Loading...
1/*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/mm.h>
8#include <linux/seq_file.h>
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
11#include <linux/mmu_notifier.h>
12#include <linux/nodemask.h>
13#include <linux/pagemap.h>
14#include <linux/mempolicy.h>
15#include <linux/compiler.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
20#include <linux/slab.h>
21#include <linux/mmdebug.h>
22#include <linux/sched/signal.h>
23#include <linux/rmap.h>
24#include <linux/string_helpers.h>
25#include <linux/swap.h>
26#include <linux/swapops.h>
27#include <linux/jhash.h>
28
29#include <asm/page.h>
30#include <asm/pgtable.h>
31#include <asm/tlb.h>
32
33#include <linux/io.h>
34#include <linux/hugetlb.h>
35#include <linux/hugetlb_cgroup.h>
36#include <linux/node.h>
37#include <linux/userfaultfd_k.h>
38#include <linux/page_owner.h>
39#include "internal.h"
40
41int hugetlb_max_hstate __read_mostly;
42unsigned int default_hstate_idx;
43struct hstate hstates[HUGE_MAX_HSTATE];
44/*
45 * Minimum page order among possible hugepage sizes, set to a proper value
46 * at boot time.
47 */
48static unsigned int minimum_order __read_mostly = UINT_MAX;
49
50__initdata LIST_HEAD(huge_boot_pages);
51
52/* for command line parsing */
53static struct hstate * __initdata parsed_hstate;
54static unsigned long __initdata default_hstate_max_huge_pages;
55static unsigned long __initdata default_hstate_size;
56static bool __initdata parsed_valid_hugepagesz = true;
57
58/*
59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60 * free_huge_pages, and surplus_huge_pages.
61 */
62DEFINE_SPINLOCK(hugetlb_lock);
63
64/*
65 * Serializes faults on the same logical page. This is used to
66 * prevent spurious OOMs when the hugepage pool is fully utilized.
67 */
68static int num_fault_mutexes;
69struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70
71/* Forward declaration */
72static int hugetlb_acct_memory(struct hstate *h, long delta);
73
74static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75{
76 bool free = (spool->count == 0) && (spool->used_hpages == 0);
77
78 spin_unlock(&spool->lock);
79
80 /* If no pages are used, and no other handles to the subpool
81 * remain, give up any reservations mased on minimum size and
82 * free the subpool */
83 if (free) {
84 if (spool->min_hpages != -1)
85 hugetlb_acct_memory(spool->hstate,
86 -spool->min_hpages);
87 kfree(spool);
88 }
89}
90
91struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 long min_hpages)
93{
94 struct hugepage_subpool *spool;
95
96 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97 if (!spool)
98 return NULL;
99
100 spin_lock_init(&spool->lock);
101 spool->count = 1;
102 spool->max_hpages = max_hpages;
103 spool->hstate = h;
104 spool->min_hpages = min_hpages;
105
106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 kfree(spool);
108 return NULL;
109 }
110 spool->rsv_hpages = min_hpages;
111
112 return spool;
113}
114
115void hugepage_put_subpool(struct hugepage_subpool *spool)
116{
117 spin_lock(&spool->lock);
118 BUG_ON(!spool->count);
119 spool->count--;
120 unlock_or_release_subpool(spool);
121}
122
123/*
124 * Subpool accounting for allocating and reserving pages.
125 * Return -ENOMEM if there are not enough resources to satisfy the
126 * the request. Otherwise, return the number of pages by which the
127 * global pools must be adjusted (upward). The returned value may
128 * only be different than the passed value (delta) in the case where
129 * a subpool minimum size must be manitained.
130 */
131static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132 long delta)
133{
134 long ret = delta;
135
136 if (!spool)
137 return ret;
138
139 spin_lock(&spool->lock);
140
141 if (spool->max_hpages != -1) { /* maximum size accounting */
142 if ((spool->used_hpages + delta) <= spool->max_hpages)
143 spool->used_hpages += delta;
144 else {
145 ret = -ENOMEM;
146 goto unlock_ret;
147 }
148 }
149
150 /* minimum size accounting */
151 if (spool->min_hpages != -1 && spool->rsv_hpages) {
152 if (delta > spool->rsv_hpages) {
153 /*
154 * Asking for more reserves than those already taken on
155 * behalf of subpool. Return difference.
156 */
157 ret = delta - spool->rsv_hpages;
158 spool->rsv_hpages = 0;
159 } else {
160 ret = 0; /* reserves already accounted for */
161 spool->rsv_hpages -= delta;
162 }
163 }
164
165unlock_ret:
166 spin_unlock(&spool->lock);
167 return ret;
168}
169
170/*
171 * Subpool accounting for freeing and unreserving pages.
172 * Return the number of global page reservations that must be dropped.
173 * The return value may only be different than the passed value (delta)
174 * in the case where a subpool minimum size must be maintained.
175 */
176static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177 long delta)
178{
179 long ret = delta;
180
181 if (!spool)
182 return delta;
183
184 spin_lock(&spool->lock);
185
186 if (spool->max_hpages != -1) /* maximum size accounting */
187 spool->used_hpages -= delta;
188
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191 if (spool->rsv_hpages + delta <= spool->min_hpages)
192 ret = 0;
193 else
194 ret = spool->rsv_hpages + delta - spool->min_hpages;
195
196 spool->rsv_hpages += delta;
197 if (spool->rsv_hpages > spool->min_hpages)
198 spool->rsv_hpages = spool->min_hpages;
199 }
200
201 /*
202 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 * quota reference, free it now.
204 */
205 unlock_or_release_subpool(spool);
206
207 return ret;
208}
209
210static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211{
212 return HUGETLBFS_SB(inode->i_sb)->spool;
213}
214
215static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216{
217 return subpool_inode(file_inode(vma->vm_file));
218}
219
220/*
221 * Region tracking -- allows tracking of reservations and instantiated pages
222 * across the pages in a mapping.
223 *
224 * The region data structures are embedded into a resv_map and protected
225 * by a resv_map's lock. The set of regions within the resv_map represent
226 * reservations for huge pages, or huge pages that have already been
227 * instantiated within the map. The from and to elements are huge page
228 * indicies into the associated mapping. from indicates the starting index
229 * of the region. to represents the first index past the end of the region.
230 *
231 * For example, a file region structure with from == 0 and to == 4 represents
232 * four huge pages in a mapping. It is important to note that the to element
233 * represents the first element past the end of the region. This is used in
234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235 *
236 * Interval notation of the form [from, to) will be used to indicate that
237 * the endpoint from is inclusive and to is exclusive.
238 */
239struct file_region {
240 struct list_head link;
241 long from;
242 long to;
243};
244
245/*
246 * Add the huge page range represented by [f, t) to the reserve
247 * map. In the normal case, existing regions will be expanded
248 * to accommodate the specified range. Sufficient regions should
249 * exist for expansion due to the previous call to region_chg
250 * with the same range. However, it is possible that region_del
251 * could have been called after region_chg and modifed the map
252 * in such a way that no region exists to be expanded. In this
253 * case, pull a region descriptor from the cache associated with
254 * the map and use that for the new range.
255 *
256 * Return the number of new huge pages added to the map. This
257 * number is greater than or equal to zero.
258 */
259static long region_add(struct resv_map *resv, long f, long t)
260{
261 struct list_head *head = &resv->regions;
262 struct file_region *rg, *nrg, *trg;
263 long add = 0;
264
265 spin_lock(&resv->lock);
266 /* Locate the region we are either in or before. */
267 list_for_each_entry(rg, head, link)
268 if (f <= rg->to)
269 break;
270
271 /*
272 * If no region exists which can be expanded to include the
273 * specified range, the list must have been modified by an
274 * interleving call to region_del(). Pull a region descriptor
275 * from the cache and use it for this range.
276 */
277 if (&rg->link == head || t < rg->from) {
278 VM_BUG_ON(resv->region_cache_count <= 0);
279
280 resv->region_cache_count--;
281 nrg = list_first_entry(&resv->region_cache, struct file_region,
282 link);
283 list_del(&nrg->link);
284
285 nrg->from = f;
286 nrg->to = t;
287 list_add(&nrg->link, rg->link.prev);
288
289 add += t - f;
290 goto out_locked;
291 }
292
293 /* Round our left edge to the current segment if it encloses us. */
294 if (f > rg->from)
295 f = rg->from;
296
297 /* Check for and consume any regions we now overlap with. */
298 nrg = rg;
299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 if (&rg->link == head)
301 break;
302 if (rg->from > t)
303 break;
304
305 /* If this area reaches higher then extend our area to
306 * include it completely. If this is not the first area
307 * which we intend to reuse, free it. */
308 if (rg->to > t)
309 t = rg->to;
310 if (rg != nrg) {
311 /* Decrement return value by the deleted range.
312 * Another range will span this area so that by
313 * end of routine add will be >= zero
314 */
315 add -= (rg->to - rg->from);
316 list_del(&rg->link);
317 kfree(rg);
318 }
319 }
320
321 add += (nrg->from - f); /* Added to beginning of region */
322 nrg->from = f;
323 add += t - nrg->to; /* Added to end of region */
324 nrg->to = t;
325
326out_locked:
327 resv->adds_in_progress--;
328 spin_unlock(&resv->lock);
329 VM_BUG_ON(add < 0);
330 return add;
331}
332
333/*
334 * Examine the existing reserve map and determine how many
335 * huge pages in the specified range [f, t) are NOT currently
336 * represented. This routine is called before a subsequent
337 * call to region_add that will actually modify the reserve
338 * map to add the specified range [f, t). region_chg does
339 * not change the number of huge pages represented by the
340 * map. However, if the existing regions in the map can not
341 * be expanded to represent the new range, a new file_region
342 * structure is added to the map as a placeholder. This is
343 * so that the subsequent region_add call will have all the
344 * regions it needs and will not fail.
345 *
346 * Upon entry, region_chg will also examine the cache of region descriptors
347 * associated with the map. If there are not enough descriptors cached, one
348 * will be allocated for the in progress add operation.
349 *
350 * Returns the number of huge pages that need to be added to the existing
351 * reservation map for the range [f, t). This number is greater or equal to
352 * zero. -ENOMEM is returned if a new file_region structure or cache entry
353 * is needed and can not be allocated.
354 */
355static long region_chg(struct resv_map *resv, long f, long t)
356{
357 struct list_head *head = &resv->regions;
358 struct file_region *rg, *nrg = NULL;
359 long chg = 0;
360
361retry:
362 spin_lock(&resv->lock);
363retry_locked:
364 resv->adds_in_progress++;
365
366 /*
367 * Check for sufficient descriptors in the cache to accommodate
368 * the number of in progress add operations.
369 */
370 if (resv->adds_in_progress > resv->region_cache_count) {
371 struct file_region *trg;
372
373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 /* Must drop lock to allocate a new descriptor. */
375 resv->adds_in_progress--;
376 spin_unlock(&resv->lock);
377
378 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379 if (!trg) {
380 kfree(nrg);
381 return -ENOMEM;
382 }
383
384 spin_lock(&resv->lock);
385 list_add(&trg->link, &resv->region_cache);
386 resv->region_cache_count++;
387 goto retry_locked;
388 }
389
390 /* Locate the region we are before or in. */
391 list_for_each_entry(rg, head, link)
392 if (f <= rg->to)
393 break;
394
395 /* If we are below the current region then a new region is required.
396 * Subtle, allocate a new region at the position but make it zero
397 * size such that we can guarantee to record the reservation. */
398 if (&rg->link == head || t < rg->from) {
399 if (!nrg) {
400 resv->adds_in_progress--;
401 spin_unlock(&resv->lock);
402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 if (!nrg)
404 return -ENOMEM;
405
406 nrg->from = f;
407 nrg->to = f;
408 INIT_LIST_HEAD(&nrg->link);
409 goto retry;
410 }
411
412 list_add(&nrg->link, rg->link.prev);
413 chg = t - f;
414 goto out_nrg;
415 }
416
417 /* Round our left edge to the current segment if it encloses us. */
418 if (f > rg->from)
419 f = rg->from;
420 chg = t - f;
421
422 /* Check for and consume any regions we now overlap with. */
423 list_for_each_entry(rg, rg->link.prev, link) {
424 if (&rg->link == head)
425 break;
426 if (rg->from > t)
427 goto out;
428
429 /* We overlap with this area, if it extends further than
430 * us then we must extend ourselves. Account for its
431 * existing reservation. */
432 if (rg->to > t) {
433 chg += rg->to - t;
434 t = rg->to;
435 }
436 chg -= rg->to - rg->from;
437 }
438
439out:
440 spin_unlock(&resv->lock);
441 /* We already know we raced and no longer need the new region */
442 kfree(nrg);
443 return chg;
444out_nrg:
445 spin_unlock(&resv->lock);
446 return chg;
447}
448
449/*
450 * Abort the in progress add operation. The adds_in_progress field
451 * of the resv_map keeps track of the operations in progress between
452 * calls to region_chg and region_add. Operations are sometimes
453 * aborted after the call to region_chg. In such cases, region_abort
454 * is called to decrement the adds_in_progress counter.
455 *
456 * NOTE: The range arguments [f, t) are not needed or used in this
457 * routine. They are kept to make reading the calling code easier as
458 * arguments will match the associated region_chg call.
459 */
460static void region_abort(struct resv_map *resv, long f, long t)
461{
462 spin_lock(&resv->lock);
463 VM_BUG_ON(!resv->region_cache_count);
464 resv->adds_in_progress--;
465 spin_unlock(&resv->lock);
466}
467
468/*
469 * Delete the specified range [f, t) from the reserve map. If the
470 * t parameter is LONG_MAX, this indicates that ALL regions after f
471 * should be deleted. Locate the regions which intersect [f, t)
472 * and either trim, delete or split the existing regions.
473 *
474 * Returns the number of huge pages deleted from the reserve map.
475 * In the normal case, the return value is zero or more. In the
476 * case where a region must be split, a new region descriptor must
477 * be allocated. If the allocation fails, -ENOMEM will be returned.
478 * NOTE: If the parameter t == LONG_MAX, then we will never split
479 * a region and possibly return -ENOMEM. Callers specifying
480 * t == LONG_MAX do not need to check for -ENOMEM error.
481 */
482static long region_del(struct resv_map *resv, long f, long t)
483{
484 struct list_head *head = &resv->regions;
485 struct file_region *rg, *trg;
486 struct file_region *nrg = NULL;
487 long del = 0;
488
489retry:
490 spin_lock(&resv->lock);
491 list_for_each_entry_safe(rg, trg, head, link) {
492 /*
493 * Skip regions before the range to be deleted. file_region
494 * ranges are normally of the form [from, to). However, there
495 * may be a "placeholder" entry in the map which is of the form
496 * (from, to) with from == to. Check for placeholder entries
497 * at the beginning of the range to be deleted.
498 */
499 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500 continue;
501
502 if (rg->from >= t)
503 break;
504
505 if (f > rg->from && t < rg->to) { /* Must split region */
506 /*
507 * Check for an entry in the cache before dropping
508 * lock and attempting allocation.
509 */
510 if (!nrg &&
511 resv->region_cache_count > resv->adds_in_progress) {
512 nrg = list_first_entry(&resv->region_cache,
513 struct file_region,
514 link);
515 list_del(&nrg->link);
516 resv->region_cache_count--;
517 }
518
519 if (!nrg) {
520 spin_unlock(&resv->lock);
521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 if (!nrg)
523 return -ENOMEM;
524 goto retry;
525 }
526
527 del += t - f;
528
529 /* New entry for end of split region */
530 nrg->from = t;
531 nrg->to = rg->to;
532 INIT_LIST_HEAD(&nrg->link);
533
534 /* Original entry is trimmed */
535 rg->to = f;
536
537 list_add(&nrg->link, &rg->link);
538 nrg = NULL;
539 break;
540 }
541
542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 del += rg->to - rg->from;
544 list_del(&rg->link);
545 kfree(rg);
546 continue;
547 }
548
549 if (f <= rg->from) { /* Trim beginning of region */
550 del += t - rg->from;
551 rg->from = t;
552 } else { /* Trim end of region */
553 del += rg->to - f;
554 rg->to = f;
555 }
556 }
557
558 spin_unlock(&resv->lock);
559 kfree(nrg);
560 return del;
561}
562
563/*
564 * A rare out of memory error was encountered which prevented removal of
565 * the reserve map region for a page. The huge page itself was free'ed
566 * and removed from the page cache. This routine will adjust the subpool
567 * usage count, and the global reserve count if needed. By incrementing
568 * these counts, the reserve map entry which could not be deleted will
569 * appear as a "reserved" entry instead of simply dangling with incorrect
570 * counts.
571 */
572void hugetlb_fix_reserve_counts(struct inode *inode)
573{
574 struct hugepage_subpool *spool = subpool_inode(inode);
575 long rsv_adjust;
576
577 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578 if (rsv_adjust) {
579 struct hstate *h = hstate_inode(inode);
580
581 hugetlb_acct_memory(h, 1);
582 }
583}
584
585/*
586 * Count and return the number of huge pages in the reserve map
587 * that intersect with the range [f, t).
588 */
589static long region_count(struct resv_map *resv, long f, long t)
590{
591 struct list_head *head = &resv->regions;
592 struct file_region *rg;
593 long chg = 0;
594
595 spin_lock(&resv->lock);
596 /* Locate each segment we overlap with, and count that overlap. */
597 list_for_each_entry(rg, head, link) {
598 long seg_from;
599 long seg_to;
600
601 if (rg->to <= f)
602 continue;
603 if (rg->from >= t)
604 break;
605
606 seg_from = max(rg->from, f);
607 seg_to = min(rg->to, t);
608
609 chg += seg_to - seg_from;
610 }
611 spin_unlock(&resv->lock);
612
613 return chg;
614}
615
616/*
617 * Convert the address within this vma to the page offset within
618 * the mapping, in pagecache page units; huge pages here.
619 */
620static pgoff_t vma_hugecache_offset(struct hstate *h,
621 struct vm_area_struct *vma, unsigned long address)
622{
623 return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 (vma->vm_pgoff >> huge_page_order(h));
625}
626
627pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 unsigned long address)
629{
630 return vma_hugecache_offset(hstate_vma(vma), vma, address);
631}
632EXPORT_SYMBOL_GPL(linear_hugepage_index);
633
634/*
635 * Return the size of the pages allocated when backing a VMA. In the majority
636 * cases this will be same size as used by the page table entries.
637 */
638unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639{
640 if (vma->vm_ops && vma->vm_ops->pagesize)
641 return vma->vm_ops->pagesize(vma);
642 return PAGE_SIZE;
643}
644EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
645
646/*
647 * Return the page size being used by the MMU to back a VMA. In the majority
648 * of cases, the page size used by the kernel matches the MMU size. On
649 * architectures where it differs, an architecture-specific 'strong'
650 * version of this symbol is required.
651 */
652__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
653{
654 return vma_kernel_pagesize(vma);
655}
656
657/*
658 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
659 * bits of the reservation map pointer, which are always clear due to
660 * alignment.
661 */
662#define HPAGE_RESV_OWNER (1UL << 0)
663#define HPAGE_RESV_UNMAPPED (1UL << 1)
664#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
665
666/*
667 * These helpers are used to track how many pages are reserved for
668 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
669 * is guaranteed to have their future faults succeed.
670 *
671 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
672 * the reserve counters are updated with the hugetlb_lock held. It is safe
673 * to reset the VMA at fork() time as it is not in use yet and there is no
674 * chance of the global counters getting corrupted as a result of the values.
675 *
676 * The private mapping reservation is represented in a subtly different
677 * manner to a shared mapping. A shared mapping has a region map associated
678 * with the underlying file, this region map represents the backing file
679 * pages which have ever had a reservation assigned which this persists even
680 * after the page is instantiated. A private mapping has a region map
681 * associated with the original mmap which is attached to all VMAs which
682 * reference it, this region map represents those offsets which have consumed
683 * reservation ie. where pages have been instantiated.
684 */
685static unsigned long get_vma_private_data(struct vm_area_struct *vma)
686{
687 return (unsigned long)vma->vm_private_data;
688}
689
690static void set_vma_private_data(struct vm_area_struct *vma,
691 unsigned long value)
692{
693 vma->vm_private_data = (void *)value;
694}
695
696struct resv_map *resv_map_alloc(void)
697{
698 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
699 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
700
701 if (!resv_map || !rg) {
702 kfree(resv_map);
703 kfree(rg);
704 return NULL;
705 }
706
707 kref_init(&resv_map->refs);
708 spin_lock_init(&resv_map->lock);
709 INIT_LIST_HEAD(&resv_map->regions);
710
711 resv_map->adds_in_progress = 0;
712
713 INIT_LIST_HEAD(&resv_map->region_cache);
714 list_add(&rg->link, &resv_map->region_cache);
715 resv_map->region_cache_count = 1;
716
717 return resv_map;
718}
719
720void resv_map_release(struct kref *ref)
721{
722 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
723 struct list_head *head = &resv_map->region_cache;
724 struct file_region *rg, *trg;
725
726 /* Clear out any active regions before we release the map. */
727 region_del(resv_map, 0, LONG_MAX);
728
729 /* ... and any entries left in the cache */
730 list_for_each_entry_safe(rg, trg, head, link) {
731 list_del(&rg->link);
732 kfree(rg);
733 }
734
735 VM_BUG_ON(resv_map->adds_in_progress);
736
737 kfree(resv_map);
738}
739
740static inline struct resv_map *inode_resv_map(struct inode *inode)
741{
742 return inode->i_mapping->private_data;
743}
744
745static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
746{
747 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
748 if (vma->vm_flags & VM_MAYSHARE) {
749 struct address_space *mapping = vma->vm_file->f_mapping;
750 struct inode *inode = mapping->host;
751
752 return inode_resv_map(inode);
753
754 } else {
755 return (struct resv_map *)(get_vma_private_data(vma) &
756 ~HPAGE_RESV_MASK);
757 }
758}
759
760static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
761{
762 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
763 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
764
765 set_vma_private_data(vma, (get_vma_private_data(vma) &
766 HPAGE_RESV_MASK) | (unsigned long)map);
767}
768
769static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
770{
771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
773
774 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
775}
776
777static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
778{
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780
781 return (get_vma_private_data(vma) & flag) != 0;
782}
783
784/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
785void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
786{
787 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
788 if (!(vma->vm_flags & VM_MAYSHARE))
789 vma->vm_private_data = (void *)0;
790}
791
792/* Returns true if the VMA has associated reserve pages */
793static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
794{
795 if (vma->vm_flags & VM_NORESERVE) {
796 /*
797 * This address is already reserved by other process(chg == 0),
798 * so, we should decrement reserved count. Without decrementing,
799 * reserve count remains after releasing inode, because this
800 * allocated page will go into page cache and is regarded as
801 * coming from reserved pool in releasing step. Currently, we
802 * don't have any other solution to deal with this situation
803 * properly, so add work-around here.
804 */
805 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
806 return true;
807 else
808 return false;
809 }
810
811 /* Shared mappings always use reserves */
812 if (vma->vm_flags & VM_MAYSHARE) {
813 /*
814 * We know VM_NORESERVE is not set. Therefore, there SHOULD
815 * be a region map for all pages. The only situation where
816 * there is no region map is if a hole was punched via
817 * fallocate. In this case, there really are no reverves to
818 * use. This situation is indicated if chg != 0.
819 */
820 if (chg)
821 return false;
822 else
823 return true;
824 }
825
826 /*
827 * Only the process that called mmap() has reserves for
828 * private mappings.
829 */
830 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
831 /*
832 * Like the shared case above, a hole punch or truncate
833 * could have been performed on the private mapping.
834 * Examine the value of chg to determine if reserves
835 * actually exist or were previously consumed.
836 * Very Subtle - The value of chg comes from a previous
837 * call to vma_needs_reserves(). The reserve map for
838 * private mappings has different (opposite) semantics
839 * than that of shared mappings. vma_needs_reserves()
840 * has already taken this difference in semantics into
841 * account. Therefore, the meaning of chg is the same
842 * as in the shared case above. Code could easily be
843 * combined, but keeping it separate draws attention to
844 * subtle differences.
845 */
846 if (chg)
847 return false;
848 else
849 return true;
850 }
851
852 return false;
853}
854
855static void enqueue_huge_page(struct hstate *h, struct page *page)
856{
857 int nid = page_to_nid(page);
858 list_move(&page->lru, &h->hugepage_freelists[nid]);
859 h->free_huge_pages++;
860 h->free_huge_pages_node[nid]++;
861}
862
863static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
864{
865 struct page *page;
866
867 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
868 if (!PageHWPoison(page))
869 break;
870 /*
871 * if 'non-isolated free hugepage' not found on the list,
872 * the allocation fails.
873 */
874 if (&h->hugepage_freelists[nid] == &page->lru)
875 return NULL;
876 list_move(&page->lru, &h->hugepage_activelist);
877 set_page_refcounted(page);
878 h->free_huge_pages--;
879 h->free_huge_pages_node[nid]--;
880 return page;
881}
882
883static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
884 nodemask_t *nmask)
885{
886 unsigned int cpuset_mems_cookie;
887 struct zonelist *zonelist;
888 struct zone *zone;
889 struct zoneref *z;
890 int node = -1;
891
892 zonelist = node_zonelist(nid, gfp_mask);
893
894retry_cpuset:
895 cpuset_mems_cookie = read_mems_allowed_begin();
896 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
897 struct page *page;
898
899 if (!cpuset_zone_allowed(zone, gfp_mask))
900 continue;
901 /*
902 * no need to ask again on the same node. Pool is node rather than
903 * zone aware
904 */
905 if (zone_to_nid(zone) == node)
906 continue;
907 node = zone_to_nid(zone);
908
909 page = dequeue_huge_page_node_exact(h, node);
910 if (page)
911 return page;
912 }
913 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
914 goto retry_cpuset;
915
916 return NULL;
917}
918
919/* Movability of hugepages depends on migration support. */
920static inline gfp_t htlb_alloc_mask(struct hstate *h)
921{
922 if (hugepage_migration_supported(h))
923 return GFP_HIGHUSER_MOVABLE;
924 else
925 return GFP_HIGHUSER;
926}
927
928static struct page *dequeue_huge_page_vma(struct hstate *h,
929 struct vm_area_struct *vma,
930 unsigned long address, int avoid_reserve,
931 long chg)
932{
933 struct page *page;
934 struct mempolicy *mpol;
935 gfp_t gfp_mask;
936 nodemask_t *nodemask;
937 int nid;
938
939 /*
940 * A child process with MAP_PRIVATE mappings created by their parent
941 * have no page reserves. This check ensures that reservations are
942 * not "stolen". The child may still get SIGKILLed
943 */
944 if (!vma_has_reserves(vma, chg) &&
945 h->free_huge_pages - h->resv_huge_pages == 0)
946 goto err;
947
948 /* If reserves cannot be used, ensure enough pages are in the pool */
949 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
950 goto err;
951
952 gfp_mask = htlb_alloc_mask(h);
953 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
954 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
955 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
956 SetPagePrivate(page);
957 h->resv_huge_pages--;
958 }
959
960 mpol_cond_put(mpol);
961 return page;
962
963err:
964 return NULL;
965}
966
967/*
968 * common helper functions for hstate_next_node_to_{alloc|free}.
969 * We may have allocated or freed a huge page based on a different
970 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
971 * be outside of *nodes_allowed. Ensure that we use an allowed
972 * node for alloc or free.
973 */
974static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
975{
976 nid = next_node_in(nid, *nodes_allowed);
977 VM_BUG_ON(nid >= MAX_NUMNODES);
978
979 return nid;
980}
981
982static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
983{
984 if (!node_isset(nid, *nodes_allowed))
985 nid = next_node_allowed(nid, nodes_allowed);
986 return nid;
987}
988
989/*
990 * returns the previously saved node ["this node"] from which to
991 * allocate a persistent huge page for the pool and advance the
992 * next node from which to allocate, handling wrap at end of node
993 * mask.
994 */
995static int hstate_next_node_to_alloc(struct hstate *h,
996 nodemask_t *nodes_allowed)
997{
998 int nid;
999
1000 VM_BUG_ON(!nodes_allowed);
1001
1002 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1003 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1004
1005 return nid;
1006}
1007
1008/*
1009 * helper for free_pool_huge_page() - return the previously saved
1010 * node ["this node"] from which to free a huge page. Advance the
1011 * next node id whether or not we find a free huge page to free so
1012 * that the next attempt to free addresses the next node.
1013 */
1014static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1015{
1016 int nid;
1017
1018 VM_BUG_ON(!nodes_allowed);
1019
1020 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1021 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1022
1023 return nid;
1024}
1025
1026#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1027 for (nr_nodes = nodes_weight(*mask); \
1028 nr_nodes > 0 && \
1029 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1030 nr_nodes--)
1031
1032#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1033 for (nr_nodes = nodes_weight(*mask); \
1034 nr_nodes > 0 && \
1035 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1036 nr_nodes--)
1037
1038#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1039static void destroy_compound_gigantic_page(struct page *page,
1040 unsigned int order)
1041{
1042 int i;
1043 int nr_pages = 1 << order;
1044 struct page *p = page + 1;
1045
1046 atomic_set(compound_mapcount_ptr(page), 0);
1047 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1048 clear_compound_head(p);
1049 set_page_refcounted(p);
1050 }
1051
1052 set_compound_order(page, 0);
1053 __ClearPageHead(page);
1054}
1055
1056static void free_gigantic_page(struct page *page, unsigned int order)
1057{
1058 free_contig_range(page_to_pfn(page), 1 << order);
1059}
1060
1061static int __alloc_gigantic_page(unsigned long start_pfn,
1062 unsigned long nr_pages, gfp_t gfp_mask)
1063{
1064 unsigned long end_pfn = start_pfn + nr_pages;
1065 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1066 gfp_mask);
1067}
1068
1069static bool pfn_range_valid_gigantic(struct zone *z,
1070 unsigned long start_pfn, unsigned long nr_pages)
1071{
1072 unsigned long i, end_pfn = start_pfn + nr_pages;
1073 struct page *page;
1074
1075 for (i = start_pfn; i < end_pfn; i++) {
1076 if (!pfn_valid(i))
1077 return false;
1078
1079 page = pfn_to_page(i);
1080
1081 if (page_zone(page) != z)
1082 return false;
1083
1084 if (PageReserved(page))
1085 return false;
1086
1087 if (page_count(page) > 0)
1088 return false;
1089
1090 if (PageHuge(page))
1091 return false;
1092 }
1093
1094 return true;
1095}
1096
1097static bool zone_spans_last_pfn(const struct zone *zone,
1098 unsigned long start_pfn, unsigned long nr_pages)
1099{
1100 unsigned long last_pfn = start_pfn + nr_pages - 1;
1101 return zone_spans_pfn(zone, last_pfn);
1102}
1103
1104static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1105 int nid, nodemask_t *nodemask)
1106{
1107 unsigned int order = huge_page_order(h);
1108 unsigned long nr_pages = 1 << order;
1109 unsigned long ret, pfn, flags;
1110 struct zonelist *zonelist;
1111 struct zone *zone;
1112 struct zoneref *z;
1113
1114 zonelist = node_zonelist(nid, gfp_mask);
1115 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1116 spin_lock_irqsave(&zone->lock, flags);
1117
1118 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1119 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1120 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1121 /*
1122 * We release the zone lock here because
1123 * alloc_contig_range() will also lock the zone
1124 * at some point. If there's an allocation
1125 * spinning on this lock, it may win the race
1126 * and cause alloc_contig_range() to fail...
1127 */
1128 spin_unlock_irqrestore(&zone->lock, flags);
1129 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1130 if (!ret)
1131 return pfn_to_page(pfn);
1132 spin_lock_irqsave(&zone->lock, flags);
1133 }
1134 pfn += nr_pages;
1135 }
1136
1137 spin_unlock_irqrestore(&zone->lock, flags);
1138 }
1139
1140 return NULL;
1141}
1142
1143static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1144static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1145
1146#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1147static inline bool gigantic_page_supported(void) { return false; }
1148static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1149 int nid, nodemask_t *nodemask) { return NULL; }
1150static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1151static inline void destroy_compound_gigantic_page(struct page *page,
1152 unsigned int order) { }
1153#endif
1154
1155static void update_and_free_page(struct hstate *h, struct page *page)
1156{
1157 int i;
1158
1159 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1160 return;
1161
1162 h->nr_huge_pages--;
1163 h->nr_huge_pages_node[page_to_nid(page)]--;
1164 for (i = 0; i < pages_per_huge_page(h); i++) {
1165 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1166 1 << PG_referenced | 1 << PG_dirty |
1167 1 << PG_active | 1 << PG_private |
1168 1 << PG_writeback);
1169 }
1170 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1171 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1172 set_page_refcounted(page);
1173 if (hstate_is_gigantic(h)) {
1174 destroy_compound_gigantic_page(page, huge_page_order(h));
1175 free_gigantic_page(page, huge_page_order(h));
1176 } else {
1177 __free_pages(page, huge_page_order(h));
1178 }
1179}
1180
1181struct hstate *size_to_hstate(unsigned long size)
1182{
1183 struct hstate *h;
1184
1185 for_each_hstate(h) {
1186 if (huge_page_size(h) == size)
1187 return h;
1188 }
1189 return NULL;
1190}
1191
1192/*
1193 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1194 * to hstate->hugepage_activelist.)
1195 *
1196 * This function can be called for tail pages, but never returns true for them.
1197 */
1198bool page_huge_active(struct page *page)
1199{
1200 VM_BUG_ON_PAGE(!PageHuge(page), page);
1201 return PageHead(page) && PagePrivate(&page[1]);
1202}
1203
1204/* never called for tail page */
1205static void set_page_huge_active(struct page *page)
1206{
1207 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1208 SetPagePrivate(&page[1]);
1209}
1210
1211static void clear_page_huge_active(struct page *page)
1212{
1213 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1214 ClearPagePrivate(&page[1]);
1215}
1216
1217/*
1218 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1219 * code
1220 */
1221static inline bool PageHugeTemporary(struct page *page)
1222{
1223 if (!PageHuge(page))
1224 return false;
1225
1226 return (unsigned long)page[2].mapping == -1U;
1227}
1228
1229static inline void SetPageHugeTemporary(struct page *page)
1230{
1231 page[2].mapping = (void *)-1U;
1232}
1233
1234static inline void ClearPageHugeTemporary(struct page *page)
1235{
1236 page[2].mapping = NULL;
1237}
1238
1239void free_huge_page(struct page *page)
1240{
1241 /*
1242 * Can't pass hstate in here because it is called from the
1243 * compound page destructor.
1244 */
1245 struct hstate *h = page_hstate(page);
1246 int nid = page_to_nid(page);
1247 struct hugepage_subpool *spool =
1248 (struct hugepage_subpool *)page_private(page);
1249 bool restore_reserve;
1250
1251 set_page_private(page, 0);
1252 page->mapping = NULL;
1253 VM_BUG_ON_PAGE(page_count(page), page);
1254 VM_BUG_ON_PAGE(page_mapcount(page), page);
1255 restore_reserve = PagePrivate(page);
1256 ClearPagePrivate(page);
1257
1258 /*
1259 * A return code of zero implies that the subpool will be under its
1260 * minimum size if the reservation is not restored after page is free.
1261 * Therefore, force restore_reserve operation.
1262 */
1263 if (hugepage_subpool_put_pages(spool, 1) == 0)
1264 restore_reserve = true;
1265
1266 spin_lock(&hugetlb_lock);
1267 clear_page_huge_active(page);
1268 hugetlb_cgroup_uncharge_page(hstate_index(h),
1269 pages_per_huge_page(h), page);
1270 if (restore_reserve)
1271 h->resv_huge_pages++;
1272
1273 if (PageHugeTemporary(page)) {
1274 list_del(&page->lru);
1275 ClearPageHugeTemporary(page);
1276 update_and_free_page(h, page);
1277 } else if (h->surplus_huge_pages_node[nid]) {
1278 /* remove the page from active list */
1279 list_del(&page->lru);
1280 update_and_free_page(h, page);
1281 h->surplus_huge_pages--;
1282 h->surplus_huge_pages_node[nid]--;
1283 } else {
1284 arch_clear_hugepage_flags(page);
1285 enqueue_huge_page(h, page);
1286 }
1287 spin_unlock(&hugetlb_lock);
1288}
1289
1290static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1291{
1292 INIT_LIST_HEAD(&page->lru);
1293 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1294 spin_lock(&hugetlb_lock);
1295 set_hugetlb_cgroup(page, NULL);
1296 h->nr_huge_pages++;
1297 h->nr_huge_pages_node[nid]++;
1298 spin_unlock(&hugetlb_lock);
1299}
1300
1301static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1302{
1303 int i;
1304 int nr_pages = 1 << order;
1305 struct page *p = page + 1;
1306
1307 /* we rely on prep_new_huge_page to set the destructor */
1308 set_compound_order(page, order);
1309 __ClearPageReserved(page);
1310 __SetPageHead(page);
1311 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1312 /*
1313 * For gigantic hugepages allocated through bootmem at
1314 * boot, it's safer to be consistent with the not-gigantic
1315 * hugepages and clear the PG_reserved bit from all tail pages
1316 * too. Otherwse drivers using get_user_pages() to access tail
1317 * pages may get the reference counting wrong if they see
1318 * PG_reserved set on a tail page (despite the head page not
1319 * having PG_reserved set). Enforcing this consistency between
1320 * head and tail pages allows drivers to optimize away a check
1321 * on the head page when they need know if put_page() is needed
1322 * after get_user_pages().
1323 */
1324 __ClearPageReserved(p);
1325 set_page_count(p, 0);
1326 set_compound_head(p, page);
1327 }
1328 atomic_set(compound_mapcount_ptr(page), -1);
1329}
1330
1331/*
1332 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1333 * transparent huge pages. See the PageTransHuge() documentation for more
1334 * details.
1335 */
1336int PageHuge(struct page *page)
1337{
1338 if (!PageCompound(page))
1339 return 0;
1340
1341 page = compound_head(page);
1342 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1343}
1344EXPORT_SYMBOL_GPL(PageHuge);
1345
1346/*
1347 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1348 * normal or transparent huge pages.
1349 */
1350int PageHeadHuge(struct page *page_head)
1351{
1352 if (!PageHead(page_head))
1353 return 0;
1354
1355 return get_compound_page_dtor(page_head) == free_huge_page;
1356}
1357
1358pgoff_t __basepage_index(struct page *page)
1359{
1360 struct page *page_head = compound_head(page);
1361 pgoff_t index = page_index(page_head);
1362 unsigned long compound_idx;
1363
1364 if (!PageHuge(page_head))
1365 return page_index(page);
1366
1367 if (compound_order(page_head) >= MAX_ORDER)
1368 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1369 else
1370 compound_idx = page - page_head;
1371
1372 return (index << compound_order(page_head)) + compound_idx;
1373}
1374
1375static struct page *alloc_buddy_huge_page(struct hstate *h,
1376 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1377{
1378 int order = huge_page_order(h);
1379 struct page *page;
1380
1381 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1382 if (nid == NUMA_NO_NODE)
1383 nid = numa_mem_id();
1384 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1385 if (page)
1386 __count_vm_event(HTLB_BUDDY_PGALLOC);
1387 else
1388 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1389
1390 return page;
1391}
1392
1393/*
1394 * Common helper to allocate a fresh hugetlb page. All specific allocators
1395 * should use this function to get new hugetlb pages
1396 */
1397static struct page *alloc_fresh_huge_page(struct hstate *h,
1398 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1399{
1400 struct page *page;
1401
1402 if (hstate_is_gigantic(h))
1403 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1404 else
1405 page = alloc_buddy_huge_page(h, gfp_mask,
1406 nid, nmask);
1407 if (!page)
1408 return NULL;
1409
1410 if (hstate_is_gigantic(h))
1411 prep_compound_gigantic_page(page, huge_page_order(h));
1412 prep_new_huge_page(h, page, page_to_nid(page));
1413
1414 return page;
1415}
1416
1417/*
1418 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1419 * manner.
1420 */
1421static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1422{
1423 struct page *page;
1424 int nr_nodes, node;
1425 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1426
1427 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1428 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1429 if (page)
1430 break;
1431 }
1432
1433 if (!page)
1434 return 0;
1435
1436 put_page(page); /* free it into the hugepage allocator */
1437
1438 return 1;
1439}
1440
1441/*
1442 * Free huge page from pool from next node to free.
1443 * Attempt to keep persistent huge pages more or less
1444 * balanced over allowed nodes.
1445 * Called with hugetlb_lock locked.
1446 */
1447static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1448 bool acct_surplus)
1449{
1450 int nr_nodes, node;
1451 int ret = 0;
1452
1453 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1454 /*
1455 * If we're returning unused surplus pages, only examine
1456 * nodes with surplus pages.
1457 */
1458 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1459 !list_empty(&h->hugepage_freelists[node])) {
1460 struct page *page =
1461 list_entry(h->hugepage_freelists[node].next,
1462 struct page, lru);
1463 list_del(&page->lru);
1464 h->free_huge_pages--;
1465 h->free_huge_pages_node[node]--;
1466 if (acct_surplus) {
1467 h->surplus_huge_pages--;
1468 h->surplus_huge_pages_node[node]--;
1469 }
1470 update_and_free_page(h, page);
1471 ret = 1;
1472 break;
1473 }
1474 }
1475
1476 return ret;
1477}
1478
1479/*
1480 * Dissolve a given free hugepage into free buddy pages. This function does
1481 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1482 * number of free hugepages would be reduced below the number of reserved
1483 * hugepages.
1484 */
1485int dissolve_free_huge_page(struct page *page)
1486{
1487 int rc = 0;
1488
1489 spin_lock(&hugetlb_lock);
1490 if (PageHuge(page) && !page_count(page)) {
1491 struct page *head = compound_head(page);
1492 struct hstate *h = page_hstate(head);
1493 int nid = page_to_nid(head);
1494 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1495 rc = -EBUSY;
1496 goto out;
1497 }
1498 /*
1499 * Move PageHWPoison flag from head page to the raw error page,
1500 * which makes any subpages rather than the error page reusable.
1501 */
1502 if (PageHWPoison(head) && page != head) {
1503 SetPageHWPoison(page);
1504 ClearPageHWPoison(head);
1505 }
1506 list_del(&head->lru);
1507 h->free_huge_pages--;
1508 h->free_huge_pages_node[nid]--;
1509 h->max_huge_pages--;
1510 update_and_free_page(h, head);
1511 }
1512out:
1513 spin_unlock(&hugetlb_lock);
1514 return rc;
1515}
1516
1517/*
1518 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1519 * make specified memory blocks removable from the system.
1520 * Note that this will dissolve a free gigantic hugepage completely, if any
1521 * part of it lies within the given range.
1522 * Also note that if dissolve_free_huge_page() returns with an error, all
1523 * free hugepages that were dissolved before that error are lost.
1524 */
1525int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1526{
1527 unsigned long pfn;
1528 struct page *page;
1529 int rc = 0;
1530
1531 if (!hugepages_supported())
1532 return rc;
1533
1534 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1535 page = pfn_to_page(pfn);
1536 if (PageHuge(page) && !page_count(page)) {
1537 rc = dissolve_free_huge_page(page);
1538 if (rc)
1539 break;
1540 }
1541 }
1542
1543 return rc;
1544}
1545
1546/*
1547 * Allocates a fresh surplus page from the page allocator.
1548 */
1549static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1550 int nid, nodemask_t *nmask)
1551{
1552 struct page *page = NULL;
1553
1554 if (hstate_is_gigantic(h))
1555 return NULL;
1556
1557 spin_lock(&hugetlb_lock);
1558 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1559 goto out_unlock;
1560 spin_unlock(&hugetlb_lock);
1561
1562 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1563 if (!page)
1564 return NULL;
1565
1566 spin_lock(&hugetlb_lock);
1567 /*
1568 * We could have raced with the pool size change.
