Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
  23#include <linux/nsproxy.h>
  24#include <linux/pagevec.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/topology.h>
  28#include <linux/cpu.h>
  29#include <linux/cpuset.h>
  30#include <linux/writeback.h>
  31#include <linux/mempolicy.h>
  32#include <linux/vmalloc.h>
  33#include <linux/security.h>
  34#include <linux/backing-dev.h>
  35#include <linux/compaction.h>
  36#include <linux/syscalls.h>
  37#include <linux/compat.h>
  38#include <linux/hugetlb.h>
  39#include <linux/hugetlb_cgroup.h>
  40#include <linux/gfp.h>
  41#include <linux/pfn_t.h>
  42#include <linux/memremap.h>
  43#include <linux/userfaultfd_k.h>
  44#include <linux/balloon_compaction.h>
  45#include <linux/mmu_notifier.h>
  46#include <linux/page_idle.h>
  47#include <linux/page_owner.h>
  48#include <linux/sched/mm.h>
  49#include <linux/ptrace.h>
 
 
 
 
 
  50
  51#include <asm/tlbflush.h>
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/migrate.h>
  55
  56#include "internal.h"
  57
  58/*
  59 * migrate_prep() needs to be called before we start compiling a list of pages
  60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  61 * undesirable, use migrate_prep_local()
  62 */
  63int migrate_prep(void)
  64{
  65	/*
  66	 * Clear the LRU lists so pages can be isolated.
  67	 * Note that pages may be moved off the LRU after we have
  68	 * drained them. Those pages will fail to migrate like other
  69	 * pages that may be busy.
  70	 */
  71	lru_add_drain_all();
  72
  73	return 0;
  74}
  75
  76/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  77int migrate_prep_local(void)
  78{
  79	lru_add_drain();
  80
  81	return 0;
  82}
  83
  84int isolate_movable_page(struct page *page, isolate_mode_t mode)
  85{
  86	struct address_space *mapping;
 
  87
  88	/*
  89	 * Avoid burning cycles with pages that are yet under __free_pages(),
  90	 * or just got freed under us.
  91	 *
  92	 * In case we 'win' a race for a movable page being freed under us and
  93	 * raise its refcount preventing __free_pages() from doing its job
  94	 * the put_page() at the end of this block will take care of
  95	 * release this page, thus avoiding a nasty leakage.
  96	 */
  97	if (unlikely(!get_page_unless_zero(page)))
  98		goto out;
  99
 100	/*
 101	 * Check PageMovable before holding a PG_lock because page's owner
 102	 * assumes anybody doesn't touch PG_lock of newly allocated page
 103	 * so unconditionally grapping the lock ruins page's owner side.
 104	 */
 105	if (unlikely(!__PageMovable(page)))
 106		goto out_putpage;
 
 
 
 
 
 
 
 
 
 107	/*
 108	 * As movable pages are not isolated from LRU lists, concurrent
 109	 * compaction threads can race against page migration functions
 110	 * as well as race against the releasing a page.
 111	 *
 112	 * In order to avoid having an already isolated movable page
 113	 * being (wrongly) re-isolated while it is under migration,
 114	 * or to avoid attempting to isolate pages being released,
 115	 * lets be sure we have the page lock
 116	 * before proceeding with the movable page isolation steps.
 117	 */
 118	if (unlikely(!trylock_page(page)))
 119		goto out_putpage;
 120
 121	if (!PageMovable(page) || PageIsolated(page))
 122		goto out_no_isolated;
 123
 124	mapping = page_mapping(page);
 125	VM_BUG_ON_PAGE(!mapping, page);
 126
 127	if (!mapping->a_ops->isolate_page(page, mode))
 128		goto out_no_isolated;
 129
 130	/* Driver shouldn't use PG_isolated bit of page->flags */
 131	WARN_ON_ONCE(PageIsolated(page));
 132	__SetPageIsolated(page);
 133	unlock_page(page);
 134
 135	return 0;
 136
 137out_no_isolated:
 138	unlock_page(page);
 139out_putpage:
 140	put_page(page);
 141out:
 142	return -EBUSY;
 143}
 144
 145/* It should be called on page which is PG_movable */
 146void putback_movable_page(struct page *page)
 147{
 148	struct address_space *mapping;
 149
 150	VM_BUG_ON_PAGE(!PageLocked(page), page);
 151	VM_BUG_ON_PAGE(!PageMovable(page), page);
 152	VM_BUG_ON_PAGE(!PageIsolated(page), page);
 153
 154	mapping = page_mapping(page);
 155	mapping->a_ops->putback_page(page);
 156	__ClearPageIsolated(page);
 157}
 158
 159/*
 160 * Put previously isolated pages back onto the appropriate lists
 161 * from where they were once taken off for compaction/migration.
 162 *
 163 * This function shall be used whenever the isolated pageset has been
 164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 165 * and isolate_huge_page().
 166 */
 167void putback_movable_pages(struct list_head *l)
 168{
 169	struct page *page;
 170	struct page *page2;
 171
 172	list_for_each_entry_safe(page, page2, l, lru) {
 173		if (unlikely(PageHuge(page))) {
 174			putback_active_hugepage(page);
 175			continue;
 176		}
 177		list_del(&page->lru);
 178		/*
 179		 * We isolated non-lru movable page so here we can use
 180		 * __PageMovable because LRU page's mapping cannot have
 181		 * PAGE_MAPPING_MOVABLE.
 182		 */
 183		if (unlikely(__PageMovable(page))) {
 184			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 185			lock_page(page);
 186			if (PageMovable(page))
 187				putback_movable_page(page);
 188			else
 189				__ClearPageIsolated(page);
 190			unlock_page(page);
 191			put_page(page);
 192		} else {
 193			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 194					page_is_file_cache(page), -hpage_nr_pages(page));
 195			putback_lru_page(page);
 196		}
 197	}
 198}
 199
 200/*
 201 * Restore a potential migration pte to a working pte entry
 202 */
 203static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
 204				 unsigned long addr, void *old)
 205{
 206	struct page_vma_mapped_walk pvmw = {
 207		.page = old,
 208		.vma = vma,
 209		.address = addr,
 210		.flags = PVMW_SYNC | PVMW_MIGRATION,
 211	};
 212	struct page *new;
 213	pte_t pte;
 214	swp_entry_t entry;
 215
 216	VM_BUG_ON_PAGE(PageTail(page), page);
 217	while (page_vma_mapped_walk(&pvmw)) {
 218		if (PageKsm(page))
 219			new = page;
 220		else
 221			new = page - pvmw.page->index +
 222				linear_page_index(vma, pvmw.address);
 
 
 
 
 
 
 223
 224#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 225		/* PMD-mapped THP migration entry */
 226		if (!pvmw.pte) {
 227			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
 
 228			remove_migration_pmd(&pvmw, new);
 229			continue;
 230		}
 231#endif
 232
 233		get_page(new);
 234		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 235		if (pte_swp_soft_dirty(*pvmw.pte))
 
 236			pte = pte_mksoft_dirty(pte);
 237
 238		/*
 239		 * Recheck VMA as permissions can change since migration started
 240		 */
 241		entry = pte_to_swp_entry(*pvmw.pte);
 242		if (is_write_migration_entry(entry))
 243			pte = maybe_mkwrite(pte, vma);
 244
 245		if (unlikely(is_zone_device_page(new))) {
 246			if (is_device_private_page(new)) {
 247				entry = make_device_private_entry(new, pte_write(pte));
 248				pte = swp_entry_to_pte(entry);
 249			} else if (is_device_public_page(new)) {
 250				pte = pte_mkdevmap(pte);
 251				flush_dcache_page(new);
 252			}
 253		} else
 254			flush_dcache_page(new);
 
 
 
 
 
 
 
 
 
 255
 256#ifdef CONFIG_HUGETLB_PAGE
 257		if (PageHuge(new)) {
 258			pte = pte_mkhuge(pte);
 259			pte = arch_make_huge_pte(pte, vma, new, 0);
 260			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 261			if (PageAnon(new))
 262				hugepage_add_anon_rmap(new, vma, pvmw.address);
 
 
 
 263			else
 264				page_dup_rmap(new, true);
 
 
 265		} else
 266#endif
 267		{
 268			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 269
 270			if (PageAnon(new))
 271				page_add_anon_rmap(new, vma, pvmw.address, false);
 272			else
 273				page_add_file_rmap(new, false);
 
 274		}
 275		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 276			mlock_vma_page(new);
 
 
 
 277
 278		/* No need to invalidate - it was non-present before */
 279		update_mmu_cache(vma, pvmw.address, pvmw.pte);
 280	}
 281
 282	return true;
 283}
 284
 285/*
 286 * Get rid of all migration entries and replace them by
 287 * references to the indicated page.
 288 */
 289void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 290{
 291	struct rmap_walk_control rwc = {
 292		.rmap_one = remove_migration_pte,
 293		.arg = old,
 294	};
 295
 296	if (locked)
 297		rmap_walk_locked(new, &rwc);
 298	else
 299		rmap_walk(new, &rwc);
 300}
 301
 302/*
 303 * Something used the pte of a page under migration. We need to
 304 * get to the page and wait until migration is finished.
 305 * When we return from this function the fault will be retried.
 306 */
 307void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 308				spinlock_t *ptl)
 309{
 
 
 310	pte_t pte;
 311	swp_entry_t entry;
 312	struct page *page;
 313
 314	spin_lock(ptl);
 315	pte = *ptep;
 
 
 
 
 
 316	if (!is_swap_pte(pte))
 317		goto out;
 318
 319	entry = pte_to_swp_entry(pte);
 320	if (!is_migration_entry(entry))
 321		goto out;
 322
 323	page = migration_entry_to_page(entry);
 324
 325	/*
 326	 * Once radix-tree replacement of page migration started, page_count
 327	 * *must* be zero. And, we don't want to call wait_on_page_locked()
 328	 * against a page without get_page().
 329	 * So, we use get_page_unless_zero(), here. Even failed, page fault
 330	 * will occur again.
 331	 */
 332	if (!get_page_unless_zero(page))
 333		goto out;
 334	pte_unmap_unlock(ptep, ptl);
 335	wait_on_page_locked(page);
 336	put_page(page);
 337	return;
 338out:
 339	pte_unmap_unlock(ptep, ptl);
 340}
 341
 342void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 343				unsigned long address)
 
 
 
 
 
 
 344{
 345	spinlock_t *ptl = pte_lockptr(mm, pmd);
 346	pte_t *ptep = pte_offset_map(pmd, address);
 347	__migration_entry_wait(mm, ptep, ptl);
 348}
 349
 350void migration_entry_wait_huge(struct vm_area_struct *vma,
 351		struct mm_struct *mm, pte_t *pte)
 352{
 353	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 354	__migration_entry_wait(mm, pte, ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 355}
 
 356
 357#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 358void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 359{
 360	spinlock_t *ptl;
 361	struct page *page;
 362
 363	ptl = pmd_lock(mm, pmd);
 364	if (!is_pmd_migration_entry(*pmd))
 365		goto unlock;
 366	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
 367	if (!get_page_unless_zero(page))
 368		goto unlock;
 369	spin_unlock(ptl);
 370	wait_on_page_locked(page);
 371	put_page(page);
 372	return;
 373unlock:
 374	spin_unlock(ptl);
 375}
 376#endif
 377
 378#ifdef CONFIG_BLOCK
 379/* Returns true if all buffers are successfully locked */
 380static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 381							enum migrate_mode mode)
 382{
 383	struct buffer_head *bh = head;
 
 
 
 
 
 
 384
 385	/* Simple case, sync compaction */
 386	if (mode != MIGRATE_ASYNC) {
 387		do {
 388			get_bh(bh);
 389			lock_buffer(bh);
 390			bh = bh->b_this_page;
 391
 392		} while (bh != head);
 393
 394		return true;
 395	}
 396
 397	/* async case, we cannot block on lock_buffer so use trylock_buffer */
 398	do {
 399		get_bh(bh);
 400		if (!trylock_buffer(bh)) {
 401			/*
 402			 * We failed to lock the buffer and cannot stall in
 403			 * async migration. Release the taken locks
 404			 */
 405			struct buffer_head *failed_bh = bh;
 406			put_bh(failed_bh);
 407			bh = head;
 408			while (bh != failed_bh) {
 409				unlock_buffer(bh);
 410				put_bh(bh);
 411				bh = bh->b_this_page;
 412			}
 413			return false;
 414		}
 415
 416		bh = bh->b_this_page;
 417	} while (bh != head);
 418	return true;
 419}
 420#else
 421static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
 422							enum migrate_mode mode)
 423{
 424	return true;
 425}
 426#endif /* CONFIG_BLOCK */
 427
 428/*
 429 * Replace the page in the mapping.
 430 *
 431 * The number of remaining references must be:
 432 * 1 for anonymous pages without a mapping
 433 * 2 for pages with a mapping
 434 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 435 */
 436int migrate_page_move_mapping(struct address_space *mapping,
 437		struct page *newpage, struct page *page,
 438		struct buffer_head *head, enum migrate_mode mode,
 439		int extra_count)
 440{
 
 441	struct zone *oldzone, *newzone;
 442	int dirty;
 443	int expected_count = 1 + extra_count;
 444	void **pslot;
 445
 446	/*
 447	 * Device public or private pages have an extra refcount as they are
 448	 * ZONE_DEVICE pages.
 449	 */
 450	expected_count += is_device_private_page(page);
 451	expected_count += is_device_public_page(page);
 452
 453	if (!mapping) {
 454		/* Anonymous page without mapping */
 455		if (page_count(page) != expected_count)
 456			return -EAGAIN;
 457
 458		/* No turning back from here */
 459		newpage->index = page->index;
 460		newpage->mapping = page->mapping;
 461		if (PageSwapBacked(page))
 462			__SetPageSwapBacked(newpage);
 463
 464		return MIGRATEPAGE_SUCCESS;
 465	}
 466
 467	oldzone = page_zone(page);
 468	newzone = page_zone(newpage);
 469
 470	xa_lock_irq(&mapping->i_pages);
 471
 472	pslot = radix_tree_lookup_slot(&mapping->i_pages,
 473 					page_index(page));
 474
 475	expected_count += hpage_nr_pages(page) + page_has_private(page);
 476	if (page_count(page) != expected_count ||
 477		radix_tree_deref_slot_protected(pslot,
 478					&mapping->i_pages.xa_lock) != page) {
 479		xa_unlock_irq(&mapping->i_pages);
 480		return -EAGAIN;
 481	}
 482
 483	if (!page_ref_freeze(page, expected_count)) {
 484		xa_unlock_irq(&mapping->i_pages);
 485		return -EAGAIN;
 486	}
 487
 488	/*
 489	 * In the async migration case of moving a page with buffers, lock the
 490	 * buffers using trylock before the mapping is moved. If the mapping
 491	 * was moved, we later failed to lock the buffers and could not move
 492	 * the mapping back due to an elevated page count, we would have to
 493	 * block waiting on other references to be dropped.
 494	 */
 495	if (mode == MIGRATE_ASYNC && head &&
 496			!buffer_migrate_lock_buffers(head, mode)) {
 497		page_ref_unfreeze(page, expected_count);
 498		xa_unlock_irq(&mapping->i_pages);
 499		return -EAGAIN;
 500	}
 501
 502	/*
 503	 * Now we know that no one else is looking at the page:
 504	 * no turning back from here.
 505	 */
 506	newpage->index = page->index;
 507	newpage->mapping = page->mapping;
 508	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
 509	if (PageSwapBacked(page)) {
 510		__SetPageSwapBacked(newpage);
 511		if (PageSwapCache(page)) {
 512			SetPageSwapCache(newpage);
 513			set_page_private(newpage, page_private(page));
 514		}
 
 515	} else {
 516		VM_BUG_ON_PAGE(PageSwapCache(page), page);
 
 517	}
 518
 519	/* Move dirty while page refs frozen and newpage not yet exposed */
 520	dirty = PageDirty(page);
 521	if (dirty) {
 522		ClearPageDirty(page);
 523		SetPageDirty(newpage);
 524	}
 525
 526	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
 527	if (PageTransHuge(page)) {
 528		int i;
 529		int index = page_index(page);
 530
 531		for (i = 1; i < HPAGE_PMD_NR; i++) {
 532			pslot = radix_tree_lookup_slot(&mapping->i_pages,
 533						       index + i);
 534			radix_tree_replace_slot(&mapping->i_pages, pslot,
 535						newpage + i);
 536		}
 537	}
 538
 539	/*
 540	 * Drop cache reference from old page by unfreezing
 541	 * to one less reference.
 542	 * We know this isn't the last reference.
 543	 */
 544	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
 545
 546	xa_unlock(&mapping->i_pages);
 547	/* Leave irq disabled to prevent preemption while updating stats */
 548
 549	/*
 550	 * If moved to a different zone then also account
 551	 * the page for that zone. Other VM counters will be
 552	 * taken care of when we establish references to the
 553	 * new page and drop references to the old page.
 554	 *
 555	 * Note that anonymous pages are accounted for
 556	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 557	 * are mapped to swap space.
 558	 */
 559	if (newzone != oldzone) {
 560		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
 561		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
 562		if (PageSwapBacked(page) && !PageSwapCache(page)) {
 563			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
 564			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
 565		}
 566		if (dirty && mapping_cap_account_dirty(mapping)) {
 567			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
 568			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
 569			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
 570			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571		}
 572	}
 573	local_irq_enable();
 574
 575	return MIGRATEPAGE_SUCCESS;
 576}
 577EXPORT_SYMBOL(migrate_page_move_mapping);
 578
 579/*
 580 * The expected number of remaining references is the same as that
 581 * of migrate_page_move_mapping().
 582 */
 583int migrate_huge_page_move_mapping(struct address_space *mapping,
 584				   struct page *newpage, struct page *page)
 585{
 
 586	int expected_count;
 587	void **pslot;
 588
 589	xa_lock_irq(&mapping->i_pages);
 590
 591	pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
 592
 593	expected_count = 2 + page_has_private(page);
 594	if (page_count(page) != expected_count ||
 595		radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
 596		xa_unlock_irq(&mapping->i_pages);
 597		return -EAGAIN;
 598	}
 599
 600	if (!page_ref_freeze(page, expected_count)) {
 601		xa_unlock_irq(&mapping->i_pages);
 602		return -EAGAIN;
 603	}
 604
 605	newpage->index = page->index;
 606	newpage->mapping = page->mapping;
 607
 608	get_page(newpage);
 609
 610	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
 611
 612	page_ref_unfreeze(page, expected_count - 1);
 613
 614	xa_unlock_irq(&mapping->i_pages);
 615
 616	return MIGRATEPAGE_SUCCESS;
 617}
 618
 619/*
 620 * Gigantic pages are so large that we do not guarantee that page++ pointer
 621 * arithmetic will work across the entire page.  We need something more
 622 * specialized.
 623 */
 624static void __copy_gigantic_page(struct page *dst, struct page *src,
 625				int nr_pages)
 626{
 627	int i;
 628	struct page *dst_base = dst;
 629	struct page *src_base = src;
 630
 631	for (i = 0; i < nr_pages; ) {
 632		cond_resched();
 633		copy_highpage(dst, src);
 634
 635		i++;
 636		dst = mem_map_next(dst, dst_base, i);
 637		src = mem_map_next(src, src_base, i);
 638	}
 639}
 640
 641static void copy_huge_page(struct page *dst, struct page *src)
 642{
 643	int i;
 644	int nr_pages;
 645
 646	if (PageHuge(src)) {
 647		/* hugetlbfs page */
 648		struct hstate *h = page_hstate(src);
 649		nr_pages = pages_per_huge_page(h);
 650
 651		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 652			__copy_gigantic_page(dst, src, nr_pages);
 653			return;
 654		}
 655	} else {
 656		/* thp page */
 657		BUG_ON(!PageTransHuge(src));
 658		nr_pages = hpage_nr_pages(src);
 659	}
 660
 661	for (i = 0; i < nr_pages; i++) {
 662		cond_resched();
 663		copy_highpage(dst + i, src + i);
 664	}
 665}
 666
 667/*
 668 * Copy the page to its new location
 669 */
 670void migrate_page_states(struct page *newpage, struct page *page)
 671{
 672	int cpupid;
 673
 674	if (PageError(page))
 675		SetPageError(newpage);
 676	if (PageReferenced(page))
 677		SetPageReferenced(newpage);
 678	if (PageUptodate(page))
 679		SetPageUptodate(newpage);
 680	if (TestClearPageActive(page)) {
 681		VM_BUG_ON_PAGE(PageUnevictable(page), page);
 682		SetPageActive(newpage);
 683	} else if (TestClearPageUnevictable(page))
 684		SetPageUnevictable(newpage);
 685	if (PageChecked(page))
 686		SetPageChecked(newpage);
 687	if (PageMappedToDisk(page))
 688		SetPageMappedToDisk(newpage);
 689
 690	/* Move dirty on pages not done by migrate_page_move_mapping() */
 691	if (PageDirty(page))
 692		SetPageDirty(newpage);
 693
 694	if (page_is_young(page))
 695		set_page_young(newpage);
 696	if (page_is_idle(page))
 697		set_page_idle(newpage);
 
 
 
 
 
 
 
 
 698
 699	/*
 700	 * Copy NUMA information to the new page, to prevent over-eager
 701	 * future migrations of this same page.
 702	 */
 703	cpupid = page_cpupid_xchg_last(page, -1);
 704	page_cpupid_xchg_last(newpage, cpupid);
 
 
 
 
 
 
 
 
 
 
 
 
 705
 706	ksm_migrate_page(newpage, page);
 707	/*
 708	 * Please do not reorder this without considering how mm/ksm.c's
 709	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 710	 */
 711	if (PageSwapCache(page))
 712		ClearPageSwapCache(page);
 713	ClearPagePrivate(page);
 714	set_page_private(page, 0);
 
 
 
 715
 716	/*
 717	 * If any waiters have accumulated on the new page then
 718	 * wake them up.
 719	 */
 720	if (PageWriteback(newpage))
 721		end_page_writeback(newpage);
 722
 723	copy_page_owner(page, newpage);
 
 
 
 
 
 
 724
 725	mem_cgroup_migrate(page, newpage);
 
 
 726}
 727EXPORT_SYMBOL(migrate_page_states);
 728
 729void migrate_page_copy(struct page *newpage, struct page *page)
 730{
 731	if (PageHuge(page) || PageTransHuge(page))
 732		copy_huge_page(newpage, page);
 733	else
 734		copy_highpage(newpage, page);
 735
 736	migrate_page_states(newpage, page);
 737}
 738EXPORT_SYMBOL(migrate_page_copy);
 739
 740/************************************************************
 741 *                    Migration functions
 742 ***********************************************************/
 743
 744/*
 745 * Common logic to directly migrate a single LRU page suitable for
 746 * pages that do not use PagePrivate/PagePrivate2.
 747 *
 748 * Pages are locked upon entry and exit.
 749 */
 750int migrate_page(struct address_space *mapping,
 751		struct page *newpage, struct page *page,
 752		enum migrate_mode mode)
 753{
 754	int rc;
 755
 756	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
 757
 758	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
 759
 760	if (rc != MIGRATEPAGE_SUCCESS)
 761		return rc;
 762
 763	if (mode != MIGRATE_SYNC_NO_COPY)
 764		migrate_page_copy(newpage, page);
 765	else
 766		migrate_page_states(newpage, page);
 767	return MIGRATEPAGE_SUCCESS;
 768}
 769EXPORT_SYMBOL(migrate_page);
 770
 771#ifdef CONFIG_BLOCK
 772/*
 773 * Migration function for pages with buffers. This function can only be used
 774 * if the underlying filesystem guarantees that no other references to "page"
 775 * exist.
 
