Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * fs/kernfs/mount.c - kernfs mount implementation
  3 *
  4 * Copyright (c) 2001-3 Patrick Mochel
  5 * Copyright (c) 2007 SUSE Linux Products GmbH
  6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
  7 *
  8 * This file is released under the GPLv2.
  9 */
 10
 11#include <linux/fs.h>
 12#include <linux/mount.h>
 13#include <linux/init.h>
 14#include <linux/magic.h>
 15#include <linux/slab.h>
 16#include <linux/pagemap.h>
 17#include <linux/namei.h>
 18#include <linux/seq_file.h>
 19#include <linux/exportfs.h>
 20
 21#include "kernfs-internal.h"
 22
 23struct kmem_cache *kernfs_node_cache;
 24
 25static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
 26{
 27	struct kernfs_root *root = kernfs_info(sb)->root;
 28	struct kernfs_syscall_ops *scops = root->syscall_ops;
 29
 30	if (scops && scops->remount_fs)
 31		return scops->remount_fs(root, flags, data);
 32	return 0;
 33}
 34
 35static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
 36{
 37	struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
 38	struct kernfs_syscall_ops *scops = root->syscall_ops;
 39
 40	if (scops && scops->show_options)
 41		return scops->show_options(sf, root);
 42	return 0;
 43}
 44
 45static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
 46{
 47	struct kernfs_node *node = kernfs_dentry_node(dentry);
 48	struct kernfs_root *root = kernfs_root(node);
 49	struct kernfs_syscall_ops *scops = root->syscall_ops;
 50
 51	if (scops && scops->show_path)
 52		return scops->show_path(sf, node, root);
 53
 54	seq_dentry(sf, dentry, " \t\n\\");
 55	return 0;
 56}
 57
 58const struct super_operations kernfs_sops = {
 59	.statfs		= simple_statfs,
 60	.drop_inode	= generic_delete_inode,
 61	.evict_inode	= kernfs_evict_inode,
 62
 63	.remount_fs	= kernfs_sop_remount_fs,
 64	.show_options	= kernfs_sop_show_options,
 65	.show_path	= kernfs_sop_show_path,
 66};
 67
 68/*
 69 * Similar to kernfs_fh_get_inode, this one gets kernfs node from inode
 70 * number and generation
 71 */
 72struct kernfs_node *kernfs_get_node_by_id(struct kernfs_root *root,
 73	const union kernfs_node_id *id)
 74{
 75	struct kernfs_node *kn;
 76
 77	kn = kernfs_find_and_get_node_by_ino(root, id->ino);
 78	if (!kn)
 79		return NULL;
 80	if (kn->id.generation != id->generation) {
 81		kernfs_put(kn);
 82		return NULL;
 83	}
 84	return kn;
 
 
 
 85}
 86
 87static struct inode *kernfs_fh_get_inode(struct super_block *sb,
 88		u64 ino, u32 generation)
 
 89{
 90	struct kernfs_super_info *info = kernfs_info(sb);
 91	struct inode *inode;
 92	struct kernfs_node *kn;
 
 
 93
 94	if (ino == 0)
 95		return ERR_PTR(-ESTALE);
 96
 97	kn = kernfs_find_and_get_node_by_ino(info->root, ino);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 98	if (!kn)
 99		return ERR_PTR(-ESTALE);
 
 
 
 
 
 
 
 
 
 
 
100	inode = kernfs_get_inode(sb, kn);
101	kernfs_put(kn);
102	if (!inode)
103		return ERR_PTR(-ESTALE);
104
105	if (generation && inode->i_generation != generation) {
106		/* we didn't find the right inode.. */
107		iput(inode);
108		return ERR_PTR(-ESTALE);
109	}
110	return inode;
111}
112
113static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
114		int fh_len, int fh_type)
 
115{
116	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
117				    kernfs_fh_get_inode);
118}
119
120static struct dentry *kernfs_fh_to_parent(struct super_block *sb, struct fid *fid,
121		int fh_len, int fh_type)
 
122{
123	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
124				    kernfs_fh_get_inode);
125}
126
127static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
128{
129	struct kernfs_node *kn = kernfs_dentry_node(child);
130
131	return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
132}
133
134static const struct export_operations kernfs_export_ops = {
 