1569 * Double check that and simply deallocate the new page
1570 * if we would end up overcommiting the surpluses. Abuse
1571 * temporary page to workaround the nasty free_huge_page
1572 * codeflow
1573 */
1574 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1575 SetPageHugeTemporary(page);
1576 put_page(page);
1577 page = NULL;
1578 } else {
1579 h->surplus_huge_pages++;
1580 h->surplus_huge_pages_node[page_to_nid(page)]++;
1581 }
1582
1583out_unlock:
1584 spin_unlock(&hugetlb_lock);
1585
1586 return page;
1587}
1588
1589static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1590 int nid, nodemask_t *nmask)
1591{
1592 struct page *page;
1593
1594 if (hstate_is_gigantic(h))
1595 return NULL;
1596
1597 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1598 if (!page)
1599 return NULL;
1600
1601 /*
1602 * We do not account these pages as surplus because they are only
1603 * temporary and will be released properly on the last reference
1604 */
1605 SetPageHugeTemporary(page);
1606
1607 return page;
1608}
1609
1610/*
1611 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1612 */
1613static
1614struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1615 struct vm_area_struct *vma, unsigned long addr)
1616{
1617 struct page *page;
1618 struct mempolicy *mpol;
1619 gfp_t gfp_mask = htlb_alloc_mask(h);
1620 int nid;
1621 nodemask_t *nodemask;
1622
1623 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1624 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1625 mpol_cond_put(mpol);
1626
1627 return page;
1628}
1629
1630/* page migration callback function */
1631struct page *alloc_huge_page_node(struct hstate *h, int nid)
1632{
1633 gfp_t gfp_mask = htlb_alloc_mask(h);
1634 struct page *page = NULL;
1635
1636 if (nid != NUMA_NO_NODE)
1637 gfp_mask |= __GFP_THISNODE;
1638
1639 spin_lock(&hugetlb_lock);
1640 if (h->free_huge_pages - h->resv_huge_pages > 0)
1641 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1642 spin_unlock(&hugetlb_lock);
1643
1644 if (!page)
1645 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1646
1647 return page;
1648}
1649
1650/* page migration callback function */
1651struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1652 nodemask_t *nmask)
1653{
1654 gfp_t gfp_mask = htlb_alloc_mask(h);
1655
1656 spin_lock(&hugetlb_lock);
1657 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1658 struct page *page;
1659
1660 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1661 if (page) {
1662 spin_unlock(&hugetlb_lock);
1663 return page;
1664 }
1665 }
1666 spin_unlock(&hugetlb_lock);
1667
1668 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1669}
1670
1671/* mempolicy aware migration callback */
1672struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1673 unsigned long address)
1674{
1675 struct mempolicy *mpol;
1676 nodemask_t *nodemask;
1677 struct page *page;
1678 gfp_t gfp_mask;
1679 int node;
1680
1681 gfp_mask = htlb_alloc_mask(h);
1682 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1683 page = alloc_huge_page_nodemask(h, node, nodemask);
1684 mpol_cond_put(mpol);
1685
1686 return page;
1687}
1688
1689/*
1690 * Increase the hugetlb pool such that it can accommodate a reservation
1691 * of size 'delta'.
1692 */
1693static int gather_surplus_pages(struct hstate *h, int delta)
1694{
1695 struct list_head surplus_list;
1696 struct page *page, *tmp;
1697 int ret, i;
1698 int needed, allocated;
1699 bool alloc_ok = true;
1700
1701 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1702 if (needed <= 0) {
1703 h->resv_huge_pages += delta;
1704 return 0;
1705 }
1706
1707 allocated = 0;
1708 INIT_LIST_HEAD(&surplus_list);
1709
1710 ret = -ENOMEM;
1711retry:
1712 spin_unlock(&hugetlb_lock);
1713 for (i = 0; i < needed; i++) {
1714 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1715 NUMA_NO_NODE, NULL);
1716 if (!page) {
1717 alloc_ok = false;
1718 break;
1719 }
1720 list_add(&page->lru, &surplus_list);
1721 cond_resched();
1722 }
1723 allocated += i;
1724
1725 /*
1726 * After retaking hugetlb_lock, we need to recalculate 'needed'
1727 * because either resv_huge_pages or free_huge_pages may have changed.
1728 */
1729 spin_lock(&hugetlb_lock);
1730 needed = (h->resv_huge_pages + delta) -
1731 (h->free_huge_pages + allocated);
1732 if (needed > 0) {
1733 if (alloc_ok)
1734 goto retry;
1735 /*
1736 * We were not able to allocate enough pages to
1737 * satisfy the entire reservation so we free what
1738 * we've allocated so far.
1739 */
1740 goto free;
1741 }
1742 /*
1743 * The surplus_list now contains _at_least_ the number of extra pages
1744 * needed to accommodate the reservation. Add the appropriate number
1745 * of pages to the hugetlb pool and free the extras back to the buddy
1746 * allocator. Commit the entire reservation here to prevent another
1747 * process from stealing the pages as they are added to the pool but
1748 * before they are reserved.
1749 */
1750 needed += allocated;
1751 h->resv_huge_pages += delta;
1752 ret = 0;
1753
1754 /* Free the needed pages to the hugetlb pool */
1755 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1756 if ((--needed) < 0)
1757 break;
1758 /*
1759 * This page is now managed by the hugetlb allocator and has
1760 * no users -- drop the buddy allocator's reference.
1761 */
1762 put_page_testzero(page);
1763 VM_BUG_ON_PAGE(page_count(page), page);
1764 enqueue_huge_page(h, page);
1765 }
1766free:
1767 spin_unlock(&hugetlb_lock);
1768
1769 /* Free unnecessary surplus pages to the buddy allocator */
1770 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1771 put_page(page);
1772 spin_lock(&hugetlb_lock);
1773
1774 return ret;
1775}
1776
1777/*
1778 * This routine has two main purposes:
1779 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1780 * in unused_resv_pages. This corresponds to the prior adjustments made
1781 * to the associated reservation map.
1782 * 2) Free any unused surplus pages that may have been allocated to satisfy
1783 * the reservation. As many as unused_resv_pages may be freed.
1784 *
1785 * Called with hugetlb_lock held. However, the lock could be dropped (and
1786 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1787 * we must make sure nobody else can claim pages we are in the process of
1788 * freeing. Do this by ensuring resv_huge_page always is greater than the
1789 * number of huge pages we plan to free when dropping the lock.
1790 */
1791static void return_unused_surplus_pages(struct hstate *h,
1792 unsigned long unused_resv_pages)
1793{
1794 unsigned long nr_pages;
1795
1796 /* Cannot return gigantic pages currently */
1797 if (hstate_is_gigantic(h))
1798 goto out;
1799
1800 /*
1801 * Part (or even all) of the reservation could have been backed
1802 * by pre-allocated pages. Only free surplus pages.
1803 */
1804 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1805
1806 /*
1807 * We want to release as many surplus pages as possible, spread
1808 * evenly across all nodes with memory. Iterate across these nodes
1809 * until we can no longer free unreserved surplus pages. This occurs
1810 * when the nodes with surplus pages have no free pages.
1811 * free_pool_huge_page() will balance the the freed pages across the
1812 * on-line nodes with memory and will handle the hstate accounting.
1813 *
1814 * Note that we decrement resv_huge_pages as we free the pages. If
1815 * we drop the lock, resv_huge_pages will still be sufficiently large
1816 * to cover subsequent pages we may free.
1817 */
1818 while (nr_pages--) {
1819 h->resv_huge_pages--;
1820 unused_resv_pages--;
1821 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1822 goto out;
1823 cond_resched_lock(&hugetlb_lock);
1824 }
1825
1826out:
1827 /* Fully uncommit the reservation */
1828 h->resv_huge_pages -= unused_resv_pages;
1829}
1830
1831
1832/*
1833 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1834 * are used by the huge page allocation routines to manage reservations.
1835 *
1836 * vma_needs_reservation is called to determine if the huge page at addr
1837 * within the vma has an associated reservation. If a reservation is
1838 * needed, the value 1 is returned. The caller is then responsible for
1839 * managing the global reservation and subpool usage counts. After
1840 * the huge page has been allocated, vma_commit_reservation is called
1841 * to add the page to the reservation map. If the page allocation fails,
1842 * the reservation must be ended instead of committed. vma_end_reservation
1843 * is called in such cases.
1844 *
1845 * In the normal case, vma_commit_reservation returns the same value
1846 * as the preceding vma_needs_reservation call. The only time this
1847 * is not the case is if a reserve map was changed between calls. It
1848 * is the responsibility of the caller to notice the difference and
1849 * take appropriate action.
1850 *
1851 * vma_add_reservation is used in error paths where a reservation must
1852 * be restored when a newly allocated huge page must be freed. It is
1853 * to be called after calling vma_needs_reservation to determine if a
1854 * reservation exists.
1855 */
1856enum vma_resv_mode {
1857 VMA_NEEDS_RESV,
1858 VMA_COMMIT_RESV,
1859 VMA_END_RESV,
1860 VMA_ADD_RESV,
1861};
1862static long __vma_reservation_common(struct hstate *h,
1863 struct vm_area_struct *vma, unsigned long addr,
1864 enum vma_resv_mode mode)
1865{
1866 struct resv_map *resv;
1867 pgoff_t idx;
1868 long ret;
1869
1870 resv = vma_resv_map(vma);
1871 if (!resv)
1872 return 1;
1873
1874 idx = vma_hugecache_offset(h, vma, addr);
1875 switch (mode) {
1876 case VMA_NEEDS_RESV:
1877 ret = region_chg(resv, idx, idx + 1);
1878 break;
1879 case VMA_COMMIT_RESV:
1880 ret = region_add(resv, idx, idx + 1);
1881 break;
1882 case VMA_END_RESV:
1883 region_abort(resv, idx, idx + 1);
1884 ret = 0;
1885 break;
1886 case VMA_ADD_RESV:
1887 if (vma->vm_flags & VM_MAYSHARE)
1888 ret = region_add(resv, idx, idx + 1);
1889 else {
1890 region_abort(resv, idx, idx + 1);
1891 ret = region_del(resv, idx, idx + 1);
1892 }
1893 break;
1894 default:
1895 BUG();
1896 }
1897
1898 if (vma->vm_flags & VM_MAYSHARE)
1899 return ret;
1900 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1901 /*
1902 * In most cases, reserves always exist for private mappings.
1903 * However, a file associated with mapping could have been
1904 * hole punched or truncated after reserves were consumed.
1905 * As subsequent fault on such a range will not use reserves.
1906 * Subtle - The reserve map for private mappings has the
1907 * opposite meaning than that of shared mappings. If NO
1908 * entry is in the reserve map, it means a reservation exists.
1909 * If an entry exists in the reserve map, it means the
1910 * reservation has already been consumed. As a result, the
1911 * return value of this routine is the opposite of the
1912 * value returned from reserve map manipulation routines above.
1913 */
1914 if (ret)
1915 return 0;
1916 else
1917 return 1;
1918 }
1919 else
1920 return ret < 0 ? ret : 0;
1921}
1922
1923static long vma_needs_reservation(struct hstate *h,
1924 struct vm_area_struct *vma, unsigned long addr)
1925{
1926 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1927}
1928
1929static long vma_commit_reservation(struct hstate *h,
1930 struct vm_area_struct *vma, unsigned long addr)
1931{
1932 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1933}
1934
1935static void vma_end_reservation(struct hstate *h,
1936 struct vm_area_struct *vma, unsigned long addr)
1937{
1938 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1939}
1940
1941static long vma_add_reservation(struct hstate *h,
1942 struct vm_area_struct *vma, unsigned long addr)
1943{
1944 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1945}
1946
1947/*
1948 * This routine is called to restore a reservation on error paths. In the
1949 * specific error paths, a huge page was allocated (via alloc_huge_page)
1950 * and is about to be freed. If a reservation for the page existed,
1951 * alloc_huge_page would have consumed the reservation and set PagePrivate
1952 * in the newly allocated page. When the page is freed via free_huge_page,
1953 * the global reservation count will be incremented if PagePrivate is set.
1954 * However, free_huge_page can not adjust the reserve map. Adjust the
1955 * reserve map here to be consistent with global reserve count adjustments
1956 * to be made by free_huge_page.
1957 */
1958static void restore_reserve_on_error(struct hstate *h,
1959 struct vm_area_struct *vma, unsigned long address,
1960 struct page *page)
1961{
1962 if (unlikely(PagePrivate(page))) {
1963 long rc = vma_needs_reservation(h, vma, address);
1964
1965 if (unlikely(rc < 0)) {
1966 /*
1967 * Rare out of memory condition in reserve map
1968 * manipulation. Clear PagePrivate so that
1969 * global reserve count will not be incremented
1970 * by free_huge_page. This will make it appear
1971 * as though the reservation for this page was
1972 * consumed. This may prevent the task from
1973 * faulting in the page at a later time. This
1974 * is better than inconsistent global huge page
1975 * accounting of reserve counts.
1976 */
1977 ClearPagePrivate(page);
1978 } else if (rc) {
1979 rc = vma_add_reservation(h, vma, address);
1980 if (unlikely(rc < 0))
1981 /*
1982 * See above comment about rare out of
1983 * memory condition.
1984 */
1985 ClearPagePrivate(page);
1986 } else
1987 vma_end_reservation(h, vma, address);
1988 }
1989}
1990
1991struct page *alloc_huge_page(struct vm_area_struct *vma,
1992 unsigned long addr, int avoid_reserve)
1993{
1994 struct hugepage_subpool *spool = subpool_vma(vma);
1995 struct hstate *h = hstate_vma(vma);
1996 struct page *page;
1997 long map_chg, map_commit;
1998 long gbl_chg;
1999 int ret, idx;
2000 struct hugetlb_cgroup *h_cg;
2001
2002 idx = hstate_index(h);
2003 /*
2004 * Examine the region/reserve map to determine if the process
2005 * has a reservation for the page to be allocated. A return
2006 * code of zero indicates a reservation exists (no change).
2007 */
2008 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2009 if (map_chg < 0)
2010 return ERR_PTR(-ENOMEM);
2011
2012 /*
2013 * Processes that did not create the mapping will have no
2014 * reserves as indicated by the region/reserve map. Check
2015 * that the allocation will not exceed the subpool limit.
2016 * Allocations for MAP_NORESERVE mappings also need to be
2017 * checked against any subpool limit.
2018 */
2019 if (map_chg || avoid_reserve) {
2020 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2021 if (gbl_chg < 0) {
2022 vma_end_reservation(h, vma, addr);
2023 return ERR_PTR(-ENOSPC);
2024 }
2025
2026 /*
2027 * Even though there was no reservation in the region/reserve
2028 * map, there could be reservations associated with the
2029 * subpool that can be used. This would be indicated if the
2030 * return value of hugepage_subpool_get_pages() is zero.
2031 * However, if avoid_reserve is specified we still avoid even
2032 * the subpool reservations.
2033 */
2034 if (avoid_reserve)
2035 gbl_chg = 1;
2036 }
2037
2038 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2039 if (ret)
2040 goto out_subpool_put;
2041
2042 spin_lock(&hugetlb_lock);
2043 /*
2044 * glb_chg is passed to indicate whether or not a page must be taken
2045 * from the global free pool (global change). gbl_chg == 0 indicates
2046 * a reservation exists for the allocation.
2047 */
2048 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2049 if (!page) {
2050 spin_unlock(&hugetlb_lock);
2051 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2052 if (!page)
2053 goto out_uncharge_cgroup;
2054 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2055 SetPagePrivate(page);
2056 h->resv_huge_pages--;
2057 }
2058 spin_lock(&hugetlb_lock);
2059 list_move(&page->lru, &h->hugepage_activelist);
2060 /* Fall through */
2061 }
2062 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2063 spin_unlock(&hugetlb_lock);
2064
2065 set_page_private(page, (unsigned long)spool);
2066
2067 map_commit = vma_commit_reservation(h, vma, addr);
2068 if (unlikely(map_chg > map_commit)) {
2069 /*
2070 * The page was added to the reservation map between
2071 * vma_needs_reservation and vma_commit_reservation.
2072 * This indicates a race with hugetlb_reserve_pages.
2073 * Adjust for the subpool count incremented above AND
2074 * in hugetlb_reserve_pages for the same page. Also,
2075 * the reservation count added in hugetlb_reserve_pages
2076 * no longer applies.
2077 */
2078 long rsv_adjust;
2079
2080 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2081 hugetlb_acct_memory(h, -rsv_adjust);
2082 }
2083 return page;
2084
2085out_uncharge_cgroup:
2086 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2087out_subpool_put:
2088 if (map_chg || avoid_reserve)
2089 hugepage_subpool_put_pages(spool, 1);
2090 vma_end_reservation(h, vma, addr);
2091 return ERR_PTR(-ENOSPC);
2092}
2093
2094int alloc_bootmem_huge_page(struct hstate *h)
2095 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2096int __alloc_bootmem_huge_page(struct hstate *h)
2097{
2098 struct huge_bootmem_page *m;
2099 int nr_nodes, node;
2100
2101 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2102 void *addr;
2103
2104 addr = memblock_virt_alloc_try_nid_nopanic(
2105 huge_page_size(h), huge_page_size(h),
2106 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2107 if (addr) {
2108 /*
2109 * Use the beginning of the huge page to store the
2110 * huge_bootmem_page struct (until gather_bootmem
2111 * puts them into the mem_map).
2112 */
2113 m = addr;
2114 goto found;
2115 }
2116 }
2117 return 0;
2118
2119found:
2120 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2121 /* Put them into a private list first because mem_map is not up yet */
2122 list_add(&m->list, &huge_boot_pages);
2123 m->hstate = h;
2124 return 1;
2125}
2126
2127static void __init prep_compound_huge_page(struct page *page,
2128 unsigned int order)
2129{
2130 if (unlikely(order > (MAX_ORDER - 1)))
2131 prep_compound_gigantic_page(page, order);
2132 else
2133 prep_compound_page(page, order);
2134}
2135
2136/* Put bootmem huge pages into the standard lists after mem_map is up */
2137static void __init gather_bootmem_prealloc(void)
2138{
2139 struct huge_bootmem_page *m;
2140
2141 list_for_each_entry(m, &huge_boot_pages, list) {
2142 struct hstate *h = m->hstate;
2143 struct page *page;
2144
2145#ifdef CONFIG_HIGHMEM
2146 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2147 memblock_free_late(__pa(m),
2148 sizeof(struct huge_bootmem_page));
2149#else
2150 page = virt_to_page(m);
2151#endif
2152 WARN_ON(page_count(page) != 1);
2153 prep_compound_huge_page(page, h->order);
2154 WARN_ON(PageReserved(page));
2155 prep_new_huge_page(h, page, page_to_nid(page));
2156 put_page(page); /* free it into the hugepage allocator */
2157
2158 /*
2159 * If we had gigantic hugepages allocated at boot time, we need
2160 * to restore the 'stolen' pages to totalram_pages in order to
2161 * fix confusing memory reports from free(1) and another
2162 * side-effects, like CommitLimit going negative.
2163 */
2164 if (hstate_is_gigantic(h))
2165 adjust_managed_page_count(page, 1 << h->order);
2166 }
2167}
2168
2169static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2170{
2171 unsigned long i;
2172
2173 for (i = 0; i < h->max_huge_pages; ++i) {
2174 if (hstate_is_gigantic(h)) {
2175 if (!alloc_bootmem_huge_page(h))
2176 break;
2177 } else if (!alloc_pool_huge_page(h,
2178 &node_states[N_MEMORY]))
2179 break;
2180 cond_resched();
2181 }
2182 if (i < h->max_huge_pages) {
2183 char buf[32];
2184
2185 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2186 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2187 h->max_huge_pages, buf, i);
2188 h->max_huge_pages = i;
2189 }
2190}
2191
2192static void __init hugetlb_init_hstates(void)
2193{
2194 struct hstate *h;
2195
2196 for_each_hstate(h) {
2197 if (minimum_order > huge_page_order(h))
2198 minimum_order = huge_page_order(h);
2199
2200 /* oversize hugepages were init'ed in early boot */
2201 if (!hstate_is_gigantic(h))
2202 hugetlb_hstate_alloc_pages(h);
2203 }
2204 VM_BUG_ON(minimum_order == UINT_MAX);
2205}
2206
2207static void __init report_hugepages(void)
2208{
2209 struct hstate *h;
2210
2211 for_each_hstate(h) {
2212 char buf[32];
2213
2214 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2215 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2216 buf, h->free_huge_pages);
2217 }
2218}
2219
2220#ifdef CONFIG_HIGHMEM
2221static void try_to_free_low(struct hstate *h, unsigned long count,
2222 nodemask_t *nodes_allowed)
2223{
2224 int i;
2225
2226 if (hstate_is_gigantic(h))
2227 return;
2228
2229 for_each_node_mask(i, *nodes_allowed) {
2230 struct page *page, *next;
2231 struct list_head *freel = &h->hugepage_freelists[i];
2232 list_for_each_entry_safe(page, next, freel, lru) {
2233 if (count >= h->nr_huge_pages)
2234 return;
2235 if (PageHighMem(page))
2236 continue;
2237 list_del(&page->lru);
2238 update_and_free_page(h, page);
2239 h->free_huge_pages--;
2240 h->free_huge_pages_node[page_to_nid(page)]--;
2241 }
2242 }
2243}
2244#else
2245static inline void try_to_free_low(struct hstate *h, unsigned long count,
2246 nodemask_t *nodes_allowed)
2247{
2248}
2249#endif
2250
2251/*
2252 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2253 * balanced by operating on them in a round-robin fashion.
2254 * Returns 1 if an adjustment was made.
2255 */
2256static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2257 int delta)
2258{
2259 int nr_nodes, node;
2260
2261 VM_BUG_ON(delta != -1 && delta != 1);
2262
2263 if (delta < 0) {
2264 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2265 if (h->surplus_huge_pages_node[node])
2266 goto found;
2267 }
2268 } else {
2269 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2270 if (h->surplus_huge_pages_node[node] <
2271 h->nr_huge_pages_node[node])
2272 goto found;
2273 }
2274 }
2275 return 0;
2276
2277found:
2278 h->surplus_huge_pages += delta;
2279 h->surplus_huge_pages_node[node] += delta;
2280 return 1;
2281}
2282
2283#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2284static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2285 nodemask_t *nodes_allowed)
2286{
2287 unsigned long min_count, ret;
2288
2289 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2290 return h->max_huge_pages;
2291
2292 /*
2293 * Increase the pool size
2294 * First take pages out of surplus state. Then make up the
2295 * remaining difference by allocating fresh huge pages.
2296 *
2297 * We might race with alloc_surplus_huge_page() here and be unable
2298 * to convert a surplus huge page to a normal huge page. That is
2299 * not critical, though, it just means the overall size of the
2300 * pool might be one hugepage larger than it needs to be, but
2301 * within all the constraints specified by the sysctls.
2302 */
2303 spin_lock(&hugetlb_lock);
2304 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2305 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2306 break;
2307 }
2308
2309 while (count > persistent_huge_pages(h)) {
2310 /*
2311 * If this allocation races such that we no longer need the
2312 * page, free_huge_page will handle it by freeing the page
2313 * and reducing the surplus.
2314 */
2315 spin_unlock(&hugetlb_lock);
2316
2317 /* yield cpu to avoid soft lockup */
2318 cond_resched();
2319
2320 ret = alloc_pool_huge_page(h, nodes_allowed);
2321 spin_lock(&hugetlb_lock);
2322 if (!ret)
2323 goto out;
2324
2325 /* Bail for signals. Probably ctrl-c from user */
2326 if (signal_pending(current))
2327 goto out;
2328 }
2329
2330 /*
2331 * Decrease the pool size
2332 * First return free pages to the buddy allocator (being careful
2333 * to keep enough around to satisfy reservations). Then place
2334 * pages into surplus state as needed so the pool will shrink
2335 * to the desired size as pages become free.
2336 *
2337 * By placing pages into the surplus state independent of the
2338 * overcommit value, we are allowing the surplus pool size to
2339 * exceed overcommit. There are few sane options here. Since
2340 * alloc_surplus_huge_page() is checking the global counter,
2341 * though, we'll note that we're not allowed to exceed surplus
2342 * and won't grow the pool anywhere else. Not until one of the
2343 * sysctls are changed, or the surplus pages go out of use.
2344 */
2345 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2346 min_count = max(count, min_count);
2347 try_to_free_low(h, min_count, nodes_allowed);
2348 while (min_count < persistent_huge_pages(h)) {
2349 if (!free_pool_huge_page(h, nodes_allowed, 0))
2350 break;
2351 cond_resched_lock(&hugetlb_lock);
2352 }
2353 while (count < persistent_huge_pages(h)) {
2354 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2355 break;
2356 }
2357out:
2358 ret = persistent_huge_pages(h);
2359 spin_unlock(&hugetlb_lock);
2360 return ret;
2361}
2362
2363#define HSTATE_ATTR_RO(_name) \
2364 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2365
2366#define HSTATE_ATTR(_name) \
2367 static struct kobj_attribute _name##_attr = \
2368 __ATTR(_name, 0644, _name##_show, _name##_store)
2369
2370static struct kobject *hugepages_kobj;
2371static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2372
2373static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2374
2375static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2376{
2377 int i;
2378
2379 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2380 if (hstate_kobjs[i] == kobj) {
2381 if (nidp)
2382 *nidp = NUMA_NO_NODE;
2383 return &hstates[i];
2384 }
2385
2386 return kobj_to_node_hstate(kobj, nidp);
2387}
2388
2389static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2390 struct kobj_attribute *attr, char *buf)
2391{
2392 struct hstate *h;
2393 unsigned long nr_huge_pages;
2394 int nid;
2395
2396 h = kobj_to_hstate(kobj, &nid);
2397 if (nid == NUMA_NO_NODE)
2398 nr_huge_pages = h->nr_huge_pages;
2399 else
2400 nr_huge_pages = h->nr_huge_pages_node[nid];
2401
2402 return sprintf(buf, "%lu\n", nr_huge_pages);
2403}
2404
2405static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2406 struct hstate *h, int nid,
2407 unsigned long count, size_t len)
2408{
2409 int err;
2410 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2411
2412 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2413 err = -EINVAL;
2414 goto out;
2415 }
2416
2417 if (nid == NUMA_NO_NODE) {
2418 /*
2419 * global hstate attribute
2420 */
2421 if (!(obey_mempolicy &&
2422 init_nodemask_of_mempolicy(nodes_allowed))) {
2423 NODEMASK_FREE(nodes_allowed);
2424 nodes_allowed = &node_states[N_MEMORY];
2425 }
2426 } else if (nodes_allowed) {
2427 /*
2428 * per node hstate attribute: adjust count to global,
2429 * but restrict alloc/free to the specified node.
2430 */
2431 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2432 init_nodemask_of_node(nodes_allowed, nid);
2433 } else
2434 nodes_allowed = &node_states[N_MEMORY];
2435
2436 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2437
2438 if (nodes_allowed != &node_states[N_MEMORY])
2439 NODEMASK_FREE(nodes_allowed);
2440
2441 return len;
2442out:
2443 NODEMASK_FREE(nodes_allowed);
2444 return err;
2445}
2446
2447static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2448 struct kobject *kobj, const char *buf,
2449 size_t len)
2450{
2451 struct hstate *h;
2452 unsigned long count;
2453 int nid;
2454 int err;
2455
2456 err = kstrtoul(buf, 10, &count);
2457 if (err)
2458 return err;
2459
2460 h = kobj_to_hstate(kobj, &nid);
2461 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2462}
2463
2464static ssize_t nr_hugepages_show(struct kobject *kobj,
2465 struct kobj_attribute *attr, char *buf)
2466{
2467 return nr_hugepages_show_common(kobj, attr, buf);
2468}
2469
2470static ssize_t nr_hugepages_store(struct kobject *kobj,
2471 struct kobj_attribute *attr, const char *buf, size_t len)
2472{
2473 return nr_hugepages_store_common(false, kobj, buf, len);
2474}
2475HSTATE_ATTR(nr_hugepages);
2476
2477#ifdef CONFIG_NUMA
2478
2479/*
2480 * hstate attribute for optionally mempolicy-based constraint on persistent
2481 * huge page alloc/free.
2482 */
2483static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2484 struct kobj_attribute *attr, char *buf)
2485{
2486 return nr_hugepages_show_common(kobj, attr, buf);
2487}
2488
2489static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2490 struct kobj_attribute *attr, const char *buf, size_t len)
2491{
2492 return nr_hugepages_store_common(true, kobj, buf, len);
2493}
2494HSTATE_ATTR(nr_hugepages_mempolicy);
2495#endif
2496
2497
2498static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2499 struct kobj_attribute *attr, char *buf)
2500{
2501 struct hstate *h = kobj_to_hstate(kobj, NULL);
2502 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2503}
2504
2505static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2506 struct kobj_attribute *attr, const char *buf, size_t count)
2507{
2508 int err;
2509 unsigned long input;
2510 struct hstate *h = kobj_to_hstate(kobj, NULL);
2511
2512 if (hstate_is_gigantic(h))
2513 return -EINVAL;
2514
2515 err = kstrtoul(buf, 10, &input);
2516 if (err)
2517 return err;
2518
2519 spin_lock(&hugetlb_lock);
2520 h->nr_overcommit_huge_pages = input;
2521 spin_unlock(&hugetlb_lock);
2522
2523 return count;
2524}
2525HSTATE_ATTR(nr_overcommit_hugepages);
2526
2527static ssize_t free_hugepages_show(struct kobject *kobj,
2528 struct kobj_attribute *attr, char *buf)
2529{
2530 struct hstate *h;
2531 unsigned long free_huge_pages;
2532 int nid;
2533
2534 h = kobj_to_hstate(kobj, &nid);
2535 if (nid == NUMA_NO_NODE)
2536 free_huge_pages = h->free_huge_pages;
2537 else
2538 free_huge_pages = h->free_huge_pages_node[nid];
2539
2540 return sprintf(buf, "%lu\n", free_huge_pages);
2541}
2542HSTATE_ATTR_RO(free_hugepages);
2543
2544static ssize_t resv_hugepages_show(struct kobject *kobj,
2545 struct kobj_attribute *attr, char *buf)
2546{
2547 struct hstate *h = kobj_to_hstate(kobj, NULL);
2548 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2549}
2550HSTATE_ATTR_RO(resv_hugepages);
2551
2552static ssize_t surplus_hugepages_show(struct kobject *kobj,
2553 struct kobj_attribute *attr, char *buf)
2554{
2555 struct hstate *h;
2556 unsigned long surplus_huge_pages;
2557 int nid;
2558
2559 h = kobj_to_hstate(kobj, &nid);
2560 if (nid == NUMA_NO_NODE)
2561 surplus_huge_pages = h->surplus_huge_pages;
2562 else
2563 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2564
2565 return sprintf(buf, "%lu\n", surplus_huge_pages);
2566}
2567HSTATE_ATTR_RO(surplus_hugepages);
2568
2569static struct attribute *hstate_attrs[] = {
2570 &nr_hugepages_attr.attr,
2571 &nr_overcommit_hugepages_attr.attr,
2572 &free_hugepages_attr.attr,
2573 &resv_hugepages_attr.attr,
2574 &surplus_hugepages_attr.attr,
2575#ifdef CONFIG_NUMA
2576 &nr_hugepages_mempolicy_attr.attr,
2577#endif
2578 NULL,
2579};
2580
2581static const struct attribute_group hstate_attr_group = {
2582 .attrs = hstate_attrs,
2583};
2584
2585static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2586 struct kobject **hstate_kobjs,
2587 const struct attribute_group *hstate_attr_group)
2588{
2589 int retval;
2590 int hi = hstate_index(h);
2591
2592 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2593 if (!hstate_kobjs[hi])
2594 return -ENOMEM;
2595
2596 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2597 if (retval)
2598 kobject_put(hstate_kobjs[hi]);
2599
2600 return retval;
2601}
2602
2603static void __init hugetlb_sysfs_init(void)
2604{
2605 struct hstate *h;
2606 int err;
2607
2608 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2609 if (!hugepages_kobj)
2610 return;
2611
2612 for_each_hstate(h) {
2613 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2614 hstate_kobjs, &hstate_attr_group);
2615 if (err)
2616 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2617 }
2618}
2619
2620#ifdef CONFIG_NUMA
2621
2622/*
2623 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2624 * with node devices in node_devices[] using a parallel array. The array
2625 * index of a node device or _hstate == node id.
2626 * This is here to avoid any static dependency of the node device driver, in
2627 * the base kernel, on the hugetlb module.
2628 */
2629struct node_hstate {
2630 struct kobject *hugepages_kobj;
2631 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2632};
2633static struct node_hstate node_hstates[MAX_NUMNODES];
2634
2635/*
2636 * A subset of global hstate attributes for node devices
2637 */
2638static struct attribute *per_node_hstate_attrs[] = {
2639 &nr_hugepages_attr.attr,
2640 &free_hugepages_attr.attr,
2641 &surplus_hugepages_attr.attr,
2642 NULL,
2643};
2644
2645static const struct attribute_group per_node_hstate_attr_group = {
2646 .attrs = per_node_hstate_attrs,
2647};
2648
2649/*
2650 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2651 * Returns node id via non-NULL nidp.
2652 */
2653static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2654{
2655 int nid;
2656
2657 for (nid = 0; nid < nr_node_ids; nid++) {
2658 struct node_hstate *nhs = &node_hstates[nid];
2659 int i;
2660 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2661 if (nhs->hstate_kobjs[i] == kobj) {
2662 if (nidp)
2663 *nidp = nid;
2664 return &hstates[i];
2665 }
2666 }
2667
2668 BUG();
2669 return NULL;
2670}
2671
2672/*
2673 * Unregister hstate attributes from a single node device.
2674 * No-op if no hstate attributes attached.
2675 */
2676static void hugetlb_unregister_node(struct node *node)
2677{
2678 struct hstate *h;
2679 struct node_hstate *nhs = &node_hstates[node->dev.id];
2680
2681 if (!nhs->hugepages_kobj)
2682 return; /* no hstate attributes */
2683
2684 for_each_hstate(h) {
2685 int idx = hstate_index(h);
2686 if (nhs->hstate_kobjs[idx]) {
2687 kobject_put(nhs->hstate_kobjs[idx]);
2688 nhs->hstate_kobjs[idx] = NULL;
2689 }
2690 }
2691
2692 kobject_put(nhs->hugepages_kobj);
2693 nhs->hugepages_kobj = NULL;
2694}
2695
2696
2697/*
2698 * Register hstate attributes for a single node device.
2699 * No-op if attributes already registered.
2700 */
2701static void hugetlb_register_node(struct node *node)
2702{
2703 struct hstate *h;
2704 struct node_hstate *nhs = &node_hstates[node->dev.id];
2705 int err;
2706
2707 if (nhs->hugepages_kobj)
2708 return; /* already allocated */
2709
2710 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2711 &node->dev.kobj);
2712 if (!nhs->hugepages_kobj)
2713 return;
2714
2715 for_each_hstate(h) {
2716 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2717 nhs->hstate_kobjs,
2718 &per_node_hstate_attr_group);
2719 if (err) {
2720 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2721 h->name, node->dev.id);
2722 hugetlb_unregister_node(node);
2723 break;
2724 }
2725 }
2726}
2727
2728/*
2729 * hugetlb init time: register hstate attributes for all registered node
2730 * devices of nodes that have memory. All on-line nodes should have
2731 * registered their associated device by this time.
2732 */
2733static void __init hugetlb_register_all_nodes(void)
2734{
2735 int nid;
2736
2737 for_each_node_state(nid, N_MEMORY) {
2738 struct node *node = node_devices[nid];
2739 if (node->dev.id == nid)
2740 hugetlb_register_node(node);
2741 }
2742
2743 /*
2744 * Let the node device driver know we're here so it can
2745 * [un]register hstate attributes on node hotplug.
2746 */
2747 register_hugetlbfs_with_node(hugetlb_register_node,
2748 hugetlb_unregister_node);
2749}
2750#else /* !CONFIG_NUMA */
2751
2752static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2753{
2754 BUG();
2755 if (nidp)
2756 *nidp = -1;
2757 return NULL;
2758}
2759
2760static void hugetlb_register_all_nodes(void) { }
2761
2762#endif
2763
2764static int __init hugetlb_init(void)
2765{
2766 int i;
2767
2768 if (!hugepages_supported())
2769 return 0;
2770
2771 if (!size_to_hstate(default_hstate_size)) {
2772 if (default_hstate_size != 0) {
2773 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2774 default_hstate_size, HPAGE_SIZE);
2775 }
2776
2777 default_hstate_size = HPAGE_SIZE;
2778 if (!size_to_hstate(default_hstate_size))
2779 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2780 }
2781 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2782 if (default_hstate_max_huge_pages) {
2783 if (!default_hstate.max_huge_pages)
2784 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2785 }
2786
2787 hugetlb_init_hstates();
2788 gather_bootmem_prealloc();
2789 report_hugepages();
2790
2791 hugetlb_sysfs_init();
2792 hugetlb_register_all_nodes();
2793 hugetlb_cgroup_file_init();
2794
2795#ifdef CONFIG_SMP
2796 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2797#else
2798 num_fault_mutexes = 1;
2799#endif
2800 hugetlb_fault_mutex_table =
2801 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2802 BUG_ON(!hugetlb_fault_mutex_table);
2803
2804 for (i = 0; i < num_fault_mutexes; i++)
2805 mutex_init(&hugetlb_fault_mutex_table[i]);
2806 return 0;
2807}
2808subsys_initcall(hugetlb_init);
2809
2810/* Should be called on processing a hugepagesz=... option */
2811void __init hugetlb_bad_size(void)
2812{
2813 parsed_valid_hugepagesz = false;
2814}
2815
2816void __init hugetlb_add_hstate(unsigned int order)
2817{
2818 struct hstate *h;
2819 unsigned long i;
2820
2821 if (size_to_hstate(PAGE_SIZE << order)) {
2822 pr_warn("hugepagesz= specified twice, ignoring\n");
2823 return;
2824 }
2825 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2826 BUG_ON(order == 0);
2827 h = &hstates[hugetlb_max_hstate++];
2828 h->order = order;
2829 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2830 h->nr_huge_pages = 0;
2831 h->free_huge_pages = 0;
2832 for (i = 0; i < MAX_NUMNODES; ++i)
2833 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2834 INIT_LIST_HEAD(&h->hugepage_activelist);
2835 h->next_nid_to_alloc = first_memory_node;
2836 h->next_nid_to_free = first_memory_node;
2837 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2838 huge_page_size(h)/1024);
2839
2840 parsed_hstate = h;
2841}
2842
2843static int __init hugetlb_nrpages_setup(char *s)
2844{
2845 unsigned long *mhp;
2846 static unsigned long *last_mhp;
2847
2848 if (!parsed_valid_hugepagesz) {
2849 pr_warn("hugepages = %s preceded by "
2850 "an unsupported hugepagesz, ignoring\n", s);
2851 parsed_valid_hugepagesz = true;
2852 return 1;
2853 }
2854 /*
2855 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2856 * so this hugepages= parameter goes to the "default hstate".
2857 */
2858 else if (!hugetlb_max_hstate)
2859 mhp = &default_hstate_max_huge_pages;
2860 else
2861 mhp = &parsed_hstate->max_huge_pages;
2862
2863 if (mhp == last_mhp) {
2864 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2865 return 1;
2866 }
2867
2868 if (sscanf(s, "%lu", mhp) <= 0)
2869 *mhp = 0;
2870
2871 /*
2872 * Global state is always initialized later in hugetlb_init.
2873 * But we need to allocate >= MAX_ORDER hstates here early to still
2874 * use the bootmem allocator.
2875 */
2876 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2877 hugetlb_hstate_alloc_pages(parsed_hstate);
2878
2879 last_mhp = mhp;
2880
2881 return 1;
2882}
2883__setup("hugepages=", hugetlb_nrpages_setup);
2884
2885static int __init hugetlb_default_setup(char *s)
2886{
2887 default_hstate_size = memparse(s, &s);
2888 return 1;
2889}
2890__setup("default_hugepagesz=", hugetlb_default_setup);
2891
2892static unsigned int cpuset_mems_nr(unsigned int *array)
2893{
2894 int node;
2895 unsigned int nr = 0;
2896
2897 for_each_node_mask(node, cpuset_current_mems_allowed)
2898 nr += array[node];
2899
2900 return nr;
2901}
2902
2903#ifdef CONFIG_SYSCTL
2904static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2905 struct ctl_table *table, int write,
2906 void __user *buffer, size_t *length, loff_t *ppos)
2907{
2908 struct hstate *h = &default_hstate;
2909 unsigned long tmp = h->max_huge_pages;
2910 int ret;
2911
2912 if (!hugepages_supported())
2913 return -EOPNOTSUPP;
2914
2915 table->data = &tmp;
2916 table->maxlen = sizeof(unsigned long);
2917 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2918 if (ret)
2919 goto out;
2920
2921 if (write)
2922 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2923 NUMA_NO_NODE, tmp, *length);
2924out:
2925 return ret;
2926}
2927
2928int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2929 void __user *buffer, size_t *length, loff_t *ppos)
2930{
2931
2932 return hugetlb_sysctl_handler_common(false, table, write,
2933 buffer, length, ppos);
2934}
2935
2936#ifdef CONFIG_NUMA
2937int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2938 void __user *buffer, size_t *length, loff_t *ppos)
2939{
2940 return hugetlb_sysctl_handler_common(true, table, write,
2941 buffer, length, ppos);
2942}
2943#endif /* CONFIG_NUMA */
2944
2945int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2946 void __user *buffer,
2947 size_t *length, loff_t *ppos)
2948{
2949 struct hstate *h = &default_hstate;
2950 unsigned long tmp;
2951 int ret;
2952
2953 if (!hugepages_supported())
2954 return -EOPNOTSUPP;
2955
2956 tmp = h->nr_overcommit_huge_pages;
2957
2958 if (write && hstate_is_gigantic(h))
2959 return -EINVAL;
2960
2961 table->data = &tmp;
2962 table->maxlen = sizeof(unsigned long);
2963 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2964 if (ret)
2965 goto out;
2966
2967 if (write) {
2968 spin_lock(&hugetlb_lock);
2969 h->nr_overcommit_huge_pages = tmp;
2970 spin_unlock(&hugetlb_lock);
2971 }
2972out:
2973 return ret;
2974}
2975
2976#endif /* CONFIG_SYSCTL */
2977
2978void hugetlb_report_meminfo(struct seq_file *m)
2979{
2980 struct hstate *h;
2981 unsigned long total = 0;
2982
2983 if (!hugepages_supported())
2984 return;
2985
2986 for_each_hstate(h) {
2987 unsigned long count = h->nr_huge_pages;
2988
2989 total += (PAGE_SIZE << huge_page_order(h)) * count;
2990
2991 if (h == &default_hstate)
2992 seq_printf(m,
2993 "HugePages_Total: %5lu\n"
2994 "HugePages_Free: %5lu\n"
2995 "HugePages_Rsvd: %5lu\n"
2996 "HugePages_Surp: %5lu\n"
2997 "Hugepagesize: %8lu kB\n",
2998 count,
2999 h->free_huge_pages,
3000 h->resv_huge_pages,
3001 h->surplus_huge_pages,
3002 (PAGE_SIZE << huge_page_order(h)) / 1024);
3003 }
3004
3005 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3006}
3007
3008int hugetlb_report_node_meminfo(int nid, char *buf)
3009{
3010 struct hstate *h = &default_hstate;
3011 if (!hugepages_supported())
3012 return 0;
3013 return sprintf(buf,
3014 "Node %d HugePages_Total: %5u\n"
3015 "Node %d HugePages_Free: %5u\n"
3016 "Node %d HugePages_Surp: %5u\n",
3017 nid, h->nr_huge_pages_node[nid],
3018 nid, h->free_huge_pages_node[nid],
3019 nid, h->surplus_huge_pages_node[nid]);
3020}
3021
3022void hugetlb_show_meminfo(void)
3023{
3024 struct hstate *h;
3025 int nid;
3026
3027 if (!hugepages_supported())
3028 return;
3029
3030 for_each_node_state(nid, N_MEMORY)
3031 for_each_hstate(h)
3032 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3033 nid,
3034 h->nr_huge_pages_node[nid],
3035 h->free_huge_pages_node[nid],
3036 h->surplus_huge_pages_node[nid],
3037 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3038}
3039
3040void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3041{
3042 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3043 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3044}
3045
3046/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3047unsigned long hugetlb_total_pages(void)
3048{
3049 struct hstate *h;
3050 unsigned long nr_total_pages = 0;
3051
3052 for_each_hstate(h)
3053 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3054 return nr_total_pages;
3055}
3056
3057static int hugetlb_acct_memory(struct hstate *h, long delta)
3058{
3059 int ret = -ENOMEM;
3060
3061 spin_lock(&hugetlb_lock);
3062 /*
3063 * When cpuset is configured, it breaks the strict hugetlb page
3064 * reservation as the accounting is done on a global variable. Such
3065 * reservation is completely rubbish in the presence of cpuset because
3066 * the reservation is not checked against page availability for the
3067 * current cpuset. Application can still potentially OOM'ed by kernel
3068 * with lack of free htlb page in cpuset that the task is in.
