Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * fs/f2fs/node.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/mpage.h>
  14#include <linux/backing-dev.h>
  15#include <linux/blkdev.h>
  16#include <linux/pagevec.h>
  17#include <linux/swap.h>
  18
  19#include "f2fs.h"
  20#include "node.h"
  21#include "segment.h"
  22#include "xattr.h"
  23#include "trace.h"
  24#include <trace/events/f2fs.h>
  25
  26#define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  27
  28static struct kmem_cache *nat_entry_slab;
  29static struct kmem_cache *free_nid_slab;
  30static struct kmem_cache *nat_entry_set_slab;
 
  31
  32bool available_free_memory(struct f2fs_sb_info *sbi, int type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  33{
  34	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
  35	struct sysinfo val;
  36	unsigned long avail_ram;
  37	unsigned long mem_size = 0;
  38	bool res = false;
  39
 
 
 
  40	si_meminfo(&val);
  41
  42	/* only uses low memory */
  43	avail_ram = val.totalram - val.totalhigh;
  44
  45	/*
  46	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  47	 */
  48	if (type == FREE_NIDS) {
  49		mem_size = (nm_i->nid_cnt[FREE_NID] *
  50				sizeof(struct free_nid)) >> PAGE_SHIFT;
  51		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  52	} else if (type == NAT_ENTRIES) {
  53		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  54							PAGE_SHIFT;
  55		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  56		if (excess_cached_nats(sbi))
  57			res = false;
  58	} else if (type == DIRTY_DENTS) {
  59		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  60			return false;
  61		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  62		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  63	} else if (type == INO_ENTRIES) {
  64		int i;
  65
  66		for (i = 0; i < MAX_INO_ENTRY; i++)
  67			mem_size += sbi->im[i].ino_num *
  68						sizeof(struct ino_entry);
  69		mem_size >>= PAGE_SHIFT;
  70		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  71	} else if (type == EXTENT_CACHE) {
  72		mem_size = (atomic_read(&sbi->total_ext_tree) *
 
 
 
 
  73				sizeof(struct extent_tree) +
  74				atomic_read(&sbi->total_ext_node) *
  75				sizeof(struct extent_node)) >> PAGE_SHIFT;
  76		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  77	} else if (type == INMEM_PAGES) {
  78		/* it allows 20% / total_ram for inmemory pages */
  79		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
  80		res = mem_size < (val.totalram / 5);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  81	} else {
  82		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  83			return true;
  84	}
  85	return res;
  86}
  87
  88static void clear_node_page_dirty(struct page *page)
  89{
  90	struct address_space *mapping = page->mapping;
  91	unsigned int long flags;
  92
  93	if (PageDirty(page)) {
  94		xa_lock_irqsave(&mapping->i_pages, flags);
  95		radix_tree_tag_clear(&mapping->i_pages,
  96				page_index(page),
  97				PAGECACHE_TAG_DIRTY);
  98		xa_unlock_irqrestore(&mapping->i_pages, flags);
  99
 100		clear_page_dirty_for_io(page);
 101		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
 102	}
 103	ClearPageUptodate(page);
 104}
 105
 106static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 107{
 108	pgoff_t index = current_nat_addr(sbi, nid);
 109	return get_meta_page(sbi, index);
 110}
 111
 112static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 113{
 114	struct page *src_page;
 115	struct page *dst_page;
 116	pgoff_t src_off;
 117	pgoff_t dst_off;
 118	void *src_addr;
 119	void *dst_addr;
 120	struct f2fs_nm_info *nm_i = NM_I(sbi);
 121
 122	src_off = current_nat_addr(sbi, nid);
 123	dst_off = next_nat_addr(sbi, src_off);
 124
 125	/* get current nat block page with lock */
 126	src_page = get_meta_page(sbi, src_off);
 127	dst_page = grab_meta_page(sbi, dst_off);
 
 
 128	f2fs_bug_on(sbi, PageDirty(src_page));
 129
 130	src_addr = page_address(src_page);
 131	dst_addr = page_address(dst_page);
 132	memcpy(dst_addr, src_addr, PAGE_SIZE);
 133	set_page_dirty(dst_page);
 134	f2fs_put_page(src_page, 1);
 135
 136	set_to_next_nat(nm_i, nid);
 137
 138	return dst_page;
 139}
 140
 141static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
 
 142{
 143	struct nat_entry *new;
 144
 145	if (no_fail)
 146		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 147	else
 148		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 149	if (new) {
 150		nat_set_nid(new, nid);
 151		nat_reset_flag(new);
 152	}
 153	return new;
 154}
 155
 156static void __free_nat_entry(struct nat_entry *e)
 157{
 158	kmem_cache_free(nat_entry_slab, e);
 159}
 160
 161/* must be locked by nat_tree_lock */
 162static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
 163	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
 164{
 165	if (no_fail)
 166		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
 167	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
 168		return NULL;
 169
 170	if (raw_ne)
 171		node_info_from_raw_nat(&ne->ni, raw_ne);
 
 
 172	list_add_tail(&ne->list, &nm_i->nat_entries);
 173	nm_i->nat_cnt++;
 
 
 
 174	return ne;
 175}
 176
 177static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 178{
 179	return radix_tree_lookup(&nm_i->nat_root, n);
 
 
 
 
 
 
 
 
 
 
 
 
 180}
 181
 182static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 183		nid_t start, unsigned int nr, struct nat_entry **ep)
 184{
 185	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 186}
 187
 188static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 189{
 190	list_del(&e->list);
 191	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 192	nm_i->nat_cnt--;
 
 193	__free_nat_entry(e);
 194}
 195
 196static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
 197							struct nat_entry *ne)
 198{
 199	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 200	struct nat_entry_set *head;
 201
 202	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 203	if (!head) {
 204		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 
 205
 206		INIT_LIST_HEAD(&head->entry_list);
 207		INIT_LIST_HEAD(&head->set_list);
 208		head->set = set;
 209		head->entry_cnt = 0;
 210		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 211	}
 212	return head;
 213}
 214
 215static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 216						struct nat_entry *ne)
 217{
 218	struct nat_entry_set *head;
 219	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
 220
 221	if (!new_ne)
 222		head = __grab_nat_entry_set(nm_i, ne);
 223
 224	/*
 225	 * update entry_cnt in below condition:
 226	 * 1. update NEW_ADDR to valid block address;
 227	 * 2. update old block address to new one;
 228	 */
 229	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
 230				!get_nat_flag(ne, IS_DIRTY)))
 231		head->entry_cnt++;
 232
 233	set_nat_flag(ne, IS_PREALLOC, new_ne);
 234
 235	if (get_nat_flag(ne, IS_DIRTY))
 236		goto refresh_list;
 237
 238	nm_i->dirty_nat_cnt++;
 
 239	set_nat_flag(ne, IS_DIRTY, true);
 240refresh_list:
 
 241	if (new_ne)
 242		list_del_init(&ne->list);
 243	else
 244		list_move_tail(&ne->list, &head->entry_list);
 
 245}
 246
 247static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 248		struct nat_entry_set *set, struct nat_entry *ne)
 249{
 
 250	list_move_tail(&ne->list, &nm_i->nat_entries);
 
 
 251	set_nat_flag(ne, IS_DIRTY, false);
 252	set->entry_cnt--;
 253	nm_i->dirty_nat_cnt--;
 
 254}
 255
 256static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 257		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 258{
 259	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 260							start, nr);
 261}
 262
 263int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 264{
 265	struct f2fs_nm_info *nm_i = NM_I(sbi);
 266	struct nat_entry *e;
 267	bool need = false;
 268
 269	down_read(&nm_i->nat_tree_lock);
 270	e = __lookup_nat_cache(nm_i, nid);
 271	if (e) {
 272		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 273				!get_nat_flag(e, HAS_FSYNCED_INODE))
 274			need = true;
 275	}
 276	up_read(&nm_i->nat_tree_lock);
 277	return need;
 278}
 279
 280bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 281{
 282	struct f2fs_nm_info *nm_i = NM_I(sbi);
 283	struct nat_entry *e;
 284	bool is_cp = true;
 285
 286	down_read(&nm_i->nat_tree_lock);
 287	e = __lookup_nat_cache(nm_i, nid);
 288	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 289		is_cp = false;
 290	up_read(&nm_i->nat_tree_lock);
 291	return is_cp;
 292}
 293
 294bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 295{
 296	struct f2fs_nm_info *nm_i = NM_I(sbi);
 297	struct nat_entry *e;
 298	bool need_update = true;
 299
 300	down_read(&nm_i->nat_tree_lock);
 301	e = __lookup_nat_cache(nm_i, ino);
 302	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 303			(get_nat_flag(e, IS_CHECKPOINTED) ||
 304			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 305		need_update = false;
 306	up_read(&nm_i->nat_tree_lock);
 307	return need_update;
 308}
 309
 310/* must be locked by nat_tree_lock */
 311static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 312						struct f2fs_nat_entry *ne)
 313{
 314	struct f2fs_nm_info *nm_i = NM_I(sbi);
 315	struct nat_entry *new, *e;
 316
 317	new = __alloc_nat_entry(nid, false);
 
 
 
 
 318	if (!new)
 319		return;
 320
 321	down_write(&nm_i->nat_tree_lock);
 322	e = __lookup_nat_cache(nm_i, nid);
 323	if (!e)
 324		e = __init_nat_entry(nm_i, new, ne, false);
 325	else
 326		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 327				nat_get_blkaddr(e) !=
 328					le32_to_cpu(ne->block_addr) ||
 329				nat_get_version(e) != ne->version);
 330	up_write(&nm_i->nat_tree_lock);
 331	if (e != new)
 332		__free_nat_entry(new);
 333}
 334
 335static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 336			block_t new_blkaddr, bool fsync_done)
 337{
 338	struct f2fs_nm_info *nm_i = NM_I(sbi);
 339	struct nat_entry *e;
 340	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
 341
 342	down_write(&nm_i->nat_tree_lock);
 343	e = __lookup_nat_cache(nm_i, ni->nid);
 344	if (!e) {
 345		e = __init_nat_entry(nm_i, new, NULL, true);
 346		copy_node_info(&e->ni, ni);
 347		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 348	} else if (new_blkaddr == NEW_ADDR) {
 349		/*
 350		 * when nid is reallocated,
 351		 * previous nat entry can be remained in nat cache.
 352		 * So, reinitialize it with new information.
 353		 */
 354		copy_node_info(&e->ni, ni);
 355		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 356	}
 357	/* let's free early to reduce memory consumption */
 358	if (e != new)
 359		__free_nat_entry(new);
 360
 361	/* sanity check */
 362	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 363	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 364			new_blkaddr == NULL_ADDR);
 365	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 366			new_blkaddr == NEW_ADDR);
 367	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
 368			nat_get_blkaddr(e) != NULL_ADDR &&
 369			new_blkaddr == NEW_ADDR);
 370
 371	/* increment version no as node is removed */
 372	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 373		unsigned char version = nat_get_version(e);
 
 374		nat_set_version(e, inc_node_version(version));
 375	}
 376
 377	/* change address */
 378	nat_set_blkaddr(e, new_blkaddr);
 379	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
 380		set_nat_flag(e, IS_CHECKPOINTED, false);
 381	__set_nat_cache_dirty(nm_i, e);
 382
 383	/* update fsync_mark if its inode nat entry is still alive */
 384	if (ni->nid != ni->ino)
 385		e = __lookup_nat_cache(nm_i, ni->ino);
 386	if (e) {
 387		if (fsync_done && ni->nid == ni->ino)
 388			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 389		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 390	}
 391	up_write(&nm_i->nat_tree_lock);
 392}
 393
 394int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 395{
 396	struct f2fs_nm_info *nm_i = NM_I(sbi);
 397	int nr = nr_shrink;
 398
 399	if (!down_write_trylock(&nm_i->nat_tree_lock))
 400		return 0;
 401
 402	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
 
 403		struct nat_entry *ne;
 
 
 
 
 404		ne = list_first_entry(&nm_i->nat_entries,
 405					struct nat_entry, list);
 
 
 
 406		__del_from_nat_cache(nm_i, ne);
 407		nr_shrink--;
 
 
 408	}
 409	up_write(&nm_i->nat_tree_lock);
 
 
 410	return nr - nr_shrink;
 411}
 412
 413/*
 414 * This function always returns success
 415 */
 416void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
 417{
 418	struct f2fs_nm_info *nm_i = NM_I(sbi);
 419	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 420	struct f2fs_journal *journal = curseg->journal;
 421	nid_t start_nid = START_NID(nid);
 422	struct f2fs_nat_block *nat_blk;
 423	struct page *page = NULL;
 424	struct f2fs_nat_entry ne;
 425	struct nat_entry *e;
 426	pgoff_t index;
 
 427	int i;
 428
 429	ni->nid = nid;
 430
 431	/* Check nat cache */
 432	down_read(&nm_i->nat_tree_lock);
 433	e = __lookup_nat_cache(nm_i, nid);
 434	if (e) {
 435		ni->ino = nat_get_ino(e);
 436		ni->blk_addr = nat_get_blkaddr(e);
 437		ni->version = nat_get_version(e);
 438		up_read(&nm_i->nat_tree_lock);
 439		return;
 440	}
 441
 442	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 
 
 
 
 
 
 
 
 
 
 
 
 443
 444	/* Check current segment summary */
 445	down_read(&curseg->journal_rwsem);
 446	i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 447	if (i >= 0) {
 448		ne = nat_in_journal(journal, i);
 449		node_info_from_raw_nat(ni, &ne);
 450	}
 451	up_read(&curseg->journal_rwsem);
 452	if (i >= 0) {
 453		up_read(&nm_i->nat_tree_lock);
 454		goto cache;
 455	}
 456
 457	/* Fill node_info from nat page */
 458	index = current_nat_addr(sbi, nid);
 459	up_read(&nm_i->nat_tree_lock);
 
 
 
 
 460
 461	page = get_meta_page(sbi, index);
 462	nat_blk = (struct f2fs_nat_block *)page_address(page);
 463	ne = nat_blk->entries[nid - start_nid];
 464	node_info_from_raw_nat(ni, &ne);
 465	f2fs_put_page(page, 1);
 466cache:
 
 
 
 
 
 467	/* cache nat entry */
 468	cache_nat_entry(sbi, nid, &ne);
 
 469}
 470
 471/*
 472 * readahead MAX_RA_NODE number of node pages.
 473 */
 474static void ra_node_pages(struct page *parent, int start, int n)
 475{
 476	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 477	struct blk_plug plug;
 478	int i, end;
 479	nid_t nid;
 480
 481	blk_start_plug(&plug);
 482
 483	/* Then, try readahead for siblings of the desired node */
 484	end = start + n;
 485	end = min(end, NIDS_PER_BLOCK);
 486	for (i = start; i < end; i++) {
 487		nid = get_nid(parent, i, false);
 488		ra_node_page(sbi, nid);
 489	}
 490
 491	blk_finish_plug(&plug);
 492}
 493
 494pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 495{
 496	const long direct_index = ADDRS_PER_INODE(dn->inode);
 497	const long direct_blks = ADDRS_PER_BLOCK;
 498	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 499	unsigned int skipped_unit = ADDRS_PER_BLOCK;
 500	int cur_level = dn->cur_level;
 501	int max_level = dn->max_level;
 502	pgoff_t base = 0;
 503
 504	if (!dn->max_level)
 505		return pgofs + 1;
 506
 507	while (max_level-- > cur_level)
 508		skipped_unit *= NIDS_PER_BLOCK;
 509
 510	switch (dn->max_level) {
 511	case 3:
 512		base += 2 * indirect_blks;
 
 513	case 2:
 514		base += 2 * direct_blks;
 
 515	case 1:
 516		base += direct_index;
 517		break;
 518	default:
 519		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 520	}
 521
 522	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 523}
 524
 525/*
 526 * The maximum depth is four.
 527 * Offset[0] will have raw inode offset.
 528 */
 529static int get_node_path(struct inode *inode, long block,
 530				int offset[4], unsigned int noffset[4])
 531{
 532	const long direct_index = ADDRS_PER_INODE(inode);
 533	const long direct_blks = ADDRS_PER_BLOCK;
 534	const long dptrs_per_blk = NIDS_PER_BLOCK;
 535	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 536	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 537	int n = 0;
 538	int level = 0;
 539
 540	noffset[0] = 0;
 541
 542	if (block < direct_index) {
 543		offset[n] = block;
 544		goto got;
 545	}
 546	block -= direct_index;
 547	if (block < direct_blks) {
 548		offset[n++] = NODE_DIR1_BLOCK;
 549		noffset[n] = 1;
 550		offset[n] = block;
 551		level = 1;
 552		goto got;
 553	}
 554	block -= direct_blks;
 555	if (block < direct_blks) {
 556		offset[n++] = NODE_DIR2_BLOCK;
 557		noffset[n] = 2;
 558		offset[n] = block;
 559		level = 1;
 560		goto got;
 561	}
 562	block -= direct_blks;
 563	if (block < indirect_blks) {
 564		offset[n++] = NODE_IND1_BLOCK;
 565		noffset[n] = 3;
 566		offset[n++] = block / direct_blks;
 567		noffset[n] = 4 + offset[n - 1];
 568		offset[n] = block % direct_blks;
 569		level = 2;
 570		goto got;
 571	}
 572	block -= indirect_blks;
 573	if (block < indirect_blks) {
 574		offset[n++] = NODE_IND2_BLOCK;
 575		noffset[n] = 4 + dptrs_per_blk;
 576		offset[n++] = block / direct_blks;
 577		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 578		offset[n] = block % direct_blks;
 579		level = 2;
 580		goto got;
 581	}
 582	block -= indirect_blks;
 583	if (block < dindirect_blks) {
 584		offset[n++] = NODE_DIND_BLOCK;
 585		noffset[n] = 5 + (dptrs_per_blk * 2);
 586		offset[n++] = block / indirect_blks;
 587		noffset[n] = 6 + (dptrs_per_blk * 2) +
 588			      offset[n - 1] * (dptrs_per_blk + 1);
 589		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 590		noffset[n] = 7 + (dptrs_per_blk * 2) +
 591			      offset[n - 2] * (dptrs_per_blk + 1) +
 592			      offset[n - 1];
 593		offset[n] = block % direct_blks;
 594		level = 3;
 595		goto got;
 596	} else {
 597		return -E2BIG;
 598	}
 599got:
 600	return level;
 601}
 602
 603/*
 604 * Caller should call f2fs_put_dnode(dn).
 605 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 606 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 607 * In the case of RDONLY_NODE, we don't need to care about mutex.
 608 */
 609int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 610{
 611	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 612	struct page *npage[4];
 613	struct page *parent = NULL;
 614	int offset[4];
 615	unsigned int noffset[4];
 616	nid_t nids[4];
 617	int level, i = 0;
 618	int err = 0;
 619
 620	level = get_node_path(dn->inode, index, offset, noffset);
 621	if (level < 0)
 622		return level;
 623
 624	nids[0] = dn->inode->i_ino;
 625	npage[0] = dn->inode_page;
 626
 627	if (!npage[0]) {
 628		npage[0] = get_node_page(sbi, nids[0]);
 629		if (IS_ERR(npage[0]))
 630			return PTR_ERR(npage[0]);
 631	}
 632
 633	/* if inline_data is set, should not report any block indices */
 634	if (f2fs_has_inline_data(dn->inode) && index) {
 635		err = -ENOENT;
 636		f2fs_put_page(npage[0], 1);
 637		goto release_out;
 638	}
 639
 640	parent = npage[0];
 641	if (level != 0)
 642		nids[1] = get_nid(parent, offset[0], true);
 643	dn->inode_page = npage[0];
 644	dn->inode_page_locked = true;
 645
 646	/* get indirect or direct nodes */
 647	for (i = 1; i <= level; i++) {
 648		bool done = false;
 649
 650		if (!nids[i] && mode == ALLOC_NODE) {
 651			/* alloc new node */
 652			if (!alloc_nid(sbi, &(nids[i]))) {
 653				err = -ENOSPC;
 654				goto release_pages;
 655			}
 656
 657			dn->nid = nids[i];
 658			npage[i] = new_node_page(dn, noffset[i]);
 659			if (IS_ERR(npage[i])) {
 660				alloc_nid_failed(sbi, nids[i]);
 661				err = PTR_ERR(npage[i]);
 662				goto release_pages;
 663			}
 664
 665			set_nid(parent, offset[i - 1], nids[i], i == 1);
 666			alloc_nid_done(sbi, nids[i]);
 667			done = true;
 668		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 669			npage[i] = get_node_page_ra(parent, offset[i - 1]);
 670			if (IS_ERR(npage[i])) {
 671				err = PTR_ERR(npage[i]);
 672				goto release_pages;
 673			}
 674			done = true;
 675		}
 676		if (i == 1) {
 677			dn->inode_page_locked = false;
 678			unlock_page(parent);
 679		} else {
 680			f2fs_put_page(parent, 1);
 681		}
 682
 683		if (!done) {
 684			npage[i] = get_node_page(sbi, nids[i]);
 685			if (IS_ERR(npage[i])) {
 686				err = PTR_ERR(npage[i]);
 687				f2fs_put_page(npage[0], 0);
 688				goto release_out;
 689			}
 690		}
 691		if (i < level) {
 692			parent = npage[i];
 693			nids[i + 1] = get_nid(parent, offset[i], false);
 694		}
 695	}
 696	dn->nid = nids[level];
 697	dn->ofs_in_node = offset[level];
 698	dn->node_page = npage[level];
 699	dn->data_blkaddr = datablock_addr(dn->inode,
 700				dn->node_page, dn->ofs_in_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 701	return 0;
 702
 703release_pages:
 704	f2fs_put_page(parent, 1);
 705	if (i > 1)
 706		f2fs_put_page(npage[0], 0);
 707release_out:
 708	dn->inode_page = NULL;
 709	dn->node_page = NULL;
 710	if (err == -ENOENT) {
 711		dn->cur_level = i;
 712		dn->max_level = level;
 713		dn->ofs_in_node = offset[level];
 714	}
 715	return err;
 716}
 717
 718static void truncate_node(struct dnode_of_data *dn)
 719{
 720	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 721	struct node_info ni;
 
 
 722
 723	get_node_info(sbi, dn->nid, &ni);
 
 
 
 
 
 
 
 
 
 
 
 
 724
 725	/* Deallocate node address */
 726	invalidate_blocks(sbi, ni.blk_addr);
 727	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
 728	set_node_addr(sbi, &ni, NULL_ADDR, false);
 729
 730	if (dn->nid == dn->inode->i_ino) {
 731		remove_orphan_inode(sbi, dn->nid);
 732		dec_valid_inode_count(sbi);
 733		f2fs_inode_synced(dn->inode);
 734	}
 735
 736	clear_node_page_dirty(dn->node_page);
 737	set_sbi_flag(sbi, SBI_IS_DIRTY);
 738
 
 739	f2fs_put_page(dn->node_page, 1);
 740
 741	invalidate_mapping_pages(NODE_MAPPING(sbi),
 742			dn->node_page->index, dn->node_page->index);
 743
 744	dn->node_page = NULL;
 745	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 
 
 746}
 747
 748static int truncate_dnode(struct dnode_of_data *dn)
 749{
 
 750	struct page *page;
 
 751
 752	if (dn->nid == 0)
 753		return 1;
 754
 755	/* get direct node */
 756	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 757	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 758		return 1;
 759	else if (IS_ERR(page))
 760		return PTR_ERR(page);
 761
 
 
 
 
 
 
 
 
 
 762	/* Make dnode_of_data for parameter */
 763	dn->node_page = page;
 764	dn->ofs_in_node = 0;
 765	truncate_data_blocks(dn);
 766	truncate_node(dn);
 
 
 
 
 
