Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * fs/f2fs/node.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/mpage.h>
  14#include <linux/backing-dev.h>
  15#include <linux/blkdev.h>
  16#include <linux/pagevec.h>
  17#include <linux/swap.h>
  18
  19#include "f2fs.h"
  20#include "node.h"
  21#include "segment.h"
  22#include "xattr.h"
  23#include "trace.h"
  24#include <trace/events/f2fs.h>
  25
  26#define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  27
  28static struct kmem_cache *nat_entry_slab;
  29static struct kmem_cache *free_nid_slab;
  30static struct kmem_cache *nat_entry_set_slab;
 
  31
  32bool available_free_memory(struct f2fs_sb_info *sbi, int type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  33{
  34	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
  35	struct sysinfo val;
  36	unsigned long avail_ram;
  37	unsigned long mem_size = 0;
  38	bool res = false;
  39
 
 
 
  40	si_meminfo(&val);
  41
  42	/* only uses low memory */
  43	avail_ram = val.totalram - val.totalhigh;
  44
  45	/*
  46	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  47	 */
  48	if (type == FREE_NIDS) {
  49		mem_size = (nm_i->nid_cnt[FREE_NID] *
  50				sizeof(struct free_nid)) >> PAGE_SHIFT;
  51		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  52	} else if (type == NAT_ENTRIES) {
  53		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  54							PAGE_SHIFT;
  55		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  56		if (excess_cached_nats(sbi))
  57			res = false;
  58	} else if (type == DIRTY_DENTS) {
  59		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  60			return false;
  61		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  62		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  63	} else if (type == INO_ENTRIES) {
  64		int i;
  65
  66		for (i = 0; i < MAX_INO_ENTRY; i++)
  67			mem_size += sbi->im[i].ino_num *
  68						sizeof(struct ino_entry);
  69		mem_size >>= PAGE_SHIFT;
  70		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  71	} else if (type == EXTENT_CACHE) {
  72		mem_size = (atomic_read(&sbi->total_ext_tree) *
 
 
 
 
  73				sizeof(struct extent_tree) +
  74				atomic_read(&sbi->total_ext_node) *
  75				sizeof(struct extent_node)) >> PAGE_SHIFT;
  76		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  77	} else if (type == INMEM_PAGES) {
  78		/* it allows 20% / total_ram for inmemory pages */
  79		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
  80		res = mem_size < (val.totalram / 5);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  81	} else {
  82		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  83			return true;
  84	}
  85	return res;
  86}
  87
  88static void clear_node_page_dirty(struct page *page)
  89{
  90	struct address_space *mapping = page->mapping;
  91	unsigned int long flags;
  92
  93	if (PageDirty(page)) {
  94		xa_lock_irqsave(&mapping->i_pages, flags);
  95		radix_tree_tag_clear(&mapping->i_pages,
  96				page_index(page),
  97				PAGECACHE_TAG_DIRTY);
  98		xa_unlock_irqrestore(&mapping->i_pages, flags);
  99
 100		clear_page_dirty_for_io(page);
 101		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
 102	}
 103	ClearPageUptodate(page);
 104}
 105
 106static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 107{
 108	pgoff_t index = current_nat_addr(sbi, nid);
 109	return get_meta_page(sbi, index);
 110}
 111
 112static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 113{
 114	struct page *src_page;
 115	struct page *dst_page;
 116	pgoff_t src_off;
 117	pgoff_t dst_off;
 118	void *src_addr;
 119	void *dst_addr;
 120	struct f2fs_nm_info *nm_i = NM_I(sbi);
 121
 122	src_off = current_nat_addr(sbi, nid);
 123	dst_off = next_nat_addr(sbi, src_off);
 124
 125	/* get current nat block page with lock */
 126	src_page = get_meta_page(sbi, src_off);
 127	dst_page = grab_meta_page(sbi, dst_off);
 
 
 128	f2fs_bug_on(sbi, PageDirty(src_page));
 129
 130	src_addr = page_address(src_page);
 131	dst_addr = page_address(dst_page);
 132	memcpy(dst_addr, src_addr, PAGE_SIZE);
 133	set_page_dirty(dst_page);
 134	f2fs_put_page(src_page, 1);
 135
 136	set_to_next_nat(nm_i, nid);
 137
 138	return dst_page;
 139}
 140
 141static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
 
 142{
 143	struct nat_entry *new;
 144
 145	if (no_fail)
 146		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 147	else
 148		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 149	if (new) {
 150		nat_set_nid(new, nid);
 151		nat_reset_flag(new);
 152	}
 153	return new;
 154}
 155
 156static void __free_nat_entry(struct nat_entry *e)
 157{
 158	kmem_cache_free(nat_entry_slab, e);
 159}
 160
 161/* must be locked by nat_tree_lock */
 162static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
 163	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
 164{
 165	if (no_fail)
 166		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
 167	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
 168		return NULL;
 169
 170	if (raw_ne)
 171		node_info_from_raw_nat(&ne->ni, raw_ne);
 
 
 172	list_add_tail(&ne->list, &nm_i->nat_entries);
 173	nm_i->nat_cnt++;
 
 
 
 174	return ne;
 175}
 176
 177static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 178{
 179	return radix_tree_lookup(&nm_i->nat_root, n);
 
 
 
 
 
 
 
 
 
 
 
 
 180}
 181
 182static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 183		nid_t start, unsigned int nr, struct nat_entry **ep)
 184{
 185	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 186}
 187
 188static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 189{
 190	list_del(&e->list);
 191	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 192	nm_i->nat_cnt--;
 
 193	__free_nat_entry(e);
 194}
 195
 196static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
 197							struct nat_entry *ne)
 198{
 199	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 200	struct nat_entry_set *head;
 201
 202	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 203	if (!head) {
 204		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 
 205
 206		INIT_LIST_HEAD(&head->entry_list);
 207		INIT_LIST_HEAD(&head->set_list);
 208		head->set = set;
 209		head->entry_cnt = 0;
 210		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 211	}
 212	return head;
 213}
 214
 215static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 216						struct nat_entry *ne)
 217{
 218	struct nat_entry_set *head;
 219	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
 220
 221	if (!new_ne)
 222		head = __grab_nat_entry_set(nm_i, ne);
 223
 224	/*
 225	 * update entry_cnt in below condition:
 226	 * 1. update NEW_ADDR to valid block address;
 227	 * 2. update old block address to new one;
 228	 */
 229	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
 230				!get_nat_flag(ne, IS_DIRTY)))
 231		head->entry_cnt++;
 232
 233	set_nat_flag(ne, IS_PREALLOC, new_ne);
 234
 235	if (get_nat_flag(ne, IS_DIRTY))
 236		goto refresh_list;
 237
 238	nm_i->dirty_nat_cnt++;
 
 239	set_nat_flag(ne, IS_DIRTY, true);
 240refresh_list:
 
 241	if (new_ne)
 242		list_del_init(&ne->list);
 243	else
 244		list_move_tail(&ne->list, &head->entry_list);
 
 245}
 246
 247static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 248		struct nat_entry_set *set, struct nat_entry *ne)
 249{
 
 250	list_move_tail(&ne->list, &nm_i->nat_entries);
 
 
 251	set_nat_flag(ne, IS_DIRTY, false);
 252	set->entry_cnt--;
 253	nm_i->dirty_nat_cnt--;
 
 254}
 255
 256static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 257		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 258{
 259	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 260							start, nr);
 261}
 262
 263int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 264{
 265	struct f2fs_nm_info *nm_i = NM_I(sbi);
 266	struct nat_entry *e;
 267	bool need = false;
 268
 269	down_read(&nm_i->nat_tree_lock);
 270	e = __lookup_nat_cache(nm_i, nid);
 271	if (e) {
 272		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 273				!get_nat_flag(e, HAS_FSYNCED_INODE))
 274			need = true;
 275	}
 276	up_read(&nm_i->nat_tree_lock);
 277	return need;
 278}
 279
 280bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 281{
 282	struct f2fs_nm_info *nm_i = NM_I(sbi);
 283	struct nat_entry *e;
 284	bool is_cp = true;
 285
 286	down_read(&nm_i->nat_tree_lock);
 287	e = __lookup_nat_cache(nm_i, nid);
 288	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 289		is_cp = false;
 290	up_read(&nm_i->nat_tree_lock);
 291	return is_cp;
 292}
 293
 294bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 295{
 296	struct f2fs_nm_info *nm_i = NM_I(sbi);
 297	struct nat_entry *e;
 298	bool need_update = true;
 299
 300	down_read(&nm_i->nat_tree_lock);
 301	e = __lookup_nat_cache(nm_i, ino);
 302	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 303			(get_nat_flag(e, IS_CHECKPOINTED) ||
 304			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 305		need_update = false;
 306	up_read(&nm_i->nat_tree_lock);
 307	return need_update;
 308}
 309
 310/* must be locked by nat_tree_lock */
 311static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 312						struct f2fs_nat_entry *ne)
 313{
 314	struct f2fs_nm_info *nm_i = NM_I(sbi);
 315	struct nat_entry *new, *e;
 316
 317	new = __alloc_nat_entry(nid, false);
 
 
 
 
 318	if (!new)
 319		return;
 320
 321	down_write(&nm_i->nat_tree_lock);
 322	e = __lookup_nat_cache(nm_i, nid);
 323	if (!e)
 324		e = __init_nat_entry(nm_i, new, ne, false);
 325	else
 326		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 327				nat_get_blkaddr(e) !=
 328					le32_to_cpu(ne->block_addr) ||
 329				nat_get_version(e) != ne->version);
 330	up_write(&nm_i->nat_tree_lock);
 331	if (e != new)
 332		__free_nat_entry(new);
 333}
 334
 335static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 336			block_t new_blkaddr, bool fsync_done)
 337{
 338	struct f2fs_nm_info *nm_i = NM_I(sbi);
 339	struct nat_entry *e;
 340	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
 341
 342	down_write(&nm_i->nat_tree_lock);
 343	e = __lookup_nat_cache(nm_i, ni->nid);
 344	if (!e) {
 345		e = __init_nat_entry(nm_i, new, NULL, true);
 346		copy_node_info(&e->ni, ni);
 347		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 348	} else if (new_blkaddr == NEW_ADDR) {
 349		/*
 350		 * when nid is reallocated,
 351		 * previous nat entry can be remained in nat cache.
 352		 * So, reinitialize it with new information.
 353		 */
 354		copy_node_info(&e->ni, ni);
 355		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 356	}
 357	/* let's free early to reduce memory consumption */
 358	if (e != new)
 359		__free_nat_entry(new);
 360
 361	/* sanity check */
 362	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 363	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 364			new_blkaddr == NULL_ADDR);
 365	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 366			new_blkaddr == NEW_ADDR);
 367	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
 368			nat_get_blkaddr(e) != NULL_ADDR &&
 369			new_blkaddr == NEW_ADDR);
 370
 371	/* increment version no as node is removed */
 372	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 373		unsigned char version = nat_get_version(e);
 
 374		nat_set_version(e, inc_node_version(version));
 375	}
 376
 377	/* change address */
 378	nat_set_blkaddr(e, new_blkaddr);
 379	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
 380		set_nat_flag(e, IS_CHECKPOINTED, false);
 381	__set_nat_cache_dirty(nm_i, e);
 382
 383	/* update fsync_mark if its inode nat entry is still alive */
 384	if (ni->nid != ni->ino)
 385		e = __lookup_nat_cache(nm_i, ni->ino);
 386	if (e) {
 387		if (fsync_done && ni->nid == ni->ino)
 388			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 389		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 390	}
 391	up_write(&nm_i->nat_tree_lock);
 392}
 393
 394int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 395{
 396	struct f2fs_nm_info *nm_i = NM_I(sbi);
 397	int nr = nr_shrink;
 398
 399	if (!down_write_trylock(&nm_i->nat_tree_lock))
 400		return 0;
 401
 402	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
 
 403		struct nat_entry *ne;
 
 
 
 
 404		ne = list_first_entry(&nm_i->nat_entries,
 405					struct nat_entry, list);
 
 
 
 406		__del_from_nat_cache(nm_i, ne);
 407		nr_shrink--;
 
 
 408	}
 409	up_write(&nm_i->nat_tree_lock);
 
 
 410	return nr - nr_shrink;
 411}
 412
 413/*
 414 * This function always returns success
 415 */
 416void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
 417{
 418	struct f2fs_nm_info *nm_i = NM_I(sbi);
 419	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 420	struct f2fs_journal *journal = curseg->journal;
 421	nid_t start_nid = START_NID(nid);
 422	struct f2fs_nat_block *nat_blk;
 423	struct page *page = NULL;
 424	struct f2fs_nat_entry ne;
 425	struct nat_entry *e;
 426	pgoff_t index;
 
 427	int i;
 428
 429	ni->nid = nid;
 430
 431	/* Check nat cache */
 432	down_read(&nm_i->nat_tree_lock);
 433	e = __lookup_nat_cache(nm_i, nid);
 434	if (e) {
 435		ni->ino = nat_get_ino(e);
 436		ni->blk_addr = nat_get_blkaddr(e);
 437		ni->version = nat_get_version(e);
 438		up_read(&nm_i->nat_tree_lock);
 439		return;
 440	}
 441
 442	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 
 
 
 
 
 
 
 
 
 
 
 
 443
 444	/* Check current segment summary */
 445	down_read(&curseg->journal_rwsem);
 446	i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 447	if (i >= 0) {
 448		ne = nat_in_journal(journal, i);
 449		node_info_from_raw_nat(ni, &ne);
 450	}
 451	up_read(&curseg->journal_rwsem);
 452	if (i >= 0) {
 453		up_read(&nm_i->nat_tree_lock);
 454		goto cache;
 455	}
 456
 457	/* Fill node_info from nat page */
 458	index = current_nat_addr(sbi, nid);
 459	up_read(&nm_i->nat_tree_lock);
 
 
 
 
 460
 461	page = get_meta_page(sbi, index);
 462	nat_blk = (struct f2fs_nat_block *)page_address(page);
 463	ne = nat_blk->entries[nid - start_nid];
 464	node_info_from_raw_nat(ni, &ne);
 465	f2fs_put_page(page, 1);
 466cache:
 
 
 
 
 
 467	/* cache nat entry */
 468	cache_nat_entry(sbi, nid, &ne);
 
 469}
 470
 471/*
 472 * readahead MAX_RA_NODE number of node pages.
 473 */
 474static void ra_node_pages(struct page *parent, int start, int n)
 475{
 476	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 477	struct blk_plug plug;
 478	int i, end;
 479	nid_t nid;
 480
 481	blk_start_plug(&plug);
 482
 483	/* Then, try readahead for siblings of the desired node */
 484	end = start + n;
 485	end = min(end, NIDS_PER_BLOCK);
 486	for (i = start; i < end; i++) {
 487		nid = get_nid(parent, i, false);
 488		ra_node_page(sbi, nid);
 489	}
 490
 491	blk_finish_plug(&plug);
 492}
 493
 494pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 495{
 496	const long direct_index = ADDRS_PER_INODE(dn->inode);
 497	const long direct_blks = ADDRS_PER_BLOCK;
 498	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 499	unsigned int skipped_unit = ADDRS_PER_BLOCK;
 500	int cur_level = dn->cur_level;
 501	int max_level = dn->max_level;
 502	pgoff_t base = 0;
 503
 504	if (!dn->max_level)
 505		return pgofs + 1;
 506
 507	while (max_level-- > cur_level)
 508		skipped_unit *= NIDS_PER_BLOCK;
 509
 510	switch (dn->max_level) {
 511	case 3:
 512		base += 2 * indirect_blks;
 
 513	case 2:
 514		base += 2 * direct_blks;
 
 515	case 1:
 516		base += direct_index;
 517		break;
 518	default:
 519		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 520	}
 521
 522	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 523}
 524
 525/*
 526 * The maximum depth is four.
 527 * Offset[0] will have raw inode offset.
 528 */
 529static int get_node_path(struct inode *inode, long block,
 530				int offset[4], unsigned int noffset[4])
 531{
 532	const long direct_index = ADDRS_PER_INODE(inode);
 533	const long direct_blks = ADDRS_PER_BLOCK;
 534	const long dptrs_per_blk = NIDS_PER_BLOCK;
 535	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 536	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 537	int n = 0;
 538	int level = 0;
 539
 540	noffset[0] = 0;
 541
 542	if (block < direct_index) {
 543		offset[n] = block;
 544		goto got;
 545	}
 546	block -= direct_index;
 547	if (block < direct_blks) {
 548		offset[n++] = NODE_DIR1_BLOCK;
 549		noffset[n] = 1;
 550		offset[n] = block;
 551		level = 1;
 552		goto got;
 553	}
 554	block -= direct_blks;
 555	if (block < direct_blks) {
 556		offset[n++] = NODE_DIR2_BLOCK;
 557		noffset[n] = 2;
 558		offset[n] = block;
 559		level = 1;
 560		goto got;
 561	}
 562	block -= direct_blks;
 563	if (block < indirect_blks) {
 564		offset[n++] = NODE_IND1_BLOCK;
 565		noffset[n] = 3;
 566		offset[n++] = block / direct_blks;
 567		noffset[n] = 4 + offset[n - 1];
 568		offset[n] = block % direct_blks;
 569		level = 2;
 570		goto got;
 571	}
 572	block -= indirect_blks;
 573	if (block < indirect_blks) {
 574		offset[n++] = NODE_IND2_BLOCK;
 575		noffset[n] = 4 + dptrs_per_blk;
 576		offset[n++] = block / direct_blks;
 577		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 578		offset[n] = block % direct_blks;
 579		level = 2;
 580		goto got;
 581	}
 582	block -= indirect_blks;
 583	if (block < dindirect_blks) {
 584		offset[n++] = NODE_DIND_BLOCK;
 585		noffset[n] = 5 + (dptrs_per_blk * 2);
 586		offset[n++] = block / indirect_blks;
 587		noffset[n] = 6 + (dptrs_per_blk * 2) +
 588			      offset[n - 1] * (dptrs_per_blk + 1);
 589		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 590		noffset[n] = 7 + (dptrs_per_blk * 2) +
 591			      offset[n - 2] * (dptrs_per_blk + 1) +
 592			      offset[n - 1];
 593		offset[n] = block % direct_blks;
 594		level = 3;
 595		goto got;
 596	} else {
 597		return -E2BIG;
 598	}
 599got:
 600	return level;
 601}
 602
 603/*
 604 * Caller should call f2fs_put_dnode(dn).
 605 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 606 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 607 * In the case of RDONLY_NODE, we don't need to care about mutex.
 608 */
 609int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 610{
 611	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 612	struct page *npage[4];
 613	struct page *parent = NULL;
 614	int offset[4];
 615	unsigned int noffset[4];
 616	nid_t nids[4];
 617	int level, i = 0;
 618	int err = 0;
 619
 620	level = get_node_path(dn->inode, index, offset, noffset);
 621	if (level < 0)
 622		return level;
 623
 624	nids[0] = dn->inode->i_ino;
 625	npage[0] = dn->inode_page;
 626
 627	if (!npage[0]) {
 628		npage[0] = get_node_page(sbi, nids[0]);
 629		if (IS_ERR(npage[0]))
 630			return PTR_ERR(npage[0]);
 631	}
 632
 633	/* if inline_data is set, should not report any block indices */
 634	if (f2fs_has_inline_data(dn->inode) && index) {
 635		err = -ENOENT;
 636		f2fs_put_page(npage[0], 1);
 637		goto release_out;
 638	}
 639
 640	parent = npage[0];
 641	if (level != 0)
 642		nids[1] = get_nid(parent, offset[0], true);
 643	dn->inode_page = npage[0];
 644	dn->inode_page_locked = true;
 645
 646	/* get indirect or direct nodes */
 647	for (i = 1; i <= level; i++) {
 648		bool done = false;
 649
 650		if (!nids[i] && mode == ALLOC_NODE) {
 651			/* alloc new node */
 652			if (!alloc_nid(sbi, &(nids[i]))) {
 653				err = -ENOSPC;
 654				goto release_pages;
 655			}
 656
 657			dn->nid = nids[i];
 658			npage[i] = new_node_page(dn, noffset[i]);
 659			if (IS_ERR(npage[i])) {
 660				alloc_nid_failed(sbi, nids[i]);
 661				err = PTR_ERR(npage[i]);
 662				goto release_pages;
 663			}
 664
 665			set_nid(parent, offset[i - 1], nids[i], i == 1);
 666			alloc_nid_done(sbi, nids[i]);
 667			done = true;
 668		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 669			npage[i] = get_node_page_ra(parent, offset[i - 1]);
 670			if (IS_ERR(npage[i])) {
 671				err = PTR_ERR(npage[i]);
 672				goto release_pages;
 673			}
 674			done = true;
 675		}
 676		if (i == 1) {
 677			dn->inode_page_locked = false;
 678			unlock_page(parent);
 679		} else {
 680			f2fs_put_page(parent, 1);
 681		}
 682
 683		if (!done) {
 684			npage[i] = get_node_page(sbi, nids[i]);
 685			if (IS_ERR(npage[i])) {
 686				err = PTR_ERR(npage[i]);
 687				f2fs_put_page(npage[0], 0);
 688				goto release_out;
 689			}
 690		}
 691		if (i < level) {
 692			parent = npage[i];
 693			nids[i + 1] = get_nid(parent, offset[i], false);
 694		}
 695	}
 696	dn->nid = nids[level];
 697	dn->ofs_in_node = offset[level];
 698	dn->node_page = npage[level];
 699	dn->data_blkaddr = datablock_addr(dn->inode,
 700				dn->node_page, dn->ofs_in_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 701	return 0;
 702
 703release_pages:
 704	f2fs_put_page(parent, 1);
 705	if (i > 1)
 706		f2fs_put_page(npage[0], 0);
 707release_out:
 708	dn->inode_page = NULL;
 709	dn->node_page = NULL;
 710	if (err == -ENOENT) {
 711		dn->cur_level = i;
 712		dn->max_level = level;
 713		dn->ofs_in_node = offset[level];
 714	}
 715	return err;
 716}
 717
 718static void truncate_node(struct dnode_of_data *dn)
 719{
 720	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 721	struct node_info ni;
 
 
 722
 723	get_node_info(sbi, dn->nid, &ni);
 
 
 724
 725	/* Deallocate node address */
 726	invalidate_blocks(sbi, ni.blk_addr);
 727	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
 728	set_node_addr(sbi, &ni, NULL_ADDR, false);
 729
 730	if (dn->nid == dn->inode->i_ino) {
 731		remove_orphan_inode(sbi, dn->nid);
 732		dec_valid_inode_count(sbi);
 733		f2fs_inode_synced(dn->inode);
 734	}
 735
 736	clear_node_page_dirty(dn->node_page);
 737	set_sbi_flag(sbi, SBI_IS_DIRTY);
 738
 
 739	f2fs_put_page(dn->node_page, 1);
 740
 741	invalidate_mapping_pages(NODE_MAPPING(sbi),
 742			dn->node_page->index, dn->node_page->index);
 743
 744	dn->node_page = NULL;
 745	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 
 
 746}
 747
 748static int truncate_dnode(struct dnode_of_data *dn)
 749{
 
 750	struct page *page;
 
 751
 752	if (dn->nid == 0)
 753		return 1;
 754
 755	/* get direct node */
 756	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 757	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 758		return 1;
 759	else if (IS_ERR(page))
 760		return PTR_ERR(page);
 761
 
 
 
 
 
 
 
 
 
