Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
  23#include <linux/nsproxy.h>
  24#include <linux/pagevec.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/topology.h>
  28#include <linux/cpu.h>
  29#include <linux/cpuset.h>
  30#include <linux/writeback.h>
  31#include <linux/mempolicy.h>
  32#include <linux/vmalloc.h>
  33#include <linux/security.h>
  34#include <linux/backing-dev.h>
  35#include <linux/compaction.h>
  36#include <linux/syscalls.h>
  37#include <linux/compat.h>
  38#include <linux/hugetlb.h>
  39#include <linux/hugetlb_cgroup.h>
  40#include <linux/gfp.h>
  41#include <linux/pfn_t.h>
  42#include <linux/memremap.h>
  43#include <linux/userfaultfd_k.h>
  44#include <linux/balloon_compaction.h>
  45#include <linux/mmu_notifier.h>
  46#include <linux/page_idle.h>
  47#include <linux/page_owner.h>
  48#include <linux/sched/mm.h>
  49#include <linux/ptrace.h>
  50
  51#include <asm/tlbflush.h>
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/migrate.h>
  55
  56#include "internal.h"
  57
  58/*
  59 * migrate_prep() needs to be called before we start compiling a list of pages
  60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  61 * undesirable, use migrate_prep_local()
  62 */
  63int migrate_prep(void)
  64{
  65	/*
  66	 * Clear the LRU lists so pages can be isolated.
  67	 * Note that pages may be moved off the LRU after we have
  68	 * drained them. Those pages will fail to migrate like other
  69	 * pages that may be busy.
  70	 */
  71	lru_add_drain_all();
  72
  73	return 0;
  74}
  75
  76/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  77int migrate_prep_local(void)
  78{
  79	lru_add_drain();
  80
  81	return 0;
  82}
  83
  84int isolate_movable_page(struct page *page, isolate_mode_t mode)
  85{
  86	struct address_space *mapping;
  87
  88	/*
  89	 * Avoid burning cycles with pages that are yet under __free_pages(),
  90	 * or just got freed under us.
  91	 *
  92	 * In case we 'win' a race for a movable page being freed under us and
  93	 * raise its refcount preventing __free_pages() from doing its job
  94	 * the put_page() at the end of this block will take care of
  95	 * release this page, thus avoiding a nasty leakage.
  96	 */
  97	if (unlikely(!get_page_unless_zero(page)))
  98		goto out;
  99
 100	/*
 101	 * Check PageMovable before holding a PG_lock because page's owner
 102	 * assumes anybody doesn't touch PG_lock of newly allocated page
 103	 * so unconditionally grapping the lock ruins page's owner side.
 104	 */
 105	if (unlikely(!__PageMovable(page)))
 106		goto out_putpage;
 107	/*
 108	 * As movable pages are not isolated from LRU lists, concurrent
 109	 * compaction threads can race against page migration functions
 110	 * as well as race against the releasing a page.
 111	 *
 112	 * In order to avoid having an already isolated movable page
 113	 * being (wrongly) re-isolated while it is under migration,
 114	 * or to avoid attempting to isolate pages being released,
 115	 * lets be sure we have the page lock
 116	 * before proceeding with the movable page isolation steps.
 117	 */
 118	if (unlikely(!trylock_page(page)))
 119		goto out_putpage;
 120
 121	if (!PageMovable(page) || PageIsolated(page))
 122		goto out_no_isolated;
 123
 124	mapping = page_mapping(page);
 125	VM_BUG_ON_PAGE(!mapping, page);
 126
 127	if (!mapping->a_ops->isolate_page(page, mode))
 128		goto out_no_isolated;
 129
 130	/* Driver shouldn't use PG_isolated bit of page->flags */
 131	WARN_ON_ONCE(PageIsolated(page));
 132	__SetPageIsolated(page);
 133	unlock_page(page);
 134
 135	return 0;
 136
 137out_no_isolated:
 138	unlock_page(page);
 139out_putpage:
 140	put_page(page);
 141out:
 142	return -EBUSY;
 143}
 144
 145/* It should be called on page which is PG_movable */
 146void putback_movable_page(struct page *page)
 147{
 148	struct address_space *mapping;
 149
 150	VM_BUG_ON_PAGE(!PageLocked(page), page);
 151	VM_BUG_ON_PAGE(!PageMovable(page), page);
 152	VM_BUG_ON_PAGE(!PageIsolated(page), page);
 153
 154	mapping = page_mapping(page);
 155	mapping->a_ops->putback_page(page);
 156	__ClearPageIsolated(page);
 157}
 158
 159/*
 160 * Put previously isolated pages back onto the appropriate lists
 161 * from where they were once taken off for compaction/migration.
 162 *
 163 * This function shall be used whenever the isolated pageset has been
 164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 165 * and isolate_huge_page().
 166 */
 167void putback_movable_pages(struct list_head *l)
 168{
 169	struct page *page;
 170	struct page *page2;
 171
 172	list_for_each_entry_safe(page, page2, l, lru) {
 173		if (unlikely(PageHuge(page))) {
 174			putback_active_hugepage(page);
 175			continue;
 176		}
 177		list_del(&page->lru);
 178		/*
 179		 * We isolated non-lru movable page so here we can use
 180		 * __PageMovable because LRU page's mapping cannot have
 181		 * PAGE_MAPPING_MOVABLE.
 182		 */
 183		if (unlikely(__PageMovable(page))) {
 184			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 185			lock_page(page);
 186			if (PageMovable(page))
 187				putback_movable_page(page);
 188			else
 189				__ClearPageIsolated(page);
 190			unlock_page(page);
 191			put_page(page);
 192		} else {
 193			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 194					page_is_file_cache(page), -hpage_nr_pages(page));
 195			putback_lru_page(page);
 
 
 196		}
 197	}
 198}
 199
 200/*
 201 * Restore a potential migration pte to a working pte entry
 202 */
 203static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
 204				 unsigned long addr, void *old)
 205{
 206	struct page_vma_mapped_walk pvmw = {
 207		.page = old,
 208		.vma = vma,
 209		.address = addr,
 210		.flags = PVMW_SYNC | PVMW_MIGRATION,
 211	};
 212	struct page *new;
 213	pte_t pte;
 214	swp_entry_t entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 215
 216	VM_BUG_ON_PAGE(PageTail(page), page);
 217	while (page_vma_mapped_walk(&pvmw)) {
 218		if (PageKsm(page))
 219			new = page;
 220		else
 221			new = page - pvmw.page->index +
 222				linear_page_index(vma, pvmw.address);
 223
 224#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 225		/* PMD-mapped THP migration entry */
 226		if (!pvmw.pte) {
 227			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
 228			remove_migration_pmd(&pvmw, new);
 229			continue;
 230		}
 231#endif
 232
 233		get_page(new);
 234		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 235		if (pte_swp_soft_dirty(*pvmw.pte))
 236			pte = pte_mksoft_dirty(pte);
 237
 238		/*
 239		 * Recheck VMA as permissions can change since migration started
 
 240		 */
 241		entry = pte_to_swp_entry(*pvmw.pte);
 242		if (is_write_migration_entry(entry))
 243			pte = maybe_mkwrite(pte, vma);
 244
 245		if (unlikely(is_zone_device_page(new))) {
 246			if (is_device_private_page(new)) {
 247				entry = make_device_private_entry(new, pte_write(pte));
 248				pte = swp_entry_to_pte(entry);
 249			} else if (is_device_public_page(new)) {
 250				pte = pte_mkdevmap(pte);
 251				flush_dcache_page(new);
 252			}
 253		} else
 254			flush_dcache_page(new);
 
 
 
 
 
 
 
 
 
 255
 256#ifdef CONFIG_HUGETLB_PAGE
 257		if (PageHuge(new)) {
 258			pte = pte_mkhuge(pte);
 259			pte = arch_make_huge_pte(pte, vma, new, 0);
 260			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 261			if (PageAnon(new))
 262				hugepage_add_anon_rmap(new, vma, pvmw.address);
 263			else
 264				page_dup_rmap(new, true);
 265		} else
 266#endif
 267		{
 268			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 269
 270			if (PageAnon(new))
 271				page_add_anon_rmap(new, vma, pvmw.address, false);
 272			else
 273				page_add_file_rmap(new, false);
 274		}
 275		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 276			mlock_vma_page(new);
 
 
 277
 278		/* No need to invalidate - it was non-present before */
 279		update_mmu_cache(vma, pvmw.address, pvmw.pte);
 280	}
 281
 282	return true;
 
 
 
 
 
 283}
 284
 285/*
 286 * Get rid of all migration entries and replace them by
 287 * references to the indicated page.
 288 */
 289void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 290{
 291	struct rmap_walk_control rwc = {
 292		.rmap_one = remove_migration_pte,
 293		.arg = old,
 294	};
 295
 296	if (locked)
 297		rmap_walk_locked(new, &rwc);
 298	else
 299		rmap_walk(new, &rwc);
 300}
 301
 302/*
 303 * Something used the pte of a page under migration. We need to
 304 * get to the page and wait until migration is finished.
 305 * When we return from this function the fault will be retried.
 306 */
 307void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 308				spinlock_t *ptl)
 309{
 310	pte_t pte;
 311	swp_entry_t entry;
 312	struct page *page;
 313
 314	spin_lock(ptl);
 315	pte = *ptep;
 316	if (!is_swap_pte(pte))
 317		goto out;
 318
 319	entry = pte_to_swp_entry(pte);
 320	if (!is_migration_entry(entry))
 321		goto out;
 322
 323	page = migration_entry_to_page(entry);
 324
 325	/*
 326	 * Once radix-tree replacement of page migration started, page_count
 327	 * *must* be zero. And, we don't want to call wait_on_page_locked()
 328	 * against a page without get_page().
 329	 * So, we use get_page_unless_zero(), here. Even failed, page fault
 330	 * will occur again.
 331	 */
 332	if (!get_page_unless_zero(page))
 333		goto out;
 334	pte_unmap_unlock(ptep, ptl);
 335	wait_on_page_locked(page);
 336	put_page(page);
 337	return;
 338out:
 339	pte_unmap_unlock(ptep, ptl);
 340}
 341
 342void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 343				unsigned long address)
 344{
 345	spinlock_t *ptl = pte_lockptr(mm, pmd);
 346	pte_t *ptep = pte_offset_map(pmd, address);
 347	__migration_entry_wait(mm, ptep, ptl);
 348}
 349
 350void migration_entry_wait_huge(struct vm_area_struct *vma,
 351		struct mm_struct *mm, pte_t *pte)
 352{
 353	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 354	__migration_entry_wait(mm, pte, ptl);
 355}
 356
 357#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 358void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 359{
 360	spinlock_t *ptl;
 361	struct page *page;
 362
 363	ptl = pmd_lock(mm, pmd);
 364	if (!is_pmd_migration_entry(*pmd))
 365		goto unlock;
 366	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
 367	if (!get_page_unless_zero(page))
 368		goto unlock;
 369	spin_unlock(ptl);
 370	wait_on_page_locked(page);
 371	put_page(page);
 372	return;
 373unlock:
 374	spin_unlock(ptl);
 375}
 376#endif
 377
 378#ifdef CONFIG_BLOCK
 379/* Returns true if all buffers are successfully locked */
 380static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 381							enum migrate_mode mode)
 382{
 383	struct buffer_head *bh = head;
 384
 385	/* Simple case, sync compaction */
 386	if (mode != MIGRATE_ASYNC) {
 387		do {
 388			get_bh(bh);
 389			lock_buffer(bh);
 390			bh = bh->b_this_page;
 391
 392		} while (bh != head);
 393
 394		return true;
 395	}
 396
 397	/* async case, we cannot block on lock_buffer so use trylock_buffer */
 398	do {
 399		get_bh(bh);
 400		if (!trylock_buffer(bh)) {
 401			/*
 402			 * We failed to lock the buffer and cannot stall in
 403			 * async migration. Release the taken locks
 404			 */
 405			struct buffer_head *failed_bh = bh;
 406			put_bh(failed_bh);
 407			bh = head;
 408			while (bh != failed_bh) {
 409				unlock_buffer(bh);
 410				put_bh(bh);
 411				bh = bh->b_this_page;
 412			}
 413			return false;
 414		}
 415
 416		bh = bh->b_this_page;
 417	} while (bh != head);
 418	return true;
 419}
 420#else
 421static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
 422							enum migrate_mode mode)
 423{
 424	return true;
 425}
 426#endif /* CONFIG_BLOCK */
 427
 428/*
 429 * Replace the page in the mapping.
 430 *
 431 * The number of remaining references must be:
 432 * 1 for anonymous pages without a mapping
 433 * 2 for pages with a mapping
 434 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 435 */
 436int migrate_page_move_mapping(struct address_space *mapping,
 437		struct page *newpage, struct page *page,
 438		struct buffer_head *head, enum migrate_mode mode,
 439		int extra_count)
 440{
 441	struct zone *oldzone, *newzone;
 442	int dirty;
 443	int expected_count = 1 + extra_count;
 444	void **pslot;
 445
 446	/*
 447	 * Device public or private pages have an extra refcount as they are
 448	 * ZONE_DEVICE pages.
 449	 */
 450	expected_count += is_device_private_page(page);
 451	expected_count += is_device_public_page(page);
 452
 453	if (!mapping) {
 454		/* Anonymous page without mapping */
 455		if (page_count(page) != expected_count)
 456			return -EAGAIN;
 457
 458		/* No turning back from here */
 459		newpage->index = page->index;
 460		newpage->mapping = page->mapping;
 461		if (PageSwapBacked(page))
 462			__SetPageSwapBacked(newpage);
 463
 464		return MIGRATEPAGE_SUCCESS;
 465	}
 466
 467	oldzone = page_zone(page);
 468	newzone = page_zone(newpage);
 469
 470	xa_lock_irq(&mapping->i_pages);
 471
 472	pslot = radix_tree_lookup_slot(&mapping->i_pages,
 473 					page_index(page));
 474
 475	expected_count += hpage_nr_pages(page) + page_has_private(page);
 476	if (page_count(page) != expected_count ||
 477		radix_tree_deref_slot_protected(pslot,
 478					&mapping->i_pages.xa_lock) != page) {
 479		xa_unlock_irq(&mapping->i_pages);
 480		return -EAGAIN;
 481	}
 482
 483	if (!page_ref_freeze(page, expected_count)) {
 484		xa_unlock_irq(&mapping->i_pages);
 485		return -EAGAIN;
 486	}
 487
 488	/*
 489	 * In the async migration case of moving a page with buffers, lock the
 490	 * buffers using trylock before the mapping is moved. If the mapping
 491	 * was moved, we later failed to lock the buffers and could not move
 492	 * the mapping back due to an elevated page count, we would have to
 493	 * block waiting on other references to be dropped.
 494	 */
 495	if (mode == MIGRATE_ASYNC && head &&
 496			!buffer_migrate_lock_buffers(head, mode)) {
 497		page_ref_unfreeze(page, expected_count);
 498		xa_unlock_irq(&mapping->i_pages);
 499		return -EAGAIN;
 500	}
 501
 502	/*
 503	 * Now we know that no one else is looking at the page:
 504	 * no turning back from here.
 505	 */
 506	newpage->index = page->index;
 507	newpage->mapping = page->mapping;
 508	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
 509	if (PageSwapBacked(page)) {
 510		__SetPageSwapBacked(newpage);
 511		if (PageSwapCache(page)) {
 512			SetPageSwapCache(newpage);
 513			set_page_private(newpage, page_private(page));
 514		}
 515	} else {
 516		VM_BUG_ON_PAGE(PageSwapCache(page), page);
 517	}
 518
 519	/* Move dirty while page refs frozen and newpage not yet exposed */
 520	dirty = PageDirty(page);
 521	if (dirty) {
 522		ClearPageDirty(page);
 523		SetPageDirty(newpage);
 524	}
 525
 526	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
 527	if (PageTransHuge(page)) {
 528		int i;
 529		int index = page_index(page);
 530
 531		for (i = 1; i < HPAGE_PMD_NR; i++) {
 532			pslot = radix_tree_lookup_slot(&mapping->i_pages,
 533						       index + i);
 534			radix_tree_replace_slot(&mapping->i_pages, pslot,
 535						newpage + i);
 536		}
 537	}
 538
 539	/*
 540	 * Drop cache reference from old page by unfreezing
 541	 * to one less reference.
 542	 * We know this isn't the last reference.
 543	 */
 544	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
 545
 546	xa_unlock(&mapping->i_pages);
 547	/* Leave irq disabled to prevent preemption while updating stats */
 548
 549	/*
 550	 * If moved to a different zone then also account
 551	 * the page for that zone. Other VM counters will be
 552	 * taken care of when we establish references to the
 553	 * new page and drop references to the old page.
 554	 *
 555	 * Note that anonymous pages are accounted for
 556	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 557	 * are mapped to swap space.
 558	 */
 559	if (newzone != oldzone) {
 560		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
 561		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
 562		if (PageSwapBacked(page) && !PageSwapCache(page)) {
 563			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
 564			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
 565		}
 566		if (dirty && mapping_cap_account_dirty(mapping)) {
 567			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
 568			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
 569			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
 570			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
 571		}
 572	}
 573	local_irq_enable();
 574
 575	return MIGRATEPAGE_SUCCESS;
 576}
 577EXPORT_SYMBOL(migrate_page_move_mapping);
 578
 579/*
 580 * The expected number of remaining references is the same as that
 581 * of migrate_page_move_mapping().
 582 */
 583int migrate_huge_page_move_mapping(struct address_space *mapping,
 584				   struct page *newpage, struct page *page)
 585{
 586	int expected_count;
 587	void **pslot;
 588
 589	xa_lock_irq(&mapping->i_pages);
 590
 591	pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
 
 592
 593	expected_count = 2 + page_has_private(page);
 594	if (page_count(page) != expected_count ||
 595		radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
 596		xa_unlock_irq(&mapping->i_pages);
 597		return -EAGAIN;
 598	}
 599
 600	if (!page_ref_freeze(page, expected_count)) {
 601		xa_unlock_irq(&mapping->i_pages);
 602		return -EAGAIN;
 603	}
 604
 605	newpage->index = page->index;
 606	newpage->mapping = page->mapping;
 607
 608	get_page(newpage);
 609
 610	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
 611
 612	page_ref_unfreeze(page, expected_count - 1);
 613
 614	xa_unlock_irq(&mapping->i_pages);
 615
 616	return MIGRATEPAGE_SUCCESS;
 617}
 618
 619/*
 620 * Gigantic pages are so large that we do not guarantee that page++ pointer
 621 * arithmetic will work across the entire page.  We need something more
 622 * specialized.
 623 */
 624static void __copy_gigantic_page(struct page *dst, struct page *src,
 625				int nr_pages)
 626{
 627	int i;
 628	struct page *dst_base = dst;
 629	struct page *src_base = src;
 630
 631	for (i = 0; i < nr_pages; ) {
 632		cond_resched();
 633		copy_highpage(dst, src);
 634
 635		i++;
 636		dst = mem_map_next(dst, dst_base, i);
 637		src = mem_map_next(src, src_base, i);
 638	}
 639}
 640
 641static void copy_huge_page(struct page *dst, struct page *src)
 642{
 643	int i;
 644	int nr_pages;
 645
 646	if (PageHuge(src)) {
 647		/* hugetlbfs page */
 648		struct hstate *h = page_hstate(src);
 649		nr_pages = pages_per_huge_page(h);
 650
 651		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 652			__copy_gigantic_page(dst, src, nr_pages);
 653			return;
 654		}
 655	} else {
 656		/* thp page */
 657		BUG_ON(!PageTransHuge(src));
 658		nr_pages = hpage_nr_pages(src);
 659	}
 660
 661	for (i = 0; i < nr_pages; i++) {
 662		cond_resched();
 663		copy_highpage(dst + i, src + i);
 664	}
 665}
 666
 667/*
 668 * Copy the page to its new location
 669 */
 670void migrate_page_states(struct page *newpage, struct page *page)
 671{
 672	int cpupid;
 673
 