 767	return 1;
 768}
 769
 770static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 771						int ofs, int depth)
 772{
 773	struct dnode_of_data rdn = *dn;
 774	struct page *page;
 775	struct f2fs_node *rn;
 776	nid_t child_nid;
 777	unsigned int child_nofs;
 778	int freed = 0;
 779	int i, ret;
 780
 781	if (dn->nid == 0)
 782		return NIDS_PER_BLOCK + 1;
 783
 784	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 785
 786	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 787	if (IS_ERR(page)) {
 788		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 789		return PTR_ERR(page);
 790	}
 791
 792	ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 793
 794	rn = F2FS_NODE(page);
 795	if (depth < 3) {
 796		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 797			child_nid = le32_to_cpu(rn->in.nid[i]);
 798			if (child_nid == 0)
 799				continue;
 800			rdn.nid = child_nid;
 801			ret = truncate_dnode(&rdn);
 802			if (ret < 0)
 803				goto out_err;
 804			if (set_nid(page, i, 0, false))
 805				dn->node_changed = true;
 806		}
 807	} else {
 808		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 809		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 810			child_nid = le32_to_cpu(rn->in.nid[i]);
 811			if (child_nid == 0) {
 812				child_nofs += NIDS_PER_BLOCK + 1;
 813				continue;
 814			}
 815			rdn.nid = child_nid;
 816			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 817			if (ret == (NIDS_PER_BLOCK + 1)) {
 818				if (set_nid(page, i, 0, false))
 819					dn->node_changed = true;
 820				child_nofs += ret;
 821			} else if (ret < 0 && ret != -ENOENT) {
 822				goto out_err;
 823			}
 824		}
 825		freed = child_nofs;
 826	}
 827
 828	if (!ofs) {
 829		/* remove current indirect node */
 830		dn->node_page = page;
 831		truncate_node(dn);
 
 
 832		freed++;
 833	} else {
 834		f2fs_put_page(page, 1);
 835	}
 836	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 837	return freed;
 838
 839out_err:
 840	f2fs_put_page(page, 1);
 841	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 842	return ret;
 843}
 844
 845static int truncate_partial_nodes(struct dnode_of_data *dn,
 846			struct f2fs_inode *ri, int *offset, int depth)
 847{
 848	struct page *pages[2];
 849	nid_t nid[3];
 850	nid_t child_nid;
 851	int err = 0;
 852	int i;
 853	int idx = depth - 2;
 854
 855	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 856	if (!nid[0])
 857		return 0;
 858
 859	/* get indirect nodes in the path */
 860	for (i = 0; i < idx + 1; i++) {
 861		/* reference count'll be increased */
 862		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 863		if (IS_ERR(pages[i])) {
 864			err = PTR_ERR(pages[i]);
 865			idx = i - 1;
 866			goto fail;
 867		}
 868		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 869	}
 870
 871	ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
 872
 873	/* free direct nodes linked to a partial indirect node */
 874	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
 875		child_nid = get_nid(pages[idx], i, false);
 876		if (!child_nid)
 877			continue;
 878		dn->nid = child_nid;
 879		err = truncate_dnode(dn);
 880		if (err < 0)
 881			goto fail;
 882		if (set_nid(pages[idx], i, 0, false))
 883			dn->node_changed = true;
 884	}
 885
 886	if (offset[idx + 1] == 0) {
 887		dn->node_page = pages[idx];
 888		dn->nid = nid[idx];
 889		truncate_node(dn);
 
 
 890	} else {
 891		f2fs_put_page(pages[idx], 1);
 892	}
 893	offset[idx]++;
 894	offset[idx + 1] = 0;
 895	idx--;
 896fail:
 897	for (i = idx; i >= 0; i--)
 898		f2fs_put_page(pages[i], 1);
 899
 900	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
 901
 902	return err;
 903}
 904
 905/*
 906 * All the block addresses of data and nodes should be nullified.
 907 */
 908int truncate_inode_blocks(struct inode *inode, pgoff_t from)
 909{
 910	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 911	int err = 0, cont = 1;
 912	int level, offset[4], noffset[4];
 913	unsigned int nofs = 0;
 914	struct f2fs_inode *ri;
 915	struct dnode_of_data dn;
 916	struct page *page;
 917
 918	trace_f2fs_truncate_inode_blocks_enter(inode, from);
 919
 920	level = get_node_path(inode, from, offset, noffset);
 921	if (level < 0)
 
 922		return level;
 
 923
 924	page = get_node_page(sbi, inode->i_ino);
 925	if (IS_ERR(page)) {
 926		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
 927		return PTR_ERR(page);
 928	}
 929
 930	set_new_dnode(&dn, inode, page, NULL, 0);
 931	unlock_page(page);
 932
 933	ri = F2FS_INODE(page);
 934	switch (level) {
 935	case 0:
 936	case 1:
 937		nofs = noffset[1];
 938		break;
 939	case 2:
 940		nofs = noffset[1];
 941		if (!offset[level - 1])
 942			goto skip_partial;
 943		err = truncate_partial_nodes(&dn, ri, offset, level);
 944		if (err < 0 && err != -ENOENT)
 945			goto fail;
 946		nofs += 1 + NIDS_PER_BLOCK;
 947		break;
 948	case 3:
 949		nofs = 5 + 2 * NIDS_PER_BLOCK;
 950		if (!offset[level - 1])
 951			goto skip_partial;
 952		err = truncate_partial_nodes(&dn, ri, offset, level);
 953		if (err < 0 && err != -ENOENT)
 954			goto fail;
 955		break;
 956	default:
 957		BUG();
 958	}
 959
 960skip_partial:
 961	while (cont) {
 962		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 963		switch (offset[0]) {
 964		case NODE_DIR1_BLOCK:
 965		case NODE_DIR2_BLOCK:
 966			err = truncate_dnode(&dn);
 967			break;
 968
 969		case NODE_IND1_BLOCK:
 970		case NODE_IND2_BLOCK:
 971			err = truncate_nodes(&dn, nofs, offset[1], 2);
 972			break;
 973
 974		case NODE_DIND_BLOCK:
 975			err = truncate_nodes(&dn, nofs, offset[1], 3);
 976			cont = 0;
 977			break;
 978
 979		default:
 980			BUG();
 981		}
 982		if (err < 0 && err != -ENOENT)
 
 
 
 
 
 
 
 
 
 
 983			goto fail;
 984		if (offset[1] == 0 &&
 985				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
 986			lock_page(page);
 987			BUG_ON(page->mapping != NODE_MAPPING(sbi));
 988			f2fs_wait_on_page_writeback(page, NODE, true);
 989			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
 990			set_page_dirty(page);
 991			unlock_page(page);
 992		}
 993		offset[1] = 0;
 994		offset[0]++;
 995		nofs += err;
 996	}
 997fail:
 998	f2fs_put_page(page, 0);
 999	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1000	return err > 0 ? 0 : err;
1001}
1002
1003/* caller must lock inode page */
1004int truncate_xattr_node(struct inode *inode)
1005{
1006	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1007	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1008	struct dnode_of_data dn;
1009	struct page *npage;
 
1010
1011	if (!nid)
1012		return 0;
1013
1014	npage = get_node_page(sbi, nid);
1015	if (IS_ERR(npage))
1016		return PTR_ERR(npage);
1017
 
 
 
 
 
 
 
1018	f2fs_i_xnid_write(inode, 0);
1019
1020	set_new_dnode(&dn, inode, NULL, npage, nid);
1021	truncate_node(&dn);
1022	return 0;
1023}
1024
1025/*
1026 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1027 * f2fs_unlock_op().
1028 */
1029int remove_inode_page(struct inode *inode)
1030{
1031	struct dnode_of_data dn;
1032	int err;
1033
1034	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1035	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1036	if (err)
1037		return err;
1038
1039	err = truncate_xattr_node(inode);
1040	if (err) {
1041		f2fs_put_dnode(&dn);
1042		return err;
1043	}
1044
1045	/* remove potential inline_data blocks */
1046	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1047				S_ISLNK(inode->i_mode))
1048		truncate_data_blocks_range(&dn, 1);
1049
1050	/* 0 is possible, after f2fs_new_inode() has failed */
1051	f2fs_bug_on(F2FS_I_SB(inode),
1052			inode->i_blocks != 0 && inode->i_blocks != 8);
 
 
 
 
 
 
 
 
 
1053
1054	/* will put inode & node pages */
1055	truncate_node(&dn);
 
 
 
 
1056	return 0;
1057}
1058
1059struct page *new_inode_page(struct inode *inode)
1060{
1061	struct dnode_of_data dn;
1062
1063	/* allocate inode page for new inode */
1064	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1065
1066	/* caller should f2fs_put_page(page, 1); */
1067	return new_node_page(&dn, 0);
1068}
1069
1070struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1071{
1072	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1073	struct node_info new_ni;
1074	struct page *page;
1075	int err;
1076
1077	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1078		return ERR_PTR(-EPERM);
1079
1080	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1081	if (!page)
1082		return ERR_PTR(-ENOMEM);
1083
1084	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1085		goto fail;
1086
1087#ifdef CONFIG_F2FS_CHECK_FS
1088	get_node_info(sbi, dn->nid, &new_ni);
1089	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1090#endif
1091	new_ni.nid = dn->nid;
1092	new_ni.ino = dn->inode->i_ino;
1093	new_ni.blk_addr = NULL_ADDR;
1094	new_ni.flag = 0;
1095	new_ni.version = 0;
1096	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1097
1098	f2fs_wait_on_page_writeback(page, NODE, true);
1099	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1100	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1101	if (!PageUptodate(page))
1102		SetPageUptodate(page);
1103	if (set_page_dirty(page))
1104		dn->node_changed = true;
1105
1106	if (f2fs_has_xattr_block(ofs))
1107		f2fs_i_xnid_write(dn->inode, dn->nid);
1108
1109	if (ofs == 0)
1110		inc_valid_inode_count(sbi);
1111	return page;
1112
1113fail:
1114	clear_node_page_dirty(page);
1115	f2fs_put_page(page, 1);
1116	return ERR_PTR(err);
1117}
1118
1119/*
1120 * Caller should do after getting the following values.
1121 * 0: f2fs_put_page(page, 0)
1122 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1123 */
1124static int read_node_page(struct page *page, int op_flags)
1125{
 
1126	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1127	struct node_info ni;
1128	struct f2fs_io_info fio = {
1129		.sbi = sbi,
1130		.type = NODE,
1131		.op = REQ_OP_READ,
1132		.op_flags = op_flags,
1133		.page = page,
1134		.encrypted_page = NULL,
1135	};
 
1136
1137	if (PageUptodate(page))
 
 
 
 
1138		return LOCKED_PAGE;
 
1139
1140	get_node_info(sbi, page->index, &ni);
 
 
1141
1142	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1143		ClearPageUptodate(page);
 
1144		return -ENOENT;
1145	}
1146
1147	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1148	return f2fs_submit_page_bio(&fio);
 
 
 
 
 
 
1149}
1150
1151/*
1152 * Readahead a node page
1153 */
1154void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1155{
1156	struct page *apage;
1157	int err;
1158
1159	if (!nid)
1160		return;
1161	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
 
1162
1163	rcu_read_lock();
1164	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->i_pages, nid);
1165	rcu_read_unlock();
1166	if (apage)
1167		return;
1168
1169	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1170	if (!apage)
1171		return;
1172
1173	err = read_node_page(apage, REQ_RAHEAD);
1174	f2fs_put_page(apage, err ? 1 : 0);
1175}
1176
1177static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1178					struct page *parent, int start)
1179{
1180	struct page *page;
1181	int err;
1182
1183	if (!nid)
1184		return ERR_PTR(-ENOENT);
1185	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
 
1186repeat:
1187	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1188	if (!page)
1189		return ERR_PTR(-ENOMEM);
1190
1191	err = read_node_page(page, 0);
1192	if (err < 0) {
1193		f2fs_put_page(page, 1);
1194		return ERR_PTR(err);
1195	} else if (err == LOCKED_PAGE) {
1196		err = 0;
1197		goto page_hit;
1198	}
1199
1200	if (parent)
1201		ra_node_pages(parent, start + 1, MAX_RA_NODE);
1202
1203	lock_page(page);
1204
1205	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1206		f2fs_put_page(page, 1);
1207		goto repeat;
1208	}
1209
1210	if (unlikely(!PageUptodate(page))) {
1211		err = -EIO;
1212		goto out_err;
1213	}
1214
1215	if (!f2fs_inode_chksum_verify(sbi, page)) {
1216		err = -EBADMSG;
1217		goto out_err;
1218	}
1219page_hit:
1220	if(unlikely(nid != nid_of_node(page))) {
1221		f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1222			"nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1223			nid, nid_of_node(page), ino_of_node(page),
1224			ofs_of_node(page), cpver_of_node(page),
1225			next_blkaddr_of_node(page));
1226		err = -EINVAL;
 
 
 
1227out_err:
1228		ClearPageUptodate(page);
1229		f2fs_put_page(page, 1);
1230		return ERR_PTR(err);
1231	}
1232	return page;
 
 
1233}
1234
1235struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1236{
1237	return __get_node_page(sbi, nid, NULL, 0);
1238}
1239
1240struct page *get_node_page_ra(struct page *parent, int start)
1241{
1242	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1243	nid_t nid = get_nid(parent, start, false);
1244
1245	return __get_node_page(sbi, nid, parent, start);
1246}
1247
1248static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1249{
1250	struct inode *inode;
1251	struct page *page;
1252	int ret;
1253
1254	/* should flush inline_data before evict_inode */
1255	inode = ilookup(sbi->sb, ino);
1256	if (!inode)
1257		return;
1258
1259	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1260					FGP_LOCK|FGP_NOWAIT, 0);
1261	if (!page)
1262		goto iput_out;
1263
1264	if (!PageUptodate(page))
1265		goto page_out;
1266
1267	if (!PageDirty(page))
1268		goto page_out;
1269
1270	if (!clear_page_dirty_for_io(page))
1271		goto page_out;
1272
1273	ret = f2fs_write_inline_data(inode, page);
1274	inode_dec_dirty_pages(inode);
1275	remove_dirty_inode(inode);
1276	if (ret)
1277		set_page_dirty(page);
1278page_out:
1279	f2fs_put_page(page, 1);
1280iput_out:
1281	iput(inode);
1282}
1283
1284static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1285{
1286	pgoff_t index;
1287	struct pagevec pvec;
1288	struct page *last_page = NULL;
1289	int nr_pages;
1290
1291	pagevec_init(&pvec);
1292	index = 0;
1293
1294	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1295				PAGECACHE_TAG_DIRTY))) {
 
1296		int i;
1297
1298		for (i = 0; i < nr_pages; i++) {
1299			struct page *page = pvec.pages[i];
1300
1301			if (unlikely(f2fs_cp_error(sbi))) {
1302				f2fs_put_page(last_page, 0);
1303				pagevec_release(&pvec);
1304				return ERR_PTR(-EIO);
1305			}
1306
1307			if (!IS_DNODE(page) || !is_cold_node(page))
1308				continue;
1309			if (ino_of_node(page) != ino)
1310				continue;
1311
1312			lock_page(page);
1313
1314			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1315continue_unlock:
1316				unlock_page(page);
1317				continue;
1318			}
1319			if (ino_of_node(page) != ino)
1320				goto continue_unlock;
1321
1322			if (!PageDirty(page)) {
1323				/* someone wrote it for us */
1324				goto continue_unlock;
1325			}
1326
1327			if (last_page)
1328				f2fs_put_page(last_page, 0);
1329
1330			get_page(page);
1331			last_page = page;
1332			unlock_page(page);
1333		}
1334		pagevec_release(&pvec);
1335		cond_resched();
1336	}
1337	return last_page;
1338}
1339
1340static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1341				struct writeback_control *wbc, bool do_balance,
1342				enum iostat_type io_type)
1343{
1344	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
 
1345	nid_t nid;
1346	struct node_info ni;
1347	struct f2fs_io_info fio = {
1348		.sbi = sbi,
1349		.ino = ino_of_node(page),
1350		.type = NODE,
1351		.op = REQ_OP_WRITE,
1352		.op_flags = wbc_to_write_flags(wbc),
1353		.page = page,
1354		.encrypted_page = NULL,
1355		.submitted = false,
1356		.io_type = io_type,
1357		.io_wbc = wbc,
1358	};
 
1359
1360	trace_f2fs_writepage(page, NODE);
1361
1362	if (unlikely(f2fs_cp_error(sbi))) {
 
 
 
 
1363		dec_page_count(sbi, F2FS_DIRTY_NODES);
1364		unlock_page(page);
1365		return 0;
1366	}
1367
1368	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1369		goto redirty_out;
1370
 
 
 
 
 
1371	/* get old block addr of this node page */
1372	nid = nid_of_node(page);
1373	f2fs_bug_on(sbi, page->index != nid);
 
 
 
1374
1375	if (wbc->for_reclaim) {
1376		if (!down_read_trylock(&sbi->node_write))
1377			goto redirty_out;
1378	} else {
1379		down_read(&sbi->node_write);
1380	}
1381
1382	get_node_info(sbi, nid, &ni);
1383
1384	/* This page is already truncated */
1385	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1386		ClearPageUptodate(page);
1387		dec_page_count(sbi, F2FS_DIRTY_NODES);
1388		up_read(&sbi->node_write);
1389		unlock_page(page);
1390		return 0;
1391	}
1392
 
 
 
 
 
 
 
1393	if (atomic && !test_opt(sbi, NOBARRIER))
1394		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1395
1396	set_page_writeback(page);
 
 
 
 
 
 
 
 
1397	fio.old_blkaddr = ni.blk_addr;
1398	write_node_page(nid, &fio);
1399	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1400	dec_page_count(sbi, F2FS_DIRTY_NODES);
1401	up_read(&sbi->node_write);
1402
1403	if (wbc->for_reclaim) {
1404		f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1405						page->index, NODE);
1406		submitted = NULL;
1407	}
1408
1409	unlock_page(page);
1410
1411	if (unlikely(f2fs_cp_error(sbi))) {
1412		f2fs_submit_merged_write(sbi, NODE);
1413		submitted = NULL;
1414	}
1415	if (submitted)
1416		*submitted = fio.submitted;
1417
1418	if (do_balance)
1419		f2fs_balance_fs(sbi, false);
1420	return 0;
1421
1422redirty_out:
1423	redirty_page_for_writepage(wbc, page);
1424	return AOP_WRITEPAGE_ACTIVATE;
1425}
1426
1427void move_node_page(struct page *node_page, int gc_type)
1428{
 
 
1429	if (gc_type == FG_GC) {
1430		struct writeback_control wbc = {
1431			.sync_mode = WB_SYNC_ALL,
1432			.nr_to_write = 1,
1433			.for_reclaim = 0,
1434		};
1435
 
 
1436		set_page_dirty(node_page);
1437		f2fs_wait_on_page_writeback(node_page, NODE, true);
1438
1439		f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
1440		if (!clear_page_dirty_for_io(node_page))
1441			goto out_page;
 
1442
1443		if (__write_node_page(node_page, false, NULL,
1444					&wbc, false, FS_GC_NODE_IO))
 
1445			unlock_page(node_page);
 
1446		goto release_page;
1447	} else {
1448		/* set page dirty and write it */
1449		if (!PageWriteback(node_page))
1450			set_page_dirty(node_page);
1451	}
1452out_page:
1453	unlock_page(node_page);
1454release_page:
1455	f2fs_put_page(node_page, 0);
 
1456}
1457
1458static int f2fs_write_node_page(struct page *page,
1459				struct writeback_control *wbc)
1460{
1461	return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO);
 
1462}
1463
1464int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1465			struct writeback_control *wbc, bool atomic)
 
1466{
1467	pgoff_t index;
1468	pgoff_t last_idx = ULONG_MAX;
1469	struct pagevec pvec;
1470	int ret = 0;
1471	struct page *last_page = NULL;
1472	bool marked = false;
1473	nid_t ino = inode->i_ino;
1474	int nr_pages;
 
1475
1476	if (atomic) {
1477		last_page = last_fsync_dnode(sbi, ino);
1478		if (IS_ERR_OR_NULL(last_page))
1479			return PTR_ERR_OR_ZERO(last_page);
1480	}
1481retry:
1482	pagevec_init(&pvec);
1483	index = 0;
1484
1485	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1486				PAGECACHE_TAG_DIRTY))) {
 
1487		int i;
1488
1489		for (i = 0; i < nr_pages; i++) {
1490			struct page *page = pvec.pages[i];
1491			bool submitted = false;
1492
1493			if (unlikely(f2fs_cp_error(sbi))) {
1494				f2fs_put_page(last_page, 0);
1495				pagevec_release(&pvec);
1496				ret = -EIO;
1497				goto out;
1498			}
1499
1500			if (!IS_DNODE(page) || !is_cold_node(page))
1501				continue;
1502			if (ino_of_node(page) != ino)
1503				continue;
1504
1505			lock_page(page);
1506
1507			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1508continue_unlock:
1509				unlock_page(page);
1510				continue;
1511			}
1512			if (ino_of_node(page) != ino)
1513				goto continue_unlock;
1514
1515			if (!PageDirty(page) && page != last_page) {
1516				/* someone wrote it for us */
1517				goto continue_unlock;
1518			}
1519
1520			f2fs_wait_on_page_writeback(page, NODE, true);
1521			BUG_ON(PageWriteback(page));
1522
1523			set_fsync_mark(page, 0);
1524			set_dentry_mark(page, 0);
1525
1526			if (!atomic || page == last_page) {
1527				set_fsync_mark(page, 1);
 
1528				if (IS_INODE(page)) {
1529					if (is_inode_flag_set(inode,
1530								FI_DIRTY_INODE))
1531						update_inode(inode, page);
1532					set_dentry_mark(page,
1533						need_dentry_mark(sbi, ino));
1534				}
1535				/*  may be written by other thread */
1536				if (!PageDirty(page))
1537					set_page_dirty(page);
1538			}
1539
1540			if (!clear_page_dirty_for_io(page))
1541				goto continue_unlock;
1542
1543			ret = __write_node_page(page, atomic &&
1544						page == last_page,
1545						&submitted, wbc, true,
1546						FS_NODE_IO);
1547			if (ret) {
1548				unlock_page(page);
1549				f2fs_put_page(last_page, 0);
1550				break;
1551			} else if (submitted) {
1552				last_idx = page->index;
1553			}
1554
1555			if (page == last_page) {
1556				f2fs_put_page(page, 0);
1557				marked = true;
1558				break;
1559			}
1560		}
1561		pagevec_release(&pvec);
1562		cond_resched();
1563
1564		if (ret || marked)
1565			break;
1566	}
1567	if (!ret && atomic && !marked) {
1568		f2fs_msg(sbi->sb, KERN_DEBUG,
1569			"Retry to write fsync mark: ino=%u, idx=%lx",
1570					ino, last_page->index);
1571		lock_page(last_page);
1572		f2fs_wait_on_page_writeback(last_page, NODE, true);
1573		set_page_dirty(last_page);
1574		unlock_page(last_page);
1575		goto retry;
1576	}
1577out:
1578	if (last_idx != ULONG_MAX)
1579		f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1580	return ret ? -EIO: 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1581}
1582
1583int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1584				bool do_balance, enum iostat_type io_type)
1585{
1586	pgoff_t index;
1587	struct pagevec pvec;
1588	int step = 0;
1589	int nwritten = 0;
1590	int ret = 0;
1591	int nr_pages;
1592
1593	pagevec_init(&pvec);
1594
1595next_step:
1596	index = 0;
1597
1598	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1599				PAGECACHE_TAG_DIRTY))) {
 
1600		int i;
1601
1602		for (i = 0; i < nr_pages; i++) {
1603			struct page *page = pvec.pages[i];
1604			bool submitted = false;
1605
 
