1688		/* Report it and use a random ethernet address instead */
1689		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1690		eth_hw_addr_random(ndev);
1691		netdev_info(ndev, "Using random MAC address: %pM\n",
1692			    ndev->dev_addr);
1693		return;
1694	}
1695
1696	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1697
1698	/* Adjust MAC if using macaddr */
1699	if (iap == macaddr)
1700		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1701}
1702
1703/* ------------------------------------------------------------------------- */
1704
1705/*
1706 * Phy section
1707 */
1708static void fec_enet_adjust_link(struct net_device *ndev)
1709{
1710	struct fec_enet_private *fep = netdev_priv(ndev);
1711	struct phy_device *phy_dev = ndev->phydev;
1712	int status_change = 0;
1713
1714	/* Prevent a state halted on mii error */
1715	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1716		phy_dev->state = PHY_RESUMING;
1717		return;
1718	}
1719
1720	/*
1721	 * If the netdev is down, or is going down, we're not interested
1722	 * in link state events, so just mark our idea of the link as down
1723	 * and ignore the event.
1724	 */
1725	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1726		fep->link = 0;
1727	} else if (phy_dev->link) {
1728		if (!fep->link) {
1729			fep->link = phy_dev->link;
1730			status_change = 1;
1731		}
1732
1733		if (fep->full_duplex != phy_dev->duplex) {
1734			fep->full_duplex = phy_dev->duplex;
1735			status_change = 1;
1736		}
1737
1738		if (phy_dev->speed != fep->speed) {
1739			fep->speed = phy_dev->speed;
1740			status_change = 1;
1741		}
1742
1743		/* if any of the above changed restart the FEC */
1744		if (status_change) {
1745			napi_disable(&fep->napi);
1746			netif_tx_lock_bh(ndev);
1747			fec_restart(ndev);
1748			netif_wake_queue(ndev);
1749			netif_tx_unlock_bh(ndev);
1750			napi_enable(&fep->napi);
1751		}
1752	} else {
1753		if (fep->link) {
1754			napi_disable(&fep->napi);
1755			netif_tx_lock_bh(ndev);
1756			fec_stop(ndev);
1757			netif_tx_unlock_bh(ndev);
1758			napi_enable(&fep->napi);
1759			fep->link = phy_dev->link;
1760			status_change = 1;
1761		}
1762	}
1763
1764	if (status_change)
1765		phy_print_status(phy_dev);
1766}
1767
1768static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1769{
1770	struct fec_enet_private *fep = bus->priv;
1771	struct device *dev = &fep->pdev->dev;
1772	unsigned long time_left;
1773	int ret = 0;
1774
1775	ret = pm_runtime_get_sync(dev);
1776	if (ret < 0)
1777		return ret;
1778
1779	fep->mii_timeout = 0;
1780	reinit_completion(&fep->mdio_done);
1781
1782	/* start a read op */
1783	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1784		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1785		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1786
1787	/* wait for end of transfer */
1788	time_left = wait_for_completion_timeout(&fep->mdio_done,
1789			usecs_to_jiffies(FEC_MII_TIMEOUT));
1790	if (time_left == 0) {
1791		fep->mii_timeout = 1;
1792		netdev_err(fep->netdev, "MDIO read timeout\n");
1793		ret = -ETIMEDOUT;
1794		goto out;
1795	}
1796
1797	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1798
1799out:
1800	pm_runtime_mark_last_busy(dev);
1801	pm_runtime_put_autosuspend(dev);
1802
1803	return ret;
1804}
1805
1806static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1807			   u16 value)
1808{
1809	struct fec_enet_private *fep = bus->priv;
1810	struct device *dev = &fep->pdev->dev;
1811	unsigned long time_left;
1812	int ret;
1813
1814	ret = pm_runtime_get_sync(dev);
1815	if (ret < 0)
1816		return ret;
1817	else
1818		ret = 0;
1819
1820	fep->mii_timeout = 0;
1821	reinit_completion(&fep->mdio_done);
1822
1823	/* start a write op */
1824	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1825		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1826		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1827		fep->hwp + FEC_MII_DATA);
1828
1829	/* wait for end of transfer */
1830	time_left = wait_for_completion_timeout(&fep->mdio_done,
1831			usecs_to_jiffies(FEC_MII_TIMEOUT));
1832	if (time_left == 0) {
1833		fep->mii_timeout = 1;
1834		netdev_err(fep->netdev, "MDIO write timeout\n");
1835		ret  = -ETIMEDOUT;
1836	}
1837
1838	pm_runtime_mark_last_busy(dev);
1839	pm_runtime_put_autosuspend(dev);
1840
1841	return ret;
1842}
1843
1844static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1845{
1846	struct fec_enet_private *fep = netdev_priv(ndev);
1847	int ret;
1848
1849	if (enable) {
1850		ret = clk_prepare_enable(fep->clk_ahb);
1851		if (ret)
1852			return ret;
1853
1854		ret = clk_prepare_enable(fep->clk_enet_out);
1855		if (ret)
1856			goto failed_clk_enet_out;
1857
1858		if (fep->clk_ptp) {
1859			mutex_lock(&fep->ptp_clk_mutex);
1860			ret = clk_prepare_enable(fep->clk_ptp);
1861			if (ret) {
1862				mutex_unlock(&fep->ptp_clk_mutex);
1863				goto failed_clk_ptp;
1864			} else {
1865				fep->ptp_clk_on = true;
1866			}
1867			mutex_unlock(&fep->ptp_clk_mutex);
1868		}
1869
1870		ret = clk_prepare_enable(fep->clk_ref);
1871		if (ret)
1872			goto failed_clk_ref;
1873
1874		phy_reset_after_clk_enable(ndev->phydev);
1875	} else {
1876		clk_disable_unprepare(fep->clk_ahb);
1877		clk_disable_unprepare(fep->clk_enet_out);
1878		if (fep->clk_ptp) {
1879			mutex_lock(&fep->ptp_clk_mutex);
1880			clk_disable_unprepare(fep->clk_ptp);
1881			fep->ptp_clk_on = false;
1882			mutex_unlock(&fep->ptp_clk_mutex);
1883		}
1884		clk_disable_unprepare(fep->clk_ref);
1885	}
1886
1887	return 0;
1888
1889failed_clk_ref:
1890	if (fep->clk_ref)
1891		clk_disable_unprepare(fep->clk_ref);
1892failed_clk_ptp:
1893	if (fep->clk_enet_out)
1894		clk_disable_unprepare(fep->clk_enet_out);
1895failed_clk_enet_out:
1896		clk_disable_unprepare(fep->clk_ahb);
1897
1898	return ret;
1899}
1900
1901static int fec_enet_mii_probe(struct net_device *ndev)
1902{
1903	struct fec_enet_private *fep = netdev_priv(ndev);
 
 
1904	struct phy_device *phy_dev = NULL;
1905	char mdio_bus_id[MII_BUS_ID_SIZE];
1906	char phy_name[MII_BUS_ID_SIZE + 3];
1907	int phy_id;
1908	int dev_id = fep->dev_id;
1909
1910	if (fep->phy_node) {
1911		phy_dev = of_phy_connect(ndev, fep->phy_node,
1912					 &fec_enet_adjust_link, 0,
1913					 fep->phy_interface);
1914		if (!phy_dev) {
1915			netdev_err(ndev, "Unable to connect to phy\n");
1916			return -ENODEV;
1917		}
1918	} else {
1919		/* check for attached phy */
1920		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1921			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1922				continue;
1923			if (dev_id--)
1924				continue;
1925			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1926			break;
1927		}
1928
1929		if (phy_id >= PHY_MAX_ADDR) {
1930			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1931			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1932			phy_id = 0;
1933		}
 
 
 
 
 
 
 
 
1934
1935		snprintf(phy_name, sizeof(phy_name),
1936			 PHY_ID_FMT, mdio_bus_id, phy_id);
1937		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1938				      fep->phy_interface);
1939	}
1940
 
 
 
1941	if (IS_ERR(phy_dev)) {
1942		netdev_err(ndev, "could not attach to PHY\n");
1943		return PTR_ERR(phy_dev);
1944	}
1945
1946	/* mask with MAC supported features */
1947	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1948		phy_dev->supported &= PHY_GBIT_FEATURES;
1949		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1950#if !defined(CONFIG_M5272)
1951		phy_dev->supported |= SUPPORTED_Pause;
1952#endif
1953	}
1954	else
1955		phy_dev->supported &= PHY_BASIC_FEATURES;
1956
1957	phy_dev->advertising = phy_dev->supported;
1958
 
1959	fep->link = 0;
1960	fep->full_duplex = 0;
1961
1962	phy_attached_info(phy_dev);
 
 
1963
1964	return 0;
1965}
1966
1967static int fec_enet_mii_init(struct platform_device *pdev)
1968{
1969	static struct mii_bus *fec0_mii_bus;
1970	struct net_device *ndev = platform_get_drvdata(pdev);
1971	struct fec_enet_private *fep = netdev_priv(ndev);
1972	struct device_node *node;
1973	int err = -ENXIO;
1974	u32 mii_speed, holdtime;
1975
1976	/*
1977	 * The i.MX28 dual fec interfaces are not equal.
1978	 * Here are the differences:
1979	 *
1980	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1981	 *  - fec0 acts as the 1588 time master while fec1 is slave
1982	 *  - external phys can only be configured by fec0
1983	 *
1984	 * That is to say fec1 can not work independently. It only works
1985	 * when fec0 is working. The reason behind this design is that the
1986	 * second interface is added primarily for Switch mode.
1987	 *
1988	 * Because of the last point above, both phys are attached on fec0
1989	 * mdio interface in board design, and need to be configured by
1990	 * fec0 mii_bus.
1991	 */
1992	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1993		/* fec1 uses fec0 mii_bus */
1994		if (mii_cnt && fec0_mii_bus) {
1995			fep->mii_bus = fec0_mii_bus;
1996			mii_cnt++;
1997			return 0;
1998		}
1999		return -ENOENT;
2000	}
2001
2002	fep->mii_timeout = 0;
2003
2004	/*
2005	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2006	 *
2007	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2008	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2009	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2010	 * document.
2011	 */
2012	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2013	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2014		mii_speed--;
2015	if (mii_speed > 63) {
2016		dev_err(&pdev->dev,
2017			"fec clock (%lu) too fast to get right mii speed\n",
2018			clk_get_rate(fep->clk_ipg));
2019		err = -EINVAL;
2020		goto err_out;
2021	}
2022
2023	/*
2024	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2025	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2026	 * versions are RAZ there, so just ignore the difference and write the
2027	 * register always.
2028	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2029	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2030	 * output.
2031	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2032	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2033	 * holdtime cannot result in a value greater than 3.
2034	 */
2035	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2036
2037	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2038
2039	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2040
2041	fep->mii_bus = mdiobus_alloc();
2042	if (fep->mii_bus == NULL) {
2043		err = -ENOMEM;
2044		goto err_out;
2045	}
2046
2047	fep->mii_bus->name = "fec_enet_mii_bus";
2048	fep->mii_bus->read = fec_enet_mdio_read;
2049	fep->mii_bus->write = fec_enet_mdio_write;
2050	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2051		pdev->name, fep->dev_id + 1);
2052	fep->mii_bus->priv = fep;
2053	fep->mii_bus->parent = &pdev->dev;
2054
2055	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2056	if (node) {
2057		err = of_mdiobus_register(fep->mii_bus, node);
2058		of_node_put(node);
2059	} else {
2060		err = mdiobus_register(fep->mii_bus);
2061	}
2062
2063	if (err)
2064		goto err_out_free_mdiobus;
 
 
 
2065
2066	mii_cnt++;
2067
2068	/* save fec0 mii_bus */
2069	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2070		fec0_mii_bus = fep->mii_bus;
2071
2072	return 0;
2073
 
 
2074err_out_free_mdiobus:
2075	mdiobus_free(fep->mii_bus);
2076err_out:
2077	return err;
2078}
2079
2080static void fec_enet_mii_remove(struct fec_enet_private *fep)
2081{
2082	if (--mii_cnt == 0) {
2083		mdiobus_unregister(fep->mii_bus);
 
2084		mdiobus_free(fep->mii_bus);
2085	}
2086}
2087
2088static void fec_enet_get_drvinfo(struct net_device *ndev,
2089				 struct ethtool_drvinfo *info)
2090{
2091	struct fec_enet_private *fep = netdev_priv(ndev);
 
2092
2093	strlcpy(info->driver, fep->pdev->dev.driver->name,
2094		sizeof(info->driver));
2095	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2096	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2097}
2098
2099static int fec_enet_get_regs_len(struct net_device *ndev)
 
2100{
2101	struct fec_enet_private *fep = netdev_priv(ndev);
2102	struct resource *r;
2103	int s = 0;
2104
2105	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2106	if (r)
2107		s = resource_size(r);
2108
2109	return s;
2110}
2111
2112/* List of registers that can be safety be read to dump them with ethtool */
2113#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2114	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2115	defined(CONFIG_ARM64)
2116static u32 fec_enet_register_offset[] = {
2117	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2118	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2119	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2120	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2121	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2122	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2123	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2124	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2125	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2126	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2127	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2128	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2129	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2130	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2131	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2132	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2133	RMON_T_P_GTE2048, RMON_T_OCTETS,
2134	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2135	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2136	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2137	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2138	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2139	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2140	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2141	RMON_R_P_GTE2048, RMON_R_OCTETS,
2142	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2143	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2144};
2145#else
2146static u32 fec_enet_register_offset[] = {
2147	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2148	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2149	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2150	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2151	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2152	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2153	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2154	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2155	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2156};
2157#endif
2158
2159static void fec_enet_get_regs(struct net_device *ndev,
2160			      struct ethtool_regs *regs, void *regbuf)
2161{
2162	struct fec_enet_private *fep = netdev_priv(ndev);
2163	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2164	u32 *buf = (u32 *)regbuf;
2165	u32 i, off;
2166
2167	memset(buf, 0, regs->len);
2168
2169	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2170		off = fec_enet_register_offset[i] / 4;
2171		buf[off] = readl(&theregs[off]);
2172	}
2173}
2174
2175static int fec_enet_get_ts_info(struct net_device *ndev,
2176				struct ethtool_ts_info *info)
2177{
2178	struct fec_enet_private *fep = netdev_priv(ndev);
2179
2180	if (fep->bufdesc_ex) {
2181
2182		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2183					SOF_TIMESTAMPING_RX_SOFTWARE |
2184					SOF_TIMESTAMPING_SOFTWARE |
2185					SOF_TIMESTAMPING_TX_HARDWARE |
2186					SOF_TIMESTAMPING_RX_HARDWARE |
2187					SOF_TIMESTAMPING_RAW_HARDWARE;
2188		if (fep->ptp_clock)
2189			info->phc_index = ptp_clock_index(fep->ptp_clock);
2190		else
2191			info->phc_index = -1;
2192
2193		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2194				 (1 << HWTSTAMP_TX_ON);
2195
2196		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2197				   (1 << HWTSTAMP_FILTER_ALL);
2198		return 0;
2199	} else {
2200		return ethtool_op_get_ts_info(ndev, info);
2201	}
2202}
2203
2204#if !defined(CONFIG_M5272)
2205
2206static void fec_enet_get_pauseparam(struct net_device *ndev,
2207				    struct ethtool_pauseparam *pause)
2208{
2209	struct fec_enet_private *fep = netdev_priv(ndev);
2210
2211	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2212	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2213	pause->rx_pause = pause->tx_pause;
2214}
2215
2216static int fec_enet_set_pauseparam(struct net_device *ndev,
2217				   struct ethtool_pauseparam *pause)
2218{
2219	struct fec_enet_private *fep = netdev_priv(ndev);
2220
2221	if (!ndev->phydev)
2222		return -ENODEV;
2223
2224	if (pause->tx_pause != pause->rx_pause) {
2225		netdev_info(ndev,
2226			"hardware only support enable/disable both tx and rx");
2227		return -EINVAL;
2228	}
2229
2230	fep->pause_flag = 0;
2231
2232	/* tx pause must be same as rx pause */
2233	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2234	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2235
2236	if (pause->rx_pause || pause->autoneg) {
2237		ndev->phydev->supported |= ADVERTISED_Pause;
2238		ndev->phydev->advertising |= ADVERTISED_Pause;
2239	} else {
2240		ndev->phydev->supported &= ~ADVERTISED_Pause;
2241		ndev->phydev->advertising &= ~ADVERTISED_Pause;
2242	}
2243
2244	if (pause->autoneg) {
2245		if (netif_running(ndev))
2246			fec_stop(ndev);
2247		phy_start_aneg(ndev->phydev);
2248	}
2249	if (netif_running(ndev)) {
2250		napi_disable(&fep->napi);
2251		netif_tx_lock_bh(ndev);
2252		fec_restart(ndev);
2253		netif_wake_queue(ndev);
2254		netif_tx_unlock_bh(ndev);
2255		napi_enable(&fep->napi);
2256	}
 
