Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * fs/kernfs/mount.c - kernfs mount implementation
  3 *
  4 * Copyright (c) 2001-3 Patrick Mochel
  5 * Copyright (c) 2007 SUSE Linux Products GmbH
  6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
  7 *
  8 * This file is released under the GPLv2.
  9 */
 10
 11#include <linux/fs.h>
 12#include <linux/mount.h>
 13#include <linux/init.h>
 14#include <linux/magic.h>
 15#include <linux/slab.h>
 16#include <linux/pagemap.h>
 17#include <linux/namei.h>
 18#include <linux/seq_file.h>
 19#include <linux/exportfs.h>
 
 
 20
 21#include "kernfs-internal.h"
 22
 23struct kmem_cache *kernfs_node_cache;
 24
 25static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
 26{
 27	struct kernfs_root *root = kernfs_info(sb)->root;
 28	struct kernfs_syscall_ops *scops = root->syscall_ops;
 29
 30	if (scops && scops->remount_fs)
 31		return scops->remount_fs(root, flags, data);
 32	return 0;
 33}
 34
 35static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
 36{
 37	struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
 38	struct kernfs_syscall_ops *scops = root->syscall_ops;
 39
 40	if (scops && scops->show_options)
 41		return scops->show_options(sf, root);
 42	return 0;
 43}
 44
 45static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
 46{
 47	struct kernfs_node *node = kernfs_dentry_node(dentry);
 48	struct kernfs_root *root = kernfs_root(node);
 49	struct kernfs_syscall_ops *scops = root->syscall_ops;
 50
 51	if (scops && scops->show_path)
 52		return scops->show_path(sf, node, root);
 53
 54	seq_dentry(sf, dentry, " \t\n\\");
 55	return 0;
 56}
 57
 
 
 
 
 
 
 
 58const struct super_operations kernfs_sops = {
 59	.statfs		= simple_statfs,
 60	.drop_inode	= generic_delete_inode,
 61	.evict_inode	= kernfs_evict_inode,
 62
 63	.remount_fs	= kernfs_sop_remount_fs,
 64	.show_options	= kernfs_sop_show_options,
 65	.show_path	= kernfs_sop_show_path,
 66};
 67
 68/*
 69 * Similar to kernfs_fh_get_inode, this one gets kernfs node from inode
 70 * number and generation
 71 */
 72struct kernfs_node *kernfs_get_node_by_id(struct kernfs_root *root,
 73	const union kernfs_node_id *id)
 74{
 75	struct kernfs_node *kn;
 76
 77	kn = kernfs_find_and_get_node_by_ino(root, id->ino);
 78	if (!kn)
 79		return NULL;
 80	if (kn->id.generation != id->generation) {
 81		kernfs_put(kn);
 82		return NULL;
 83	}
 84	return kn;
 
 
 
 85}
 86
 87static struct inode *kernfs_fh_get_inode(struct super_block *sb,
 88		u64 ino, u32 generation)
 
 89{
 90	struct kernfs_super_info *info = kernfs_info(sb);
 91	struct inode *inode;
 92	struct kernfs_node *kn;
 
 
 93
 94	if (ino == 0)
 95		return ERR_PTR(-ESTALE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 96
 97	kn = kernfs_find_and_get_node_by_ino(info->root, ino);
 98	if (!kn)
 99		return ERR_PTR(-ESTALE);
100	inode = kernfs_get_inode(sb, kn);
101	kernfs_put(kn);
102	if (!inode)
103		return ERR_PTR(-ESTALE);
104
105	if (generation && inode->i_generation != generation) {
106		/* we didn't find the right inode.. */
107		iput(inode);
108		return ERR_PTR(-ESTALE);
 
 
 
 
109	}
110	return inode;
 
 
 
111}
112
113static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
114		int fh_len, int fh_type)
 
115{
116	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
117				    kernfs_fh_get_inode);
118}
119
120static struct dentry *kernfs_fh_to_parent(struct super_block *sb, struct fid *fid,
121		int fh_len, int fh_type)
 
122{
123	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
124				    kernfs_fh_get_inode);
125}
126
127static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
128{
129	struct kernfs_node *kn = kernfs_dentry_node(child);
130
131	return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
132}
133
134static const struct export_operations kernfs_export_ops = {
 