 
 
 
 
 
 776 */
 777int buffer_migrate_page(struct address_space *mapping,
 778		struct page *newpage, struct page *page, enum migrate_mode mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 779{
 780	struct buffer_head *bh, *head;
 781	int rc;
 
 782
 783	if (!page_has_buffers(page))
 784		return migrate_page(mapping, newpage, page, mode);
 
 
 
 
 
 
 785
 786	head = page_buffers(page);
 
 787
 788	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 789
 
 790	if (rc != MIGRATEPAGE_SUCCESS)
 791		return rc;
 792
 793	/*
 794	 * In the async case, migrate_page_move_mapping locked the buffers
 795	 * with an IRQ-safe spinlock held. In the sync case, the buffers
 796	 * need to be locked now
 797	 */
 798	if (mode != MIGRATE_ASYNC)
 799		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
 800
 801	ClearPagePrivate(page);
 802	set_page_private(newpage, page_private(page));
 803	set_page_private(page, 0);
 804	put_page(page);
 805	get_page(newpage);
 806
 807	bh = head;
 808	do {
 809		set_bh_page(bh, newpage, bh_offset(bh));
 810		bh = bh->b_this_page;
 811
 812	} while (bh != head);
 813
 814	SetPagePrivate(newpage);
 815
 816	if (mode != MIGRATE_SYNC_NO_COPY)
 817		migrate_page_copy(newpage, page);
 818	else
 819		migrate_page_states(newpage, page);
 820
 
 
 
 
 821	bh = head;
 822	do {
 823		unlock_buffer(bh);
 824		put_bh(bh);
 825		bh = bh->b_this_page;
 826
 827	} while (bh != head);
 828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 829	return MIGRATEPAGE_SUCCESS;
 830}
 831EXPORT_SYMBOL(buffer_migrate_page);
 832#endif
 833
 834/*
 835 * Writeback a page to clean the dirty state
 836 */
 837static int writeout(struct address_space *mapping, struct page *page)
 838{
 839	struct writeback_control wbc = {
 840		.sync_mode = WB_SYNC_NONE,
 841		.nr_to_write = 1,
 842		.range_start = 0,
 843		.range_end = LLONG_MAX,
 844		.for_reclaim = 1
 845	};
 846	int rc;
 847
 848	if (!mapping->a_ops->writepage)
 849		/* No write method for the address space */
 850		return -EINVAL;
 851
 852	if (!clear_page_dirty_for_io(page))
 853		/* Someone else already triggered a write */
 854		return -EAGAIN;
 855
 856	/*
 857	 * A dirty page may imply that the underlying filesystem has
 858	 * the page on some queue. So the page must be clean for
 859	 * migration. Writeout may mean we loose the lock and the
 860	 * page state is no longer what we checked for earlier.
 861	 * At this point we know that the migration attempt cannot
 862	 * be successful.
 863	 */
 864	remove_migration_ptes(page, page, false);
 865
 866	rc = mapping->a_ops->writepage(page, &wbc);
 867
 868	if (rc != AOP_WRITEPAGE_ACTIVATE)
 869		/* unlocked. Relock */
 870		lock_page(page);
 871
 872	return (rc < 0) ? -EIO : -EAGAIN;
 873}
 874
 875/*
 876 * Default handling if a filesystem does not provide a migration function.
 877 */
 878static int fallback_migrate_page(struct address_space *mapping,
 879	struct page *newpage, struct page *page, enum migrate_mode mode)
 880{
 881	if (PageDirty(page)) {
 882		/* Only writeback pages in full synchronous migration */
 883		switch (mode) {
 884		case MIGRATE_SYNC:
 885		case MIGRATE_SYNC_NO_COPY:
 886			break;
 887		default:
 888			return -EBUSY;
 889		}
 890		return writeout(mapping, page);
 891	}
 892
 893	/*
 894	 * Buffers may be managed in a filesystem specific way.
 895	 * We must have no buffers or drop them.
 896	 */
 897	if (page_has_private(page) &&
 898	    !try_to_release_page(page, GFP_KERNEL))
 899		return -EAGAIN;
 900
 901	return migrate_page(mapping, newpage, page, mode);
 902}
 903
 904/*
 905 * Move a page to a newly allocated page
 906 * The page is locked and all ptes have been successfully removed.
 907 *
 908 * The new page will have replaced the old page if this function
 909 * is successful.
 910 *
 911 * Return value:
 912 *   < 0 - error code
 913 *  MIGRATEPAGE_SUCCESS - success
 914 */
 915static int move_to_new_page(struct page *newpage, struct page *page,
 916				enum migrate_mode mode)
 917{
 918	struct address_space *mapping;
 919	int rc = -EAGAIN;
 920	bool is_lru = !__PageMovable(page);
 921
 922	VM_BUG_ON_PAGE(!PageLocked(page), page);
 923	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 924
 925	mapping = page_mapping(page);
 
 926
 927	if (likely(is_lru)) {
 
 
 928		if (!mapping)
 929			rc = migrate_page(mapping, newpage, page, mode);
 930		else if (mapping->a_ops->migratepage)
 
 
 931			/*
 932			 * Most pages have a mapping and most filesystems
 933			 * provide a migratepage callback. Anonymous pages
 934			 * are part of swap space which also has its own
 935			 * migratepage callback. This is the most common path
 936			 * for page migration.
 937			 */
 938			rc = mapping->a_ops->migratepage(mapping, newpage,
 939							page, mode);
 940		else
 941			rc = fallback_migrate_page(mapping, newpage,
 942							page, mode);
 943	} else {
 
 
 944		/*
 945		 * In case of non-lru page, it could be released after
 946		 * isolation step. In that case, we shouldn't try migration.
 947		 */
 948		VM_BUG_ON_PAGE(!PageIsolated(page), page);
 949		if (!PageMovable(page)) {
 950			rc = MIGRATEPAGE_SUCCESS;
 951			__ClearPageIsolated(page);
 952			goto out;
 953		}
 954
 955		rc = mapping->a_ops->migratepage(mapping, newpage,
 956						page, mode);
 957		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 958			!PageIsolated(page));
 959	}
 960
 961	/*
 962	 * When successful, old pagecache page->mapping must be cleared before
 963	 * page is freed; but stats require that PageAnon be left as PageAnon.
 964	 */
 965	if (rc == MIGRATEPAGE_SUCCESS) {
 966		if (__PageMovable(page)) {
 967			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 968
 969			/*
 970			 * We clear PG_movable under page_lock so any compactor
 971			 * cannot try to migrate this page.
 972			 */
 973			__ClearPageIsolated(page);
 974		}
 975
 976		/*
 977		 * Anonymous and movable page->mapping will be cleard by
 978		 * free_pages_prepare so don't reset it here for keeping
 979		 * the type to work PageAnon, for example.
 980		 */
 981		if (!PageMappingFlags(page))
 982			page->mapping = NULL;
 
 
 
 983	}
 984out:
 985	return rc;
 986}
 987
 988static int __unmap_and_move(struct page *page, struct page *newpage,
 989				int force, enum migrate_mode mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 990{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 991	int rc = -EAGAIN;
 992	int page_was_mapped = 0;
 993	struct anon_vma *anon_vma = NULL;
 994	bool is_lru = !__PageMovable(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995
 996	if (!trylock_page(page)) {
 997		if (!force || mode == MIGRATE_ASYNC)
 998			goto out;
 999
1000		/*
1001		 * It's not safe for direct compaction to call lock_page.
1002		 * For example, during page readahead pages are added locked
1003		 * to the LRU. Later, when the IO completes the pages are
1004		 * marked uptodate and unlocked. However, the queueing
1005		 * could be merging multiple pages for one bio (e.g.
1006		 * mpage_readpages). If an allocation happens for the
1007		 * second or third page, the process can end up locking
1008		 * the same page twice and deadlocking. Rather than
1009		 * trying to be clever about what pages can be locked,
1010		 * avoid the use of lock_page for direct compaction
1011		 * altogether.
1012		 */
1013		if (current->flags & PF_MEMALLOC)
1014			goto out;
1015
1016		lock_page(page);
 
 
 
 
 
 
 
 
1017	}
 
 
 
1018
1019	if (PageWriteback(page)) {
1020		/*
1021		 * Only in the case of a full synchronous migration is it
1022		 * necessary to wait for PageWriteback. In the async case,
1023		 * the retry loop is too short and in the sync-light case,
1024		 * the overhead of stalling is too much
1025		 */
1026		switch (mode) {
1027		case MIGRATE_SYNC:
1028		case MIGRATE_SYNC_NO_COPY:
1029			break;
1030		default:
1031			rc = -EBUSY;
1032			goto out_unlock;
1033		}
1034		if (!force)
1035			goto out_unlock;
1036		wait_on_page_writeback(page);
1037	}
1038
1039	/*
1040	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1041	 * we cannot notice that anon_vma is freed while we migrates a page.
1042	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1043	 * of migration. File cache pages are no problem because of page_lock()
1044	 * File Caches may use write_page() or lock_page() in migration, then,
1045	 * just care Anon page here.
1046	 *
1047	 * Only page_get_anon_vma() understands the subtleties of
1048	 * getting a hold on an anon_vma from outside one of its mms.
1049	 * But if we cannot get anon_vma, then we won't need it anyway,
1050	 * because that implies that the anon page is no longer mapped
1051	 * (and cannot be remapped so long as we hold the page lock).
1052	 */
1053	if (PageAnon(page) && !PageKsm(page))
1054		anon_vma = page_get_anon_vma(page);
1055
1056	/*
1057	 * Block others from accessing the new page when we get around to
1058	 * establishing additional references. We are usually the only one
1059	 * holding a reference to newpage at this point. We used to have a BUG
1060	 * here if trylock_page(newpage) fails, but would like to allow for
1061	 * cases where there might be a race with the previous use of newpage.
1062	 * This is much like races on refcount of oldpage: just don't BUG().
1063	 */
1064	if (unlikely(!trylock_page(newpage)))
1065		goto out_unlock;
 
1066
1067	if (unlikely(!is_lru)) {
1068		rc = move_to_new_page(newpage, page, mode);
1069		goto out_unlock_both;
1070	}
1071
1072	/*
1073	 * Corner case handling:
1074	 * 1. When a new swap-cache page is read into, it is added to the LRU
1075	 * and treated as swapcache but it has no rmap yet.
1076	 * Calling try_to_unmap() against a page->mapping==NULL page will
1077	 * trigger a BUG.  So handle it here.
1078	 * 2. An orphaned page (see truncate_complete_page) might have
1079	 * fs-private metadata. The page can be picked up due to memory
1080	 * offlining.  Everywhere else except page reclaim, the page is
1081	 * invisible to the vm, so the page can not be migrated.  So try to
1082	 * free the metadata, so the page can be freed.
1083	 */
1084	if (!page->mapping) {
1085		VM_BUG_ON_PAGE(PageAnon(page), page);
1086		if (page_has_private(page)) {
1087			try_to_free_buffers(page);
1088			goto out_unlock_both;
1089		}
1090	} else if (page_mapped(page)) {
1091		/* Establish migration ptes */
1092		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1093				page);
1094		try_to_unmap(page,
1095			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1096		page_was_mapped = 1;
1097	}
1098
1099	if (!page_mapped(page))
1100		rc = move_to_new_page(newpage, page, mode);
1101
1102	if (page_was_mapped)
1103		remove_migration_ptes(page,
1104			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1105
1106out_unlock_both:
1107	unlock_page(newpage);
1108out_unlock:
1109	/* Drop an anon_vma reference if we took one */
1110	if (anon_vma)
1111		put_anon_vma(anon_vma);
1112	unlock_page(page);
1113out:
1114	/*
1115	 * If migration is successful, decrease refcount of the newpage
1116	 * which will not free the page because new page owner increased
1117	 * refcounter. As well, if it is LRU page, add the page to LRU
1118	 * list in here.
1119	 */
1120	if (rc == MIGRATEPAGE_SUCCESS) {
1121		if (unlikely(__PageMovable(newpage)))
1122			put_page(newpage);
1123		else
1124			putback_lru_page(newpage);
1125	}
1126
1127	return rc;
1128}
1129
1130/*
1131 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1132 * around it.
1133 */
1134#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1135#define ICE_noinline noinline
1136#else
1137#define ICE_noinline
1138#endif
1139
1140/*
1141 * Obtain the lock on page, remove all ptes and migrate the page
1142 * to the newly allocated page in newpage.
1143 */
1144static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1145				   free_page_t put_new_page,
1146				   unsigned long private, struct page *page,
1147				   int force, enum migrate_mode mode,
1148				   enum migrate_reason reason)
1149{
1150	int rc = MIGRATEPAGE_SUCCESS;
1151	struct page *newpage;
1152
1153	if (!thp_migration_supported() && PageTransHuge(page))
1154		return -ENOMEM;
1155
1156	newpage = get_new_page(page, private);
1157	if (!newpage)
1158		return -ENOMEM;
1159
1160	if (page_count(page) == 1) {
1161		/* page was freed from under us. So we are done. */
1162		ClearPageActive(page);
1163		ClearPageUnevictable(page);
1164		if (unlikely(__PageMovable(page))) {
1165			lock_page(page);
1166			if (!PageMovable(page))
1167				__ClearPageIsolated(page);
1168			unlock_page(page);
1169		}
1170		if (put_new_page)
1171			put_new_page(newpage, private);
1172		else
1173			put_page(newpage);
1174		goto out;
1175	}
1176
1177	rc = __unmap_and_move(page, newpage, force, mode);
1178	if (rc == MIGRATEPAGE_SUCCESS)
1179		set_page_owner_migrate_reason(newpage, reason);
1180
1181out:
1182	if (rc != -EAGAIN) {
1183		/*
1184		 * A page that has been migrated has all references
1185		 * removed and will be freed. A page that has not been
1186		 * migrated will have kepts its references and be
1187		 * restored.
1188		 */
1189		list_del(&page->lru);
 
 
 
1190
1191		/*
1192		 * Compaction can migrate also non-LRU pages which are
1193		 * not accounted to NR_ISOLATED_*. They can be recognized
1194		 * as __PageMovable
1195		 */
1196		if (likely(!__PageMovable(page)))
1197			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1198					page_is_file_cache(page), -hpage_nr_pages(page));
1199	}
1200
 
 
 
1201	/*
1202	 * If migration is successful, releases reference grabbed during
1203	 * isolation. Otherwise, restore the page to right list unless
1204	 * we want to retry.
1205	 */
1206	if (rc == MIGRATEPAGE_SUCCESS) {
1207		put_page(page);
1208		if (reason == MR_MEMORY_FAILURE) {
1209			/*
1210			 * Set PG_HWPoison on just freed page
1211			 * intentionally. Although it's rather weird,
1212			 * it's how HWPoison flag works at the moment.
1213			 */
1214			if (!test_set_page_hwpoison(page))
1215				num_poisoned_pages_inc();
1216		}
1217	} else {
1218		if (rc != -EAGAIN) {
1219			if (likely(!__PageMovable(page))) {
1220				putback_lru_page(page);
1221				goto put_new;
1222			}
1223
1224			lock_page(page);
1225			if (PageMovable(page))
1226				putback_movable_page(page);
1227			else
1228				__ClearPageIsolated(page);
1229			unlock_page(page);
1230			put_page(page);
1231		}
1232put_new:
1233		if (put_new_page)
1234			put_new_page(newpage, private);
1235		else
1236			put_page(newpage);
 
 
 
 
 
 
 
 
1237	}
1238
 
 
 
 
1239	return rc;
1240}
1241
1242/*
1243 * Counterpart of unmap_and_move_page() for hugepage migration.
1244 *
1245 * This function doesn't wait the completion of hugepage I/O
1246 * because there is no race between I/O and migration for hugepage.
1247 * Note that currently hugepage I/O occurs only in direct I/O
1248 * where no lock is held and PG_writeback is irrelevant,
1249 * and writeback status of all subpages are counted in the reference
1250 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1251 * under direct I/O, the reference of the head page is 512 and a bit more.)
1252 * This means that when we try to migrate hugepage whose subpages are
1253 * doing direct I/O, some references remain after try_to_unmap() and
1254 * hugepage migration fails without data corruption.
1255 *
1256 * There is also no race when direct I/O is issued on the page under migration,
1257 * because then pte is replaced with migration swap entry and direct I/O code
1258 * will wait in the page fault for migration to complete.
1259 */
1260static int unmap_and_move_huge_page(new_page_t get_new_page,
1261				free_page_t put_new_page, unsigned long private,
1262				struct page *hpage, int force,
1263				enum migrate_mode mode, int reason)
1264{
 
1265	int rc = -EAGAIN;
1266	int page_was_mapped = 0;
1267	struct page *new_hpage;
1268	struct anon_vma *anon_vma = NULL;
 
1269
1270	/*
1271	 * Movability of hugepages depends on architectures and hugepage size.
1272	 * This check is necessary because some callers of hugepage migration
1273	 * like soft offline and memory hotremove don't walk through page
1274	 * tables or check whether the hugepage is pmd-based or not before
1275	 * kicking migration.
1276	 */
1277	if (!hugepage_migration_supported(page_hstate(hpage))) {
1278		putback_active_hugepage(hpage);
1279		return -ENOSYS;
1280	}
1281
1282	new_hpage = get_new_page(hpage, private);
1283	if (!new_hpage)
1284		return -ENOMEM;
1285
1286	if (!trylock_page(hpage)) {
1287		if (!force)
1288			goto out;
1289		switch (mode) {
1290		case MIGRATE_SYNC:
1291		case MIGRATE_SYNC_NO_COPY:
1292			break;
1293		default:
1294			goto out;
1295		}
1296		lock_page(hpage);
1297	}
1298
1299	if (PageAnon(hpage))
1300		anon_vma = page_get_anon_vma(hpage);
 
 
 
 
 
 
 
 
 
 
1301
1302	if (unlikely(!trylock_page(new_hpage)))
1303		goto put_anon;
1304
1305	if (page_mapped(hpage)) {
1306		try_to_unmap(hpage,
1307			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1308		page_was_mapped = 1;
 
 
 
1309	}
1310
1311	if (!page_mapped(hpage))
1312		rc = move_to_new_page(new_hpage, hpage, mode);
1313
1314	if (page_was_mapped)
1315		remove_migration_ptes(hpage,
1316			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1317
1318	unlock_page(new_hpage);
 
1319
1320put_anon:
1321	if (anon_vma)
1322		put_anon_vma(anon_vma);
1323
1324	if (rc == MIGRATEPAGE_SUCCESS) {
1325		move_hugetlb_state(hpage, new_hpage, reason);
1326		put_new_page = NULL;
1327	}
1328
1329	unlock_page(hpage);
 
1330out:
1331	if (rc != -EAGAIN)
1332		putback_active_hugepage(hpage);
1333	if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1334		num_poisoned_pages_inc();
1335
1336	/*
1337	 * If migration was not successful and there's a freeing callback, use
1338	 * it.  Otherwise, put_page() will drop the reference grabbed during
1339	 * isolation.
1340	 */
1341	if (put_new_page)
1342		put_new_page(new_hpage, private);
1343	else
1344		putback_active_hugepage(new_hpage);
1345
1346	return rc;
1347}
1348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1349/*
1350 * migrate_pages - migrate the pages specified in a list, to the free pages
1351 *		   supplied as the target for the page migration
1352 *
1353 * @from:		The list of pages to be migrated.
1354 * @get_new_page:	The function used to allocate free pages to be used
1355 *			as the target of the page migration.
1356 * @put_new_page:	The function used to free target pages if migration
1357 *			fails, or NULL if no special handling is necessary.
1358 * @private:		Private data to be passed on to get_new_page()
1359 * @mode:		The migration mode that specifies the constraints for
1360 *			page migration, if any.
1361 * @reason:		The reason for page migration.
1362 *
1363 * The function returns after 10 attempts or if no pages are movable any more
1364 * because the list has become empty or no retryable pages exist any more.
1365 * The caller should call putback_movable_pages() to return pages to the LRU
1366 * or free list only if ret != 0.
1367 *
1368 * Returns the number of pages that were not migrated, or an error code.
1369 */
1370int migrate_pages(struct list_head *from, new_page_t get_new_page,
1371		free_page_t put_new_page, unsigned long private,
1372		enum migrate_mode mode, int reason)
 
 
1373{
1374	int retry = 1;
 
1375	int nr_failed = 0;
1376	int nr_succeeded = 0;
1377	int pass = 0;
1378	struct page *page;
1379	struct page *page2;
1380	int swapwrite = current->flags & PF_SWAPWRITE;
1381	int rc;
 
 
 
1382
1383	if (!swapwrite)
1384		current->flags |= PF_SWAPWRITE;
1385
1386	for(pass = 0; pass < 10 && retry; pass++) {
1387		retry = 0;
 
 
 
 
 
 
 
1388
1389		list_for_each_entry_safe(page, page2, from, lru) {
1390retry:
1391			cond_resched();
1392
1393			if (PageHuge(page))
1394				rc = unmap_and_move_huge_page(get_new_page,
1395						put_new_page, private, page,
1396						pass > 2, mode, reason);
1397			else
1398				rc = unmap_and_move(get_new_page, put_new_page,
1399						private, page, pass > 2, mode,
1400						reason);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1401
 