 
2257
2258	return 0;
2259}
2260
2261static const struct fec_stat {
2262	char name[ETH_GSTRING_LEN];
2263	u16 offset;
2264} fec_stats[] = {
2265	/* RMON TX */
2266	{ "tx_dropped", RMON_T_DROP },
2267	{ "tx_packets", RMON_T_PACKETS },
2268	{ "tx_broadcast", RMON_T_BC_PKT },
2269	{ "tx_multicast", RMON_T_MC_PKT },
2270	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2271	{ "tx_undersize", RMON_T_UNDERSIZE },
2272	{ "tx_oversize", RMON_T_OVERSIZE },
2273	{ "tx_fragment", RMON_T_FRAG },
2274	{ "tx_jabber", RMON_T_JAB },
2275	{ "tx_collision", RMON_T_COL },
2276	{ "tx_64byte", RMON_T_P64 },
2277	{ "tx_65to127byte", RMON_T_P65TO127 },
2278	{ "tx_128to255byte", RMON_T_P128TO255 },
2279	{ "tx_256to511byte", RMON_T_P256TO511 },
2280	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2281	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2282	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2283	{ "tx_octets", RMON_T_OCTETS },
2284
2285	/* IEEE TX */
2286	{ "IEEE_tx_drop", IEEE_T_DROP },
2287	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2288	{ "IEEE_tx_1col", IEEE_T_1COL },
2289	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2290	{ "IEEE_tx_def", IEEE_T_DEF },
2291	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2292	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2293	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2294	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2295	{ "IEEE_tx_sqe", IEEE_T_SQE },
2296	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2297	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2298
2299	/* RMON RX */
2300	{ "rx_packets", RMON_R_PACKETS },
2301	{ "rx_broadcast", RMON_R_BC_PKT },
2302	{ "rx_multicast", RMON_R_MC_PKT },
2303	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2304	{ "rx_undersize", RMON_R_UNDERSIZE },
2305	{ "rx_oversize", RMON_R_OVERSIZE },
2306	{ "rx_fragment", RMON_R_FRAG },
2307	{ "rx_jabber", RMON_R_JAB },
2308	{ "rx_64byte", RMON_R_P64 },
2309	{ "rx_65to127byte", RMON_R_P65TO127 },
2310	{ "rx_128to255byte", RMON_R_P128TO255 },
2311	{ "rx_256to511byte", RMON_R_P256TO511 },
2312	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2313	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2314	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2315	{ "rx_octets", RMON_R_OCTETS },
2316
2317	/* IEEE RX */
2318	{ "IEEE_rx_drop", IEEE_R_DROP },
2319	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2320	{ "IEEE_rx_crc", IEEE_R_CRC },
2321	{ "IEEE_rx_align", IEEE_R_ALIGN },
2322	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2323	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2324	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2325};
2326
2327#define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2328
2329static void fec_enet_update_ethtool_stats(struct net_device *dev)
2330{
2331	struct fec_enet_private *fep = netdev_priv(dev);
2332	int i;
2333
2334	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2335		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2336}
2337
2338static void fec_enet_get_ethtool_stats(struct net_device *dev,
2339				       struct ethtool_stats *stats, u64 *data)
2340{
2341	struct fec_enet_private *fep = netdev_priv(dev);
2342
2343	if (netif_running(dev))
2344		fec_enet_update_ethtool_stats(dev);
2345
2346	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2347}
2348
2349static void fec_enet_get_strings(struct net_device *netdev,
2350	u32 stringset, u8 *data)
2351{
2352	int i;
2353	switch (stringset) {
2354	case ETH_SS_STATS:
2355		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2356			memcpy(data + i * ETH_GSTRING_LEN,
2357				fec_stats[i].name, ETH_GSTRING_LEN);
2358		break;
2359	}
2360}
2361
2362static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2363{
2364	switch (sset) {
2365	case ETH_SS_STATS:
2366		return ARRAY_SIZE(fec_stats);
2367	default:
2368		return -EOPNOTSUPP;
2369	}
2370}
2371
2372static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2373{
2374	struct fec_enet_private *fep = netdev_priv(dev);
2375	int i;
2376
2377	/* Disable MIB statistics counters */
2378	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2379
2380	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2381		writel(0, fep->hwp + fec_stats[i].offset);
2382
2383	/* Don't disable MIB statistics counters */
2384	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2385}
2386
2387#else	/* !defined(CONFIG_M5272) */
2388#define FEC_STATS_SIZE	0
2389static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2390{
2391}
2392
2393static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2394{
2395}
2396#endif /* !defined(CONFIG_M5272) */
2397
2398/* ITR clock source is enet system clock (clk_ahb).
2399 * TCTT unit is cycle_ns * 64 cycle
2400 * So, the ICTT value = X us / (cycle_ns * 64)
2401 */
2402static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2403{
2404	struct fec_enet_private *fep = netdev_priv(ndev);
2405
2406	return us * (fep->itr_clk_rate / 64000) / 1000;
2407}
2408
2409/* Set threshold for interrupt coalescing */
2410static void fec_enet_itr_coal_set(struct net_device *ndev)
2411{
2412	struct fec_enet_private *fep = netdev_priv(ndev);
2413	int rx_itr, tx_itr;
2414
2415	/* Must be greater than zero to avoid unpredictable behavior */
2416	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2417	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2418		return;
2419
2420	/* Select enet system clock as Interrupt Coalescing
2421	 * timer Clock Source
2422	 */
2423	rx_itr = FEC_ITR_CLK_SEL;
2424	tx_itr = FEC_ITR_CLK_SEL;
2425
2426	/* set ICFT and ICTT */
2427	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2428	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2429	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2430	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2431
2432	rx_itr |= FEC_ITR_EN;
2433	tx_itr |= FEC_ITR_EN;
2434
2435	writel(tx_itr, fep->hwp + FEC_TXIC0);
2436	writel(rx_itr, fep->hwp + FEC_RXIC0);
2437	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2438		writel(tx_itr, fep->hwp + FEC_TXIC1);
2439		writel(rx_itr, fep->hwp + FEC_RXIC1);
2440		writel(tx_itr, fep->hwp + FEC_TXIC2);
2441		writel(rx_itr, fep->hwp + FEC_RXIC2);
2442	}
2443}
2444
2445static int
2446fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2447{
2448	struct fec_enet_private *fep = netdev_priv(ndev);
2449
2450	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2451		return -EOPNOTSUPP;
2452
2453	ec->rx_coalesce_usecs = fep->rx_time_itr;
2454	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2455
2456	ec->tx_coalesce_usecs = fep->tx_time_itr;
2457	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2458
2459	return 0;
2460}
2461
2462static int
2463fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2464{
2465	struct fec_enet_private *fep = netdev_priv(ndev);
2466	unsigned int cycle;
2467
2468	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2469		return -EOPNOTSUPP;
2470
2471	if (ec->rx_max_coalesced_frames > 255) {
2472		pr_err("Rx coalesced frames exceed hardware limitation\n");
2473		return -EINVAL;
2474	}
2475
2476	if (ec->tx_max_coalesced_frames > 255) {
2477		pr_err("Tx coalesced frame exceed hardware limitation\n");
2478		return -EINVAL;
2479	}
2480
2481	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2482	if (cycle > 0xFFFF) {
2483		pr_err("Rx coalesced usec exceed hardware limitation\n");
2484		return -EINVAL;
2485	}
2486
2487	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2488	if (cycle > 0xFFFF) {
2489		pr_err("Rx coalesced usec exceed hardware limitation\n");
2490		return -EINVAL;
2491	}
2492
2493	fep->rx_time_itr = ec->rx_coalesce_usecs;
2494	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2495
2496	fep->tx_time_itr = ec->tx_coalesce_usecs;
2497	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2498
2499	fec_enet_itr_coal_set(ndev);
2500
2501	return 0;
2502}
2503
2504static void fec_enet_itr_coal_init(struct net_device *ndev)
2505{
2506	struct ethtool_coalesce ec;
2507
2508	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2509	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2510
2511	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2512	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2513
2514	fec_enet_set_coalesce(ndev, &ec);
2515}
2516
2517static int fec_enet_get_tunable(struct net_device *netdev,
2518				const struct ethtool_tunable *tuna,
2519				void *data)
2520{
2521	struct fec_enet_private *fep = netdev_priv(netdev);
2522	int ret = 0;
2523
2524	switch (tuna->id) {
2525	case ETHTOOL_RX_COPYBREAK:
2526		*(u32 *)data = fep->rx_copybreak;
2527		break;
2528	default:
2529		ret = -EINVAL;
2530		break;
2531	}
2532
2533	return ret;
2534}
2535
2536static int fec_enet_set_tunable(struct net_device *netdev,
2537				const struct ethtool_tunable *tuna,
2538				const void *data)
2539{
2540	struct fec_enet_private *fep = netdev_priv(netdev);
2541	int ret = 0;
2542
2543	switch (tuna->id) {
2544	case ETHTOOL_RX_COPYBREAK:
2545		fep->rx_copybreak = *(u32 *)data;
2546		break;
2547	default:
2548		ret = -EINVAL;
2549		break;
2550	}
2551
2552	return ret;
2553}
2554
2555static void
2556fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2557{
2558	struct fec_enet_private *fep = netdev_priv(ndev);
2559
2560	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2561		wol->supported = WAKE_MAGIC;
2562		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2563	} else {
2564		wol->supported = wol->wolopts = 0;
2565	}
2566}
2567
2568static int
2569fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2570{
2571	struct fec_enet_private *fep = netdev_priv(ndev);
2572
2573	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2574		return -EINVAL;
2575
2576	if (wol->wolopts & ~WAKE_MAGIC)
2577		return -EINVAL;
2578
2579	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2580	if (device_may_wakeup(&ndev->dev)) {
2581		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2582		if (fep->irq[0] > 0)
2583			enable_irq_wake(fep->irq[0]);
2584	} else {
2585		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2586		if (fep->irq[0] > 0)
2587			disable_irq_wake(fep->irq[0]);
2588	}
2589
2590	return 0;
2591}
2592
2593static const struct ethtool_ops fec_enet_ethtool_ops = {
 
 
 
 
 
 
2594	.get_drvinfo		= fec_enet_get_drvinfo,
2595	.get_regs_len		= fec_enet_get_regs_len,
2596	.get_regs		= fec_enet_get_regs,
2597	.nway_reset		= phy_ethtool_nway_reset,
2598	.get_link		= ethtool_op_get_link,
2599	.get_coalesce		= fec_enet_get_coalesce,
2600	.set_coalesce		= fec_enet_set_coalesce,
2601#ifndef CONFIG_M5272
2602	.get_pauseparam		= fec_enet_get_pauseparam,
2603	.set_pauseparam		= fec_enet_set_pauseparam,
2604	.get_strings		= fec_enet_get_strings,
2605	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
 
2606	.get_sset_count		= fec_enet_get_sset_count,
2607#endif
2608	.get_ts_info		= fec_enet_get_ts_info,
2609	.get_tunable		= fec_enet_get_tunable,
2610	.set_tunable		= fec_enet_set_tunable,
2611	.get_wol		= fec_enet_get_wol,
2612	.set_wol		= fec_enet_set_wol,
2613	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2614	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2615};
2616
2617static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2618{
2619	struct fec_enet_private *fep = netdev_priv(ndev);
2620	struct phy_device *phydev = ndev->phydev;
2621
2622	if (!netif_running(ndev))
2623		return -EINVAL;
2624
2625	if (!phydev)
2626		return -ENODEV;
2627
2628	if (fep->bufdesc_ex) {
2629		if (cmd == SIOCSHWTSTAMP)
2630			return fec_ptp_set(ndev, rq);
2631		if (cmd == SIOCGHWTSTAMP)
2632			return fec_ptp_get(ndev, rq);
2633	}
2634
2635	return phy_mii_ioctl(phydev, rq, cmd);
2636}
2637
2638static void fec_enet_free_buffers(struct net_device *ndev)
2639{
2640	struct fec_enet_private *fep = netdev_priv(ndev);
2641	unsigned int i;
2642	struct sk_buff *skb;
2643	struct bufdesc	*bdp;
2644	struct fec_enet_priv_tx_q *txq;
2645	struct fec_enet_priv_rx_q *rxq;
2646	unsigned int q;
2647
2648	for (q = 0; q < fep->num_rx_queues; q++) {
2649		rxq = fep->rx_queue[q];
2650		bdp = rxq->bd.base;
2651		for (i = 0; i < rxq->bd.ring_size; i++) {
2652			skb = rxq->rx_skbuff[i];
2653			rxq->rx_skbuff[i] = NULL;
2654			if (skb) {
2655				dma_unmap_single(&fep->pdev->dev,
2656						 fec32_to_cpu(bdp->cbd_bufaddr),
2657						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2658						 DMA_FROM_DEVICE);
2659				dev_kfree_skb(skb);
2660			}
2661			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2662		}
2663	}
2664
2665	for (q = 0; q < fep->num_tx_queues; q++) {
2666		txq = fep->tx_queue[q];
2667		bdp = txq->bd.base;
2668		for (i = 0; i < txq->bd.ring_size; i++) {
2669			kfree(txq->tx_bounce[i]);
2670			txq->tx_bounce[i] = NULL;
2671			skb = txq->tx_skbuff[i];
2672			txq->tx_skbuff[i] = NULL;
2673			dev_kfree_skb(skb);
2674		}
2675	}
2676}
2677
2678static void fec_enet_free_queue(struct net_device *ndev)
2679{
2680	struct fec_enet_private *fep = netdev_priv(ndev);
2681	int i;
2682	struct fec_enet_priv_tx_q *txq;
2683
2684	for (i = 0; i < fep->num_tx_queues; i++)
2685		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2686			txq = fep->tx_queue[i];
2687			dma_free_coherent(&fep->pdev->dev,
2688					  txq->bd.ring_size * TSO_HEADER_SIZE,
2689					  txq->tso_hdrs,
2690					  txq->tso_hdrs_dma);
2691		}
2692
2693	for (i = 0; i < fep->num_rx_queues; i++)
2694		kfree(fep->rx_queue[i]);
2695	for (i = 0; i < fep->num_tx_queues; i++)
2696		kfree(fep->tx_queue[i]);
2697}
2698
2699static int fec_enet_alloc_queue(struct net_device *ndev)
2700{
2701	struct fec_enet_private *fep = netdev_priv(ndev);
2702	int i;
2703	int ret = 0;
2704	struct fec_enet_priv_tx_q *txq;
2705
2706	for (i = 0; i < fep->num_tx_queues; i++) {
2707		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2708		if (!txq) {
2709			ret = -ENOMEM;
2710			goto alloc_failed;
2711		}
2712
2713		fep->tx_queue[i] = txq;
2714		txq->bd.ring_size = TX_RING_SIZE;
2715		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2716
2717		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2718		txq->tx_wake_threshold =
2719			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2720
2721		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2722					txq->bd.ring_size * TSO_HEADER_SIZE,
2723					&txq->tso_hdrs_dma,
2724					GFP_KERNEL);
2725		if (!txq->tso_hdrs) {
2726			ret = -ENOMEM;
2727			goto alloc_failed;
2728		}
2729	}
2730
2731	for (i = 0; i < fep->num_rx_queues; i++) {
2732		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2733					   GFP_KERNEL);
2734		if (!fep->rx_queue[i]) {
2735			ret = -ENOMEM;
2736			goto alloc_failed;
2737		}
2738
2739		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2740		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2741	}
2742	return ret;
2743
2744alloc_failed:
2745	fec_enet_free_queue(ndev);
2746	return ret;
2747}
2748
2749static int
2750fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2751{
2752	struct fec_enet_private *fep = netdev_priv(ndev);
2753	unsigned int i;
2754	struct sk_buff *skb;
2755	struct bufdesc	*bdp;
2756	struct fec_enet_priv_rx_q *rxq;
2757
2758	rxq = fep->rx_queue[queue];
2759	bdp = rxq->bd.base;
2760	for (i = 0; i < rxq->bd.ring_size; i++) {
2761		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2762		if (!skb)
2763			goto err_alloc;
2764
2765		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2766			dev_kfree_skb(skb);
2767			goto err_alloc;
2768		}
 
2769
2770		rxq->rx_skbuff[i] = skb;
2771		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
 
 
 
 
 
 
 
2772
2773		if (fep->bufdesc_ex) {
2774			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2775			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2776		}
2777
2778		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2779	}
2780
2781	/* Set the last buffer to wrap. */
2782	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2783	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2784	return 0;
2785
2786 err_alloc:
2787	fec_enet_free_buffers(ndev);
2788	return -ENOMEM;
2789}
2790
2791static int
2792fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2793{
2794	struct fec_enet_private *fep = netdev_priv(ndev);
2795	unsigned int i;
2796	struct bufdesc  *bdp;
2797	struct fec_enet_priv_tx_q *txq;
2798
2799	txq = fep->tx_queue[queue];
2800	bdp = txq->bd.base;
2801	for (i = 0; i < txq->bd.ring_size; i++) {
2802		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2803		if (!txq->tx_bounce[i])
2804			goto err_alloc;
2805
2806		bdp->cbd_sc = cpu_to_fec16(0);
2807		bdp->cbd_bufaddr = cpu_to_fec32(0);
2808
2809		if (fep->bufdesc_ex) {
2810			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2811			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2812		}
2813
2814		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2815	}
2816
2817	/* Set the last buffer to wrap. */
2818	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2819	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2820
2821	return 0;
2822
2823 err_alloc:
2824	fec_enet_free_buffers(ndev);
2825	return -ENOMEM;
2826}
2827
2828static int fec_enet_alloc_buffers(struct net_device *ndev)
2829{
2830	struct fec_enet_private *fep = netdev_priv(ndev);
2831	unsigned int i;
2832
2833	for (i = 0; i < fep->num_rx_queues; i++)
2834		if (fec_enet_alloc_rxq_buffers(ndev, i))
2835			return -ENOMEM;
2836
2837	for (i = 0; i < fep->num_tx_queues; i++)
2838		if (fec_enet_alloc_txq_buffers(ndev, i))
2839			return -ENOMEM;
2840	return 0;
2841}
2842
2843static int
2844fec_enet_open(struct net_device *ndev)
2845{
2846	struct fec_enet_private *fep = netdev_priv(ndev);
2847	int ret;
2848	bool reset_again;
2849
2850	ret = pm_runtime_get_sync(&fep->pdev->dev);
2851	if (ret < 0)
2852		return ret;
2853
2854	pinctrl_pm_select_default_state(&fep->pdev->dev);
2855	ret = fec_enet_clk_enable(ndev, true);
2856	if (ret)
2857		goto clk_enable;
2858
2859	/* During the first fec_enet_open call the PHY isn't probed at this
2860	 * point. Therefore the phy_reset_after_clk_enable() call within
2861	 * fec_enet_clk_enable() fails. As we need this reset in order to be
2862	 * sure the PHY is working correctly we check if we need to reset again
2863	 * later when the PHY is probed
2864	 */
2865	if (ndev->phydev && ndev->phydev->drv)
2866		reset_again = false;
2867	else
2868		reset_again = true;
2869
2870	/* I should reset the ring buffers here, but I don't yet know
2871	 * a simple way to do that.
2872	 */
2873
2874	ret = fec_enet_alloc_buffers(ndev);
2875	if (ret)
2876		goto err_enet_alloc;
2877
2878	/* Init MAC prior to mii bus probe */
2879	fec_restart(ndev);
2880
2881	/* Probe and connect to PHY when open the interface */
2882	ret = fec_enet_mii_probe(ndev);
2883	if (ret)
2884		goto err_enet_mii_probe;
2885
2886	/* Call phy_reset_after_clk_enable() again if it failed during
2887	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2888	 */
2889	if (reset_again)
2890		phy_reset_after_clk_enable(ndev->phydev);
2891
2892	if (fep->quirks & FEC_QUIRK_ERR006687)
2893		imx6q_cpuidle_fec_irqs_used();
2894
2895	napi_enable(&fep->napi);
2896	phy_start(ndev->phydev);
2897	netif_tx_start_all_queues(ndev);
2898
2899	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2900				 FEC_WOL_FLAG_ENABLE);
2901
2902	return 0;
2903
2904err_enet_mii_probe:
2905	fec_enet_free_buffers(ndev);
2906err_enet_alloc:
2907	fec_enet_clk_enable(ndev, false);
2908clk_enable:
2909	pm_runtime_mark_last_busy(&fep->pdev->dev);
2910	pm_runtime_put_autosuspend(&fep->pdev->dev);
2911	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2912	return ret;
2913}
2914
2915static int
2916fec_enet_close(struct net_device *ndev)
2917{
2918	struct fec_enet_private *fep = netdev_priv(ndev);
2919
2920	phy_stop(ndev->phydev);
2921
2922	if (netif_device_present(ndev)) {
2923		napi_disable(&fep->napi);
2924		netif_tx_disable(ndev);
2925		fec_stop(ndev);
 