135	.fh_to_dentry	= kernfs_fh_to_dentry,
136	.fh_to_parent	= kernfs_fh_to_parent,
137	.get_parent	= kernfs_get_parent_dentry,
138};
139
140/**
141 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
142 * @sb: the super_block in question
143 *
144 * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
145 * %NULL is returned.
146 */
147struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
148{
149	if (sb->s_op == &kernfs_sops)
150		return kernfs_info(sb)->root;
151	return NULL;
152}
153
154/*
155 * find the next ancestor in the path down to @child, where @parent was the
156 * ancestor whose descendant we want to find.
157 *
158 * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
159 * node.  If @parent is b, then we return the node for c.
160 * Passing in d as @parent is not ok.
161 */
162static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
163					      struct kernfs_node *parent)
164{
165	if (child == parent) {
166		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
167		return NULL;
168	}
169
170	while (child->parent != parent) {
171		if (!child->parent)
172			return NULL;
173		child = child->parent;
174	}
175
176	return child;
177}
178
179/**
180 * kernfs_node_dentry - get a dentry for the given kernfs_node
181 * @kn: kernfs_node for which a dentry is needed
182 * @sb: the kernfs super_block
183 */
184struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
185				  struct super_block *sb)
186{
187	struct dentry *dentry;
188	struct kernfs_node *knparent = NULL;
189
190	BUG_ON(sb->s_op != &kernfs_sops);
191
192	dentry = dget(sb->s_root);
193
194	/* Check if this is the root kernfs_node */
195	if (!kn->parent)
196		return dentry;
197
198	knparent = find_next_ancestor(kn, NULL);
199	if (WARN_ON(!knparent))
 
200		return ERR_PTR(-EINVAL);
 
201
202	do {
203		struct dentry *dtmp;
204		struct kernfs_node *kntmp;
205
206		if (kn == knparent)
207			return dentry;
208		kntmp = find_next_ancestor(kn, knparent);
209		if (WARN_ON(!kntmp))
 
210			return ERR_PTR(-EINVAL);
211		dtmp = lookup_one_len_unlocked(kntmp->name, dentry,
 
212					       strlen(kntmp->name));
213		dput(dentry);
214		if (IS_ERR(dtmp))
215			return dtmp;
216		knparent = kntmp;
217		dentry = dtmp;
218	} while (true);
219}
220
221static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
222{
223	struct kernfs_super_info *info = kernfs_info(sb);
224	struct inode *inode;
225	struct dentry *root;
226
227	info->sb = sb;
228	/* Userspace would break if executables or devices appear on sysfs */
229	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
230	sb->s_blocksize = PAGE_SIZE;
231	sb->s_blocksize_bits = PAGE_SHIFT;
232	sb->s_magic = magic;
233	sb->s_op = &kernfs_sops;
234	sb->s_xattr = kernfs_xattr_handlers;
235	if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
236		sb->s_export_op = &kernfs_export_ops;
237	sb->s_time_gran = 1;
238
 
 
 
239	/* get root inode, initialize and unlock it */
240	mutex_lock(&kernfs_mutex);
241	inode = kernfs_get_inode(sb, info->root->kn);
242	mutex_unlock(&kernfs_mutex);
243	if (!inode) {
244		pr_debug("kernfs: could not get root inode\n");
245		return -ENOMEM;
246	}
247
248	/* instantiate and link root dentry */
249	root = d_make_root(inode);
250	if (!root) {
251		pr_debug("%s: could not get root dentry!\n", __func__);
252		return -ENOMEM;
253	}
254	sb->s_root = root;
255	sb->s_d_op = &kernfs_dops;
256	return 0;
257}
258
259static int kernfs_test_super(struct super_block *sb, void *data)
260{
261	struct kernfs_super_info *sb_info = kernfs_info(sb);
262	struct kernfs_super_info *info = data;
263
264	return sb_info->root == info->root && sb_info->ns == info->ns;
265}
266
267static int kernfs_set_super(struct super_block *sb, void *data)
268{
269	int error;
270	error = set_anon_super(sb, data);
271	if (!error)
272		sb->s_fs_info = data;
273	return error;
274}
275
276/**
277 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
278 * @sb: super_block of interest
279 *
280 * Return the namespace tag associated with kernfs super_block @sb.
281 */
282const void *kernfs_super_ns(struct super_block *sb)
283{
284	struct kernfs_super_info *info = kernfs_info(sb);
285
286	return info->ns;
287}
288
289/**
290 * kernfs_mount_ns - kernfs mount helper
291 * @fs_type: file_system_type of the fs being mounted
292 * @flags: mount flags specified for the mount
293 * @root: kernfs_root of the hierarchy being mounted
294 * @magic: file system specific magic number
295 * @new_sb_created: tell the caller if we allocated a new superblock
296 * @ns: optional namespace tag of the mount
297 *
298 * This is to be called from each kernfs user's file_system_type->mount()
299 * implementation, which should pass through the specified @fs_type and
300 * @flags, and specify the hierarchy and namespace tag to mount via @root
301 * and @ns, respectively.
302 *
303 * The return value can be passed to the vfs layer verbatim.
 