3069 * Attempt to enforce strict accounting with cpuset is almost
3070 * impossible (or too ugly) because cpuset is too fluid that
3071 * task or memory node can be dynamically moved between cpusets.
3072 *
3073 * The change of semantics for shared hugetlb mapping with cpuset is
3074 * undesirable. However, in order to preserve some of the semantics,
3075 * we fall back to check against current free page availability as
3076 * a best attempt and hopefully to minimize the impact of changing
3077 * semantics that cpuset has.
3078 */
3079 if (delta > 0) {
3080 if (gather_surplus_pages(h, delta) < 0)
3081 goto out;
3082
3083 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3084 return_unused_surplus_pages(h, delta);
3085 goto out;
3086 }
3087 }
3088
3089 ret = 0;
3090 if (delta < 0)
3091 return_unused_surplus_pages(h, (unsigned long) -delta);
3092
3093out:
3094 spin_unlock(&hugetlb_lock);
3095 return ret;
3096}
3097
3098static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3099{
3100 struct resv_map *resv = vma_resv_map(vma);
3101
3102 /*
3103 * This new VMA should share its siblings reservation map if present.
3104 * The VMA will only ever have a valid reservation map pointer where
3105 * it is being copied for another still existing VMA. As that VMA
3106 * has a reference to the reservation map it cannot disappear until
3107 * after this open call completes. It is therefore safe to take a
3108 * new reference here without additional locking.
3109 */
3110 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3111 kref_get(&resv->refs);
3112}
3113
3114static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3115{
3116 struct hstate *h = hstate_vma(vma);
3117 struct resv_map *resv = vma_resv_map(vma);
3118 struct hugepage_subpool *spool = subpool_vma(vma);
3119 unsigned long reserve, start, end;
3120 long gbl_reserve;
3121
3122 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3123 return;
3124
3125 start = vma_hugecache_offset(h, vma, vma->vm_start);
3126 end = vma_hugecache_offset(h, vma, vma->vm_end);
3127
3128 reserve = (end - start) - region_count(resv, start, end);
3129
3130 kref_put(&resv->refs, resv_map_release);
3131
3132 if (reserve) {
3133 /*
3134 * Decrement reserve counts. The global reserve count may be
3135 * adjusted if the subpool has a minimum size.
3136 */
3137 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3138 hugetlb_acct_memory(h, -gbl_reserve);
3139 }
3140}
3141
3142static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3143{
3144 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3145 return -EINVAL;
3146 return 0;
3147}
3148
3149static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3150{
3151 struct hstate *hstate = hstate_vma(vma);
3152
3153 return 1UL << huge_page_shift(hstate);
3154}
3155
3156/*
3157 * We cannot handle pagefaults against hugetlb pages at all. They cause
3158 * handle_mm_fault() to try to instantiate regular-sized pages in the
3159 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3160 * this far.
3161 */
3162static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3163{
3164 BUG();
3165 return 0;
3166}
3167
3168const struct vm_operations_struct hugetlb_vm_ops = {
3169 .fault = hugetlb_vm_op_fault,
3170 .open = hugetlb_vm_op_open,
3171 .close = hugetlb_vm_op_close,
3172 .split = hugetlb_vm_op_split,
3173 .pagesize = hugetlb_vm_op_pagesize,
3174};
3175
3176static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3177 int writable)
3178{
3179 pte_t entry;
3180
3181 if (writable) {
3182 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3183 vma->vm_page_prot)));
3184 } else {
3185 entry = huge_pte_wrprotect(mk_huge_pte(page,
3186 vma->vm_page_prot));
3187 }
3188 entry = pte_mkyoung(entry);
3189 entry = pte_mkhuge(entry);
3190 entry = arch_make_huge_pte(entry, vma, page, writable);
3191
3192 return entry;
3193}
3194
3195static void set_huge_ptep_writable(struct vm_area_struct *vma,
3196 unsigned long address, pte_t *ptep)
3197{
3198 pte_t entry;
3199
3200 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3201 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3202 update_mmu_cache(vma, address, ptep);
3203}
3204
3205bool is_hugetlb_entry_migration(pte_t pte)
3206{
3207 swp_entry_t swp;
3208
3209 if (huge_pte_none(pte) || pte_present(pte))
3210 return false;
3211 swp = pte_to_swp_entry(pte);
3212 if (non_swap_entry(swp) && is_migration_entry(swp))
3213 return true;
3214 else
3215 return false;
3216}
3217
3218static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3219{
3220 swp_entry_t swp;
3221
3222 if (huge_pte_none(pte) || pte_present(pte))
3223 return 0;
3224 swp = pte_to_swp_entry(pte);
3225 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3226 return 1;
3227 else
3228 return 0;
3229}
3230
3231int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3232 struct vm_area_struct *vma)
3233{
3234 pte_t *src_pte, *dst_pte, entry;
3235 struct page *ptepage;
3236 unsigned long addr;
3237 int cow;
3238 struct hstate *h = hstate_vma(vma);
3239 unsigned long sz = huge_page_size(h);
3240 unsigned long mmun_start; /* For mmu_notifiers */
3241 unsigned long mmun_end; /* For mmu_notifiers */
3242 int ret = 0;
3243
3244 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3245
3246 mmun_start = vma->vm_start;
3247 mmun_end = vma->vm_end;
3248 if (cow)
3249 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3250
3251 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3252 spinlock_t *src_ptl, *dst_ptl;
3253 src_pte = huge_pte_offset(src, addr, sz);
3254 if (!src_pte)
3255 continue;
3256 dst_pte = huge_pte_alloc(dst, addr, sz);
3257 if (!dst_pte) {
3258 ret = -ENOMEM;
3259 break;
3260 }
3261
3262 /* If the pagetables are shared don't copy or take references */
3263 if (dst_pte == src_pte)
3264 continue;
3265
3266 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3267 src_ptl = huge_pte_lockptr(h, src, src_pte);
3268 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3269 entry = huge_ptep_get(src_pte);
3270 if (huge_pte_none(entry)) { /* skip none entry */
3271 ;
3272 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3273 is_hugetlb_entry_hwpoisoned(entry))) {
3274 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3275
3276 if (is_write_migration_entry(swp_entry) && cow) {
3277 /*
3278 * COW mappings require pages in both
3279 * parent and child to be set to read.
3280 */
3281 make_migration_entry_read(&swp_entry);
3282 entry = swp_entry_to_pte(swp_entry);
3283 set_huge_swap_pte_at(src, addr, src_pte,
3284 entry, sz);
3285 }
3286 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3287 } else {
3288 if (cow) {
3289 /*
3290 * No need to notify as we are downgrading page
3291 * table protection not changing it to point
3292 * to a new page.
3293 *
3294 * See Documentation/vm/mmu_notifier.txt
3295 */
3296 huge_ptep_set_wrprotect(src, addr, src_pte);
3297 }
3298 entry = huge_ptep_get(src_pte);
3299 ptepage = pte_page(entry);
3300 get_page(ptepage);
3301 page_dup_rmap(ptepage, true);
3302 set_huge_pte_at(dst, addr, dst_pte, entry);
3303 hugetlb_count_add(pages_per_huge_page(h), dst);
3304 }
3305 spin_unlock(src_ptl);
3306 spin_unlock(dst_ptl);
3307 }
3308
3309 if (cow)
3310 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3311
3312 return ret;
3313}
3314
3315void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3316 unsigned long start, unsigned long end,
3317 struct page *ref_page)
3318{
3319 struct mm_struct *mm = vma->vm_mm;
3320 unsigned long address;
3321 pte_t *ptep;
3322 pte_t pte;
3323 spinlock_t *ptl;
3324 struct page *page;
3325 struct hstate *h = hstate_vma(vma);
3326 unsigned long sz = huge_page_size(h);
3327 const unsigned long mmun_start = start; /* For mmu_notifiers */
3328 const unsigned long mmun_end = end; /* For mmu_notifiers */
3329
3330 WARN_ON(!is_vm_hugetlb_page(vma));
3331 BUG_ON(start & ~huge_page_mask(h));
3332 BUG_ON(end & ~huge_page_mask(h));
3333
3334 /*
3335 * This is a hugetlb vma, all the pte entries should point
3336 * to huge page.
3337 */
3338 tlb_remove_check_page_size_change(tlb, sz);
3339 tlb_start_vma(tlb, vma);
3340 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3341 address = start;
3342 for (; address < end; address += sz) {
3343 ptep = huge_pte_offset(mm, address, sz);
3344 if (!ptep)
3345 continue;
3346
3347 ptl = huge_pte_lock(h, mm, ptep);
3348 if (huge_pmd_unshare(mm, &address, ptep)) {
3349 spin_unlock(ptl);
3350 continue;
3351 }
3352
3353 pte = huge_ptep_get(ptep);
3354 if (huge_pte_none(pte)) {
3355 spin_unlock(ptl);
3356 continue;
3357 }
3358
3359 /*
3360 * Migrating hugepage or HWPoisoned hugepage is already
3361 * unmapped and its refcount is dropped, so just clear pte here.
3362 */
3363 if (unlikely(!pte_present(pte))) {
3364 huge_pte_clear(mm, address, ptep, sz);
3365 spin_unlock(ptl);
3366 continue;
3367 }
3368
3369 page = pte_page(pte);
3370 /*
3371 * If a reference page is supplied, it is because a specific
3372 * page is being unmapped, not a range. Ensure the page we
3373 * are about to unmap is the actual page of interest.
3374 */
3375 if (ref_page) {
3376 if (page != ref_page) {
3377 spin_unlock(ptl);
3378 continue;
3379 }
3380 /*
3381 * Mark the VMA as having unmapped its page so that
3382 * future faults in this VMA will fail rather than
3383 * looking like data was lost
3384 */
3385 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3386 }
3387
3388 pte = huge_ptep_get_and_clear(mm, address, ptep);
3389 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3390 if (huge_pte_dirty(pte))
3391 set_page_dirty(page);
3392
3393 hugetlb_count_sub(pages_per_huge_page(h), mm);
3394 page_remove_rmap(page, true);
3395
3396 spin_unlock(ptl);
3397 tlb_remove_page_size(tlb, page, huge_page_size(h));
3398 /*
3399 * Bail out after unmapping reference page if supplied
3400 */
3401 if (ref_page)
3402 break;
3403 }
3404 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3405 tlb_end_vma(tlb, vma);
3406}
3407
3408void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3409 struct vm_area_struct *vma, unsigned long start,
3410 unsigned long end, struct page *ref_page)
3411{
3412 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3413
3414 /*
3415 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3416 * test will fail on a vma being torn down, and not grab a page table
3417 * on its way out. We're lucky that the flag has such an appropriate
3418 * name, and can in fact be safely cleared here. We could clear it
3419 * before the __unmap_hugepage_range above, but all that's necessary
3420 * is to clear it before releasing the i_mmap_rwsem. This works
3421 * because in the context this is called, the VMA is about to be
3422 * destroyed and the i_mmap_rwsem is held.
3423 */
3424 vma->vm_flags &= ~VM_MAYSHARE;
3425}
3426
3427void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3428 unsigned long end, struct page *ref_page)
3429{
3430 struct mm_struct *mm;
3431 struct mmu_gather tlb;
3432
3433 mm = vma->vm_mm;
3434
3435 tlb_gather_mmu(&tlb, mm, start, end);
3436 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3437 tlb_finish_mmu(&tlb, start, end);
3438}
3439
3440/*
3441 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3442 * mappping it owns the reserve page for. The intention is to unmap the page
3443 * from other VMAs and let the children be SIGKILLed if they are faulting the
3444 * same region.
3445 */
3446static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3447 struct page *page, unsigned long address)
3448{
3449 struct hstate *h = hstate_vma(vma);
3450 struct vm_area_struct *iter_vma;
3451 struct address_space *mapping;
3452 pgoff_t pgoff;
3453
3454 /*
3455 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3456 * from page cache lookup which is in HPAGE_SIZE units.
3457 */
3458 address = address & huge_page_mask(h);
3459 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3460 vma->vm_pgoff;
3461 mapping = vma->vm_file->f_mapping;
3462
3463 /*
3464 * Take the mapping lock for the duration of the table walk. As
3465 * this mapping should be shared between all the VMAs,
3466 * __unmap_hugepage_range() is called as the lock is already held
3467 */
3468 i_mmap_lock_write(mapping);
3469 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3470 /* Do not unmap the current VMA */
3471 if (iter_vma == vma)
3472 continue;
3473
3474 /*
3475 * Shared VMAs have their own reserves and do not affect
3476 * MAP_PRIVATE accounting but it is possible that a shared
3477 * VMA is using the same page so check and skip such VMAs.
3478 */
3479 if (iter_vma->vm_flags & VM_MAYSHARE)
3480 continue;
3481
3482 /*
3483 * Unmap the page from other VMAs without their own reserves.
3484 * They get marked to be SIGKILLed if they fault in these
3485 * areas. This is because a future no-page fault on this VMA
3486 * could insert a zeroed page instead of the data existing
3487 * from the time of fork. This would look like data corruption
3488 */
3489 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3490 unmap_hugepage_range(iter_vma, address,
3491 address + huge_page_size(h), page);
3492 }
3493 i_mmap_unlock_write(mapping);
3494}
3495
3496/*
3497 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3498 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3499 * cannot race with other handlers or page migration.
3500 * Keep the pte_same checks anyway to make transition from the mutex easier.
3501 */
3502static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3503 unsigned long address, pte_t *ptep,
3504 struct page *pagecache_page, spinlock_t *ptl)
3505{
3506 pte_t pte;
3507 struct hstate *h = hstate_vma(vma);
3508 struct page *old_page, *new_page;
3509 int ret = 0, outside_reserve = 0;
3510 unsigned long mmun_start; /* For mmu_notifiers */
3511 unsigned long mmun_end; /* For mmu_notifiers */
3512
3513 pte = huge_ptep_get(ptep);
3514 old_page = pte_page(pte);
3515
3516retry_avoidcopy:
3517 /* If no-one else is actually using this page, avoid the copy
3518 * and just make the page writable */
3519 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3520 page_move_anon_rmap(old_page, vma);
3521 set_huge_ptep_writable(vma, address, ptep);
3522 return 0;
3523 }
3524
3525 /*
3526 * If the process that created a MAP_PRIVATE mapping is about to
3527 * perform a COW due to a shared page count, attempt to satisfy
3528 * the allocation without using the existing reserves. The pagecache
3529 * page is used to determine if the reserve at this address was
3530 * consumed or not. If reserves were used, a partial faulted mapping
3531 * at the time of fork() could consume its reserves on COW instead
3532 * of the full address range.
3533 */
3534 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3535 old_page != pagecache_page)
3536 outside_reserve = 1;
3537
3538 get_page(old_page);
3539
3540 /*
3541 * Drop page table lock as buddy allocator may be called. It will
3542 * be acquired again before returning to the caller, as expected.
3543 */
3544 spin_unlock(ptl);
3545 new_page = alloc_huge_page(vma, address, outside_reserve);
3546
3547 if (IS_ERR(new_page)) {
3548 /*
3549 * If a process owning a MAP_PRIVATE mapping fails to COW,
3550 * it is due to references held by a child and an insufficient
3551 * huge page pool. To guarantee the original mappers
3552 * reliability, unmap the page from child processes. The child
3553 * may get SIGKILLed if it later faults.
3554 */
3555 if (outside_reserve) {
3556 put_page(old_page);
3557 BUG_ON(huge_pte_none(pte));
3558 unmap_ref_private(mm, vma, old_page, address);
3559 BUG_ON(huge_pte_none(pte));
3560 spin_lock(ptl);
3561 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3562 huge_page_size(h));
3563 if (likely(ptep &&
3564 pte_same(huge_ptep_get(ptep), pte)))
3565 goto retry_avoidcopy;
3566 /*
3567 * race occurs while re-acquiring page table
3568 * lock, and our job is done.
3569 */
3570 return 0;
3571 }
3572
3573 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3574 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3575 goto out_release_old;
3576 }
3577
3578 /*
3579 * When the original hugepage is shared one, it does not have
3580 * anon_vma prepared.
3581 */
3582 if (unlikely(anon_vma_prepare(vma))) {
3583 ret = VM_FAULT_OOM;
3584 goto out_release_all;
3585 }
3586
3587 copy_user_huge_page(new_page, old_page, address, vma,
3588 pages_per_huge_page(h));
3589 __SetPageUptodate(new_page);
3590 set_page_huge_active(new_page);
3591
3592 mmun_start = address & huge_page_mask(h);
3593 mmun_end = mmun_start + huge_page_size(h);
3594 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3595
3596 /*
3597 * Retake the page table lock to check for racing updates
3598 * before the page tables are altered
3599 */
3600 spin_lock(ptl);
3601 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3602 huge_page_size(h));
3603 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3604 ClearPagePrivate(new_page);
3605
3606 /* Break COW */
3607 huge_ptep_clear_flush(vma, address, ptep);
3608 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3609 set_huge_pte_at(mm, address, ptep,
3610 make_huge_pte(vma, new_page, 1));
3611 page_remove_rmap(old_page, true);
3612 hugepage_add_new_anon_rmap(new_page, vma, address);
3613 /* Make the old page be freed below */
3614 new_page = old_page;
3615 }
3616 spin_unlock(ptl);
3617 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3618out_release_all:
3619 restore_reserve_on_error(h, vma, address, new_page);
3620 put_page(new_page);
3621out_release_old:
3622 put_page(old_page);
3623
3624 spin_lock(ptl); /* Caller expects lock to be held */
3625 return ret;
3626}
3627
3628/* Return the pagecache page at a given address within a VMA */
3629static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3630 struct vm_area_struct *vma, unsigned long address)
3631{
3632 struct address_space *mapping;
3633 pgoff_t idx;
3634
3635 mapping = vma->vm_file->f_mapping;
3636 idx = vma_hugecache_offset(h, vma, address);
3637
3638 return find_lock_page(mapping, idx);
3639}
3640
3641/*
3642 * Return whether there is a pagecache page to back given address within VMA.
3643 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3644 */
3645static bool hugetlbfs_pagecache_present(struct hstate *h,
3646 struct vm_area_struct *vma, unsigned long address)
3647{
3648 struct address_space *mapping;
3649 pgoff_t idx;
3650 struct page *page;
3651
3652 mapping = vma->vm_file->f_mapping;
3653 idx = vma_hugecache_offset(h, vma, address);
3654
3655 page = find_get_page(mapping, idx);
3656 if (page)
3657 put_page(page);
3658 return page != NULL;
3659}
3660
3661int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3662 pgoff_t idx)
3663{
3664 struct inode *inode = mapping->host;
3665 struct hstate *h = hstate_inode(inode);
3666 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3667
3668 if (err)
3669 return err;
3670 ClearPagePrivate(page);
3671
3672 spin_lock(&inode->i_lock);
3673 inode->i_blocks += blocks_per_huge_page(h);
3674 spin_unlock(&inode->i_lock);
3675 return 0;
3676}
3677
3678static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3679 struct address_space *mapping, pgoff_t idx,
3680 unsigned long address, pte_t *ptep, unsigned int flags)
3681{
3682 struct hstate *h = hstate_vma(vma);
3683 int ret = VM_FAULT_SIGBUS;
3684 int anon_rmap = 0;
3685 unsigned long size;
3686 struct page *page;
3687 pte_t new_pte;
3688 spinlock_t *ptl;
3689
3690 /*
3691 * Currently, we are forced to kill the process in the event the
3692 * original mapper has unmapped pages from the child due to a failed
3693 * COW. Warn that such a situation has occurred as it may not be obvious
3694 */
3695 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3696 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3697 current->pid);
3698 return ret;
3699 }
3700
3701 /*
3702 * Use page lock to guard against racing truncation
3703 * before we get page_table_lock.
3704 */
3705retry:
3706 page = find_lock_page(mapping, idx);
3707 if (!page) {
3708 size = i_size_read(mapping->host) >> huge_page_shift(h);
3709 if (idx >= size)
3710 goto out;
3711
3712 /*
3713 * Check for page in userfault range
3714 */
3715 if (userfaultfd_missing(vma)) {
3716 u32 hash;
3717 struct vm_fault vmf = {
3718 .vma = vma,
3719 .address = address,
3720 .flags = flags,
3721 /*
3722 * Hard to debug if it ends up being
3723 * used by a callee that assumes
3724 * something about the other
3725 * uninitialized fields... same as in
3726 * memory.c
3727 */
3728 };
3729
3730 /*
3731 * hugetlb_fault_mutex must be dropped before
3732 * handling userfault. Reacquire after handling
3733 * fault to make calling code simpler.
3734 */
3735 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3736 idx, address);
3737 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3738 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3739 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3740 goto out;
3741 }
3742
3743 page = alloc_huge_page(vma, address, 0);
3744 if (IS_ERR(page)) {
3745 ret = PTR_ERR(page);
3746 if (ret == -ENOMEM)
3747 ret = VM_FAULT_OOM;
3748 else
3749 ret = VM_FAULT_SIGBUS;
3750 goto out;
3751 }
3752 clear_huge_page(page, address, pages_per_huge_page(h));
3753 __SetPageUptodate(page);
3754 set_page_huge_active(page);
3755
3756 if (vma->vm_flags & VM_MAYSHARE) {
3757 int err = huge_add_to_page_cache(page, mapping, idx);
3758 if (err) {
3759 put_page(page);
3760 if (err == -EEXIST)
3761 goto retry;
3762 goto out;
3763 }
3764 } else {
3765 lock_page(page);
3766 if (unlikely(anon_vma_prepare(vma))) {
3767 ret = VM_FAULT_OOM;
3768 goto backout_unlocked;
3769 }
3770 anon_rmap = 1;
3771 }
3772 } else {
3773 /*
3774 * If memory error occurs between mmap() and fault, some process
3775 * don't have hwpoisoned swap entry for errored virtual address.
3776 * So we need to block hugepage fault by PG_hwpoison bit check.
3777 */
3778 if (unlikely(PageHWPoison(page))) {
3779 ret = VM_FAULT_HWPOISON |
3780 VM_FAULT_SET_HINDEX(hstate_index(h));
3781 goto backout_unlocked;
3782 }
3783 }
3784
3785 /*
3786 * If we are going to COW a private mapping later, we examine the
3787 * pending reservations for this page now. This will ensure that
3788 * any allocations necessary to record that reservation occur outside
3789 * the spinlock.
3790 */
3791 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3792 if (vma_needs_reservation(h, vma, address) < 0) {
3793 ret = VM_FAULT_OOM;
3794 goto backout_unlocked;
3795 }
3796 /* Just decrements count, does not deallocate */
3797 vma_end_reservation(h, vma, address);
3798 }
3799
3800 ptl = huge_pte_lock(h, mm, ptep);
3801 size = i_size_read(mapping->host) >> huge_page_shift(h);
3802 if (idx >= size)
3803 goto backout;
3804
3805 ret = 0;
3806 if (!huge_pte_none(huge_ptep_get(ptep)))
3807 goto backout;
3808
3809 if (anon_rmap) {
3810 ClearPagePrivate(page);
3811 hugepage_add_new_anon_rmap(page, vma, address);
3812 } else
3813 page_dup_rmap(page, true);
3814 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3815 && (vma->vm_flags & VM_SHARED)));
3816 set_huge_pte_at(mm, address, ptep, new_pte);
3817
3818 hugetlb_count_add(pages_per_huge_page(h), mm);
3819 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3820 /* Optimization, do the COW without a second fault */
3821 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3822 }
3823
3824 spin_unlock(ptl);
3825 unlock_page(page);
3826out:
3827 return ret;
3828
3829backout:
3830 spin_unlock(ptl);
3831backout_unlocked:
3832 unlock_page(page);
3833 restore_reserve_on_error(h, vma, address, page);
3834 put_page(page);
3835 goto out;
3836}
3837
3838#ifdef CONFIG_SMP
3839u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3840 struct vm_area_struct *vma,
3841 struct address_space *mapping,
3842 pgoff_t idx, unsigned long address)
3843{
3844 unsigned long key[2];
3845 u32 hash;
3846
3847 if (vma->vm_flags & VM_SHARED) {
3848 key[0] = (unsigned long) mapping;
3849 key[1] = idx;
3850 } else {
3851 key[0] = (unsigned long) mm;
3852 key[1] = address >> huge_page_shift(h);
3853 }
3854
3855 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3856
3857 return hash & (num_fault_mutexes - 1);
3858}
3859#else
3860/*
3861 * For uniprocesor systems we always use a single mutex, so just
3862 * return 0 and avoid the hashing overhead.
3863 */
3864u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3865 struct vm_area_struct *vma,
3866 struct address_space *mapping,
3867 pgoff_t idx, unsigned long address)
3868{
3869 return 0;
3870}
3871#endif
3872
3873int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3874 unsigned long address, unsigned int flags)
3875{
3876 pte_t *ptep, entry;
3877 spinlock_t *ptl;
3878 int ret;
3879 u32 hash;
3880 pgoff_t idx;
3881 struct page *page = NULL;
3882 struct page *pagecache_page = NULL;
3883 struct hstate *h = hstate_vma(vma);
3884 struct address_space *mapping;
3885 int need_wait_lock = 0;
3886
3887 address &= huge_page_mask(h);
3888
3889 ptep = huge_pte_offset(mm, address, huge_page_size(h));
3890 if (ptep) {
3891 entry = huge_ptep_get(ptep);
3892 if (unlikely(is_hugetlb_entry_migration(entry))) {
3893 migration_entry_wait_huge(vma, mm, ptep);
3894 return 0;
3895 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3896 return VM_FAULT_HWPOISON_LARGE |
3897 VM_FAULT_SET_HINDEX(hstate_index(h));
3898 } else {
3899 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3900 if (!ptep)
3901 return VM_FAULT_OOM;
3902 }
3903
3904 mapping = vma->vm_file->f_mapping;
3905 idx = vma_hugecache_offset(h, vma, address);
3906
3907 /*
3908 * Serialize hugepage allocation and instantiation, so that we don't
3909 * get spurious allocation failures if two CPUs race to instantiate
3910 * the same page in the page cache.
3911 */
3912 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3913 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3914
3915 entry = huge_ptep_get(ptep);
3916 if (huge_pte_none(entry)) {
3917 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3918 goto out_mutex;
3919 }
3920
3921 ret = 0;
3922
3923 /*
3924 * entry could be a migration/hwpoison entry at this point, so this
3925 * check prevents the kernel from going below assuming that we have
3926 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3927 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3928 * handle it.
3929 */
3930 if (!pte_present(entry))
3931 goto out_mutex;
3932
3933 /*
3934 * If we are going to COW the mapping later, we examine the pending
3935 * reservations for this page now. This will ensure that any
3936 * allocations necessary to record that reservation occur outside the
3937 * spinlock. For private mappings, we also lookup the pagecache
3938 * page now as it is used to determine if a reservation has been
3939 * consumed.
3940 */
3941 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3942 if (vma_needs_reservation(h, vma, address) < 0) {
3943 ret = VM_FAULT_OOM;
3944 goto out_mutex;
3945 }
3946 /* Just decrements count, does not deallocate */
3947 vma_end_reservation(h, vma, address);
3948
3949 if (!(vma->vm_flags & VM_MAYSHARE))
3950 pagecache_page = hugetlbfs_pagecache_page(h,
3951 vma, address);
3952 }
3953
3954 ptl = huge_pte_lock(h, mm, ptep);
3955
3956 /* Check for a racing update before calling hugetlb_cow */
3957 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3958 goto out_ptl;
3959
3960 /*
3961 * hugetlb_cow() requires page locks of pte_page(entry) and
3962 * pagecache_page, so here we need take the former one
3963 * when page != pagecache_page or !pagecache_page.
3964 */
3965 page = pte_page(entry);
3966 if (page != pagecache_page)
3967 if (!trylock_page(page)) {
3968 need_wait_lock = 1;
3969 goto out_ptl;
3970 }
3971
3972 get_page(page);
3973
3974 if (flags & FAULT_FLAG_WRITE) {
3975 if (!huge_pte_write(entry)) {
3976 ret = hugetlb_cow(mm, vma, address, ptep,
3977 pagecache_page, ptl);
3978 goto out_put_page;
3979 }
3980 entry = huge_pte_mkdirty(entry);
3981 }
3982 entry = pte_mkyoung(entry);
3983 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3984 flags & FAULT_FLAG_WRITE))
3985 update_mmu_cache(vma, address, ptep);
3986out_put_page:
3987 if (page != pagecache_page)
3988 unlock_page(page);
3989 put_page(page);
3990out_ptl:
3991 spin_unlock(ptl);
3992
3993 if (pagecache_page) {
3994 unlock_page(pagecache_page);
3995 put_page(pagecache_page);
3996 }
3997out_mutex:
3998 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3999 /*
4000 * Generally it's safe to hold refcount during waiting page lock. But
4001 * here we just wait to defer the next page fault to avoid busy loop and
4002 * the page is not used after unlocked before returning from the current
4003 * page fault. So we are safe from accessing freed page, even if we wait
4004 * here without taking refcount.
4005 */
4006 if (need_wait_lock)
4007 wait_on_page_locked(page);
4008 return ret;
4009}
4010
4011/*
4012 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4013 * modifications for huge pages.
4014 */
4015int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4016 pte_t *dst_pte,
4017 struct vm_area_struct *dst_vma,
4018 unsigned long dst_addr,
4019 unsigned long src_addr,
4020 struct page **pagep)
4021{
4022 struct address_space *mapping;
4023 pgoff_t idx;
4024 unsigned long size;
4025 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4026 struct hstate *h = hstate_vma(dst_vma);
4027 pte_t _dst_pte;
4028 spinlock_t *ptl;
4029 int ret;
4030 struct page *page;
4031
4032 if (!*pagep) {
4033 ret = -ENOMEM;
4034 page = alloc_huge_page(dst_vma, dst_addr, 0);
4035 if (IS_ERR(page))
4036 goto out;
4037
4038 ret = copy_huge_page_from_user(page,
4039 (const void __user *) src_addr,
4040 pages_per_huge_page(h), false);
4041
4042 /* fallback to copy_from_user outside mmap_sem */
4043 if (unlikely(ret)) {
4044 ret = -EFAULT;
4045 *pagep = page;
4046 /* don't free the page */
4047 goto out;
4048 }
4049 } else {
4050 page = *pagep;
4051 *pagep = NULL;
4052 }
4053
4054 /*
4055 * The memory barrier inside __SetPageUptodate makes sure that
4056 * preceding stores to the page contents become visible before
4057 * the set_pte_at() write.
4058 */
4059 __SetPageUptodate(page);
4060 set_page_huge_active(page);
4061
4062 mapping = dst_vma->vm_file->f_mapping;
4063 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4064
4065 /*
4066 * If shared, add to page cache
4067 */
4068 if (vm_shared) {
4069 size = i_size_read(mapping->host) >> huge_page_shift(h);
4070 ret = -EFAULT;
4071 if (idx >= size)
4072 goto out_release_nounlock;
4073
4074 /*
4075 * Serialization between remove_inode_hugepages() and
4076 * huge_add_to_page_cache() below happens through the
4077 * hugetlb_fault_mutex_table that here must be hold by
4078 * the caller.
4079 */
4080 ret = huge_add_to_page_cache(page, mapping, idx);
4081 if (ret)
4082 goto out_release_nounlock;
4083 }
4084
4085 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4086 spin_lock(ptl);
4087
4088 /*
4089 * Recheck the i_size after holding PT lock to make sure not
4090 * to leave any page mapped (as page_mapped()) beyond the end
4091 * of the i_size (remove_inode_hugepages() is strict about
4092 * enforcing that). If we bail out here, we'll also leave a
4093 * page in the radix tree in the vm_shared case beyond the end
4094 * of the i_size, but remove_inode_hugepages() will take care
4095 * of it as soon as we drop the hugetlb_fault_mutex_table.
4096 */
4097 size = i_size_read(mapping->host) >> huge_page_shift(h);
4098 ret = -EFAULT;
4099 if (idx >= size)
4100 goto out_release_unlock;
4101
4102 ret = -EEXIST;
4103 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4104 goto out_release_unlock;
4105
4106 if (vm_shared) {
4107 page_dup_rmap(page, true);
4108 } else {
4109 ClearPagePrivate(page);
4110 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4111 }
4112
4113 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4114 if (dst_vma->vm_flags & VM_WRITE)
4115 _dst_pte = huge_pte_mkdirty(_dst_pte);
4116 _dst_pte = pte_mkyoung(_dst_pte);
4117
4118 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4119
4120 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4121 dst_vma->vm_flags & VM_WRITE);
4122 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4123
4124 /* No need to invalidate - it was non-present before */
4125 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4126
4127 spin_unlock(ptl);
4128 if (vm_shared)
4129 unlock_page(page);
4130 ret = 0;
4131out:
4132 return ret;
4133out_release_unlock:
4134 spin_unlock(ptl);
4135 if (vm_shared)
4136 unlock_page(page);
4137out_release_nounlock:
4138 put_page(page);
4139 goto out;
4140}
4141
4142long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4143 struct page **pages, struct vm_area_struct **vmas,
4144 unsigned long *position, unsigned long *nr_pages,
4145 long i, unsigned int flags, int *nonblocking)
4146{
4147 unsigned long pfn_offset;
4148 unsigned long vaddr = *position;
4149 unsigned long remainder = *nr_pages;
4150 struct hstate *h = hstate_vma(vma);
4151 int err = -EFAULT;
4152
4153 while (vaddr < vma->vm_end && remainder) {
4154 pte_t *pte;
4155 spinlock_t *ptl = NULL;
4156 int absent;
4157 struct page *page;
4158
4159 /*
4160 * If we have a pending SIGKILL, don't keep faulting pages and
4161 * potentially allocating memory.
4162 */
4163 if (unlikely(fatal_signal_pending(current))) {
4164 remainder = 0;
4165 break;
4166 }
4167
4168 /*
4169 * Some archs (sparc64, sh*) have multiple pte_ts to
4170 * each hugepage. We have to make sure we get the
4171 * first, for the page indexing below to work.
4172 *
4173 * Note that page table lock is not held when pte is null.
4174 */
4175 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4176 huge_page_size(h));
4177 if (pte)
4178 ptl = huge_pte_lock(h, mm, pte);
4179 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4180
4181 /*
4182 * When coredumping, it suits get_dump_page if we just return
4183 * an error where there's an empty slot with no huge pagecache
4184 * to back it. This way, we avoid allocating a hugepage, and
4185 * the sparse dumpfile avoids allocating disk blocks, but its
4186 * huge holes still show up with zeroes where they need to be.
4187 */
4188 if (absent && (flags & FOLL_DUMP) &&
4189 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4190 if (pte)
4191 spin_unlock(ptl);
4192 remainder = 0;
4193 break;
4194 }
4195
4196 /*
4197 * We need call hugetlb_fault for both hugepages under migration
4198 * (in which case hugetlb_fault waits for the migration,) and
4199 * hwpoisoned hugepages (in which case we need to prevent the
4200 * caller from accessing to them.) In order to do this, we use
4201 * here is_swap_pte instead of is_hugetlb_entry_migration and
4202 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4203 * both cases, and because we can't follow correct pages
4204 * directly from any kind of swap entries.
4205 */
4206 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4207 ((flags & FOLL_WRITE) &&
4208 !huge_pte_write(huge_ptep_get(pte)))) {
4209 int ret;
4210 unsigned int fault_flags = 0;
4211
4212 if (pte)
4213 spin_unlock(ptl);
4214 if (flags & FOLL_WRITE)
4215 fault_flags |= FAULT_FLAG_WRITE;
4216 if (nonblocking)
4217 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4218 if (flags & FOLL_NOWAIT)
4219 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4220 FAULT_FLAG_RETRY_NOWAIT;
4221 if (flags & FOLL_TRIED) {
4222 VM_WARN_ON_ONCE(fault_flags &
4223 FAULT_FLAG_ALLOW_RETRY);
4224 fault_flags |= FAULT_FLAG_TRIED;
4225 }
4226 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4227 if (ret & VM_FAULT_ERROR) {
4228 err = vm_fault_to_errno(ret, flags);
4229 remainder = 0;
4230 break;
4231 }
4232 if (ret & VM_FAULT_RETRY) {
4233 if (nonblocking)
4234 *nonblocking = 0;
4235 *nr_pages = 0;
4236 /*
4237 * VM_FAULT_RETRY must not return an
4238 * error, it will return zero
4239 * instead.
4240 *
4241 * No need to update "position" as the
4242 * caller will not check it after
4243 * *nr_pages is set to 0.
4244 */
4245 return i;
4246 }
4247 continue;
4248 }
4249
4250 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4251 page = pte_page(huge_ptep_get(pte));
4252same_page:
4253 if (pages) {
4254 pages[i] = mem_map_offset(page, pfn_offset);
4255 get_page(pages[i]);
4256 }
4257
4258 if (vmas)
4259 vmas[i] = vma;
4260
4261 vaddr += PAGE_SIZE;
4262 ++pfn_offset;
4263 --remainder;
4264 ++i;
4265 if (vaddr < vma->vm_end && remainder &&
4266 pfn_offset < pages_per_huge_page(h)) {
4267 /*
4268 * We use pfn_offset to avoid touching the pageframes
4269 * of this compound page.
4270 */
4271 goto same_page;
4272 }
4273 spin_unlock(ptl);
4274 }
4275 *nr_pages = remainder;
4276 /*
4277 * setting position is actually required only if remainder is
4278 * not zero but it's faster not to add a "if (remainder)"
4279 * branch.
4280 */
4281 *position = vaddr;
4282
4283 return i ? i : err;
4284}
4285
4286#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4287/*
4288 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4289 * implement this.
4290 */
4291#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4292#endif
4293
4294unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4295 unsigned long address, unsigned long end, pgprot_t newprot)
4296{
4297 struct mm_struct *mm = vma->vm_mm;
4298 unsigned long start = address;
4299 pte_t *ptep;
4300 pte_t pte;
4301 struct hstate *h = hstate_vma(vma);
4302 unsigned long pages = 0;
4303
4304 BUG_ON(address >= end);
4305 flush_cache_range(vma, address, end);
4306
4307 mmu_notifier_invalidate_range_start(mm, start, end);
4308 i_mmap_lock_write(vma->vm_file->f_mapping);
4309 for (; address < end; address += huge_page_size(h)) {
4310 spinlock_t *ptl;
4311 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4312 if (!ptep)
4313 continue;
4314 ptl = huge_pte_lock(h, mm, ptep);
4315 if (huge_pmd_unshare(mm, &address, ptep)) {
4316 pages++;
4317 spin_unlock(ptl);
4318 continue;
4319 }
4320 pte = huge_ptep_get(ptep);
4321 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4322 spin_unlock(ptl);
4323 continue;
4324 }
4325 if (unlikely(is_hugetlb_entry_migration(pte))) {
4326 swp_entry_t entry = pte_to_swp_entry(pte);
4327
4328 if (is_write_migration_entry(entry)) {
4329 pte_t newpte;
4330
4331 make_migration_entry_read(&entry);
4332 newpte = swp_entry_to_pte(entry);
4333 set_huge_swap_pte_at(mm, address, ptep,
4334 newpte, huge_page_size(h));
4335 pages++;
4336 }
4337 spin_unlock(ptl);
4338 continue;
4339 }
4340 if (!huge_pte_none(pte)) {
4341 pte = huge_ptep_get_and_clear(mm, address, ptep);
4342 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4343 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4344 set_huge_pte_at(mm, address, ptep, pte);
4345 pages++;
4346 }
4347 spin_unlock(ptl);
4348 }
4349 /*
4350 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4351 * may have cleared our pud entry and done put_page on the page table:
4352 * once we release i_mmap_rwsem, another task can do the final put_page
4353 * and that page table be reused and filled with junk.
4354 */
4355 flush_hugetlb_tlb_range(vma, start, end);
4356 /*
4357 * No need to call mmu_notifier_invalidate_range() we are downgrading
4358 * page table protection not changing it to point to a new page.
4359 *
4360 * See Documentation/vm/mmu_notifier.txt
4361 */
4362 i_mmap_unlock_write(vma->vm_file->f_mapping);
4363 mmu_notifier_invalidate_range_end(mm, start, end);
4364
4365 return pages << h->order;
4366}
4367
4368int hugetlb_reserve_pages(struct inode *inode,
4369 long from, long to,
4370 struct vm_area_struct *vma,
4371 vm_flags_t vm_flags)
4372{
4373 long ret, chg;
4374 struct hstate *h = hstate_inode(inode);
4375 struct hugepage_subpool *spool = subpool_inode(inode);
4376 struct resv_map *resv_map;
4377 long gbl_reserve;
4378
4379 /* This should never happen */
4380 if (from > to) {
4381 VM_WARN(1, "%s called with a negative range\n", __func__);
4382 return -EINVAL;
4383 }
4384
4385 /*
4386 * Only apply hugepage reservation if asked. At fault time, an
4387 * attempt will be made for VM_NORESERVE to allocate a page
4388 * without using reserves
4389 */
4390 if (vm_flags & VM_NORESERVE)
4391 return 0;
4392
4393 /*
4394 * Shared mappings base their reservation on the number of pages that
4395 * are already allocated on behalf of the file. Private mappings need
4396 * to reserve the full area even if read-only as mprotect() may be
4397 * called to make the mapping read-write. Assume !vma is a shm mapping
4398 */
4399 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4400 resv_map = inode_resv_map(inode);
4401
4402 chg = region_chg(resv_map, from, to);
4403
4404 } else {
4405 resv_map = resv_map_alloc();
4406 if (!resv_map)
4407 return -ENOMEM;
4408
4409 chg = to - from;
4410
4411 set_vma_resv_map(vma, resv_map);
4412 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4413 }
4414
4415 if (chg < 0) {
4416 ret = chg;
4417 goto out_err;
4418 }
4419
4420 /*
4421 * There must be enough pages in the subpool for the mapping. If
4422 * the subpool has a minimum size, there may be some global
4423 * reservations already in place (gbl_reserve).
4424 */
4425 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4426 if (gbl_reserve < 0) {
4427 ret = -ENOSPC;
4428 goto out_err;
4429 }
4430
4431 /*
4432 * Check enough hugepages are available for the reservation.