 
 
2926	}
2927
2928	phy_disconnect(ndev->phydev);
2929
2930	if (fep->quirks & FEC_QUIRK_ERR006687)
2931		imx6q_cpuidle_fec_irqs_unused();
2932
2933	fec_enet_update_ethtool_stats(ndev);
2934
2935	fec_enet_clk_enable(ndev, false);
2936	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2937	pm_runtime_mark_last_busy(&fep->pdev->dev);
2938	pm_runtime_put_autosuspend(&fep->pdev->dev);
2939
2940	fec_enet_free_buffers(ndev);
2941
2942	return 0;
2943}
2944
2945/* Set or clear the multicast filter for this adaptor.
2946 * Skeleton taken from sunlance driver.
2947 * The CPM Ethernet implementation allows Multicast as well as individual
2948 * MAC address filtering.  Some of the drivers check to make sure it is
2949 * a group multicast address, and discard those that are not.  I guess I
2950 * will do the same for now, but just remove the test if you want
2951 * individual filtering as well (do the upper net layers want or support
2952 * this kind of feature?).
2953 */
2954
2955#define FEC_HASH_BITS	6		/* #bits in hash */
2956#define CRC32_POLY	0xEDB88320
2957
2958static void set_multicast_list(struct net_device *ndev)
2959{
2960	struct fec_enet_private *fep = netdev_priv(ndev);
2961	struct netdev_hw_addr *ha;
2962	unsigned int i, bit, data, crc, tmp;
2963	unsigned char hash;
2964	unsigned int hash_high = 0, hash_low = 0;
2965
2966	if (ndev->flags & IFF_PROMISC) {
2967		tmp = readl(fep->hwp + FEC_R_CNTRL);
2968		tmp |= 0x8;
2969		writel(tmp, fep->hwp + FEC_R_CNTRL);
2970		return;
2971	}
2972
2973	tmp = readl(fep->hwp + FEC_R_CNTRL);
2974	tmp &= ~0x8;
2975	writel(tmp, fep->hwp + FEC_R_CNTRL);
2976
2977	if (ndev->flags & IFF_ALLMULTI) {
2978		/* Catch all multicast addresses, so set the
2979		 * filter to all 1's
2980		 */
2981		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2982		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2983
2984		return;
2985	}
2986
2987	/* Add the addresses in hash register */
 
 
 
 
2988	netdev_for_each_mc_addr(ha, ndev) {
2989		/* calculate crc32 value of mac address */
2990		crc = 0xffffffff;
2991
2992		for (i = 0; i < ndev->addr_len; i++) {
2993			data = ha->addr[i];
2994			for (bit = 0; bit < 8; bit++, data >>= 1) {
2995				crc = (crc >> 1) ^
2996				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2997			}
2998		}
2999
3000		/* only upper 6 bits (FEC_HASH_BITS) are used
3001		 * which point to specific bit in the hash registers
3002		 */
3003		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3004
3005		if (hash > 31)
3006			hash_high |= 1 << (hash - 32);
3007		else
3008			hash_low |= 1 << hash;
 
 
 
 
 
3009	}
3010
3011	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3012	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3013}
3014
3015/* Set a MAC change in hardware. */
3016static int
3017fec_set_mac_address(struct net_device *ndev, void *p)
3018{
3019	struct fec_enet_private *fep = netdev_priv(ndev);
3020	struct sockaddr *addr = p;
3021
3022	if (addr) {
3023		if (!is_valid_ether_addr(addr->sa_data))
3024			return -EADDRNOTAVAIL;
3025		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3026	}
3027
3028	/* Add netif status check here to avoid system hang in below case:
3029	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3030	 * After ethx down, fec all clocks are gated off and then register
3031	 * access causes system hang.
3032	 */
3033	if (!netif_running(ndev))
3034		return 0;
3035
3036	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3037		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3038		fep->hwp + FEC_ADDR_LOW);
3039	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3040		fep->hwp + FEC_ADDR_HIGH);
3041	return 0;
3042}
3043
3044#ifdef CONFIG_NET_POLL_CONTROLLER
3045/**
3046 * fec_poll_controller - FEC Poll controller function
3047 * @dev: The FEC network adapter
3048 *
3049 * Polled functionality used by netconsole and others in non interrupt mode
3050 *
3051 */
3052static void fec_poll_controller(struct net_device *dev)
3053{
3054	int i;
3055	struct fec_enet_private *fep = netdev_priv(dev);
3056
3057	for (i = 0; i < FEC_IRQ_NUM; i++) {
3058		if (fep->irq[i] > 0) {
3059			disable_irq(fep->irq[i]);
3060			fec_enet_interrupt(fep->irq[i], dev);
3061			enable_irq(fep->irq[i]);
3062		}
3063	}
3064}
3065#endif
3066
3067static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3068	netdev_features_t features)
3069{
3070	struct fec_enet_private *fep = netdev_priv(netdev);
3071	netdev_features_t changed = features ^ netdev->features;
3072
3073	netdev->features = features;
3074
3075	/* Receive checksum has been changed */
3076	if (changed & NETIF_F_RXCSUM) {
3077		if (features & NETIF_F_RXCSUM)
3078			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3079		else
3080			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3081	}
3082}
3083
3084static int fec_set_features(struct net_device *netdev,
3085	netdev_features_t features)
3086{
3087	struct fec_enet_private *fep = netdev_priv(netdev);
3088	netdev_features_t changed = features ^ netdev->features;
3089
3090	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3091		napi_disable(&fep->napi);
3092		netif_tx_lock_bh(netdev);
3093		fec_stop(netdev);
3094		fec_enet_set_netdev_features(netdev, features);
3095		fec_restart(netdev);
3096		netif_tx_wake_all_queues(netdev);
3097		netif_tx_unlock_bh(netdev);
3098		napi_enable(&fep->napi);
3099	} else {
3100		fec_enet_set_netdev_features(netdev, features);
3101	}
3102
3103	return 0;
3104}
3105
3106static const struct net_device_ops fec_netdev_ops = {
3107	.ndo_open		= fec_enet_open,
3108	.ndo_stop		= fec_enet_close,
3109	.ndo_start_xmit		= fec_enet_start_xmit,
3110	.ndo_set_rx_mode	= set_multicast_list,
 
3111	.ndo_validate_addr	= eth_validate_addr,
3112	.ndo_tx_timeout		= fec_timeout,
3113	.ndo_set_mac_address	= fec_set_mac_address,
3114	.ndo_do_ioctl		= fec_enet_ioctl,
3115#ifdef CONFIG_NET_POLL_CONTROLLER
3116	.ndo_poll_controller	= fec_poll_controller,
3117#endif
3118	.ndo_set_features	= fec_set_features,
3119};
3120
3121static const unsigned short offset_des_active_rxq[] = {
3122	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3123};
3124
3125static const unsigned short offset_des_active_txq[] = {
3126	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3127};
3128
3129 /*
3130  * XXX:  We need to clean up on failure exits here.
3131  *
3132  */
3133static int fec_enet_init(struct net_device *ndev)
3134{
3135	struct fec_enet_private *fep = netdev_priv(ndev);
 
 
3136	struct bufdesc *cbd_base;
3137	dma_addr_t bd_dma;
3138	int bd_size;
3139	unsigned int i;
3140	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3141			sizeof(struct bufdesc);
3142	unsigned dsize_log2 = __fls(dsize);
3143
3144	WARN_ON(dsize != (1 << dsize_log2));
3145#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3146	fep->rx_align = 0xf;
3147	fep->tx_align = 0xf;
3148#else
3149	fep->rx_align = 0x3;
3150	fep->tx_align = 0x3;
3151#endif
3152
3153	fec_enet_alloc_queue(ndev);
3154
3155	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3156
3157	/* Allocate memory for buffer descriptors. */
3158	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3159				       GFP_KERNEL);
3160	if (!cbd_base) {
3161		return -ENOMEM;
3162	}
3163
3164	memset(cbd_base, 0, bd_size);
 
 
3165
3166	/* Get the Ethernet address */
3167	fec_get_mac(ndev);
3168	/* make sure MAC we just acquired is programmed into the hw */
3169	fec_set_mac_address(ndev, NULL);
3170
3171	/* Set receive and transmit descriptor base. */
3172	for (i = 0; i < fep->num_rx_queues; i++) {
3173		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3174		unsigned size = dsize * rxq->bd.ring_size;
3175
3176		rxq->bd.qid = i;
3177		rxq->bd.base = cbd_base;
3178		rxq->bd.cur = cbd_base;
3179		rxq->bd.dma = bd_dma;
3180		rxq->bd.dsize = dsize;
3181		rxq->bd.dsize_log2 = dsize_log2;
3182		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3183		bd_dma += size;
3184		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3185		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3186	}
3187
3188	for (i = 0; i < fep->num_tx_queues; i++) {
3189		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3190		unsigned size = dsize * txq->bd.ring_size;
3191
3192		txq->bd.qid = i;
3193		txq->bd.base = cbd_base;
3194		txq->bd.cur = cbd_base;
3195		txq->bd.dma = bd_dma;
3196		txq->bd.dsize = dsize;
3197		txq->bd.dsize_log2 = dsize_log2;
3198		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3199		bd_dma += size;
3200		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3201		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3202	}
3203
 
 
 
 
 
 
 
3204
3205	/* The FEC Ethernet specific entries in the device structure */
3206	ndev->watchdog_timeo = TX_TIMEOUT;
3207	ndev->netdev_ops = &fec_netdev_ops;
3208	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3209
3210	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3211	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3212
3213	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3214		/* enable hw VLAN support */
3215		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
 
 
3216
3217	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3218		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3219
3220		/* enable hw accelerator */
3221		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3222				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
 
 
3223		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3224	}
3225
3226	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3227		fep->tx_align = 0;
3228		fep->rx_align = 0x3f;
3229	}
3230
3231	ndev->hw_features = ndev->features;
3232
3233	fec_restart(ndev);
3234
3235	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3236		fec_enet_clear_ethtool_stats(ndev);
3237	else
3238		fec_enet_update_ethtool_stats(ndev);
3239
3240	return 0;
3241}
3242
3243#ifdef CONFIG_OF
3244static int fec_reset_phy(struct platform_device *pdev)
3245{
3246	int err, phy_reset;
3247	bool active_high = false;
3248	int msec = 1, phy_post_delay = 0;
3249	struct device_node *np = pdev->dev.of_node;
3250
3251	if (!np)
3252		return 0;
3253
3254	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3255	/* A sane reset duration should not be longer than 1s */
3256	if (!err && msec > 1000)
3257		msec = 1;
3258
3259	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3260	if (phy_reset == -EPROBE_DEFER)
3261		return phy_reset;
3262	else if (!gpio_is_valid(phy_reset))
3263		return 0;
3264
3265	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3266	/* valid reset duration should be less than 1s */
3267	if (!err && phy_post_delay > 1000)
3268		return -EINVAL;
3269
3270	active_high = of_property_read_bool(np, "phy-reset-active-high");
3271
3272	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3273			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3274			"phy-reset");
3275	if (err) {
3276		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3277		return err;
3278	}
3279
3280	if (msec > 20)
3281		msleep(msec);
3282	else
3283		usleep_range(msec * 1000, msec * 1000 + 1000);
3284
3285	gpio_set_value_cansleep(phy_reset, !active_high);
3286
3287	if (!phy_post_delay)
3288		return 0;
3289
3290	if (phy_post_delay > 20)
3291		msleep(phy_post_delay);
3292	else
3293		usleep_range(phy_post_delay * 1000,
3294			     phy_post_delay * 1000 + 1000);
3295
3296	return 0;
3297}
3298#else /* CONFIG_OF */
3299static int fec_reset_phy(struct platform_device *pdev)
3300{
3301	/*
3302	 * In case of platform probe, the reset has been done
3303	 * by machine code.
3304	 */
3305	return 0;
3306}
3307#endif /* CONFIG_OF */
3308
3309static void
3310fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3311{
3312	struct device_node *np = pdev->dev.of_node;
3313
3314	*num_tx = *num_rx = 1;
3315
3316	if (!np || !of_device_is_available(np))
3317		return;
3318
3319	/* parse the num of tx and rx queues */
3320	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3321
3322	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3323
3324	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3325		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3326			 *num_tx);
3327		*num_tx = 1;
3328		return;
3329	}
3330
3331	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3332		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3333			 *num_rx);
3334		*num_rx = 1;
3335		return;
3336	}
3337
3338}
3339
3340static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3341{
3342	int irq_cnt = platform_irq_count(pdev);
3343
3344	if (irq_cnt > FEC_IRQ_NUM)
3345		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3346	else if (irq_cnt == 2)
3347		irq_cnt = 1;	/* last for pps */
3348	else if (irq_cnt <= 0)
3349		irq_cnt = 1;	/* At least 1 irq is needed */
3350	return irq_cnt;
3351}
3352
3353static int
3354fec_probe(struct platform_device *pdev)
3355{
3356	struct fec_enet_private *fep;
3357	struct fec_platform_data *pdata;
3358	struct net_device *ndev;
3359	int i, irq, ret = 0;
3360	struct resource *r;
3361	const struct of_device_id *of_id;
3362	static int dev_id;
3363	struct device_node *np = pdev->dev.of_node, *phy_node;
3364	int num_tx_qs;
3365	int num_rx_qs;
3366	char irq_name[8];
3367	int irq_cnt;
3368
3369	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
 
 
3370
3371	/* Init network device */
3372	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3373				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3374	if (!ndev)
3375		return -ENOMEM;
3376
3377	SET_NETDEV_DEV(ndev, &pdev->dev);
3378
3379	/* setup board info structure */
3380	fep = netdev_priv(ndev);
3381
3382	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3383	if (of_id)
3384		pdev->id_entry = of_id->data;
3385	fep->quirks = pdev->id_entry->driver_data;
3386
3387	fep->netdev = ndev;
3388	fep->num_rx_queues = num_rx_qs;
3389	fep->num_tx_queues = num_tx_qs;
3390
3391#if !defined(CONFIG_M5272)
3392	/* default enable pause frame auto negotiation */
3393	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
 
3394		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3395#endif
3396
3397	/* Select default pin state */
3398	pinctrl_pm_select_default_state(&pdev->dev);
3399
3400	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3401	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3402	if (IS_ERR(fep->hwp)) {
3403		ret = PTR_ERR(fep->hwp);
3404		goto failed_ioremap;
3405	}
3406
3407	fep->pdev = pdev;
3408	fep->dev_id = dev_id++;
3409
3410	platform_set_drvdata(pdev, ndev);
3411
3412	if ((of_machine_is_compatible("fsl,imx6q") ||
3413	     of_machine_is_compatible("fsl,imx6dl")) &&
3414	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3415		fep->quirks |= FEC_QUIRK_ERR006687;
3416
3417	if (of_get_property(np, "fsl,magic-packet", NULL))
3418		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3419
3420	phy_node = of_parse_phandle(np, "phy-handle", 0);
3421	if (!phy_node && of_phy_is_fixed_link(np)) {
3422		ret = of_phy_register_fixed_link(np);
3423		if (ret < 0) {
3424			dev_err(&pdev->dev,
3425				"broken fixed-link specification\n");
3426			goto failed_phy;
3427		}
3428		phy_node = of_node_get(np);
3429	}
3430	fep->phy_node = phy_node;
3431
3432	ret = of_get_phy_mode(pdev->dev.of_node);
3433	if (ret < 0) {
3434		pdata = dev_get_platdata(&pdev->dev);
3435		if (pdata)
3436			fep->phy_interface = pdata->phy;
3437		else
3438			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3439	} else {
3440		fep->phy_interface = ret;
3441	}
3442
3443	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3444	if (IS_ERR(fep->clk_ipg)) {
3445		ret = PTR_ERR(fep->clk_ipg);
3446		goto failed_clk;
3447	}
3448
3449	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3450	if (IS_ERR(fep->clk_ahb)) {
3451		ret = PTR_ERR(fep->clk_ahb);
3452		goto failed_clk;
3453	}
3454
3455	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3456
3457	/* enet_out is optional, depends on board */
3458	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3459	if (IS_ERR(fep->clk_enet_out))
3460		fep->clk_enet_out = NULL;
3461
3462	fep->ptp_clk_on = false;
3463	mutex_init(&fep->ptp_clk_mutex);
3464
3465	/* clk_ref is optional, depends on board */
3466	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3467	if (IS_ERR(fep->clk_ref))
3468		fep->clk_ref = NULL;
3469
3470	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3471	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
 