 
 
304 */
305struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
306				struct kernfs_root *root, unsigned long magic,
307				bool *new_sb_created, const void *ns)
308{
 
309	struct super_block *sb;
310	struct kernfs_super_info *info;
311	int error;
312
313	info = kzalloc(sizeof(*info), GFP_KERNEL);
314	if (!info)
315		return ERR_PTR(-ENOMEM);
316
317	info->root = root;
318	info->ns = ns;
319	INIT_LIST_HEAD(&info->node);
320
321	sb = sget_userns(fs_type, kernfs_test_super, kernfs_set_super, flags,
322			 &init_user_ns, info);
323	if (IS_ERR(sb) || sb->s_fs_info != info)
324		kfree(info);
325	if (IS_ERR(sb))
326		return ERR_CAST(sb);
327
328	if (new_sb_created)
329		*new_sb_created = !sb->s_root;
330
331	if (!sb->s_root) {
332		struct kernfs_super_info *info = kernfs_info(sb);
333
334		error = kernfs_fill_super(sb, magic);
 
 
335		if (error) {
336			deactivate_locked_super(sb);
337			return ERR_PTR(error);
338		}
339		sb->s_flags |= SB_ACTIVE;
340
341		mutex_lock(&kernfs_mutex);
342		list_add(&info->node, &root->supers);
343		mutex_unlock(&kernfs_mutex);
344	}
345
346	return dget(sb->s_root);
 
 
 
 
 
 
 
 
347}
348
349/**
350 * kernfs_kill_sb - kill_sb for kernfs
351 * @sb: super_block being killed
352 *
353 * This can be used directly for file_system_type->kill_sb().  If a kernfs
354 * user needs extra cleanup, it can implement its own kill_sb() and call
355 * this function at the end.
356 */
357void kernfs_kill_sb(struct super_block *sb)
358{
359	struct kernfs_super_info *info = kernfs_info(sb);
360
361	mutex_lock(&kernfs_mutex);
362	list_del(&info->node);
363	mutex_unlock(&kernfs_mutex);
364
365	/*
366	 * Remove the superblock from fs_supers/s_instances
367	 * so we can't find it, before freeing kernfs_super_info.
368	 */
369	kill_anon_super(sb);
370	kfree(info);
371}
372
373/**
374 * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
375 * @kernfs_root: the kernfs_root in question
376 * @ns: the namespace tag
377 *
378 * Pin the superblock so the superblock won't be destroyed in subsequent
379 * operations.  This can be used to block ->kill_sb() which may be useful
380 * for kernfs users which dynamically manage superblocks.
381 *
382 * Returns NULL if there's no superblock associated to this kernfs_root, or
383 * -EINVAL if the superblock is being freed.
384 */
385struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
386{
387	struct kernfs_super_info *info;
388	struct super_block *sb = NULL;
389
390	mutex_lock(&kernfs_mutex);
391	list_for_each_entry(info, &root->supers, node) {
392		if (info->ns == ns) {
393			sb = info->sb;
394			if (!atomic_inc_not_zero(&info->sb->s_active))
395				sb = ERR_PTR(-EINVAL);
396			break;
397		}
398	}
399	mutex_unlock(&kernfs_mutex);
400	return sb;
401}
402
403void __init kernfs_init(void)
404{
405
406	/*
407	 * the slab is freed in RCU context, so kernfs_find_and_get_node_by_ino
408	 * can access the slab lock free. This could introduce stale nodes,
409	 * please see how kernfs_find_and_get_node_by_ino filters out stale
410	 * nodes.
411	 */
412	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
413					      sizeof(struct kernfs_node),
414					      0,
415					      SLAB_PANIC | SLAB_TYPESAFE_BY_RCU,
416					      NULL);
 
