Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * fs/f2fs/node.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/mpage.h>
  14#include <linux/backing-dev.h>
  15#include <linux/blkdev.h>
  16#include <linux/pagevec.h>
  17#include <linux/swap.h>
  18
  19#include "f2fs.h"
  20#include "node.h"
  21#include "segment.h"
  22#include "xattr.h"
  23#include "trace.h"
  24#include <trace/events/f2fs.h>
  25
  26#define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  27
  28static struct kmem_cache *nat_entry_slab;
  29static struct kmem_cache *free_nid_slab;
  30static struct kmem_cache *nat_entry_set_slab;
  31
  32bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  33{
  34	struct f2fs_nm_info *nm_i = NM_I(sbi);
  35	struct sysinfo val;
  36	unsigned long avail_ram;
  37	unsigned long mem_size = 0;
  38	bool res = false;
  39
  40	si_meminfo(&val);
  41
  42	/* only uses low memory */
  43	avail_ram = val.totalram - val.totalhigh;
  44
  45	/*
  46	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  47	 */
  48	if (type == FREE_NIDS) {
  49		mem_size = (nm_i->nid_cnt[FREE_NID] *
  50				sizeof(struct free_nid)) >> PAGE_SHIFT;
  51		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  52	} else if (type == NAT_ENTRIES) {
  53		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  54							PAGE_SHIFT;
  55		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  56		if (excess_cached_nats(sbi))
  57			res = false;
  58	} else if (type == DIRTY_DENTS) {
  59		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  60			return false;
  61		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  62		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  63	} else if (type == INO_ENTRIES) {
  64		int i;
  65
  66		for (i = 0; i < MAX_INO_ENTRY; i++)
  67			mem_size += sbi->im[i].ino_num *
  68						sizeof(struct ino_entry);
  69		mem_size >>= PAGE_SHIFT;
  70		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  71	} else if (type == EXTENT_CACHE) {
  72		mem_size = (atomic_read(&sbi->total_ext_tree) *
  73				sizeof(struct extent_tree) +
  74				atomic_read(&sbi->total_ext_node) *
  75				sizeof(struct extent_node)) >> PAGE_SHIFT;
  76		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  77	} else if (type == INMEM_PAGES) {
  78		/* it allows 20% / total_ram for inmemory pages */
  79		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
  80		res = mem_size < (val.totalram / 5);
  81	} else {
  82		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  83			return true;
  84	}
  85	return res;
  86}
  87
  88static void clear_node_page_dirty(struct page *page)
  89{
  90	struct address_space *mapping = page->mapping;
  91	unsigned int long flags;
  92
  93	if (PageDirty(page)) {
  94		xa_lock_irqsave(&mapping->i_pages, flags);
  95		radix_tree_tag_clear(&mapping->i_pages,
  96				page_index(page),
  97				PAGECACHE_TAG_DIRTY);
  98		xa_unlock_irqrestore(&mapping->i_pages, flags);
  99
 100		clear_page_dirty_for_io(page);
 101		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
 102	}
 103	ClearPageUptodate(page);
 104}
 105
 106static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 107{
 108	pgoff_t index = current_nat_addr(sbi, nid);
 109	return get_meta_page(sbi, index);
 110}
 111
 112static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 113{
 114	struct page *src_page;
 115	struct page *dst_page;
 116	pgoff_t src_off;
 117	pgoff_t dst_off;
 118	void *src_addr;
 119	void *dst_addr;
 120	struct f2fs_nm_info *nm_i = NM_I(sbi);
 121
 122	src_off = current_nat_addr(sbi, nid);
 123	dst_off = next_nat_addr(sbi, src_off);
 124
 125	/* get current nat block page with lock */
 126	src_page = get_meta_page(sbi, src_off);
 127	dst_page = grab_meta_page(sbi, dst_off);
 128	f2fs_bug_on(sbi, PageDirty(src_page));
 129
 130	src_addr = page_address(src_page);
 131	dst_addr = page_address(dst_page);
 132	memcpy(dst_addr, src_addr, PAGE_SIZE);
 133	set_page_dirty(dst_page);
 134	f2fs_put_page(src_page, 1);
 135
 136	set_to_next_nat(nm_i, nid);
 137
 138	return dst_page;
 139}
 140
 141static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
 142{
 143	struct nat_entry *new;
 144
 145	if (no_fail)
 146		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 147	else
 148		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 149	if (new) {
 150		nat_set_nid(new, nid);
 151		nat_reset_flag(new);
 152	}
 153	return new;
 154}
 155
 156static void __free_nat_entry(struct nat_entry *e)
 157{
 158	kmem_cache_free(nat_entry_slab, e);
 159}
 160
 161/* must be locked by nat_tree_lock */
 162static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
 163	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
 164{
 165	if (no_fail)
 166		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
 167	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
 168		return NULL;
 169
 170	if (raw_ne)
 171		node_info_from_raw_nat(&ne->ni, raw_ne);
 172	list_add_tail(&ne->list, &nm_i->nat_entries);
 173	nm_i->nat_cnt++;
 174	return ne;
 175}
 176
 177static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 178{
 179	return radix_tree_lookup(&nm_i->nat_root, n);
 180}
 181
 182static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 183		nid_t start, unsigned int nr, struct nat_entry **ep)
 184{
 185	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 186}
 187
 188static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 189{
 190	list_del(&e->list);
 191	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 192	nm_i->nat_cnt--;
 193	__free_nat_entry(e);
 194}
 195
 196static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
 197							struct nat_entry *ne)
 198{
 199	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 200	struct nat_entry_set *head;
 201
 
 
 
 202	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 203	if (!head) {
 204		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 205
 206		INIT_LIST_HEAD(&head->entry_list);
 207		INIT_LIST_HEAD(&head->set_list);
 208		head->set = set;
 209		head->entry_cnt = 0;
 210		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 211	}
 212	return head;
 213}
 214
 215static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 216						struct nat_entry *ne)
 217{
 218	struct nat_entry_set *head;
 219	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
 220
 221	if (!new_ne)
 222		head = __grab_nat_entry_set(nm_i, ne);
 223
 224	/*
 225	 * update entry_cnt in below condition:
 226	 * 1. update NEW_ADDR to valid block address;
 227	 * 2. update old block address to new one;
 228	 */
 229	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
 230				!get_nat_flag(ne, IS_DIRTY)))
 231		head->entry_cnt++;
 232
 233	set_nat_flag(ne, IS_PREALLOC, new_ne);
 234
 235	if (get_nat_flag(ne, IS_DIRTY))
 236		goto refresh_list;
 237
 238	nm_i->dirty_nat_cnt++;
 
 239	set_nat_flag(ne, IS_DIRTY, true);
 240refresh_list:
 241	if (new_ne)
 242		list_del_init(&ne->list);
 243	else
 244		list_move_tail(&ne->list, &head->entry_list);
 245}
 246
 247static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 248		struct nat_entry_set *set, struct nat_entry *ne)
 249{
 250	list_move_tail(&ne->list, &nm_i->nat_entries);
 251	set_nat_flag(ne, IS_DIRTY, false);
 252	set->entry_cnt--;
 253	nm_i->dirty_nat_cnt--;
 
 
 
 
 
 
 254}
 255
 256static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 257		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 258{
 259	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 260							start, nr);
 261}
 262
 263int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 264{
 265	struct f2fs_nm_info *nm_i = NM_I(sbi);
 266	struct nat_entry *e;
 267	bool need = false;
 268
 269	down_read(&nm_i->nat_tree_lock);
 270	e = __lookup_nat_cache(nm_i, nid);
 271	if (e) {
 272		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 273				!get_nat_flag(e, HAS_FSYNCED_INODE))
 274			need = true;
 275	}
 276	up_read(&nm_i->nat_tree_lock);
 277	return need;
 278}
 279
 280bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 281{
 282	struct f2fs_nm_info *nm_i = NM_I(sbi);
 283	struct nat_entry *e;
 284	bool is_cp = true;
 285
 286	down_read(&nm_i->nat_tree_lock);
 287	e = __lookup_nat_cache(nm_i, nid);
 288	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 289		is_cp = false;
 290	up_read(&nm_i->nat_tree_lock);
 291	return is_cp;
 292}
 293
 294bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 295{
 296	struct f2fs_nm_info *nm_i = NM_I(sbi);
 297	struct nat_entry *e;
 298	bool need_update = true;
 299
 300	down_read(&nm_i->nat_tree_lock);
 301	e = __lookup_nat_cache(nm_i, ino);
 302	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 303			(get_nat_flag(e, IS_CHECKPOINTED) ||
 304			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 305		need_update = false;
 306	up_read(&nm_i->nat_tree_lock);
 307	return need_update;
 308}
 309
 310/* must be locked by nat_tree_lock */
 
 
 
 
 
 
 
 
 
 
 
 
 
 311static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 312						struct f2fs_nat_entry *ne)
 313{
 314	struct f2fs_nm_info *nm_i = NM_I(sbi);
 315	struct nat_entry *new, *e;
 316
 317	new = __alloc_nat_entry(nid, false);
 318	if (!new)
 319		return;
 320
 321	down_write(&nm_i->nat_tree_lock);
 322	e = __lookup_nat_cache(nm_i, nid);
 323	if (!e)
 324		e = __init_nat_entry(nm_i, new, ne, false);
 325	else
 326		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 327				nat_get_blkaddr(e) !=
 328					le32_to_cpu(ne->block_addr) ||
 329				nat_get_version(e) != ne->version);
 330	up_write(&nm_i->nat_tree_lock);
 331	if (e != new)
 332		__free_nat_entry(new);
 333}
 334
 335static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 336			block_t new_blkaddr, bool fsync_done)
 337{
 338	struct f2fs_nm_info *nm_i = NM_I(sbi);
 339	struct nat_entry *e;
 340	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
 341
 342	down_write(&nm_i->nat_tree_lock);
 343	e = __lookup_nat_cache(nm_i, ni->nid);
 344	if (!e) {
 345		e = __init_nat_entry(nm_i, new, NULL, true);
 346		copy_node_info(&e->ni, ni);
 347		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 348	} else if (new_blkaddr == NEW_ADDR) {
 349		/*
 350		 * when nid is reallocated,
 351		 * previous nat entry can be remained in nat cache.
 352		 * So, reinitialize it with new information.
 353		 */
 354		copy_node_info(&e->ni, ni);
 355		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 356	}
 357	/* let's free early to reduce memory consumption */
 358	if (e != new)
 359		__free_nat_entry(new);
 360
 361	/* sanity check */
 362	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 363	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 364			new_blkaddr == NULL_ADDR);
 365	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 366			new_blkaddr == NEW_ADDR);
 367	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
 368			nat_get_blkaddr(e) != NULL_ADDR &&
 369			new_blkaddr == NEW_ADDR);
 370
 371	/* increment version no as node is removed */
 372	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 373		unsigned char version = nat_get_version(e);
 374		nat_set_version(e, inc_node_version(version));
 
 
 
 
 375	}
 376
 377	/* change address */
 378	nat_set_blkaddr(e, new_blkaddr);
 379	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
 380		set_nat_flag(e, IS_CHECKPOINTED, false);
 381	__set_nat_cache_dirty(nm_i, e);
 382
 383	/* update fsync_mark if its inode nat entry is still alive */
 384	if (ni->nid != ni->ino)
 385		e = __lookup_nat_cache(nm_i, ni->ino);
 386	if (e) {
 387		if (fsync_done && ni->nid == ni->ino)
 388			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 389		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 390	}
 391	up_write(&nm_i->nat_tree_lock);
 392}
 393
 394int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 395{
 396	struct f2fs_nm_info *nm_i = NM_I(sbi);
 397	int nr = nr_shrink;
 398
 399	if (!down_write_trylock(&nm_i->nat_tree_lock))
 400		return 0;
 401
 402	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
 403		struct nat_entry *ne;
 404		ne = list_first_entry(&nm_i->nat_entries,
 405					struct nat_entry, list);
 406		__del_from_nat_cache(nm_i, ne);
 407		nr_shrink--;
 408	}
 409	up_write(&nm_i->nat_tree_lock);
 410	return nr - nr_shrink;
 411}
 412
 413/*
 414 * This function always returns success
 415 */
 416void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
 417{
 418	struct f2fs_nm_info *nm_i = NM_I(sbi);
 419	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 420	struct f2fs_journal *journal = curseg->journal;
 421	nid_t start_nid = START_NID(nid);
 422	struct f2fs_nat_block *nat_blk;
 423	struct page *page = NULL;
 424	struct f2fs_nat_entry ne;
 425	struct nat_entry *e;
 426	pgoff_t index;
 427	int i;
 428
 429	ni->nid = nid;
 430
 431	/* Check nat cache */
 432	down_read(&nm_i->nat_tree_lock);
 433	e = __lookup_nat_cache(nm_i, nid);
 434	if (e) {
 435		ni->ino = nat_get_ino(e);
 436		ni->blk_addr = nat_get_blkaddr(e);
 437		ni->version = nat_get_version(e);
 438		up_read(&nm_i->nat_tree_lock);
 439		return;
 440	}
 441
 442	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 443
 444	/* Check current segment summary */
 445	down_read(&curseg->journal_rwsem);
 446	i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 447	if (i >= 0) {
 448		ne = nat_in_journal(journal, i);
 449		node_info_from_raw_nat(ni, &ne);
 450	}
 451	up_read(&curseg->journal_rwsem);
 452	if (i >= 0) {
 453		up_read(&nm_i->nat_tree_lock);
 454		goto cache;
 455	}
 456
 457	/* Fill node_info from nat page */
 458	index = current_nat_addr(sbi, nid);
 459	up_read(&nm_i->nat_tree_lock);
 460
 461	page = get_meta_page(sbi, index);
 462	nat_blk = (struct f2fs_nat_block *)page_address(page);
 463	ne = nat_blk->entries[nid - start_nid];
 464	node_info_from_raw_nat(ni, &ne);
 465	f2fs_put_page(page, 1);
 466cache:
 
 467	/* cache nat entry */
 
 468	cache_nat_entry(sbi, nid, &ne);
 469}
 470
 471/*
 472 * readahead MAX_RA_NODE number of node pages.
 473 */
 474static void ra_node_pages(struct page *parent, int start, int n)
 475{
 476	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 477	struct blk_plug plug;
 478	int i, end;
 479	nid_t nid;
 480
 481	blk_start_plug(&plug);
 482
 483	/* Then, try readahead for siblings of the desired node */
 484	end = start + n;
 485	end = min(end, NIDS_PER_BLOCK);
 486	for (i = start; i < end; i++) {
 487		nid = get_nid(parent, i, false);
 488		ra_node_page(sbi, nid);
 489	}
 490
 491	blk_finish_plug(&plug);
 492}
 493
 494pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 495{
 496	const long direct_index = ADDRS_PER_INODE(dn->inode);
 497	const long direct_blks = ADDRS_PER_BLOCK;
 498	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 499	unsigned int skipped_unit = ADDRS_PER_BLOCK;
 500	int cur_level = dn->cur_level;
 501	int max_level = dn->max_level;
 502	pgoff_t base = 0;
 503
 504	if (!dn->max_level)
 505		return pgofs + 1;
 506
 507	while (max_level-- > cur_level)
 508		skipped_unit *= NIDS_PER_BLOCK;
 509
 510	switch (dn->max_level) {
 511	case 3:
 512		base += 2 * indirect_blks;
 513	case 2:
 514		base += 2 * direct_blks;
 515	case 1:
 516		base += direct_index;
 517		break;
 518	default:
 519		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 520	}
 521
 522	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 523}
 524
 525/*
 526 * The maximum depth is four.
 527 * Offset[0] will have raw inode offset.
 528 */
 529static int get_node_path(struct inode *inode, long block,
 530				int offset[4], unsigned int noffset[4])
 531{
 532	const long direct_index = ADDRS_PER_INODE(inode);
 533	const long direct_blks = ADDRS_PER_BLOCK;
 534	const long dptrs_per_blk = NIDS_PER_BLOCK;
 535	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 536	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 537	int n = 0;
 538	int level = 0;
 539
 540	noffset[0] = 0;
 541
 542	if (block < direct_index) {
 543		offset[n] = block;
 544		goto got;
 545	}
 546	block -= direct_index;
 547	if (block < direct_blks) {
 548		offset[n++] = NODE_DIR1_BLOCK;
 549		noffset[n] = 1;
 550		offset[n] = block;
 551		level = 1;
 552		goto got;
 553	}
 554	block -= direct_blks;
 555	if (block < direct_blks) {
 556		offset[n++] = NODE_DIR2_BLOCK;
 557		noffset[n] = 2;
 558		offset[n] = block;
 559		level = 1;
 560		goto got;
 561	}
 562	block -= direct_blks;
 563	if (block < indirect_blks) {
 564		offset[n++] = NODE_IND1_BLOCK;
 565		noffset[n] = 3;
 566		offset[n++] = block / direct_blks;
 567		noffset[n] = 4 + offset[n - 1];
 568		offset[n] = block % direct_blks;
 569		level = 2;
 570		goto got;
 571	}
 572	block -= indirect_blks;
 573	if (block < indirect_blks) {
 574		offset[n++] = NODE_IND2_BLOCK;
 575		noffset[n] = 4 + dptrs_per_blk;
 576		offset[n++] = block / direct_blks;
 577		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 578		offset[n] = block % direct_blks;
 579		level = 2;
 580		goto got;
 581	}
 582	block -= indirect_blks;
 583	if (block < dindirect_blks) {
 584		offset[n++] = NODE_DIND_BLOCK;
 585		noffset[n] = 5 + (dptrs_per_blk * 2);
 586		offset[n++] = block / indirect_blks;
 587		noffset[n] = 6 + (dptrs_per_blk * 2) +
 588			      offset[n - 1] * (dptrs_per_blk + 1);
 589		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 590		noffset[n] = 7 + (dptrs_per_blk * 2) +
 591			      offset[n - 2] * (dptrs_per_blk + 1) +
 592			      offset[n - 1];
 593		offset[n] = block % direct_blks;
 594		level = 3;
 595		goto got;
 596	} else {
 597		return -E2BIG;
 598	}
 599got:
 600	return level;
 601}
 602
 603/*
 604 * Caller should call f2fs_put_dnode(dn).
 605 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 606 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 607 * In the case of RDONLY_NODE, we don't need to care about mutex.
 608 */
 609int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 610{
 611	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 612	struct page *npage[4];
 613	struct page *parent = NULL;
 614	int offset[4];
 615	unsigned int noffset[4];
 616	nid_t nids[4];
 617	int level, i = 0;
 618	int err = 0;
 619
 620	level = get_node_path(dn->inode, index, offset, noffset);
 621	if (level < 0)
 622		return level;
 623
 624	nids[0] = dn->inode->i_ino;
 625	npage[0] = dn->inode_page;
 626
 627	if (!npage[0]) {
 628		npage[0] = get_node_page(sbi, nids[0]);
 629		if (IS_ERR(npage[0]))
 630			return PTR_ERR(npage[0]);
 631	}
 632
 633	/* if inline_data is set, should not report any block indices */
 634	if (f2fs_has_inline_data(dn->inode) && index) {
 635		err = -ENOENT;
 636		f2fs_put_page(npage[0], 1);
 637		goto release_out;
 638	}
 639
 640	parent = npage[0];
 641	if (level != 0)
 642		nids[1] = get_nid(parent, offset[0], true);
 643	dn->inode_page = npage[0];
 644	dn->inode_page_locked = true;
 645
 646	/* get indirect or direct nodes */
 647	for (i = 1; i <= level; i++) {
 648		bool done = false;
 649
 650		if (!nids[i] && mode == ALLOC_NODE) {
 651			/* alloc new node */
 652			if (!alloc_nid(sbi, &(nids[i]))) {
 653				err = -ENOSPC;
 654				goto release_pages;
 655			}
 656
 657			dn->nid = nids[i];
 658			npage[i] = new_node_page(dn, noffset[i]);
 659			if (IS_ERR(npage[i])) {
 660				alloc_nid_failed(sbi, nids[i]);
 661				err = PTR_ERR(npage[i]);
 662				goto release_pages;
 663			}
 664
 665			set_nid(parent, offset[i - 1], nids[i], i == 1);
 666			alloc_nid_done(sbi, nids[i]);
 667			done = true;
 668		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 669			npage[i] = get_node_page_ra(parent, offset[i - 1]);
 670			if (IS_ERR(npage[i])) {
 671				err = PTR_ERR(npage[i]);
 672				goto release_pages;
 673			}
 674			done = true;
 675		}
 676		if (i == 1) {
 677			dn->inode_page_locked = false;
 678			unlock_page(parent);
 679		} else {
 680			f2fs_put_page(parent, 1);
 681		}
 682
 683		if (!done) {
 684			npage[i] = get_node_page(sbi, nids[i]);
 685			if (IS_ERR(npage[i])) {
 686				err = PTR_ERR(npage[i]);
 687				f2fs_put_page(npage[0], 0);
 688				goto release_out;
 689			}
 690		}
 691		if (i < level) {
 692			parent = npage[i];
 693			nids[i + 1] = get_nid(parent, offset[i], false);
 694		}
 695	}
 696	dn->nid = nids[level];
 697	dn->ofs_in_node = offset[level];
 698	dn->node_page = npage[level];
 699	dn->data_blkaddr = datablock_addr(dn->inode,
 700				dn->node_page, dn->ofs_in_node);
 701	return 0;
 702
 703release_pages:
 704	f2fs_put_page(parent, 1);
 705	if (i > 1)
 706		f2fs_put_page(npage[0], 0);
 707release_out:
 708	dn->inode_page = NULL;
 709	dn->node_page = NULL;
 710	if (err == -ENOENT) {
 711		dn->cur_level = i;
 712		dn->max_level = level;
 713		dn->ofs_in_node = offset[level];
 714	}
 715	return err;
 716}
 717
 718static void truncate_node(struct dnode_of_data *dn)
 719{
 720	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 721	struct node_info ni;
 722
 723	get_node_info(sbi, dn->nid, &ni);
 
