Loading...
1/*
2 * fs/kernfs/mount.c - kernfs mount implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11#include <linux/fs.h>
12#include <linux/mount.h>
13#include <linux/init.h>
14#include <linux/magic.h>
15#include <linux/slab.h>
16#include <linux/pagemap.h>
17#include <linux/namei.h>
18#include <linux/seq_file.h>
19#include <linux/exportfs.h>
20
21#include "kernfs-internal.h"
22
23struct kmem_cache *kernfs_node_cache;
24
25static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
26{
27 struct kernfs_root *root = kernfs_info(sb)->root;
28 struct kernfs_syscall_ops *scops = root->syscall_ops;
29
30 if (scops && scops->remount_fs)
31 return scops->remount_fs(root, flags, data);
32 return 0;
33}
34
35static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
36{
37 struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
38 struct kernfs_syscall_ops *scops = root->syscall_ops;
39
40 if (scops && scops->show_options)
41 return scops->show_options(sf, root);
42 return 0;
43}
44
45static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
46{
47 struct kernfs_node *node = kernfs_dentry_node(dentry);
48 struct kernfs_root *root = kernfs_root(node);
49 struct kernfs_syscall_ops *scops = root->syscall_ops;
50
51 if (scops && scops->show_path)
52 return scops->show_path(sf, node, root);
53
54 seq_dentry(sf, dentry, " \t\n\\");
55 return 0;
56}
57
58const struct super_operations kernfs_sops = {
59 .statfs = simple_statfs,
60 .drop_inode = generic_delete_inode,
61 .evict_inode = kernfs_evict_inode,
62
63 .remount_fs = kernfs_sop_remount_fs,
64 .show_options = kernfs_sop_show_options,
65 .show_path = kernfs_sop_show_path,
66};
67
68/*
69 * Similar to kernfs_fh_get_inode, this one gets kernfs node from inode
70 * number and generation
71 */
72struct kernfs_node *kernfs_get_node_by_id(struct kernfs_root *root,
73 const union kernfs_node_id *id)
74{
75 struct kernfs_node *kn;
76
77 kn = kernfs_find_and_get_node_by_ino(root, id->ino);
78 if (!kn)
79 return NULL;
80 if (kn->id.generation != id->generation) {
81 kernfs_put(kn);
82 return NULL;
83 }
84 return kn;
85}
86
87static struct inode *kernfs_fh_get_inode(struct super_block *sb,
88 u64 ino, u32 generation)
89{
90 struct kernfs_super_info *info = kernfs_info(sb);
91 struct inode *inode;
92 struct kernfs_node *kn;
93
94 if (ino == 0)
95 return ERR_PTR(-ESTALE);
96
97 kn = kernfs_find_and_get_node_by_ino(info->root, ino);
98 if (!kn)
99 return ERR_PTR(-ESTALE);
100 inode = kernfs_get_inode(sb, kn);
101 kernfs_put(kn);
102 if (!inode)
103 return ERR_PTR(-ESTALE);
104
105 if (generation && inode->i_generation != generation) {
106 /* we didn't find the right inode.. */
107 iput(inode);
108 return ERR_PTR(-ESTALE);
109 }
110 return inode;
111}
112
113static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
114 int fh_len, int fh_type)
115{
116 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
117 kernfs_fh_get_inode);
118}
119
120static struct dentry *kernfs_fh_to_parent(struct super_block *sb, struct fid *fid,
121 int fh_len, int fh_type)
122{
123 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
124 kernfs_fh_get_inode);
125}
126
127static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
128{
129 struct kernfs_node *kn = kernfs_dentry_node(child);
130
131 return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
132}
133
134static const struct export_operations kernfs_export_ops = {
135 .fh_to_dentry = kernfs_fh_to_dentry,
136 .fh_to_parent = kernfs_fh_to_parent,
137 .get_parent = kernfs_get_parent_dentry,
138};
139
140/**
141 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
142 * @sb: the super_block in question
143 *
144 * Return the kernfs_root associated with @sb. If @sb is not a kernfs one,
145 * %NULL is returned.
