Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * fs/kernfs/mount.c - kernfs mount implementation
  3 *
  4 * Copyright (c) 2001-3 Patrick Mochel
  5 * Copyright (c) 2007 SUSE Linux Products GmbH
  6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
  7 *
  8 * This file is released under the GPLv2.
  9 */
 10
 11#include <linux/fs.h>
 12#include <linux/mount.h>
 13#include <linux/init.h>
 14#include <linux/magic.h>
 15#include <linux/slab.h>
 16#include <linux/pagemap.h>
 17#include <linux/namei.h>
 18#include <linux/seq_file.h>
 19#include <linux/exportfs.h>
 20
 21#include "kernfs-internal.h"
 22
 23struct kmem_cache *kernfs_node_cache;
 24
 25static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
 26{
 27	struct kernfs_root *root = kernfs_info(sb)->root;
 28	struct kernfs_syscall_ops *scops = root->syscall_ops;
 29
 30	if (scops && scops->remount_fs)
 31		return scops->remount_fs(root, flags, data);
 32	return 0;
 33}
 34
 35static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
 36{
 37	struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
 38	struct kernfs_syscall_ops *scops = root->syscall_ops;
 39
 40	if (scops && scops->show_options)
 41		return scops->show_options(sf, root);
 42	return 0;
 43}
 44
 45static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
 46{
 47	struct kernfs_node *node = kernfs_dentry_node(dentry);
 48	struct kernfs_root *root = kernfs_root(node);
 49	struct kernfs_syscall_ops *scops = root->syscall_ops;
 50
 51	if (scops && scops->show_path)
 52		return scops->show_path(sf, node, root);
 53
 54	seq_dentry(sf, dentry, " \t\n\\");
 55	return 0;
 56}
 57
 58const struct super_operations kernfs_sops = {
 59	.statfs		= simple_statfs,
 60	.drop_inode	= generic_delete_inode,
 61	.evict_inode	= kernfs_evict_inode,
 62
 63	.remount_fs	= kernfs_sop_remount_fs,
 64	.show_options	= kernfs_sop_show_options,
 65	.show_path	= kernfs_sop_show_path,
 66};
 67
 68/*
 69 * Similar to kernfs_fh_get_inode, this one gets kernfs node from inode
 70 * number and generation
 71 */
 72struct kernfs_node *kernfs_get_node_by_id(struct kernfs_root *root,
 73	const union kernfs_node_id *id)
 74{
 75	struct kernfs_node *kn;
 76
 77	kn = kernfs_find_and_get_node_by_ino(root, id->ino);
 78	if (!kn)
 79		return NULL;
 80	if (kn->id.generation != id->generation) {
 81		kernfs_put(kn);
 82		return NULL;
 83	}
 84	return kn;
 85}
 86
 87static struct inode *kernfs_fh_get_inode(struct super_block *sb,
 88		u64 ino, u32 generation)
 89{
 90	struct kernfs_super_info *info = kernfs_info(sb);
 91	struct inode *inode;
 92	struct kernfs_node *kn;
 93
 94	if (ino == 0)
 95		return ERR_PTR(-ESTALE);
 96
 97	kn = kernfs_find_and_get_node_by_ino(info->root, ino);
 98	if (!kn)
 99		return ERR_PTR(-ESTALE);
100	inode = kernfs_get_inode(sb, kn);
101	kernfs_put(kn);
102	if (!inode)
103		return ERR_PTR(-ESTALE);
104
105	if (generation && inode->i_generation != generation) {
106		/* we didn't find the right inode.. */
107		iput(inode);
108		return ERR_PTR(-ESTALE);
109	}
110	return inode;
111}
112
113static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
114		int fh_len, int fh_type)
115{
116	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
117				    kernfs_fh_get_inode);
118}
119
120static struct dentry *kernfs_fh_to_parent(struct super_block *sb, struct fid *fid,
121		int fh_len, int fh_type)
122{
123	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
124				    kernfs_fh_get_inode);
125}
126
127static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
128{
129	struct kernfs_node *kn = kernfs_dentry_node(child);
130
131	return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
132}
133
134static const struct export_operations kernfs_export_ops = {
135	.fh_to_dentry	= kernfs_fh_to_dentry,
136	.fh_to_parent	= kernfs_fh_to_parent,
137	.get_parent	= kernfs_get_parent_dentry,
138};
139
140/**
141 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
142 * @sb: the super_block in question
143 *
144 * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
145 * %NULL is returned.