 
 
 
 
 
 
 
 
 
 
 
1402			switch(rc) {
1403			case -ENOMEM:
1404				/*
1405				 * THP migration might be unsupported or the
1406				 * allocation could've failed so we should
1407				 * retry on the same page with the THP split
1408				 * to base pages.
1409				 *
1410				 * Head page is retried immediately and tail
1411				 * pages are added to the tail of the list so
1412				 * we encounter them after the rest of the list
1413				 * is processed.
1414				 */
1415				if (PageTransHuge(page)) {
1416					lock_page(page);
1417					rc = split_huge_page_to_list(page, from);
1418					unlock_page(page);
1419					if (!rc) {
1420						list_safe_reset_next(page, page2, lru);
1421						goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1422					}
1423				}
1424				nr_failed++;
1425				goto out;
 
 
 
 
 
 
 
1426			case -EAGAIN:
1427				retry++;
 
 
1428				break;
1429			case MIGRATEPAGE_SUCCESS:
1430				nr_succeeded++;
 
 
 
 
 
1431				break;
1432			default:
1433				/*
1434				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1435				 * unlike -EAGAIN case, the failed page is
1436				 * removed from migration page list and not
1437				 * retried in the next outer loop.
1438				 */
1439				nr_failed++;
 
 
1440				break;
1441			}
1442		}
1443	}
1444	nr_failed += retry;
1445	rc = nr_failed;
1446out:
1447	if (nr_succeeded)
1448		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1449	if (nr_failed)
1450		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1451	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1452
1453	if (!swapwrite)
1454		current->flags &= ~PF_SWAPWRITE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1455
1456	return rc;
1457}
1458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1459#ifdef CONFIG_NUMA
1460
1461static int store_status(int __user *status, int start, int value, int nr)
1462{
1463	while (nr-- > 0) {
1464		if (put_user(value, status + start))
1465			return -EFAULT;
1466		start++;
1467	}
1468
1469	return 0;
1470}
1471
1472static int do_move_pages_to_node(struct mm_struct *mm,
1473		struct list_head *pagelist, int node)
1474{
1475	int err;
 
 
 
 
1476
1477	if (list_empty(pagelist))
1478		return 0;
1479
1480	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1481			MIGRATE_SYNC, MR_SYSCALL);
1482	if (err)
1483		putback_movable_pages(pagelist);
1484	return err;
1485}
1486
1487/*
1488 * Resolves the given address to a struct page, isolates it from the LRU and
1489 * puts it to the given pagelist.
1490 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1491 * queued or the page doesn't need to be migrated because it is already on
1492 * the target node
 
 
1493 */
1494static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1495		int node, struct list_head *pagelist, bool migrate_all)
1496{
1497	struct vm_area_struct *vma;
 
1498	struct page *page;
1499	unsigned int follflags;
1500	int err;
1501
1502	down_read(&mm->mmap_sem);
 
 
1503	err = -EFAULT;
1504	vma = find_vma(mm, addr);
1505	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1506		goto out;
1507
1508	/* FOLL_DUMP to ignore special (like zero) pages */
1509	follflags = FOLL_GET | FOLL_DUMP;
1510	page = follow_page(vma, addr, follflags);
1511
1512	err = PTR_ERR(page);
1513	if (IS_ERR(page))
1514		goto out;
1515
1516	err = -ENOENT;
1517	if (!page)
1518		goto out;
1519
 
 
 
 
1520	err = 0;
1521	if (page_to_nid(page) == node)
1522		goto out_putpage;
1523
1524	err = -EACCES;
1525	if (page_mapcount(page) > 1 && !migrate_all)
1526		goto out_putpage;
1527
1528	if (PageHuge(page)) {
1529		if (PageHead(page)) {
1530			isolate_huge_page(page, pagelist);
1531			err = 0;
1532		}
1533	} else {
1534		struct page *head;
1535
1536		head = compound_head(page);
1537		err = isolate_lru_page(head);
1538		if (err)
1539			goto out_putpage;
1540
1541		err = 0;
1542		list_add_tail(&head->lru, pagelist);
1543		mod_node_page_state(page_pgdat(head),
1544			NR_ISOLATED_ANON + page_is_file_cache(head),
1545			hpage_nr_pages(head));
1546	}
1547out_putpage:
1548	/*
1549	 * Either remove the duplicate refcount from
1550	 * isolate_lru_page() or drop the page ref if it was
1551	 * not isolated.
1552	 */
1553	put_page(page);
1554out:
1555	up_read(&mm->mmap_sem);
1556	return err;
1557}
1558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1559/*
1560 * Migrate an array of page address onto an array of nodes and fill
1561 * the corresponding array of status.
1562 */
1563static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1564			 unsigned long nr_pages,
1565			 const void __user * __user *pages,
1566			 const int __user *nodes,
1567			 int __user *status, int flags)
1568{
 
1569	int current_node = NUMA_NO_NODE;
1570	LIST_HEAD(pagelist);
1571	int start, i;
1572	int err = 0, err1;
1573
1574	migrate_prep();
1575
1576	for (i = start = 0; i < nr_pages; i++) {
1577		const void __user *p;
1578		unsigned long addr;
1579		int node;
1580
1581		err = -EFAULT;
1582		if (get_user(p, pages + i))
1583			goto out_flush;
 
 
 
 
 
 
 
 
 
1584		if (get_user(node, nodes + i))
1585			goto out_flush;
1586		addr = (unsigned long)p;
1587
1588		err = -ENODEV;
1589		if (node < 0 || node >= MAX_NUMNODES)
1590			goto out_flush;
1591		if (!node_state(node, N_MEMORY))
1592			goto out_flush;
1593
1594		err = -EACCES;
1595		if (!node_isset(node, task_nodes))
1596			goto out_flush;
1597
1598		if (current_node == NUMA_NO_NODE) {
1599			current_node = node;
1600			start = i;
1601		} else if (node != current_node) {
1602			err = do_move_pages_to_node(mm, &pagelist, current_node);
1603			if (err)
1604				goto out;
1605			err = store_status(status, start, current_node, i - start);
1606			if (err)
1607				goto out;
1608			start = i;
1609			current_node = node;
1610		}
1611
1612		/*
1613		 * Errors in the page lookup or isolation are not fatal and we simply
1614		 * report them via status
1615		 */
1616		err = add_page_for_migration(mm, addr, current_node,
1617				&pagelist, flags & MPOL_MF_MOVE_ALL);
1618		if (!err)
 
 
1619			continue;
 
1620
1621		err = store_status(status, i, err, 1);
 
 
 
 
 
 
 
 
 
 
 
1622		if (err)
1623			goto out_flush;
1624
1625		err = do_move_pages_to_node(mm, &pagelist, current_node);
1626		if (err)
 
 
 
 
1627			goto out;
1628		if (i > start) {
1629			err = store_status(status, start, current_node, i - start);
1630			if (err)
1631				goto out;
1632		}
1633		current_node = NUMA_NO_NODE;
1634	}
1635out_flush:
1636	if (list_empty(&pagelist))
1637		return err;
1638
1639	/* Make sure we do not overwrite the existing error */
1640	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1641	if (!err1)
1642		err1 = store_status(status, start, current_node, i - start);
1643	if (!err)
1644		err = err1;
1645out:
 
1646	return err;
1647}
1648
1649/*
1650 * Determine the nodes of an array of pages and store it in an array of status.
1651 */
1652static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1653				const void __user **pages, int *status)
1654{
1655	unsigned long i;
1656
1657	down_read(&mm->mmap_sem);
1658
1659	for (i = 0; i < nr_pages; i++) {
1660		unsigned long addr = (unsigned long)(*pages);
1661		struct vm_area_struct *vma;
1662		struct page *page;
1663		int err = -EFAULT;
1664
1665		vma = find_vma(mm, addr);
1666		if (!vma || addr < vma->vm_start)
1667			goto set_status;
1668
1669		/* FOLL_DUMP to ignore special (like zero) pages */
1670		page = follow_page(vma, addr, FOLL_DUMP);
1671
1672		err = PTR_ERR(page);
1673		if (IS_ERR(page))
1674			goto set_status;
1675
1676		err = page ? page_to_nid(page) : -ENOENT;
 
 
 
 
 
 
 
1677set_status:
1678		*status = err;
1679
1680		pages++;
1681		status++;
1682	}
1683
1684	up_read(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1685}
1686
1687/*
1688 * Determine the nodes of a user array of pages and store it in
1689 * a user array of status.
1690 */
1691static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1692			 const void __user * __user *pages,
1693			 int __user *status)
1694{
1695#define DO_PAGES_STAT_CHUNK_NR 16
1696	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1697	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1698
1699	while (nr_pages) {
1700		unsigned long chunk_nr;
1701
1702		chunk_nr = nr_pages;
1703		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1704			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1705
1706		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1707			break;
 
 
 
1708
1709		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1710
1711		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1712			break;
1713
1714		pages += chunk_nr;
1715		status += chunk_nr;
1716		nr_pages -= chunk_nr;
1717	}
1718	return nr_pages ? -EFAULT : 0;
1719}
1720
1721/*
1722 * Move a list of pages in the address space of the currently executing
1723 * process.
1724 */
1725static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1726			     const void __user * __user *pages,
1727			     const int __user *nodes,
1728			     int __user *status, int flags)
1729{
1730	struct task_struct *task;
1731	struct mm_struct *mm;
1732	int err;
1733	nodemask_t task_nodes;
1734
1735	/* Check flags */
1736	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1737		return -EINVAL;
1738
1739	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1740		return -EPERM;
 
 
 
1741
1742	/* Find the mm_struct */
1743	rcu_read_lock();
1744	task = pid ? find_task_by_vpid(pid) : current;
1745	if (!task) {
1746		rcu_read_unlock();
1747		return -ESRCH;
1748	}
1749	get_task_struct(task);
1750
1751	/*
1752	 * Check if this process has the right to modify the specified
1753	 * process. Use the regular "ptrace_may_access()" checks.
1754	 */
1755	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1756		rcu_read_unlock();
1757		err = -EPERM;
1758		goto out;
1759	}
1760	rcu_read_unlock();
1761
1762 	err = security_task_movememory(task);
1763 	if (err)
1764		goto out;
1765
1766	task_nodes = cpuset_mems_allowed(task);
1767	mm = get_task_mm(task);
 
1768	put_task_struct(task);
1769
1770	if (!mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1771		return -EINVAL;
1772
 
 
 
 
 
 
 
1773	if (nodes)
1774		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1775				    nodes, status, flags);
1776	else
1777		err = do_pages_stat(mm, nr_pages, pages, status);
1778
1779	mmput(mm);
1780	return err;
1781
1782out:
1783	put_task_struct(task);
1784	return err;
1785}
1786
1787SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1788		const void __user * __user *, pages,
1789		const int __user *, nodes,
1790		int __user *, status, int, flags)
1791{
1792	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1793}
1794
1795#ifdef CONFIG_COMPAT
1796COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1797		       compat_uptr_t __user *, pages32,
1798		       const int __user *, nodes,
1799		       int __user *, status,
1800		       int, flags)
1801{
1802	const void __user * __user *pages;
1803	int i;
1804
1805	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1806	for (i = 0; i < nr_pages; i++) {
1807		compat_uptr_t p;
1808
1809		if (get_user(p, pages32 + i) ||
1810			put_user(compat_ptr(p), pages + i))
1811			return -EFAULT;
1812	}
1813	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1814}
1815#endif /* CONFIG_COMPAT */
1816
1817#ifdef CONFIG_NUMA_BALANCING
1818/*
1819 * Returns true if this is a safe migration target node for misplaced NUMA
1820 * pages. Currently it only checks the watermarks which crude
1821 */
1822static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1823				   unsigned long nr_migrate_pages)
1824{
1825	int z;
1826
1827	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1828		struct zone *zone = pgdat->node_zones + z;
1829
1830		if (!populated_zone(zone))
1831			continue;
1832
1833		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1834		if (!zone_watermark_ok(zone, 0,
1835				       high_wmark_pages(zone) +
1836				       nr_migrate_pages,
1837				       0, 0))
1838			continue;
1839		return true;
1840	}
1841	return false;
1842}
1843
1844static struct page *alloc_misplaced_dst_page(struct page *page,
1845					   unsigned long data)
1846{
1847	int nid = (int) data;
1848	struct page *newpage;
 
1849
1850	newpage = __alloc_pages_node(nid,
1851					 (GFP_HIGHUSER_MOVABLE |
1852					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1853					  __GFP_NORETRY | __GFP_NOWARN) &
1854					 ~__GFP_RECLAIM, 0);
1855
1856	return newpage;
1857}
1858
1859/*
1860 * page migration rate limiting control.
1861 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1862 * window of time. Default here says do not migrate more than 1280M per second.
1863 */
1864static unsigned int migrate_interval_millisecs __read_mostly = 100;
1865static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1866
1867/* Returns true if the node is migrate rate-limited after the update */
1868static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1869					unsigned long nr_pages)
1870{
1871	/*
1872	 * Rate-limit the amount of data that is being migrated to a node.
1873	 * Optimal placement is no good if the memory bus is saturated and
1874	 * all the time is being spent migrating!
1875	 */
1876	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1877		spin_lock(&pgdat->numabalancing_migrate_lock);
1878		pgdat->numabalancing_migrate_nr_pages = 0;
1879		pgdat->numabalancing_migrate_next_window = jiffies +
1880			msecs_to_jiffies(migrate_interval_millisecs);
1881		spin_unlock(&pgdat->numabalancing_migrate_lock);
1882	}
1883	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1884		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1885								nr_pages);
1886		return true;
1887	}
1888
1889	/*
1890	 * This is an unlocked non-atomic update so errors are possible.
1891	 * The consequences are failing to migrate when we potentiall should
1892	 * have which is not severe enough to warrant locking. If it is ever
1893	 * a problem, it can be converted to a per-cpu counter.
1894	 */
1895	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1896	return false;
1897}
1898
1899static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1900{
1901	int page_lru;
1902
1903	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1904
1905	/* Avoid migrating to a node that is nearly full */
1906	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1907		return 0;
1908
1909	if (isolate_lru_page(page))
1910		return 0;
 
 
 
 
1911
1912	/*
1913	 * migrate_misplaced_transhuge_page() skips page migration's usual
1914	 * check on page_count(), so we must do it here, now that the page
1915	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1916	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1917	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1918	 */
1919	if (PageTransHuge(page) && page_count(page) != 3) {
1920		putback_lru_page(page);
1921		return 0;
1922	}
1923
1924	page_lru = page_is_file_cache(page);
1925	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1926				hpage_nr_pages(page));
 
 
1927
1928	/*
1929	 * Isolating the page has taken another reference, so the
1930	 * caller's reference can be safely dropped without the page
1931	 * disappearing underneath us during migration.
1932	 */
1933	put_page(page);
1934	return 1;
1935}
1936
1937bool pmd_trans_migrating(pmd_t pmd)
1938{
1939	struct page *page = pmd_page(pmd);
1940	return PageLocked(page);
1941}
1942
1943/*
1944 * Attempt to migrate a misplaced page to the specified destination
1945 * node. Caller is expected to have an elevated reference count on
1946 * the page that will be dropped by this function before returning.
1947 */
1948int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1949			   int node)
1950{
1951	pg_data_t *pgdat = NODE_DATA(node);
1952	int isolated;
1953	int nr_remaining;
 
1954	LIST_HEAD(migratepages);
 
1955
1956	/*
1957	 * Don't migrate file pages that are mapped in multiple processes
1958	 * with execute permissions as they are probably shared libraries.
 
 
 
1959	 */
1960	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1961	    (vma->vm_flags & VM_EXEC))
1962		goto out;
1963
1964	/*
1965	 * Also do not migrate dirty pages as not all filesystems can move
1966	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1967	 */
1968	if (page_is_file_cache(page) && PageDirty(page))
1969		goto out;
1970
1971	/*
1972	 * Rate-limit the amount of data that is being migrated to a node.
1973	 * Optimal placement is no good if the memory bus is saturated and
1974	 * all the time is being spent migrating!
1975	 */
1976	if (numamigrate_update_ratelimit(pgdat, 1))
1977		goto out;
1978
1979	isolated = numamigrate_isolate_page(pgdat, page);
1980	if (!isolated)
1981		goto out;
1982
1983	list_add(&page->lru, &migratepages);
1984	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1985				     NULL, node, MIGRATE_ASYNC,
1986				     MR_NUMA_MISPLACED);
1987	if (nr_remaining) {
1988		if (!list_empty(&migratepages)) {
1989			list_del(&page->lru);
1990			dec_node_page_state(page, NR_ISOLATED_ANON +
1991					page_is_file_cache(page));
1992			putback_lru_page(page);
1993		}
1994		isolated = 0;
1995	} else
1996		count_vm_numa_event(NUMA_PAGE_MIGRATE);
 
 
 
 
 