 762	/* Make dnode_of_data for parameter */
 763	dn->node_page = page;
 764	dn->ofs_in_node = 0;
 765	truncate_data_blocks(dn);
 766	truncate_node(dn);
 
 
 
 
 
 767	return 1;
 768}
 769
 770static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 771						int ofs, int depth)
 772{
 773	struct dnode_of_data rdn = *dn;
 774	struct page *page;
 775	struct f2fs_node *rn;
 776	nid_t child_nid;
 777	unsigned int child_nofs;
 778	int freed = 0;
 779	int i, ret;
 780
 781	if (dn->nid == 0)
 782		return NIDS_PER_BLOCK + 1;
 783
 784	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 785
 786	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 787	if (IS_ERR(page)) {
 788		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 789		return PTR_ERR(page);
 790	}
 791
 792	ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 793
 794	rn = F2FS_NODE(page);
 795	if (depth < 3) {
 796		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 797			child_nid = le32_to_cpu(rn->in.nid[i]);
 798			if (child_nid == 0)
 799				continue;
 800			rdn.nid = child_nid;
 801			ret = truncate_dnode(&rdn);
 802			if (ret < 0)
 803				goto out_err;
 804			if (set_nid(page, i, 0, false))
 805				dn->node_changed = true;
 806		}
 807	} else {
 808		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 809		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 810			child_nid = le32_to_cpu(rn->in.nid[i]);
 811			if (child_nid == 0) {
 812				child_nofs += NIDS_PER_BLOCK + 1;
 813				continue;
 814			}
 815			rdn.nid = child_nid;
 816			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 817			if (ret == (NIDS_PER_BLOCK + 1)) {
 818				if (set_nid(page, i, 0, false))
 819					dn->node_changed = true;
 820				child_nofs += ret;
 821			} else if (ret < 0 && ret != -ENOENT) {
 822				goto out_err;
 823			}
 824		}
 825		freed = child_nofs;
 826	}
 827
 828	if (!ofs) {
 829		/* remove current indirect node */
 830		dn->node_page = page;
 831		truncate_node(dn);
 
 
 832		freed++;
 833	} else {
 834		f2fs_put_page(page, 1);
 835	}
 836	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 837	return freed;
 838
 839out_err:
 840	f2fs_put_page(page, 1);
 841	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 842	return ret;
 843}
 844
 845static int truncate_partial_nodes(struct dnode_of_data *dn,
 846			struct f2fs_inode *ri, int *offset, int depth)
 847{
 848	struct page *pages[2];
 849	nid_t nid[3];
 850	nid_t child_nid;
 851	int err = 0;
 852	int i;
 853	int idx = depth - 2;
 854
 855	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 856	if (!nid[0])
 857		return 0;
 858
 859	/* get indirect nodes in the path */
 860	for (i = 0; i < idx + 1; i++) {
 861		/* reference count'll be increased */
 862		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 863		if (IS_ERR(pages[i])) {
 864			err = PTR_ERR(pages[i]);
 865			idx = i - 1;
 866			goto fail;
 867		}
 868		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 869	}
 870
 871	ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
 872
 873	/* free direct nodes linked to a partial indirect node */
 874	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
 875		child_nid = get_nid(pages[idx], i, false);
 876		if (!child_nid)
 877			continue;
 878		dn->nid = child_nid;
 879		err = truncate_dnode(dn);
 880		if (err < 0)
 881			goto fail;
 882		if (set_nid(pages[idx], i, 0, false))
 883			dn->node_changed = true;
 884	}
 885
 886	if (offset[idx + 1] == 0) {
 887		dn->node_page = pages[idx];
 888		dn->nid = nid[idx];
 889		truncate_node(dn);
 
 
 890	} else {
 891		f2fs_put_page(pages[idx], 1);
 892	}
 893	offset[idx]++;
 894	offset[idx + 1] = 0;
 895	idx--;
 896fail:
 897	for (i = idx; i >= 0; i--)
 898		f2fs_put_page(pages[i], 1);
 899
 900	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
 901
 902	return err;
 903}
 904
 905/*
 906 * All the block addresses of data and nodes should be nullified.
 907 */
 908int truncate_inode_blocks(struct inode *inode, pgoff_t from)
 909{
 910	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 911	int err = 0, cont = 1;
 912	int level, offset[4], noffset[4];
 913	unsigned int nofs = 0;
 914	struct f2fs_inode *ri;
 915	struct dnode_of_data dn;
 916	struct page *page;
 917
 918	trace_f2fs_truncate_inode_blocks_enter(inode, from);
 919
 920	level = get_node_path(inode, from, offset, noffset);
 921	if (level < 0)
 
 922		return level;
 
 923
 924	page = get_node_page(sbi, inode->i_ino);
 925	if (IS_ERR(page)) {
 926		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
 927		return PTR_ERR(page);
 928	}
 929
 930	set_new_dnode(&dn, inode, page, NULL, 0);
 931	unlock_page(page);
 932
 933	ri = F2FS_INODE(page);
 934	switch (level) {
 935	case 0:
 936	case 1:
 937		nofs = noffset[1];
 938		break;
 939	case 2:
 940		nofs = noffset[1];
 941		if (!offset[level - 1])
 942			goto skip_partial;
 943		err = truncate_partial_nodes(&dn, ri, offset, level);
 944		if (err < 0 && err != -ENOENT)
 945			goto fail;
 946		nofs += 1 + NIDS_PER_BLOCK;
 947		break;
 948	case 3:
 949		nofs = 5 + 2 * NIDS_PER_BLOCK;
 950		if (!offset[level - 1])
 951			goto skip_partial;
 952		err = truncate_partial_nodes(&dn, ri, offset, level);
 953		if (err < 0 && err != -ENOENT)
 954			goto fail;
 955		break;
 956	default:
 957		BUG();
 958	}
 959
 960skip_partial:
 961	while (cont) {
 962		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 963		switch (offset[0]) {
 964		case NODE_DIR1_BLOCK:
 965		case NODE_DIR2_BLOCK:
 966			err = truncate_dnode(&dn);
 967			break;
 968
 969		case NODE_IND1_BLOCK:
 970		case NODE_IND2_BLOCK:
 971			err = truncate_nodes(&dn, nofs, offset[1], 2);
 972			break;
 973
 974		case NODE_DIND_BLOCK:
 975			err = truncate_nodes(&dn, nofs, offset[1], 3);
 976			cont = 0;
 977			break;
 978
 979		default:
 980			BUG();
 981		}
 982		if (err < 0 && err != -ENOENT)
 983			goto fail;
 984		if (offset[1] == 0 &&
 985				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
 986			lock_page(page);
 987			BUG_ON(page->mapping != NODE_MAPPING(sbi));
 988			f2fs_wait_on_page_writeback(page, NODE, true);
 989			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
 990			set_page_dirty(page);
 991			unlock_page(page);
 992		}
 993		offset[1] = 0;
 994		offset[0]++;
 995		nofs += err;
 996	}
 997fail:
 998	f2fs_put_page(page, 0);
 999	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1000	return err > 0 ? 0 : err;
1001}
1002
1003/* caller must lock inode page */
1004int truncate_xattr_node(struct inode *inode)
1005{
1006	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1007	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1008	struct dnode_of_data dn;
1009	struct page *npage;
 
1010
1011	if (!nid)
1012		return 0;
1013
1014	npage = get_node_page(sbi, nid);
1015	if (IS_ERR(npage))
1016		return PTR_ERR(npage);
1017
 
 
 
 
 
 
 
1018	f2fs_i_xnid_write(inode, 0);
1019
1020	set_new_dnode(&dn, inode, NULL, npage, nid);
1021	truncate_node(&dn);
1022	return 0;
1023}
1024
1025/*
1026 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1027 * f2fs_unlock_op().
1028 */
1029int remove_inode_page(struct inode *inode)
1030{
1031	struct dnode_of_data dn;
1032	int err;
1033
1034	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1035	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1036	if (err)
1037		return err;
1038
1039	err = truncate_xattr_node(inode);
1040	if (err) {
1041		f2fs_put_dnode(&dn);
1042		return err;
1043	}
1044
1045	/* remove potential inline_data blocks */
1046	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1047				S_ISLNK(inode->i_mode))
1048		truncate_data_blocks_range(&dn, 1);
1049
1050	/* 0 is possible, after f2fs_new_inode() has failed */
1051	f2fs_bug_on(F2FS_I_SB(inode),
1052			inode->i_blocks != 0 && inode->i_blocks != 8);
 
 
 
 
 
 
 
 
 
1053
1054	/* will put inode & node pages */
1055	truncate_node(&dn);
 
 
 
 
1056	return 0;
1057}
1058
1059struct page *new_inode_page(struct inode *inode)
1060{
1061	struct dnode_of_data dn;
1062
1063	/* allocate inode page for new inode */
1064	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1065
1066	/* caller should f2fs_put_page(page, 1); */
1067	return new_node_page(&dn, 0);
1068}
1069
1070struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1071{
1072	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1073	struct node_info new_ni;
1074	struct page *page;
1075	int err;
1076
1077	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1078		return ERR_PTR(-EPERM);
1079
1080	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1081	if (!page)
1082		return ERR_PTR(-ENOMEM);
1083
1084	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1085		goto fail;
1086
1087#ifdef CONFIG_F2FS_CHECK_FS
1088	get_node_info(sbi, dn->nid, &new_ni);
1089	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
 
 
 
 
 
 
 
 
 
1090#endif
1091	new_ni.nid = dn->nid;
1092	new_ni.ino = dn->inode->i_ino;
1093	new_ni.blk_addr = NULL_ADDR;
1094	new_ni.flag = 0;
1095	new_ni.version = 0;
1096	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1097
1098	f2fs_wait_on_page_writeback(page, NODE, true);
1099	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1100	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1101	if (!PageUptodate(page))
1102		SetPageUptodate(page);
1103	if (set_page_dirty(page))
1104		dn->node_changed = true;
1105
1106	if (f2fs_has_xattr_block(ofs))
1107		f2fs_i_xnid_write(dn->inode, dn->nid);
1108
1109	if (ofs == 0)
1110		inc_valid_inode_count(sbi);
1111	return page;
1112
1113fail:
1114	clear_node_page_dirty(page);
1115	f2fs_put_page(page, 1);
1116	return ERR_PTR(err);
1117}
1118
1119/*
1120 * Caller should do after getting the following values.
1121 * 0: f2fs_put_page(page, 0)
1122 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1123 */
1124static int read_node_page(struct page *page, int op_flags)
1125{
1126	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1127	struct node_info ni;
1128	struct f2fs_io_info fio = {
1129		.sbi = sbi,
1130		.type = NODE,
1131		.op = REQ_OP_READ,
1132		.op_flags = op_flags,
1133		.page = page,
1134		.encrypted_page = NULL,
1135	};
 
1136
1137	if (PageUptodate(page))
 
 
 
 
1138		return LOCKED_PAGE;
 
1139
1140	get_node_info(sbi, page->index, &ni);
 
 
1141
1142	if (unlikely(ni.blk_addr == NULL_ADDR)) {
 
1143		ClearPageUptodate(page);
1144		return -ENOENT;
1145	}
1146
1147	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1148	return f2fs_submit_page_bio(&fio);
 
 
 
 
 
 
1149}
1150
1151/*
1152 * Readahead a node page
1153 */
1154void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1155{
1156	struct page *apage;
1157	int err;
1158
1159	if (!nid)
1160		return;
1161	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
 
1162
1163	rcu_read_lock();
1164	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->i_pages, nid);
1165	rcu_read_unlock();
1166	if (apage)
1167		return;
1168
1169	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1170	if (!apage)
1171		return;
1172
1173	err = read_node_page(apage, REQ_RAHEAD);
1174	f2fs_put_page(apage, err ? 1 : 0);
1175}
1176
1177static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1178					struct page *parent, int start)
1179{
1180	struct page *page;
1181	int err;
1182
1183	if (!nid)
1184		return ERR_PTR(-ENOENT);
1185	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
 
1186repeat:
1187	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1188	if (!page)
1189		return ERR_PTR(-ENOMEM);
1190
1191	err = read_node_page(page, 0);
1192	if (err < 0) {
1193		f2fs_put_page(page, 1);
1194		return ERR_PTR(err);
1195	} else if (err == LOCKED_PAGE) {
1196		err = 0;
1197		goto page_hit;
1198	}
1199
1200	if (parent)
1201		ra_node_pages(parent, start + 1, MAX_RA_NODE);
1202
1203	lock_page(page);
1204
1205	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1206		f2fs_put_page(page, 1);
1207		goto repeat;
1208	}
1209
1210	if (unlikely(!PageUptodate(page))) {
1211		err = -EIO;
1212		goto out_err;
1213	}
1214
1215	if (!f2fs_inode_chksum_verify(sbi, page)) {
1216		err = -EBADMSG;
1217		goto out_err;
1218	}
1219page_hit:
1220	if(unlikely(nid != nid_of_node(page))) {
1221		f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1222			"nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1223			nid, nid_of_node(page), ino_of_node(page),
1224			ofs_of_node(page), cpver_of_node(page),
1225			next_blkaddr_of_node(page));
1226		err = -EINVAL;
 
 
 
1227out_err:
1228		ClearPageUptodate(page);
1229		f2fs_put_page(page, 1);
1230		return ERR_PTR(err);
1231	}
1232	return page;
 
 
1233}
1234
1235struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1236{
1237	return __get_node_page(sbi, nid, NULL, 0);
1238}
1239
1240struct page *get_node_page_ra(struct page *parent, int start)
1241{
1242	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1243	nid_t nid = get_nid(parent, start, false);
1244
1245	return __get_node_page(sbi, nid, parent, start);
1246}
1247
1248static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1249{
1250	struct inode *inode;
1251	struct page *page;
1252	int ret;
1253
1254	/* should flush inline_data before evict_inode */
1255	inode = ilookup(sbi->sb, ino);
1256	if (!inode)
1257		return;
1258
1259	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1260					FGP_LOCK|FGP_NOWAIT, 0);
1261	if (!page)
1262		goto iput_out;
1263
1264	if (!PageUptodate(page))
1265		goto page_out;
1266
1267	if (!PageDirty(page))
1268		goto page_out;
1269
1270	if (!clear_page_dirty_for_io(page))
1271		goto page_out;
1272
1273	ret = f2fs_write_inline_data(inode, page);
1274	inode_dec_dirty_pages(inode);
1275	remove_dirty_inode(inode);
1276	if (ret)
1277		set_page_dirty(page);
1278page_out:
1279	f2fs_put_page(page, 1);
1280iput_out:
1281	iput(inode);
1282}
1283
1284static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1285{
1286	pgoff_t index;
1287	struct pagevec pvec;
1288	struct page *last_page = NULL;
1289	int nr_pages;
1290
1291	pagevec_init(&pvec);
1292	index = 0;
1293
1294	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1295				PAGECACHE_TAG_DIRTY))) {
 
1296		int i;
1297
1298		for (i = 0; i < nr_pages; i++) {
1299			struct page *page = pvec.pages[i];
1300
1301			if (unlikely(f2fs_cp_error(sbi))) {
1302				f2fs_put_page(last_page, 0);
1303				pagevec_release(&pvec);
1304				return ERR_PTR(-EIO);
1305			}
1306
1307			if (!IS_DNODE(page) || !is_cold_node(page))
1308				continue;
1309			if (ino_of_node(page) != ino)
1310				continue;
1311
1312			lock_page(page);
1313
1314			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1315continue_unlock:
1316				unlock_page(page);
1317				continue;
1318			}
1319			if (ino_of_node(page) != ino)
1320				goto continue_unlock;
1321
1322			if (!PageDirty(page)) {
1323				/* someone wrote it for us */
1324				goto continue_unlock;
1325			}
1326
1327			if (last_page)
1328				f2fs_put_page(last_page, 0);
1329
1330			get_page(page);
1331			last_page = page;
1332			unlock_page(page);
1333		}
1334		pagevec_release(&pvec);
1335		cond_resched();
1336	}
1337	return last_page;
1338}
1339
1340static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1341				struct writeback_control *wbc, bool do_balance,
1342				enum iostat_type io_type)
1343{
1344	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1345	nid_t nid;
1346	struct node_info ni;
1347	struct f2fs_io_info fio = {
1348		.sbi = sbi,
1349		.ino = ino_of_node(page),
1350		.type = NODE,
1351		.op = REQ_OP_WRITE,
1352		.op_flags = wbc_to_write_flags(wbc),
1353		.page = page,
1354		.encrypted_page = NULL,
1355		.submitted = false,
1356		.io_type = io_type,
1357		.io_wbc = wbc,
1358	};
 
1359
1360	trace_f2fs_writepage(page, NODE);
1361
1362	if (unlikely(f2fs_cp_error(sbi))) {
 
 
 
 
1363		dec_page_count(sbi, F2FS_DIRTY_NODES);
1364		unlock_page(page);
1365		return 0;
1366	}
1367
1368	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1369		goto redirty_out;
1370
 
 
 
 
 
1371	/* get old block addr of this node page */
1372	nid = nid_of_node(page);
1373	f2fs_bug_on(sbi, page->index != nid);
1374
 
 
 
1375	if (wbc->for_reclaim) {
1376		if (!down_read_trylock(&sbi->node_write))
1377			goto redirty_out;
1378	} else {
1379		down_read(&sbi->node_write);
1380	}
1381
1382	get_node_info(sbi, nid, &ni);
1383
1384	/* This page is already truncated */
1385	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1386		ClearPageUptodate(page);
1387		dec_page_count(sbi, F2FS_DIRTY_NODES);
1388		up_read(&sbi->node_write);
1389		unlock_page(page);
1390		return 0;
1391	}
1392
1393	if (atomic && !test_opt(sbi, NOBARRIER))
 
 
 
 
 
 
 
1394		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1395
 
 
 
 
 
 
 
1396	set_page_writeback(page);
 
1397	fio.old_blkaddr = ni.blk_addr;
1398	write_node_page(nid, &fio);
1399	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1400	dec_page_count(sbi, F2FS_DIRTY_NODES);
1401	up_read(&sbi->node_write);
1402
1403	if (wbc->for_reclaim) {
1404		f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1405						page->index, NODE);
1406		submitted = NULL;
1407	}
1408
1409	unlock_page(page);
1410
1411	if (unlikely(f2fs_cp_error(sbi))) {
1412		f2fs_submit_merged_write(sbi, NODE);
1413		submitted = NULL;
1414	}
1415	if (submitted)
1416		*submitted = fio.submitted;
1417
1418	if (do_balance)
1419		f2fs_balance_fs(sbi, false);
1420	return 0;
1421
1422redirty_out:
1423	redirty_page_for_writepage(wbc, page);
1424	return AOP_WRITEPAGE_ACTIVATE;
1425}
1426
1427void move_node_page(struct page *node_page, int gc_type)
1428{
 
 
1429	if (gc_type == FG_GC) {
1430		struct writeback_control wbc = {
1431			.sync_mode = WB_SYNC_ALL,
1432			.nr_to_write = 1,
1433			.for_reclaim = 0,
1434		};
1435
 
 
1436		set_page_dirty(node_page);
1437		f2fs_wait_on_page_writeback(node_page, NODE, true);
1438
1439		f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
1440		if (!clear_page_dirty_for_io(node_page))
1441			goto out_page;
 
1442
1443		if (__write_node_page(node_page, false, NULL,
1444					&wbc, false, FS_GC_NODE_IO))
 
1445			unlock_page(node_page);
 
1446		goto release_page;
1447	} else {
1448		/* set page dirty and write it */
1449		if (!PageWriteback(node_page))
1450			set_page_dirty(node_page);
1451	}
1452out_page:
1453	unlock_page(node_page);
1454release_page:
1455	f2fs_put_page(node_page, 0);
 
1456}
1457
1458static int f2fs_write_node_page(struct page *page,
1459				struct writeback_control *wbc)
1460{
1461	return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO);
 
1462}
1463
1464int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1465			struct writeback_control *wbc, bool atomic)
 
1466{
1467	pgoff_t index;
1468	pgoff_t last_idx = ULONG_MAX;
1469	struct pagevec pvec;
1470	int ret = 0;
1471	struct page *last_page = NULL;
1472	bool marked = false;
1473	nid_t ino = inode->i_ino;
1474	int nr_pages;
 
1475
1476	if (atomic) {
1477		last_page = last_fsync_dnode(sbi, ino);
1478		if (IS_ERR_OR_NULL(last_page))
1479			return PTR_ERR_OR_ZERO(last_page);
1480	}
1481retry:
1482	pagevec_init(&pvec);
1483	index = 0;
1484
1485	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1486				PAGECACHE_TAG_DIRTY))) {
 
1487		int i;
1488
1489		for (i = 0; i < nr_pages; i++) {
1490			struct page *page = pvec.pages[i];
1491			bool submitted = false;
1492
1493			if (unlikely(f2fs_cp_error(sbi))) {
1494				f2fs_put_page(last_page, 0);
1495				pagevec_release(&pvec);
1496				ret = -EIO;
1497				goto out;
1498			}
1499
1500			if (!IS_DNODE(page) || !is_cold_node(page))
1501				continue;
1502			if (ino_of_node(page) != ino)
1503				continue;
1504
1505			lock_page(page);
1506
1507			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1508continue_unlock:
1509				unlock_page(page);
1510				continue;
1511			}
1512			if (ino_of_node(page) != ino)
1513				goto continue_unlock;
1514
1515			if (!PageDirty(page) && page != last_page) {
1516				/* someone wrote it for us */
1517				goto continue_unlock;
1518			}
1519
1520			f2fs_wait_on_page_writeback(page, NODE, true);
1521			BUG_ON(PageWriteback(page));
1522
1523			set_fsync_mark(page, 0);
1524			set_dentry_mark(page, 0);
1525
1526			if (!atomic || page == last_page) {
1527				set_fsync_mark(page, 1);
 
1528				if (IS_INODE(page)) {
1529					if (is_inode_flag_set(inode,
1530								FI_DIRTY_INODE))
1531						update_inode(inode, page);
1532					set_dentry_mark(page,
1533						need_dentry_mark(sbi, ino));
1534				}
1535				/*  may be written by other thread */
1536				if (!PageDirty(page))
1537					set_page_dirty(page);
1538			}
1539
1540			if (!clear_page_dirty_for_io(page))
1541				goto continue_unlock;
1542
1543			ret = __write_node_page(page, atomic &&
1544						page == last_page,
1545						&submitted, wbc, true,
1546						FS_NODE_IO);
1547			if (ret) {
1548				unlock_page(page);
1549				f2fs_put_page(last_page, 0);
1550				break;
1551			} else if (submitted) {
1552				last_idx = page->index;
1553			}
1554
1555			if (page == last_page) {
1556				f2fs_put_page(page, 0);
1557				marked = true;
1558				break;
1559			}
1560		}
1561		pagevec_release(&pvec);
1562		cond_resched();
1563
1564		if (ret || marked)
1565			break;
1566	}
1567	if (!ret && atomic && !marked) {
1568		f2fs_msg(sbi->sb, KERN_DEBUG,
1569			"Retry to write fsync mark: ino=%u, idx=%lx",
1570					ino, last_page->index);
1571		lock_page(last_page);
1572		f2fs_wait_on_page_writeback(last_page, NODE, true);
1573		set_page_dirty(last_page);
1574		unlock_page(last_page);
1575		goto retry;
1576	}
1577out:
1578	if (last_idx != ULONG_MAX)
1579		f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1580	return ret ? -EIO: 0;
1581}
1582
1583int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1584				bool do_balance, enum iostat_type io_type)
1585{
1586	pgoff_t index;
1587	struct pagevec pvec;
1588	int step = 0;
1589	int nwritten = 0;
1590	int ret = 0;
1591	int nr_pages;
1592
1593	pagevec_init(&pvec);
1594
1595next_step:
1596	index = 0;
1597
1598	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1599				PAGECACHE_TAG_DIRTY))) {
 