 
 
 
 
 674	if (PageError(page))
 675		SetPageError(newpage);
 676	if (PageReferenced(page))
 677		SetPageReferenced(newpage);
 678	if (PageUptodate(page))
 679		SetPageUptodate(newpage);
 680	if (TestClearPageActive(page)) {
 681		VM_BUG_ON_PAGE(PageUnevictable(page), page);
 682		SetPageActive(newpage);
 683	} else if (TestClearPageUnevictable(page))
 684		SetPageUnevictable(newpage);
 685	if (PageChecked(page))
 686		SetPageChecked(newpage);
 687	if (PageMappedToDisk(page))
 688		SetPageMappedToDisk(newpage);
 689
 690	/* Move dirty on pages not done by migrate_page_move_mapping() */
 691	if (PageDirty(page))
 692		SetPageDirty(newpage);
 693
 694	if (page_is_young(page))
 695		set_page_young(newpage);
 696	if (page_is_idle(page))
 697		set_page_idle(newpage);
 698
 699	/*
 700	 * Copy NUMA information to the new page, to prevent over-eager
 701	 * future migrations of this same page.
 702	 */
 703	cpupid = page_cpupid_xchg_last(page, -1);
 704	page_cpupid_xchg_last(newpage, cpupid);
 705
 706	ksm_migrate_page(newpage, page);
 707	/*
 708	 * Please do not reorder this without considering how mm/ksm.c's
 709	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 710	 */
 711	if (PageSwapCache(page))
 712		ClearPageSwapCache(page);
 713	ClearPagePrivate(page);
 714	set_page_private(page, 0);
 715
 716	/*
 717	 * If any waiters have accumulated on the new page then
 718	 * wake them up.
 719	 */
 720	if (PageWriteback(newpage))
 721		end_page_writeback(newpage);
 722
 723	copy_page_owner(page, newpage);
 724
 725	mem_cgroup_migrate(page, newpage);
 726}
 727EXPORT_SYMBOL(migrate_page_states);
 728
 729void migrate_page_copy(struct page *newpage, struct page *page)
 730{
 731	if (PageHuge(page) || PageTransHuge(page))
 732		copy_huge_page(newpage, page);
 733	else
 734		copy_highpage(newpage, page);
 735
 736	migrate_page_states(newpage, page);
 737}
 738EXPORT_SYMBOL(migrate_page_copy);
 739
 740/************************************************************
 741 *                    Migration functions
 742 ***********************************************************/
 743
 744/*
 745 * Common logic to directly migrate a single LRU page suitable for
 746 * pages that do not use PagePrivate/PagePrivate2.
 747 *
 748 * Pages are locked upon entry and exit.
 749 */
 750int migrate_page(struct address_space *mapping,
 751		struct page *newpage, struct page *page,
 752		enum migrate_mode mode)
 753{
 754	int rc;
 755
 756	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
 757
 758	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
 759
 760	if (rc != MIGRATEPAGE_SUCCESS)
 761		return rc;
 762
 763	if (mode != MIGRATE_SYNC_NO_COPY)
 764		migrate_page_copy(newpage, page);
 765	else
 766		migrate_page_states(newpage, page);
 767	return MIGRATEPAGE_SUCCESS;
 768}
 769EXPORT_SYMBOL(migrate_page);
 770
 771#ifdef CONFIG_BLOCK
 772/*
 773 * Migration function for pages with buffers. This function can only be used
 774 * if the underlying filesystem guarantees that no other references to "page"
 775 * exist.
 776 */
 777int buffer_migrate_page(struct address_space *mapping,
 778		struct page *newpage, struct page *page, enum migrate_mode mode)
 779{
 780	struct buffer_head *bh, *head;
 781	int rc;
 782
 783	if (!page_has_buffers(page))
 784		return migrate_page(mapping, newpage, page, mode);
 785
 786	head = page_buffers(page);
 787
 788	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
 789
 790	if (rc != MIGRATEPAGE_SUCCESS)
 791		return rc;
 792
 793	/*
 794	 * In the async case, migrate_page_move_mapping locked the buffers
 795	 * with an IRQ-safe spinlock held. In the sync case, the buffers
 796	 * need to be locked now
 797	 */
 798	if (mode != MIGRATE_ASYNC)
 799		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
 800
 801	ClearPagePrivate(page);
 802	set_page_private(newpage, page_private(page));
 803	set_page_private(page, 0);
 804	put_page(page);
 805	get_page(newpage);
 806
 807	bh = head;
 808	do {
 809		set_bh_page(bh, newpage, bh_offset(bh));
 810		bh = bh->b_this_page;
 811
 812	} while (bh != head);
 813
 814	SetPagePrivate(newpage);
 815
 816	if (mode != MIGRATE_SYNC_NO_COPY)
 817		migrate_page_copy(newpage, page);
 818	else
 819		migrate_page_states(newpage, page);
 820
 821	bh = head;
 822	do {
 823		unlock_buffer(bh);
 824		put_bh(bh);
 825		bh = bh->b_this_page;
 826
 827	} while (bh != head);
 828
 829	return MIGRATEPAGE_SUCCESS;
 830}
 831EXPORT_SYMBOL(buffer_migrate_page);
 832#endif
 833
 834/*
 835 * Writeback a page to clean the dirty state
 836 */
 837static int writeout(struct address_space *mapping, struct page *page)
 838{
 839	struct writeback_control wbc = {
 840		.sync_mode = WB_SYNC_NONE,
 841		.nr_to_write = 1,
 842		.range_start = 0,
 843		.range_end = LLONG_MAX,
 844		.for_reclaim = 1
 845	};
 846	int rc;
 847
 848	if (!mapping->a_ops->writepage)
 849		/* No write method for the address space */
 850		return -EINVAL;
 851
 852	if (!clear_page_dirty_for_io(page))
 853		/* Someone else already triggered a write */
 854		return -EAGAIN;
 855
 856	/*
 857	 * A dirty page may imply that the underlying filesystem has
 858	 * the page on some queue. So the page must be clean for
 859	 * migration. Writeout may mean we loose the lock and the
 860	 * page state is no longer what we checked for earlier.
 861	 * At this point we know that the migration attempt cannot
 862	 * be successful.
 863	 */
 864	remove_migration_ptes(page, page, false);
 865
 866	rc = mapping->a_ops->writepage(page, &wbc);
 867
 868	if (rc != AOP_WRITEPAGE_ACTIVATE)
 869		/* unlocked. Relock */
 870		lock_page(page);
 871
 872	return (rc < 0) ? -EIO : -EAGAIN;
 873}
 874
 875/*
 876 * Default handling if a filesystem does not provide a migration function.
 877 */
 878static int fallback_migrate_page(struct address_space *mapping,
 879	struct page *newpage, struct page *page, enum migrate_mode mode)
 880{
 881	if (PageDirty(page)) {
 882		/* Only writeback pages in full synchronous migration */
 883		switch (mode) {
 884		case MIGRATE_SYNC:
 885		case MIGRATE_SYNC_NO_COPY:
 886			break;
 887		default:
 888			return -EBUSY;
 889		}
 890		return writeout(mapping, page);
 891	}
 892
 893	/*
 894	 * Buffers may be managed in a filesystem specific way.
 895	 * We must have no buffers or drop them.
 896	 */
 897	if (page_has_private(page) &&
 898	    !try_to_release_page(page, GFP_KERNEL))
 899		return -EAGAIN;
 900
 901	return migrate_page(mapping, newpage, page, mode);
 902}
 903
 904/*
 905 * Move a page to a newly allocated page
 906 * The page is locked and all ptes have been successfully removed.
 907 *
 908 * The new page will have replaced the old page if this function
 909 * is successful.
 910 *
 911 * Return value:
 912 *   < 0 - error code
 913 *  MIGRATEPAGE_SUCCESS - success
 914 */
 915static int move_to_new_page(struct page *newpage, struct page *page,
 916				enum migrate_mode mode)
 917{
 918	struct address_space *mapping;
 919	int rc = -EAGAIN;
 920	bool is_lru = !__PageMovable(page);
 921
 922	VM_BUG_ON_PAGE(!PageLocked(page), page);
 923	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 924
 925	mapping = page_mapping(page);
 926
 927	if (likely(is_lru)) {
 928		if (!mapping)
 929			rc = migrate_page(mapping, newpage, page, mode);
 930		else if (mapping->a_ops->migratepage)
 931			/*
 932			 * Most pages have a mapping and most filesystems
 933			 * provide a migratepage callback. Anonymous pages
 934			 * are part of swap space which also has its own
 935			 * migratepage callback. This is the most common path
 936			 * for page migration.
 937			 */
 938			rc = mapping->a_ops->migratepage(mapping, newpage,
 939							page, mode);
 940		else
 941			rc = fallback_migrate_page(mapping, newpage,
 942							page, mode);
 943	} else {
 944		/*
 945		 * In case of non-lru page, it could be released after
 946		 * isolation step. In that case, we shouldn't try migration.
 947		 */
 948		VM_BUG_ON_PAGE(!PageIsolated(page), page);
 949		if (!PageMovable(page)) {
 950			rc = MIGRATEPAGE_SUCCESS;
 951			__ClearPageIsolated(page);
 952			goto out;
 953		}
 954
 955		rc = mapping->a_ops->migratepage(mapping, newpage,
 956						page, mode);
 957		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 958			!PageIsolated(page));
 959	}
 960
 961	/*
 962	 * When successful, old pagecache page->mapping must be cleared before
 963	 * page is freed; but stats require that PageAnon be left as PageAnon.
 964	 */
 965	if (rc == MIGRATEPAGE_SUCCESS) {
 966		if (__PageMovable(page)) {
 967			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 968
 969			/*
 970			 * We clear PG_movable under page_lock so any compactor
 971			 * cannot try to migrate this page.
 972			 */
 973			__ClearPageIsolated(page);
 974		}
 975
 976		/*
 977		 * Anonymous and movable page->mapping will be cleard by
 978		 * free_pages_prepare so don't reset it here for keeping
 979		 * the type to work PageAnon, for example.
 980		 */
 981		if (!PageMappingFlags(page))
 982			page->mapping = NULL;
 983	}
 984out:
 985	return rc;
 986}
 987
 988static int __unmap_and_move(struct page *page, struct page *newpage,
 989				int force, enum migrate_mode mode)
 990{
 991	int rc = -EAGAIN;
 992	int page_was_mapped = 0;
 993	struct anon_vma *anon_vma = NULL;
 994	bool is_lru = !__PageMovable(page);
 995
 996	if (!trylock_page(page)) {
 997		if (!force || mode == MIGRATE_ASYNC)
 998			goto out;
 999
1000		/*
1001		 * It's not safe for direct compaction to call lock_page.
1002		 * For example, during page readahead pages are added locked
1003		 * to the LRU. Later, when the IO completes the pages are
1004		 * marked uptodate and unlocked. However, the queueing
1005		 * could be merging multiple pages for one bio (e.g.
1006		 * mpage_readpages). If an allocation happens for the
1007		 * second or third page, the process can end up locking
1008		 * the same page twice and deadlocking. Rather than
1009		 * trying to be clever about what pages can be locked,
1010		 * avoid the use of lock_page for direct compaction
1011		 * altogether.
1012		 */
1013		if (current->flags & PF_MEMALLOC)
1014			goto out;
1015
1016		lock_page(page);
1017	}
1018
1019	if (PageWriteback(page)) {
1020		/*
1021		 * Only in the case of a full synchronous migration is it
1022		 * necessary to wait for PageWriteback. In the async case,
1023		 * the retry loop is too short and in the sync-light case,
1024		 * the overhead of stalling is too much
1025		 */
1026		switch (mode) {
1027		case MIGRATE_SYNC:
1028		case MIGRATE_SYNC_NO_COPY:
1029			break;
1030		default:
1031			rc = -EBUSY;
1032			goto out_unlock;
1033		}
1034		if (!force)
1035			goto out_unlock;
1036		wait_on_page_writeback(page);
1037	}
1038
1039	/*
1040	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1041	 * we cannot notice that anon_vma is freed while we migrates a page.
1042	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1043	 * of migration. File cache pages are no problem because of page_lock()
1044	 * File Caches may use write_page() or lock_page() in migration, then,
1045	 * just care Anon page here.
1046	 *
1047	 * Only page_get_anon_vma() understands the subtleties of
1048	 * getting a hold on an anon_vma from outside one of its mms.
1049	 * But if we cannot get anon_vma, then we won't need it anyway,
1050	 * because that implies that the anon page is no longer mapped
1051	 * (and cannot be remapped so long as we hold the page lock).
1052	 */
1053	if (PageAnon(page) && !PageKsm(page))
1054		anon_vma = page_get_anon_vma(page);
1055
1056	/*
1057	 * Block others from accessing the new page when we get around to
1058	 * establishing additional references. We are usually the only one
1059	 * holding a reference to newpage at this point. We used to have a BUG
1060	 * here if trylock_page(newpage) fails, but would like to allow for
1061	 * cases where there might be a race with the previous use of newpage.
1062	 * This is much like races on refcount of oldpage: just don't BUG().
1063	 */
1064	if (unlikely(!trylock_page(newpage)))
1065		goto out_unlock;
1066
1067	if (unlikely(!is_lru)) {
1068		rc = move_to_new_page(newpage, page, mode);
1069		goto out_unlock_both;
1070	}
1071
1072	/*
1073	 * Corner case handling:
1074	 * 1. When a new swap-cache page is read into, it is added to the LRU
1075	 * and treated as swapcache but it has no rmap yet.
1076	 * Calling try_to_unmap() against a page->mapping==NULL page will
1077	 * trigger a BUG.  So handle it here.
1078	 * 2. An orphaned page (see truncate_complete_page) might have
1079	 * fs-private metadata. The page can be picked up due to memory
1080	 * offlining.  Everywhere else except page reclaim, the page is
1081	 * invisible to the vm, so the page can not be migrated.  So try to
1082	 * free the metadata, so the page can be freed.
1083	 */
1084	if (!page->mapping) {
1085		VM_BUG_ON_PAGE(PageAnon(page), page);
1086		if (page_has_private(page)) {
1087			try_to_free_buffers(page);
1088			goto out_unlock_both;
1089		}
1090	} else if (page_mapped(page)) {
1091		/* Establish migration ptes */
1092		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1093				page);
1094		try_to_unmap(page,
1095			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1096		page_was_mapped = 1;
1097	}
1098
1099	if (!page_mapped(page))
1100		rc = move_to_new_page(newpage, page, mode);
1101
1102	if (page_was_mapped)
1103		remove_migration_ptes(page,
1104			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1105
1106out_unlock_both:
1107	unlock_page(newpage);
1108out_unlock:
1109	/* Drop an anon_vma reference if we took one */
1110	if (anon_vma)
1111		put_anon_vma(anon_vma);
1112	unlock_page(page);
1113out:
1114	/*
1115	 * If migration is successful, decrease refcount of the newpage
1116	 * which will not free the page because new page owner increased
1117	 * refcounter. As well, if it is LRU page, add the page to LRU
1118	 * list in here.
1119	 */
1120	if (rc == MIGRATEPAGE_SUCCESS) {
1121		if (unlikely(__PageMovable(newpage)))
1122			put_page(newpage);
1123		else
1124			putback_lru_page(newpage);
1125	}
1126
1127	return rc;
1128}
1129
1130/*
1131 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1132 * around it.
1133 */
1134#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1135#define ICE_noinline noinline
1136#else
1137#define ICE_noinline
1138#endif
1139
1140/*
1141 * Obtain the lock on page, remove all ptes and migrate the page
1142 * to the newly allocated page in newpage.
1143 */
1144static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1145				   free_page_t put_new_page,
1146				   unsigned long private, struct page *page,
1147				   int force, enum migrate_mode mode,
1148				   enum migrate_reason reason)
1149{
1150	int rc = MIGRATEPAGE_SUCCESS;
 
1151	struct page *newpage;
1152
1153	if (!thp_migration_supported() && PageTransHuge(page))
1154		return -ENOMEM;
1155
1156	newpage = get_new_page(page, private);
1157	if (!newpage)
1158		return -ENOMEM;
1159
1160	if (page_count(page) == 1) {
1161		/* page was freed from under us. So we are done. */
1162		ClearPageActive(page);
1163		ClearPageUnevictable(page);
1164		if (unlikely(__PageMovable(page))) {
1165			lock_page(page);
1166			if (!PageMovable(page))
1167				__ClearPageIsolated(page);
1168			unlock_page(page);
1169		}
1170		if (put_new_page)
1171			put_new_page(newpage, private);
1172		else
1173			put_page(newpage);
1174		goto out;
1175	}
1176
 
 
 
 
 
 
 
 
1177	rc = __unmap_and_move(page, newpage, force, mode);
1178	if (rc == MIGRATEPAGE_SUCCESS)
1179		set_page_owner_migrate_reason(newpage, reason);
1180
1181out:
1182	if (rc != -EAGAIN) {
1183		/*
1184		 * A page that has been migrated has all references
1185		 * removed and will be freed. A page that has not been
1186		 * migrated will have kepts its references and be
1187		 * restored.
1188		 */
1189		list_del(&page->lru);
1190
1191		/*
1192		 * Compaction can migrate also non-LRU pages which are
1193		 * not accounted to NR_ISOLATED_*. They can be recognized
1194		 * as __PageMovable
1195		 */
1196		if (likely(!__PageMovable(page)))
1197			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1198					page_is_file_cache(page), -hpage_nr_pages(page));
1199	}
1200
1201	/*
1202	 * If migration is successful, releases reference grabbed during
1203	 * isolation. Otherwise, restore the page to right list unless
1204	 * we want to retry.
1205	 */
1206	if (rc == MIGRATEPAGE_SUCCESS) {
1207		put_page(page);
1208		if (reason == MR_MEMORY_FAILURE) {
1209			/*
1210			 * Set PG_HWPoison on just freed page
1211			 * intentionally. Although it's rather weird,
1212			 * it's how HWPoison flag works at the moment.
1213			 */
1214			if (!test_set_page_hwpoison(page))
1215				num_poisoned_pages_inc();
1216		}
1217	} else {
1218		if (rc != -EAGAIN) {
1219			if (likely(!__PageMovable(page))) {
1220				putback_lru_page(page);
1221				goto put_new;
1222			}
1223
1224			lock_page(page);
1225			if (PageMovable(page))
1226				putback_movable_page(page);
1227			else
1228				__ClearPageIsolated(page);
1229			unlock_page(page);
1230			put_page(page);
1231		}
1232put_new:
1233		if (put_new_page)
1234			put_new_page(newpage, private);
1235		else
1236			put_page(newpage);
1237	}
1238
 
 
 
 
 
 
1239	return rc;
1240}
1241
1242/*
1243 * Counterpart of unmap_and_move_page() for hugepage migration.
1244 *
1245 * This function doesn't wait the completion of hugepage I/O
1246 * because there is no race between I/O and migration for hugepage.
1247 * Note that currently hugepage I/O occurs only in direct I/O
1248 * where no lock is held and PG_writeback is irrelevant,
1249 * and writeback status of all subpages are counted in the reference
1250 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1251 * under direct I/O, the reference of the head page is 512 and a bit more.)
1252 * This means that when we try to migrate hugepage whose subpages are
1253 * doing direct I/O, some references remain after try_to_unmap() and
1254 * hugepage migration fails without data corruption.
1255 *
1256 * There is also no race when direct I/O is issued on the page under migration,
1257 * because then pte is replaced with migration swap entry and direct I/O code
1258 * will wait in the page fault for migration to complete.
1259 */
1260static int unmap_and_move_huge_page(new_page_t get_new_page,
1261				free_page_t put_new_page, unsigned long private,
1262				struct page *hpage, int force,
1263				enum migrate_mode mode, int reason)
1264{
1265	int rc = -EAGAIN;
 