 
 
 
 
 724
 725	/* Deallocate node address */
 726	invalidate_blocks(sbi, ni.blk_addr);
 727	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
 728	set_node_addr(sbi, &ni, NULL_ADDR, false);
 729
 730	if (dn->nid == dn->inode->i_ino) {
 731		remove_orphan_inode(sbi, dn->nid);
 732		dec_valid_inode_count(sbi);
 733		f2fs_inode_synced(dn->inode);
 
 734	}
 735
 736	clear_node_page_dirty(dn->node_page);
 737	set_sbi_flag(sbi, SBI_IS_DIRTY);
 738
 739	f2fs_put_page(dn->node_page, 1);
 740
 741	invalidate_mapping_pages(NODE_MAPPING(sbi),
 742			dn->node_page->index, dn->node_page->index);
 743
 744	dn->node_page = NULL;
 745	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 746}
 747
 748static int truncate_dnode(struct dnode_of_data *dn)
 749{
 750	struct page *page;
 751
 752	if (dn->nid == 0)
 753		return 1;
 754
 755	/* get direct node */
 756	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 757	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 758		return 1;
 759	else if (IS_ERR(page))
 760		return PTR_ERR(page);
 761
 762	/* Make dnode_of_data for parameter */
 763	dn->node_page = page;
 764	dn->ofs_in_node = 0;
 765	truncate_data_blocks(dn);
 766	truncate_node(dn);
 767	return 1;
 768}
 769
 770static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 771						int ofs, int depth)
 772{
 773	struct dnode_of_data rdn = *dn;
 774	struct page *page;
 775	struct f2fs_node *rn;
 776	nid_t child_nid;
 777	unsigned int child_nofs;
 778	int freed = 0;
 779	int i, ret;
 780
 781	if (dn->nid == 0)
 782		return NIDS_PER_BLOCK + 1;
 783
 784	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 785
 786	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 787	if (IS_ERR(page)) {
 788		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 789		return PTR_ERR(page);
 790	}
 791
 792	ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 793
 794	rn = F2FS_NODE(page);
 795	if (depth < 3) {
 796		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 797			child_nid = le32_to_cpu(rn->in.nid[i]);
 798			if (child_nid == 0)
 799				continue;
 800			rdn.nid = child_nid;
 801			ret = truncate_dnode(&rdn);
 802			if (ret < 0)
 803				goto out_err;
 804			if (set_nid(page, i, 0, false))
 805				dn->node_changed = true;
 806		}
 807	} else {
 808		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 809		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 810			child_nid = le32_to_cpu(rn->in.nid[i]);
 811			if (child_nid == 0) {
 812				child_nofs += NIDS_PER_BLOCK + 1;
 813				continue;
 814			}
 815			rdn.nid = child_nid;
 816			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 817			if (ret == (NIDS_PER_BLOCK + 1)) {
 818				if (set_nid(page, i, 0, false))
 819					dn->node_changed = true;
 820				child_nofs += ret;
 821			} else if (ret < 0 && ret != -ENOENT) {
 822				goto out_err;
 823			}
 824		}
 825		freed = child_nofs;
 826	}
 827
 828	if (!ofs) {
 829		/* remove current indirect node */
 830		dn->node_page = page;
 831		truncate_node(dn);
 832		freed++;
 833	} else {
 834		f2fs_put_page(page, 1);
 835	}
 836	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 837	return freed;
 838
 839out_err:
 840	f2fs_put_page(page, 1);
 841	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 842	return ret;
 843}
 844
 845static int truncate_partial_nodes(struct dnode_of_data *dn,
 846			struct f2fs_inode *ri, int *offset, int depth)
 847{
 848	struct page *pages[2];
 849	nid_t nid[3];
 850	nid_t child_nid;
 851	int err = 0;
 852	int i;
 853	int idx = depth - 2;
 854
 855	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 856	if (!nid[0])
 857		return 0;
 858
 859	/* get indirect nodes in the path */
 860	for (i = 0; i < idx + 1; i++) {
 861		/* reference count'll be increased */
 862		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 863		if (IS_ERR(pages[i])) {
 864			err = PTR_ERR(pages[i]);
 865			idx = i - 1;
 866			goto fail;
 867		}
 868		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 869	}
 870
 871	ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
 872
 873	/* free direct nodes linked to a partial indirect node */
 874	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
 875		child_nid = get_nid(pages[idx], i, false);
 876		if (!child_nid)
 877			continue;
 878		dn->nid = child_nid;
 879		err = truncate_dnode(dn);
 880		if (err < 0)
 881			goto fail;
 882		if (set_nid(pages[idx], i, 0, false))
 883			dn->node_changed = true;
 884	}
 885
 886	if (offset[idx + 1] == 0) {
 887		dn->node_page = pages[idx];
 888		dn->nid = nid[idx];
 889		truncate_node(dn);
 890	} else {
 891		f2fs_put_page(pages[idx], 1);
 892	}
 893	offset[idx]++;
 894	offset[idx + 1] = 0;
 895	idx--;
 896fail:
 897	for (i = idx; i >= 0; i--)
 898		f2fs_put_page(pages[i], 1);
 899
 900	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
 901
 902	return err;
 903}
 904
 905/*
 906 * All the block addresses of data and nodes should be nullified.
 907 */
 908int truncate_inode_blocks(struct inode *inode, pgoff_t from)
 909{
 910	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 911	int err = 0, cont = 1;
 912	int level, offset[4], noffset[4];
 913	unsigned int nofs = 0;
 914	struct f2fs_inode *ri;
 915	struct dnode_of_data dn;
 916	struct page *page;
 917
 918	trace_f2fs_truncate_inode_blocks_enter(inode, from);
 919
 920	level = get_node_path(inode, from, offset, noffset);
 921	if (level < 0)
 922		return level;
 923
 924	page = get_node_page(sbi, inode->i_ino);
 925	if (IS_ERR(page)) {
 926		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
 927		return PTR_ERR(page);
 928	}
 929
 930	set_new_dnode(&dn, inode, page, NULL, 0);
 931	unlock_page(page);
 932
 933	ri = F2FS_INODE(page);
 934	switch (level) {
 935	case 0:
 936	case 1:
 937		nofs = noffset[1];
 938		break;
 939	case 2:
 940		nofs = noffset[1];
 941		if (!offset[level - 1])
 942			goto skip_partial;
 943		err = truncate_partial_nodes(&dn, ri, offset, level);
 944		if (err < 0 && err != -ENOENT)
 945			goto fail;
 946		nofs += 1 + NIDS_PER_BLOCK;
 947		break;
 948	case 3:
 949		nofs = 5 + 2 * NIDS_PER_BLOCK;
 950		if (!offset[level - 1])
 951			goto skip_partial;
 952		err = truncate_partial_nodes(&dn, ri, offset, level);
 953		if (err < 0 && err != -ENOENT)
 954			goto fail;
 955		break;
 956	default:
 957		BUG();
 958	}
 959
 960skip_partial:
 961	while (cont) {
 962		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 963		switch (offset[0]) {
 964		case NODE_DIR1_BLOCK:
 965		case NODE_DIR2_BLOCK:
 966			err = truncate_dnode(&dn);
 967			break;
 968
 969		case NODE_IND1_BLOCK:
 970		case NODE_IND2_BLOCK:
 971			err = truncate_nodes(&dn, nofs, offset[1], 2);
 972			break;
 973
 974		case NODE_DIND_BLOCK:
 975			err = truncate_nodes(&dn, nofs, offset[1], 3);
 976			cont = 0;
 977			break;
 978
 979		default:
 980			BUG();
 981		}
 982		if (err < 0 && err != -ENOENT)
 983			goto fail;
 984		if (offset[1] == 0 &&
 985				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
 986			lock_page(page);
 987			BUG_ON(page->mapping != NODE_MAPPING(sbi));
 
 
 
 988			f2fs_wait_on_page_writeback(page, NODE, true);
 989			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
 990			set_page_dirty(page);
 991			unlock_page(page);
 992		}
 993		offset[1] = 0;
 994		offset[0]++;
 995		nofs += err;
 996	}
 997fail:
 998	f2fs_put_page(page, 0);
 999	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1000	return err > 0 ? 0 : err;
1001}
1002
1003/* caller must lock inode page */
1004int truncate_xattr_node(struct inode *inode)
1005{
1006	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1007	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1008	struct dnode_of_data dn;
1009	struct page *npage;
1010
1011	if (!nid)
1012		return 0;
1013
1014	npage = get_node_page(sbi, nid);
1015	if (IS_ERR(npage))
1016		return PTR_ERR(npage);
1017
1018	f2fs_i_xnid_write(inode, 0);
 
 
 
1019
1020	set_new_dnode(&dn, inode, NULL, npage, nid);
 
 
 
1021	truncate_node(&dn);
1022	return 0;
1023}
1024
1025/*
1026 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1027 * f2fs_unlock_op().
1028 */
1029int remove_inode_page(struct inode *inode)
1030{
1031	struct dnode_of_data dn;
1032	int err;
1033
1034	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1035	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1036	if (err)
1037		return err;
1038
1039	err = truncate_xattr_node(inode);
1040	if (err) {
1041		f2fs_put_dnode(&dn);
1042		return err;
1043	}
1044
1045	/* remove potential inline_data blocks */
1046	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1047				S_ISLNK(inode->i_mode))
1048		truncate_data_blocks_range(&dn, 1);
1049
1050	/* 0 is possible, after f2fs_new_inode() has failed */
1051	f2fs_bug_on(F2FS_I_SB(inode),
1052			inode->i_blocks != 0 && inode->i_blocks != 8);
1053
1054	/* will put inode & node pages */
1055	truncate_node(&dn);
1056	return 0;
1057}
1058
1059struct page *new_inode_page(struct inode *inode)
1060{
1061	struct dnode_of_data dn;
1062
1063	/* allocate inode page for new inode */
1064	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1065
1066	/* caller should f2fs_put_page(page, 1); */
1067	return new_node_page(&dn, 0);
1068}
1069
1070struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
 
1071{
1072	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1073	struct node_info new_ni;
1074	struct page *page;
1075	int err;
1076
1077	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1078		return ERR_PTR(-EPERM);
1079
1080	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1081	if (!page)
1082		return ERR_PTR(-ENOMEM);
1083
1084	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
 
1085		goto fail;
 
1086
1087#ifdef CONFIG_F2FS_CHECK_FS
1088	get_node_info(sbi, dn->nid, &new_ni);
1089	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1090#endif
1091	new_ni.nid = dn->nid;
1092	new_ni.ino = dn->inode->i_ino;
1093	new_ni.blk_addr = NULL_ADDR;
1094	new_ni.flag = 0;
1095	new_ni.version = 0;
1096	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1097
1098	f2fs_wait_on_page_writeback(page, NODE, true);
1099	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1100	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1101	if (!PageUptodate(page))
1102		SetPageUptodate(page);
1103	if (set_page_dirty(page))
1104		dn->node_changed = true;
1105
1106	if (f2fs_has_xattr_block(ofs))
1107		f2fs_i_xnid_write(dn->inode, dn->nid);
1108
 
 
 
 
 
1109	if (ofs == 0)
1110		inc_valid_inode_count(sbi);
 
1111	return page;
1112
1113fail:
1114	clear_node_page_dirty(page);
1115	f2fs_put_page(page, 1);
1116	return ERR_PTR(err);
1117}
1118
1119/*
1120 * Caller should do after getting the following values.
1121 * 0: f2fs_put_page(page, 0)
1122 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1123 */
1124static int read_node_page(struct page *page, int op_flags)
1125{
1126	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1127	struct node_info ni;
1128	struct f2fs_io_info fio = {
1129		.sbi = sbi,
1130		.type = NODE,
1131		.op = REQ_OP_READ,
1132		.op_flags = op_flags,
1133		.page = page,
1134		.encrypted_page = NULL,
1135	};
1136
1137	if (PageUptodate(page))
1138		return LOCKED_PAGE;
1139
1140	get_node_info(sbi, page->index, &ni);
1141
1142	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1143		ClearPageUptodate(page);
1144		return -ENOENT;
1145	}
1146
 
 
 
1147	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1148	return f2fs_submit_page_bio(&fio);
1149}
1150
1151/*
1152 * Readahead a node page
1153 */
1154void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1155{
1156	struct page *apage;
1157	int err;
1158
1159	if (!nid)
1160		return;
1161	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1162
1163	rcu_read_lock();
1164	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->i_pages, nid);
1165	rcu_read_unlock();
1166	if (apage)
1167		return;
1168
1169	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1170	if (!apage)
1171		return;
1172
1173	err = read_node_page(apage, REQ_RAHEAD);
1174	f2fs_put_page(apage, err ? 1 : 0);
1175}
1176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1177static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1178					struct page *parent, int start)
1179{
1180	struct page *page;
1181	int err;
1182
1183	if (!nid)
1184		return ERR_PTR(-ENOENT);
1185	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1186repeat:
1187	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1188	if (!page)
1189		return ERR_PTR(-ENOMEM);
1190
1191	err = read_node_page(page, 0);
1192	if (err < 0) {
1193		f2fs_put_page(page, 1);
1194		return ERR_PTR(err);
1195	} else if (err == LOCKED_PAGE) {
1196		err = 0;
1197		goto page_hit;
1198	}
1199
1200	if (parent)
1201		ra_node_pages(parent, start + 1, MAX_RA_NODE);
1202
1203	lock_page(page);
1204
 
 
 
 
1205	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1206		f2fs_put_page(page, 1);
1207		goto repeat;
1208	}
1209
1210	if (unlikely(!PageUptodate(page))) {
1211		err = -EIO;
1212		goto out_err;
1213	}
1214
1215	if (!f2fs_inode_chksum_verify(sbi, page)) {
1216		err = -EBADMSG;
1217		goto out_err;
1218	}
1219page_hit:
1220	if(unlikely(nid != nid_of_node(page))) {
1221		f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1222			"nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1223			nid, nid_of_node(page), ino_of_node(page),
1224			ofs_of_node(page), cpver_of_node(page),
1225			next_blkaddr_of_node(page));
1226		err = -EINVAL;
1227out_err:
1228		ClearPageUptodate(page);
1229		f2fs_put_page(page, 1);
1230		return ERR_PTR(err);
1231	}
1232	return page;
1233}
1234
1235struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1236{
1237	return __get_node_page(sbi, nid, NULL, 0);
1238}
1239
1240struct page *get_node_page_ra(struct page *parent, int start)
1241{
1242	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1243	nid_t nid = get_nid(parent, start, false);
1244
1245	return __get_node_page(sbi, nid, parent, start);
1246}
1247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1248static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1249{
1250	struct inode *inode;
1251	struct page *page;
1252	int ret;
1253
1254	/* should flush inline_data before evict_inode */
1255	inode = ilookup(sbi->sb, ino);
1256	if (!inode)
1257		return;
1258
1259	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1260					FGP_LOCK|FGP_NOWAIT, 0);
1261	if (!page)
1262		goto iput_out;
1263
 
 
 
1264	if (!PageUptodate(page))
1265		goto page_out;
1266
1267	if (!PageDirty(page))
1268		goto page_out;
1269
1270	if (!clear_page_dirty_for_io(page))
1271		goto page_out;
1272
1273	ret = f2fs_write_inline_data(inode, page);
1274	inode_dec_dirty_pages(inode);
1275	remove_dirty_inode(inode);
1276	if (ret)
1277		set_page_dirty(page);
1278page_out:
1279	f2fs_put_page(page, 1);
 
 
1280iput_out:
1281	iput(inode);
1282}
1283
1284static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
 