4433 * Hand the pages back to the subpool if there are not
4434 */
4435 ret = hugetlb_acct_memory(h, gbl_reserve);
4436 if (ret < 0) {
4437 /* put back original number of pages, chg */
4438 (void)hugepage_subpool_put_pages(spool, chg);
4439 goto out_err;
4440 }
4441
4442 /*
4443 * Account for the reservations made. Shared mappings record regions
4444 * that have reservations as they are shared by multiple VMAs.
4445 * When the last VMA disappears, the region map says how much
4446 * the reservation was and the page cache tells how much of
4447 * the reservation was consumed. Private mappings are per-VMA and
4448 * only the consumed reservations are tracked. When the VMA
4449 * disappears, the original reservation is the VMA size and the
4450 * consumed reservations are stored in the map. Hence, nothing
4451 * else has to be done for private mappings here
4452 */
4453 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4454 long add = region_add(resv_map, from, to);
4455
4456 if (unlikely(chg > add)) {
4457 /*
4458 * pages in this range were added to the reserve
4459 * map between region_chg and region_add. This
4460 * indicates a race with alloc_huge_page. Adjust
4461 * the subpool and reserve counts modified above
4462 * based on the difference.
4463 */
4464 long rsv_adjust;
4465
4466 rsv_adjust = hugepage_subpool_put_pages(spool,
4467 chg - add);
4468 hugetlb_acct_memory(h, -rsv_adjust);
4469 }
4470 }
4471 return 0;
4472out_err:
4473 if (!vma || vma->vm_flags & VM_MAYSHARE)
4474 /* Don't call region_abort if region_chg failed */
4475 if (chg >= 0)
4476 region_abort(resv_map, from, to);
4477 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4478 kref_put(&resv_map->refs, resv_map_release);
4479 return ret;
4480}
4481
4482long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4483 long freed)
4484{
4485 struct hstate *h = hstate_inode(inode);
4486 struct resv_map *resv_map = inode_resv_map(inode);
4487 long chg = 0;
4488 struct hugepage_subpool *spool = subpool_inode(inode);
4489 long gbl_reserve;
4490
4491 if (resv_map) {
4492 chg = region_del(resv_map, start, end);
4493 /*
4494 * region_del() can fail in the rare case where a region
4495 * must be split and another region descriptor can not be
4496 * allocated. If end == LONG_MAX, it will not fail.
4497 */
4498 if (chg < 0)
4499 return chg;
4500 }
4501
4502 spin_lock(&inode->i_lock);
4503 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4504 spin_unlock(&inode->i_lock);
4505
4506 /*
4507 * If the subpool has a minimum size, the number of global
4508 * reservations to be released may be adjusted.
4509 */
4510 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4511 hugetlb_acct_memory(h, -gbl_reserve);
4512
4513 return 0;
4514}
4515
4516#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4517static unsigned long page_table_shareable(struct vm_area_struct *svma,
4518 struct vm_area_struct *vma,
4519 unsigned long addr, pgoff_t idx)
4520{
4521 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4522 svma->vm_start;
4523 unsigned long sbase = saddr & PUD_MASK;
4524 unsigned long s_end = sbase + PUD_SIZE;
4525
4526 /* Allow segments to share if only one is marked locked */
4527 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4528 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4529
4530 /*
4531 * match the virtual addresses, permission and the alignment of the
4532 * page table page.
4533 */
4534 if (pmd_index(addr) != pmd_index(saddr) ||
4535 vm_flags != svm_flags ||
4536 sbase < svma->vm_start || svma->vm_end < s_end)
4537 return 0;
4538
4539 return saddr;
4540}
4541
4542static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4543{
4544 unsigned long base = addr & PUD_MASK;
4545 unsigned long end = base + PUD_SIZE;
4546
4547 /*
4548 * check on proper vm_flags and page table alignment
4549 */
4550 if (vma->vm_flags & VM_MAYSHARE &&
4551 vma->vm_start <= base && end <= vma->vm_end)
4552 return true;
4553 return false;
4554}
4555
4556/*
4557 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4558 * and returns the corresponding pte. While this is not necessary for the
4559 * !shared pmd case because we can allocate the pmd later as well, it makes the
4560 * code much cleaner. pmd allocation is essential for the shared case because
4561 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4562 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4563 * bad pmd for sharing.
4564 */
4565pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4566{
4567 struct vm_area_struct *vma = find_vma(mm, addr);
4568 struct address_space *mapping = vma->vm_file->f_mapping;
4569 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4570 vma->vm_pgoff;
4571 struct vm_area_struct *svma;
4572 unsigned long saddr;
4573 pte_t *spte = NULL;
4574 pte_t *pte;
4575 spinlock_t *ptl;
4576
4577 if (!vma_shareable(vma, addr))
4578 return (pte_t *)pmd_alloc(mm, pud, addr);
4579
4580 i_mmap_lock_write(mapping);
4581 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4582 if (svma == vma)
4583 continue;
4584
4585 saddr = page_table_shareable(svma, vma, addr, idx);
4586 if (saddr) {
4587 spte = huge_pte_offset(svma->vm_mm, saddr,
4588 vma_mmu_pagesize(svma));
4589 if (spte) {
4590 get_page(virt_to_page(spte));
4591 break;
4592 }
4593 }
4594 }
4595
4596 if (!spte)
4597 goto out;
4598
4599 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4600 if (pud_none(*pud)) {
4601 pud_populate(mm, pud,
4602 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4603 mm_inc_nr_pmds(mm);
4604 } else {
4605 put_page(virt_to_page(spte));
4606 }
4607 spin_unlock(ptl);
4608out:
4609 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4610 i_mmap_unlock_write(mapping);
4611 return pte;
4612}
4613
4614/*
4615 * unmap huge page backed by shared pte.
4616 *
4617 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4618 * indicated by page_count > 1, unmap is achieved by clearing pud and
4619 * decrementing the ref count. If count == 1, the pte page is not shared.
4620 *
4621 * called with page table lock held.
4622 *
4623 * returns: 1 successfully unmapped a shared pte page
4624 * 0 the underlying pte page is not shared, or it is the last user
4625 */
4626int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4627{
4628 pgd_t *pgd = pgd_offset(mm, *addr);
4629 p4d_t *p4d = p4d_offset(pgd, *addr);
4630 pud_t *pud = pud_offset(p4d, *addr);
4631
4632 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4633 if (page_count(virt_to_page(ptep)) == 1)
4634 return 0;
4635
4636 pud_clear(pud);
4637 put_page(virt_to_page(ptep));
4638 mm_dec_nr_pmds(mm);
4639 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4640 return 1;
4641}
4642#define want_pmd_share() (1)
4643#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4644pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4645{
4646 return NULL;
4647}
4648
4649int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4650{
4651 return 0;
4652}
4653#define want_pmd_share() (0)
4654#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4655
4656#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4657pte_t *huge_pte_alloc(struct mm_struct *mm,
4658 unsigned long addr, unsigned long sz)
4659{
4660 pgd_t *pgd;
4661 p4d_t *p4d;
4662 pud_t *pud;
4663 pte_t *pte = NULL;
4664
4665 pgd = pgd_offset(mm, addr);
4666 p4d = p4d_alloc(mm, pgd, addr);
4667 if (!p4d)
4668 return NULL;
4669 pud = pud_alloc(mm, p4d, addr);
4670 if (pud) {
4671 if (sz == PUD_SIZE) {
4672 pte = (pte_t *)pud;
4673 } else {
4674 BUG_ON(sz != PMD_SIZE);
4675 if (want_pmd_share() && pud_none(*pud))
4676 pte = huge_pmd_share(mm, addr, pud);
4677 else
4678 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4679 }
4680 }
4681 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4682
4683 return pte;
4684}
4685
4686/*
4687 * huge_pte_offset() - Walk the page table to resolve the hugepage
4688 * entry at address @addr
4689 *
4690 * Return: Pointer to page table or swap entry (PUD or PMD) for
4691 * address @addr, or NULL if a p*d_none() entry is encountered and the
4692 * size @sz doesn't match the hugepage size at this level of the page
4693 * table.
4694 */
4695pte_t *huge_pte_offset(struct mm_struct *mm,
4696 unsigned long addr, unsigned long sz)
4697{
4698 pgd_t *pgd;
4699 p4d_t *p4d;
4700 pud_t *pud;
4701 pmd_t *pmd;
4702
4703 pgd = pgd_offset(mm, addr);
4704 if (!pgd_present(*pgd))
4705 return NULL;
4706 p4d = p4d_offset(pgd, addr);
4707 if (!p4d_present(*p4d))
4708 return NULL;
4709
4710 pud = pud_offset(p4d, addr);
4711 if (sz != PUD_SIZE && pud_none(*pud))
4712 return NULL;
4713 /* hugepage or swap? */
4714 if (pud_huge(*pud) || !pud_present(*pud))
4715 return (pte_t *)pud;
4716
4717 pmd = pmd_offset(pud, addr);
4718 if (sz != PMD_SIZE && pmd_none(*pmd))
4719 return NULL;
4720 /* hugepage or swap? */
4721 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4722 return (pte_t *)pmd;
4723
4724 return NULL;
4725}
4726
4727#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4728
4729/*
4730 * These functions are overwritable if your architecture needs its own
4731 * behavior.
4732 */
4733struct page * __weak
4734follow_huge_addr(struct mm_struct *mm, unsigned long address,
4735 int write)
4736{
4737 return ERR_PTR(-EINVAL);
4738}
4739
4740struct page * __weak
4741follow_huge_pd(struct vm_area_struct *vma,
4742 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4743{
4744 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4745 return NULL;
4746}
4747
4748struct page * __weak
4749follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4750 pmd_t *pmd, int flags)
4751{
4752 struct page *page = NULL;
4753 spinlock_t *ptl;
4754 pte_t pte;
4755retry:
4756 ptl = pmd_lockptr(mm, pmd);
4757 spin_lock(ptl);
4758 /*
4759 * make sure that the address range covered by this pmd is not
4760 * unmapped from other threads.
4761 */
4762 if (!pmd_huge(*pmd))
4763 goto out;
4764 pte = huge_ptep_get((pte_t *)pmd);
4765 if (pte_present(pte)) {
4766 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4767 if (flags & FOLL_GET)
4768 get_page(page);
4769 } else {
4770 if (is_hugetlb_entry_migration(pte)) {
4771 spin_unlock(ptl);
4772 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4773 goto retry;
4774 }
4775 /*
4776 * hwpoisoned entry is treated as no_page_table in
4777 * follow_page_mask().
4778 */
4779 }
4780out:
4781 spin_unlock(ptl);
4782 return page;
4783}
4784
4785struct page * __weak
4786follow_huge_pud(struct mm_struct *mm, unsigned long address,
4787 pud_t *pud, int flags)
4788{
4789 if (flags & FOLL_GET)
4790 return NULL;
4791
4792 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4793}
4794
4795struct page * __weak
4796follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4797{
4798 if (flags & FOLL_GET)
4799 return NULL;
4800
4801 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4802}
4803
4804bool isolate_huge_page(struct page *page, struct list_head *list)
4805{
4806 bool ret = true;
4807
4808 VM_BUG_ON_PAGE(!PageHead(page), page);
4809 spin_lock(&hugetlb_lock);
4810 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4811 ret = false;
4812 goto unlock;
4813 }
4814 clear_page_huge_active(page);
4815 list_move_tail(&page->lru, list);
4816unlock:
4817 spin_unlock(&hugetlb_lock);
4818 return ret;
4819}
4820
4821void putback_active_hugepage(struct page *page)
4822{
4823 VM_BUG_ON_PAGE(!PageHead(page), page);
4824 spin_lock(&hugetlb_lock);
4825 set_page_huge_active(page);
4826 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4827 spin_unlock(&hugetlb_lock);
4828 put_page(page);
4829}
4830
4831void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4832{
4833 struct hstate *h = page_hstate(oldpage);
4834
4835 hugetlb_cgroup_migrate(oldpage, newpage);
4836 set_page_owner_migrate_reason(newpage, reason);
4837
4838 /*
4839 * transfer temporary state of the new huge page. This is
4840 * reverse to other transitions because the newpage is going to
4841 * be final while the old one will be freed so it takes over
4842 * the temporary status.
4843 *
4844 * Also note that we have to transfer the per-node surplus state
4845 * here as well otherwise the global surplus count will not match
4846 * the per-node's.
4847 */
4848 if (PageHugeTemporary(newpage)) {
4849 int old_nid = page_to_nid(oldpage);
4850 int new_nid = page_to_nid(newpage);
4851
4852 SetPageHugeTemporary(oldpage);
4853 ClearPageHugeTemporary(newpage);
4854
4855 spin_lock(&hugetlb_lock);
4856 if (h->surplus_huge_pages_node[old_nid]) {
4857 h->surplus_huge_pages_node[old_nid]--;
4858 h->surplus_huge_pages_node[new_nid]++;
4859 }
4860 spin_unlock(&hugetlb_lock);
4861 }
4862}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/memblock.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/sched/mm.h>
23#include <linux/mmdebug.h>
24#include <linux/sched/signal.h>
25#include <linux/rmap.h>
26#include <linux/string_helpers.h>
27#include <linux/swap.h>
28#include <linux/swapops.h>
29#include <linux/jhash.h>
30#include <linux/numa.h>
31#include <linux/llist.h>
32#include <linux/cma.h>
33#include <linux/migrate.h>
34#include <linux/nospec.h>
35#include <linux/delayacct.h>
36#include <linux/memory.h>
37
38#include <asm/page.h>
39#include <asm/pgalloc.h>
40#include <asm/tlb.h>
41
42#include <linux/io.h>
43#include <linux/hugetlb.h>
44#include <linux/hugetlb_cgroup.h>
45#include <linux/node.h>
46#include <linux/page_owner.h>
47#include "internal.h"
48#include "hugetlb_vmemmap.h"
49
50int hugetlb_max_hstate __read_mostly;
51unsigned int default_hstate_idx;
52struct hstate hstates[HUGE_MAX_HSTATE];
53
54#ifdef CONFIG_CMA
55static struct cma *hugetlb_cma[MAX_NUMNODES];
56static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58{
59 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60 1 << order);
61}
62#else
63static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64{
65 return false;
66}
67#endif
68static unsigned long hugetlb_cma_size __initdata;
69
70__initdata LIST_HEAD(huge_boot_pages);
71
72/* for command line parsing */
73static struct hstate * __initdata parsed_hstate;
74static unsigned long __initdata default_hstate_max_huge_pages;
75static bool __initdata parsed_valid_hugepagesz = true;
76static bool __initdata parsed_default_hugepagesz;
77static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79/*
80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81 * free_huge_pages, and surplus_huge_pages.
82 */
83DEFINE_SPINLOCK(hugetlb_lock);
84
85/*
86 * Serializes faults on the same logical page. This is used to
87 * prevent spurious OOMs when the hugepage pool is fully utilized.
88 */
89static int num_fault_mutexes;
90struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92/* Forward declaration */
93static int hugetlb_acct_memory(struct hstate *h, long delta);
94static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98 unsigned long start, unsigned long end);
99
100static inline bool subpool_is_free(struct hugepage_subpool *spool)
101{
102 if (spool->count)
103 return false;
104 if (spool->max_hpages != -1)
105 return spool->used_hpages == 0;
106 if (spool->min_hpages != -1)
107 return spool->rsv_hpages == spool->min_hpages;
108
109 return true;
110}
111
112static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 unsigned long irq_flags)
114{
115 spin_unlock_irqrestore(&spool->lock, irq_flags);
116
117 /* If no pages are used, and no other handles to the subpool
118 * remain, give up any reservations based on minimum size and
119 * free the subpool */
120 if (subpool_is_free(spool)) {
121 if (spool->min_hpages != -1)
122 hugetlb_acct_memory(spool->hstate,
123 -spool->min_hpages);
124 kfree(spool);
125 }
126}
127
128struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 long min_hpages)
130{
131 struct hugepage_subpool *spool;
132
133 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134 if (!spool)
135 return NULL;
136
137 spin_lock_init(&spool->lock);
138 spool->count = 1;
139 spool->max_hpages = max_hpages;
140 spool->hstate = h;
141 spool->min_hpages = min_hpages;
142
143 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144 kfree(spool);
145 return NULL;
146 }
147 spool->rsv_hpages = min_hpages;
148
149 return spool;
150}
151
152void hugepage_put_subpool(struct hugepage_subpool *spool)
153{
154 unsigned long flags;
155
156 spin_lock_irqsave(&spool->lock, flags);
157 BUG_ON(!spool->count);
158 spool->count--;
159 unlock_or_release_subpool(spool, flags);
160}
161
162/*
163 * Subpool accounting for allocating and reserving pages.
164 * Return -ENOMEM if there are not enough resources to satisfy the
165 * request. Otherwise, return the number of pages by which the
166 * global pools must be adjusted (upward). The returned value may
167 * only be different than the passed value (delta) in the case where
168 * a subpool minimum size must be maintained.
169 */
170static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171 long delta)
172{
173 long ret = delta;
174
175 if (!spool)
176 return ret;
177
178 spin_lock_irq(&spool->lock);
179
180 if (spool->max_hpages != -1) { /* maximum size accounting */
181 if ((spool->used_hpages + delta) <= spool->max_hpages)
182 spool->used_hpages += delta;
183 else {
184 ret = -ENOMEM;
185 goto unlock_ret;
186 }
187 }
188
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->rsv_hpages) {
191 if (delta > spool->rsv_hpages) {
192 /*
193 * Asking for more reserves than those already taken on
194 * behalf of subpool. Return difference.
195 */
196 ret = delta - spool->rsv_hpages;
197 spool->rsv_hpages = 0;
198 } else {
199 ret = 0; /* reserves already accounted for */
200 spool->rsv_hpages -= delta;
201 }
202 }
203
204unlock_ret:
205 spin_unlock_irq(&spool->lock);
206 return ret;
207}
208
209/*
210 * Subpool accounting for freeing and unreserving pages.
211 * Return the number of global page reservations that must be dropped.
212 * The return value may only be different than the passed value (delta)
213 * in the case where a subpool minimum size must be maintained.
214 */
215static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216 long delta)
217{
218 long ret = delta;
219 unsigned long flags;
220
221 if (!spool)
222 return delta;
223
224 spin_lock_irqsave(&spool->lock, flags);
225
226 if (spool->max_hpages != -1) /* maximum size accounting */
227 spool->used_hpages -= delta;
228
229 /* minimum size accounting */
230 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231 if (spool->rsv_hpages + delta <= spool->min_hpages)
232 ret = 0;
233 else
234 ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236 spool->rsv_hpages += delta;
237 if (spool->rsv_hpages > spool->min_hpages)
238 spool->rsv_hpages = spool->min_hpages;
239 }
240
241 /*
242 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 * quota reference, free it now.
244 */
245 unlock_or_release_subpool(spool, flags);
246
247 return ret;
248}
249
250static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251{
252 return HUGETLBFS_SB(inode->i_sb)->spool;
253}
254
255static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256{
257 return subpool_inode(file_inode(vma->vm_file));
258}
259
260/*
261 * hugetlb vma_lock helper routines
262 */
263static bool __vma_shareable_lock(struct vm_area_struct *vma)
264{
265 return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
266 vma->vm_private_data;
267}
268
269void hugetlb_vma_lock_read(struct vm_area_struct *vma)
270{
271 if (__vma_shareable_lock(vma)) {
272 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
273
274 down_read(&vma_lock->rw_sema);
275 }
276}
277
278void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279{
280 if (__vma_shareable_lock(vma)) {
281 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282
283 up_read(&vma_lock->rw_sema);
284 }
285}
286
287void hugetlb_vma_lock_write(struct vm_area_struct *vma)
288{
289 if (__vma_shareable_lock(vma)) {
290 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
291
292 down_write(&vma_lock->rw_sema);
293 }
294}
295
296void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
297{
298 if (__vma_shareable_lock(vma)) {
299 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
300
301 up_write(&vma_lock->rw_sema);
302 }
303}
304
305int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
306{
307 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308
309 if (!__vma_shareable_lock(vma))
310 return 1;
311
312 return down_write_trylock(&vma_lock->rw_sema);
313}
314
315void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
316{
317 if (__vma_shareable_lock(vma)) {
318 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
319
320 lockdep_assert_held(&vma_lock->rw_sema);
321 }
322}
323
324void hugetlb_vma_lock_release(struct kref *kref)
325{
326 struct hugetlb_vma_lock *vma_lock = container_of(kref,
327 struct hugetlb_vma_lock, refs);
328
329 kfree(vma_lock);
330}
331
332static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
333{
334 struct vm_area_struct *vma = vma_lock->vma;
335
336 /*
337 * vma_lock structure may or not be released as a result of put,
338 * it certainly will no longer be attached to vma so clear pointer.
339 * Semaphore synchronizes access to vma_lock->vma field.
340 */
341 vma_lock->vma = NULL;
342 vma->vm_private_data = NULL;
343 up_write(&vma_lock->rw_sema);
344 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
345}
346
347static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
348{
349 if (__vma_shareable_lock(vma)) {
350 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
351
352 __hugetlb_vma_unlock_write_put(vma_lock);
353 }
354}
355
356static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
357{
358 /*
359 * Only present in sharable vmas.
360 */
361 if (!vma || !__vma_shareable_lock(vma))
362 return;
363
364 if (vma->vm_private_data) {
365 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
366
367 down_write(&vma_lock->rw_sema);
368 __hugetlb_vma_unlock_write_put(vma_lock);
369 }
370}
371
372static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
373{
374 struct hugetlb_vma_lock *vma_lock;
375
376 /* Only establish in (flags) sharable vmas */
377 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
378 return;
379
380 /* Should never get here with non-NULL vm_private_data */
381 if (vma->vm_private_data)
382 return;
383
384 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
385 if (!vma_lock) {
386 /*
387 * If we can not allocate structure, then vma can not
388 * participate in pmd sharing. This is only a possible
389 * performance enhancement and memory saving issue.
390 * However, the lock is also used to synchronize page
391 * faults with truncation. If the lock is not present,
392 * unlikely races could leave pages in a file past i_size
393 * until the file is removed. Warn in the unlikely case of
394 * allocation failure.
395 */
396 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
397 return;
398 }
399
400 kref_init(&vma_lock->refs);
401 init_rwsem(&vma_lock->rw_sema);
402 vma_lock->vma = vma;
403 vma->vm_private_data = vma_lock;
404}
405
406/* Helper that removes a struct file_region from the resv_map cache and returns
407 * it for use.
408 */
409static struct file_region *
410get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
411{
412 struct file_region *nrg;
413
414 VM_BUG_ON(resv->region_cache_count <= 0);
415
416 resv->region_cache_count--;
417 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
418 list_del(&nrg->link);
419
420 nrg->from = from;
421 nrg->to = to;
422
423 return nrg;
424}
425
426static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
427 struct file_region *rg)
428{
429#ifdef CONFIG_CGROUP_HUGETLB
430 nrg->reservation_counter = rg->reservation_counter;
431 nrg->css = rg->css;
432 if (rg->css)
433 css_get(rg->css);
434#endif
435}
436
437/* Helper that records hugetlb_cgroup uncharge info. */
438static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
439 struct hstate *h,
440 struct resv_map *resv,
441 struct file_region *nrg)
442{
443#ifdef CONFIG_CGROUP_HUGETLB
444 if (h_cg) {
445 nrg->reservation_counter =
446 &h_cg->rsvd_hugepage[hstate_index(h)];
447 nrg->css = &h_cg->css;
448 /*
449 * The caller will hold exactly one h_cg->css reference for the
450 * whole contiguous reservation region. But this area might be
451 * scattered when there are already some file_regions reside in
452 * it. As a result, many file_regions may share only one css
453 * reference. In order to ensure that one file_region must hold
454 * exactly one h_cg->css reference, we should do css_get for
455 * each file_region and leave the reference held by caller
456 * untouched.
457 */
458 css_get(&h_cg->css);
459 if (!resv->pages_per_hpage)
460 resv->pages_per_hpage = pages_per_huge_page(h);
461 /* pages_per_hpage should be the same for all entries in
462 * a resv_map.
463 */
464 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
465 } else {
466 nrg->reservation_counter = NULL;
467 nrg->css = NULL;
468 }
469#endif
470}
471
472static void put_uncharge_info(struct file_region *rg)
473{
474#ifdef CONFIG_CGROUP_HUGETLB
475 if (rg->css)
476 css_put(rg->css);
477#endif
478}
479
480static bool has_same_uncharge_info(struct file_region *rg,
481 struct file_region *org)
482{
483#ifdef CONFIG_CGROUP_HUGETLB
484 return rg->reservation_counter == org->reservation_counter &&
485 rg->css == org->css;
486
487#else
488 return true;
489#endif
490}
491
492static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
493{
494 struct file_region *nrg, *prg;
495
496 prg = list_prev_entry(rg, link);
497 if (&prg->link != &resv->regions && prg->to == rg->from &&
498 has_same_uncharge_info(prg, rg)) {
499 prg->to = rg->to;
500
501 list_del(&rg->link);
502 put_uncharge_info(rg);
503 kfree(rg);
504
505 rg = prg;
506 }
507
508 nrg = list_next_entry(rg, link);
509 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
510 has_same_uncharge_info(nrg, rg)) {
511 nrg->from = rg->from;
512
513 list_del(&rg->link);
514 put_uncharge_info(rg);
515 kfree(rg);
516 }
517}
518
519static inline long
520hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
521 long to, struct hstate *h, struct hugetlb_cgroup *cg,
522 long *regions_needed)
523{
524 struct file_region *nrg;
525
526 if (!regions_needed) {
527 nrg = get_file_region_entry_from_cache(map, from, to);
528 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
529 list_add(&nrg->link, rg);
530 coalesce_file_region(map, nrg);
531 } else
532 *regions_needed += 1;
533
534 return to - from;
535}
536
537/*
538 * Must be called with resv->lock held.
539 *
540 * Calling this with regions_needed != NULL will count the number of pages
541 * to be added but will not modify the linked list. And regions_needed will
542 * indicate the number of file_regions needed in the cache to carry out to add
543 * the regions for this range.
544 */
545static long add_reservation_in_range(struct resv_map *resv, long f, long t,
546 struct hugetlb_cgroup *h_cg,
547 struct hstate *h, long *regions_needed)
548{
549 long add = 0;
550 struct list_head *head = &resv->regions;
551 long last_accounted_offset = f;
552 struct file_region *iter, *trg = NULL;
553 struct list_head *rg = NULL;
554
555 if (regions_needed)
556 *regions_needed = 0;
557
558 /* In this loop, we essentially handle an entry for the range
559 * [last_accounted_offset, iter->from), at every iteration, with some
560 * bounds checking.
561 */
562 list_for_each_entry_safe(iter, trg, head, link) {
563 /* Skip irrelevant regions that start before our range. */
564 if (iter->from < f) {
565 /* If this region ends after the last accounted offset,
566 * then we need to update last_accounted_offset.
567 */
568 if (iter->to > last_accounted_offset)
569 last_accounted_offset = iter->to;
570 continue;
571 }
572
573 /* When we find a region that starts beyond our range, we've
574 * finished.
575 */
576 if (iter->from >= t) {
577 rg = iter->link.prev;
578 break;
579 }
580
581 /* Add an entry for last_accounted_offset -> iter->from, and
582 * update last_accounted_offset.
583 */
584 if (iter->from > last_accounted_offset)
585 add += hugetlb_resv_map_add(resv, iter->link.prev,
586 last_accounted_offset,
587 iter->from, h, h_cg,
588 regions_needed);
589
590 last_accounted_offset = iter->to;
591 }
592
593 /* Handle the case where our range extends beyond
594 * last_accounted_offset.
595 */
596 if (!rg)
597 rg = head->prev;
598 if (last_accounted_offset < t)
599 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
600 t, h, h_cg, regions_needed);
601
602 return add;
603}
604
605/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
606 */
607static int allocate_file_region_entries(struct resv_map *resv,
608 int regions_needed)
609 __must_hold(&resv->lock)
610{
611 LIST_HEAD(allocated_regions);
612 int to_allocate = 0, i = 0;
613 struct file_region *trg = NULL, *rg = NULL;
614
615 VM_BUG_ON(regions_needed < 0);
616
617 /*
618 * Check for sufficient descriptors in the cache to accommodate
619 * the number of in progress add operations plus regions_needed.
620 *
621 * This is a while loop because when we drop the lock, some other call
622 * to region_add or region_del may have consumed some region_entries,
623 * so we keep looping here until we finally have enough entries for
624 * (adds_in_progress + regions_needed).
625 */
626 while (resv->region_cache_count <
627 (resv->adds_in_progress + regions_needed)) {
628 to_allocate = resv->adds_in_progress + regions_needed -
629 resv->region_cache_count;
630
631 /* At this point, we should have enough entries in the cache
632 * for all the existing adds_in_progress. We should only be
633 * needing to allocate for regions_needed.
634 */
635 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
636
637 spin_unlock(&resv->lock);
638 for (i = 0; i < to_allocate; i++) {
639 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
640 if (!trg)
641 goto out_of_memory;
642 list_add(&trg->link, &allocated_regions);
643 }
644
645 spin_lock(&resv->lock);
646
647 list_splice(&allocated_regions, &resv->region_cache);
648 resv->region_cache_count += to_allocate;
649 }
650
651 return 0;
652
653out_of_memory:
654 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
655 list_del(&rg->link);
656 kfree(rg);
657 }
658 return -ENOMEM;
659}
660
661/*
662 * Add the huge page range represented by [f, t) to the reserve
663 * map. Regions will be taken from the cache to fill in this range.
664 * Sufficient regions should exist in the cache due to the previous
665 * call to region_chg with the same range, but in some cases the cache will not
666 * have sufficient entries due to races with other code doing region_add or
667 * region_del. The extra needed entries will be allocated.
668 *
669 * regions_needed is the out value provided by a previous call to region_chg.
670 *
671 * Return the number of new huge pages added to the map. This number is greater
672 * than or equal to zero. If file_region entries needed to be allocated for
673 * this operation and we were not able to allocate, it returns -ENOMEM.
674 * region_add of regions of length 1 never allocate file_regions and cannot
675 * fail; region_chg will always allocate at least 1 entry and a region_add for
676 * 1 page will only require at most 1 entry.
677 */
678static long region_add(struct resv_map *resv, long f, long t,
679 long in_regions_needed, struct hstate *h,
680 struct hugetlb_cgroup *h_cg)
681{
682 long add = 0, actual_regions_needed = 0;
683
684 spin_lock(&resv->lock);
685retry:
686
687 /* Count how many regions are actually needed to execute this add. */
688 add_reservation_in_range(resv, f, t, NULL, NULL,
689 &actual_regions_needed);
690
691 /*
692 * Check for sufficient descriptors in the cache to accommodate
693 * this add operation. Note that actual_regions_needed may be greater
694 * than in_regions_needed, as the resv_map may have been modified since
695 * the region_chg call. In this case, we need to make sure that we
696 * allocate extra entries, such that we have enough for all the
697 * existing adds_in_progress, plus the excess needed for this
698 * operation.
699 */
700 if (actual_regions_needed > in_regions_needed &&
701 resv->region_cache_count <
702 resv->adds_in_progress +
703 (actual_regions_needed - in_regions_needed)) {
704 /* region_add operation of range 1 should never need to
705 * allocate file_region entries.
706 */
707 VM_BUG_ON(t - f <= 1);
708
709 if (allocate_file_region_entries(
710 resv, actual_regions_needed - in_regions_needed)) {
711 return -ENOMEM;
712 }
713
714 goto retry;
715 }
716
717 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
718
719 resv->adds_in_progress -= in_regions_needed;
720
721 spin_unlock(&resv->lock);
722 return add;
723}
724
725/*
726 * Examine the existing reserve map and determine how many
727 * huge pages in the specified range [f, t) are NOT currently
728 * represented. This routine is called before a subsequent
729 * call to region_add that will actually modify the reserve
730 * map to add the specified range [f, t). region_chg does
731 * not change the number of huge pages represented by the
732 * map. A number of new file_region structures is added to the cache as a
733 * placeholder, for the subsequent region_add call to use. At least 1
734 * file_region structure is added.
735 *
736 * out_regions_needed is the number of regions added to the
737 * resv->adds_in_progress. This value needs to be provided to a follow up call
738 * to region_add or region_abort for proper accounting.
739 *
740 * Returns the number of huge pages that need to be added to the existing
741 * reservation map for the range [f, t). This number is greater or equal to
742 * zero. -ENOMEM is returned if a new file_region structure or cache entry
743 * is needed and can not be allocated.
744 */
745static long region_chg(struct resv_map *resv, long f, long t,
746 long *out_regions_needed)
747{
748 long chg = 0;
749
750 spin_lock(&resv->lock);
751
752 /* Count how many hugepages in this range are NOT represented. */
753 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
754 out_regions_needed);
755
756 if (*out_regions_needed == 0)
757 *out_regions_needed = 1;
758
759 if (allocate_file_region_entries(resv, *out_regions_needed))
760 return -ENOMEM;
761
762 resv->adds_in_progress += *out_regions_needed;
763
764 spin_unlock(&resv->lock);
765 return chg;
766}
767
768/*
769 * Abort the in progress add operation. The adds_in_progress field
770 * of the resv_map keeps track of the operations in progress between
771 * calls to region_chg and region_add. Operations are sometimes
772 * aborted after the call to region_chg. In such cases, region_abort
773 * is called to decrement the adds_in_progress counter. regions_needed
774 * is the value returned by the region_chg call, it is used to decrement
775 * the adds_in_progress counter.
776 *
777 * NOTE: The range arguments [f, t) are not needed or used in this
778 * routine. They are kept to make reading the calling code easier as
779 * arguments will match the associated region_chg call.
780 */
781static void region_abort(struct resv_map *resv, long f, long t,
782 long regions_needed)
783{
784 spin_lock(&resv->lock);
785 VM_BUG_ON(!resv->region_cache_count);
786 resv->adds_in_progress -= regions_needed;
787 spin_unlock(&resv->lock);
788}
789
790/*
791 * Delete the specified range [f, t) from the reserve map. If the
792 * t parameter is LONG_MAX, this indicates that ALL regions after f
793 * should be deleted. Locate the regions which intersect [f, t)
794 * and either trim, delete or split the existing regions.
795 *
796 * Returns the number of huge pages deleted from the reserve map.
797 * In the normal case, the return value is zero or more. In the
798 * case where a region must be split, a new region descriptor must
799 * be allocated. If the allocation fails, -ENOMEM will be returned.
800 * NOTE: If the parameter t == LONG_MAX, then we will never split
801 * a region and possibly return -ENOMEM. Callers specifying
802 * t == LONG_MAX do not need to check for -ENOMEM error.
803 */
804static long region_del(struct resv_map *resv, long f, long t)
805{
806 struct list_head *head = &resv->regions;
807 struct file_region *rg, *trg;
808 struct file_region *nrg = NULL;
809 long del = 0;
810
811retry:
812 spin_lock(&resv->lock);
813 list_for_each_entry_safe(rg, trg, head, link) {
814 /*
815 * Skip regions before the range to be deleted. file_region
816 * ranges are normally of the form [from, to). However, there
817 * may be a "placeholder" entry in the map which is of the form
818 * (from, to) with from == to. Check for placeholder entries
819 * at the beginning of the range to be deleted.
820 */
821 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
822 continue;
823
824 if (rg->from >= t)
825 break;
826
827 if (f > rg->from && t < rg->to) { /* Must split region */
828 /*
829 * Check for an entry in the cache before dropping
830 * lock and attempting allocation.
831 */
832 if (!nrg &&
833 resv->region_cache_count > resv->adds_in_progress) {
834 nrg = list_first_entry(&resv->region_cache,
835 struct file_region,
836 link);
837 list_del(&nrg->link);
838 resv->region_cache_count--;
839 }
840
841 if (!nrg) {
842 spin_unlock(&resv->lock);
843 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
844 if (!nrg)
845 return -ENOMEM;
846 goto retry;
847 }
848
849 del += t - f;
850 hugetlb_cgroup_uncharge_file_region(
851 resv, rg, t - f, false);
852
853 /* New entry for end of split region */
854 nrg->from = t;
855 nrg->to = rg->to;
856
857 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
858
859 INIT_LIST_HEAD(&nrg->link);
860
861 /* Original entry is trimmed */
862 rg->to = f;
863
864 list_add(&nrg->link, &rg->link);
865 nrg = NULL;
866 break;
867 }
868
869 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
870 del += rg->to - rg->from;
871 hugetlb_cgroup_uncharge_file_region(resv, rg,
872 rg->to - rg->from, true);
873 list_del(&rg->link);
874 kfree(rg);
875 continue;
876 }
877
878 if (f <= rg->from) { /* Trim beginning of region */
879 hugetlb_cgroup_uncharge_file_region(resv, rg,
880 t - rg->from, false);
881
882 del += t - rg->from;
883 rg->from = t;
884 } else { /* Trim end of region */
885 hugetlb_cgroup_uncharge_file_region(resv, rg,
886 rg->to - f, false);
887
888 del += rg->to - f;
889 rg->to = f;
890 }
891 }
892
893 spin_unlock(&resv->lock);
894 kfree(nrg);
895 return del;
896}
897
898/*
899 * A rare out of memory error was encountered which prevented removal of
900 * the reserve map region for a page. The huge page itself was free'ed
901 * and removed from the page cache. This routine will adjust the subpool
902 * usage count, and the global reserve count if needed. By incrementing
903 * these counts, the reserve map entry which could not be deleted will
904 * appear as a "reserved" entry instead of simply dangling with incorrect
905 * counts.
906 */
907void hugetlb_fix_reserve_counts(struct inode *inode)
908{
909 struct hugepage_subpool *spool = subpool_inode(inode);
910 long rsv_adjust;
911 bool reserved = false;
912
913 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
914 if (rsv_adjust > 0) {
915 struct hstate *h = hstate_inode(inode);
916
917 if (!hugetlb_acct_memory(h, 1))
918 reserved = true;
919 } else if (!rsv_adjust) {
920 reserved = true;
921 }
922
923 if (!reserved)
924 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
925}
926
927/*
928 * Count and return the number of huge pages in the reserve map
929 * that intersect with the range [f, t).
930 */
931static long region_count(struct resv_map *resv, long f, long t)
932{
933 struct list_head *head = &resv->regions;
934 struct file_region *rg;
935 long chg = 0;
936
937 spin_lock(&resv->lock);
938 /* Locate each segment we overlap with, and count that overlap. */
939 list_for_each_entry(rg, head, link) {
940 long seg_from;
941 long seg_to;
942
943 if (rg->to <= f)
944 continue;
945 if (rg->from >= t)
946 break;
947
948 seg_from = max(rg->from, f);
949 seg_to = min(rg->to, t);
950
951 chg += seg_to - seg_from;
952 }
953 spin_unlock(&resv->lock);
954
955 return chg;
956}
957
958/*
959 * Convert the address within this vma to the page offset within
960 * the mapping, in pagecache page units; huge pages here.
961 */
962static pgoff_t vma_hugecache_offset(struct hstate *h,
963 struct vm_area_struct *vma, unsigned long address)
964{
965 return ((address - vma->vm_start) >> huge_page_shift(h)) +
966 (vma->vm_pgoff >> huge_page_order(h));
967}
968
969pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
970 unsigned long address)
971{
972 return vma_hugecache_offset(hstate_vma(vma), vma, address);
973}
974EXPORT_SYMBOL_GPL(linear_hugepage_index);
975
976/*
977 * Return the size of the pages allocated when backing a VMA. In the majority
978 * cases this will be same size as used by the page table entries.
979 */
980unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
981{
982 if (vma->vm_ops && vma->vm_ops->pagesize)
983 return vma->vm_ops->pagesize(vma);
984 return PAGE_SIZE;
985}
986EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
987
988/*
989 * Return the page size being used by the MMU to back a VMA. In the majority
990 * of cases, the page size used by the kernel matches the MMU size. On
991 * architectures where it differs, an architecture-specific 'strong'
992 * version of this symbol is required.
993 */
994__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
995{
996 return vma_kernel_pagesize(vma);
997}
998
999/*
1000 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1001 * bits of the reservation map pointer, which are always clear due to
1002 * alignment.
1003 */
1004#define HPAGE_RESV_OWNER (1UL << 0)
1005#define HPAGE_RESV_UNMAPPED (1UL << 1)
1006#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1007
1008/*
1009 * These helpers are used to track how many pages are reserved for
1010 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1011 * is guaranteed to have their future faults succeed.
1012 *
1013 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1014 * the reserve counters are updated with the hugetlb_lock held. It is safe
1015 * to reset the VMA at fork() time as it is not in use yet and there is no
1016 * chance of the global counters getting corrupted as a result of the values.
1017 *
1018 * The private mapping reservation is represented in a subtly different
1019 * manner to a shared mapping. A shared mapping has a region map associated
1020 * with the underlying file, this region map represents the backing file
1021 * pages which have ever had a reservation assigned which this persists even
1022 * after the page is instantiated. A private mapping has a region map
1023 * associated with the original mmap which is attached to all VMAs which
1024 * reference it, this region map represents those offsets which have consumed
1025 * reservation ie. where pages have been instantiated.
1026 */
1027static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1028{
1029 return (unsigned long)vma->vm_private_data;
1030}
1031
1032static void set_vma_private_data(struct vm_area_struct *vma,
1033 unsigned long value)
1034{
1035 vma->vm_private_data = (void *)value;
1036}
1037
1038static void
1039resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1040 struct hugetlb_cgroup *h_cg,
1041 struct hstate *h)
1042{
1043#ifdef CONFIG_CGROUP_HUGETLB
1044 if (!h_cg || !h) {
1045 resv_map->reservation_counter = NULL;
1046 resv_map->pages_per_hpage = 0;
1047 resv_map->css = NULL;
1048 } else {
1049 resv_map->reservation_counter =
1050 &h_cg->rsvd_hugepage[hstate_index(h)];
1051 resv_map->pages_per_hpage = pages_per_huge_page(h);
1052 resv_map->css = &h_cg->css;
1053 }
1054#endif
1055}
1056
1057struct resv_map *resv_map_alloc(void)
1058{
1059 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1060 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1061
1062 if (!resv_map || !rg) {
1063 kfree(resv_map);
1064 kfree(rg);
1065 return NULL;
1066 }
1067
1068 kref_init(&resv_map->refs);
1069 spin_lock_init(&resv_map->lock);
1070 INIT_LIST_HEAD(&resv_map->regions);
1071
1072 resv_map->adds_in_progress = 0;
1073 /*
1074 * Initialize these to 0. On shared mappings, 0's here indicate these
1075 * fields don't do cgroup accounting. On private mappings, these will be
1076 * re-initialized to the proper values, to indicate that hugetlb cgroup
1077 * reservations are to be un-charged from here.
1078 */
1079 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1080
1081 INIT_LIST_HEAD(&resv_map->region_cache);
1082 list_add(&rg->link, &resv_map->region_cache);
1083 resv_map->region_cache_count = 1;
1084
1085 return resv_map;
1086}
1087
1088void resv_map_release(struct kref *ref)
1089{
1090 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1091 struct list_head *head = &resv_map->region_cache;
1092 struct file_region *rg, *trg;
1093
1094 /* Clear out any active regions before we release the map. */
1095 region_del(resv_map, 0, LONG_MAX);
1096
1097 /* ... and any entries left in the cache */
1098 list_for_each_entry_safe(rg, trg, head, link) {
1099 list_del(&rg->link);
1100 kfree(rg);
1101 }
1102
1103 VM_BUG_ON(resv_map->adds_in_progress);
1104
1105 kfree(resv_map);
1106}
1107
1108static inline struct resv_map *inode_resv_map(struct inode *inode)
1109{
1110 /*
1111 * At inode evict time, i_mapping may not point to the original
1112 * address space within the inode. This original address space
1113 * contains the pointer to the resv_map. So, always use the
1114 * address space embedded within the inode.