1266	int page_was_mapped = 0;
1267	struct page *new_hpage;
1268	struct anon_vma *anon_vma = NULL;
1269
1270	/*
1271	 * Movability of hugepages depends on architectures and hugepage size.
1272	 * This check is necessary because some callers of hugepage migration
1273	 * like soft offline and memory hotremove don't walk through page
1274	 * tables or check whether the hugepage is pmd-based or not before
1275	 * kicking migration.
1276	 */
1277	if (!hugepage_migration_supported(page_hstate(hpage))) {
1278		putback_active_hugepage(hpage);
1279		return -ENOSYS;
1280	}
1281
1282	new_hpage = get_new_page(hpage, private);
1283	if (!new_hpage)
1284		return -ENOMEM;
1285
1286	if (!trylock_page(hpage)) {
1287		if (!force)
1288			goto out;
1289		switch (mode) {
1290		case MIGRATE_SYNC:
1291		case MIGRATE_SYNC_NO_COPY:
1292			break;
1293		default:
1294			goto out;
1295		}
1296		lock_page(hpage);
1297	}
1298
1299	if (PageAnon(hpage))
1300		anon_vma = page_get_anon_vma(hpage);
1301
1302	if (unlikely(!trylock_page(new_hpage)))
1303		goto put_anon;
1304
1305	if (page_mapped(hpage)) {
1306		try_to_unmap(hpage,
1307			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1308		page_was_mapped = 1;
1309	}
1310
1311	if (!page_mapped(hpage))
1312		rc = move_to_new_page(new_hpage, hpage, mode);
1313
1314	if (page_was_mapped)
1315		remove_migration_ptes(hpage,
1316			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1317
1318	unlock_page(new_hpage);
1319
1320put_anon:
1321	if (anon_vma)
1322		put_anon_vma(anon_vma);
1323
1324	if (rc == MIGRATEPAGE_SUCCESS) {
1325		move_hugetlb_state(hpage, new_hpage, reason);
1326		put_new_page = NULL;
 
1327	}
1328
1329	unlock_page(hpage);
1330out:
1331	if (rc != -EAGAIN)
1332		putback_active_hugepage(hpage);
1333	if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1334		num_poisoned_pages_inc();
1335
1336	/*
1337	 * If migration was not successful and there's a freeing callback, use
1338	 * it.  Otherwise, put_page() will drop the reference grabbed during
1339	 * isolation.
1340	 */
1341	if (put_new_page)
1342		put_new_page(new_hpage, private);
1343	else
1344		putback_active_hugepage(new_hpage);
1345
 
 
 
 
 
 
1346	return rc;
1347}
1348
1349/*
1350 * migrate_pages - migrate the pages specified in a list, to the free pages
1351 *		   supplied as the target for the page migration
1352 *
1353 * @from:		The list of pages to be migrated.
1354 * @get_new_page:	The function used to allocate free pages to be used
1355 *			as the target of the page migration.
1356 * @put_new_page:	The function used to free target pages if migration
1357 *			fails, or NULL if no special handling is necessary.
1358 * @private:		Private data to be passed on to get_new_page()
1359 * @mode:		The migration mode that specifies the constraints for
1360 *			page migration, if any.
1361 * @reason:		The reason for page migration.
1362 *
1363 * The function returns after 10 attempts or if no pages are movable any more
1364 * because the list has become empty or no retryable pages exist any more.
1365 * The caller should call putback_movable_pages() to return pages to the LRU
1366 * or free list only if ret != 0.
1367 *
1368 * Returns the number of pages that were not migrated, or an error code.
1369 */
1370int migrate_pages(struct list_head *from, new_page_t get_new_page,
1371		free_page_t put_new_page, unsigned long private,
1372		enum migrate_mode mode, int reason)
1373{
1374	int retry = 1;
1375	int nr_failed = 0;
1376	int nr_succeeded = 0;
1377	int pass = 0;
1378	struct page *page;
1379	struct page *page2;
1380	int swapwrite = current->flags & PF_SWAPWRITE;
1381	int rc;
1382
1383	if (!swapwrite)
1384		current->flags |= PF_SWAPWRITE;
1385
1386	for(pass = 0; pass < 10 && retry; pass++) {
1387		retry = 0;
1388
1389		list_for_each_entry_safe(page, page2, from, lru) {
1390retry:
1391			cond_resched();
1392
1393			if (PageHuge(page))
1394				rc = unmap_and_move_huge_page(get_new_page,
1395						put_new_page, private, page,
1396						pass > 2, mode, reason);
1397			else
1398				rc = unmap_and_move(get_new_page, put_new_page,
1399						private, page, pass > 2, mode,
1400						reason);
1401
1402			switch(rc) {
1403			case -ENOMEM:
1404				/*
1405				 * THP migration might be unsupported or the
1406				 * allocation could've failed so we should
1407				 * retry on the same page with the THP split
1408				 * to base pages.
1409				 *
1410				 * Head page is retried immediately and tail
1411				 * pages are added to the tail of the list so
1412				 * we encounter them after the rest of the list
1413				 * is processed.
1414				 */
1415				if (PageTransHuge(page)) {
1416					lock_page(page);
1417					rc = split_huge_page_to_list(page, from);
1418					unlock_page(page);
1419					if (!rc) {
1420						list_safe_reset_next(page, page2, lru);
1421						goto retry;
1422					}
1423				}
1424				nr_failed++;
1425				goto out;
1426			case -EAGAIN:
1427				retry++;
1428				break;
1429			case MIGRATEPAGE_SUCCESS:
1430				nr_succeeded++;
1431				break;
1432			default:
1433				/*
1434				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1435				 * unlike -EAGAIN case, the failed page is
1436				 * removed from migration page list and not
1437				 * retried in the next outer loop.
1438				 */
1439				nr_failed++;
1440				break;
1441			}
1442		}
1443	}
1444	nr_failed += retry;
1445	rc = nr_failed;
1446out:
1447	if (nr_succeeded)
1448		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1449	if (nr_failed)
1450		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1451	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1452
1453	if (!swapwrite)
1454		current->flags &= ~PF_SWAPWRITE;
1455
1456	return rc;
1457}
1458
1459#ifdef CONFIG_NUMA
 
 
 
 
 
 
 
 
 
1460
1461static int store_status(int __user *status, int start, int value, int nr)
 
1462{
1463	while (nr-- > 0) {
1464		if (put_user(value, status + start))
1465			return -EFAULT;
1466		start++;
1467	}
1468
1469	return 0;
1470}
1471
1472static int do_move_pages_to_node(struct mm_struct *mm,
1473		struct list_head *pagelist, int node)
1474{
1475	int err;
1476
1477	if (list_empty(pagelist))
1478		return 0;
1479
1480	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1481			MIGRATE_SYNC, MR_SYSCALL);
1482	if (err)
1483		putback_movable_pages(pagelist);
1484	return err;
 
1485}
1486
1487/*
1488 * Resolves the given address to a struct page, isolates it from the LRU and
1489 * puts it to the given pagelist.
1490 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1491 * queued or the page doesn't need to be migrated because it is already on
1492 * the target node
1493 */
1494static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1495		int node, struct list_head *pagelist, bool migrate_all)
 
1496{
1497	struct vm_area_struct *vma;
1498	struct page *page;
1499	unsigned int follflags;
1500	int err;
 
 
1501
1502	down_read(&mm->mmap_sem);
1503	err = -EFAULT;
1504	vma = find_vma(mm, addr);
1505	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1506		goto out;
1507
1508	/* FOLL_DUMP to ignore special (like zero) pages */
1509	follflags = FOLL_GET | FOLL_DUMP;
1510	page = follow_page(vma, addr, follflags);
 
 
 
 
 
 
 
 
1511
1512	err = PTR_ERR(page);
1513	if (IS_ERR(page))
1514		goto out;
1515
1516	err = -ENOENT;
1517	if (!page)
1518		goto out;
1519
1520	err = 0;
1521	if (page_to_nid(page) == node)
1522		goto out_putpage;
1523
1524	err = -EACCES;
1525	if (page_mapcount(page) > 1 && !migrate_all)
1526		goto out_putpage;
1527
1528	if (PageHuge(page)) {
1529		if (PageHead(page)) {
1530			isolate_huge_page(page, pagelist);
1531			err = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1532		}
1533	} else {
1534		struct page *head;
 
 
 
 
 
 
 
 
1535
1536		head = compound_head(page);
1537		err = isolate_lru_page(head);
 
 
1538		if (err)
1539			goto out_putpage;
1540
1541		err = 0;
1542		list_add_tail(&head->lru, pagelist);
1543		mod_node_page_state(page_pgdat(head),
1544			NR_ISOLATED_ANON + page_is_file_cache(head),
1545			hpage_nr_pages(head));
1546	}
1547out_putpage:
1548	/*
1549	 * Either remove the duplicate refcount from
1550	 * isolate_lru_page() or drop the page ref if it was
1551	 * not isolated.
1552	 */
1553	put_page(page);
1554out:
1555	up_read(&mm->mmap_sem);
1556	return err;
1557}
1558
1559/*
1560 * Migrate an array of page address onto an array of nodes and fill
1561 * the corresponding array of status.
1562 */
1563static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1564			 unsigned long nr_pages,
1565			 const void __user * __user *pages,
1566			 const int __user *nodes,
1567			 int __user *status, int flags)
1568{
1569	int current_node = NUMA_NO_NODE;
1570	LIST_HEAD(pagelist);
1571	int start, i;
1572	int err = 0, err1;
 
 
 
 
 
1573
1574	migrate_prep();
1575
1576	for (i = start = 0; i < nr_pages; i++) {
1577		const void __user *p;
1578		unsigned long addr;
1579		int node;
 
1580
1581		err = -EFAULT;
1582		if (get_user(p, pages + i))
1583			goto out_flush;
1584		if (get_user(node, nodes + i))
1585			goto out_flush;
1586		addr = (unsigned long)p;
1587
1588		err = -ENODEV;
1589		if (node < 0 || node >= MAX_NUMNODES)
1590			goto out_flush;
1591		if (!node_state(node, N_MEMORY))
1592			goto out_flush;
1593
1594		err = -EACCES;
1595		if (!node_isset(node, task_nodes))
1596			goto out_flush;
1597
1598		if (current_node == NUMA_NO_NODE) {
1599			current_node = node;
1600			start = i;
1601		} else if (node != current_node) {
1602			err = do_move_pages_to_node(mm, &pagelist, current_node);
1603			if (err)
1604				goto out;
1605			err = store_status(status, start, current_node, i - start);
1606			if (err)
1607				goto out;
1608			start = i;
1609			current_node = node;
1610		}
1611
1612		/*
1613		 * Errors in the page lookup or isolation are not fatal and we simply
1614		 * report them via status
1615		 */
1616		err = add_page_for_migration(mm, addr, current_node,
1617				&pagelist, flags & MPOL_MF_MOVE_ALL);
1618		if (!err)
1619			continue;
1620
1621		err = store_status(status, i, err, 1);
1622		if (err)
1623			goto out_flush;
1624
1625		err = do_move_pages_to_node(mm, &pagelist, current_node);
1626		if (err)
1627			goto out;
1628		if (i > start) {
1629			err = store_status(status, start, current_node, i - start);
1630			if (err)
1631				goto out;
 
 
 
 
 
1632		}
1633		current_node = NUMA_NO_NODE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1634	}
1635out_flush:
1636	if (list_empty(&pagelist))
1637		return err;
1638
1639	/* Make sure we do not overwrite the existing error */
1640	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1641	if (!err1)
1642		err1 = store_status(status, start, current_node, i - start);
1643	if (!err)
1644		err = err1;
1645out:
1646	return err;
1647}
1648
1649/*
1650 * Determine the nodes of an array of pages and store it in an array of status.
1651 */
1652static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1653				const void __user **pages, int *status)
1654{
1655	unsigned long i;
1656
1657	down_read(&mm->mmap_sem);
1658
1659	for (i = 0; i < nr_pages; i++) {
1660		unsigned long addr = (unsigned long)(*pages);
1661		struct vm_area_struct *vma;
1662		struct page *page;
1663		int err = -EFAULT;
1664
1665		vma = find_vma(mm, addr);
1666		if (!vma || addr < vma->vm_start)
1667			goto set_status;
1668
1669		/* FOLL_DUMP to ignore special (like zero) pages */
1670		page = follow_page(vma, addr, FOLL_DUMP);
1671
1672		err = PTR_ERR(page);
1673		if (IS_ERR(page))
1674			goto set_status;
1675
1676		err = page ? page_to_nid(page) : -ENOENT;
1677set_status:
1678		*status = err;
1679
1680		pages++;
1681		status++;
1682	}
1683
1684	up_read(&mm->mmap_sem);
1685}
1686
1687/*
1688 * Determine the nodes of a user array of pages and store it in
1689 * a user array of status.
1690 */
1691static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1692			 const void __user * __user *pages,
1693			 int __user *status)
1694{
1695#define DO_PAGES_STAT_CHUNK_NR 16
1696	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1697	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1698
1699	while (nr_pages) {
1700		unsigned long chunk_nr;
1701
1702		chunk_nr = nr_pages;
1703		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1704			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1705
1706		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1707			break;
1708
1709		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1710
1711		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1712			break;
1713
1714		pages += chunk_nr;
1715		status += chunk_nr;
1716		nr_pages -= chunk_nr;
1717	}
1718	return nr_pages ? -EFAULT : 0;
1719}
1720
1721/*
1722 * Move a list of pages in the address space of the currently executing
1723 * process.
1724 */
1725static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1726			     const void __user * __user *pages,
1727			     const int __user *nodes,
1728			     int __user *status, int flags)
1729{
 
1730	struct task_struct *task;
1731	struct mm_struct *mm;
1732	int err;
1733	nodemask_t task_nodes;
1734
1735	/* Check flags */
1736	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1737		return -EINVAL;
1738
1739	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1740		return -EPERM;
1741
1742	/* Find the mm_struct */
1743	rcu_read_lock();
1744	task = pid ? find_task_by_vpid(pid) : current;
1745	if (!task) {
1746		rcu_read_unlock();
1747		return -ESRCH;
1748	}
1749	get_task_struct(task);
1750
1751	/*
1752	 * Check if this process has the right to modify the specified
1753	 * process. Use the regular "ptrace_may_access()" checks.
1754	 */
1755	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
 
 
 
 
 
1756		rcu_read_unlock();
1757		err = -EPERM;
1758		goto out;
1759	}
1760	rcu_read_unlock();
1761
1762 	err = security_task_movememory(task);
1763 	if (err)
1764		goto out;
1765
1766	task_nodes = cpuset_mems_allowed(task);
1767	mm = get_task_mm(task);
1768	put_task_struct(task);
1769
1770	if (!mm)
1771		return -EINVAL;
1772
1773	if (nodes)
1774		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1775				    nodes, status, flags);
1776	else
1777		err = do_pages_stat(mm, nr_pages, pages, status);
1778
1779	mmput(mm);
1780	return err;
1781
1782out:
1783	put_task_struct(task);
1784	return err;
1785}
1786
1787SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1788		const void __user * __user *, pages,
1789		const int __user *, nodes,
1790		int __user *, status, int, flags)
1791{
1792	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1793}
1794
1795#ifdef CONFIG_COMPAT
1796COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1797		       compat_uptr_t __user *, pages32,
1798		       const int __user *, nodes,
1799		       int __user *, status,
1800		       int, flags)
1801{
1802	const void __user * __user *pages;
1803	int i;
1804
1805	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1806	for (i = 0; i < nr_pages; i++) {
1807		compat_uptr_t p;
1808
1809		if (get_user(p, pages32 + i) ||
1810			put_user(compat_ptr(p), pages + i))
1811			return -EFAULT;
1812	}
1813	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1814}
1815#endif /* CONFIG_COMPAT */
1816
1817#ifdef CONFIG_NUMA_BALANCING
1818/*
1819 * Returns true if this is a safe migration target node for misplaced NUMA
1820 * pages. Currently it only checks the watermarks which crude
1821 */
1822static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1823				   unsigned long nr_migrate_pages)
1824{
1825	int z;
1826
 
 
 
1827	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1828		struct zone *zone = pgdat->node_zones + z;
1829
1830		if (!populated_zone(zone))
1831			continue;
1832
1833		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1834		if (!zone_watermark_ok(zone, 0,
1835				       high_wmark_pages(zone) +
1836				       nr_migrate_pages,
1837				       0, 0))
1838			continue;
1839		return true;
1840	}
1841	return false;
1842}
1843
1844static struct page *alloc_misplaced_dst_page(struct page *page,
1845					   unsigned long data)
 