1600		int i;
1601
1602		for (i = 0; i < nr_pages; i++) {
1603			struct page *page = pvec.pages[i];
1604			bool submitted = false;
1605
 
 
 
 
 
 
 
1606			/*
1607			 * flushing sequence with step:
1608			 * 0. indirect nodes
1609			 * 1. dentry dnodes
1610			 * 2. file dnodes
1611			 */
1612			if (step == 0 && IS_DNODE(page))
1613				continue;
1614			if (step == 1 && (!IS_DNODE(page) ||
1615						is_cold_node(page)))
1616				continue;
1617			if (step == 2 && (!IS_DNODE(page) ||
1618						!is_cold_node(page)))
1619				continue;
1620lock_node:
1621			if (!trylock_page(page))
 
 
1622				continue;
1623
1624			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1625continue_unlock:
1626				unlock_page(page);
1627				continue;
1628			}
1629
1630			if (!PageDirty(page)) {
1631				/* someone wrote it for us */
1632				goto continue_unlock;
1633			}
1634
 
 
 
 
1635			/* flush inline_data */
1636			if (is_inline_node(page)) {
1637				clear_inline_node(page);
1638				unlock_page(page);
1639				flush_inline_data(sbi, ino_of_node(page));
1640				goto lock_node;
1641			}
1642
1643			f2fs_wait_on_page_writeback(page, NODE, true);
 
 
 
 
1644
1645			BUG_ON(PageWriteback(page));
1646			if (!clear_page_dirty_for_io(page))
1647				goto continue_unlock;
1648
1649			set_fsync_mark(page, 0);
1650			set_dentry_mark(page, 0);
1651
1652			ret = __write_node_page(page, false, &submitted,
1653						wbc, do_balance, io_type);
1654			if (ret)
1655				unlock_page(page);
1656			else if (submitted)
1657				nwritten++;
1658
1659			if (--wbc->nr_to_write == 0)
1660				break;
1661		}
1662		pagevec_release(&pvec);
1663		cond_resched();
1664
1665		if (wbc->nr_to_write == 0) {
1666			step = 2;
1667			break;
1668		}
1669	}
1670
1671	if (step < 2) {
 
 
 
1672		step++;
1673		goto next_step;
1674	}
1675
1676	if (nwritten)
1677		f2fs_submit_merged_write(sbi, NODE);
1678
1679	if (unlikely(f2fs_cp_error(sbi)))
1680		return -EIO;
1681	return ret;
1682}
1683
1684int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
 
1685{
1686	pgoff_t index = 0;
1687	struct pagevec pvec;
1688	int ret2, ret = 0;
1689	int nr_pages;
1690
1691	pagevec_init(&pvec);
1692
1693	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1694				PAGECACHE_TAG_WRITEBACK))) {
1695		int i;
 
 
 
 
 
 
 
 
 
 
 
1696
1697		for (i = 0; i < nr_pages; i++) {
1698			struct page *page = pvec.pages[i];
1699
1700			if (ino && ino_of_node(page) == ino) {
1701				f2fs_wait_on_page_writeback(page, NODE, true);
1702				if (TestClearPageError(page))
1703					ret = -EIO;
1704			}
1705		}
1706		pagevec_release(&pvec);
1707		cond_resched();
1708	}
1709
1710	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1711	if (!ret)
1712		ret = ret2;
1713	return ret;
1714}
1715
1716static int f2fs_write_node_pages(struct address_space *mapping,
1717			    struct writeback_control *wbc)
1718{
1719	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1720	struct blk_plug plug;
1721	long diff;
1722
1723	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1724		goto skip_write;
1725
1726	/* balancing f2fs's metadata in background */
1727	f2fs_balance_fs_bg(sbi);
1728
1729	/* collect a number of dirty node pages and write together */
1730	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
 
 
 
 
 
 
 
 
 
 
1731		goto skip_write;
 
1732
1733	trace_f2fs_writepages(mapping->host, wbc, NODE);
1734
1735	diff = nr_pages_to_write(sbi, NODE, wbc);
1736	wbc->sync_mode = WB_SYNC_NONE;
1737	blk_start_plug(&plug);
1738	sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1739	blk_finish_plug(&plug);
1740	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
 
 
 
1741	return 0;
1742
1743skip_write:
1744	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1745	trace_f2fs_writepages(mapping->host, wbc, NODE);
1746	return 0;
1747}
1748
1749static int f2fs_set_node_page_dirty(struct page *page)
 
1750{
1751	trace_f2fs_set_page_dirty(page, NODE);
1752
1753	if (!PageUptodate(page))
1754		SetPageUptodate(page);
1755	if (!PageDirty(page)) {
1756		f2fs_set_page_dirty_nobuffers(page);
1757		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1758		SetPagePrivate(page);
1759		f2fs_trace_pid(page);
1760		return 1;
 
 
1761	}
1762	return 0;
1763}
1764
1765/*
1766 * Structure of the f2fs node operations
1767 */
1768const struct address_space_operations f2fs_node_aops = {
1769	.writepage	= f2fs_write_node_page,
1770	.writepages	= f2fs_write_node_pages,
1771	.set_page_dirty	= f2fs_set_node_page_dirty,
1772	.invalidatepage	= f2fs_invalidate_page,
1773	.releasepage	= f2fs_release_page,
1774#ifdef CONFIG_MIGRATION
1775	.migratepage    = f2fs_migrate_page,
1776#endif
1777};
1778
1779static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1780						nid_t n)
1781{
1782	return radix_tree_lookup(&nm_i->free_nid_root, n);
1783}
1784
1785static int __insert_free_nid(struct f2fs_sb_info *sbi,
1786			struct free_nid *i, enum nid_state state)
1787{
1788	struct f2fs_nm_info *nm_i = NM_I(sbi);
1789
1790	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
 
1791	if (err)
1792		return err;
1793
1794	f2fs_bug_on(sbi, state != i->state);
1795	nm_i->nid_cnt[state]++;
1796	if (state == FREE_NID)
1797		list_add_tail(&i->list, &nm_i->free_nid_list);
1798	return 0;
1799}
1800
1801static void __remove_free_nid(struct f2fs_sb_info *sbi,
1802			struct free_nid *i, enum nid_state state)
1803{
1804	struct f2fs_nm_info *nm_i = NM_I(sbi);
1805
1806	f2fs_bug_on(sbi, state != i->state);
1807	nm_i->nid_cnt[state]--;
1808	if (state == FREE_NID)
1809		list_del(&i->list);
1810	radix_tree_delete(&nm_i->free_nid_root, i->nid);
1811}
1812
1813static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
1814			enum nid_state org_state, enum nid_state dst_state)
1815{
1816	struct f2fs_nm_info *nm_i = NM_I(sbi);
1817
1818	f2fs_bug_on(sbi, org_state != i->state);
1819	i->state = dst_state;
1820	nm_i->nid_cnt[org_state]--;
1821	nm_i->nid_cnt[dst_state]++;
1822
1823	switch (dst_state) {
1824	case PREALLOC_NID:
1825		list_del(&i->list);
1826		break;
1827	case FREE_NID:
1828		list_add_tail(&i->list, &nm_i->free_nid_list);
1829		break;
1830	default:
1831		BUG_ON(1);
1832	}
1833}
1834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1835static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
1836							bool set, bool build)
1837{
1838	struct f2fs_nm_info *nm_i = NM_I(sbi);
1839	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1840	unsigned int nid_ofs = nid - START_NID(nid);
1841
1842	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1843		return;
1844
1845	if (set) {
1846		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1847			return;
1848		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1849		nm_i->free_nid_count[nat_ofs]++;
1850	} else {
1851		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1852			return;
1853		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1854		if (!build)
1855			nm_i->free_nid_count[nat_ofs]--;
1856	}
1857}
1858
1859/* return if the nid is recognized as free */
1860static bool add_free_nid(struct f2fs_sb_info *sbi,
1861				nid_t nid, bool build, bool update)
1862{
1863	struct f2fs_nm_info *nm_i = NM_I(sbi);
1864	struct free_nid *i, *e;
1865	struct nat_entry *ne;
1866	int err = -EINVAL;
1867	bool ret = false;
1868
1869	/* 0 nid should not be used */
1870	if (unlikely(nid == 0))
1871		return false;
1872
1873	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
 
 
 
1874	i->nid = nid;
1875	i->state = FREE_NID;
1876
1877	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
1878
1879	spin_lock(&nm_i->nid_list_lock);
1880
1881	if (build) {
1882		/*
1883		 *   Thread A             Thread B
1884		 *  - f2fs_create
1885		 *   - f2fs_new_inode
1886		 *    - alloc_nid
1887		 *     - __insert_nid_to_list(PREALLOC_NID)
1888		 *                     - f2fs_balance_fs_bg
1889		 *                      - build_free_nids
1890		 *                       - __build_free_nids
1891		 *                        - scan_nat_page
1892		 *                         - add_free_nid
1893		 *                          - __lookup_nat_cache
1894		 *  - f2fs_add_link
1895		 *   - init_inode_metadata
1896		 *    - new_inode_page
1897		 *     - new_node_page
1898		 *      - set_node_addr
1899		 *  - alloc_nid_done
1900		 *   - __remove_nid_from_list(PREALLOC_NID)
1901		 *                         - __insert_nid_to_list(FREE_NID)
1902		 */
1903		ne = __lookup_nat_cache(nm_i, nid);
1904		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1905				nat_get_blkaddr(ne) != NULL_ADDR))
1906			goto err_out;
1907
1908		e = __lookup_free_nid_list(nm_i, nid);
1909		if (e) {
1910			if (e->state == FREE_NID)
1911				ret = true;
1912			goto err_out;
1913		}
1914	}
1915	ret = true;
1916	err = __insert_free_nid(sbi, i, FREE_NID);
1917err_out:
1918	if (update) {
1919		update_free_nid_bitmap(sbi, nid, ret, build);
1920		if (!build)
1921			nm_i->available_nids++;
1922	}
1923	spin_unlock(&nm_i->nid_list_lock);
1924	radix_tree_preload_end();
1925
1926	if (err)
1927		kmem_cache_free(free_nid_slab, i);
1928	return ret;
1929}
1930
1931static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1932{
1933	struct f2fs_nm_info *nm_i = NM_I(sbi);
1934	struct free_nid *i;
1935	bool need_free = false;
1936
1937	spin_lock(&nm_i->nid_list_lock);
1938	i = __lookup_free_nid_list(nm_i, nid);
1939	if (i && i->state == FREE_NID) {
1940		__remove_free_nid(sbi, i, FREE_NID);
1941		need_free = true;
1942	}
1943	spin_unlock(&nm_i->nid_list_lock);
1944
1945	if (need_free)
1946		kmem_cache_free(free_nid_slab, i);
1947}
1948
1949static void scan_nat_page(struct f2fs_sb_info *sbi,
1950			struct page *nat_page, nid_t start_nid)
1951{
1952	struct f2fs_nm_info *nm_i = NM_I(sbi);
1953	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1954	block_t blk_addr;
1955	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1956	int i;
1957
1958	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1959
1960	i = start_nid % NAT_ENTRY_PER_BLOCK;
1961
1962	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1963		if (unlikely(start_nid >= nm_i->max_nid))
1964			break;
1965
1966		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1967		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
 
 
 
1968		if (blk_addr == NULL_ADDR) {
1969			add_free_nid(sbi, start_nid, true, true);
1970		} else {
1971			spin_lock(&NM_I(sbi)->nid_list_lock);
1972			update_free_nid_bitmap(sbi, start_nid, false, true);
1973			spin_unlock(&NM_I(sbi)->nid_list_lock);
1974		}
1975	}
 
 
1976}
1977
1978static void scan_curseg_cache(struct f2fs_sb_info *sbi)
1979{
1980	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1981	struct f2fs_journal *journal = curseg->journal;
1982	int i;
1983
1984	down_read(&curseg->journal_rwsem);
1985	for (i = 0; i < nats_in_cursum(journal); i++) {
1986		block_t addr;
1987		nid_t nid;
1988
1989		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1990		nid = le32_to_cpu(nid_in_journal(journal, i));
1991		if (addr == NULL_ADDR)
1992			add_free_nid(sbi, nid, true, false);
1993		else
1994			remove_free_nid(sbi, nid);
1995	}
1996	up_read(&curseg->journal_rwsem);
1997}
1998
1999static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2000{
2001	struct f2fs_nm_info *nm_i = NM_I(sbi);
2002	unsigned int i, idx;
2003	nid_t nid;
2004
2005	down_read(&nm_i->nat_tree_lock);
2006
2007	for (i = 0; i < nm_i->nat_blocks; i++) {
2008		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2009			continue;
2010		if (!nm_i->free_nid_count[i])
2011			continue;
2012		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2013			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2014						NAT_ENTRY_PER_BLOCK, idx);
2015			if (idx >= NAT_ENTRY_PER_BLOCK)
2016				break;
2017
2018			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2019			add_free_nid(sbi, nid, true, false);
2020
2021			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2022				goto out;
2023		}
2024	}
2025out:
2026	scan_curseg_cache(sbi);
2027
2028	up_read(&nm_i->nat_tree_lock);
2029}
2030
2031static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
 
2032{
2033	struct f2fs_nm_info *nm_i = NM_I(sbi);
2034	int i = 0;
2035	nid_t nid = nm_i->next_scan_nid;
2036
2037	if (unlikely(nid >= nm_i->max_nid))
2038		nid = 0;
2039
 
 
 
2040	/* Enough entries */
2041	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2042		return;
2043
2044	if (!sync && !available_free_memory(sbi, FREE_NIDS))
2045		return;
2046
2047	if (!mount) {
2048		/* try to find free nids in free_nid_bitmap */
2049		scan_free_nid_bits(sbi);
2050
2051		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2052			return;
2053	}
2054
2055	/* readahead nat pages to be scanned */
2056	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2057							META_NAT, true);
2058
2059	down_read(&nm_i->nat_tree_lock);
2060
2061	while (1) {
2062		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2063						nm_i->nat_block_bitmap)) {
2064			struct page *page = get_current_nat_page(sbi, nid);
2065
2066			scan_nat_page(sbi, page, nid);
2067			f2fs_put_page(page, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2068		}
2069
2070		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2071		if (unlikely(nid >= nm_i->max_nid))
2072			nid = 0;
2073
2074		if (++i >= FREE_NID_PAGES)
2075			break;
2076	}
2077
2078	/* go to the next free nat pages to find free nids abundantly */
2079	nm_i->next_scan_nid = nid;
2080
2081	/* find free nids from current sum_pages */
2082	scan_curseg_cache(sbi);
2083
2084	up_read(&nm_i->nat_tree_lock);
2085
2086	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2087					nm_i->ra_nid_pages, META_NAT, false);
 
 
2088}
2089
2090void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2091{
 
 
2092	mutex_lock(&NM_I(sbi)->build_lock);
2093	__build_free_nids(sbi, sync, mount);
2094	mutex_unlock(&NM_I(sbi)->build_lock);
 
 
2095}
2096
2097/*
2098 * If this function returns success, caller can obtain a new nid
2099 * from second parameter of this function.
2100 * The returned nid could be used ino as well as nid when inode is created.
2101 */
2102bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2103{
2104	struct f2fs_nm_info *nm_i = NM_I(sbi);
2105	struct free_nid *i = NULL;
2106retry:
2107#ifdef CONFIG_F2FS_FAULT_INJECTION
2108	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2109		f2fs_show_injection_info(FAULT_ALLOC_NID);
2110		return false;
2111	}
2112#endif
2113	spin_lock(&nm_i->nid_list_lock);
2114
2115	if (unlikely(nm_i->available_nids == 0)) {
2116		spin_unlock(&nm_i->nid_list_lock);
2117		return false;
2118	}
2119
2120	/* We should not use stale free nids created by build_free_nids */
2121	if (nm_i->nid_cnt[FREE_NID] && !on_build_free_nids(nm_i)) {
2122		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2123		i = list_first_entry(&nm_i->free_nid_list,
2124					struct free_nid, list);
2125		*nid = i->nid;
2126
2127		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2128		nm_i->available_nids--;
2129
2130		update_free_nid_bitmap(sbi, *nid, false, false);
2131
2132		spin_unlock(&nm_i->nid_list_lock);
2133		return true;
2134	}
2135	spin_unlock(&nm_i->nid_list_lock);
2136
2137	/* Let's scan nat pages and its caches to get free nids */
2138	build_free_nids(sbi, true, false);
2139	goto retry;
 
2140}
2141
2142/*
2143 * alloc_nid() should be called prior to this function.
2144 */
2145void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2146{
2147	struct f2fs_nm_info *nm_i = NM_I(sbi);
2148	struct free_nid *i;
2149
2150	spin_lock(&nm_i->nid_list_lock);
2151	i = __lookup_free_nid_list(nm_i, nid);
2152	f2fs_bug_on(sbi, !i);
2153	__remove_free_nid(sbi, i, PREALLOC_NID);
2154	spin_unlock(&nm_i->nid_list_lock);
2155
2156	kmem_cache_free(free_nid_slab, i);
2157}
2158
2159/*
2160 * alloc_nid() should be called prior to this function.
2161 */
2162void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2163{
2164	struct f2fs_nm_info *nm_i = NM_I(sbi);
2165	struct free_nid *i;
2166	bool need_free = false;
2167
2168	if (!nid)
2169		return;
2170
2171	spin_lock(&nm_i->nid_list_lock);
2172	i = __lookup_free_nid_list(nm_i, nid);
2173	f2fs_bug_on(sbi, !i);
2174
2175	if (!available_free_memory(sbi, FREE_NIDS)) {
2176		__remove_free_nid(sbi, i, PREALLOC_NID);
2177		need_free = true;
2178	} else {
2179		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2180	}
2181
2182	nm_i->available_nids++;
2183
2184	update_free_nid_bitmap(sbi, nid, true, false);
2185
2186	spin_unlock(&nm_i->nid_list_lock);
2187
2188	if (need_free)
2189		kmem_cache_free(free_nid_slab, i);
2190}
2191
2192int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2193{
2194	struct f2fs_nm_info *nm_i = NM_I(sbi);
2195	struct free_nid *i, *next;
2196	int nr = nr_shrink;
2197
2198	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2199		return 0;
2200
2201	if (!mutex_trylock(&nm_i->build_lock))
2202		return 0;
2203
2204	spin_lock(&nm_i->nid_list_lock);
2205	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2206		if (nr_shrink <= 0 ||
2207				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2208			break;
2209
2210		__remove_free_nid(sbi, i, FREE_NID);
2211		kmem_cache_free(free_nid_slab, i);
2212		nr_shrink--;
 
 
 
 
 
 
 
 
2213	}
2214	spin_unlock(&nm_i->nid_list_lock);
2215	mutex_unlock(&nm_i->build_lock);
2216
2217	return nr - nr_shrink;
2218}
2219
2220void recover_inline_xattr(struct inode *inode, struct page *page)
2221{
2222	void *src_addr, *dst_addr;
2223	size_t inline_size;
2224	struct page *ipage;
2225	struct f2fs_inode *ri;
2226
2227	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2228	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
 
2229
2230	ri = F2FS_INODE(page);
2231	if (ri->i_inline & F2FS_INLINE_XATTR) {
2232		set_inode_flag(inode, FI_INLINE_XATTR);
 
 
 
2233	} else {
2234		clear_inode_flag(inode, FI_INLINE_XATTR);
 
 
 
2235		goto update_inode;
2236	}
2237
2238	dst_addr = inline_xattr_addr(inode, ipage);
2239	src_addr = inline_xattr_addr(inode, page);
2240	inline_size = inline_xattr_size(inode);
2241
2242	f2fs_wait_on_page_writeback(ipage, NODE, true);
2243	memcpy(dst_addr, src_addr, inline_size);
2244update_inode:
2245	update_inode(inode, ipage);
2246	f2fs_put_page(ipage, 1);
 
2247}
2248
2249int recover_xattr_data(struct inode *inode, struct page *page)
2250{
2251	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2252	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2253	nid_t new_xnid;
2254	struct dnode_of_data dn;
2255	struct node_info ni;
2256	struct page *xpage;
 
2257
2258	if (!prev_xnid)
2259		goto recover_xnid;
2260
2261	/* 1: invalidate the previous xattr nid */
2262	get_node_info(sbi, prev_xnid, &ni);
2263	invalidate_blocks(sbi, ni.blk_addr);
 
 
 
2264	dec_valid_node_count(sbi, inode, false);
2265	set_node_addr(sbi, &ni, NULL_ADDR, false);
2266
2267recover_xnid:
2268	/* 2: update xattr nid in inode */
2269	if (!alloc_nid(sbi, &new_xnid))
2270		return -ENOSPC;
2271
2272	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2273	xpage = new_node_page(&dn, XATTR_NODE_OFFSET);
2274	if (IS_ERR(xpage)) {
2275		alloc_nid_failed(sbi, new_xnid);
2276		return PTR_ERR(xpage);
2277	}
2278
2279	alloc_nid_done(sbi, new_xnid);
2280	update_inode_page(inode);
2281
2282	/* 3: update and set xattr node page dirty */
2283	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2284
2285	set_page_dirty(xpage);
 
 
2286	f2fs_put_page(xpage, 1);
2287
2288	return 0;
2289}
2290
2291int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2292{
2293	struct f2fs_inode *src, *dst;
2294	nid_t ino = ino_of_node(page);
2295	struct node_info old_ni, new_ni;
2296	struct page *ipage;
 
2297
2298	get_node_info(sbi, ino, &old_ni);
 
 
2299
2300	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2301		return -EINVAL;
2302retry:
2303	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2304	if (!ipage) {
2305		congestion_wait(BLK_RW_ASYNC, HZ/50);
2306		goto retry;
2307	}
2308
2309	/* Should not use this inode from free nid list */
2310	remove_free_nid(sbi, ino);
2311
2312	if (!PageUptodate(ipage))
2313		SetPageUptodate(ipage);
2314	fill_node_footer(ipage, ino, ino, 0, true);
2315	set_cold_node(page, false);
2316
2317	src = F2FS_INODE(page);
2318	dst = F2FS_INODE(ipage);
2319
2320	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2321	dst->i_size = 0;
2322	dst->i_blocks = cpu_to_le64(1);
2323	dst->i_links = cpu_to_le32(1);
2324	dst->i_xattr_nid = 0;
2325	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2326	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2327		dst->i_extra_isize = src->i_extra_isize;
2328
2329		if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
2330			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2331							i_inline_xattr_size))
2332			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2333
2334		if (f2fs_sb_has_project_quota(sbi->sb) &&
2335			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2336								i_projid))
2337			dst->i_projid = src->i_projid;
 
 
 
 
 
 
 