135	.fh_to_dentry	= kernfs_fh_to_dentry,
136	.fh_to_parent	= kernfs_fh_to_parent,
137	.get_parent	= kernfs_get_parent_dentry,
138};
139
140/**
141 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
142 * @sb: the super_block in question
143 *
144 * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
145 * %NULL is returned.
146 */
147struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
148{
149	if (sb->s_op == &kernfs_sops)
150		return kernfs_info(sb)->root;
151	return NULL;
152}
153
154/*
155 * find the next ancestor in the path down to @child, where @parent was the
156 * ancestor whose descendant we want to find.
157 *
158 * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
159 * node.  If @parent is b, then we return the node for c.
160 * Passing in d as @parent is not ok.
161 */
162static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
163					      struct kernfs_node *parent)
164{
165	if (child == parent) {
166		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
167		return NULL;
168	}
169
170	while (child->parent != parent) {
171		if (!child->parent)
172			return NULL;
173		child = child->parent;
174	}
175
176	return child;
177}
178
179/**
180 * kernfs_node_dentry - get a dentry for the given kernfs_node
181 * @kn: kernfs_node for which a dentry is needed
182 * @sb: the kernfs super_block
 
 
183 */
184struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
185				  struct super_block *sb)
186{
187	struct dentry *dentry;
188	struct kernfs_node *knparent = NULL;
189
190	BUG_ON(sb->s_op != &kernfs_sops);
191
192	dentry = dget(sb->s_root);
193
194	/* Check if this is the root kernfs_node */
195	if (!kn->parent)
196		return dentry;
197
198	knparent = find_next_ancestor(kn, NULL);
199	if (WARN_ON(!knparent))
 
200		return ERR_PTR(-EINVAL);
 
201
202	do {
203		struct dentry *dtmp;
204		struct kernfs_node *kntmp;
205
206		if (kn == knparent)
207			return dentry;
208		kntmp = find_next_ancestor(kn, knparent);
209		if (WARN_ON(!kntmp))
 
210			return ERR_PTR(-EINVAL);
211		dtmp = lookup_one_len_unlocked(kntmp->name, dentry,
 
212					       strlen(kntmp->name));
213		dput(dentry);
214		if (IS_ERR(dtmp))
215			return dtmp;
216		knparent = kntmp;
217		dentry = dtmp;
218	} while (true);
219}
220
221static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
222{
223	struct kernfs_super_info *info = kernfs_info(sb);
 
224	struct inode *inode;
225	struct dentry *root;
226
227	info->sb = sb;
228	/* Userspace would break if executables or devices appear on sysfs */
229	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
230	sb->s_blocksize = PAGE_SIZE;
231	sb->s_blocksize_bits = PAGE_SHIFT;
232	sb->s_magic = magic;
233	sb->s_op = &kernfs_sops;
234	sb->s_xattr = kernfs_xattr_handlers;
235	if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
236		sb->s_export_op = &kernfs_export_ops;
237	sb->s_time_gran = 1;
238
 
 
 
239	/* get root inode, initialize and unlock it */
240	mutex_lock(&kernfs_mutex);
241	inode = kernfs_get_inode(sb, info->root->kn);
242	mutex_unlock(&kernfs_mutex);
243	if (!inode) {
244		pr_debug("kernfs: could not get root inode\n");
245		return -ENOMEM;
246	}
247
248	/* instantiate and link root dentry */
249	root = d_make_root(inode);
250	if (!root) {
251		pr_debug("%s: could not get root dentry!\n", __func__);
252		return -ENOMEM;
253	}
254	sb->s_root = root;
255	sb->s_d_op = &kernfs_dops;
256	return 0;
257}
258
259static int kernfs_test_super(struct super_block *sb, void *data)
260{
261	struct kernfs_super_info *sb_info = kernfs_info(sb);
262	struct kernfs_super_info *info = data;
263
264	return sb_info->root == info->root && sb_info->ns == info->ns;
265}
266
267static int kernfs_set_super(struct super_block *sb, void *data)
268{
269	int error;
270	error = set_anon_super(sb, data);
271	if (!error)
272		sb->s_fs_info = data;
273	return error;
274}
275
276/**
277 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
278 * @sb: super_block of interest
279 *
280 * Return the namespace tag associated with kernfs super_block @sb.
281 */
282const void *kernfs_super_ns(struct super_block *sb)
283{
284	struct kernfs_super_info *info = kernfs_info(sb);
285
286	return info->ns;
287}
288
289/**
290 * kernfs_mount_ns - kernfs mount helper
291 * @fs_type: file_system_type of the fs being mounted
292 * @flags: mount flags specified for the mount
293 * @root: kernfs_root of the hierarchy being mounted
294 * @magic: file system specific magic number
295 * @new_sb_created: tell the caller if we allocated a new superblock
296 * @ns: optional namespace tag of the mount
297 *
298 * This is to be called from each kernfs user's file_system_type->mount()
299 * implementation, which should pass through the specified @fs_type and
300 * @flags, and specify the hierarchy and namespace tag to mount via @root
301 * and @ns, respectively.
302 *
303 * The return value can be passed to the vfs layer verbatim.
304 */
305struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
306				struct kernfs_root *root, unsigned long magic,
307				bool *new_sb_created, const void *ns)
308{
 