1846{
1847	int nid = (int) data;
1848	struct page *newpage;
1849
1850	newpage = __alloc_pages_node(nid,
1851					 (GFP_HIGHUSER_MOVABLE |
1852					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1853					  __GFP_NORETRY | __GFP_NOWARN) &
1854					 ~__GFP_RECLAIM, 0);
1855
1856	return newpage;
1857}
1858
1859/*
1860 * page migration rate limiting control.
1861 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1862 * window of time. Default here says do not migrate more than 1280M per second.
1863 */
1864static unsigned int migrate_interval_millisecs __read_mostly = 100;
1865static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1866
1867/* Returns true if the node is migrate rate-limited after the update */
1868static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1869					unsigned long nr_pages)
1870{
1871	/*
1872	 * Rate-limit the amount of data that is being migrated to a node.
1873	 * Optimal placement is no good if the memory bus is saturated and
1874	 * all the time is being spent migrating!
1875	 */
1876	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1877		spin_lock(&pgdat->numabalancing_migrate_lock);
1878		pgdat->numabalancing_migrate_nr_pages = 0;
1879		pgdat->numabalancing_migrate_next_window = jiffies +
1880			msecs_to_jiffies(migrate_interval_millisecs);
1881		spin_unlock(&pgdat->numabalancing_migrate_lock);
1882	}
1883	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1884		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1885								nr_pages);
1886		return true;
1887	}
1888
1889	/*
1890	 * This is an unlocked non-atomic update so errors are possible.
1891	 * The consequences are failing to migrate when we potentiall should
1892	 * have which is not severe enough to warrant locking. If it is ever
1893	 * a problem, it can be converted to a per-cpu counter.
1894	 */
1895	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1896	return false;
1897}
1898
1899static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1900{
1901	int page_lru;
1902
1903	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1904
1905	/* Avoid migrating to a node that is nearly full */
1906	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1907		return 0;
1908
1909	if (isolate_lru_page(page))
1910		return 0;
1911
1912	/*
1913	 * migrate_misplaced_transhuge_page() skips page migration's usual
1914	 * check on page_count(), so we must do it here, now that the page
1915	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1916	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1917	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1918	 */
1919	if (PageTransHuge(page) && page_count(page) != 3) {
1920		putback_lru_page(page);
1921		return 0;
1922	}
1923
1924	page_lru = page_is_file_cache(page);
1925	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1926				hpage_nr_pages(page));
1927
1928	/*
1929	 * Isolating the page has taken another reference, so the
1930	 * caller's reference can be safely dropped without the page
1931	 * disappearing underneath us during migration.
1932	 */
1933	put_page(page);
1934	return 1;
1935}
1936
1937bool pmd_trans_migrating(pmd_t pmd)
1938{
1939	struct page *page = pmd_page(pmd);
1940	return PageLocked(page);
1941}
1942
1943/*
1944 * Attempt to migrate a misplaced page to the specified destination
1945 * node. Caller is expected to have an elevated reference count on
1946 * the page that will be dropped by this function before returning.
1947 */
1948int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1949			   int node)
1950{
1951	pg_data_t *pgdat = NODE_DATA(node);
1952	int isolated;
1953	int nr_remaining;
1954	LIST_HEAD(migratepages);
1955
1956	/*
1957	 * Don't migrate file pages that are mapped in multiple processes
1958	 * with execute permissions as they are probably shared libraries.
1959	 */
1960	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1961	    (vma->vm_flags & VM_EXEC))
1962		goto out;
1963
1964	/*
1965	 * Also do not migrate dirty pages as not all filesystems can move
1966	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1967	 */
1968	if (page_is_file_cache(page) && PageDirty(page))
1969		goto out;
1970
1971	/*
1972	 * Rate-limit the amount of data that is being migrated to a node.
1973	 * Optimal placement is no good if the memory bus is saturated and
1974	 * all the time is being spent migrating!
1975	 */
1976	if (numamigrate_update_ratelimit(pgdat, 1))
1977		goto out;
1978
1979	isolated = numamigrate_isolate_page(pgdat, page);
1980	if (!isolated)
1981		goto out;
1982
1983	list_add(&page->lru, &migratepages);
1984	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1985				     NULL, node, MIGRATE_ASYNC,
1986				     MR_NUMA_MISPLACED);
1987	if (nr_remaining) {
1988		if (!list_empty(&migratepages)) {
1989			list_del(&page->lru);
1990			dec_node_page_state(page, NR_ISOLATED_ANON +
1991					page_is_file_cache(page));
1992			putback_lru_page(page);
1993		}
1994		isolated = 0;
1995	} else
1996		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1997	BUG_ON(!list_empty(&migratepages));
1998	return isolated;
1999
2000out:
2001	put_page(page);
2002	return 0;
2003}
2004#endif /* CONFIG_NUMA_BALANCING */
2005
2006#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2007/*
2008 * Migrates a THP to a given target node. page must be locked and is unlocked
2009 * before returning.
2010 */
2011int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2012				struct vm_area_struct *vma,
2013				pmd_t *pmd, pmd_t entry,
2014				unsigned long address,
2015				struct page *page, int node)
2016{
2017	spinlock_t *ptl;
2018	pg_data_t *pgdat = NODE_DATA(node);
2019	int isolated = 0;
2020	struct page *new_page = NULL;
2021	int page_lru = page_is_file_cache(page);
2022	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2023	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
 
2024
2025	/*
2026	 * Rate-limit the amount of data that is being migrated to a node.
2027	 * Optimal placement is no good if the memory bus is saturated and
2028	 * all the time is being spent migrating!
2029	 */
2030	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2031		goto out_dropref;
2032
2033	new_page = alloc_pages_node(node,
2034		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2035		HPAGE_PMD_ORDER);
2036	if (!new_page)
2037		goto out_fail;
2038	prep_transhuge_page(new_page);
2039
2040	isolated = numamigrate_isolate_page(pgdat, page);
2041	if (!isolated) {
2042		put_page(new_page);
2043		goto out_fail;
2044	}
 
 
 
 
 
 
2045
2046	/* Prepare a page as a migration target */
2047	__SetPageLocked(new_page);
2048	if (PageSwapBacked(page))
2049		__SetPageSwapBacked(new_page);
2050
2051	/* anon mapping, we can simply copy page->mapping to the new page: */
2052	new_page->mapping = page->mapping;
2053	new_page->index = page->index;
2054	migrate_page_copy(new_page, page);
2055	WARN_ON(PageLRU(new_page));
2056
2057	/* Recheck the target PMD */
2058	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2059	ptl = pmd_lock(mm, pmd);
2060	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
 
2061		spin_unlock(ptl);
2062		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2063
2064		/* Reverse changes made by migrate_page_copy() */
2065		if (TestClearPageActive(new_page))
2066			SetPageActive(page);
2067		if (TestClearPageUnevictable(new_page))
2068			SetPageUnevictable(page);
2069
2070		unlock_page(new_page);
2071		put_page(new_page);		/* Free it */
2072
2073		/* Retake the callers reference and putback on LRU */
2074		get_page(page);
2075		putback_lru_page(page);
2076		mod_node_page_state(page_pgdat(page),
2077			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2078
2079		goto out_unlock;
2080	}
2081
 
2082	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2083	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2084
2085	/*
2086	 * Clear the old entry under pagetable lock and establish the new PTE.
2087	 * Any parallel GUP will either observe the old page blocking on the
2088	 * page lock, block on the page table lock or observe the new page.
2089	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2090	 * guarantee the copy is visible before the pagetable update.
2091	 */
2092	flush_cache_range(vma, mmun_start, mmun_end);
2093	page_add_anon_rmap(new_page, vma, mmun_start, true);
2094	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2095	set_pmd_at(mm, mmun_start, pmd, entry);
2096	update_mmu_cache_pmd(vma, address, &entry);
2097
2098	page_ref_unfreeze(page, 2);
 
 
 
 
 
 
 
 
2099	mlock_migrate_page(new_page, page);
2100	page_remove_rmap(page, true);
2101	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2102
2103	spin_unlock(ptl);
2104	/*
2105	 * No need to double call mmu_notifier->invalidate_range() callback as
2106	 * the above pmdp_huge_clear_flush_notify() did already call it.
2107	 */
2108	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2109
2110	/* Take an "isolate" reference and put new page on the LRU. */
2111	get_page(new_page);
2112	putback_lru_page(new_page);
2113
2114	unlock_page(new_page);
2115	unlock_page(page);
2116	put_page(page);			/* Drop the rmap reference */
2117	put_page(page);			/* Drop the LRU isolation reference */
2118
2119	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2120	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2121
2122	mod_node_page_state(page_pgdat(page),
2123			NR_ISOLATED_ANON + page_lru,
2124			-HPAGE_PMD_NR);
2125	return isolated;
2126
2127out_fail:
2128	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2129out_dropref:
2130	ptl = pmd_lock(mm, pmd);
2131	if (pmd_same(*pmd, entry)) {
2132		entry = pmd_modify(entry, vma->vm_page_prot);
2133		set_pmd_at(mm, mmun_start, pmd, entry);
2134		update_mmu_cache_pmd(vma, address, &entry);
2135	}
2136	spin_unlock(ptl);
2137
2138out_unlock:
2139	unlock_page(page);
2140	put_page(page);
2141	return 0;
2142}
2143#endif /* CONFIG_NUMA_BALANCING */
2144
2145#endif /* CONFIG_NUMA */
2146
2147#if defined(CONFIG_MIGRATE_VMA_HELPER)
2148struct migrate_vma {
2149	struct vm_area_struct	*vma;
2150	unsigned long		*dst;
2151	unsigned long		*src;
2152	unsigned long		cpages;
2153	unsigned long		npages;
2154	unsigned long		start;
2155	unsigned long		end;
2156};
2157
2158static int migrate_vma_collect_hole(unsigned long start,
2159				    unsigned long end,
2160				    struct mm_walk *walk)
2161{
2162	struct migrate_vma *migrate = walk->private;
2163	unsigned long addr;
2164
2165	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2166		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2167		migrate->dst[migrate->npages] = 0;
2168		migrate->npages++;
2169		migrate->cpages++;
2170	}
2171
2172	return 0;
2173}
2174
2175static int migrate_vma_collect_skip(unsigned long start,
2176				    unsigned long end,
2177				    struct mm_walk *walk)
2178{
2179	struct migrate_vma *migrate = walk->private;
2180	unsigned long addr;
2181
2182	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2183		migrate->dst[migrate->npages] = 0;
2184		migrate->src[migrate->npages++] = 0;
2185	}
2186
2187	return 0;
2188}
2189
2190static int migrate_vma_collect_pmd(pmd_t *pmdp,
2191				   unsigned long start,
2192				   unsigned long end,
2193				   struct mm_walk *walk)
2194{
2195	struct migrate_vma *migrate = walk->private;
2196	struct vm_area_struct *vma = walk->vma;
2197	struct mm_struct *mm = vma->vm_mm;
2198	unsigned long addr = start, unmapped = 0;
2199	spinlock_t *ptl;
2200	pte_t *ptep;
2201
2202again:
2203	if (pmd_none(*pmdp))
2204		return migrate_vma_collect_hole(start, end, walk);
2205
2206	if (pmd_trans_huge(*pmdp)) {
2207		struct page *page;
2208
2209		ptl = pmd_lock(mm, pmdp);
2210		if (unlikely(!pmd_trans_huge(*pmdp))) {
2211			spin_unlock(ptl);
2212			goto again;
2213		}
2214
2215		page = pmd_page(*pmdp);
2216		if (is_huge_zero_page(page)) {
2217			spin_unlock(ptl);
2218			split_huge_pmd(vma, pmdp, addr);
2219			if (pmd_trans_unstable(pmdp))
2220				return migrate_vma_collect_skip(start, end,
2221								walk);
2222		} else {
2223			int ret;
2224
2225			get_page(page);
2226			spin_unlock(ptl);
2227			if (unlikely(!trylock_page(page)))
2228				return migrate_vma_collect_skip(start, end,
2229								walk);
2230			ret = split_huge_page(page);
2231			unlock_page(page);
2232			put_page(page);
2233			if (ret)
2234				return migrate_vma_collect_skip(start, end,
2235								walk);
2236			if (pmd_none(*pmdp))
2237				return migrate_vma_collect_hole(start, end,
2238								walk);
2239		}
2240	}
2241
2242	if (unlikely(pmd_bad(*pmdp)))
2243		return migrate_vma_collect_skip(start, end, walk);
2244
2245	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2246	arch_enter_lazy_mmu_mode();
2247
2248	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2249		unsigned long mpfn, pfn;
2250		struct page *page;
2251		swp_entry_t entry;
2252		pte_t pte;
2253
2254		pte = *ptep;
2255		pfn = pte_pfn(pte);
2256
2257		if (pte_none(pte)) {
2258			mpfn = MIGRATE_PFN_MIGRATE;
2259			migrate->cpages++;
2260			pfn = 0;
2261			goto next;
2262		}
2263
2264		if (!pte_present(pte)) {
2265			mpfn = pfn = 0;
2266
2267			/*
2268			 * Only care about unaddressable device page special
2269			 * page table entry. Other special swap entries are not
2270			 * migratable, and we ignore regular swapped page.
2271			 */
2272			entry = pte_to_swp_entry(pte);
2273			if (!is_device_private_entry(entry))
2274				goto next;
2275
2276			page = device_private_entry_to_page(entry);
2277			mpfn = migrate_pfn(page_to_pfn(page))|
2278				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2279			if (is_write_device_private_entry(entry))
2280				mpfn |= MIGRATE_PFN_WRITE;
2281		} else {
2282			if (is_zero_pfn(pfn)) {
2283				mpfn = MIGRATE_PFN_MIGRATE;
2284				migrate->cpages++;
2285				pfn = 0;
2286				goto next;
2287			}
2288			page = _vm_normal_page(migrate->vma, addr, pte, true);
2289			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2290			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2291		}
2292
2293		/* FIXME support THP */
2294		if (!page || !page->mapping || PageTransCompound(page)) {
2295			mpfn = pfn = 0;
2296			goto next;
2297		}
2298		pfn = page_to_pfn(page);
2299
2300		/*
2301		 * By getting a reference on the page we pin it and that blocks
2302		 * any kind of migration. Side effect is that it "freezes" the
2303		 * pte.
2304		 *
2305		 * We drop this reference after isolating the page from the lru
2306		 * for non device page (device page are not on the lru and thus
2307		 * can't be dropped from it).
2308		 */
2309		get_page(page);
2310		migrate->cpages++;
2311
2312		/*
2313		 * Optimize for the common case where page is only mapped once
2314		 * in one process. If we can lock the page, then we can safely
2315		 * set up a special migration page table entry now.
2316		 */
2317		if (trylock_page(page)) {
2318			pte_t swp_pte;
2319
2320			mpfn |= MIGRATE_PFN_LOCKED;
2321			ptep_get_and_clear(mm, addr, ptep);
2322
2323			/* Setup special migration page table entry */
2324			entry = make_migration_entry(page, mpfn &
2325						     MIGRATE_PFN_WRITE);
2326			swp_pte = swp_entry_to_pte(entry);
2327			if (pte_soft_dirty(pte))
2328				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2329			set_pte_at(mm, addr, ptep, swp_pte);
2330
2331			/*
2332			 * This is like regular unmap: we remove the rmap and
2333			 * drop page refcount. Page won't be freed, as we took
2334			 * a reference just above.
2335			 */
2336			page_remove_rmap(page, false);
2337			put_page(page);
2338
2339			if (pte_present(pte))
2340				unmapped++;
2341		}
2342
2343next:
2344		migrate->dst[migrate->npages] = 0;
2345		migrate->src[migrate->npages++] = mpfn;
2346	}
2347	arch_leave_lazy_mmu_mode();
2348	pte_unmap_unlock(ptep - 1, ptl);
2349
2350	/* Only flush the TLB if we actually modified any entries */
2351	if (unmapped)
2352		flush_tlb_range(walk->vma, start, end);
2353
2354	return 0;
2355}
2356
2357/*
2358 * migrate_vma_collect() - collect pages over a range of virtual addresses
2359 * @migrate: migrate struct containing all migration information
2360 *
2361 * This will walk the CPU page table. For each virtual address backed by a
2362 * valid page, it updates the src array and takes a reference on the page, in
2363 * order to pin the page until we lock it and unmap it.
2364 */
2365static void migrate_vma_collect(struct migrate_vma *migrate)
2366{
2367	struct mm_walk mm_walk;
2368
2369	mm_walk.pmd_entry = migrate_vma_collect_pmd;
2370	mm_walk.pte_entry = NULL;
2371	mm_walk.pte_hole = migrate_vma_collect_hole;
2372	mm_walk.hugetlb_entry = NULL;
2373	mm_walk.test_walk = NULL;
2374	mm_walk.vma = migrate->vma;
2375	mm_walk.mm = migrate->vma->vm_mm;
2376	mm_walk.private = migrate;
2377
2378	mmu_notifier_invalidate_range_start(mm_walk.mm,
2379					    migrate->start,
2380					    migrate->end);
2381	walk_page_range(migrate->start, migrate->end, &mm_walk);
2382	mmu_notifier_invalidate_range_end(mm_walk.mm,
2383					  migrate->start,
2384					  migrate->end);
2385
2386	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2387}
2388
2389/*
2390 * migrate_vma_check_page() - check if page is pinned or not
2391 * @page: struct page to check
2392 *
2393 * Pinned pages cannot be migrated. This is the same test as in
2394 * migrate_page_move_mapping(), except that here we allow migration of a
2395 * ZONE_DEVICE page.
2396 */
2397static bool migrate_vma_check_page(struct page *page)
2398{
2399	/*
2400	 * One extra ref because caller holds an extra reference, either from
2401	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2402	 * a device page.
2403	 */
2404	int extra = 1;
2405
2406	/*
2407	 * FIXME support THP (transparent huge page), it is bit more complex to
2408	 * check them than regular pages, because they can be mapped with a pmd
2409	 * or with a pte (split pte mapping).
2410	 */
2411	if (PageCompound(page))
2412		return false;
2413
2414	/* Page from ZONE_DEVICE have one extra reference */
2415	if (is_zone_device_page(page)) {
2416		/*
2417		 * Private page can never be pin as they have no valid pte and
2418		 * GUP will fail for those. Yet if there is a pending migration
2419		 * a thread might try to wait on the pte migration entry and
2420		 * will bump the page reference count. Sadly there is no way to
2421		 * differentiate a regular pin from migration wait. Hence to
2422		 * avoid 2 racing thread trying to migrate back to CPU to enter
2423		 * infinite loop (one stoping migration because the other is
2424		 * waiting on pte migration entry). We always return true here.
2425		 *
2426		 * FIXME proper solution is to rework migration_entry_wait() so
2427		 * it does not need to take a reference on page.
2428		 */
2429		if (is_device_private_page(page))
2430			return true;
2431
2432		/*
2433		 * Only allow device public page to be migrated and account for
2434		 * the extra reference count imply by ZONE_DEVICE pages.
2435		 */
2436		if (!is_device_public_page(page))
2437			return false;
2438		extra++;
2439	}
2440
2441	/* For file back page */
2442	if (page_mapping(page))
2443		extra += 1 + page_has_private(page);
2444
2445	if ((page_count(page) - extra) > page_mapcount(page))
2446		return false;
2447
2448	return true;
2449}
2450
2451/*
2452 * migrate_vma_prepare() - lock pages and isolate them from the lru
2453 * @migrate: migrate struct containing all migration information
2454 *
2455 * This locks pages that have been collected by migrate_vma_collect(). Once each
2456 * page is locked it is isolated from the lru (for non-device pages). Finally,
2457 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2458 * migrated by concurrent kernel threads.
2459 */
2460static void migrate_vma_prepare(struct migrate_vma *migrate)
2461{
2462	const unsigned long npages = migrate->npages;
2463	const unsigned long start = migrate->start;
2464	unsigned long addr, i, restore = 0;
2465	bool allow_drain = true;
2466
2467	lru_add_drain();
2468
2469	for (i = 0; (i < npages) && migrate->cpages; i++) {
2470		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2471		bool remap = true;
2472
2473		if (!page)
2474			continue;
2475
2476		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2477			/*
2478			 * Because we are migrating several pages there can be
2479			 * a deadlock between 2 concurrent migration where each
2480			 * are waiting on each other page lock.
2481			 *
2482			 * Make migrate_vma() a best effort thing and backoff
2483			 * for any page we can not lock right away.
2484			 */
2485			if (!trylock_page(page)) {
2486				migrate->src[i] = 0;
2487				migrate->cpages--;
2488				put_page(page);
2489				continue;
2490			}
2491			remap = false;
2492			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2493		}
2494
2495		/* ZONE_DEVICE pages are not on LRU */
2496		if (!is_zone_device_page(page)) {
2497			if (!PageLRU(page) && allow_drain) {
2498				/* Drain CPU's pagevec */
2499				lru_add_drain_all();
2500				allow_drain = false;
2501			}
2502
2503			if (isolate_lru_page(page)) {
2504				if (remap) {
2505					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2506					migrate->cpages--;
2507					restore++;
2508				} else {
2509					migrate->src[i] = 0;
2510					unlock_page(page);
2511					migrate->cpages--;
2512					put_page(page);
2513				}
2514				continue;
2515			}
2516
2517			/* Drop the reference we took in collect */
2518			put_page(page);
2519		}
2520
2521		if (!migrate_vma_check_page(page)) {
2522			if (remap) {
2523				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2524				migrate->cpages--;
2525				restore++;
2526
2527				if (!is_zone_device_page(page)) {
2528					get_page(page);
2529					putback_lru_page(page);
2530				}
2531			} else {
2532				migrate->src[i] = 0;
2533				unlock_page(page);
2534				migrate->cpages--;
2535
2536				if (!is_zone_device_page(page))
2537					putback_lru_page(page);
2538				else
2539					put_page(page);
2540			}
2541		}
2542	}
2543
2544	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2545		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2546
2547		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2548			continue;
2549
2550		remove_migration_pte(page, migrate->vma, addr, page);
2551
2552		migrate->src[i] = 0;
2553		unlock_page(page);
2554		put_page(page);
2555		restore--;
2556	}
2557}
2558
2559/*
2560 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2561 * @migrate: migrate struct containing all migration information
2562 *
2563 * Replace page mapping (CPU page table pte) with a special migration pte entry
2564 * and check again if it has been pinned. Pinned pages are restored because we
2565 * cannot migrate them.
2566 *
2567 * This is the last step before we call the device driver callback to allocate
2568 * destination memory and copy contents of original page over to new page.
2569 */
2570static void migrate_vma_unmap(struct migrate_vma *migrate)
2571{
2572	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2573	const unsigned long npages = migrate->npages;
2574	const unsigned long start = migrate->start;
2575	unsigned long addr, i, restore = 0;
2576
2577	for (i = 0; i < npages; i++) {
2578		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2579
2580		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2581			continue;
2582
2583		if (page_mapped(page)) {
2584			try_to_unmap(page, flags);
2585			if (page_mapped(page))
2586				goto restore;
2587		}
2588
2589		if (migrate_vma_check_page(page))
2590			continue;
2591
2592restore:
2593		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2594		migrate->cpages--;
2595		restore++;
2596	}
2597
2598	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2599		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2600
2601		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2602			continue;
2603
2604		remove_migration_ptes(page, page, false);
2605
2606		migrate->src[i] = 0;
2607		unlock_page(page);
2608		restore--;
2609
2610		if (is_zone_device_page(page))
2611			put_page(page);
2612		else
2613			putback_lru_page(page);
2614	}
2615}
2616
2617static void migrate_vma_insert_page(struct migrate_vma *migrate,
2618				    unsigned long addr,
2619				    struct page *page,
2620				    unsigned long *src,
2621				    unsigned long *dst)
2622{
2623	struct vm_area_struct *vma = migrate->vma;
2624	struct mm_struct *mm = vma->vm_mm;
2625	struct mem_cgroup *memcg;
2626	bool flush = false;
2627	spinlock_t *ptl;
2628	pte_t entry;
2629	pgd_t *pgdp;
2630	p4d_t *p4dp;
2631	pud_t *pudp;
2632	pmd_t *pmdp;
2633	pte_t *ptep;
2634
2635	/* Only allow populating anonymous memory */
2636	if (!vma_is_anonymous(vma))
2637		goto abort;
2638
2639	pgdp = pgd_offset(mm, addr);
2640	p4dp = p4d_alloc(mm, pgdp, addr);
2641	if (!p4dp)
2642		goto abort;
2643	pudp = pud_alloc(mm, p4dp, addr);
2644	if (!pudp)
2645		goto abort;
2646	pmdp = pmd_alloc(mm, pudp, addr);
2647	if (!pmdp)
2648		goto abort;
2649
2650	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2651		goto abort;
2652
2653	/*
2654	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2655	 * pte_offset_map() on pmds where a huge pmd might be created
2656	 * from a different thread.
2657	 *
2658	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2659	 * parallel threads are excluded by other means.
2660	 *
2661	 * Here we only have down_read(mmap_sem).
2662	 */
2663	if (pte_alloc(mm, pmdp, addr))
2664		goto abort;
2665
2666	/* See the comment in pte_alloc_one_map() */
2667	if (unlikely(pmd_trans_unstable(pmdp)))
2668		goto abort;
2669
2670	if (unlikely(anon_vma_prepare(vma)))
2671		goto abort;
2672	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2673		goto abort;
2674
2675	/*
2676	 * The memory barrier inside __SetPageUptodate makes sure that
2677	 * preceding stores to the page contents become visible before
2678	 * the set_pte_at() write.
2679	 */
2680	__SetPageUptodate(page);
2681
2682	if (is_zone_device_page(page)) {
2683		if (is_device_private_page(page)) {
2684			swp_entry_t swp_entry;
2685
2686			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2687			entry = swp_entry_to_pte(swp_entry);
2688		} else if (is_device_public_page(page)) {
2689			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2690			if (vma->vm_flags & VM_WRITE)
2691				entry = pte_mkwrite(pte_mkdirty(entry));
2692			entry = pte_mkdevmap(entry);
2693		}
2694	} else {
2695		entry = mk_pte(page, vma->vm_page_prot);
2696		if (vma->vm_flags & VM_WRITE)
2697			entry = pte_mkwrite(pte_mkdirty(entry));
2698	}
2699
2700	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2701
2702	if (pte_present(*ptep)) {
2703		unsigned long pfn = pte_pfn(*ptep);
2704
2705		if (!is_zero_pfn(pfn)) {
2706			pte_unmap_unlock(ptep, ptl);
2707			mem_cgroup_cancel_charge(page, memcg, false);
2708			goto abort;
2709		}
2710		flush = true;
2711	} else if (!pte_none(*ptep)) {
2712		pte_unmap_unlock(ptep, ptl);
2713		mem_cgroup_cancel_charge(page, memcg, false);
2714		goto abort;
2715	}
2716
2717	/*
2718	 * Check for usefaultfd but do not deliver the fault. Instead,
2719	 * just back off.
2720	 */
2721	if (userfaultfd_missing(vma)) {
2722		pte_unmap_unlock(ptep, ptl);
2723		mem_cgroup_cancel_charge(page, memcg, false);
2724		goto abort;
2725	}
2726
2727	inc_mm_counter(mm, MM_ANONPAGES);
2728	page_add_new_anon_rmap(page, vma, addr, false);
2729	mem_cgroup_commit_charge(page, memcg, false, false);
2730	if (!is_zone_device_page(page))
2731		lru_cache_add_active_or_unevictable(page, vma);
2732	get_page(page);
2733
2734	if (flush) {
2735		flush_cache_page(vma, addr, pte_pfn(*ptep));
2736		ptep_clear_flush_notify(vma, addr, ptep);
2737		set_pte_at_notify(mm, addr, ptep, entry);
2738		update_mmu_cache(vma, addr, ptep);
2739	} else {
2740		/* No need to invalidate - it was non-present before */
2741		set_pte_at(mm, addr, ptep, entry);
2742		update_mmu_cache(vma, addr, ptep);
2743	}
2744
2745	pte_unmap_unlock(ptep, ptl);
2746	*src = MIGRATE_PFN_MIGRATE;
2747	return;
2748
2749abort:
2750	*src &= ~MIGRATE_PFN_MIGRATE;
2751}
2752
2753/*
2754 * migrate_vma_pages() - migrate meta-data from src page to dst page
2755 * @migrate: migrate struct containing all migration information
2756 *
2757 * This migrates struct page meta-data from source struct page to destination
2758 * struct page. This effectively finishes the migration from source page to the
2759 * destination page.
2760 */
2761static void migrate_vma_pages(struct migrate_vma *migrate)
2762{
2763	const unsigned long npages = migrate->npages;
2764	const unsigned long start = migrate->start;
2765	struct vm_area_struct *vma = migrate->vma;
2766	struct mm_struct *mm = vma->vm_mm;
2767	unsigned long addr, i, mmu_start;
2768	bool notified = false;
2769
2770	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2771		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2772		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2773		struct address_space *mapping;
2774		int r;
2775
2776		if (!newpage) {
2777			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2778			continue;
2779		}
2780
2781		if (!page) {
2782			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2783				continue;
2784			}
2785			if (!notified) {
2786				mmu_start = addr;
2787				notified = true;
2788				mmu_notifier_invalidate_range_start(mm,
2789								mmu_start,
2790								migrate->end);
2791			}
2792			migrate_vma_insert_page(migrate, addr, newpage,
2793						&migrate->src[i],
2794						&migrate->dst[i]);
2795			continue;
2796		}
2797
2798		mapping = page_mapping(page);
2799
2800		if (is_zone_device_page(newpage)) {
2801			if (is_device_private_page(newpage)) {
2802				/*
2803				 * For now only support private anonymous when
2804				 * migrating to un-addressable device memory.
2805				 */
2806				if (mapping) {
2807					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2808					continue;
2809				}
2810			} else if (!is_device_public_page(newpage)) {
2811				/*
2812				 * Other types of ZONE_DEVICE page are not
2813				 * supported.
2814				 */
2815				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2816				continue;
2817			}
2818		}
2819
2820		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2821		if (r != MIGRATEPAGE_SUCCESS)
2822			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2823	}
2824
2825	/*
2826	 * No need to double call mmu_notifier->invalidate_range() callback as
2827	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2828	 * did already call it.
2829	 */
2830	if (notified)
2831		mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2832						       migrate->end);
2833}
2834
2835/*
2836 * migrate_vma_finalize() - restore CPU page table entry
2837 * @migrate: migrate struct containing all migration information
2838 *
2839 * This replaces the special migration pte entry with either a mapping to the
2840 * new page if migration was successful for that page, or to the original page
2841 * otherwise.
2842 *
2843 * This also unlocks the pages and puts them back on the lru, or drops the extra
2844 * refcount, for device pages.
2845 */
2846static void migrate_vma_finalize(struct migrate_vma *migrate)
2847{
2848	const unsigned long npages = migrate->npages;
2849	unsigned long i;
2850
2851	for (i = 0; i < npages; i++) {
2852		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2853		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2854
2855		if (!page) {
2856			if (newpage) {
2857				unlock_page(newpage);
2858				put_page(newpage);
2859			}
2860			continue;
2861		}
2862
2863		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2864			if (newpage) {
2865				unlock_page(newpage);
2866				put_page(newpage);
2867			}
2868			newpage = page;
2869		}
2870
2871		remove_migration_ptes(page, newpage, false);
2872		unlock_page(page);
2873		migrate->cpages--;
2874
2875		if (is_zone_device_page(page))
2876			put_page(page);
2877		else
2878			putback_lru_page(page);
2879
2880		if (newpage != page) {
2881			unlock_page(newpage);
2882			if (is_zone_device_page(newpage))
2883				put_page(newpage);
2884			else
2885				putback_lru_page(newpage);
2886		}
2887	}
2888}
2889
2890/*
2891 * migrate_vma() - migrate a range of memory inside vma
2892 *
2893 * @ops: migration callback for allocating destination memory and copying
2894 * @vma: virtual memory area containing the range to be migrated
2895 * @start: start address of the range to migrate (inclusive)
2896 * @end: end address of the range to migrate (exclusive)
2897 * @src: array of hmm_pfn_t containing source pfns
2898 * @dst: array of hmm_pfn_t containing destination pfns
2899 * @private: pointer passed back to each of the callback
2900 * Returns: 0 on success, error code otherwise
2901 *
2902 * This function tries to migrate a range of memory virtual address range, using
2903 * callbacks to allocate and copy memory from source to destination. First it
2904 * collects all the pages backing each virtual address in the range, saving this
2905 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2906 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2907 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2908 * in the corresponding src array entry. It then restores any pages that are
2909 * pinned, by remapping and unlocking those pages.
2910 *
2911 * At this point it calls the alloc_and_copy() callback. For documentation on
2912 * what is expected from that callback, see struct migrate_vma_ops comments in
2913 * include/linux/migrate.h
2914 *
2915 * After the alloc_and_copy() callback, this function goes over each entry in
2916 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2917 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2918 * then the function tries to migrate struct page information from the source
2919 * struct page to the destination struct page. If it fails to migrate the struct
2920 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2921 * array.
2922 *
2923 * At this point all successfully migrated pages have an entry in the src
2924 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2925 * array entry with MIGRATE_PFN_VALID flag set.
2926 *
2927 * It then calls the finalize_and_map() callback. See comments for "struct
2928 * migrate_vma_ops", in include/linux/migrate.h for details about
2929 * finalize_and_map() behavior.
2930 *
2931 * After the finalize_and_map() callback, for successfully migrated pages, this
2932 * function updates the CPU page table to point to new pages, otherwise it
2933 * restores the CPU page table to point to the original source pages.
2934 *
2935 * Function returns 0 after the above steps, even if no pages were migrated
2936 * (The function only returns an error if any of the arguments are invalid.)
2937 *
2938 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2939 * unsigned long entries.
2940 */
2941int migrate_vma(const struct migrate_vma_ops *ops,
2942		struct vm_area_struct *vma,
2943		unsigned long start,
2944		unsigned long end,
2945		unsigned long *src,
2946		unsigned long *dst,
2947		void *private)
2948{
2949	struct migrate_vma migrate;
2950
2951	/* Sanity check the arguments */
2952	start &= PAGE_MASK;
2953	end &= PAGE_MASK;
2954	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2955		return -EINVAL;
2956	if (start < vma->vm_start || start >= vma->vm_end)
2957		return -EINVAL;
2958	if (end <= vma->vm_start || end > vma->vm_end)
2959		return -EINVAL;
2960	if (!ops || !src || !dst || start >= end)
2961		return -EINVAL;
2962
2963	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2964	migrate.src = src;
2965	migrate.dst = dst;
2966	migrate.start = start;
2967	migrate.npages = 0;
2968	migrate.cpages = 0;
2969	migrate.end = end;
2970	migrate.vma = vma;
2971
2972	/* Collect, and try to unmap source pages */
2973	migrate_vma_collect(&migrate);
2974	if (!migrate.cpages)
2975		return 0;
2976
2977	/* Lock and isolate page */
2978	migrate_vma_prepare(&migrate);
2979	if (!migrate.cpages)
2980		return 0;
2981
2982	/* Unmap pages */
2983	migrate_vma_unmap(&migrate);
2984	if (!migrate.cpages)
2985		return 0;
2986
2987	/*
2988	 * At this point pages are locked and unmapped, and thus they have
2989	 * stable content and can safely be copied to destination memory that
2990	 * is allocated by the callback.
2991	 *
2992	 * Note that migration can fail in migrate_vma_struct_page() for each
2993	 * individual page.
2994	 */
2995	ops->alloc_and_copy(vma, src, dst, start, end, private);
2996
2997	/* This does the real migration of struct page */
2998	migrate_vma_pages(&migrate);
2999
3000	ops->finalize_and_map(vma, src, dst, start, end, private);
3001
3002	/* Unlock and remap pages */
3003	migrate_vma_finalize(&migrate);
3004
3005	return 0;
3006}
3007EXPORT_SYMBOL(migrate_vma);
3008#endif /* defined(MIGRATE_VMA_HELPER) */
v4.10.11
 