1997	BUG_ON(!list_empty(&migratepages));
1998	return isolated;
1999
2000out:
2001	put_page(page);
2002	return 0;
2003}
2004#endif /* CONFIG_NUMA_BALANCING */
2005
2006#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2007/*
2008 * Migrates a THP to a given target node. page must be locked and is unlocked
2009 * before returning.
2010 */
2011int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2012				struct vm_area_struct *vma,
2013				pmd_t *pmd, pmd_t entry,
2014				unsigned long address,
2015				struct page *page, int node)
2016{
2017	spinlock_t *ptl;
2018	pg_data_t *pgdat = NODE_DATA(node);
2019	int isolated = 0;
2020	struct page *new_page = NULL;
2021	int page_lru = page_is_file_cache(page);
2022	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2023	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2024
2025	/*
2026	 * Rate-limit the amount of data that is being migrated to a node.
2027	 * Optimal placement is no good if the memory bus is saturated and
2028	 * all the time is being spent migrating!
2029	 */
2030	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2031		goto out_dropref;
2032
2033	new_page = alloc_pages_node(node,
2034		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2035		HPAGE_PMD_ORDER);
2036	if (!new_page)
2037		goto out_fail;
2038	prep_transhuge_page(new_page);
2039
2040	isolated = numamigrate_isolate_page(pgdat, page);
2041	if (!isolated) {
2042		put_page(new_page);
2043		goto out_fail;
2044	}
2045
2046	/* Prepare a page as a migration target */
2047	__SetPageLocked(new_page);
2048	if (PageSwapBacked(page))
2049		__SetPageSwapBacked(new_page);
2050
2051	/* anon mapping, we can simply copy page->mapping to the new page: */
2052	new_page->mapping = page->mapping;
2053	new_page->index = page->index;
2054	migrate_page_copy(new_page, page);
2055	WARN_ON(PageLRU(new_page));
2056
2057	/* Recheck the target PMD */
2058	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2059	ptl = pmd_lock(mm, pmd);
2060	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2061		spin_unlock(ptl);
2062		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2063
2064		/* Reverse changes made by migrate_page_copy() */
2065		if (TestClearPageActive(new_page))
2066			SetPageActive(page);
2067		if (TestClearPageUnevictable(new_page))
2068			SetPageUnevictable(page);
2069
2070		unlock_page(new_page);
2071		put_page(new_page);		/* Free it */
2072
2073		/* Retake the callers reference and putback on LRU */
2074		get_page(page);
2075		putback_lru_page(page);
2076		mod_node_page_state(page_pgdat(page),
2077			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2078
2079		goto out_unlock;
2080	}
2081
2082	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2083	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2084
2085	/*
2086	 * Clear the old entry under pagetable lock and establish the new PTE.
2087	 * Any parallel GUP will either observe the old page blocking on the
2088	 * page lock, block on the page table lock or observe the new page.
2089	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2090	 * guarantee the copy is visible before the pagetable update.
2091	 */
2092	flush_cache_range(vma, mmun_start, mmun_end);
2093	page_add_anon_rmap(new_page, vma, mmun_start, true);
2094	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2095	set_pmd_at(mm, mmun_start, pmd, entry);
2096	update_mmu_cache_pmd(vma, address, &entry);
2097
2098	page_ref_unfreeze(page, 2);
2099	mlock_migrate_page(new_page, page);
2100	page_remove_rmap(page, true);
2101	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2102
2103	spin_unlock(ptl);
2104	/*
2105	 * No need to double call mmu_notifier->invalidate_range() callback as
2106	 * the above pmdp_huge_clear_flush_notify() did already call it.
2107	 */
2108	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2109
2110	/* Take an "isolate" reference and put new page on the LRU. */
2111	get_page(new_page);
2112	putback_lru_page(new_page);
2113
2114	unlock_page(new_page);
2115	unlock_page(page);
2116	put_page(page);			/* Drop the rmap reference */
2117	put_page(page);			/* Drop the LRU isolation reference */
2118
2119	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2120	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2121
2122	mod_node_page_state(page_pgdat(page),
2123			NR_ISOLATED_ANON + page_lru,
2124			-HPAGE_PMD_NR);
2125	return isolated;
2126
2127out_fail:
2128	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2129out_dropref:
2130	ptl = pmd_lock(mm, pmd);
2131	if (pmd_same(*pmd, entry)) {
2132		entry = pmd_modify(entry, vma->vm_page_prot);
2133		set_pmd_at(mm, mmun_start, pmd, entry);
2134		update_mmu_cache_pmd(vma, address, &entry);
2135	}
2136	spin_unlock(ptl);
2137
2138out_unlock:
2139	unlock_page(page);
2140	put_page(page);
2141	return 0;
2142}
2143#endif /* CONFIG_NUMA_BALANCING */
2144
2145#endif /* CONFIG_NUMA */
2146
2147#if defined(CONFIG_MIGRATE_VMA_HELPER)
2148struct migrate_vma {
2149	struct vm_area_struct	*vma;
2150	unsigned long		*dst;
2151	unsigned long		*src;
2152	unsigned long		cpages;
2153	unsigned long		npages;
2154	unsigned long		start;
2155	unsigned long		end;
2156};
2157
2158static int migrate_vma_collect_hole(unsigned long start,
2159				    unsigned long end,
2160				    struct mm_walk *walk)
2161{
2162	struct migrate_vma *migrate = walk->private;
2163	unsigned long addr;
2164
2165	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2166		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2167		migrate->dst[migrate->npages] = 0;
2168		migrate->npages++;
2169		migrate->cpages++;
2170	}
2171
2172	return 0;
2173}
2174
2175static int migrate_vma_collect_skip(unsigned long start,
2176				    unsigned long end,
2177				    struct mm_walk *walk)
2178{
2179	struct migrate_vma *migrate = walk->private;
2180	unsigned long addr;
2181
2182	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2183		migrate->dst[migrate->npages] = 0;
2184		migrate->src[migrate->npages++] = 0;
2185	}
2186
2187	return 0;
2188}
2189
2190static int migrate_vma_collect_pmd(pmd_t *pmdp,
2191				   unsigned long start,
2192				   unsigned long end,
2193				   struct mm_walk *walk)
2194{
2195	struct migrate_vma *migrate = walk->private;
2196	struct vm_area_struct *vma = walk->vma;
2197	struct mm_struct *mm = vma->vm_mm;
2198	unsigned long addr = start, unmapped = 0;
2199	spinlock_t *ptl;
2200	pte_t *ptep;
2201
2202again:
2203	if (pmd_none(*pmdp))
2204		return migrate_vma_collect_hole(start, end, walk);
2205
2206	if (pmd_trans_huge(*pmdp)) {
2207		struct page *page;
2208
2209		ptl = pmd_lock(mm, pmdp);
2210		if (unlikely(!pmd_trans_huge(*pmdp))) {
2211			spin_unlock(ptl);
2212			goto again;
2213		}
2214
2215		page = pmd_page(*pmdp);
2216		if (is_huge_zero_page(page)) {
2217			spin_unlock(ptl);
2218			split_huge_pmd(vma, pmdp, addr);
2219			if (pmd_trans_unstable(pmdp))
2220				return migrate_vma_collect_skip(start, end,
2221								walk);
2222		} else {
2223			int ret;
2224
2225			get_page(page);
2226			spin_unlock(ptl);
2227			if (unlikely(!trylock_page(page)))
2228				return migrate_vma_collect_skip(start, end,
2229								walk);
2230			ret = split_huge_page(page);
2231			unlock_page(page);
2232			put_page(page);
2233			if (ret)
2234				return migrate_vma_collect_skip(start, end,
2235								walk);
2236			if (pmd_none(*pmdp))
2237				return migrate_vma_collect_hole(start, end,
2238								walk);
2239		}
2240	}
2241
2242	if (unlikely(pmd_bad(*pmdp)))
2243		return migrate_vma_collect_skip(start, end, walk);
2244
2245	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2246	arch_enter_lazy_mmu_mode();
2247
2248	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2249		unsigned long mpfn, pfn;
2250		struct page *page;
2251		swp_entry_t entry;
2252		pte_t pte;
2253
2254		pte = *ptep;
2255		pfn = pte_pfn(pte);
2256
2257		if (pte_none(pte)) {
2258			mpfn = MIGRATE_PFN_MIGRATE;
2259			migrate->cpages++;
2260			pfn = 0;
2261			goto next;
2262		}
2263
2264		if (!pte_present(pte)) {
2265			mpfn = pfn = 0;
2266
2267			/*
2268			 * Only care about unaddressable device page special
2269			 * page table entry. Other special swap entries are not
2270			 * migratable, and we ignore regular swapped page.
2271			 */
2272			entry = pte_to_swp_entry(pte);
2273			if (!is_device_private_entry(entry))
2274				goto next;
2275
2276			page = device_private_entry_to_page(entry);
2277			mpfn = migrate_pfn(page_to_pfn(page))|
2278				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2279			if (is_write_device_private_entry(entry))
2280				mpfn |= MIGRATE_PFN_WRITE;
2281		} else {
2282			if (is_zero_pfn(pfn)) {
2283				mpfn = MIGRATE_PFN_MIGRATE;
2284				migrate->cpages++;
2285				pfn = 0;
2286				goto next;
2287			}
2288			page = _vm_normal_page(migrate->vma, addr, pte, true);
2289			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2290			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2291		}
2292
2293		/* FIXME support THP */
2294		if (!page || !page->mapping || PageTransCompound(page)) {
2295			mpfn = pfn = 0;
2296			goto next;
2297		}
2298		pfn = page_to_pfn(page);
2299
2300		/*
2301		 * By getting a reference on the page we pin it and that blocks
2302		 * any kind of migration. Side effect is that it "freezes" the
2303		 * pte.
2304		 *
2305		 * We drop this reference after isolating the page from the lru
2306		 * for non device page (device page are not on the lru and thus
2307		 * can't be dropped from it).
2308		 */
2309		get_page(page);
2310		migrate->cpages++;
2311
2312		/*
2313		 * Optimize for the common case where page is only mapped once
2314		 * in one process. If we can lock the page, then we can safely
2315		 * set up a special migration page table entry now.
2316		 */
2317		if (trylock_page(page)) {
2318			pte_t swp_pte;
2319
2320			mpfn |= MIGRATE_PFN_LOCKED;
2321			ptep_get_and_clear(mm, addr, ptep);
2322
2323			/* Setup special migration page table entry */
2324			entry = make_migration_entry(page, mpfn &
2325						     MIGRATE_PFN_WRITE);
2326			swp_pte = swp_entry_to_pte(entry);
2327			if (pte_soft_dirty(pte))
2328				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2329			set_pte_at(mm, addr, ptep, swp_pte);
2330
2331			/*
2332			 * This is like regular unmap: we remove the rmap and
2333			 * drop page refcount. Page won't be freed, as we took
2334			 * a reference just above.
2335			 */
2336			page_remove_rmap(page, false);
2337			put_page(page);
2338
2339			if (pte_present(pte))
2340				unmapped++;
2341		}
2342
2343next:
2344		migrate->dst[migrate->npages] = 0;
2345		migrate->src[migrate->npages++] = mpfn;
2346	}
2347	arch_leave_lazy_mmu_mode();
2348	pte_unmap_unlock(ptep - 1, ptl);
2349
2350	/* Only flush the TLB if we actually modified any entries */
2351	if (unmapped)
2352		flush_tlb_range(walk->vma, start, end);
2353
2354	return 0;
2355}
2356
2357/*
2358 * migrate_vma_collect() - collect pages over a range of virtual addresses
2359 * @migrate: migrate struct containing all migration information
2360 *
2361 * This will walk the CPU page table. For each virtual address backed by a
2362 * valid page, it updates the src array and takes a reference on the page, in
2363 * order to pin the page until we lock it and unmap it.
2364 */
2365static void migrate_vma_collect(struct migrate_vma *migrate)
2366{
2367	struct mm_walk mm_walk;
2368
2369	mm_walk.pmd_entry = migrate_vma_collect_pmd;
2370	mm_walk.pte_entry = NULL;
2371	mm_walk.pte_hole = migrate_vma_collect_hole;
2372	mm_walk.hugetlb_entry = NULL;
2373	mm_walk.test_walk = NULL;
2374	mm_walk.vma = migrate->vma;
2375	mm_walk.mm = migrate->vma->vm_mm;
2376	mm_walk.private = migrate;
2377
2378	mmu_notifier_invalidate_range_start(mm_walk.mm,
2379					    migrate->start,
2380					    migrate->end);
2381	walk_page_range(migrate->start, migrate->end, &mm_walk);
2382	mmu_notifier_invalidate_range_end(mm_walk.mm,
2383					  migrate->start,
2384					  migrate->end);
2385
2386	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2387}
2388
2389/*
2390 * migrate_vma_check_page() - check if page is pinned or not
2391 * @page: struct page to check
2392 *
2393 * Pinned pages cannot be migrated. This is the same test as in
2394 * migrate_page_move_mapping(), except that here we allow migration of a
2395 * ZONE_DEVICE page.
2396 */
2397static bool migrate_vma_check_page(struct page *page)
2398{
2399	/*
2400	 * One extra ref because caller holds an extra reference, either from
2401	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2402	 * a device page.
2403	 */
2404	int extra = 1;
2405
2406	/*
2407	 * FIXME support THP (transparent huge page), it is bit more complex to
2408	 * check them than regular pages, because they can be mapped with a pmd
2409	 * or with a pte (split pte mapping).
2410	 */
2411	if (PageCompound(page))
2412		return false;
2413
2414	/* Page from ZONE_DEVICE have one extra reference */
2415	if (is_zone_device_page(page)) {
2416		/*
2417		 * Private page can never be pin as they have no valid pte and
2418		 * GUP will fail for those. Yet if there is a pending migration
2419		 * a thread might try to wait on the pte migration entry and
2420		 * will bump the page reference count. Sadly there is no way to
2421		 * differentiate a regular pin from migration wait. Hence to
2422		 * avoid 2 racing thread trying to migrate back to CPU to enter
2423		 * infinite loop (one stoping migration because the other is
2424		 * waiting on pte migration entry). We always return true here.
2425		 *
2426		 * FIXME proper solution is to rework migration_entry_wait() so
2427		 * it does not need to take a reference on page.
2428		 */
2429		if (is_device_private_page(page))
2430			return true;
2431
2432		/*
2433		 * Only allow device public page to be migrated and account for
2434		 * the extra reference count imply by ZONE_DEVICE pages.
2435		 */
2436		if (!is_device_public_page(page))
2437			return false;
2438		extra++;
2439	}
2440
2441	/* For file back page */
2442	if (page_mapping(page))
2443		extra += 1 + page_has_private(page);
2444
2445	if ((page_count(page) - extra) > page_mapcount(page))
2446		return false;
2447
2448	return true;
2449}
2450
2451/*
2452 * migrate_vma_prepare() - lock pages and isolate them from the lru
2453 * @migrate: migrate struct containing all migration information
2454 *
2455 * This locks pages that have been collected by migrate_vma_collect(). Once each
2456 * page is locked it is isolated from the lru (for non-device pages). Finally,
2457 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2458 * migrated by concurrent kernel threads.
2459 */
2460static void migrate_vma_prepare(struct migrate_vma *migrate)
2461{
2462	const unsigned long npages = migrate->npages;
2463	const unsigned long start = migrate->start;
2464	unsigned long addr, i, restore = 0;
2465	bool allow_drain = true;
2466
2467	lru_add_drain();
2468
2469	for (i = 0; (i < npages) && migrate->cpages; i++) {
2470		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2471		bool remap = true;
2472
2473		if (!page)
2474			continue;
2475
2476		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2477			/*
2478			 * Because we are migrating several pages there can be
2479			 * a deadlock between 2 concurrent migration where each
2480			 * are waiting on each other page lock.
2481			 *
2482			 * Make migrate_vma() a best effort thing and backoff
2483			 * for any page we can not lock right away.
2484			 */
2485			if (!trylock_page(page)) {
2486				migrate->src[i] = 0;
2487				migrate->cpages--;
2488				put_page(page);
2489				continue;
2490			}
2491			remap = false;
2492			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2493		}
2494
2495		/* ZONE_DEVICE pages are not on LRU */
2496		if (!is_zone_device_page(page)) {
2497			if (!PageLRU(page) && allow_drain) {
2498				/* Drain CPU's pagevec */
2499				lru_add_drain_all();
2500				allow_drain = false;
2501			}
2502
2503			if (isolate_lru_page(page)) {
2504				if (remap) {
2505					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2506					migrate->cpages--;
2507					restore++;
2508				} else {
2509					migrate->src[i] = 0;
2510					unlock_page(page);
2511					migrate->cpages--;
2512					put_page(page);
2513				}
2514				continue;
2515			}
2516
2517			/* Drop the reference we took in collect */
2518			put_page(page);
2519		}
2520
2521		if (!migrate_vma_check_page(page)) {
2522			if (remap) {
2523				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2524				migrate->cpages--;
2525				restore++;
2526
2527				if (!is_zone_device_page(page)) {
2528					get_page(page);
2529					putback_lru_page(page);
2530				}
2531			} else {
2532				migrate->src[i] = 0;
2533				unlock_page(page);
2534				migrate->cpages--;
2535
2536				if (!is_zone_device_page(page))
2537					putback_lru_page(page);
2538				else
2539					put_page(page);
2540			}
2541		}
2542	}
2543
2544	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2545		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2546
2547		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2548			continue;
2549
2550		remove_migration_pte(page, migrate->vma, addr, page);
2551
2552		migrate->src[i] = 0;
2553		unlock_page(page);
2554		put_page(page);
2555		restore--;
2556	}
2557}
2558
2559/*
2560 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2561 * @migrate: migrate struct containing all migration information
2562 *
2563 * Replace page mapping (CPU page table pte) with a special migration pte entry
2564 * and check again if it has been pinned. Pinned pages are restored because we
2565 * cannot migrate them.
2566 *
2567 * This is the last step before we call the device driver callback to allocate
2568 * destination memory and copy contents of original page over to new page.
2569 */
2570static void migrate_vma_unmap(struct migrate_vma *migrate)
2571{
2572	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2573	const unsigned long npages = migrate->npages;
2574	const unsigned long start = migrate->start;
2575	unsigned long addr, i, restore = 0;
2576
2577	for (i = 0; i < npages; i++) {
2578		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2579
2580		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2581			continue;
2582
2583		if (page_mapped(page)) {
2584			try_to_unmap(page, flags);
2585			if (page_mapped(page))
2586				goto restore;
2587		}
2588
2589		if (migrate_vma_check_page(page))
2590			continue;
2591
2592restore:
2593		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2594		migrate->cpages--;
2595		restore++;
2596	}
2597
2598	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2599		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2600
2601		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2602			continue;
2603
2604		remove_migration_ptes(page, page, false);
2605
2606		migrate->src[i] = 0;
2607		unlock_page(page);
2608		restore--;
2609
2610		if (is_zone_device_page(page))
2611			put_page(page);
2612		else
2613			putback_lru_page(page);
2614	}
2615}
2616
2617static void migrate_vma_insert_page(struct migrate_vma *migrate,
2618				    unsigned long addr,
2619				    struct page *page,
2620				    unsigned long *src,
2621				    unsigned long *dst)
2622{
2623	struct vm_area_struct *vma = migrate->vma;
2624	struct mm_struct *mm = vma->vm_mm;
2625	struct mem_cgroup *memcg;
2626	bool flush = false;
2627	spinlock_t *ptl;
2628	pte_t entry;
2629	pgd_t *pgdp;
2630	p4d_t *p4dp;
2631	pud_t *pudp;
2632	pmd_t *pmdp;
2633	pte_t *ptep;
2634
2635	/* Only allow populating anonymous memory */
2636	if (!vma_is_anonymous(vma))
2637		goto abort;
2638
2639	pgdp = pgd_offset(mm, addr);
2640	p4dp = p4d_alloc(mm, pgdp, addr);
2641	if (!p4dp)
2642		goto abort;
2643	pudp = pud_alloc(mm, p4dp, addr);
2644	if (!pudp)
2645		goto abort;
2646	pmdp = pmd_alloc(mm, pudp, addr);
2647	if (!pmdp)
2648		goto abort;
2649
2650	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2651		goto abort;
2652
2653	/*
2654	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2655	 * pte_offset_map() on pmds where a huge pmd might be created
2656	 * from a different thread.
2657	 *
2658	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2659	 * parallel threads are excluded by other means.
2660	 *
2661	 * Here we only have down_read(mmap_sem).
2662	 */
2663	if (pte_alloc(mm, pmdp, addr))
2664		goto abort;
2665
2666	/* See the comment in pte_alloc_one_map() */
2667	if (unlikely(pmd_trans_unstable(pmdp)))
2668		goto abort;
2669
2670	if (unlikely(anon_vma_prepare(vma)))
2671		goto abort;
2672	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2673		goto abort;
2674
2675	/*
2676	 * The memory barrier inside __SetPageUptodate makes sure that
2677	 * preceding stores to the page contents become visible before
2678	 * the set_pte_at() write.
2679	 */
2680	__SetPageUptodate(page);
2681
2682	if (is_zone_device_page(page)) {
2683		if (is_device_private_page(page)) {
2684			swp_entry_t swp_entry;
2685
2686			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2687			entry = swp_entry_to_pte(swp_entry);
2688		} else if (is_device_public_page(page)) {
2689			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2690			if (vma->vm_flags & VM_WRITE)
2691				entry = pte_mkwrite(pte_mkdirty(entry));
2692			entry = pte_mkdevmap(entry);
2693		}
2694	} else {
2695		entry = mk_pte(page, vma->vm_page_prot);
2696		if (vma->vm_flags & VM_WRITE)
2697			entry = pte_mkwrite(pte_mkdirty(entry));
2698	}
2699
2700	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2701
2702	if (pte_present(*ptep)) {
2703		unsigned long pfn = pte_pfn(*ptep);
2704
2705		if (!is_zero_pfn(pfn)) {
2706			pte_unmap_unlock(ptep, ptl);
2707			mem_cgroup_cancel_charge(page, memcg, false);
2708			goto abort;
2709		}
2710		flush = true;
2711	} else if (!pte_none(*ptep)) {
2712		pte_unmap_unlock(ptep, ptl);
2713		mem_cgroup_cancel_charge(page, memcg, false);
2714		goto abort;
2715	}
2716
2717	/*
2718	 * Check for usefaultfd but do not deliver the fault. Instead,
2719	 * just back off.
2720	 */
2721	if (userfaultfd_missing(vma)) {
2722		pte_unmap_unlock(ptep, ptl);
2723		mem_cgroup_cancel_charge(page, memcg, false);
2724		goto abort;
2725	}
2726
2727	inc_mm_counter(mm, MM_ANONPAGES);
2728	page_add_new_anon_rmap(page, vma, addr, false);
2729	mem_cgroup_commit_charge(page, memcg, false, false);
2730	if (!is_zone_device_page(page))
2731		lru_cache_add_active_or_unevictable(page, vma);
2732	get_page(page);
2733
2734	if (flush) {
2735		flush_cache_page(vma, addr, pte_pfn(*ptep));
2736		ptep_clear_flush_notify(vma, addr, ptep);
2737		set_pte_at_notify(mm, addr, ptep, entry);
2738		update_mmu_cache(vma, addr, ptep);
2739	} else {
2740		/* No need to invalidate - it was non-present before */
2741		set_pte_at(mm, addr, ptep, entry);
2742		update_mmu_cache(vma, addr, ptep);
2743	}
2744
2745	pte_unmap_unlock(ptep, ptl);
2746	*src = MIGRATE_PFN_MIGRATE;
2747	return;
2748
2749abort:
2750	*src &= ~MIGRATE_PFN_MIGRATE;
2751}
2752
2753/*
2754 * migrate_vma_pages() - migrate meta-data from src page to dst page
2755 * @migrate: migrate struct containing all migration information
2756 *
2757 * This migrates struct page meta-data from source struct page to destination
2758 * struct page. This effectively finishes the migration from source page to the
2759 * destination page.
2760 */
2761static void migrate_vma_pages(struct migrate_vma *migrate)
2762{
2763	const unsigned long npages = migrate->npages;
2764	const unsigned long start = migrate->start;
2765	struct vm_area_struct *vma = migrate->vma;
2766	struct mm_struct *mm = vma->vm_mm;
2767	unsigned long addr, i, mmu_start;
2768	bool notified = false;
2769
2770	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2771		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2772		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2773		struct address_space *mapping;
2774		int r;
2775
2776		if (!newpage) {
2777			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2778			continue;
2779		}
2780
2781		if (!page) {
2782			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2783				continue;
2784			}
2785			if (!notified) {
2786				mmu_start = addr;
2787				notified = true;
2788				mmu_notifier_invalidate_range_start(mm,
2789								mmu_start,
2790								migrate->end);
2791			}
2792			migrate_vma_insert_page(migrate, addr, newpage,
2793						&migrate->src[i],
2794						&migrate->dst[i]);
2795			continue;
2796		}
2797
2798		mapping = page_mapping(page);
2799
2800		if (is_zone_device_page(newpage)) {
2801			if (is_device_private_page(newpage)) {
2802				/*
2803				 * For now only support private anonymous when
2804				 * migrating to un-addressable device memory.
2805				 */
2806				if (mapping) {
2807					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2808					continue;
2809				}
2810			} else if (!is_device_public_page(newpage)) {
2811				/*
2812				 * Other types of ZONE_DEVICE page are not
2813				 * supported.
2814				 */
2815				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2816				continue;
2817			}
2818		}
2819
2820		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2821		if (r != MIGRATEPAGE_SUCCESS)
2822			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2823	}
2824
2825	/*
2826	 * No need to double call mmu_notifier->invalidate_range() callback as
2827	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2828	 * did already call it.
2829	 */
2830	if (notified)
2831		mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2832						       migrate->end);
2833}
2834
2835/*
2836 * migrate_vma_finalize() - restore CPU page table entry
2837 * @migrate: migrate struct containing all migration information
2838 *
2839 * This replaces the special migration pte entry with either a mapping to the
2840 * new page if migration was successful for that page, or to the original page
2841 * otherwise.
2842 *
2843 * This also unlocks the pages and puts them back on the lru, or drops the extra
2844 * refcount, for device pages.
2845 */
2846static void migrate_vma_finalize(struct migrate_vma *migrate)
2847{
2848	const unsigned long npages = migrate->npages;
2849	unsigned long i;
2850
2851	for (i = 0; i < npages; i++) {
2852		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2853		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2854
2855		if (!page) {
2856			if (newpage) {
2857				unlock_page(newpage);
2858				put_page(newpage);
2859			}
2860			continue;
2861		}
2862
2863		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2864			if (newpage) {
2865				unlock_page(newpage);
2866				put_page(newpage);
2867			}
2868			newpage = page;
2869		}
2870
2871		remove_migration_ptes(page, newpage, false);
2872		unlock_page(page);
2873		migrate->cpages--;
2874
2875		if (is_zone_device_page(page))
2876			put_page(page);
2877		else
2878			putback_lru_page(page);
2879
2880		if (newpage != page) {
2881			unlock_page(newpage);
2882			if (is_zone_device_page(newpage))
2883				put_page(newpage);
2884			else
2885				putback_lru_page(newpage);
2886		}
2887	}
2888}
2889
2890/*
2891 * migrate_vma() - migrate a range of memory inside vma
2892 *
2893 * @ops: migration callback for allocating destination memory and copying
2894 * @vma: virtual memory area containing the range to be migrated
2895 * @start: start address of the range to migrate (inclusive)
2896 * @end: end address of the range to migrate (exclusive)
2897 * @src: array of hmm_pfn_t containing source pfns
2898 * @dst: array of hmm_pfn_t containing destination pfns
2899 * @private: pointer passed back to each of the callback
2900 * Returns: 0 on success, error code otherwise
2901 *
2902 * This function tries to migrate a range of memory virtual address range, using
2903 * callbacks to allocate and copy memory from source to destination. First it
2904 * collects all the pages backing each virtual address in the range, saving this
2905 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2906 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2907 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2908 * in the corresponding src array entry. It then restores any pages that are
2909 * pinned, by remapping and unlocking those pages.
2910 *
2911 * At this point it calls the alloc_and_copy() callback. For documentation on
2912 * what is expected from that callback, see struct migrate_vma_ops comments in
2913 * include/linux/migrate.h
2914 *
2915 * After the alloc_and_copy() callback, this function goes over each entry in
2916 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2917 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2918 * then the function tries to migrate struct page information from the source
2919 * struct page to the destination struct page. If it fails to migrate the struct
2920 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2921 * array.
2922 *
2923 * At this point all successfully migrated pages have an entry in the src
2924 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2925 * array entry with MIGRATE_PFN_VALID flag set.
2926 *
2927 * It then calls the finalize_and_map() callback. See comments for "struct
2928 * migrate_vma_ops", in include/linux/migrate.h for details about
2929 * finalize_and_map() behavior.
2930 *
2931 * After the finalize_and_map() callback, for successfully migrated pages, this
2932 * function updates the CPU page table to point to new pages, otherwise it
2933 * restores the CPU page table to point to the original source pages.
2934 *
2935 * Function returns 0 after the above steps, even if no pages were migrated
2936 * (The function only returns an error if any of the arguments are invalid.)
2937 *
2938 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2939 * unsigned long entries.
2940 */
2941int migrate_vma(const struct migrate_vma_ops *ops,
2942		struct vm_area_struct *vma,
2943		unsigned long start,
2944		unsigned long end,
2945		unsigned long *src,
2946		unsigned long *dst,
2947		void *private)
2948{
2949	struct migrate_vma migrate;
2950
2951	/* Sanity check the arguments */
2952	start &= PAGE_MASK;
2953	end &= PAGE_MASK;
2954	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2955		return -EINVAL;
2956	if (start < vma->vm_start || start >= vma->vm_end)
2957		return -EINVAL;
2958	if (end <= vma->vm_start || end > vma->vm_end)
2959		return -EINVAL;
2960	if (!ops || !src || !dst || start >= end)
2961		return -EINVAL;
2962
2963	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2964	migrate.src = src;
2965	migrate.dst = dst;
2966	migrate.start = start;
2967	migrate.npages = 0;
2968	migrate.cpages = 0;
2969	migrate.end = end;
2970	migrate.vma = vma;
2971
2972	/* Collect, and try to unmap source pages */
2973	migrate_vma_collect(&migrate);
2974	if (!migrate.cpages)
2975		return 0;
2976
2977	/* Lock and isolate page */
2978	migrate_vma_prepare(&migrate);
2979	if (!migrate.cpages)
2980		return 0;
2981
2982	/* Unmap pages */
2983	migrate_vma_unmap(&migrate);
2984	if (!migrate.cpages)
2985		return 0;
2986
2987	/*
2988	 * At this point pages are locked and unmapped, and thus they have
2989	 * stable content and can safely be copied to destination memory that
2990	 * is allocated by the callback.
2991	 *
2992	 * Note that migration can fail in migrate_vma_struct_page() for each
2993	 * individual page.
2994	 */
2995	ops->alloc_and_copy(vma, src, dst, start, end, private);
2996
2997	/* This does the real migration of struct page */
2998	migrate_vma_pages(&migrate);
2999
3000	ops->finalize_and_map(vma, src, dst, start, end, private);
3001
3002	/* Unlock and remap pages */
3003	migrate_vma_finalize(&migrate);
3004
3005	return 0;
3006}
3007EXPORT_SYMBOL(migrate_vma);
3008#endif /* defined(MIGRATE_VMA_HELPER) */
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
  23#include <linux/nsproxy.h>
 