 
 
 
 
 
 
1606			/*
1607			 * flushing sequence with step:
1608			 * 0. indirect nodes
1609			 * 1. dentry dnodes
1610			 * 2. file dnodes
1611			 */
1612			if (step == 0 && IS_DNODE(page))
1613				continue;
1614			if (step == 1 && (!IS_DNODE(page) ||
1615						is_cold_node(page)))
1616				continue;
1617			if (step == 2 && (!IS_DNODE(page) ||
1618						!is_cold_node(page)))
1619				continue;
1620lock_node:
1621			if (!trylock_page(page))
 
 
1622				continue;
1623
1624			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1625continue_unlock:
1626				unlock_page(page);
1627				continue;
1628			}
1629
1630			if (!PageDirty(page)) {
1631				/* someone wrote it for us */
1632				goto continue_unlock;
1633			}
1634
 
 
 
 
1635			/* flush inline_data */
1636			if (is_inline_node(page)) {
1637				clear_inline_node(page);
1638				unlock_page(page);
1639				flush_inline_data(sbi, ino_of_node(page));
1640				goto lock_node;
1641			}
1642
1643			f2fs_wait_on_page_writeback(page, NODE, true);
 
 
 
 
1644
1645			BUG_ON(PageWriteback(page));
1646			if (!clear_page_dirty_for_io(page))
1647				goto continue_unlock;
1648
1649			set_fsync_mark(page, 0);
1650			set_dentry_mark(page, 0);
1651
1652			ret = __write_node_page(page, false, &submitted,
1653						wbc, do_balance, io_type);
1654			if (ret)
1655				unlock_page(page);
1656			else if (submitted)
1657				nwritten++;
1658
1659			if (--wbc->nr_to_write == 0)
1660				break;
1661		}
1662		pagevec_release(&pvec);
1663		cond_resched();
1664
1665		if (wbc->nr_to_write == 0) {
1666			step = 2;
1667			break;
1668		}
1669	}
1670
1671	if (step < 2) {
 
 
 
1672		step++;
1673		goto next_step;
1674	}
1675
1676	if (nwritten)
1677		f2fs_submit_merged_write(sbi, NODE);
1678
1679	if (unlikely(f2fs_cp_error(sbi)))
1680		return -EIO;
1681	return ret;
1682}
1683
1684int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
 
1685{
1686	pgoff_t index = 0;
1687	struct pagevec pvec;
1688	int ret2, ret = 0;
1689	int nr_pages;
1690
1691	pagevec_init(&pvec);
1692
1693	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1694				PAGECACHE_TAG_WRITEBACK))) {
1695		int i;
 
 
 
 
 
 
 
 
 
 
 
1696
1697		for (i = 0; i < nr_pages; i++) {
1698			struct page *page = pvec.pages[i];
1699
1700			if (ino && ino_of_node(page) == ino) {
1701				f2fs_wait_on_page_writeback(page, NODE, true);
1702				if (TestClearPageError(page))
1703					ret = -EIO;
1704			}
1705		}
1706		pagevec_release(&pvec);
1707		cond_resched();
1708	}
1709
1710	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1711	if (!ret)
1712		ret = ret2;
1713	return ret;
1714}
1715
1716static int f2fs_write_node_pages(struct address_space *mapping,
1717			    struct writeback_control *wbc)
1718{
1719	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1720	struct blk_plug plug;
1721	long diff;
1722
1723	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1724		goto skip_write;
1725
1726	/* balancing f2fs's metadata in background */
1727	f2fs_balance_fs_bg(sbi);
1728
1729	/* collect a number of dirty node pages and write together */
1730	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
 
 
1731		goto skip_write;
1732
 
 
 
 
 
 
 
 
 
1733	trace_f2fs_writepages(mapping->host, wbc, NODE);
1734
1735	diff = nr_pages_to_write(sbi, NODE, wbc);
1736	wbc->sync_mode = WB_SYNC_NONE;
1737	blk_start_plug(&plug);
1738	sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1739	blk_finish_plug(&plug);
1740	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
 
 
 
1741	return 0;
1742
1743skip_write:
1744	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1745	trace_f2fs_writepages(mapping->host, wbc, NODE);
1746	return 0;
1747}
1748
1749static int f2fs_set_node_page_dirty(struct page *page)
 
1750{
1751	trace_f2fs_set_page_dirty(page, NODE);
1752
1753	if (!PageUptodate(page))
1754		SetPageUptodate(page);
1755	if (!PageDirty(page)) {
1756		f2fs_set_page_dirty_nobuffers(page);
1757		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1758		SetPagePrivate(page);
1759		f2fs_trace_pid(page);
1760		return 1;
 
 
1761	}
1762	return 0;
1763}
1764
1765/*
1766 * Structure of the f2fs node operations
1767 */
1768const struct address_space_operations f2fs_node_aops = {
1769	.writepage	= f2fs_write_node_page,
1770	.writepages	= f2fs_write_node_pages,
1771	.set_page_dirty	= f2fs_set_node_page_dirty,
1772	.invalidatepage	= f2fs_invalidate_page,
1773	.releasepage	= f2fs_release_page,
1774#ifdef CONFIG_MIGRATION
1775	.migratepage    = f2fs_migrate_page,
1776#endif
1777};
1778
1779static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1780						nid_t n)
1781{
1782	return radix_tree_lookup(&nm_i->free_nid_root, n);
1783}
1784
1785static int __insert_free_nid(struct f2fs_sb_info *sbi,
1786			struct free_nid *i, enum nid_state state)
1787{
1788	struct f2fs_nm_info *nm_i = NM_I(sbi);
1789
1790	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
 
1791	if (err)
1792		return err;
1793
1794	f2fs_bug_on(sbi, state != i->state);
1795	nm_i->nid_cnt[state]++;
1796	if (state == FREE_NID)
1797		list_add_tail(&i->list, &nm_i->free_nid_list);
1798	return 0;
1799}
1800
1801static void __remove_free_nid(struct f2fs_sb_info *sbi,
1802			struct free_nid *i, enum nid_state state)
1803{
1804	struct f2fs_nm_info *nm_i = NM_I(sbi);
1805
1806	f2fs_bug_on(sbi, state != i->state);
1807	nm_i->nid_cnt[state]--;
1808	if (state == FREE_NID)
1809		list_del(&i->list);
1810	radix_tree_delete(&nm_i->free_nid_root, i->nid);
1811}
1812
1813static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
1814			enum nid_state org_state, enum nid_state dst_state)
1815{
1816	struct f2fs_nm_info *nm_i = NM_I(sbi);
1817
1818	f2fs_bug_on(sbi, org_state != i->state);
1819	i->state = dst_state;
1820	nm_i->nid_cnt[org_state]--;
1821	nm_i->nid_cnt[dst_state]++;
1822
1823	switch (dst_state) {
1824	case PREALLOC_NID:
1825		list_del(&i->list);
1826		break;
1827	case FREE_NID:
1828		list_add_tail(&i->list, &nm_i->free_nid_list);
1829		break;
1830	default:
1831		BUG_ON(1);
1832	}
1833}
1834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1835static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
1836							bool set, bool build)
1837{
1838	struct f2fs_nm_info *nm_i = NM_I(sbi);
1839	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1840	unsigned int nid_ofs = nid - START_NID(nid);
1841
1842	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1843		return;
1844
1845	if (set) {
1846		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1847			return;
1848		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1849		nm_i->free_nid_count[nat_ofs]++;
1850	} else {
1851		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1852			return;
1853		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1854		if (!build)
1855			nm_i->free_nid_count[nat_ofs]--;
1856	}
1857}
1858
1859/* return if the nid is recognized as free */
1860static bool add_free_nid(struct f2fs_sb_info *sbi,
1861				nid_t nid, bool build, bool update)
1862{
1863	struct f2fs_nm_info *nm_i = NM_I(sbi);
1864	struct free_nid *i, *e;
1865	struct nat_entry *ne;
1866	int err = -EINVAL;
1867	bool ret = false;
1868
1869	/* 0 nid should not be used */
1870	if (unlikely(nid == 0))
1871		return false;
1872
1873	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
 
 
 
1874	i->nid = nid;
1875	i->state = FREE_NID;
1876
1877	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
1878
1879	spin_lock(&nm_i->nid_list_lock);
1880
1881	if (build) {
1882		/*
1883		 *   Thread A             Thread B
1884		 *  - f2fs_create
1885		 *   - f2fs_new_inode
1886		 *    - alloc_nid
1887		 *     - __insert_nid_to_list(PREALLOC_NID)
1888		 *                     - f2fs_balance_fs_bg
1889		 *                      - build_free_nids
1890		 *                       - __build_free_nids
1891		 *                        - scan_nat_page
1892		 *                         - add_free_nid
1893		 *                          - __lookup_nat_cache
1894		 *  - f2fs_add_link
1895		 *   - init_inode_metadata
1896		 *    - new_inode_page
1897		 *     - new_node_page
1898		 *      - set_node_addr
1899		 *  - alloc_nid_done
1900		 *   - __remove_nid_from_list(PREALLOC_NID)
1901		 *                         - __insert_nid_to_list(FREE_NID)
1902		 */
1903		ne = __lookup_nat_cache(nm_i, nid);
1904		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1905				nat_get_blkaddr(ne) != NULL_ADDR))
1906			goto err_out;
1907
1908		e = __lookup_free_nid_list(nm_i, nid);
1909		if (e) {
1910			if (e->state == FREE_NID)
1911				ret = true;
1912			goto err_out;
1913		}
1914	}
1915	ret = true;
1916	err = __insert_free_nid(sbi, i, FREE_NID);
1917err_out:
1918	if (update) {
1919		update_free_nid_bitmap(sbi, nid, ret, build);
1920		if (!build)
1921			nm_i->available_nids++;
1922	}
1923	spin_unlock(&nm_i->nid_list_lock);
1924	radix_tree_preload_end();
1925
1926	if (err)
1927		kmem_cache_free(free_nid_slab, i);
1928	return ret;
1929}
1930
1931static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1932{
1933	struct f2fs_nm_info *nm_i = NM_I(sbi);
1934	struct free_nid *i;
1935	bool need_free = false;
1936
1937	spin_lock(&nm_i->nid_list_lock);
1938	i = __lookup_free_nid_list(nm_i, nid);
1939	if (i && i->state == FREE_NID) {
1940		__remove_free_nid(sbi, i, FREE_NID);
1941		need_free = true;
1942	}
1943	spin_unlock(&nm_i->nid_list_lock);
1944
1945	if (need_free)
1946		kmem_cache_free(free_nid_slab, i);
1947}
1948
1949static void scan_nat_page(struct f2fs_sb_info *sbi,
1950			struct page *nat_page, nid_t start_nid)
1951{
1952	struct f2fs_nm_info *nm_i = NM_I(sbi);
1953	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1954	block_t blk_addr;
1955	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1956	int i;
1957
1958	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1959
1960	i = start_nid % NAT_ENTRY_PER_BLOCK;
1961
1962	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1963		if (unlikely(start_nid >= nm_i->max_nid))
1964			break;
1965
1966		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1967		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
 
 
 
1968		if (blk_addr == NULL_ADDR) {
1969			add_free_nid(sbi, start_nid, true, true);
1970		} else {
1971			spin_lock(&NM_I(sbi)->nid_list_lock);
1972			update_free_nid_bitmap(sbi, start_nid, false, true);
1973			spin_unlock(&NM_I(sbi)->nid_list_lock);
1974		}
1975	}
 
 
1976}
1977
1978static void scan_curseg_cache(struct f2fs_sb_info *sbi)
1979{
1980	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1981	struct f2fs_journal *journal = curseg->journal;
1982	int i;
1983
1984	down_read(&curseg->journal_rwsem);
1985	for (i = 0; i < nats_in_cursum(journal); i++) {
1986		block_t addr;
1987		nid_t nid;
1988
1989		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1990		nid = le32_to_cpu(nid_in_journal(journal, i));
1991		if (addr == NULL_ADDR)
1992			add_free_nid(sbi, nid, true, false);
1993		else
1994			remove_free_nid(sbi, nid);
1995	}
1996	up_read(&curseg->journal_rwsem);
1997}
1998
1999static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2000{
2001	struct f2fs_nm_info *nm_i = NM_I(sbi);
2002	unsigned int i, idx;
2003	nid_t nid;
2004
2005	down_read(&nm_i->nat_tree_lock);
2006
2007	for (i = 0; i < nm_i->nat_blocks; i++) {
2008		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2009			continue;
2010		if (!nm_i->free_nid_count[i])
2011			continue;
2012		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2013			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2014						NAT_ENTRY_PER_BLOCK, idx);
2015			if (idx >= NAT_ENTRY_PER_BLOCK)
2016				break;
2017
2018			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2019			add_free_nid(sbi, nid, true, false);
2020
2021			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2022				goto out;
2023		}
2024	}
2025out:
2026	scan_curseg_cache(sbi);
2027
2028	up_read(&nm_i->nat_tree_lock);
2029}
2030
2031static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
 
2032{
2033	struct f2fs_nm_info *nm_i = NM_I(sbi);
2034	int i = 0;
2035	nid_t nid = nm_i->next_scan_nid;
2036
2037	if (unlikely(nid >= nm_i->max_nid))
2038		nid = 0;
2039
 
 
 
2040	/* Enough entries */
2041	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2042		return;
2043
2044	if (!sync && !available_free_memory(sbi, FREE_NIDS))
2045		return;
2046
2047	if (!mount) {
2048		/* try to find free nids in free_nid_bitmap */
2049		scan_free_nid_bits(sbi);
2050
2051		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2052			return;
2053	}
2054
2055	/* readahead nat pages to be scanned */
2056	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2057							META_NAT, true);
2058
2059	down_read(&nm_i->nat_tree_lock);
2060
2061	while (1) {
2062		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2063						nm_i->nat_block_bitmap)) {
2064			struct page *page = get_current_nat_page(sbi, nid);
2065
2066			scan_nat_page(sbi, page, nid);
2067			f2fs_put_page(page, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2068		}
2069
2070		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2071		if (unlikely(nid >= nm_i->max_nid))
2072			nid = 0;
2073
2074		if (++i >= FREE_NID_PAGES)
2075			break;
2076	}
2077
2078	/* go to the next free nat pages to find free nids abundantly */
2079	nm_i->next_scan_nid = nid;
2080
2081	/* find free nids from current sum_pages */
2082	scan_curseg_cache(sbi);
2083
2084	up_read(&nm_i->nat_tree_lock);
2085
2086	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2087					nm_i->ra_nid_pages, META_NAT, false);
 
 
2088}
2089
2090void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2091{
 
 
2092	mutex_lock(&NM_I(sbi)->build_lock);
2093	__build_free_nids(sbi, sync, mount);
2094	mutex_unlock(&NM_I(sbi)->build_lock);
 
 
2095}
2096
2097/*
2098 * If this function returns success, caller can obtain a new nid
2099 * from second parameter of this function.
2100 * The returned nid could be used ino as well as nid when inode is created.
2101 */
2102bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2103{
2104	struct f2fs_nm_info *nm_i = NM_I(sbi);
2105	struct free_nid *i = NULL;
2106retry:
2107#ifdef CONFIG_F2FS_FAULT_INJECTION
2108	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2109		f2fs_show_injection_info(FAULT_ALLOC_NID);
2110		return false;
2111	}
2112#endif
2113	spin_lock(&nm_i->nid_list_lock);
2114
2115	if (unlikely(nm_i->available_nids == 0)) {
2116		spin_unlock(&nm_i->nid_list_lock);
2117		return false;
2118	}
2119
2120	/* We should not use stale free nids created by build_free_nids */
2121	if (nm_i->nid_cnt[FREE_NID] && !on_build_free_nids(nm_i)) {
2122		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2123		i = list_first_entry(&nm_i->free_nid_list,
2124					struct free_nid, list);
2125		*nid = i->nid;
2126
2127		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2128		nm_i->available_nids--;
2129
2130		update_free_nid_bitmap(sbi, *nid, false, false);
2131
2132		spin_unlock(&nm_i->nid_list_lock);
2133		return true;
2134	}
2135	spin_unlock(&nm_i->nid_list_lock);
2136
2137	/* Let's scan nat pages and its caches to get free nids */
2138	build_free_nids(sbi, true, false);
2139	goto retry;
 
2140}
2141
2142/*
2143 * alloc_nid() should be called prior to this function.
2144 */
2145void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2146{
2147	struct f2fs_nm_info *nm_i = NM_I(sbi);
2148	struct free_nid *i;
2149
2150	spin_lock(&nm_i->nid_list_lock);
2151	i = __lookup_free_nid_list(nm_i, nid);
2152	f2fs_bug_on(sbi, !i);
2153	__remove_free_nid(sbi, i, PREALLOC_NID);
2154	spin_unlock(&nm_i->nid_list_lock);
2155
2156	kmem_cache_free(free_nid_slab, i);
2157}
2158
2159/*
2160 * alloc_nid() should be called prior to this function.
2161 */
2162void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2163{
2164	struct f2fs_nm_info *nm_i = NM_I(sbi);
2165	struct free_nid *i;
2166	bool need_free = false;
2167
2168	if (!nid)
2169		return;
2170
2171	spin_lock(&nm_i->nid_list_lock);
2172	i = __lookup_free_nid_list(nm_i, nid);
2173	f2fs_bug_on(sbi, !i);
2174
2175	if (!available_free_memory(sbi, FREE_NIDS)) {
2176		__remove_free_nid(sbi, i, PREALLOC_NID);
2177		need_free = true;
2178	} else {
2179		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2180	}
2181
2182	nm_i->available_nids++;
2183
2184	update_free_nid_bitmap(sbi, nid, true, false);
2185
2186	spin_unlock(&nm_i->nid_list_lock);
2187
2188	if (need_free)
2189		kmem_cache_free(free_nid_slab, i);
2190}
2191
2192int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2193{
2194	struct f2fs_nm_info *nm_i = NM_I(sbi);
2195	struct free_nid *i, *next;
2196	int nr = nr_shrink;
2197
2198	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2199		return 0;
2200
2201	if (!mutex_trylock(&nm_i->build_lock))
2202		return 0;
2203
2204	spin_lock(&nm_i->nid_list_lock);
2205	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2206		if (nr_shrink <= 0 ||
2207				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2208			break;
2209
2210		__remove_free_nid(sbi, i, FREE_NID);
2211		kmem_cache_free(free_nid_slab, i);
2212		nr_shrink--;
 
 
 
 
 
 
 
 
2213	}
2214	spin_unlock(&nm_i->nid_list_lock);
2215	mutex_unlock(&nm_i->build_lock);
2216
2217	return nr - nr_shrink;
2218}
2219
2220void recover_inline_xattr(struct inode *inode, struct page *page)
2221{
2222	void *src_addr, *dst_addr;
2223	size_t inline_size;
2224	struct page *ipage;
2225	struct f2fs_inode *ri;
2226
2227	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2228	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
 
2229
2230	ri = F2FS_INODE(page);
2231	if (ri->i_inline & F2FS_INLINE_XATTR) {
2232		set_inode_flag(inode, FI_INLINE_XATTR);
 
 
 
2233	} else {
2234		clear_inode_flag(inode, FI_INLINE_XATTR);
 
 
 
2235		goto update_inode;
2236	}
2237
2238	dst_addr = inline_xattr_addr(inode, ipage);
2239	src_addr = inline_xattr_addr(inode, page);
2240	inline_size = inline_xattr_size(inode);
2241
2242	f2fs_wait_on_page_writeback(ipage, NODE, true);
2243	memcpy(dst_addr, src_addr, inline_size);
2244update_inode:
2245	update_inode(inode, ipage);
2246	f2fs_put_page(ipage, 1);
 
2247}
2248
2249int recover_xattr_data(struct inode *inode, struct page *page)
2250{
2251	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2252	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2253	nid_t new_xnid;
2254	struct dnode_of_data dn;
2255	struct node_info ni;
2256	struct page *xpage;
 
2257
2258	if (!prev_xnid)
2259		goto recover_xnid;
2260
2261	/* 1: invalidate the previous xattr nid */
2262	get_node_info(sbi, prev_xnid, &ni);
2263	invalidate_blocks(sbi, ni.blk_addr);
 
 
 
2264	dec_valid_node_count(sbi, inode, false);
2265	set_node_addr(sbi, &ni, NULL_ADDR, false);
2266
2267recover_xnid:
2268	/* 2: update xattr nid in inode */
2269	if (!alloc_nid(sbi, &new_xnid))
2270		return -ENOSPC;
2271
2272	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2273	xpage = new_node_page(&dn, XATTR_NODE_OFFSET);
2274	if (IS_ERR(xpage)) {
2275		alloc_nid_failed(sbi, new_xnid);
2276		return PTR_ERR(xpage);
2277	}
2278
2279	alloc_nid_done(sbi, new_xnid);
2280	update_inode_page(inode);
2281
2282	/* 3: update and set xattr node page dirty */
2283	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2284
2285	set_page_dirty(xpage);
 
 
2286	f2fs_put_page(xpage, 1);
2287
2288	return 0;
2289}
2290
2291int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2292{
2293	struct f2fs_inode *src, *dst;
2294	nid_t ino = ino_of_node(page);
2295	struct node_info old_ni, new_ni;
2296	struct page *ipage;
 
2297
2298	get_node_info(sbi, ino, &old_ni);
 
 
2299
2300	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2301		return -EINVAL;
2302retry:
2303	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2304	if (!ipage) {
2305		congestion_wait(BLK_RW_ASYNC, HZ/50);
2306		goto retry;
2307	}
2308
2309	/* Should not use this inode from free nid list */
2310	remove_free_nid(sbi, ino);
2311
2312	if (!PageUptodate(ipage))
2313		SetPageUptodate(ipage);
2314	fill_node_footer(ipage, ino, ino, 0, true);
2315	set_cold_node(page, false);
2316
2317	src = F2FS_INODE(page);
2318	dst = F2FS_INODE(ipage);
2319
2320	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2321	dst->i_size = 0;
2322	dst->i_blocks = cpu_to_le64(1);
2323	dst->i_links = cpu_to_le32(1);
2324	dst->i_xattr_nid = 0;
2325	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2326	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2327		dst->i_extra_isize = src->i_extra_isize;
2328
2329		if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
2330			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2331							i_inline_xattr_size))
2332			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2333
2334		if (f2fs_sb_has_project_quota(sbi->sb) &&
2335			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2336								i_projid))
2337			dst->i_projid = src->i_projid;
 
 
 
 
 
 
 
2338	}
2339
2340	new_ni = old_ni;
2341	new_ni.ino = ino;
2342
2343	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2344		WARN_ON(1);
2345	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2346	inc_valid_inode_count(sbi);
2347	set_page_dirty(ipage);
2348	f2fs_put_page(ipage, 1);
2349	return 0;
2350}
2351
2352void restore_node_summary(struct f2fs_sb_info *sbi,
2353			unsigned int segno, struct f2fs_summary_block *sum)
2354{
2355	struct f2fs_node *rn;
2356	struct f2fs_summary *sum_entry;
2357	block_t addr;
2358	int i, idx, last_offset, nrpages;
2359
2360	/* scan the node segment */
2361	last_offset = sbi->blocks_per_seg;
2362	addr = START_BLOCK(sbi, segno);
2363	sum_entry = &sum->entries[0];
2364
2365	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2366		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2367
2368		/* readahead node pages */
2369		ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2370
2371		for (idx = addr; idx < addr + nrpages; idx++) {
2372			struct page *page = get_tmp_page(sbi, idx);
 
 
 
2373
2374			rn = F2FS_NODE(page);
2375			sum_entry->nid = rn->footer.nid;
2376			sum_entry->version = 0;
2377			sum_entry->ofs_in_node = 0;
2378			sum_entry++;
2379			f2fs_put_page(page, 1);
2380		}
2381
2382		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2383							addr + nrpages);
2384	}
 