   1/*
   2 * Memory Migration functionality - linux/mm/migrate.c
   3 *
   4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   5 *
   6 * Page migration was first developed in the context of the memory hotplug
   7 * project. The main authors of the migration code are:
   8 *
   9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  10 * Hirokazu Takahashi <taka@valinux.co.jp>
  11 * Dave Hansen <haveblue@us.ibm.com>
  12 * Christoph Lameter
  13 */
  14
  15#include <linux/migrate.h>
  16#include <linux/export.h>
  17#include <linux/swap.h>
  18#include <linux/swapops.h>
  19#include <linux/pagemap.h>
  20#include <linux/buffer_head.h>
  21#include <linux/mm_inline.h>
  22#include <linux/nsproxy.h>
  23#include <linux/pagevec.h>
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/topology.h>
  27#include <linux/cpu.h>
  28#include <linux/cpuset.h>
  29#include <linux/writeback.h>
  30#include <linux/mempolicy.h>
  31#include <linux/vmalloc.h>
  32#include <linux/security.h>
  33#include <linux/backing-dev.h>
  34#include <linux/compaction.h>
  35#include <linux/syscalls.h>
 
  36#include <linux/hugetlb.h>
  37#include <linux/hugetlb_cgroup.h>
  38#include <linux/gfp.h>
 
 
 
  39#include <linux/balloon_compaction.h>
  40#include <linux/mmu_notifier.h>
  41#include <linux/page_idle.h>
  42#include <linux/page_owner.h>
 
 
  43
  44#include <asm/tlbflush.h>
  45
  46#define CREATE_TRACE_POINTS
  47#include <trace/events/migrate.h>
  48
  49#include "internal.h"
  50
  51/*
  52 * migrate_prep() needs to be called before we start compiling a list of pages
  53 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  54 * undesirable, use migrate_prep_local()
  55 */
  56int migrate_prep(void)
  57{
  58	/*
  59	 * Clear the LRU lists so pages can be isolated.
  60	 * Note that pages may be moved off the LRU after we have
  61	 * drained them. Those pages will fail to migrate like other
  62	 * pages that may be busy.
  63	 */
  64	lru_add_drain_all();
  65
  66	return 0;
  67}
  68
  69/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  70int migrate_prep_local(void)
  71{
  72	lru_add_drain();
  73
  74	return 0;
  75}
  76
  77bool isolate_movable_page(struct page *page, isolate_mode_t mode)
  78{
  79	struct address_space *mapping;
  80
  81	/*
  82	 * Avoid burning cycles with pages that are yet under __free_pages(),
  83	 * or just got freed under us.
  84	 *
  85	 * In case we 'win' a race for a movable page being freed under us and
  86	 * raise its refcount preventing __free_pages() from doing its job
  87	 * the put_page() at the end of this block will take care of
  88	 * release this page, thus avoiding a nasty leakage.
  89	 */
  90	if (unlikely(!get_page_unless_zero(page)))
  91		goto out;
  92
  93	/*
  94	 * Check PageMovable before holding a PG_lock because page's owner
  95	 * assumes anybody doesn't touch PG_lock of newly allocated page
  96	 * so unconditionally grapping the lock ruins page's owner side.
  97	 */
  98	if (unlikely(!__PageMovable(page)))
  99		goto out_putpage;
 100	/*
 101	 * As movable pages are not isolated from LRU lists, concurrent
 102	 * compaction threads can race against page migration functions
 103	 * as well as race against the releasing a page.
 104	 *
 105	 * In order to avoid having an already isolated movable page
 106	 * being (wrongly) re-isolated while it is under migration,
 107	 * or to avoid attempting to isolate pages being released,
 108	 * lets be sure we have the page lock
 109	 * before proceeding with the movable page isolation steps.
 110	 */
 111	if (unlikely(!trylock_page(page)))
 112		goto out_putpage;
 113
 114	if (!PageMovable(page) || PageIsolated(page))
 115		goto out_no_isolated;
 116
 117	mapping = page_mapping(page);
 118	VM_BUG_ON_PAGE(!mapping, page);
 119
 120	if (!mapping->a_ops->isolate_page(page, mode))
 121		goto out_no_isolated;
 122
 123	/* Driver shouldn't use PG_isolated bit of page->flags */
 124	WARN_ON_ONCE(PageIsolated(page));
 125	__SetPageIsolated(page);
 126	unlock_page(page);
 127
 128	return true;
 129
 130out_no_isolated:
 131	unlock_page(page);
 132out_putpage:
 133	put_page(page);
 134out:
 135	return false;
 136}
 137
 138/* It should be called on page which is PG_movable */
 139void putback_movable_page(struct page *page)
 140{
 141	struct address_space *mapping;
 142
 143	VM_BUG_ON_PAGE(!PageLocked(page), page);
 144	VM_BUG_ON_PAGE(!PageMovable(page), page);
 145	VM_BUG_ON_PAGE(!PageIsolated(page), page);
 146
 147	mapping = page_mapping(page);
 148	mapping->a_ops->putback_page(page);
 149	__ClearPageIsolated(page);
 150}
 151
 152/*
 153 * Put previously isolated pages back onto the appropriate lists
 154 * from where they were once taken off for compaction/migration.
 155 *
 156 * This function shall be used whenever the isolated pageset has been
 157 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 158 * and isolate_huge_page().
 159 */
 160void putback_movable_pages(struct list_head *l)
 161{
 162	struct page *page;
 163	struct page *page2;
 164
 165	list_for_each_entry_safe(page, page2, l, lru) {
 166		if (unlikely(PageHuge(page))) {
 167			putback_active_hugepage(page);
 168			continue;
 169		}
 170		list_del(&page->lru);
 171		/*
 172		 * We isolated non-lru movable page so here we can use
 173		 * __PageMovable because LRU page's mapping cannot have
 174		 * PAGE_MAPPING_MOVABLE.
 175		 */
 176		if (unlikely(__PageMovable(page))) {
 177			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 178			lock_page(page);
 179			if (PageMovable(page))
 180				putback_movable_page(page);
 181			else
 182				__ClearPageIsolated(page);
 183			unlock_page(page);
 184			put_page(page);
 185		} else {
 