1115 * The VERY common case is inode->mapping == &inode->i_data but,
1116 * this may not be true for device special inodes.
1117 */
1118 return (struct resv_map *)(&inode->i_data)->private_data;
1119}
1120
1121static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1122{
1123 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1124 if (vma->vm_flags & VM_MAYSHARE) {
1125 struct address_space *mapping = vma->vm_file->f_mapping;
1126 struct inode *inode = mapping->host;
1127
1128 return inode_resv_map(inode);
1129
1130 } else {
1131 return (struct resv_map *)(get_vma_private_data(vma) &
1132 ~HPAGE_RESV_MASK);
1133 }
1134}
1135
1136static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1137{
1138 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1139 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1140
1141 set_vma_private_data(vma, (get_vma_private_data(vma) &
1142 HPAGE_RESV_MASK) | (unsigned long)map);
1143}
1144
1145static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1146{
1147 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1148 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1149
1150 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1151}
1152
1153static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1154{
1155 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1156
1157 return (get_vma_private_data(vma) & flag) != 0;
1158}
1159
1160void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1161{
1162 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1163 /*
1164 * Clear vm_private_data
1165 * - For shared mappings this is a per-vma semaphore that may be
1166 * allocated in a subsequent call to hugetlb_vm_op_open.
1167 * Before clearing, make sure pointer is not associated with vma
1168 * as this will leak the structure. This is the case when called
1169 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1170 * been called to allocate a new structure.
1171 * - For MAP_PRIVATE mappings, this is the reserve map which does
1172 * not apply to children. Faults generated by the children are
1173 * not guaranteed to succeed, even if read-only.
1174 */
1175 if (vma->vm_flags & VM_MAYSHARE) {
1176 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1177
1178 if (vma_lock && vma_lock->vma != vma)
1179 vma->vm_private_data = NULL;
1180 } else
1181 vma->vm_private_data = NULL;
1182}
1183
1184/*
1185 * Reset and decrement one ref on hugepage private reservation.
1186 * Called with mm->mmap_lock writer semaphore held.
1187 * This function should be only used by move_vma() and operate on
1188 * same sized vma. It should never come here with last ref on the
1189 * reservation.
1190 */
1191void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1192{
1193 /*
1194 * Clear the old hugetlb private page reservation.
1195 * It has already been transferred to new_vma.
1196 *
1197 * During a mremap() operation of a hugetlb vma we call move_vma()
1198 * which copies vma into new_vma and unmaps vma. After the copy
1199 * operation both new_vma and vma share a reference to the resv_map
1200 * struct, and at that point vma is about to be unmapped. We don't
1201 * want to return the reservation to the pool at unmap of vma because
1202 * the reservation still lives on in new_vma, so simply decrement the
1203 * ref here and remove the resv_map reference from this vma.
1204 */
1205 struct resv_map *reservations = vma_resv_map(vma);
1206
1207 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1208 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1209 kref_put(&reservations->refs, resv_map_release);
1210 }
1211
1212 hugetlb_dup_vma_private(vma);
1213}
1214
1215/* Returns true if the VMA has associated reserve pages */
1216static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1217{
1218 if (vma->vm_flags & VM_NORESERVE) {
1219 /*
1220 * This address is already reserved by other process(chg == 0),
1221 * so, we should decrement reserved count. Without decrementing,
1222 * reserve count remains after releasing inode, because this
1223 * allocated page will go into page cache and is regarded as
1224 * coming from reserved pool in releasing step. Currently, we
1225 * don't have any other solution to deal with this situation
1226 * properly, so add work-around here.
1227 */
1228 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1229 return true;
1230 else
1231 return false;
1232 }
1233
1234 /* Shared mappings always use reserves */
1235 if (vma->vm_flags & VM_MAYSHARE) {
1236 /*
1237 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1238 * be a region map for all pages. The only situation where
1239 * there is no region map is if a hole was punched via
1240 * fallocate. In this case, there really are no reserves to
1241 * use. This situation is indicated if chg != 0.
1242 */
1243 if (chg)
1244 return false;
1245 else
1246 return true;
1247 }
1248
1249 /*
1250 * Only the process that called mmap() has reserves for
1251 * private mappings.
1252 */
1253 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1254 /*
1255 * Like the shared case above, a hole punch or truncate
1256 * could have been performed on the private mapping.
1257 * Examine the value of chg to determine if reserves
1258 * actually exist or were previously consumed.
1259 * Very Subtle - The value of chg comes from a previous
1260 * call to vma_needs_reserves(). The reserve map for
1261 * private mappings has different (opposite) semantics
1262 * than that of shared mappings. vma_needs_reserves()
1263 * has already taken this difference in semantics into
1264 * account. Therefore, the meaning of chg is the same
1265 * as in the shared case above. Code could easily be
1266 * combined, but keeping it separate draws attention to
1267 * subtle differences.
1268 */
1269 if (chg)
1270 return false;
1271 else
1272 return true;
1273 }
1274
1275 return false;
1276}
1277
1278static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1279{
1280 int nid = folio_nid(folio);
1281
1282 lockdep_assert_held(&hugetlb_lock);
1283 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1284
1285 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1286 h->free_huge_pages++;
1287 h->free_huge_pages_node[nid]++;
1288 folio_set_hugetlb_freed(folio);
1289}
1290
1291static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1292{
1293 struct page *page;
1294 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1295
1296 lockdep_assert_held(&hugetlb_lock);
1297 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1298 if (pin && !is_longterm_pinnable_page(page))
1299 continue;
1300
1301 if (PageHWPoison(page))
1302 continue;
1303
1304 list_move(&page->lru, &h->hugepage_activelist);
1305 set_page_refcounted(page);
1306 ClearHPageFreed(page);
1307 h->free_huge_pages--;
1308 h->free_huge_pages_node[nid]--;
1309 return page;
1310 }
1311
1312 return NULL;
1313}
1314
1315static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1316 nodemask_t *nmask)
1317{
1318 unsigned int cpuset_mems_cookie;
1319 struct zonelist *zonelist;
1320 struct zone *zone;
1321 struct zoneref *z;
1322 int node = NUMA_NO_NODE;
1323
1324 zonelist = node_zonelist(nid, gfp_mask);
1325
1326retry_cpuset:
1327 cpuset_mems_cookie = read_mems_allowed_begin();
1328 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1329 struct page *page;
1330
1331 if (!cpuset_zone_allowed(zone, gfp_mask))
1332 continue;
1333 /*
1334 * no need to ask again on the same node. Pool is node rather than
1335 * zone aware
1336 */
1337 if (zone_to_nid(zone) == node)
1338 continue;
1339 node = zone_to_nid(zone);
1340
1341 page = dequeue_huge_page_node_exact(h, node);
1342 if (page)
1343 return page;
1344 }
1345 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1346 goto retry_cpuset;
1347
1348 return NULL;
1349}
1350
1351static unsigned long available_huge_pages(struct hstate *h)
1352{
1353 return h->free_huge_pages - h->resv_huge_pages;
1354}
1355
1356static struct page *dequeue_huge_page_vma(struct hstate *h,
1357 struct vm_area_struct *vma,
1358 unsigned long address, int avoid_reserve,
1359 long chg)
1360{
1361 struct page *page = NULL;
1362 struct mempolicy *mpol;
1363 gfp_t gfp_mask;
1364 nodemask_t *nodemask;
1365 int nid;
1366
1367 /*
1368 * A child process with MAP_PRIVATE mappings created by their parent
1369 * have no page reserves. This check ensures that reservations are
1370 * not "stolen". The child may still get SIGKILLed
1371 */
1372 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1373 goto err;
1374
1375 /* If reserves cannot be used, ensure enough pages are in the pool */
1376 if (avoid_reserve && !available_huge_pages(h))
1377 goto err;
1378
1379 gfp_mask = htlb_alloc_mask(h);
1380 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1381
1382 if (mpol_is_preferred_many(mpol)) {
1383 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1384
1385 /* Fallback to all nodes if page==NULL */
1386 nodemask = NULL;
1387 }
1388
1389 if (!page)
1390 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1391
1392 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1393 SetHPageRestoreReserve(page);
1394 h->resv_huge_pages--;
1395 }
1396
1397 mpol_cond_put(mpol);
1398 return page;
1399
1400err:
1401 return NULL;
1402}
1403
1404/*
1405 * common helper functions for hstate_next_node_to_{alloc|free}.
1406 * We may have allocated or freed a huge page based on a different
1407 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1408 * be outside of *nodes_allowed. Ensure that we use an allowed
1409 * node for alloc or free.
1410 */
1411static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1412{
1413 nid = next_node_in(nid, *nodes_allowed);
1414 VM_BUG_ON(nid >= MAX_NUMNODES);
1415
1416 return nid;
1417}
1418
1419static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1420{
1421 if (!node_isset(nid, *nodes_allowed))
1422 nid = next_node_allowed(nid, nodes_allowed);
1423 return nid;
1424}
1425
1426/*
1427 * returns the previously saved node ["this node"] from which to
1428 * allocate a persistent huge page for the pool and advance the
1429 * next node from which to allocate, handling wrap at end of node
1430 * mask.
1431 */
1432static int hstate_next_node_to_alloc(struct hstate *h,
1433 nodemask_t *nodes_allowed)
1434{
1435 int nid;
1436
1437 VM_BUG_ON(!nodes_allowed);
1438
1439 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1440 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1441
1442 return nid;
1443}
1444
1445/*
1446 * helper for remove_pool_huge_page() - return the previously saved
1447 * node ["this node"] from which to free a huge page. Advance the
1448 * next node id whether or not we find a free huge page to free so
1449 * that the next attempt to free addresses the next node.
1450 */
1451static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1452{
1453 int nid;
1454
1455 VM_BUG_ON(!nodes_allowed);
1456
1457 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1458 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1459
1460 return nid;
1461}
1462
1463#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1464 for (nr_nodes = nodes_weight(*mask); \
1465 nr_nodes > 0 && \
1466 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1467 nr_nodes--)
1468
1469#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1470 for (nr_nodes = nodes_weight(*mask); \
1471 nr_nodes > 0 && \
1472 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1473 nr_nodes--)
1474
1475/* used to demote non-gigantic_huge pages as well */
1476static void __destroy_compound_gigantic_folio(struct folio *folio,
1477 unsigned int order, bool demote)
1478{
1479 int i;
1480 int nr_pages = 1 << order;
1481 struct page *p;
1482
1483 atomic_set(folio_mapcount_ptr(folio), 0);
1484 atomic_set(folio_subpages_mapcount_ptr(folio), 0);
1485 atomic_set(folio_pincount_ptr(folio), 0);
1486
1487 for (i = 1; i < nr_pages; i++) {
1488 p = folio_page(folio, i);
1489 p->mapping = NULL;
1490 clear_compound_head(p);
1491 if (!demote)
1492 set_page_refcounted(p);
1493 }
1494
1495 folio_set_compound_order(folio, 0);
1496 __folio_clear_head(folio);
1497}
1498
1499static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1500 unsigned int order)
1501{
1502 __destroy_compound_gigantic_folio(folio, order, true);
1503}
1504
1505#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1506static void destroy_compound_gigantic_folio(struct folio *folio,
1507 unsigned int order)
1508{
1509 __destroy_compound_gigantic_folio(folio, order, false);
1510}
1511
1512static void free_gigantic_folio(struct folio *folio, unsigned int order)
1513{
1514 /*
1515 * If the page isn't allocated using the cma allocator,
1516 * cma_release() returns false.
1517 */
1518#ifdef CONFIG_CMA
1519 int nid = folio_nid(folio);
1520
1521 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1522 return;
1523#endif
1524
1525 free_contig_range(folio_pfn(folio), 1 << order);
1526}
1527
1528#ifdef CONFIG_CONTIG_ALLOC
1529static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1530 int nid, nodemask_t *nodemask)
1531{
1532 struct page *page;
1533 unsigned long nr_pages = pages_per_huge_page(h);
1534 if (nid == NUMA_NO_NODE)
1535 nid = numa_mem_id();
1536
1537#ifdef CONFIG_CMA
1538 {
1539 int node;
1540
1541 if (hugetlb_cma[nid]) {
1542 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1543 huge_page_order(h), true);
1544 if (page)
1545 return page_folio(page);
1546 }
1547
1548 if (!(gfp_mask & __GFP_THISNODE)) {
1549 for_each_node_mask(node, *nodemask) {
1550 if (node == nid || !hugetlb_cma[node])
1551 continue;
1552
1553 page = cma_alloc(hugetlb_cma[node], nr_pages,
1554 huge_page_order(h), true);
1555 if (page)
1556 return page_folio(page);
1557 }
1558 }
1559 }
1560#endif
1561
1562 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1563 return page ? page_folio(page) : NULL;
1564}
1565
1566#else /* !CONFIG_CONTIG_ALLOC */
1567static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1568 int nid, nodemask_t *nodemask)
1569{
1570 return NULL;
1571}
1572#endif /* CONFIG_CONTIG_ALLOC */
1573
1574#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1575static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1576 int nid, nodemask_t *nodemask)
1577{
1578 return NULL;
1579}
1580static inline void free_gigantic_folio(struct folio *folio,
1581 unsigned int order) { }
1582static inline void destroy_compound_gigantic_folio(struct folio *folio,
1583 unsigned int order) { }
1584#endif
1585
1586/*
1587 * Remove hugetlb folio from lists, and update dtor so that the folio appears
1588 * as just a compound page.
1589 *
1590 * A reference is held on the folio, except in the case of demote.
1591 *
1592 * Must be called with hugetlb lock held.
1593 */
1594static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1595 bool adjust_surplus,
1596 bool demote)
1597{
1598 int nid = folio_nid(folio);
1599
1600 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1601 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1602
1603 lockdep_assert_held(&hugetlb_lock);
1604 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1605 return;
1606
1607 list_del(&folio->lru);
1608
1609 if (folio_test_hugetlb_freed(folio)) {
1610 h->free_huge_pages--;
1611 h->free_huge_pages_node[nid]--;
1612 }
1613 if (adjust_surplus) {
1614 h->surplus_huge_pages--;
1615 h->surplus_huge_pages_node[nid]--;
1616 }
1617
1618 /*
1619 * Very subtle
1620 *
1621 * For non-gigantic pages set the destructor to the normal compound
1622 * page dtor. This is needed in case someone takes an additional
1623 * temporary ref to the page, and freeing is delayed until they drop
1624 * their reference.
1625 *
1626 * For gigantic pages set the destructor to the null dtor. This
1627 * destructor will never be called. Before freeing the gigantic
1628 * page destroy_compound_gigantic_folio will turn the folio into a
1629 * simple group of pages. After this the destructor does not
1630 * apply.
1631 *
1632 * This handles the case where more than one ref is held when and
1633 * after update_and_free_hugetlb_folio is called.
1634 *
1635 * In the case of demote we do not ref count the page as it will soon
1636 * be turned into a page of smaller size.
1637 */
1638 if (!demote)
1639 folio_ref_unfreeze(folio, 1);
1640 if (hstate_is_gigantic(h))
1641 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1642 else
1643 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1644
1645 h->nr_huge_pages--;
1646 h->nr_huge_pages_node[nid]--;
1647}
1648
1649static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1650 bool adjust_surplus)
1651{
1652 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1653}
1654
1655static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1656 bool adjust_surplus)
1657{
1658 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1659}
1660
1661static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1662 bool adjust_surplus)
1663{
1664 int zeroed;
1665 int nid = folio_nid(folio);
1666
1667 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1668
1669 lockdep_assert_held(&hugetlb_lock);
1670
1671 INIT_LIST_HEAD(&folio->lru);
1672 h->nr_huge_pages++;
1673 h->nr_huge_pages_node[nid]++;
1674
1675 if (adjust_surplus) {
1676 h->surplus_huge_pages++;
1677 h->surplus_huge_pages_node[nid]++;
1678 }
1679
1680 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1681 folio_change_private(folio, NULL);
1682 /*
1683 * We have to set hugetlb_vmemmap_optimized again as above
1684 * folio_change_private(folio, NULL) cleared it.
1685 */
1686 folio_set_hugetlb_vmemmap_optimized(folio);
1687
1688 /*
1689 * This folio is about to be managed by the hugetlb allocator and
1690 * should have no users. Drop our reference, and check for others
1691 * just in case.
1692 */
1693 zeroed = folio_put_testzero(folio);
1694 if (unlikely(!zeroed))
1695 /*
1696 * It is VERY unlikely soneone else has taken a ref on
1697 * the page. In this case, we simply return as the
1698 * hugetlb destructor (free_huge_page) will be called
1699 * when this other ref is dropped.
1700 */
1701 return;
1702
1703 arch_clear_hugepage_flags(&folio->page);
1704 enqueue_hugetlb_folio(h, folio);
1705}
1706
1707static void __update_and_free_page(struct hstate *h, struct page *page)
1708{
1709 int i;
1710 struct folio *folio = page_folio(page);
1711 struct page *subpage;
1712
1713 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1714 return;
1715
1716 /*
1717 * If we don't know which subpages are hwpoisoned, we can't free
1718 * the hugepage, so it's leaked intentionally.
1719 */
1720 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1721 return;
1722
1723 if (hugetlb_vmemmap_restore(h, page)) {
1724 spin_lock_irq(&hugetlb_lock);
1725 /*
1726 * If we cannot allocate vmemmap pages, just refuse to free the
1727 * page and put the page back on the hugetlb free list and treat
1728 * as a surplus page.
1729 */
1730 add_hugetlb_folio(h, folio, true);
1731 spin_unlock_irq(&hugetlb_lock);
1732 return;
1733 }
1734
1735 /*
1736 * Move PageHWPoison flag from head page to the raw error pages,
1737 * which makes any healthy subpages reusable.
1738 */
1739 if (unlikely(folio_test_hwpoison(folio)))
1740 hugetlb_clear_page_hwpoison(&folio->page);
1741
1742 for (i = 0; i < pages_per_huge_page(h); i++) {
1743 subpage = folio_page(folio, i);
1744 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1745 1 << PG_referenced | 1 << PG_dirty |
1746 1 << PG_active | 1 << PG_private |
1747 1 << PG_writeback);
1748 }
1749
1750 /*
1751 * Non-gigantic pages demoted from CMA allocated gigantic pages
1752 * need to be given back to CMA in free_gigantic_folio.
1753 */
1754 if (hstate_is_gigantic(h) ||
1755 hugetlb_cma_folio(folio, huge_page_order(h))) {
1756 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1757 free_gigantic_folio(folio, huge_page_order(h));
1758 } else {
1759 __free_pages(page, huge_page_order(h));
1760 }
1761}
1762
1763/*
1764 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1765 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1766 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1767 * the vmemmap pages.
1768 *
1769 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1770 * freed and frees them one-by-one. As the page->mapping pointer is going
1771 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1772 * structure of a lockless linked list of huge pages to be freed.
1773 */
1774static LLIST_HEAD(hpage_freelist);
1775
1776static void free_hpage_workfn(struct work_struct *work)
1777{
1778 struct llist_node *node;
1779
1780 node = llist_del_all(&hpage_freelist);
1781
1782 while (node) {
1783 struct page *page;
1784 struct hstate *h;
1785
1786 page = container_of((struct address_space **)node,
1787 struct page, mapping);
1788 node = node->next;
1789 page->mapping = NULL;
1790 /*
1791 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1792 * is going to trigger because a previous call to
1793 * remove_hugetlb_folio() will call folio_set_compound_dtor
1794 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1795 * directly.
1796 */
1797 h = size_to_hstate(page_size(page));
1798
1799 __update_and_free_page(h, page);
1800
1801 cond_resched();
1802 }
1803}
1804static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1805
1806static inline void flush_free_hpage_work(struct hstate *h)
1807{
1808 if (hugetlb_vmemmap_optimizable(h))
1809 flush_work(&free_hpage_work);
1810}
1811
1812static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1813 bool atomic)
1814{
1815 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1816 __update_and_free_page(h, &folio->page);
1817 return;
1818 }
1819
1820 /*
1821 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1822 *
1823 * Only call schedule_work() if hpage_freelist is previously
1824 * empty. Otherwise, schedule_work() had been called but the workfn
1825 * hasn't retrieved the list yet.
1826 */
1827 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1828 schedule_work(&free_hpage_work);
1829}
1830
1831static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1832{
1833 struct page *page, *t_page;
1834 struct folio *folio;
1835
1836 list_for_each_entry_safe(page, t_page, list, lru) {
1837 folio = page_folio(page);
1838 update_and_free_hugetlb_folio(h, folio, false);
1839 cond_resched();
1840 }
1841}
1842
1843struct hstate *size_to_hstate(unsigned long size)
1844{
1845 struct hstate *h;
1846
1847 for_each_hstate(h) {
1848 if (huge_page_size(h) == size)
1849 return h;
1850 }
1851 return NULL;
1852}
1853
1854void free_huge_page(struct page *page)
1855{
1856 /*
1857 * Can't pass hstate in here because it is called from the
1858 * compound page destructor.
1859 */
1860 struct folio *folio = page_folio(page);
1861 struct hstate *h = folio_hstate(folio);
1862 int nid = folio_nid(folio);
1863 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1864 bool restore_reserve;
1865 unsigned long flags;
1866
1867 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1868 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1869
1870 hugetlb_set_folio_subpool(folio, NULL);
1871 if (folio_test_anon(folio))
1872 __ClearPageAnonExclusive(&folio->page);
1873 folio->mapping = NULL;
1874 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1875 folio_clear_hugetlb_restore_reserve(folio);
1876
1877 /*
1878 * If HPageRestoreReserve was set on page, page allocation consumed a
1879 * reservation. If the page was associated with a subpool, there
1880 * would have been a page reserved in the subpool before allocation
1881 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1882 * reservation, do not call hugepage_subpool_put_pages() as this will
1883 * remove the reserved page from the subpool.
1884 */
1885 if (!restore_reserve) {
1886 /*
1887 * A return code of zero implies that the subpool will be
1888 * under its minimum size if the reservation is not restored
1889 * after page is free. Therefore, force restore_reserve
1890 * operation.
1891 */
1892 if (hugepage_subpool_put_pages(spool, 1) == 0)
1893 restore_reserve = true;
1894 }
1895
1896 spin_lock_irqsave(&hugetlb_lock, flags);
1897 folio_clear_hugetlb_migratable(folio);
1898 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1899 pages_per_huge_page(h), folio);
1900 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1901 pages_per_huge_page(h), folio);
1902 if (restore_reserve)
1903 h->resv_huge_pages++;
1904
1905 if (folio_test_hugetlb_temporary(folio)) {
1906 remove_hugetlb_folio(h, folio, false);
1907 spin_unlock_irqrestore(&hugetlb_lock, flags);
1908 update_and_free_hugetlb_folio(h, folio, true);
1909 } else if (h->surplus_huge_pages_node[nid]) {
1910 /* remove the page from active list */
1911 remove_hugetlb_folio(h, folio, true);
1912 spin_unlock_irqrestore(&hugetlb_lock, flags);
1913 update_and_free_hugetlb_folio(h, folio, true);
1914 } else {
1915 arch_clear_hugepage_flags(page);
1916 enqueue_hugetlb_folio(h, folio);
1917 spin_unlock_irqrestore(&hugetlb_lock, flags);
1918 }
1919}
1920
1921/*
1922 * Must be called with the hugetlb lock held
1923 */
1924static void __prep_account_new_huge_page(struct hstate *h, int nid)
1925{
1926 lockdep_assert_held(&hugetlb_lock);
1927 h->nr_huge_pages++;
1928 h->nr_huge_pages_node[nid]++;
1929}
1930
1931static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1932{
1933 hugetlb_vmemmap_optimize(h, &folio->page);
1934 INIT_LIST_HEAD(&folio->lru);
1935 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1936 hugetlb_set_folio_subpool(folio, NULL);
1937 set_hugetlb_cgroup(folio, NULL);
1938 set_hugetlb_cgroup_rsvd(folio, NULL);
1939}
1940
1941static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1942{
1943 __prep_new_hugetlb_folio(h, folio);
1944 spin_lock_irq(&hugetlb_lock);
1945 __prep_account_new_huge_page(h, nid);
1946 spin_unlock_irq(&hugetlb_lock);
1947}
1948
1949static bool __prep_compound_gigantic_folio(struct folio *folio,
1950 unsigned int order, bool demote)
1951{
1952 int i, j;
1953 int nr_pages = 1 << order;
1954 struct page *p;
1955
1956 __folio_clear_reserved(folio);
1957 __folio_set_head(folio);
1958 /* we rely on prep_new_hugetlb_folio to set the destructor */
1959 folio_set_compound_order(folio, order);
1960 for (i = 0; i < nr_pages; i++) {
1961 p = folio_page(folio, i);
1962
1963 /*
1964 * For gigantic hugepages allocated through bootmem at
1965 * boot, it's safer to be consistent with the not-gigantic
1966 * hugepages and clear the PG_reserved bit from all tail pages
1967 * too. Otherwise drivers using get_user_pages() to access tail
1968 * pages may get the reference counting wrong if they see
1969 * PG_reserved set on a tail page (despite the head page not
1970 * having PG_reserved set). Enforcing this consistency between
1971 * head and tail pages allows drivers to optimize away a check
1972 * on the head page when they need know if put_page() is needed
1973 * after get_user_pages().
1974 */
1975 if (i != 0) /* head page cleared above */
1976 __ClearPageReserved(p);
1977 /*
1978 * Subtle and very unlikely
1979 *
1980 * Gigantic 'page allocators' such as memblock or cma will
1981 * return a set of pages with each page ref counted. We need
1982 * to turn this set of pages into a compound page with tail
1983 * page ref counts set to zero. Code such as speculative page
1984 * cache adding could take a ref on a 'to be' tail page.
1985 * We need to respect any increased ref count, and only set
1986 * the ref count to zero if count is currently 1. If count
1987 * is not 1, we return an error. An error return indicates
1988 * the set of pages can not be converted to a gigantic page.
1989 * The caller who allocated the pages should then discard the
1990 * pages using the appropriate free interface.
1991 *
1992 * In the case of demote, the ref count will be zero.
1993 */
1994 if (!demote) {
1995 if (!page_ref_freeze(p, 1)) {
1996 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1997 goto out_error;
1998 }
1999 } else {
2000 VM_BUG_ON_PAGE(page_count(p), p);
2001 }
2002 if (i != 0)
2003 set_compound_head(p, &folio->page);
2004 }
2005 atomic_set(folio_mapcount_ptr(folio), -1);
2006 atomic_set(folio_subpages_mapcount_ptr(folio), 0);
2007 atomic_set(folio_pincount_ptr(folio), 0);
2008 return true;
2009
2010out_error:
2011 /* undo page modifications made above */
2012 for (j = 0; j < i; j++) {
2013 p = folio_page(folio, j);
2014 if (j != 0)
2015 clear_compound_head(p);
2016 set_page_refcounted(p);
2017 }
2018 /* need to clear PG_reserved on remaining tail pages */
2019 for (; j < nr_pages; j++) {
2020 p = folio_page(folio, j);
2021 __ClearPageReserved(p);
2022 }
2023 folio_set_compound_order(folio, 0);
2024 __folio_clear_head(folio);
2025 return false;
2026}
2027
2028static bool prep_compound_gigantic_folio(struct folio *folio,
2029 unsigned int order)
2030{
2031 return __prep_compound_gigantic_folio(folio, order, false);
2032}
2033
2034static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2035 unsigned int order)
2036{
2037 return __prep_compound_gigantic_folio(folio, order, true);
2038}
2039
2040/*
2041 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2042 * transparent huge pages. See the PageTransHuge() documentation for more
2043 * details.
2044 */
2045int PageHuge(struct page *page)
2046{
2047 if (!PageCompound(page))
2048 return 0;
2049
2050 page = compound_head(page);
2051 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
2052}
2053EXPORT_SYMBOL_GPL(PageHuge);
2054
2055/*
2056 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2057 * normal or transparent huge pages.
2058 */
2059int PageHeadHuge(struct page *page_head)
2060{
2061 if (!PageHead(page_head))
2062 return 0;
2063
2064 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
2065}
2066EXPORT_SYMBOL_GPL(PageHeadHuge);
2067
2068/*
2069 * Find and lock address space (mapping) in write mode.
2070 *
2071 * Upon entry, the page is locked which means that page_mapping() is
2072 * stable. Due to locking order, we can only trylock_write. If we can
2073 * not get the lock, simply return NULL to caller.
2074 */
2075struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2076{
2077 struct address_space *mapping = page_mapping(hpage);
2078
2079 if (!mapping)
2080 return mapping;
2081
2082 if (i_mmap_trylock_write(mapping))
2083 return mapping;
2084
2085 return NULL;
2086}
2087
2088pgoff_t hugetlb_basepage_index(struct page *page)
2089{
2090 struct page *page_head = compound_head(page);
2091 pgoff_t index = page_index(page_head);
2092 unsigned long compound_idx;
2093
2094 if (compound_order(page_head) >= MAX_ORDER)
2095 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2096 else
2097 compound_idx = page - page_head;
2098
2099 return (index << compound_order(page_head)) + compound_idx;
2100}
2101
2102static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2103 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2104 nodemask_t *node_alloc_noretry)
2105{
2106 int order = huge_page_order(h);
2107 struct page *page;
2108 bool alloc_try_hard = true;
2109 bool retry = true;
2110
2111 /*
2112 * By default we always try hard to allocate the page with
2113 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2114 * a loop (to adjust global huge page counts) and previous allocation
2115 * failed, do not continue to try hard on the same node. Use the
2116 * node_alloc_noretry bitmap to manage this state information.
2117 */
2118 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2119 alloc_try_hard = false;
2120 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2121 if (alloc_try_hard)
2122 gfp_mask |= __GFP_RETRY_MAYFAIL;
2123 if (nid == NUMA_NO_NODE)
2124 nid = numa_mem_id();
2125retry:
2126 page = __alloc_pages(gfp_mask, order, nid, nmask);
2127
2128 /* Freeze head page */
2129 if (page && !page_ref_freeze(page, 1)) {
2130 __free_pages(page, order);
2131 if (retry) { /* retry once */
2132 retry = false;
2133 goto retry;
2134 }
2135 /* WOW! twice in a row. */
2136 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2137 page = NULL;
2138 }
2139
2140 /*
2141 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2142 * indicates an overall state change. Clear bit so that we resume
2143 * normal 'try hard' allocations.
2144 */
2145 if (node_alloc_noretry && page && !alloc_try_hard)
2146 node_clear(nid, *node_alloc_noretry);
2147
2148 /*
2149 * If we tried hard to get a page but failed, set bit so that
2150 * subsequent attempts will not try as hard until there is an
2151 * overall state change.
2152 */
2153 if (node_alloc_noretry && !page && alloc_try_hard)
2154 node_set(nid, *node_alloc_noretry);
2155
2156 if (!page) {
2157 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2158 return NULL;
2159 }
2160
2161 __count_vm_event(HTLB_BUDDY_PGALLOC);
2162 return page_folio(page);
2163}
2164
2165/*
2166 * Common helper to allocate a fresh hugetlb page. All specific allocators
2167 * should use this function to get new hugetlb pages
2168 *
2169 * Note that returned page is 'frozen': ref count of head page and all tail
2170 * pages is zero.
2171 */
2172static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2173 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2174 nodemask_t *node_alloc_noretry)
2175{
2176 struct folio *folio;
2177 bool retry = false;
2178
2179retry:
2180 if (hstate_is_gigantic(h))
2181 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2182 else
2183 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2184 nid, nmask, node_alloc_noretry);
2185 if (!folio)
2186 return NULL;
2187 if (hstate_is_gigantic(h)) {
2188 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2189 /*
2190 * Rare failure to convert pages to compound page.
2191 * Free pages and try again - ONCE!
2192 */
2193 free_gigantic_folio(folio, huge_page_order(h));
2194 if (!retry) {
2195 retry = true;
2196 goto retry;
2197 }
2198 return NULL;
2199 }
2200 }
2201 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2202
2203 return folio;
2204}
2205
2206/*
2207 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2208 * manner.
2209 */
2210static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2211 nodemask_t *node_alloc_noretry)
2212{
2213 struct folio *folio;
2214 int nr_nodes, node;
2215 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2216
2217 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2218 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2219 nodes_allowed, node_alloc_noretry);
2220 if (folio) {
2221 free_huge_page(&folio->page); /* free it into the hugepage allocator */
2222 return 1;
2223 }
2224 }
2225
2226 return 0;
2227}
2228
2229/*
2230 * Remove huge page from pool from next node to free. Attempt to keep
2231 * persistent huge pages more or less balanced over allowed nodes.
2232 * This routine only 'removes' the hugetlb page. The caller must make
2233 * an additional call to free the page to low level allocators.
2234 * Called with hugetlb_lock locked.
2235 */
2236static struct page *remove_pool_huge_page(struct hstate *h,
2237 nodemask_t *nodes_allowed,
2238 bool acct_surplus)
2239{
2240 int nr_nodes, node;
2241 struct page *page = NULL;
2242 struct folio *folio;
2243
2244 lockdep_assert_held(&hugetlb_lock);
2245 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2246 /*
2247 * If we're returning unused surplus pages, only examine
2248 * nodes with surplus pages.
2249 */
2250 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2251 !list_empty(&h->hugepage_freelists[node])) {
2252 page = list_entry(h->hugepage_freelists[node].next,
2253 struct page, lru);
2254 folio = page_folio(page);
2255 remove_hugetlb_folio(h, folio, acct_surplus);
2256 break;
2257 }
2258 }
2259
2260 return page;
2261}
2262
2263/*
2264 * Dissolve a given free hugepage into free buddy pages. This function does
2265 * nothing for in-use hugepages and non-hugepages.
2266 * This function returns values like below:
2267 *
2268 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2269 * when the system is under memory pressure and the feature of
2270 * freeing unused vmemmap pages associated with each hugetlb page
2271 * is enabled.
2272 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2273 * (allocated or reserved.)
2274 * 0: successfully dissolved free hugepages or the page is not a
2275 * hugepage (considered as already dissolved)
2276 */
2277int dissolve_free_huge_page(struct page *page)
2278{
2279 int rc = -EBUSY;
2280 struct folio *folio = page_folio(page);
2281
2282retry:
2283 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2284 if (!folio_test_hugetlb(folio))
2285 return 0;
2286
2287 spin_lock_irq(&hugetlb_lock);
2288 if (!folio_test_hugetlb(folio)) {
2289 rc = 0;
2290 goto out;
2291 }
2292
2293 if (!folio_ref_count(folio)) {
2294 struct hstate *h = folio_hstate(folio);
2295 if (!available_huge_pages(h))
2296 goto out;
2297
2298 /*
2299 * We should make sure that the page is already on the free list
2300 * when it is dissolved.
2301 */
2302 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2303 spin_unlock_irq(&hugetlb_lock);
2304 cond_resched();
2305
2306 /*
2307 * Theoretically, we should return -EBUSY when we
2308 * encounter this race. In fact, we have a chance
2309 * to successfully dissolve the page if we do a
2310 * retry. Because the race window is quite small.
2311 * If we seize this opportunity, it is an optimization
2312 * for increasing the success rate of dissolving page.
2313 */
2314 goto retry;
2315 }
2316
2317 remove_hugetlb_folio(h, folio, false);
2318 h->max_huge_pages--;
2319 spin_unlock_irq(&hugetlb_lock);
2320
2321 /*
2322 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2323 * before freeing the page. update_and_free_hugtlb_folio will fail to
2324 * free the page if it can not allocate required vmemmap. We
2325 * need to adjust max_huge_pages if the page is not freed.
2326 * Attempt to allocate vmemmmap here so that we can take
2327 * appropriate action on failure.
2328 */
2329 rc = hugetlb_vmemmap_restore(h, &folio->page);
2330 if (!rc) {
2331 update_and_free_hugetlb_folio(h, folio, false);
2332 } else {
2333 spin_lock_irq(&hugetlb_lock);
2334 add_hugetlb_folio(h, folio, false);
2335 h->max_huge_pages++;
2336 spin_unlock_irq(&hugetlb_lock);
2337 }
2338
2339 return rc;
2340 }
2341out:
2342 spin_unlock_irq(&hugetlb_lock);
2343 return rc;
2344}
2345
2346/*
2347 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2348 * make specified memory blocks removable from the system.
2349 * Note that this will dissolve a free gigantic hugepage completely, if any
2350 * part of it lies within the given range.
2351 * Also note that if dissolve_free_huge_page() returns with an error, all
2352 * free hugepages that were dissolved before that error are lost.
2353 */
2354int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2355{
2356 unsigned long pfn;
2357 struct page *page;
2358 int rc = 0;
2359 unsigned int order;
2360 struct hstate *h;
2361
2362 if (!hugepages_supported())
2363 return rc;
2364
2365 order = huge_page_order(&default_hstate);
2366 for_each_hstate(h)
2367 order = min(order, huge_page_order(h));
2368
2369 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2370 page = pfn_to_page(pfn);
2371 rc = dissolve_free_huge_page(page);
2372 if (rc)
2373 break;
2374 }
2375
2376 return rc;
2377}
2378
2379/*
2380 * Allocates a fresh surplus page from the page allocator.
2381 */
2382static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2383 int nid, nodemask_t *nmask)
2384{
2385 struct folio *folio = NULL;
2386
2387 if (hstate_is_gigantic(h))
2388 return NULL;
2389
2390 spin_lock_irq(&hugetlb_lock);
2391 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2392 goto out_unlock;
2393 spin_unlock_irq(&hugetlb_lock);
2394
2395 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2396 if (!folio)
2397 return NULL;
2398
2399 spin_lock_irq(&hugetlb_lock);
2400 /*
2401 * We could have raced with the pool size change.
2402 * Double check that and simply deallocate the new page
2403 * if we would end up overcommiting the surpluses. Abuse
2404 * temporary page to workaround the nasty free_huge_page
2405 * codeflow
2406 */
2407 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2408 folio_set_hugetlb_temporary(folio);
2409 spin_unlock_irq(&hugetlb_lock);
2410 free_huge_page(&folio->page);
2411 return NULL;
2412 }
2413
2414 h->surplus_huge_pages++;
2415 h->surplus_huge_pages_node[folio_nid(folio)]++;
2416
2417out_unlock:
2418 spin_unlock_irq(&hugetlb_lock);
2419
2420 return &folio->page;
2421}
2422
2423static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2424 int nid, nodemask_t *nmask)
2425{
2426 struct folio *folio;
2427
2428 if (hstate_is_gigantic(h))
2429 return NULL;
2430
2431 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2432 if (!folio)
2433 return NULL;
2434
2435 /* fresh huge pages are frozen */
2436 folio_ref_unfreeze(folio, 1);
2437 /*
2438 * We do not account these pages as surplus because they are only
2439 * temporary and will be released properly on the last reference
2440 */
2441 folio_set_hugetlb_temporary(folio);
2442
2443 return &folio->page;
2444}
2445
2446/*
2447 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2448 */
2449static
2450struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2451 struct vm_area_struct *vma, unsigned long addr)
2452{
2453 struct page *page = NULL;
2454 struct mempolicy *mpol;
2455 gfp_t gfp_mask = htlb_alloc_mask(h);
2456 int nid;
2457 nodemask_t *nodemask;
2458
2459 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2460 if (mpol_is_preferred_many(mpol)) {
2461 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2462
2463 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2464 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2465
2466 /* Fallback to all nodes if page==NULL */
2467 nodemask = NULL;
2468 }
2469
2470 if (!page)
2471 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2472 mpol_cond_put(mpol);
2473 return page;
2474}
2475
2476/* page migration callback function */
2477struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2478 nodemask_t *nmask, gfp_t gfp_mask)
2479{
2480 spin_lock_irq(&hugetlb_lock);
2481 if (available_huge_pages(h)) {
2482 struct page *page;
2483
2484 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2485 if (page) {
2486 spin_unlock_irq(&hugetlb_lock);
2487 return page;
2488 }
2489 }
2490 spin_unlock_irq(&hugetlb_lock);
2491
2492 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2493}
2494
2495/* mempolicy aware migration callback */
2496struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2497 unsigned long address)
2498{
2499 struct mempolicy *mpol;
2500 nodemask_t *nodemask;
2501 struct page *page;
2502 gfp_t gfp_mask;
2503 int node;
2504
2505 gfp_mask = htlb_alloc_mask(h);
2506 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2507 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2508 mpol_cond_put(mpol);
2509
2510 return page;
2511}
2512
2513/*
2514 * Increase the hugetlb pool such that it can accommodate a reservation
2515 * of size 'delta'.
2516 */
2517static int gather_surplus_pages(struct hstate *h, long delta)
2518 __must_hold(&hugetlb_lock)
2519{
2520 LIST_HEAD(surplus_list);
2521 struct page *page, *tmp;
2522 int ret;
2523 long i;
2524 long needed, allocated;
2525 bool alloc_ok = true;
2526
2527 lockdep_assert_held(&hugetlb_lock);
2528 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2529 if (needed <= 0) {
2530 h->resv_huge_pages += delta;
2531 return 0;
2532 }
2533
2534 allocated = 0;
2535
2536 ret = -ENOMEM;
2537retry:
2538 spin_unlock_irq(&hugetlb_lock);
2539 for (i = 0; i < needed; i++) {
2540 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2541 NUMA_NO_NODE, NULL);
2542 if (!page) {
2543 alloc_ok = false;
2544 break;
2545 }
2546 list_add(&page->lru, &surplus_list);
2547 cond_resched();
2548 }
2549 allocated += i;
2550
2551 /*
2552 * After retaking hugetlb_lock, we need to recalculate 'needed'
2553 * because either resv_huge_pages or free_huge_pages may have changed.
2554 */
2555 spin_lock_irq(&hugetlb_lock);
2556 needed = (h->resv_huge_pages + delta) -
2557 (h->free_huge_pages + allocated);
2558 if (needed > 0) {
2559 if (alloc_ok)
2560 goto retry;
2561 /*
2562 * We were not able to allocate enough pages to
2563 * satisfy the entire reservation so we free what
2564 * we've allocated so far.
2565 */
2566 goto free;
2567 }
2568 /*
2569 * The surplus_list now contains _at_least_ the number of extra pages
2570 * needed to accommodate the reservation. Add the appropriate number
2571 * of pages to the hugetlb pool and free the extras back to the buddy
2572 * allocator. Commit the entire reservation here to prevent another
2573 * process from stealing the pages as they are added to the pool but
2574 * before they are reserved.
2575 */
2576 needed += allocated;
2577 h->resv_huge_pages += delta;
2578 ret = 0;
2579
2580 /* Free the needed pages to the hugetlb pool */
2581 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2582 if ((--needed) < 0)
2583 break;
2584 /* Add the page to the hugetlb allocator */
2585 enqueue_hugetlb_folio(h, page_folio(page));
2586 }
2587free:
2588 spin_unlock_irq(&hugetlb_lock);
2589
2590 /*
2591 * Free unnecessary surplus pages to the buddy allocator.
2592 * Pages have no ref count, call free_huge_page directly.
2593 */
2594 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2595 free_huge_page(page);
2596 spin_lock_irq(&hugetlb_lock);
2597
2598 return ret;
2599}
2600
2601/*
2602 * This routine has two main purposes:
2603 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2604 * in unused_resv_pages. This corresponds to the prior adjustments made
2605 * to the associated reservation map.
2606 * 2) Free any unused surplus pages that may have been allocated to satisfy
2607 * the reservation. As many as unused_resv_pages may be freed.