146 */
147struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
148{
149 if (sb->s_op == &kernfs_sops)
150 return kernfs_info(sb)->root;
151 return NULL;
152}
153
154/*
155 * find the next ancestor in the path down to @child, where @parent was the
156 * ancestor whose descendant we want to find.
157 *
158 * Say the path is /a/b/c/d. @child is d, @parent is NULL. We return the root
159 * node. If @parent is b, then we return the node for c.
160 * Passing in d as @parent is not ok.
161 */
162static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
163 struct kernfs_node *parent)
164{
165 if (child == parent) {
166 pr_crit_once("BUG in find_next_ancestor: called with parent == child");
167 return NULL;
168 }
169
170 while (child->parent != parent) {
171 if (!child->parent)
172 return NULL;
173 child = child->parent;
174 }
175
176 return child;
177}
178
179/**
180 * kernfs_node_dentry - get a dentry for the given kernfs_node
181 * @kn: kernfs_node for which a dentry is needed
182 * @sb: the kernfs super_block
183 */
184struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
185 struct super_block *sb)
186{
187 struct dentry *dentry;
188 struct kernfs_node *knparent = NULL;
189
190 BUG_ON(sb->s_op != &kernfs_sops);
191
192 dentry = dget(sb->s_root);
193
194 /* Check if this is the root kernfs_node */
195 if (!kn->parent)
196 return dentry;
197
198 knparent = find_next_ancestor(kn, NULL);
199 if (WARN_ON(!knparent))
200 return ERR_PTR(-EINVAL);
201
202 do {
203 struct dentry *dtmp;
204 struct kernfs_node *kntmp;
205
206 if (kn == knparent)
207 return dentry;
208 kntmp = find_next_ancestor(kn, knparent);
209 if (WARN_ON(!kntmp))
210 return ERR_PTR(-EINVAL);
211 dtmp = lookup_one_len_unlocked(kntmp->name, dentry,
212 strlen(kntmp->name));
213 dput(dentry);
214 if (IS_ERR(dtmp))
215 return dtmp;
216 knparent = kntmp;
217 dentry = dtmp;
218 } while (true);
219}
220
221static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
222{
223 struct kernfs_super_info *info = kernfs_info(sb);
224 struct inode *inode;
225 struct dentry *root;
226
227 info->sb = sb;
228 /* Userspace would break if executables or devices appear on sysfs */
229 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
230 sb->s_blocksize = PAGE_SIZE;
231 sb->s_blocksize_bits = PAGE_SHIFT;
232 sb->s_magic = magic;
233 sb->s_op = &kernfs_sops;
234 sb->s_xattr = kernfs_xattr_handlers;
235 if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
236 sb->s_export_op = &kernfs_export_ops;
237 sb->s_time_gran = 1;
238
239 /* get root inode, initialize and unlock it */
240 mutex_lock(&kernfs_mutex);
241 inode = kernfs_get_inode(sb, info->root->kn);
242 mutex_unlock(&kernfs_mutex);
243 if (!inode) {
244 pr_debug("kernfs: could not get root inode\n");
245 return -ENOMEM;
246 }
247
248 /* instantiate and link root dentry */
249 root = d_make_root(inode);
250 if (!root) {
251 pr_debug("%s: could not get root dentry!\n", __func__);
252 return -ENOMEM;
253 }
254 sb->s_root = root;
255 sb->s_d_op = &kernfs_dops;
256 return 0;
257}
258
259static int kernfs_test_super(struct super_block *sb, void *data)
260{
261 struct kernfs_super_info *sb_info = kernfs_info(sb);
262 struct kernfs_super_info *info = data;
263
264 return sb_info->root == info->root && sb_info->ns == info->ns;
265}
266
267static int kernfs_set_super(struct super_block *sb, void *data)
268{
269 int error;
270 error = set_anon_super(sb, data);
271 if (!error)
272 sb->s_fs_info = data;
273 return error;
274}
275
276/**
277 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
278 * @sb: super_block of interest
279 *
280 * Return the namespace tag associated with kernfs super_block @sb.