 
 
417}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * fs/kernfs/mount.c - kernfs mount implementation
  4 *
  5 * Copyright (c) 2001-3 Patrick Mochel
  6 * Copyright (c) 2007 SUSE Linux Products GmbH
  7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
 
 
  8 */
  9
 10#include <linux/fs.h>
 11#include <linux/mount.h>
 12#include <linux/init.h>
 13#include <linux/magic.h>
 14#include <linux/slab.h>
 15#include <linux/pagemap.h>
 16#include <linux/namei.h>
 17#include <linux/seq_file.h>
 18#include <linux/exportfs.h>
 19
 20#include "kernfs-internal.h"
 21
 22struct kmem_cache *kernfs_node_cache, *kernfs_iattrs_cache;
 
 
 
 
 
 
 
 
 
 
 23
 24static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
 25{
 26	struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
 27	struct kernfs_syscall_ops *scops = root->syscall_ops;
 28
 29	if (scops && scops->show_options)
 30		return scops->show_options(sf, root);
 31	return 0;
 32}
 33
 34static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
 35{
 36	struct kernfs_node *node = kernfs_dentry_node(dentry);
 37	struct kernfs_root *root = kernfs_root(node);
 38	struct kernfs_syscall_ops *scops = root->syscall_ops;
 39
 40	if (scops && scops->show_path)
 41		return scops->show_path(sf, node, root);
 42
 43	seq_dentry(sf, dentry, " \t\n\\");
 44	return 0;
 45}
 46
 47const struct super_operations kernfs_sops = {
 48	.statfs		= simple_statfs,
 49	.drop_inode	= generic_delete_inode,
 50	.evict_inode	= kernfs_evict_inode,
 51
 
 52	.show_options	= kernfs_sop_show_options,
 53	.show_path	= kernfs_sop_show_path,
 54};
 55
 56static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len,
 57			    struct inode *parent)
 
 
 
 
 58{
 59	struct kernfs_node *kn = inode->i_private;
 60
 61	if (*max_len < 2) {
 62		*max_len = 2;
 63		return FILEID_INVALID;
 
 
 
 64	}
 65
 66	*max_len = 2;
 67	*(u64 *)fh = kn->id;
 68	return FILEID_KERNFS;
 69}
 70
 71static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb,
 72					    struct fid *fid, int fh_len,
 73					    int fh_type, bool get_parent)
 74{
 75	struct kernfs_super_info *info = kernfs_info(sb);
 
 76	struct kernfs_node *kn;
 77	struct inode *inode;
 78	u64 id;
 79
 80	if (fh_len < 2)
 81		return NULL;
 82
 83	switch (fh_type) {
 84	case FILEID_KERNFS:
 85		id = *(u64 *)fid;
 86		break;
 87	case FILEID_INO32_GEN:
 88	case FILEID_INO32_GEN_PARENT:
 89		/*
 90		 * blk_log_action() exposes "LOW32,HIGH32" pair without
 91		 * type and userland can call us with generic fid
 92		 * constructed from them.  Combine it back to ID.  See
 93		 * blk_log_action().
 94		 */
 95		id = ((u64)fid->i32.gen << 32) | fid->i32.ino;
 96		break;
 97	default:
 98		return NULL;
 99	}
100
101	kn = kernfs_find_and_get_node_by_id(info->root, id);
102	if (!kn)
103		return ERR_PTR(-ESTALE);
104
105	if (get_parent) {
106		struct kernfs_node *parent;
107
108		parent = kernfs_get_parent(kn);
109		kernfs_put(kn);
110		kn = parent;
111		if (!kn)
112			return ERR_PTR(-ESTALE);
113	}
114
115	inode = kernfs_get_inode(sb, kn);
116	kernfs_put(kn);
117	if (!inode)
118		return ERR_PTR(-ESTALE);
119
120	return d_obtain_alias(inode);
 
 
 
 
 