1285{
1286	pgoff_t index;
1287	struct pagevec pvec;
1288	struct page *last_page = NULL;
1289	int nr_pages;
1290
1291	pagevec_init(&pvec);
1292	index = 0;
1293
1294	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1295				PAGECACHE_TAG_DIRTY))) {
1296		int i;
1297
1298		for (i = 0; i < nr_pages; i++) {
1299			struct page *page = pvec.pages[i];
1300
1301			if (unlikely(f2fs_cp_error(sbi))) {
1302				f2fs_put_page(last_page, 0);
1303				pagevec_release(&pvec);
1304				return ERR_PTR(-EIO);
1305			}
1306
1307			if (!IS_DNODE(page) || !is_cold_node(page))
1308				continue;
1309			if (ino_of_node(page) != ino)
1310				continue;
1311
1312			lock_page(page);
1313
1314			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1315continue_unlock:
1316				unlock_page(page);
1317				continue;
1318			}
1319			if (ino_of_node(page) != ino)
1320				goto continue_unlock;
1321
1322			if (!PageDirty(page)) {
1323				/* someone wrote it for us */
1324				goto continue_unlock;
1325			}
1326
1327			if (last_page)
1328				f2fs_put_page(last_page, 0);
1329
1330			get_page(page);
1331			last_page = page;
1332			unlock_page(page);
1333		}
1334		pagevec_release(&pvec);
1335		cond_resched();
1336	}
1337	return last_page;
1338}
1339
1340static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1341				struct writeback_control *wbc, bool do_balance,
1342				enum iostat_type io_type)
1343{
1344	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1345	nid_t nid;
1346	struct node_info ni;
1347	struct f2fs_io_info fio = {
1348		.sbi = sbi,
1349		.ino = ino_of_node(page),
1350		.type = NODE,
1351		.op = REQ_OP_WRITE,
1352		.op_flags = wbc_to_write_flags(wbc),
1353		.page = page,
1354		.encrypted_page = NULL,
1355		.submitted = false,
1356		.io_type = io_type,
1357		.io_wbc = wbc,
1358	};
1359
1360	trace_f2fs_writepage(page, NODE);
1361
1362	if (unlikely(f2fs_cp_error(sbi))) {
1363		dec_page_count(sbi, F2FS_DIRTY_NODES);
1364		unlock_page(page);
1365		return 0;
1366	}
1367
1368	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1369		goto redirty_out;
1370
1371	/* get old block addr of this node page */
1372	nid = nid_of_node(page);
1373	f2fs_bug_on(sbi, page->index != nid);
1374
1375	if (wbc->for_reclaim) {
1376		if (!down_read_trylock(&sbi->node_write))
1377			goto redirty_out;
1378	} else {
1379		down_read(&sbi->node_write);
1380	}
1381
1382	get_node_info(sbi, nid, &ni);
1383
1384	/* This page is already truncated */
1385	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1386		ClearPageUptodate(page);
1387		dec_page_count(sbi, F2FS_DIRTY_NODES);
1388		up_read(&sbi->node_write);
1389		unlock_page(page);
1390		return 0;
1391	}
1392
1393	if (atomic && !test_opt(sbi, NOBARRIER))
1394		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1395
1396	set_page_writeback(page);
1397	fio.old_blkaddr = ni.blk_addr;
1398	write_node_page(nid, &fio);
1399	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1400	dec_page_count(sbi, F2FS_DIRTY_NODES);
1401	up_read(&sbi->node_write);
1402
1403	if (wbc->for_reclaim) {
1404		f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1405						page->index, NODE);
1406		submitted = NULL;
1407	}
1408
1409	unlock_page(page);
1410
1411	if (unlikely(f2fs_cp_error(sbi))) {
1412		f2fs_submit_merged_write(sbi, NODE);
1413		submitted = NULL;
1414	}
1415	if (submitted)
1416		*submitted = fio.submitted;
1417
1418	if (do_balance)
1419		f2fs_balance_fs(sbi, false);
1420	return 0;
1421
1422redirty_out:
1423	redirty_page_for_writepage(wbc, page);
1424	return AOP_WRITEPAGE_ACTIVATE;
1425}
1426
1427void move_node_page(struct page *node_page, int gc_type)
1428{
1429	if (gc_type == FG_GC) {
1430		struct writeback_control wbc = {
1431			.sync_mode = WB_SYNC_ALL,
1432			.nr_to_write = 1,
1433			.for_reclaim = 0,
1434		};
1435
1436		set_page_dirty(node_page);
1437		f2fs_wait_on_page_writeback(node_page, NODE, true);
1438
1439		f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
1440		if (!clear_page_dirty_for_io(node_page))
1441			goto out_page;
1442
1443		if (__write_node_page(node_page, false, NULL,
1444					&wbc, false, FS_GC_NODE_IO))
1445			unlock_page(node_page);
1446		goto release_page;
1447	} else {
1448		/* set page dirty and write it */
1449		if (!PageWriteback(node_page))
1450			set_page_dirty(node_page);
1451	}
1452out_page:
1453	unlock_page(node_page);
1454release_page:
1455	f2fs_put_page(node_page, 0);
1456}
1457
1458static int f2fs_write_node_page(struct page *page,
1459				struct writeback_control *wbc)
1460{
1461	return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO);
1462}
1463
1464int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1465			struct writeback_control *wbc, bool atomic)
1466{
1467	pgoff_t index;
1468	pgoff_t last_idx = ULONG_MAX;
1469	struct pagevec pvec;
1470	int ret = 0;
1471	struct page *last_page = NULL;
1472	bool marked = false;
1473	nid_t ino = inode->i_ino;
1474	int nr_pages;
1475
1476	if (atomic) {
1477		last_page = last_fsync_dnode(sbi, ino);
1478		if (IS_ERR_OR_NULL(last_page))
1479			return PTR_ERR_OR_ZERO(last_page);
1480	}
1481retry:
1482	pagevec_init(&pvec);
1483	index = 0;
 
1484
1485	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1486				PAGECACHE_TAG_DIRTY))) {
1487		int i;
 
 
 
 
1488
1489		for (i = 0; i < nr_pages; i++) {
1490			struct page *page = pvec.pages[i];
1491			bool submitted = false;
1492
1493			if (unlikely(f2fs_cp_error(sbi))) {
1494				f2fs_put_page(last_page, 0);
1495				pagevec_release(&pvec);
1496				ret = -EIO;
1497				goto out;
1498			}
1499
1500			if (!IS_DNODE(page) || !is_cold_node(page))
1501				continue;
1502			if (ino_of_node(page) != ino)
1503				continue;
1504
1505			lock_page(page);
1506
1507			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1508continue_unlock:
1509				unlock_page(page);
1510				continue;
1511			}
1512			if (ino_of_node(page) != ino)
1513				goto continue_unlock;
1514
1515			if (!PageDirty(page) && page != last_page) {
1516				/* someone wrote it for us */
1517				goto continue_unlock;
1518			}
1519
1520			f2fs_wait_on_page_writeback(page, NODE, true);
1521			BUG_ON(PageWriteback(page));
1522
1523			set_fsync_mark(page, 0);
1524			set_dentry_mark(page, 0);
1525
1526			if (!atomic || page == last_page) {
1527				set_fsync_mark(page, 1);
1528				if (IS_INODE(page)) {
1529					if (is_inode_flag_set(inode,
1530								FI_DIRTY_INODE))
1531						update_inode(inode, page);
1532					set_dentry_mark(page,
1533						need_dentry_mark(sbi, ino));
1534				}
1535				/*  may be written by other thread */
1536				if (!PageDirty(page))
1537					set_page_dirty(page);
1538			}
1539
1540			if (!clear_page_dirty_for_io(page))
1541				goto continue_unlock;
1542
1543			ret = __write_node_page(page, atomic &&
1544						page == last_page,
1545						&submitted, wbc, true,
1546						FS_NODE_IO);
1547			if (ret) {
1548				unlock_page(page);
1549				f2fs_put_page(last_page, 0);
1550				break;
1551			} else if (submitted) {
1552				last_idx = page->index;
1553			}
1554
1555			if (page == last_page) {
1556				f2fs_put_page(page, 0);
1557				marked = true;
1558				break;
1559			}
1560		}
1561		pagevec_release(&pvec);
1562		cond_resched();
1563
1564		if (ret || marked)
1565			break;
1566	}
1567	if (!ret && atomic && !marked) {
1568		f2fs_msg(sbi->sb, KERN_DEBUG,
1569			"Retry to write fsync mark: ino=%u, idx=%lx",
1570					ino, last_page->index);
1571		lock_page(last_page);
1572		f2fs_wait_on_page_writeback(last_page, NODE, true);
1573		set_page_dirty(last_page);
1574		unlock_page(last_page);
1575		goto retry;
1576	}
1577out:
1578	if (last_idx != ULONG_MAX)
1579		f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1580	return ret ? -EIO: 0;
1581}
1582
1583int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
1584				bool do_balance, enum iostat_type io_type)
1585{
1586	pgoff_t index;
1587	struct pagevec pvec;
1588	int step = 0;
1589	int nwritten = 0;
1590	int ret = 0;
1591	int nr_pages;
1592
1593	pagevec_init(&pvec);
1594
1595next_step:
1596	index = 0;
1597
1598	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1599				PAGECACHE_TAG_DIRTY))) {
1600		int i;
1601
1602		for (i = 0; i < nr_pages; i++) {
1603			struct page *page = pvec.pages[i];
1604			bool submitted = false;
1605
1606			/*
1607			 * flushing sequence with step:
1608			 * 0. indirect nodes
1609			 * 1. dentry dnodes
1610			 * 2. file dnodes
1611			 */
1612			if (step == 0 && IS_DNODE(page))
1613				continue;
1614			if (step == 1 && (!IS_DNODE(page) ||
1615						is_cold_node(page)))
1616				continue;
1617			if (step == 2 && (!IS_DNODE(page) ||
1618						!is_cold_node(page)))
1619				continue;
 
 
 
 
 
1620lock_node:
1621			if (!trylock_page(page))
 
 
1622				continue;
1623
1624			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1625continue_unlock:
1626				unlock_page(page);
1627				continue;
1628			}
 
 
1629
1630			if (!PageDirty(page)) {
1631				/* someone wrote it for us */
1632				goto continue_unlock;
1633			}
1634
1635			/* flush inline_data */
1636			if (is_inline_node(page)) {
1637				clear_inline_node(page);
1638				unlock_page(page);
1639				flush_inline_data(sbi, ino_of_node(page));
1640				goto lock_node;
1641			}
1642
1643			f2fs_wait_on_page_writeback(page, NODE, true);
1644
1645			BUG_ON(PageWriteback(page));
1646			if (!clear_page_dirty_for_io(page))
1647				goto continue_unlock;
1648
1649			set_fsync_mark(page, 0);
1650			set_dentry_mark(page, 0);
 
 
 
 
 
 
 
 
 
1651
1652			ret = __write_node_page(page, false, &submitted,
1653						wbc, do_balance, io_type);
1654			if (ret)
1655				unlock_page(page);
1656			else if (submitted)
1657				nwritten++;
1658
1659			if (--wbc->nr_to_write == 0)
1660				break;
1661		}
1662		pagevec_release(&pvec);
1663		cond_resched();
1664
1665		if (wbc->nr_to_write == 0) {
1666			step = 2;
1667			break;
1668		}
1669	}
1670
1671	if (step < 2) {
1672		step++;
1673		goto next_step;
1674	}
1675
1676	if (nwritten)
1677		f2fs_submit_merged_write(sbi, NODE);
1678
1679	if (unlikely(f2fs_cp_error(sbi)))
1680		return -EIO;
1681	return ret;
1682}
1683
1684int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1685{
1686	pgoff_t index = 0;
1687	struct pagevec pvec;
1688	int ret2, ret = 0;
1689	int nr_pages;
1690
1691	pagevec_init(&pvec);
1692
1693	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1694				PAGECACHE_TAG_WRITEBACK))) {
1695		int i;
 
 
 
 
1696
1697		for (i = 0; i < nr_pages; i++) {
1698			struct page *page = pvec.pages[i];
1699
 
 
 
 
1700			if (ino && ino_of_node(page) == ino) {
1701				f2fs_wait_on_page_writeback(page, NODE, true);
1702				if (TestClearPageError(page))
1703					ret = -EIO;
1704			}
1705		}
1706		pagevec_release(&pvec);
1707		cond_resched();
1708	}
1709
1710	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
 
 
 
1711	if (!ret)
1712		ret = ret2;
1713	return ret;
1714}
1715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1716static int f2fs_write_node_pages(struct address_space *mapping,
1717			    struct writeback_control *wbc)
1718{
1719	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1720	struct blk_plug plug;
1721	long diff;
1722
1723	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1724		goto skip_write;
1725
1726	/* balancing f2fs's metadata in background */
1727	f2fs_balance_fs_bg(sbi);
1728
1729	/* collect a number of dirty node pages and write together */
1730	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1731		goto skip_write;
1732
1733	trace_f2fs_writepages(mapping->host, wbc, NODE);
1734
1735	diff = nr_pages_to_write(sbi, NODE, wbc);
1736	wbc->sync_mode = WB_SYNC_NONE;
1737	blk_start_plug(&plug);
1738	sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1739	blk_finish_plug(&plug);
1740	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1741	return 0;
1742
1743skip_write:
1744	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1745	trace_f2fs_writepages(mapping->host, wbc, NODE);
1746	return 0;
1747}
1748
1749static int f2fs_set_node_page_dirty(struct page *page)
1750{
1751	trace_f2fs_set_page_dirty(page, NODE);
1752
1753	if (!PageUptodate(page))
1754		SetPageUptodate(page);
1755	if (!PageDirty(page)) {
1756		f2fs_set_page_dirty_nobuffers(page);
1757		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1758		SetPagePrivate(page);
1759		f2fs_trace_pid(page);
1760		return 1;
1761	}
1762	return 0;
1763}
1764
1765/*
1766 * Structure of the f2fs node operations
1767 */
1768const struct address_space_operations f2fs_node_aops = {
1769	.writepage	= f2fs_write_node_page,
1770	.writepages	= f2fs_write_node_pages,
1771	.set_page_dirty	= f2fs_set_node_page_dirty,
1772	.invalidatepage	= f2fs_invalidate_page,
1773	.releasepage	= f2fs_release_page,
1774#ifdef CONFIG_MIGRATION
1775	.migratepage    = f2fs_migrate_page,
1776#endif
1777};
1778
1779static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1780						nid_t n)
1781{
1782	return radix_tree_lookup(&nm_i->free_nid_root, n);
1783}
1784
1785static int __insert_free_nid(struct f2fs_sb_info *sbi,
1786			struct free_nid *i, enum nid_state state)
1787{
1788	struct f2fs_nm_info *nm_i = NM_I(sbi);
1789
1790	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1791	if (err)
1792		return err;
1793
1794	f2fs_bug_on(sbi, state != i->state);
1795	nm_i->nid_cnt[state]++;
1796	if (state == FREE_NID)
1797		list_add_tail(&i->list, &nm_i->free_nid_list);
1798	return 0;
1799}
1800
1801static void __remove_free_nid(struct f2fs_sb_info *sbi,
1802			struct free_nid *i, enum nid_state state)
1803{
1804	struct f2fs_nm_info *nm_i = NM_I(sbi);
1805
1806	f2fs_bug_on(sbi, state != i->state);
1807	nm_i->nid_cnt[state]--;
1808	if (state == FREE_NID)
1809		list_del(&i->list);
1810	radix_tree_delete(&nm_i->free_nid_root, i->nid);
1811}
1812
1813static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
1814			enum nid_state org_state, enum nid_state dst_state)
1815{
1816	struct f2fs_nm_info *nm_i = NM_I(sbi);
1817
1818	f2fs_bug_on(sbi, org_state != i->state);
1819	i->state = dst_state;
1820	nm_i->nid_cnt[org_state]--;
1821	nm_i->nid_cnt[dst_state]++;
1822
1823	switch (dst_state) {
1824	case PREALLOC_NID:
1825		list_del(&i->list);
1826		break;
1827	case FREE_NID:
1828		list_add_tail(&i->list, &nm_i->free_nid_list);
1829		break;
1830	default:
1831		BUG_ON(1);
1832	}
1833}
1834
1835static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
1836							bool set, bool build)
1837{
1838	struct f2fs_nm_info *nm_i = NM_I(sbi);
1839	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1840	unsigned int nid_ofs = nid - START_NID(nid);
1841
1842	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1843		return;
1844
1845	if (set) {
1846		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1847			return;
1848		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1849		nm_i->free_nid_count[nat_ofs]++;
1850	} else {
1851		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1852			return;
1853		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1854		if (!build)
1855			nm_i->free_nid_count[nat_ofs]--;
1856	}
1857}
1858
1859/* return if the nid is recognized as free */
1860static bool add_free_nid(struct f2fs_sb_info *sbi,
1861				nid_t nid, bool build, bool update)
1862{
1863	struct f2fs_nm_info *nm_i = NM_I(sbi);
1864	struct free_nid *i, *e;
1865	struct nat_entry *ne;
1866	int err = -EINVAL;
1867	bool ret = false;
 
 
1868
1869	/* 0 nid should not be used */
1870	if (unlikely(nid == 0))
1871		return false;
1872
1873	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1874	i->nid = nid;
1875	i->state = FREE_NID;
1876
1877	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
1878
1879	spin_lock(&nm_i->nid_list_lock);
1880
1881	if (build) {
1882		/*
1883		 *   Thread A             Thread B
1884		 *  - f2fs_create
1885		 *   - f2fs_new_inode
1886		 *    - alloc_nid
1887		 *     - __insert_nid_to_list(PREALLOC_NID)
1888		 *                     - f2fs_balance_fs_bg
1889		 *                      - build_free_nids
1890		 *                       - __build_free_nids
1891		 *                        - scan_nat_page
1892		 *                         - add_free_nid
1893		 *                          - __lookup_nat_cache
1894		 *  - f2fs_add_link
1895		 *   - init_inode_metadata
1896		 *    - new_inode_page
1897		 *     - new_node_page
1898		 *      - set_node_addr
1899		 *  - alloc_nid_done
1900		 *   - __remove_nid_from_list(PREALLOC_NID)
1901		 *                         - __insert_nid_to_list(FREE_NID)
1902		 */
1903		ne = __lookup_nat_cache(nm_i, nid);
1904		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1905				nat_get_blkaddr(ne) != NULL_ADDR))
1906			goto err_out;
1907
1908		e = __lookup_free_nid_list(nm_i, nid);
1909		if (e) {
1910			if (e->state == FREE_NID)
1911				ret = true;
1912			goto err_out;
1913		}
1914	}
1915	ret = true;
1916	err = __insert_free_nid(sbi, i, FREE_NID);
1917err_out:
1918	if (update) {
1919		update_free_nid_bitmap(sbi, nid, ret, build);
1920		if (!build)
1921			nm_i->available_nids++;
 
1922	}
1923	spin_unlock(&nm_i->nid_list_lock);
1924	radix_tree_preload_end();
1925
1926	if (err)
 
 
 
1927		kmem_cache_free(free_nid_slab, i);
1928	return ret;
 
 
 
 
 
 
1929}
1930
1931static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1932{
1933	struct f2fs_nm_info *nm_i = NM_I(sbi);
1934	struct free_nid *i;
1935	bool need_free = false;
1936
1937	spin_lock(&nm_i->nid_list_lock);
1938	i = __lookup_free_nid_list(nm_i, nid);
1939	if (i && i->state == FREE_NID) {
1940		__remove_free_nid(sbi, i, FREE_NID);
 
1941		need_free = true;
1942	}
1943	spin_unlock(&nm_i->nid_list_lock);
1944
1945	if (need_free)
1946		kmem_cache_free(free_nid_slab, i);
1947}
1948
1949static void scan_nat_page(struct f2fs_sb_info *sbi,
1950			struct page *nat_page, nid_t start_nid)
1951{
1952	struct f2fs_nm_info *nm_i = NM_I(sbi);
1953	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1954	block_t blk_addr;
1955	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1956	int i;
1957
1958	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1959
1960	i = start_nid % NAT_ENTRY_PER_BLOCK;
1961
1962	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
 