281 */
282const void *kernfs_super_ns(struct super_block *sb)
283{
284 struct kernfs_super_info *info = kernfs_info(sb);
285
286 return info->ns;
287}
288
289/**
290 * kernfs_mount_ns - kernfs mount helper
291 * @fs_type: file_system_type of the fs being mounted
292 * @flags: mount flags specified for the mount
293 * @root: kernfs_root of the hierarchy being mounted
294 * @magic: file system specific magic number
295 * @new_sb_created: tell the caller if we allocated a new superblock
296 * @ns: optional namespace tag of the mount
297 *
298 * This is to be called from each kernfs user's file_system_type->mount()
299 * implementation, which should pass through the specified @fs_type and
300 * @flags, and specify the hierarchy and namespace tag to mount via @root
301 * and @ns, respectively.
302 *
303 * The return value can be passed to the vfs layer verbatim.
304 */
305struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
306 struct kernfs_root *root, unsigned long magic,
307 bool *new_sb_created, const void *ns)
308{
309 struct super_block *sb;
310 struct kernfs_super_info *info;
311 int error;
312
313 info = kzalloc(sizeof(*info), GFP_KERNEL);
314 if (!info)
315 return ERR_PTR(-ENOMEM);
316
317 info->root = root;
318 info->ns = ns;
319 INIT_LIST_HEAD(&info->node);
320
321 sb = sget_userns(fs_type, kernfs_test_super, kernfs_set_super, flags,
322 &init_user_ns, info);
323 if (IS_ERR(sb) || sb->s_fs_info != info)
324 kfree(info);
325 if (IS_ERR(sb))
326 return ERR_CAST(sb);
327
328 if (new_sb_created)
329 *new_sb_created = !sb->s_root;
330
331 if (!sb->s_root) {
332 struct kernfs_super_info *info = kernfs_info(sb);
333
334 error = kernfs_fill_super(sb, magic);
335 if (error) {
336 deactivate_locked_super(sb);
337 return ERR_PTR(error);
338 }
339 sb->s_flags |= SB_ACTIVE;
340
341 mutex_lock(&kernfs_mutex);
342 list_add(&info->node, &root->supers);
343 mutex_unlock(&kernfs_mutex);
344 }
345
346 return dget(sb->s_root);
347}
348
349/**
350 * kernfs_kill_sb - kill_sb for kernfs
351 * @sb: super_block being killed
352 *
353 * This can be used directly for file_system_type->kill_sb(). If a kernfs
354 * user needs extra cleanup, it can implement its own kill_sb() and call
355 * this function at the end.
356 */
357void kernfs_kill_sb(struct super_block *sb)
358{
359 struct kernfs_super_info *info = kernfs_info(sb);
360
361 mutex_lock(&kernfs_mutex);
362 list_del(&info->node);
363 mutex_unlock(&kernfs_mutex);
364
365 /*
366 * Remove the superblock from fs_supers/s_instances
367 * so we can't find it, before freeing kernfs_super_info.
368 */
369 kill_anon_super(sb);
370 kfree(info);
371}
372
373/**
374 * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
375 * @kernfs_root: the kernfs_root in question
376 * @ns: the namespace tag
377 *
378 * Pin the superblock so the superblock won't be destroyed in subsequent
379 * operations. This can be used to block ->kill_sb() which may be useful
380 * for kernfs users which dynamically manage superblocks.
381 *
382 * Returns NULL if there's no superblock associated to this kernfs_root, or
383 * -EINVAL if the superblock is being freed.
384 */
385struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
386{
387 struct kernfs_super_info *info;
388 struct super_block *sb = NULL;
389
390 mutex_lock(&kernfs_mutex);
391 list_for_each_entry(info, &root->supers, node) {
392 if (info->ns == ns) {
393 sb = info->sb;
394 if (!atomic_inc_not_zero(&info->sb->s_active))
395 sb = ERR_PTR(-EINVAL);
396 break;
397 }
398 }
399 mutex_unlock(&kernfs_mutex);
400 return sb;
401}
402
403void __init kernfs_init(void)
404{
405
406 /*
407 * the slab is freed in RCU context, so kernfs_find_and_get_node_by_ino
408 * can access the slab lock free. This could introduce stale nodes,
409 * please see how kernfs_find_and_get_node_by_ino filters out stale
410 * nodes.