2338	}
2339
2340	new_ni = old_ni;
2341	new_ni.ino = ino;
2342
2343	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2344		WARN_ON(1);
2345	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2346	inc_valid_inode_count(sbi);
2347	set_page_dirty(ipage);
2348	f2fs_put_page(ipage, 1);
2349	return 0;
2350}
2351
2352void restore_node_summary(struct f2fs_sb_info *sbi,
2353			unsigned int segno, struct f2fs_summary_block *sum)
2354{
2355	struct f2fs_node *rn;
2356	struct f2fs_summary *sum_entry;
2357	block_t addr;
2358	int i, idx, last_offset, nrpages;
2359
2360	/* scan the node segment */
2361	last_offset = sbi->blocks_per_seg;
2362	addr = START_BLOCK(sbi, segno);
2363	sum_entry = &sum->entries[0];
2364
2365	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2366		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2367
2368		/* readahead node pages */
2369		ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2370
2371		for (idx = addr; idx < addr + nrpages; idx++) {
2372			struct page *page = get_tmp_page(sbi, idx);
 
 
 
2373
2374			rn = F2FS_NODE(page);
2375			sum_entry->nid = rn->footer.nid;
2376			sum_entry->version = 0;
2377			sum_entry->ofs_in_node = 0;
2378			sum_entry++;
2379			f2fs_put_page(page, 1);
2380		}
2381
2382		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2383							addr + nrpages);
2384	}
 
2385}
2386
2387static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2388{
2389	struct f2fs_nm_info *nm_i = NM_I(sbi);
2390	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2391	struct f2fs_journal *journal = curseg->journal;
2392	int i;
2393
2394	down_write(&curseg->journal_rwsem);
2395	for (i = 0; i < nats_in_cursum(journal); i++) {
2396		struct nat_entry *ne;
2397		struct f2fs_nat_entry raw_ne;
2398		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2399
 
 
 
2400		raw_ne = nat_in_journal(journal, i);
2401
2402		ne = __lookup_nat_cache(nm_i, nid);
2403		if (!ne) {
2404			ne = __alloc_nat_entry(nid, true);
2405			__init_nat_entry(nm_i, ne, &raw_ne, true);
2406		}
2407
2408		/*
2409		 * if a free nat in journal has not been used after last
2410		 * checkpoint, we should remove it from available nids,
2411		 * since later we will add it again.
2412		 */
2413		if (!get_nat_flag(ne, IS_DIRTY) &&
2414				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2415			spin_lock(&nm_i->nid_list_lock);
2416			nm_i->available_nids--;
2417			spin_unlock(&nm_i->nid_list_lock);
2418		}
2419
2420		__set_nat_cache_dirty(nm_i, ne);
2421	}
2422	update_nats_in_cursum(journal, -i);
2423	up_write(&curseg->journal_rwsem);
2424}
2425
2426static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2427						struct list_head *head, int max)
2428{
2429	struct nat_entry_set *cur;
2430
2431	if (nes->entry_cnt >= max)
2432		goto add_out;
2433
2434	list_for_each_entry(cur, head, set_list) {
2435		if (cur->entry_cnt >= nes->entry_cnt) {
2436			list_add(&nes->set_list, cur->set_list.prev);
2437			return;
2438		}
2439	}
2440add_out:
2441	list_add_tail(&nes->set_list, head);
2442}
2443
2444static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2445						struct page *page)
2446{
2447	struct f2fs_nm_info *nm_i = NM_I(sbi);
2448	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2449	struct f2fs_nat_block *nat_blk = page_address(page);
2450	int valid = 0;
2451	int i = 0;
2452
2453	if (!enabled_nat_bits(sbi, NULL))
2454		return;
2455
2456	if (nat_index == 0) {
2457		valid = 1;
2458		i = 1;
2459	}
2460	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2461		if (nat_blk->entries[i].block_addr != NULL_ADDR)
2462			valid++;
2463	}
2464	if (valid == 0) {
2465		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2466		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2467		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2468	}
2469
2470	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2471	if (valid == NAT_ENTRY_PER_BLOCK)
2472		__set_bit_le(nat_index, nm_i->full_nat_bits);
2473	else
2474		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2475}
2476
2477static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2478		struct nat_entry_set *set, struct cp_control *cpc)
2479{
2480	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2481	struct f2fs_journal *journal = curseg->journal;
2482	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2483	bool to_journal = true;
2484	struct f2fs_nat_block *nat_blk;
2485	struct nat_entry *ne, *cur;
2486	struct page *page = NULL;
2487
2488	/*
2489	 * there are two steps to flush nat entries:
2490	 * #1, flush nat entries to journal in current hot data summary block.
2491	 * #2, flush nat entries to nat page.
2492	 */
2493	if (enabled_nat_bits(sbi, cpc) ||
2494		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2495		to_journal = false;
2496
2497	if (to_journal) {
2498		down_write(&curseg->journal_rwsem);
2499	} else {
2500		page = get_next_nat_page(sbi, start_nid);
 
 
 
2501		nat_blk = page_address(page);
2502		f2fs_bug_on(sbi, !nat_blk);
2503	}
2504
2505	/* flush dirty nats in nat entry set */
2506	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2507		struct f2fs_nat_entry *raw_ne;
2508		nid_t nid = nat_get_nid(ne);
2509		int offset;
2510
2511		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2512
2513		if (to_journal) {
2514			offset = lookup_journal_in_cursum(journal,
2515							NAT_JOURNAL, nid, 1);
2516			f2fs_bug_on(sbi, offset < 0);
2517			raw_ne = &nat_in_journal(journal, offset);
2518			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2519		} else {
2520			raw_ne = &nat_blk->entries[nid - start_nid];
2521		}
2522		raw_nat_from_node_info(raw_ne, &ne->ni);
2523		nat_reset_flag(ne);
2524		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2525		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2526			add_free_nid(sbi, nid, false, true);
2527		} else {
2528			spin_lock(&NM_I(sbi)->nid_list_lock);
2529			update_free_nid_bitmap(sbi, nid, false, false);
2530			spin_unlock(&NM_I(sbi)->nid_list_lock);
2531		}
2532	}
2533
2534	if (to_journal) {
2535		up_write(&curseg->journal_rwsem);
2536	} else {
2537		__update_nat_bits(sbi, start_nid, page);
2538		f2fs_put_page(page, 1);
2539	}
2540
2541	/* Allow dirty nats by node block allocation in write_begin */
2542	if (!set->entry_cnt) {
2543		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2544		kmem_cache_free(nat_entry_set_slab, set);
2545	}
 
2546}
2547
2548/*
2549 * This function is called during the checkpointing process.
2550 */
2551void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2552{
2553	struct f2fs_nm_info *nm_i = NM_I(sbi);
2554	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2555	struct f2fs_journal *journal = curseg->journal;
2556	struct nat_entry_set *setvec[SETVEC_SIZE];
2557	struct nat_entry_set *set, *tmp;
2558	unsigned int found;
2559	nid_t set_idx = 0;
2560	LIST_HEAD(sets);
 
2561
2562	if (!nm_i->dirty_nat_cnt)
2563		return;
 
 
 
 
 
 
 
 
 
 
2564
2565	down_write(&nm_i->nat_tree_lock);
2566
2567	/*
2568	 * if there are no enough space in journal to store dirty nat
2569	 * entries, remove all entries from journal and merge them
2570	 * into nat entry set.
2571	 */
2572	if (enabled_nat_bits(sbi, cpc) ||
2573		!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
 
2574		remove_nats_in_journal(sbi);
2575
2576	while ((found = __gang_lookup_nat_set(nm_i,
2577					set_idx, SETVEC_SIZE, setvec))) {
2578		unsigned idx;
 
2579		set_idx = setvec[found - 1]->set + 1;
2580		for (idx = 0; idx < found; idx++)
2581			__adjust_nat_entry_set(setvec[idx], &sets,
2582						MAX_NAT_JENTRIES(journal));
2583	}
2584
2585	/* flush dirty nats in nat entry set */
2586	list_for_each_entry_safe(set, tmp, &sets, set_list)
2587		__flush_nat_entry_set(sbi, set, cpc);
 
 
 
2588
2589	up_write(&nm_i->nat_tree_lock);
2590	/* Allow dirty nats by node block allocation in write_begin */
 
 
2591}
2592
2593static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2594{
2595	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2596	struct f2fs_nm_info *nm_i = NM_I(sbi);
2597	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2598	unsigned int i;
2599	__u64 cp_ver = cur_cp_version(ckpt);
2600	block_t nat_bits_addr;
2601
2602	if (!enabled_nat_bits(sbi, NULL))
2603		return 0;
2604
2605	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2606	nm_i->nat_bits = f2fs_kzalloc(sbi,
2607			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2608	if (!nm_i->nat_bits)
2609		return -ENOMEM;
2610
 
 
 
 
 
 
2611	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2612						nm_i->nat_bits_blocks;
2613	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2614		struct page *page = get_meta_page(sbi, nat_bits_addr++);
 
 
 
 
2615
2616		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2617					page_address(page), F2FS_BLKSIZE);
2618		f2fs_put_page(page, 1);
2619	}
2620
2621	cp_ver |= (cur_cp_crc(ckpt) << 32);
2622	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2623		disable_nat_bits(sbi, true);
 
 
2624		return 0;
2625	}
2626
2627	nm_i->full_nat_bits = nm_i->nat_bits + 8;
2628	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2629
2630	f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2631	return 0;
2632}
2633
2634static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2635{
2636	struct f2fs_nm_info *nm_i = NM_I(sbi);
2637	unsigned int i = 0;
2638	nid_t nid, last_nid;
2639
2640	if (!enabled_nat_bits(sbi, NULL))
2641		return;
2642
2643	for (i = 0; i < nm_i->nat_blocks; i++) {
2644		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2645		if (i >= nm_i->nat_blocks)
2646			break;
2647
2648		__set_bit_le(i, nm_i->nat_block_bitmap);
2649
2650		nid = i * NAT_ENTRY_PER_BLOCK;
2651		last_nid = nid + NAT_ENTRY_PER_BLOCK;
2652
2653		spin_lock(&NM_I(sbi)->nid_list_lock);
2654		for (; nid < last_nid; nid++)
2655			update_free_nid_bitmap(sbi, nid, true, true);
2656		spin_unlock(&NM_I(sbi)->nid_list_lock);
2657	}
2658
2659	for (i = 0; i < nm_i->nat_blocks; i++) {
2660		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2661		if (i >= nm_i->nat_blocks)
2662			break;
2663
2664		__set_bit_le(i, nm_i->nat_block_bitmap);
2665	}
2666}
2667
2668static int init_node_manager(struct f2fs_sb_info *sbi)
2669{
2670	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2671	struct f2fs_nm_info *nm_i = NM_I(sbi);
2672	unsigned char *version_bitmap;
2673	unsigned int nat_segs;
2674	int err;
2675
2676	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2677
2678	/* segment_count_nat includes pair segment so divide to 2. */
2679	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2680	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2681	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2682
2683	/* not used nids: 0, node, meta, (and root counted as valid node) */
2684	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2685				sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2686	nm_i->nid_cnt[FREE_NID] = 0;
2687	nm_i->nid_cnt[PREALLOC_NID] = 0;
2688	nm_i->nat_cnt = 0;
2689	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2690	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2691	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
 
2692
2693	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2694	INIT_LIST_HEAD(&nm_i->free_nid_list);
2695	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2696	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2697	INIT_LIST_HEAD(&nm_i->nat_entries);
 
2698
2699	mutex_init(&nm_i->build_lock);
2700	spin_lock_init(&nm_i->nid_list_lock);
2701	init_rwsem(&nm_i->nat_tree_lock);
2702
2703	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2704	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2705	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2706	if (!version_bitmap)
2707		return -EFAULT;
2708
2709	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2710					GFP_KERNEL);
2711	if (!nm_i->nat_bitmap)
2712		return -ENOMEM;
2713
2714	err = __get_nat_bitmaps(sbi);
2715	if (err)
2716		return err;
2717
2718#ifdef CONFIG_F2FS_CHECK_FS
2719	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2720					GFP_KERNEL);
2721	if (!nm_i->nat_bitmap_mir)
2722		return -ENOMEM;
2723#endif
2724
2725	return 0;
2726}
2727
2728static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2729{
2730	struct f2fs_nm_info *nm_i = NM_I(sbi);
2731	int i;
2732
2733	nm_i->free_nid_bitmap = f2fs_kzalloc(sbi, nm_i->nat_blocks *
2734				sizeof(unsigned char *), GFP_KERNEL);
 
 
2735	if (!nm_i->free_nid_bitmap)
2736		return -ENOMEM;
2737
2738	for (i = 0; i < nm_i->nat_blocks; i++) {
2739		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
2740				NAT_ENTRY_BITMAP_SIZE_ALIGNED, GFP_KERNEL);
2741		if (!nm_i->free_nid_bitmap)
2742			return -ENOMEM;
2743	}
2744
2745	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
2746								GFP_KERNEL);
2747	if (!nm_i->nat_block_bitmap)
2748		return -ENOMEM;
2749
2750	nm_i->free_nid_count = f2fs_kvzalloc(sbi, nm_i->nat_blocks *
2751					sizeof(unsigned short), GFP_KERNEL);
 
 
2752	if (!nm_i->free_nid_count)
2753		return -ENOMEM;
2754	return 0;
2755}
2756
2757int build_node_manager(struct f2fs_sb_info *sbi)
2758{
2759	int err;
2760
2761	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
2762							GFP_KERNEL);
2763	if (!sbi->nm_info)
2764		return -ENOMEM;
2765
2766	err = init_node_manager(sbi);
2767	if (err)
2768		return err;
2769
2770	err = init_free_nid_cache(sbi);
2771	if (err)
2772		return err;
2773
2774	/* load free nid status from nat_bits table */
2775	load_free_nid_bitmap(sbi);
2776
2777	build_free_nids(sbi, true, true);
2778	return 0;
2779}
2780
2781void destroy_node_manager(struct f2fs_sb_info *sbi)
2782{
2783	struct f2fs_nm_info *nm_i = NM_I(sbi);
2784	struct free_nid *i, *next_i;
2785	struct nat_entry *natvec[NATVEC_SIZE];
2786	struct nat_entry_set *setvec[SETVEC_SIZE];
 
2787	nid_t nid = 0;
2788	unsigned int found;
2789
2790	if (!nm_i)
2791		return;
2792
2793	/* destroy free nid list */
2794	spin_lock(&nm_i->nid_list_lock);
2795	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2796		__remove_free_nid(sbi, i, FREE_NID);
2797		spin_unlock(&nm_i->nid_list_lock);
2798		kmem_cache_free(free_nid_slab, i);
2799		spin_lock(&nm_i->nid_list_lock);
2800	}
2801	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
2802	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
2803	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
2804	spin_unlock(&nm_i->nid_list_lock);
2805
2806	/* destroy nat cache */
2807	down_write(&nm_i->nat_tree_lock);
2808	while ((found = __gang_lookup_nat_cache(nm_i,
2809					nid, NATVEC_SIZE, natvec))) {
2810		unsigned idx;
2811
2812		nid = nat_get_nid(natvec[found - 1]) + 1;
2813		for (idx = 0; idx < found; idx++)
 
 
 
 
2814			__del_from_nat_cache(nm_i, natvec[idx]);
 
2815	}
2816	f2fs_bug_on(sbi, nm_i->nat_cnt);
2817
2818	/* destroy nat set cache */
2819	nid = 0;
 
2820	while ((found = __gang_lookup_nat_set(nm_i,
2821					nid, SETVEC_SIZE, setvec))) {
2822		unsigned idx;
2823
2824		nid = setvec[found - 1]->set + 1;
2825		for (idx = 0; idx < found; idx++) {
2826			/* entry_cnt is not zero, when cp_error was occurred */
2827			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2828			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2829			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2830		}
2831	}
2832	up_write(&nm_i->nat_tree_lock);
2833
2834	kvfree(nm_i->nat_block_bitmap);
2835	if (nm_i->free_nid_bitmap) {
2836		int i;
2837
2838		for (i = 0; i < nm_i->nat_blocks; i++)
2839			kvfree(nm_i->free_nid_bitmap[i]);
2840		kfree(nm_i->free_nid_bitmap);
2841	}
2842	kvfree(nm_i->free_nid_count);
2843
2844	kfree(nm_i->nat_bitmap);
2845	kfree(nm_i->nat_bits);
2846#ifdef CONFIG_F2FS_CHECK_FS
2847	kfree(nm_i->nat_bitmap_mir);
2848#endif
2849	sbi->nm_info = NULL;
2850	kfree(nm_i);
2851}
2852
2853int __init create_node_manager_caches(void)
2854{
2855	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2856			sizeof(struct nat_entry));
2857	if (!nat_entry_slab)
2858		goto fail;
2859
2860	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2861			sizeof(struct free_nid));
2862	if (!free_nid_slab)
2863		goto destroy_nat_entry;
2864
2865	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2866			sizeof(struct nat_entry_set));
2867	if (!nat_entry_set_slab)
2868		goto destroy_free_nid;
 
 
 
 
 
2869	return 0;
2870
 
 
2871destroy_free_nid:
2872	kmem_cache_destroy(free_nid_slab);
2873destroy_nat_entry:
2874	kmem_cache_destroy(nat_entry_slab);
2875fail:
2876	return -ENOMEM;
2877}
2878
2879void destroy_node_manager_caches(void)
2880{
 
2881	kmem_cache_destroy(nat_entry_set_slab);
2882	kmem_cache_destroy(free_nid_slab);
2883	kmem_cache_destroy(nat_entry_slab);
2884}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/node.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
 
 
 
 
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/mpage.h>
  11#include <linux/sched/mm.h>
  12#include <linux/blkdev.h>
  13#include <linux/pagevec.h>
  14#include <linux/swap.h>
  15
  16#include "f2fs.h"
  17#include "node.h"
  18#include "segment.h"
  19#include "xattr.h"
  20#include "iostat.h"
  21#include <trace/events/f2fs.h>
  22
  23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  24
  25static struct kmem_cache *nat_entry_slab;
  26static struct kmem_cache *free_nid_slab;
  27static struct kmem_cache *nat_entry_set_slab;
  28static struct kmem_cache *fsync_node_entry_slab;
  29
  30/*
  31 * Check whether the given nid is within node id range.
  32 */
  33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
  34{
  35	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
  36		set_sbi_flag(sbi, SBI_NEED_FSCK);
  37		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
  38			  __func__, nid);
  39		f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
  40		return -EFSCORRUPTED;
  41	}
  42	return 0;
  43}
  44
  45bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
  46{
  47	struct f2fs_nm_info *nm_i = NM_I(sbi);
  48	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  49	struct sysinfo val;
  50	unsigned long avail_ram;
  51	unsigned long mem_size = 0;
  52	bool res = false;
  53
  54	if (!nm_i)
  55		return true;
  56
  57	si_meminfo(&val);
  58
  59	/* only uses low memory */
  60	avail_ram = val.totalram - val.totalhigh;
  61
  62	/*
  63	 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
  64	 */
  65	if (type == FREE_NIDS) {
  66		mem_size = (nm_i->nid_cnt[FREE_NID] *
  67				sizeof(struct free_nid)) >> PAGE_SHIFT;
  68		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  69	} else if (type == NAT_ENTRIES) {
  70		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
  71				sizeof(struct nat_entry)) >> PAGE_SHIFT;
  72		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  73		if (excess_cached_nats(sbi))
  74			res = false;
  75	} else if (type == DIRTY_DENTS) {
  76		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  77			return false;
  78		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  79		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  80	} else if (type == INO_ENTRIES) {
  81		int i;
  82
  83		for (i = 0; i < MAX_INO_ENTRY; i++)
  84			mem_size += sbi->im[i].ino_num *
  85						sizeof(struct ino_entry);
  86		mem_size >>= PAGE_SHIFT;
  87		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  88	} else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
  89		enum extent_type etype = type == READ_EXTENT_CACHE ?
  90						EX_READ : EX_BLOCK_AGE;
  91		struct extent_tree_info *eti = &sbi->extent_tree[etype];
  92
  93		mem_size = (atomic_read(&eti->total_ext_tree) *
  94				sizeof(struct extent_tree) +
  95				atomic_read(&eti->total_ext_node) *
  96				sizeof(struct extent_node)) >> PAGE_SHIFT;
  97		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  98	} else if (type == DISCARD_CACHE) {
  99		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
 100				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
 101		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
 102	} else if (type == COMPRESS_PAGE) {
 103#ifdef CONFIG_F2FS_FS_COMPRESSION
 104		unsigned long free_ram = val.freeram;
 105
 106		/*
 107		 * free memory is lower than watermark or cached page count
 108		 * exceed threshold, deny caching compress page.
 109		 */
 110		res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
 111			(COMPRESS_MAPPING(sbi)->nrpages <
 112			 free_ram * sbi->compress_percent / 100);
 113#else
 114		res = false;
 115#endif
 116	} else {
 117		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
 118			return true;
 119	}
 120	return res;
 121}
 122
 123static void clear_node_page_dirty(struct page *page)
 124{
 
 
 
 125	if (PageDirty(page)) {
 126		f2fs_clear_page_cache_dirty_tag(page);
 
 
 
 
 
 127		clear_page_dirty_for_io(page);
 128		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
 129	}
 130	ClearPageUptodate(page);
 131}
 132
 133static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 134{
 135	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
 
 136}
 137
 138static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 139{
 140	struct page *src_page;
 141	struct page *dst_page;
 
 142	pgoff_t dst_off;
 143	void *src_addr;
 144	void *dst_addr;
 145	struct f2fs_nm_info *nm_i = NM_I(sbi);
 146
 147	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
 
 148
 149	/* get current nat block page with lock */
 150	src_page = get_current_nat_page(sbi, nid);
 151	if (IS_ERR(src_page))
 152		return src_page;
 153	dst_page = f2fs_grab_meta_page(sbi, dst_off);
 154	f2fs_bug_on(sbi, PageDirty(src_page));
 155
 156	src_addr = page_address(src_page);
 157	dst_addr = page_address(dst_page);
 158	memcpy(dst_addr, src_addr, PAGE_SIZE);
 159	set_page_dirty(dst_page);
 160	f2fs_put_page(src_page, 1);
 161
 162	set_to_next_nat(nm_i, nid);
 163
 164	return dst_page;
 165}
 166
 167static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
 168						nid_t nid, bool no_fail)
 169{
 170	struct nat_entry *new;
 171
 172	new = f2fs_kmem_cache_alloc(nat_entry_slab,
 173					GFP_F2FS_ZERO, no_fail, sbi);
 
 
 174	if (new) {
 175		nat_set_nid(new, nid);
 176		nat_reset_flag(new);
 177	}
 178	return new;
 179}
 180
 181static void __free_nat_entry(struct nat_entry *e)
 182{
 183	kmem_cache_free(nat_entry_slab, e);
 184}
 185
 186/* must be locked by nat_tree_lock */
 187static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
 188	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
 189{
 190	if (no_fail)
 191		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
 192	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
 193		return NULL;
 194
 195	if (raw_ne)
 196		node_info_from_raw_nat(&ne->ni, raw_ne);
 197
 198	spin_lock(&nm_i->nat_list_lock);
 199	list_add_tail(&ne->list, &nm_i->nat_entries);
 200	spin_unlock(&nm_i->nat_list_lock);
 201
 202	nm_i->nat_cnt[TOTAL_NAT]++;
 203	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
 204	return ne;
 205}
 206
 207static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 208{
 209	struct nat_entry *ne;
 210
 211	ne = radix_tree_lookup(&nm_i->nat_root, n);
 212
 213	/* for recent accessed nat entry, move it to tail of lru list */
 214	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
 215		spin_lock(&nm_i->nat_list_lock);
 216		if (!list_empty(&ne->list))
 217			list_move_tail(&ne->list, &nm_i->nat_entries);
 218		spin_unlock(&nm_i->nat_list_lock);
 219	}
 220
 221	return ne;
 222}
 223
 224static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 225		nid_t start, unsigned int nr, struct nat_entry **ep)
 226{
 227	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 228}
 229
 230static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 231{
 