2385}
2386
2387static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2388{
2389	struct f2fs_nm_info *nm_i = NM_I(sbi);
2390	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2391	struct f2fs_journal *journal = curseg->journal;
2392	int i;
2393
2394	down_write(&curseg->journal_rwsem);
2395	for (i = 0; i < nats_in_cursum(journal); i++) {
2396		struct nat_entry *ne;
2397		struct f2fs_nat_entry raw_ne;
2398		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2399
 
 
 
2400		raw_ne = nat_in_journal(journal, i);
2401
2402		ne = __lookup_nat_cache(nm_i, nid);
2403		if (!ne) {
2404			ne = __alloc_nat_entry(nid, true);
2405			__init_nat_entry(nm_i, ne, &raw_ne, true);
2406		}
2407
2408		/*
2409		 * if a free nat in journal has not been used after last
2410		 * checkpoint, we should remove it from available nids,
2411		 * since later we will add it again.
2412		 */
2413		if (!get_nat_flag(ne, IS_DIRTY) &&
2414				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2415			spin_lock(&nm_i->nid_list_lock);
2416			nm_i->available_nids--;
2417			spin_unlock(&nm_i->nid_list_lock);
2418		}
2419
2420		__set_nat_cache_dirty(nm_i, ne);
2421	}
2422	update_nats_in_cursum(journal, -i);
2423	up_write(&curseg->journal_rwsem);
2424}
2425
2426static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2427						struct list_head *head, int max)
2428{
2429	struct nat_entry_set *cur;
2430
2431	if (nes->entry_cnt >= max)
2432		goto add_out;
2433
2434	list_for_each_entry(cur, head, set_list) {
2435		if (cur->entry_cnt >= nes->entry_cnt) {
2436			list_add(&nes->set_list, cur->set_list.prev);
2437			return;
2438		}
2439	}
2440add_out:
2441	list_add_tail(&nes->set_list, head);
2442}
2443
2444static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2445						struct page *page)
2446{
2447	struct f2fs_nm_info *nm_i = NM_I(sbi);
2448	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2449	struct f2fs_nat_block *nat_blk = page_address(page);
2450	int valid = 0;
2451	int i = 0;
2452
2453	if (!enabled_nat_bits(sbi, NULL))
2454		return;
2455
2456	if (nat_index == 0) {
2457		valid = 1;
2458		i = 1;
2459	}
2460	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2461		if (nat_blk->entries[i].block_addr != NULL_ADDR)
2462			valid++;
2463	}
2464	if (valid == 0) {
2465		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2466		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2467		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2468	}
2469
2470	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2471	if (valid == NAT_ENTRY_PER_BLOCK)
2472		__set_bit_le(nat_index, nm_i->full_nat_bits);
2473	else
2474		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2475}
2476
2477static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2478		struct nat_entry_set *set, struct cp_control *cpc)
2479{
2480	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2481	struct f2fs_journal *journal = curseg->journal;
2482	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2483	bool to_journal = true;
2484	struct f2fs_nat_block *nat_blk;
2485	struct nat_entry *ne, *cur;
2486	struct page *page = NULL;
2487
2488	/*
2489	 * there are two steps to flush nat entries:
2490	 * #1, flush nat entries to journal in current hot data summary block.
2491	 * #2, flush nat entries to nat page.
2492	 */
2493	if (enabled_nat_bits(sbi, cpc) ||
2494		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2495		to_journal = false;
2496
2497	if (to_journal) {
2498		down_write(&curseg->journal_rwsem);
2499	} else {
2500		page = get_next_nat_page(sbi, start_nid);
 
 
 
2501		nat_blk = page_address(page);
2502		f2fs_bug_on(sbi, !nat_blk);
2503	}
2504
2505	/* flush dirty nats in nat entry set */
2506	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2507		struct f2fs_nat_entry *raw_ne;
2508		nid_t nid = nat_get_nid(ne);
2509		int offset;
2510
2511		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2512
2513		if (to_journal) {
2514			offset = lookup_journal_in_cursum(journal,
2515							NAT_JOURNAL, nid, 1);
2516			f2fs_bug_on(sbi, offset < 0);
2517			raw_ne = &nat_in_journal(journal, offset);
2518			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2519		} else {
2520			raw_ne = &nat_blk->entries[nid - start_nid];
2521		}
2522		raw_nat_from_node_info(raw_ne, &ne->ni);
2523		nat_reset_flag(ne);
2524		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2525		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2526			add_free_nid(sbi, nid, false, true);
2527		} else {
2528			spin_lock(&NM_I(sbi)->nid_list_lock);
2529			update_free_nid_bitmap(sbi, nid, false, false);
2530			spin_unlock(&NM_I(sbi)->nid_list_lock);
2531		}
2532	}
2533
2534	if (to_journal) {
2535		up_write(&curseg->journal_rwsem);
2536	} else {
2537		__update_nat_bits(sbi, start_nid, page);
2538		f2fs_put_page(page, 1);
2539	}
2540
2541	/* Allow dirty nats by node block allocation in write_begin */
2542	if (!set->entry_cnt) {
2543		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2544		kmem_cache_free(nat_entry_set_slab, set);
2545	}
 
2546}
2547
2548/*
2549 * This function is called during the checkpointing process.
2550 */
2551void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2552{
2553	struct f2fs_nm_info *nm_i = NM_I(sbi);
2554	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2555	struct f2fs_journal *journal = curseg->journal;
2556	struct nat_entry_set *setvec[SETVEC_SIZE];
2557	struct nat_entry_set *set, *tmp;
2558	unsigned int found;
2559	nid_t set_idx = 0;
2560	LIST_HEAD(sets);
 
2561
2562	if (!nm_i->dirty_nat_cnt)
2563		return;
 
 
 
 
 
 
 
 
 
 
2564
2565	down_write(&nm_i->nat_tree_lock);
2566
2567	/*
2568	 * if there are no enough space in journal to store dirty nat
2569	 * entries, remove all entries from journal and merge them
2570	 * into nat entry set.
2571	 */
2572	if (enabled_nat_bits(sbi, cpc) ||
2573		!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
 
2574		remove_nats_in_journal(sbi);
2575
2576	while ((found = __gang_lookup_nat_set(nm_i,
2577					set_idx, SETVEC_SIZE, setvec))) {
2578		unsigned idx;
 
2579		set_idx = setvec[found - 1]->set + 1;
2580		for (idx = 0; idx < found; idx++)
2581			__adjust_nat_entry_set(setvec[idx], &sets,
2582						MAX_NAT_JENTRIES(journal));
2583	}
2584
2585	/* flush dirty nats in nat entry set */
2586	list_for_each_entry_safe(set, tmp, &sets, set_list)
2587		__flush_nat_entry_set(sbi, set, cpc);
 
 
 
2588
2589	up_write(&nm_i->nat_tree_lock);
2590	/* Allow dirty nats by node block allocation in write_begin */
 
 
2591}
2592
2593static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2594{
2595	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2596	struct f2fs_nm_info *nm_i = NM_I(sbi);
2597	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2598	unsigned int i;
2599	__u64 cp_ver = cur_cp_version(ckpt);
2600	block_t nat_bits_addr;
2601
2602	if (!enabled_nat_bits(sbi, NULL))
2603		return 0;
2604
2605	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2606	nm_i->nat_bits = f2fs_kzalloc(sbi,
2607			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2608	if (!nm_i->nat_bits)
2609		return -ENOMEM;
2610
2611	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
 
 
 
 
 
 
2612						nm_i->nat_bits_blocks;
2613	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2614		struct page *page = get_meta_page(sbi, nat_bits_addr++);
2615
2616		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
 
 
 
 
2617					page_address(page), F2FS_BLKSIZE);
2618		f2fs_put_page(page, 1);
2619	}
2620
2621	cp_ver |= (cur_cp_crc(ckpt) << 32);
2622	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2623		disable_nat_bits(sbi, true);
 
 
2624		return 0;
2625	}
2626
2627	nm_i->full_nat_bits = nm_i->nat_bits + 8;
2628	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2629
2630	f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2631	return 0;
2632}
2633
2634static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2635{
2636	struct f2fs_nm_info *nm_i = NM_I(sbi);
2637	unsigned int i = 0;
2638	nid_t nid, last_nid;
2639
2640	if (!enabled_nat_bits(sbi, NULL))
2641		return;
2642
2643	for (i = 0; i < nm_i->nat_blocks; i++) {
2644		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2645		if (i >= nm_i->nat_blocks)
2646			break;
2647
2648		__set_bit_le(i, nm_i->nat_block_bitmap);
2649
2650		nid = i * NAT_ENTRY_PER_BLOCK;
2651		last_nid = nid + NAT_ENTRY_PER_BLOCK;
2652
2653		spin_lock(&NM_I(sbi)->nid_list_lock);
2654		for (; nid < last_nid; nid++)
2655			update_free_nid_bitmap(sbi, nid, true, true);
2656		spin_unlock(&NM_I(sbi)->nid_list_lock);
2657	}
2658
2659	for (i = 0; i < nm_i->nat_blocks; i++) {
2660		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2661		if (i >= nm_i->nat_blocks)
2662			break;
2663
2664		__set_bit_le(i, nm_i->nat_block_bitmap);
2665	}
2666}
2667
2668static int init_node_manager(struct f2fs_sb_info *sbi)
2669{
2670	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2671	struct f2fs_nm_info *nm_i = NM_I(sbi);
2672	unsigned char *version_bitmap;
2673	unsigned int nat_segs;
2674	int err;
2675
2676	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2677
2678	/* segment_count_nat includes pair segment so divide to 2. */
2679	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2680	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2681	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2682
2683	/* not used nids: 0, node, meta, (and root counted as valid node) */
2684	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2685				sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2686	nm_i->nid_cnt[FREE_NID] = 0;
2687	nm_i->nid_cnt[PREALLOC_NID] = 0;
2688	nm_i->nat_cnt = 0;
2689	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2690	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2691	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
 
2692
2693	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2694	INIT_LIST_HEAD(&nm_i->free_nid_list);
2695	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2696	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2697	INIT_LIST_HEAD(&nm_i->nat_entries);
 
2698
2699	mutex_init(&nm_i->build_lock);
2700	spin_lock_init(&nm_i->nid_list_lock);
2701	init_rwsem(&nm_i->nat_tree_lock);
2702
2703	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2704	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2705	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2706	if (!version_bitmap)
2707		return -EFAULT;
2708
2709	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2710					GFP_KERNEL);
2711	if (!nm_i->nat_bitmap)
2712		return -ENOMEM;
2713
2714	err = __get_nat_bitmaps(sbi);
2715	if (err)
2716		return err;
2717
2718#ifdef CONFIG_F2FS_CHECK_FS
2719	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2720					GFP_KERNEL);
2721	if (!nm_i->nat_bitmap_mir)
2722		return -ENOMEM;
2723#endif
2724
2725	return 0;
2726}
2727
2728static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2729{
2730	struct f2fs_nm_info *nm_i = NM_I(sbi);
2731	int i;
2732
2733	nm_i->free_nid_bitmap = f2fs_kzalloc(sbi, nm_i->nat_blocks *
2734				sizeof(unsigned char *), GFP_KERNEL);
 
 
2735	if (!nm_i->free_nid_bitmap)
2736		return -ENOMEM;
2737
2738	for (i = 0; i < nm_i->nat_blocks; i++) {
2739		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
2740				NAT_ENTRY_BITMAP_SIZE_ALIGNED, GFP_KERNEL);
2741		if (!nm_i->free_nid_bitmap)
2742			return -ENOMEM;
2743	}
2744
2745	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
2746								GFP_KERNEL);
2747	if (!nm_i->nat_block_bitmap)
2748		return -ENOMEM;
2749
2750	nm_i->free_nid_count = f2fs_kvzalloc(sbi, nm_i->nat_blocks *
2751					sizeof(unsigned short), GFP_KERNEL);
 
 
2752	if (!nm_i->free_nid_count)
2753		return -ENOMEM;
2754	return 0;
2755}
2756
2757int build_node_manager(struct f2fs_sb_info *sbi)
2758{
2759	int err;
2760
2761	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
2762							GFP_KERNEL);
2763	if (!sbi->nm_info)
2764		return -ENOMEM;
2765
2766	err = init_node_manager(sbi);
2767	if (err)
2768		return err;
2769
2770	err = init_free_nid_cache(sbi);
2771	if (err)
2772		return err;
2773
2774	/* load free nid status from nat_bits table */
2775	load_free_nid_bitmap(sbi);
2776
2777	build_free_nids(sbi, true, true);
2778	return 0;
2779}
2780
2781void destroy_node_manager(struct f2fs_sb_info *sbi)
2782{
2783	struct f2fs_nm_info *nm_i = NM_I(sbi);
2784	struct free_nid *i, *next_i;
2785	struct nat_entry *natvec[NATVEC_SIZE];
2786	struct nat_entry_set *setvec[SETVEC_SIZE];
 
2787	nid_t nid = 0;
2788	unsigned int found;
2789
2790	if (!nm_i)
2791		return;
2792
2793	/* destroy free nid list */
2794	spin_lock(&nm_i->nid_list_lock);
2795	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2796		__remove_free_nid(sbi, i, FREE_NID);
2797		spin_unlock(&nm_i->nid_list_lock);
2798		kmem_cache_free(free_nid_slab, i);
2799		spin_lock(&nm_i->nid_list_lock);
2800	}
2801	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
2802	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
2803	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
2804	spin_unlock(&nm_i->nid_list_lock);
2805
2806	/* destroy nat cache */
2807	down_write(&nm_i->nat_tree_lock);
2808	while ((found = __gang_lookup_nat_cache(nm_i,
2809					nid, NATVEC_SIZE, natvec))) {
2810		unsigned idx;
2811
2812		nid = nat_get_nid(natvec[found - 1]) + 1;
2813		for (idx = 0; idx < found; idx++)
 
 
 
 
2814			__del_from_nat_cache(nm_i, natvec[idx]);
 
2815	}
2816	f2fs_bug_on(sbi, nm_i->nat_cnt);
2817
2818	/* destroy nat set cache */
2819	nid = 0;
 
2820	while ((found = __gang_lookup_nat_set(nm_i,
2821					nid, SETVEC_SIZE, setvec))) {
2822		unsigned idx;
2823
2824		nid = setvec[found - 1]->set + 1;
2825		for (idx = 0; idx < found; idx++) {
2826			/* entry_cnt is not zero, when cp_error was occurred */
2827			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2828			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2829			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2830		}
2831	}
2832	up_write(&nm_i->nat_tree_lock);
2833
2834	kvfree(nm_i->nat_block_bitmap);
2835	if (nm_i->free_nid_bitmap) {
2836		int i;
2837
2838		for (i = 0; i < nm_i->nat_blocks; i++)
2839			kvfree(nm_i->free_nid_bitmap[i]);
2840		kfree(nm_i->free_nid_bitmap);
2841	}
2842	kvfree(nm_i->free_nid_count);
2843
2844	kfree(nm_i->nat_bitmap);
2845	kfree(nm_i->nat_bits);
2846#ifdef CONFIG_F2FS_CHECK_FS
2847	kfree(nm_i->nat_bitmap_mir);
2848#endif
2849	sbi->nm_info = NULL;
2850	kfree(nm_i);
2851}
2852
2853int __init create_node_manager_caches(void)
2854{
2855	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2856			sizeof(struct nat_entry));
2857	if (!nat_entry_slab)
2858		goto fail;
2859
2860	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2861			sizeof(struct free_nid));
2862	if (!free_nid_slab)
2863		goto destroy_nat_entry;
2864
2865	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2866			sizeof(struct nat_entry_set));
2867	if (!nat_entry_set_slab)
2868		goto destroy_free_nid;
 
 
 
 
 
2869	return 0;
2870
 
 
2871destroy_free_nid:
2872	kmem_cache_destroy(free_nid_slab);
2873destroy_nat_entry:
2874	kmem_cache_destroy(nat_entry_slab);
2875fail:
2876	return -ENOMEM;
2877}
2878
2879void destroy_node_manager_caches(void)
2880{
 
2881	kmem_cache_destroy(nat_entry_set_slab);
2882	kmem_cache_destroy(free_nid_slab);
2883	kmem_cache_destroy(nat_entry_slab);
2884}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/node.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
 
 
 
 
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/mpage.h>
  11#include <linux/sched/mm.h>
  12#include <linux/blkdev.h>
  13#include <linux/pagevec.h>
  14#include <linux/swap.h>
  15
  16#include "f2fs.h"
  17#include "node.h"
  18#include "segment.h"
  19#include "xattr.h"
  20#include "iostat.h"
  21#include <trace/events/f2fs.h>
  22
  23#define on_f2fs_build_free_nids(nm_i) mutex_is_locked(&(nm_i)->build_lock)
  24
  25static struct kmem_cache *nat_entry_slab;
  26static struct kmem_cache *free_nid_slab;
  27static struct kmem_cache *nat_entry_set_slab;
  28static struct kmem_cache *fsync_node_entry_slab;
  29
  30/*
  31 * Check whether the given nid is within node id range.
  32 */
  33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
  34{
  35	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
  36		set_sbi_flag(sbi, SBI_NEED_FSCK);
  37		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
  38			  __func__, nid);
  39		f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
  40		return -EFSCORRUPTED;
  41	}
  42	return 0;
  43}
  44
  45bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
  46{
  47	struct f2fs_nm_info *nm_i = NM_I(sbi);
  48	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  49	struct sysinfo val;
  50	unsigned long avail_ram;
  51	unsigned long mem_size = 0;
  52	bool res = false;
  53
  54	if (!nm_i)
  55		return true;
  56
  57	si_meminfo(&val);
  58
  59	/* only uses low memory */
  60	avail_ram = val.totalram - val.totalhigh;
  61
  62	/*
  63	 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
  64	 */
  65	if (type == FREE_NIDS) {
  66		mem_size = (nm_i->nid_cnt[FREE_NID] *
  67				sizeof(struct free_nid)) >> PAGE_SHIFT;
  68		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  69	} else if (type == NAT_ENTRIES) {
  70		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
  71				sizeof(struct nat_entry)) >> PAGE_SHIFT;
  72		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  73		if (excess_cached_nats(sbi))
  74			res = false;
  75	} else if (type == DIRTY_DENTS) {
  76		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  77			return false;
  78		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  79		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  80	} else if (type == INO_ENTRIES) {
  81		int i;
  82
  83		for (i = 0; i < MAX_INO_ENTRY; i++)
  84			mem_size += sbi->im[i].ino_num *
  85						sizeof(struct ino_entry);
  86		mem_size >>= PAGE_SHIFT;
  87		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  88	} else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
  89		enum extent_type etype = type == READ_EXTENT_CACHE ?
  90						EX_READ : EX_BLOCK_AGE;
  91		struct extent_tree_info *eti = &sbi->extent_tree[etype];
  92
  93		mem_size = (atomic_read(&eti->total_ext_tree) *
  94				sizeof(struct extent_tree) +
  95				atomic_read(&eti->total_ext_node) *
  96				sizeof(struct extent_node)) >> PAGE_SHIFT;
  97		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  98	} else if (type == DISCARD_CACHE) {
  99		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
 100				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
 101		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
 102	} else if (type == COMPRESS_PAGE) {
 103#ifdef CONFIG_F2FS_FS_COMPRESSION
 104		unsigned long free_ram = val.freeram;
 105
 106		/*
 107		 * free memory is lower than watermark or cached page count
 108		 * exceed threshold, deny caching compress page.
 109		 */
 110		res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
 111			(COMPRESS_MAPPING(sbi)->nrpages <
 112			 free_ram * sbi->compress_percent / 100);
 113#else
 114		res = false;
 115#endif
 116	} else {
 117		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
 118			return true;
 119	}
 120	return res;
 121}
 122
 123static void clear_node_page_dirty(struct page *page)
 124{
 
 
 
 125	if (PageDirty(page)) {
 126		f2fs_clear_page_cache_dirty_tag(page_folio(page));
 
 
 
 
 
 127		clear_page_dirty_for_io(page);
 128		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
 129	}
 130	ClearPageUptodate(page);
 131}
 132
 133static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 134{
 135	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
 
 136}
 137
 138static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 139{
 140	struct page *src_page;
 141	struct page *dst_page;
 
 142	pgoff_t dst_off;
 143	void *src_addr;
 144	void *dst_addr;
 145	struct f2fs_nm_info *nm_i = NM_I(sbi);
 146
 147	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
 
 148
 149	/* get current nat block page with lock */
 150	src_page = get_current_nat_page(sbi, nid);
 151	if (IS_ERR(src_page))
 152		return src_page;
 153	dst_page = f2fs_grab_meta_page(sbi, dst_off);
 154	f2fs_bug_on(sbi, PageDirty(src_page));
 155
 156	src_addr = page_address(src_page);
 157	dst_addr = page_address(dst_page);
 158	memcpy(dst_addr, src_addr, PAGE_SIZE);
 159	set_page_dirty(dst_page);
 160	f2fs_put_page(src_page, 1);
 161
 162	set_to_next_nat(nm_i, nid);
 163
 164	return dst_page;
 165}
 166
 167static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
 168						nid_t nid, bool no_fail)
 169{
 170	struct nat_entry *new;
 171
 172	new = f2fs_kmem_cache_alloc(nat_entry_slab,
 173					GFP_F2FS_ZERO, no_fail, sbi);
 
 
 174	if (new) {
 175		nat_set_nid(new, nid);
 176		nat_reset_flag(new);
 177	}
 178	return new;
 179}
 180
 181static void __free_nat_entry(struct nat_entry *e)
 182{
 183	kmem_cache_free(nat_entry_slab, e);
 184}
 185
 186/* must be locked by nat_tree_lock */
 187static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
 188	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
 189{
 190	if (no_fail)
 191		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
 192	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
 193		return NULL;
 194
 195	if (raw_ne)
 196		node_info_from_raw_nat(&ne->ni, raw_ne);
 197
 198	spin_lock(&nm_i->nat_list_lock);
 199	list_add_tail(&ne->list, &nm_i->nat_entries);
 200	spin_unlock(&nm_i->nat_list_lock);
 201
 202	nm_i->nat_cnt[TOTAL_NAT]++;
 203	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
 204	return ne;
 205}
 206
 207static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 208{
 209	struct nat_entry *ne;
 210
 211	ne = radix_tree_lookup(&nm_i->nat_root, n);
 212
 213	/* for recent accessed nat entry, move it to tail of lru list */
 214	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
 215		spin_lock(&nm_i->nat_list_lock);
 216		if (!list_empty(&ne->list))
 217			list_move_tail(&ne->list, &nm_i->nat_entries);
 218		spin_unlock(&nm_i->nat_list_lock);
 219	}
 220
 221	return ne;
 222}
 223
 224static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 225		nid_t start, unsigned int nr, struct nat_entry **ep)
 226{
 227	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 228}
 229
 230static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 231{
 