1963		if (unlikely(start_nid >= nm_i->max_nid))
1964			break;
1965
1966		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1967		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1968		if (blk_addr == NULL_ADDR) {
1969			add_free_nid(sbi, start_nid, true, true);
1970		} else {
1971			spin_lock(&NM_I(sbi)->nid_list_lock);
1972			update_free_nid_bitmap(sbi, start_nid, false, true);
1973			spin_unlock(&NM_I(sbi)->nid_list_lock);
1974		}
1975	}
1976}
1977
1978static void scan_curseg_cache(struct f2fs_sb_info *sbi)
1979{
1980	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1981	struct f2fs_journal *journal = curseg->journal;
1982	int i;
1983
1984	down_read(&curseg->journal_rwsem);
1985	for (i = 0; i < nats_in_cursum(journal); i++) {
1986		block_t addr;
1987		nid_t nid;
1988
1989		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1990		nid = le32_to_cpu(nid_in_journal(journal, i));
1991		if (addr == NULL_ADDR)
1992			add_free_nid(sbi, nid, true, false);
1993		else
1994			remove_free_nid(sbi, nid);
1995	}
1996	up_read(&curseg->journal_rwsem);
1997}
1998
1999static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2000{
2001	struct f2fs_nm_info *nm_i = NM_I(sbi);
2002	unsigned int i, idx;
2003	nid_t nid;
2004
2005	down_read(&nm_i->nat_tree_lock);
2006
2007	for (i = 0; i < nm_i->nat_blocks; i++) {
2008		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2009			continue;
2010		if (!nm_i->free_nid_count[i])
2011			continue;
2012		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2013			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2014						NAT_ENTRY_PER_BLOCK, idx);
2015			if (idx >= NAT_ENTRY_PER_BLOCK)
2016				break;
2017
2018			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2019			add_free_nid(sbi, nid, true, false);
2020
2021			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2022				goto out;
2023		}
2024	}
2025out:
2026	scan_curseg_cache(sbi);
2027
2028	up_read(&nm_i->nat_tree_lock);
2029}
2030
2031static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2032{
2033	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
 
2034	int i = 0;
2035	nid_t nid = nm_i->next_scan_nid;
2036
2037	if (unlikely(nid >= nm_i->max_nid))
2038		nid = 0;
2039
2040	/* Enough entries */
2041	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2042		return;
2043
2044	if (!sync && !available_free_memory(sbi, FREE_NIDS))
2045		return;
2046
2047	if (!mount) {
2048		/* try to find free nids in free_nid_bitmap */
2049		scan_free_nid_bits(sbi);
2050
2051		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2052			return;
2053	}
2054
2055	/* readahead nat pages to be scanned */
2056	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2057							META_NAT, true);
2058
2059	down_read(&nm_i->nat_tree_lock);
2060
2061	while (1) {
2062		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2063						nm_i->nat_block_bitmap)) {
2064			struct page *page = get_current_nat_page(sbi, nid);
2065
2066			scan_nat_page(sbi, page, nid);
2067			f2fs_put_page(page, 1);
2068		}
2069
2070		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2071		if (unlikely(nid >= nm_i->max_nid))
2072			nid = 0;
2073
2074		if (++i >= FREE_NID_PAGES)
2075			break;
2076	}
2077
2078	/* go to the next free nat pages to find free nids abundantly */
2079	nm_i->next_scan_nid = nid;
2080
2081	/* find free nids from current sum_pages */
2082	scan_curseg_cache(sbi);
 
 
2083
 
 
 
 
 
 
 
 
2084	up_read(&nm_i->nat_tree_lock);
2085
2086	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2087					nm_i->ra_nid_pages, META_NAT, false);
2088}
2089
2090void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2091{
2092	mutex_lock(&NM_I(sbi)->build_lock);
2093	__build_free_nids(sbi, sync, mount);
2094	mutex_unlock(&NM_I(sbi)->build_lock);
2095}
2096
2097/*
2098 * If this function returns success, caller can obtain a new nid
2099 * from second parameter of this function.
2100 * The returned nid could be used ino as well as nid when inode is created.
2101 */
2102bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2103{
2104	struct f2fs_nm_info *nm_i = NM_I(sbi);
2105	struct free_nid *i = NULL;
2106retry:
2107#ifdef CONFIG_F2FS_FAULT_INJECTION
2108	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2109		f2fs_show_injection_info(FAULT_ALLOC_NID);
2110		return false;
2111	}
2112#endif
2113	spin_lock(&nm_i->nid_list_lock);
2114
2115	if (unlikely(nm_i->available_nids == 0)) {
2116		spin_unlock(&nm_i->nid_list_lock);
2117		return false;
2118	}
2119
2120	/* We should not use stale free nids created by build_free_nids */
2121	if (nm_i->nid_cnt[FREE_NID] && !on_build_free_nids(nm_i)) {
2122		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2123		i = list_first_entry(&nm_i->free_nid_list,
2124					struct free_nid, list);
2125		*nid = i->nid;
2126
2127		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2128		nm_i->available_nids--;
2129
2130		update_free_nid_bitmap(sbi, *nid, false, false);
2131
2132		spin_unlock(&nm_i->nid_list_lock);
 
 
 
 
2133		return true;
2134	}
2135	spin_unlock(&nm_i->nid_list_lock);
2136
2137	/* Let's scan nat pages and its caches to get free nids */
2138	build_free_nids(sbi, true, false);
 
 
2139	goto retry;
2140}
2141
2142/*
2143 * alloc_nid() should be called prior to this function.
2144 */
2145void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2146{
2147	struct f2fs_nm_info *nm_i = NM_I(sbi);
2148	struct free_nid *i;
2149
2150	spin_lock(&nm_i->nid_list_lock);
2151	i = __lookup_free_nid_list(nm_i, nid);
2152	f2fs_bug_on(sbi, !i);
2153	__remove_free_nid(sbi, i, PREALLOC_NID);
2154	spin_unlock(&nm_i->nid_list_lock);
2155
2156	kmem_cache_free(free_nid_slab, i);
2157}
2158
2159/*
2160 * alloc_nid() should be called prior to this function.
2161 */
2162void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2163{
2164	struct f2fs_nm_info *nm_i = NM_I(sbi);
2165	struct free_nid *i;
2166	bool need_free = false;
2167
2168	if (!nid)
2169		return;
2170
2171	spin_lock(&nm_i->nid_list_lock);
2172	i = __lookup_free_nid_list(nm_i, nid);
2173	f2fs_bug_on(sbi, !i);
2174
2175	if (!available_free_memory(sbi, FREE_NIDS)) {
2176		__remove_free_nid(sbi, i, PREALLOC_NID);
2177		need_free = true;
2178	} else {
2179		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
 
2180	}
2181
2182	nm_i->available_nids++;
2183
2184	update_free_nid_bitmap(sbi, nid, true, false);
2185
2186	spin_unlock(&nm_i->nid_list_lock);
2187
2188	if (need_free)
2189		kmem_cache_free(free_nid_slab, i);
2190}
2191
2192int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2193{
2194	struct f2fs_nm_info *nm_i = NM_I(sbi);
2195	struct free_nid *i, *next;
2196	int nr = nr_shrink;
2197
2198	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2199		return 0;
2200
2201	if (!mutex_trylock(&nm_i->build_lock))
2202		return 0;
2203
2204	spin_lock(&nm_i->nid_list_lock);
2205	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2206		if (nr_shrink <= 0 ||
2207				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2208			break;
2209
2210		__remove_free_nid(sbi, i, FREE_NID);
 
2211		kmem_cache_free(free_nid_slab, i);
 
2212		nr_shrink--;
2213	}
2214	spin_unlock(&nm_i->nid_list_lock);
2215	mutex_unlock(&nm_i->build_lock);
2216
2217	return nr - nr_shrink;
2218}
2219
2220void recover_inline_xattr(struct inode *inode, struct page *page)
2221{
2222	void *src_addr, *dst_addr;
2223	size_t inline_size;
2224	struct page *ipage;
2225	struct f2fs_inode *ri;
2226
2227	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2228	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2229
2230	ri = F2FS_INODE(page);
2231	if (ri->i_inline & F2FS_INLINE_XATTR) {
2232		set_inode_flag(inode, FI_INLINE_XATTR);
2233	} else {
2234		clear_inode_flag(inode, FI_INLINE_XATTR);
2235		goto update_inode;
2236	}
2237
2238	dst_addr = inline_xattr_addr(inode, ipage);
2239	src_addr = inline_xattr_addr(inode, page);
2240	inline_size = inline_xattr_size(inode);
2241
2242	f2fs_wait_on_page_writeback(ipage, NODE, true);
2243	memcpy(dst_addr, src_addr, inline_size);
2244update_inode:
2245	update_inode(inode, ipage);
2246	f2fs_put_page(ipage, 1);
2247}
2248
2249int recover_xattr_data(struct inode *inode, struct page *page)
2250{
2251	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2252	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2253	nid_t new_xnid;
2254	struct dnode_of_data dn;
2255	struct node_info ni;
2256	struct page *xpage;
2257
 
2258	if (!prev_xnid)
2259		goto recover_xnid;
2260
2261	/* 1: invalidate the previous xattr nid */
2262	get_node_info(sbi, prev_xnid, &ni);
 
2263	invalidate_blocks(sbi, ni.blk_addr);
2264	dec_valid_node_count(sbi, inode, false);
2265	set_node_addr(sbi, &ni, NULL_ADDR, false);
2266
2267recover_xnid:
2268	/* 2: update xattr nid in inode */
2269	if (!alloc_nid(sbi, &new_xnid))
2270		return -ENOSPC;
2271
2272	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2273	xpage = new_node_page(&dn, XATTR_NODE_OFFSET);
2274	if (IS_ERR(xpage)) {
2275		alloc_nid_failed(sbi, new_xnid);
2276		return PTR_ERR(xpage);
2277	}
 
 
 
2278
2279	alloc_nid_done(sbi, new_xnid);
2280	update_inode_page(inode);
2281
2282	/* 3: update and set xattr node page dirty */
2283	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2284
2285	set_page_dirty(xpage);
2286	f2fs_put_page(xpage, 1);
2287
2288	return 0;
2289}
2290
2291int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2292{
2293	struct f2fs_inode *src, *dst;
2294	nid_t ino = ino_of_node(page);
2295	struct node_info old_ni, new_ni;
2296	struct page *ipage;
2297
2298	get_node_info(sbi, ino, &old_ni);
2299
2300	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2301		return -EINVAL;
2302retry:
2303	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2304	if (!ipage) {
2305		congestion_wait(BLK_RW_ASYNC, HZ/50);
2306		goto retry;
2307	}
2308
2309	/* Should not use this inode from free nid list */
2310	remove_free_nid(sbi, ino);
2311
2312	if (!PageUptodate(ipage))
2313		SetPageUptodate(ipage);
2314	fill_node_footer(ipage, ino, ino, 0, true);
2315	set_cold_node(page, false);
2316
2317	src = F2FS_INODE(page);
2318	dst = F2FS_INODE(ipage);
2319
2320	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2321	dst->i_size = 0;
2322	dst->i_blocks = cpu_to_le64(1);
2323	dst->i_links = cpu_to_le32(1);
2324	dst->i_xattr_nid = 0;
2325	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2326	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2327		dst->i_extra_isize = src->i_extra_isize;
2328
2329		if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
2330			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2331							i_inline_xattr_size))
2332			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2333
2334		if (f2fs_sb_has_project_quota(sbi->sb) &&
2335			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2336								i_projid))
2337			dst->i_projid = src->i_projid;
2338	}
2339
2340	new_ni = old_ni;
2341	new_ni.ino = ino;
2342
2343	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2344		WARN_ON(1);
2345	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2346	inc_valid_inode_count(sbi);
2347	set_page_dirty(ipage);
2348	f2fs_put_page(ipage, 1);
2349	return 0;
2350}
2351
2352void restore_node_summary(struct f2fs_sb_info *sbi,
2353			unsigned int segno, struct f2fs_summary_block *sum)
2354{
2355	struct f2fs_node *rn;
2356	struct f2fs_summary *sum_entry;
2357	block_t addr;
 
2358	int i, idx, last_offset, nrpages;
2359
2360	/* scan the node segment */
2361	last_offset = sbi->blocks_per_seg;
2362	addr = START_BLOCK(sbi, segno);
2363	sum_entry = &sum->entries[0];
2364
2365	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2366		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2367
2368		/* readahead node pages */
2369		ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2370
2371		for (idx = addr; idx < addr + nrpages; idx++) {
2372			struct page *page = get_tmp_page(sbi, idx);
2373
2374			rn = F2FS_NODE(page);
2375			sum_entry->nid = rn->footer.nid;
2376			sum_entry->version = 0;
2377			sum_entry->ofs_in_node = 0;
2378			sum_entry++;
2379			f2fs_put_page(page, 1);
2380		}
2381
2382		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2383							addr + nrpages);
2384	}
 
2385}
2386
2387static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2388{
2389	struct f2fs_nm_info *nm_i = NM_I(sbi);
2390	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2391	struct f2fs_journal *journal = curseg->journal;
2392	int i;
2393
2394	down_write(&curseg->journal_rwsem);
2395	for (i = 0; i < nats_in_cursum(journal); i++) {
2396		struct nat_entry *ne;
2397		struct f2fs_nat_entry raw_ne;
2398		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2399
2400		raw_ne = nat_in_journal(journal, i);
2401
2402		ne = __lookup_nat_cache(nm_i, nid);
2403		if (!ne) {
2404			ne = __alloc_nat_entry(nid, true);
2405			__init_nat_entry(nm_i, ne, &raw_ne, true);
2406		}
2407
2408		/*
2409		 * if a free nat in journal has not been used after last
2410		 * checkpoint, we should remove it from available nids,
2411		 * since later we will add it again.
2412		 */
2413		if (!get_nat_flag(ne, IS_DIRTY) &&
2414				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2415			spin_lock(&nm_i->nid_list_lock);
2416			nm_i->available_nids--;
2417			spin_unlock(&nm_i->nid_list_lock);
2418		}
2419
2420		__set_nat_cache_dirty(nm_i, ne);
2421	}
2422	update_nats_in_cursum(journal, -i);
2423	up_write(&curseg->journal_rwsem);
2424}
2425
2426static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2427						struct list_head *head, int max)
2428{
2429	struct nat_entry_set *cur;
2430
2431	if (nes->entry_cnt >= max)
2432		goto add_out;
2433
2434	list_for_each_entry(cur, head, set_list) {
2435		if (cur->entry_cnt >= nes->entry_cnt) {
2436			list_add(&nes->set_list, cur->set_list.prev);
2437			return;
2438		}
2439	}
2440add_out:
2441	list_add_tail(&nes->set_list, head);
2442}
2443
2444static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2445						struct page *page)
2446{
2447	struct f2fs_nm_info *nm_i = NM_I(sbi);
2448	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2449	struct f2fs_nat_block *nat_blk = page_address(page);
2450	int valid = 0;
2451	int i = 0;
2452
2453	if (!enabled_nat_bits(sbi, NULL))
2454		return;
2455
2456	if (nat_index == 0) {
2457		valid = 1;
2458		i = 1;
2459	}
2460	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2461		if (nat_blk->entries[i].block_addr != NULL_ADDR)
2462			valid++;
2463	}
2464	if (valid == 0) {
2465		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2466		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2467		return;
2468	}
2469
2470	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2471	if (valid == NAT_ENTRY_PER_BLOCK)
2472		__set_bit_le(nat_index, nm_i->full_nat_bits);
2473	else
2474		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2475}
2476
2477static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2478		struct nat_entry_set *set, struct cp_control *cpc)
2479{
2480	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2481	struct f2fs_journal *journal = curseg->journal;
2482	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2483	bool to_journal = true;
2484	struct f2fs_nat_block *nat_blk;
2485	struct nat_entry *ne, *cur;
2486	struct page *page = NULL;
2487
2488	/*
2489	 * there are two steps to flush nat entries:
2490	 * #1, flush nat entries to journal in current hot data summary block.
2491	 * #2, flush nat entries to nat page.
2492	 */
2493	if (enabled_nat_bits(sbi, cpc) ||
2494		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2495		to_journal = false;
2496
2497	if (to_journal) {
2498		down_write(&curseg->journal_rwsem);
2499	} else {
2500		page = get_next_nat_page(sbi, start_nid);
2501		nat_blk = page_address(page);
2502		f2fs_bug_on(sbi, !nat_blk);
2503	}
2504
2505	/* flush dirty nats in nat entry set */
2506	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2507		struct f2fs_nat_entry *raw_ne;
2508		nid_t nid = nat_get_nid(ne);
2509		int offset;
2510
2511		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
 
2512
2513		if (to_journal) {
2514			offset = lookup_journal_in_cursum(journal,
2515							NAT_JOURNAL, nid, 1);
2516			f2fs_bug_on(sbi, offset < 0);
2517			raw_ne = &nat_in_journal(journal, offset);
2518			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2519		} else {
2520			raw_ne = &nat_blk->entries[nid - start_nid];
2521		}
2522		raw_nat_from_node_info(raw_ne, &ne->ni);
2523		nat_reset_flag(ne);
2524		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2525		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2526			add_free_nid(sbi, nid, false, true);
2527		} else {
2528			spin_lock(&NM_I(sbi)->nid_list_lock);
2529			update_free_nid_bitmap(sbi, nid, false, false);
2530			spin_unlock(&NM_I(sbi)->nid_list_lock);
2531		}
2532	}
2533
2534	if (to_journal) {
2535		up_write(&curseg->journal_rwsem);
2536	} else {
2537		__update_nat_bits(sbi, start_nid, page);
2538		f2fs_put_page(page, 1);
2539	}
2540
2541	/* Allow dirty nats by node block allocation in write_begin */
2542	if (!set->entry_cnt) {
2543		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2544		kmem_cache_free(nat_entry_set_slab, set);
2545	}
2546}
2547
2548/*
2549 * This function is called during the checkpointing process.
2550 */
2551void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2552{
2553	struct f2fs_nm_info *nm_i = NM_I(sbi);
2554	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2555	struct f2fs_journal *journal = curseg->journal;
2556	struct nat_entry_set *setvec[SETVEC_SIZE];
2557	struct nat_entry_set *set, *tmp;
2558	unsigned int found;
2559	nid_t set_idx = 0;
2560	LIST_HEAD(sets);
2561
2562	if (!nm_i->dirty_nat_cnt)
2563		return;
2564
2565	down_write(&nm_i->nat_tree_lock);
2566
2567	/*
2568	 * if there are no enough space in journal to store dirty nat
2569	 * entries, remove all entries from journal and merge them
2570	 * into nat entry set.
2571	 */
2572	if (enabled_nat_bits(sbi, cpc) ||
2573		!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2574		remove_nats_in_journal(sbi);
2575
2576	while ((found = __gang_lookup_nat_set(nm_i,
2577					set_idx, SETVEC_SIZE, setvec))) {
2578		unsigned idx;
2579		set_idx = setvec[found - 1]->set + 1;
2580		for (idx = 0; idx < found; idx++)
2581			__adjust_nat_entry_set(setvec[idx], &sets,
2582						MAX_NAT_JENTRIES(journal));
2583	}
2584
2585	/* flush dirty nats in nat entry set */
2586	list_for_each_entry_safe(set, tmp, &sets, set_list)
2587		__flush_nat_entry_set(sbi, set, cpc);
2588
2589	up_write(&nm_i->nat_tree_lock);
2590	/* Allow dirty nats by node block allocation in write_begin */
2591}
2592
2593static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2594{
2595	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2596	struct f2fs_nm_info *nm_i = NM_I(sbi);
2597	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2598	unsigned int i;
2599	__u64 cp_ver = cur_cp_version(ckpt);
2600	block_t nat_bits_addr;
2601
2602	if (!enabled_nat_bits(sbi, NULL))
2603		return 0;
2604
2605	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2606	nm_i->nat_bits = f2fs_kzalloc(sbi,
2607			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2608	if (!nm_i->nat_bits)
2609		return -ENOMEM;
2610
2611	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2612						nm_i->nat_bits_blocks;
2613	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2614		struct page *page = get_meta_page(sbi, nat_bits_addr++);
2615
2616		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2617					page_address(page), F2FS_BLKSIZE);
2618		f2fs_put_page(page, 1);
2619	}
2620
2621	cp_ver |= (cur_cp_crc(ckpt) << 32);
2622	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2623		disable_nat_bits(sbi, true);
2624		return 0;
2625	}
2626
2627	nm_i->full_nat_bits = nm_i->nat_bits + 8;
2628	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2629
2630	f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2631	return 0;
2632}
2633
2634static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2635{
2636	struct f2fs_nm_info *nm_i = NM_I(sbi);
2637	unsigned int i = 0;
2638	nid_t nid, last_nid;
2639
2640	if (!enabled_nat_bits(sbi, NULL))
2641		return;
2642
2643	for (i = 0; i < nm_i->nat_blocks; i++) {
2644		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2645		if (i >= nm_i->nat_blocks)
2646			break;
2647
2648		__set_bit_le(i, nm_i->nat_block_bitmap);
2649
2650		nid = i * NAT_ENTRY_PER_BLOCK;
2651		last_nid = nid + NAT_ENTRY_PER_BLOCK;
2652
2653		spin_lock(&NM_I(sbi)->nid_list_lock);
2654		for (; nid < last_nid; nid++)
2655			update_free_nid_bitmap(sbi, nid, true, true);
2656		spin_unlock(&NM_I(sbi)->nid_list_lock);
2657	}
2658
2659	for (i = 0; i < nm_i->nat_blocks; i++) {
2660		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2661		if (i >= nm_i->nat_blocks)
2662			break;
2663
2664		__set_bit_le(i, nm_i->nat_block_bitmap);
2665	}
2666}
2667
2668static int init_node_manager(struct f2fs_sb_info *sbi)
2669{
2670	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2671	struct f2fs_nm_info *nm_i = NM_I(sbi);
2672	unsigned char *version_bitmap;
2673	unsigned int nat_segs;
2674	int err;
2675
2676	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2677
2678	/* segment_count_nat includes pair segment so divide to 2. */
2679	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2680	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2681	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
 