2608 */
2609static void return_unused_surplus_pages(struct hstate *h,
2610 unsigned long unused_resv_pages)
2611{
2612 unsigned long nr_pages;
2613 struct page *page;
2614 LIST_HEAD(page_list);
2615
2616 lockdep_assert_held(&hugetlb_lock);
2617 /* Uncommit the reservation */
2618 h->resv_huge_pages -= unused_resv_pages;
2619
2620 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2621 goto out;
2622
2623 /*
2624 * Part (or even all) of the reservation could have been backed
2625 * by pre-allocated pages. Only free surplus pages.
2626 */
2627 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2628
2629 /*
2630 * We want to release as many surplus pages as possible, spread
2631 * evenly across all nodes with memory. Iterate across these nodes
2632 * until we can no longer free unreserved surplus pages. This occurs
2633 * when the nodes with surplus pages have no free pages.
2634 * remove_pool_huge_page() will balance the freed pages across the
2635 * on-line nodes with memory and will handle the hstate accounting.
2636 */
2637 while (nr_pages--) {
2638 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2639 if (!page)
2640 goto out;
2641
2642 list_add(&page->lru, &page_list);
2643 }
2644
2645out:
2646 spin_unlock_irq(&hugetlb_lock);
2647 update_and_free_pages_bulk(h, &page_list);
2648 spin_lock_irq(&hugetlb_lock);
2649}
2650
2651
2652/*
2653 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2654 * are used by the huge page allocation routines to manage reservations.
2655 *
2656 * vma_needs_reservation is called to determine if the huge page at addr
2657 * within the vma has an associated reservation. If a reservation is
2658 * needed, the value 1 is returned. The caller is then responsible for
2659 * managing the global reservation and subpool usage counts. After
2660 * the huge page has been allocated, vma_commit_reservation is called
2661 * to add the page to the reservation map. If the page allocation fails,
2662 * the reservation must be ended instead of committed. vma_end_reservation
2663 * is called in such cases.
2664 *
2665 * In the normal case, vma_commit_reservation returns the same value
2666 * as the preceding vma_needs_reservation call. The only time this
2667 * is not the case is if a reserve map was changed between calls. It
2668 * is the responsibility of the caller to notice the difference and
2669 * take appropriate action.
2670 *
2671 * vma_add_reservation is used in error paths where a reservation must
2672 * be restored when a newly allocated huge page must be freed. It is
2673 * to be called after calling vma_needs_reservation to determine if a
2674 * reservation exists.
2675 *
2676 * vma_del_reservation is used in error paths where an entry in the reserve
2677 * map was created during huge page allocation and must be removed. It is to
2678 * be called after calling vma_needs_reservation to determine if a reservation
2679 * exists.
2680 */
2681enum vma_resv_mode {
2682 VMA_NEEDS_RESV,
2683 VMA_COMMIT_RESV,
2684 VMA_END_RESV,
2685 VMA_ADD_RESV,
2686 VMA_DEL_RESV,
2687};
2688static long __vma_reservation_common(struct hstate *h,
2689 struct vm_area_struct *vma, unsigned long addr,
2690 enum vma_resv_mode mode)
2691{
2692 struct resv_map *resv;
2693 pgoff_t idx;
2694 long ret;
2695 long dummy_out_regions_needed;
2696
2697 resv = vma_resv_map(vma);
2698 if (!resv)
2699 return 1;
2700
2701 idx = vma_hugecache_offset(h, vma, addr);
2702 switch (mode) {
2703 case VMA_NEEDS_RESV:
2704 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2705 /* We assume that vma_reservation_* routines always operate on
2706 * 1 page, and that adding to resv map a 1 page entry can only
2707 * ever require 1 region.
2708 */
2709 VM_BUG_ON(dummy_out_regions_needed != 1);
2710 break;
2711 case VMA_COMMIT_RESV:
2712 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2713 /* region_add calls of range 1 should never fail. */
2714 VM_BUG_ON(ret < 0);
2715 break;
2716 case VMA_END_RESV:
2717 region_abort(resv, idx, idx + 1, 1);
2718 ret = 0;
2719 break;
2720 case VMA_ADD_RESV:
2721 if (vma->vm_flags & VM_MAYSHARE) {
2722 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2723 /* region_add calls of range 1 should never fail. */
2724 VM_BUG_ON(ret < 0);
2725 } else {
2726 region_abort(resv, idx, idx + 1, 1);
2727 ret = region_del(resv, idx, idx + 1);
2728 }
2729 break;
2730 case VMA_DEL_RESV:
2731 if (vma->vm_flags & VM_MAYSHARE) {
2732 region_abort(resv, idx, idx + 1, 1);
2733 ret = region_del(resv, idx, idx + 1);
2734 } else {
2735 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2736 /* region_add calls of range 1 should never fail. */
2737 VM_BUG_ON(ret < 0);
2738 }
2739 break;
2740 default:
2741 BUG();
2742 }
2743
2744 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2745 return ret;
2746 /*
2747 * We know private mapping must have HPAGE_RESV_OWNER set.
2748 *
2749 * In most cases, reserves always exist for private mappings.
2750 * However, a file associated with mapping could have been
2751 * hole punched or truncated after reserves were consumed.
2752 * As subsequent fault on such a range will not use reserves.
2753 * Subtle - The reserve map for private mappings has the
2754 * opposite meaning than that of shared mappings. If NO
2755 * entry is in the reserve map, it means a reservation exists.
2756 * If an entry exists in the reserve map, it means the
2757 * reservation has already been consumed. As a result, the
2758 * return value of this routine is the opposite of the
2759 * value returned from reserve map manipulation routines above.
2760 */
2761 if (ret > 0)
2762 return 0;
2763 if (ret == 0)
2764 return 1;
2765 return ret;
2766}
2767
2768static long vma_needs_reservation(struct hstate *h,
2769 struct vm_area_struct *vma, unsigned long addr)
2770{
2771 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2772}
2773
2774static long vma_commit_reservation(struct hstate *h,
2775 struct vm_area_struct *vma, unsigned long addr)
2776{
2777 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2778}
2779
2780static void vma_end_reservation(struct hstate *h,
2781 struct vm_area_struct *vma, unsigned long addr)
2782{
2783 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2784}
2785
2786static long vma_add_reservation(struct hstate *h,
2787 struct vm_area_struct *vma, unsigned long addr)
2788{
2789 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2790}
2791
2792static long vma_del_reservation(struct hstate *h,
2793 struct vm_area_struct *vma, unsigned long addr)
2794{
2795 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2796}
2797
2798/*
2799 * This routine is called to restore reservation information on error paths.
2800 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2801 * the hugetlb mutex should remain held when calling this routine.
2802 *
2803 * It handles two specific cases:
2804 * 1) A reservation was in place and the page consumed the reservation.
2805 * HPageRestoreReserve is set in the page.
2806 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2807 * not set. However, alloc_huge_page always updates the reserve map.
2808 *
2809 * In case 1, free_huge_page later in the error path will increment the
2810 * global reserve count. But, free_huge_page does not have enough context
2811 * to adjust the reservation map. This case deals primarily with private
2812 * mappings. Adjust the reserve map here to be consistent with global
2813 * reserve count adjustments to be made by free_huge_page. Make sure the
2814 * reserve map indicates there is a reservation present.
2815 *
2816 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2817 */
2818void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2819 unsigned long address, struct page *page)
2820{
2821 long rc = vma_needs_reservation(h, vma, address);
2822
2823 if (HPageRestoreReserve(page)) {
2824 if (unlikely(rc < 0))
2825 /*
2826 * Rare out of memory condition in reserve map
2827 * manipulation. Clear HPageRestoreReserve so that
2828 * global reserve count will not be incremented
2829 * by free_huge_page. This will make it appear
2830 * as though the reservation for this page was
2831 * consumed. This may prevent the task from
2832 * faulting in the page at a later time. This
2833 * is better than inconsistent global huge page
2834 * accounting of reserve counts.
2835 */
2836 ClearHPageRestoreReserve(page);
2837 else if (rc)
2838 (void)vma_add_reservation(h, vma, address);
2839 else
2840 vma_end_reservation(h, vma, address);
2841 } else {
2842 if (!rc) {
2843 /*
2844 * This indicates there is an entry in the reserve map
2845 * not added by alloc_huge_page. We know it was added
2846 * before the alloc_huge_page call, otherwise
2847 * HPageRestoreReserve would be set on the page.
2848 * Remove the entry so that a subsequent allocation
2849 * does not consume a reservation.
2850 */
2851 rc = vma_del_reservation(h, vma, address);
2852 if (rc < 0)
2853 /*
2854 * VERY rare out of memory condition. Since
2855 * we can not delete the entry, set
2856 * HPageRestoreReserve so that the reserve
2857 * count will be incremented when the page
2858 * is freed. This reserve will be consumed
2859 * on a subsequent allocation.
2860 */
2861 SetHPageRestoreReserve(page);
2862 } else if (rc < 0) {
2863 /*
2864 * Rare out of memory condition from
2865 * vma_needs_reservation call. Memory allocation is
2866 * only attempted if a new entry is needed. Therefore,
2867 * this implies there is not an entry in the
2868 * reserve map.
2869 *
2870 * For shared mappings, no entry in the map indicates
2871 * no reservation. We are done.
2872 */
2873 if (!(vma->vm_flags & VM_MAYSHARE))
2874 /*
2875 * For private mappings, no entry indicates
2876 * a reservation is present. Since we can
2877 * not add an entry, set SetHPageRestoreReserve
2878 * on the page so reserve count will be
2879 * incremented when freed. This reserve will
2880 * be consumed on a subsequent allocation.
2881 */
2882 SetHPageRestoreReserve(page);
2883 } else
2884 /*
2885 * No reservation present, do nothing
2886 */
2887 vma_end_reservation(h, vma, address);
2888 }
2889}
2890
2891/*
2892 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2893 * the old one
2894 * @h: struct hstate old page belongs to
2895 * @old_folio: Old folio to dissolve
2896 * @list: List to isolate the page in case we need to
2897 * Returns 0 on success, otherwise negated error.
2898 */
2899static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2900 struct folio *old_folio, struct list_head *list)
2901{
2902 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2903 int nid = folio_nid(old_folio);
2904 struct folio *new_folio;
2905 int ret = 0;
2906
2907 /*
2908 * Before dissolving the folio, we need to allocate a new one for the
2909 * pool to remain stable. Here, we allocate the folio and 'prep' it
2910 * by doing everything but actually updating counters and adding to
2911 * the pool. This simplifies and let us do most of the processing
2912 * under the lock.
2913 */
2914 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2915 if (!new_folio)
2916 return -ENOMEM;
2917 __prep_new_hugetlb_folio(h, new_folio);
2918
2919retry:
2920 spin_lock_irq(&hugetlb_lock);
2921 if (!folio_test_hugetlb(old_folio)) {
2922 /*
2923 * Freed from under us. Drop new_folio too.
2924 */
2925 goto free_new;
2926 } else if (folio_ref_count(old_folio)) {
2927 /*
2928 * Someone has grabbed the folio, try to isolate it here.
2929 * Fail with -EBUSY if not possible.
2930 */
2931 spin_unlock_irq(&hugetlb_lock);
2932 ret = isolate_hugetlb(&old_folio->page, list);
2933 spin_lock_irq(&hugetlb_lock);
2934 goto free_new;
2935 } else if (!folio_test_hugetlb_freed(old_folio)) {
2936 /*
2937 * Folio's refcount is 0 but it has not been enqueued in the
2938 * freelist yet. Race window is small, so we can succeed here if
2939 * we retry.
2940 */
2941 spin_unlock_irq(&hugetlb_lock);
2942 cond_resched();
2943 goto retry;
2944 } else {
2945 /*
2946 * Ok, old_folio is still a genuine free hugepage. Remove it from
2947 * the freelist and decrease the counters. These will be
2948 * incremented again when calling __prep_account_new_huge_page()
2949 * and enqueue_hugetlb_folio() for new_folio. The counters will
2950 * remain stable since this happens under the lock.
2951 */
2952 remove_hugetlb_folio(h, old_folio, false);
2953
2954 /*
2955 * Ref count on new_folio is already zero as it was dropped
2956 * earlier. It can be directly added to the pool free list.
2957 */
2958 __prep_account_new_huge_page(h, nid);
2959 enqueue_hugetlb_folio(h, new_folio);
2960
2961 /*
2962 * Folio has been replaced, we can safely free the old one.
2963 */
2964 spin_unlock_irq(&hugetlb_lock);
2965 update_and_free_hugetlb_folio(h, old_folio, false);
2966 }
2967
2968 return ret;
2969
2970free_new:
2971 spin_unlock_irq(&hugetlb_lock);
2972 /* Folio has a zero ref count, but needs a ref to be freed */
2973 folio_ref_unfreeze(new_folio, 1);
2974 update_and_free_hugetlb_folio(h, new_folio, false);
2975
2976 return ret;
2977}
2978
2979int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2980{
2981 struct hstate *h;
2982 struct folio *folio = page_folio(page);
2983 int ret = -EBUSY;
2984
2985 /*
2986 * The page might have been dissolved from under our feet, so make sure
2987 * to carefully check the state under the lock.
2988 * Return success when racing as if we dissolved the page ourselves.
2989 */
2990 spin_lock_irq(&hugetlb_lock);
2991 if (folio_test_hugetlb(folio)) {
2992 h = folio_hstate(folio);
2993 } else {
2994 spin_unlock_irq(&hugetlb_lock);
2995 return 0;
2996 }
2997 spin_unlock_irq(&hugetlb_lock);
2998
2999 /*
3000 * Fence off gigantic pages as there is a cyclic dependency between
3001 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3002 * of bailing out right away without further retrying.
3003 */
3004 if (hstate_is_gigantic(h))
3005 return -ENOMEM;
3006
3007 if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list))
3008 ret = 0;
3009 else if (!folio_ref_count(folio))
3010 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3011
3012 return ret;
3013}
3014
3015struct page *alloc_huge_page(struct vm_area_struct *vma,
3016 unsigned long addr, int avoid_reserve)
3017{
3018 struct hugepage_subpool *spool = subpool_vma(vma);
3019 struct hstate *h = hstate_vma(vma);
3020 struct page *page;
3021 struct folio *folio;
3022 long map_chg, map_commit;
3023 long gbl_chg;
3024 int ret, idx;
3025 struct hugetlb_cgroup *h_cg;
3026 bool deferred_reserve;
3027
3028 idx = hstate_index(h);
3029 /*
3030 * Examine the region/reserve map to determine if the process
3031 * has a reservation for the page to be allocated. A return
3032 * code of zero indicates a reservation exists (no change).
3033 */
3034 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3035 if (map_chg < 0)
3036 return ERR_PTR(-ENOMEM);
3037
3038 /*
3039 * Processes that did not create the mapping will have no
3040 * reserves as indicated by the region/reserve map. Check
3041 * that the allocation will not exceed the subpool limit.
3042 * Allocations for MAP_NORESERVE mappings also need to be
3043 * checked against any subpool limit.
3044 */
3045 if (map_chg || avoid_reserve) {
3046 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3047 if (gbl_chg < 0) {
3048 vma_end_reservation(h, vma, addr);
3049 return ERR_PTR(-ENOSPC);
3050 }
3051
3052 /*
3053 * Even though there was no reservation in the region/reserve
3054 * map, there could be reservations associated with the
3055 * subpool that can be used. This would be indicated if the
3056 * return value of hugepage_subpool_get_pages() is zero.
3057 * However, if avoid_reserve is specified we still avoid even
3058 * the subpool reservations.
3059 */
3060 if (avoid_reserve)
3061 gbl_chg = 1;
3062 }
3063
3064 /* If this allocation is not consuming a reservation, charge it now.
3065 */
3066 deferred_reserve = map_chg || avoid_reserve;
3067 if (deferred_reserve) {
3068 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3069 idx, pages_per_huge_page(h), &h_cg);
3070 if (ret)
3071 goto out_subpool_put;
3072 }
3073
3074 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3075 if (ret)
3076 goto out_uncharge_cgroup_reservation;
3077
3078 spin_lock_irq(&hugetlb_lock);
3079 /*
3080 * glb_chg is passed to indicate whether or not a page must be taken
3081 * from the global free pool (global change). gbl_chg == 0 indicates
3082 * a reservation exists for the allocation.
3083 */
3084 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
3085 if (!page) {
3086 spin_unlock_irq(&hugetlb_lock);
3087 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
3088 if (!page)
3089 goto out_uncharge_cgroup;
3090 spin_lock_irq(&hugetlb_lock);
3091 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3092 SetHPageRestoreReserve(page);
3093 h->resv_huge_pages--;
3094 }
3095 list_add(&page->lru, &h->hugepage_activelist);
3096 set_page_refcounted(page);
3097 /* Fall through */
3098 }
3099 folio = page_folio(page);
3100 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
3101 /* If allocation is not consuming a reservation, also store the
3102 * hugetlb_cgroup pointer on the page.
3103 */
3104 if (deferred_reserve) {
3105 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3106 h_cg, page);
3107 }
3108
3109 spin_unlock_irq(&hugetlb_lock);
3110
3111 hugetlb_set_page_subpool(page, spool);
3112
3113 map_commit = vma_commit_reservation(h, vma, addr);
3114 if (unlikely(map_chg > map_commit)) {
3115 /*
3116 * The page was added to the reservation map between
3117 * vma_needs_reservation and vma_commit_reservation.
3118 * This indicates a race with hugetlb_reserve_pages.
3119 * Adjust for the subpool count incremented above AND
3120 * in hugetlb_reserve_pages for the same page. Also,
3121 * the reservation count added in hugetlb_reserve_pages
3122 * no longer applies.
3123 */
3124 long rsv_adjust;
3125
3126 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3127 hugetlb_acct_memory(h, -rsv_adjust);
3128 if (deferred_reserve)
3129 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3130 pages_per_huge_page(h), folio);
3131 }
3132 return page;
3133
3134out_uncharge_cgroup:
3135 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3136out_uncharge_cgroup_reservation:
3137 if (deferred_reserve)
3138 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3139 h_cg);
3140out_subpool_put:
3141 if (map_chg || avoid_reserve)
3142 hugepage_subpool_put_pages(spool, 1);
3143 vma_end_reservation(h, vma, addr);
3144 return ERR_PTR(-ENOSPC);
3145}
3146
3147int alloc_bootmem_huge_page(struct hstate *h, int nid)
3148 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3149int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3150{
3151 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3152 int nr_nodes, node;
3153
3154 /* do node specific alloc */
3155 if (nid != NUMA_NO_NODE) {
3156 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3157 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3158 if (!m)
3159 return 0;
3160 goto found;
3161 }
3162 /* allocate from next node when distributing huge pages */
3163 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3164 m = memblock_alloc_try_nid_raw(
3165 huge_page_size(h), huge_page_size(h),
3166 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3167 /*
3168 * Use the beginning of the huge page to store the
3169 * huge_bootmem_page struct (until gather_bootmem
3170 * puts them into the mem_map).
3171 */
3172 if (!m)
3173 return 0;
3174 goto found;
3175 }
3176
3177found:
3178 /* Put them into a private list first because mem_map is not up yet */
3179 INIT_LIST_HEAD(&m->list);
3180 list_add(&m->list, &huge_boot_pages);
3181 m->hstate = h;
3182 return 1;
3183}
3184
3185/*
3186 * Put bootmem huge pages into the standard lists after mem_map is up.
3187 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3188 */
3189static void __init gather_bootmem_prealloc(void)
3190{
3191 struct huge_bootmem_page *m;
3192
3193 list_for_each_entry(m, &huge_boot_pages, list) {
3194 struct page *page = virt_to_page(m);
3195 struct folio *folio = page_folio(page);
3196 struct hstate *h = m->hstate;
3197
3198 VM_BUG_ON(!hstate_is_gigantic(h));
3199 WARN_ON(folio_ref_count(folio) != 1);
3200 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3201 WARN_ON(folio_test_reserved(folio));
3202 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3203 free_huge_page(page); /* add to the hugepage allocator */
3204 } else {
3205 /* VERY unlikely inflated ref count on a tail page */
3206 free_gigantic_folio(folio, huge_page_order(h));
3207 }
3208
3209 /*
3210 * We need to restore the 'stolen' pages to totalram_pages
3211 * in order to fix confusing memory reports from free(1) and
3212 * other side-effects, like CommitLimit going negative.
3213 */
3214 adjust_managed_page_count(page, pages_per_huge_page(h));
3215 cond_resched();
3216 }
3217}
3218static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3219{
3220 unsigned long i;
3221 char buf[32];
3222
3223 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3224 if (hstate_is_gigantic(h)) {
3225 if (!alloc_bootmem_huge_page(h, nid))
3226 break;
3227 } else {
3228 struct folio *folio;
3229 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3230
3231 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3232 &node_states[N_MEMORY], NULL);
3233 if (!folio)
3234 break;
3235 free_huge_page(&folio->page); /* free it into the hugepage allocator */
3236 }
3237 cond_resched();
3238 }
3239 if (i == h->max_huge_pages_node[nid])
3240 return;
3241
3242 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3243 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3244 h->max_huge_pages_node[nid], buf, nid, i);
3245 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3246 h->max_huge_pages_node[nid] = i;
3247}
3248
3249static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3250{
3251 unsigned long i;
3252 nodemask_t *node_alloc_noretry;
3253 bool node_specific_alloc = false;
3254
3255 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3256 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3257 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3258 return;
3259 }
3260
3261 /* do node specific alloc */
3262 for_each_online_node(i) {
3263 if (h->max_huge_pages_node[i] > 0) {
3264 hugetlb_hstate_alloc_pages_onenode(h, i);
3265 node_specific_alloc = true;
3266 }
3267 }
3268
3269 if (node_specific_alloc)
3270 return;
3271
3272 /* below will do all node balanced alloc */
3273 if (!hstate_is_gigantic(h)) {
3274 /*
3275 * Bit mask controlling how hard we retry per-node allocations.
3276 * Ignore errors as lower level routines can deal with
3277 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3278 * time, we are likely in bigger trouble.
3279 */
3280 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3281 GFP_KERNEL);
3282 } else {
3283 /* allocations done at boot time */
3284 node_alloc_noretry = NULL;
3285 }
3286
3287 /* bit mask controlling how hard we retry per-node allocations */
3288 if (node_alloc_noretry)
3289 nodes_clear(*node_alloc_noretry);
3290
3291 for (i = 0; i < h->max_huge_pages; ++i) {
3292 if (hstate_is_gigantic(h)) {
3293 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3294 break;
3295 } else if (!alloc_pool_huge_page(h,
3296 &node_states[N_MEMORY],
3297 node_alloc_noretry))
3298 break;
3299 cond_resched();
3300 }
3301 if (i < h->max_huge_pages) {
3302 char buf[32];
3303
3304 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3305 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3306 h->max_huge_pages, buf, i);
3307 h->max_huge_pages = i;
3308 }
3309 kfree(node_alloc_noretry);
3310}
3311
3312static void __init hugetlb_init_hstates(void)
3313{
3314 struct hstate *h, *h2;
3315
3316 for_each_hstate(h) {
3317 /* oversize hugepages were init'ed in early boot */
3318 if (!hstate_is_gigantic(h))
3319 hugetlb_hstate_alloc_pages(h);
3320
3321 /*
3322 * Set demote order for each hstate. Note that
3323 * h->demote_order is initially 0.
3324 * - We can not demote gigantic pages if runtime freeing
3325 * is not supported, so skip this.
3326 * - If CMA allocation is possible, we can not demote
3327 * HUGETLB_PAGE_ORDER or smaller size pages.
3328 */
3329 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3330 continue;
3331 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3332 continue;
3333 for_each_hstate(h2) {
3334 if (h2 == h)
3335 continue;
3336 if (h2->order < h->order &&
3337 h2->order > h->demote_order)
3338 h->demote_order = h2->order;
3339 }
3340 }
3341}
3342
3343static void __init report_hugepages(void)
3344{
3345 struct hstate *h;
3346
3347 for_each_hstate(h) {
3348 char buf[32];
3349
3350 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3351 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3352 buf, h->free_huge_pages);
3353 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3354 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3355 }
3356}
3357
3358#ifdef CONFIG_HIGHMEM
3359static void try_to_free_low(struct hstate *h, unsigned long count,
3360 nodemask_t *nodes_allowed)
3361{
3362 int i;
3363 LIST_HEAD(page_list);
3364
3365 lockdep_assert_held(&hugetlb_lock);
3366 if (hstate_is_gigantic(h))
3367 return;
3368
3369 /*
3370 * Collect pages to be freed on a list, and free after dropping lock
3371 */
3372 for_each_node_mask(i, *nodes_allowed) {
3373 struct page *page, *next;
3374 struct list_head *freel = &h->hugepage_freelists[i];
3375 list_for_each_entry_safe(page, next, freel, lru) {
3376 if (count >= h->nr_huge_pages)
3377 goto out;
3378 if (PageHighMem(page))
3379 continue;
3380 remove_hugetlb_folio(h, page_folio(page), false);
3381 list_add(&page->lru, &page_list);
3382 }
3383 }
3384
3385out:
3386 spin_unlock_irq(&hugetlb_lock);
3387 update_and_free_pages_bulk(h, &page_list);
3388 spin_lock_irq(&hugetlb_lock);
3389}
3390#else
3391static inline void try_to_free_low(struct hstate *h, unsigned long count,
3392 nodemask_t *nodes_allowed)
3393{
3394}
3395#endif
3396
3397/*
3398 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3399 * balanced by operating on them in a round-robin fashion.
3400 * Returns 1 if an adjustment was made.
3401 */
3402static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3403 int delta)
3404{
3405 int nr_nodes, node;
3406
3407 lockdep_assert_held(&hugetlb_lock);
3408 VM_BUG_ON(delta != -1 && delta != 1);
3409
3410 if (delta < 0) {
3411 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3412 if (h->surplus_huge_pages_node[node])
3413 goto found;
3414 }
3415 } else {
3416 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3417 if (h->surplus_huge_pages_node[node] <
3418 h->nr_huge_pages_node[node])
3419 goto found;
3420 }
3421 }
3422 return 0;
3423
3424found:
3425 h->surplus_huge_pages += delta;
3426 h->surplus_huge_pages_node[node] += delta;
3427 return 1;
3428}
3429
3430#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3431static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3432 nodemask_t *nodes_allowed)
3433{
3434 unsigned long min_count, ret;
3435 struct page *page;
3436 LIST_HEAD(page_list);
3437 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3438
3439 /*
3440 * Bit mask controlling how hard we retry per-node allocations.
3441 * If we can not allocate the bit mask, do not attempt to allocate
3442 * the requested huge pages.
3443 */
3444 if (node_alloc_noretry)
3445 nodes_clear(*node_alloc_noretry);
3446 else
3447 return -ENOMEM;
3448
3449 /*
3450 * resize_lock mutex prevents concurrent adjustments to number of
3451 * pages in hstate via the proc/sysfs interfaces.
3452 */
3453 mutex_lock(&h->resize_lock);
3454 flush_free_hpage_work(h);
3455 spin_lock_irq(&hugetlb_lock);
3456
3457 /*
3458 * Check for a node specific request.
3459 * Changing node specific huge page count may require a corresponding
3460 * change to the global count. In any case, the passed node mask
3461 * (nodes_allowed) will restrict alloc/free to the specified node.
3462 */
3463 if (nid != NUMA_NO_NODE) {
3464 unsigned long old_count = count;
3465
3466 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3467 /*
3468 * User may have specified a large count value which caused the
3469 * above calculation to overflow. In this case, they wanted
3470 * to allocate as many huge pages as possible. Set count to
3471 * largest possible value to align with their intention.
3472 */
3473 if (count < old_count)
3474 count = ULONG_MAX;
3475 }
3476
3477 /*
3478 * Gigantic pages runtime allocation depend on the capability for large
3479 * page range allocation.
3480 * If the system does not provide this feature, return an error when
3481 * the user tries to allocate gigantic pages but let the user free the
3482 * boottime allocated gigantic pages.
3483 */
3484 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3485 if (count > persistent_huge_pages(h)) {
3486 spin_unlock_irq(&hugetlb_lock);
3487 mutex_unlock(&h->resize_lock);
3488 NODEMASK_FREE(node_alloc_noretry);
3489 return -EINVAL;
3490 }
3491 /* Fall through to decrease pool */
3492 }
3493
3494 /*
3495 * Increase the pool size
3496 * First take pages out of surplus state. Then make up the
3497 * remaining difference by allocating fresh huge pages.
3498 *
3499 * We might race with alloc_surplus_huge_page() here and be unable
3500 * to convert a surplus huge page to a normal huge page. That is
3501 * not critical, though, it just means the overall size of the
3502 * pool might be one hugepage larger than it needs to be, but
3503 * within all the constraints specified by the sysctls.
3504 */
3505 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3506 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3507 break;
3508 }
3509
3510 while (count > persistent_huge_pages(h)) {
3511 /*
3512 * If this allocation races such that we no longer need the
3513 * page, free_huge_page will handle it by freeing the page
3514 * and reducing the surplus.
3515 */
3516 spin_unlock_irq(&hugetlb_lock);
3517
3518 /* yield cpu to avoid soft lockup */
3519 cond_resched();
3520
3521 ret = alloc_pool_huge_page(h, nodes_allowed,
3522 node_alloc_noretry);
3523 spin_lock_irq(&hugetlb_lock);
3524 if (!ret)
3525 goto out;
3526
3527 /* Bail for signals. Probably ctrl-c from user */
3528 if (signal_pending(current))
3529 goto out;
3530 }
3531
3532 /*
3533 * Decrease the pool size
3534 * First return free pages to the buddy allocator (being careful
3535 * to keep enough around to satisfy reservations). Then place
3536 * pages into surplus state as needed so the pool will shrink
3537 * to the desired size as pages become free.
3538 *
3539 * By placing pages into the surplus state independent of the
3540 * overcommit value, we are allowing the surplus pool size to
3541 * exceed overcommit. There are few sane options here. Since
3542 * alloc_surplus_huge_page() is checking the global counter,
3543 * though, we'll note that we're not allowed to exceed surplus
3544 * and won't grow the pool anywhere else. Not until one of the
3545 * sysctls are changed, or the surplus pages go out of use.
3546 */
3547 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3548 min_count = max(count, min_count);
3549 try_to_free_low(h, min_count, nodes_allowed);
3550
3551 /*
3552 * Collect pages to be removed on list without dropping lock
3553 */
3554 while (min_count < persistent_huge_pages(h)) {
3555 page = remove_pool_huge_page(h, nodes_allowed, 0);
3556 if (!page)
3557 break;
3558
3559 list_add(&page->lru, &page_list);
3560 }
3561 /* free the pages after dropping lock */
3562 spin_unlock_irq(&hugetlb_lock);
3563 update_and_free_pages_bulk(h, &page_list);
3564 flush_free_hpage_work(h);
3565 spin_lock_irq(&hugetlb_lock);
3566
3567 while (count < persistent_huge_pages(h)) {
3568 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3569 break;
3570 }
3571out:
3572 h->max_huge_pages = persistent_huge_pages(h);
3573 spin_unlock_irq(&hugetlb_lock);
3574 mutex_unlock(&h->resize_lock);
3575
3576 NODEMASK_FREE(node_alloc_noretry);
3577
3578 return 0;
3579}
3580
3581static int demote_free_huge_page(struct hstate *h, struct page *page)
3582{
3583 int i, nid = page_to_nid(page);
3584 struct hstate *target_hstate;
3585 struct folio *folio = page_folio(page);
3586 struct page *subpage;
3587 int rc = 0;
3588
3589 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3590
3591 remove_hugetlb_folio_for_demote(h, folio, false);
3592 spin_unlock_irq(&hugetlb_lock);
3593
3594 rc = hugetlb_vmemmap_restore(h, page);
3595 if (rc) {
3596 /* Allocation of vmemmmap failed, we can not demote page */
3597 spin_lock_irq(&hugetlb_lock);
3598 set_page_refcounted(page);
3599 add_hugetlb_folio(h, page_folio(page), false);
3600 return rc;
3601 }
3602
3603 /*
3604 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3605 * sizes as it will not ref count pages.
3606 */
3607 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3608
3609 /*
3610 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3611 * Without the mutex, pages added to target hstate could be marked
3612 * as surplus.
3613 *
3614 * Note that we already hold h->resize_lock. To prevent deadlock,
3615 * use the convention of always taking larger size hstate mutex first.
3616 */
3617 mutex_lock(&target_hstate->resize_lock);
3618 for (i = 0; i < pages_per_huge_page(h);
3619 i += pages_per_huge_page(target_hstate)) {
3620 subpage = nth_page(page, i);
3621 folio = page_folio(subpage);
3622 if (hstate_is_gigantic(target_hstate))
3623 prep_compound_gigantic_folio_for_demote(folio,
3624 target_hstate->order);
3625 else
3626 prep_compound_page(subpage, target_hstate->order);
3627 set_page_private(subpage, 0);
3628 prep_new_hugetlb_folio(target_hstate, folio, nid);
3629 free_huge_page(subpage);
3630 }
3631 mutex_unlock(&target_hstate->resize_lock);
3632
3633 spin_lock_irq(&hugetlb_lock);
3634
3635 /*
3636 * Not absolutely necessary, but for consistency update max_huge_pages
3637 * based on pool changes for the demoted page.
3638 */
3639 h->max_huge_pages--;
3640 target_hstate->max_huge_pages +=
3641 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3642
3643 return rc;
3644}
3645
3646static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3647 __must_hold(&hugetlb_lock)
3648{
3649 int nr_nodes, node;
3650 struct page *page;
3651
3652 lockdep_assert_held(&hugetlb_lock);
3653
3654 /* We should never get here if no demote order */
3655 if (!h->demote_order) {
3656 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3657 return -EINVAL; /* internal error */
3658 }
3659
3660 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3661 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3662 if (PageHWPoison(page))
3663 continue;
3664
3665 return demote_free_huge_page(h, page);
3666 }
3667 }
3668
3669 /*
3670 * Only way to get here is if all pages on free lists are poisoned.
3671 * Return -EBUSY so that caller will not retry.
3672 */
3673 return -EBUSY;
3674}
3675
3676#define HSTATE_ATTR_RO(_name) \
3677 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3678
3679#define HSTATE_ATTR_WO(_name) \
3680 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3681
3682#define HSTATE_ATTR(_name) \
3683 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3684
3685static struct kobject *hugepages_kobj;
3686static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3687
3688static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3689
3690static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3691{
3692 int i;
3693
3694 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3695 if (hstate_kobjs[i] == kobj) {
3696 if (nidp)
3697 *nidp = NUMA_NO_NODE;
3698 return &hstates[i];
3699 }
3700
3701 return kobj_to_node_hstate(kobj, nidp);
3702}
3703
3704static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3705 struct kobj_attribute *attr, char *buf)
3706{
3707 struct hstate *h;
3708 unsigned long nr_huge_pages;
3709 int nid;
3710
3711 h = kobj_to_hstate(kobj, &nid);
3712 if (nid == NUMA_NO_NODE)
3713 nr_huge_pages = h->nr_huge_pages;
3714 else
3715 nr_huge_pages = h->nr_huge_pages_node[nid];
3716
3717 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3718}
3719
3720static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3721 struct hstate *h, int nid,
3722 unsigned long count, size_t len)
3723{
3724 int err;
3725 nodemask_t nodes_allowed, *n_mask;
3726
3727 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3728 return -EINVAL;
3729
3730 if (nid == NUMA_NO_NODE) {
3731 /*
3732 * global hstate attribute
3733 */
3734 if (!(obey_mempolicy &&
3735 init_nodemask_of_mempolicy(&nodes_allowed)))
3736 n_mask = &node_states[N_MEMORY];
3737 else
3738 n_mask = &nodes_allowed;
3739 } else {
3740 /*
3741 * Node specific request. count adjustment happens in
3742 * set_max_huge_pages() after acquiring hugetlb_lock.
3743 */
3744 init_nodemask_of_node(&nodes_allowed, nid);
3745 n_mask = &nodes_allowed;
3746 }
3747
3748 err = set_max_huge_pages(h, count, nid, n_mask);
3749
3750 return err ? err : len;
3751}
3752
3753static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3754 struct kobject *kobj, const char *buf,
3755 size_t len)
3756{
3757 struct hstate *h;
3758 unsigned long count;
3759 int nid;
3760 int err;
3761
3762 err = kstrtoul(buf, 10, &count);
3763 if (err)
3764 return err;
3765
3766 h = kobj_to_hstate(kobj, &nid);
3767 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3768}
3769
3770static ssize_t nr_hugepages_show(struct kobject *kobj,
3771 struct kobj_attribute *attr, char *buf)
3772{
3773 return nr_hugepages_show_common(kobj, attr, buf);
3774}
3775
3776static ssize_t nr_hugepages_store(struct kobject *kobj,
3777 struct kobj_attribute *attr, const char *buf, size_t len)
3778{
3779 return nr_hugepages_store_common(false, kobj, buf, len);
3780}
3781HSTATE_ATTR(nr_hugepages);
3782
3783#ifdef CONFIG_NUMA
3784
3785/*
3786 * hstate attribute for optionally mempolicy-based constraint on persistent
3787 * huge page alloc/free.
3788 */
3789static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3790 struct kobj_attribute *attr,
3791 char *buf)
3792{
3793 return nr_hugepages_show_common(kobj, attr, buf);
3794}
3795
3796static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3797 struct kobj_attribute *attr, const char *buf, size_t len)
3798{
3799 return nr_hugepages_store_common(true, kobj, buf, len);
3800}
3801HSTATE_ATTR(nr_hugepages_mempolicy);
3802#endif
3803
3804
3805static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3806 struct kobj_attribute *attr, char *buf)
3807{
3808 struct hstate *h = kobj_to_hstate(kobj, NULL);
3809 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3810}
3811
3812static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3813 struct kobj_attribute *attr, const char *buf, size_t count)
3814{
3815 int err;
3816 unsigned long input;
3817 struct hstate *h = kobj_to_hstate(kobj, NULL);
3818
3819 if (hstate_is_gigantic(h))
3820 return -EINVAL;
3821
3822 err = kstrtoul(buf, 10, &input);
3823 if (err)
3824 return err;
3825
3826 spin_lock_irq(&hugetlb_lock);
3827 h->nr_overcommit_huge_pages = input;
3828 spin_unlock_irq(&hugetlb_lock);
3829
3830 return count;
3831}
3832HSTATE_ATTR(nr_overcommit_hugepages);
3833
3834static ssize_t free_hugepages_show(struct kobject *kobj,
3835 struct kobj_attribute *attr, char *buf)
3836{
3837 struct hstate *h;
3838 unsigned long free_huge_pages;
3839 int nid;
3840
3841 h = kobj_to_hstate(kobj, &nid);
3842 if (nid == NUMA_NO_NODE)
3843 free_huge_pages = h->free_huge_pages;
3844 else
3845 free_huge_pages = h->free_huge_pages_node[nid];
3846
3847 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3848}
3849HSTATE_ATTR_RO(free_hugepages);
3850
3851static ssize_t resv_hugepages_show(struct kobject *kobj,
3852 struct kobj_attribute *attr, char *buf)
3853{
3854 struct hstate *h = kobj_to_hstate(kobj, NULL);
3855 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3856}
3857HSTATE_ATTR_RO(resv_hugepages);
3858
3859static ssize_t surplus_hugepages_show(struct kobject *kobj,
3860 struct kobj_attribute *attr, char *buf)
3861{
3862 struct hstate *h;
3863 unsigned long surplus_huge_pages;
3864 int nid;
3865
3866 h = kobj_to_hstate(kobj, &nid);
3867 if (nid == NUMA_NO_NODE)
3868 surplus_huge_pages = h->surplus_huge_pages;
3869 else
3870 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3871
3872 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3873}
3874HSTATE_ATTR_RO(surplus_hugepages);
3875
3876static ssize_t demote_store(struct kobject *kobj,
3877 struct kobj_attribute *attr, const char *buf, size_t len)
3878{
3879 unsigned long nr_demote;
3880 unsigned long nr_available;
3881 nodemask_t nodes_allowed, *n_mask;
3882 struct hstate *h;
3883 int err;
3884 int nid;
3885
3886 err = kstrtoul(buf, 10, &nr_demote);
3887 if (err)
3888 return err;
3889 h = kobj_to_hstate(kobj, &nid);
3890
3891 if (nid != NUMA_NO_NODE) {
3892 init_nodemask_of_node(&nodes_allowed, nid);
3893 n_mask = &nodes_allowed;
3894 } else {
3895 n_mask = &node_states[N_MEMORY];
3896 }
3897
3898 /* Synchronize with other sysfs operations modifying huge pages */
3899 mutex_lock(&h->resize_lock);
3900 spin_lock_irq(&hugetlb_lock);
3901
3902 while (nr_demote) {
3903 /*
3904 * Check for available pages to demote each time thorough the
3905 * loop as demote_pool_huge_page will drop hugetlb_lock.
3906 */
3907 if (nid != NUMA_NO_NODE)
3908 nr_available = h->free_huge_pages_node[nid];
3909 else
3910 nr_available = h->free_huge_pages;
3911 nr_available -= h->resv_huge_pages;
3912 if (!nr_available)
3913 break;
3914
3915 err = demote_pool_huge_page(h, n_mask);
3916 if (err)
3917 break;
3918
3919 nr_demote--;
3920 }
3921
3922 spin_unlock_irq(&hugetlb_lock);
3923 mutex_unlock(&h->resize_lock);
3924
3925 if (err)
3926 return err;
3927 return len;
3928}
3929HSTATE_ATTR_WO(demote);
3930
3931static ssize_t demote_size_show(struct kobject *kobj,
3932 struct kobj_attribute *attr, char *buf)
3933{
3934 struct hstate *h = kobj_to_hstate(kobj, NULL);
3935 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3936
3937 return sysfs_emit(buf, "%lukB\n", demote_size);
3938}
3939
3940static ssize_t demote_size_store(struct kobject *kobj,
3941 struct kobj_attribute *attr,
3942 const char *buf, size_t count)
3943{
3944 struct hstate *h, *demote_hstate;
3945 unsigned long demote_size;
3946 unsigned int demote_order;
3947
3948 demote_size = (unsigned long)memparse(buf, NULL);
3949
3950 demote_hstate = size_to_hstate(demote_size);
3951 if (!demote_hstate)
3952 return -EINVAL;
3953 demote_order = demote_hstate->order;
3954 if (demote_order < HUGETLB_PAGE_ORDER)
3955 return -EINVAL;
3956
3957 /* demote order must be smaller than hstate order */
3958 h = kobj_to_hstate(kobj, NULL);
3959 if (demote_order >= h->order)
3960 return -EINVAL;
3961
3962 /* resize_lock synchronizes access to demote size and writes */
3963 mutex_lock(&h->resize_lock);
3964 h->demote_order = demote_order;
3965 mutex_unlock(&h->resize_lock);
3966
3967 return count;
3968}
3969HSTATE_ATTR(demote_size);
3970
3971static struct attribute *hstate_attrs[] = {
3972 &nr_hugepages_attr.attr,
3973 &nr_overcommit_hugepages_attr.attr,
3974 &free_hugepages_attr.attr,
3975 &resv_hugepages_attr.attr,
3976 &surplus_hugepages_attr.attr,
3977#ifdef CONFIG_NUMA
3978 &nr_hugepages_mempolicy_attr.attr,
3979#endif
3980 NULL,
3981};
3982
3983static const struct attribute_group hstate_attr_group = {
3984 .attrs = hstate_attrs,
3985};
3986
3987static struct attribute *hstate_demote_attrs[] = {
3988 &demote_size_attr.attr,
3989 &demote_attr.attr,
3990 NULL,
3991};
3992
3993static const struct attribute_group hstate_demote_attr_group = {
3994 .attrs = hstate_demote_attrs,
3995};
3996
3997static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3998 struct kobject **hstate_kobjs,
3999 const struct attribute_group *hstate_attr_group)
4000{
4001 int retval;
4002 int hi = hstate_index(h);
4003
4004 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4005 if (!hstate_kobjs[hi])
4006 return -ENOMEM;
4007
4008 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4009 if (retval) {
4010 kobject_put(hstate_kobjs[hi]);
4011 hstate_kobjs[hi] = NULL;
4012 return retval;
4013 }
4014
4015 if (h->demote_order) {
4016 retval = sysfs_create_group(hstate_kobjs[hi],
4017 &hstate_demote_attr_group);
4018 if (retval) {
4019 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4020 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4021 kobject_put(hstate_kobjs[hi]);
4022 hstate_kobjs[hi] = NULL;
4023 return retval;
4024 }
4025 }
4026
4027 return 0;
4028}
4029
4030#ifdef CONFIG_NUMA
4031static bool hugetlb_sysfs_initialized __ro_after_init;
4032
4033/*
4034 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4035 * with node devices in node_devices[] using a parallel array. The array
4036 * index of a node device or _hstate == node id.