411 */
412 kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
413 sizeof(struct kernfs_node),
414 0,
415 SLAB_PANIC | SLAB_TYPESAFE_BY_RCU,
416 NULL);
417}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/kernfs/mount.c - kernfs mount implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10#include <linux/fs.h>
11#include <linux/mount.h>
12#include <linux/init.h>
13#include <linux/magic.h>
14#include <linux/slab.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/seq_file.h>
18#include <linux/exportfs.h>
19
20#include "kernfs-internal.h"
21
22struct kmem_cache *kernfs_node_cache, *kernfs_iattrs_cache;
23
24static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
25{
26 struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
27 struct kernfs_syscall_ops *scops = root->syscall_ops;
28
29 if (scops && scops->show_options)
30 return scops->show_options(sf, root);
31 return 0;
32}
33
34static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
35{
36 struct kernfs_node *node = kernfs_dentry_node(dentry);
37 struct kernfs_root *root = kernfs_root(node);
38 struct kernfs_syscall_ops *scops = root->syscall_ops;
39
40 if (scops && scops->show_path)
41 return scops->show_path(sf, node, root);
42
43 seq_dentry(sf, dentry, " \t\n\\");
44 return 0;
45}
46
47const struct super_operations kernfs_sops = {
48 .statfs = simple_statfs,
49 .drop_inode = generic_delete_inode,
50 .evict_inode = kernfs_evict_inode,
51
52 .show_options = kernfs_sop_show_options,
53 .show_path = kernfs_sop_show_path,
54};
55
56static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len,
57 struct inode *parent)
58{
59 struct kernfs_node *kn = inode->i_private;
60
61 if (*max_len < 2) {
62 *max_len = 2;
63 return FILEID_INVALID;
64 }
65
66 *max_len = 2;
67 *(u64 *)fh = kn->id;
68 return FILEID_KERNFS;
69}
70
71static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb,
72 struct fid *fid, int fh_len,
73 int fh_type, bool get_parent)
74{
75 struct kernfs_super_info *info = kernfs_info(sb);
76 struct kernfs_node *kn;
77 struct inode *inode;
78 u64 id;
79
80 if (fh_len < 2)
81 return NULL;
82
83 switch (fh_type) {
84 case FILEID_KERNFS:
85 id = *(u64 *)fid;
86 break;
87 case FILEID_INO32_GEN:
88 case FILEID_INO32_GEN_PARENT:
89 /*
90 * blk_log_action() exposes "LOW32,HIGH32" pair without
91 * type and userland can call us with generic fid
92 * constructed from them. Combine it back to ID. See
93 * blk_log_action().
94 */
95 id = ((u64)fid->i32.gen << 32) | fid->i32.ino;
96 break;
97 default:
98 return NULL;
99 }
100
101 kn = kernfs_find_and_get_node_by_id(info->root, id);
102 if (!kn)
103 return ERR_PTR(-ESTALE);
104
105 if (get_parent) {
106 struct kernfs_node *parent;
107
108 parent = kernfs_get_parent(kn);
109 kernfs_put(kn);
110 kn = parent;
111 if (!kn)
112 return ERR_PTR(-ESTALE);
113 }
114
115 inode = kernfs_get_inode(sb, kn);
116 kernfs_put(kn);
117 if (!inode)
118 return ERR_PTR(-ESTALE);
119
120 return d_obtain_alias(inode);
121}
122
123static struct dentry *kernfs_fh_to_dentry(struct super_block *sb,
124 struct fid *fid, int fh_len,
125 int fh_type)
126{
127 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false);
128}
129
130static struct dentry *kernfs_fh_to_parent(struct super_block *sb,
131 struct fid *fid, int fh_len,
132 int fh_type)
133{
134 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true);
135}
136
137static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
138{
139 struct kernfs_node *kn = kernfs_dentry_node(child);
140
141 return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
142}
143
144static const struct export_operations kernfs_export_ops = {
145 .encode_fh = kernfs_encode_fh,
146 .fh_to_dentry = kernfs_fh_to_dentry,
147 .fh_to_parent = kernfs_fh_to_parent,
148 .get_parent = kernfs_get_parent_dentry,
149};
150
151/**
152 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
153 * @sb: the super_block in question
154 *
155 * Return the kernfs_root associated with @sb. If @sb is not a kernfs one,
156 * %NULL is returned.