2682
2683	/* not used nids: 0, node, meta, (and root counted as valid node) */
2684	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2685				sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2686	nm_i->nid_cnt[FREE_NID] = 0;
2687	nm_i->nid_cnt[PREALLOC_NID] = 0;
2688	nm_i->nat_cnt = 0;
2689	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2690	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2691	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2692
2693	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2694	INIT_LIST_HEAD(&nm_i->free_nid_list);
2695	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2696	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2697	INIT_LIST_HEAD(&nm_i->nat_entries);
2698
2699	mutex_init(&nm_i->build_lock);
2700	spin_lock_init(&nm_i->nid_list_lock);
2701	init_rwsem(&nm_i->nat_tree_lock);
2702
2703	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2704	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2705	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2706	if (!version_bitmap)
2707		return -EFAULT;
2708
2709	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2710					GFP_KERNEL);
2711	if (!nm_i->nat_bitmap)
2712		return -ENOMEM;
2713
2714	err = __get_nat_bitmaps(sbi);
2715	if (err)
2716		return err;
2717
2718#ifdef CONFIG_F2FS_CHECK_FS
2719	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2720					GFP_KERNEL);
2721	if (!nm_i->nat_bitmap_mir)
2722		return -ENOMEM;
2723#endif
2724
2725	return 0;
2726}
2727
2728static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2729{
2730	struct f2fs_nm_info *nm_i = NM_I(sbi);
2731	int i;
2732
2733	nm_i->free_nid_bitmap = f2fs_kzalloc(sbi, nm_i->nat_blocks *
2734				sizeof(unsigned char *), GFP_KERNEL);
2735	if (!nm_i->free_nid_bitmap)
2736		return -ENOMEM;
2737
2738	for (i = 0; i < nm_i->nat_blocks; i++) {
2739		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
2740				NAT_ENTRY_BITMAP_SIZE_ALIGNED, GFP_KERNEL);
2741		if (!nm_i->free_nid_bitmap)
2742			return -ENOMEM;
2743	}
2744
2745	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
2746								GFP_KERNEL);
2747	if (!nm_i->nat_block_bitmap)
2748		return -ENOMEM;
2749
2750	nm_i->free_nid_count = f2fs_kvzalloc(sbi, nm_i->nat_blocks *
2751					sizeof(unsigned short), GFP_KERNEL);
2752	if (!nm_i->free_nid_count)
2753		return -ENOMEM;
2754	return 0;
2755}
2756
2757int build_node_manager(struct f2fs_sb_info *sbi)
2758{
2759	int err;
2760
2761	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
2762							GFP_KERNEL);
2763	if (!sbi->nm_info)
2764		return -ENOMEM;
2765
2766	err = init_node_manager(sbi);
2767	if (err)
2768		return err;
2769
2770	err = init_free_nid_cache(sbi);
2771	if (err)
2772		return err;
2773
2774	/* load free nid status from nat_bits table */
2775	load_free_nid_bitmap(sbi);
2776
2777	build_free_nids(sbi, true, true);
2778	return 0;
2779}
2780
2781void destroy_node_manager(struct f2fs_sb_info *sbi)
2782{
2783	struct f2fs_nm_info *nm_i = NM_I(sbi);
2784	struct free_nid *i, *next_i;
2785	struct nat_entry *natvec[NATVEC_SIZE];
2786	struct nat_entry_set *setvec[SETVEC_SIZE];
2787	nid_t nid = 0;
2788	unsigned int found;
2789
2790	if (!nm_i)
2791		return;
2792
2793	/* destroy free nid list */
2794	spin_lock(&nm_i->nid_list_lock);
2795	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2796		__remove_free_nid(sbi, i, FREE_NID);
2797		spin_unlock(&nm_i->nid_list_lock);
 
 
2798		kmem_cache_free(free_nid_slab, i);
2799		spin_lock(&nm_i->nid_list_lock);
2800	}
2801	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
2802	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
2803	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
2804	spin_unlock(&nm_i->nid_list_lock);
2805
2806	/* destroy nat cache */
2807	down_write(&nm_i->nat_tree_lock);
2808	while ((found = __gang_lookup_nat_cache(nm_i,
2809					nid, NATVEC_SIZE, natvec))) {
2810		unsigned idx;
2811
2812		nid = nat_get_nid(natvec[found - 1]) + 1;
2813		for (idx = 0; idx < found; idx++)
2814			__del_from_nat_cache(nm_i, natvec[idx]);
2815	}
2816	f2fs_bug_on(sbi, nm_i->nat_cnt);
2817
2818	/* destroy nat set cache */
2819	nid = 0;
2820	while ((found = __gang_lookup_nat_set(nm_i,
2821					nid, SETVEC_SIZE, setvec))) {
2822		unsigned idx;
2823
2824		nid = setvec[found - 1]->set + 1;
2825		for (idx = 0; idx < found; idx++) {
2826			/* entry_cnt is not zero, when cp_error was occurred */
2827			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2828			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2829			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2830		}
2831	}
2832	up_write(&nm_i->nat_tree_lock);
2833
2834	kvfree(nm_i->nat_block_bitmap);
2835	if (nm_i->free_nid_bitmap) {
2836		int i;
2837
2838		for (i = 0; i < nm_i->nat_blocks; i++)
2839			kvfree(nm_i->free_nid_bitmap[i]);
2840		kfree(nm_i->free_nid_bitmap);
2841	}
2842	kvfree(nm_i->free_nid_count);
2843
2844	kfree(nm_i->nat_bitmap);
2845	kfree(nm_i->nat_bits);
2846#ifdef CONFIG_F2FS_CHECK_FS
2847	kfree(nm_i->nat_bitmap_mir);
2848#endif
2849	sbi->nm_info = NULL;
2850	kfree(nm_i);
2851}
2852
2853int __init create_node_manager_caches(void)
2854{
2855	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2856			sizeof(struct nat_entry));
2857	if (!nat_entry_slab)
2858		goto fail;
2859
2860	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2861			sizeof(struct free_nid));
2862	if (!free_nid_slab)
2863		goto destroy_nat_entry;
2864
2865	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2866			sizeof(struct nat_entry_set));
2867	if (!nat_entry_set_slab)
2868		goto destroy_free_nid;
2869	return 0;
2870
2871destroy_free_nid:
2872	kmem_cache_destroy(free_nid_slab);
2873destroy_nat_entry:
2874	kmem_cache_destroy(nat_entry_slab);
2875fail:
2876	return -ENOMEM;
2877}
2878
2879void destroy_node_manager_caches(void)
2880{
2881	kmem_cache_destroy(nat_entry_set_slab);
2882	kmem_cache_destroy(free_nid_slab);
2883	kmem_cache_destroy(nat_entry_slab);
2884}
v4.6
   1/*
   2 * fs/f2fs/node.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/mpage.h>
  14#include <linux/backing-dev.h>
  15#include <linux/blkdev.h>
  16#include <linux/pagevec.h>
  17#include <linux/swap.h>
  18
  19#include "f2fs.h"
  20#include "node.h"
  21#include "segment.h"
 
  22#include "trace.h"
  23#include <trace/events/f2fs.h>
  24
  25#define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  26
  27static struct kmem_cache *nat_entry_slab;
  28static struct kmem_cache *free_nid_slab;
  29static struct kmem_cache *nat_entry_set_slab;
  30
  31bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  32{
  33	struct f2fs_nm_info *nm_i = NM_I(sbi);
  34	struct sysinfo val;
  35	unsigned long avail_ram;
  36	unsigned long mem_size = 0;
  37	bool res = false;
  38
  39	si_meminfo(&val);
  40
  41	/* only uses low memory */
  42	avail_ram = val.totalram - val.totalhigh;
  43
  44	/*
  45	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  46	 */
  47	if (type == FREE_NIDS) {
  48		mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
  49							PAGE_SHIFT;
  50		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  51	} else if (type == NAT_ENTRIES) {
  52		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  53							PAGE_SHIFT;
  54		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
 
 
  55	} else if (type == DIRTY_DENTS) {
  56		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  57			return false;
  58		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  59		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  60	} else if (type == INO_ENTRIES) {
  61		int i;
  62
  63		for (i = 0; i <= UPDATE_INO; i++)
  64			mem_size += (sbi->im[i].ino_num *
  65				sizeof(struct ino_entry)) >> PAGE_SHIFT;
 
  66		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  67	} else if (type == EXTENT_CACHE) {
  68		mem_size = (atomic_read(&sbi->total_ext_tree) *
  69				sizeof(struct extent_tree) +
  70				atomic_read(&sbi->total_ext_node) *
  71				sizeof(struct extent_node)) >> PAGE_SHIFT;
  72		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
 
 
 
 
  73	} else {
  74		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  75			return true;
  76	}
  77	return res;
  78}
  79
  80static void clear_node_page_dirty(struct page *page)
  81{
  82	struct address_space *mapping = page->mapping;
  83	unsigned int long flags;
  84
  85	if (PageDirty(page)) {
  86		spin_lock_irqsave(&mapping->tree_lock, flags);
  87		radix_tree_tag_clear(&mapping->page_tree,
  88				page_index(page),
  89				PAGECACHE_TAG_DIRTY);
  90		spin_unlock_irqrestore(&mapping->tree_lock, flags);
  91
  92		clear_page_dirty_for_io(page);
  93		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
  94	}
  95	ClearPageUptodate(page);
  96}
  97
  98static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  99{
 100	pgoff_t index = current_nat_addr(sbi, nid);
 101	return get_meta_page(sbi, index);
 102}
 103
 104static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 105{
 106	struct page *src_page;
 107	struct page *dst_page;
 108	pgoff_t src_off;
 109	pgoff_t dst_off;
 110	void *src_addr;
 111	void *dst_addr;
 112	struct f2fs_nm_info *nm_i = NM_I(sbi);
 113
 114	src_off = current_nat_addr(sbi, nid);
 115	dst_off = next_nat_addr(sbi, src_off);
 116
 117	/* get current nat block page with lock */
 118	src_page = get_meta_page(sbi, src_off);
 119	dst_page = grab_meta_page(sbi, dst_off);
 120	f2fs_bug_on(sbi, PageDirty(src_page));
 121
 122	src_addr = page_address(src_page);
 123	dst_addr = page_address(dst_page);
 124	memcpy(dst_addr, src_addr, PAGE_SIZE);
 125	set_page_dirty(dst_page);
 126	f2fs_put_page(src_page, 1);
 127
 128	set_to_next_nat(nm_i, nid);
 129
 130	return dst_page;
 131}
 132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 133static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 134{
 135	return radix_tree_lookup(&nm_i->nat_root, n);
 136}
 137
 138static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 139		nid_t start, unsigned int nr, struct nat_entry **ep)
 140{
 141	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 142}
 143
 144static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 145{
 146	list_del(&e->list);
 147	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 148	nm_i->nat_cnt--;
 149	kmem_cache_free(nat_entry_slab, e);
 150}
 151
 152static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 153						struct nat_entry *ne)
 154{
 155	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 156	struct nat_entry_set *head;
 157
 158	if (get_nat_flag(ne, IS_DIRTY))
 159		return;
 160
 161	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 162	if (!head) {
 163		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 164
 165		INIT_LIST_HEAD(&head->entry_list);
 166		INIT_LIST_HEAD(&head->set_list);
 167		head->set = set;
 168		head->entry_cnt = 0;
 169		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 170	}
 171	list_move_tail(&ne->list, &head->entry_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172	nm_i->dirty_nat_cnt++;
 173	head->entry_cnt++;
 174	set_nat_flag(ne, IS_DIRTY, true);
 
 
 
 
 
 175}
 176
 177static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 178						struct nat_entry *ne)
 179{
 180	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 181	struct nat_entry_set *head;
 182
 183	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 184	if (head) {
 185		list_move_tail(&ne->list, &nm_i->nat_entries);
 186		set_nat_flag(ne, IS_DIRTY, false);
 187		head->entry_cnt--;
 188		nm_i->dirty_nat_cnt--;
 189	}
 190}
 191
 192static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 193		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 194{
 195	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 196							start, nr);
 197}
 198
 199int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 200{
 201	struct f2fs_nm_info *nm_i = NM_I(sbi);
 202	struct nat_entry *e;
 203	bool need = false;
 204
 205	down_read(&nm_i->nat_tree_lock);
 206	e = __lookup_nat_cache(nm_i, nid);
 207	if (e) {
 208		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 209				!get_nat_flag(e, HAS_FSYNCED_INODE))
 210			need = true;
 211	}
 212	up_read(&nm_i->nat_tree_lock);
 213	return need;
 214}
 215
 216bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 217{
 218	struct f2fs_nm_info *nm_i = NM_I(sbi);
 219	struct nat_entry *e;
 220	bool is_cp = true;
 221
 222	down_read(&nm_i->nat_tree_lock);
 223	e = __lookup_nat_cache(nm_i, nid);
 224	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 225		is_cp = false;
 226	up_read(&nm_i->nat_tree_lock);
 227	return is_cp;
 228}
 229
 230bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 231{
 232	struct f2fs_nm_info *nm_i = NM_I(sbi);
 233	struct nat_entry *e;
 234	bool need_update = true;
 235
 236	down_read(&nm_i->nat_tree_lock);
 237	e = __lookup_nat_cache(nm_i, ino);
 238	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 239			(get_nat_flag(e, IS_CHECKPOINTED) ||
 240			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 241		need_update = false;
 242	up_read(&nm_i->nat_tree_lock);
 243	return need_update;
 244}
 245
 246static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
 247{
 248	struct nat_entry *new;
 249
 250	new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
 251	f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
 252	memset(new, 0, sizeof(struct nat_entry));
 253	nat_set_nid(new, nid);
 254	nat_reset_flag(new);
 255	list_add_tail(&new->list, &nm_i->nat_entries);
 256	nm_i->nat_cnt++;
 257	return new;
 258}
 259
 260static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 261						struct f2fs_nat_entry *ne)
 262{
 263	struct f2fs_nm_info *nm_i = NM_I(sbi);
 264	struct nat_entry *e;
 
 
 
 
 265
 
 266	e = __lookup_nat_cache(nm_i, nid);
 267	if (!e) {
 268		e = grab_nat_entry(nm_i, nid);
 269		node_info_from_raw_nat(&e->ni, ne);
 270	} else {
 271		f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino ||
 272				nat_get_blkaddr(e) != ne->block_addr ||
 273				nat_get_version(e) != ne->version);
 274	}
 
 
 275}
 276
 277static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 278			block_t new_blkaddr, bool fsync_done)
 279{
 280	struct f2fs_nm_info *nm_i = NM_I(sbi);
 281	struct nat_entry *e;
 
 282
 283	down_write(&nm_i->nat_tree_lock);
 284	e = __lookup_nat_cache(nm_i, ni->nid);
 285	if (!e) {
 286		e = grab_nat_entry(nm_i, ni->nid);
 287		copy_node_info(&e->ni, ni);
 288		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 289	} else if (new_blkaddr == NEW_ADDR) {
 290		/*
 291		 * when nid is reallocated,
 292		 * previous nat entry can be remained in nat cache.
 293		 * So, reinitialize it with new information.
 294		 */
 295		copy_node_info(&e->ni, ni);
 296		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 297	}
 
 
 
 298
 299	/* sanity check */
 300	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 301	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 302			new_blkaddr == NULL_ADDR);
 303	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 304			new_blkaddr == NEW_ADDR);
 305	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
 306			nat_get_blkaddr(e) != NULL_ADDR &&
 307			new_blkaddr == NEW_ADDR);
 308
 309	/* increment version no as node is removed */
 310	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 311		unsigned char version = nat_get_version(e);
 312		nat_set_version(e, inc_node_version(version));
 313
 314		/* in order to reuse the nid */
 315		if (nm_i->next_scan_nid > ni->nid)
 316			nm_i->next_scan_nid = ni->nid;
 317	}
 318
 319	/* change address */
 320	nat_set_blkaddr(e, new_blkaddr);
 321	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
 322		set_nat_flag(e, IS_CHECKPOINTED, false);
 323	__set_nat_cache_dirty(nm_i, e);
 324
 325	/* update fsync_mark if its inode nat entry is still alive */
 326	if (ni->nid != ni->ino)
 327		e = __lookup_nat_cache(nm_i, ni->ino);
 328	if (e) {
 329		if (fsync_done && ni->nid == ni->ino)
 330			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 331		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 332	}
 333	up_write(&nm_i->nat_tree_lock);
 334}
 335
 336int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 337{
 338	struct f2fs_nm_info *nm_i = NM_I(sbi);
 339	int nr = nr_shrink;
 340
 341	if (!down_write_trylock(&nm_i->nat_tree_lock))
 342		return 0;
 343
 344	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
 345		struct nat_entry *ne;
 346		ne = list_first_entry(&nm_i->nat_entries,
 347					struct nat_entry, list);
 348		__del_from_nat_cache(nm_i, ne);
 349		nr_shrink--;
 350	}
 351	up_write(&nm_i->nat_tree_lock);
 352	return nr - nr_shrink;
 353}
 354
 355/*
 356 * This function always returns success
 357 */
 358void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
 359{
 360	struct f2fs_nm_info *nm_i = NM_I(sbi);
 361	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 362	struct f2fs_journal *journal = curseg->journal;
 363	nid_t start_nid = START_NID(nid);
 364	struct f2fs_nat_block *nat_blk;
 365	struct page *page = NULL;
 366	struct f2fs_nat_entry ne;
 367	struct nat_entry *e;
 