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/topology.h>
  27#include <linux/cpu.h>
  28#include <linux/cpuset.h>
  29#include <linux/writeback.h>
  30#include <linux/mempolicy.h>
  31#include <linux/vmalloc.h>
  32#include <linux/security.h>
  33#include <linux/backing-dev.h>
  34#include <linux/compaction.h>
  35#include <linux/syscalls.h>
  36#include <linux/compat.h>
  37#include <linux/hugetlb.h>
  38#include <linux/hugetlb_cgroup.h>
  39#include <linux/gfp.h>
  40#include <linux/pfn_t.h>
  41#include <linux/memremap.h>
  42#include <linux/userfaultfd_k.h>
  43#include <linux/balloon_compaction.h>
 
  44#include <linux/page_idle.h>
  45#include <linux/page_owner.h>
  46#include <linux/sched/mm.h>
  47#include <linux/ptrace.h>
  48#include <linux/oom.h>
  49#include <linux/memory.h>
  50#include <linux/random.h>
  51#include <linux/sched/sysctl.h>
  52#include <linux/memory-tiers.h>
  53
  54#include <asm/tlbflush.h>
  55
 
  56#include <trace/events/migrate.h>
  57
  58#include "internal.h"
  59
  60bool isolate_movable_page(struct page *page, isolate_mode_t mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61{
  62	struct folio *folio = folio_get_nontail_page(page);
  63	const struct movable_operations *mops;
  64
  65	/*
  66	 * Avoid burning cycles with pages that are yet under __free_pages(),
  67	 * or just got freed under us.
  68	 *
  69	 * In case we 'win' a race for a movable page being freed under us and
  70	 * raise its refcount preventing __free_pages() from doing its job
  71	 * the put_page() at the end of this block will take care of
  72	 * release this page, thus avoiding a nasty leakage.
  73	 */
  74	if (!folio)
  75		goto out;
  76
  77	if (unlikely(folio_test_slab(folio)))
  78		goto out_putfolio;
  79	/* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
  80	smp_rmb();
  81	/*
  82	 * Check movable flag before taking the page lock because
  83	 * we use non-atomic bitops on newly allocated page flags so
  84	 * unconditionally grabbing the lock ruins page's owner side.
  85	 */
  86	if (unlikely(!__folio_test_movable(folio)))
  87		goto out_putfolio;
  88	/* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
  89	smp_rmb();
  90	if (unlikely(folio_test_slab(folio)))
  91		goto out_putfolio;
  92
  93	/*
  94	 * As movable pages are not isolated from LRU lists, concurrent
  95	 * compaction threads can race against page migration functions
  96	 * as well as race against the releasing a page.
  97	 *
  98	 * In order to avoid having an already isolated movable page
  99	 * being (wrongly) re-isolated while it is under migration,
 100	 * or to avoid attempting to isolate pages being released,
 101	 * lets be sure we have the page lock
 102	 * before proceeding with the movable page isolation steps.
 103	 */
 104	if (unlikely(!folio_trylock(folio)))
 105		goto out_putfolio;
 106
 107	if (!folio_test_movable(folio) || folio_test_isolated(folio))
 108		goto out_no_isolated;
 109
 110	mops = folio_movable_ops(folio);
 111	VM_BUG_ON_FOLIO(!mops, folio);
 112
 113	if (!mops->isolate_page(&folio->page, mode))
 114		goto out_no_isolated;
 115
 116	/* Driver shouldn't use PG_isolated bit of page->flags */
 117	WARN_ON_ONCE(folio_test_isolated(folio));
 118	folio_set_isolated(folio);
 119	folio_unlock(folio);
 120
 121	return true;
 122
 123out_no_isolated:
 124	folio_unlock(folio);
 125out_putfolio:
 126	folio_put(folio);
 127out:
 128	return false;
 129}
 130
 131static void putback_movable_folio(struct folio *folio)
 
 132{
 133	const struct movable_operations *mops = folio_movable_ops(folio);
 134
 135	mops->putback_page(&folio->page);
 136	folio_clear_isolated(folio);
 
 
 
 
 
 137}
 138
 139/*
 140 * Put previously isolated pages back onto the appropriate lists
 141 * from where they were once taken off for compaction/migration.
 142 *
 143 * This function shall be used whenever the isolated pageset has been
 144 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 145 * and isolate_hugetlb().
 146 */
 147void putback_movable_pages(struct list_head *l)
 148{
 149	struct folio *folio;
 150	struct folio *folio2;
 151
 152	list_for_each_entry_safe(folio, folio2, l, lru) {
 153		if (unlikely(folio_test_hugetlb(folio))) {
 154			folio_putback_active_hugetlb(folio);
 155			continue;
 156		}
 157		list_del(&folio->lru);
 158		/*
 159		 * We isolated non-lru movable folio so here we can use
 160		 * __folio_test_movable because LRU folio's mapping cannot
 161		 * have PAGE_MAPPING_MOVABLE.
 162		 */
 163		if (unlikely(__folio_test_movable(folio))) {
 164			VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio);
 165			folio_lock(folio);
 166			if (folio_test_movable(folio))
 167				putback_movable_folio(folio);
 168			else
 169				folio_clear_isolated(folio);
 170			folio_unlock(folio);
 171			folio_put(folio);
 172		} else {
 173			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
 174					folio_is_file_lru(folio), -folio_nr_pages(folio));
 175			folio_putback_lru(folio);
 176		}
 177	}
 178}
 179
 180/*
 181 * Restore a potential migration pte to a working pte entry
 182 */
 183static bool remove_migration_pte(struct folio *folio,
 184		struct vm_area_struct *vma, unsigned long addr, void *old)
 185{
 186	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
 
 
 
 
 
 
 
 
 187
 
 188	while (page_vma_mapped_walk(&pvmw)) {
 189		rmap_t rmap_flags = RMAP_NONE;
 190		pte_t old_pte;
 191		pte_t pte;
 192		swp_entry_t entry;
 193		struct page *new;
 194		unsigned long idx = 0;
 195
 196		/* pgoff is invalid for ksm pages, but they are never large */
 197		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
 198			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
 199		new = folio_page(folio, idx);
 200
 201#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 202		/* PMD-mapped THP migration entry */
 203		if (!pvmw.pte) {
 204			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
 205					!folio_test_pmd_mappable(folio), folio);
 206			remove_migration_pmd(&pvmw, new);
 207			continue;
 208		}
 209#endif
 210
 211		folio_get(folio);
 212		pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
 213		old_pte = ptep_get(pvmw.pte);
 214		if (pte_swp_soft_dirty(old_pte))
 215			pte = pte_mksoft_dirty(pte);
 216
 217		entry = pte_to_swp_entry(old_pte);
 218		if (!is_migration_entry_young(entry))
 219			pte = pte_mkold(pte);
 220		if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
 221			pte = pte_mkdirty(pte);
 222		if (is_writable_migration_entry(entry))
 223			pte = pte_mkwrite(pte, vma);
 224		else if (pte_swp_uffd_wp(old_pte))
 225			pte = pte_mkuffd_wp(pte);
 226
 227		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
 228			rmap_flags |= RMAP_EXCLUSIVE;
 229
 230		if (unlikely(is_device_private_page(new))) {
 231			if (pte_write(pte))
 232				entry = make_writable_device_private_entry(
 233							page_to_pfn(new));
 234			else
 235				entry = make_readable_device_private_entry(
 236							page_to_pfn(new));
 237			pte = swp_entry_to_pte(entry);
 238			if (pte_swp_soft_dirty(old_pte))
 239				pte = pte_swp_mksoft_dirty(pte);
 240			if (pte_swp_uffd_wp(old_pte))
 241				pte = pte_swp_mkuffd_wp(pte);
 242		}
 243
 244#ifdef CONFIG_HUGETLB_PAGE
 245		if (folio_test_hugetlb(folio)) {
 246			struct hstate *h = hstate_vma(vma);
 247			unsigned int shift = huge_page_shift(h);
 248			unsigned long psize = huge_page_size(h);
 249
 250			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
 251			if (folio_test_anon(folio))
 252				hugetlb_add_anon_rmap(folio, vma, pvmw.address,
 253						      rmap_flags);
 254			else
 255				hugetlb_add_file_rmap(folio);
 256			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte,
 257					psize);
 258		} else
 259#endif
 260		{
 261			if (folio_test_anon(folio))
 262				folio_add_anon_rmap_pte(folio, new, vma,
 263							pvmw.address, rmap_flags);
 
 264			else
 265				folio_add_file_rmap_pte(folio, new, vma);
 266			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 267		}
 268		if (vma->vm_flags & VM_LOCKED)
 269			mlock_drain_local();
 270
 271		trace_remove_migration_pte(pvmw.address, pte_val(pte),
 272					   compound_order(new));
 273
 274		/* No need to invalidate - it was non-present before */
 275		update_mmu_cache(vma, pvmw.address, pvmw.pte);
 276	}
 277
 278	return true;
 279}
 280
 281/*
 282 * Get rid of all migration entries and replace them by
 283 * references to the indicated page.
 284 */
 285void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
 286{
 287	struct rmap_walk_control rwc = {
 288		.rmap_one = remove_migration_pte,
 289		.arg = src,
 290	};
 291
 292	if (locked)
 293		rmap_walk_locked(dst, &rwc);
 294	else
 295		rmap_walk(dst, &rwc);
 296}
 297
 298/*
 299 * Something used the pte of a page under migration. We need to
 300 * get to the page and wait until migration is finished.
 301 * When we return from this function the fault will be retried.
 302 */
 303void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 304			  unsigned long address)
 305{
 306	spinlock_t *ptl;
 307	pte_t *ptep;
 308	pte_t pte;
 309	swp_entry_t entry;
 
 310
 311	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
 312	if (!ptep)
 313		return;
 314
 315	pte = ptep_get(ptep);
 316	pte_unmap(ptep);
 317
 318	if (!is_swap_pte(pte))
 319		goto out;
 320
 321	entry = pte_to_swp_entry(pte);
 322	if (!is_migration_entry(entry))
 323		goto out;
 324
 325	migration_entry_wait_on_locked(entry, ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 326	return;
 327out:
 328	spin_unlock(ptl);
 329}
 330
 331#ifdef CONFIG_HUGETLB_PAGE
 332/*
 333 * The vma read lock must be held upon entry. Holding that lock prevents either
 334 * the pte or the ptl from being freed.
 335 *
 336 * This function will release the vma lock before returning.
 337 */
 338void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *ptep)
 339{
 340	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep);
 341	pte_t pte;
 
 
 342
 343	hugetlb_vma_assert_locked(vma);
 344	spin_lock(ptl);
 345	pte = huge_ptep_get(ptep);
 346
 347	if (unlikely(!is_hugetlb_entry_migration(pte))) {
 348		spin_unlock(ptl);
 349		hugetlb_vma_unlock_read(vma);
 350	} else {
 351		/*
 352		 * If migration entry existed, safe to release vma lock
 353		 * here because the pgtable page won't be freed without the
 354		 * pgtable lock released.  See comment right above pgtable
 355		 * lock release in migration_entry_wait_on_locked().
 356		 */
 357		hugetlb_vma_unlock_read(vma);
 358		migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl);
 359	}
 360}
 361#endif
 362
 363#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 364void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 365{
 366	spinlock_t *ptl;
 
 367
 368	ptl = pmd_lock(mm, pmd);
 369	if (!is_pmd_migration_entry(*pmd))
 370		goto unlock;
 371	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl);
 
 
 
 
 
 372	return;
 373unlock:
 374	spin_unlock(ptl);
 375}
 376#endif
 377
 378static int folio_expected_refs(struct address_space *mapping,
 379		struct folio *folio)
 
 
 380{
 381	int refs = 1;
 382	if (!mapping)
 383		return refs;
 384
 385	refs += folio_nr_pages(folio);
 386	if (folio_test_private(folio))
 387		refs++;
 388
 389	return refs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390}
 
 391
 392/*
 393 * Replace the page in the mapping.
 394 *
 395 * The number of remaining references must be:
 396 * 1 for anonymous pages without a mapping
 397 * 2 for pages with a mapping
 398 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 399 */
 400int folio_migrate_mapping(struct address_space *mapping,
 401		struct folio *newfolio, struct folio *folio, int extra_count)
 
 
 402{
 403	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
 404	struct zone *oldzone, *newzone;
 405	int dirty;
 406	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
 407	long nr = folio_nr_pages(folio);
 408	long entries, i;
 
 
 
 
 
 
 409
 410	if (!mapping) {
 411		/* Anonymous page without mapping */
 412		if (folio_ref_count(folio) != expected_count)
 413			return -EAGAIN;
 414
 415		/* No turning back from here */
 416		newfolio->index = folio->index;
 417		newfolio->mapping = folio->mapping;
 418		if (folio_test_swapbacked(folio))
 419			__folio_set_swapbacked(newfolio);
 420
 421		return MIGRATEPAGE_SUCCESS;
 422	}
 423
 424	oldzone = folio_zone(folio);
 425	newzone = folio_zone(newfolio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 426
 427	xas_lock_irq(&xas);
 428	if (!folio_ref_freeze(folio, expected_count)) {
 429		xas_unlock_irq(&xas);
 
 
 
 
 
 
 
 
 430		return -EAGAIN;
 431	}
 432
 433	/*
 434	 * Now we know that no one else is looking at the folio:
 435	 * no turning back from here.
 436	 */
 437	newfolio->index = folio->index;
 438	newfolio->mapping = folio->mapping;
 439	folio_ref_add(newfolio, nr); /* add cache reference */
 440	if (folio_test_swapbacked(folio)) {
 441		__folio_set_swapbacked(newfolio);
 442		if (folio_test_swapcache(folio)) {
 443			folio_set_swapcache(newfolio);
 444			newfolio->private = folio_get_private(folio);
 445		}
 446		entries = nr;
 447	} else {
 448		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
 449		entries = 1;
 450	}
 451
 452	/* Move dirty while page refs frozen and newpage not yet exposed */
 453	dirty = folio_test_dirty(folio);
 454	if (dirty) {
 455		folio_clear_dirty(folio);
 456		folio_set_dirty(newfolio);
 457	}
 458
 459	/* Swap cache still stores N entries instead of a high-order entry */
 460	for (i = 0; i < entries; i++) {
 461		xas_store(&xas, newfolio);
 462		xas_next(&xas);
 
 
 
 
 
 
 
 463	}
 464
 465	/*
 466	 * Drop cache reference from old page by unfreezing
 467	 * to one less reference.
 468	 * We know this isn't the last reference.
 469	 */
 470	folio_ref_unfreeze(folio, expected_count - nr);
 471
 472	xas_unlock(&xas);
 473	/* Leave irq disabled to prevent preemption while updating stats */
 474
 475	/*
 476	 * If moved to a different zone then also account
 477	 * the page for that zone. Other VM counters will be
 478	 * taken care of when we establish references to the
 479	 * new page and drop references to the old page.
 480	 *
 481	 * Note that anonymous pages are accounted for
 482	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 483	 * are mapped to swap space.
 484	 */
 485	if (newzone != oldzone) {
 486		struct lruvec *old_lruvec, *new_lruvec;
 487		struct mem_cgroup *memcg;
 488
 489		memcg = folio_memcg(folio);
 490		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
 491		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
 492
 493		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
 494		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
 495		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
 496			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
 497			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
 498
 499			if (folio_test_pmd_mappable(folio)) {
 500				__mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr);
 501				__mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr);
 502			}
 503		}
 504#ifdef CONFIG_SWAP
 505		if (folio_test_swapcache(folio)) {
 506			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
 507			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
 508		}
 509#endif
 510		if (dirty && mapping_can_writeback(mapping)) {
 511			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
 512			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
 513			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
 514			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
 515		}
 516	}
 517	local_irq_enable();
 518
 519	return MIGRATEPAGE_SUCCESS;
 520}
 521EXPORT_SYMBOL(folio_migrate_mapping);
 522
 523/*
 524 * The expected number of remaining references is the same as that
 525 * of folio_migrate_mapping().
 526 */
 527int migrate_huge_page_move_mapping(struct address_space *mapping,
 528				   struct folio *dst, struct folio *src)
 529{
 530	XA_STATE(xas, &mapping->i_pages, folio_index(src));
 531	int expected_count;
 
 
 
 532
 533	xas_lock_irq(&xas);
 534	expected_count = folio_expected_refs(mapping, src);
 535	if (!folio_ref_freeze(src, expected_count)) {
 536		xas_unlock_irq(&xas);
 
 
 537		return -EAGAIN;
 538	}
 539
 540	dst->index = src->index;
 541	dst->mapping = src->mapping;
 
 
 
 
 
 542
 543	folio_ref_add(dst, folio_nr_pages(dst));
 544
 545	xas_store(&xas, dst);
 546
 547	folio_ref_unfreeze(src, expected_count - folio_nr_pages(src));
 548
 549	xas_unlock_irq(&xas);
 550
 551	return MIGRATEPAGE_SUCCESS;
 552}
 553
 554/*
 555 * Copy the flags and some other ancillary information
 