 
3472	if (IS_ERR(fep->clk_ptp)) {
3473		fep->clk_ptp = NULL;
3474		fep->bufdesc_ex = false;
3475	}
3476
3477	ret = fec_enet_clk_enable(ndev, true);
3478	if (ret)
3479		goto failed_clk;
3480
3481	ret = clk_prepare_enable(fep->clk_ipg);
3482	if (ret)
3483		goto failed_clk_ipg;
3484
 
 
 
 
 
 
 
 
 
 
 
 
3485	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3486	if (!IS_ERR(fep->reg_phy)) {
3487		ret = regulator_enable(fep->reg_phy);
3488		if (ret) {
3489			dev_err(&pdev->dev,
3490				"Failed to enable phy regulator: %d\n", ret);
3491			clk_disable_unprepare(fep->clk_ipg);
3492			goto failed_regulator;
3493		}
3494	} else {
3495		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3496			ret = -EPROBE_DEFER;
3497			goto failed_regulator;
3498		}
3499		fep->reg_phy = NULL;
3500	}
3501
3502	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3503	pm_runtime_use_autosuspend(&pdev->dev);
3504	pm_runtime_get_noresume(&pdev->dev);
3505	pm_runtime_set_active(&pdev->dev);
3506	pm_runtime_enable(&pdev->dev);
3507
3508	ret = fec_reset_phy(pdev);
3509	if (ret)
3510		goto failed_reset;
3511
3512	irq_cnt = fec_enet_get_irq_cnt(pdev);
3513	if (fep->bufdesc_ex)
3514		fec_ptp_init(pdev, irq_cnt);
3515
3516	ret = fec_enet_init(ndev);
3517	if (ret)
3518		goto failed_init;
3519
3520	for (i = 0; i < irq_cnt; i++) {
3521		sprintf(irq_name, "int%d", i);
3522		irq = platform_get_irq_byname(pdev, irq_name);
3523		if (irq < 0)
3524			irq = platform_get_irq(pdev, i);
3525		if (irq < 0) {
 
 
3526			ret = irq;
3527			goto failed_irq;
3528		}
3529		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3530				       0, pdev->name, ndev);
3531		if (ret)
3532			goto failed_irq;
3533
3534		fep->irq[i] = irq;
3535	}
3536
3537	init_completion(&fep->mdio_done);
3538	ret = fec_enet_mii_init(pdev);
3539	if (ret)
3540		goto failed_mii_init;
3541
3542	/* Carrier starts down, phylib will bring it up */
3543	netif_carrier_off(ndev);
3544	fec_enet_clk_enable(ndev, false);
3545	pinctrl_pm_select_sleep_state(&pdev->dev);
3546
3547	ret = register_netdev(ndev);
3548	if (ret)
3549		goto failed_register;
3550
3551	device_init_wakeup(&ndev->dev, fep->wol_flag &
3552			   FEC_WOL_HAS_MAGIC_PACKET);
3553
3554	if (fep->bufdesc_ex && fep->ptp_clock)
3555		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3556
3557	fep->rx_copybreak = COPYBREAK_DEFAULT;
3558	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3559
3560	pm_runtime_mark_last_busy(&pdev->dev);
3561	pm_runtime_put_autosuspend(&pdev->dev);
3562
3563	return 0;
3564
3565failed_register:
3566	fec_enet_mii_remove(fep);
3567failed_mii_init:
3568failed_irq:
3569failed_init:
3570	fec_ptp_stop(pdev);
3571	if (fep->reg_phy)
3572		regulator_disable(fep->reg_phy);
3573failed_reset:
3574	pm_runtime_put(&pdev->dev);
3575	pm_runtime_disable(&pdev->dev);
3576failed_regulator:
 
 
 
 
 
 
 
3577failed_clk_ipg:
3578	fec_enet_clk_enable(ndev, false);
3579failed_clk:
3580	if (of_phy_is_fixed_link(np))
3581		of_phy_deregister_fixed_link(np);
3582	of_node_put(phy_node);
3583failed_phy:
3584	dev_id--;
3585failed_ioremap:
3586	free_netdev(ndev);
3587
3588	return ret;
3589}
3590
3591static int
3592fec_drv_remove(struct platform_device *pdev)
3593{
3594	struct net_device *ndev = platform_get_drvdata(pdev);
3595	struct fec_enet_private *fep = netdev_priv(ndev);
3596	struct device_node *np = pdev->dev.of_node;
3597
3598	cancel_work_sync(&fep->tx_timeout_work);
3599	fec_ptp_stop(pdev);
3600	unregister_netdev(ndev);
3601	fec_enet_mii_remove(fep);
 
3602	if (fep->reg_phy)
3603		regulator_disable(fep->reg_phy);
3604	pm_runtime_put(&pdev->dev);
3605	pm_runtime_disable(&pdev->dev);
3606	if (of_phy_is_fixed_link(np))
3607		of_phy_deregister_fixed_link(np);
3608	of_node_put(fep->phy_node);
 
 
 
3609	free_netdev(ndev);
3610
3611	return 0;
3612}
3613
3614static int __maybe_unused fec_suspend(struct device *dev)
 
 
3615{
3616	struct net_device *ndev = dev_get_drvdata(dev);
3617	struct fec_enet_private *fep = netdev_priv(ndev);
3618
3619	rtnl_lock();
3620	if (netif_running(ndev)) {
3621		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3622			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3623		phy_stop(ndev->phydev);
3624		napi_disable(&fep->napi);
3625		netif_tx_lock_bh(ndev);
3626		netif_device_detach(ndev);
3627		netif_tx_unlock_bh(ndev);
3628		fec_stop(ndev);
3629		fec_enet_clk_enable(ndev, false);
3630		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3631			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3632	}
3633	rtnl_unlock();
 
 
 
 
 
3634
3635	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3636		regulator_disable(fep->reg_phy);
3637
3638	/* SOC supply clock to phy, when clock is disabled, phy link down
3639	 * SOC control phy regulator, when regulator is disabled, phy link down
3640	 */
3641	if (fep->clk_enet_out || fep->reg_phy)
3642		fep->link = 0;
3643
3644	return 0;
3645}
3646
3647static int __maybe_unused fec_resume(struct device *dev)
 
3648{
3649	struct net_device *ndev = dev_get_drvdata(dev);
3650	struct fec_enet_private *fep = netdev_priv(ndev);
3651	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3652	int ret;
3653	int val;
3654
3655	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3656		ret = regulator_enable(fep->reg_phy);
3657		if (ret)
3658			return ret;
3659	}
3660
3661	rtnl_lock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3662	if (netif_running(ndev)) {
3663		ret = fec_enet_clk_enable(ndev, true);
3664		if (ret) {
3665			rtnl_unlock();
3666			goto failed_clk;
3667		}
3668		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3669			if (pdata && pdata->sleep_mode_enable)
3670				pdata->sleep_mode_enable(false);
3671			val = readl(fep->hwp + FEC_ECNTRL);
3672			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3673			writel(val, fep->hwp + FEC_ECNTRL);
3674			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3675		} else {
3676			pinctrl_pm_select_default_state(&fep->pdev->dev);
3677		}
3678		fec_restart(ndev);
3679		netif_tx_lock_bh(ndev);
3680		netif_device_attach(ndev);
3681		netif_tx_unlock_bh(ndev);
3682		napi_enable(&fep->napi);
3683		phy_start(ndev->phydev);
3684	}
3685	rtnl_unlock();
3686
3687	return 0;
3688
3689failed_clk:
 
 
 
 
 
 
 
3690	if (fep->reg_phy)
3691		regulator_disable(fep->reg_phy);
3692	return ret;
3693}
 
3694
3695static int __maybe_unused fec_runtime_suspend(struct device *dev)
3696{
3697	struct net_device *ndev = dev_get_drvdata(dev);
3698	struct fec_enet_private *fep = netdev_priv(ndev);
3699
3700	clk_disable_unprepare(fep->clk_ipg);
3701
3702	return 0;
3703}
3704
3705static int __maybe_unused fec_runtime_resume(struct device *dev)
3706{
3707	struct net_device *ndev = dev_get_drvdata(dev);
3708	struct fec_enet_private *fep = netdev_priv(ndev);
3709
3710	return clk_prepare_enable(fep->clk_ipg);
3711}
3712
3713static const struct dev_pm_ops fec_pm_ops = {
3714	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3715	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3716};
3717
3718static struct platform_driver fec_driver = {
3719	.driver	= {
3720		.name	= DRIVER_NAME,
 
3721		.pm	= &fec_pm_ops,
3722		.of_match_table = fec_dt_ids,
3723	},
3724	.id_table = fec_devtype,
3725	.probe	= fec_probe,
3726	.remove	= fec_drv_remove,
3727};
3728
3729module_platform_driver(fec_driver);
3730
3731MODULE_ALIAS("platform:"DRIVER_NAME);
3732MODULE_LICENSE("GPL");
v3.15
 
   1/*
   2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   4 *
   5 * Right now, I am very wasteful with the buffers.  I allocate memory
   6 * pages and then divide them into 2K frame buffers.  This way I know I
   7 * have buffers large enough to hold one frame within one buffer descriptor.
   8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
   9 * will be much more memory efficient and will easily handle lots of
  10 * small packets.
  11 *
  12 * Much better multiple PHY support by Magnus Damm.
  13 * Copyright (c) 2000 Ericsson Radio Systems AB.
  14 *
  15 * Support for FEC controller of ColdFire processors.
  16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  17 *
  18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  19 * Copyright (c) 2004-2006 Macq Electronique SA.
  20 *
  21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/kernel.h>
  26#include <linux/string.h>
 
  27#include <linux/ptrace.h>
  28#include <linux/errno.h>
  29#include <linux/ioport.h>
  30#include <linux/slab.h>
  31#include <linux/interrupt.h>
  32#include <linux/delay.h>
  33#include <linux/netdevice.h>
  34#include <linux/etherdevice.h>
  35#include <linux/skbuff.h>
  36#include <linux/in.h>
  37#include <linux/ip.h>
  38#include <net/ip.h>
 
  39#include <linux/tcp.h>
  40#include <linux/udp.h>
  41#include <linux/icmp.h>
  42#include <linux/spinlock.h>
  43#include <linux/workqueue.h>
  44#include <linux/bitops.h>
  45#include <linux/io.h>
  46#include <linux/irq.h>
  47#include <linux/clk.h>
  48#include <linux/platform_device.h>
 
  49#include <linux/phy.h>
  50#include <linux/fec.h>
  51#include <linux/of.h>
  52#include <linux/of_device.h>
  53#include <linux/of_gpio.h>
 
  54#include <linux/of_net.h>
  55#include <linux/regulator/consumer.h>
  56#include <linux/if_vlan.h>
 
 
 
  57
  58#include <asm/cacheflush.h>
  59
  60#include "fec.h"
  61
  62static void set_multicast_list(struct net_device *ndev);
 
  63
  64#if defined(CONFIG_ARM)
  65#define FEC_ALIGNMENT	0xf
  66#else
  67#define FEC_ALIGNMENT	0x3
  68#endif
  69
  70#define DRIVER_NAME	"fec"
  71
  72/* Pause frame feild and FIFO threshold */
  73#define FEC_ENET_FCE	(1 << 5)
  74#define FEC_ENET_RSEM_V	0x84
  75#define FEC_ENET_RSFL_V	16
  76#define FEC_ENET_RAEM_V	0x8
  77#define FEC_ENET_RAFL_V	0x8
  78#define FEC_ENET_OPD_V	0xFFF0
  79
  80/* Controller is ENET-MAC */
  81#define FEC_QUIRK_ENET_MAC		(1 << 0)
  82/* Controller needs driver to swap frame */
  83#define FEC_QUIRK_SWAP_FRAME		(1 << 1)
  84/* Controller uses gasket */
  85#define FEC_QUIRK_USE_GASKET		(1 << 2)
  86/* Controller has GBIT support */
  87#define FEC_QUIRK_HAS_GBIT		(1 << 3)
  88/* Controller has extend desc buffer */
  89#define FEC_QUIRK_HAS_BUFDESC_EX	(1 << 4)
  90/* Controller has hardware checksum support */
  91#define FEC_QUIRK_HAS_CSUM		(1 << 5)
  92/* Controller has hardware vlan support */
  93#define FEC_QUIRK_HAS_VLAN		(1 << 6)
  94/* ENET IP errata ERR006358
  95 *
  96 * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
  97 * detected as not set during a prior frame transmission, then the
  98 * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
  99 * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
 100 * frames not being transmitted until there is a 0-to-1 transition on
 101 * ENET_TDAR[TDAR].
 102 */
 103#define FEC_QUIRK_ERR006358            (1 << 7)
 104
 105static struct platform_device_id fec_devtype[] = {
 106	{
 107		/* keep it for coldfire */
 108		.name = DRIVER_NAME,
 109		.driver_data = 0,
 110	}, {
 111		.name = "imx25-fec",
 112		.driver_data = FEC_QUIRK_USE_GASKET,
 113	}, {
 114		.name = "imx27-fec",
 115		.driver_data = 0,
 116	}, {
 117		.name = "imx28-fec",
 118		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
 
 119	}, {
 120		.name = "imx6q-fec",
 121		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 122				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 123				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
 
 124	}, {
 125		.name = "mvf600-fec",
 126		.driver_data = FEC_QUIRK_ENET_MAC,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127	}, {
 128		/* sentinel */
 129	}
 130};
 131MODULE_DEVICE_TABLE(platform, fec_devtype);
 132
 133enum imx_fec_type {
 134	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
 135	IMX27_FEC,	/* runs on i.mx27/35/51 */
 136	IMX28_FEC,
 137	IMX6Q_FEC,
 138	MVF600_FEC,
 
 
 139};
 140
 141static const struct of_device_id fec_dt_ids[] = {
 142	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
 143	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
 144	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
 145	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
 146	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
 
 
 147	{ /* sentinel */ }
 148};
 149MODULE_DEVICE_TABLE(of, fec_dt_ids);
 150
 151static unsigned char macaddr[ETH_ALEN];
 152module_param_array(macaddr, byte, NULL, 0);
 153MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 154
 155#if defined(CONFIG_M5272)
 156/*
 157 * Some hardware gets it MAC address out of local flash memory.
 158 * if this is non-zero then assume it is the address to get MAC from.
 159 */
 160#if defined(CONFIG_NETtel)
 161#define	FEC_FLASHMAC	0xf0006006
 162#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 163#define	FEC_FLASHMAC	0xf0006000
 164#elif defined(CONFIG_CANCam)
 165#define	FEC_FLASHMAC	0xf0020000
 166#elif defined (CONFIG_M5272C3)
 167#define	FEC_FLASHMAC	(0xffe04000 + 4)
 168#elif defined(CONFIG_MOD5272)
 169#define FEC_FLASHMAC	0xffc0406b
 170#else
 171#define	FEC_FLASHMAC	0
 172#endif
 173#endif /* CONFIG_M5272 */
 174
 175#if (((RX_RING_SIZE + TX_RING_SIZE) * 32) > PAGE_SIZE)
 176#error "FEC: descriptor ring size constants too large"
 177#endif
 178
 179/* Interrupt events/masks. */
 180#define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
 181#define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
 182#define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
 183#define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
 184#define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
 185#define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
 186#define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
 187#define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
 188#define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
 189#define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
 190
 191#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
 192#define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
 193
 194/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 
 
 
 195 */
 196#define PKT_MAXBUF_SIZE		1522
 197#define PKT_MINBUF_SIZE		64
 198#define PKT_MAXBLR_SIZE		1536
 199
 200/* FEC receive acceleration */
 201#define FEC_RACC_IPDIS		(1 << 1)
 202#define FEC_RACC_PRODIS		(1 << 2)
 
 203#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 204
 
 
 
 205/*
 206 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 207 * size bits. Other FEC hardware does not, so we need to take that into
 208 * account when setting it.
 209 */
 210#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 211    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
 
 212#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 213#else
 214#define	OPT_FRAME_SIZE	0
 215#endif
 216
 217/* FEC MII MMFR bits definition */
 218#define FEC_MMFR_ST		(1 << 30)
 219#define FEC_MMFR_OP_READ	(2 << 28)
 220#define FEC_MMFR_OP_WRITE	(1 << 28)
 221#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
 222#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
 223#define FEC_MMFR_TA		(2 << 16)
 224#define FEC_MMFR_DATA(v)	(v & 0xffff)
 
 
 
 225
 226#define FEC_MII_TIMEOUT		30000 /* us */
 227
 228/* Transmitter timeout */
 229#define TX_TIMEOUT (2 * HZ)
 230
 231#define FEC_PAUSE_FLAG_AUTONEG	0x1
 232#define FEC_PAUSE_FLAG_ENABLE	0x2
 
 
 
 
 
 
 
 
 
 
 
 
 
 233
 234static int mii_cnt;
 235
 236static inline
 237struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
 
 
 
 
 
 
 
 238{
 239	struct bufdesc *new_bd = bdp + 1;
 240	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
 241	struct bufdesc_ex *ex_base;
 242	struct bufdesc *base;
 243	int ring_size;
 244
 245	if (bdp >= fep->tx_bd_base) {
 246		base = fep->tx_bd_base;
 247		ring_size = fep->tx_ring_size;
 248		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
 249	} else {
 250		base = fep->rx_bd_base;
 251		ring_size = fep->rx_ring_size;
 252		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
 253	}
 254
 255	if (fep->bufdesc_ex)
 256		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
 257			ex_base : ex_new_bd);
 258	else
 259		return (new_bd >= (base + ring_size)) ?
 260			base : new_bd;
 261}
 262
 263static inline
 264struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
 265{
 266	struct bufdesc *new_bd = bdp - 1;
 267	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
 268	struct bufdesc_ex *ex_base;
 269	struct bufdesc *base;
 270	int ring_size;
 271
 272	if (bdp >= fep->tx_bd_base) {
 273		base = fep->tx_bd_base;
 274		ring_size = fep->tx_ring_size;
 275		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
 276	} else {
 277		base = fep->rx_bd_base;
 278		ring_size = fep->rx_ring_size;
 279		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
 280	}
 281
 282	if (fep->bufdesc_ex)
 283		return (struct bufdesc *)((ex_new_bd < ex_base) ?
 284			(ex_new_bd + ring_size) : ex_new_bd);
 285	else
 286		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
 287}
 288
 289static void *swap_buffer(void *bufaddr, int len)
 290{
 291	int i;
 292	unsigned int *buf = bufaddr;
 293
 294	for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
 295		*buf = cpu_to_be32(*buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296
 297	return bufaddr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298}
 299
 300static int
 301fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 302{
 303	/* Only run for packets requiring a checksum. */
 304	if (skb->ip_summed != CHECKSUM_PARTIAL)
 305		return 0;
 306
 307	if (unlikely(skb_cow_head(skb, 0)))
 308		return -1;
 309
 
 
 310	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 311
 312	return 0;
 313}
 314
 315static netdev_tx_t
 316fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 
 
 317{
 318	struct fec_enet_private *fep = netdev_priv(ndev);
 319	const struct platform_device_id *id_entry =
 320				platform_get_device_id(fep->pdev);
 321	struct bufdesc *bdp, *bdp_pre;
 
 
 
 
 
 322	void *bufaddr;
 323	unsigned short	status;
 324	unsigned int index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325
 326	/* Fill in a Tx ring entry */
 327	bdp = fep->cur_tx;
 
 
 
 328
 329	status = bdp->cbd_sc;
 
 
 330
 331	if (status & BD_ENET_TX_READY) {
 332		/* Ooops.  All transmit buffers are full.  Bail out.
 333		 * This should not happen, since ndev->tbusy should be set.
 