 368	int i;
 369
 370	ni->nid = nid;
 371
 372	/* Check nat cache */
 373	down_read(&nm_i->nat_tree_lock);
 374	e = __lookup_nat_cache(nm_i, nid);
 375	if (e) {
 376		ni->ino = nat_get_ino(e);
 377		ni->blk_addr = nat_get_blkaddr(e);
 378		ni->version = nat_get_version(e);
 379		up_read(&nm_i->nat_tree_lock);
 380		return;
 381	}
 382
 383	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 384
 385	/* Check current segment summary */
 386	down_read(&curseg->journal_rwsem);
 387	i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 388	if (i >= 0) {
 389		ne = nat_in_journal(journal, i);
 390		node_info_from_raw_nat(ni, &ne);
 391	}
 392	up_read(&curseg->journal_rwsem);
 393	if (i >= 0)
 
 394		goto cache;
 
 395
 396	/* Fill node_info from nat page */
 397	page = get_current_nat_page(sbi, start_nid);
 
 
 
 398	nat_blk = (struct f2fs_nat_block *)page_address(page);
 399	ne = nat_blk->entries[nid - start_nid];
 400	node_info_from_raw_nat(ni, &ne);
 401	f2fs_put_page(page, 1);
 402cache:
 403	up_read(&nm_i->nat_tree_lock);
 404	/* cache nat entry */
 405	down_write(&nm_i->nat_tree_lock);
 406	cache_nat_entry(sbi, nid, &ne);
 407	up_write(&nm_i->nat_tree_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 408}
 409
 410pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 411{
 412	const long direct_index = ADDRS_PER_INODE(dn->inode);
 413	const long direct_blks = ADDRS_PER_BLOCK;
 414	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 415	unsigned int skipped_unit = ADDRS_PER_BLOCK;
 416	int cur_level = dn->cur_level;
 417	int max_level = dn->max_level;
 418	pgoff_t base = 0;
 419
 420	if (!dn->max_level)
 421		return pgofs + 1;
 422
 423	while (max_level-- > cur_level)
 424		skipped_unit *= NIDS_PER_BLOCK;
 425
 426	switch (dn->max_level) {
 427	case 3:
 428		base += 2 * indirect_blks;
 429	case 2:
 430		base += 2 * direct_blks;
 431	case 1:
 432		base += direct_index;
 433		break;
 434	default:
 435		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 436	}
 437
 438	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 439}
 440
 441/*
 442 * The maximum depth is four.
 443 * Offset[0] will have raw inode offset.
 444 */
 445static int get_node_path(struct inode *inode, long block,
 446				int offset[4], unsigned int noffset[4])
 447{
 448	const long direct_index = ADDRS_PER_INODE(inode);
 449	const long direct_blks = ADDRS_PER_BLOCK;
 450	const long dptrs_per_blk = NIDS_PER_BLOCK;
 451	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 452	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 453	int n = 0;
 454	int level = 0;
 455
 456	noffset[0] = 0;
 457
 458	if (block < direct_index) {
 459		offset[n] = block;
 460		goto got;
 461	}
 462	block -= direct_index;
 463	if (block < direct_blks) {
 464		offset[n++] = NODE_DIR1_BLOCK;
 465		noffset[n] = 1;
 466		offset[n] = block;
 467		level = 1;
 468		goto got;
 469	}
 470	block -= direct_blks;
 471	if (block < direct_blks) {
 472		offset[n++] = NODE_DIR2_BLOCK;
 473		noffset[n] = 2;
 474		offset[n] = block;
 475		level = 1;
 476		goto got;
 477	}
 478	block -= direct_blks;
 479	if (block < indirect_blks) {
 480		offset[n++] = NODE_IND1_BLOCK;
 481		noffset[n] = 3;
 482		offset[n++] = block / direct_blks;
 483		noffset[n] = 4 + offset[n - 1];
 484		offset[n] = block % direct_blks;
 485		level = 2;
 486		goto got;
 487	}
 488	block -= indirect_blks;
 489	if (block < indirect_blks) {
 490		offset[n++] = NODE_IND2_BLOCK;
 491		noffset[n] = 4 + dptrs_per_blk;
 492		offset[n++] = block / direct_blks;
 493		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 494		offset[n] = block % direct_blks;
 495		level = 2;
 496		goto got;
 497	}
 498	block -= indirect_blks;
 499	if (block < dindirect_blks) {
 500		offset[n++] = NODE_DIND_BLOCK;
 501		noffset[n] = 5 + (dptrs_per_blk * 2);
 502		offset[n++] = block / indirect_blks;
 503		noffset[n] = 6 + (dptrs_per_blk * 2) +
 504			      offset[n - 1] * (dptrs_per_blk + 1);
 505		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 506		noffset[n] = 7 + (dptrs_per_blk * 2) +
 507			      offset[n - 2] * (dptrs_per_blk + 1) +
 508			      offset[n - 1];
 509		offset[n] = block % direct_blks;
 510		level = 3;
 511		goto got;
 512	} else {
 513		BUG();
 514	}
 515got:
 516	return level;
 517}
 518
 519/*
 520 * Caller should call f2fs_put_dnode(dn).
 521 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 522 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 523 * In the case of RDONLY_NODE, we don't need to care about mutex.
 524 */
 525int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 526{
 527	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 528	struct page *npage[4];
 529	struct page *parent = NULL;
 530	int offset[4];
 531	unsigned int noffset[4];
 532	nid_t nids[4];
 533	int level, i = 0;
 534	int err = 0;
 535
 536	level = get_node_path(dn->inode, index, offset, noffset);
 
 
 537
 538	nids[0] = dn->inode->i_ino;
 539	npage[0] = dn->inode_page;
 540
 541	if (!npage[0]) {
 542		npage[0] = get_node_page(sbi, nids[0]);
 543		if (IS_ERR(npage[0]))
 544			return PTR_ERR(npage[0]);
 545	}
 546
 547	/* if inline_data is set, should not report any block indices */
 548	if (f2fs_has_inline_data(dn->inode) && index) {
 549		err = -ENOENT;
 550		f2fs_put_page(npage[0], 1);
 551		goto release_out;
 552	}
 553
 554	parent = npage[0];
 555	if (level != 0)
 556		nids[1] = get_nid(parent, offset[0], true);
 557	dn->inode_page = npage[0];
 558	dn->inode_page_locked = true;
 559
 560	/* get indirect or direct nodes */
 561	for (i = 1; i <= level; i++) {
 562		bool done = false;
 563
 564		if (!nids[i] && mode == ALLOC_NODE) {
 565			/* alloc new node */
 566			if (!alloc_nid(sbi, &(nids[i]))) {
 567				err = -ENOSPC;
 568				goto release_pages;
 569			}
 570
 571			dn->nid = nids[i];
 572			npage[i] = new_node_page(dn, noffset[i], NULL);
 573			if (IS_ERR(npage[i])) {
 574				alloc_nid_failed(sbi, nids[i]);
 575				err = PTR_ERR(npage[i]);
 576				goto release_pages;
 577			}
 578
 579			set_nid(parent, offset[i - 1], nids[i], i == 1);
 580			alloc_nid_done(sbi, nids[i]);
 581			done = true;
 582		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 583			npage[i] = get_node_page_ra(parent, offset[i - 1]);
 584			if (IS_ERR(npage[i])) {
 585				err = PTR_ERR(npage[i]);
 586				goto release_pages;
 587			}
 588			done = true;
 589		}
 590		if (i == 1) {
 591			dn->inode_page_locked = false;
 592			unlock_page(parent);
 593		} else {
 594			f2fs_put_page(parent, 1);
 595		}
 596
 597		if (!done) {
 598			npage[i] = get_node_page(sbi, nids[i]);
 599			if (IS_ERR(npage[i])) {
 600				err = PTR_ERR(npage[i]);
 601				f2fs_put_page(npage[0], 0);
 602				goto release_out;
 603			}
 604		}
 605		if (i < level) {
 606			parent = npage[i];
 607			nids[i + 1] = get_nid(parent, offset[i], false);
 608		}
 609	}
 610	dn->nid = nids[level];
 611	dn->ofs_in_node = offset[level];
 612	dn->node_page = npage[level];
 613	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
 
 614	return 0;
 615
 616release_pages:
 617	f2fs_put_page(parent, 1);
 618	if (i > 1)
 619		f2fs_put_page(npage[0], 0);
 620release_out:
 621	dn->inode_page = NULL;
 622	dn->node_page = NULL;
 623	if (err == -ENOENT) {
 624		dn->cur_level = i;
 625		dn->max_level = level;
 
 626	}
 627	return err;
 628}
 629
 630static void truncate_node(struct dnode_of_data *dn)
 631{
 632	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 633	struct node_info ni;
 634
 635	get_node_info(sbi, dn->nid, &ni);
 636	if (dn->inode->i_blocks == 0) {
 637		f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
 638		goto invalidate;
 639	}
 640	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
 641
 642	/* Deallocate node address */
 643	invalidate_blocks(sbi, ni.blk_addr);
 644	dec_valid_node_count(sbi, dn->inode);
 645	set_node_addr(sbi, &ni, NULL_ADDR, false);
 646
 647	if (dn->nid == dn->inode->i_ino) {
 648		remove_orphan_inode(sbi, dn->nid);
 649		dec_valid_inode_count(sbi);
 650	} else {
 651		sync_inode_page(dn);
 652	}
 653invalidate:
 654	clear_node_page_dirty(dn->node_page);
 655	set_sbi_flag(sbi, SBI_IS_DIRTY);
 656
 657	f2fs_put_page(dn->node_page, 1);
 658
 659	invalidate_mapping_pages(NODE_MAPPING(sbi),
 660			dn->node_page->index, dn->node_page->index);
 661
 662	dn->node_page = NULL;
 663	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 664}
 665
 666static int truncate_dnode(struct dnode_of_data *dn)
 667{
 668	struct page *page;
 669
 670	if (dn->nid == 0)
 671		return 1;
 672
 673	/* get direct node */
 674	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 675	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 676		return 1;
 677	else if (IS_ERR(page))
 678		return PTR_ERR(page);
 679
 680	/* Make dnode_of_data for parameter */
 681	dn->node_page = page;
 682	dn->ofs_in_node = 0;
 683	truncate_data_blocks(dn);
 684	truncate_node(dn);
 685	return 1;
 686}
 687
 688static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 689						int ofs, int depth)
 690{
 691	struct dnode_of_data rdn = *dn;
 692	struct page *page;
 693	struct f2fs_node *rn;
 694	nid_t child_nid;
 695	unsigned int child_nofs;
 696	int freed = 0;
 697	int i, ret;
 698
 699	if (dn->nid == 0)
 700		return NIDS_PER_BLOCK + 1;
 701
 702	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 703
 704	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 705	if (IS_ERR(page)) {
 706		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 707		return PTR_ERR(page);
 708	}
 709
 
 
 710	rn = F2FS_NODE(page);
 711	if (depth < 3) {
 712		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 713			child_nid = le32_to_cpu(rn->in.nid[i]);
 714			if (child_nid == 0)
 715				continue;
 716			rdn.nid = child_nid;
 717			ret = truncate_dnode(&rdn);
 718			if (ret < 0)
 719				goto out_err;
 720			if (set_nid(page, i, 0, false))
 721				dn->node_changed = true;
 722		}
 723	} else {
 724		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 725		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 726			child_nid = le32_to_cpu(rn->in.nid[i]);
 727			if (child_nid == 0) {
 728				child_nofs += NIDS_PER_BLOCK + 1;
 729				continue;
 730			}
 731			rdn.nid = child_nid;
 732			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 733			if (ret == (NIDS_PER_BLOCK + 1)) {
 734				if (set_nid(page, i, 0, false))
 735					dn->node_changed = true;
 736				child_nofs += ret;
 737			} else if (ret < 0 && ret != -ENOENT) {
 738				goto out_err;
 739			}
 740		}
 741		freed = child_nofs;
 742	}
 743
 744	if (!ofs) {
 745		/* remove current indirect node */
 746		dn->node_page = page;
 747		truncate_node(dn);
 748		freed++;
 749	} else {
 750		f2fs_put_page(page, 1);
 751	}
 752	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 753	return freed;
 754
 755out_err:
 756	f2fs_put_page(page, 1);
 757	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 758	return ret;
 759}
 760
 761static int truncate_partial_nodes(struct dnode_of_data *dn,
 762			struct f2fs_inode *ri, int *offset, int depth)
 763{
 764	struct page *pages[2];
 765	nid_t nid[3];
 766	nid_t child_nid;
 767	int err = 0;
 768	int i;
 769	int idx = depth - 2;
 770
 771	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 772	if (!nid[0])
 773		return 0;
 774
 775	/* get indirect nodes in the path */
 776	for (i = 0; i < idx + 1; i++) {
 777		/* reference count'll be increased */
 778		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 779		if (IS_ERR(pages[i])) {
 780			err = PTR_ERR(pages[i]);
 781			idx = i - 1;
 782			goto fail;
 783		}
 784		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 785	}
 786
 
 
 787	/* free direct nodes linked to a partial indirect node */
 788	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
 789		child_nid = get_nid(pages[idx], i, false);
 790		if (!child_nid)
 791			continue;
 792		dn->nid = child_nid;
 793		err = truncate_dnode(dn);
 794		if (err < 0)
 795			goto fail;
 796		if (set_nid(pages[idx], i, 0, false))
 797			dn->node_changed = true;
 798	}
 799
 800	if (offset[idx + 1] == 0) {
 801		dn->node_page = pages[idx];
 802		dn->nid = nid[idx];
 803		truncate_node(dn);
 804	} else {
 805		f2fs_put_page(pages[idx], 1);
 806	}
 807	offset[idx]++;
 808	offset[idx + 1] = 0;
 809	idx--;
 810fail:
 811	for (i = idx; i >= 0; i--)
 812		f2fs_put_page(pages[i], 1);
 813
 814	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
 815
 816	return err;
 817}
 818
 819/*
 820 * All the block addresses of data and nodes should be nullified.
 821 */
 822int truncate_inode_blocks(struct inode *inode, pgoff_t from)
 823{
 824	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 825	int err = 0, cont = 1;
 826	int level, offset[4], noffset[4];
 827	unsigned int nofs = 0;
 828	struct f2fs_inode *ri;
 829	struct dnode_of_data dn;
 830	struct page *page;
 831
 832	trace_f2fs_truncate_inode_blocks_enter(inode, from);
 833
 834	level = get_node_path(inode, from, offset, noffset);
 835restart:
 
 
 836	page = get_node_page(sbi, inode->i_ino);
 837	if (IS_ERR(page)) {
 838		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
 839		return PTR_ERR(page);
 840	}
 841
 842	set_new_dnode(&dn, inode, page, NULL, 0);
 843	unlock_page(page);
 844
 845	ri = F2FS_INODE(page);
 846	switch (level) {
 847	case 0:
 848	case 1:
 849		nofs = noffset[1];
 850		break;
 851	case 2:
 852		nofs = noffset[1];
 853		if (!offset[level - 1])
 854			goto skip_partial;
 855		err = truncate_partial_nodes(&dn, ri, offset, level);
 856		if (err < 0 && err != -ENOENT)
 857			goto fail;
 858		nofs += 1 + NIDS_PER_BLOCK;
 859		break;
 860	case 3:
 861		nofs = 5 + 2 * NIDS_PER_BLOCK;
 862		if (!offset[level - 1])
 863			goto skip_partial;
 864		err = truncate_partial_nodes(&dn, ri, offset, level);
 865		if (err < 0 && err != -ENOENT)
 866			goto fail;
 867		break;
 868	default:
 869		BUG();
 870	}
 871
 872skip_partial:
 873	while (cont) {
 874		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 875		switch (offset[0]) {
 876		case NODE_DIR1_BLOCK:
 877		case NODE_DIR2_BLOCK:
 878			err = truncate_dnode(&dn);
 879			break;
 880
 881		case NODE_IND1_BLOCK:
 882		case NODE_IND2_BLOCK:
 883			err = truncate_nodes(&dn, nofs, offset[1], 2);
 884			break;
 885
 886		case NODE_DIND_BLOCK:
 887			err = truncate_nodes(&dn, nofs, offset[1], 3);
 888			cont = 0;
 889			break;
 890
 891		default:
 892			BUG();
 893		}
 894		if (err < 0 && err != -ENOENT)
 895			goto fail;
 896		if (offset[1] == 0 &&
 897				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
 898			lock_page(page);
 899			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
 900				f2fs_put_page(page, 1);
 901				goto restart;
 902			}
 903			f2fs_wait_on_page_writeback(page, NODE, true);
 904			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
 905			set_page_dirty(page);
 906			unlock_page(page);
 907		}
 908		offset[1] = 0;
 909		offset[0]++;
 910		nofs += err;
 911	}
 912fail:
 913	f2fs_put_page(page, 0);
 914	trace_f2fs_truncate_inode_blocks_exit(inode, err);
 915	return err > 0 ? 0 : err;
 916}
 917
 918int truncate_xattr_node(struct inode *inode, struct page *page)
 
 919{
 920	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 921	nid_t nid = F2FS_I(inode)->i_xattr_nid;
 922	struct dnode_of_data dn;
 923	struct page *npage;
 924
 925	if (!nid)
 926		return 0;
 927
 928	npage = get_node_page(sbi, nid);
 929	if (IS_ERR(npage))
 930		return PTR_ERR(npage);
 931
 932	F2FS_I(inode)->i_xattr_nid = 0;
 933
 934	/* need to do checkpoint during fsync */
 935	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
 936
 937	set_new_dnode(&dn, inode, page, npage, nid);
 938
 939	if (page)
 940		dn.inode_page_locked = true;
 941	truncate_node(&dn);
 942	return 0;
 943}
 944
 945/*
 946 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
 947 * f2fs_unlock_op().
 948 */
 949int remove_inode_page(struct inode *inode)
 950{
 951	struct dnode_of_data dn;
 952	int err;
 953
 954	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 955	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
 956	if (err)
 957		return err;
 958
 959	err = truncate_xattr_node(inode, dn.inode_page);
 960	if (err) {
 961		f2fs_put_dnode(&dn);
 962		return err;
 963	}
 964
 965	/* remove potential inline_data blocks */
 966	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
 967				S_ISLNK(inode->i_mode))
 968		truncate_data_blocks_range(&dn, 1);
 969
 970	/* 0 is possible, after f2fs_new_inode() has failed */
 971	f2fs_bug_on(F2FS_I_SB(inode),
 972			inode->i_blocks != 0 && inode->i_blocks != 1);
 973
 974	/* will put inode & node pages */
 975	truncate_node(&dn);
 976	return 0;
 977}
 978
 979struct page *new_inode_page(struct inode *inode)
 980{
 981	struct dnode_of_data dn;
 982
 983	/* allocate inode page for new inode */
 984	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 985
 986	/* caller should f2fs_put_page(page, 1); */
 987	return new_node_page(&dn, 0, NULL);
 988}
 989
 990struct page *new_node_page(struct dnode_of_data *dn,
 991				unsigned int ofs, struct page *ipage)
 992{
 993	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 994	struct node_info old_ni, new_ni;
 995	struct page *page;
 996	int err;
 997
 998	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
 999		return ERR_PTR(-EPERM);
1000
1001	page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
1002	if (!page)
1003		return ERR_PTR(-ENOMEM);
1004
1005	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1006		err = -ENOSPC;
1007		goto fail;
1008	}
1009
1010	get_node_info(sbi, dn->nid, &old_ni);
1011
1012	/* Reinitialize old_ni with new node page */
1013	f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1014	new_ni = old_ni;
1015	new_ni.ino = dn->inode->i_ino;
 