 
 556 */
 557void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 558{
 559	int cpupid;
 560
 561	if (folio_test_error(folio))
 562		folio_set_error(newfolio);
 563	if (folio_test_referenced(folio))
 564		folio_set_referenced(newfolio);
 565	if (folio_test_uptodate(folio))
 566		folio_mark_uptodate(newfolio);
 567	if (folio_test_clear_active(folio)) {
 568		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
 569		folio_set_active(newfolio);
 570	} else if (folio_test_clear_unevictable(folio))
 571		folio_set_unevictable(newfolio);
 572	if (folio_test_workingset(folio))
 573		folio_set_workingset(newfolio);
 574	if (folio_test_checked(folio))
 575		folio_set_checked(newfolio);
 576	/*
 577	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
 578	 * migration entries. We can still have PG_anon_exclusive set on an
 579	 * effectively unmapped and unreferenced first sub-pages of an
 580	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
 581	 */
 582	if (folio_test_mappedtodisk(folio))
 583		folio_set_mappedtodisk(newfolio);
 584
 585	/* Move dirty on pages not done by folio_migrate_mapping() */
 586	if (folio_test_dirty(folio))
 587		folio_set_dirty(newfolio);
 588
 589	if (folio_test_young(folio))
 590		folio_set_young(newfolio);
 591	if (folio_test_idle(folio))
 592		folio_set_idle(newfolio);
 593
 594	/*
 595	 * Copy NUMA information to the new page, to prevent over-eager
 596	 * future migrations of this same page.
 597	 */
 598	cpupid = folio_xchg_last_cpupid(folio, -1);
 599	/*
 600	 * For memory tiering mode, when migrate between slow and fast
 601	 * memory node, reset cpupid, because that is used to record
 602	 * page access time in slow memory node.
 603	 */
 604	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
 605		bool f_toptier = node_is_toptier(folio_nid(folio));
 606		bool t_toptier = node_is_toptier(folio_nid(newfolio));
 607
 608		if (f_toptier != t_toptier)
 609			cpupid = -1;
 610	}
 611	folio_xchg_last_cpupid(newfolio, cpupid);
 612
 613	folio_migrate_ksm(newfolio, folio);
 614	/*
 615	 * Please do not reorder this without considering how mm/ksm.c's
 616	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 617	 */
 618	if (folio_test_swapcache(folio))
 619		folio_clear_swapcache(folio);
 620	folio_clear_private(folio);
 621
 622	/* page->private contains hugetlb specific flags */
 623	if (!folio_test_hugetlb(folio))
 624		folio->private = NULL;
 625
 626	/*
 627	 * If any waiters have accumulated on the new page then
 628	 * wake them up.
 629	 */
 630	if (folio_test_writeback(newfolio))
 631		folio_end_writeback(newfolio);
 632
 633	/*
 634	 * PG_readahead shares the same bit with PG_reclaim.  The above
 635	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
 636	 * bit after that.
 637	 */
 638	if (folio_test_readahead(folio))
 639		folio_set_readahead(newfolio);
 640
 641	folio_copy_owner(newfolio, folio);
 642
 643	mem_cgroup_migrate(folio, newfolio);
 644}
 645EXPORT_SYMBOL(folio_migrate_flags);
 646
 647void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
 648{
 649	folio_copy(newfolio, folio);
 650	folio_migrate_flags(newfolio, folio);
 
 
 
 
 651}
 652EXPORT_SYMBOL(folio_migrate_copy);
 653
 654/************************************************************
 655 *                    Migration functions
 656 ***********************************************************/
 657
 658int migrate_folio_extra(struct address_space *mapping, struct folio *dst,
 659		struct folio *src, enum migrate_mode mode, int extra_count)
 
 
 
 
 
 
 
 660{
 661	int rc;
 662
 663	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
 664
 665	rc = folio_migrate_mapping(mapping, dst, src, extra_count);
 666
 667	if (rc != MIGRATEPAGE_SUCCESS)
 668		return rc;
 669
 670	if (mode != MIGRATE_SYNC_NO_COPY)
 671		folio_migrate_copy(dst, src);
 672	else
 673		folio_migrate_flags(dst, src);
 674	return MIGRATEPAGE_SUCCESS;
 675}
 
 676
 677/**
 678 * migrate_folio() - Simple folio migration.
 679 * @mapping: The address_space containing the folio.
 680 * @dst: The folio to migrate the data to.
 681 * @src: The folio containing the current data.
 682 * @mode: How to migrate the page.
 683 *
 684 * Common logic to directly migrate a single LRU folio suitable for
 685 * folios that do not use PagePrivate/PagePrivate2.
 686 *
 687 * Folios are locked upon entry and exit.
 688 */
 689int migrate_folio(struct address_space *mapping, struct folio *dst,
 690		struct folio *src, enum migrate_mode mode)
 691{
 692	return migrate_folio_extra(mapping, dst, src, mode, 0);
 693}
 694EXPORT_SYMBOL(migrate_folio);
 695
 696#ifdef CONFIG_BUFFER_HEAD
 697/* Returns true if all buffers are successfully locked */
 698static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 699							enum migrate_mode mode)
 700{
 701	struct buffer_head *bh = head;
 702	struct buffer_head *failed_bh;
 703
 704	do {
 705		if (!trylock_buffer(bh)) {
 706			if (mode == MIGRATE_ASYNC)
 707				goto unlock;
 708			if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh))
 709				goto unlock;
 710			lock_buffer(bh);
 711		}
 712
 713		bh = bh->b_this_page;
 714	} while (bh != head);
 715
 716	return true;
 717
 718unlock:
 719	/* We failed to lock the buffer and cannot stall. */
 720	failed_bh = bh;
 721	bh = head;
 722	while (bh != failed_bh) {
 723		unlock_buffer(bh);
 724		bh = bh->b_this_page;
 725	}
 726
 727	return false;
 728}
 729
 730static int __buffer_migrate_folio(struct address_space *mapping,
 731		struct folio *dst, struct folio *src, enum migrate_mode mode,
 732		bool check_refs)
 733{
 734	struct buffer_head *bh, *head;
 735	int rc;
 736	int expected_count;
 737
 738	head = folio_buffers(src);
 739	if (!head)
 740		return migrate_folio(mapping, dst, src, mode);
 741
 742	/* Check whether page does not have extra refs before we do more work */
 743	expected_count = folio_expected_refs(mapping, src);
 744	if (folio_ref_count(src) != expected_count)
 745		return -EAGAIN;
 746
 747	if (!buffer_migrate_lock_buffers(head, mode))
 748		return -EAGAIN;
 749
 750	if (check_refs) {
 751		bool busy;
 752		bool invalidated = false;
 753
 754recheck_buffers:
 755		busy = false;
 756		spin_lock(&mapping->i_private_lock);
 757		bh = head;
 758		do {
 759			if (atomic_read(&bh->b_count)) {
 760				busy = true;
 761				break;
 762			}
 763			bh = bh->b_this_page;
 764		} while (bh != head);
 765		if (busy) {
 766			if (invalidated) {
 767				rc = -EAGAIN;
 768				goto unlock_buffers;
 769			}
 770			spin_unlock(&mapping->i_private_lock);
 771			invalidate_bh_lrus();
 772			invalidated = true;
 773			goto recheck_buffers;
 774		}
 775	}
 776
 777	rc = folio_migrate_mapping(mapping, dst, src, 0);
 778	if (rc != MIGRATEPAGE_SUCCESS)
 779		goto unlock_buffers;
 780
 781	folio_attach_private(dst, folio_detach_private(src));
 
 
 
 
 
 
 
 
 
 
 
 
 782
 783	bh = head;
 784	do {
 785		folio_set_bh(bh, dst, bh_offset(bh));
 786		bh = bh->b_this_page;
 
 787	} while (bh != head);
 788
 
 
 789	if (mode != MIGRATE_SYNC_NO_COPY)
 790		folio_migrate_copy(dst, src);
 791	else
 792		folio_migrate_flags(dst, src);
 793
 794	rc = MIGRATEPAGE_SUCCESS;
 795unlock_buffers:
 796	if (check_refs)
 797		spin_unlock(&mapping->i_private_lock);
 798	bh = head;
 799	do {
 800		unlock_buffer(bh);
 
 801		bh = bh->b_this_page;
 
 802	} while (bh != head);
 803
 804	return rc;
 805}
 806
 807/**
 808 * buffer_migrate_folio() - Migration function for folios with buffers.
 809 * @mapping: The address space containing @src.
 810 * @dst: The folio to migrate to.
 811 * @src: The folio to migrate from.
 812 * @mode: How to migrate the folio.
 813 *
 814 * This function can only be used if the underlying filesystem guarantees
 815 * that no other references to @src exist. For example attached buffer
 816 * heads are accessed only under the folio lock.  If your filesystem cannot
 817 * provide this guarantee, buffer_migrate_folio_norefs() may be more
 818 * appropriate.
 819 *
 820 * Return: 0 on success or a negative errno on failure.
 821 */
 822int buffer_migrate_folio(struct address_space *mapping,
 823		struct folio *dst, struct folio *src, enum migrate_mode mode)
 824{
 825	return __buffer_migrate_folio(mapping, dst, src, mode, false);
 826}
 827EXPORT_SYMBOL(buffer_migrate_folio);
 828
 829/**
 830 * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
 831 * @mapping: The address space containing @src.
 832 * @dst: The folio to migrate to.
 833 * @src: The folio to migrate from.
 834 * @mode: How to migrate the folio.
 835 *
 836 * Like buffer_migrate_folio() except that this variant is more careful
 837 * and checks that there are also no buffer head references. This function
 838 * is the right one for mappings where buffer heads are directly looked
 839 * up and referenced (such as block device mappings).
 840 *
 841 * Return: 0 on success or a negative errno on failure.
 842 */
 843int buffer_migrate_folio_norefs(struct address_space *mapping,
 844		struct folio *dst, struct folio *src, enum migrate_mode mode)
 845{
 846	return __buffer_migrate_folio(mapping, dst, src, mode, true);
 847}
 848EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
 849#endif /* CONFIG_BUFFER_HEAD */
 850
 851int filemap_migrate_folio(struct address_space *mapping,
 852		struct folio *dst, struct folio *src, enum migrate_mode mode)
 853{
 854	int ret;
 855
 856	ret = folio_migrate_mapping(mapping, dst, src, 0);
 857	if (ret != MIGRATEPAGE_SUCCESS)
 858		return ret;
 859
 860	if (folio_get_private(src))
 861		folio_attach_private(dst, folio_detach_private(src));
 862
 863	if (mode != MIGRATE_SYNC_NO_COPY)
 864		folio_migrate_copy(dst, src);
 865	else
 866		folio_migrate_flags(dst, src);
 867	return MIGRATEPAGE_SUCCESS;
 868}
 869EXPORT_SYMBOL_GPL(filemap_migrate_folio);
 
 870
 871/*
 872 * Writeback a folio to clean the dirty state
 873 */
 874static int writeout(struct address_space *mapping, struct folio *folio)
 875{
 876	struct writeback_control wbc = {
 877		.sync_mode = WB_SYNC_NONE,
 878		.nr_to_write = 1,
 879		.range_start = 0,
 880		.range_end = LLONG_MAX,
 881		.for_reclaim = 1
 882	};
 883	int rc;
 884
 885	if (!mapping->a_ops->writepage)
 886		/* No write method for the address space */
 887		return -EINVAL;
 888
 889	if (!folio_clear_dirty_for_io(folio))
 890		/* Someone else already triggered a write */
 891		return -EAGAIN;
 892
 893	/*
 894	 * A dirty folio may imply that the underlying filesystem has
 895	 * the folio on some queue. So the folio must be clean for
 896	 * migration. Writeout may mean we lose the lock and the
 897	 * folio state is no longer what we checked for earlier.
 898	 * At this point we know that the migration attempt cannot
 899	 * be successful.
 900	 */
 901	remove_migration_ptes(folio, folio, false);
 902
 903	rc = mapping->a_ops->writepage(&folio->page, &wbc);
 904
 905	if (rc != AOP_WRITEPAGE_ACTIVATE)
 906		/* unlocked. Relock */
 907		folio_lock(folio);
 908
 909	return (rc < 0) ? -EIO : -EAGAIN;
 910}
 911
 912/*
 913 * Default handling if a filesystem does not provide a migration function.
 914 */
 915static int fallback_migrate_folio(struct address_space *mapping,
 916		struct folio *dst, struct folio *src, enum migrate_mode mode)
 917{
 918	if (folio_test_dirty(src)) {
 919		/* Only writeback folios in full synchronous migration */
 920		switch (mode) {
 921		case MIGRATE_SYNC:
 922		case MIGRATE_SYNC_NO_COPY:
 923			break;
 924		default:
 925			return -EBUSY;
 926		}
 927		return writeout(mapping, src);
 928	}
 929
 930	/*
 931	 * Buffers may be managed in a filesystem specific way.
 932	 * We must have no buffers or drop them.
 933	 */
 934	if (!filemap_release_folio(src, GFP_KERNEL))
 935		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
 
 936
 937	return migrate_folio(mapping, dst, src, mode);
 938}
 939
 940/*
 941 * Move a page to a newly allocated page
 942 * The page is locked and all ptes have been successfully removed.
 943 *
 944 * The new page will have replaced the old page if this function
 945 * is successful.
 946 *
 947 * Return value:
 948 *   < 0 - error code
 949 *  MIGRATEPAGE_SUCCESS - success
 950 */
 951static int move_to_new_folio(struct folio *dst, struct folio *src,
 952				enum migrate_mode mode)
 953{
 
 954	int rc = -EAGAIN;
 955	bool is_lru = !__folio_test_movable(src);
 
 
 
 956
 957	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
 958	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
 959
 960	if (likely(is_lru)) {
 961		struct address_space *mapping = folio_mapping(src);
 962
 963		if (!mapping)
 964			rc = migrate_folio(mapping, dst, src, mode);
 965		else if (mapping_unmovable(mapping))
 966			rc = -EOPNOTSUPP;
 967		else if (mapping->a_ops->migrate_folio)
 968			/*
 969			 * Most folios have a mapping and most filesystems
 970			 * provide a migrate_folio callback. Anonymous folios
 971			 * are part of swap space which also has its own
 972			 * migrate_folio callback. This is the most common path
 973			 * for page migration.
 974			 */
 975			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
 976								mode);
 977		else
 978			rc = fallback_migrate_folio(mapping, dst, src, mode);
 
 979	} else {
 980		const struct movable_operations *mops;
 981
 982		/*
 983		 * In case of non-lru page, it could be released after
 984		 * isolation step. In that case, we shouldn't try migration.
 985		 */
 986		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
 987		if (!folio_test_movable(src)) {
 988			rc = MIGRATEPAGE_SUCCESS;
 989			folio_clear_isolated(src);
 990			goto out;
 991		}
 992
 993		mops = folio_movable_ops(src);
 994		rc = mops->migrate_page(&dst->page, &src->page, mode);
 995		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 996				!folio_test_isolated(src));
 997	}
 998
 999	/*
1000	 * When successful, old pagecache src->mapping must be cleared before
1001	 * src is freed; but stats require that PageAnon be left as PageAnon.
1002	 */
1003	if (rc == MIGRATEPAGE_SUCCESS) {
1004		if (__folio_test_movable(src)) {
1005			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
1006
1007			/*
1008			 * We clear PG_movable under page_lock so any compactor
1009			 * cannot try to migrate this page.
1010			 */
1011			folio_clear_isolated(src);
1012		}
1013
1014		/*
1015		 * Anonymous and movable src->mapping will be cleared by
1016		 * free_pages_prepare so don't reset it here for keeping
1017		 * the type to work PageAnon, for example.
1018		 */
1019		if (!folio_mapping_flags(src))
1020			src->mapping = NULL;
1021
1022		if (likely(!folio_is_zone_device(dst)))
1023			flush_dcache_folio(dst);
1024	}
1025out:
1026	return rc;
1027}
1028
1029/*
1030 * To record some information during migration, we use unused private
1031 * field of struct folio of the newly allocated destination folio.
1032 * This is safe because nobody is using it except us.
1033 */
1034enum {
1035	PAGE_WAS_MAPPED = BIT(0),
1036	PAGE_WAS_MLOCKED = BIT(1),
1037	PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED,
1038};
1039
1040static void __migrate_folio_record(struct folio *dst,
1041				   int old_page_state,
1042				   struct anon_vma *anon_vma)
1043{
1044	dst->private = (void *)anon_vma + old_page_state;
1045}
1046
1047static void __migrate_folio_extract(struct folio *dst,
1048				   int *old_page_state,
1049				   struct anon_vma **anon_vmap)
1050{
1051	unsigned long private = (unsigned long)dst->private;
1052
1053	*anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES);
1054	*old_page_state = private & PAGE_OLD_STATES;
1055	dst->private = NULL;
1056}
1057
1058/* Restore the source folio to the original state upon failure */
1059static void migrate_folio_undo_src(struct folio *src,
1060				   int page_was_mapped,
1061				   struct anon_vma *anon_vma,
1062				   bool locked,
1063				   struct list_head *ret)
1064{
1065	if (page_was_mapped)
1066		remove_migration_ptes(src, src, false);
1067	/* Drop an anon_vma reference if we took one */
1068	if (anon_vma)
1069		put_anon_vma(anon_vma);
1070	if (locked)
1071		folio_unlock(src);
1072	if (ret)
1073		list_move_tail(&src->lru, ret);
1074}
1075
1076/* Restore the destination folio to the original state upon failure */
1077static void migrate_folio_undo_dst(struct folio *dst, bool locked,
1078		free_folio_t put_new_folio, unsigned long private)
1079{
1080	if (locked)
1081		folio_unlock(dst);
1082	if (put_new_folio)
1083		put_new_folio(dst, private);
1084	else
1085		folio_put(dst);
1086}
1087
1088/* Cleanup src folio upon migration success */
1089static void migrate_folio_done(struct folio *src,
1090			       enum migrate_reason reason)
1091{
1092	/*
1093	 * Compaction can migrate also non-LRU pages which are
1094	 * not accounted to NR_ISOLATED_*. They can be recognized
1095	 * as __folio_test_movable
1096	 */
1097	if (likely(!__folio_test_movable(src)))
1098		mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1099				    folio_is_file_lru(src), -folio_nr_pages(src));
1100
1101	if (reason != MR_MEMORY_FAILURE)
1102		/* We release the page in page_handle_poison. */
1103		folio_put(src);
1104}
1105
1106/* Obtain the lock on page, remove all ptes. */
1107static int migrate_folio_unmap(new_folio_t get_new_folio,
1108		free_folio_t put_new_folio, unsigned long private,
1109		struct folio *src, struct folio **dstp, enum migrate_mode mode,
1110		enum migrate_reason reason, struct list_head *ret)
1111{
1112	struct folio *dst;
1113	int rc = -EAGAIN;
1114	int old_page_state = 0;
1115	struct anon_vma *anon_vma = NULL;
1116	bool is_lru = !__folio_test_movable(src);
1117	bool locked = false;
1118	bool dst_locked = false;
1119
1120	if (folio_ref_count(src) == 1) {
1121		/* Folio was freed from under us. So we are done. */
1122		folio_clear_active(src);
1123		folio_clear_unevictable(src);
1124		/* free_pages_prepare() will clear PG_isolated. */
1125		list_del(&src->lru);
1126		migrate_folio_done(src, reason);
1127		return MIGRATEPAGE_SUCCESS;
1128	}
1129
1130	dst = get_new_folio(src, private);
1131	if (!dst)
1132		return -ENOMEM;
1133	*dstp = dst;
1134
1135	dst->private = NULL;
1136
1137	if (!folio_trylock(src)) {
1138		if (mode == MIGRATE_ASYNC)
1139			goto out;
1140
1141		/*
1142		 * It's not safe for direct compaction to call lock_page.
1143		 * For example, during page readahead pages are added locked
1144		 * to the LRU. Later, when the IO completes the pages are
1145		 * marked uptodate and unlocked. However, the queueing
1146		 * could be merging multiple pages for one bio (e.g.
1147		 * mpage_readahead). If an allocation happens for the
1148		 * second or third page, the process can end up locking
1149		 * the same page twice and deadlocking. Rather than
1150		 * trying to be clever about what pages can be locked,
1151		 * avoid the use of lock_page for direct compaction
1152		 * altogether.
1153		 */
1154		if (current->flags & PF_MEMALLOC)
1155			goto out;
1156
1157		/*
1158		 * In "light" mode, we can wait for transient locks (eg
1159		 * inserting a page into the page table), but it's not
1160		 * worth waiting for I/O.
1161		 */
1162		if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src))
1163			goto out;
1164
1165		folio_lock(src);
1166	}
1167	locked = true;
1168	if (folio_test_mlocked(src))
1169		old_page_state |= PAGE_WAS_MLOCKED;
1170
1171	if (folio_test_writeback(src)) {
1172		/*
1173		 * Only in the case of a full synchronous migration is it
1174		 * necessary to wait for PageWriteback. In the async case,
1175		 * the retry loop is too short and in the sync-light case,
1176		 * the overhead of stalling is too much
1177		 */
1178		switch (mode) {
1179		case MIGRATE_SYNC:
1180		case MIGRATE_SYNC_NO_COPY:
1181			break;
1182		default:
1183			rc = -EBUSY;
1184			goto out;
1185		}
1186		folio_wait_writeback(src);
 
 
1187	}
1188
1189	/*
1190	 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1191	 * we cannot notice that anon_vma is freed while we migrate a page.
1192	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1193	 * of migration. File cache pages are no problem because of page_lock()
1194	 * File Caches may use write_page() or lock_page() in migration, then,
1195	 * just care Anon page here.
1196	 *
1197	 * Only folio_get_anon_vma() understands the subtleties of
1198	 * getting a hold on an anon_vma from outside one of its mms.
1199	 * But if we cannot get anon_vma, then we won't need it anyway,
1200	 * because that implies that the anon page is no longer mapped
1201	 * (and cannot be remapped so long as we hold the page lock).
1202	 */
1203	if (folio_test_anon(src) && !folio_test_ksm(src))
1204		anon_vma = folio_get_anon_vma(src);
1205
1206	/*
1207	 * Block others from accessing the new page when we get around to
1208	 * establishing additional references. We are usually the only one
1209	 * holding a reference to dst at this point. We used to have a BUG
1210	 * here if folio_trylock(dst) fails, but would like to allow for
1211	 * cases where there might be a race with the previous use of dst.
1212	 * This is much like races on refcount of oldpage: just don't BUG().
1213	 */
1214	if (unlikely(!folio_trylock(dst)))
1215		goto out;
1216	dst_locked = true;
1217
1218	if (unlikely(!is_lru)) {
1219		__migrate_folio_record(dst, old_page_state, anon_vma);
1220		return MIGRATEPAGE_UNMAP;
1221	}
1222
1223	/*
1224	 * Corner case handling:
1225	 * 1. When a new swap-cache page is read into, it is added to the LRU
1226	 * and treated as swapcache but it has no rmap yet.
1227	 * Calling try_to_unmap() against a src->mapping==NULL page will
1228	 * trigger a BUG.  So handle it here.
1229	 * 2. An orphaned page (see truncate_cleanup_page) might have
1230	 * fs-private metadata. The page can be picked up due to memory
1231	 * offlining.  Everywhere else except page reclaim, the page is
1232	 * invisible to the vm, so the page can not be migrated.  So try to
1233	 * free the metadata, so the page can be freed.
1234	 */
1235	if (!src->mapping) {
1236		if (folio_test_private(src)) {
1237			try_to_free_buffers(src);
1238			goto out;
 
1239		}
1240	} else if (folio_mapped(src)) {
1241		/* Establish migration ptes */
1242		VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1243			       !folio_test_ksm(src) && !anon_vma, src);
1244		try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
1245		old_page_state |= PAGE_WAS_MAPPED;
 
1246	}
1247
1248	if (!folio_mapped(src)) {
1249		__migrate_folio_record(dst, old_page_state, anon_vma);
1250		return MIGRATEPAGE_UNMAP;
1251	}
 
 
1252
 
 
 
 
 
 
 
1253out:
1254	/*
1255	 * A folio that has not been unmapped will be restored to
1256	 * right list unless we want to retry.
 