157 */
158struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
159{
160 if (sb->s_op == &kernfs_sops)
161 return kernfs_info(sb)->root;
162 return NULL;
163}
164
165/*
166 * find the next ancestor in the path down to @child, where @parent was the
167 * ancestor whose descendant we want to find.
168 *
169 * Say the path is /a/b/c/d. @child is d, @parent is NULL. We return the root
170 * node. If @parent is b, then we return the node for c.
171 * Passing in d as @parent is not ok.
172 */
173static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
174 struct kernfs_node *parent)
175{
176 if (child == parent) {
177 pr_crit_once("BUG in find_next_ancestor: called with parent == child");
178 return NULL;
179 }
180
181 while (child->parent != parent) {
182 if (!child->parent)
183 return NULL;
184 child = child->parent;
185 }
186
187 return child;
188}
189
190/**
191 * kernfs_node_dentry - get a dentry for the given kernfs_node
192 * @kn: kernfs_node for which a dentry is needed
193 * @sb: the kernfs super_block
194 */
195struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
196 struct super_block *sb)
197{
198 struct dentry *dentry;
199 struct kernfs_node *knparent = NULL;
200
201 BUG_ON(sb->s_op != &kernfs_sops);
202
203 dentry = dget(sb->s_root);
204
205 /* Check if this is the root kernfs_node */
206 if (!kn->parent)
207 return dentry;
208
209 knparent = find_next_ancestor(kn, NULL);
210 if (WARN_ON(!knparent)) {
211 dput(dentry);
212 return ERR_PTR(-EINVAL);
213 }
214
215 do {
216 struct dentry *dtmp;
217 struct kernfs_node *kntmp;
218
219 if (kn == knparent)
220 return dentry;
221 kntmp = find_next_ancestor(kn, knparent);
222 if (WARN_ON(!kntmp)) {
223 dput(dentry);
224 return ERR_PTR(-EINVAL);
225 }
226 dtmp = lookup_positive_unlocked(kntmp->name, dentry,
227 strlen(kntmp->name));
228 dput(dentry);
229 if (IS_ERR(dtmp))
230 return dtmp;
231 knparent = kntmp;
232 dentry = dtmp;
233 } while (true);
234}
235
236static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc)
237{
238 struct kernfs_super_info *info = kernfs_info(sb);
239 struct inode *inode;
240 struct dentry *root;
241
242 info->sb = sb;
243 /* Userspace would break if executables or devices appear on sysfs */
244 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
245 sb->s_blocksize = PAGE_SIZE;
246 sb->s_blocksize_bits = PAGE_SHIFT;
247 sb->s_magic = kfc->magic;
248 sb->s_op = &kernfs_sops;
249 sb->s_xattr = kernfs_xattr_handlers;
250 if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
251 sb->s_export_op = &kernfs_export_ops;
252 sb->s_time_gran = 1;
253
254 /* sysfs dentries and inodes don't require IO to create */
255 sb->s_shrink.seeks = 0;
256
257 /* get root inode, initialize and unlock it */
258 mutex_lock(&kernfs_mutex);
259 inode = kernfs_get_inode(sb, info->root->kn);
260 mutex_unlock(&kernfs_mutex);
261 if (!inode) {
262 pr_debug("kernfs: could not get root inode\n");
263 return -ENOMEM;
264 }
265
266 /* instantiate and link root dentry */
267 root = d_make_root(inode);
268 if (!root) {
269 pr_debug("%s: could not get root dentry!\n", __func__);
270 return -ENOMEM;
271 }
272 sb->s_root = root;
273 sb->s_d_op = &kernfs_dops;
274 return 0;
275}
276
277static int kernfs_test_super(struct super_block *sb, struct fs_context *fc)
278{
279 struct kernfs_super_info *sb_info = kernfs_info(sb);
280 struct kernfs_super_info *info = fc->s_fs_info;
281
282 return sb_info->root == info->root && sb_info->ns == info->ns;
283}
284
285static int kernfs_set_super(struct super_block *sb, struct fs_context *fc)
286{
287 struct kernfs_fs_context *kfc = fc->fs_private;
288
289 kfc->ns_tag = NULL;
290 return set_anon_super_fc(sb, fc);
291}
292
293/**
294 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
295 * @sb: super_block of interest
296 *
297 * Return the namespace tag associated with kernfs super_block @sb.