 
 
1016	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1017
1018	f2fs_wait_on_page_writeback(page, NODE, true);
1019	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1020	set_cold_node(dn->inode, page);
1021	SetPageUptodate(page);
 
1022	if (set_page_dirty(page))
1023		dn->node_changed = true;
1024
1025	if (f2fs_has_xattr_block(ofs))
1026		F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
1027
1028	dn->node_page = page;
1029	if (ipage)
1030		update_inode(dn->inode, ipage);
1031	else
1032		sync_inode_page(dn);
1033	if (ofs == 0)
1034		inc_valid_inode_count(sbi);
1035
1036	return page;
1037
1038fail:
1039	clear_node_page_dirty(page);
1040	f2fs_put_page(page, 1);
1041	return ERR_PTR(err);
1042}
1043
1044/*
1045 * Caller should do after getting the following values.
1046 * 0: f2fs_put_page(page, 0)
1047 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1048 */
1049static int read_node_page(struct page *page, int rw)
1050{
1051	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1052	struct node_info ni;
1053	struct f2fs_io_info fio = {
1054		.sbi = sbi,
1055		.type = NODE,
1056		.rw = rw,
 
1057		.page = page,
1058		.encrypted_page = NULL,
1059	};
1060
 
 
 
1061	get_node_info(sbi, page->index, &ni);
1062
1063	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1064		ClearPageUptodate(page);
1065		return -ENOENT;
1066	}
1067
1068	if (PageUptodate(page))
1069		return LOCKED_PAGE;
1070
1071	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1072	return f2fs_submit_page_bio(&fio);
1073}
1074
1075/*
1076 * Readahead a node page
1077 */
1078void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1079{
1080	struct page *apage;
1081	int err;
1082
1083	if (!nid)
1084		return;
1085	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1086
1087	rcu_read_lock();
1088	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1089	rcu_read_unlock();
1090	if (apage)
1091		return;
1092
1093	apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1094	if (!apage)
1095		return;
1096
1097	err = read_node_page(apage, READA);
1098	f2fs_put_page(apage, err ? 1 : 0);
1099}
1100
1101/*
1102 * readahead MAX_RA_NODE number of node pages.
1103 */
1104static void ra_node_pages(struct page *parent, int start)
1105{
1106	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1107	struct blk_plug plug;
1108	int i, end;
1109	nid_t nid;
1110
1111	blk_start_plug(&plug);
1112
1113	/* Then, try readahead for siblings of the desired node */
1114	end = start + MAX_RA_NODE;
1115	end = min(end, NIDS_PER_BLOCK);
1116	for (i = start; i < end; i++) {
1117		nid = get_nid(parent, i, false);
1118		ra_node_page(sbi, nid);
1119	}
1120
1121	blk_finish_plug(&plug);
1122}
1123
1124static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1125					struct page *parent, int start)
1126{
1127	struct page *page;
1128	int err;
1129
1130	if (!nid)
1131		return ERR_PTR(-ENOENT);
1132	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1133repeat:
1134	page = grab_cache_page(NODE_MAPPING(sbi), nid);
1135	if (!page)
1136		return ERR_PTR(-ENOMEM);
1137
1138	err = read_node_page(page, READ_SYNC);
1139	if (err < 0) {
1140		f2fs_put_page(page, 1);
1141		return ERR_PTR(err);
1142	} else if (err == LOCKED_PAGE) {
 
1143		goto page_hit;
1144	}
1145
1146	if (parent)
1147		ra_node_pages(parent, start + 1);
1148
1149	lock_page(page);
1150
1151	if (unlikely(!PageUptodate(page))) {
1152		f2fs_put_page(page, 1);
1153		return ERR_PTR(-EIO);
1154	}
1155	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1156		f2fs_put_page(page, 1);
1157		goto repeat;
1158	}
 
 
 
 
 
 
 
 
 
 
1159page_hit:
1160	f2fs_bug_on(sbi, nid != nid_of_node(page));
 
 
 
 
 
 
 
 
 
 
 
1161	return page;
1162}
1163
1164struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1165{
1166	return __get_node_page(sbi, nid, NULL, 0);
1167}
1168
1169struct page *get_node_page_ra(struct page *parent, int start)
1170{
1171	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1172	nid_t nid = get_nid(parent, start, false);
1173
1174	return __get_node_page(sbi, nid, parent, start);
1175}
1176
1177void sync_inode_page(struct dnode_of_data *dn)
1178{
1179	int ret = 0;
1180
1181	if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1182		ret = update_inode(dn->inode, dn->node_page);
1183	} else if (dn->inode_page) {
1184		if (!dn->inode_page_locked)
1185			lock_page(dn->inode_page);
1186		ret = update_inode(dn->inode, dn->inode_page);
1187		if (!dn->inode_page_locked)
1188			unlock_page(dn->inode_page);
1189	} else {
1190		ret = update_inode_page(dn->inode);
1191	}
1192	dn->node_changed = ret ? true: false;
1193}
1194
1195static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1196{
1197	struct inode *inode;
1198	struct page *page;
 
1199
1200	/* should flush inline_data before evict_inode */
1201	inode = ilookup(sbi->sb, ino);
1202	if (!inode)
1203		return;
1204
1205	page = pagecache_get_page(inode->i_mapping, 0, FGP_NOWAIT, 0);
 
1206	if (!page)
1207		goto iput_out;
1208
1209	if (!trylock_page(page))
1210		goto release_out;
1211
1212	if (!PageUptodate(page))
1213		goto page_out;
1214
1215	if (!PageDirty(page))
1216		goto page_out;
1217
1218	if (!clear_page_dirty_for_io(page))
1219		goto page_out;
1220
1221	if (!f2fs_write_inline_data(inode, page))
1222		inode_dec_dirty_pages(inode);
1223	else
 
1224		set_page_dirty(page);
1225page_out:
1226	unlock_page(page);
1227release_out:
1228	f2fs_put_page(page, 0);
1229iput_out:
1230	iput(inode);
1231}
1232
1233int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1234					struct writeback_control *wbc)
1235{
1236	pgoff_t index, end;
1237	struct pagevec pvec;
1238	int step = ino ? 2 : 0;
1239	int nwritten = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1240
1241	pagevec_init(&pvec, 0);
 
 
 
 
1242
1243next_step:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1244	index = 0;
1245	end = ULONG_MAX;
1246
1247	while (index <= end) {
1248		int i, nr_pages;
1249		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1250				PAGECACHE_TAG_DIRTY,
1251				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1252		if (nr_pages == 0)
1253			break;
1254
1255		for (i = 0; i < nr_pages; i++) {
1256			struct page *page = pvec.pages[i];
 
1257
1258			if (unlikely(f2fs_cp_error(sbi))) {
 
1259				pagevec_release(&pvec);
1260				return -EIO;
 
1261			}
1262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263			/*
1264			 * flushing sequence with step:
1265			 * 0. indirect nodes
1266			 * 1. dentry dnodes
1267			 * 2. file dnodes
1268			 */
1269			if (step == 0 && IS_DNODE(page))
1270				continue;
1271			if (step == 1 && (!IS_DNODE(page) ||
1272						is_cold_node(page)))
1273				continue;
1274			if (step == 2 && (!IS_DNODE(page) ||
1275						!is_cold_node(page)))
1276				continue;
1277
1278			/*
1279			 * If an fsync mode,
1280			 * we should not skip writing node pages.
1281			 */
1282lock_node:
1283			if (ino && ino_of_node(page) == ino)
1284				lock_page(page);
1285			else if (!trylock_page(page))
1286				continue;
1287
1288			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1289continue_unlock:
1290				unlock_page(page);
1291				continue;
1292			}
1293			if (ino && ino_of_node(page) != ino)
1294				goto continue_unlock;
1295
1296			if (!PageDirty(page)) {
1297				/* someone wrote it for us */
1298				goto continue_unlock;
1299			}
1300
1301			/* flush inline_data */
1302			if (!ino && is_inline_node(page)) {
1303				clear_inline_node(page);
1304				unlock_page(page);
1305				flush_inline_data(sbi, ino_of_node(page));
1306				goto lock_node;
1307			}
1308
1309			f2fs_wait_on_page_writeback(page, NODE, true);
1310
1311			BUG_ON(PageWriteback(page));
1312			if (!clear_page_dirty_for_io(page))
1313				goto continue_unlock;
1314
1315			/* called by fsync() */
1316			if (ino && IS_DNODE(page)) {
1317				set_fsync_mark(page, 1);
1318				if (IS_INODE(page))
1319					set_dentry_mark(page,
1320						need_dentry_mark(sbi, ino));
1321				nwritten++;
1322			} else {
1323				set_fsync_mark(page, 0);
1324				set_dentry_mark(page, 0);
1325			}
1326
1327			if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
 
 
1328				unlock_page(page);
 
 
1329
1330			if (--wbc->nr_to_write == 0)
1331				break;
1332		}
1333		pagevec_release(&pvec);
1334		cond_resched();
1335
1336		if (wbc->nr_to_write == 0) {
1337			step = 2;
1338			break;
1339		}
1340	}
1341
1342	if (step < 2) {
1343		step++;
1344		goto next_step;
1345	}
1346	return nwritten;
 
 
 
 
 
 
1347}
1348
1349int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1350{
1351	pgoff_t index = 0, end = ULONG_MAX;
1352	struct pagevec pvec;
1353	int ret2 = 0, ret = 0;
 
1354
1355	pagevec_init(&pvec, 0);
1356
1357	while (index <= end) {
1358		int i, nr_pages;
1359		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1360				PAGECACHE_TAG_WRITEBACK,
1361				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1362		if (nr_pages == 0)
1363			break;
1364
1365		for (i = 0; i < nr_pages; i++) {
1366			struct page *page = pvec.pages[i];
1367
1368			/* until radix tree lookup accepts end_index */
1369			if (unlikely(page->index > end))
1370				continue;
1371
1372			if (ino && ino_of_node(page) == ino) {
1373				f2fs_wait_on_page_writeback(page, NODE, true);
1374				if (TestClearPageError(page))
1375					ret = -EIO;
1376			}
1377		}
1378		pagevec_release(&pvec);
1379		cond_resched();
1380	}
1381
1382	if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1383		ret2 = -ENOSPC;
1384	if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1385		ret2 = -EIO;
1386	if (!ret)
1387		ret = ret2;
1388	return ret;
1389}
1390
1391static int f2fs_write_node_page(struct page *page,
1392				struct writeback_control *wbc)
1393{
1394	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1395	nid_t nid;
1396	struct node_info ni;
1397	struct f2fs_io_info fio = {
1398		.sbi = sbi,
1399		.type = NODE,
1400		.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1401		.page = page,
1402		.encrypted_page = NULL,
1403	};
1404
1405	trace_f2fs_writepage(page, NODE);
1406
1407	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1408		goto redirty_out;
1409	if (unlikely(f2fs_cp_error(sbi)))
1410		goto redirty_out;
1411
1412	/* get old block addr of this node page */
1413	nid = nid_of_node(page);
1414	f2fs_bug_on(sbi, page->index != nid);
1415
1416	if (wbc->for_reclaim) {
1417		if (!down_read_trylock(&sbi->node_write))
1418			goto redirty_out;
1419	} else {
1420		down_read(&sbi->node_write);
1421	}
1422
1423	get_node_info(sbi, nid, &ni);
1424
1425	/* This page is already truncated */
1426	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1427		ClearPageUptodate(page);
1428		dec_page_count(sbi, F2FS_DIRTY_NODES);
1429		up_read(&sbi->node_write);
1430		unlock_page(page);
1431		return 0;
1432	}
1433
1434	set_page_writeback(page);
1435	fio.old_blkaddr = ni.blk_addr;
1436	write_node_page(nid, &fio);
1437	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1438	dec_page_count(sbi, F2FS_DIRTY_NODES);
1439	up_read(&sbi->node_write);
1440
1441	if (wbc->for_reclaim)
1442		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1443
1444	unlock_page(page);
1445
1446	if (unlikely(f2fs_cp_error(sbi)))
1447		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1448
1449	return 0;
1450
1451redirty_out:
1452	redirty_page_for_writepage(wbc, page);
1453	return AOP_WRITEPAGE_ACTIVATE;
1454}
1455
1456static int f2fs_write_node_pages(struct address_space *mapping,
1457			    struct writeback_control *wbc)
1458{
1459	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
 
1460	long diff;
1461
 
 
 
1462	/* balancing f2fs's metadata in background */
1463	f2fs_balance_fs_bg(sbi);
1464
1465	/* collect a number of dirty node pages and write together */
1466	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1467		goto skip_write;
1468
1469	trace_f2fs_writepages(mapping->host, wbc, NODE);
1470
1471	diff = nr_pages_to_write(sbi, NODE, wbc);
1472	wbc->sync_mode = WB_SYNC_NONE;
1473	sync_node_pages(sbi, 0, wbc);
 
 
1474	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1475	return 0;
1476
1477skip_write:
1478	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1479	trace_f2fs_writepages(mapping->host, wbc, NODE);
1480	return 0;
1481}
1482
1483static int f2fs_set_node_page_dirty(struct page *page)
1484{
1485	trace_f2fs_set_page_dirty(page, NODE);
1486
1487	SetPageUptodate(page);
 
1488	if (!PageDirty(page)) {
1489		__set_page_dirty_nobuffers(page);
1490		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1491		SetPagePrivate(page);
1492		f2fs_trace_pid(page);
1493		return 1;
1494	}
1495	return 0;
1496}
1497
1498/*
1499 * Structure of the f2fs node operations
1500 */
1501const struct address_space_operations f2fs_node_aops = {
1502	.writepage	= f2fs_write_node_page,
1503	.writepages	= f2fs_write_node_pages,
1504	.set_page_dirty	= f2fs_set_node_page_dirty,
1505	.invalidatepage	= f2fs_invalidate_page,
1506	.releasepage	= f2fs_release_page,
 
 
 
1507};
1508
1509static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1510						nid_t n)
1511{
1512	return radix_tree_lookup(&nm_i->free_nid_root, n);
1513}
1514
1515static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1516						struct free_nid *i)
1517{
1518	list_del(&i->list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1519	radix_tree_delete(&nm_i->free_nid_root, i->nid);
1520}
1521
1522static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1523{
1524	struct f2fs_nm_info *nm_i = NM_I(sbi);
1525	struct free_nid *i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1526	struct nat_entry *ne;
1527	bool allocated = false;
1528
1529	if (!available_free_memory(sbi, FREE_NIDS))
1530		return -1;
1531
1532	/* 0 nid should not be used */
1533	if (unlikely(nid == 0))
1534		return 0;
 
 
 
 
 
 
 
 
1535
1536	if (build) {
1537		/* do not add allocated nids */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1538		ne = __lookup_nat_cache(nm_i, nid);
1539		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1540				nat_get_blkaddr(ne) != NULL_ADDR))
1541			allocated = true;
1542		if (allocated)
1543			return 0;
 
 
 
 
 
1544	}
1545
1546	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1547	i->nid = nid;
1548	i->state = NID_NEW;
1549
1550	if (radix_tree_preload(GFP_NOFS)) {
1551		kmem_cache_free(free_nid_slab, i);
1552		return 0;
1553	}
 
 
1554
1555	spin_lock(&nm_i->free_nid_list_lock);
1556	if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1557		spin_unlock(&nm_i->free_nid_list_lock);
1558		radix_tree_preload_end();
1559		kmem_cache_free(free_nid_slab, i);
1560		return 0;
1561	}
1562	list_add_tail(&i->list, &nm_i->free_nid_list);
1563	nm_i->fcnt++;
1564	spin_unlock(&nm_i->free_nid_list_lock);
1565	radix_tree_preload_end();
1566	return 1;
1567}
1568
1569static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1570{
 
1571	struct free_nid *i;
1572	bool need_free = false;
1573
1574	spin_lock(&nm_i->free_nid_list_lock);
1575	i = __lookup_free_nid_list(nm_i, nid);
1576	if (i && i->state == NID_NEW) {
1577		__del_from_free_nid_list(nm_i, i);
1578		nm_i->fcnt--;
1579		need_free = true;
1580	}
1581	spin_unlock(&nm_i->free_nid_list_lock);
1582
1583	if (need_free)
1584		kmem_cache_free(free_nid_slab, i);
1585}
1586
1587static void scan_nat_page(struct f2fs_sb_info *sbi,
1588			struct page *nat_page, nid_t start_nid)
1589{
1590	struct f2fs_nm_info *nm_i = NM_I(sbi);
1591	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1592	block_t blk_addr;
 
1593	int i;
1594
 
 
1595	i = start_nid % NAT_ENTRY_PER_BLOCK;
1596
1597	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1598
1599		if (unlikely(start_nid >= nm_i->max_nid))
1600			break;
1601
1602		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1603		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1604		if (blk_addr == NULL_ADDR) {
1605			if (add_free_nid(sbi, start_nid, true) < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1606				break;
 
 
 
 
 
 
1607		}
1608	}
 
 
 
 
1609}
1610
1611static void build_free_nids(struct f2fs_sb_info *sbi)
1612{
1613	struct f2fs_nm_info *nm_i = NM_I(sbi);
1614	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1615	struct f2fs_journal *journal = curseg->journal;
1616	int i = 0;
1617	nid_t nid = nm_i->next_scan_nid;
1618
 
 
 
1619	/* Enough entries */
1620	if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1621		return;
1622
 
 
 
 
 
 
 
 
 
 
 
1623	/* readahead nat pages to be scanned */
1624	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1625							META_NAT, true);
1626
1627	down_read(&nm_i->nat_tree_lock);
1628
1629	while (1) {
1630		struct page *page = get_current_nat_page(sbi, nid);
 
 
1631
1632		scan_nat_page(sbi, page, nid);
1633		f2fs_put_page(page, 1);
 