 232	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 233	nm_i->nat_cnt[TOTAL_NAT]--;
 234	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
 235	__free_nat_entry(e);
 236}
 237
 238static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
 239							struct nat_entry *ne)
 240{
 241	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 242	struct nat_entry_set *head;
 243
 244	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 245	if (!head) {
 246		head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
 247						GFP_NOFS, true, NULL);
 248
 249		INIT_LIST_HEAD(&head->entry_list);
 250		INIT_LIST_HEAD(&head->set_list);
 251		head->set = set;
 252		head->entry_cnt = 0;
 253		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 254	}
 255	return head;
 256}
 257
 258static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 259						struct nat_entry *ne)
 260{
 261	struct nat_entry_set *head;
 262	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
 263
 264	if (!new_ne)
 265		head = __grab_nat_entry_set(nm_i, ne);
 266
 267	/*
 268	 * update entry_cnt in below condition:
 269	 * 1. update NEW_ADDR to valid block address;
 270	 * 2. update old block address to new one;
 271	 */
 272	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
 273				!get_nat_flag(ne, IS_DIRTY)))
 274		head->entry_cnt++;
 275
 276	set_nat_flag(ne, IS_PREALLOC, new_ne);
 277
 278	if (get_nat_flag(ne, IS_DIRTY))
 279		goto refresh_list;
 280
 281	nm_i->nat_cnt[DIRTY_NAT]++;
 282	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
 283	set_nat_flag(ne, IS_DIRTY, true);
 284refresh_list:
 285	spin_lock(&nm_i->nat_list_lock);
 286	if (new_ne)
 287		list_del_init(&ne->list);
 288	else
 289		list_move_tail(&ne->list, &head->entry_list);
 290	spin_unlock(&nm_i->nat_list_lock);
 291}
 292
 293static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 294		struct nat_entry_set *set, struct nat_entry *ne)
 295{
 296	spin_lock(&nm_i->nat_list_lock);
 297	list_move_tail(&ne->list, &nm_i->nat_entries);
 298	spin_unlock(&nm_i->nat_list_lock);
 299
 300	set_nat_flag(ne, IS_DIRTY, false);
 301	set->entry_cnt--;
 302	nm_i->nat_cnt[DIRTY_NAT]--;
 303	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
 304}
 305
 306static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 307		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 308{
 309	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 310							start, nr);
 311}
 312
 313bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
 314{
 315	return NODE_MAPPING(sbi) == page->mapping &&
 316			IS_DNODE(page) && is_cold_node(page);
 317}
 318
 319void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
 320{
 321	spin_lock_init(&sbi->fsync_node_lock);
 322	INIT_LIST_HEAD(&sbi->fsync_node_list);
 323	sbi->fsync_seg_id = 0;
 324	sbi->fsync_node_num = 0;
 325}
 326
 327static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
 328							struct page *page)
 329{
 330	struct fsync_node_entry *fn;
 331	unsigned long flags;
 332	unsigned int seq_id;
 333
 334	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
 335					GFP_NOFS, true, NULL);
 336
 337	get_page(page);
 338	fn->page = page;
 339	INIT_LIST_HEAD(&fn->list);
 340
 341	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 342	list_add_tail(&fn->list, &sbi->fsync_node_list);
 343	fn->seq_id = sbi->fsync_seg_id++;
 344	seq_id = fn->seq_id;
 345	sbi->fsync_node_num++;
 346	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 347
 348	return seq_id;
 349}
 350
 351void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
 352{
 353	struct fsync_node_entry *fn;
 354	unsigned long flags;
 355
 356	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 357	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
 358		if (fn->page == page) {
 359			list_del(&fn->list);
 360			sbi->fsync_node_num--;
 361			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 362			kmem_cache_free(fsync_node_entry_slab, fn);
 363			put_page(page);
 364			return;
 365		}
 366	}
 367	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 368	f2fs_bug_on(sbi, 1);
 369}
 370
 371void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
 372{
 373	unsigned long flags;
 374
 375	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 376	sbi->fsync_seg_id = 0;
 377	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 378}
 379
 380int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 381{
 382	struct f2fs_nm_info *nm_i = NM_I(sbi);
 383	struct nat_entry *e;
 384	bool need = false;
 385
 386	f2fs_down_read(&nm_i->nat_tree_lock);
 387	e = __lookup_nat_cache(nm_i, nid);
 388	if (e) {
 389		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 390				!get_nat_flag(e, HAS_FSYNCED_INODE))
 391			need = true;
 392	}
 393	f2fs_up_read(&nm_i->nat_tree_lock);
 394	return need;
 395}
 396
 397bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 398{
 399	struct f2fs_nm_info *nm_i = NM_I(sbi);
 400	struct nat_entry *e;
 401	bool is_cp = true;
 402
 403	f2fs_down_read(&nm_i->nat_tree_lock);
 404	e = __lookup_nat_cache(nm_i, nid);
 405	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 406		is_cp = false;
 407	f2fs_up_read(&nm_i->nat_tree_lock);
 408	return is_cp;
 409}
 410
 411bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 412{
 413	struct f2fs_nm_info *nm_i = NM_I(sbi);
 414	struct nat_entry *e;
 415	bool need_update = true;
 416
 417	f2fs_down_read(&nm_i->nat_tree_lock);
 418	e = __lookup_nat_cache(nm_i, ino);
 419	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 420			(get_nat_flag(e, IS_CHECKPOINTED) ||
 421			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 422		need_update = false;
 423	f2fs_up_read(&nm_i->nat_tree_lock);
 424	return need_update;
 425}
 426
 427/* must be locked by nat_tree_lock */
 428static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 429						struct f2fs_nat_entry *ne)
 430{
 431	struct f2fs_nm_info *nm_i = NM_I(sbi);
 432	struct nat_entry *new, *e;
 433
 434	/* Let's mitigate lock contention of nat_tree_lock during checkpoint */
 435	if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
 436		return;
 437
 438	new = __alloc_nat_entry(sbi, nid, false);
 439	if (!new)
 440		return;
 441
 442	f2fs_down_write(&nm_i->nat_tree_lock);
 443	e = __lookup_nat_cache(nm_i, nid);
 444	if (!e)
 445		e = __init_nat_entry(nm_i, new, ne, false);
 446	else
 447		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 448				nat_get_blkaddr(e) !=
 449					le32_to_cpu(ne->block_addr) ||
 450				nat_get_version(e) != ne->version);
 451	f2fs_up_write(&nm_i->nat_tree_lock);
 452	if (e != new)
 453		__free_nat_entry(new);
 454}
 455
 456static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 457			block_t new_blkaddr, bool fsync_done)
 458{
 459	struct f2fs_nm_info *nm_i = NM_I(sbi);
 460	struct nat_entry *e;
 461	struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
 462
 463	f2fs_down_write(&nm_i->nat_tree_lock);
 464	e = __lookup_nat_cache(nm_i, ni->nid);
 465	if (!e) {
 466		e = __init_nat_entry(nm_i, new, NULL, true);
 467		copy_node_info(&e->ni, ni);
 468		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 469	} else if (new_blkaddr == NEW_ADDR) {
 470		/*
 471		 * when nid is reallocated,
 472		 * previous nat entry can be remained in nat cache.
 473		 * So, reinitialize it with new information.
 474		 */
 475		copy_node_info(&e->ni, ni);
 476		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 477	}
 478	/* let's free early to reduce memory consumption */
 479	if (e != new)
 480		__free_nat_entry(new);
 481
 482	/* sanity check */
 483	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 484	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 485			new_blkaddr == NULL_ADDR);
 486	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 487			new_blkaddr == NEW_ADDR);
 488	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
 
 489			new_blkaddr == NEW_ADDR);
 490
 491	/* increment version no as node is removed */
 492	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 493		unsigned char version = nat_get_version(e);
 494
 495		nat_set_version(e, inc_node_version(version));
 496	}
 497
 498	/* change address */
 499	nat_set_blkaddr(e, new_blkaddr);
 500	if (!__is_valid_data_blkaddr(new_blkaddr))
 501		set_nat_flag(e, IS_CHECKPOINTED, false);
 502	__set_nat_cache_dirty(nm_i, e);
 503
 504	/* update fsync_mark if its inode nat entry is still alive */
 505	if (ni->nid != ni->ino)
 506		e = __lookup_nat_cache(nm_i, ni->ino);
 507	if (e) {
 508		if (fsync_done && ni->nid == ni->ino)
 509			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 510		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 511	}
 512	f2fs_up_write(&nm_i->nat_tree_lock);
 513}
 514
 515int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 516{
 517	struct f2fs_nm_info *nm_i = NM_I(sbi);
 518	int nr = nr_shrink;
 519
 520	if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
 521		return 0;
 522
 523	spin_lock(&nm_i->nat_list_lock);
 524	while (nr_shrink) {
 525		struct nat_entry *ne;
 526
 527		if (list_empty(&nm_i->nat_entries))
 528			break;
 529
 530		ne = list_first_entry(&nm_i->nat_entries,
 531					struct nat_entry, list);
 532		list_del(&ne->list);
 533		spin_unlock(&nm_i->nat_list_lock);
 534
 535		__del_from_nat_cache(nm_i, ne);
 536		nr_shrink--;
 537
 538		spin_lock(&nm_i->nat_list_lock);
 539	}
 540	spin_unlock(&nm_i->nat_list_lock);
 541
 542	f2fs_up_write(&nm_i->nat_tree_lock);
 543	return nr - nr_shrink;
 544}
 545
 546int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
 547				struct node_info *ni, bool checkpoint_context)
 
 
 548{
 549	struct f2fs_nm_info *nm_i = NM_I(sbi);
 550	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 551	struct f2fs_journal *journal = curseg->journal;
 552	nid_t start_nid = START_NID(nid);
 553	struct f2fs_nat_block *nat_blk;
 554	struct page *page = NULL;
 555	struct f2fs_nat_entry ne;
 556	struct nat_entry *e;
 557	pgoff_t index;
 558	block_t blkaddr;
 559	int i;
 560
 561	ni->nid = nid;
 562retry:
 563	/* Check nat cache */
 564	f2fs_down_read(&nm_i->nat_tree_lock);
 565	e = __lookup_nat_cache(nm_i, nid);
 566	if (e) {
 567		ni->ino = nat_get_ino(e);
 568		ni->blk_addr = nat_get_blkaddr(e);
 569		ni->version = nat_get_version(e);
 570		f2fs_up_read(&nm_i->nat_tree_lock);
 571		return 0;
 572	}
 573
 574	/*
 575	 * Check current segment summary by trying to grab journal_rwsem first.
 576	 * This sem is on the critical path on the checkpoint requiring the above
 577	 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
 578	 * while not bothering checkpoint.
 579	 */
 580	if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
 581		down_read(&curseg->journal_rwsem);
 582	} else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
 583				!down_read_trylock(&curseg->journal_rwsem)) {
 584		f2fs_up_read(&nm_i->nat_tree_lock);
 585		goto retry;
 586	}
 587
 588	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 
 
 589	if (i >= 0) {
 590		ne = nat_in_journal(journal, i);
 591		node_info_from_raw_nat(ni, &ne);
 592	}
 593	up_read(&curseg->journal_rwsem);
 594	if (i >= 0) {
 595		f2fs_up_read(&nm_i->nat_tree_lock);
 596		goto cache;
 597	}
 598
 599	/* Fill node_info from nat page */
 600	index = current_nat_addr(sbi, nid);
 601	f2fs_up_read(&nm_i->nat_tree_lock);
 602
 603	page = f2fs_get_meta_page(sbi, index);
 604	if (IS_ERR(page))
 605		return PTR_ERR(page);
 606
 
 607	nat_blk = (struct f2fs_nat_block *)page_address(page);
 608	ne = nat_blk->entries[nid - start_nid];
 609	node_info_from_raw_nat(ni, &ne);
 610	f2fs_put_page(page, 1);
 611cache:
 612	blkaddr = le32_to_cpu(ne.block_addr);
 613	if (__is_valid_data_blkaddr(blkaddr) &&
 614		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
 615		return -EFAULT;
 616
 617	/* cache nat entry */
 618	cache_nat_entry(sbi, nid, &ne);
 619	return 0;
 620}
 621
 622/*
 623 * readahead MAX_RA_NODE number of node pages.
 624 */
 625static void f2fs_ra_node_pages(struct page *parent, int start, int n)
 626{
 627	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 628	struct blk_plug plug;
 629	int i, end;
 630	nid_t nid;
 631
 632	blk_start_plug(&plug);
 633
 634	/* Then, try readahead for siblings of the desired node */
 635	end = start + n;
 636	end = min(end, (int)NIDS_PER_BLOCK);
 637	for (i = start; i < end; i++) {
 638		nid = get_nid(parent, i, false);
 639		f2fs_ra_node_page(sbi, nid);
 640	}
 641
 642	blk_finish_plug(&plug);
 643}
 644
 645pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 646{
 647	const long direct_index = ADDRS_PER_INODE(dn->inode);
 648	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
 649	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
 650	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
 651	int cur_level = dn->cur_level;
 652	int max_level = dn->max_level;
 653	pgoff_t base = 0;
 654
 655	if (!dn->max_level)
 656		return pgofs + 1;
 657
 658	while (max_level-- > cur_level)
 659		skipped_unit *= NIDS_PER_BLOCK;
 660
 661	switch (dn->max_level) {
 662	case 3:
 663		base += 2 * indirect_blks;
 664		fallthrough;
 665	case 2:
 666		base += 2 * direct_blks;
 667		fallthrough;
 668	case 1:
 669		base += direct_index;
 670		break;
 671	default:
 672		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 673	}
 674
 675	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 676}
 677
 678/*
 679 * The maximum depth is four.
 680 * Offset[0] will have raw inode offset.
 681 */
 682static int get_node_path(struct inode *inode, long block,
 683				int offset[4], unsigned int noffset[4])
 684{
 685	const long direct_index = ADDRS_PER_INODE(inode);
 686	const long direct_blks = ADDRS_PER_BLOCK(inode);
 687	const long dptrs_per_blk = NIDS_PER_BLOCK;
 688	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
 689	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 690	int n = 0;
 691	int level = 0;
 692
 693	noffset[0] = 0;
 694
 695	if (block < direct_index) {
 696		offset[n] = block;
 697		goto got;
 698	}
 699	block -= direct_index;
 700	if (block < direct_blks) {
 701		offset[n++] = NODE_DIR1_BLOCK;
 702		noffset[n] = 1;
 703		offset[n] = block;
 704		level = 1;
 705		goto got;
 706	}
 707	block -= direct_blks;
 708	if (block < direct_blks) {
 709		offset[n++] = NODE_DIR2_BLOCK;
 710		noffset[n] = 2;
 711		offset[n] = block;
 712		level = 1;
 713		goto got;
 714	}
 715	block -= direct_blks;
 716	if (block < indirect_blks) {
 717		offset[n++] = NODE_IND1_BLOCK;
 718		noffset[n] = 3;
 719		offset[n++] = block / direct_blks;
 720		noffset[n] = 4 + offset[n - 1];
 721		offset[n] = block % direct_blks;
 722		level = 2;
 723		goto got;
 724	}
 725	block -= indirect_blks;
 726	if (block < indirect_blks) {
 727		offset[n++] = NODE_IND2_BLOCK;
 728		noffset[n] = 4 + dptrs_per_blk;
 729		offset[n++] = block / direct_blks;
 730		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 731		offset[n] = block % direct_blks;
 732		level = 2;
 733		goto got;
 734	}
 735	block -= indirect_blks;
 736	if (block < dindirect_blks) {
 737		offset[n++] = NODE_DIND_BLOCK;
 738		noffset[n] = 5 + (dptrs_per_blk * 2);
 739		offset[n++] = block / indirect_blks;
 740		noffset[n] = 6 + (dptrs_per_blk * 2) +
 741			      offset[n - 1] * (dptrs_per_blk + 1);
 742		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 743		noffset[n] = 7 + (dptrs_per_blk * 2) +
 744			      offset[n - 2] * (dptrs_per_blk + 1) +
 745			      offset[n - 1];
 746		offset[n] = block % direct_blks;
 747		level = 3;
 748		goto got;
 749	} else {
 750		return -E2BIG;
 751	}
 752got:
 753	return level;
 754}
 755
 756/*
 757 * Caller should call f2fs_put_dnode(dn).
 758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
 
 760 */
 761int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 762{
 763	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 764	struct page *npage[4];
 765	struct page *parent = NULL;
 766	int offset[4];
 767	unsigned int noffset[4];
 768	nid_t nids[4];
 769	int level, i = 0;
 770	int err = 0;
 771
 772	level = get_node_path(dn->inode, index, offset, noffset);
 773	if (level < 0)
 774		return level;
 775
 776	nids[0] = dn->inode->i_ino;
 777	npage[0] = dn->inode_page;
 778
 779	if (!npage[0]) {
 780		npage[0] = f2fs_get_node_page(sbi, nids[0]);
 781		if (IS_ERR(npage[0]))
 782			return PTR_ERR(npage[0]);
 783	}
 784
 785	/* if inline_data is set, should not report any block indices */
 786	if (f2fs_has_inline_data(dn->inode) && index) {
 787		err = -ENOENT;
 788		f2fs_put_page(npage[0], 1);
 789		goto release_out;
 790	}
 791
 792	parent = npage[0];
 793	if (level != 0)
 794		nids[1] = get_nid(parent, offset[0], true);
 795	dn->inode_page = npage[0];
 796	dn->inode_page_locked = true;
 797
 798	/* get indirect or direct nodes */
 799	for (i = 1; i <= level; i++) {
 800		bool done = false;
 801
 802		if (!nids[i] && mode == ALLOC_NODE) {
 803			/* alloc new node */
 804			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
 805				err = -ENOSPC;
 806				goto release_pages;
 807			}
 808
 809			dn->nid = nids[i];
 810			npage[i] = f2fs_new_node_page(dn, noffset[i]);
 811			if (IS_ERR(npage[i])) {
 812				f2fs_alloc_nid_failed(sbi, nids[i]);
 813				err = PTR_ERR(npage[i]);
 814				goto release_pages;
 815			}
 816
 817			set_nid(parent, offset[i - 1], nids[i], i == 1);
 818			f2fs_alloc_nid_done(sbi, nids[i]);
 819			done = true;
 820		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 821			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
 822			if (IS_ERR(npage[i])) {
 823				err = PTR_ERR(npage[i]);
 824				goto release_pages;
 825			}
 826			done = true;
 827		}
 828		if (i == 1) {
 829			dn->inode_page_locked = false;
 830			unlock_page(parent);
 831		} else {
 832			f2fs_put_page(parent, 1);
 833		}
 834
 835		if (!done) {
 836			npage[i] = f2fs_get_node_page(sbi, nids[i]);
 837			if (IS_ERR(npage[i])) {
 838				err = PTR_ERR(npage[i]);
 839				f2fs_put_page(npage[0], 0);
 840				goto release_out;
 841			}
 842		}
 843		if (i < level) {
 844			parent = npage[i];
 845			nids[i + 1] = get_nid(parent, offset[i], false);
 846		}
 847	}
 848	dn->nid = nids[level];
 849	dn->ofs_in_node = offset[level];
 850	dn->node_page = npage[level];
 851	dn->data_blkaddr = f2fs_data_blkaddr(dn);
 852
 853	if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
 854					f2fs_sb_has_readonly(sbi)) {
 855		unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
 856		unsigned int ofs_in_node = dn->ofs_in_node;
 857		pgoff_t fofs = index;
 858		unsigned int c_len;
 859		block_t blkaddr;
 860
 861		/* should align fofs and ofs_in_node to cluster_size */
 862		if (fofs % cluster_size) {
 863			fofs = round_down(fofs, cluster_size);
 864			ofs_in_node = round_down(ofs_in_node, cluster_size);
 865		}
 866
 867		c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
 868		if (!c_len)
 869			goto out;
 870
 871		blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
 872		if (blkaddr == COMPRESS_ADDR)
 873			blkaddr = data_blkaddr(dn->inode, dn->node_page,
 874						ofs_in_node + 1);
 875
 876		f2fs_update_read_extent_tree_range_compressed(dn->inode,
 877					fofs, blkaddr, cluster_size, c_len);
 878	}
 879out:
 880	return 0;
 881
 882release_pages:
 883	f2fs_put_page(parent, 1);
 884	if (i > 1)
 885		f2fs_put_page(npage[0], 0);
 886release_out:
 887	dn->inode_page = NULL;
 888	dn->node_page = NULL;
 889	if (err == -ENOENT) {
 890		dn->cur_level = i;
 891		dn->max_level = level;
 892		dn->ofs_in_node = offset[level];
 893	}
 894	return err;
 895}
 896
 897static int truncate_node(struct dnode_of_data *dn)
 898{
 899	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 900	struct node_info ni;
 901	int err;
 902	pgoff_t index;
 903
 904	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
 905	if (err)
 906		return err;
 907
 908	if (ni.blk_addr != NEW_ADDR &&
 909		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) {
 910		f2fs_err_ratelimited(sbi,
 911			"nat entry is corrupted, run fsck to fix it, ino:%u, "
 912			"nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr);
 913		set_sbi_flag(sbi, SBI_NEED_FSCK);
 914		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
 915		return -EFSCORRUPTED;
 916	}
 917
 918	/* Deallocate node address */
 919	f2fs_invalidate_blocks(sbi, ni.blk_addr);
 920	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
 921	set_node_addr(sbi, &ni, NULL_ADDR, false);
 922
 923	if (dn->nid == dn->inode->i_ino) {
 924		f2fs_remove_orphan_inode(sbi, dn->nid);
 925		dec_valid_inode_count(sbi);
 926		f2fs_inode_synced(dn->inode);
 927	}
 928
 929	clear_node_page_dirty(dn->node_page);
 930	set_sbi_flag(sbi, SBI_IS_DIRTY);
 931
 932	index = page_folio(dn->node_page)->index;
 933	f2fs_put_page(dn->node_page, 1);
 934
 935	invalidate_mapping_pages(NODE_MAPPING(sbi),
 936			index, index);
 937
 938	dn->node_page = NULL;
 939	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 940
 941	return 0;
 942}
 943
 944static int truncate_dnode(struct dnode_of_data *dn)
 945{
 946	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 947	struct page *page;
 948	int err;
 949
 950	if (dn->nid == 0)
 951		return 1;
 952
 953	/* get direct node */
 954	page = f2fs_get_node_page(sbi, dn->nid);
 955	if (PTR_ERR(page) == -ENOENT)
 956		return 1;
 957	else if (IS_ERR(page))
 958		return PTR_ERR(page);
 959
 960	if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
 961		f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
 962				dn->inode->i_ino, dn->nid, ino_of_node(page));
 963		set_sbi_flag(sbi, SBI_NEED_FSCK);
 964		f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
 965		f2fs_put_page(page, 1);
 966		return -EFSCORRUPTED;
 967	}
 968
 969	/* Make dnode_of_data for parameter */
 970	dn->node_page = page;
 971	dn->ofs_in_node = 0;
 972	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
 973	err = truncate_node(dn);
 974	if (err) {
 975		f2fs_put_page(page, 1);
 976		return err;
 977	}
 978
 979	return 1;
 980}
 981
 982static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 983						int ofs, int depth)
 984{
 985	struct dnode_of_data rdn = *dn;
 986	struct page *page;
 987	struct f2fs_node *rn;
 988	nid_t child_nid;
 989	unsigned int child_nofs;
 990	int freed = 0;
 991	int i, ret;
 992
 993	if (dn->nid == 0)
 994		return NIDS_PER_BLOCK + 1;
 995
 996	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 997
 998	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 999	if (IS_ERR(page)) {
1000		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
1001		return PTR_ERR(page);
1002	}
1003
1004	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
1005
1006	rn = F2FS_NODE(page);
1007	if (depth < 3) {
1008		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
1009			child_nid = le32_to_cpu(rn->in.nid[i]);
1010			if (child_nid == 0)
1011				continue;
1012			rdn.nid = child_nid;
1013			ret = truncate_dnode(&rdn);
1014			if (ret < 0)
1015				goto out_err;
1016			if (set_nid(page, i, 0, false))
1017				dn->node_changed = true;
1018		}
1019	} else {
1020		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1021		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1022			child_nid = le32_to_cpu(rn->in.nid[i]);
1023			if (child_nid == 0) {
1024				child_nofs += NIDS_PER_BLOCK + 1;
1025				continue;
1026			}
1027			rdn.nid = child_nid;
1028			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1029			if (ret == (NIDS_PER_BLOCK + 1)) {
1030				if (set_nid(page, i, 0, false))
1031					dn->node_changed = true;
1032				child_nofs += ret;
1033			} else if (ret < 0 && ret != -ENOENT) {
1034				goto out_err;
1035			}
1036		}
1037		freed = child_nofs;
1038	}
1039
1040	if (!ofs) {
1041		/* remove current indirect node */
1042		dn->node_page = page;
1043		ret = truncate_node(dn);
1044		if (ret)
1045			goto out_err;
1046		freed++;
1047	} else {
1048		f2fs_put_page(page, 1);
1049	}
1050	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1051	return freed;
1052
1053out_err:
1054	f2fs_put_page(page, 1);
1055	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1056	return ret;
1057}
1058
1059static int truncate_partial_nodes(struct dnode_of_data *dn,
1060			struct f2fs_inode *ri, int *offset, int depth)
1061{
1062	struct page *pages[2];
1063	nid_t nid[3];
1064	nid_t child_nid;
1065	int err = 0;
1066	int i;
1067	int idx = depth - 2;
1068
1069	nid[0] = get_nid(dn->inode_page, offset[0], true);
1070	if (!nid[0])
1071		return 0;
1072
1073	/* get indirect nodes in the path */
1074	for (i = 0; i < idx + 1; i++) {
1075		/* reference count'll be increased */
1076		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1077		if (IS_ERR(pages[i])) {
1078			err = PTR_ERR(pages[i]);
1079			idx = i - 1;
1080			goto fail;
1081		}
1082		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1083	}
1084
1085	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1086
1087	/* free direct nodes linked to a partial indirect node */
1088	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1089		child_nid = get_nid(pages[idx], i, false);
1090		if (!child_nid)
1091			continue;
1092		dn->nid = child_nid;
1093		err = truncate_dnode(dn);
1094		if (err < 0)
1095			goto fail;
1096		if (set_nid(pages[idx], i, 0, false))
1097			dn->node_changed = true;
1098	}
1099
1100	if (offset[idx + 1] == 0) {
1101		dn->node_page = pages[idx];
1102		dn->nid = nid[idx];
1103		err = truncate_node(dn);
1104		if (err)
1105			goto fail;
1106	} else {
1107		f2fs_put_page(pages[idx], 1);
1108	}
1109	offset[idx]++;
1110	offset[idx + 1] = 0;
1111	idx--;
1112fail:
1113	for (i = idx; i >= 0; i--)
1114		f2fs_put_page(pages[i], 1);
1115
1116	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1117
1118	return err;
1119}
1120
1121/*
1122 * All the block addresses of data and nodes should be nullified.
1123 */
1124int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1125{
1126	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1127	int err = 0, cont = 1;
1128	int level, offset[4], noffset[4];
1129	unsigned int nofs = 0;
1130	struct f2fs_inode *ri;
1131	struct dnode_of_data dn;
1132	struct page *page;
1133
1134	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1135
1136	level = get_node_path(inode, from, offset, noffset);
1137	if (level < 0) {
1138		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1139		return level;
1140	}
1141
1142	page = f2fs_get_node_page(sbi, inode->i_ino);
1143	if (IS_ERR(page)) {
1144		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1145		return PTR_ERR(page);
1146	}
1147
1148	set_new_dnode(&dn, inode, page, NULL, 0);
1149	unlock_page(page);
1150
1151	ri = F2FS_INODE(page);
1152	switch (level) {
1153	case 0:
1154	case 1:
1155		nofs = noffset[1];
1156		break;
1157	case 2:
1158		nofs = noffset[1];
1159		if (!offset[level - 1])
1160			goto skip_partial;
1161		err = truncate_partial_nodes(&dn, ri, offset, level);
1162		if (err < 0 && err != -ENOENT)
1163			goto fail;
1164		nofs += 1 + NIDS_PER_BLOCK;
1165		break;
1166	case 3:
1167		nofs = 5 + 2 * NIDS_PER_BLOCK;
1168		if (!offset[level - 1])
1169			goto skip_partial;
1170		err = truncate_partial_nodes(&dn, ri, offset, level);
1171		if (err < 0 && err != -ENOENT)
1172			goto fail;
1173		break;
1174	default:
1175		BUG();
1176	}
1177
1178skip_partial:
1179	while (cont) {
1180		dn.nid = get_nid(page, offset[0], true);
1181		switch (offset[0]) {
1182		case NODE_DIR1_BLOCK:
1183		case NODE_DIR2_BLOCK:
1184			err = truncate_dnode(&dn);
1185			break;
1186
1187		case NODE_IND1_BLOCK:
1188		case NODE_IND2_BLOCK:
1189			err = truncate_nodes(&dn, nofs, offset[1], 2);
1190			break;
1191
1192		case NODE_DIND_BLOCK:
1193			err = truncate_nodes(&dn, nofs, offset[1], 3);
1194			cont = 0;
1195			break;
1196
1197		default:
1198			BUG();
1199		}
1200		if (err == -ENOENT) {
1201			set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK);
1202			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1203			f2fs_err_ratelimited(sbi,
1204				"truncate node fail, ino:%lu, nid:%u, "
1205				"offset[0]:%d, offset[1]:%d, nofs:%d",
1206				inode->i_ino, dn.nid, offset[0],
1207				offset[1], nofs);
1208			err = 0;
1209		}
1210		if (err < 0)
1211			goto fail;
1212		if (offset[1] == 0 && get_nid(page, offset[0], true)) {
 