146 */
147struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
148{
149	if (sb->s_op == &kernfs_sops)
150		return kernfs_info(sb)->root;
151	return NULL;
152}
153
154/*
155 * find the next ancestor in the path down to @child, where @parent was the
156 * ancestor whose descendant we want to find.
157 *
158 * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
159 * node.  If @parent is b, then we return the node for c.
160 * Passing in d as @parent is not ok.
161 */
162static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
163					      struct kernfs_node *parent)
164{
165	if (child == parent) {
166		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
167		return NULL;
168	}
169
170	while (child->parent != parent) {
171		if (!child->parent)
172			return NULL;
173		child = child->parent;
174	}
175
176	return child;
177}
178
179/**
180 * kernfs_node_dentry - get a dentry for the given kernfs_node
181 * @kn: kernfs_node for which a dentry is needed
182 * @sb: the kernfs super_block
183 */
184struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
185				  struct super_block *sb)
186{
187	struct dentry *dentry;
188	struct kernfs_node *knparent = NULL;
189
190	BUG_ON(sb->s_op != &kernfs_sops);
191
192	dentry = dget(sb->s_root);
193
194	/* Check if this is the root kernfs_node */
195	if (!kn->parent)
196		return dentry;
197
198	knparent = find_next_ancestor(kn, NULL);
199	if (WARN_ON(!knparent))
200		return ERR_PTR(-EINVAL);
201
202	do {
203		struct dentry *dtmp;
204		struct kernfs_node *kntmp;
205
206		if (kn == knparent)
207			return dentry;
208		kntmp = find_next_ancestor(kn, knparent);
209		if (WARN_ON(!kntmp))
210			return ERR_PTR(-EINVAL);
211		dtmp = lookup_one_len_unlocked(kntmp->name, dentry,
212					       strlen(kntmp->name));
213		dput(dentry);
214		if (IS_ERR(dtmp))
215			return dtmp;
216		knparent = kntmp;
217		dentry = dtmp;
218	} while (true);
219}
220
221static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
222{
223	struct kernfs_super_info *info = kernfs_info(sb);
224	struct inode *inode;
225	struct dentry *root;
226
227	info->sb = sb;
228	/* Userspace would break if executables or devices appear on sysfs */
229	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
230	sb->s_blocksize = PAGE_SIZE;
231	sb->s_blocksize_bits = PAGE_SHIFT;
232	sb->s_magic = magic;
233	sb->s_op = &kernfs_sops;
234	sb->s_xattr = kernfs_xattr_handlers;
235	if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
236		sb->s_export_op = &kernfs_export_ops;
237	sb->s_time_gran = 1;
238
239	/* get root inode, initialize and unlock it */
240	mutex_lock(&kernfs_mutex);
241	inode = kernfs_get_inode(sb, info->root->kn);
242	mutex_unlock(&kernfs_mutex);
243	if (!inode) {
244		pr_debug("kernfs: could not get root inode\n");
245		return -ENOMEM;
246	}
247
248	/* instantiate and link root dentry */
249	root = d_make_root(inode);
250	if (!root) {
251		pr_debug("%s: could not get root dentry!\n", __func__);
252		return -ENOMEM;
253	}
254	sb->s_root = root;
255	sb->s_d_op = &kernfs_dops;
256	return 0;
257}
258
259static int kernfs_test_super(struct super_block *sb, void *data)
260{
261	struct kernfs_super_info *sb_info = kernfs_info(sb);
262	struct kernfs_super_info *info = data;
263
264	return sb_info->root == info->root && sb_info->ns == info->ns;
265}
266
267static int kernfs_set_super(struct super_block *sb, void *data)
268{
269	int error;
270	error = set_anon_super(sb, data);
271	if (!error)
272		sb->s_fs_info = data;
273	return error;
274}
275
276/**
277 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
278 * @sb: super_block of interest
279 *
280 * Return the namespace tag associated with kernfs super_block @sb.