 232	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 233	nm_i->nat_cnt[TOTAL_NAT]--;
 234	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
 235	__free_nat_entry(e);
 236}
 237
 238static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
 239							struct nat_entry *ne)
 240{
 241	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 242	struct nat_entry_set *head;
 243
 244	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 245	if (!head) {
 246		head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
 247						GFP_NOFS, true, NULL);
 248
 249		INIT_LIST_HEAD(&head->entry_list);
 250		INIT_LIST_HEAD(&head->set_list);
 251		head->set = set;
 252		head->entry_cnt = 0;
 253		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 254	}
 255	return head;
 256}
 257
 258static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 259						struct nat_entry *ne)
 260{
 261	struct nat_entry_set *head;
 262	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
 263
 264	if (!new_ne)
 265		head = __grab_nat_entry_set(nm_i, ne);
 266
 267	/*
 268	 * update entry_cnt in below condition:
 269	 * 1. update NEW_ADDR to valid block address;
 270	 * 2. update old block address to new one;
 271	 */
 272	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
 273				!get_nat_flag(ne, IS_DIRTY)))
 274		head->entry_cnt++;
 275
 276	set_nat_flag(ne, IS_PREALLOC, new_ne);
 277
 278	if (get_nat_flag(ne, IS_DIRTY))
 279		goto refresh_list;
 280
 281	nm_i->nat_cnt[DIRTY_NAT]++;
 282	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
 283	set_nat_flag(ne, IS_DIRTY, true);
 284refresh_list:
 285	spin_lock(&nm_i->nat_list_lock);
 286	if (new_ne)
 287		list_del_init(&ne->list);
 288	else
 289		list_move_tail(&ne->list, &head->entry_list);
 290	spin_unlock(&nm_i->nat_list_lock);
 291}
 292
 293static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 294		struct nat_entry_set *set, struct nat_entry *ne)
 295{
 296	spin_lock(&nm_i->nat_list_lock);
 297	list_move_tail(&ne->list, &nm_i->nat_entries);
 298	spin_unlock(&nm_i->nat_list_lock);
 299
 300	set_nat_flag(ne, IS_DIRTY, false);
 301	set->entry_cnt--;
 302	nm_i->nat_cnt[DIRTY_NAT]--;
 303	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
 304}
 305
 306static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 307		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 308{
 309	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 310							start, nr);
 311}
 312
 313bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
 314{
 315	return NODE_MAPPING(sbi) == page->mapping &&
 316			IS_DNODE(page) && is_cold_node(page);
 317}
 318
 319void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
 320{
 321	spin_lock_init(&sbi->fsync_node_lock);
 322	INIT_LIST_HEAD(&sbi->fsync_node_list);
 323	sbi->fsync_seg_id = 0;
 324	sbi->fsync_node_num = 0;
 325}
 326
 327static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
 328							struct page *page)
 329{
 330	struct fsync_node_entry *fn;
 331	unsigned long flags;
 332	unsigned int seq_id;
 333
 334	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
 335					GFP_NOFS, true, NULL);
 336
 337	get_page(page);
 338	fn->page = page;
 339	INIT_LIST_HEAD(&fn->list);
 340
 341	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 342	list_add_tail(&fn->list, &sbi->fsync_node_list);
 343	fn->seq_id = sbi->fsync_seg_id++;
 344	seq_id = fn->seq_id;
 345	sbi->fsync_node_num++;
 346	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 347
 348	return seq_id;
 349}
 350
 351void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
 352{
 353	struct fsync_node_entry *fn;
 354	unsigned long flags;
 355
 356	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 357	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
 358		if (fn->page == page) {
 359			list_del(&fn->list);
 360			sbi->fsync_node_num--;
 361			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 362			kmem_cache_free(fsync_node_entry_slab, fn);
 363			put_page(page);
 364			return;
 365		}
 366	}
 367	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 368	f2fs_bug_on(sbi, 1);
 369}
 370
 371void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
 372{
 373	unsigned long flags;
 374
 375	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 376	sbi->fsync_seg_id = 0;
 377	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 378}
 379
 380int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 381{
 382	struct f2fs_nm_info *nm_i = NM_I(sbi);
 383	struct nat_entry *e;
 384	bool need = false;
 385
 386	f2fs_down_read(&nm_i->nat_tree_lock);
 387	e = __lookup_nat_cache(nm_i, nid);
 388	if (e) {
 389		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 390				!get_nat_flag(e, HAS_FSYNCED_INODE))
 391			need = true;
 392	}
 393	f2fs_up_read(&nm_i->nat_tree_lock);
 394	return need;
 395}
 396
 397bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 398{
 399	struct f2fs_nm_info *nm_i = NM_I(sbi);
 400	struct nat_entry *e;
 401	bool is_cp = true;
 402
 403	f2fs_down_read(&nm_i->nat_tree_lock);
 404	e = __lookup_nat_cache(nm_i, nid);
 405	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 406		is_cp = false;
 407	f2fs_up_read(&nm_i->nat_tree_lock);
 408	return is_cp;
 409}
 410
 411bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 412{
 413	struct f2fs_nm_info *nm_i = NM_I(sbi);
 414	struct nat_entry *e;
 415	bool need_update = true;
 416
 417	f2fs_down_read(&nm_i->nat_tree_lock);
 418	e = __lookup_nat_cache(nm_i, ino);
 419	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 420			(get_nat_flag(e, IS_CHECKPOINTED) ||
 421			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 422		need_update = false;
 423	f2fs_up_read(&nm_i->nat_tree_lock);
 424	return need_update;
 425}
 426
 427/* must be locked by nat_tree_lock */
 428static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 429						struct f2fs_nat_entry *ne)
 430{
 431	struct f2fs_nm_info *nm_i = NM_I(sbi);
 432	struct nat_entry *new, *e;
 433
 434	/* Let's mitigate lock contention of nat_tree_lock during checkpoint */
 435	if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
 436		return;
 437
 438	new = __alloc_nat_entry(sbi, nid, false);
 439	if (!new)
 440		return;
 441
 442	f2fs_down_write(&nm_i->nat_tree_lock);
 443	e = __lookup_nat_cache(nm_i, nid);
 444	if (!e)
 445		e = __init_nat_entry(nm_i, new, ne, false);
 446	else
 447		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 448				nat_get_blkaddr(e) !=
 449					le32_to_cpu(ne->block_addr) ||
 450				nat_get_version(e) != ne->version);
 451	f2fs_up_write(&nm_i->nat_tree_lock);
 452	if (e != new)
 453		__free_nat_entry(new);
 454}
 455
 456static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 457			block_t new_blkaddr, bool fsync_done)
 458{
 459	struct f2fs_nm_info *nm_i = NM_I(sbi);
 460	struct nat_entry *e;
 461	struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
 462
 463	f2fs_down_write(&nm_i->nat_tree_lock);
 464	e = __lookup_nat_cache(nm_i, ni->nid);
 465	if (!e) {
 466		e = __init_nat_entry(nm_i, new, NULL, true);
 467		copy_node_info(&e->ni, ni);
 468		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 469	} else if (new_blkaddr == NEW_ADDR) {
 470		/*
 471		 * when nid is reallocated,
 472		 * previous nat entry can be remained in nat cache.
 473		 * So, reinitialize it with new information.
 474		 */
 475		copy_node_info(&e->ni, ni);
 476		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 477	}
 478	/* let's free early to reduce memory consumption */
 479	if (e != new)
 480		__free_nat_entry(new);
 481
 482	/* sanity check */
 483	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 484	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 485			new_blkaddr == NULL_ADDR);
 486	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 487			new_blkaddr == NEW_ADDR);
 488	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
 
 489			new_blkaddr == NEW_ADDR);
 490
 491	/* increment version no as node is removed */
 492	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 493		unsigned char version = nat_get_version(e);
 494
 495		nat_set_version(e, inc_node_version(version));
 496	}
 497
 498	/* change address */
 499	nat_set_blkaddr(e, new_blkaddr);
 500	if (!__is_valid_data_blkaddr(new_blkaddr))
 501		set_nat_flag(e, IS_CHECKPOINTED, false);
 502	__set_nat_cache_dirty(nm_i, e);
 503
 504	/* update fsync_mark if its inode nat entry is still alive */
 505	if (ni->nid != ni->ino)
 506		e = __lookup_nat_cache(nm_i, ni->ino);
 507	if (e) {
 508		if (fsync_done && ni->nid == ni->ino)
 509			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 510		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 511	}
 512	f2fs_up_write(&nm_i->nat_tree_lock);
 513}
 514
 515int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 516{
 517	struct f2fs_nm_info *nm_i = NM_I(sbi);
 518	int nr = nr_shrink;
 519
 520	if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
 521		return 0;
 522
 523	spin_lock(&nm_i->nat_list_lock);
 524	while (nr_shrink) {
 525		struct nat_entry *ne;
 526
 527		if (list_empty(&nm_i->nat_entries))
 528			break;
 529
 530		ne = list_first_entry(&nm_i->nat_entries,
 531					struct nat_entry, list);
 532		list_del(&ne->list);
 533		spin_unlock(&nm_i->nat_list_lock);
 534
 535		__del_from_nat_cache(nm_i, ne);
 536		nr_shrink--;
 537
 538		spin_lock(&nm_i->nat_list_lock);
 539	}
 540	spin_unlock(&nm_i->nat_list_lock);
 541
 542	f2fs_up_write(&nm_i->nat_tree_lock);
 543	return nr - nr_shrink;
 544}
 545
 546int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
 547				struct node_info *ni, bool checkpoint_context)
 
 
 548{
 549	struct f2fs_nm_info *nm_i = NM_I(sbi);
 550	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 551	struct f2fs_journal *journal = curseg->journal;
 552	nid_t start_nid = START_NID(nid);
 553	struct f2fs_nat_block *nat_blk;
 554	struct page *page = NULL;
 555	struct f2fs_nat_entry ne;
 556	struct nat_entry *e;
 557	pgoff_t index;
 558	block_t blkaddr;
 559	int i;
 560
 561	ni->nid = nid;
 562retry:
 563	/* Check nat cache */
 564	f2fs_down_read(&nm_i->nat_tree_lock);
 565	e = __lookup_nat_cache(nm_i, nid);
 566	if (e) {
 567		ni->ino = nat_get_ino(e);
 568		ni->blk_addr = nat_get_blkaddr(e);
 569		ni->version = nat_get_version(e);
 570		f2fs_up_read(&nm_i->nat_tree_lock);
 571		return 0;
 572	}
 573
 574	/*
 575	 * Check current segment summary by trying to grab journal_rwsem first.
 576	 * This sem is on the critical path on the checkpoint requiring the above
 577	 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
 578	 * while not bothering checkpoint.
 579	 */
 580	if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
 581		down_read(&curseg->journal_rwsem);
 582	} else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
 583				!down_read_trylock(&curseg->journal_rwsem)) {
 584		f2fs_up_read(&nm_i->nat_tree_lock);
 585		goto retry;
 586	}
 587
 588	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 
 
 589	if (i >= 0) {
 590		ne = nat_in_journal(journal, i);
 591		node_info_from_raw_nat(ni, &ne);
 592	}
 593	up_read(&curseg->journal_rwsem);
 594	if (i >= 0) {
 595		f2fs_up_read(&nm_i->nat_tree_lock);
 596		goto cache;
 597	}
 598
 599	/* Fill node_info from nat page */
 600	index = current_nat_addr(sbi, nid);
 601	f2fs_up_read(&nm_i->nat_tree_lock);
 602
 603	page = f2fs_get_meta_page(sbi, index);
 604	if (IS_ERR(page))
 605		return PTR_ERR(page);
 606
 
 607	nat_blk = (struct f2fs_nat_block *)page_address(page);
 608	ne = nat_blk->entries[nid - start_nid];
 609	node_info_from_raw_nat(ni, &ne);
 610	f2fs_put_page(page, 1);
 611cache:
 612	blkaddr = le32_to_cpu(ne.block_addr);
 613	if (__is_valid_data_blkaddr(blkaddr) &&
 614		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
 615		return -EFAULT;
 616
 617	/* cache nat entry */
 618	cache_nat_entry(sbi, nid, &ne);
 619	return 0;
 620}
 621
 622/*
 623 * readahead MAX_RA_NODE number of node pages.
 624 */
 625static void f2fs_ra_node_pages(struct page *parent, int start, int n)
 626{
 627	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 628	struct blk_plug plug;
 629	int i, end;
 630	nid_t nid;
 631
 632	blk_start_plug(&plug);
 633
 634	/* Then, try readahead for siblings of the desired node */
 635	end = start + n;
 636	end = min(end, (int)NIDS_PER_BLOCK);
 637	for (i = start; i < end; i++) {
 638		nid = get_nid(parent, i, false);
 639		f2fs_ra_node_page(sbi, nid);
 640	}
 641
 642	blk_finish_plug(&plug);
 643}
 644
 645pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 646{
 647	const long direct_index = ADDRS_PER_INODE(dn->inode);
 648	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
 649	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
 650	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
 651	int cur_level = dn->cur_level;
 652	int max_level = dn->max_level;
 653	pgoff_t base = 0;
 654
 655	if (!dn->max_level)
 656		return pgofs + 1;
 657
 658	while (max_level-- > cur_level)
 659		skipped_unit *= NIDS_PER_BLOCK;
 660
 661	switch (dn->max_level) {
 662	case 3:
 663		base += 2 * indirect_blks;
 664		fallthrough;
 665	case 2:
 666		base += 2 * direct_blks;
 667		fallthrough;
 668	case 1:
 669		base += direct_index;
 670		break;
 671	default:
 672		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 673	}
 674
 675	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 676}
 677
 678/*
 679 * The maximum depth is four.
 680 * Offset[0] will have raw inode offset.
 681 */
 682static int get_node_path(struct inode *inode, long block,
 683				int offset[4], unsigned int noffset[4])
 684{
 685	const long direct_index = ADDRS_PER_INODE(inode);
 686	const long direct_blks = ADDRS_PER_BLOCK(inode);
 687	const long dptrs_per_blk = NIDS_PER_BLOCK;
 688	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
 689	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 690	int n = 0;
 691	int level = 0;
 692
 693	noffset[0] = 0;
 694
 695	if (block < direct_index) {
 696		offset[n] = block;
 697		goto got;
 698	}
 699	block -= direct_index;
 700	if (block < direct_blks) {
 701		offset[n++] = NODE_DIR1_BLOCK;
 702		noffset[n] = 1;
 703		offset[n] = block;
 704		level = 1;
 705		goto got;
 706	}
 707	block -= direct_blks;
 708	if (block < direct_blks) {
 709		offset[n++] = NODE_DIR2_BLOCK;
 710		noffset[n] = 2;
 711		offset[n] = block;
 712		level = 1;
 713		goto got;
 714	}
 715	block -= direct_blks;
 716	if (block < indirect_blks) {
 717		offset[n++] = NODE_IND1_BLOCK;
 718		noffset[n] = 3;
 719		offset[n++] = block / direct_blks;
 720		noffset[n] = 4 + offset[n - 1];
 721		offset[n] = block % direct_blks;
 722		level = 2;
 723		goto got;
 724	}
 725	block -= indirect_blks;
 726	if (block < indirect_blks) {
 727		offset[n++] = NODE_IND2_BLOCK;
 728		noffset[n] = 4 + dptrs_per_blk;
 729		offset[n++] = block / direct_blks;
 730		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 731		offset[n] = block % direct_blks;
 732		level = 2;
 733		goto got;
 734	}
 735	block -= indirect_blks;
 736	if (block < dindirect_blks) {
 737		offset[n++] = NODE_DIND_BLOCK;
 738		noffset[n] = 5 + (dptrs_per_blk * 2);
 739		offset[n++] = block / indirect_blks;
 740		noffset[n] = 6 + (dptrs_per_blk * 2) +
 741			      offset[n - 1] * (dptrs_per_blk + 1);
 742		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 743		noffset[n] = 7 + (dptrs_per_blk * 2) +
 744			      offset[n - 2] * (dptrs_per_blk + 1) +
 745			      offset[n - 1];
 746		offset[n] = block % direct_blks;
 747		level = 3;
 748		goto got;
 749	} else {
 750		return -E2BIG;
 751	}
 752got:
 753	return level;
 754}
 755
 756/*
 757 * Caller should call f2fs_put_dnode(dn).
 758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
 
 760 */
 761int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 762{
 763	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 764	struct page *npage[4];
 765	struct page *parent = NULL;
 766	int offset[4];
 767	unsigned int noffset[4];
 768	nid_t nids[4];
 769	int level, i = 0;
 770	int err = 0;
 771
 772	level = get_node_path(dn->inode, index, offset, noffset);
 773	if (level < 0)
 774		return level;
 775
 776	nids[0] = dn->inode->i_ino;
 777	npage[0] = dn->inode_page;
 778
 779	if (!npage[0]) {
 780		npage[0] = f2fs_get_node_page(sbi, nids[0]);
 781		if (IS_ERR(npage[0]))
 782			return PTR_ERR(npage[0]);
 783	}
 784
 785	/* if inline_data is set, should not report any block indices */
 786	if (f2fs_has_inline_data(dn->inode) && index) {
 787		err = -ENOENT;
 788		f2fs_put_page(npage[0], 1);
 789		goto release_out;
 790	}
 791
 792	parent = npage[0];
 793	if (level != 0)
 794		nids[1] = get_nid(parent, offset[0], true);
 795	dn->inode_page = npage[0];
 796	dn->inode_page_locked = true;
 797
 798	/* get indirect or direct nodes */
 799	for (i = 1; i <= level; i++) {
 800		bool done = false;
 801
 802		if (!nids[i] && mode == ALLOC_NODE) {
 803			/* alloc new node */
 804			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
 805				err = -ENOSPC;
 806				goto release_pages;
 807			}
 808
 809			dn->nid = nids[i];
 810			npage[i] = f2fs_new_node_page(dn, noffset[i]);
 811			if (IS_ERR(npage[i])) {
 812				f2fs_alloc_nid_failed(sbi, nids[i]);
 813				err = PTR_ERR(npage[i]);
 814				goto release_pages;
 815			}
 816
 817			set_nid(parent, offset[i - 1], nids[i], i == 1);
 818			f2fs_alloc_nid_done(sbi, nids[i]);
 819			done = true;
 820		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 821			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
 822			if (IS_ERR(npage[i])) {
 823				err = PTR_ERR(npage[i]);
 824				goto release_pages;
 825			}
 826			done = true;
 827		}
 828		if (i == 1) {
 829			dn->inode_page_locked = false;
 830			unlock_page(parent);
 831		} else {
 832			f2fs_put_page(parent, 1);
 833		}
 834
 835		if (!done) {
 836			npage[i] = f2fs_get_node_page(sbi, nids[i]);
 837			if (IS_ERR(npage[i])) {
 838				err = PTR_ERR(npage[i]);
 839				f2fs_put_page(npage[0], 0);
 840				goto release_out;
 841			}
 842		}
 843		if (i < level) {
 844			parent = npage[i];
 845			nids[i + 1] = get_nid(parent, offset[i], false);
 846		}
 847	}
 848	dn->nid = nids[level];
 849	dn->ofs_in_node = offset[level];
 850	dn->node_page = npage[level];
 851	dn->data_blkaddr = f2fs_data_blkaddr(dn);
 852
 853	if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
 854					f2fs_sb_has_readonly(sbi)) {
 855		unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
 856		block_t blkaddr;
 857
 858		if (!c_len)
 859			goto out;
 860
 861		blkaddr = f2fs_data_blkaddr(dn);
 862		if (blkaddr == COMPRESS_ADDR)
 863			blkaddr = data_blkaddr(dn->inode, dn->node_page,
 864						dn->ofs_in_node + 1);
 865
 866		f2fs_update_read_extent_tree_range_compressed(dn->inode,
 867					index, blkaddr,
 868					F2FS_I(dn->inode)->i_cluster_size,
 869					c_len);
 870	}
 871out:
 872	return 0;
 873
 874release_pages:
 875	f2fs_put_page(parent, 1);
 876	if (i > 1)
 877		f2fs_put_page(npage[0], 0);
 878release_out:
 879	dn->inode_page = NULL;
 880	dn->node_page = NULL;
 881	if (err == -ENOENT) {
 882		dn->cur_level = i;
 883		dn->max_level = level;
 884		dn->ofs_in_node = offset[level];
 885	}
 886	return err;
 887}
 888
 889static int truncate_node(struct dnode_of_data *dn)
 890{
 891	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 892	struct node_info ni;
 893	int err;
 894	pgoff_t index;
 895
 896	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
 897	if (err)
 898		return err;
 899
 900	/* Deallocate node address */
 901	f2fs_invalidate_blocks(sbi, ni.blk_addr);
 902	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
 903	set_node_addr(sbi, &ni, NULL_ADDR, false);
 904
 905	if (dn->nid == dn->inode->i_ino) {
 906		f2fs_remove_orphan_inode(sbi, dn->nid);
 907		dec_valid_inode_count(sbi);
 908		f2fs_inode_synced(dn->inode);
 909	}
 910
 911	clear_node_page_dirty(dn->node_page);
 912	set_sbi_flag(sbi, SBI_IS_DIRTY);
 913
 914	index = dn->node_page->index;
 915	f2fs_put_page(dn->node_page, 1);
 916
 917	invalidate_mapping_pages(NODE_MAPPING(sbi),
 918			index, index);
 919
 920	dn->node_page = NULL;
 921	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 922
 923	return 0;
 924}
 925
 926static int truncate_dnode(struct dnode_of_data *dn)
 927{
 928	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 929	struct page *page;
 930	int err;
 931
 932	if (dn->nid == 0)
 933		return 1;
 934
 935	/* get direct node */
 936	page = f2fs_get_node_page(sbi, dn->nid);
 937	if (PTR_ERR(page) == -ENOENT)
 938		return 1;
 939	else if (IS_ERR(page))
 940		return PTR_ERR(page);
 941
 942	if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
 943		f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
 944				dn->inode->i_ino, dn->nid, ino_of_node(page));
 945		set_sbi_flag(sbi, SBI_NEED_FSCK);
 946		f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
 947		f2fs_put_page(page, 1);
 948		return -EFSCORRUPTED;
 949	}
 950
 951	/* Make dnode_of_data for parameter */
 952	dn->node_page = page;
 953	dn->ofs_in_node = 0;
 954	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
 955	err = truncate_node(dn);
 956	if (err) {
 957		f2fs_put_page(page, 1);
 958		return err;
 959	}
 960
 961	return 1;
 962}
 963
 964static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 965						int ofs, int depth)
 966{
 967	struct dnode_of_data rdn = *dn;
 968	struct page *page;
 969	struct f2fs_node *rn;
 970	nid_t child_nid;
 971	unsigned int child_nofs;
 972	int freed = 0;
 973	int i, ret;
 974
 975	if (dn->nid == 0)
 976		return NIDS_PER_BLOCK + 1;
 977
 978	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 979
 980	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 981	if (IS_ERR(page)) {
 982		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 983		return PTR_ERR(page);
 984	}
 985
 986	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 987
 988	rn = F2FS_NODE(page);
 989	if (depth < 3) {
 990		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 991			child_nid = le32_to_cpu(rn->in.nid[i]);
 992			if (child_nid == 0)
 993				continue;
 994			rdn.nid = child_nid;
 995			ret = truncate_dnode(&rdn);
 996			if (ret < 0)
 997				goto out_err;
 998			if (set_nid(page, i, 0, false))
 999				dn->node_changed = true;
1000		}
1001	} else {
1002		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1003		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1004			child_nid = le32_to_cpu(rn->in.nid[i]);
1005			if (child_nid == 0) {
1006				child_nofs += NIDS_PER_BLOCK + 1;
1007				continue;
1008			}
1009			rdn.nid = child_nid;
1010			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1011			if (ret == (NIDS_PER_BLOCK + 1)) {
1012				if (set_nid(page, i, 0, false))
1013					dn->node_changed = true;
1014				child_nofs += ret;
1015			} else if (ret < 0 && ret != -ENOENT) {
1016				goto out_err;
1017			}
1018		}
1019		freed = child_nofs;
1020	}
1021
1022	if (!ofs) {
1023		/* remove current indirect node */
1024		dn->node_page = page;
1025		ret = truncate_node(dn);
1026		if (ret)
1027			goto out_err;
1028		freed++;
1029	} else {
1030		f2fs_put_page(page, 1);
1031	}
1032	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1033	return freed;
1034
1035out_err:
1036	f2fs_put_page(page, 1);
1037	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1038	return ret;
1039}
1040
1041static int truncate_partial_nodes(struct dnode_of_data *dn,
1042			struct f2fs_inode *ri, int *offset, int depth)
1043{
1044	struct page *pages[2];
1045	nid_t nid[3];
1046	nid_t child_nid;
1047	int err = 0;
1048	int i;
1049	int idx = depth - 2;
1050
1051	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1052	if (!nid[0])
1053		return 0;
1054
1055	/* get indirect nodes in the path */
1056	for (i = 0; i < idx + 1; i++) {
1057		/* reference count'll be increased */
1058		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1059		if (IS_ERR(pages[i])) {
1060			err = PTR_ERR(pages[i]);
1061			idx = i - 1;
1062			goto fail;
1063		}
1064		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1065	}
1066
1067	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1068
1069	/* free direct nodes linked to a partial indirect node */
1070	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1071		child_nid = get_nid(pages[idx], i, false);
1072		if (!child_nid)
1073			continue;
1074		dn->nid = child_nid;
1075		err = truncate_dnode(dn);
1076		if (err < 0)
1077			goto fail;
1078		if (set_nid(pages[idx], i, 0, false))
1079			dn->node_changed = true;
1080	}
1081
1082	if (offset[idx + 1] == 0) {
1083		dn->node_page = pages[idx];
1084		dn->nid = nid[idx];
1085		err = truncate_node(dn);
1086		if (err)
1087			goto fail;
1088	} else {
1089		f2fs_put_page(pages[idx], 1);
1090	}
1091	offset[idx]++;
1092	offset[idx + 1] = 0;
1093	idx--;
1094fail:
1095	for (i = idx; i >= 0; i--)
1096		f2fs_put_page(pages[i], 1);
1097
1098	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1099
1100	return err;
1101}
1102
1103/*
1104 * All the block addresses of data and nodes should be nullified.
1105 */
1106int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1107{
1108	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1109	int err = 0, cont = 1;
1110	int level, offset[4], noffset[4];
1111	unsigned int nofs = 0;
1112	struct f2fs_inode *ri;
1113	struct dnode_of_data dn;
1114	struct page *page;
1115
1116	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1117
1118	level = get_node_path(inode, from, offset, noffset);
1119	if (level < 0) {
1120		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1121		return level;
1122	}
1123
1124	page = f2fs_get_node_page(sbi, inode->i_ino);
1125	if (IS_ERR(page)) {
1126		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1127		return PTR_ERR(page);
1128	}
1129
1130	set_new_dnode(&dn, inode, page, NULL, 0);
1131	unlock_page(page);
1132
1133	ri = F2FS_INODE(page);
1134	switch (level) {
1135	case 0:
1136	case 1:
1137		nofs = noffset[1];
1138		break;
1139	case 2:
1140		nofs = noffset[1];
1141		if (!offset[level - 1])
1142			goto skip_partial;
1143		err = truncate_partial_nodes(&dn, ri, offset, level);
1144		if (err < 0 && err != -ENOENT)
1145			goto fail;
1146		nofs += 1 + NIDS_PER_BLOCK;
1147		break;
1148	case 3:
1149		nofs = 5 + 2 * NIDS_PER_BLOCK;
1150		if (!offset[level - 1])
1151			goto skip_partial;
1152		err = truncate_partial_nodes(&dn, ri, offset, level);
1153		if (err < 0 && err != -ENOENT)
1154			goto fail;
1155		break;
1156	default:
1157		BUG();
1158	}
1159
1160skip_partial:
1161	while (cont) {
1162		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1163		switch (offset[0]) {
1164		case NODE_DIR1_BLOCK:
1165		case NODE_DIR2_BLOCK:
1166			err = truncate_dnode(&dn);
1167			break;
1168
1169		case NODE_IND1_BLOCK:
1170		case NODE_IND2_BLOCK:
1171			err = truncate_nodes(&dn, nofs, offset[1], 2);
1172			break;
1173
1174		case NODE_DIND_BLOCK:
1175			err = truncate_nodes(&dn, nofs, offset[1], 3);
1176			cont = 0;
1177			break;
1178
1179		default:
1180			BUG();
1181		}
1182		if (err < 0 && err != -ENOENT)
1183			goto fail;
1184		if (offset[1] == 0 &&
1185				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1186			lock_page(page);
1187			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1188			f2fs_wait_on_page_writeback(page, NODE, true, true);
1189			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1190			set_page_dirty(page);
1191			unlock_page(page);
1192		}
1193		offset[1] = 0;
1194		offset[0]++;
1195		nofs += err;
1196	}
1197fail:
1198	f2fs_put_page(page, 0);
1199	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1200	return err > 0 ? 0 : err;
1201}
1202
1203/* caller must lock inode page */
1204int f2fs_truncate_xattr_node(struct inode *inode)
1205{
1206	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1207	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1208	struct dnode_of_data dn;
1209	struct page *npage;
1210	int err;
1211
1212	if (!nid)
1213		return 0;
1214
1215	npage = f2fs_get_node_page(sbi, nid);
1216	if (IS_ERR(npage))
1217		return PTR_ERR(npage);
1218
1219	set_new_dnode(&dn, inode, NULL, npage, nid);
1220	err = truncate_node(&dn);
1221	if (err) {
1222		f2fs_put_page(npage, 1);
1223		return err;
1224	}
1225
1226	f2fs_i_xnid_write(inode, 0);
1227
 