 
 186			putback_lru_page(page);
 187			dec_node_page_state(page, NR_ISOLATED_ANON +
 188					page_is_file_cache(page));
 189		}
 190	}
 191}
 192
 193/*
 194 * Restore a potential migration pte to a working pte entry
 195 */
 196static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
 197				 unsigned long addr, void *old)
 198{
 199	struct mm_struct *mm = vma->vm_mm;
 
 
 
 
 
 
 
 200	swp_entry_t entry;
 201 	pmd_t *pmd;
 202	pte_t *ptep, pte;
 203 	spinlock_t *ptl;
 204
 205	if (unlikely(PageHuge(new))) {
 206		ptep = huge_pte_offset(mm, addr);
 207		if (!ptep)
 208			goto out;
 209		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
 210	} else {
 211		pmd = mm_find_pmd(mm, addr);
 212		if (!pmd)
 213			goto out;
 214
 215		ptep = pte_offset_map(pmd, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 216
 217		/*
 218		 * Peek to check is_swap_pte() before taking ptlock?  No, we
 219		 * can race mremap's move_ptes(), which skips anon_vma lock.
 220		 */
 221
 222		ptl = pte_lockptr(mm, pmd);
 223	}
 224
 225 	spin_lock(ptl);
 226	pte = *ptep;
 227	if (!is_swap_pte(pte))
 228		goto unlock;
 229
 230	entry = pte_to_swp_entry(pte);
 231
 232	if (!is_migration_entry(entry) ||
 233	    migration_entry_to_page(entry) != old)
 234		goto unlock;
 235
 236	get_page(new);
 237	pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 238	if (pte_swp_soft_dirty(*ptep))
 239		pte = pte_mksoft_dirty(pte);
 240
 241	/* Recheck VMA as permissions can change since migration started  */
 242	if (is_write_migration_entry(entry))
 243		pte = maybe_mkwrite(pte, vma);
 244
 245#ifdef CONFIG_HUGETLB_PAGE
 246	if (PageHuge(new)) {
 247		pte = pte_mkhuge(pte);
 248		pte = arch_make_huge_pte(pte, vma, new, 0);
 249	}
 
 
 
 
 
 250#endif
 251	flush_dcache_page(new);
 252	set_pte_at(mm, addr, ptep, pte);
 253
 254	if (PageHuge(new)) {
 255		if (PageAnon(new))
 256			hugepage_add_anon_rmap(new, vma, addr);
 257		else
 258			page_dup_rmap(new, true);
 259	} else if (PageAnon(new))
 260		page_add_anon_rmap(new, vma, addr, false);
 261	else
 262		page_add_file_rmap(new, false);
 263
 264	if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 265		mlock_vma_page(new);
 
 266
 267	/* No need to invalidate - it was non-present before */
 268	update_mmu_cache(vma, addr, ptep);
 269unlock:
 270	pte_unmap_unlock(ptep, ptl);
 271out:
 272	return SWAP_AGAIN;
 273}
 274
 275/*
 276 * Get rid of all migration entries and replace them by
 277 * references to the indicated page.
 278 */
 279void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 280{
 281	struct rmap_walk_control rwc = {
 282		.rmap_one = remove_migration_pte,
 283		.arg = old,
 284	};
 285
 286	if (locked)
 287		rmap_walk_locked(new, &rwc);
 288	else
 289		rmap_walk(new, &rwc);
 290}
 291
 292/*
 293 * Something used the pte of a page under migration. We need to
 294 * get to the page and wait until migration is finished.
 295 * When we return from this function the fault will be retried.
 296 */
 297void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 298				spinlock_t *ptl)
 299{
 300	pte_t pte;
 301	swp_entry_t entry;
 302	struct page *page;
 303
 304	spin_lock(ptl);
 305	pte = *ptep;
 306	if (!is_swap_pte(pte))
 307		goto out;
 308
 309	entry = pte_to_swp_entry(pte);
 310	if (!is_migration_entry(entry))
 311		goto out;
 312
 313	page = migration_entry_to_page(entry);
 314
 315	/*
 316	 * Once radix-tree replacement of page migration started, page_count
 317	 * *must* be zero. And, we don't want to call wait_on_page_locked()
 318	 * against a page without get_page().
 319	 * So, we use get_page_unless_zero(), here. Even failed, page fault
 320	 * will occur again.
 321	 */
 322	if (!get_page_unless_zero(page))
 323		goto out;
 324	pte_unmap_unlock(ptep, ptl);
 325	wait_on_page_locked(page);
 326	put_page(page);
 327	return;
 328out:
 329	pte_unmap_unlock(ptep, ptl);
 330}
 331
 332void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 333				unsigned long address)
 334{
 335	spinlock_t *ptl = pte_lockptr(mm, pmd);
 336	pte_t *ptep = pte_offset_map(pmd, address);
 337	__migration_entry_wait(mm, ptep, ptl);
 338}
 339
 340void migration_entry_wait_huge(struct vm_area_struct *vma,
 341		struct mm_struct *mm, pte_t *pte)
 342{
 343	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 344	__migration_entry_wait(mm, pte, ptl);
 345}
 346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 347#ifdef CONFIG_BLOCK
 348/* Returns true if all buffers are successfully locked */
 349static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 350							enum migrate_mode mode)
 351{
 352	struct buffer_head *bh = head;
 353
 354	/* Simple case, sync compaction */
 355	if (mode != MIGRATE_ASYNC) {
 356		do {
 357			get_bh(bh);
 358			lock_buffer(bh);
 359			bh = bh->b_this_page;
 360
 361		} while (bh != head);
 362
 363		return true;
 364	}
 365
 366	/* async case, we cannot block on lock_buffer so use trylock_buffer */
 367	do {
 368		get_bh(bh);
 369		if (!trylock_buffer(bh)) {
 370			/*
 371			 * We failed to lock the buffer and cannot stall in
 372			 * async migration. Release the taken locks
 373			 */
 374			struct buffer_head *failed_bh = bh;
 375			put_bh(failed_bh);
 376			bh = head;
 377			while (bh != failed_bh) {
 378				unlock_buffer(bh);
 379				put_bh(bh);
 380				bh = bh->b_this_page;
 381			}
 382			return false;
 383		}
 384
 385		bh = bh->b_this_page;
 386	} while (bh != head);
 387	return true;
 388}
 389#else
 390static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
 391							enum migrate_mode mode)
 392{
 393	return true;
 394}
 395#endif /* CONFIG_BLOCK */
 396
 397/*
 398 * Replace the page in the mapping.
 399 *
 400 * The number of remaining references must be:
 401 * 1 for anonymous pages without a mapping
 402 * 2 for pages with a mapping
 403 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 404 */
 405int migrate_page_move_mapping(struct address_space *mapping,
 406		struct page *newpage, struct page *page,
 407		struct buffer_head *head, enum migrate_mode mode,
 408		int extra_count)
 409{
 410	struct zone *oldzone, *newzone;
 411	int dirty;
 412	int expected_count = 1 + extra_count;
 413	void **pslot;
 414
 
 
 
 
 
 
 
 415	if (!mapping) {
 416		/* Anonymous page without mapping */
 417		if (page_count(page) != expected_count)
 418			return -EAGAIN;
 419
 420		/* No turning back from here */
 421		newpage->index = page->index;
 422		newpage->mapping = page->mapping;
 423		if (PageSwapBacked(page))
 424			__SetPageSwapBacked(newpage);
 425
 426		return MIGRATEPAGE_SUCCESS;
 427	}
 428
 429	oldzone = page_zone(page);
 430	newzone = page_zone(newpage);
 431
 432	spin_lock_irq(&mapping->tree_lock);
 433
 434	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 435 					page_index(page));
 436
 437	expected_count += 1 + page_has_private(page);
 438	if (page_count(page) != expected_count ||
 439		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 440		spin_unlock_irq(&mapping->tree_lock);
 
 441		return -EAGAIN;
 442	}
 443
 444	if (!page_ref_freeze(page, expected_count)) {
 445		spin_unlock_irq(&mapping->tree_lock);
 446		return -EAGAIN;
 447	}
 448
 449	/*
 450	 * In the async migration case of moving a page with buffers, lock the
 451	 * buffers using trylock before the mapping is moved. If the mapping
 452	 * was moved, we later failed to lock the buffers and could not move
 453	 * the mapping back due to an elevated page count, we would have to
 454	 * block waiting on other references to be dropped.
 455	 */
 456	if (mode == MIGRATE_ASYNC && head &&
 457			!buffer_migrate_lock_buffers(head, mode)) {
 458		page_ref_unfreeze(page, expected_count);
 459		spin_unlock_irq(&mapping->tree_lock);
 460		return -EAGAIN;
 461	}
 462
 463	/*
 464	 * Now we know that no one else is looking at the page:
 465	 * no turning back from here.
 466	 */
 467	newpage->index = page->index;
 468	newpage->mapping = page->mapping;
 469	get_page(newpage);	/* add cache reference */
 470	if (PageSwapBacked(page)) {
 471		__SetPageSwapBacked(newpage);
 472		if (PageSwapCache(page)) {
 473			SetPageSwapCache(newpage);
 474			set_page_private(newpage, page_private(page));
 475		}
 476	} else {
 477		VM_BUG_ON_PAGE(PageSwapCache(page), page);
 478	}
 479
 480	/* Move dirty while page refs frozen and newpage not yet exposed */
 481	dirty = PageDirty(page);
 482	if (dirty) {
 483		ClearPageDirty(page);
 484		SetPageDirty(newpage);
 485	}
 486
 487	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
 
 
 
 
 
 
 
 
 
 
 
 488
 489	/*
 490	 * Drop cache reference from old page by unfreezing
 491	 * to one less reference.
 492	 * We know this isn't the last reference.
 493	 */
 494	page_ref_unfreeze(page, expected_count - 1);
 495
 496	spin_unlock(&mapping->tree_lock);
 497	/* Leave irq disabled to prevent preemption while updating stats */
 498
 499	/*
 500	 * If moved to a different zone then also account
 501	 * the page for that zone. Other VM counters will be
 502	 * taken care of when we establish references to the
 503	 * new page and drop references to the old page.
 504	 *
 505	 * Note that anonymous pages are accounted for
 506	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 507	 * are mapped to swap space.
 508	 */
 509	if (newzone != oldzone) {
 510		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
 511		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
 512		if (PageSwapBacked(page) && !PageSwapCache(page)) {
 513			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
 514			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
 515		}
 516		if (dirty && mapping_cap_account_dirty(mapping)) {
 517			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
 518			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
 519			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
 520			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
 521		}
 522	}
 523	local_irq_enable();
 524
 525	return MIGRATEPAGE_SUCCESS;
 526}
 527EXPORT_SYMBOL(migrate_page_move_mapping);
 528
 529/*
 530 * The expected number of remaining references is the same as that
 531 * of migrate_page_move_mapping().
 532 */
 533int migrate_huge_page_move_mapping(struct address_space *mapping,
 534				   struct page *newpage, struct page *page)
 535{
 536	int expected_count;
 537	void **pslot;
 538
 539	spin_lock_irq(&mapping->tree_lock);
 540
 541	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 542					page_index(page));
 543
 544	expected_count = 2 + page_has_private(page);
 545	if (page_count(page) != expected_count ||
 546		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 547		spin_unlock_irq(&mapping->tree_lock);
 548		return -EAGAIN;
 549	}
 550
 551	if (!page_ref_freeze(page, expected_count)) {
 552		spin_unlock_irq(&mapping->tree_lock);
 553		return -EAGAIN;
 554	}
 555
 556	newpage->index = page->index;
 557	newpage->mapping = page->mapping;
 558
 559	get_page(newpage);
 560
 561	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
 562
 563	page_ref_unfreeze(page, expected_count - 1);
 564
 565	spin_unlock_irq(&mapping->tree_lock);
 566
 567	return MIGRATEPAGE_SUCCESS;
 568}
 569
 570/*
 571 * Gigantic pages are so large that we do not guarantee that page++ pointer
 572 * arithmetic will work across the entire page.  We need something more
 573 * specialized.
 574 */
 575static void __copy_gigantic_page(struct page *dst, struct page *src,
 576				int nr_pages)
 577{
 578	int i;
 579	struct page *dst_base = dst;
 580	struct page *src_base = src;
 581
 582	for (i = 0; i < nr_pages; ) {
 583		cond_resched();
 584		copy_highpage(dst, src);
 585
 586		i++;
 587		dst = mem_map_next(dst, dst_base, i);
 588		src = mem_map_next(src, src_base, i);
 589	}
 590}
 591
 592static void copy_huge_page(struct page *dst, struct page *src)
 593{
 594	int i;
 595	int nr_pages;
 596
 597	if (PageHuge(src)) {
 598		/* hugetlbfs page */
 599		struct hstate *h = page_hstate(src);
 600		nr_pages = pages_per_huge_page(h);
 601
 602		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 603			__copy_gigantic_page(dst, src, nr_pages);
 604			return;
 605		}
 606	} else {
 607		/* thp page */
 608		BUG_ON(!PageTransHuge(src));
 609		nr_pages = hpage_nr_pages(src);
 610	}
 611
 612	for (i = 0; i < nr_pages; i++) {
 613		cond_resched();
 614		copy_highpage(dst + i, src + i);
 615	}
 616}
 617
 618/*
 619 * Copy the page to its new location
 620 */
 621void migrate_page_copy(struct page *newpage, struct page *page)
 622{
 623	int cpupid;
 624
 625	if (PageHuge(page) || PageTransHuge(page))
 626		copy_huge_page(newpage, page);
 627	else
 628		copy_highpage(newpage, page);
 629
 630	if (PageError(page))
 631		SetPageError(newpage);
 632	if (PageReferenced(page))
 633		SetPageReferenced(newpage);
 634	if (PageUptodate(page))
 635		SetPageUptodate(newpage);
 636	if (TestClearPageActive(page)) {
 637		VM_BUG_ON_PAGE(PageUnevictable(page), page);
 638		SetPageActive(newpage);
 639	} else if (TestClearPageUnevictable(page))
 640		SetPageUnevictable(newpage);
 641	if (PageChecked(page))
 642		SetPageChecked(newpage);
 643	if (PageMappedToDisk(page))
 644		SetPageMappedToDisk(newpage);
 645
 646	/* Move dirty on pages not done by migrate_page_move_mapping() */
 647	if (PageDirty(page))
 648		SetPageDirty(newpage);
 649
 650	if (page_is_young(page))
 651		set_page_young(newpage);
 652	if (page_is_idle(page))
 653		set_page_idle(newpage);
 654
 655	/*
 656	 * Copy NUMA information to the new page, to prevent over-eager
 657	 * future migrations of this same page.
 658	 */
 659	cpupid = page_cpupid_xchg_last(page, -1);
 660	page_cpupid_xchg_last(newpage, cpupid);
 661
 662	ksm_migrate_page(newpage, page);
 663	/*
 664	 * Please do not reorder this without considering how mm/ksm.c's
 665	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 666	 */
 667	if (PageSwapCache(page))
 668		ClearPageSwapCache(page);
 669	ClearPagePrivate(page);
 670	set_page_private(page, 0);
 671
 672	/*
 673	 * If any waiters have accumulated on the new page then
 674	 * wake them up.
 675	 */
 676	if (PageWriteback(newpage))
 677		end_page_writeback(newpage);
 678
 679	copy_page_owner(page, newpage);
 680
 681	mem_cgroup_migrate(page, newpage);
 682}
 
 
 
 
 
 
 
 
 
 
 
 683EXPORT_SYMBOL(migrate_page_copy);
 684
 685/************************************************************
 686 *                    Migration functions
 687 ***********************************************************/
 688
 689/*
 690 * Common logic to directly migrate a single LRU page suitable for
 691 * pages that do not use PagePrivate/PagePrivate2.
 692 *
 693 * Pages are locked upon entry and exit.
 694 */
 695int migrate_page(struct address_space *mapping,
 696		struct page *newpage, struct page *page,
 697		enum migrate_mode mode)
 698{
 699	int rc;
 700
 701	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
 702
 703	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
 704
 705	if (rc != MIGRATEPAGE_SUCCESS)
 706		return rc;
 707
 708	migrate_page_copy(newpage, page);
 
 
 
 709	return MIGRATEPAGE_SUCCESS;
 710}
 711EXPORT_SYMBOL(migrate_page);
 712
 713#ifdef CONFIG_BLOCK
 714/*
 715 * Migration function for pages with buffers. This function can only be used
 716 * if the underlying filesystem guarantees that no other references to "page"
 717 * exist.
 718 */
 719int buffer_migrate_page(struct address_space *mapping,
 720		struct page *newpage, struct page *page, enum migrate_mode mode)
 721{
 722	struct buffer_head *bh, *head;
 723	int rc;
 724
 725	if (!page_has_buffers(page))
 726		return migrate_page(mapping, newpage, page, mode);
 727
 728	head = page_buffers(page);
 729
 730	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
 731
 732	if (rc != MIGRATEPAGE_SUCCESS)
 733		return rc;
 734
 735	/*
 736	 * In the async case, migrate_page_move_mapping locked the buffers
 737	 * with an IRQ-safe spinlock held. In the sync case, the buffers
 738	 * need to be locked now
 739	 */
 740	if (mode != MIGRATE_ASYNC)
 741		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
 742
 743	ClearPagePrivate(page);
 744	set_page_private(newpage, page_private(page));
 745	set_page_private(page, 0);
 746	put_page(page);
 747	get_page(newpage);
 748
 749	bh = head;
 750	do {
 751		set_bh_page(bh, newpage, bh_offset(bh));
 752		bh = bh->b_this_page;
 753
 754	} while (bh != head);
 755
 756	SetPagePrivate(newpage);
 757
 758	migrate_page_copy(newpage, page);
 
 
 
 759
 760	bh = head;
 761	do {
 762		unlock_buffer(bh);
 763 		put_bh(bh);
 764		bh = bh->b_this_page;
 765
 766	} while (bh != head);
 767
 768	return MIGRATEPAGE_SUCCESS;
 769}
 770EXPORT_SYMBOL(buffer_migrate_page);
 771#endif
 772
 773/*
 774 * Writeback a page to clean the dirty state
 775 */
 776static int writeout(struct address_space *mapping, struct page *page)
 777{
 778	struct writeback_control wbc = {
 779		.sync_mode = WB_SYNC_NONE,
 780		.nr_to_write = 1,
 781		.range_start = 0,
 782		.range_end = LLONG_MAX,
 783		.for_reclaim = 1
 784	};
 785	int rc;
 786
 787	if (!mapping->a_ops->writepage)
 788		/* No write method for the address space */
 789		return -EINVAL;
 790
 791	if (!clear_page_dirty_for_io(page))
 792		/* Someone else already triggered a write */
 793		return -EAGAIN;
 794
 795	/*
 796	 * A dirty page may imply that the underlying filesystem has
 797	 * the page on some queue. So the page must be clean for
 798	 * migration. Writeout may mean we loose the lock and the
 799	 * page state is no longer what we checked for earlier.
 800	 * At this point we know that the migration attempt cannot
 801	 * be successful.
 802	 */
 803	remove_migration_ptes(page, page, false);
 804
 805	rc = mapping->a_ops->writepage(page, &wbc);
 806
 807	if (rc != AOP_WRITEPAGE_ACTIVATE)
 808		/* unlocked. Relock */
 809		lock_page(page);
 810
 811	return (rc < 0) ? -EIO : -EAGAIN;
 812}
 813
 814/*
 815 * Default handling if a filesystem does not provide a migration function.
 816 */
 817static int fallback_migrate_page(struct address_space *mapping,
 818	struct page *newpage, struct page *page, enum migrate_mode mode)
 819{
 820	if (PageDirty(page)) {
 821		/* Only writeback pages in full synchronous migration */
 822		if (mode != MIGRATE_SYNC)
 