1634
1635		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1636		if (unlikely(nid >= nm_i->max_nid))
1637			nid = 0;
1638
1639		if (++i >= FREE_NID_PAGES)
1640			break;
1641	}
1642
1643	/* go to the next free nat pages to find free nids abundantly */
1644	nm_i->next_scan_nid = nid;
1645
1646	/* find free nids from current sum_pages */
1647	down_read(&curseg->journal_rwsem);
1648	for (i = 0; i < nats_in_cursum(journal); i++) {
1649		block_t addr;
1650
1651		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1652		nid = le32_to_cpu(nid_in_journal(journal, i));
1653		if (addr == NULL_ADDR)
1654			add_free_nid(sbi, nid, true);
1655		else
1656			remove_free_nid(nm_i, nid);
1657	}
1658	up_read(&curseg->journal_rwsem);
1659	up_read(&nm_i->nat_tree_lock);
1660
1661	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1662					nm_i->ra_nid_pages, META_NAT, false);
1663}
1664
 
 
 
 
 
 
 
1665/*
1666 * If this function returns success, caller can obtain a new nid
1667 * from second parameter of this function.
1668 * The returned nid could be used ino as well as nid when inode is created.
1669 */
1670bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1671{
1672	struct f2fs_nm_info *nm_i = NM_I(sbi);
1673	struct free_nid *i = NULL;
1674retry:
1675	if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
 
 
1676		return false;
 
 
 
1677
1678	spin_lock(&nm_i->free_nid_list_lock);
 
 
 
1679
1680	/* We should not use stale free nids created by build_free_nids */
1681	if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1682		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1683		list_for_each_entry(i, &nm_i->free_nid_list, list)
1684			if (i->state == NID_NEW)
1685				break;
 
 
 
 
 
1686
1687		f2fs_bug_on(sbi, i->state != NID_NEW);
1688		*nid = i->nid;
1689		i->state = NID_ALLOC;
1690		nm_i->fcnt--;
1691		spin_unlock(&nm_i->free_nid_list_lock);
1692		return true;
1693	}
1694	spin_unlock(&nm_i->free_nid_list_lock);
1695
1696	/* Let's scan nat pages and its caches to get free nids */
1697	mutex_lock(&nm_i->build_lock);
1698	build_free_nids(sbi);
1699	mutex_unlock(&nm_i->build_lock);
1700	goto retry;
1701}
1702
1703/*
1704 * alloc_nid() should be called prior to this function.
1705 */
1706void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1707{
1708	struct f2fs_nm_info *nm_i = NM_I(sbi);
1709	struct free_nid *i;
1710
1711	spin_lock(&nm_i->free_nid_list_lock);
1712	i = __lookup_free_nid_list(nm_i, nid);
1713	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1714	__del_from_free_nid_list(nm_i, i);
1715	spin_unlock(&nm_i->free_nid_list_lock);
1716
1717	kmem_cache_free(free_nid_slab, i);
1718}
1719
1720/*
1721 * alloc_nid() should be called prior to this function.
1722 */
1723void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1724{
1725	struct f2fs_nm_info *nm_i = NM_I(sbi);
1726	struct free_nid *i;
1727	bool need_free = false;
1728
1729	if (!nid)
1730		return;
1731
1732	spin_lock(&nm_i->free_nid_list_lock);
1733	i = __lookup_free_nid_list(nm_i, nid);
1734	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
 
1735	if (!available_free_memory(sbi, FREE_NIDS)) {
1736		__del_from_free_nid_list(nm_i, i);
1737		need_free = true;
1738	} else {
1739		i->state = NID_NEW;
1740		nm_i->fcnt++;
1741	}
1742	spin_unlock(&nm_i->free_nid_list_lock);
 
 
 
 
 
1743
1744	if (need_free)
1745		kmem_cache_free(free_nid_slab, i);
1746}
1747
1748int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1749{
1750	struct f2fs_nm_info *nm_i = NM_I(sbi);
1751	struct free_nid *i, *next;
1752	int nr = nr_shrink;
1753
 
 
 
1754	if (!mutex_trylock(&nm_i->build_lock))
1755		return 0;
1756
1757	spin_lock(&nm_i->free_nid_list_lock);
1758	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1759		if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK)
 
1760			break;
1761		if (i->state == NID_ALLOC)
1762			continue;
1763		__del_from_free_nid_list(nm_i, i);
1764		kmem_cache_free(free_nid_slab, i);
1765		nm_i->fcnt--;
1766		nr_shrink--;
1767	}
1768	spin_unlock(&nm_i->free_nid_list_lock);
1769	mutex_unlock(&nm_i->build_lock);
1770
1771	return nr - nr_shrink;
1772}
1773
1774void recover_inline_xattr(struct inode *inode, struct page *page)
1775{
1776	void *src_addr, *dst_addr;
1777	size_t inline_size;
1778	struct page *ipage;
1779	struct f2fs_inode *ri;
1780
1781	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1782	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1783
1784	ri = F2FS_INODE(page);
1785	if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1786		clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
 
 
1787		goto update_inode;
1788	}
1789
1790	dst_addr = inline_xattr_addr(ipage);
1791	src_addr = inline_xattr_addr(page);
1792	inline_size = inline_xattr_size(inode);
1793
1794	f2fs_wait_on_page_writeback(ipage, NODE, true);
1795	memcpy(dst_addr, src_addr, inline_size);
1796update_inode:
1797	update_inode(inode, ipage);
1798	f2fs_put_page(ipage, 1);
1799}
1800
1801void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1802{
1803	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1804	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1805	nid_t new_xnid = nid_of_node(page);
 
1806	struct node_info ni;
 
1807
1808	/* 1: invalidate the previous xattr nid */
1809	if (!prev_xnid)
1810		goto recover_xnid;
1811
1812	/* Deallocate node address */
1813	get_node_info(sbi, prev_xnid, &ni);
1814	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1815	invalidate_blocks(sbi, ni.blk_addr);
1816	dec_valid_node_count(sbi, inode);
1817	set_node_addr(sbi, &ni, NULL_ADDR, false);
1818
1819recover_xnid:
1820	/* 2: allocate new xattr nid */
1821	if (unlikely(!inc_valid_node_count(sbi, inode)))
1822		f2fs_bug_on(sbi, 1);
1823
1824	remove_free_nid(NM_I(sbi), new_xnid);
1825	get_node_info(sbi, new_xnid, &ni);
1826	ni.ino = inode->i_ino;
1827	set_node_addr(sbi, &ni, NEW_ADDR, false);
1828	F2FS_I(inode)->i_xattr_nid = new_xnid;
1829
1830	/* 3: update xattr blkaddr */
1831	refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1832	set_node_addr(sbi, &ni, blkaddr, false);
1833
 
1834	update_inode_page(inode);
 
 
 
 
 
 
 
 
1835}
1836
1837int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1838{
1839	struct f2fs_inode *src, *dst;
1840	nid_t ino = ino_of_node(page);
1841	struct node_info old_ni, new_ni;
1842	struct page *ipage;
1843
1844	get_node_info(sbi, ino, &old_ni);
1845
1846	if (unlikely(old_ni.blk_addr != NULL_ADDR))
1847		return -EINVAL;
1848
1849	ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1850	if (!ipage)
1851		return -ENOMEM;
 
 
1852
1853	/* Should not use this inode from free nid list */
1854	remove_free_nid(NM_I(sbi), ino);
1855
1856	SetPageUptodate(ipage);
 
1857	fill_node_footer(ipage, ino, ino, 0, true);
 
1858
1859	src = F2FS_INODE(page);
1860	dst = F2FS_INODE(ipage);
1861
1862	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1863	dst->i_size = 0;
1864	dst->i_blocks = cpu_to_le64(1);
1865	dst->i_links = cpu_to_le32(1);
1866	dst->i_xattr_nid = 0;
1867	dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
 
 
 
 
 
 
 
 
 
 
 
 
 
1868
1869	new_ni = old_ni;
1870	new_ni.ino = ino;
1871
1872	if (unlikely(!inc_valid_node_count(sbi, NULL)))
1873		WARN_ON(1);
1874	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1875	inc_valid_inode_count(sbi);
1876	set_page_dirty(ipage);
1877	f2fs_put_page(ipage, 1);
1878	return 0;
1879}
1880
1881int restore_node_summary(struct f2fs_sb_info *sbi,
1882			unsigned int segno, struct f2fs_summary_block *sum)
1883{
1884	struct f2fs_node *rn;
1885	struct f2fs_summary *sum_entry;
1886	block_t addr;
1887	int bio_blocks = MAX_BIO_BLOCKS(sbi);
1888	int i, idx, last_offset, nrpages;
1889
1890	/* scan the node segment */
1891	last_offset = sbi->blocks_per_seg;
1892	addr = START_BLOCK(sbi, segno);
1893	sum_entry = &sum->entries[0];
1894
1895	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1896		nrpages = min(last_offset - i, bio_blocks);
1897
1898		/* readahead node pages */
1899		ra_meta_pages(sbi, addr, nrpages, META_POR, true);
1900
1901		for (idx = addr; idx < addr + nrpages; idx++) {
1902			struct page *page = get_tmp_page(sbi, idx);
1903
1904			rn = F2FS_NODE(page);
1905			sum_entry->nid = rn->footer.nid;
1906			sum_entry->version = 0;
1907			sum_entry->ofs_in_node = 0;
1908			sum_entry++;
1909			f2fs_put_page(page, 1);
1910		}
1911
1912		invalidate_mapping_pages(META_MAPPING(sbi), addr,
1913							addr + nrpages);
1914	}
1915	return 0;
1916}
1917
1918static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1919{
1920	struct f2fs_nm_info *nm_i = NM_I(sbi);
1921	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1922	struct f2fs_journal *journal = curseg->journal;
1923	int i;
1924
1925	down_write(&curseg->journal_rwsem);
1926	for (i = 0; i < nats_in_cursum(journal); i++) {
1927		struct nat_entry *ne;
1928		struct f2fs_nat_entry raw_ne;
1929		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
1930
1931		raw_ne = nat_in_journal(journal, i);
1932
1933		ne = __lookup_nat_cache(nm_i, nid);
1934		if (!ne) {
1935			ne = grab_nat_entry(nm_i, nid);
1936			node_info_from_raw_nat(&ne->ni, &raw_ne);
 
 
 
 
 
 
 
 
 
 
 
 
1937		}
 
1938		__set_nat_cache_dirty(nm_i, ne);
1939	}
1940	update_nats_in_cursum(journal, -i);
1941	up_write(&curseg->journal_rwsem);
1942}
1943
1944static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1945						struct list_head *head, int max)
1946{
1947	struct nat_entry_set *cur;
1948
1949	if (nes->entry_cnt >= max)
1950		goto add_out;
1951
1952	list_for_each_entry(cur, head, set_list) {
1953		if (cur->entry_cnt >= nes->entry_cnt) {
1954			list_add(&nes->set_list, cur->set_list.prev);
1955			return;
1956		}
1957	}
1958add_out:
1959	list_add_tail(&nes->set_list, head);
1960}
1961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1962static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1963					struct nat_entry_set *set)
1964{
1965	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1966	struct f2fs_journal *journal = curseg->journal;
1967	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1968	bool to_journal = true;
1969	struct f2fs_nat_block *nat_blk;
1970	struct nat_entry *ne, *cur;
1971	struct page *page = NULL;
1972
1973	/*
1974	 * there are two steps to flush nat entries:
1975	 * #1, flush nat entries to journal in current hot data summary block.
1976	 * #2, flush nat entries to nat page.
1977	 */
1978	if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
 
1979		to_journal = false;
1980
1981	if (to_journal) {
1982		down_write(&curseg->journal_rwsem);
1983	} else {
1984		page = get_next_nat_page(sbi, start_nid);
1985		nat_blk = page_address(page);
1986		f2fs_bug_on(sbi, !nat_blk);
1987	}
1988
1989	/* flush dirty nats in nat entry set */
1990	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1991		struct f2fs_nat_entry *raw_ne;
1992		nid_t nid = nat_get_nid(ne);
1993		int offset;
1994
1995		if (nat_get_blkaddr(ne) == NEW_ADDR)
1996			continue;
1997
1998		if (to_journal) {
1999			offset = lookup_journal_in_cursum(journal,
2000							NAT_JOURNAL, nid, 1);
2001			f2fs_bug_on(sbi, offset < 0);
2002			raw_ne = &nat_in_journal(journal, offset);
2003			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2004		} else {
2005			raw_ne = &nat_blk->entries[nid - start_nid];
2006		}
2007		raw_nat_from_node_info(raw_ne, &ne->ni);
2008		nat_reset_flag(ne);
2009		__clear_nat_cache_dirty(NM_I(sbi), ne);
2010		if (nat_get_blkaddr(ne) == NULL_ADDR)
2011			add_free_nid(sbi, nid, false);
 
 
 
 
 
2012	}
2013
2014	if (to_journal)
2015		up_write(&curseg->journal_rwsem);
2016	else
 
2017		f2fs_put_page(page, 1);
 
2018
2019	f2fs_bug_on(sbi, set->entry_cnt);
2020
2021	radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2022	kmem_cache_free(nat_entry_set_slab, set);
 
2023}
2024
2025/*
2026 * This function is called during the checkpointing process.
2027 */
2028void flush_nat_entries(struct f2fs_sb_info *sbi)
2029{
2030	struct f2fs_nm_info *nm_i = NM_I(sbi);
2031	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2032	struct f2fs_journal *journal = curseg->journal;
2033	struct nat_entry_set *setvec[SETVEC_SIZE];
2034	struct nat_entry_set *set, *tmp;
2035	unsigned int found;
2036	nid_t set_idx = 0;
2037	LIST_HEAD(sets);
2038
2039	if (!nm_i->dirty_nat_cnt)
2040		return;
2041
2042	down_write(&nm_i->nat_tree_lock);
2043
2044	/*
2045	 * if there are no enough space in journal to store dirty nat
2046	 * entries, remove all entries from journal and merge them
2047	 * into nat entry set.
2048	 */
2049	if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
 
2050		remove_nats_in_journal(sbi);
2051
2052	while ((found = __gang_lookup_nat_set(nm_i,
2053					set_idx, SETVEC_SIZE, setvec))) {
2054		unsigned idx;
2055		set_idx = setvec[found - 1]->set + 1;
2056		for (idx = 0; idx < found; idx++)
2057			__adjust_nat_entry_set(setvec[idx], &sets,
2058						MAX_NAT_JENTRIES(journal));
2059	}
2060
2061	/* flush dirty nats in nat entry set */
2062	list_for_each_entry_safe(set, tmp, &sets, set_list)
2063		__flush_nat_entry_set(sbi, set);
2064
2065	up_write(&nm_i->nat_tree_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2066
2067	f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2068}
2069
2070static int init_node_manager(struct f2fs_sb_info *sbi)
2071{
2072	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2073	struct f2fs_nm_info *nm_i = NM_I(sbi);
2074	unsigned char *version_bitmap;
2075	unsigned int nat_segs, nat_blocks;
 
2076
2077	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2078
2079	/* segment_count_nat includes pair segment so divide to 2. */
2080	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2081	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2082
2083	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2084
2085	/* not used nids: 0, node, meta, (and root counted as valid node) */
2086	nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2087	nm_i->fcnt = 0;
 
 
2088	nm_i->nat_cnt = 0;
2089	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2090	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2091	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2092
2093	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2094	INIT_LIST_HEAD(&nm_i->free_nid_list);
2095	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2096	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2097	INIT_LIST_HEAD(&nm_i->nat_entries);
2098
2099	mutex_init(&nm_i->build_lock);
2100	spin_lock_init(&nm_i->free_nid_list_lock);
2101	init_rwsem(&nm_i->nat_tree_lock);
2102
2103	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2104	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2105	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2106	if (!version_bitmap)
2107		return -EFAULT;
2108
2109	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2110					GFP_KERNEL);
2111	if (!nm_i->nat_bitmap)
2112		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2113	return 0;
2114}
2115
2116int build_node_manager(struct f2fs_sb_info *sbi)
2117{
2118	int err;
2119
2120	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
 
2121	if (!sbi->nm_info)
2122		return -ENOMEM;
2123
2124	err = init_node_manager(sbi);
2125	if (err)
2126		return err;
2127
2128	build_free_nids(sbi);
 
 
 
 
 
 
 
2129	return 0;
2130}
2131
2132void destroy_node_manager(struct f2fs_sb_info *sbi)
2133{
2134	struct f2fs_nm_info *nm_i = NM_I(sbi);
2135	struct free_nid *i, *next_i;
2136	struct nat_entry *natvec[NATVEC_SIZE];
2137	struct nat_entry_set *setvec[SETVEC_SIZE];
2138	nid_t nid = 0;
2139	unsigned int found;
2140
2141	if (!nm_i)
2142		return;
2143
2144	/* destroy free nid list */
2145	spin_lock(&nm_i->free_nid_list_lock);
2146	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2147		f2fs_bug_on(sbi, i->state == NID_ALLOC);
2148		__del_from_free_nid_list(nm_i, i);
2149		nm_i->fcnt--;
2150		spin_unlock(&nm_i->free_nid_list_lock);
2151		kmem_cache_free(free_nid_slab, i);
2152		spin_lock(&nm_i->free_nid_list_lock);
2153	}
2154	f2fs_bug_on(sbi, nm_i->fcnt);
2155	spin_unlock(&nm_i->free_nid_list_lock);
 
 
2156
2157	/* destroy nat cache */
2158	down_write(&nm_i->nat_tree_lock);
2159	while ((found = __gang_lookup_nat_cache(nm_i,
2160					nid, NATVEC_SIZE, natvec))) {
2161		unsigned idx;
2162
2163		nid = nat_get_nid(natvec[found - 1]) + 1;
2164		for (idx = 0; idx < found; idx++)
2165			__del_from_nat_cache(nm_i, natvec[idx]);
2166	}
2167	f2fs_bug_on(sbi, nm_i->nat_cnt);
2168
2169	/* destroy nat set cache */
2170	nid = 0;
2171	while ((found = __gang_lookup_nat_set(nm_i,
2172					nid, SETVEC_SIZE, setvec))) {
2173		unsigned idx;
2174
2175		nid = setvec[found - 1]->set + 1;
2176		for (idx = 0; idx < found; idx++) {
2177			/* entry_cnt is not zero, when cp_error was occurred */
2178			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2179			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2180			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2181		}
2182	}
2183	up_write(&nm_i->nat_tree_lock);
2184
 
 
 
 
 
 
 
 
 
 
2185	kfree(nm_i->nat_bitmap);
 
 
 
 
2186	sbi->nm_info = NULL;
2187	kfree(nm_i);
2188}
2189
2190int __init create_node_manager_caches(void)
2191{
2192	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2193			sizeof(struct nat_entry));
2194	if (!nat_entry_slab)
2195		goto fail;
2196
2197	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2198			sizeof(struct free_nid));
2199	if (!free_nid_slab)
2200		goto destroy_nat_entry;
2201
2202	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2203			sizeof(struct nat_entry_set));
2204	if (!nat_entry_set_slab)
2205		goto destroy_free_nid;
2206	return 0;
2207
2208destroy_free_nid:
2209	kmem_cache_destroy(free_nid_slab);
2210destroy_nat_entry:
2211	kmem_cache_destroy(nat_entry_slab);
2212fail:
2213	return -ENOMEM;
2214}
2215
2216void destroy_node_manager_caches(void)
2217{
2218	kmem_cache_destroy(nat_entry_set_slab);
2219	kmem_cache_destroy(free_nid_slab);
2220	kmem_cache_destroy(nat_entry_slab);
2221}