4037 * This is here to avoid any static dependency of the node device driver, in
4038 * the base kernel, on the hugetlb module.
4039 */
4040struct node_hstate {
4041 struct kobject *hugepages_kobj;
4042 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4043};
4044static struct node_hstate node_hstates[MAX_NUMNODES];
4045
4046/*
4047 * A subset of global hstate attributes for node devices
4048 */
4049static struct attribute *per_node_hstate_attrs[] = {
4050 &nr_hugepages_attr.attr,
4051 &free_hugepages_attr.attr,
4052 &surplus_hugepages_attr.attr,
4053 NULL,
4054};
4055
4056static const struct attribute_group per_node_hstate_attr_group = {
4057 .attrs = per_node_hstate_attrs,
4058};
4059
4060/*
4061 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4062 * Returns node id via non-NULL nidp.
4063 */
4064static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4065{
4066 int nid;
4067
4068 for (nid = 0; nid < nr_node_ids; nid++) {
4069 struct node_hstate *nhs = &node_hstates[nid];
4070 int i;
4071 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4072 if (nhs->hstate_kobjs[i] == kobj) {
4073 if (nidp)
4074 *nidp = nid;
4075 return &hstates[i];
4076 }
4077 }
4078
4079 BUG();
4080 return NULL;
4081}
4082
4083/*
4084 * Unregister hstate attributes from a single node device.
4085 * No-op if no hstate attributes attached.
4086 */
4087void hugetlb_unregister_node(struct node *node)
4088{
4089 struct hstate *h;
4090 struct node_hstate *nhs = &node_hstates[node->dev.id];
4091
4092 if (!nhs->hugepages_kobj)
4093 return; /* no hstate attributes */
4094
4095 for_each_hstate(h) {
4096 int idx = hstate_index(h);
4097 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4098
4099 if (!hstate_kobj)
4100 continue;
4101 if (h->demote_order)
4102 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4103 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4104 kobject_put(hstate_kobj);
4105 nhs->hstate_kobjs[idx] = NULL;
4106 }
4107
4108 kobject_put(nhs->hugepages_kobj);
4109 nhs->hugepages_kobj = NULL;
4110}
4111
4112
4113/*
4114 * Register hstate attributes for a single node device.
4115 * No-op if attributes already registered.
4116 */
4117void hugetlb_register_node(struct node *node)
4118{
4119 struct hstate *h;
4120 struct node_hstate *nhs = &node_hstates[node->dev.id];
4121 int err;
4122
4123 if (!hugetlb_sysfs_initialized)
4124 return;
4125
4126 if (nhs->hugepages_kobj)
4127 return; /* already allocated */
4128
4129 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4130 &node->dev.kobj);
4131 if (!nhs->hugepages_kobj)
4132 return;
4133
4134 for_each_hstate(h) {
4135 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4136 nhs->hstate_kobjs,
4137 &per_node_hstate_attr_group);
4138 if (err) {
4139 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4140 h->name, node->dev.id);
4141 hugetlb_unregister_node(node);
4142 break;
4143 }
4144 }
4145}
4146
4147/*
4148 * hugetlb init time: register hstate attributes for all registered node
4149 * devices of nodes that have memory. All on-line nodes should have
4150 * registered their associated device by this time.
4151 */
4152static void __init hugetlb_register_all_nodes(void)
4153{
4154 int nid;
4155
4156 for_each_online_node(nid)
4157 hugetlb_register_node(node_devices[nid]);
4158}
4159#else /* !CONFIG_NUMA */
4160
4161static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4162{
4163 BUG();
4164 if (nidp)
4165 *nidp = -1;
4166 return NULL;
4167}
4168
4169static void hugetlb_register_all_nodes(void) { }
4170
4171#endif
4172
4173#ifdef CONFIG_CMA
4174static void __init hugetlb_cma_check(void);
4175#else
4176static inline __init void hugetlb_cma_check(void)
4177{
4178}
4179#endif
4180
4181static void __init hugetlb_sysfs_init(void)
4182{
4183 struct hstate *h;
4184 int err;
4185
4186 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4187 if (!hugepages_kobj)
4188 return;
4189
4190 for_each_hstate(h) {
4191 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4192 hstate_kobjs, &hstate_attr_group);
4193 if (err)
4194 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4195 }
4196
4197#ifdef CONFIG_NUMA
4198 hugetlb_sysfs_initialized = true;
4199#endif
4200 hugetlb_register_all_nodes();
4201}
4202
4203static int __init hugetlb_init(void)
4204{
4205 int i;
4206
4207 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4208 __NR_HPAGEFLAGS);
4209
4210 if (!hugepages_supported()) {
4211 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4212 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4213 return 0;
4214 }
4215
4216 /*
4217 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4218 * architectures depend on setup being done here.
4219 */
4220 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4221 if (!parsed_default_hugepagesz) {
4222 /*
4223 * If we did not parse a default huge page size, set
4224 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4225 * number of huge pages for this default size was implicitly
4226 * specified, set that here as well.
4227 * Note that the implicit setting will overwrite an explicit
4228 * setting. A warning will be printed in this case.
4229 */
4230 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4231 if (default_hstate_max_huge_pages) {
4232 if (default_hstate.max_huge_pages) {
4233 char buf[32];
4234
4235 string_get_size(huge_page_size(&default_hstate),
4236 1, STRING_UNITS_2, buf, 32);
4237 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4238 default_hstate.max_huge_pages, buf);
4239 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4240 default_hstate_max_huge_pages);
4241 }
4242 default_hstate.max_huge_pages =
4243 default_hstate_max_huge_pages;
4244
4245 for_each_online_node(i)
4246 default_hstate.max_huge_pages_node[i] =
4247 default_hugepages_in_node[i];
4248 }
4249 }
4250
4251 hugetlb_cma_check();
4252 hugetlb_init_hstates();
4253 gather_bootmem_prealloc();
4254 report_hugepages();
4255
4256 hugetlb_sysfs_init();
4257 hugetlb_cgroup_file_init();
4258
4259#ifdef CONFIG_SMP
4260 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4261#else
4262 num_fault_mutexes = 1;
4263#endif
4264 hugetlb_fault_mutex_table =
4265 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4266 GFP_KERNEL);
4267 BUG_ON(!hugetlb_fault_mutex_table);
4268
4269 for (i = 0; i < num_fault_mutexes; i++)
4270 mutex_init(&hugetlb_fault_mutex_table[i]);
4271 return 0;
4272}
4273subsys_initcall(hugetlb_init);
4274
4275/* Overwritten by architectures with more huge page sizes */
4276bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4277{
4278 return size == HPAGE_SIZE;
4279}
4280
4281void __init hugetlb_add_hstate(unsigned int order)
4282{
4283 struct hstate *h;
4284 unsigned long i;
4285
4286 if (size_to_hstate(PAGE_SIZE << order)) {
4287 return;
4288 }
4289 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4290 BUG_ON(order == 0);
4291 h = &hstates[hugetlb_max_hstate++];
4292 mutex_init(&h->resize_lock);
4293 h->order = order;
4294 h->mask = ~(huge_page_size(h) - 1);
4295 for (i = 0; i < MAX_NUMNODES; ++i)
4296 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4297 INIT_LIST_HEAD(&h->hugepage_activelist);
4298 h->next_nid_to_alloc = first_memory_node;
4299 h->next_nid_to_free = first_memory_node;
4300 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4301 huge_page_size(h)/SZ_1K);
4302
4303 parsed_hstate = h;
4304}
4305
4306bool __init __weak hugetlb_node_alloc_supported(void)
4307{
4308 return true;
4309}
4310
4311static void __init hugepages_clear_pages_in_node(void)
4312{
4313 if (!hugetlb_max_hstate) {
4314 default_hstate_max_huge_pages = 0;
4315 memset(default_hugepages_in_node, 0,
4316 sizeof(default_hugepages_in_node));
4317 } else {
4318 parsed_hstate->max_huge_pages = 0;
4319 memset(parsed_hstate->max_huge_pages_node, 0,
4320 sizeof(parsed_hstate->max_huge_pages_node));
4321 }
4322}
4323
4324/*
4325 * hugepages command line processing
4326 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4327 * specification. If not, ignore the hugepages value. hugepages can also
4328 * be the first huge page command line option in which case it implicitly
4329 * specifies the number of huge pages for the default size.
4330 */
4331static int __init hugepages_setup(char *s)
4332{
4333 unsigned long *mhp;
4334 static unsigned long *last_mhp;
4335 int node = NUMA_NO_NODE;
4336 int count;
4337 unsigned long tmp;
4338 char *p = s;
4339
4340 if (!parsed_valid_hugepagesz) {
4341 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4342 parsed_valid_hugepagesz = true;
4343 return 1;
4344 }
4345
4346 /*
4347 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4348 * yet, so this hugepages= parameter goes to the "default hstate".
4349 * Otherwise, it goes with the previously parsed hugepagesz or
4350 * default_hugepagesz.
4351 */
4352 else if (!hugetlb_max_hstate)
4353 mhp = &default_hstate_max_huge_pages;
4354 else
4355 mhp = &parsed_hstate->max_huge_pages;
4356
4357 if (mhp == last_mhp) {
4358 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4359 return 1;
4360 }
4361
4362 while (*p) {
4363 count = 0;
4364 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4365 goto invalid;
4366 /* Parameter is node format */
4367 if (p[count] == ':') {
4368 if (!hugetlb_node_alloc_supported()) {
4369 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4370 return 1;
4371 }
4372 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4373 goto invalid;
4374 node = array_index_nospec(tmp, MAX_NUMNODES);
4375 p += count + 1;
4376 /* Parse hugepages */
4377 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4378 goto invalid;
4379 if (!hugetlb_max_hstate)
4380 default_hugepages_in_node[node] = tmp;
4381 else
4382 parsed_hstate->max_huge_pages_node[node] = tmp;
4383 *mhp += tmp;
4384 /* Go to parse next node*/
4385 if (p[count] == ',')
4386 p += count + 1;
4387 else
4388 break;
4389 } else {
4390 if (p != s)
4391 goto invalid;
4392 *mhp = tmp;
4393 break;
4394 }
4395 }
4396
4397 /*
4398 * Global state is always initialized later in hugetlb_init.
4399 * But we need to allocate gigantic hstates here early to still
4400 * use the bootmem allocator.
4401 */
4402 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4403 hugetlb_hstate_alloc_pages(parsed_hstate);
4404
4405 last_mhp = mhp;
4406
4407 return 1;
4408
4409invalid:
4410 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4411 hugepages_clear_pages_in_node();
4412 return 1;
4413}
4414__setup("hugepages=", hugepages_setup);
4415
4416/*
4417 * hugepagesz command line processing
4418 * A specific huge page size can only be specified once with hugepagesz.
4419 * hugepagesz is followed by hugepages on the command line. The global
4420 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4421 * hugepagesz argument was valid.
4422 */
4423static int __init hugepagesz_setup(char *s)
4424{
4425 unsigned long size;
4426 struct hstate *h;
4427
4428 parsed_valid_hugepagesz = false;
4429 size = (unsigned long)memparse(s, NULL);
4430
4431 if (!arch_hugetlb_valid_size(size)) {
4432 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4433 return 1;
4434 }
4435
4436 h = size_to_hstate(size);
4437 if (h) {
4438 /*
4439 * hstate for this size already exists. This is normally
4440 * an error, but is allowed if the existing hstate is the
4441 * default hstate. More specifically, it is only allowed if
4442 * the number of huge pages for the default hstate was not
4443 * previously specified.
4444 */
4445 if (!parsed_default_hugepagesz || h != &default_hstate ||
4446 default_hstate.max_huge_pages) {
4447 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4448 return 1;
4449 }
4450
4451 /*
4452 * No need to call hugetlb_add_hstate() as hstate already
4453 * exists. But, do set parsed_hstate so that a following
4454 * hugepages= parameter will be applied to this hstate.
4455 */
4456 parsed_hstate = h;
4457 parsed_valid_hugepagesz = true;
4458 return 1;
4459 }
4460
4461 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4462 parsed_valid_hugepagesz = true;
4463 return 1;
4464}
4465__setup("hugepagesz=", hugepagesz_setup);
4466
4467/*
4468 * default_hugepagesz command line input
4469 * Only one instance of default_hugepagesz allowed on command line.
4470 */
4471static int __init default_hugepagesz_setup(char *s)
4472{
4473 unsigned long size;
4474 int i;
4475
4476 parsed_valid_hugepagesz = false;
4477 if (parsed_default_hugepagesz) {
4478 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4479 return 1;
4480 }
4481
4482 size = (unsigned long)memparse(s, NULL);
4483
4484 if (!arch_hugetlb_valid_size(size)) {
4485 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4486 return 1;
4487 }
4488
4489 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4490 parsed_valid_hugepagesz = true;
4491 parsed_default_hugepagesz = true;
4492 default_hstate_idx = hstate_index(size_to_hstate(size));
4493
4494 /*
4495 * The number of default huge pages (for this size) could have been
4496 * specified as the first hugetlb parameter: hugepages=X. If so,
4497 * then default_hstate_max_huge_pages is set. If the default huge
4498 * page size is gigantic (>= MAX_ORDER), then the pages must be
4499 * allocated here from bootmem allocator.
4500 */
4501 if (default_hstate_max_huge_pages) {
4502 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4503 for_each_online_node(i)
4504 default_hstate.max_huge_pages_node[i] =
4505 default_hugepages_in_node[i];
4506 if (hstate_is_gigantic(&default_hstate))
4507 hugetlb_hstate_alloc_pages(&default_hstate);
4508 default_hstate_max_huge_pages = 0;
4509 }
4510
4511 return 1;
4512}
4513__setup("default_hugepagesz=", default_hugepagesz_setup);
4514
4515static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4516{
4517#ifdef CONFIG_NUMA
4518 struct mempolicy *mpol = get_task_policy(current);
4519
4520 /*
4521 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4522 * (from policy_nodemask) specifically for hugetlb case
4523 */
4524 if (mpol->mode == MPOL_BIND &&
4525 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4526 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4527 return &mpol->nodes;
4528#endif
4529 return NULL;
4530}
4531
4532static unsigned int allowed_mems_nr(struct hstate *h)
4533{
4534 int node;
4535 unsigned int nr = 0;
4536 nodemask_t *mbind_nodemask;
4537 unsigned int *array = h->free_huge_pages_node;
4538 gfp_t gfp_mask = htlb_alloc_mask(h);
4539
4540 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4541 for_each_node_mask(node, cpuset_current_mems_allowed) {
4542 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4543 nr += array[node];
4544 }
4545
4546 return nr;
4547}
4548
4549#ifdef CONFIG_SYSCTL
4550static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4551 void *buffer, size_t *length,
4552 loff_t *ppos, unsigned long *out)
4553{
4554 struct ctl_table dup_table;
4555
4556 /*
4557 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4558 * can duplicate the @table and alter the duplicate of it.
4559 */
4560 dup_table = *table;
4561 dup_table.data = out;
4562
4563 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4564}
4565
4566static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4567 struct ctl_table *table, int write,
4568 void *buffer, size_t *length, loff_t *ppos)
4569{
4570 struct hstate *h = &default_hstate;
4571 unsigned long tmp = h->max_huge_pages;
4572 int ret;
4573
4574 if (!hugepages_supported())
4575 return -EOPNOTSUPP;
4576
4577 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4578 &tmp);
4579 if (ret)
4580 goto out;
4581
4582 if (write)
4583 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4584 NUMA_NO_NODE, tmp, *length);
4585out:
4586 return ret;
4587}
4588
4589int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4590 void *buffer, size_t *length, loff_t *ppos)
4591{
4592
4593 return hugetlb_sysctl_handler_common(false, table, write,
4594 buffer, length, ppos);
4595}
4596
4597#ifdef CONFIG_NUMA
4598int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4599 void *buffer, size_t *length, loff_t *ppos)
4600{
4601 return hugetlb_sysctl_handler_common(true, table, write,
4602 buffer, length, ppos);
4603}
4604#endif /* CONFIG_NUMA */
4605
4606int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4607 void *buffer, size_t *length, loff_t *ppos)
4608{
4609 struct hstate *h = &default_hstate;
4610 unsigned long tmp;
4611 int ret;
4612
4613 if (!hugepages_supported())
4614 return -EOPNOTSUPP;
4615
4616 tmp = h->nr_overcommit_huge_pages;
4617
4618 if (write && hstate_is_gigantic(h))
4619 return -EINVAL;
4620
4621 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4622 &tmp);
4623 if (ret)
4624 goto out;
4625
4626 if (write) {
4627 spin_lock_irq(&hugetlb_lock);
4628 h->nr_overcommit_huge_pages = tmp;
4629 spin_unlock_irq(&hugetlb_lock);
4630 }
4631out:
4632 return ret;
4633}
4634
4635#endif /* CONFIG_SYSCTL */
4636
4637void hugetlb_report_meminfo(struct seq_file *m)
4638{
4639 struct hstate *h;
4640 unsigned long total = 0;
4641
4642 if (!hugepages_supported())
4643 return;
4644
4645 for_each_hstate(h) {
4646 unsigned long count = h->nr_huge_pages;
4647
4648 total += huge_page_size(h) * count;
4649
4650 if (h == &default_hstate)
4651 seq_printf(m,
4652 "HugePages_Total: %5lu\n"
4653 "HugePages_Free: %5lu\n"
4654 "HugePages_Rsvd: %5lu\n"
4655 "HugePages_Surp: %5lu\n"
4656 "Hugepagesize: %8lu kB\n",
4657 count,
4658 h->free_huge_pages,
4659 h->resv_huge_pages,
4660 h->surplus_huge_pages,
4661 huge_page_size(h) / SZ_1K);
4662 }
4663
4664 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4665}
4666
4667int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4668{
4669 struct hstate *h = &default_hstate;
4670
4671 if (!hugepages_supported())
4672 return 0;
4673
4674 return sysfs_emit_at(buf, len,
4675 "Node %d HugePages_Total: %5u\n"
4676 "Node %d HugePages_Free: %5u\n"
4677 "Node %d HugePages_Surp: %5u\n",
4678 nid, h->nr_huge_pages_node[nid],
4679 nid, h->free_huge_pages_node[nid],
4680 nid, h->surplus_huge_pages_node[nid]);
4681}
4682
4683void hugetlb_show_meminfo_node(int nid)
4684{
4685 struct hstate *h;
4686
4687 if (!hugepages_supported())
4688 return;
4689
4690 for_each_hstate(h)
4691 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4692 nid,
4693 h->nr_huge_pages_node[nid],
4694 h->free_huge_pages_node[nid],
4695 h->surplus_huge_pages_node[nid],
4696 huge_page_size(h) / SZ_1K);
4697}
4698
4699void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4700{
4701 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4702 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4703}
4704
4705/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4706unsigned long hugetlb_total_pages(void)
4707{
4708 struct hstate *h;
4709 unsigned long nr_total_pages = 0;
4710
4711 for_each_hstate(h)
4712 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4713 return nr_total_pages;
4714}
4715
4716static int hugetlb_acct_memory(struct hstate *h, long delta)
4717{
4718 int ret = -ENOMEM;
4719
4720 if (!delta)
4721 return 0;
4722
4723 spin_lock_irq(&hugetlb_lock);
4724 /*
4725 * When cpuset is configured, it breaks the strict hugetlb page
4726 * reservation as the accounting is done on a global variable. Such
4727 * reservation is completely rubbish in the presence of cpuset because
4728 * the reservation is not checked against page availability for the
4729 * current cpuset. Application can still potentially OOM'ed by kernel
4730 * with lack of free htlb page in cpuset that the task is in.
4731 * Attempt to enforce strict accounting with cpuset is almost
4732 * impossible (or too ugly) because cpuset is too fluid that
4733 * task or memory node can be dynamically moved between cpusets.
4734 *
4735 * The change of semantics for shared hugetlb mapping with cpuset is
4736 * undesirable. However, in order to preserve some of the semantics,
4737 * we fall back to check against current free page availability as
4738 * a best attempt and hopefully to minimize the impact of changing
4739 * semantics that cpuset has.
4740 *
4741 * Apart from cpuset, we also have memory policy mechanism that
4742 * also determines from which node the kernel will allocate memory
4743 * in a NUMA system. So similar to cpuset, we also should consider
4744 * the memory policy of the current task. Similar to the description
4745 * above.
4746 */
4747 if (delta > 0) {
4748 if (gather_surplus_pages(h, delta) < 0)
4749 goto out;
4750
4751 if (delta > allowed_mems_nr(h)) {
4752 return_unused_surplus_pages(h, delta);
4753 goto out;
4754 }
4755 }
4756
4757 ret = 0;
4758 if (delta < 0)
4759 return_unused_surplus_pages(h, (unsigned long) -delta);
4760
4761out:
4762 spin_unlock_irq(&hugetlb_lock);
4763 return ret;
4764}
4765
4766static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4767{
4768 struct resv_map *resv = vma_resv_map(vma);
4769
4770 /*
4771 * HPAGE_RESV_OWNER indicates a private mapping.
4772 * This new VMA should share its siblings reservation map if present.
4773 * The VMA will only ever have a valid reservation map pointer where
4774 * it is being copied for another still existing VMA. As that VMA
4775 * has a reference to the reservation map it cannot disappear until
4776 * after this open call completes. It is therefore safe to take a
4777 * new reference here without additional locking.
4778 */
4779 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4780 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4781 kref_get(&resv->refs);
4782 }
4783
4784 /*
4785 * vma_lock structure for sharable mappings is vma specific.
4786 * Clear old pointer (if copied via vm_area_dup) and allocate
4787 * new structure. Before clearing, make sure vma_lock is not
4788 * for this vma.
4789 */
4790 if (vma->vm_flags & VM_MAYSHARE) {
4791 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4792
4793 if (vma_lock) {
4794 if (vma_lock->vma != vma) {
4795 vma->vm_private_data = NULL;
4796 hugetlb_vma_lock_alloc(vma);
4797 } else
4798 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4799 } else
4800 hugetlb_vma_lock_alloc(vma);
4801 }
4802}
4803
4804static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4805{
4806 struct hstate *h = hstate_vma(vma);
4807 struct resv_map *resv;
4808 struct hugepage_subpool *spool = subpool_vma(vma);
4809 unsigned long reserve, start, end;
4810 long gbl_reserve;
4811
4812 hugetlb_vma_lock_free(vma);
4813
4814 resv = vma_resv_map(vma);
4815 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4816 return;
4817
4818 start = vma_hugecache_offset(h, vma, vma->vm_start);
4819 end = vma_hugecache_offset(h, vma, vma->vm_end);
4820
4821 reserve = (end - start) - region_count(resv, start, end);
4822 hugetlb_cgroup_uncharge_counter(resv, start, end);
4823 if (reserve) {
4824 /*
4825 * Decrement reserve counts. The global reserve count may be
4826 * adjusted if the subpool has a minimum size.
4827 */
4828 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4829 hugetlb_acct_memory(h, -gbl_reserve);
4830 }
4831
4832 kref_put(&resv->refs, resv_map_release);
4833}
4834
4835static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4836{
4837 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4838 return -EINVAL;
4839
4840 /*
4841 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4842 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4843 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4844 */
4845 if (addr & ~PUD_MASK) {
4846 /*
4847 * hugetlb_vm_op_split is called right before we attempt to
4848 * split the VMA. We will need to unshare PMDs in the old and
4849 * new VMAs, so let's unshare before we split.
4850 */
4851 unsigned long floor = addr & PUD_MASK;
4852 unsigned long ceil = floor + PUD_SIZE;
4853
4854 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4855 hugetlb_unshare_pmds(vma, floor, ceil);
4856 }
4857
4858 return 0;
4859}
4860
4861static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4862{
4863 return huge_page_size(hstate_vma(vma));
4864}
4865
4866/*
4867 * We cannot handle pagefaults against hugetlb pages at all. They cause
4868 * handle_mm_fault() to try to instantiate regular-sized pages in the
4869 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4870 * this far.
4871 */
4872static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4873{
4874 BUG();
4875 return 0;
4876}
4877
4878/*
4879 * When a new function is introduced to vm_operations_struct and added
4880 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4881 * This is because under System V memory model, mappings created via
4882 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4883 * their original vm_ops are overwritten with shm_vm_ops.
4884 */
4885const struct vm_operations_struct hugetlb_vm_ops = {
4886 .fault = hugetlb_vm_op_fault,
4887 .open = hugetlb_vm_op_open,
4888 .close = hugetlb_vm_op_close,
4889 .may_split = hugetlb_vm_op_split,
4890 .pagesize = hugetlb_vm_op_pagesize,
4891};
4892
4893static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4894 int writable)
4895{
4896 pte_t entry;
4897 unsigned int shift = huge_page_shift(hstate_vma(vma));
4898
4899 if (writable) {
4900 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4901 vma->vm_page_prot)));
4902 } else {
4903 entry = huge_pte_wrprotect(mk_huge_pte(page,
4904 vma->vm_page_prot));
4905 }
4906 entry = pte_mkyoung(entry);
4907 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4908
4909 return entry;
4910}
4911
4912static void set_huge_ptep_writable(struct vm_area_struct *vma,
4913 unsigned long address, pte_t *ptep)
4914{
4915 pte_t entry;
4916
4917 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4918 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4919 update_mmu_cache(vma, address, ptep);
4920}
4921
4922bool is_hugetlb_entry_migration(pte_t pte)
4923{
4924 swp_entry_t swp;
4925
4926 if (huge_pte_none(pte) || pte_present(pte))
4927 return false;
4928 swp = pte_to_swp_entry(pte);
4929 if (is_migration_entry(swp))
4930 return true;
4931 else
4932 return false;
4933}
4934
4935static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4936{
4937 swp_entry_t swp;
4938
4939 if (huge_pte_none(pte) || pte_present(pte))
4940 return false;
4941 swp = pte_to_swp_entry(pte);
4942 if (is_hwpoison_entry(swp))
4943 return true;
4944 else
4945 return false;
4946}
4947
4948static void
4949hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4950 struct page *new_page)
4951{
4952 __SetPageUptodate(new_page);
4953 hugepage_add_new_anon_rmap(new_page, vma, addr);
4954 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4955 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4956 SetHPageMigratable(new_page);
4957}
4958
4959int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4960 struct vm_area_struct *dst_vma,
4961 struct vm_area_struct *src_vma)
4962{
4963 pte_t *src_pte, *dst_pte, entry;
4964 struct page *ptepage;
4965 unsigned long addr;
4966 bool cow = is_cow_mapping(src_vma->vm_flags);
4967 struct hstate *h = hstate_vma(src_vma);
4968 unsigned long sz = huge_page_size(h);
4969 unsigned long npages = pages_per_huge_page(h);
4970 struct mmu_notifier_range range;
4971 unsigned long last_addr_mask;
4972 int ret = 0;
4973
4974 if (cow) {
4975 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4976 src_vma->vm_start,
4977 src_vma->vm_end);
4978 mmu_notifier_invalidate_range_start(&range);
4979 mmap_assert_write_locked(src);
4980 raw_write_seqcount_begin(&src->write_protect_seq);
4981 } else {
4982 /*
4983 * For shared mappings the vma lock must be held before
4984 * calling huge_pte_offset in the src vma. Otherwise, the
4985 * returned ptep could go away if part of a shared pmd and
4986 * another thread calls huge_pmd_unshare.
4987 */
4988 hugetlb_vma_lock_read(src_vma);
4989 }
4990
4991 last_addr_mask = hugetlb_mask_last_page(h);
4992 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4993 spinlock_t *src_ptl, *dst_ptl;
4994 src_pte = huge_pte_offset(src, addr, sz);
4995 if (!src_pte) {
4996 addr |= last_addr_mask;
4997 continue;
4998 }
4999 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5000 if (!dst_pte) {
5001 ret = -ENOMEM;
5002 break;
5003 }
5004
5005 /*
5006 * If the pagetables are shared don't copy or take references.
5007 *
5008 * dst_pte == src_pte is the common case of src/dest sharing.
5009 * However, src could have 'unshared' and dst shares with
5010 * another vma. So page_count of ptep page is checked instead
5011 * to reliably determine whether pte is shared.
5012 */
5013 if (page_count(virt_to_page(dst_pte)) > 1) {
5014 addr |= last_addr_mask;
5015 continue;
5016 }
5017
5018 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5019 src_ptl = huge_pte_lockptr(h, src, src_pte);
5020 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5021 entry = huge_ptep_get(src_pte);
5022again:
5023 if (huge_pte_none(entry)) {
5024 /*
5025 * Skip if src entry none.
5026 */
5027 ;
5028 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5029 bool uffd_wp = huge_pte_uffd_wp(entry);
5030
5031 if (!userfaultfd_wp(dst_vma) && uffd_wp)
5032 entry = huge_pte_clear_uffd_wp(entry);
5033 set_huge_pte_at(dst, addr, dst_pte, entry);
5034 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5035 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5036 bool uffd_wp = huge_pte_uffd_wp(entry);
5037
5038 if (!is_readable_migration_entry(swp_entry) && cow) {
5039 /*
5040 * COW mappings require pages in both
5041 * parent and child to be set to read.
5042 */
5043 swp_entry = make_readable_migration_entry(
5044 swp_offset(swp_entry));
5045 entry = swp_entry_to_pte(swp_entry);
5046 if (userfaultfd_wp(src_vma) && uffd_wp)
5047 entry = huge_pte_mkuffd_wp(entry);
5048 set_huge_pte_at(src, addr, src_pte, entry);
5049 }
5050 if (!userfaultfd_wp(dst_vma) && uffd_wp)
5051 entry = huge_pte_clear_uffd_wp(entry);
5052 set_huge_pte_at(dst, addr, dst_pte, entry);
5053 } else if (unlikely(is_pte_marker(entry))) {
5054 /* No swap on hugetlb */
5055 WARN_ON_ONCE(
5056 is_swapin_error_entry(pte_to_swp_entry(entry)));
5057 /*
5058 * We copy the pte marker only if the dst vma has
5059 * uffd-wp enabled.
5060 */
5061 if (userfaultfd_wp(dst_vma))
5062 set_huge_pte_at(dst, addr, dst_pte, entry);
5063 } else {
5064 entry = huge_ptep_get(src_pte);
5065 ptepage = pte_page(entry);
5066 get_page(ptepage);
5067
5068 /*
5069 * Failing to duplicate the anon rmap is a rare case
5070 * where we see pinned hugetlb pages while they're
5071 * prone to COW. We need to do the COW earlier during
5072 * fork.
5073 *
5074 * When pre-allocating the page or copying data, we
5075 * need to be without the pgtable locks since we could
5076 * sleep during the process.
5077 */
5078 if (!PageAnon(ptepage)) {
5079 page_dup_file_rmap(ptepage, true);
5080 } else if (page_try_dup_anon_rmap(ptepage, true,
5081 src_vma)) {
5082 pte_t src_pte_old = entry;
5083 struct page *new;
5084
5085 spin_unlock(src_ptl);
5086 spin_unlock(dst_ptl);
5087 /* Do not use reserve as it's private owned */
5088 new = alloc_huge_page(dst_vma, addr, 1);
5089 if (IS_ERR(new)) {
5090 put_page(ptepage);
5091 ret = PTR_ERR(new);
5092 break;
5093 }
5094 copy_user_huge_page(new, ptepage, addr, dst_vma,
5095 npages);
5096 put_page(ptepage);
5097
5098 /* Install the new huge page if src pte stable */
5099 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5100 src_ptl = huge_pte_lockptr(h, src, src_pte);
5101 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5102 entry = huge_ptep_get(src_pte);
5103 if (!pte_same(src_pte_old, entry)) {
5104 restore_reserve_on_error(h, dst_vma, addr,
5105 new);
5106 put_page(new);
5107 /* huge_ptep of dst_pte won't change as in child */
5108 goto again;
5109 }
5110 hugetlb_install_page(dst_vma, dst_pte, addr, new);
5111 spin_unlock(src_ptl);
5112 spin_unlock(dst_ptl);
5113 continue;
5114 }
5115
5116 if (cow) {
5117 /*
5118 * No need to notify as we are downgrading page
5119 * table protection not changing it to point
5120 * to a new page.
5121 *
5122 * See Documentation/mm/mmu_notifier.rst
5123 */
5124 huge_ptep_set_wrprotect(src, addr, src_pte);
5125 entry = huge_pte_wrprotect(entry);
5126 }
5127
5128 set_huge_pte_at(dst, addr, dst_pte, entry);
5129 hugetlb_count_add(npages, dst);
5130 }
5131 spin_unlock(src_ptl);
5132 spin_unlock(dst_ptl);
5133 }
5134
5135 if (cow) {
5136 raw_write_seqcount_end(&src->write_protect_seq);
5137 mmu_notifier_invalidate_range_end(&range);
5138 } else {
5139 hugetlb_vma_unlock_read(src_vma);
5140 }
5141
5142 return ret;
5143}
5144
5145static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5146 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5147{
5148 struct hstate *h = hstate_vma(vma);
5149 struct mm_struct *mm = vma->vm_mm;
5150 spinlock_t *src_ptl, *dst_ptl;
5151 pte_t pte;
5152
5153 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5154 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5155
5156 /*
5157 * We don't have to worry about the ordering of src and dst ptlocks
5158 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5159 */
5160 if (src_ptl != dst_ptl)
5161 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5162
5163 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5164 set_huge_pte_at(mm, new_addr, dst_pte, pte);
5165
5166 if (src_ptl != dst_ptl)
5167 spin_unlock(src_ptl);
5168 spin_unlock(dst_ptl);
5169}
5170
5171int move_hugetlb_page_tables(struct vm_area_struct *vma,
5172 struct vm_area_struct *new_vma,
5173 unsigned long old_addr, unsigned long new_addr,
5174 unsigned long len)
5175{
5176 struct hstate *h = hstate_vma(vma);
5177 struct address_space *mapping = vma->vm_file->f_mapping;
5178 unsigned long sz = huge_page_size(h);
5179 struct mm_struct *mm = vma->vm_mm;
5180 unsigned long old_end = old_addr + len;
5181 unsigned long last_addr_mask;
5182 pte_t *src_pte, *dst_pte;
5183 struct mmu_notifier_range range;
5184 bool shared_pmd = false;
5185
5186 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5187 old_end);
5188 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5189 /*
5190 * In case of shared PMDs, we should cover the maximum possible
5191 * range.
5192 */
5193 flush_cache_range(vma, range.start, range.end);
5194
5195 mmu_notifier_invalidate_range_start(&range);
5196 last_addr_mask = hugetlb_mask_last_page(h);
5197 /* Prevent race with file truncation */
5198 hugetlb_vma_lock_write(vma);
5199 i_mmap_lock_write(mapping);
5200 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5201 src_pte = huge_pte_offset(mm, old_addr, sz);
5202 if (!src_pte) {
5203 old_addr |= last_addr_mask;
5204 new_addr |= last_addr_mask;
5205 continue;
5206 }
5207 if (huge_pte_none(huge_ptep_get(src_pte)))
5208 continue;
5209
5210 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5211 shared_pmd = true;
5212 old_addr |= last_addr_mask;
5213 new_addr |= last_addr_mask;
5214 continue;
5215 }
5216
5217 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5218 if (!dst_pte)
5219 break;
5220
5221 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5222 }
5223
5224 if (shared_pmd)
5225 flush_tlb_range(vma, range.start, range.end);
5226 else
5227 flush_tlb_range(vma, old_end - len, old_end);
5228 mmu_notifier_invalidate_range_end(&range);
5229 i_mmap_unlock_write(mapping);
5230 hugetlb_vma_unlock_write(vma);
5231
5232 return len + old_addr - old_end;
5233}
5234
5235static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5236 unsigned long start, unsigned long end,
5237 struct page *ref_page, zap_flags_t zap_flags)
5238{
5239 struct mm_struct *mm = vma->vm_mm;
5240 unsigned long address;
5241 pte_t *ptep;
5242 pte_t pte;
5243 spinlock_t *ptl;
5244 struct page *page;
5245 struct hstate *h = hstate_vma(vma);
5246 unsigned long sz = huge_page_size(h);
5247 unsigned long last_addr_mask;
5248 bool force_flush = false;
5249
5250 WARN_ON(!is_vm_hugetlb_page(vma));
5251 BUG_ON(start & ~huge_page_mask(h));
5252 BUG_ON(end & ~huge_page_mask(h));
5253
5254 /*
5255 * This is a hugetlb vma, all the pte entries should point
5256 * to huge page.
5257 */
5258 tlb_change_page_size(tlb, sz);
5259 tlb_start_vma(tlb, vma);
5260
5261 last_addr_mask = hugetlb_mask_last_page(h);
5262 address = start;
5263 for (; address < end; address += sz) {
5264 ptep = huge_pte_offset(mm, address, sz);
5265 if (!ptep) {
5266 address |= last_addr_mask;
5267 continue;
5268 }
5269
5270 ptl = huge_pte_lock(h, mm, ptep);
5271 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5272 spin_unlock(ptl);
5273 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5274 force_flush = true;
5275 address |= last_addr_mask;
5276 continue;
5277 }
5278
5279 pte = huge_ptep_get(ptep);
5280 if (huge_pte_none(pte)) {
5281 spin_unlock(ptl);
5282 continue;
5283 }
5284
5285 /*
5286 * Migrating hugepage or HWPoisoned hugepage is already
5287 * unmapped and its refcount is dropped, so just clear pte here.
5288 */
5289 if (unlikely(!pte_present(pte))) {
5290 /*
5291 * If the pte was wr-protected by uffd-wp in any of the
5292 * swap forms, meanwhile the caller does not want to
5293 * drop the uffd-wp bit in this zap, then replace the
5294 * pte with a marker.
5295 */
5296 if (pte_swp_uffd_wp_any(pte) &&
5297 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5298 set_huge_pte_at(mm, address, ptep,
5299 make_pte_marker(PTE_MARKER_UFFD_WP));
5300 else
5301 huge_pte_clear(mm, address, ptep, sz);
5302 spin_unlock(ptl);
5303 continue;
5304 }
5305
5306 page = pte_page(pte);
5307 /*
5308 * If a reference page is supplied, it is because a specific
5309 * page is being unmapped, not a range. Ensure the page we
5310 * are about to unmap is the actual page of interest.
5311 */
5312 if (ref_page) {
5313 if (page != ref_page) {
5314 spin_unlock(ptl);
5315 continue;
5316 }
5317 /*
5318 * Mark the VMA as having unmapped its page so that
5319 * future faults in this VMA will fail rather than
5320 * looking like data was lost
5321 */
5322 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5323 }
5324
5325 pte = huge_ptep_get_and_clear(mm, address, ptep);
5326 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5327 if (huge_pte_dirty(pte))
5328 set_page_dirty(page);
5329 /* Leave a uffd-wp pte marker if needed */
5330 if (huge_pte_uffd_wp(pte) &&
5331 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5332 set_huge_pte_at(mm, address, ptep,
5333 make_pte_marker(PTE_MARKER_UFFD_WP));
5334 hugetlb_count_sub(pages_per_huge_page(h), mm);
5335 page_remove_rmap(page, vma, true);
5336
5337 spin_unlock(ptl);
5338 tlb_remove_page_size(tlb, page, huge_page_size(h));
5339 /*
5340 * Bail out after unmapping reference page if supplied
5341 */
5342 if (ref_page)
5343 break;
5344 }
5345 tlb_end_vma(tlb, vma);
5346
5347 /*
5348 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5349 * could defer the flush until now, since by holding i_mmap_rwsem we
5350 * guaranteed that the last refernece would not be dropped. But we must
5351 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5352 * dropped and the last reference to the shared PMDs page might be
5353 * dropped as well.
5354 *
5355 * In theory we could defer the freeing of the PMD pages as well, but
5356 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5357 * detect sharing, so we cannot defer the release of the page either.
5358 * Instead, do flush now.
5359 */
5360 if (force_flush)
5361 tlb_flush_mmu_tlbonly(tlb);
5362}
5363
5364void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5365 struct vm_area_struct *vma, unsigned long start,
5366 unsigned long end, struct page *ref_page,
5367 zap_flags_t zap_flags)
5368{
5369 hugetlb_vma_lock_write(vma);
5370 i_mmap_lock_write(vma->vm_file->f_mapping);
5371
5372 /* mmu notification performed in caller */
5373 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5374
5375 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5376 /*
5377 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5378 * When the vma_lock is freed, this makes the vma ineligible
5379 * for pmd sharing. And, i_mmap_rwsem is required to set up
5380 * pmd sharing. This is important as page tables for this
5381 * unmapped range will be asynchrously deleted. If the page
5382 * tables are shared, there will be issues when accessed by
5383 * someone else.
5384 */
5385 __hugetlb_vma_unlock_write_free(vma);
5386 i_mmap_unlock_write(vma->vm_file->f_mapping);
5387 } else {
5388 i_mmap_unlock_write(vma->vm_file->f_mapping);
5389 hugetlb_vma_unlock_write(vma);
5390 }
5391}
5392
5393void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5394 unsigned long end, struct page *ref_page,
5395 zap_flags_t zap_flags)
5396{
5397 struct mmu_notifier_range range;
5398 struct mmu_gather tlb;
5399
5400 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
5401 start, end);
5402 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5403 mmu_notifier_invalidate_range_start(&range);
5404 tlb_gather_mmu(&tlb, vma->vm_mm);
5405
5406 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5407
5408 mmu_notifier_invalidate_range_end(&range);
5409 tlb_finish_mmu(&tlb);
5410}
5411
5412/*
5413 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5414 * mapping it owns the reserve page for. The intention is to unmap the page
5415 * from other VMAs and let the children be SIGKILLed if they are faulting the
5416 * same region.
5417 */
5418static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5419 struct page *page, unsigned long address)
5420{
5421 struct hstate *h = hstate_vma(vma);
5422 struct vm_area_struct *iter_vma;
5423 struct address_space *mapping;
5424 pgoff_t pgoff;
5425
5426 /*
5427 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5428 * from page cache lookup which is in HPAGE_SIZE units.
5429 */
5430 address = address & huge_page_mask(h);
5431 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5432 vma->vm_pgoff;
5433 mapping = vma->vm_file->f_mapping;
5434
5435 /*
5436 * Take the mapping lock for the duration of the table walk. As
5437 * this mapping should be shared between all the VMAs,
5438 * __unmap_hugepage_range() is called as the lock is already held
5439 */
5440 i_mmap_lock_write(mapping);
5441 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5442 /* Do not unmap the current VMA */
5443 if (iter_vma == vma)
5444 continue;
5445
5446 /*
5447 * Shared VMAs have their own reserves and do not affect
5448 * MAP_PRIVATE accounting but it is possible that a shared
5449 * VMA is using the same page so check and skip such VMAs.