298 */
299const void *kernfs_super_ns(struct super_block *sb)
300{
301 struct kernfs_super_info *info = kernfs_info(sb);
302
303 return info->ns;
304}
305
306/**
307 * kernfs_get_tree - kernfs filesystem access/retrieval helper
308 * @fc: The filesystem context.
309 *
310 * This is to be called from each kernfs user's fs_context->ops->get_tree()
311 * implementation, which should set the specified ->@fs_type and ->@flags, and
312 * specify the hierarchy and namespace tag to mount via ->@root and ->@ns,
313 * respectively.
314 */
315int kernfs_get_tree(struct fs_context *fc)
316{
317 struct kernfs_fs_context *kfc = fc->fs_private;
318 struct super_block *sb;
319 struct kernfs_super_info *info;
320 int error;
321
322 info = kzalloc(sizeof(*info), GFP_KERNEL);
323 if (!info)
324 return -ENOMEM;
325
326 info->root = kfc->root;
327 info->ns = kfc->ns_tag;
328 INIT_LIST_HEAD(&info->node);
329
330 fc->s_fs_info = info;
331 sb = sget_fc(fc, kernfs_test_super, kernfs_set_super);
332 if (IS_ERR(sb))
333 return PTR_ERR(sb);
334
335 if (!sb->s_root) {
336 struct kernfs_super_info *info = kernfs_info(sb);
337
338 kfc->new_sb_created = true;
339
340 error = kernfs_fill_super(sb, kfc);
341 if (error) {
342 deactivate_locked_super(sb);
343 return error;
344 }
345 sb->s_flags |= SB_ACTIVE;
346
347 mutex_lock(&kernfs_mutex);
348 list_add(&info->node, &info->root->supers);
349 mutex_unlock(&kernfs_mutex);
350 }
351
352 fc->root = dget(sb->s_root);
353 return 0;
354}
355
356void kernfs_free_fs_context(struct fs_context *fc)
357{
358 /* Note that we don't deal with kfc->ns_tag here. */
359 kfree(fc->s_fs_info);
360 fc->s_fs_info = NULL;
361}
362
363/**
364 * kernfs_kill_sb - kill_sb for kernfs
365 * @sb: super_block being killed
366 *
367 * This can be used directly for file_system_type->kill_sb(). If a kernfs
368 * user needs extra cleanup, it can implement its own kill_sb() and call
369 * this function at the end.
370 */
371void kernfs_kill_sb(struct super_block *sb)
372{
373 struct kernfs_super_info *info = kernfs_info(sb);
374
375 mutex_lock(&kernfs_mutex);
376 list_del(&info->node);
377 mutex_unlock(&kernfs_mutex);
378
379 /*
380 * Remove the superblock from fs_supers/s_instances
381 * so we can't find it, before freeing kernfs_super_info.
382 */
383 kill_anon_super(sb);
384 kfree(info);
385}
386
387void __init kernfs_init(void)
388{
389 kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
390 sizeof(struct kernfs_node),
391 0, SLAB_PANIC, NULL);
392
393 /* Creates slab cache for kernfs inode attributes */
394 kernfs_iattrs_cache = kmem_cache_create("kernfs_iattrs_cache",
395 sizeof(struct kernfs_iattrs),
396 0, SLAB_PANIC, NULL);
397}