121}
122
123static struct dentry *kernfs_fh_to_dentry(struct super_block *sb,
124					  struct fid *fid, int fh_len,
125					  int fh_type)
126{
127	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false);
 
128}
129
130static struct dentry *kernfs_fh_to_parent(struct super_block *sb,
131					  struct fid *fid, int fh_len,
132					  int fh_type)
133{
134	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true);
 
135}
136
137static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
138{
139	struct kernfs_node *kn = kernfs_dentry_node(child);
140
141	return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
142}
143
144static const struct export_operations kernfs_export_ops = {
145	.encode_fh	= kernfs_encode_fh,
146	.fh_to_dentry	= kernfs_fh_to_dentry,
147	.fh_to_parent	= kernfs_fh_to_parent,
148	.get_parent	= kernfs_get_parent_dentry,
149};
150
151/**
152 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
153 * @sb: the super_block in question
154 *
155 * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
156 * %NULL is returned.
157 */
158struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
159{
160	if (sb->s_op == &kernfs_sops)
161		return kernfs_info(sb)->root;
162	return NULL;
163}
164
165/*
166 * find the next ancestor in the path down to @child, where @parent was the
167 * ancestor whose descendant we want to find.
168 *
169 * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
170 * node.  If @parent is b, then we return the node for c.
171 * Passing in d as @parent is not ok.
172 */
173static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
174					      struct kernfs_node *parent)
175{
176	if (child == parent) {
177		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
178		return NULL;
179	}
180
181	while (child->parent != parent) {
182		if (!child->parent)
183			return NULL;
184		child = child->parent;
185	}
186
187	return child;
188}
189
190/**
191 * kernfs_node_dentry - get a dentry for the given kernfs_node
192 * @kn: kernfs_node for which a dentry is needed
193 * @sb: the kernfs super_block
194 */
195struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
196				  struct super_block *sb)
197{
198	struct dentry *dentry;
199	struct kernfs_node *knparent = NULL;
200
201	BUG_ON(sb->s_op != &kernfs_sops);
202
203	dentry = dget(sb->s_root);
204
205	/* Check if this is the root kernfs_node */
206	if (!kn->parent)
207		return dentry;
208
209	knparent = find_next_ancestor(kn, NULL);
210	if (WARN_ON(!knparent)) {
211		dput(dentry);
212		return ERR_PTR(-EINVAL);
213	}
214
215	do {
216		struct dentry *dtmp;
217		struct kernfs_node *kntmp;
218
219		if (kn == knparent)
220			return dentry;
221		kntmp = find_next_ancestor(kn, knparent);
222		if (WARN_ON(!kntmp)) {
223			dput(dentry);
224			return ERR_PTR(-EINVAL);
225		}
226		dtmp = lookup_positive_unlocked(kntmp->name, dentry,
227					       strlen(kntmp->name));
228		dput(dentry);
229		if (IS_ERR(dtmp))
230			return dtmp;
231		knparent = kntmp;
232		dentry = dtmp;
233	} while (true);
234}
235
236static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc)
237{
238	struct kernfs_super_info *info = kernfs_info(sb);
239	struct inode *inode;
240	struct dentry *root;
241
242	info->sb = sb;
243	/* Userspace would break if executables or devices appear on sysfs */
244	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
245	sb->s_blocksize = PAGE_SIZE;
246	sb->s_blocksize_bits = PAGE_SHIFT;
247	sb->s_magic = kfc->magic;
248	sb->s_op = &kernfs_sops;
249	sb->s_xattr = kernfs_xattr_handlers;
250	if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
251		sb->s_export_op = &kernfs_export_ops;
252	sb->s_time_gran = 1;
253
254	/* sysfs dentries and inodes don't require IO to create */
255	sb->s_shrink.seeks = 0;
256
257	/* get root inode, initialize and unlock it */
258	mutex_lock(&kernfs_mutex);
259	inode = kernfs_get_inode(sb, info->root->kn);
260	mutex_unlock(&kernfs_mutex);
261	if (!inode) {
262		pr_debug("kernfs: could not get root inode\n");
263		return -ENOMEM;
264	}
265
266	/* instantiate and link root dentry */
267	root = d_make_root(inode);
268	if (!root) {
269		pr_debug("%s: could not get root dentry!\n", __func__);
270		return -ENOMEM;
271	}
272	sb->s_root = root;
273	sb->s_d_op = &kernfs_dops;
274	return 0;
275}
276
277static int kernfs_test_super(struct super_block *sb, struct fs_context *fc)
278{
279	struct kernfs_super_info *sb_info = kernfs_info(sb);
280	struct kernfs_super_info *info = fc->s_fs_info;
281
282	return sb_info->root == info->root && sb_info->ns == info->ns;
283}
284
285static int kernfs_set_super(struct super_block *sb, struct fs_context *fc)
286{
287	struct kernfs_fs_context *kfc = fc->fs_private;
288
289	kfc->ns_tag = NULL;
290	return set_anon_super_fc(sb, fc);
 