1213			lock_page(page);
1214			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1215			set_nid(page, offset[0], 0, true);
 
 
1216			unlock_page(page);
1217		}
1218		offset[1] = 0;
1219		offset[0]++;
1220		nofs += err;
1221	}
1222fail:
1223	f2fs_put_page(page, 0);
1224	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1225	return err > 0 ? 0 : err;
1226}
1227
1228/* caller must lock inode page */
1229int f2fs_truncate_xattr_node(struct inode *inode)
1230{
1231	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1232	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1233	struct dnode_of_data dn;
1234	struct page *npage;
1235	int err;
1236
1237	if (!nid)
1238		return 0;
1239
1240	npage = f2fs_get_node_page(sbi, nid);
1241	if (IS_ERR(npage))
1242		return PTR_ERR(npage);
1243
1244	set_new_dnode(&dn, inode, NULL, npage, nid);
1245	err = truncate_node(&dn);
1246	if (err) {
1247		f2fs_put_page(npage, 1);
1248		return err;
1249	}
1250
1251	f2fs_i_xnid_write(inode, 0);
1252
 
 
1253	return 0;
1254}
1255
1256/*
1257 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1258 * f2fs_unlock_op().
1259 */
1260int f2fs_remove_inode_page(struct inode *inode)
1261{
1262	struct dnode_of_data dn;
1263	int err;
1264
1265	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1266	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1267	if (err)
1268		return err;
1269
1270	err = f2fs_truncate_xattr_node(inode);
1271	if (err) {
1272		f2fs_put_dnode(&dn);
1273		return err;
1274	}
1275
1276	/* remove potential inline_data blocks */
1277	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1278				S_ISLNK(inode->i_mode))
1279		f2fs_truncate_data_blocks_range(&dn, 1);
1280
1281	/* 0 is possible, after f2fs_new_inode() has failed */
1282	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1283		f2fs_put_dnode(&dn);
1284		return -EIO;
1285	}
1286
1287	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1288		f2fs_warn(F2FS_I_SB(inode),
1289			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1290			inode->i_ino, (unsigned long long)inode->i_blocks);
1291		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1292	}
1293
1294	/* will put inode & node pages */
1295	err = truncate_node(&dn);
1296	if (err) {
1297		f2fs_put_dnode(&dn);
1298		return err;
1299	}
1300	return 0;
1301}
1302
1303struct page *f2fs_new_inode_page(struct inode *inode)
1304{
1305	struct dnode_of_data dn;
1306
1307	/* allocate inode page for new inode */
1308	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1309
1310	/* caller should f2fs_put_page(page, 1); */
1311	return f2fs_new_node_page(&dn, 0);
1312}
1313
1314struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1315{
1316	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1317	struct node_info new_ni;
1318	struct page *page;
1319	int err;
1320
1321	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1322		return ERR_PTR(-EPERM);
1323
1324	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1325	if (!page)
1326		return ERR_PTR(-ENOMEM);
1327
1328	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1329		goto fail;
1330
1331#ifdef CONFIG_F2FS_CHECK_FS
1332	err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1333	if (err) {
1334		dec_valid_node_count(sbi, dn->inode, !ofs);
1335		goto fail;
1336	}
1337	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1338		err = -EFSCORRUPTED;
1339		dec_valid_node_count(sbi, dn->inode, !ofs);
1340		set_sbi_flag(sbi, SBI_NEED_FSCK);
1341		f2fs_warn_ratelimited(sbi,
1342			"f2fs_new_node_page: inconsistent nat entry, "
1343			"ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u",
1344			new_ni.ino, new_ni.nid, new_ni.blk_addr,
1345			new_ni.version, new_ni.flag);
1346		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
1347		goto fail;
1348	}
1349#endif
1350	new_ni.nid = dn->nid;
1351	new_ni.ino = dn->inode->i_ino;
1352	new_ni.blk_addr = NULL_ADDR;
1353	new_ni.flag = 0;
1354	new_ni.version = 0;
1355	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1356
1357	f2fs_wait_on_page_writeback(page, NODE, true, true);
1358	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1359	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1360	if (!PageUptodate(page))
1361		SetPageUptodate(page);
1362	if (set_page_dirty(page))
1363		dn->node_changed = true;
1364
1365	if (f2fs_has_xattr_block(ofs))
1366		f2fs_i_xnid_write(dn->inode, dn->nid);
1367
1368	if (ofs == 0)
1369		inc_valid_inode_count(sbi);
1370	return page;
 
1371fail:
1372	clear_node_page_dirty(page);
1373	f2fs_put_page(page, 1);
1374	return ERR_PTR(err);
1375}
1376
1377/*
1378 * Caller should do after getting the following values.
1379 * 0: f2fs_put_page(page, 0)
1380 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1381 */
1382static int read_node_page(struct page *page, blk_opf_t op_flags)
1383{
1384	struct folio *folio = page_folio(page);
1385	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1386	struct node_info ni;
1387	struct f2fs_io_info fio = {
1388		.sbi = sbi,
1389		.type = NODE,
1390		.op = REQ_OP_READ,
1391		.op_flags = op_flags,
1392		.page = page,
1393		.encrypted_page = NULL,
1394	};
1395	int err;
1396
1397	if (folio_test_uptodate(folio)) {
1398		if (!f2fs_inode_chksum_verify(sbi, page)) {
1399			folio_clear_uptodate(folio);
1400			return -EFSBADCRC;
1401		}
1402		return LOCKED_PAGE;
1403	}
1404
1405	err = f2fs_get_node_info(sbi, folio->index, &ni, false);
1406	if (err)
1407		return err;
1408
1409	/* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1410	if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1411		folio_clear_uptodate(folio);
1412		return -ENOENT;
1413	}
1414
1415	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1416
1417	err = f2fs_submit_page_bio(&fio);
1418
1419	if (!err)
1420		f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1421
1422	return err;
1423}
1424
1425/*
1426 * Readahead a node page
1427 */
1428void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1429{
1430	struct page *apage;
1431	int err;
1432
1433	if (!nid)
1434		return;
1435	if (f2fs_check_nid_range(sbi, nid))
1436		return;
1437
1438	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
 
 
1439	if (apage)
1440		return;
1441
1442	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1443	if (!apage)
1444		return;
1445
1446	err = read_node_page(apage, REQ_RAHEAD);
1447	f2fs_put_page(apage, err ? 1 : 0);
1448}
1449
1450static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1451					struct page *parent, int start)
1452{
1453	struct page *page;
1454	int err;
1455
1456	if (!nid)
1457		return ERR_PTR(-ENOENT);
1458	if (f2fs_check_nid_range(sbi, nid))
1459		return ERR_PTR(-EINVAL);
1460repeat:
1461	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1462	if (!page)
1463		return ERR_PTR(-ENOMEM);
1464
1465	err = read_node_page(page, 0);
1466	if (err < 0) {
1467		goto out_put_err;
 
1468	} else if (err == LOCKED_PAGE) {
1469		err = 0;
1470		goto page_hit;
1471	}
1472
1473	if (parent)
1474		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1475
1476	lock_page(page);
1477
1478	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1479		f2fs_put_page(page, 1);
1480		goto repeat;
1481	}
1482
1483	if (unlikely(!PageUptodate(page))) {
1484		err = -EIO;
1485		goto out_err;
1486	}
1487
1488	if (!f2fs_inode_chksum_verify(sbi, page)) {
1489		err = -EFSBADCRC;
1490		goto out_err;
1491	}
1492page_hit:
1493	if (likely(nid == nid_of_node(page)))
1494		return page;
1495
1496	f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1497			  nid, nid_of_node(page), ino_of_node(page),
1498			  ofs_of_node(page), cpver_of_node(page),
1499			  next_blkaddr_of_node(page));
1500	set_sbi_flag(sbi, SBI_NEED_FSCK);
1501	f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1502	err = -EFSCORRUPTED;
1503out_err:
1504	ClearPageUptodate(page);
1505out_put_err:
1506	/* ENOENT comes from read_node_page which is not an error. */
1507	if (err != -ENOENT)
1508		f2fs_handle_page_eio(sbi, page_folio(page), NODE);
1509	f2fs_put_page(page, 1);
1510	return ERR_PTR(err);
1511}
1512
1513struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1514{
1515	return __get_node_page(sbi, nid, NULL, 0);
1516}
1517
1518struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1519{
1520	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1521	nid_t nid = get_nid(parent, start, false);
1522
1523	return __get_node_page(sbi, nid, parent, start);
1524}
1525
1526static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1527{
1528	struct inode *inode;
1529	struct page *page;
1530	int ret;
1531
1532	/* should flush inline_data before evict_inode */
1533	inode = ilookup(sbi->sb, ino);
1534	if (!inode)
1535		return;
1536
1537	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1538					FGP_LOCK|FGP_NOWAIT, 0);
1539	if (!page)
1540		goto iput_out;
1541
1542	if (!PageUptodate(page))
1543		goto page_out;
1544
1545	if (!PageDirty(page))
1546		goto page_out;
1547
1548	if (!clear_page_dirty_for_io(page))
1549		goto page_out;
1550
1551	ret = f2fs_write_inline_data(inode, page_folio(page));
1552	inode_dec_dirty_pages(inode);
1553	f2fs_remove_dirty_inode(inode);
1554	if (ret)
1555		set_page_dirty(page);
1556page_out:
1557	f2fs_put_page(page, 1);
1558iput_out:
1559	iput(inode);
1560}
1561
1562static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1563{
1564	pgoff_t index;
1565	struct folio_batch fbatch;
1566	struct page *last_page = NULL;
1567	int nr_folios;
1568
1569	folio_batch_init(&fbatch);
1570	index = 0;
1571
1572	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1573					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1574					&fbatch))) {
1575		int i;
1576
1577		for (i = 0; i < nr_folios; i++) {
1578			struct page *page = &fbatch.folios[i]->page;
1579
1580			if (unlikely(f2fs_cp_error(sbi))) {
1581				f2fs_put_page(last_page, 0);
1582				folio_batch_release(&fbatch);
1583				return ERR_PTR(-EIO);
1584			}
1585
1586			if (!IS_DNODE(page) || !is_cold_node(page))
1587				continue;
1588			if (ino_of_node(page) != ino)
1589				continue;
1590
1591			lock_page(page);
1592
1593			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1594continue_unlock:
1595				unlock_page(page);
1596				continue;
1597			}
1598			if (ino_of_node(page) != ino)
1599				goto continue_unlock;
1600
1601			if (!PageDirty(page)) {
1602				/* someone wrote it for us */
1603				goto continue_unlock;
1604			}
1605
1606			if (last_page)
1607				f2fs_put_page(last_page, 0);
1608
1609			get_page(page);
1610			last_page = page;
1611			unlock_page(page);
1612		}
1613		folio_batch_release(&fbatch);
1614		cond_resched();
1615	}
1616	return last_page;
1617}
1618
1619static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1620				struct writeback_control *wbc, bool do_balance,
1621				enum iostat_type io_type, unsigned int *seq_id)
1622{
1623	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1624	struct folio *folio = page_folio(page);
1625	nid_t nid;
1626	struct node_info ni;
1627	struct f2fs_io_info fio = {
1628		.sbi = sbi,
1629		.ino = ino_of_node(page),
1630		.type = NODE,
1631		.op = REQ_OP_WRITE,
1632		.op_flags = wbc_to_write_flags(wbc),
1633		.page = page,
1634		.encrypted_page = NULL,
1635		.submitted = 0,
1636		.io_type = io_type,
1637		.io_wbc = wbc,
1638	};
1639	unsigned int seq;
1640
1641	trace_f2fs_writepage(folio, NODE);
1642
1643	if (unlikely(f2fs_cp_error(sbi))) {
1644		/* keep node pages in remount-ro mode */
1645		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1646			goto redirty_out;
1647		folio_clear_uptodate(folio);
1648		dec_page_count(sbi, F2FS_DIRTY_NODES);
1649		folio_unlock(folio);
1650		return 0;
1651	}
1652
1653	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1654		goto redirty_out;
1655
1656	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1657			wbc->sync_mode == WB_SYNC_NONE &&
1658			IS_DNODE(page) && is_cold_node(page))
1659		goto redirty_out;
1660
1661	/* get old block addr of this node page */
1662	nid = nid_of_node(page);
1663	f2fs_bug_on(sbi, folio->index != nid);
1664
1665	if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1666		goto redirty_out;
1667
1668	if (wbc->for_reclaim) {
1669		if (!f2fs_down_read_trylock(&sbi->node_write))
1670			goto redirty_out;
1671	} else {
1672		f2fs_down_read(&sbi->node_write);
1673	}
1674
 
 
1675	/* This page is already truncated */
1676	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1677		folio_clear_uptodate(folio);
1678		dec_page_count(sbi, F2FS_DIRTY_NODES);
1679		f2fs_up_read(&sbi->node_write);
1680		folio_unlock(folio);
1681		return 0;
1682	}
1683
1684	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1685		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1686					DATA_GENERIC_ENHANCE)) {
1687		f2fs_up_read(&sbi->node_write);
1688		goto redirty_out;
1689	}
1690
1691	if (atomic && !test_opt(sbi, NOBARRIER))
1692		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1693
1694	/* should add to global list before clearing PAGECACHE status */
1695	if (f2fs_in_warm_node_list(sbi, page)) {
1696		seq = f2fs_add_fsync_node_entry(sbi, page);
1697		if (seq_id)
1698			*seq_id = seq;
1699	}
1700
1701	folio_start_writeback(folio);
1702
1703	fio.old_blkaddr = ni.blk_addr;
1704	f2fs_do_write_node_page(nid, &fio);
1705	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1706	dec_page_count(sbi, F2FS_DIRTY_NODES);
1707	f2fs_up_read(&sbi->node_write);
1708
1709	if (wbc->for_reclaim) {
1710		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
 
1711		submitted = NULL;
1712	}
1713
1714	folio_unlock(folio);
1715
1716	if (unlikely(f2fs_cp_error(sbi))) {
1717		f2fs_submit_merged_write(sbi, NODE);
1718		submitted = NULL;
1719	}
1720	if (submitted)
1721		*submitted = fio.submitted;
1722
1723	if (do_balance)
1724		f2fs_balance_fs(sbi, false);
1725	return 0;
1726
1727redirty_out:
1728	folio_redirty_for_writepage(wbc, folio);
1729	return AOP_WRITEPAGE_ACTIVATE;
1730}
1731
1732int f2fs_move_node_page(struct page *node_page, int gc_type)
1733{
1734	int err = 0;
1735
1736	if (gc_type == FG_GC) {
1737		struct writeback_control wbc = {
1738			.sync_mode = WB_SYNC_ALL,
1739			.nr_to_write = 1,
1740			.for_reclaim = 0,
1741		};
1742
1743		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1744
1745		set_page_dirty(node_page);
 
1746
1747		if (!clear_page_dirty_for_io(node_page)) {
1748			err = -EAGAIN;
1749			goto out_page;
1750		}
1751
1752		if (__write_node_page(node_page, false, NULL,
1753					&wbc, false, FS_GC_NODE_IO, NULL)) {
1754			err = -EAGAIN;
1755			unlock_page(node_page);
1756		}
1757		goto release_page;
1758	} else {
1759		/* set page dirty and write it */
1760		if (!folio_test_writeback(page_folio(node_page)))
1761			set_page_dirty(node_page);
1762	}
1763out_page:
1764	unlock_page(node_page);
1765release_page:
1766	f2fs_put_page(node_page, 0);
1767	return err;
1768}
1769
1770static int f2fs_write_node_page(struct page *page,
1771				struct writeback_control *wbc)
1772{
1773	return __write_node_page(page, false, NULL, wbc, false,
1774						FS_NODE_IO, NULL);
1775}
1776
1777int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1778			struct writeback_control *wbc, bool atomic,
1779			unsigned int *seq_id)
1780{
1781	pgoff_t index;
1782	struct folio_batch fbatch;
 
1783	int ret = 0;
1784	struct page *last_page = NULL;
1785	bool marked = false;
1786	nid_t ino = inode->i_ino;
1787	int nr_folios;
1788	int nwritten = 0;
1789
1790	if (atomic) {
1791		last_page = last_fsync_dnode(sbi, ino);
1792		if (IS_ERR_OR_NULL(last_page))
1793			return PTR_ERR_OR_ZERO(last_page);
1794	}
1795retry:
1796	folio_batch_init(&fbatch);
1797	index = 0;
1798
1799	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1800					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1801					&fbatch))) {
1802		int i;
1803
1804		for (i = 0; i < nr_folios; i++) {
1805			struct page *page = &fbatch.folios[i]->page;
1806			bool submitted = false;
1807
1808			if (unlikely(f2fs_cp_error(sbi))) {
1809				f2fs_put_page(last_page, 0);
1810				folio_batch_release(&fbatch);
1811				ret = -EIO;
1812				goto out;
1813			}
1814
1815			if (!IS_DNODE(page) || !is_cold_node(page))
1816				continue;
1817			if (ino_of_node(page) != ino)
1818				continue;
1819
1820			lock_page(page);
1821
1822			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1823continue_unlock:
1824				unlock_page(page);
1825				continue;
1826			}
1827			if (ino_of_node(page) != ino)
1828				goto continue_unlock;
1829
1830			if (!PageDirty(page) && page != last_page) {
1831				/* someone wrote it for us */
1832				goto continue_unlock;
1833			}
1834
1835			f2fs_wait_on_page_writeback(page, NODE, true, true);
 
1836
1837			set_fsync_mark(page, 0);
1838			set_dentry_mark(page, 0);
1839
1840			if (!atomic || page == last_page) {
1841				set_fsync_mark(page, 1);
1842				percpu_counter_inc(&sbi->rf_node_block_count);
1843				if (IS_INODE(page)) {
1844					if (is_inode_flag_set(inode,
1845								FI_DIRTY_INODE))
1846						f2fs_update_inode(inode, page);
1847					set_dentry_mark(page,
1848						f2fs_need_dentry_mark(sbi, ino));
1849				}
1850				/* may be written by other thread */
1851				if (!PageDirty(page))
1852					set_page_dirty(page);
1853			}
1854
1855			if (!clear_page_dirty_for_io(page))
1856				goto continue_unlock;
1857
1858			ret = __write_node_page(page, atomic &&
1859						page == last_page,
1860						&submitted, wbc, true,
1861						FS_NODE_IO, seq_id);
1862			if (ret) {
1863				unlock_page(page);
1864				f2fs_put_page(last_page, 0);
1865				break;
1866			} else if (submitted) {
1867				nwritten++;
1868			}
1869
1870			if (page == last_page) {
1871				f2fs_put_page(page, 0);
1872				marked = true;
1873				break;
1874			}
1875		}
1876		folio_batch_release(&fbatch);
1877		cond_resched();
1878
1879		if (ret || marked)
1880			break;
1881	}
1882	if (!ret && atomic && !marked) {
1883		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1884			   ino, page_folio(last_page)->index);
 