 
 
 
 
 
 
 
 
 334		 */
 335		netdev_err(ndev, "tx queue full!\n");
 336		return NETDEV_TX_BUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 337	}
 338
 339	/* Protocol checksum off-load for TCP and UDP. */
 340	if (fec_enet_clear_csum(skb, ndev)) {
 341		dev_kfree_skb_any(skb);
 342		return NETDEV_TX_OK;
 343	}
 344
 345	/* Clear all of the status flags */
 
 
 
 346	status &= ~BD_ENET_TX_STATS;
 347
 348	/* Set buffer length and buffer pointer */
 349	bufaddr = skb->data;
 350	bdp->cbd_datlen = skb->len;
 351
 352	/*
 353	 * On some FEC implementations data must be aligned on
 354	 * 4-byte boundaries. Use bounce buffers to copy data
 355	 * and get it aligned. Ugh.
 356	 */
 357	if (fep->bufdesc_ex)
 358		index = (struct bufdesc_ex *)bdp -
 359			(struct bufdesc_ex *)fep->tx_bd_base;
 360	else
 361		index = bdp - fep->tx_bd_base;
 362
 363	if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
 364		memcpy(fep->tx_bounce[index], skb->data, skb->len);
 365		bufaddr = fep->tx_bounce[index];
 366	}
 367
 368	/*
 369	 * Some design made an incorrect assumption on endian mode of
 370	 * the system that it's running on. As the result, driver has to
 371	 * swap every frame going to and coming from the controller.
 372	 */
 373	if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
 374		swap_buffer(bufaddr, skb->len);
 375
 376	/* Save skb pointer */
 377	fep->tx_skbuff[index] = skb;
 378
 379	/* Push the data cache so the CPM does not get stale memory
 380	 * data.
 381	 */
 382	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
 383			skb->len, DMA_TO_DEVICE);
 384	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
 385		bdp->cbd_bufaddr = 0;
 386		fep->tx_skbuff[index] = NULL;
 387		dev_kfree_skb_any(skb);
 388		if (net_ratelimit())
 389			netdev_err(ndev, "Tx DMA memory map failed\n");
 390		return NETDEV_TX_OK;
 391	}
 392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 393	if (fep->bufdesc_ex) {
 394
 395		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 396		ebdp->cbd_bdu = 0;
 397		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 398			fep->hwts_tx_en)) {
 399			ebdp->cbd_esc = (BD_ENET_TX_TS | BD_ENET_TX_INT);
 400			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 401		} else {
 402			ebdp->cbd_esc = BD_ENET_TX_INT;
 403
 404			/* Enable protocol checksum flags
 405			 * We do not bother with the IP Checksum bits as they
 406			 * are done by the kernel
 407			 */
 408			if (skb->ip_summed == CHECKSUM_PARTIAL)
 409				ebdp->cbd_esc |= BD_ENET_TX_PINS;
 410		}
 
 411	}
 412
 
 
 
 
 
 
 
 
 
 413	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 414	 * it's the last BD of the frame, and to put the CRC on the end.
 415	 */
 416	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
 417			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
 418	bdp->cbd_sc = status;
 419
 420	bdp_pre = fec_enet_get_prevdesc(bdp, fep);
 421	if ((id_entry->driver_data & FEC_QUIRK_ERR006358) &&
 422	    !(bdp_pre->cbd_sc & BD_ENET_TX_READY)) {
 423		fep->delay_work.trig_tx = true;
 424		schedule_delayed_work(&(fep->delay_work.delay_work),
 425					msecs_to_jiffies(1));
 426	}
 427
 428	/* If this was the last BD in the ring, start at the beginning again. */
 429	bdp = fec_enet_get_nextdesc(bdp, fep);
 430
 431	skb_tx_timestamp(skb);
 432
 433	fep->cur_tx = bdp;
 
 
 
 
 
 
 
 434
 435	if (fep->cur_tx == fep->dirty_tx)
 436		netif_stop_queue(ndev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 437
 438	/* Trigger transmission start */
 439	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 440
 441	return NETDEV_TX_OK;
 442}
 443
 444/* Init RX & TX buffer descriptors
 445 */
 446static void fec_enet_bd_init(struct net_device *dev)
 447{
 448	struct fec_enet_private *fep = netdev_priv(dev);
 
 
 449	struct bufdesc *bdp;
 450	unsigned int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451
 452	/* Initialize the receive buffer descriptors. */
 453	bdp = fep->rx_bd_base;
 454	for (i = 0; i < fep->rx_ring_size; i++) {
 455
 456		/* Initialize the BD for every fragment in the page. */
 457		if (bdp->cbd_bufaddr)
 458			bdp->cbd_sc = BD_ENET_RX_EMPTY;
 459		else
 460			bdp->cbd_sc = 0;
 461		bdp = fec_enet_get_nextdesc(bdp, fep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 462	}
 463
 464	/* Set the last buffer to wrap */
 465	bdp = fec_enet_get_prevdesc(bdp, fep);
 466	bdp->cbd_sc |= BD_SC_WRAP;
 467
 468	fep->cur_rx = fep->rx_bd_base;
 
 
 
 
 
 469
 470	/* ...and the same for transmit */
 471	bdp = fep->tx_bd_base;
 472	fep->cur_tx = bdp;
 473	for (i = 0; i < fep->tx_ring_size; i++) {
 
 474
 475		/* Initialize the BD for every fragment in the page. */
 476		bdp->cbd_sc = 0;
 477		if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
 478			dev_kfree_skb_any(fep->tx_skbuff[i]);
 479			fep->tx_skbuff[i] = NULL;
 
 
 
 480		}
 481		bdp->cbd_bufaddr = 0;
 482		bdp = fec_enet_get_nextdesc(bdp, fep);
 483	}
 484
 485	/* Set the last buffer to wrap */
 486	bdp = fec_enet_get_prevdesc(bdp, fep);
 487	bdp->cbd_sc |= BD_SC_WRAP;
 488	fep->dirty_tx = bdp;
 489}
 490
 491/* This function is called to start or restart the FEC during a link
 492 * change.  This only happens when switching between half and full
 493 * duplex.
 
 494 */
 495static void
 496fec_restart(struct net_device *ndev, int duplex)
 497{
 498	struct fec_enet_private *fep = netdev_priv(ndev);
 499	const struct platform_device_id *id_entry =
 500				platform_get_device_id(fep->pdev);
 501	int i;
 502	u32 val;
 503	u32 temp_mac[2];
 504	u32 rcntl = OPT_FRAME_SIZE | 0x04;
 505	u32 ecntl = 0x2; /* ETHEREN */
 506
 507	if (netif_running(ndev)) {
 508		netif_device_detach(ndev);
 509		napi_disable(&fep->napi);
 510		netif_stop_queue(ndev);
 511		netif_tx_lock_bh(ndev);
 
 
 
 
 512	}
 513
 514	/* Whack a reset.  We should wait for this. */
 515	writel(1, fep->hwp + FEC_ECNTRL);
 516	udelay(10);
 517
 518	/*
 519	 * enet-mac reset will reset mac address registers too,
 520	 * so need to reconfigure it.
 521	 */
 522	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
 523		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
 524		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
 525		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
 526	}
 527
 528	/* Clear any outstanding interrupt. */
 529	writel(0xffc00000, fep->hwp + FEC_IEVENT);
 530
 531	/* Set maximum receive buffer size. */
 532	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
 533
 534	fec_enet_bd_init(ndev);
 535
 536	/* Set receive and transmit descriptor base. */
 537	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
 538	if (fep->bufdesc_ex)
 539		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
 540			* fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
 541	else
 542		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
 543			* fep->rx_ring_size,	fep->hwp + FEC_X_DES_START);
 544
 545
 546	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
 547		if (fep->tx_skbuff[i]) {
 548			dev_kfree_skb_any(fep->tx_skbuff[i]);
 549			fep->tx_skbuff[i] = NULL;
 550		}
 551	}
 552
 553	/* Enable MII mode */
 554	if (duplex) {
 555		/* FD enable */
 556		writel(0x04, fep->hwp + FEC_X_CNTRL);
 557	} else {
 558		/* No Rcv on Xmit */
 559		rcntl |= 0x02;
 560		writel(0x0, fep->hwp + FEC_X_CNTRL);
 561	}
 562
 563	fep->full_duplex = duplex;
 564
 565	/* Set MII speed */
 566	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 567
 568#if !defined(CONFIG_M5272)
 569	/* set RX checksum */
 570	val = readl(fep->hwp + FEC_RACC);
 571	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
 572		val |= FEC_RACC_OPTIONS;
 573	else
 574		val &= ~FEC_RACC_OPTIONS;
 575	writel(val, fep->hwp + FEC_RACC);
 
 
 
 
 
 576#endif
 577
 578	/*
 579	 * The phy interface and speed need to get configured
 580	 * differently on enet-mac.
 581	 */
 582	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
 583		/* Enable flow control and length check */
 584		rcntl |= 0x40000000 | 0x00000020;
 585
 586		/* RGMII, RMII or MII */
 587		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
 
 
 
 588			rcntl |= (1 << 6);
 589		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 590			rcntl |= (1 << 8);
 591		else
 592			rcntl &= ~(1 << 8);
 593
 594		/* 1G, 100M or 10M */
 595		if (fep->phy_dev) {
 596			if (fep->phy_dev->speed == SPEED_1000)
 597				ecntl |= (1 << 5);
 598			else if (fep->phy_dev->speed == SPEED_100)
 599				rcntl &= ~(1 << 9);
 600			else
 601				rcntl |= (1 << 9);
 602		}
 603	} else {
 604#ifdef FEC_MIIGSK_ENR
 605		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
 606			u32 cfgr;
 607			/* disable the gasket and wait */
 608			writel(0, fep->hwp + FEC_MIIGSK_ENR);
 609			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
 610				udelay(1);
 611
 612			/*
 613			 * configure the gasket:
 614			 *   RMII, 50 MHz, no loopback, no echo
 615			 *   MII, 25 MHz, no loopback, no echo
 616			 */
 617			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 618				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
 619			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
 620				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
 621			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
 622
 623			/* re-enable the gasket */
 624			writel(2, fep->hwp + FEC_MIIGSK_ENR);
 625		}
 626#endif
 627	}
 628
 629#if !defined(CONFIG_M5272)
 630	/* enable pause frame*/
 631	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
 632	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
 633	     fep->phy_dev && fep->phy_dev->pause)) {
 634		rcntl |= FEC_ENET_FCE;
 635
 636		/* set FIFO threshold parameter to reduce overrun */
 637		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
 638		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
 639		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
 640		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
 641
 642		/* OPD */
 643		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
 644	} else {
 645		rcntl &= ~FEC_ENET_FCE;
 646	}
 647#endif /* !defined(CONFIG_M5272) */
 648
 649	writel(rcntl, fep->hwp + FEC_R_CNTRL);
 650
 651	/* Setup multicast filter. */
 652	set_multicast_list(ndev);
 653#ifndef CONFIG_M5272
 654	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
 655	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
 656#endif
 657
 658	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
 659		/* enable ENET endian swap */
 660		ecntl |= (1 << 8);
 661		/* enable ENET store and forward mode */
 662		writel(1 << 8, fep->hwp + FEC_X_WMRK);
 663	}
 664
 665	if (fep->bufdesc_ex)
 666		ecntl |= (1 << 4);
 667
 668#ifndef CONFIG_M5272
 669	/* Enable the MIB statistic event counters */
 670	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
 671#endif
 672
 673	/* And last, enable the transmit and receive processing */
 674	writel(ecntl, fep->hwp + FEC_ECNTRL);
 675	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
 676
 677	if (fep->bufdesc_ex)
 678		fec_ptp_start_cyclecounter(ndev);
 679
 680	/* Enable interrupts we wish to service */
 681	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
 
 
 
 
 
 
 682
 683	if (netif_running(ndev)) {
 684		netif_tx_unlock_bh(ndev);
 685		netif_wake_queue(ndev);
 686		napi_enable(&fep->napi);
 687		netif_device_attach(ndev);
 688	}
 689}
 690
 691static void
 692fec_stop(struct net_device *ndev)
 693{
 694	struct fec_enet_private *fep = netdev_priv(ndev);
 695	const struct platform_device_id *id_entry =
 696				platform_get_device_id(fep->pdev);
 697	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
 
 698
 699	/* We cannot expect a graceful transmit stop without link !!! */
 700	if (fep->link) {
 701		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
 702		udelay(10);
 703		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
 704			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
 705	}
 706
 707	/* Whack a reset.  We should wait for this. */
 708	writel(1, fep->hwp + FEC_ECNTRL);
 709	udelay(10);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 710	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 711	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
 712
 713	/* We have to keep ENET enabled to have MII interrupt stay working */
 714	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
 
 715		writel(2, fep->hwp + FEC_ECNTRL);
 716		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
 717	}
 718}
 719
 720
 721static void
 722fec_timeout(struct net_device *ndev)
 723{
 724	struct fec_enet_private *fep = netdev_priv(ndev);
 725
 
 
 726	ndev->stats.tx_errors++;
 727
 728	fep->delay_work.timeout = true;
 729	schedule_delayed_work(&(fep->delay_work.delay_work), 0);
 730}
 731
 732static void fec_enet_work(struct work_struct *work)
 733{
 734	struct fec_enet_private *fep =
 735		container_of(work,
 736			     struct fec_enet_private,
 737			     delay_work.delay_work.work);
 738
 739	if (fep->delay_work.timeout) {
 740		fep->delay_work.timeout = false;
 741		fec_restart(fep->netdev, fep->full_duplex);
 742		netif_wake_queue(fep->netdev);
 
 
 
 743	}
 
 
 
 
 
 
 
 
 
 744
 745	if (fep->delay_work.trig_tx) {
 746		fep->delay_work.trig_tx = false;
 747		writel(0, fep->hwp + FEC_X_DES_ACTIVE);
 748	}
 
 
 749}
 750
 751static void
 752fec_enet_tx(struct net_device *ndev)
 753{
 754	struct	fec_enet_private *fep;
 755	struct bufdesc *bdp;
 756	unsigned short status;
 757	struct	sk_buff	*skb;
 
 
 758	int	index = 0;
 
 759
 760	fep = netdev_priv(ndev);
 761	bdp = fep->dirty_tx;
 762
 
 
 
 763	/* get next bdp of dirty_tx */
 764	bdp = fec_enet_get_nextdesc(bdp, fep);
 
 765
 766	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
 
 767
 768		/* current queue is empty */
 769		if (bdp == fep->cur_tx)
 
 
 
 770			break;
 771
 772		if (fep->bufdesc_ex)
 773			index = (struct bufdesc_ex *)bdp -
 774				(struct bufdesc_ex *)fep->tx_bd_base;
 775		else
 776			index = bdp - fep->tx_bd_base;
 777
 778		skb = fep->tx_skbuff[index];
 779		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, skb->len,
 780				DMA_TO_DEVICE);
 781		bdp->cbd_bufaddr = 0;
 
 
 
 
 
 
 782
 783		/* Check for errors. */
 784		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 785				   BD_ENET_TX_RL | BD_ENET_TX_UN |
 786				   BD_ENET_TX_CSL)) {
 787			ndev->stats.tx_errors++;
 788			if (status & BD_ENET_TX_HB)  /* No heartbeat */
 789				ndev->stats.tx_heartbeat_errors++;
 790			if (status & BD_ENET_TX_LC)  /* Late collision */
 791				ndev->stats.tx_window_errors++;
 792			if (status & BD_ENET_TX_RL)  /* Retrans limit */
 793				ndev->stats.tx_aborted_errors++;
 794			if (status & BD_ENET_TX_UN)  /* Underrun */
 795				ndev->stats.tx_fifo_errors++;
 796			if (status & BD_ENET_TX_CSL) /* Carrier lost */
 797				ndev->stats.tx_carrier_errors++;
 798		} else {
 799			ndev->stats.tx_packets++;
 800			ndev->stats.tx_bytes += bdp->cbd_datlen;
 801		}
 802
 803		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
 804			fep->bufdesc_ex) {
 805			struct skb_shared_hwtstamps shhwtstamps;
 806			unsigned long flags;
 807			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 808
 809			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
 810			spin_lock_irqsave(&fep->tmreg_lock, flags);
 811			shhwtstamps.hwtstamp = ns_to_ktime(
 812				timecounter_cyc2time(&fep->tc, ebdp->ts));
 813			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 814			skb_tstamp_tx(skb, &shhwtstamps);
 815		}
 816
 817		if (status & BD_ENET_TX_READY)
 818			netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
 819
 820		/* Deferred means some collisions occurred during transmit,
 821		 * but we eventually sent the packet OK.
 822		 */
 823		if (status & BD_ENET_TX_DEF)
 824			ndev->stats.collisions++;
 825
 826		/* Free the sk buffer associated with this last transmit */
 827		dev_kfree_skb_any(skb);
 828		fep->tx_skbuff[index] = NULL;
 829
 830		fep->dirty_tx = bdp;
 
 
 
 831
 832		/* Update pointer to next buffer descriptor to be transmitted */
 833		bdp = fec_enet_get_nextdesc(bdp, fep);
 834
 835		/* Since we have freed up a buffer, the ring is no longer full
 836		 */
 837		if (fep->dirty_tx != fep->cur_tx) {
 838			if (netif_queue_stopped(ndev))
 839				netif_wake_queue(ndev);
 
 840		}
 841	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842	return;
 843}
 844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845
 846/* During a receive, the cur_rx points to the current incoming buffer.
 