291}
292
293/**
294 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
295 * @sb: super_block of interest
296 *
297 * Return the namespace tag associated with kernfs super_block @sb.
298 */
299const void *kernfs_super_ns(struct super_block *sb)
300{
301	struct kernfs_super_info *info = kernfs_info(sb);
302
303	return info->ns;
304}
305
306/**
307 * kernfs_get_tree - kernfs filesystem access/retrieval helper
308 * @fc: The filesystem context.
 
 
 
 
 
 
 
 
 
 
309 *
310 * This is to be called from each kernfs user's fs_context->ops->get_tree()
311 * implementation, which should set the specified ->@fs_type and ->@flags, and
312 * specify the hierarchy and namespace tag to mount via ->@root and ->@ns,
313 * respectively.
314 */
315int kernfs_get_tree(struct fs_context *fc)
 
 
316{
317	struct kernfs_fs_context *kfc = fc->fs_private;
318	struct super_block *sb;
319	struct kernfs_super_info *info;
320	int error;
321
322	info = kzalloc(sizeof(*info), GFP_KERNEL);
323	if (!info)
324		return -ENOMEM;
325
326	info->root = kfc->root;
327	info->ns = kfc->ns_tag;
328	INIT_LIST_HEAD(&info->node);
329
330	fc->s_fs_info = info;
331	sb = sget_fc(fc, kernfs_test_super, kernfs_set_super);
 
 
332	if (IS_ERR(sb))
333		return PTR_ERR(sb);
 
 
 
334
335	if (!sb->s_root) {
336		struct kernfs_super_info *info = kernfs_info(sb);
337
338		kfc->new_sb_created = true;
339
340		error = kernfs_fill_super(sb, kfc);
341		if (error) {
342			deactivate_locked_super(sb);
343			return error;
344		}
345		sb->s_flags |= SB_ACTIVE;
346
347		mutex_lock(&kernfs_mutex);
348		list_add(&info->node, &info->root->supers);
349		mutex_unlock(&kernfs_mutex);
350	}
351
352	fc->root = dget(sb->s_root);
353	return 0;
354}
355
356void kernfs_free_fs_context(struct fs_context *fc)
357{
358	/* Note that we don't deal with kfc->ns_tag here. */
359	kfree(fc->s_fs_info);
360	fc->s_fs_info = NULL;
361}
362
363/**
364 * kernfs_kill_sb - kill_sb for kernfs
365 * @sb: super_block being killed
366 *
367 * This can be used directly for file_system_type->kill_sb().  If a kernfs
368 * user needs extra cleanup, it can implement its own kill_sb() and call
369 * this function at the end.
370 */
371void kernfs_kill_sb(struct super_block *sb)
372{
373	struct kernfs_super_info *info = kernfs_info(sb);
374
375	mutex_lock(&kernfs_mutex);
376	list_del(&info->node);
377	mutex_unlock(&kernfs_mutex);
378
379	/*
380	 * Remove the superblock from fs_supers/s_instances
381	 * so we can't find it, before freeing kernfs_super_info.
382	 */
383	kill_anon_super(sb);
384	kfree(info);
385}
386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
387void __init kernfs_init(void)
388{
 
 
 
 
 
 
 
389	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
390					      sizeof(struct kernfs_node),
391					      0, SLAB_PANIC, NULL);
392
393	/* Creates slab cache for kernfs inode attributes */
394	kernfs_iattrs_cache  = kmem_cache_create("kernfs_iattrs_cache",
395					      sizeof(struct kernfs_iattrs),
396					      0, SLAB_PANIC, NULL);
397}