309	struct super_block *sb;
310	struct kernfs_super_info *info;
311	int error;
312
313	info = kzalloc(sizeof(*info), GFP_KERNEL);
314	if (!info)
315		return ERR_PTR(-ENOMEM);
316
317	info->root = root;
318	info->ns = ns;
319	INIT_LIST_HEAD(&info->node);
320
321	sb = sget_userns(fs_type, kernfs_test_super, kernfs_set_super, flags,
322			 &init_user_ns, info);
323	if (IS_ERR(sb) || sb->s_fs_info != info)
324		kfree(info);
325	if (IS_ERR(sb))
326		return ERR_CAST(sb);
327
328	if (new_sb_created)
329		*new_sb_created = !sb->s_root;
330
331	if (!sb->s_root) {
332		struct kernfs_super_info *info = kernfs_info(sb);
 
333
334		error = kernfs_fill_super(sb, magic);
 
 
335		if (error) {
336			deactivate_locked_super(sb);
337			return ERR_PTR(error);
338		}
339		sb->s_flags |= SB_ACTIVE;
340
341		mutex_lock(&kernfs_mutex);
342		list_add(&info->node, &root->supers);
343		mutex_unlock(&kernfs_mutex);
 
 
344	}
345
346	return dget(sb->s_root);
 
 
 
 
 
 
 
 
347}
348
349/**
350 * kernfs_kill_sb - kill_sb for kernfs
351 * @sb: super_block being killed
352 *
353 * This can be used directly for file_system_type->kill_sb().  If a kernfs
354 * user needs extra cleanup, it can implement its own kill_sb() and call
355 * this function at the end.
356 */
357void kernfs_kill_sb(struct super_block *sb)
358{
359	struct kernfs_super_info *info = kernfs_info(sb);
 
360
361	mutex_lock(&kernfs_mutex);
362	list_del(&info->node);
363	mutex_unlock(&kernfs_mutex);
364
365	/*
366	 * Remove the superblock from fs_supers/s_instances
367	 * so we can't find it, before freeing kernfs_super_info.
368	 */
369	kill_anon_super(sb);
370	kfree(info);
371}
372
373/**
374 * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
375 * @kernfs_root: the kernfs_root in question
376 * @ns: the namespace tag
377 *
378 * Pin the superblock so the superblock won't be destroyed in subsequent
379 * operations.  This can be used to block ->kill_sb() which may be useful
380 * for kernfs users which dynamically manage superblocks.
381 *
382 * Returns NULL if there's no superblock associated to this kernfs_root, or
383 * -EINVAL if the superblock is being freed.
384 */
385struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
386{
387	struct kernfs_super_info *info;
388	struct super_block *sb = NULL;
389
390	mutex_lock(&kernfs_mutex);
391	list_for_each_entry(info, &root->supers, node) {
392		if (info->ns == ns) {
393			sb = info->sb;
394			if (!atomic_inc_not_zero(&info->sb->s_active))
395				sb = ERR_PTR(-EINVAL);
396			break;
397		}
398	}
399	mutex_unlock(&kernfs_mutex);
400	return sb;
401}
402
403void __init kernfs_init(void)
404{
 
 
405
406	/*
407	 * the slab is freed in RCU context, so kernfs_find_and_get_node_by_ino
408	 * can access the slab lock free. This could introduce stale nodes,
409	 * please see how kernfs_find_and_get_node_by_ino filters out stale
410	 * nodes.
411	 */
412	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
413					      sizeof(struct kernfs_node),
414					      0,
415					      SLAB_PANIC | SLAB_TYPESAFE_BY_RCU,
416					      NULL);
 
 
 
 
 
417}
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * fs/kernfs/mount.c - kernfs mount implementation
  4 *
  5 * Copyright (c) 2001-3 Patrick Mochel
  6 * Copyright (c) 2007 SUSE Linux Products GmbH
  7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
 