1885		lock_page(last_page);
1886		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1887		set_page_dirty(last_page);
1888		unlock_page(last_page);
1889		goto retry;
1890	}
1891out:
1892	if (nwritten)
1893		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1894	return ret ? -EIO : 0;
1895}
1896
1897static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1898{
1899	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1900	bool clean;
1901
1902	if (inode->i_ino != ino)
1903		return 0;
1904
1905	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1906		return 0;
1907
1908	spin_lock(&sbi->inode_lock[DIRTY_META]);
1909	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1910	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1911
1912	if (clean)
1913		return 0;
1914
1915	inode = igrab(inode);
1916	if (!inode)
1917		return 0;
1918	return 1;
1919}
1920
1921static bool flush_dirty_inode(struct page *page)
1922{
1923	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1924	struct inode *inode;
1925	nid_t ino = ino_of_node(page);
1926
1927	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1928	if (!inode)
1929		return false;
1930
1931	f2fs_update_inode(inode, page);
1932	unlock_page(page);
1933
1934	iput(inode);
1935	return true;
1936}
1937
1938void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1939{
1940	pgoff_t index = 0;
1941	struct folio_batch fbatch;
1942	int nr_folios;
1943
1944	folio_batch_init(&fbatch);
1945
1946	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1947					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1948					&fbatch))) {
1949		int i;
1950
1951		for (i = 0; i < nr_folios; i++) {
1952			struct page *page = &fbatch.folios[i]->page;
1953
1954			if (!IS_INODE(page))
1955				continue;
1956
1957			lock_page(page);
1958
1959			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1960continue_unlock:
1961				unlock_page(page);
1962				continue;
1963			}
1964
1965			if (!PageDirty(page)) {
1966				/* someone wrote it for us */
1967				goto continue_unlock;
1968			}
1969
1970			/* flush inline_data, if it's async context. */
1971			if (page_private_inline(page)) {
1972				clear_page_private_inline(page);
1973				unlock_page(page);
1974				flush_inline_data(sbi, ino_of_node(page));
1975				continue;
1976			}
1977			unlock_page(page);
1978		}
1979		folio_batch_release(&fbatch);
1980		cond_resched();
1981	}
1982}
1983
1984int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1985				struct writeback_control *wbc,
1986				bool do_balance, enum iostat_type io_type)
1987{
1988	pgoff_t index;
1989	struct folio_batch fbatch;
1990	int step = 0;
1991	int nwritten = 0;
1992	int ret = 0;
1993	int nr_folios, done = 0;
1994
1995	folio_batch_init(&fbatch);
1996
1997next_step:
1998	index = 0;
1999
2000	while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
2001				&index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
2002				&fbatch))) {
2003		int i;
2004
2005		for (i = 0; i < nr_folios; i++) {
2006			struct page *page = &fbatch.folios[i]->page;
2007			bool submitted = false;
2008
2009			/* give a priority to WB_SYNC threads */
2010			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
2011					wbc->sync_mode == WB_SYNC_NONE) {
2012				done = 1;
2013				break;
2014			}
2015
2016			/*
2017			 * flushing sequence with step:
2018			 * 0. indirect nodes
2019			 * 1. dentry dnodes
2020			 * 2. file dnodes
2021			 */
2022			if (step == 0 && IS_DNODE(page))
2023				continue;
2024			if (step == 1 && (!IS_DNODE(page) ||
2025						is_cold_node(page)))
2026				continue;
2027			if (step == 2 && (!IS_DNODE(page) ||
2028						!is_cold_node(page)))
2029				continue;
2030lock_node:
2031			if (wbc->sync_mode == WB_SYNC_ALL)
2032				lock_page(page);
2033			else if (!trylock_page(page))
2034				continue;
2035
2036			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
2037continue_unlock:
2038				unlock_page(page);
2039				continue;
2040			}
2041
2042			if (!PageDirty(page)) {
2043				/* someone wrote it for us */
2044				goto continue_unlock;
2045			}
2046
2047			/* flush inline_data/inode, if it's async context. */
2048			if (!do_balance)
2049				goto write_node;
2050
2051			/* flush inline_data */
2052			if (page_private_inline(page)) {
2053				clear_page_private_inline(page);
2054				unlock_page(page);
2055				flush_inline_data(sbi, ino_of_node(page));
2056				goto lock_node;
2057			}
2058
2059			/* flush dirty inode */
2060			if (IS_INODE(page) && flush_dirty_inode(page))
2061				goto lock_node;
2062write_node:
2063			f2fs_wait_on_page_writeback(page, NODE, true, true);
2064
 
2065			if (!clear_page_dirty_for_io(page))
2066				goto continue_unlock;
2067
2068			set_fsync_mark(page, 0);
2069			set_dentry_mark(page, 0);
2070
2071			ret = __write_node_page(page, false, &submitted,
2072						wbc, do_balance, io_type, NULL);
2073			if (ret)
2074				unlock_page(page);
2075			else if (submitted)
2076				nwritten++;
2077
2078			if (--wbc->nr_to_write == 0)
2079				break;
2080		}
2081		folio_batch_release(&fbatch);
2082		cond_resched();
2083
2084		if (wbc->nr_to_write == 0) {
2085			step = 2;
2086			break;
2087		}
2088	}
2089
2090	if (step < 2) {
2091		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2092				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2093			goto out;
2094		step++;
2095		goto next_step;
2096	}
2097out:
2098	if (nwritten)
2099		f2fs_submit_merged_write(sbi, NODE);
2100
2101	if (unlikely(f2fs_cp_error(sbi)))
2102		return -EIO;
2103	return ret;
2104}
2105
2106int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2107						unsigned int seq_id)
2108{
2109	struct fsync_node_entry *fn;
2110	struct page *page;
2111	struct list_head *head = &sbi->fsync_node_list;
2112	unsigned long flags;
2113	unsigned int cur_seq_id = 0;
2114
2115	while (seq_id && cur_seq_id < seq_id) {
2116		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2117		if (list_empty(head)) {
2118			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2119			break;
2120		}
2121		fn = list_first_entry(head, struct fsync_node_entry, list);
2122		if (fn->seq_id > seq_id) {
2123			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2124			break;
2125		}
2126		cur_seq_id = fn->seq_id;
2127		page = fn->page;
2128		get_page(page);
2129		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2130
2131		f2fs_wait_on_page_writeback(page, NODE, true, false);
 
2132
2133		put_page(page);
 
 
 
 
 
 
 
2134	}
2135
2136	return filemap_check_errors(NODE_MAPPING(sbi));
 
 
 
2137}
2138
2139static int f2fs_write_node_pages(struct address_space *mapping,
2140			    struct writeback_control *wbc)
2141{
2142	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2143	struct blk_plug plug;
2144	long diff;
2145
2146	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2147		goto skip_write;
2148
2149	/* balancing f2fs's metadata in background */
2150	f2fs_balance_fs_bg(sbi, true);
2151
2152	/* collect a number of dirty node pages and write together */
2153	if (wbc->sync_mode != WB_SYNC_ALL &&
2154			get_pages(sbi, F2FS_DIRTY_NODES) <
2155					nr_pages_to_skip(sbi, NODE))
2156		goto skip_write;
2157
2158	if (wbc->sync_mode == WB_SYNC_ALL)
2159		atomic_inc(&sbi->wb_sync_req[NODE]);
2160	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2161		/* to avoid potential deadlock */
2162		if (current->plug)
2163			blk_finish_plug(current->plug);
2164		goto skip_write;
2165	}
2166
2167	trace_f2fs_writepages(mapping->host, wbc, NODE);
2168
2169	diff = nr_pages_to_write(sbi, NODE, wbc);
 
2170	blk_start_plug(&plug);
2171	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2172	blk_finish_plug(&plug);
2173	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2174
2175	if (wbc->sync_mode == WB_SYNC_ALL)
2176		atomic_dec(&sbi->wb_sync_req[NODE]);
2177	return 0;
2178
2179skip_write:
2180	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2181	trace_f2fs_writepages(mapping->host, wbc, NODE);
2182	return 0;
2183}
2184
2185static bool f2fs_dirty_node_folio(struct address_space *mapping,
2186		struct folio *folio)
2187{
2188	trace_f2fs_set_page_dirty(folio, NODE);
2189
2190	if (!folio_test_uptodate(folio))
2191		folio_mark_uptodate(folio);
2192#ifdef CONFIG_F2FS_CHECK_FS
2193	if (IS_INODE(&folio->page))
2194		f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2195#endif
2196	if (filemap_dirty_folio(mapping, folio)) {
2197		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2198		set_page_private_reference(&folio->page);
2199		return true;
2200	}
2201	return false;
2202}
2203
2204/*
2205 * Structure of the f2fs node operations
2206 */
2207const struct address_space_operations f2fs_node_aops = {
2208	.writepage	= f2fs_write_node_page,
2209	.writepages	= f2fs_write_node_pages,
2210	.dirty_folio	= f2fs_dirty_node_folio,
2211	.invalidate_folio = f2fs_invalidate_folio,
2212	.release_folio	= f2fs_release_folio,
2213	.migrate_folio	= filemap_migrate_folio,
 
 
2214};
2215
2216static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2217						nid_t n)
2218{
2219	return radix_tree_lookup(&nm_i->free_nid_root, n);
2220}
2221
2222static int __insert_free_nid(struct f2fs_sb_info *sbi,
2223				struct free_nid *i)
2224{
2225	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
2226	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2227
2228	if (err)
2229		return err;
2230
2231	nm_i->nid_cnt[FREE_NID]++;
2232	list_add_tail(&i->list, &nm_i->free_nid_list);
 
 
2233	return 0;
2234}
2235
2236static void __remove_free_nid(struct f2fs_sb_info *sbi,
2237			struct free_nid *i, enum nid_state state)
2238{
2239	struct f2fs_nm_info *nm_i = NM_I(sbi);
2240
2241	f2fs_bug_on(sbi, state != i->state);
2242	nm_i->nid_cnt[state]--;
2243	if (state == FREE_NID)
2244		list_del(&i->list);
2245	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2246}
2247
2248static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2249			enum nid_state org_state, enum nid_state dst_state)
2250{
2251	struct f2fs_nm_info *nm_i = NM_I(sbi);
2252
2253	f2fs_bug_on(sbi, org_state != i->state);
2254	i->state = dst_state;
2255	nm_i->nid_cnt[org_state]--;
2256	nm_i->nid_cnt[dst_state]++;
2257
2258	switch (dst_state) {
2259	case PREALLOC_NID:
2260		list_del(&i->list);
2261		break;
2262	case FREE_NID:
2263		list_add_tail(&i->list, &nm_i->free_nid_list);
2264		break;
2265	default:
2266		BUG_ON(1);
2267	}
2268}
2269
2270bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2271{
2272	struct f2fs_nm_info *nm_i = NM_I(sbi);
2273	unsigned int i;
2274	bool ret = true;
2275
2276	f2fs_down_read(&nm_i->nat_tree_lock);
2277	for (i = 0; i < nm_i->nat_blocks; i++) {
2278		if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2279			ret = false;
2280			break;
2281		}
2282	}
2283	f2fs_up_read(&nm_i->nat_tree_lock);
2284
2285	return ret;
2286}
2287
2288static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2289							bool set, bool build)
2290{
2291	struct f2fs_nm_info *nm_i = NM_I(sbi);
2292	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2293	unsigned int nid_ofs = nid - START_NID(nid);
2294
2295	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2296		return;
2297
2298	if (set) {
2299		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2300			return;
2301		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2302		nm_i->free_nid_count[nat_ofs]++;
2303	} else {
2304		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2305			return;
2306		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2307		if (!build)
2308			nm_i->free_nid_count[nat_ofs]--;
2309	}
2310}
2311
2312/* return if the nid is recognized as free */
2313static bool add_free_nid(struct f2fs_sb_info *sbi,
2314				nid_t nid, bool build, bool update)
2315{
2316	struct f2fs_nm_info *nm_i = NM_I(sbi);
2317	struct free_nid *i, *e;
2318	struct nat_entry *ne;
2319	int err = -EINVAL;
2320	bool ret = false;
2321
2322	/* 0 nid should not be used */
2323	if (unlikely(nid == 0))
2324		return false;
2325
2326	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2327		return false;
2328
2329	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2330	i->nid = nid;
2331	i->state = FREE_NID;
2332
2333	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2334
2335	spin_lock(&nm_i->nid_list_lock);
2336
2337	if (build) {
2338		/*
2339		 *   Thread A             Thread B
2340		 *  - f2fs_create
2341		 *   - f2fs_new_inode
2342		 *    - f2fs_alloc_nid
2343		 *     - __insert_nid_to_list(PREALLOC_NID)
2344		 *                     - f2fs_balance_fs_bg
2345		 *                      - f2fs_build_free_nids
2346		 *                       - __f2fs_build_free_nids
2347		 *                        - scan_nat_page
2348		 *                         - add_free_nid
2349		 *                          - __lookup_nat_cache
2350		 *  - f2fs_add_link
2351		 *   - f2fs_init_inode_metadata
2352		 *    - f2fs_new_inode_page
2353		 *     - f2fs_new_node_page
2354		 *      - set_node_addr
2355		 *  - f2fs_alloc_nid_done
2356		 *   - __remove_nid_from_list(PREALLOC_NID)
2357		 *                         - __insert_nid_to_list(FREE_NID)
2358		 */
2359		ne = __lookup_nat_cache(nm_i, nid);
2360		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2361				nat_get_blkaddr(ne) != NULL_ADDR))
2362			goto err_out;
2363
2364		e = __lookup_free_nid_list(nm_i, nid);
2365		if (e) {
2366			if (e->state == FREE_NID)
2367				ret = true;
2368			goto err_out;
2369		}
2370	}
2371	ret = true;
2372	err = __insert_free_nid(sbi, i);
2373err_out:
2374	if (update) {
2375		update_free_nid_bitmap(sbi, nid, ret, build);
2376		if (!build)
2377			nm_i->available_nids++;
2378	}
2379	spin_unlock(&nm_i->nid_list_lock);
2380	radix_tree_preload_end();
2381
2382	if (err)
2383		kmem_cache_free(free_nid_slab, i);
2384	return ret;
2385}
2386
2387static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2388{
2389	struct f2fs_nm_info *nm_i = NM_I(sbi);
2390	struct free_nid *i;
2391	bool need_free = false;
2392
2393	spin_lock(&nm_i->nid_list_lock);
2394	i = __lookup_free_nid_list(nm_i, nid);
2395	if (i && i->state == FREE_NID) {
2396		__remove_free_nid(sbi, i, FREE_NID);
2397		need_free = true;
2398	}
2399	spin_unlock(&nm_i->nid_list_lock);
2400
2401	if (need_free)
2402		kmem_cache_free(free_nid_slab, i);
2403}
2404
2405static int scan_nat_page(struct f2fs_sb_info *sbi,
2406			struct page *nat_page, nid_t start_nid)
2407{
2408	struct f2fs_nm_info *nm_i = NM_I(sbi);
2409	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2410	block_t blk_addr;
2411	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2412	int i;
2413
2414	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2415
2416	i = start_nid % NAT_ENTRY_PER_BLOCK;
2417
2418	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2419		if (unlikely(start_nid >= nm_i->max_nid))
2420			break;
2421
2422		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2423
2424		if (blk_addr == NEW_ADDR)
2425			return -EFSCORRUPTED;
2426
2427		if (blk_addr == NULL_ADDR) {
2428			add_free_nid(sbi, start_nid, true, true);
2429		} else {
2430			spin_lock(&NM_I(sbi)->nid_list_lock);
2431			update_free_nid_bitmap(sbi, start_nid, false, true);
2432			spin_unlock(&NM_I(sbi)->nid_list_lock);
2433		}
2434	}
2435
2436	return 0;
2437}
2438
2439static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2440{
2441	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2442	struct f2fs_journal *journal = curseg->journal;
2443	int i;
2444
2445	down_read(&curseg->journal_rwsem);
2446	for (i = 0; i < nats_in_cursum(journal); i++) {
2447		block_t addr;
2448		nid_t nid;
2449
2450		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2451		nid = le32_to_cpu(nid_in_journal(journal, i));
2452		if (addr == NULL_ADDR)
2453			add_free_nid(sbi, nid, true, false);
2454		else
2455			remove_free_nid(sbi, nid);
2456	}
2457	up_read(&curseg->journal_rwsem);
2458}
2459
2460static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2461{
2462	struct f2fs_nm_info *nm_i = NM_I(sbi);
2463	unsigned int i, idx;
2464	nid_t nid;
2465
2466	f2fs_down_read(&nm_i->nat_tree_lock);
2467
2468	for (i = 0; i < nm_i->nat_blocks; i++) {
2469		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2470			continue;
2471		if (!nm_i->free_nid_count[i])
2472			continue;
2473		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2474			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2475						NAT_ENTRY_PER_BLOCK, idx);
2476			if (idx >= NAT_ENTRY_PER_BLOCK)
2477				break;
2478
2479			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2480			add_free_nid(sbi, nid, true, false);
2481
2482			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2483				goto out;
2484		}
2485	}
2486out:
2487	scan_curseg_cache(sbi);
2488
2489	f2fs_up_read(&nm_i->nat_tree_lock);
2490}
2491
2492static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2493						bool sync, bool mount)
2494{
2495	struct f2fs_nm_info *nm_i = NM_I(sbi);
2496	int i = 0, ret;
2497	nid_t nid = nm_i->next_scan_nid;
2498
2499	if (unlikely(nid >= nm_i->max_nid))
2500		nid = 0;
2501
2502	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2503		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2504
2505	/* Enough entries */
2506	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2507		return 0;
2508
2509	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2510		return 0;
2511
2512	if (!mount) {
2513		/* try to find free nids in free_nid_bitmap */
2514		scan_free_nid_bits(sbi);
2515
2516		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2517			return 0;
2518	}
2519
2520	/* readahead nat pages to be scanned */
2521	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2522							META_NAT, true);
2523
2524	f2fs_down_read(&nm_i->nat_tree_lock);
2525
2526	while (1) {
2527		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2528						nm_i->nat_block_bitmap)) {
2529			struct page *page = get_current_nat_page(sbi, nid);
2530
2531			if (IS_ERR(page)) {
2532				ret = PTR_ERR(page);
2533			} else {
2534				ret = scan_nat_page(sbi, page, nid);
2535				f2fs_put_page(page, 1);
2536			}
2537
2538			if (ret) {
2539				f2fs_up_read(&nm_i->nat_tree_lock);
2540
2541				if (ret == -EFSCORRUPTED) {
2542					f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2543					set_sbi_flag(sbi, SBI_NEED_FSCK);
2544					f2fs_handle_error(sbi,
2545						ERROR_INCONSISTENT_NAT);
2546				}
2547
2548				return ret;
2549			}
2550		}
2551
2552		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2553		if (unlikely(nid >= nm_i->max_nid))
2554			nid = 0;
2555
2556		if (++i >= FREE_NID_PAGES)
2557			break;
2558	}
2559
2560	/* go to the next free nat pages to find free nids abundantly */
2561	nm_i->next_scan_nid = nid;
2562
2563	/* find free nids from current sum_pages */
2564	scan_curseg_cache(sbi);
2565
2566	f2fs_up_read(&nm_i->nat_tree_lock);
2567
2568	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2569					nm_i->ra_nid_pages, META_NAT, false);
2570
2571	return 0;
2572}
2573
2574int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2575{
2576	int ret;
2577
2578	mutex_lock(&NM_I(sbi)->build_lock);
2579	ret = __f2fs_build_free_nids(sbi, sync, mount);
2580	mutex_unlock(&NM_I(sbi)->build_lock);
2581
2582	return ret;
2583}
2584
2585/*
2586 * If this function returns success, caller can obtain a new nid
2587 * from second parameter of this function.
2588 * The returned nid could be used ino as well as nid when inode is created.
2589 */
2590bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2591{
2592	struct f2fs_nm_info *nm_i = NM_I(sbi);
2593	struct free_nid *i = NULL;
2594retry:
2595	if (time_to_inject(sbi, FAULT_ALLOC_NID))
 
 
2596		return false;
2597
 
2598	spin_lock(&nm_i->nid_list_lock);
2599
2600	if (unlikely(nm_i->available_nids == 0)) {
2601		spin_unlock(&nm_i->nid_list_lock);
2602		return false;
2603	}
2604
2605	/* We should not use stale free nids created by f2fs_build_free_nids */
2606	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2607		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2608		i = list_first_entry(&nm_i->free_nid_list,
2609					struct free_nid, list);
2610		*nid = i->nid;
2611
2612		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2613		nm_i->available_nids--;
2614
2615		update_free_nid_bitmap(sbi, *nid, false, false);
2616
2617		spin_unlock(&nm_i->nid_list_lock);
2618		return true;
2619	}
2620	spin_unlock(&nm_i->nid_list_lock);
2621
2622	/* Let's scan nat pages and its caches to get free nids */
2623	if (!f2fs_build_free_nids(sbi, true, false))
2624		goto retry;
2625	return false;
2626}
2627
2628/*
2629 * f2fs_alloc_nid() should be called prior to this function.
2630 */
2631void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2632{
2633	struct f2fs_nm_info *nm_i = NM_I(sbi);
2634	struct free_nid *i;
2635
2636	spin_lock(&nm_i->nid_list_lock);
2637	i = __lookup_free_nid_list(nm_i, nid);
2638	f2fs_bug_on(sbi, !i);
2639	__remove_free_nid(sbi, i, PREALLOC_NID);
2640	spin_unlock(&nm_i->nid_list_lock);
2641
2642	kmem_cache_free(free_nid_slab, i);
2643}
2644
2645/*
2646 * f2fs_alloc_nid() should be called prior to this function.
2647 */
2648void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2649{
2650	struct f2fs_nm_info *nm_i = NM_I(sbi);
2651	struct free_nid *i;
2652	bool need_free = false;
2653
2654	if (!nid)
2655		return;
2656
2657	spin_lock(&nm_i->nid_list_lock);
2658	i = __lookup_free_nid_list(nm_i, nid);
2659	f2fs_bug_on(sbi, !i);
2660
2661	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2662		__remove_free_nid(sbi, i, PREALLOC_NID);
2663		need_free = true;
2664	} else {
2665		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2666	}
2667
2668	nm_i->available_nids++;
2669
2670	update_free_nid_bitmap(sbi, nid, true, false);
2671
2672	spin_unlock(&nm_i->nid_list_lock);
2673
2674	if (need_free)
2675		kmem_cache_free(free_nid_slab, i);
2676}
2677
2678int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2679{
2680	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
2681	int nr = nr_shrink;
2682
2683	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2684		return 0;
2685
2686	if (!mutex_trylock(&nm_i->build_lock))
2687		return 0;
2688
2689	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2690		struct free_nid *i, *next;
2691		unsigned int batch = SHRINK_NID_BATCH_SIZE;
 