 
 
 847 * When we update through the ring, if the next incoming buffer has
 848 * not been given to the system, we just set the empty indicator,
 849 * effectively tossing the packet.
 850 */
 851static int
 852fec_enet_rx(struct net_device *ndev, int budget)
 853{
 854	struct fec_enet_private *fep = netdev_priv(ndev);
 855	const struct platform_device_id *id_entry =
 856				platform_get_device_id(fep->pdev);
 857	struct bufdesc *bdp;
 858	unsigned short status;
 859	struct	sk_buff	*skb;
 
 860	ushort	pkt_len;
 861	__u8 *data;
 862	int	pkt_received = 0;
 863	struct	bufdesc_ex *ebdp = NULL;
 864	bool	vlan_packet_rcvd = false;
 865	u16	vlan_tag;
 866	int	index = 0;
 
 
 867
 868#ifdef CONFIG_M532x
 869	flush_cache_all();
 870#endif
 
 
 871
 872	/* First, grab all of the stats for the incoming packet.
 873	 * These get messed up if we get called due to a busy condition.
 874	 */
 875	bdp = fep->cur_rx;
 876
 877	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
 878
 879		if (pkt_received >= budget)
 880			break;
 881		pkt_received++;
 882
 883		/* Since we have allocated space to hold a complete frame,
 884		 * the last indicator should be set.
 885		 */
 886		if ((status & BD_ENET_RX_LAST) == 0)
 887			netdev_err(ndev, "rcv is not +last\n");
 888
 889		if (!fep->opened)
 890			goto rx_processing_done;
 891
 892		/* Check for errors. */
 
 893		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
 894			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 
 895			ndev->stats.rx_errors++;
 896			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
 
 
 
 
 
 
 897				/* Frame too long or too short. */
 898				ndev->stats.rx_length_errors++;
 
 
 899			}
 900			if (status & BD_ENET_RX_NO)	/* Frame alignment */
 901				ndev->stats.rx_frame_errors++;
 902			if (status & BD_ENET_RX_CR)	/* CRC Error */
 903				ndev->stats.rx_crc_errors++;
 904			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
 905				ndev->stats.rx_fifo_errors++;
 906		}
 907
 908		/* Report late collisions as a frame error.
 909		 * On this error, the BD is closed, but we don't know what we
 910		 * have in the buffer.  So, just drop this frame on the floor.
 911		 */
 912		if (status & BD_ENET_RX_CL) {
 913			ndev->stats.rx_errors++;
 914			ndev->stats.rx_frame_errors++;
 915			goto rx_processing_done;
 916		}
 917
 918		/* Process the incoming frame. */
 919		ndev->stats.rx_packets++;
 920		pkt_len = bdp->cbd_datlen;
 921		ndev->stats.rx_bytes += pkt_len;
 922
 923		if (fep->bufdesc_ex)
 924			index = (struct bufdesc_ex *)bdp -
 925				(struct bufdesc_ex *)fep->rx_bd_base;
 926		else
 927			index = bdp - fep->rx_bd_base;
 928		data = fep->rx_skbuff[index]->data;
 929		dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
 930					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931
 932		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
 933			swap_buffer(data, pkt_len);
 934
 
 
 
 
 
 935		/* Extract the enhanced buffer descriptor */
 936		ebdp = NULL;
 937		if (fep->bufdesc_ex)
 938			ebdp = (struct bufdesc_ex *)bdp;
 939
 940		/* If this is a VLAN packet remove the VLAN Tag */
 941		vlan_packet_rcvd = false;
 942		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 943		    fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
 
 944			/* Push and remove the vlan tag */
 945			struct vlan_hdr *vlan_header =
 946					(struct vlan_hdr *) (data + ETH_HLEN);
 947			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
 948			pkt_len -= VLAN_HLEN;
 949
 950			vlan_packet_rcvd = true;
 
 
 
 951		}
 952
 953		/* This does 16 byte alignment, exactly what we need.
 954		 * The packet length includes FCS, but we don't want to
 955		 * include that when passing upstream as it messes up
 956		 * bridging applications.
 957		 */
 958		skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
 959
 960		if (unlikely(!skb)) {
 961			ndev->stats.rx_dropped++;
 962		} else {
 963			int payload_offset = (2 * ETH_ALEN);
 964			skb_reserve(skb, NET_IP_ALIGN);
 965			skb_put(skb, pkt_len - 4);	/* Make room */
 966
 967			/* Extract the frame data without the VLAN header. */
 968			skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
 969			if (vlan_packet_rcvd)
 970				payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
 971			skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
 972						       data + payload_offset,
 973						       pkt_len - 4 - (2 * ETH_ALEN));
 974
 975			skb->protocol = eth_type_trans(skb, ndev);
 976
 977			/* Get receive timestamp from the skb */
 978			if (fep->hwts_rx_en && fep->bufdesc_ex) {
 979				struct skb_shared_hwtstamps *shhwtstamps =
 980							    skb_hwtstamps(skb);
 981				unsigned long flags;
 982
 983				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
 984
 985				spin_lock_irqsave(&fep->tmreg_lock, flags);
 986				shhwtstamps->hwtstamp = ns_to_ktime(
 987				    timecounter_cyc2time(&fep->tc, ebdp->ts));
 988				spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 989			}
 990
 991			if (fep->bufdesc_ex &&
 992			    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
 993				if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
 994					/* don't check it */
 995					skb->ip_summed = CHECKSUM_UNNECESSARY;
 996				} else {
 997					skb_checksum_none_assert(skb);
 998				}
 
 
 
 
 999			}
 
1000
1001			/* Handle received VLAN packets */
1002			if (vlan_packet_rcvd)
1003				__vlan_hwaccel_put_tag(skb,
1004						       htons(ETH_P_8021Q),
1005						       vlan_tag);
1006
1007			napi_gro_receive(&fep->napi, skb);
 
 
 
 
 
 
 
 
 
1008		}
1009
1010		dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1011					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1012rx_processing_done:
1013		/* Clear the status flags for this buffer */
1014		status &= ~BD_ENET_RX_STATS;
1015
1016		/* Mark the buffer empty */
1017		status |= BD_ENET_RX_EMPTY;
1018		bdp->cbd_sc = status;
1019
1020		if (fep->bufdesc_ex) {
1021			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1022
1023			ebdp->cbd_esc = BD_ENET_RX_INT;
1024			ebdp->cbd_prot = 0;
1025			ebdp->cbd_bdu = 0;
1026		}
 
 
 
 
 
1027
1028		/* Update BD pointer to next entry */
1029		bdp = fec_enet_get_nextdesc(bdp, fep);
1030
1031		/* Doing this here will keep the FEC running while we process
1032		 * incoming frames.  On a heavily loaded network, we should be
1033		 * able to keep up at the expense of system resources.
1034		 */
1035		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1036	}
1037	fep->cur_rx = bdp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1038
 
 
1039	return pkt_received;
1040}
1041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1042static irqreturn_t
1043fec_enet_interrupt(int irq, void *dev_id)
1044{
1045	struct net_device *ndev = dev_id;
1046	struct fec_enet_private *fep = netdev_priv(ndev);
1047	uint int_events;
1048	irqreturn_t ret = IRQ_NONE;
1049
1050	do {
1051		int_events = readl(fep->hwp + FEC_IEVENT);
1052		writel(int_events, fep->hwp + FEC_IEVENT);
1053
1054		if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
1055			ret = IRQ_HANDLED;
1056
1057			/* Disable the RX interrupt */
1058			if (napi_schedule_prep(&fep->napi)) {
1059				writel(FEC_RX_DISABLED_IMASK,
1060					fep->hwp + FEC_IMASK);
1061				__napi_schedule(&fep->napi);
1062			}
1063		}
 
1064
1065		if (int_events & FEC_ENET_MII) {
1066			ret = IRQ_HANDLED;
1067			complete(&fep->mdio_done);
1068		}
1069	} while (int_events);
1070
1071	return ret;
1072}
1073
1074static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1075{
1076	struct net_device *ndev = napi->dev;
1077	int pkts = fec_enet_rx(ndev, budget);
1078	struct fec_enet_private *fep = netdev_priv(ndev);
 
 
 
1079
1080	fec_enet_tx(ndev);
1081
1082	if (pkts < budget) {
1083		napi_complete(napi);
1084		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1085	}
1086	return pkts;
1087}
1088
1089/* ------------------------------------------------------------------------- */
1090static void fec_get_mac(struct net_device *ndev)
1091{
1092	struct fec_enet_private *fep = netdev_priv(ndev);
1093	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1094	unsigned char *iap, tmpaddr[ETH_ALEN];
1095
1096	/*
1097	 * try to get mac address in following order:
1098	 *
1099	 * 1) module parameter via kernel command line in form
1100	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1101	 */
1102	iap = macaddr;
1103
1104	/*
1105	 * 2) from device tree data
1106	 */
1107	if (!is_valid_ether_addr(iap)) {
1108		struct device_node *np = fep->pdev->dev.of_node;
1109		if (np) {
1110			const char *mac = of_get_mac_address(np);
1111			if (mac)
1112				iap = (unsigned char *) mac;
1113		}
1114	}
1115
1116	/*
1117	 * 3) from flash or fuse (via platform data)
1118	 */
1119	if (!is_valid_ether_addr(iap)) {
1120#ifdef CONFIG_M5272
1121		if (FEC_FLASHMAC)
1122			iap = (unsigned char *)FEC_FLASHMAC;
1123#else
1124		if (pdata)
1125			iap = (unsigned char *)&pdata->mac;
1126#endif
1127	}
1128
1129	/*
1130	 * 4) FEC mac registers set by bootloader
1131	 */
1132	if (!is_valid_ether_addr(iap)) {
1133		*((__be32 *) &tmpaddr[0]) =
1134			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1135		*((__be16 *) &tmpaddr[4]) =
1136			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1137		iap = &tmpaddr[0];
1138	}
1139
1140	/*
1141	 * 5) random mac address
1142	 */
1143	if (!is_valid_ether_addr(iap)) {
1144		/* Report it and use a random ethernet address instead */
1145		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1146		eth_hw_addr_random(ndev);
1147		netdev_info(ndev, "Using random MAC address: %pM\n",
1148			    ndev->dev_addr);
1149		return;
1150	}
1151
1152	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1153
1154	/* Adjust MAC if using macaddr */
1155	if (iap == macaddr)
1156		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1157}
1158
1159/* ------------------------------------------------------------------------- */
1160
1161/*
1162 * Phy section
1163 */
1164static void fec_enet_adjust_link(struct net_device *ndev)
1165{
1166	struct fec_enet_private *fep = netdev_priv(ndev);
1167	struct phy_device *phy_dev = fep->phy_dev;
1168	int status_change = 0;
1169
1170	/* Prevent a state halted on mii error */
1171	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1172		phy_dev->state = PHY_RESUMING;
1173		return;
1174	}
1175
1176	if (phy_dev->link) {
 
 
 
 
 
 
 
1177		if (!fep->link) {
1178			fep->link = phy_dev->link;
1179			status_change = 1;
1180		}
1181
1182		if (fep->full_duplex != phy_dev->duplex)
 
1183			status_change = 1;
 
1184
1185		if (phy_dev->speed != fep->speed) {
1186			fep->speed = phy_dev->speed;
1187			status_change = 1;
1188		}
1189
1190		/* if any of the above changed restart the FEC */
1191		if (status_change)
1192			fec_restart(ndev, phy_dev->duplex);
 
 
 
 
 
 
1193	} else {
1194		if (fep->link) {
 
 
1195			fec_stop(ndev);
 
 
1196			fep->link = phy_dev->link;
1197			status_change = 1;
1198		}
1199	}
1200
1201	if (status_change)
1202		phy_print_status(phy_dev);
1203}
1204
1205static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1206{
1207	struct fec_enet_private *fep = bus->priv;
 
1208	unsigned long time_left;
 
 
 
 
 
1209
1210	fep->mii_timeout = 0;
1211	init_completion(&fep->mdio_done);
1212
1213	/* start a read op */
1214	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1215		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1216		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1217
1218	/* wait for end of transfer */
1219	time_left = wait_for_completion_timeout(&fep->mdio_done,
1220			usecs_to_jiffies(FEC_MII_TIMEOUT));
1221	if (time_left == 0) {
1222		fep->mii_timeout = 1;
1223		netdev_err(fep->netdev, "MDIO read timeout\n");
1224		return -ETIMEDOUT;
 
1225	}
1226
1227	/* return value */
1228	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
 
 
 
 
 
1229}
1230
1231static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1232			   u16 value)
1233{
1234	struct fec_enet_private *fep = bus->priv;
 
1235	unsigned long time_left;
 
 
 
 
 
 
 
1236
1237	fep->mii_timeout = 0;
1238	init_completion(&fep->mdio_done);
1239
1240	/* start a write op */
1241	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1242		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1243		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1244		fep->hwp + FEC_MII_DATA);
1245
1246	/* wait for end of transfer */
1247	time_left = wait_for_completion_timeout(&fep->mdio_done,
1248			usecs_to_jiffies(FEC_MII_TIMEOUT));
1249	if (time_left == 0) {
1250		fep->mii_timeout = 1;
1251		netdev_err(fep->netdev, "MDIO write timeout\n");
1252		return -ETIMEDOUT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1253	}
1254
1255	return 0;
 
 
 
 
 
 
 
 
 
 
 
1256}
1257
1258static int fec_enet_mii_probe(struct net_device *ndev)
1259{
1260	struct fec_enet_private *fep = netdev_priv(ndev);
1261	const struct platform_device_id *id_entry =
1262				platform_get_device_id(fep->pdev);
1263	struct phy_device *phy_dev = NULL;
1264	char mdio_bus_id[MII_BUS_ID_SIZE];
1265	char phy_name[MII_BUS_ID_SIZE + 3];
1266	int phy_id;
1267	int dev_id = fep->dev_id;
1268
1269	fep->phy_dev = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1270
1271	/* check for attached phy */
1272	for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1273		if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1274			continue;
1275		if (fep->mii_bus->phy_map[phy_id] == NULL)
1276			continue;
1277		if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1278			continue;
1279		if (dev_id--)
1280			continue;
1281		strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1282		break;
1283	}
1284
1285	if (phy_id >= PHY_MAX_ADDR) {
1286		netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1287		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1288		phy_id = 0;
1289	}
1290
1291	snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1292	phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1293			      fep->phy_interface);
1294	if (IS_ERR(phy_dev)) {
1295		netdev_err(ndev, "could not attach to PHY\n");
1296		return PTR_ERR(phy_dev);
1297	}
1298
1299	/* mask with MAC supported features */
1300	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1301		phy_dev->supported &= PHY_GBIT_FEATURES;
 
1302#if !defined(CONFIG_M5272)
1303		phy_dev->supported |= SUPPORTED_Pause;
1304#endif
1305	}
1306	else
1307		phy_dev->supported &= PHY_BASIC_FEATURES;
1308
1309	phy_dev->advertising = phy_dev->supported;
1310
1311	fep->phy_dev = phy_dev;
1312	fep->link = 0;
1313	fep->full_duplex = 0;
1314
1315	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1316		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1317		    fep->phy_dev->irq);
1318
1319	return 0;
1320}
1321
1322static int fec_enet_mii_init(struct platform_device *pdev)
1323{
1324	static struct mii_bus *fec0_mii_bus;
1325	struct net_device *ndev = platform_get_drvdata(pdev);
1326	struct fec_enet_private *fep = netdev_priv(ndev);
1327	const struct platform_device_id *id_entry =
1328				platform_get_device_id(fep->pdev);
1329	int err = -ENXIO, i;
1330
1331	/*
1332	 * The dual fec interfaces are not equivalent with enet-mac.
1333	 * Here are the differences:
1334	 *
1335	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1336	 *  - fec0 acts as the 1588 time master while fec1 is slave
1337	 *  - external phys can only be configured by fec0
1338	 *
1339	 * That is to say fec1 can not work independently. It only works
1340	 * when fec0 is working. The reason behind this design is that the
1341	 * second interface is added primarily for Switch mode.
1342	 *
1343	 * Because of the last point above, both phys are attached on fec0
1344	 * mdio interface in board design, and need to be configured by
1345	 * fec0 mii_bus.
1346	 */
1347	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1348		/* fec1 uses fec0 mii_bus */
1349		if (mii_cnt && fec0_mii_bus) {
1350			fep->mii_bus = fec0_mii_bus;
1351			mii_cnt++;
1352			return 0;
1353		}
1354		return -ENOENT;
1355	}
1356
1357	fep->mii_timeout = 0;
1358
1359	/*
1360	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1361	 *
1362	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1363	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1364	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1365	 * document.
1366	 */
1367	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
1368	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1369		fep->phy_speed--;
1370	fep->phy_speed <<= 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1372
1373	fep->mii_bus = mdiobus_alloc();
1374	if (fep->mii_bus == NULL) {
1375		err = -ENOMEM;
1376		goto err_out;
1377	}
1378
1379	fep->mii_bus->name = "fec_enet_mii_bus";
1380	fep->mii_bus->read = fec_enet_mdio_read;
1381	fep->mii_bus->write = fec_enet_mdio_write;
1382	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1383		pdev->name, fep->dev_id + 1);
1384	fep->mii_bus->priv = fep;
1385	fep->mii_bus->parent = &pdev->dev;
1386
1387	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1388	if (!fep->mii_bus->irq) {
1389		err = -ENOMEM;
1390		goto err_out_free_mdiobus;
 