 
  8 */
  9
 10#include <linux/fs.h>
 11#include <linux/mount.h>
 12#include <linux/init.h>
 13#include <linux/magic.h>
 14#include <linux/slab.h>
 15#include <linux/pagemap.h>
 16#include <linux/namei.h>
 17#include <linux/seq_file.h>
 18#include <linux/exportfs.h>
 19#include <linux/uuid.h>
 20#include <linux/statfs.h>
 21
 22#include "kernfs-internal.h"
 23
 24struct kmem_cache *kernfs_node_cache __ro_after_init;
 25struct kmem_cache *kernfs_iattrs_cache __ro_after_init;
 26struct kernfs_global_locks *kernfs_locks __ro_after_init;
 
 
 
 
 
 
 
 
 27
 28static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
 29{
 30	struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
 31	struct kernfs_syscall_ops *scops = root->syscall_ops;
 32
 33	if (scops && scops->show_options)
 34		return scops->show_options(sf, root);
 35	return 0;
 36}
 37
 38static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
 39{
 40	struct kernfs_node *node = kernfs_dentry_node(dentry);
 41	struct kernfs_root *root = kernfs_root(node);
 42	struct kernfs_syscall_ops *scops = root->syscall_ops;
 43
 44	if (scops && scops->show_path)
 45		return scops->show_path(sf, node, root);
 46
 47	seq_dentry(sf, dentry, " \t\n\\");
 48	return 0;
 49}
 50
 51static int kernfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 52{
 53	simple_statfs(dentry, buf);
 54	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
 55	return 0;
 56}
 57
 58const struct super_operations kernfs_sops = {
 59	.statfs		= kernfs_statfs,
 60	.drop_inode	= generic_delete_inode,
 61	.evict_inode	= kernfs_evict_inode,
 62
 
 63	.show_options	= kernfs_sop_show_options,
 64	.show_path	= kernfs_sop_show_path,
 65};
 66
 67static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len,
 68			    struct inode *parent)
 
 
 
 
 69{
 70	struct kernfs_node *kn = inode->i_private;
 71
 72	if (*max_len < 2) {
 73		*max_len = 2;
 74		return FILEID_INVALID;
 
 
 
 75	}
 76
 77	*max_len = 2;
 78	*(u64 *)fh = kn->id;
 79	return FILEID_KERNFS;
 80}
 81
 82static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb,
 83					    struct fid *fid, int fh_len,
 84					    int fh_type, bool get_parent)
 85{
 86	struct kernfs_super_info *info = kernfs_info(sb);
 
 87	struct kernfs_node *kn;
 88	struct inode *inode;
 89	u64 id;
 90
 91	if (fh_len < 2)
 92		return NULL;
 93
 94	switch (fh_type) {
 95	case FILEID_KERNFS:
 96		id = *(u64 *)fid;
 97		break;
 98	case FILEID_INO32_GEN:
 99	case FILEID_INO32_GEN_PARENT:
100		/*
101		 * blk_log_action() exposes "LOW32,HIGH32" pair without
102		 * type and userland can call us with generic fid
103		 * constructed from them.  Combine it back to ID.  See
104		 * blk_log_action().
105		 */
106		id = ((u64)fid->i32.gen << 32) | fid->i32.ino;
107		break;
108	default:
109		return NULL;
110	}
111
112	kn = kernfs_find_and_get_node_by_id(info->root, id);
113	if (!kn)
114		return ERR_PTR(-ESTALE);
 
 
 
 
115
116	if (get_parent) {
117		struct kernfs_node *parent;
118
119		parent = kernfs_get_parent(kn);
120		kernfs_put(kn);
121		kn = parent;
122		if (!kn)
123			return ERR_PTR(-ESTALE);
124	}
125
126	inode = kernfs_get_inode(sb, kn);
127	kernfs_put(kn);
128	return d_obtain_alias(inode);
129}
130
131static struct dentry *kernfs_fh_to_dentry(struct super_block *sb,
132					  struct fid *fid, int fh_len,
133					  int fh_type)
134{
135	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false);
 
136}
137
138static struct dentry *kernfs_fh_to_parent(struct super_block *sb,
139					  struct fid *fid, int fh_len,
140					  int fh_type)
141{
142	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true);
 