 
1228	return 0;
1229}
1230
1231/*
1232 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1233 * f2fs_unlock_op().
1234 */
1235int f2fs_remove_inode_page(struct inode *inode)
1236{
1237	struct dnode_of_data dn;
1238	int err;
1239
1240	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1241	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1242	if (err)
1243		return err;
1244
1245	err = f2fs_truncate_xattr_node(inode);
1246	if (err) {
1247		f2fs_put_dnode(&dn);
1248		return err;
1249	}
1250
1251	/* remove potential inline_data blocks */
1252	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1253				S_ISLNK(inode->i_mode))
1254		f2fs_truncate_data_blocks_range(&dn, 1);
1255
1256	/* 0 is possible, after f2fs_new_inode() has failed */
1257	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1258		f2fs_put_dnode(&dn);
1259		return -EIO;
1260	}
1261
1262	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1263		f2fs_warn(F2FS_I_SB(inode),
1264			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1265			inode->i_ino, (unsigned long long)inode->i_blocks);
1266		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1267	}
1268
1269	/* will put inode & node pages */
1270	err = truncate_node(&dn);
1271	if (err) {
1272		f2fs_put_dnode(&dn);
1273		return err;
1274	}
1275	return 0;
1276}
1277
1278struct page *f2fs_new_inode_page(struct inode *inode)
1279{
1280	struct dnode_of_data dn;
1281
1282	/* allocate inode page for new inode */
1283	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1284
1285	/* caller should f2fs_put_page(page, 1); */
1286	return f2fs_new_node_page(&dn, 0);
1287}
1288
1289struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1290{
1291	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1292	struct node_info new_ni;
1293	struct page *page;
1294	int err;
1295
1296	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1297		return ERR_PTR(-EPERM);
1298
1299	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1300	if (!page)
1301		return ERR_PTR(-ENOMEM);
1302
1303	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1304		goto fail;
1305
1306#ifdef CONFIG_F2FS_CHECK_FS
1307	err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1308	if (err) {
1309		dec_valid_node_count(sbi, dn->inode, !ofs);
1310		goto fail;
1311	}
1312	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1313		err = -EFSCORRUPTED;
1314		set_sbi_flag(sbi, SBI_NEED_FSCK);
1315		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1316		goto fail;
1317	}
1318#endif
1319	new_ni.nid = dn->nid;
1320	new_ni.ino = dn->inode->i_ino;
1321	new_ni.blk_addr = NULL_ADDR;
1322	new_ni.flag = 0;
1323	new_ni.version = 0;
1324	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1325
1326	f2fs_wait_on_page_writeback(page, NODE, true, true);
1327	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1328	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1329	if (!PageUptodate(page))
1330		SetPageUptodate(page);
1331	if (set_page_dirty(page))
1332		dn->node_changed = true;
1333
1334	if (f2fs_has_xattr_block(ofs))
1335		f2fs_i_xnid_write(dn->inode, dn->nid);
1336
1337	if (ofs == 0)
1338		inc_valid_inode_count(sbi);
1339	return page;
1340
1341fail:
1342	clear_node_page_dirty(page);
1343	f2fs_put_page(page, 1);
1344	return ERR_PTR(err);
1345}
1346
1347/*
1348 * Caller should do after getting the following values.
1349 * 0: f2fs_put_page(page, 0)
1350 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1351 */
1352static int read_node_page(struct page *page, blk_opf_t op_flags)
1353{
1354	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1355	struct node_info ni;
1356	struct f2fs_io_info fio = {
1357		.sbi = sbi,
1358		.type = NODE,
1359		.op = REQ_OP_READ,
1360		.op_flags = op_flags,
1361		.page = page,
1362		.encrypted_page = NULL,
1363	};
1364	int err;
1365
1366	if (PageUptodate(page)) {
1367		if (!f2fs_inode_chksum_verify(sbi, page)) {
1368			ClearPageUptodate(page);
1369			return -EFSBADCRC;
1370		}
1371		return LOCKED_PAGE;
1372	}
1373
1374	err = f2fs_get_node_info(sbi, page->index, &ni, false);
1375	if (err)
1376		return err;
1377
1378	/* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1379	if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1380		ClearPageUptodate(page);
1381		return -ENOENT;
1382	}
1383
1384	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1385
1386	err = f2fs_submit_page_bio(&fio);
1387
1388	if (!err)
1389		f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1390
1391	return err;
1392}
1393
1394/*
1395 * Readahead a node page
1396 */
1397void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1398{
1399	struct page *apage;
1400	int err;
1401
1402	if (!nid)
1403		return;
1404	if (f2fs_check_nid_range(sbi, nid))
1405		return;
1406
1407	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
 
 
1408	if (apage)
1409		return;
1410
1411	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1412	if (!apage)
1413		return;
1414
1415	err = read_node_page(apage, REQ_RAHEAD);
1416	f2fs_put_page(apage, err ? 1 : 0);
1417}
1418
1419static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1420					struct page *parent, int start)
1421{
1422	struct page *page;
1423	int err;
1424
1425	if (!nid)
1426		return ERR_PTR(-ENOENT);
1427	if (f2fs_check_nid_range(sbi, nid))
1428		return ERR_PTR(-EINVAL);
1429repeat:
1430	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1431	if (!page)
1432		return ERR_PTR(-ENOMEM);
1433
1434	err = read_node_page(page, 0);
1435	if (err < 0) {
1436		goto out_put_err;
 
1437	} else if (err == LOCKED_PAGE) {
1438		err = 0;
1439		goto page_hit;
1440	}
1441
1442	if (parent)
1443		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1444
1445	lock_page(page);
1446
1447	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1448		f2fs_put_page(page, 1);
1449		goto repeat;
1450	}
1451
1452	if (unlikely(!PageUptodate(page))) {
1453		err = -EIO;
1454		goto out_err;
1455	}
1456
1457	if (!f2fs_inode_chksum_verify(sbi, page)) {
1458		err = -EFSBADCRC;
1459		goto out_err;
1460	}
1461page_hit:
1462	if (likely(nid == nid_of_node(page)))
1463		return page;
1464
1465	f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1466			  nid, nid_of_node(page), ino_of_node(page),
1467			  ofs_of_node(page), cpver_of_node(page),
1468			  next_blkaddr_of_node(page));
1469	set_sbi_flag(sbi, SBI_NEED_FSCK);
1470	f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1471	err = -EFSCORRUPTED;
1472out_err:
1473	ClearPageUptodate(page);
1474out_put_err:
1475	/* ENOENT comes from read_node_page which is not an error. */
1476	if (err != -ENOENT)
1477		f2fs_handle_page_eio(sbi, page->index, NODE);
1478	f2fs_put_page(page, 1);
1479	return ERR_PTR(err);
1480}
1481
1482struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1483{
1484	return __get_node_page(sbi, nid, NULL, 0);
1485}
1486
1487struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1488{
1489	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1490	nid_t nid = get_nid(parent, start, false);
1491
1492	return __get_node_page(sbi, nid, parent, start);
1493}
1494
1495static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1496{
1497	struct inode *inode;
1498	struct page *page;
1499	int ret;
1500
1501	/* should flush inline_data before evict_inode */
1502	inode = ilookup(sbi->sb, ino);
1503	if (!inode)
1504		return;
1505
1506	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1507					FGP_LOCK|FGP_NOWAIT, 0);
1508	if (!page)
1509		goto iput_out;
1510
1511	if (!PageUptodate(page))
1512		goto page_out;
1513
1514	if (!PageDirty(page))
1515		goto page_out;
1516
1517	if (!clear_page_dirty_for_io(page))
1518		goto page_out;
1519
1520	ret = f2fs_write_inline_data(inode, page);
1521	inode_dec_dirty_pages(inode);
1522	f2fs_remove_dirty_inode(inode);
1523	if (ret)
1524		set_page_dirty(page);
1525page_out:
1526	f2fs_put_page(page, 1);
1527iput_out:
1528	iput(inode);
1529}
1530
1531static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1532{
1533	pgoff_t index;
1534	struct folio_batch fbatch;
1535	struct page *last_page = NULL;
1536	int nr_folios;
1537
1538	folio_batch_init(&fbatch);
1539	index = 0;
1540
1541	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1542					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1543					&fbatch))) {
1544		int i;
1545
1546		for (i = 0; i < nr_folios; i++) {
1547			struct page *page = &fbatch.folios[i]->page;
1548
1549			if (unlikely(f2fs_cp_error(sbi))) {
1550				f2fs_put_page(last_page, 0);
1551				folio_batch_release(&fbatch);
1552				return ERR_PTR(-EIO);
1553			}
1554
1555			if (!IS_DNODE(page) || !is_cold_node(page))
1556				continue;
1557			if (ino_of_node(page) != ino)
1558				continue;
1559
1560			lock_page(page);
1561
1562			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1563continue_unlock:
1564				unlock_page(page);
1565				continue;
1566			}
1567			if (ino_of_node(page) != ino)
1568				goto continue_unlock;
1569
1570			if (!PageDirty(page)) {
1571				/* someone wrote it for us */
1572				goto continue_unlock;
1573			}
1574
1575			if (last_page)
1576				f2fs_put_page(last_page, 0);
1577
1578			get_page(page);
1579			last_page = page;
1580			unlock_page(page);
1581		}
1582		folio_batch_release(&fbatch);
1583		cond_resched();
1584	}
1585	return last_page;
1586}
1587
1588static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1589				struct writeback_control *wbc, bool do_balance,
1590				enum iostat_type io_type, unsigned int *seq_id)
1591{
1592	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1593	nid_t nid;
1594	struct node_info ni;
1595	struct f2fs_io_info fio = {
1596		.sbi = sbi,
1597		.ino = ino_of_node(page),
1598		.type = NODE,
1599		.op = REQ_OP_WRITE,
1600		.op_flags = wbc_to_write_flags(wbc),
1601		.page = page,
1602		.encrypted_page = NULL,
1603		.submitted = 0,
1604		.io_type = io_type,
1605		.io_wbc = wbc,
1606	};
1607	unsigned int seq;
1608
1609	trace_f2fs_writepage(page, NODE);
1610
1611	if (unlikely(f2fs_cp_error(sbi))) {
1612		/* keep node pages in remount-ro mode */
1613		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1614			goto redirty_out;
1615		ClearPageUptodate(page);
1616		dec_page_count(sbi, F2FS_DIRTY_NODES);
1617		unlock_page(page);
1618		return 0;
1619	}
1620
1621	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1622		goto redirty_out;
1623
1624	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1625			wbc->sync_mode == WB_SYNC_NONE &&
1626			IS_DNODE(page) && is_cold_node(page))
1627		goto redirty_out;
1628
1629	/* get old block addr of this node page */
1630	nid = nid_of_node(page);
1631	f2fs_bug_on(sbi, page->index != nid);
1632
1633	if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1634		goto redirty_out;
1635
1636	if (wbc->for_reclaim) {
1637		if (!f2fs_down_read_trylock(&sbi->node_write))
1638			goto redirty_out;
1639	} else {
1640		f2fs_down_read(&sbi->node_write);
1641	}
1642
 
 
1643	/* This page is already truncated */
1644	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1645		ClearPageUptodate(page);
1646		dec_page_count(sbi, F2FS_DIRTY_NODES);
1647		f2fs_up_read(&sbi->node_write);
1648		unlock_page(page);
1649		return 0;
1650	}
1651
1652	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1653		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1654					DATA_GENERIC_ENHANCE)) {
1655		f2fs_up_read(&sbi->node_write);
1656		goto redirty_out;
1657	}
1658
1659	if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1660		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1661
1662	/* should add to global list before clearing PAGECACHE status */
1663	if (f2fs_in_warm_node_list(sbi, page)) {
1664		seq = f2fs_add_fsync_node_entry(sbi, page);
1665		if (seq_id)
1666			*seq_id = seq;
1667	}
1668
1669	set_page_writeback(page);
1670
1671	fio.old_blkaddr = ni.blk_addr;
1672	f2fs_do_write_node_page(nid, &fio);
1673	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1674	dec_page_count(sbi, F2FS_DIRTY_NODES);
1675	f2fs_up_read(&sbi->node_write);
1676
1677	if (wbc->for_reclaim) {
1678		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
 
1679		submitted = NULL;
1680	}
1681
1682	unlock_page(page);
1683
1684	if (unlikely(f2fs_cp_error(sbi))) {
1685		f2fs_submit_merged_write(sbi, NODE);
1686		submitted = NULL;
1687	}
1688	if (submitted)
1689		*submitted = fio.submitted;
1690
1691	if (do_balance)
1692		f2fs_balance_fs(sbi, false);
1693	return 0;
1694
1695redirty_out:
1696	redirty_page_for_writepage(wbc, page);
1697	return AOP_WRITEPAGE_ACTIVATE;
1698}
1699
1700int f2fs_move_node_page(struct page *node_page, int gc_type)
1701{
1702	int err = 0;
1703
1704	if (gc_type == FG_GC) {
1705		struct writeback_control wbc = {
1706			.sync_mode = WB_SYNC_ALL,
1707			.nr_to_write = 1,
1708			.for_reclaim = 0,
1709		};
1710
1711		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1712
1713		set_page_dirty(node_page);
 
1714
1715		if (!clear_page_dirty_for_io(node_page)) {
1716			err = -EAGAIN;
1717			goto out_page;
1718		}
1719
1720		if (__write_node_page(node_page, false, NULL,
1721					&wbc, false, FS_GC_NODE_IO, NULL)) {
1722			err = -EAGAIN;
1723			unlock_page(node_page);
1724		}
1725		goto release_page;
1726	} else {
1727		/* set page dirty and write it */
1728		if (!PageWriteback(node_page))
1729			set_page_dirty(node_page);
1730	}
1731out_page:
1732	unlock_page(node_page);
1733release_page:
1734	f2fs_put_page(node_page, 0);
1735	return err;
1736}
1737
1738static int f2fs_write_node_page(struct page *page,
1739				struct writeback_control *wbc)
1740{
1741	return __write_node_page(page, false, NULL, wbc, false,
1742						FS_NODE_IO, NULL);
1743}
1744
1745int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1746			struct writeback_control *wbc, bool atomic,
1747			unsigned int *seq_id)
1748{
1749	pgoff_t index;
1750	struct folio_batch fbatch;
 
1751	int ret = 0;
1752	struct page *last_page = NULL;
1753	bool marked = false;
1754	nid_t ino = inode->i_ino;
1755	int nr_folios;
1756	int nwritten = 0;
1757
1758	if (atomic) {
1759		last_page = last_fsync_dnode(sbi, ino);
1760		if (IS_ERR_OR_NULL(last_page))
1761			return PTR_ERR_OR_ZERO(last_page);
1762	}
1763retry:
1764	folio_batch_init(&fbatch);
1765	index = 0;
1766
1767	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1768					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1769					&fbatch))) {
1770		int i;
1771
1772		for (i = 0; i < nr_folios; i++) {
1773			struct page *page = &fbatch.folios[i]->page;
1774			bool submitted = false;
1775
1776			if (unlikely(f2fs_cp_error(sbi))) {
1777				f2fs_put_page(last_page, 0);
1778				folio_batch_release(&fbatch);
1779				ret = -EIO;
1780				goto out;
1781			}
1782
1783			if (!IS_DNODE(page) || !is_cold_node(page))
1784				continue;
1785			if (ino_of_node(page) != ino)
1786				continue;
1787
1788			lock_page(page);
1789
1790			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1791continue_unlock:
1792				unlock_page(page);
1793				continue;
1794			}
1795			if (ino_of_node(page) != ino)
1796				goto continue_unlock;
1797
1798			if (!PageDirty(page) && page != last_page) {
1799				/* someone wrote it for us */
1800				goto continue_unlock;
1801			}
1802
1803			f2fs_wait_on_page_writeback(page, NODE, true, true);
 
1804
1805			set_fsync_mark(page, 0);
1806			set_dentry_mark(page, 0);
1807
1808			if (!atomic || page == last_page) {
1809				set_fsync_mark(page, 1);
1810				percpu_counter_inc(&sbi->rf_node_block_count);
1811				if (IS_INODE(page)) {
1812					if (is_inode_flag_set(inode,
1813								FI_DIRTY_INODE))
1814						f2fs_update_inode(inode, page);
1815					set_dentry_mark(page,
1816						f2fs_need_dentry_mark(sbi, ino));
1817				}
1818				/* may be written by other thread */
1819				if (!PageDirty(page))
1820					set_page_dirty(page);
1821			}
1822
1823			if (!clear_page_dirty_for_io(page))
1824				goto continue_unlock;
1825
1826			ret = __write_node_page(page, atomic &&
1827						page == last_page,
1828						&submitted, wbc, true,
1829						FS_NODE_IO, seq_id);
1830			if (ret) {
1831				unlock_page(page);
1832				f2fs_put_page(last_page, 0);
1833				break;
1834			} else if (submitted) {
1835				nwritten++;
1836			}
1837
1838			if (page == last_page) {
1839				f2fs_put_page(page, 0);
1840				marked = true;
1841				break;
1842			}
1843		}
1844		folio_batch_release(&fbatch);
1845		cond_resched();
1846
1847		if (ret || marked)
1848			break;
1849	}
1850	if (!ret && atomic && !marked) {
1851		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1852			   ino, last_page->index);
 