 
1257	 */
1258	if (rc == -EAGAIN)
1259		ret = NULL;
1260
1261	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1262			       anon_vma, locked, ret);
1263	migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private);
1264
1265	return rc;
1266}
1267
1268/* Migrate the folio to the newly allocated folio in dst. */
1269static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private,
1270			      struct folio *src, struct folio *dst,
1271			      enum migrate_mode mode, enum migrate_reason reason,
1272			      struct list_head *ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1273{
1274	int rc;
1275	int old_page_state = 0;
1276	struct anon_vma *anon_vma = NULL;
1277	bool is_lru = !__folio_test_movable(src);
1278	struct list_head *prev;
1279
1280	__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1281	prev = dst->lru.prev;
1282	list_del(&dst->lru);
1283
1284	rc = move_to_new_folio(dst, src, mode);
1285	if (rc)
 
 
 
 
 
 
 
 
 
 
 
 
1286		goto out;
 
1287
1288	if (unlikely(!is_lru))
1289		goto out_unlock_both;
 
1290
1291	/*
1292	 * When successful, push dst to LRU immediately: so that if it
1293	 * turns out to be an mlocked page, remove_migration_ptes() will
1294	 * automatically build up the correct dst->mlock_count for it.
1295	 *
1296	 * We would like to do something similar for the old page, when
1297	 * unsuccessful, and other cases when a page has been temporarily
1298	 * isolated from the unevictable LRU: but this case is the easiest.
1299	 */
1300	folio_add_lru(dst);
1301	if (old_page_state & PAGE_WAS_MLOCKED)
1302		lru_add_drain();
1303
1304	if (old_page_state & PAGE_WAS_MAPPED)
1305		remove_migration_ptes(src, dst, false);
 
 
 
 
 
 
 
1306
1307out_unlock_both:
1308	folio_unlock(dst);
1309	set_page_owner_migrate_reason(&dst->page, reason);
1310	/*
1311	 * If migration is successful, decrease refcount of dst,
1312	 * which will not free the page because new page owner increased
1313	 * refcounter.
1314	 */
1315	folio_put(dst);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1316
1317	/*
1318	 * A folio that has been migrated has all references removed
1319	 * and will be freed.
1320	 */
1321	list_del(&src->lru);
1322	/* Drop an anon_vma reference if we took one */
1323	if (anon_vma)
1324		put_anon_vma(anon_vma);
1325	folio_unlock(src);
1326	migrate_folio_done(src, reason);
1327
1328	return rc;
1329out:
1330	/*
1331	 * A folio that has not been migrated will be restored to
1332	 * right list unless we want to retry.
1333	 */
1334	if (rc == -EAGAIN) {
1335		list_add(&dst->lru, prev);
1336		__migrate_folio_record(dst, old_page_state, anon_vma);
1337		return rc;
1338	}
1339
1340	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1341			       anon_vma, true, ret);
1342	migrate_folio_undo_dst(dst, true, put_new_folio, private);
1343
1344	return rc;
1345}
1346
1347/*
1348 * Counterpart of unmap_and_move_page() for hugepage migration.
1349 *
1350 * This function doesn't wait the completion of hugepage I/O
1351 * because there is no race between I/O and migration for hugepage.
1352 * Note that currently hugepage I/O occurs only in direct I/O
1353 * where no lock is held and PG_writeback is irrelevant,
1354 * and writeback status of all subpages are counted in the reference
1355 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1356 * under direct I/O, the reference of the head page is 512 and a bit more.)
1357 * This means that when we try to migrate hugepage whose subpages are
1358 * doing direct I/O, some references remain after try_to_unmap() and
1359 * hugepage migration fails without data corruption.
1360 *
1361 * There is also no race when direct I/O is issued on the page under migration,
1362 * because then pte is replaced with migration swap entry and direct I/O code
1363 * will wait in the page fault for migration to complete.
1364 */
1365static int unmap_and_move_huge_page(new_folio_t get_new_folio,
1366		free_folio_t put_new_folio, unsigned long private,
1367		struct folio *src, int force, enum migrate_mode mode,
1368		int reason, struct list_head *ret)
1369{
1370	struct folio *dst;
1371	int rc = -EAGAIN;
1372	int page_was_mapped = 0;
 
1373	struct anon_vma *anon_vma = NULL;
1374	struct address_space *mapping = NULL;
1375
1376	if (folio_ref_count(src) == 1) {
1377		/* page was freed from under us. So we are done. */
1378		folio_putback_active_hugetlb(src);
1379		return MIGRATEPAGE_SUCCESS;
 
 
 
 
 
 
1380	}
1381
1382	dst = get_new_folio(src, private);
1383	if (!dst)
1384		return -ENOMEM;
1385
1386	if (!folio_trylock(src)) {
1387		if (!force)
1388			goto out;
1389		switch (mode) {
1390		case MIGRATE_SYNC:
1391		case MIGRATE_SYNC_NO_COPY:
1392			break;
1393		default:
1394			goto out;
1395		}
1396		folio_lock(src);
1397	}
1398
1399	/*
1400	 * Check for pages which are in the process of being freed.  Without
1401	 * folio_mapping() set, hugetlbfs specific move page routine will not
1402	 * be called and we could leak usage counts for subpools.
1403	 */
1404	if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1405		rc = -EBUSY;
1406		goto out_unlock;
1407	}
1408
1409	if (folio_test_anon(src))
1410		anon_vma = folio_get_anon_vma(src);
1411
1412	if (unlikely(!folio_trylock(dst)))
1413		goto put_anon;
1414
1415	if (folio_mapped(src)) {
1416		enum ttu_flags ttu = 0;
1417
1418		if (!folio_test_anon(src)) {
1419			/*
1420			 * In shared mappings, try_to_unmap could potentially
1421			 * call huge_pmd_unshare.  Because of this, take
1422			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1423			 * to let lower levels know we have taken the lock.
1424			 */
1425			mapping = hugetlb_page_mapping_lock_write(&src->page);
1426			if (unlikely(!mapping))
1427				goto unlock_put_anon;
1428
1429			ttu = TTU_RMAP_LOCKED;
1430		}
1431
1432		try_to_migrate(src, ttu);
1433		page_was_mapped = 1;
1434
1435		if (ttu & TTU_RMAP_LOCKED)
1436			i_mmap_unlock_write(mapping);
1437	}
1438
1439	if (!folio_mapped(src))
1440		rc = move_to_new_folio(dst, src, mode);
1441
1442	if (page_was_mapped)
1443		remove_migration_ptes(src,
1444			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1445
1446unlock_put_anon:
1447	folio_unlock(dst);
1448
1449put_anon:
1450	if (anon_vma)
1451		put_anon_vma(anon_vma);
1452
1453	if (rc == MIGRATEPAGE_SUCCESS) {
1454		move_hugetlb_state(src, dst, reason);
1455		put_new_folio = NULL;
1456	}
1457
1458out_unlock:
1459	folio_unlock(src);
1460out:
1461	if (rc == MIGRATEPAGE_SUCCESS)
1462		folio_putback_active_hugetlb(src);
1463	else if (rc != -EAGAIN)
1464		list_move_tail(&src->lru, ret);
1465
1466	/*
1467	 * If migration was not successful and there's a freeing callback, use
1468	 * it.  Otherwise, put_page() will drop the reference grabbed during
1469	 * isolation.
1470	 */
1471	if (put_new_folio)
1472		put_new_folio(dst, private);
1473	else
1474		folio_putback_active_hugetlb(dst);
1475
1476	return rc;
1477}
1478
1479static inline int try_split_folio(struct folio *folio, struct list_head *split_folios)
1480{
1481	int rc;
1482
1483	folio_lock(folio);
1484	rc = split_folio_to_list(folio, split_folios);
1485	folio_unlock(folio);
1486	if (!rc)
1487		list_move_tail(&folio->lru, split_folios);
1488
1489	return rc;
1490}
1491
1492#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1493#define NR_MAX_BATCHED_MIGRATION	HPAGE_PMD_NR
1494#else
1495#define NR_MAX_BATCHED_MIGRATION	512
1496#endif
1497#define NR_MAX_MIGRATE_PAGES_RETRY	10
1498#define NR_MAX_MIGRATE_ASYNC_RETRY	3
1499#define NR_MAX_MIGRATE_SYNC_RETRY					\
1500	(NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
1501
1502struct migrate_pages_stats {
1503	int nr_succeeded;	/* Normal and large folios migrated successfully, in
1504				   units of base pages */
1505	int nr_failed_pages;	/* Normal and large folios failed to be migrated, in
1506				   units of base pages.  Untried folios aren't counted */
1507	int nr_thp_succeeded;	/* THP migrated successfully */
1508	int nr_thp_failed;	/* THP failed to be migrated */
1509	int nr_thp_split;	/* THP split before migrating */
1510	int nr_split;	/* Large folio (include THP) split before migrating */
1511};
1512
1513/*
1514 * Returns the number of hugetlb folios that were not migrated, or an error code
1515 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1516 * any more because the list has become empty or no retryable hugetlb folios
1517 * exist any more. It is caller's responsibility to call putback_movable_pages()
1518 * only if ret != 0.
1519 */
1520static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio,
1521			    free_folio_t put_new_folio, unsigned long private,
1522			    enum migrate_mode mode, int reason,
1523			    struct migrate_pages_stats *stats,
1524			    struct list_head *ret_folios)
1525{
1526	int retry = 1;
1527	int nr_failed = 0;
1528	int nr_retry_pages = 0;
1529	int pass = 0;
1530	struct folio *folio, *folio2;
1531	int rc, nr_pages;
1532
1533	for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1534		retry = 0;
1535		nr_retry_pages = 0;
1536
1537		list_for_each_entry_safe(folio, folio2, from, lru) {
1538			if (!folio_test_hugetlb(folio))
1539				continue;
1540
1541			nr_pages = folio_nr_pages(folio);
1542
1543			cond_resched();
1544
1545			/*
1546			 * Migratability of hugepages depends on architectures and
1547			 * their size.  This check is necessary because some callers
1548			 * of hugepage migration like soft offline and memory
1549			 * hotremove don't walk through page tables or check whether
1550			 * the hugepage is pmd-based or not before kicking migration.
1551			 */
1552			if (!hugepage_migration_supported(folio_hstate(folio))) {
1553				nr_failed++;
1554				stats->nr_failed_pages += nr_pages;
1555				list_move_tail(&folio->lru, ret_folios);
1556				continue;
1557			}
1558
1559			rc = unmap_and_move_huge_page(get_new_folio,
1560						      put_new_folio, private,
1561						      folio, pass > 2, mode,
1562						      reason, ret_folios);
1563			/*
1564			 * The rules are:
1565			 *	Success: hugetlb folio will be put back
1566			 *	-EAGAIN: stay on the from list
1567			 *	-ENOMEM: stay on the from list
1568			 *	Other errno: put on ret_folios list
1569			 */
1570			switch(rc) {
1571			case -ENOMEM:
1572				/*
1573				 * When memory is low, don't bother to try to migrate
1574				 * other folios, just exit.
1575				 */
1576				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1577				return -ENOMEM;
1578			case -EAGAIN:
1579				retry++;
1580				nr_retry_pages += nr_pages;
1581				break;
1582			case MIGRATEPAGE_SUCCESS:
1583				stats->nr_succeeded += nr_pages;
1584				break;
1585			default:
1586				/*
1587				 * Permanent failure (-EBUSY, etc.):
1588				 * unlike -EAGAIN case, the failed folio is
1589				 * removed from migration folio list and not
1590				 * retried in the next outer loop.
1591				 */
1592				nr_failed++;
1593				stats->nr_failed_pages += nr_pages;
1594				break;
1595			}
1596		}
1597	}
1598	/*
1599	 * nr_failed is number of hugetlb folios failed to be migrated.  After
1600	 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1601	 * folios as failed.
1602	 */
1603	nr_failed += retry;
1604	stats->nr_failed_pages += nr_retry_pages;
1605
1606	return nr_failed;
1607}
1608
1609/*
1610 * migrate_pages_batch() first unmaps folios in the from list as many as
1611 * possible, then move the unmapped folios.
1612 *
1613 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
1614 * lock or bit when we have locked more than one folio.  Which may cause
1615 * deadlock (e.g., for loop device).  So, if mode != MIGRATE_ASYNC, the
1616 * length of the from list must be <= 1.
 
 
 
 
 
 
 
 
 
 
 
 
1617 */
1618static int migrate_pages_batch(struct list_head *from,
1619		new_folio_t get_new_folio, free_folio_t put_new_folio,
1620		unsigned long private, enum migrate_mode mode, int reason,
1621		struct list_head *ret_folios, struct list_head *split_folios,
1622		struct migrate_pages_stats *stats, int nr_pass)
1623{
1624	int retry = 1;
1625	int thp_retry = 1;
1626	int nr_failed = 0;
1627	int nr_retry_pages = 0;
1628	int pass = 0;
1629	bool is_thp = false;
1630	bool is_large = false;
1631	struct folio *folio, *folio2, *dst = NULL, *dst2;
1632	int rc, rc_saved = 0, nr_pages;
1633	LIST_HEAD(unmap_folios);
1634	LIST_HEAD(dst_folios);
1635	bool nosplit = (reason == MR_NUMA_MISPLACED);
1636
1637	VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
1638			!list_empty(from) && !list_is_singular(from));
1639
1640	for (pass = 0; pass < nr_pass && retry; pass++) {
1641		retry = 0;
1642		thp_retry = 0;
1643		nr_retry_pages = 0;
1644
1645		list_for_each_entry_safe(folio, folio2, from, lru) {
1646			is_large = folio_test_large(folio);
1647			is_thp = is_large && folio_test_pmd_mappable(folio);
1648			nr_pages = folio_nr_pages(folio);
1649
 
 
1650			cond_resched();
1651
1652			/*
1653			 * Large folio migration might be unsupported or
1654			 * the allocation might be failed so we should retry
1655			 * on the same folio with the large folio split
1656			 * to normal folios.
1657			 *
1658			 * Split folios are put in split_folios, and
1659			 * we will migrate them after the rest of the
1660			 * list is processed.
1661			 */
1662			if (!thp_migration_supported() && is_thp) {
1663				nr_failed++;
1664				stats->nr_thp_failed++;
1665				if (!try_split_folio(folio, split_folios)) {
1666					stats->nr_thp_split++;
1667					stats->nr_split++;
1668					continue;
1669				}
1670				stats->nr_failed_pages += nr_pages;
1671				list_move_tail(&folio->lru, ret_folios);
1672				continue;
1673			}
1674
1675			rc = migrate_folio_unmap(get_new_folio, put_new_folio,
1676					private, folio, &dst, mode, reason,
1677					ret_folios);
1678			/*
1679			 * The rules are:
1680			 *	Success: folio will be freed
1681			 *	Unmap: folio will be put on unmap_folios list,
1682			 *	       dst folio put on dst_folios list
1683			 *	-EAGAIN: stay on the from list
1684			 *	-ENOMEM: stay on the from list
1685			 *	Other errno: put on ret_folios list
1686			 */
1687			switch(rc) {
1688			case -ENOMEM:
1689				/*
1690				 * When memory is low, don't bother to try to migrate
1691				 * other folios, move unmapped folios, then exit.
 
 
 
 
 
 
 
1692				 */
1693				nr_failed++;
1694				stats->nr_thp_failed += is_thp;
1695				/* Large folio NUMA faulting doesn't split to retry. */
1696				if (is_large && !nosplit) {
1697					int ret = try_split_folio(folio, split_folios);
1698
1699					if (!ret) {
1700						stats->nr_thp_split += is_thp;
1701						stats->nr_split++;
1702						break;
1703					} else if (reason == MR_LONGTERM_PIN &&
1704						   ret == -EAGAIN) {
1705						/*
1706						 * Try again to split large folio to
1707						 * mitigate the failure of longterm pinning.
1708						 */
1709						retry++;
1710						thp_retry += is_thp;
1711						nr_retry_pages += nr_pages;
1712						/* Undo duplicated failure counting. */
1713						nr_failed--;
1714						stats->nr_thp_failed -= is_thp;
1715						break;
1716					}
1717				}
1718
1719				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1720				/* nr_failed isn't updated for not used */
1721				stats->nr_thp_failed += thp_retry;
1722				rc_saved = rc;
1723				if (list_empty(&unmap_folios))
1724					goto out;
1725				else
1726					goto move;
1727			case -EAGAIN:
1728				retry++;
1729				thp_retry += is_thp;
1730				nr_retry_pages += nr_pages;
1731				break;
1732			case MIGRATEPAGE_SUCCESS:
1733				stats->nr_succeeded += nr_pages;
1734				stats->nr_thp_succeeded += is_thp;
1735				break;
1736			case MIGRATEPAGE_UNMAP:
1737				list_move_tail(&folio->lru, &unmap_folios);
1738				list_add_tail(&dst->lru, &dst_folios);
1739				break;
1740			default:
1741				/*
1742				 * Permanent failure (-EBUSY, etc.):
1743				 * unlike -EAGAIN case, the failed folio is
1744				 * removed from migration folio list and not
1745				 * retried in the next outer loop.
1746				 */
1747				nr_failed++;
1748				stats->nr_thp_failed += is_thp;
1749				stats->nr_failed_pages += nr_pages;
1750				break;
1751			}
1752		}
1753	}
1754	nr_failed += retry;
1755	stats->nr_thp_failed += thp_retry;
1756	stats->nr_failed_pages += nr_retry_pages;
1757move:
1758	/* Flush TLBs for all unmapped folios */
1759	try_to_unmap_flush();
1760
1761	retry = 1;
1762	for (pass = 0; pass < nr_pass && retry; pass++) {
1763		retry = 0;
1764		thp_retry = 0;
1765		nr_retry_pages = 0;
1766
1767		dst = list_first_entry(&dst_folios, struct folio, lru);
1768		dst2 = list_next_entry(dst, lru);
1769		list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1770			is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1771			nr_pages = folio_nr_pages(folio);
1772
1773			cond_resched();
1774
1775			rc = migrate_folio_move(put_new_folio, private,
1776						folio, dst, mode,
1777						reason, ret_folios);
1778			/*
1779			 * The rules are:
1780			 *	Success: folio will be freed
1781			 *	-EAGAIN: stay on the unmap_folios list
1782			 *	Other errno: put on ret_folios list
1783			 */
1784			switch(rc) {
1785			case -EAGAIN:
1786				retry++;
1787				thp_retry += is_thp;
1788				nr_retry_pages += nr_pages;
1789				break;
1790			case MIGRATEPAGE_SUCCESS:
1791				stats->nr_succeeded += nr_pages;
1792				stats->nr_thp_succeeded += is_thp;
1793				break;
1794			default:
1795				nr_failed++;
1796				stats->nr_thp_failed += is_thp;
1797				stats->nr_failed_pages += nr_pages;
1798				break;
1799			}
1800			dst = dst2;
1801			dst2 = list_next_entry(dst, lru);
1802		}
1803	}
1804	nr_failed += retry;
1805	stats->nr_thp_failed += thp_retry;
1806	stats->nr_failed_pages += nr_retry_pages;
1807
1808	rc = rc_saved ? : nr_failed;
1809out:
1810	/* Cleanup remaining folios */
1811	dst = list_first_entry(&dst_folios, struct folio, lru);
1812	dst2 = list_next_entry(dst, lru);
1813	list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1814		int old_page_state = 0;
1815		struct anon_vma *anon_vma = NULL;
1816
1817		__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1818		migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED,
1819				       anon_vma, true, ret_folios);
1820		list_del(&dst->lru);
1821		migrate_folio_undo_dst(dst, true, put_new_folio, private);
1822		dst = dst2;
1823		dst2 = list_next_entry(dst, lru);
1824	}
1825
1826	return rc;
1827}
1828
1829static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio,
1830		free_folio_t put_new_folio, unsigned long private,
1831		enum migrate_mode mode, int reason,
1832		struct list_head *ret_folios, struct list_head *split_folios,
1833		struct migrate_pages_stats *stats)
1834{
1835	int rc, nr_failed = 0;
1836	LIST_HEAD(folios);
1837	struct migrate_pages_stats astats;
1838
1839	memset(&astats, 0, sizeof(astats));
1840	/* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
1841	rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC,
1842				 reason, &folios, split_folios, &astats,
1843				 NR_MAX_MIGRATE_ASYNC_RETRY);
1844	stats->nr_succeeded += astats.nr_succeeded;
1845	stats->nr_thp_succeeded += astats.nr_thp_succeeded;
1846	stats->nr_thp_split += astats.nr_thp_split;
1847	stats->nr_split += astats.nr_split;
1848	if (rc < 0) {
1849		stats->nr_failed_pages += astats.nr_failed_pages;
1850		stats->nr_thp_failed += astats.nr_thp_failed;
1851		list_splice_tail(&folios, ret_folios);
1852		return rc;
1853	}
1854	stats->nr_thp_failed += astats.nr_thp_split;
1855	/*
1856	 * Do not count rc, as pages will be retried below.
1857	 * Count nr_split only, since it includes nr_thp_split.
1858	 */
1859	nr_failed += astats.nr_split;
1860	/*
1861	 * Fall back to migrate all failed folios one by one synchronously. All
1862	 * failed folios except split THPs will be retried, so their failure
1863	 * isn't counted
1864	 */
1865	list_splice_tail_init(&folios, from);
1866	while (!list_empty(from)) {
1867		list_move(from->next, &folios);
1868		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1869					 private, mode, reason, ret_folios,
1870					 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
1871		list_splice_tail_init(&folios, ret_folios);
1872		if (rc < 0)
1873			return rc;
1874		nr_failed += rc;
1875	}
1876
1877	return nr_failed;
1878}
1879
1880/*
1881 * migrate_pages - migrate the folios specified in a list, to the free folios
1882 *		   supplied as the target for the page migration
1883 *
1884 * @from:		The list of folios to be migrated.
1885 * @get_new_folio:	The function used to allocate free folios to be used
1886 *			as the target of the folio migration.
1887 * @put_new_folio:	The function used to free target folios if migration
1888 *			fails, or NULL if no special handling is necessary.
1889 * @private:		Private data to be passed on to get_new_folio()
1890 * @mode:		The migration mode that specifies the constraints for
1891 *			folio migration, if any.
1892 * @reason:		The reason for folio migration.
1893 * @ret_succeeded:	Set to the number of folios migrated successfully if
1894 *			the caller passes a non-NULL pointer.
1895 *
1896 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
1897 * are movable any more because the list has become empty or no retryable folios
1898 * exist any more. It is caller's responsibility to call putback_movable_pages()
1899 * only if ret != 0.
1900 *
1901 * Returns the number of {normal folio, large folio, hugetlb} that were not
1902 * migrated, or an error code. The number of large folio splits will be
1903 * considered as the number of non-migrated large folio, no matter how many
1904 * split folios of the large folio are migrated successfully.
1905 */
1906int migrate_pages(struct list_head *from, new_folio_t get_new_folio,
1907		free_folio_t put_new_folio, unsigned long private,
1908		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1909{
1910	int rc, rc_gather;
1911	int nr_pages;
1912	struct folio *folio, *folio2;
1913	LIST_HEAD(folios);
1914	LIST_HEAD(ret_folios);
1915	LIST_HEAD(split_folios);
1916	struct migrate_pages_stats stats;
1917
1918	trace_mm_migrate_pages_start(mode, reason);
1919
1920	memset(&stats, 0, sizeof(stats));
1921
1922	rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private,
1923				     mode, reason, &stats, &ret_folios);
1924	if (rc_gather < 0)
1925		goto out;
1926
1927again:
1928	nr_pages = 0;
1929	list_for_each_entry_safe(folio, folio2, from, lru) {
1930		/* Retried hugetlb folios will be kept in list  */
1931		if (folio_test_hugetlb(folio)) {
1932			list_move_tail(&folio->lru, &ret_folios);
1933			continue;
1934		}
1935
1936		nr_pages += folio_nr_pages(folio);
1937		if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1938			break;
1939	}
1940	if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1941		list_cut_before(&folios, from, &folio2->lru);
1942	else
1943		list_splice_init(from, &folios);
1944	if (mode == MIGRATE_ASYNC)
1945		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1946				private, mode, reason, &ret_folios,
1947				&split_folios, &stats,
1948				NR_MAX_MIGRATE_PAGES_RETRY);
1949	else
1950		rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio,
1951				private, mode, reason, &ret_folios,
1952				&split_folios, &stats);
1953	list_splice_tail_init(&folios, &ret_folios);
1954	if (rc < 0) {
1955		rc_gather = rc;
1956		list_splice_tail(&split_folios, &ret_folios);
1957		goto out;
1958	}
1959	if (!list_empty(&split_folios)) {
1960		/*
1961		 * Failure isn't counted since all split folios of a large folio
1962		 * is counted as 1 failure already.  And, we only try to migrate
1963		 * with minimal effort, force MIGRATE_ASYNC mode and retry once.
1964		 */
1965		migrate_pages_batch(&split_folios, get_new_folio,
1966				put_new_folio, private, MIGRATE_ASYNC, reason,
1967				&ret_folios, NULL, &stats, 1);
1968		list_splice_tail_init(&split_folios, &ret_folios);
1969	}
1970	rc_gather += rc;
1971	if (!list_empty(from))
1972		goto again;
1973out:
1974	/*
1975	 * Put the permanent failure folio back to migration list, they
1976	 * will be put back to the right list by the caller.
1977	 */
1978	list_splice(&ret_folios, from);
1979
1980	/*
1981	 * Return 0 in case all split folios of fail-to-migrate large folios
1982	 * are migrated successfully.
1983	 */
1984	if (list_empty(from))
1985		rc_gather = 0;
1986
1987	count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
1988	count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
1989	count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
1990	count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
1991	count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
1992	trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
1993			       stats.nr_thp_succeeded, stats.nr_thp_failed,
1994			       stats.nr_thp_split, stats.nr_split, mode,
1995			       reason);
1996
1997	if (ret_succeeded)
1998		*ret_succeeded = stats.nr_succeeded;
1999
2000	return rc_gather;
2001}
2002
2003struct folio *alloc_migration_target(struct folio *src, unsigned long private)
2004{
2005	struct migration_target_control *mtc;
2006	gfp_t gfp_mask;
2007	unsigned int order = 0;
2008	int nid;
2009	int zidx;
2010
2011	mtc = (struct migration_target_control *)private;
2012	gfp_mask = mtc->gfp_mask;
2013	nid = mtc->nid;
2014	if (nid == NUMA_NO_NODE)
2015		nid = folio_nid(src);
2016
2017	if (folio_test_hugetlb(src)) {
2018		struct hstate *h = folio_hstate(src);
2019
2020		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
2021		return alloc_hugetlb_folio_nodemask(h, nid,
2022						mtc->nmask, gfp_mask);
2023	}
2024
2025	if (folio_test_large(src)) {
2026		/*
2027		 * clear __GFP_RECLAIM to make the migration callback
2028		 * consistent with regular THP allocations.
2029		 */
2030		gfp_mask &= ~__GFP_RECLAIM;
2031		gfp_mask |= GFP_TRANSHUGE;
2032		order = folio_order(src);
2033	}
2034	zidx = zone_idx(folio_zone(src));
2035	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2036		gfp_mask |= __GFP_HIGHMEM;
2037
2038	return __folio_alloc(gfp_mask, order, nid, mtc->nmask);
2039}
2040
2041#ifdef CONFIG_NUMA
2042
2043static int store_status(int __user *status, int start, int value, int nr)
2044{
2045	while (nr-- > 0) {
2046		if (put_user(value, status + start))
2047			return -EFAULT;
2048		start++;
2049	}
2050
2051	return 0;
2052}
2053
2054static int do_move_pages_to_node(struct list_head *pagelist, int node)
 