281 */
282const void *kernfs_super_ns(struct super_block *sb)
283{
284	struct kernfs_super_info *info = kernfs_info(sb);
285
286	return info->ns;
287}
288
289/**
290 * kernfs_mount_ns - kernfs mount helper
291 * @fs_type: file_system_type of the fs being mounted
292 * @flags: mount flags specified for the mount
293 * @root: kernfs_root of the hierarchy being mounted
294 * @magic: file system specific magic number
295 * @new_sb_created: tell the caller if we allocated a new superblock
296 * @ns: optional namespace tag of the mount
297 *
298 * This is to be called from each kernfs user's file_system_type->mount()
299 * implementation, which should pass through the specified @fs_type and
300 * @flags, and specify the hierarchy and namespace tag to mount via @root
301 * and @ns, respectively.
302 *
303 * The return value can be passed to the vfs layer verbatim.
304 */
305struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
306				struct kernfs_root *root, unsigned long magic,
307				bool *new_sb_created, const void *ns)
308{
309	struct super_block *sb;
310	struct kernfs_super_info *info;
311	int error;
312
313	info = kzalloc(sizeof(*info), GFP_KERNEL);
314	if (!info)
315		return ERR_PTR(-ENOMEM);
316
317	info->root = root;
318	info->ns = ns;
319	INIT_LIST_HEAD(&info->node);
320
321	sb = sget_userns(fs_type, kernfs_test_super, kernfs_set_super, flags,
322			 &init_user_ns, info);
323	if (IS_ERR(sb) || sb->s_fs_info != info)
324		kfree(info);
325	if (IS_ERR(sb))
326		return ERR_CAST(sb);
327
328	if (new_sb_created)
329		*new_sb_created = !sb->s_root;
330
331	if (!sb->s_root) {
332		struct kernfs_super_info *info = kernfs_info(sb);
333
334		error = kernfs_fill_super(sb, magic);
335		if (error) {
336			deactivate_locked_super(sb);
337			return ERR_PTR(error);
338		}
339		sb->s_flags |= SB_ACTIVE;
340
341		mutex_lock(&kernfs_mutex);
342		list_add(&info->node, &root->supers);
343		mutex_unlock(&kernfs_mutex);
344	}
345
346	return dget(sb->s_root);
347}
348
349/**
350 * kernfs_kill_sb - kill_sb for kernfs
351 * @sb: super_block being killed
352 *
353 * This can be used directly for file_system_type->kill_sb().  If a kernfs
354 * user needs extra cleanup, it can implement its own kill_sb() and call
355 * this function at the end.
356 */
357void kernfs_kill_sb(struct super_block *sb)
358{
359	struct kernfs_super_info *info = kernfs_info(sb);
360
361	mutex_lock(&kernfs_mutex);
362	list_del(&info->node);
363	mutex_unlock(&kernfs_mutex);
364
365	/*
366	 * Remove the superblock from fs_supers/s_instances
367	 * so we can't find it, before freeing kernfs_super_info.
368	 */
369	kill_anon_super(sb);
370	kfree(info);
371}
372
373/**
374 * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
375 * @kernfs_root: the kernfs_root in question
376 * @ns: the namespace tag
377 *
378 * Pin the superblock so the superblock won't be destroyed in subsequent
379 * operations.  This can be used to block ->kill_sb() which may be useful
380 * for kernfs users which dynamically manage superblocks.
381 *
382 * Returns NULL if there's no superblock associated to this kernfs_root, or
383 * -EINVAL if the superblock is being freed.
384 */
385struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
386{
387	struct kernfs_super_info *info;
388	struct super_block *sb = NULL;
389
390	mutex_lock(&kernfs_mutex);
391	list_for_each_entry(info, &root->supers, node) {
392		if (info->ns == ns) {
393			sb = info->sb;
394			if (!atomic_inc_not_zero(&info->sb->s_active))
395				sb = ERR_PTR(-EINVAL);
396			break;
397		}
398	}
399	mutex_unlock(&kernfs_mutex);
400	return sb;
401}
402
403void __init kernfs_init(void)
404{
405
406	/*
407	 * the slab is freed in RCU context, so kernfs_find_and_get_node_by_ino
408	 * can access the slab lock free. This could introduce stale nodes,
409	 * please see how kernfs_find_and_get_node_by_ino filters out stale
410	 * nodes.
411	 */
412	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
413					      sizeof(struct kernfs_node),
414					      0,
415					      SLAB_PANIC | SLAB_TYPESAFE_BY_RCU,
416					      NULL);
417}