 
1391	}
1392
1393	for (i = 0; i < PHY_MAX_ADDR; i++)
1394		fep->mii_bus->irq[i] = PHY_POLL;
1395
1396	if (mdiobus_register(fep->mii_bus))
1397		goto err_out_free_mdio_irq;
1398
1399	mii_cnt++;
1400
1401	/* save fec0 mii_bus */
1402	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1403		fec0_mii_bus = fep->mii_bus;
1404
1405	return 0;
1406
1407err_out_free_mdio_irq:
1408	kfree(fep->mii_bus->irq);
1409err_out_free_mdiobus:
1410	mdiobus_free(fep->mii_bus);
1411err_out:
1412	return err;
1413}
1414
1415static void fec_enet_mii_remove(struct fec_enet_private *fep)
1416{
1417	if (--mii_cnt == 0) {
1418		mdiobus_unregister(fep->mii_bus);
1419		kfree(fep->mii_bus->irq);
1420		mdiobus_free(fep->mii_bus);
1421	}
1422}
1423
1424static int fec_enet_get_settings(struct net_device *ndev,
1425				  struct ethtool_cmd *cmd)
1426{
1427	struct fec_enet_private *fep = netdev_priv(ndev);
1428	struct phy_device *phydev = fep->phy_dev;
1429
1430	if (!phydev)
1431		return -ENODEV;
1432
1433	return phy_ethtool_gset(phydev, cmd);
1434}
1435
1436static int fec_enet_set_settings(struct net_device *ndev,
1437				 struct ethtool_cmd *cmd)
1438{
1439	struct fec_enet_private *fep = netdev_priv(ndev);
1440	struct phy_device *phydev = fep->phy_dev;
 
1441
1442	if (!phydev)
1443		return -ENODEV;
 
1444
1445	return phy_ethtool_sset(phydev, cmd);
1446}
1447
1448static void fec_enet_get_drvinfo(struct net_device *ndev,
1449				 struct ethtool_drvinfo *info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1450{
1451	struct fec_enet_private *fep = netdev_priv(ndev);
 
 
 
1452
1453	strlcpy(info->driver, fep->pdev->dev.driver->name,
1454		sizeof(info->driver));
1455	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1456	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
 
 
1457}
1458
1459static int fec_enet_get_ts_info(struct net_device *ndev,
1460				struct ethtool_ts_info *info)
1461{
1462	struct fec_enet_private *fep = netdev_priv(ndev);
1463
1464	if (fep->bufdesc_ex) {
1465
1466		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1467					SOF_TIMESTAMPING_RX_SOFTWARE |
1468					SOF_TIMESTAMPING_SOFTWARE |
1469					SOF_TIMESTAMPING_TX_HARDWARE |
1470					SOF_TIMESTAMPING_RX_HARDWARE |
1471					SOF_TIMESTAMPING_RAW_HARDWARE;
1472		if (fep->ptp_clock)
1473			info->phc_index = ptp_clock_index(fep->ptp_clock);
1474		else
1475			info->phc_index = -1;
1476
1477		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1478				 (1 << HWTSTAMP_TX_ON);
1479
1480		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1481				   (1 << HWTSTAMP_FILTER_ALL);
1482		return 0;
1483	} else {
1484		return ethtool_op_get_ts_info(ndev, info);
1485	}
1486}
1487
1488#if !defined(CONFIG_M5272)
1489
1490static void fec_enet_get_pauseparam(struct net_device *ndev,
1491				    struct ethtool_pauseparam *pause)
1492{
1493	struct fec_enet_private *fep = netdev_priv(ndev);
1494
1495	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1496	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1497	pause->rx_pause = pause->tx_pause;
1498}
1499
1500static int fec_enet_set_pauseparam(struct net_device *ndev,
1501				   struct ethtool_pauseparam *pause)
1502{
1503	struct fec_enet_private *fep = netdev_priv(ndev);
1504
 
 
 
1505	if (pause->tx_pause != pause->rx_pause) {
1506		netdev_info(ndev,
1507			"hardware only support enable/disable both tx and rx");
1508		return -EINVAL;
1509	}
1510
1511	fep->pause_flag = 0;
1512
1513	/* tx pause must be same as rx pause */
1514	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1515	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1516
1517	if (pause->rx_pause || pause->autoneg) {
1518		fep->phy_dev->supported |= ADVERTISED_Pause;
1519		fep->phy_dev->advertising |= ADVERTISED_Pause;
1520	} else {
1521		fep->phy_dev->supported &= ~ADVERTISED_Pause;
1522		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1523	}
1524
1525	if (pause->autoneg) {
1526		if (netif_running(ndev))
1527			fec_stop(ndev);
1528		phy_start_aneg(fep->phy_dev);
 
 
 
 
 
 
 
 
1529	}
1530	if (netif_running(ndev))
1531		fec_restart(ndev, 0);
1532
1533	return 0;
1534}
1535
1536static const struct fec_stat {
1537	char name[ETH_GSTRING_LEN];
1538	u16 offset;
1539} fec_stats[] = {
1540	/* RMON TX */
1541	{ "tx_dropped", RMON_T_DROP },
1542	{ "tx_packets", RMON_T_PACKETS },
1543	{ "tx_broadcast", RMON_T_BC_PKT },
1544	{ "tx_multicast", RMON_T_MC_PKT },
1545	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
1546	{ "tx_undersize", RMON_T_UNDERSIZE },
1547	{ "tx_oversize", RMON_T_OVERSIZE },
1548	{ "tx_fragment", RMON_T_FRAG },
1549	{ "tx_jabber", RMON_T_JAB },
1550	{ "tx_collision", RMON_T_COL },
1551	{ "tx_64byte", RMON_T_P64 },
1552	{ "tx_65to127byte", RMON_T_P65TO127 },
1553	{ "tx_128to255byte", RMON_T_P128TO255 },
1554	{ "tx_256to511byte", RMON_T_P256TO511 },
1555	{ "tx_512to1023byte", RMON_T_P512TO1023 },
1556	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
1557	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
1558	{ "tx_octets", RMON_T_OCTETS },
1559
1560	/* IEEE TX */
1561	{ "IEEE_tx_drop", IEEE_T_DROP },
1562	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
1563	{ "IEEE_tx_1col", IEEE_T_1COL },
1564	{ "IEEE_tx_mcol", IEEE_T_MCOL },
1565	{ "IEEE_tx_def", IEEE_T_DEF },
1566	{ "IEEE_tx_lcol", IEEE_T_LCOL },
1567	{ "IEEE_tx_excol", IEEE_T_EXCOL },
1568	{ "IEEE_tx_macerr", IEEE_T_MACERR },
1569	{ "IEEE_tx_cserr", IEEE_T_CSERR },
1570	{ "IEEE_tx_sqe", IEEE_T_SQE },
1571	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
1572	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
1573
1574	/* RMON RX */
1575	{ "rx_packets", RMON_R_PACKETS },
1576	{ "rx_broadcast", RMON_R_BC_PKT },
1577	{ "rx_multicast", RMON_R_MC_PKT },
1578	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
1579	{ "rx_undersize", RMON_R_UNDERSIZE },
1580	{ "rx_oversize", RMON_R_OVERSIZE },
1581	{ "rx_fragment", RMON_R_FRAG },
1582	{ "rx_jabber", RMON_R_JAB },
1583	{ "rx_64byte", RMON_R_P64 },
1584	{ "rx_65to127byte", RMON_R_P65TO127 },
1585	{ "rx_128to255byte", RMON_R_P128TO255 },
1586	{ "rx_256to511byte", RMON_R_P256TO511 },
1587	{ "rx_512to1023byte", RMON_R_P512TO1023 },
1588	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
1589	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
1590	{ "rx_octets", RMON_R_OCTETS },
1591
1592	/* IEEE RX */
1593	{ "IEEE_rx_drop", IEEE_R_DROP },
1594	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
1595	{ "IEEE_rx_crc", IEEE_R_CRC },
1596	{ "IEEE_rx_align", IEEE_R_ALIGN },
1597	{ "IEEE_rx_macerr", IEEE_R_MACERR },
1598	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
1599	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
1600};
1601
1602static void fec_enet_get_ethtool_stats(struct net_device *dev,
1603	struct ethtool_stats *stats, u64 *data)
 
1604{
1605	struct fec_enet_private *fep = netdev_priv(dev);
1606	int i;
1607
1608	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1609		data[i] = readl(fep->hwp + fec_stats[i].offset);
 
 
 
 
 
 
 
 
 
 
 
1610}
1611
1612static void fec_enet_get_strings(struct net_device *netdev,
1613	u32 stringset, u8 *data)
1614{
1615	int i;
1616	switch (stringset) {
1617	case ETH_SS_STATS:
1618		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1619			memcpy(data + i * ETH_GSTRING_LEN,
1620				fec_stats[i].name, ETH_GSTRING_LEN);
1621		break;
1622	}
1623}
1624
1625static int fec_enet_get_sset_count(struct net_device *dev, int sset)
1626{
1627	switch (sset) {
1628	case ETH_SS_STATS:
1629		return ARRAY_SIZE(fec_stats);
1630	default:
1631		return -EOPNOTSUPP;
1632	}
1633}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1634#endif /* !defined(CONFIG_M5272) */
1635
1636static int fec_enet_nway_reset(struct net_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1637{
1638	struct fec_enet_private *fep = netdev_priv(dev);
1639	struct phy_device *phydev = fep->phy_dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1640
1641	if (!phydev)
1642		return -ENODEV;
 
 
 
 
 
 
 
 
1643
1644	return genphy_restart_aneg(phydev);
1645}
1646
1647static const struct ethtool_ops fec_enet_ethtool_ops = {
1648#if !defined(CONFIG_M5272)
1649	.get_pauseparam		= fec_enet_get_pauseparam,
1650	.set_pauseparam		= fec_enet_set_pauseparam,
1651#endif
1652	.get_settings		= fec_enet_get_settings,
1653	.set_settings		= fec_enet_set_settings,
1654	.get_drvinfo		= fec_enet_get_drvinfo,
 
 
 
1655	.get_link		= ethtool_op_get_link,
1656	.get_ts_info		= fec_enet_get_ts_info,
1657	.nway_reset		= fec_enet_nway_reset,
1658#ifndef CONFIG_M5272
 
 
 
1659	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
1660	.get_strings		= fec_enet_get_strings,
1661	.get_sset_count		= fec_enet_get_sset_count,
1662#endif
 
 
 
 
 
 
 
1663};
1664
1665static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1666{
1667	struct fec_enet_private *fep = netdev_priv(ndev);
1668	struct phy_device *phydev = fep->phy_dev;
1669
1670	if (!netif_running(ndev))
1671		return -EINVAL;
1672
1673	if (!phydev)
1674		return -ENODEV;
1675
1676	if (fep->bufdesc_ex) {
1677		if (cmd == SIOCSHWTSTAMP)
1678			return fec_ptp_set(ndev, rq);
1679		if (cmd == SIOCGHWTSTAMP)
1680			return fec_ptp_get(ndev, rq);
1681	}
1682
1683	return phy_mii_ioctl(phydev, rq, cmd);
1684}
1685
1686static void fec_enet_free_buffers(struct net_device *ndev)
1687{
1688	struct fec_enet_private *fep = netdev_priv(ndev);
1689	unsigned int i;
1690	struct sk_buff *skb;
1691	struct bufdesc	*bdp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692
1693	bdp = fep->rx_bd_base;
1694	for (i = 0; i < fep->rx_ring_size; i++) {
1695		skb = fep->rx_skbuff[i];
1696
1697		if (bdp->cbd_bufaddr)
1698			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1699					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1700		if (skb)
1701			dev_kfree_skb(skb);
1702		bdp = fec_enet_get_nextdesc(bdp, fep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1703	}
1704
1705	bdp = fep->tx_bd_base;
1706	for (i = 0; i < fep->tx_ring_size; i++)
1707		kfree(fep->tx_bounce[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
1708}
1709
1710static int fec_enet_alloc_buffers(struct net_device *ndev)
 
1711{
1712	struct fec_enet_private *fep = netdev_priv(ndev);
1713	unsigned int i;
1714	struct sk_buff *skb;
1715	struct bufdesc	*bdp;
 
1716
1717	bdp = fep->rx_bd_base;
1718	for (i = 0; i < fep->rx_ring_size; i++) {
 
1719		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1720		if (!skb) {
1721			fec_enet_free_buffers(ndev);
1722			return -ENOMEM;
 
 
 
1723		}
1724		fep->rx_skbuff[i] = skb;
1725
1726		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1727				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1728		if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1729			fec_enet_free_buffers(ndev);
1730			if (net_ratelimit())
1731				netdev_err(ndev, "Rx DMA memory map failed\n");
1732			return -ENOMEM;
1733		}
1734		bdp->cbd_sc = BD_ENET_RX_EMPTY;
1735
1736		if (fep->bufdesc_ex) {
1737			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1738			ebdp->cbd_esc = BD_ENET_RX_INT;
1739		}
1740
1741		bdp = fec_enet_get_nextdesc(bdp, fep);
1742	}
1743
1744	/* Set the last buffer to wrap. */
1745	bdp = fec_enet_get_prevdesc(bdp, fep);
1746	bdp->cbd_sc |= BD_SC_WRAP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1747
1748	bdp = fep->tx_bd_base;
1749	for (i = 0; i < fep->tx_ring_size; i++) {
1750		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
 
 
 
1751
1752		bdp->cbd_sc = 0;
1753		bdp->cbd_bufaddr = 0;
1754
1755		if (fep->bufdesc_ex) {
1756			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1757			ebdp->cbd_esc = BD_ENET_TX_INT;
1758		}
1759
1760		bdp = fec_enet_get_nextdesc(bdp, fep);
1761	}
1762
1763	/* Set the last buffer to wrap. */
1764	bdp = fec_enet_get_prevdesc(bdp, fep);
1765	bdp->cbd_sc |= BD_SC_WRAP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1766
 
 
 
1767	return 0;
1768}
1769
1770static int
1771fec_enet_open(struct net_device *ndev)
1772{
1773	struct fec_enet_private *fep = netdev_priv(ndev);
1774	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1775
1776	/* I should reset the ring buffers here, but I don't yet know
1777	 * a simple way to do that.
1778	 */
1779
1780	ret = fec_enet_alloc_buffers(ndev);
1781	if (ret)
1782		return ret;
 
 
 
1783
1784	/* Probe and connect to PHY when open the interface */
1785	ret = fec_enet_mii_probe(ndev);
1786	if (ret) {
1787		fec_enet_free_buffers(ndev);
1788		return ret;
1789	}
 
 
 
 
 
 
 
1790
1791	napi_enable(&fep->napi);
1792	phy_start(fep->phy_dev);
1793	netif_start_queue(ndev);
1794	fep->opened = 1;
 
 
 
1795	return 0;
 
 
 
 
 
 
 
 
 
 
1796}
1797
1798static int
1799fec_enet_close(struct net_device *ndev)
1800{
1801	struct fec_enet_private *fep = netdev_priv(ndev);
1802
1803	/* Don't know what to do yet. */
1804	napi_disable(&fep->napi);
1805	fep->opened = 0;
1806	netif_stop_queue(ndev);
1807	fec_stop(ndev);
1808
1809	if (fep->phy_dev) {
1810		phy_stop(fep->phy_dev);
1811		phy_disconnect(fep->phy_dev);
1812	}
1813
 
 
 
 
 
 
 
 
 
 
 
 
1814	fec_enet_free_buffers(ndev);
1815
1816	return 0;
1817}
1818
1819/* Set or clear the multicast filter for this adaptor.
1820 * Skeleton taken from sunlance driver.
1821 * The CPM Ethernet implementation allows Multicast as well as individual
1822 * MAC address filtering.  Some of the drivers check to make sure it is
1823 * a group multicast address, and discard those that are not.  I guess I
1824 * will do the same for now, but just remove the test if you want
1825 * individual filtering as well (do the upper net layers want or support
1826 * this kind of feature?).
1827 */
1828
1829#define HASH_BITS	6		/* #bits in hash */
1830#define CRC32_POLY	0xEDB88320
1831
1832static void set_multicast_list(struct net_device *ndev)
1833{
1834	struct fec_enet_private *fep = netdev_priv(ndev);
1835	struct netdev_hw_addr *ha;
1836	unsigned int i, bit, data, crc, tmp;
1837	unsigned char hash;
 