2055{
2056	int err;
2057	struct migration_target_control mtc = {
2058		.nid = node,
2059		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2060	};
2061
2062	err = migrate_pages(pagelist, alloc_migration_target, NULL,
2063		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
 
 
 
2064	if (err)
2065		putback_movable_pages(pagelist);
2066	return err;
2067}
2068
2069/*
2070 * Resolves the given address to a struct page, isolates it from the LRU and
2071 * puts it to the given pagelist.
2072 * Returns:
2073 *     errno - if the page cannot be found/isolated
2074 *     0 - when it doesn't have to be migrated because it is already on the
2075 *         target node
2076 *     1 - when it has been queued
2077 */
2078static int add_page_for_migration(struct mm_struct *mm, const void __user *p,
2079		int node, struct list_head *pagelist, bool migrate_all)
2080{
2081	struct vm_area_struct *vma;
2082	unsigned long addr;
2083	struct page *page;
2084	struct folio *folio;
2085	int err;
2086
2087	mmap_read_lock(mm);
2088	addr = (unsigned long)untagged_addr_remote(mm, p);
2089
2090	err = -EFAULT;
2091	vma = vma_lookup(mm, addr);
2092	if (!vma || !vma_migratable(vma))
2093		goto out;
2094
2095	/* FOLL_DUMP to ignore special (like zero) pages */
2096	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
 
2097
2098	err = PTR_ERR(page);
2099	if (IS_ERR(page))
2100		goto out;
2101
2102	err = -ENOENT;
2103	if (!page)
2104		goto out;
2105
2106	folio = page_folio(page);
2107	if (folio_is_zone_device(folio))
2108		goto out_putfolio;
2109
2110	err = 0;
2111	if (folio_nid(folio) == node)
2112		goto out_putfolio;
2113
2114	err = -EACCES;
2115	if (page_mapcount(page) > 1 && !migrate_all)
2116		goto out_putfolio;
2117
2118	err = -EBUSY;
2119	if (folio_test_hugetlb(folio)) {
2120		if (isolate_hugetlb(folio, pagelist))
2121			err = 1;
 
2122	} else {
2123		if (!folio_isolate_lru(folio))
2124			goto out_putfolio;
 
 
 
 
2125
2126		err = 1;
2127		list_add_tail(&folio->lru, pagelist);
2128		node_stat_mod_folio(folio,
2129			NR_ISOLATED_ANON + folio_is_file_lru(folio),
2130			folio_nr_pages(folio));
2131	}
2132out_putfolio:
2133	/*
2134	 * Either remove the duplicate refcount from folio_isolate_lru()
2135	 * or drop the folio ref if it was not isolated.
 
2136	 */
2137	folio_put(folio);
2138out:
2139	mmap_read_unlock(mm);
2140	return err;
2141}
2142
2143static int move_pages_and_store_status(int node,
2144		struct list_head *pagelist, int __user *status,
2145		int start, int i, unsigned long nr_pages)
2146{
2147	int err;
2148
2149	if (list_empty(pagelist))
2150		return 0;
2151
2152	err = do_move_pages_to_node(pagelist, node);
2153	if (err) {
2154		/*
2155		 * Positive err means the number of failed
2156		 * pages to migrate.  Since we are going to
2157		 * abort and return the number of non-migrated
2158		 * pages, so need to include the rest of the
2159		 * nr_pages that have not been attempted as
2160		 * well.
2161		 */
2162		if (err > 0)
2163			err += nr_pages - i;
2164		return err;
2165	}
2166	return store_status(status, start, node, i - start);
2167}
2168
2169/*
2170 * Migrate an array of page address onto an array of nodes and fill
2171 * the corresponding array of status.
2172 */
2173static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2174			 unsigned long nr_pages,
2175			 const void __user * __user *pages,
2176			 const int __user *nodes,
2177			 int __user *status, int flags)
2178{
2179	compat_uptr_t __user *compat_pages = (void __user *)pages;
2180	int current_node = NUMA_NO_NODE;
2181	LIST_HEAD(pagelist);
2182	int start, i;
2183	int err = 0, err1;
2184
2185	lru_cache_disable();
2186
2187	for (i = start = 0; i < nr_pages; i++) {
2188		const void __user *p;
 
2189		int node;
2190
2191		err = -EFAULT;
2192		if (in_compat_syscall()) {
2193			compat_uptr_t cp;
2194
2195			if (get_user(cp, compat_pages + i))
2196				goto out_flush;
2197
2198			p = compat_ptr(cp);
2199		} else {
2200			if (get_user(p, pages + i))
2201				goto out_flush;
2202		}
2203		if (get_user(node, nodes + i))
2204			goto out_flush;
 
2205
2206		err = -ENODEV;
2207		if (node < 0 || node >= MAX_NUMNODES)
2208			goto out_flush;
2209		if (!node_state(node, N_MEMORY))
2210			goto out_flush;
2211
2212		err = -EACCES;
2213		if (!node_isset(node, task_nodes))
2214			goto out_flush;
2215
2216		if (current_node == NUMA_NO_NODE) {
2217			current_node = node;
2218			start = i;
2219		} else if (node != current_node) {
2220			err = move_pages_and_store_status(current_node,
2221					&pagelist, status, start, i, nr_pages);
 
 
2222			if (err)
2223				goto out;
2224			start = i;
2225			current_node = node;
2226		}
2227
2228		/*
2229		 * Errors in the page lookup or isolation are not fatal and we simply
2230		 * report them via status
2231		 */
2232		err = add_page_for_migration(mm, p, current_node, &pagelist,
2233					     flags & MPOL_MF_MOVE_ALL);
2234
2235		if (err > 0) {
2236			/* The page is successfully queued for migration */
2237			continue;
2238		}
2239
2240		/*
2241		 * The move_pages() man page does not have an -EEXIST choice, so
2242		 * use -EFAULT instead.
2243		 */
2244		if (err == -EEXIST)
2245			err = -EFAULT;
2246
2247		/*
2248		 * If the page is already on the target node (!err), store the
2249		 * node, otherwise, store the err.
2250		 */
2251		err = store_status(status, i, err ? : current_node, 1);
2252		if (err)
2253			goto out_flush;
2254
2255		err = move_pages_and_store_status(current_node, &pagelist,
2256				status, start, i, nr_pages);
2257		if (err) {
2258			/* We have accounted for page i */
2259			if (err > 0)
2260				err--;
2261			goto out;
 
 
 
 
2262		}
2263		current_node = NUMA_NO_NODE;
2264	}
2265out_flush:
 
 
 
2266	/* Make sure we do not overwrite the existing error */
2267	err1 = move_pages_and_store_status(current_node, &pagelist,
2268				status, start, i, nr_pages);
2269	if (err >= 0)
 
2270		err = err1;
2271out:
2272	lru_cache_enable();
2273	return err;
2274}
2275
2276/*
2277 * Determine the nodes of an array of pages and store it in an array of status.
2278 */
2279static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2280				const void __user **pages, int *status)
2281{
2282	unsigned long i;
2283
2284	mmap_read_lock(mm);
2285
2286	for (i = 0; i < nr_pages; i++) {
2287		unsigned long addr = (unsigned long)(*pages);
2288		struct vm_area_struct *vma;
2289		struct page *page;
2290		int err = -EFAULT;
2291
2292		vma = vma_lookup(mm, addr);
2293		if (!vma)
2294			goto set_status;
2295
2296		/* FOLL_DUMP to ignore special (like zero) pages */
2297		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2298
2299		err = PTR_ERR(page);
2300		if (IS_ERR(page))
2301			goto set_status;
2302
2303		err = -ENOENT;
2304		if (!page)
2305			goto set_status;
2306
2307		if (!is_zone_device_page(page))
2308			err = page_to_nid(page);
2309
2310		put_page(page);
2311set_status:
2312		*status = err;
2313
2314		pages++;
2315		status++;
2316	}
2317
2318	mmap_read_unlock(mm);
2319}
2320
2321static int get_compat_pages_array(const void __user *chunk_pages[],
2322				  const void __user * __user *pages,
2323				  unsigned long chunk_nr)
2324{
2325	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2326	compat_uptr_t p;
2327	int i;
2328
2329	for (i = 0; i < chunk_nr; i++) {
2330		if (get_user(p, pages32 + i))
2331			return -EFAULT;
2332		chunk_pages[i] = compat_ptr(p);
2333	}
2334
2335	return 0;
2336}
2337
2338/*
2339 * Determine the nodes of a user array of pages and store it in
2340 * a user array of status.
2341 */
2342static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2343			 const void __user * __user *pages,
2344			 int __user *status)
2345{
2346#define DO_PAGES_STAT_CHUNK_NR 16UL
2347	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2348	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2349
2350	while (nr_pages) {
2351		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
2352
2353		if (in_compat_syscall()) {
2354			if (get_compat_pages_array(chunk_pages, pages,
2355						   chunk_nr))
2356				break;
2357		} else {
2358			if (copy_from_user(chunk_pages, pages,
2359				      chunk_nr * sizeof(*chunk_pages)))
2360				break;
2361		}
2362
2363		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2364
2365		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2366			break;
2367
2368		pages += chunk_nr;
2369		status += chunk_nr;
2370		nr_pages -= chunk_nr;
2371	}
2372	return nr_pages ? -EFAULT : 0;
2373}
2374
2375static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
 
 
 
 
 
 
 
2376{
2377	struct task_struct *task;
2378	struct mm_struct *mm;
 
 
2379
2380	/*
2381	 * There is no need to check if current process has the right to modify
2382	 * the specified process when they are same.
2383	 */
2384	if (!pid) {
2385		mmget(current->mm);
2386		*mem_nodes = cpuset_mems_allowed(current);
2387		return current->mm;
2388	}
2389
2390	/* Find the mm_struct */
2391	rcu_read_lock();
2392	task = find_task_by_vpid(pid);
2393	if (!task) {
2394		rcu_read_unlock();
2395		return ERR_PTR(-ESRCH);
2396	}
2397	get_task_struct(task);
2398
2399	/*
2400	 * Check if this process has the right to modify the specified
2401	 * process. Use the regular "ptrace_may_access()" checks.
2402	 */
2403	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2404		rcu_read_unlock();
2405		mm = ERR_PTR(-EPERM);
2406		goto out;
2407	}
2408	rcu_read_unlock();
2409
2410	mm = ERR_PTR(security_task_movememory(task));
2411	if (IS_ERR(mm))
2412		goto out;
2413	*mem_nodes = cpuset_mems_allowed(task);
 
2414	mm = get_task_mm(task);
2415out:
2416	put_task_struct(task);
 
2417	if (!mm)
2418		mm = ERR_PTR(-EINVAL);
2419	return mm;
2420}
2421
2422/*
2423 * Move a list of pages in the address space of the currently executing
2424 * process.
2425 */
2426static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2427			     const void __user * __user *pages,
2428			     const int __user *nodes,
2429			     int __user *status, int flags)
2430{
2431	struct mm_struct *mm;
2432	int err;
2433	nodemask_t task_nodes;
2434
2435	/* Check flags */
2436	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2437		return -EINVAL;
2438
2439	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2440		return -EPERM;
2441
2442	mm = find_mm_struct(pid, &task_nodes);
2443	if (IS_ERR(mm))
2444		return PTR_ERR(mm);
2445
2446	if (nodes)
2447		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2448				    nodes, status, flags);
2449	else
2450		err = do_pages_stat(mm, nr_pages, pages, status);
2451
2452	mmput(mm);
2453	return err;
 
 
 
 
2454}
2455
2456SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2457		const void __user * __user *, pages,
2458		const int __user *, nodes,
2459		int __user *, status, int, flags)
2460{
2461	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2462}
2463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2464#ifdef CONFIG_NUMA_BALANCING
2465/*
2466 * Returns true if this is a safe migration target node for misplaced NUMA
2467 * pages. Currently it only checks the watermarks which is crude.
2468 */
2469static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2470				   unsigned long nr_migrate_pages)
2471{
2472	int z;
2473
2474	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2475		struct zone *zone = pgdat->node_zones + z;
2476
2477		if (!managed_zone(zone))
2478			continue;
2479
2480		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2481		if (!zone_watermark_ok(zone, 0,
2482				       high_wmark_pages(zone) +
2483				       nr_migrate_pages,
2484				       ZONE_MOVABLE, 0))
2485			continue;
2486		return true;
2487	}
2488	return false;
2489}
2490
2491static struct folio *alloc_misplaced_dst_folio(struct folio *src,
2492					   unsigned long data)
2493{
2494	int nid = (int) data;
2495	int order = folio_order(src);
2496	gfp_t gfp = __GFP_THISNODE;
2497
2498	if (order > 0)
2499		gfp |= GFP_TRANSHUGE_LIGHT;
2500	else {
2501		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2502			__GFP_NOWARN;
2503		gfp &= ~__GFP_RECLAIM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2504	}
2505	return __folio_alloc_node(gfp, order, nid);
 
 
 
 
 
 
 
 
 
 
 
 
 
2506}
2507
2508static int numamigrate_isolate_folio(pg_data_t *pgdat, struct folio *folio)
2509{
2510	int nr_pages = folio_nr_pages(folio);
 
 
2511
2512	/* Avoid migrating to a node that is nearly full */
2513	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2514		int z;
2515
2516		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2517			return 0;
2518		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2519			if (managed_zone(pgdat->node_zones + z))
2520				break;
2521		}
2522
2523		/*
2524		 * If there are no managed zones, it should not proceed
2525		 * further.
2526		 */
2527		if (z < 0)
2528			return 0;
2529
2530		wakeup_kswapd(pgdat->node_zones + z, 0,
2531			      folio_order(folio), ZONE_MOVABLE);
2532		return 0;
2533	}
2534
2535	if (!folio_isolate_lru(folio))
2536		return 0;
2537
2538	node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio),
2539			    nr_pages);
2540
2541	/*
2542	 * Isolating the folio has taken another reference, so the
2543	 * caller's reference can be safely dropped without the folio
2544	 * disappearing underneath us during migration.
2545	 */
2546	folio_put(folio);
2547	return 1;
2548}
2549
 
 
 
 
 
 
2550/*
2551 * Attempt to migrate a misplaced folio to the specified destination
2552 * node. Caller is expected to have an elevated reference count on
2553 * the folio that will be dropped by this function before returning.
2554 */
2555int migrate_misplaced_folio(struct folio *folio, struct vm_area_struct *vma,
2556			    int node)
2557{
2558	pg_data_t *pgdat = NODE_DATA(node);
2559	int isolated;
2560	int nr_remaining;
2561	unsigned int nr_succeeded;
2562	LIST_HEAD(migratepages);
2563	int nr_pages = folio_nr_pages(folio);
2564
2565	/*
2566	 * Don't migrate file folios that are mapped in multiple processes
2567	 * with execute permissions as they are probably shared libraries.
2568	 * To check if the folio is shared, ideally we want to make sure
2569	 * every page is mapped to the same process. Doing that is very
2570	 * expensive, so check the estimated mapcount of the folio instead.
2571	 */
2572	if (folio_estimated_sharers(folio) != 1 && folio_is_file_lru(folio) &&
2573	    (vma->vm_flags & VM_EXEC))
2574		goto out;
2575
2576	/*
2577	 * Also do not migrate dirty folios as not all filesystems can move
2578	 * dirty folios in MIGRATE_ASYNC mode which is a waste of cycles.
2579	 */
2580	if (folio_is_file_lru(folio) && folio_test_dirty(folio))
2581		goto out;
2582
2583	isolated = numamigrate_isolate_folio(pgdat, folio);
 
 
 
 
 
 
 
 
2584	if (!isolated)
2585		goto out;
2586
2587	list_add(&folio->lru, &migratepages);
2588	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio,
2589				     NULL, node, MIGRATE_ASYNC,
2590				     MR_NUMA_MISPLACED, &nr_succeeded);
2591	if (nr_remaining) {
2592		if (!list_empty(&migratepages)) {
2593			list_del(&folio->lru);
2594			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
2595					folio_is_file_lru(folio), -nr_pages);
2596			folio_putback_lru(folio);
2597		}
2598		isolated = 0;
2599	}
2600	if (nr_succeeded) {
2601		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2602		if (!node_is_toptier(folio_nid(folio)) && node_is_toptier(node))
2603			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2604					    nr_succeeded);
2605	}
2606	BUG_ON(!list_empty(&migratepages));
2607	return isolated;
2608
2609out:
2610	folio_put(folio);
2611	return 0;
2612}
2613#endif /* CONFIG_NUMA_BALANCING */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2614#endif /* CONFIG_NUMA */