143}
144
145static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
146{
147	struct kernfs_node *kn = kernfs_dentry_node(child);
148
149	return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
150}
151
152static const struct export_operations kernfs_export_ops = {
153	.encode_fh	= kernfs_encode_fh,
154	.fh_to_dentry	= kernfs_fh_to_dentry,
155	.fh_to_parent	= kernfs_fh_to_parent,
156	.get_parent	= kernfs_get_parent_dentry,
157};
158
159/**
160 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
161 * @sb: the super_block in question
162 *
163 * Return: the kernfs_root associated with @sb.  If @sb is not a kernfs one,
164 * %NULL is returned.
165 */
166struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
167{
168	if (sb->s_op == &kernfs_sops)
169		return kernfs_info(sb)->root;
170	return NULL;
171}
172
173/*
174 * find the next ancestor in the path down to @child, where @parent was the
175 * ancestor whose descendant we want to find.
176 *
177 * Say the path is /a/b/c/d.  @child is d, @parent is %NULL.  We return the root
178 * node.  If @parent is b, then we return the node for c.
179 * Passing in d as @parent is not ok.
180 */
181static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
182					      struct kernfs_node *parent)
183{
184	if (child == parent) {
185		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
186		return NULL;
187	}
188
189	while (child->parent != parent) {
190		if (!child->parent)
191			return NULL;
192		child = child->parent;
193	}
194
195	return child;
196}
197
198/**
199 * kernfs_node_dentry - get a dentry for the given kernfs_node
200 * @kn: kernfs_node for which a dentry is needed
201 * @sb: the kernfs super_block
202 *
203 * Return: the dentry pointer
204 */
205struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
206				  struct super_block *sb)
207{
208	struct dentry *dentry;
209	struct kernfs_node *knparent = NULL;
210
211	BUG_ON(sb->s_op != &kernfs_sops);
212
213	dentry = dget(sb->s_root);
214
215	/* Check if this is the root kernfs_node */
216	if (!kn->parent)
217		return dentry;
218
219	knparent = find_next_ancestor(kn, NULL);
220	if (WARN_ON(!knparent)) {
221		dput(dentry);
222		return ERR_PTR(-EINVAL);
223	}
224
225	do {
226		struct dentry *dtmp;
227		struct kernfs_node *kntmp;
228
229		if (kn == knparent)
230			return dentry;
231		kntmp = find_next_ancestor(kn, knparent);
232		if (WARN_ON(!kntmp)) {
233			dput(dentry);
234			return ERR_PTR(-EINVAL);
235		}
236		dtmp = lookup_positive_unlocked(kntmp->name, dentry,
237					       strlen(kntmp->name));
238		dput(dentry);
239		if (IS_ERR(dtmp))
240			return dtmp;
241		knparent = kntmp;
242		dentry = dtmp;
243	} while (true);
244}
245
246static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc)
247{
248	struct kernfs_super_info *info = kernfs_info(sb);
249	struct kernfs_root *kf_root = kfc->root;
250	struct inode *inode;
251	struct dentry *root;
252
253	info->sb = sb;
254	/* Userspace would break if executables or devices appear on sysfs */
255	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
256	sb->s_blocksize = PAGE_SIZE;
257	sb->s_blocksize_bits = PAGE_SHIFT;
258	sb->s_magic = kfc->magic;
259	sb->s_op = &kernfs_sops;
260	sb->s_xattr = kernfs_xattr_handlers;
261	if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
262		sb->s_export_op = &kernfs_export_ops;
263	sb->s_time_gran = 1;
264
265	/* sysfs dentries and inodes don't require IO to create */
266	sb->s_shrink->seeks = 0;
267
268	/* get root inode, initialize and unlock it */
269	down_read(&kf_root->kernfs_rwsem);
270	inode = kernfs_get_inode(sb, info->root->kn);
271	up_read(&kf_root->kernfs_rwsem);
272	if (!inode) {
273		pr_debug("kernfs: could not get root inode\n");
274		return -ENOMEM;
275	}
276
277	/* instantiate and link root dentry */
278	root = d_make_root(inode);
279	if (!root) {
280		pr_debug("%s: could not get root dentry!\n", __func__);
281		return -ENOMEM;
282	}
283	sb->s_root = root;
284	sb->s_d_op = &kernfs_dops;
285	return 0;
286}
287
288static int kernfs_test_super(struct super_block *sb, struct fs_context *fc)
289{
290	struct kernfs_super_info *sb_info = kernfs_info(sb);
291	struct kernfs_super_info *info = fc->s_fs_info;
292
293	return sb_info->root == info->root && sb_info->ns == info->ns;
294}
295
296static int kernfs_set_super(struct super_block *sb, struct fs_context *fc)
297{
298	struct kernfs_fs_context *kfc = fc->fs_private;
299
300	kfc->ns_tag = NULL;
301	return set_anon_super_fc(sb, fc);
 
302}
303
304/**
305 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
306 * @sb: super_block of interest
307 *
308 * Return: the namespace tag associated with kernfs super_block @sb.
309 */
310const void *kernfs_super_ns(struct super_block *sb)
311{
312	struct kernfs_super_info *info = kernfs_info(sb);
313
314	return info->ns;
315}
316
317/**
318 * kernfs_get_tree - kernfs filesystem access/retrieval helper
319 * @fc: The filesystem context.
 