1853		lock_page(last_page);
1854		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1855		set_page_dirty(last_page);
1856		unlock_page(last_page);
1857		goto retry;
1858	}
1859out:
1860	if (nwritten)
1861		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1862	return ret ? -EIO : 0;
1863}
1864
1865static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1866{
1867	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1868	bool clean;
1869
1870	if (inode->i_ino != ino)
1871		return 0;
1872
1873	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1874		return 0;
1875
1876	spin_lock(&sbi->inode_lock[DIRTY_META]);
1877	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1878	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1879
1880	if (clean)
1881		return 0;
1882
1883	inode = igrab(inode);
1884	if (!inode)
1885		return 0;
1886	return 1;
1887}
1888
1889static bool flush_dirty_inode(struct page *page)
1890{
1891	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1892	struct inode *inode;
1893	nid_t ino = ino_of_node(page);
1894
1895	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1896	if (!inode)
1897		return false;
1898
1899	f2fs_update_inode(inode, page);
1900	unlock_page(page);
1901
1902	iput(inode);
1903	return true;
1904}
1905
1906void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1907{
1908	pgoff_t index = 0;
1909	struct folio_batch fbatch;
1910	int nr_folios;
1911
1912	folio_batch_init(&fbatch);
1913
1914	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1915					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1916					&fbatch))) {
1917		int i;
1918
1919		for (i = 0; i < nr_folios; i++) {
1920			struct page *page = &fbatch.folios[i]->page;
1921
1922			if (!IS_DNODE(page))
1923				continue;
1924
1925			lock_page(page);
1926
1927			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1928continue_unlock:
1929				unlock_page(page);
1930				continue;
1931			}
1932
1933			if (!PageDirty(page)) {
1934				/* someone wrote it for us */
1935				goto continue_unlock;
1936			}
1937
1938			/* flush inline_data, if it's async context. */
1939			if (page_private_inline(page)) {
1940				clear_page_private_inline(page);
1941				unlock_page(page);
1942				flush_inline_data(sbi, ino_of_node(page));
1943				continue;
1944			}
1945			unlock_page(page);
1946		}
1947		folio_batch_release(&fbatch);
1948		cond_resched();
1949	}
1950}
1951
1952int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1953				struct writeback_control *wbc,
1954				bool do_balance, enum iostat_type io_type)
1955{
1956	pgoff_t index;
1957	struct folio_batch fbatch;
1958	int step = 0;
1959	int nwritten = 0;
1960	int ret = 0;
1961	int nr_folios, done = 0;
1962
1963	folio_batch_init(&fbatch);
1964
1965next_step:
1966	index = 0;
1967
1968	while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
1969				&index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1970				&fbatch))) {
1971		int i;
1972
1973		for (i = 0; i < nr_folios; i++) {
1974			struct page *page = &fbatch.folios[i]->page;
1975			bool submitted = false;
1976
1977			/* give a priority to WB_SYNC threads */
1978			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1979					wbc->sync_mode == WB_SYNC_NONE) {
1980				done = 1;
1981				break;
1982			}
1983
1984			/*
1985			 * flushing sequence with step:
1986			 * 0. indirect nodes
1987			 * 1. dentry dnodes
1988			 * 2. file dnodes
1989			 */
1990			if (step == 0 && IS_DNODE(page))
1991				continue;
1992			if (step == 1 && (!IS_DNODE(page) ||
1993						is_cold_node(page)))
1994				continue;
1995			if (step == 2 && (!IS_DNODE(page) ||
1996						!is_cold_node(page)))
1997				continue;
1998lock_node:
1999			if (wbc->sync_mode == WB_SYNC_ALL)
2000				lock_page(page);
2001			else if (!trylock_page(page))
2002				continue;
2003
2004			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
2005continue_unlock:
2006				unlock_page(page);
2007				continue;
2008			}
2009
2010			if (!PageDirty(page)) {
2011				/* someone wrote it for us */
2012				goto continue_unlock;
2013			}
2014
2015			/* flush inline_data/inode, if it's async context. */
2016			if (!do_balance)
2017				goto write_node;
2018
2019			/* flush inline_data */
2020			if (page_private_inline(page)) {
2021				clear_page_private_inline(page);
2022				unlock_page(page);
2023				flush_inline_data(sbi, ino_of_node(page));
2024				goto lock_node;
2025			}
2026
2027			/* flush dirty inode */
2028			if (IS_INODE(page) && flush_dirty_inode(page))
2029				goto lock_node;
2030write_node:
2031			f2fs_wait_on_page_writeback(page, NODE, true, true);
2032
 
2033			if (!clear_page_dirty_for_io(page))
2034				goto continue_unlock;
2035
2036			set_fsync_mark(page, 0);
2037			set_dentry_mark(page, 0);
2038
2039			ret = __write_node_page(page, false, &submitted,
2040						wbc, do_balance, io_type, NULL);
2041			if (ret)
2042				unlock_page(page);
2043			else if (submitted)
2044				nwritten++;
2045
2046			if (--wbc->nr_to_write == 0)
2047				break;
2048		}
2049		folio_batch_release(&fbatch);
2050		cond_resched();
2051
2052		if (wbc->nr_to_write == 0) {
2053			step = 2;
2054			break;
2055		}
2056	}
2057
2058	if (step < 2) {
2059		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2060				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2061			goto out;
2062		step++;
2063		goto next_step;
2064	}
2065out:
2066	if (nwritten)
2067		f2fs_submit_merged_write(sbi, NODE);
2068
2069	if (unlikely(f2fs_cp_error(sbi)))
2070		return -EIO;
2071	return ret;
2072}
2073
2074int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2075						unsigned int seq_id)
2076{
2077	struct fsync_node_entry *fn;
2078	struct page *page;
2079	struct list_head *head = &sbi->fsync_node_list;
2080	unsigned long flags;
2081	unsigned int cur_seq_id = 0;
2082
2083	while (seq_id && cur_seq_id < seq_id) {
2084		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2085		if (list_empty(head)) {
2086			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2087			break;
2088		}
2089		fn = list_first_entry(head, struct fsync_node_entry, list);
2090		if (fn->seq_id > seq_id) {
2091			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2092			break;
2093		}
2094		cur_seq_id = fn->seq_id;
2095		page = fn->page;
2096		get_page(page);
2097		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2098
2099		f2fs_wait_on_page_writeback(page, NODE, true, false);
 
2100
2101		put_page(page);
 
 
 
 
 
 
 
2102	}
2103
2104	return filemap_check_errors(NODE_MAPPING(sbi));
 
 
 
2105}
2106
2107static int f2fs_write_node_pages(struct address_space *mapping,
2108			    struct writeback_control *wbc)
2109{
2110	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2111	struct blk_plug plug;
2112	long diff;
2113
2114	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2115		goto skip_write;
2116
2117	/* balancing f2fs's metadata in background */
2118	f2fs_balance_fs_bg(sbi, true);
2119
2120	/* collect a number of dirty node pages and write together */
2121	if (wbc->sync_mode != WB_SYNC_ALL &&
2122			get_pages(sbi, F2FS_DIRTY_NODES) <
2123					nr_pages_to_skip(sbi, NODE))
2124		goto skip_write;
2125
2126	if (wbc->sync_mode == WB_SYNC_ALL)
2127		atomic_inc(&sbi->wb_sync_req[NODE]);
2128	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2129		/* to avoid potential deadlock */
2130		if (current->plug)
2131			blk_finish_plug(current->plug);
2132		goto skip_write;
2133	}
2134
2135	trace_f2fs_writepages(mapping->host, wbc, NODE);
2136
2137	diff = nr_pages_to_write(sbi, NODE, wbc);
 
2138	blk_start_plug(&plug);
2139	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2140	blk_finish_plug(&plug);
2141	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2142
2143	if (wbc->sync_mode == WB_SYNC_ALL)
2144		atomic_dec(&sbi->wb_sync_req[NODE]);
2145	return 0;
2146
2147skip_write:
2148	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2149	trace_f2fs_writepages(mapping->host, wbc, NODE);
2150	return 0;
2151}
2152
2153static bool f2fs_dirty_node_folio(struct address_space *mapping,
2154		struct folio *folio)
2155{
2156	trace_f2fs_set_page_dirty(&folio->page, NODE);
2157
2158	if (!folio_test_uptodate(folio))
2159		folio_mark_uptodate(folio);
2160#ifdef CONFIG_F2FS_CHECK_FS
2161	if (IS_INODE(&folio->page))
2162		f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2163#endif
2164	if (filemap_dirty_folio(mapping, folio)) {
2165		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2166		set_page_private_reference(&folio->page);
2167		return true;
2168	}
2169	return false;
2170}
2171
2172/*
2173 * Structure of the f2fs node operations
2174 */
2175const struct address_space_operations f2fs_node_aops = {
2176	.writepage	= f2fs_write_node_page,
2177	.writepages	= f2fs_write_node_pages,
2178	.dirty_folio	= f2fs_dirty_node_folio,
2179	.invalidate_folio = f2fs_invalidate_folio,
2180	.release_folio	= f2fs_release_folio,
2181	.migrate_folio	= filemap_migrate_folio,
 
 
2182};
2183
2184static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2185						nid_t n)
2186{
2187	return radix_tree_lookup(&nm_i->free_nid_root, n);
2188}
2189
2190static int __insert_free_nid(struct f2fs_sb_info *sbi,
2191				struct free_nid *i)
2192{
2193	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
2194	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2195
2196	if (err)
2197		return err;
2198
2199	nm_i->nid_cnt[FREE_NID]++;
2200	list_add_tail(&i->list, &nm_i->free_nid_list);
 
 
2201	return 0;
2202}
2203
2204static void __remove_free_nid(struct f2fs_sb_info *sbi,
2205			struct free_nid *i, enum nid_state state)
2206{
2207	struct f2fs_nm_info *nm_i = NM_I(sbi);
2208
2209	f2fs_bug_on(sbi, state != i->state);
2210	nm_i->nid_cnt[state]--;
2211	if (state == FREE_NID)
2212		list_del(&i->list);
2213	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2214}
2215
2216static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2217			enum nid_state org_state, enum nid_state dst_state)
2218{
2219	struct f2fs_nm_info *nm_i = NM_I(sbi);
2220
2221	f2fs_bug_on(sbi, org_state != i->state);
2222	i->state = dst_state;
2223	nm_i->nid_cnt[org_state]--;
2224	nm_i->nid_cnt[dst_state]++;
2225
2226	switch (dst_state) {
2227	case PREALLOC_NID:
2228		list_del(&i->list);
2229		break;
2230	case FREE_NID:
2231		list_add_tail(&i->list, &nm_i->free_nid_list);
2232		break;
2233	default:
2234		BUG_ON(1);
2235	}
2236}
2237
2238bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2239{
2240	struct f2fs_nm_info *nm_i = NM_I(sbi);
2241	unsigned int i;
2242	bool ret = true;
2243
2244	f2fs_down_read(&nm_i->nat_tree_lock);
2245	for (i = 0; i < nm_i->nat_blocks; i++) {
2246		if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2247			ret = false;
2248			break;
2249		}
2250	}
2251	f2fs_up_read(&nm_i->nat_tree_lock);
2252
2253	return ret;
2254}
2255
2256static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2257							bool set, bool build)
2258{
2259	struct f2fs_nm_info *nm_i = NM_I(sbi);
2260	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2261	unsigned int nid_ofs = nid - START_NID(nid);
2262
2263	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2264		return;
2265
2266	if (set) {
2267		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2268			return;
2269		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2270		nm_i->free_nid_count[nat_ofs]++;
2271	} else {
2272		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2273			return;
2274		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2275		if (!build)
2276			nm_i->free_nid_count[nat_ofs]--;
2277	}
2278}
2279
2280/* return if the nid is recognized as free */
2281static bool add_free_nid(struct f2fs_sb_info *sbi,
2282				nid_t nid, bool build, bool update)
2283{
2284	struct f2fs_nm_info *nm_i = NM_I(sbi);
2285	struct free_nid *i, *e;
2286	struct nat_entry *ne;
2287	int err = -EINVAL;
2288	bool ret = false;
2289
2290	/* 0 nid should not be used */
2291	if (unlikely(nid == 0))
2292		return false;
2293
2294	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2295		return false;
2296
2297	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2298	i->nid = nid;
2299	i->state = FREE_NID;
2300
2301	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2302
2303	spin_lock(&nm_i->nid_list_lock);
2304
2305	if (build) {
2306		/*
2307		 *   Thread A             Thread B
2308		 *  - f2fs_create
2309		 *   - f2fs_new_inode
2310		 *    - f2fs_alloc_nid
2311		 *     - __insert_nid_to_list(PREALLOC_NID)
2312		 *                     - f2fs_balance_fs_bg
2313		 *                      - f2fs_build_free_nids
2314		 *                       - __f2fs_build_free_nids
2315		 *                        - scan_nat_page
2316		 *                         - add_free_nid
2317		 *                          - __lookup_nat_cache
2318		 *  - f2fs_add_link
2319		 *   - f2fs_init_inode_metadata
2320		 *    - f2fs_new_inode_page
2321		 *     - f2fs_new_node_page
2322		 *      - set_node_addr
2323		 *  - f2fs_alloc_nid_done
2324		 *   - __remove_nid_from_list(PREALLOC_NID)
2325		 *                         - __insert_nid_to_list(FREE_NID)
2326		 */
2327		ne = __lookup_nat_cache(nm_i, nid);
2328		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2329				nat_get_blkaddr(ne) != NULL_ADDR))
2330			goto err_out;
2331
2332		e = __lookup_free_nid_list(nm_i, nid);
2333		if (e) {
2334			if (e->state == FREE_NID)
2335				ret = true;
2336			goto err_out;
2337		}
2338	}
2339	ret = true;
2340	err = __insert_free_nid(sbi, i);
2341err_out:
2342	if (update) {
2343		update_free_nid_bitmap(sbi, nid, ret, build);
2344		if (!build)
2345			nm_i->available_nids++;
2346	}
2347	spin_unlock(&nm_i->nid_list_lock);
2348	radix_tree_preload_end();
2349
2350	if (err)
2351		kmem_cache_free(free_nid_slab, i);
2352	return ret;
2353}
2354
2355static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2356{
2357	struct f2fs_nm_info *nm_i = NM_I(sbi);
2358	struct free_nid *i;
2359	bool need_free = false;
2360
2361	spin_lock(&nm_i->nid_list_lock);
2362	i = __lookup_free_nid_list(nm_i, nid);
2363	if (i && i->state == FREE_NID) {
2364		__remove_free_nid(sbi, i, FREE_NID);
2365		need_free = true;
2366	}
2367	spin_unlock(&nm_i->nid_list_lock);
2368
2369	if (need_free)
2370		kmem_cache_free(free_nid_slab, i);
2371}
2372
2373static int scan_nat_page(struct f2fs_sb_info *sbi,
2374			struct page *nat_page, nid_t start_nid)
2375{
2376	struct f2fs_nm_info *nm_i = NM_I(sbi);
2377	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2378	block_t blk_addr;
2379	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2380	int i;
2381
2382	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2383
2384	i = start_nid % NAT_ENTRY_PER_BLOCK;
2385
2386	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2387		if (unlikely(start_nid >= nm_i->max_nid))
2388			break;
2389
2390		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2391
2392		if (blk_addr == NEW_ADDR)
2393			return -EFSCORRUPTED;
2394
2395		if (blk_addr == NULL_ADDR) {
2396			add_free_nid(sbi, start_nid, true, true);
2397		} else {
2398			spin_lock(&NM_I(sbi)->nid_list_lock);
2399			update_free_nid_bitmap(sbi, start_nid, false, true);
2400			spin_unlock(&NM_I(sbi)->nid_list_lock);
2401		}
2402	}
2403
2404	return 0;
2405}
2406
2407static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2408{
2409	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2410	struct f2fs_journal *journal = curseg->journal;
2411	int i;
2412
2413	down_read(&curseg->journal_rwsem);
2414	for (i = 0; i < nats_in_cursum(journal); i++) {
2415		block_t addr;
2416		nid_t nid;
2417
2418		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2419		nid = le32_to_cpu(nid_in_journal(journal, i));
2420		if (addr == NULL_ADDR)
2421			add_free_nid(sbi, nid, true, false);
2422		else
2423			remove_free_nid(sbi, nid);
2424	}
2425	up_read(&curseg->journal_rwsem);
2426}
2427
2428static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2429{
2430	struct f2fs_nm_info *nm_i = NM_I(sbi);
2431	unsigned int i, idx;
2432	nid_t nid;
2433
2434	f2fs_down_read(&nm_i->nat_tree_lock);
2435
2436	for (i = 0; i < nm_i->nat_blocks; i++) {
2437		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2438			continue;
2439		if (!nm_i->free_nid_count[i])
2440			continue;
2441		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2442			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2443						NAT_ENTRY_PER_BLOCK, idx);
2444			if (idx >= NAT_ENTRY_PER_BLOCK)
2445				break;
2446
2447			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2448			add_free_nid(sbi, nid, true, false);
2449
2450			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2451				goto out;
2452		}
2453	}
2454out:
2455	scan_curseg_cache(sbi);
2456
2457	f2fs_up_read(&nm_i->nat_tree_lock);
2458}
2459
2460static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2461						bool sync, bool mount)
2462{
2463	struct f2fs_nm_info *nm_i = NM_I(sbi);
2464	int i = 0, ret;
2465	nid_t nid = nm_i->next_scan_nid;
2466
2467	if (unlikely(nid >= nm_i->max_nid))
2468		nid = 0;
2469
2470	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2471		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2472
2473	/* Enough entries */
2474	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2475		return 0;
2476
2477	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2478		return 0;
2479
2480	if (!mount) {
2481		/* try to find free nids in free_nid_bitmap */
2482		scan_free_nid_bits(sbi);
2483
2484		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2485			return 0;
2486	}
2487
2488	/* readahead nat pages to be scanned */
2489	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2490							META_NAT, true);
2491
2492	f2fs_down_read(&nm_i->nat_tree_lock);
2493
2494	while (1) {
2495		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2496						nm_i->nat_block_bitmap)) {
2497			struct page *page = get_current_nat_page(sbi, nid);
2498
2499			if (IS_ERR(page)) {
2500				ret = PTR_ERR(page);
2501			} else {
2502				ret = scan_nat_page(sbi, page, nid);
2503				f2fs_put_page(page, 1);
2504			}
2505
2506			if (ret) {
2507				f2fs_up_read(&nm_i->nat_tree_lock);
2508
2509				if (ret == -EFSCORRUPTED) {
2510					f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2511					set_sbi_flag(sbi, SBI_NEED_FSCK);
2512					f2fs_handle_error(sbi,
2513						ERROR_INCONSISTENT_NAT);
2514				}
2515
2516				return ret;
2517			}
2518		}
2519
2520		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2521		if (unlikely(nid >= nm_i->max_nid))
2522			nid = 0;
2523
2524		if (++i >= FREE_NID_PAGES)
2525			break;
2526	}
2527
2528	/* go to the next free nat pages to find free nids abundantly */
2529	nm_i->next_scan_nid = nid;
2530
2531	/* find free nids from current sum_pages */
2532	scan_curseg_cache(sbi);
2533
2534	f2fs_up_read(&nm_i->nat_tree_lock);
2535
2536	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2537					nm_i->ra_nid_pages, META_NAT, false);
2538
2539	return 0;
2540}
2541
2542int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2543{
2544	int ret;
2545
2546	mutex_lock(&NM_I(sbi)->build_lock);
2547	ret = __f2fs_build_free_nids(sbi, sync, mount);
2548	mutex_unlock(&NM_I(sbi)->build_lock);
2549
2550	return ret;
2551}
2552
2553/*
2554 * If this function returns success, caller can obtain a new nid
2555 * from second parameter of this function.
2556 * The returned nid could be used ino as well as nid when inode is created.
2557 */
2558bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2559{
2560	struct f2fs_nm_info *nm_i = NM_I(sbi);
2561	struct free_nid *i = NULL;
2562retry:
2563	if (time_to_inject(sbi, FAULT_ALLOC_NID))
 
 
2564		return false;
2565
 
2566	spin_lock(&nm_i->nid_list_lock);
2567
2568	if (unlikely(nm_i->available_nids == 0)) {
2569		spin_unlock(&nm_i->nid_list_lock);
2570		return false;
2571	}
2572
2573	/* We should not use stale free nids created by f2fs_build_free_nids */
2574	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2575		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2576		i = list_first_entry(&nm_i->free_nid_list,
2577					struct free_nid, list);
2578		*nid = i->nid;
2579
2580		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2581		nm_i->available_nids--;
2582
2583		update_free_nid_bitmap(sbi, *nid, false, false);
2584
2585		spin_unlock(&nm_i->nid_list_lock);
2586		return true;
2587	}
2588	spin_unlock(&nm_i->nid_list_lock);
2589
2590	/* Let's scan nat pages and its caches to get free nids */
2591	if (!f2fs_build_free_nids(sbi, true, false))
2592		goto retry;
2593	return false;
2594}
2595
2596/*
2597 * f2fs_alloc_nid() should be called prior to this function.
2598 */
2599void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2600{
2601	struct f2fs_nm_info *nm_i = NM_I(sbi);
2602	struct free_nid *i;
2603
2604	spin_lock(&nm_i->nid_list_lock);
2605	i = __lookup_free_nid_list(nm_i, nid);
2606	f2fs_bug_on(sbi, !i);
2607	__remove_free_nid(sbi, i, PREALLOC_NID);
2608	spin_unlock(&nm_i->nid_list_lock);
2609
2610	kmem_cache_free(free_nid_slab, i);
2611}
2612
2613/*
2614 * f2fs_alloc_nid() should be called prior to this function.
2615 */
2616void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2617{
2618	struct f2fs_nm_info *nm_i = NM_I(sbi);
2619	struct free_nid *i;
2620	bool need_free = false;
2621
2622	if (!nid)
2623		return;
2624
2625	spin_lock(&nm_i->nid_list_lock);
2626	i = __lookup_free_nid_list(nm_i, nid);
2627	f2fs_bug_on(sbi, !i);
2628
2629	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2630		__remove_free_nid(sbi, i, PREALLOC_NID);
2631		need_free = true;
2632	} else {
2633		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2634	}
2635
2636	nm_i->available_nids++;
2637
2638	update_free_nid_bitmap(sbi, nid, true, false);
2639
2640	spin_unlock(&nm_i->nid_list_lock);
2641
2642	if (need_free)
2643		kmem_cache_free(free_nid_slab, i);
2644}
2645
2646int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2647{
2648	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
2649	int nr = nr_shrink;
2650
2651	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2652		return 0;
2653
2654	if (!mutex_trylock(&nm_i->build_lock))
2655		return 0;
2656
2657	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2658		struct free_nid *i, *next;
2659		unsigned int batch = SHRINK_NID_BATCH_SIZE;
 