 
 
 
 823			return -EBUSY;
 
 824		return writeout(mapping, page);
 825	}
 826
 827	/*
 828	 * Buffers may be managed in a filesystem specific way.
 829	 * We must have no buffers or drop them.
 830	 */
 831	if (page_has_private(page) &&
 832	    !try_to_release_page(page, GFP_KERNEL))
 833		return -EAGAIN;
 834
 835	return migrate_page(mapping, newpage, page, mode);
 836}
 837
 838/*
 839 * Move a page to a newly allocated page
 840 * The page is locked and all ptes have been successfully removed.
 841 *
 842 * The new page will have replaced the old page if this function
 843 * is successful.
 844 *
 845 * Return value:
 846 *   < 0 - error code
 847 *  MIGRATEPAGE_SUCCESS - success
 848 */
 849static int move_to_new_page(struct page *newpage, struct page *page,
 850				enum migrate_mode mode)
 851{
 852	struct address_space *mapping;
 853	int rc = -EAGAIN;
 854	bool is_lru = !__PageMovable(page);
 855
 856	VM_BUG_ON_PAGE(!PageLocked(page), page);
 857	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 858
 859	mapping = page_mapping(page);
 860
 861	if (likely(is_lru)) {
 862		if (!mapping)
 863			rc = migrate_page(mapping, newpage, page, mode);
 864		else if (mapping->a_ops->migratepage)
 865			/*
 866			 * Most pages have a mapping and most filesystems
 867			 * provide a migratepage callback. Anonymous pages
 868			 * are part of swap space which also has its own
 869			 * migratepage callback. This is the most common path
 870			 * for page migration.
 871			 */
 872			rc = mapping->a_ops->migratepage(mapping, newpage,
 873							page, mode);
 874		else
 875			rc = fallback_migrate_page(mapping, newpage,
 876							page, mode);
 877	} else {
 878		/*
 879		 * In case of non-lru page, it could be released after
 880		 * isolation step. In that case, we shouldn't try migration.
 881		 */
 882		VM_BUG_ON_PAGE(!PageIsolated(page), page);
 883		if (!PageMovable(page)) {
 884			rc = MIGRATEPAGE_SUCCESS;
 885			__ClearPageIsolated(page);
 886			goto out;
 887		}
 888
 889		rc = mapping->a_ops->migratepage(mapping, newpage,
 890						page, mode);
 891		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 892			!PageIsolated(page));
 893	}
 894
 895	/*
 896	 * When successful, old pagecache page->mapping must be cleared before
 897	 * page is freed; but stats require that PageAnon be left as PageAnon.
 898	 */
 899	if (rc == MIGRATEPAGE_SUCCESS) {
 900		if (__PageMovable(page)) {
 901			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 902
 903			/*
 904			 * We clear PG_movable under page_lock so any compactor
 905			 * cannot try to migrate this page.
 906			 */
 907			__ClearPageIsolated(page);
 908		}
 909
 910		/*
 911		 * Anonymous and movable page->mapping will be cleard by
 912		 * free_pages_prepare so don't reset it here for keeping
 913		 * the type to work PageAnon, for example.
 914		 */
 915		if (!PageMappingFlags(page))
 916			page->mapping = NULL;
 917	}
 918out:
 919	return rc;
 920}
 921
 922static int __unmap_and_move(struct page *page, struct page *newpage,
 923				int force, enum migrate_mode mode)
 924{
 925	int rc = -EAGAIN;
 926	int page_was_mapped = 0;
 927	struct anon_vma *anon_vma = NULL;
 928	bool is_lru = !__PageMovable(page);
 929
 930	if (!trylock_page(page)) {
 931		if (!force || mode == MIGRATE_ASYNC)
 932			goto out;
 933
 934		/*
 935		 * It's not safe for direct compaction to call lock_page.
 936		 * For example, during page readahead pages are added locked
 937		 * to the LRU. Later, when the IO completes the pages are
 938		 * marked uptodate and unlocked. However, the queueing
 939		 * could be merging multiple pages for one bio (e.g.
 940		 * mpage_readpages). If an allocation happens for the
 941		 * second or third page, the process can end up locking
 942		 * the same page twice and deadlocking. Rather than
 943		 * trying to be clever about what pages can be locked,
 944		 * avoid the use of lock_page for direct compaction
 945		 * altogether.
 946		 */
 947		if (current->flags & PF_MEMALLOC)
 948			goto out;
 949
 950		lock_page(page);
 951	}
 952
 953	if (PageWriteback(page)) {
 954		/*
 955		 * Only in the case of a full synchronous migration is it
 956		 * necessary to wait for PageWriteback. In the async case,
 957		 * the retry loop is too short and in the sync-light case,
 958		 * the overhead of stalling is too much
 959		 */
 960		if (mode != MIGRATE_SYNC) {
 
 
 
 
 961			rc = -EBUSY;
 962			goto out_unlock;
 963		}
 964		if (!force)
 965			goto out_unlock;
 966		wait_on_page_writeback(page);
 967	}
 968
 969	/*
 970	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
 971	 * we cannot notice that anon_vma is freed while we migrates a page.
 972	 * This get_anon_vma() delays freeing anon_vma pointer until the end
 973	 * of migration. File cache pages are no problem because of page_lock()
 974	 * File Caches may use write_page() or lock_page() in migration, then,
 975	 * just care Anon page here.
 976	 *
 977	 * Only page_get_anon_vma() understands the subtleties of
 978	 * getting a hold on an anon_vma from outside one of its mms.
 979	 * But if we cannot get anon_vma, then we won't need it anyway,
 980	 * because that implies that the anon page is no longer mapped
 981	 * (and cannot be remapped so long as we hold the page lock).
 982	 */
 983	if (PageAnon(page) && !PageKsm(page))
 984		anon_vma = page_get_anon_vma(page);
 985
 986	/*
 987	 * Block others from accessing the new page when we get around to
 988	 * establishing additional references. We are usually the only one
 989	 * holding a reference to newpage at this point. We used to have a BUG
 990	 * here if trylock_page(newpage) fails, but would like to allow for
 991	 * cases where there might be a race with the previous use of newpage.
 992	 * This is much like races on refcount of oldpage: just don't BUG().
 993	 */
 994	if (unlikely(!trylock_page(newpage)))
 995		goto out_unlock;
 996
 997	if (unlikely(!is_lru)) {
 998		rc = move_to_new_page(newpage, page, mode);
 999		goto out_unlock_both;
1000	}
1001
1002	/*
1003	 * Corner case handling:
1004	 * 1. When a new swap-cache page is read into, it is added to the LRU
1005	 * and treated as swapcache but it has no rmap yet.
1006	 * Calling try_to_unmap() against a page->mapping==NULL page will
1007	 * trigger a BUG.  So handle it here.
1008	 * 2. An orphaned page (see truncate_complete_page) might have
1009	 * fs-private metadata. The page can be picked up due to memory
1010	 * offlining.  Everywhere else except page reclaim, the page is
1011	 * invisible to the vm, so the page can not be migrated.  So try to
1012	 * free the metadata, so the page can be freed.
1013	 */
1014	if (!page->mapping) {
1015		VM_BUG_ON_PAGE(PageAnon(page), page);
1016		if (page_has_private(page)) {
1017			try_to_free_buffers(page);
1018			goto out_unlock_both;
1019		}
1020	} else if (page_mapped(page)) {
1021		/* Establish migration ptes */
1022		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1023				page);
1024		try_to_unmap(page,
1025			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1026		page_was_mapped = 1;
1027	}
1028
1029	if (!page_mapped(page))
1030		rc = move_to_new_page(newpage, page, mode);
1031
1032	if (page_was_mapped)
1033		remove_migration_ptes(page,
1034			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1035
1036out_unlock_both:
1037	unlock_page(newpage);
1038out_unlock:
1039	/* Drop an anon_vma reference if we took one */
1040	if (anon_vma)
1041		put_anon_vma(anon_vma);
1042	unlock_page(page);
1043out:
1044	/*
1045	 * If migration is successful, decrease refcount of the newpage
1046	 * which will not free the page because new page owner increased
1047	 * refcounter. As well, if it is LRU page, add the page to LRU
1048	 * list in here.
1049	 */
1050	if (rc == MIGRATEPAGE_SUCCESS) {
1051		if (unlikely(__PageMovable(newpage)))
1052			put_page(newpage);
1053		else
1054			putback_lru_page(newpage);
1055	}
1056
1057	return rc;
1058}
1059
1060/*
1061 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1062 * around it.
1063 */
1064#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1065#define ICE_noinline noinline
1066#else
1067#define ICE_noinline
1068#endif
1069
1070/*
1071 * Obtain the lock on page, remove all ptes and migrate the page
1072 * to the newly allocated page in newpage.
1073 */
1074static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1075				   free_page_t put_new_page,
1076				   unsigned long private, struct page *page,
1077				   int force, enum migrate_mode mode,
1078				   enum migrate_reason reason)
1079{
1080	int rc = MIGRATEPAGE_SUCCESS;
1081	int *result = NULL;
1082	struct page *newpage;
1083
1084	newpage = get_new_page(page, private, &result);
 
 
 
1085	if (!newpage)
1086		return -ENOMEM;
1087
1088	if (page_count(page) == 1) {
1089		/* page was freed from under us. So we are done. */
1090		ClearPageActive(page);
1091		ClearPageUnevictable(page);
1092		if (unlikely(__PageMovable(page))) {
1093			lock_page(page);
1094			if (!PageMovable(page))
1095				__ClearPageIsolated(page);
1096			unlock_page(page);
1097		}
1098		if (put_new_page)
1099			put_new_page(newpage, private);
1100		else
1101			put_page(newpage);
1102		goto out;
1103	}
1104
1105	if (unlikely(PageTransHuge(page))) {
1106		lock_page(page);
1107		rc = split_huge_page(page);
1108		unlock_page(page);
1109		if (rc)
1110			goto out;
1111	}
1112
1113	rc = __unmap_and_move(page, newpage, force, mode);
1114	if (rc == MIGRATEPAGE_SUCCESS)
1115		set_page_owner_migrate_reason(newpage, reason);
1116
1117out:
1118	if (rc != -EAGAIN) {
1119		/*
1120		 * A page that has been migrated has all references
1121		 * removed and will be freed. A page that has not been
1122		 * migrated will have kepts its references and be
1123		 * restored.
1124		 */
1125		list_del(&page->lru);
1126
1127		/*
1128		 * Compaction can migrate also non-LRU pages which are
1129		 * not accounted to NR_ISOLATED_*. They can be recognized
1130		 * as __PageMovable
1131		 */
1132		if (likely(!__PageMovable(page)))
1133			dec_node_page_state(page, NR_ISOLATED_ANON +
1134					page_is_file_cache(page));
1135	}
1136
1137	/*
1138	 * If migration is successful, releases reference grabbed during
1139	 * isolation. Otherwise, restore the page to right list unless
1140	 * we want to retry.
1141	 */
1142	if (rc == MIGRATEPAGE_SUCCESS) {
1143		put_page(page);
1144		if (reason == MR_MEMORY_FAILURE) {
1145			/*
1146			 * Set PG_HWPoison on just freed page
1147			 * intentionally. Although it's rather weird,
1148			 * it's how HWPoison flag works at the moment.
1149			 */
1150			if (!test_set_page_hwpoison(page))
1151				num_poisoned_pages_inc();
1152		}
1153	} else {
1154		if (rc != -EAGAIN) {
1155			if (likely(!__PageMovable(page))) {
1156				putback_lru_page(page);
1157				goto put_new;
1158			}
1159
1160			lock_page(page);
1161			if (PageMovable(page))
1162				putback_movable_page(page);
1163			else
1164				__ClearPageIsolated(page);
1165			unlock_page(page);
1166			put_page(page);
1167		}
1168put_new:
1169		if (put_new_page)
1170			put_new_page(newpage, private);
1171		else
1172			put_page(newpage);
1173	}
1174
1175	if (result) {
1176		if (rc)
1177			*result = rc;
1178		else
1179			*result = page_to_nid(newpage);
1180	}
1181	return rc;
1182}
1183
1184/*
1185 * Counterpart of unmap_and_move_page() for hugepage migration.
1186 *
1187 * This function doesn't wait the completion of hugepage I/O
1188 * because there is no race between I/O and migration for hugepage.
1189 * Note that currently hugepage I/O occurs only in direct I/O
1190 * where no lock is held and PG_writeback is irrelevant,
1191 * and writeback status of all subpages are counted in the reference
1192 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1193 * under direct I/O, the reference of the head page is 512 and a bit more.)
1194 * This means that when we try to migrate hugepage whose subpages are
1195 * doing direct I/O, some references remain after try_to_unmap() and
1196 * hugepage migration fails without data corruption.
1197 *
1198 * There is also no race when direct I/O is issued on the page under migration,
1199 * because then pte is replaced with migration swap entry and direct I/O code
1200 * will wait in the page fault for migration to complete.
1201 */
1202static int unmap_and_move_huge_page(new_page_t get_new_page,
1203				free_page_t put_new_page, unsigned long private,
1204				struct page *hpage, int force,
1205				enum migrate_mode mode, int reason)
1206{
1207	int rc = -EAGAIN;
1208	int *result = NULL;
1209	int page_was_mapped = 0;
1210	struct page *new_hpage;
1211	struct anon_vma *anon_vma = NULL;
1212
1213	/*
1214	 * Movability of hugepages depends on architectures and hugepage size.
1215	 * This check is necessary because some callers of hugepage migration
1216	 * like soft offline and memory hotremove don't walk through page
1217	 * tables or check whether the hugepage is pmd-based or not before
1218	 * kicking migration.
1219	 */
1220	if (!hugepage_migration_supported(page_hstate(hpage))) {
1221		putback_active_hugepage(hpage);
1222		return -ENOSYS;
1223	}
1224
1225	new_hpage = get_new_page(hpage, private, &result);
1226	if (!new_hpage)
1227		return -ENOMEM;
1228
1229	if (!trylock_page(hpage)) {
1230		if (!force || mode != MIGRATE_SYNC)
 
 
 
 
 
 
1231			goto out;
 
1232		lock_page(hpage);
1233	}
1234
1235	if (PageAnon(hpage))
1236		anon_vma = page_get_anon_vma(hpage);
1237
1238	if (unlikely(!trylock_page(new_hpage)))
1239		goto put_anon;
1240
1241	if (page_mapped(hpage)) {
1242		try_to_unmap(hpage,
1243			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1244		page_was_mapped = 1;
1245	}
1246
1247	if (!page_mapped(hpage))
1248		rc = move_to_new_page(new_hpage, hpage, mode);
1249
1250	if (page_was_mapped)
1251		remove_migration_ptes(hpage,
1252			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1253
1254	unlock_page(new_hpage);
1255
1256put_anon:
1257	if (anon_vma)
1258		put_anon_vma(anon_vma);
1259
1260	if (rc == MIGRATEPAGE_SUCCESS) {
1261		hugetlb_cgroup_migrate(hpage, new_hpage);
1262		put_new_page = NULL;
1263		set_page_owner_migrate_reason(new_hpage, reason);
1264	}
1265
1266	unlock_page(hpage);
1267out:
1268	if (rc != -EAGAIN)
1269		putback_active_hugepage(hpage);
 
 
1270
1271	/*
1272	 * If migration was not successful and there's a freeing callback, use
1273	 * it.  Otherwise, put_page() will drop the reference grabbed during
1274	 * isolation.
1275	 */
1276	if (put_new_page)
1277		put_new_page(new_hpage, private);
1278	else
1279		putback_active_hugepage(new_hpage);
1280
1281	if (result) {
1282		if (rc)
1283			*result = rc;
1284		else
1285			*result = page_to_nid(new_hpage);
1286	}
1287	return rc;
1288}
1289
1290/*
1291 * migrate_pages - migrate the pages specified in a list, to the free pages
1292 *		   supplied as the target for the page migration
1293 *
1294 * @from:		The list of pages to be migrated.
1295 * @get_new_page:	The function used to allocate free pages to be used
1296 *			as the target of the page migration.
1297 * @put_new_page:	The function used to free target pages if migration
1298 *			fails, or NULL if no special handling is necessary.
1299 * @private:		Private data to be passed on to get_new_page()
1300 * @mode:		The migration mode that specifies the constraints for
1301 *			page migration, if any.
1302 * @reason:		The reason for page migration.
1303 *
1304 * The function returns after 10 attempts or if no pages are movable any more
1305 * because the list has become empty or no retryable pages exist any more.
1306 * The caller should call putback_movable_pages() to return pages to the LRU
1307 * or free list only if ret != 0.
1308 *
1309 * Returns the number of pages that were not migrated, or an error code.
1310 */
1311int migrate_pages(struct list_head *from, new_page_t get_new_page,
1312		free_page_t put_new_page, unsigned long private,
1313		enum migrate_mode mode, int reason)
1314{
1315	int retry = 1;
1316	int nr_failed = 0;
1317	int nr_succeeded = 0;
1318	int pass = 0;
1319	struct page *page;
1320	struct page *page2;
1321	int swapwrite = current->flags & PF_SWAPWRITE;
1322	int rc;
1323
1324	if (!swapwrite)
1325		current->flags |= PF_SWAPWRITE;
1326
1327	for(pass = 0; pass < 10 && retry; pass++) {
1328		retry = 0;
1329
1330		list_for_each_entry_safe(page, page2, from, lru) {
 
1331			cond_resched();
1332
1333			if (PageHuge(page))
1334				rc = unmap_and_move_huge_page(get_new_page,
1335						put_new_page, private, page,
1336						pass > 2, mode, reason);
1337			else
1338				rc = unmap_and_move(get_new_page, put_new_page,
1339						private, page, pass > 2, mode,
1340						reason);
1341
1342			switch(rc) {
1343			case -ENOMEM:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1344				nr_failed++;
1345				goto out;
1346			case -EAGAIN:
1347				retry++;
1348				break;
1349			case MIGRATEPAGE_SUCCESS:
1350				nr_succeeded++;
1351				break;
1352			default:
1353				/*
1354				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1355				 * unlike -EAGAIN case, the failed page is
1356				 * removed from migration page list and not
1357				 * retried in the next outer loop.
1358				 */
1359				nr_failed++;
1360				break;
1361			}
1362		}
1363	}
1364	nr_failed += retry;
1365	rc = nr_failed;
1366out:
1367	if (nr_succeeded)
1368		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1369	if (nr_failed)
1370		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1371	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1372
1373	if (!swapwrite)
1374		current->flags &= ~PF_SWAPWRITE;
1375
1376	return rc;
1377}
1378
1379#ifdef CONFIG_NUMA
1380/*
1381 * Move a list of individual pages
1382 */
1383struct page_to_node {
1384	unsigned long addr;
1385	struct page *page;
1386	int node;
1387	int status;
1388};
1389
1390static struct page *new_page_node(struct page *p, unsigned long private,
1391		int **result)
1392{
1393	struct page_to_node *pm = (struct page_to_node *)private;
 
 
 
 
1394
1395	while (pm->node != MAX_NUMNODES && pm->page != p)
1396		pm++;
1397
1398	if (pm->node == MAX_NUMNODES)
1399		return NULL;
 
 
1400
1401	*result = &pm->status;
 
1402
1403	if (PageHuge(p))
1404		return alloc_huge_page_node(page_hstate(compound_head(p)),
1405					pm->node);
1406	else
1407		return __alloc_pages_node(pm->node,
1408				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1409}
1410
1411/*
1412 * Move a set of pages as indicated in the pm array. The addr
1413 * field must be set to the virtual address of the page to be moved
1414 * and the node number must contain a valid target node.
1415 * The pm array ends with node = MAX_NUMNODES.
 