 
2692
2693		spin_lock(&nm_i->nid_list_lock);
2694		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2695			if (!nr_shrink || !batch ||
2696				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2697				break;
2698			__remove_free_nid(sbi, i, FREE_NID);
2699			kmem_cache_free(free_nid_slab, i);
2700			nr_shrink--;
2701			batch--;
2702		}
2703		spin_unlock(&nm_i->nid_list_lock);
2704	}
2705
2706	mutex_unlock(&nm_i->build_lock);
2707
2708	return nr - nr_shrink;
2709}
2710
2711int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2712{
2713	void *src_addr, *dst_addr;
2714	size_t inline_size;
2715	struct page *ipage;
2716	struct f2fs_inode *ri;
2717
2718	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2719	if (IS_ERR(ipage))
2720		return PTR_ERR(ipage);
2721
2722	ri = F2FS_INODE(page);
2723	if (ri->i_inline & F2FS_INLINE_XATTR) {
2724		if (!f2fs_has_inline_xattr(inode)) {
2725			set_inode_flag(inode, FI_INLINE_XATTR);
2726			stat_inc_inline_xattr(inode);
2727		}
2728	} else {
2729		if (f2fs_has_inline_xattr(inode)) {
2730			stat_dec_inline_xattr(inode);
2731			clear_inode_flag(inode, FI_INLINE_XATTR);
2732		}
2733		goto update_inode;
2734	}
2735
2736	dst_addr = inline_xattr_addr(inode, ipage);
2737	src_addr = inline_xattr_addr(inode, page);
2738	inline_size = inline_xattr_size(inode);
2739
2740	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2741	memcpy(dst_addr, src_addr, inline_size);
2742update_inode:
2743	f2fs_update_inode(inode, ipage);
2744	f2fs_put_page(ipage, 1);
2745	return 0;
2746}
2747
2748int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2749{
2750	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2751	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2752	nid_t new_xnid;
2753	struct dnode_of_data dn;
2754	struct node_info ni;
2755	struct page *xpage;
2756	int err;
2757
2758	if (!prev_xnid)
2759		goto recover_xnid;
2760
2761	/* 1: invalidate the previous xattr nid */
2762	err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2763	if (err)
2764		return err;
2765
2766	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2767	dec_valid_node_count(sbi, inode, false);
2768	set_node_addr(sbi, &ni, NULL_ADDR, false);
2769
2770recover_xnid:
2771	/* 2: update xattr nid in inode */
2772	if (!f2fs_alloc_nid(sbi, &new_xnid))
2773		return -ENOSPC;
2774
2775	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2776	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2777	if (IS_ERR(xpage)) {
2778		f2fs_alloc_nid_failed(sbi, new_xnid);
2779		return PTR_ERR(xpage);
2780	}
2781
2782	f2fs_alloc_nid_done(sbi, new_xnid);
2783	f2fs_update_inode_page(inode);
2784
2785	/* 3: update and set xattr node page dirty */
2786	if (page) {
2787		memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2788				VALID_XATTR_BLOCK_SIZE);
2789		set_page_dirty(xpage);
2790	}
2791	f2fs_put_page(xpage, 1);
2792
2793	return 0;
2794}
2795
2796int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2797{
2798	struct f2fs_inode *src, *dst;
2799	nid_t ino = ino_of_node(page);
2800	struct node_info old_ni, new_ni;
2801	struct page *ipage;
2802	int err;
2803
2804	err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2805	if (err)
2806		return err;
2807
2808	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2809		return -EINVAL;
2810retry:
2811	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2812	if (!ipage) {
2813		memalloc_retry_wait(GFP_NOFS);
2814		goto retry;
2815	}
2816
2817	/* Should not use this inode from free nid list */
2818	remove_free_nid(sbi, ino);
2819
2820	if (!PageUptodate(ipage))
2821		SetPageUptodate(ipage);
2822	fill_node_footer(ipage, ino, ino, 0, true);
2823	set_cold_node(ipage, false);
2824
2825	src = F2FS_INODE(page);
2826	dst = F2FS_INODE(ipage);
2827
2828	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2829	dst->i_size = 0;
2830	dst->i_blocks = cpu_to_le64(1);
2831	dst->i_links = cpu_to_le32(1);
2832	dst->i_xattr_nid = 0;
2833	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2834	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2835		dst->i_extra_isize = src->i_extra_isize;
2836
2837		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2838			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2839							i_inline_xattr_size))
2840			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2841
2842		if (f2fs_sb_has_project_quota(sbi) &&
2843			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2844								i_projid))
2845			dst->i_projid = src->i_projid;
2846
2847		if (f2fs_sb_has_inode_crtime(sbi) &&
2848			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2849							i_crtime_nsec)) {
2850			dst->i_crtime = src->i_crtime;
2851			dst->i_crtime_nsec = src->i_crtime_nsec;
2852		}
2853	}
2854
2855	new_ni = old_ni;
2856	new_ni.ino = ino;
2857
2858	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2859		WARN_ON(1);
2860	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2861	inc_valid_inode_count(sbi);
2862	set_page_dirty(ipage);
2863	f2fs_put_page(ipage, 1);
2864	return 0;
2865}
2866
2867int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2868			unsigned int segno, struct f2fs_summary_block *sum)
2869{
2870	struct f2fs_node *rn;
2871	struct f2fs_summary *sum_entry;
2872	block_t addr;
2873	int i, idx, last_offset, nrpages;
2874
2875	/* scan the node segment */
2876	last_offset = BLKS_PER_SEG(sbi);
2877	addr = START_BLOCK(sbi, segno);
2878	sum_entry = &sum->entries[0];
2879
2880	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2881		nrpages = bio_max_segs(last_offset - i);
2882
2883		/* readahead node pages */
2884		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2885
2886		for (idx = addr; idx < addr + nrpages; idx++) {
2887			struct page *page = f2fs_get_tmp_page(sbi, idx);
2888
2889			if (IS_ERR(page))
2890				return PTR_ERR(page);
2891
2892			rn = F2FS_NODE(page);
2893			sum_entry->nid = rn->footer.nid;
2894			sum_entry->version = 0;
2895			sum_entry->ofs_in_node = 0;
2896			sum_entry++;
2897			f2fs_put_page(page, 1);
2898		}
2899
2900		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2901							addr + nrpages);
2902	}
2903	return 0;
2904}
2905
2906static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2907{
2908	struct f2fs_nm_info *nm_i = NM_I(sbi);
2909	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2910	struct f2fs_journal *journal = curseg->journal;
2911	int i;
2912
2913	down_write(&curseg->journal_rwsem);
2914	for (i = 0; i < nats_in_cursum(journal); i++) {
2915		struct nat_entry *ne;
2916		struct f2fs_nat_entry raw_ne;
2917		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2918
2919		if (f2fs_check_nid_range(sbi, nid))
2920			continue;
2921
2922		raw_ne = nat_in_journal(journal, i);
2923
2924		ne = __lookup_nat_cache(nm_i, nid);
2925		if (!ne) {
2926			ne = __alloc_nat_entry(sbi, nid, true);
2927			__init_nat_entry(nm_i, ne, &raw_ne, true);
2928		}
2929
2930		/*
2931		 * if a free nat in journal has not been used after last
2932		 * checkpoint, we should remove it from available nids,
2933		 * since later we will add it again.
2934		 */
2935		if (!get_nat_flag(ne, IS_DIRTY) &&
2936				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2937			spin_lock(&nm_i->nid_list_lock);
2938			nm_i->available_nids--;
2939			spin_unlock(&nm_i->nid_list_lock);
2940		}
2941
2942		__set_nat_cache_dirty(nm_i, ne);
2943	}
2944	update_nats_in_cursum(journal, -i);
2945	up_write(&curseg->journal_rwsem);
2946}
2947
2948static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2949						struct list_head *head, int max)
2950{
2951	struct nat_entry_set *cur;
2952
2953	if (nes->entry_cnt >= max)
2954		goto add_out;
2955
2956	list_for_each_entry(cur, head, set_list) {
2957		if (cur->entry_cnt >= nes->entry_cnt) {
2958			list_add(&nes->set_list, cur->set_list.prev);
2959			return;
2960		}
2961	}
2962add_out:
2963	list_add_tail(&nes->set_list, head);
2964}
2965
2966static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2967							unsigned int valid)
2968{
2969	if (valid == 0) {
2970		__set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2971		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2972		return;
2973	}
2974
2975	__clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2976	if (valid == NAT_ENTRY_PER_BLOCK)
2977		__set_bit_le(nat_ofs, nm_i->full_nat_bits);
2978	else
2979		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2980}
2981
2982static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2983						struct page *page)
2984{
2985	struct f2fs_nm_info *nm_i = NM_I(sbi);
2986	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2987	struct f2fs_nat_block *nat_blk = page_address(page);
2988	int valid = 0;
2989	int i = 0;
2990
2991	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2992		return;
2993
2994	if (nat_index == 0) {
2995		valid = 1;
2996		i = 1;
2997	}
2998	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2999		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
3000			valid++;
3001	}
3002
3003	__update_nat_bits(nm_i, nat_index, valid);
3004}
3005
3006void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
3007{
3008	struct f2fs_nm_info *nm_i = NM_I(sbi);
3009	unsigned int nat_ofs;
3010
3011	f2fs_down_read(&nm_i->nat_tree_lock);
3012
3013	for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
3014		unsigned int valid = 0, nid_ofs = 0;
3015
3016		/* handle nid zero due to it should never be used */
3017		if (unlikely(nat_ofs == 0)) {
3018			valid = 1;
3019			nid_ofs = 1;
3020		}
3021
3022		for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
3023			if (!test_bit_le(nid_ofs,
3024					nm_i->free_nid_bitmap[nat_ofs]))
3025				valid++;
3026		}
3027
3028		__update_nat_bits(nm_i, nat_ofs, valid);
3029	}
3030
3031	f2fs_up_read(&nm_i->nat_tree_lock);
 
 
 
 
3032}
3033
3034static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3035		struct nat_entry_set *set, struct cp_control *cpc)
3036{
3037	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3038	struct f2fs_journal *journal = curseg->journal;
3039	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3040	bool to_journal = true;
3041	struct f2fs_nat_block *nat_blk;
3042	struct nat_entry *ne, *cur;
3043	struct page *page = NULL;
3044
3045	/*
3046	 * there are two steps to flush nat entries:
3047	 * #1, flush nat entries to journal in current hot data summary block.
3048	 * #2, flush nat entries to nat page.
3049	 */
3050	if ((cpc->reason & CP_UMOUNT) ||
3051		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3052		to_journal = false;
3053
3054	if (to_journal) {
3055		down_write(&curseg->journal_rwsem);
3056	} else {
3057		page = get_next_nat_page(sbi, start_nid);
3058		if (IS_ERR(page))
3059			return PTR_ERR(page);
3060
3061		nat_blk = page_address(page);
3062		f2fs_bug_on(sbi, !nat_blk);
3063	}
3064
3065	/* flush dirty nats in nat entry set */
3066	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3067		struct f2fs_nat_entry *raw_ne;
3068		nid_t nid = nat_get_nid(ne);
3069		int offset;
3070
3071		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3072
3073		if (to_journal) {
3074			offset = f2fs_lookup_journal_in_cursum(journal,
3075							NAT_JOURNAL, nid, 1);
3076			f2fs_bug_on(sbi, offset < 0);
3077			raw_ne = &nat_in_journal(journal, offset);
3078			nid_in_journal(journal, offset) = cpu_to_le32(nid);
3079		} else {
3080			raw_ne = &nat_blk->entries[nid - start_nid];
3081		}
3082		raw_nat_from_node_info(raw_ne, &ne->ni);
3083		nat_reset_flag(ne);
3084		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
3085		if (nat_get_blkaddr(ne) == NULL_ADDR) {
3086			add_free_nid(sbi, nid, false, true);
3087		} else {
3088			spin_lock(&NM_I(sbi)->nid_list_lock);
3089			update_free_nid_bitmap(sbi, nid, false, false);
3090			spin_unlock(&NM_I(sbi)->nid_list_lock);
3091		}
3092	}
3093
3094	if (to_journal) {
3095		up_write(&curseg->journal_rwsem);
3096	} else {
3097		update_nat_bits(sbi, start_nid, page);
3098		f2fs_put_page(page, 1);
3099	}
3100
3101	/* Allow dirty nats by node block allocation in write_begin */
3102	if (!set->entry_cnt) {
3103		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3104		kmem_cache_free(nat_entry_set_slab, set);
3105	}
3106	return 0;
3107}
3108
3109/*
3110 * This function is called during the checkpointing process.
3111 */
3112int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3113{
3114	struct f2fs_nm_info *nm_i = NM_I(sbi);
3115	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3116	struct f2fs_journal *journal = curseg->journal;
3117	struct nat_entry_set *setvec[NAT_VEC_SIZE];
3118	struct nat_entry_set *set, *tmp;
3119	unsigned int found;
3120	nid_t set_idx = 0;
3121	LIST_HEAD(sets);
3122	int err = 0;
3123
3124	/*
3125	 * during unmount, let's flush nat_bits before checking
3126	 * nat_cnt[DIRTY_NAT].
3127	 */
3128	if (cpc->reason & CP_UMOUNT) {
3129		f2fs_down_write(&nm_i->nat_tree_lock);
3130		remove_nats_in_journal(sbi);
3131		f2fs_up_write(&nm_i->nat_tree_lock);
3132	}
3133
3134	if (!nm_i->nat_cnt[DIRTY_NAT])
3135		return 0;
3136
3137	f2fs_down_write(&nm_i->nat_tree_lock);
3138
3139	/*
3140	 * if there are no enough space in journal to store dirty nat
3141	 * entries, remove all entries from journal and merge them
3142	 * into nat entry set.
3143	 */
3144	if (cpc->reason & CP_UMOUNT ||
3145		!__has_cursum_space(journal,
3146			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3147		remove_nats_in_journal(sbi);
3148
3149	while ((found = __gang_lookup_nat_set(nm_i,
3150					set_idx, NAT_VEC_SIZE, setvec))) {
3151		unsigned idx;
3152
3153		set_idx = setvec[found - 1]->set + 1;
3154		for (idx = 0; idx < found; idx++)
3155			__adjust_nat_entry_set(setvec[idx], &sets,
3156						MAX_NAT_JENTRIES(journal));
3157	}
3158
3159	/* flush dirty nats in nat entry set */
3160	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3161		err = __flush_nat_entry_set(sbi, set, cpc);
3162		if (err)
3163			break;
3164	}
3165
3166	f2fs_up_write(&nm_i->nat_tree_lock);
3167	/* Allow dirty nats by node block allocation in write_begin */
3168
3169	return err;
3170}
3171
3172static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3173{
3174	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3175	struct f2fs_nm_info *nm_i = NM_I(sbi);
3176	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3177	unsigned int i;
3178	__u64 cp_ver = cur_cp_version(ckpt);
3179	block_t nat_bits_addr;
3180
 
 
 
3181	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3182	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3183			F2FS_BLK_TO_BYTES(nm_i->nat_bits_blocks), GFP_KERNEL);
3184	if (!nm_i->nat_bits)
3185		return -ENOMEM;
3186
3187	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3188	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3189
3190	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3191		return 0;
3192
3193	nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3194						nm_i->nat_bits_blocks;
3195	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3196		struct page *page;
3197
3198		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3199		if (IS_ERR(page))
3200			return PTR_ERR(page);
3201
3202		memcpy(nm_i->nat_bits + F2FS_BLK_TO_BYTES(i),
3203					page_address(page), F2FS_BLKSIZE);
3204		f2fs_put_page(page, 1);
3205	}
3206
3207	cp_ver |= (cur_cp_crc(ckpt) << 32);
3208	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3209		clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3210		f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3211			cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3212		return 0;
3213	}
3214
3215	f2fs_notice(sbi, "Found nat_bits in checkpoint");
 
 
 
3216	return 0;
3217}
3218
3219static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3220{
3221	struct f2fs_nm_info *nm_i = NM_I(sbi);
3222	unsigned int i = 0;
3223	nid_t nid, last_nid;
3224
3225	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3226		return;
3227
3228	for (i = 0; i < nm_i->nat_blocks; i++) {
3229		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3230		if (i >= nm_i->nat_blocks)
3231			break;
3232
3233		__set_bit_le(i, nm_i->nat_block_bitmap);
3234
3235		nid = i * NAT_ENTRY_PER_BLOCK;
3236		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3237
3238		spin_lock(&NM_I(sbi)->nid_list_lock);
3239		for (; nid < last_nid; nid++)
3240			update_free_nid_bitmap(sbi, nid, true, true);
3241		spin_unlock(&NM_I(sbi)->nid_list_lock);
3242	}
3243
3244	for (i = 0; i < nm_i->nat_blocks; i++) {
3245		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3246		if (i >= nm_i->nat_blocks)
3247			break;
3248
3249		__set_bit_le(i, nm_i->nat_block_bitmap);
3250	}
3251}
3252
3253static int init_node_manager(struct f2fs_sb_info *sbi)
3254{
3255	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3256	struct f2fs_nm_info *nm_i = NM_I(sbi);
3257	unsigned char *version_bitmap;
3258	unsigned int nat_segs;
3259	int err;
3260
3261	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3262
3263	/* segment_count_nat includes pair segment so divide to 2. */
3264	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3265	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3266	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3267
3268	/* not used nids: 0, node, meta, (and root counted as valid node) */
3269	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3270						F2FS_RESERVED_NODE_NUM;
3271	nm_i->nid_cnt[FREE_NID] = 0;
3272	nm_i->nid_cnt[PREALLOC_NID] = 0;
 
3273	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3274	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3275	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3276	nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3277
3278	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3279	INIT_LIST_HEAD(&nm_i->free_nid_list);
3280	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3281	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3282	INIT_LIST_HEAD(&nm_i->nat_entries);
3283	spin_lock_init(&nm_i->nat_list_lock);
3284
3285	mutex_init(&nm_i->build_lock);
3286	spin_lock_init(&nm_i->nid_list_lock);
3287	init_f2fs_rwsem(&nm_i->nat_tree_lock);
3288
3289	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3290	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3291	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
 
 
 
3292	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3293					GFP_KERNEL);
3294	if (!nm_i->nat_bitmap)
3295		return -ENOMEM;
3296
3297	err = __get_nat_bitmaps(sbi);
3298	if (err)
3299		return err;
3300
3301#ifdef CONFIG_F2FS_CHECK_FS
3302	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3303					GFP_KERNEL);
3304	if (!nm_i->nat_bitmap_mir)
3305		return -ENOMEM;
3306#endif
3307
3308	return 0;
3309}
3310
3311static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3312{
3313	struct f2fs_nm_info *nm_i = NM_I(sbi);
3314	int i;
3315
3316	nm_i->free_nid_bitmap =
3317		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3318					      nm_i->nat_blocks),
3319			      GFP_KERNEL);
3320	if (!nm_i->free_nid_bitmap)
3321		return -ENOMEM;
3322
3323	for (i = 0; i < nm_i->nat_blocks; i++) {
3324		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3325			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3326		if (!nm_i->free_nid_bitmap[i])
3327			return -ENOMEM;
3328	}
3329
3330	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3331								GFP_KERNEL);
3332	if (!nm_i->nat_block_bitmap)
3333		return -ENOMEM;
3334
3335	nm_i->free_nid_count =
3336		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3337					      nm_i->nat_blocks),
3338			      GFP_KERNEL);
3339	if (!nm_i->free_nid_count)
3340		return -ENOMEM;
3341	return 0;
3342}
3343
3344int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3345{
3346	int err;
3347
3348	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3349							GFP_KERNEL);
3350	if (!sbi->nm_info)
3351		return -ENOMEM;
3352
3353	err = init_node_manager(sbi);
3354	if (err)
3355		return err;
3356
3357	err = init_free_nid_cache(sbi);
3358	if (err)
3359		return err;
3360
3361	/* load free nid status from nat_bits table */
3362	load_free_nid_bitmap(sbi);
3363
3364	return f2fs_build_free_nids(sbi, true, true);
 
3365}
3366
3367void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3368{
3369	struct f2fs_nm_info *nm_i = NM_I(sbi);
3370	struct free_nid *i, *next_i;
3371	void *vec[NAT_VEC_SIZE];
3372	struct nat_entry **natvec = (struct nat_entry **)vec;
3373	struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3374	nid_t nid = 0;
3375	unsigned int found;
3376
3377	if (!nm_i)
3378		return;
3379
3380	/* destroy free nid list */
3381	spin_lock(&nm_i->nid_list_lock);
3382	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3383		__remove_free_nid(sbi, i, FREE_NID);
3384		spin_unlock(&nm_i->nid_list_lock);
3385		kmem_cache_free(free_nid_slab, i);
3386		spin_lock(&nm_i->nid_list_lock);
3387	}
3388	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3389	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3390	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3391	spin_unlock(&nm_i->nid_list_lock);
3392
3393	/* destroy nat cache */
3394	f2fs_down_write(&nm_i->nat_tree_lock);
3395	while ((found = __gang_lookup_nat_cache(nm_i,
3396					nid, NAT_VEC_SIZE, natvec))) {
3397		unsigned idx;
3398
3399		nid = nat_get_nid(natvec[found - 1]) + 1;
3400		for (idx = 0; idx < found; idx++) {
3401			spin_lock(&nm_i->nat_list_lock);
3402			list_del(&natvec[idx]->list);
3403			spin_unlock(&nm_i->nat_list_lock);
3404
3405			__del_from_nat_cache(nm_i, natvec[idx]);
3406		}
3407	}
3408	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3409
3410	/* destroy nat set cache */
3411	nid = 0;
3412	memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3413	while ((found = __gang_lookup_nat_set(nm_i,
3414					nid, NAT_VEC_SIZE, setvec))) {
3415		unsigned idx;
3416
3417		nid = setvec[found - 1]->set + 1;
3418		for (idx = 0; idx < found; idx++) {
3419			/* entry_cnt is not zero, when cp_error was occurred */
3420			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3421			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3422			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3423		}
3424	}
3425	f2fs_up_write(&nm_i->nat_tree_lock);
3426
3427	kvfree(nm_i->nat_block_bitmap);
3428	if (nm_i->free_nid_bitmap) {
3429		int i;
3430
3431		for (i = 0; i < nm_i->nat_blocks; i++)
3432			kvfree(nm_i->free_nid_bitmap[i]);
3433		kvfree(nm_i->free_nid_bitmap);
3434	}
3435	kvfree(nm_i->free_nid_count);
3436
3437	kvfree(nm_i->nat_bitmap);
3438	kvfree(nm_i->nat_bits);
3439#ifdef CONFIG_F2FS_CHECK_FS
3440	kvfree(nm_i->nat_bitmap_mir);
3441#endif
3442	sbi->nm_info = NULL;
3443	kfree(nm_i);
3444}
3445
3446int __init f2fs_create_node_manager_caches(void)
3447{
3448	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3449			sizeof(struct nat_entry));
3450	if (!nat_entry_slab)
3451		goto fail;
3452
3453	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3454			sizeof(struct free_nid));
3455	if (!free_nid_slab)
3456		goto destroy_nat_entry;
3457
3458	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3459			sizeof(struct nat_entry_set));
3460	if (!nat_entry_set_slab)
3461		goto destroy_free_nid;
3462
3463	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3464			sizeof(struct fsync_node_entry));
3465	if (!fsync_node_entry_slab)
3466		goto destroy_nat_entry_set;
3467	return 0;
3468
3469destroy_nat_entry_set:
3470	kmem_cache_destroy(nat_entry_set_slab);
3471destroy_free_nid:
3472	kmem_cache_destroy(free_nid_slab);
3473destroy_nat_entry:
3474	kmem_cache_destroy(nat_entry_slab);
3475fail:
3476	return -ENOMEM;
3477}
3478
3479void f2fs_destroy_node_manager_caches(void)
3480{
3481	kmem_cache_destroy(fsync_node_entry_slab);
3482	kmem_cache_destroy(nat_entry_set_slab);
3483	kmem_cache_destroy(free_nid_slab);
3484	kmem_cache_destroy(nat_entry_slab);
3485}