 
2660
2661		spin_lock(&nm_i->nid_list_lock);
2662		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2663			if (!nr_shrink || !batch ||
2664				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2665				break;
2666			__remove_free_nid(sbi, i, FREE_NID);
2667			kmem_cache_free(free_nid_slab, i);
2668			nr_shrink--;
2669			batch--;
2670		}
2671		spin_unlock(&nm_i->nid_list_lock);
2672	}
2673
2674	mutex_unlock(&nm_i->build_lock);
2675
2676	return nr - nr_shrink;
2677}
2678
2679int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2680{
2681	void *src_addr, *dst_addr;
2682	size_t inline_size;
2683	struct page *ipage;
2684	struct f2fs_inode *ri;
2685
2686	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2687	if (IS_ERR(ipage))
2688		return PTR_ERR(ipage);
2689
2690	ri = F2FS_INODE(page);
2691	if (ri->i_inline & F2FS_INLINE_XATTR) {
2692		if (!f2fs_has_inline_xattr(inode)) {
2693			set_inode_flag(inode, FI_INLINE_XATTR);
2694			stat_inc_inline_xattr(inode);
2695		}
2696	} else {
2697		if (f2fs_has_inline_xattr(inode)) {
2698			stat_dec_inline_xattr(inode);
2699			clear_inode_flag(inode, FI_INLINE_XATTR);
2700		}
2701		goto update_inode;
2702	}
2703
2704	dst_addr = inline_xattr_addr(inode, ipage);
2705	src_addr = inline_xattr_addr(inode, page);
2706	inline_size = inline_xattr_size(inode);
2707
2708	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2709	memcpy(dst_addr, src_addr, inline_size);
2710update_inode:
2711	f2fs_update_inode(inode, ipage);
2712	f2fs_put_page(ipage, 1);
2713	return 0;
2714}
2715
2716int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2717{
2718	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2719	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2720	nid_t new_xnid;
2721	struct dnode_of_data dn;
2722	struct node_info ni;
2723	struct page *xpage;
2724	int err;
2725
2726	if (!prev_xnid)
2727		goto recover_xnid;
2728
2729	/* 1: invalidate the previous xattr nid */
2730	err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2731	if (err)
2732		return err;
2733
2734	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2735	dec_valid_node_count(sbi, inode, false);
2736	set_node_addr(sbi, &ni, NULL_ADDR, false);
2737
2738recover_xnid:
2739	/* 2: update xattr nid in inode */
2740	if (!f2fs_alloc_nid(sbi, &new_xnid))
2741		return -ENOSPC;
2742
2743	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2744	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2745	if (IS_ERR(xpage)) {
2746		f2fs_alloc_nid_failed(sbi, new_xnid);
2747		return PTR_ERR(xpage);
2748	}
2749
2750	f2fs_alloc_nid_done(sbi, new_xnid);
2751	f2fs_update_inode_page(inode);
2752
2753	/* 3: update and set xattr node page dirty */
2754	if (page) {
2755		memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2756				VALID_XATTR_BLOCK_SIZE);
2757		set_page_dirty(xpage);
2758	}
2759	f2fs_put_page(xpage, 1);
2760
2761	return 0;
2762}
2763
2764int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2765{
2766	struct f2fs_inode *src, *dst;
2767	nid_t ino = ino_of_node(page);
2768	struct node_info old_ni, new_ni;
2769	struct page *ipage;
2770	int err;
2771
2772	err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2773	if (err)
2774		return err;
2775
2776	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2777		return -EINVAL;
2778retry:
2779	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2780	if (!ipage) {
2781		memalloc_retry_wait(GFP_NOFS);
2782		goto retry;
2783	}
2784
2785	/* Should not use this inode from free nid list */
2786	remove_free_nid(sbi, ino);
2787
2788	if (!PageUptodate(ipage))
2789		SetPageUptodate(ipage);
2790	fill_node_footer(ipage, ino, ino, 0, true);
2791	set_cold_node(ipage, false);
2792
2793	src = F2FS_INODE(page);
2794	dst = F2FS_INODE(ipage);
2795
2796	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2797	dst->i_size = 0;
2798	dst->i_blocks = cpu_to_le64(1);
2799	dst->i_links = cpu_to_le32(1);
2800	dst->i_xattr_nid = 0;
2801	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2802	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2803		dst->i_extra_isize = src->i_extra_isize;
2804
2805		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2806			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2807							i_inline_xattr_size))
2808			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2809
2810		if (f2fs_sb_has_project_quota(sbi) &&
2811			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2812								i_projid))
2813			dst->i_projid = src->i_projid;
2814
2815		if (f2fs_sb_has_inode_crtime(sbi) &&
2816			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2817							i_crtime_nsec)) {
2818			dst->i_crtime = src->i_crtime;
2819			dst->i_crtime_nsec = src->i_crtime_nsec;
2820		}
2821	}
2822
2823	new_ni = old_ni;
2824	new_ni.ino = ino;
2825
2826	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2827		WARN_ON(1);
2828	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2829	inc_valid_inode_count(sbi);
2830	set_page_dirty(ipage);
2831	f2fs_put_page(ipage, 1);
2832	return 0;
2833}
2834
2835int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2836			unsigned int segno, struct f2fs_summary_block *sum)
2837{
2838	struct f2fs_node *rn;
2839	struct f2fs_summary *sum_entry;
2840	block_t addr;
2841	int i, idx, last_offset, nrpages;
2842
2843	/* scan the node segment */
2844	last_offset = sbi->blocks_per_seg;
2845	addr = START_BLOCK(sbi, segno);
2846	sum_entry = &sum->entries[0];
2847
2848	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2849		nrpages = bio_max_segs(last_offset - i);
2850
2851		/* readahead node pages */
2852		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2853
2854		for (idx = addr; idx < addr + nrpages; idx++) {
2855			struct page *page = f2fs_get_tmp_page(sbi, idx);
2856
2857			if (IS_ERR(page))
2858				return PTR_ERR(page);
2859
2860			rn = F2FS_NODE(page);
2861			sum_entry->nid = rn->footer.nid;
2862			sum_entry->version = 0;
2863			sum_entry->ofs_in_node = 0;
2864			sum_entry++;
2865			f2fs_put_page(page, 1);
2866		}
2867
2868		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2869							addr + nrpages);
2870	}
2871	return 0;
2872}
2873
2874static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2875{
2876	struct f2fs_nm_info *nm_i = NM_I(sbi);
2877	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2878	struct f2fs_journal *journal = curseg->journal;
2879	int i;
2880
2881	down_write(&curseg->journal_rwsem);
2882	for (i = 0; i < nats_in_cursum(journal); i++) {
2883		struct nat_entry *ne;
2884		struct f2fs_nat_entry raw_ne;
2885		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2886
2887		if (f2fs_check_nid_range(sbi, nid))
2888			continue;
2889
2890		raw_ne = nat_in_journal(journal, i);
2891
2892		ne = __lookup_nat_cache(nm_i, nid);
2893		if (!ne) {
2894			ne = __alloc_nat_entry(sbi, nid, true);
2895			__init_nat_entry(nm_i, ne, &raw_ne, true);
2896		}
2897
2898		/*
2899		 * if a free nat in journal has not been used after last
2900		 * checkpoint, we should remove it from available nids,
2901		 * since later we will add it again.
2902		 */
2903		if (!get_nat_flag(ne, IS_DIRTY) &&
2904				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2905			spin_lock(&nm_i->nid_list_lock);
2906			nm_i->available_nids--;
2907			spin_unlock(&nm_i->nid_list_lock);
2908		}
2909
2910		__set_nat_cache_dirty(nm_i, ne);
2911	}
2912	update_nats_in_cursum(journal, -i);
2913	up_write(&curseg->journal_rwsem);
2914}
2915
2916static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2917						struct list_head *head, int max)
2918{
2919	struct nat_entry_set *cur;
2920
2921	if (nes->entry_cnt >= max)
2922		goto add_out;
2923
2924	list_for_each_entry(cur, head, set_list) {
2925		if (cur->entry_cnt >= nes->entry_cnt) {
2926			list_add(&nes->set_list, cur->set_list.prev);
2927			return;
2928		}
2929	}
2930add_out:
2931	list_add_tail(&nes->set_list, head);
2932}
2933
2934static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2935							unsigned int valid)
2936{
2937	if (valid == 0) {
2938		__set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2939		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2940		return;
2941	}
2942
2943	__clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2944	if (valid == NAT_ENTRY_PER_BLOCK)
2945		__set_bit_le(nat_ofs, nm_i->full_nat_bits);
2946	else
2947		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2948}
2949
2950static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2951						struct page *page)
2952{
2953	struct f2fs_nm_info *nm_i = NM_I(sbi);
2954	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2955	struct f2fs_nat_block *nat_blk = page_address(page);
2956	int valid = 0;
2957	int i = 0;
2958
2959	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2960		return;
2961
2962	if (nat_index == 0) {
2963		valid = 1;
2964		i = 1;
2965	}
2966	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2967		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2968			valid++;
2969	}
2970
2971	__update_nat_bits(nm_i, nat_index, valid);
2972}
2973
2974void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2975{
2976	struct f2fs_nm_info *nm_i = NM_I(sbi);
2977	unsigned int nat_ofs;
2978
2979	f2fs_down_read(&nm_i->nat_tree_lock);
2980
2981	for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2982		unsigned int valid = 0, nid_ofs = 0;
2983
2984		/* handle nid zero due to it should never be used */
2985		if (unlikely(nat_ofs == 0)) {
2986			valid = 1;
2987			nid_ofs = 1;
2988		}
2989
2990		for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2991			if (!test_bit_le(nid_ofs,
2992					nm_i->free_nid_bitmap[nat_ofs]))
2993				valid++;
2994		}
2995
2996		__update_nat_bits(nm_i, nat_ofs, valid);
2997	}
2998
2999	f2fs_up_read(&nm_i->nat_tree_lock);
 
 
 
 
3000}
3001
3002static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3003		struct nat_entry_set *set, struct cp_control *cpc)
3004{
3005	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3006	struct f2fs_journal *journal = curseg->journal;
3007	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3008	bool to_journal = true;
3009	struct f2fs_nat_block *nat_blk;
3010	struct nat_entry *ne, *cur;
3011	struct page *page = NULL;
3012
3013	/*
3014	 * there are two steps to flush nat entries:
3015	 * #1, flush nat entries to journal in current hot data summary block.
3016	 * #2, flush nat entries to nat page.
3017	 */
3018	if ((cpc->reason & CP_UMOUNT) ||
3019		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3020		to_journal = false;
3021
3022	if (to_journal) {
3023		down_write(&curseg->journal_rwsem);
3024	} else {
3025		page = get_next_nat_page(sbi, start_nid);
3026		if (IS_ERR(page))
3027			return PTR_ERR(page);
3028
3029		nat_blk = page_address(page);
3030		f2fs_bug_on(sbi, !nat_blk);
3031	}
3032
3033	/* flush dirty nats in nat entry set */
3034	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3035		struct f2fs_nat_entry *raw_ne;
3036		nid_t nid = nat_get_nid(ne);
3037		int offset;
3038
3039		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3040
3041		if (to_journal) {
3042			offset = f2fs_lookup_journal_in_cursum(journal,
3043							NAT_JOURNAL, nid, 1);
3044			f2fs_bug_on(sbi, offset < 0);
3045			raw_ne = &nat_in_journal(journal, offset);
3046			nid_in_journal(journal, offset) = cpu_to_le32(nid);
3047		} else {
3048			raw_ne = &nat_blk->entries[nid - start_nid];
3049		}
3050		raw_nat_from_node_info(raw_ne, &ne->ni);
3051		nat_reset_flag(ne);
3052		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
3053		if (nat_get_blkaddr(ne) == NULL_ADDR) {
3054			add_free_nid(sbi, nid, false, true);
3055		} else {
3056			spin_lock(&NM_I(sbi)->nid_list_lock);
3057			update_free_nid_bitmap(sbi, nid, false, false);
3058			spin_unlock(&NM_I(sbi)->nid_list_lock);
3059		}
3060	}
3061
3062	if (to_journal) {
3063		up_write(&curseg->journal_rwsem);
3064	} else {
3065		update_nat_bits(sbi, start_nid, page);
3066		f2fs_put_page(page, 1);
3067	}
3068
3069	/* Allow dirty nats by node block allocation in write_begin */
3070	if (!set->entry_cnt) {
3071		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3072		kmem_cache_free(nat_entry_set_slab, set);
3073	}
3074	return 0;
3075}
3076
3077/*
3078 * This function is called during the checkpointing process.
3079 */
3080int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3081{
3082	struct f2fs_nm_info *nm_i = NM_I(sbi);
3083	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3084	struct f2fs_journal *journal = curseg->journal;
3085	struct nat_entry_set *setvec[NAT_VEC_SIZE];
3086	struct nat_entry_set *set, *tmp;
3087	unsigned int found;
3088	nid_t set_idx = 0;
3089	LIST_HEAD(sets);
3090	int err = 0;
3091
3092	/*
3093	 * during unmount, let's flush nat_bits before checking
3094	 * nat_cnt[DIRTY_NAT].
3095	 */
3096	if (cpc->reason & CP_UMOUNT) {
3097		f2fs_down_write(&nm_i->nat_tree_lock);
3098		remove_nats_in_journal(sbi);
3099		f2fs_up_write(&nm_i->nat_tree_lock);
3100	}
3101
3102	if (!nm_i->nat_cnt[DIRTY_NAT])
3103		return 0;
3104
3105	f2fs_down_write(&nm_i->nat_tree_lock);
3106
3107	/*
3108	 * if there are no enough space in journal to store dirty nat
3109	 * entries, remove all entries from journal and merge them
3110	 * into nat entry set.
3111	 */
3112	if (cpc->reason & CP_UMOUNT ||
3113		!__has_cursum_space(journal,
3114			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3115		remove_nats_in_journal(sbi);
3116
3117	while ((found = __gang_lookup_nat_set(nm_i,
3118					set_idx, NAT_VEC_SIZE, setvec))) {
3119		unsigned idx;
3120
3121		set_idx = setvec[found - 1]->set + 1;
3122		for (idx = 0; idx < found; idx++)
3123			__adjust_nat_entry_set(setvec[idx], &sets,
3124						MAX_NAT_JENTRIES(journal));
3125	}
3126
3127	/* flush dirty nats in nat entry set */
3128	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3129		err = __flush_nat_entry_set(sbi, set, cpc);
3130		if (err)
3131			break;
3132	}
3133
3134	f2fs_up_write(&nm_i->nat_tree_lock);
3135	/* Allow dirty nats by node block allocation in write_begin */
3136
3137	return err;
3138}
3139
3140static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3141{
3142	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3143	struct f2fs_nm_info *nm_i = NM_I(sbi);
3144	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3145	unsigned int i;
3146	__u64 cp_ver = cur_cp_version(ckpt);
3147	block_t nat_bits_addr;
3148
 
 
 
3149	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3150	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3151			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3152	if (!nm_i->nat_bits)
3153		return -ENOMEM;
3154
3155	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3156	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3157
3158	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3159		return 0;
3160
3161	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3162						nm_i->nat_bits_blocks;
3163	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3164		struct page *page;
3165
3166		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3167		if (IS_ERR(page))
3168			return PTR_ERR(page);
3169
3170		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3171					page_address(page), F2FS_BLKSIZE);
3172		f2fs_put_page(page, 1);
3173	}
3174
3175	cp_ver |= (cur_cp_crc(ckpt) << 32);
3176	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3177		clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3178		f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3179			cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3180		return 0;
3181	}
3182
3183	f2fs_notice(sbi, "Found nat_bits in checkpoint");
 
 
 
3184	return 0;
3185}
3186
3187static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3188{
3189	struct f2fs_nm_info *nm_i = NM_I(sbi);
3190	unsigned int i = 0;
3191	nid_t nid, last_nid;
3192
3193	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3194		return;
3195
3196	for (i = 0; i < nm_i->nat_blocks; i++) {
3197		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3198		if (i >= nm_i->nat_blocks)
3199			break;
3200
3201		__set_bit_le(i, nm_i->nat_block_bitmap);
3202
3203		nid = i * NAT_ENTRY_PER_BLOCK;
3204		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3205
3206		spin_lock(&NM_I(sbi)->nid_list_lock);
3207		for (; nid < last_nid; nid++)
3208			update_free_nid_bitmap(sbi, nid, true, true);
3209		spin_unlock(&NM_I(sbi)->nid_list_lock);
3210	}
3211
3212	for (i = 0; i < nm_i->nat_blocks; i++) {
3213		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3214		if (i >= nm_i->nat_blocks)
3215			break;
3216
3217		__set_bit_le(i, nm_i->nat_block_bitmap);
3218	}
3219}
3220
3221static int init_node_manager(struct f2fs_sb_info *sbi)
3222{
3223	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3224	struct f2fs_nm_info *nm_i = NM_I(sbi);
3225	unsigned char *version_bitmap;
3226	unsigned int nat_segs;
3227	int err;
3228
3229	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3230
3231	/* segment_count_nat includes pair segment so divide to 2. */
3232	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3233	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3234	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3235
3236	/* not used nids: 0, node, meta, (and root counted as valid node) */
3237	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3238						F2FS_RESERVED_NODE_NUM;
3239	nm_i->nid_cnt[FREE_NID] = 0;
3240	nm_i->nid_cnt[PREALLOC_NID] = 0;
 
3241	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3242	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3243	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3244	nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3245
3246	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3247	INIT_LIST_HEAD(&nm_i->free_nid_list);
3248	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3249	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3250	INIT_LIST_HEAD(&nm_i->nat_entries);
3251	spin_lock_init(&nm_i->nat_list_lock);
3252
3253	mutex_init(&nm_i->build_lock);
3254	spin_lock_init(&nm_i->nid_list_lock);
3255	init_f2fs_rwsem(&nm_i->nat_tree_lock);
3256
3257	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3258	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3259	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
 
 
 
3260	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3261					GFP_KERNEL);
3262	if (!nm_i->nat_bitmap)
3263		return -ENOMEM;
3264
3265	err = __get_nat_bitmaps(sbi);
3266	if (err)
3267		return err;
3268
3269#ifdef CONFIG_F2FS_CHECK_FS
3270	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3271					GFP_KERNEL);
3272	if (!nm_i->nat_bitmap_mir)
3273		return -ENOMEM;
3274#endif
3275
3276	return 0;
3277}
3278
3279static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3280{
3281	struct f2fs_nm_info *nm_i = NM_I(sbi);
3282	int i;
3283
3284	nm_i->free_nid_bitmap =
3285		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3286					      nm_i->nat_blocks),
3287			      GFP_KERNEL);
3288	if (!nm_i->free_nid_bitmap)
3289		return -ENOMEM;
3290
3291	for (i = 0; i < nm_i->nat_blocks; i++) {
3292		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3293			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3294		if (!nm_i->free_nid_bitmap[i])
3295			return -ENOMEM;
3296	}
3297
3298	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3299								GFP_KERNEL);
3300	if (!nm_i->nat_block_bitmap)
3301		return -ENOMEM;
3302
3303	nm_i->free_nid_count =
3304		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3305					      nm_i->nat_blocks),
3306			      GFP_KERNEL);
3307	if (!nm_i->free_nid_count)
3308		return -ENOMEM;
3309	return 0;
3310}
3311
3312int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3313{
3314	int err;
3315
3316	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3317							GFP_KERNEL);
3318	if (!sbi->nm_info)
3319		return -ENOMEM;
3320
3321	err = init_node_manager(sbi);
3322	if (err)
3323		return err;
3324
3325	err = init_free_nid_cache(sbi);
3326	if (err)
3327		return err;
3328
3329	/* load free nid status from nat_bits table */
3330	load_free_nid_bitmap(sbi);
3331
3332	return f2fs_build_free_nids(sbi, true, true);
 
3333}
3334
3335void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3336{
3337	struct f2fs_nm_info *nm_i = NM_I(sbi);
3338	struct free_nid *i, *next_i;
3339	void *vec[NAT_VEC_SIZE];
3340	struct nat_entry **natvec = (struct nat_entry **)vec;
3341	struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3342	nid_t nid = 0;
3343	unsigned int found;
3344
3345	if (!nm_i)
3346		return;
3347
3348	/* destroy free nid list */
3349	spin_lock(&nm_i->nid_list_lock);
3350	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3351		__remove_free_nid(sbi, i, FREE_NID);
3352		spin_unlock(&nm_i->nid_list_lock);
3353		kmem_cache_free(free_nid_slab, i);
3354		spin_lock(&nm_i->nid_list_lock);
3355	}
3356	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3357	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3358	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3359	spin_unlock(&nm_i->nid_list_lock);
3360
3361	/* destroy nat cache */
3362	f2fs_down_write(&nm_i->nat_tree_lock);
3363	while ((found = __gang_lookup_nat_cache(nm_i,
3364					nid, NAT_VEC_SIZE, natvec))) {
3365		unsigned idx;
3366
3367		nid = nat_get_nid(natvec[found - 1]) + 1;
3368		for (idx = 0; idx < found; idx++) {
3369			spin_lock(&nm_i->nat_list_lock);
3370			list_del(&natvec[idx]->list);
3371			spin_unlock(&nm_i->nat_list_lock);
3372
3373			__del_from_nat_cache(nm_i, natvec[idx]);
3374		}
3375	}
3376	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3377
3378	/* destroy nat set cache */
3379	nid = 0;
3380	memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3381	while ((found = __gang_lookup_nat_set(nm_i,
3382					nid, NAT_VEC_SIZE, setvec))) {
3383		unsigned idx;
3384
3385		nid = setvec[found - 1]->set + 1;
3386		for (idx = 0; idx < found; idx++) {
3387			/* entry_cnt is not zero, when cp_error was occurred */
3388			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3389			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3390			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3391		}
3392	}
3393	f2fs_up_write(&nm_i->nat_tree_lock);
3394
3395	kvfree(nm_i->nat_block_bitmap);
3396	if (nm_i->free_nid_bitmap) {
3397		int i;
3398
3399		for (i = 0; i < nm_i->nat_blocks; i++)
3400			kvfree(nm_i->free_nid_bitmap[i]);
3401		kvfree(nm_i->free_nid_bitmap);
3402	}
3403	kvfree(nm_i->free_nid_count);
3404
3405	kvfree(nm_i->nat_bitmap);
3406	kvfree(nm_i->nat_bits);
3407#ifdef CONFIG_F2FS_CHECK_FS
3408	kvfree(nm_i->nat_bitmap_mir);
3409#endif
3410	sbi->nm_info = NULL;
3411	kfree(nm_i);
3412}
3413
3414int __init f2fs_create_node_manager_caches(void)
3415{
3416	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3417			sizeof(struct nat_entry));
3418	if (!nat_entry_slab)
3419		goto fail;
3420
3421	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3422			sizeof(struct free_nid));
3423	if (!free_nid_slab)
3424		goto destroy_nat_entry;
3425
3426	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3427			sizeof(struct nat_entry_set));
3428	if (!nat_entry_set_slab)
3429		goto destroy_free_nid;
3430
3431	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3432			sizeof(struct fsync_node_entry));
3433	if (!fsync_node_entry_slab)
3434		goto destroy_nat_entry_set;
3435	return 0;
3436
3437destroy_nat_entry_set:
3438	kmem_cache_destroy(nat_entry_set_slab);
3439destroy_free_nid:
3440	kmem_cache_destroy(free_nid_slab);
3441destroy_nat_entry:
3442	kmem_cache_destroy(nat_entry_slab);
3443fail:
3444	return -ENOMEM;
3445}
3446
3447void f2fs_destroy_node_manager_caches(void)
3448{
3449	kmem_cache_destroy(fsync_node_entry_slab);
3450	kmem_cache_destroy(nat_entry_set_slab);
3451	kmem_cache_destroy(free_nid_slab);
3452	kmem_cache_destroy(nat_entry_slab);
3453}