 
 
 
 
320 *
321 * This is to be called from each kernfs user's fs_context->ops->get_tree()
322 * implementation, which should set the specified ->@fs_type and ->@flags, and
323 * specify the hierarchy and namespace tag to mount via ->@root and ->@ns,
324 * respectively.
325 *
326 * Return: %0 on success, -errno on failure.
327 */
328int kernfs_get_tree(struct fs_context *fc)
 
 
329{
330	struct kernfs_fs_context *kfc = fc->fs_private;
331	struct super_block *sb;
332	struct kernfs_super_info *info;
333	int error;
334
335	info = kzalloc(sizeof(*info), GFP_KERNEL);
336	if (!info)
337		return -ENOMEM;
338
339	info->root = kfc->root;
340	info->ns = kfc->ns_tag;
341	INIT_LIST_HEAD(&info->node);
342
343	fc->s_fs_info = info;
344	sb = sget_fc(fc, kernfs_test_super, kernfs_set_super);
 
 
345	if (IS_ERR(sb))
346		return PTR_ERR(sb);
 
 
 
347
348	if (!sb->s_root) {
349		struct kernfs_super_info *info = kernfs_info(sb);
350		struct kernfs_root *root = kfc->root;
351
352		kfc->new_sb_created = true;
353
354		error = kernfs_fill_super(sb, kfc);
355		if (error) {
356			deactivate_locked_super(sb);
357			return error;
358		}
359		sb->s_flags |= SB_ACTIVE;
360
361		uuid_gen(&sb->s_uuid);
362
363		down_write(&root->kernfs_supers_rwsem);
364		list_add(&info->node, &info->root->supers);
365		up_write(&root->kernfs_supers_rwsem);
366	}
367
368	fc->root = dget(sb->s_root);
369	return 0;
370}
371
372void kernfs_free_fs_context(struct fs_context *fc)
373{
374	/* Note that we don't deal with kfc->ns_tag here. */
375	kfree(fc->s_fs_info);
376	fc->s_fs_info = NULL;
377}
378
379/**
380 * kernfs_kill_sb - kill_sb for kernfs
381 * @sb: super_block being killed
382 *
383 * This can be used directly for file_system_type->kill_sb().  If a kernfs
384 * user needs extra cleanup, it can implement its own kill_sb() and call
385 * this function at the end.
386 */
387void kernfs_kill_sb(struct super_block *sb)
388{
389	struct kernfs_super_info *info = kernfs_info(sb);
390	struct kernfs_root *root = info->root;
391
392	down_write(&root->kernfs_supers_rwsem);
393	list_del(&info->node);
394	up_write(&root->kernfs_supers_rwsem);
395
396	/*
397	 * Remove the superblock from fs_supers/s_instances
398	 * so we can't find it, before freeing kernfs_super_info.
399	 */
400	kill_anon_super(sb);
401	kfree(info);
402}
403
404static void __init kernfs_mutex_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
405{
406	int count;
 
407
408	for (count = 0; count < NR_KERNFS_LOCKS; count++)
409		mutex_init(&kernfs_locks->open_file_mutex[count]);
 
 
 
 
 
 
 
 
 
410}
411
412static void __init kernfs_lock_init(void)
413{
414	kernfs_locks = kmalloc(sizeof(struct kernfs_global_locks), GFP_KERNEL);
415	WARN_ON(!kernfs_locks);
416
417	kernfs_mutex_init();
418}
419
420void __init kernfs_init(void)
421{
 
422	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
423					      sizeof(struct kernfs_node),
424					      0, SLAB_PANIC, NULL);
425
426	/* Creates slab cache for kernfs inode attributes */
427	kernfs_iattrs_cache  = kmem_cache_create("kernfs_iattrs_cache",
428					      sizeof(struct kernfs_iattrs),
429					      0, SLAB_PANIC, NULL);
430
431	kernfs_lock_init();
432}