1838
1839	if (ndev->flags & IFF_PROMISC) {
1840		tmp = readl(fep->hwp + FEC_R_CNTRL);
1841		tmp |= 0x8;
1842		writel(tmp, fep->hwp + FEC_R_CNTRL);
1843		return;
1844	}
1845
1846	tmp = readl(fep->hwp + FEC_R_CNTRL);
1847	tmp &= ~0x8;
1848	writel(tmp, fep->hwp + FEC_R_CNTRL);
1849
1850	if (ndev->flags & IFF_ALLMULTI) {
1851		/* Catch all multicast addresses, so set the
1852		 * filter to all 1's
1853		 */
1854		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1855		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1856
1857		return;
1858	}
1859
1860	/* Clear filter and add the addresses in hash register
1861	 */
1862	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1863	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1864
1865	netdev_for_each_mc_addr(ha, ndev) {
1866		/* calculate crc32 value of mac address */
1867		crc = 0xffffffff;
1868
1869		for (i = 0; i < ndev->addr_len; i++) {
1870			data = ha->addr[i];
1871			for (bit = 0; bit < 8; bit++, data >>= 1) {
1872				crc = (crc >> 1) ^
1873				(((crc ^ data) & 1) ? CRC32_POLY : 0);
1874			}
1875		}
1876
1877		/* only upper 6 bits (HASH_BITS) are used
1878		 * which point to specific bit in he hash registers
1879		 */
1880		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1881
1882		if (hash > 31) {
1883			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1884			tmp |= 1 << (hash - 32);
1885			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1886		} else {
1887			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1888			tmp |= 1 << hash;
1889			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1890		}
1891	}
 
 
 
1892}
1893
1894/* Set a MAC change in hardware. */
1895static int
1896fec_set_mac_address(struct net_device *ndev, void *p)
1897{
1898	struct fec_enet_private *fep = netdev_priv(ndev);
1899	struct sockaddr *addr = p;
1900
1901	if (addr) {
1902		if (!is_valid_ether_addr(addr->sa_data))
1903			return -EADDRNOTAVAIL;
1904		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1905	}
1906
 
 
 
 
 
 
 
 
1907	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1908		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1909		fep->hwp + FEC_ADDR_LOW);
1910	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1911		fep->hwp + FEC_ADDR_HIGH);
1912	return 0;
1913}
1914
1915#ifdef CONFIG_NET_POLL_CONTROLLER
1916/**
1917 * fec_poll_controller - FEC Poll controller function
1918 * @dev: The FEC network adapter
1919 *
1920 * Polled functionality used by netconsole and others in non interrupt mode
1921 *
1922 */
1923static void fec_poll_controller(struct net_device *dev)
1924{
1925	int i;
1926	struct fec_enet_private *fep = netdev_priv(dev);
1927
1928	for (i = 0; i < FEC_IRQ_NUM; i++) {
1929		if (fep->irq[i] > 0) {
1930			disable_irq(fep->irq[i]);
1931			fec_enet_interrupt(fep->irq[i], dev);
1932			enable_irq(fep->irq[i]);
1933		}
1934	}
1935}
1936#endif
1937
1938static int fec_set_features(struct net_device *netdev,
1939	netdev_features_t features)
1940{
1941	struct fec_enet_private *fep = netdev_priv(netdev);
1942	netdev_features_t changed = features ^ netdev->features;
1943
1944	netdev->features = features;
1945
1946	/* Receive checksum has been changed */
1947	if (changed & NETIF_F_RXCSUM) {
1948		if (features & NETIF_F_RXCSUM)
1949			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1950		else
1951			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
 
 
 
 
 
 
 
 
1952
1953		if (netif_running(netdev)) {
1954			fec_stop(netdev);
1955			fec_restart(netdev, fep->phy_dev->duplex);
1956			netif_wake_queue(netdev);
1957		} else {
1958			fec_restart(netdev, fep->phy_dev->duplex);
1959		}
 
 
 
 
1960	}
1961
1962	return 0;
1963}
1964
1965static const struct net_device_ops fec_netdev_ops = {
1966	.ndo_open		= fec_enet_open,
1967	.ndo_stop		= fec_enet_close,
1968	.ndo_start_xmit		= fec_enet_start_xmit,
1969	.ndo_set_rx_mode	= set_multicast_list,
1970	.ndo_change_mtu		= eth_change_mtu,
1971	.ndo_validate_addr	= eth_validate_addr,
1972	.ndo_tx_timeout		= fec_timeout,
1973	.ndo_set_mac_address	= fec_set_mac_address,
1974	.ndo_do_ioctl		= fec_enet_ioctl,
1975#ifdef CONFIG_NET_POLL_CONTROLLER
1976	.ndo_poll_controller	= fec_poll_controller,
1977#endif
1978	.ndo_set_features	= fec_set_features,
1979};
1980
 
 
 
 
 
 
 
 
1981 /*
1982  * XXX:  We need to clean up on failure exits here.
1983  *
1984  */
1985static int fec_enet_init(struct net_device *ndev)
1986{
1987	struct fec_enet_private *fep = netdev_priv(ndev);
1988	const struct platform_device_id *id_entry =
1989				platform_get_device_id(fep->pdev);
1990	struct bufdesc *cbd_base;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991
1992	/* Allocate memory for buffer descriptors. */
1993	cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1994				      GFP_KERNEL);
1995	if (!cbd_base)
1996		return -ENOMEM;
 
1997
1998	memset(cbd_base, 0, PAGE_SIZE);
1999
2000	fep->netdev = ndev;
2001
2002	/* Get the Ethernet address */
2003	fec_get_mac(ndev);
2004	/* make sure MAC we just acquired is programmed into the hw */
2005	fec_set_mac_address(ndev, NULL);
2006
2007	/* init the tx & rx ring size */
2008	fep->tx_ring_size = TX_RING_SIZE;
2009	fep->rx_ring_size = RX_RING_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2010
2011	/* Set receive and transmit descriptor base. */
2012	fep->rx_bd_base = cbd_base;
2013	if (fep->bufdesc_ex)
2014		fep->tx_bd_base = (struct bufdesc *)
2015			(((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size);
2016	else
2017		fep->tx_bd_base = cbd_base + fep->rx_ring_size;
2018
2019	/* The FEC Ethernet specific entries in the device structure */
2020	ndev->watchdog_timeo = TX_TIMEOUT;
2021	ndev->netdev_ops = &fec_netdev_ops;
2022	ndev->ethtool_ops = &fec_enet_ethtool_ops;
2023
2024	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
2025	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
2026
2027	if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN) {
2028		/* enable hw VLAN support */
2029		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2030		ndev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
2031	}
2032
2033	if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
 
 
2034		/* enable hw accelerator */
2035		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2036				| NETIF_F_RXCSUM);
2037		ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2038				| NETIF_F_RXCSUM);
2039		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2040	}
2041
2042	fec_restart(ndev, 0);
 
 
 
 
 
 
 
 
 
 
 
 
2043
2044	return 0;
2045}
2046
2047#ifdef CONFIG_OF
2048static void fec_reset_phy(struct platform_device *pdev)
2049{
2050	int err, phy_reset;
2051	int msec = 1;
 
2052	struct device_node *np = pdev->dev.of_node;
2053
2054	if (!np)
2055		return;
2056
2057	of_property_read_u32(np, "phy-reset-duration", &msec);
2058	/* A sane reset duration should not be longer than 1s */
2059	if (msec > 1000)
2060		msec = 1;
2061
2062	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
2063	if (!gpio_is_valid(phy_reset))
2064		return;
 
 
 
 
 
 
 
 
 
2065
2066	err = devm_gpio_request_one(&pdev->dev, phy_reset,
2067				    GPIOF_OUT_INIT_LOW, "phy-reset");
 
2068	if (err) {
2069		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
2070		return;
2071	}
2072	msleep(msec);
2073	gpio_set_value(phy_reset, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2074}
2075#else /* CONFIG_OF */
2076static void fec_reset_phy(struct platform_device *pdev)
2077{
2078	/*
2079	 * In case of platform probe, the reset has been done
2080	 * by machine code.
2081	 */
 
2082}
2083#endif /* CONFIG_OF */
2084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2085static int
2086fec_probe(struct platform_device *pdev)
2087{
2088	struct fec_enet_private *fep;
2089	struct fec_platform_data *pdata;
2090	struct net_device *ndev;
2091	int i, irq, ret = 0;
2092	struct resource *r;
2093	const struct of_device_id *of_id;
2094	static int dev_id;
 
 
 
 
 
2095
2096	of_id = of_match_device(fec_dt_ids, &pdev->dev);
2097	if (of_id)
2098		pdev->id_entry = of_id->data;
2099
2100	/* Init network device */
2101	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
 
2102	if (!ndev)
2103		return -ENOMEM;
2104
2105	SET_NETDEV_DEV(ndev, &pdev->dev);
2106
2107	/* setup board info structure */
2108	fep = netdev_priv(ndev);
2109
 
 
 
 
 
 
 
 
 
2110#if !defined(CONFIG_M5272)
2111	/* default enable pause frame auto negotiation */
2112	if (pdev->id_entry &&
2113	    (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
2114		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
2115#endif
2116
 
 
 
2117	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2118	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
2119	if (IS_ERR(fep->hwp)) {
2120		ret = PTR_ERR(fep->hwp);
2121		goto failed_ioremap;
2122	}
2123
2124	fep->pdev = pdev;
2125	fep->dev_id = dev_id++;
2126
2127	fep->bufdesc_ex = 0;
2128
2129	platform_set_drvdata(pdev, ndev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2130
2131	ret = of_get_phy_mode(pdev->dev.of_node);
2132	if (ret < 0) {
2133		pdata = dev_get_platdata(&pdev->dev);
2134		if (pdata)
2135			fep->phy_interface = pdata->phy;
2136		else
2137			fep->phy_interface = PHY_INTERFACE_MODE_MII;
2138	} else {
2139		fep->phy_interface = ret;
2140	}
2141
2142	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2143	if (IS_ERR(fep->clk_ipg)) {
2144		ret = PTR_ERR(fep->clk_ipg);
2145		goto failed_clk;
2146	}
2147
2148	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2149	if (IS_ERR(fep->clk_ahb)) {
2150		ret = PTR_ERR(fep->clk_ahb);
2151		goto failed_clk;
2152	}
2153
 
 
2154	/* enet_out is optional, depends on board */
2155	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
2156	if (IS_ERR(fep->clk_enet_out))
2157		fep->clk_enet_out = NULL;
2158
 
 
 
 
 
 
 
 
 
2159	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
2160	fep->bufdesc_ex =
2161		pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
2162	if (IS_ERR(fep->clk_ptp)) {
2163		fep->clk_ptp = NULL;
2164		fep->bufdesc_ex = 0;
2165	}
2166
2167	ret = clk_prepare_enable(fep->clk_ahb);
2168	if (ret)
2169		goto failed_clk;
2170
2171	ret = clk_prepare_enable(fep->clk_ipg);
2172	if (ret)
2173		goto failed_clk_ipg;
2174
2175	if (fep->clk_enet_out) {
2176		ret = clk_prepare_enable(fep->clk_enet_out);
2177		if (ret)
2178			goto failed_clk_enet_out;
2179	}
2180
2181	if (fep->clk_ptp) {
2182		ret = clk_prepare_enable(fep->clk_ptp);
2183		if (ret)
2184			goto failed_clk_ptp;
2185	}
2186
2187	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
2188	if (!IS_ERR(fep->reg_phy)) {
2189		ret = regulator_enable(fep->reg_phy);
2190		if (ret) {
2191			dev_err(&pdev->dev,
2192				"Failed to enable phy regulator: %d\n", ret);
 
2193			goto failed_regulator;
2194		}
2195	} else {
 
 
 
 
2196		fep->reg_phy = NULL;
2197	}
2198
2199	fec_reset_phy(pdev);
 
 
 
 
2200
 
 
 
 
 
2201	if (fep->bufdesc_ex)
2202		fec_ptp_init(pdev);
2203
2204	ret = fec_enet_init(ndev);
2205	if (ret)
2206		goto failed_init;
2207
2208	for (i = 0; i < FEC_IRQ_NUM; i++) {
2209		irq = platform_get_irq(pdev, i);
 
 
 
2210		if (irq < 0) {
2211			if (i)
2212				break;
2213			ret = irq;
2214			goto failed_irq;
2215		}
2216		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
2217				       0, pdev->name, ndev);
2218		if (ret)
2219			goto failed_irq;
 
 
2220	}
2221
 
2222	ret = fec_enet_mii_init(pdev);
2223	if (ret)
2224		goto failed_mii_init;
2225
2226	/* Carrier starts down, phylib will bring it up */
2227	netif_carrier_off(ndev);
 
 
2228
2229	ret = register_netdev(ndev);
2230	if (ret)
2231		goto failed_register;
2232
 
 
 
2233	if (fep->bufdesc_ex && fep->ptp_clock)
2234		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2235
2236	INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
 
 
 
 
 
2237	return 0;
2238
2239failed_register:
2240	fec_enet_mii_remove(fep);
2241failed_mii_init:
2242failed_irq:
2243failed_init:
 
2244	if (fep->reg_phy)
2245		regulator_disable(fep->reg_phy);
 
 
 
2246failed_regulator:
2247	if (fep->clk_ptp)
2248		clk_disable_unprepare(fep->clk_ptp);
2249failed_clk_ptp:
2250	if (fep->clk_enet_out)
2251		clk_disable_unprepare(fep->clk_enet_out);
2252failed_clk_enet_out:
2253	clk_disable_unprepare(fep->clk_ipg);
2254failed_clk_ipg:
2255	clk_disable_unprepare(fep->clk_ahb);
2256failed_clk:
 
 
 
 
 
2257failed_ioremap:
2258	free_netdev(ndev);
2259
2260	return ret;
2261}
2262
2263static int
2264fec_drv_remove(struct platform_device *pdev)
2265{
2266	struct net_device *ndev = platform_get_drvdata(pdev);
2267	struct fec_enet_private *fep = netdev_priv(ndev);
 
2268
2269	cancel_delayed_work_sync(&(fep->delay_work.delay_work));
 
2270	unregister_netdev(ndev);
2271	fec_enet_mii_remove(fep);
2272	del_timer_sync(&fep->time_keep);
2273	if (fep->reg_phy)
2274		regulator_disable(fep->reg_phy);
2275	if (fep->clk_ptp)
2276		clk_disable_unprepare(fep->clk_ptp);
2277	if (fep->ptp_clock)
2278		ptp_clock_unregister(fep->ptp_clock);
2279	if (fep->clk_enet_out)
2280		clk_disable_unprepare(fep->clk_enet_out);
2281	clk_disable_unprepare(fep->clk_ipg);
2282	clk_disable_unprepare(fep->clk_ahb);
2283	free_netdev(ndev);
2284
2285	return 0;
2286}
2287
2288#ifdef CONFIG_PM_SLEEP
2289static int
2290fec_suspend(struct device *dev)
2291{
2292	struct net_device *ndev = dev_get_drvdata(dev);
2293	struct fec_enet_private *fep = netdev_priv(ndev);
2294
 
2295	if (netif_running(ndev)) {
 
 
 
 
 
 
 
2296		fec_stop(ndev);
2297		netif_device_detach(ndev);
 
 
2298	}
2299	if (fep->clk_ptp)
2300		clk_disable_unprepare(fep->clk_ptp);
2301	if (fep->clk_enet_out)
2302		clk_disable_unprepare(fep->clk_enet_out);
2303	clk_disable_unprepare(fep->clk_ipg);
2304	clk_disable_unprepare(fep->clk_ahb);
2305
2306	if (fep->reg_phy)
2307		regulator_disable(fep->reg_phy);
2308
 
 
 
 
 
 
2309	return 0;
2310}
2311
2312static int
2313fec_resume(struct device *dev)
2314{
2315	struct net_device *ndev = dev_get_drvdata(dev);
2316	struct fec_enet_private *fep = netdev_priv(ndev);
 
2317	int ret;
 
2318
2319	if (fep->reg_phy) {
2320		ret = regulator_enable(fep->reg_phy);
2321		if (ret)
2322			return ret;
2323	}
2324
2325	ret = clk_prepare_enable(fep->clk_ahb);
2326	if (ret)
2327		goto failed_clk_ahb;
2328
2329	ret = clk_prepare_enable(fep->clk_ipg);
2330	if (ret)
2331		goto failed_clk_ipg;
2332
2333	if (fep->clk_enet_out) {
2334		ret = clk_prepare_enable(fep->clk_enet_out);
2335		if (ret)
2336			goto failed_clk_enet_out;
2337	}
2338
2339	if (fep->clk_ptp) {
2340		ret = clk_prepare_enable(fep->clk_ptp);
2341		if (ret)
2342			goto failed_clk_ptp;
2343	}
2344
2345	if (netif_running(ndev)) {
2346		fec_restart(ndev, fep->full_duplex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2347		netif_device_attach(ndev);
 
 
 
2348	}
 
2349
2350	return 0;
2351
2352failed_clk_ptp:
2353	if (fep->clk_enet_out)
2354		clk_disable_unprepare(fep->clk_enet_out);
2355failed_clk_enet_out:
2356	clk_disable_unprepare(fep->clk_ipg);
2357failed_clk_ipg:
2358	clk_disable_unprepare(fep->clk_ahb);
2359failed_clk_ahb:
2360	if (fep->reg_phy)
2361		regulator_disable(fep->reg_phy);
2362	return ret;
2363}
2364#endif /* CONFIG_PM_SLEEP */
2365
2366static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2367
2368static struct platform_driver fec_driver = {
2369	.driver	= {
2370		.name	= DRIVER_NAME,
2371		.owner	= THIS_MODULE,
2372		.pm	= &fec_pm_ops,
2373		.of_match_table = fec_dt_ids,
2374	},
2375	.id_table = fec_devtype,
2376	.probe	= fec_probe,
2377	.remove	= fec_drv_remove,
2378};
2379
2380module_platform_driver(fec_driver);
2381
2382MODULE_ALIAS("platform:"DRIVER_NAME);
2383MODULE_LICENSE("GPL");