1416 */
1417static int do_move_page_to_node_array(struct mm_struct *mm,
1418				      struct page_to_node *pm,
1419				      int migrate_all)
1420{
 
 
 
1421	int err;
1422	struct page_to_node *pp;
1423	LIST_HEAD(pagelist);
1424
1425	down_read(&mm->mmap_sem);
 
 
 
 
1426
1427	/*
1428	 * Build a list of pages to migrate
1429	 */
1430	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1431		struct vm_area_struct *vma;
1432		struct page *page;
1433
1434		err = -EFAULT;
1435		vma = find_vma(mm, pp->addr);
1436		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1437			goto set_status;
1438
1439		/* FOLL_DUMP to ignore special (like zero) pages */
1440		page = follow_page(vma, pp->addr,
1441				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1442
1443		err = PTR_ERR(page);
1444		if (IS_ERR(page))
1445			goto set_status;
1446
1447		err = -ENOENT;
1448		if (!page)
1449			goto set_status;
1450
1451		pp->page = page;
1452		err = page_to_nid(page);
 
1453
1454		if (err == pp->node)
1455			/*
1456			 * Node already in the right place
1457			 */
1458			goto put_and_set;
1459
1460		err = -EACCES;
1461		if (page_mapcount(page) > 1 &&
1462				!migrate_all)
1463			goto put_and_set;
1464
1465		if (PageHuge(page)) {
1466			if (PageHead(page))
1467				isolate_huge_page(page, &pagelist);
1468			goto put_and_set;
1469		}
1470
1471		err = isolate_lru_page(page);
1472		if (!err) {
1473			list_add_tail(&page->lru, &pagelist);
1474			inc_node_page_state(page, NR_ISOLATED_ANON +
1475					    page_is_file_cache(page));
1476		}
1477put_and_set:
1478		/*
1479		 * Either remove the duplicate refcount from
1480		 * isolate_lru_page() or drop the page ref if it was
1481		 * not isolated.
1482		 */
1483		put_page(page);
1484set_status:
1485		pp->status = err;
1486	}
1487
1488	err = 0;
1489	if (!list_empty(&pagelist)) {
1490		err = migrate_pages(&pagelist, new_page_node, NULL,
1491				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1492		if (err)
1493			putback_movable_pages(&pagelist);
 
 
 
 
 
 
1494	}
1495
 
 
 
 
 
 
 
1496	up_read(&mm->mmap_sem);
1497	return err;
1498}
1499
1500/*
1501 * Migrate an array of page address onto an array of nodes and fill
1502 * the corresponding array of status.
1503 */
1504static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1505			 unsigned long nr_pages,
1506			 const void __user * __user *pages,
1507			 const int __user *nodes,
1508			 int __user *status, int flags)
1509{
1510	struct page_to_node *pm;
1511	unsigned long chunk_nr_pages;
1512	unsigned long chunk_start;
1513	int err;
1514
1515	err = -ENOMEM;
1516	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1517	if (!pm)
1518		goto out;
1519
1520	migrate_prep();
1521
1522	/*
1523	 * Store a chunk of page_to_node array in a page,
1524	 * but keep the last one as a marker
1525	 */
1526	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1527
1528	for (chunk_start = 0;
1529	     chunk_start < nr_pages;
1530	     chunk_start += chunk_nr_pages) {
1531		int j;
 
 
 
 
 
 
 
 
1532
1533		if (chunk_start + chunk_nr_pages > nr_pages)
1534			chunk_nr_pages = nr_pages - chunk_start;
 
1535
1536		/* fill the chunk pm with addrs and nodes from user-space */
1537		for (j = 0; j < chunk_nr_pages; j++) {
1538			const void __user *p;
1539			int node;
 
 
 
 
 
 
 
 
 
1540
1541			err = -EFAULT;
1542			if (get_user(p, pages + j + chunk_start))
1543				goto out_pm;
1544			pm[j].addr = (unsigned long) p;
 
 
 
 
1545
1546			if (get_user(node, nodes + j + chunk_start))
1547				goto out_pm;
 
1548
1549			err = -ENODEV;
1550			if (node < 0 || node >= MAX_NUMNODES)
1551				goto out_pm;
1552
1553			if (!node_state(node, N_MEMORY))
1554				goto out_pm;
1555
1556			err = -EACCES;
1557			if (!node_isset(node, task_nodes))
1558				goto out_pm;
1559
1560			pm[j].node = node;
1561		}
1562
1563		/* End marker for this chunk */
1564		pm[chunk_nr_pages].node = MAX_NUMNODES;
1565
1566		/* Migrate this chunk */
1567		err = do_move_page_to_node_array(mm, pm,
1568						 flags & MPOL_MF_MOVE_ALL);
1569		if (err < 0)
1570			goto out_pm;
1571
1572		/* Return status information */
1573		for (j = 0; j < chunk_nr_pages; j++)
1574			if (put_user(pm[j].status, status + j + chunk_start)) {
1575				err = -EFAULT;
1576				goto out_pm;
1577			}
1578	}
1579	err = 0;
1580
1581out_pm:
1582	free_page((unsigned long)pm);
 
 
 
 
 
 
1583out:
1584	return err;
1585}
1586
1587/*
1588 * Determine the nodes of an array of pages and store it in an array of status.
1589 */
1590static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1591				const void __user **pages, int *status)
1592{
1593	unsigned long i;
1594
1595	down_read(&mm->mmap_sem);
1596
1597	for (i = 0; i < nr_pages; i++) {
1598		unsigned long addr = (unsigned long)(*pages);
1599		struct vm_area_struct *vma;
1600		struct page *page;
1601		int err = -EFAULT;
1602
1603		vma = find_vma(mm, addr);
1604		if (!vma || addr < vma->vm_start)
1605			goto set_status;
1606
1607		/* FOLL_DUMP to ignore special (like zero) pages */
1608		page = follow_page(vma, addr, FOLL_DUMP);
1609
1610		err = PTR_ERR(page);
1611		if (IS_ERR(page))
1612			goto set_status;
1613
1614		err = page ? page_to_nid(page) : -ENOENT;
1615set_status:
1616		*status = err;
1617
1618		pages++;
1619		status++;
1620	}
1621
1622	up_read(&mm->mmap_sem);
1623}
1624
1625/*
1626 * Determine the nodes of a user array of pages and store it in
1627 * a user array of status.
1628 */
1629static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1630			 const void __user * __user *pages,
1631			 int __user *status)
1632{
1633#define DO_PAGES_STAT_CHUNK_NR 16
1634	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1635	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1636
1637	while (nr_pages) {
1638		unsigned long chunk_nr;
1639
1640		chunk_nr = nr_pages;
1641		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1642			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1643
1644		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1645			break;
1646
1647		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1648
1649		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1650			break;
1651
1652		pages += chunk_nr;
1653		status += chunk_nr;
1654		nr_pages -= chunk_nr;
1655	}
1656	return nr_pages ? -EFAULT : 0;
1657}
1658
1659/*
1660 * Move a list of pages in the address space of the currently executing
1661 * process.
1662 */
1663SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1664		const void __user * __user *, pages,
1665		const int __user *, nodes,
1666		int __user *, status, int, flags)
1667{
1668	const struct cred *cred = current_cred(), *tcred;
1669	struct task_struct *task;
1670	struct mm_struct *mm;
1671	int err;
1672	nodemask_t task_nodes;
1673
1674	/* Check flags */
1675	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1676		return -EINVAL;
1677
1678	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1679		return -EPERM;
1680
1681	/* Find the mm_struct */
1682	rcu_read_lock();
1683	task = pid ? find_task_by_vpid(pid) : current;
1684	if (!task) {
1685		rcu_read_unlock();
1686		return -ESRCH;
1687	}
1688	get_task_struct(task);
1689
1690	/*
1691	 * Check if this process has the right to modify the specified
1692	 * process. The right exists if the process has administrative
1693	 * capabilities, superuser privileges or the same
1694	 * userid as the target process.
1695	 */
1696	tcred = __task_cred(task);
1697	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1698	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1699	    !capable(CAP_SYS_NICE)) {
1700		rcu_read_unlock();
1701		err = -EPERM;
1702		goto out;
1703	}
1704	rcu_read_unlock();
1705
1706 	err = security_task_movememory(task);
1707 	if (err)
1708		goto out;
1709
1710	task_nodes = cpuset_mems_allowed(task);
1711	mm = get_task_mm(task);
1712	put_task_struct(task);
1713
1714	if (!mm)
1715		return -EINVAL;
1716
1717	if (nodes)
1718		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1719				    nodes, status, flags);
1720	else
1721		err = do_pages_stat(mm, nr_pages, pages, status);
1722
1723	mmput(mm);
1724	return err;
1725
1726out:
1727	put_task_struct(task);
1728	return err;
1729}
1730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1731#ifdef CONFIG_NUMA_BALANCING
1732/*
1733 * Returns true if this is a safe migration target node for misplaced NUMA
1734 * pages. Currently it only checks the watermarks which crude
1735 */
1736static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1737				   unsigned long nr_migrate_pages)
1738{
1739	int z;
1740
1741	if (!pgdat_reclaimable(pgdat))
1742		return false;
1743
1744	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1745		struct zone *zone = pgdat->node_zones + z;
1746
1747		if (!populated_zone(zone))
1748			continue;
1749
1750		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1751		if (!zone_watermark_ok(zone, 0,
1752				       high_wmark_pages(zone) +
1753				       nr_migrate_pages,
1754				       0, 0))
1755			continue;
1756		return true;
1757	}
1758	return false;
1759}
1760
1761static struct page *alloc_misplaced_dst_page(struct page *page,
1762					   unsigned long data,
1763					   int **result)
1764{
1765	int nid = (int) data;
1766	struct page *newpage;
1767
1768	newpage = __alloc_pages_node(nid,
1769					 (GFP_HIGHUSER_MOVABLE |
1770					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1771					  __GFP_NORETRY | __GFP_NOWARN) &
1772					 ~__GFP_RECLAIM, 0);
1773
1774	return newpage;
1775}
1776
1777/*
1778 * page migration rate limiting control.
1779 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1780 * window of time. Default here says do not migrate more than 1280M per second.
1781 */
1782static unsigned int migrate_interval_millisecs __read_mostly = 100;
1783static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1784
1785/* Returns true if the node is migrate rate-limited after the update */
1786static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1787					unsigned long nr_pages)
1788{
1789	/*
1790	 * Rate-limit the amount of data that is being migrated to a node.
1791	 * Optimal placement is no good if the memory bus is saturated and
1792	 * all the time is being spent migrating!
1793	 */
1794	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1795		spin_lock(&pgdat->numabalancing_migrate_lock);
1796		pgdat->numabalancing_migrate_nr_pages = 0;
1797		pgdat->numabalancing_migrate_next_window = jiffies +
1798			msecs_to_jiffies(migrate_interval_millisecs);
1799		spin_unlock(&pgdat->numabalancing_migrate_lock);
1800	}
1801	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1802		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1803								nr_pages);
1804		return true;
1805	}
1806
1807	/*
1808	 * This is an unlocked non-atomic update so errors are possible.
1809	 * The consequences are failing to migrate when we potentiall should
1810	 * have which is not severe enough to warrant locking. If it is ever
1811	 * a problem, it can be converted to a per-cpu counter.
1812	 */
1813	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1814	return false;
1815}
1816
1817static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1818{
1819	int page_lru;
1820
1821	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1822
1823	/* Avoid migrating to a node that is nearly full */
1824	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1825		return 0;
1826
1827	if (isolate_lru_page(page))
1828		return 0;
1829
1830	/*
1831	 * migrate_misplaced_transhuge_page() skips page migration's usual
1832	 * check on page_count(), so we must do it here, now that the page
1833	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1834	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1835	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1836	 */
1837	if (PageTransHuge(page) && page_count(page) != 3) {
1838		putback_lru_page(page);
1839		return 0;
1840	}
1841
1842	page_lru = page_is_file_cache(page);
1843	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1844				hpage_nr_pages(page));
1845
1846	/*
1847	 * Isolating the page has taken another reference, so the
1848	 * caller's reference can be safely dropped without the page
1849	 * disappearing underneath us during migration.
1850	 */
1851	put_page(page);
1852	return 1;
1853}
1854
1855bool pmd_trans_migrating(pmd_t pmd)
1856{
1857	struct page *page = pmd_page(pmd);
1858	return PageLocked(page);
1859}
1860
1861/*
1862 * Attempt to migrate a misplaced page to the specified destination
1863 * node. Caller is expected to have an elevated reference count on
1864 * the page that will be dropped by this function before returning.
1865 */
1866int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1867			   int node)
1868{
1869	pg_data_t *pgdat = NODE_DATA(node);
1870	int isolated;
1871	int nr_remaining;
1872	LIST_HEAD(migratepages);
1873
1874	/*
1875	 * Don't migrate file pages that are mapped in multiple processes
1876	 * with execute permissions as they are probably shared libraries.
1877	 */
1878	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1879	    (vma->vm_flags & VM_EXEC))
1880		goto out;
1881
1882	/*
 
 
 
 
 
 
 
1883	 * Rate-limit the amount of data that is being migrated to a node.
1884	 * Optimal placement is no good if the memory bus is saturated and
1885	 * all the time is being spent migrating!
1886	 */
1887	if (numamigrate_update_ratelimit(pgdat, 1))
1888		goto out;
1889
1890	isolated = numamigrate_isolate_page(pgdat, page);
1891	if (!isolated)
1892		goto out;
1893
1894	list_add(&page->lru, &migratepages);
1895	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1896				     NULL, node, MIGRATE_ASYNC,
1897				     MR_NUMA_MISPLACED);
1898	if (nr_remaining) {
1899		if (!list_empty(&migratepages)) {
1900			list_del(&page->lru);
1901			dec_node_page_state(page, NR_ISOLATED_ANON +
1902					page_is_file_cache(page));
1903			putback_lru_page(page);
1904		}
1905		isolated = 0;
1906	} else
1907		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1908	BUG_ON(!list_empty(&migratepages));
1909	return isolated;
1910
1911out:
1912	put_page(page);
1913	return 0;
1914}
1915#endif /* CONFIG_NUMA_BALANCING */
1916
1917#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1918/*
1919 * Migrates a THP to a given target node. page must be locked and is unlocked
1920 * before returning.
1921 */
1922int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1923				struct vm_area_struct *vma,
1924				pmd_t *pmd, pmd_t entry,
1925				unsigned long address,
1926				struct page *page, int node)
1927{
1928	spinlock_t *ptl;
1929	pg_data_t *pgdat = NODE_DATA(node);
1930	int isolated = 0;
1931	struct page *new_page = NULL;
1932	int page_lru = page_is_file_cache(page);
1933	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1934	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1935	pmd_t orig_entry;
1936
1937	/*
1938	 * Rate-limit the amount of data that is being migrated to a node.
1939	 * Optimal placement is no good if the memory bus is saturated and
1940	 * all the time is being spent migrating!
1941	 */
1942	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1943		goto out_dropref;
1944
1945	new_page = alloc_pages_node(node,
1946		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1947		HPAGE_PMD_ORDER);
1948	if (!new_page)
1949		goto out_fail;
1950	prep_transhuge_page(new_page);
1951
1952	isolated = numamigrate_isolate_page(pgdat, page);
1953	if (!isolated) {
1954		put_page(new_page);
1955		goto out_fail;
1956	}
1957	/*
1958	 * We are not sure a pending tlb flush here is for a huge page
1959	 * mapping or not. Hence use the tlb range variant
1960	 */
1961	if (mm_tlb_flush_pending(mm))
1962		flush_tlb_range(vma, mmun_start, mmun_end);
1963
1964	/* Prepare a page as a migration target */
1965	__SetPageLocked(new_page);
1966	__SetPageSwapBacked(new_page);
 
1967
1968	/* anon mapping, we can simply copy page->mapping to the new page: */
1969	new_page->mapping = page->mapping;
1970	new_page->index = page->index;
1971	migrate_page_copy(new_page, page);
1972	WARN_ON(PageLRU(new_page));
1973
1974	/* Recheck the target PMD */
1975	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1976	ptl = pmd_lock(mm, pmd);
1977	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1978fail_putback:
1979		spin_unlock(ptl);
1980		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1981
1982		/* Reverse changes made by migrate_page_copy() */
1983		if (TestClearPageActive(new_page))
1984			SetPageActive(page);
1985		if (TestClearPageUnevictable(new_page))
1986			SetPageUnevictable(page);
1987
1988		unlock_page(new_page);
1989		put_page(new_page);		/* Free it */
1990
1991		/* Retake the callers reference and putback on LRU */
1992		get_page(page);
1993		putback_lru_page(page);
1994		mod_node_page_state(page_pgdat(page),
1995			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1996
1997		goto out_unlock;
1998	}
1999
2000	orig_entry = *pmd;
2001	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2002	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2003
2004	/*
2005	 * Clear the old entry under pagetable lock and establish the new PTE.
2006	 * Any parallel GUP will either observe the old page blocking on the
2007	 * page lock, block on the page table lock or observe the new page.
2008	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2009	 * guarantee the copy is visible before the pagetable update.
2010	 */
2011	flush_cache_range(vma, mmun_start, mmun_end);
2012	page_add_anon_rmap(new_page, vma, mmun_start, true);
2013	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2014	set_pmd_at(mm, mmun_start, pmd, entry);
2015	update_mmu_cache_pmd(vma, address, &entry);
2016
2017	if (page_count(page) != 2) {
2018		set_pmd_at(mm, mmun_start, pmd, orig_entry);
2019		flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2020		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2021		update_mmu_cache_pmd(vma, address, &entry);
2022		page_remove_rmap(new_page, true);
2023		goto fail_putback;
2024	}
2025
2026	mlock_migrate_page(new_page, page);
2027	page_remove_rmap(page, true);
2028	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2029
2030	spin_unlock(ptl);
2031	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 
 
 
 
2032
2033	/* Take an "isolate" reference and put new page on the LRU. */
2034	get_page(new_page);
2035	putback_lru_page(new_page);
2036
2037	unlock_page(new_page);
2038	unlock_page(page);
2039	put_page(page);			/* Drop the rmap reference */
2040	put_page(page);			/* Drop the LRU isolation reference */
2041
2042	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2043	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2044
2045	mod_node_page_state(page_pgdat(page),
2046			NR_ISOLATED_ANON + page_lru,
2047			-HPAGE_PMD_NR);
2048	return isolated;
2049
2050out_fail:
2051	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2052out_dropref:
2053	ptl = pmd_lock(mm, pmd);
2054	if (pmd_same(*pmd, entry)) {
2055		entry = pmd_modify(entry, vma->vm_page_prot);
2056		set_pmd_at(mm, mmun_start, pmd, entry);
2057		update_mmu_cache_pmd(vma, address, &entry);
2058	}
2059	spin_unlock(ptl);
2060
2061out_unlock:
2062	unlock_page(page);
2063	put_page(page);
2064	return 0;
2065}
2066#endif /* CONFIG_NUMA_BALANCING */
2067
2068#endif /* CONFIG_NUMA */