5450 */
5451 if (iter_vma->vm_flags & VM_MAYSHARE)
5452 continue;
5453
5454 /*
5455 * Unmap the page from other VMAs without their own reserves.
5456 * They get marked to be SIGKILLed if they fault in these
5457 * areas. This is because a future no-page fault on this VMA
5458 * could insert a zeroed page instead of the data existing
5459 * from the time of fork. This would look like data corruption
5460 */
5461 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5462 unmap_hugepage_range(iter_vma, address,
5463 address + huge_page_size(h), page, 0);
5464 }
5465 i_mmap_unlock_write(mapping);
5466}
5467
5468/*
5469 * hugetlb_wp() should be called with page lock of the original hugepage held.
5470 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5471 * cannot race with other handlers or page migration.
5472 * Keep the pte_same checks anyway to make transition from the mutex easier.
5473 */
5474static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5475 unsigned long address, pte_t *ptep, unsigned int flags,
5476 struct page *pagecache_page, spinlock_t *ptl)
5477{
5478 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5479 pte_t pte;
5480 struct hstate *h = hstate_vma(vma);
5481 struct page *old_page, *new_page;
5482 int outside_reserve = 0;
5483 vm_fault_t ret = 0;
5484 unsigned long haddr = address & huge_page_mask(h);
5485 struct mmu_notifier_range range;
5486
5487 /*
5488 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5489 * PTE mapped R/O such as maybe_mkwrite() would do.
5490 */
5491 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5492 return VM_FAULT_SIGSEGV;
5493
5494 /* Let's take out MAP_SHARED mappings first. */
5495 if (vma->vm_flags & VM_MAYSHARE) {
5496 set_huge_ptep_writable(vma, haddr, ptep);
5497 return 0;
5498 }
5499
5500 pte = huge_ptep_get(ptep);
5501 old_page = pte_page(pte);
5502
5503 delayacct_wpcopy_start();
5504
5505retry_avoidcopy:
5506 /*
5507 * If no-one else is actually using this page, we're the exclusive
5508 * owner and can reuse this page.
5509 */
5510 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5511 if (!PageAnonExclusive(old_page))
5512 page_move_anon_rmap(old_page, vma);
5513 if (likely(!unshare))
5514 set_huge_ptep_writable(vma, haddr, ptep);
5515
5516 delayacct_wpcopy_end();
5517 return 0;
5518 }
5519 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5520 old_page);
5521
5522 /*
5523 * If the process that created a MAP_PRIVATE mapping is about to
5524 * perform a COW due to a shared page count, attempt to satisfy
5525 * the allocation without using the existing reserves. The pagecache
5526 * page is used to determine if the reserve at this address was
5527 * consumed or not. If reserves were used, a partial faulted mapping
5528 * at the time of fork() could consume its reserves on COW instead
5529 * of the full address range.
5530 */
5531 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5532 old_page != pagecache_page)
5533 outside_reserve = 1;
5534
5535 get_page(old_page);
5536
5537 /*
5538 * Drop page table lock as buddy allocator may be called. It will
5539 * be acquired again before returning to the caller, as expected.
5540 */
5541 spin_unlock(ptl);
5542 new_page = alloc_huge_page(vma, haddr, outside_reserve);
5543
5544 if (IS_ERR(new_page)) {
5545 /*
5546 * If a process owning a MAP_PRIVATE mapping fails to COW,
5547 * it is due to references held by a child and an insufficient
5548 * huge page pool. To guarantee the original mappers
5549 * reliability, unmap the page from child processes. The child
5550 * may get SIGKILLed if it later faults.
5551 */
5552 if (outside_reserve) {
5553 struct address_space *mapping = vma->vm_file->f_mapping;
5554 pgoff_t idx;
5555 u32 hash;
5556
5557 put_page(old_page);
5558 /*
5559 * Drop hugetlb_fault_mutex and vma_lock before
5560 * unmapping. unmapping needs to hold vma_lock
5561 * in write mode. Dropping vma_lock in read mode
5562 * here is OK as COW mappings do not interact with
5563 * PMD sharing.
5564 *
5565 * Reacquire both after unmap operation.
5566 */
5567 idx = vma_hugecache_offset(h, vma, haddr);
5568 hash = hugetlb_fault_mutex_hash(mapping, idx);
5569 hugetlb_vma_unlock_read(vma);
5570 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5571
5572 unmap_ref_private(mm, vma, old_page, haddr);
5573
5574 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5575 hugetlb_vma_lock_read(vma);
5576 spin_lock(ptl);
5577 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5578 if (likely(ptep &&
5579 pte_same(huge_ptep_get(ptep), pte)))
5580 goto retry_avoidcopy;
5581 /*
5582 * race occurs while re-acquiring page table
5583 * lock, and our job is done.
5584 */
5585 delayacct_wpcopy_end();
5586 return 0;
5587 }
5588
5589 ret = vmf_error(PTR_ERR(new_page));
5590 goto out_release_old;
5591 }
5592
5593 /*
5594 * When the original hugepage is shared one, it does not have
5595 * anon_vma prepared.
5596 */
5597 if (unlikely(anon_vma_prepare(vma))) {
5598 ret = VM_FAULT_OOM;
5599 goto out_release_all;
5600 }
5601
5602 copy_user_huge_page(new_page, old_page, address, vma,
5603 pages_per_huge_page(h));
5604 __SetPageUptodate(new_page);
5605
5606 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5607 haddr + huge_page_size(h));
5608 mmu_notifier_invalidate_range_start(&range);
5609
5610 /*
5611 * Retake the page table lock to check for racing updates
5612 * before the page tables are altered
5613 */
5614 spin_lock(ptl);
5615 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5616 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5617 /* Break COW or unshare */
5618 huge_ptep_clear_flush(vma, haddr, ptep);
5619 mmu_notifier_invalidate_range(mm, range.start, range.end);
5620 page_remove_rmap(old_page, vma, true);
5621 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5622 set_huge_pte_at(mm, haddr, ptep,
5623 make_huge_pte(vma, new_page, !unshare));
5624 SetHPageMigratable(new_page);
5625 /* Make the old page be freed below */
5626 new_page = old_page;
5627 }
5628 spin_unlock(ptl);
5629 mmu_notifier_invalidate_range_end(&range);
5630out_release_all:
5631 /*
5632 * No restore in case of successful pagetable update (Break COW or
5633 * unshare)
5634 */
5635 if (new_page != old_page)
5636 restore_reserve_on_error(h, vma, haddr, new_page);
5637 put_page(new_page);
5638out_release_old:
5639 put_page(old_page);
5640
5641 spin_lock(ptl); /* Caller expects lock to be held */
5642
5643 delayacct_wpcopy_end();
5644 return ret;
5645}
5646
5647/*
5648 * Return whether there is a pagecache page to back given address within VMA.
5649 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5650 */
5651static bool hugetlbfs_pagecache_present(struct hstate *h,
5652 struct vm_area_struct *vma, unsigned long address)
5653{
5654 struct address_space *mapping;
5655 pgoff_t idx;
5656 struct page *page;
5657
5658 mapping = vma->vm_file->f_mapping;
5659 idx = vma_hugecache_offset(h, vma, address);
5660
5661 page = find_get_page(mapping, idx);
5662 if (page)
5663 put_page(page);
5664 return page != NULL;
5665}
5666
5667int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5668 pgoff_t idx)
5669{
5670 struct folio *folio = page_folio(page);
5671 struct inode *inode = mapping->host;
5672 struct hstate *h = hstate_inode(inode);
5673 int err;
5674
5675 __folio_set_locked(folio);
5676 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5677
5678 if (unlikely(err)) {
5679 __folio_clear_locked(folio);
5680 return err;
5681 }
5682 ClearHPageRestoreReserve(page);
5683
5684 /*
5685 * mark folio dirty so that it will not be removed from cache/file
5686 * by non-hugetlbfs specific code paths.
5687 */
5688 folio_mark_dirty(folio);
5689
5690 spin_lock(&inode->i_lock);
5691 inode->i_blocks += blocks_per_huge_page(h);
5692 spin_unlock(&inode->i_lock);
5693 return 0;
5694}
5695
5696static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5697 struct address_space *mapping,
5698 pgoff_t idx,
5699 unsigned int flags,
5700 unsigned long haddr,
5701 unsigned long addr,
5702 unsigned long reason)
5703{
5704 u32 hash;
5705 struct vm_fault vmf = {
5706 .vma = vma,
5707 .address = haddr,
5708 .real_address = addr,
5709 .flags = flags,
5710
5711 /*
5712 * Hard to debug if it ends up being
5713 * used by a callee that assumes
5714 * something about the other
5715 * uninitialized fields... same as in
5716 * memory.c
5717 */
5718 };
5719
5720 /*
5721 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5722 * userfault. Also mmap_lock could be dropped due to handling
5723 * userfault, any vma operation should be careful from here.
5724 */
5725 hugetlb_vma_unlock_read(vma);
5726 hash = hugetlb_fault_mutex_hash(mapping, idx);
5727 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5728 return handle_userfault(&vmf, reason);
5729}
5730
5731/*
5732 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5733 * false if pte changed or is changing.
5734 */
5735static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5736 pte_t *ptep, pte_t old_pte)
5737{
5738 spinlock_t *ptl;
5739 bool same;
5740
5741 ptl = huge_pte_lock(h, mm, ptep);
5742 same = pte_same(huge_ptep_get(ptep), old_pte);
5743 spin_unlock(ptl);
5744
5745 return same;
5746}
5747
5748static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5749 struct vm_area_struct *vma,
5750 struct address_space *mapping, pgoff_t idx,
5751 unsigned long address, pte_t *ptep,
5752 pte_t old_pte, unsigned int flags)
5753{
5754 struct hstate *h = hstate_vma(vma);
5755 vm_fault_t ret = VM_FAULT_SIGBUS;
5756 int anon_rmap = 0;
5757 unsigned long size;
5758 struct page *page;
5759 pte_t new_pte;
5760 spinlock_t *ptl;
5761 unsigned long haddr = address & huge_page_mask(h);
5762 bool new_page, new_pagecache_page = false;
5763 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5764
5765 /*
5766 * Currently, we are forced to kill the process in the event the
5767 * original mapper has unmapped pages from the child due to a failed
5768 * COW/unsharing. Warn that such a situation has occurred as it may not
5769 * be obvious.
5770 */
5771 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5772 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5773 current->pid);
5774 goto out;
5775 }
5776
5777 /*
5778 * Use page lock to guard against racing truncation
5779 * before we get page_table_lock.
5780 */
5781 new_page = false;
5782 page = find_lock_page(mapping, idx);
5783 if (!page) {
5784 size = i_size_read(mapping->host) >> huge_page_shift(h);
5785 if (idx >= size)
5786 goto out;
5787 /* Check for page in userfault range */
5788 if (userfaultfd_missing(vma)) {
5789 /*
5790 * Since hugetlb_no_page() was examining pte
5791 * without pgtable lock, we need to re-test under
5792 * lock because the pte may not be stable and could
5793 * have changed from under us. Try to detect
5794 * either changed or during-changing ptes and retry
5795 * properly when needed.
5796 *
5797 * Note that userfaultfd is actually fine with
5798 * false positives (e.g. caused by pte changed),
5799 * but not wrong logical events (e.g. caused by
5800 * reading a pte during changing). The latter can
5801 * confuse the userspace, so the strictness is very
5802 * much preferred. E.g., MISSING event should
5803 * never happen on the page after UFFDIO_COPY has
5804 * correctly installed the page and returned.
5805 */
5806 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5807 ret = 0;
5808 goto out;
5809 }
5810
5811 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5812 haddr, address,
5813 VM_UFFD_MISSING);
5814 }
5815
5816 page = alloc_huge_page(vma, haddr, 0);
5817 if (IS_ERR(page)) {
5818 /*
5819 * Returning error will result in faulting task being
5820 * sent SIGBUS. The hugetlb fault mutex prevents two
5821 * tasks from racing to fault in the same page which
5822 * could result in false unable to allocate errors.
5823 * Page migration does not take the fault mutex, but
5824 * does a clear then write of pte's under page table
5825 * lock. Page fault code could race with migration,
5826 * notice the clear pte and try to allocate a page
5827 * here. Before returning error, get ptl and make
5828 * sure there really is no pte entry.
5829 */
5830 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5831 ret = vmf_error(PTR_ERR(page));
5832 else
5833 ret = 0;
5834 goto out;
5835 }
5836 clear_huge_page(page, address, pages_per_huge_page(h));
5837 __SetPageUptodate(page);
5838 new_page = true;
5839
5840 if (vma->vm_flags & VM_MAYSHARE) {
5841 int err = hugetlb_add_to_page_cache(page, mapping, idx);
5842 if (err) {
5843 /*
5844 * err can't be -EEXIST which implies someone
5845 * else consumed the reservation since hugetlb
5846 * fault mutex is held when add a hugetlb page
5847 * to the page cache. So it's safe to call
5848 * restore_reserve_on_error() here.
5849 */
5850 restore_reserve_on_error(h, vma, haddr, page);
5851 put_page(page);
5852 goto out;
5853 }
5854 new_pagecache_page = true;
5855 } else {
5856 lock_page(page);
5857 if (unlikely(anon_vma_prepare(vma))) {
5858 ret = VM_FAULT_OOM;
5859 goto backout_unlocked;
5860 }
5861 anon_rmap = 1;
5862 }
5863 } else {
5864 /*
5865 * If memory error occurs between mmap() and fault, some process
5866 * don't have hwpoisoned swap entry for errored virtual address.
5867 * So we need to block hugepage fault by PG_hwpoison bit check.
5868 */
5869 if (unlikely(PageHWPoison(page))) {
5870 ret = VM_FAULT_HWPOISON_LARGE |
5871 VM_FAULT_SET_HINDEX(hstate_index(h));
5872 goto backout_unlocked;
5873 }
5874
5875 /* Check for page in userfault range. */
5876 if (userfaultfd_minor(vma)) {
5877 unlock_page(page);
5878 put_page(page);
5879 /* See comment in userfaultfd_missing() block above */
5880 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5881 ret = 0;
5882 goto out;
5883 }
5884 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5885 haddr, address,
5886 VM_UFFD_MINOR);
5887 }
5888 }
5889
5890 /*
5891 * If we are going to COW a private mapping later, we examine the
5892 * pending reservations for this page now. This will ensure that
5893 * any allocations necessary to record that reservation occur outside
5894 * the spinlock.
5895 */
5896 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5897 if (vma_needs_reservation(h, vma, haddr) < 0) {
5898 ret = VM_FAULT_OOM;
5899 goto backout_unlocked;
5900 }
5901 /* Just decrements count, does not deallocate */
5902 vma_end_reservation(h, vma, haddr);
5903 }
5904
5905 ptl = huge_pte_lock(h, mm, ptep);
5906 ret = 0;
5907 /* If pte changed from under us, retry */
5908 if (!pte_same(huge_ptep_get(ptep), old_pte))
5909 goto backout;
5910
5911 if (anon_rmap)
5912 hugepage_add_new_anon_rmap(page, vma, haddr);
5913 else
5914 page_dup_file_rmap(page, true);
5915 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5916 && (vma->vm_flags & VM_SHARED)));
5917 /*
5918 * If this pte was previously wr-protected, keep it wr-protected even
5919 * if populated.
5920 */
5921 if (unlikely(pte_marker_uffd_wp(old_pte)))
5922 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5923 set_huge_pte_at(mm, haddr, ptep, new_pte);
5924
5925 hugetlb_count_add(pages_per_huge_page(h), mm);
5926 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5927 /* Optimization, do the COW without a second fault */
5928 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5929 }
5930
5931 spin_unlock(ptl);
5932
5933 /*
5934 * Only set HPageMigratable in newly allocated pages. Existing pages
5935 * found in the pagecache may not have HPageMigratableset if they have
5936 * been isolated for migration.
5937 */
5938 if (new_page)
5939 SetHPageMigratable(page);
5940
5941 unlock_page(page);
5942out:
5943 hugetlb_vma_unlock_read(vma);
5944 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5945 return ret;
5946
5947backout:
5948 spin_unlock(ptl);
5949backout_unlocked:
5950 if (new_page && !new_pagecache_page)
5951 restore_reserve_on_error(h, vma, haddr, page);
5952
5953 unlock_page(page);
5954 put_page(page);
5955 goto out;
5956}
5957
5958#ifdef CONFIG_SMP
5959u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5960{
5961 unsigned long key[2];
5962 u32 hash;
5963
5964 key[0] = (unsigned long) mapping;
5965 key[1] = idx;
5966
5967 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5968
5969 return hash & (num_fault_mutexes - 1);
5970}
5971#else
5972/*
5973 * For uniprocessor systems we always use a single mutex, so just
5974 * return 0 and avoid the hashing overhead.
5975 */
5976u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5977{
5978 return 0;
5979}
5980#endif
5981
5982vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5983 unsigned long address, unsigned int flags)
5984{
5985 pte_t *ptep, entry;
5986 spinlock_t *ptl;
5987 vm_fault_t ret;
5988 u32 hash;
5989 pgoff_t idx;
5990 struct page *page = NULL;
5991 struct page *pagecache_page = NULL;
5992 struct hstate *h = hstate_vma(vma);
5993 struct address_space *mapping;
5994 int need_wait_lock = 0;
5995 unsigned long haddr = address & huge_page_mask(h);
5996
5997 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5998 if (ptep) {
5999 /*
6000 * Since we hold no locks, ptep could be stale. That is
6001 * OK as we are only making decisions based on content and
6002 * not actually modifying content here.
6003 */
6004 entry = huge_ptep_get(ptep);
6005 if (unlikely(is_hugetlb_entry_migration(entry))) {
6006 migration_entry_wait_huge(vma, ptep);
6007 return 0;
6008 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6009 return VM_FAULT_HWPOISON_LARGE |
6010 VM_FAULT_SET_HINDEX(hstate_index(h));
6011 }
6012
6013 /*
6014 * Serialize hugepage allocation and instantiation, so that we don't
6015 * get spurious allocation failures if two CPUs race to instantiate
6016 * the same page in the page cache.
6017 */
6018 mapping = vma->vm_file->f_mapping;
6019 idx = vma_hugecache_offset(h, vma, haddr);
6020 hash = hugetlb_fault_mutex_hash(mapping, idx);
6021 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6022
6023 /*
6024 * Acquire vma lock before calling huge_pte_alloc and hold
6025 * until finished with ptep. This prevents huge_pmd_unshare from
6026 * being called elsewhere and making the ptep no longer valid.
6027 *
6028 * ptep could have already be assigned via huge_pte_offset. That
6029 * is OK, as huge_pte_alloc will return the same value unless
6030 * something has changed.
6031 */
6032 hugetlb_vma_lock_read(vma);
6033 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6034 if (!ptep) {
6035 hugetlb_vma_unlock_read(vma);
6036 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6037 return VM_FAULT_OOM;
6038 }
6039
6040 entry = huge_ptep_get(ptep);
6041 /* PTE markers should be handled the same way as none pte */
6042 if (huge_pte_none_mostly(entry))
6043 /*
6044 * hugetlb_no_page will drop vma lock and hugetlb fault
6045 * mutex internally, which make us return immediately.
6046 */
6047 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6048 entry, flags);
6049
6050 ret = 0;
6051
6052 /*
6053 * entry could be a migration/hwpoison entry at this point, so this
6054 * check prevents the kernel from going below assuming that we have
6055 * an active hugepage in pagecache. This goto expects the 2nd page
6056 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6057 * properly handle it.
6058 */
6059 if (!pte_present(entry))
6060 goto out_mutex;
6061
6062 /*
6063 * If we are going to COW/unshare the mapping later, we examine the
6064 * pending reservations for this page now. This will ensure that any
6065 * allocations necessary to record that reservation occur outside the
6066 * spinlock. Also lookup the pagecache page now as it is used to
6067 * determine if a reservation has been consumed.
6068 */
6069 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6070 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6071 if (vma_needs_reservation(h, vma, haddr) < 0) {
6072 ret = VM_FAULT_OOM;
6073 goto out_mutex;
6074 }
6075 /* Just decrements count, does not deallocate */
6076 vma_end_reservation(h, vma, haddr);
6077
6078 pagecache_page = find_lock_page(mapping, idx);
6079 }
6080
6081 ptl = huge_pte_lock(h, mm, ptep);
6082
6083 /* Check for a racing update before calling hugetlb_wp() */
6084 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6085 goto out_ptl;
6086
6087 /* Handle userfault-wp first, before trying to lock more pages */
6088 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6089 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6090 struct vm_fault vmf = {
6091 .vma = vma,
6092 .address = haddr,
6093 .real_address = address,
6094 .flags = flags,
6095 };
6096
6097 spin_unlock(ptl);
6098 if (pagecache_page) {
6099 unlock_page(pagecache_page);
6100 put_page(pagecache_page);
6101 }
6102 hugetlb_vma_unlock_read(vma);
6103 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6104 return handle_userfault(&vmf, VM_UFFD_WP);
6105 }
6106
6107 /*
6108 * hugetlb_wp() requires page locks of pte_page(entry) and
6109 * pagecache_page, so here we need take the former one
6110 * when page != pagecache_page or !pagecache_page.
6111 */
6112 page = pte_page(entry);
6113 if (page != pagecache_page)
6114 if (!trylock_page(page)) {
6115 need_wait_lock = 1;
6116 goto out_ptl;
6117 }
6118
6119 get_page(page);
6120
6121 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6122 if (!huge_pte_write(entry)) {
6123 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6124 pagecache_page, ptl);
6125 goto out_put_page;
6126 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6127 entry = huge_pte_mkdirty(entry);
6128 }
6129 }
6130 entry = pte_mkyoung(entry);
6131 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6132 flags & FAULT_FLAG_WRITE))
6133 update_mmu_cache(vma, haddr, ptep);
6134out_put_page:
6135 if (page != pagecache_page)
6136 unlock_page(page);
6137 put_page(page);
6138out_ptl:
6139 spin_unlock(ptl);
6140
6141 if (pagecache_page) {
6142 unlock_page(pagecache_page);
6143 put_page(pagecache_page);
6144 }
6145out_mutex:
6146 hugetlb_vma_unlock_read(vma);
6147 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6148 /*
6149 * Generally it's safe to hold refcount during waiting page lock. But
6150 * here we just wait to defer the next page fault to avoid busy loop and
6151 * the page is not used after unlocked before returning from the current
6152 * page fault. So we are safe from accessing freed page, even if we wait
6153 * here without taking refcount.
6154 */
6155 if (need_wait_lock)
6156 wait_on_page_locked(page);
6157 return ret;
6158}
6159
6160#ifdef CONFIG_USERFAULTFD
6161/*
6162 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
6163 * modifications for huge pages.
6164 */
6165int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6166 pte_t *dst_pte,
6167 struct vm_area_struct *dst_vma,
6168 unsigned long dst_addr,
6169 unsigned long src_addr,
6170 enum mcopy_atomic_mode mode,
6171 struct page **pagep,
6172 bool wp_copy)
6173{
6174 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6175 struct hstate *h = hstate_vma(dst_vma);
6176 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6177 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6178 unsigned long size;
6179 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6180 pte_t _dst_pte;
6181 spinlock_t *ptl;
6182 int ret = -ENOMEM;
6183 struct page *page;
6184 int writable;
6185 bool page_in_pagecache = false;
6186
6187 if (is_continue) {
6188 ret = -EFAULT;
6189 page = find_lock_page(mapping, idx);
6190 if (!page)
6191 goto out;
6192 page_in_pagecache = true;
6193 } else if (!*pagep) {
6194 /* If a page already exists, then it's UFFDIO_COPY for
6195 * a non-missing case. Return -EEXIST.
6196 */
6197 if (vm_shared &&
6198 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6199 ret = -EEXIST;
6200 goto out;
6201 }
6202
6203 page = alloc_huge_page(dst_vma, dst_addr, 0);
6204 if (IS_ERR(page)) {
6205 ret = -ENOMEM;
6206 goto out;
6207 }
6208
6209 ret = copy_huge_page_from_user(page,
6210 (const void __user *) src_addr,
6211 pages_per_huge_page(h), false);
6212
6213 /* fallback to copy_from_user outside mmap_lock */
6214 if (unlikely(ret)) {
6215 ret = -ENOENT;
6216 /* Free the allocated page which may have
6217 * consumed a reservation.
6218 */
6219 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6220 put_page(page);
6221
6222 /* Allocate a temporary page to hold the copied
6223 * contents.
6224 */
6225 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6226 if (!page) {
6227 ret = -ENOMEM;
6228 goto out;
6229 }
6230 *pagep = page;
6231 /* Set the outparam pagep and return to the caller to
6232 * copy the contents outside the lock. Don't free the
6233 * page.
6234 */
6235 goto out;
6236 }
6237 } else {
6238 if (vm_shared &&
6239 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6240 put_page(*pagep);
6241 ret = -EEXIST;
6242 *pagep = NULL;
6243 goto out;
6244 }
6245
6246 page = alloc_huge_page(dst_vma, dst_addr, 0);
6247 if (IS_ERR(page)) {
6248 put_page(*pagep);
6249 ret = -ENOMEM;
6250 *pagep = NULL;
6251 goto out;
6252 }
6253 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6254 pages_per_huge_page(h));
6255 put_page(*pagep);
6256 *pagep = NULL;
6257 }
6258
6259 /*
6260 * The memory barrier inside __SetPageUptodate makes sure that
6261 * preceding stores to the page contents become visible before
6262 * the set_pte_at() write.
6263 */
6264 __SetPageUptodate(page);
6265
6266 /* Add shared, newly allocated pages to the page cache. */
6267 if (vm_shared && !is_continue) {
6268 size = i_size_read(mapping->host) >> huge_page_shift(h);
6269 ret = -EFAULT;
6270 if (idx >= size)
6271 goto out_release_nounlock;
6272
6273 /*
6274 * Serialization between remove_inode_hugepages() and
6275 * hugetlb_add_to_page_cache() below happens through the
6276 * hugetlb_fault_mutex_table that here must be hold by
6277 * the caller.
6278 */
6279 ret = hugetlb_add_to_page_cache(page, mapping, idx);
6280 if (ret)
6281 goto out_release_nounlock;
6282 page_in_pagecache = true;
6283 }
6284
6285 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6286
6287 ret = -EIO;
6288 if (PageHWPoison(page))
6289 goto out_release_unlock;
6290
6291 /*
6292 * We allow to overwrite a pte marker: consider when both MISSING|WP
6293 * registered, we firstly wr-protect a none pte which has no page cache
6294 * page backing it, then access the page.
6295 */
6296 ret = -EEXIST;
6297 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6298 goto out_release_unlock;
6299
6300 if (page_in_pagecache)
6301 page_dup_file_rmap(page, true);
6302 else
6303 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6304
6305 /*
6306 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6307 * with wp flag set, don't set pte write bit.
6308 */
6309 if (wp_copy || (is_continue && !vm_shared))
6310 writable = 0;
6311 else
6312 writable = dst_vma->vm_flags & VM_WRITE;
6313
6314 _dst_pte = make_huge_pte(dst_vma, page, writable);
6315 /*
6316 * Always mark UFFDIO_COPY page dirty; note that this may not be
6317 * extremely important for hugetlbfs for now since swapping is not
6318 * supported, but we should still be clear in that this page cannot be
6319 * thrown away at will, even if write bit not set.
6320 */
6321 _dst_pte = huge_pte_mkdirty(_dst_pte);
6322 _dst_pte = pte_mkyoung(_dst_pte);
6323
6324 if (wp_copy)
6325 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6326
6327 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6328
6329 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6330
6331 /* No need to invalidate - it was non-present before */
6332 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6333
6334 spin_unlock(ptl);
6335 if (!is_continue)
6336 SetHPageMigratable(page);
6337 if (vm_shared || is_continue)
6338 unlock_page(page);
6339 ret = 0;
6340out:
6341 return ret;
6342out_release_unlock:
6343 spin_unlock(ptl);
6344 if (vm_shared || is_continue)
6345 unlock_page(page);
6346out_release_nounlock:
6347 if (!page_in_pagecache)
6348 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6349 put_page(page);
6350 goto out;
6351}
6352#endif /* CONFIG_USERFAULTFD */
6353
6354static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6355 int refs, struct page **pages,
6356 struct vm_area_struct **vmas)
6357{
6358 int nr;
6359
6360 for (nr = 0; nr < refs; nr++) {
6361 if (likely(pages))
6362 pages[nr] = nth_page(page, nr);
6363 if (vmas)
6364 vmas[nr] = vma;
6365 }
6366}
6367
6368static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6369 unsigned int flags, pte_t *pte,
6370 bool *unshare)
6371{
6372 pte_t pteval = huge_ptep_get(pte);
6373
6374 *unshare = false;
6375 if (is_swap_pte(pteval))
6376 return true;
6377 if (huge_pte_write(pteval))
6378 return false;
6379 if (flags & FOLL_WRITE)
6380 return true;
6381 if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6382 *unshare = true;
6383 return true;
6384 }
6385 return false;
6386}
6387
6388struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6389 unsigned long address, unsigned int flags)
6390{
6391 struct hstate *h = hstate_vma(vma);
6392 struct mm_struct *mm = vma->vm_mm;
6393 unsigned long haddr = address & huge_page_mask(h);
6394 struct page *page = NULL;
6395 spinlock_t *ptl;
6396 pte_t *pte, entry;
6397
6398 /*
6399 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6400 * follow_hugetlb_page().
6401 */
6402 if (WARN_ON_ONCE(flags & FOLL_PIN))
6403 return NULL;
6404
6405retry:
6406 pte = huge_pte_offset(mm, haddr, huge_page_size(h));
6407 if (!pte)
6408 return NULL;
6409
6410 ptl = huge_pte_lock(h, mm, pte);
6411 entry = huge_ptep_get(pte);
6412 if (pte_present(entry)) {
6413 page = pte_page(entry) +
6414 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6415 /*
6416 * Note that page may be a sub-page, and with vmemmap
6417 * optimizations the page struct may be read only.
6418 * try_grab_page() will increase the ref count on the
6419 * head page, so this will be OK.
6420 *
6421 * try_grab_page() should always be able to get the page here,
6422 * because we hold the ptl lock and have verified pte_present().
6423 */
6424 if (try_grab_page(page, flags)) {
6425 page = NULL;
6426 goto out;
6427 }
6428 } else {
6429 if (is_hugetlb_entry_migration(entry)) {
6430 spin_unlock(ptl);
6431 __migration_entry_wait_huge(pte, ptl);
6432 goto retry;
6433 }
6434 /*
6435 * hwpoisoned entry is treated as no_page_table in
6436 * follow_page_mask().
6437 */
6438 }
6439out:
6440 spin_unlock(ptl);
6441 return page;
6442}
6443
6444long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6445 struct page **pages, struct vm_area_struct **vmas,
6446 unsigned long *position, unsigned long *nr_pages,
6447 long i, unsigned int flags, int *locked)
6448{
6449 unsigned long pfn_offset;
6450 unsigned long vaddr = *position;
6451 unsigned long remainder = *nr_pages;
6452 struct hstate *h = hstate_vma(vma);
6453 int err = -EFAULT, refs;
6454
6455 while (vaddr < vma->vm_end && remainder) {
6456 pte_t *pte;
6457 spinlock_t *ptl = NULL;
6458 bool unshare = false;
6459 int absent;
6460 struct page *page;
6461
6462 /*
6463 * If we have a pending SIGKILL, don't keep faulting pages and
6464 * potentially allocating memory.
6465 */
6466 if (fatal_signal_pending(current)) {
6467 remainder = 0;
6468 break;
6469 }
6470
6471 /*
6472 * Some archs (sparc64, sh*) have multiple pte_ts to
6473 * each hugepage. We have to make sure we get the
6474 * first, for the page indexing below to work.
6475 *
6476 * Note that page table lock is not held when pte is null.
6477 */
6478 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6479 huge_page_size(h));
6480 if (pte)
6481 ptl = huge_pte_lock(h, mm, pte);
6482 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6483
6484 /*
6485 * When coredumping, it suits get_dump_page if we just return
6486 * an error where there's an empty slot with no huge pagecache
6487 * to back it. This way, we avoid allocating a hugepage, and
6488 * the sparse dumpfile avoids allocating disk blocks, but its
6489 * huge holes still show up with zeroes where they need to be.
6490 */
6491 if (absent && (flags & FOLL_DUMP) &&
6492 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6493 if (pte)
6494 spin_unlock(ptl);
6495 remainder = 0;
6496 break;
6497 }
6498
6499 /*
6500 * We need call hugetlb_fault for both hugepages under migration
6501 * (in which case hugetlb_fault waits for the migration,) and
6502 * hwpoisoned hugepages (in which case we need to prevent the
6503 * caller from accessing to them.) In order to do this, we use
6504 * here is_swap_pte instead of is_hugetlb_entry_migration and
6505 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6506 * both cases, and because we can't follow correct pages
6507 * directly from any kind of swap entries.
6508 */
6509 if (absent ||
6510 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6511 vm_fault_t ret;
6512 unsigned int fault_flags = 0;
6513
6514 if (pte)
6515 spin_unlock(ptl);
6516 if (flags & FOLL_WRITE)
6517 fault_flags |= FAULT_FLAG_WRITE;
6518 else if (unshare)
6519 fault_flags |= FAULT_FLAG_UNSHARE;
6520 if (locked) {
6521 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6522 FAULT_FLAG_KILLABLE;
6523 if (flags & FOLL_INTERRUPTIBLE)
6524 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6525 }
6526 if (flags & FOLL_NOWAIT)
6527 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6528 FAULT_FLAG_RETRY_NOWAIT;
6529 if (flags & FOLL_TRIED) {
6530 /*
6531 * Note: FAULT_FLAG_ALLOW_RETRY and
6532 * FAULT_FLAG_TRIED can co-exist
6533 */
6534 fault_flags |= FAULT_FLAG_TRIED;
6535 }
6536 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6537 if (ret & VM_FAULT_ERROR) {
6538 err = vm_fault_to_errno(ret, flags);
6539 remainder = 0;
6540 break;
6541 }
6542 if (ret & VM_FAULT_RETRY) {
6543 if (locked &&
6544 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6545 *locked = 0;
6546 *nr_pages = 0;
6547 /*
6548 * VM_FAULT_RETRY must not return an
6549 * error, it will return zero
6550 * instead.
6551 *
6552 * No need to update "position" as the
6553 * caller will not check it after
6554 * *nr_pages is set to 0.
6555 */
6556 return i;
6557 }
6558 continue;
6559 }
6560
6561 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6562 page = pte_page(huge_ptep_get(pte));
6563
6564 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6565 !PageAnonExclusive(page), page);
6566
6567 /*
6568 * If subpage information not requested, update counters
6569 * and skip the same_page loop below.
6570 */
6571 if (!pages && !vmas && !pfn_offset &&
6572 (vaddr + huge_page_size(h) < vma->vm_end) &&
6573 (remainder >= pages_per_huge_page(h))) {
6574 vaddr += huge_page_size(h);
6575 remainder -= pages_per_huge_page(h);
6576 i += pages_per_huge_page(h);
6577 spin_unlock(ptl);
6578 continue;
6579 }
6580
6581 /* vaddr may not be aligned to PAGE_SIZE */
6582 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6583 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6584
6585 if (pages || vmas)
6586 record_subpages_vmas(nth_page(page, pfn_offset),
6587 vma, refs,
6588 likely(pages) ? pages + i : NULL,
6589 vmas ? vmas + i : NULL);
6590
6591 if (pages) {
6592 /*
6593 * try_grab_folio() should always succeed here,
6594 * because: a) we hold the ptl lock, and b) we've just
6595 * checked that the huge page is present in the page
6596 * tables. If the huge page is present, then the tail
6597 * pages must also be present. The ptl prevents the
6598 * head page and tail pages from being rearranged in
6599 * any way. As this is hugetlb, the pages will never
6600 * be p2pdma or not longterm pinable. So this page
6601 * must be available at this point, unless the page
6602 * refcount overflowed:
6603 */
6604 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6605 flags))) {
6606 spin_unlock(ptl);
6607 remainder = 0;
6608 err = -ENOMEM;
6609 break;
6610 }
6611 }
6612
6613 vaddr += (refs << PAGE_SHIFT);
6614 remainder -= refs;
6615 i += refs;
6616
6617 spin_unlock(ptl);
6618 }
6619 *nr_pages = remainder;
6620 /*
6621 * setting position is actually required only if remainder is
6622 * not zero but it's faster not to add a "if (remainder)"
6623 * branch.
6624 */
6625 *position = vaddr;
6626
6627 return i ? i : err;
6628}
6629
6630unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6631 unsigned long address, unsigned long end,
6632 pgprot_t newprot, unsigned long cp_flags)
6633{
6634 struct mm_struct *mm = vma->vm_mm;
6635 unsigned long start = address;
6636 pte_t *ptep;
6637 pte_t pte;
6638 struct hstate *h = hstate_vma(vma);
6639 unsigned long pages = 0, psize = huge_page_size(h);
6640 bool shared_pmd = false;
6641 struct mmu_notifier_range range;
6642 unsigned long last_addr_mask;
6643 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6644 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6645
6646 /*
6647 * In the case of shared PMDs, the area to flush could be beyond
6648 * start/end. Set range.start/range.end to cover the maximum possible
6649 * range if PMD sharing is possible.
6650 */
6651 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6652 0, vma, mm, start, end);
6653 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6654
6655 BUG_ON(address >= end);
6656 flush_cache_range(vma, range.start, range.end);
6657
6658 mmu_notifier_invalidate_range_start(&range);
6659 hugetlb_vma_lock_write(vma);
6660 i_mmap_lock_write(vma->vm_file->f_mapping);
6661 last_addr_mask = hugetlb_mask_last_page(h);
6662 for (; address < end; address += psize) {
6663 spinlock_t *ptl;
6664 ptep = huge_pte_offset(mm, address, psize);
6665 if (!ptep) {
6666 if (!uffd_wp) {
6667 address |= last_addr_mask;
6668 continue;
6669 }
6670 /*
6671 * Userfaultfd wr-protect requires pgtable
6672 * pre-allocations to install pte markers.
6673 */
6674 ptep = huge_pte_alloc(mm, vma, address, psize);
6675 if (!ptep)
6676 break;
6677 }
6678 ptl = huge_pte_lock(h, mm, ptep);
6679 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6680 /*
6681 * When uffd-wp is enabled on the vma, unshare
6682 * shouldn't happen at all. Warn about it if it
6683 * happened due to some reason.
6684 */
6685 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6686 pages++;
6687 spin_unlock(ptl);
6688 shared_pmd = true;
6689 address |= last_addr_mask;
6690 continue;
6691 }
6692 pte = huge_ptep_get(ptep);
6693 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6694 /* Nothing to do. */
6695 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6696 swp_entry_t entry = pte_to_swp_entry(pte);
6697 struct page *page = pfn_swap_entry_to_page(entry);
6698 pte_t newpte = pte;
6699
6700 if (is_writable_migration_entry(entry)) {
6701 if (PageAnon(page))
6702 entry = make_readable_exclusive_migration_entry(
6703 swp_offset(entry));
6704 else
6705 entry = make_readable_migration_entry(
6706 swp_offset(entry));
6707 newpte = swp_entry_to_pte(entry);
6708 pages++;
6709 }
6710
6711 if (uffd_wp)
6712 newpte = pte_swp_mkuffd_wp(newpte);
6713 else if (uffd_wp_resolve)
6714 newpte = pte_swp_clear_uffd_wp(newpte);
6715 if (!pte_same(pte, newpte))
6716 set_huge_pte_at(mm, address, ptep, newpte);
6717 } else if (unlikely(is_pte_marker(pte))) {
6718 /* No other markers apply for now. */
6719 WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6720 if (uffd_wp_resolve)
6721 /* Safe to modify directly (non-present->none). */
6722 huge_pte_clear(mm, address, ptep, psize);
6723 } else if (!huge_pte_none(pte)) {
6724 pte_t old_pte;
6725 unsigned int shift = huge_page_shift(hstate_vma(vma));
6726
6727 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6728 pte = huge_pte_modify(old_pte, newprot);
6729 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6730 if (uffd_wp)
6731 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6732 else if (uffd_wp_resolve)
6733 pte = huge_pte_clear_uffd_wp(pte);
6734 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6735 pages++;
6736 } else {
6737 /* None pte */
6738 if (unlikely(uffd_wp))
6739 /* Safe to modify directly (none->non-present). */
6740 set_huge_pte_at(mm, address, ptep,
6741 make_pte_marker(PTE_MARKER_UFFD_WP));
6742 }
6743 spin_unlock(ptl);
6744 }
6745 /*
6746 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6747 * may have cleared our pud entry and done put_page on the page table:
6748 * once we release i_mmap_rwsem, another task can do the final put_page
6749 * and that page table be reused and filled with junk. If we actually
6750 * did unshare a page of pmds, flush the range corresponding to the pud.
6751 */
6752 if (shared_pmd)
6753 flush_hugetlb_tlb_range(vma, range.start, range.end);
6754 else
6755 flush_hugetlb_tlb_range(vma, start, end);
6756 /*
6757 * No need to call mmu_notifier_invalidate_range() we are downgrading
6758 * page table protection not changing it to point to a new page.
6759 *
6760 * See Documentation/mm/mmu_notifier.rst
6761 */
6762 i_mmap_unlock_write(vma->vm_file->f_mapping);
6763 hugetlb_vma_unlock_write(vma);
6764 mmu_notifier_invalidate_range_end(&range);
6765
6766 return pages << h->order;
6767}
6768
6769/* Return true if reservation was successful, false otherwise. */
6770bool hugetlb_reserve_pages(struct inode *inode,
6771 long from, long to,
6772 struct vm_area_struct *vma,
6773 vm_flags_t vm_flags)
6774{
6775 long chg, add = -1;
6776 struct hstate *h = hstate_inode(inode);
6777 struct hugepage_subpool *spool = subpool_inode(inode);
6778 struct resv_map *resv_map;
6779 struct hugetlb_cgroup *h_cg = NULL;
6780 long gbl_reserve, regions_needed = 0;
6781
6782 /* This should never happen */
6783 if (from > to) {
6784 VM_WARN(1, "%s called with a negative range\n", __func__);
6785 return false;
6786 }
6787
6788 /*
6789 * vma specific semaphore used for pmd sharing and fault/truncation
6790 * synchronization
6791 */
6792 hugetlb_vma_lock_alloc(vma);
6793
6794 /*
6795 * Only apply hugepage reservation if asked. At fault time, an
6796 * attempt will be made for VM_NORESERVE to allocate a page
6797 * without using reserves
6798 */
6799 if (vm_flags & VM_NORESERVE)
6800 return true;
6801
6802 /*
6803 * Shared mappings base their reservation on the number of pages that
6804 * are already allocated on behalf of the file. Private mappings need
6805 * to reserve the full area even if read-only as mprotect() may be
6806 * called to make the mapping read-write. Assume !vma is a shm mapping
6807 */
6808 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6809 /*
6810 * resv_map can not be NULL as hugetlb_reserve_pages is only
6811 * called for inodes for which resv_maps were created (see
6812 * hugetlbfs_get_inode).
6813 */
6814 resv_map = inode_resv_map(inode);
6815
6816 chg = region_chg(resv_map, from, to, ®ions_needed);
6817 } else {
6818 /* Private mapping. */
6819 resv_map = resv_map_alloc();
6820 if (!resv_map)
6821 goto out_err;
6822
6823 chg = to - from;
6824
6825 set_vma_resv_map(vma, resv_map);
6826 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6827 }
6828
6829 if (chg < 0)
6830 goto out_err;
6831
6832 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6833 chg * pages_per_huge_page(h), &h_cg) < 0)
6834 goto out_err;
6835
6836 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6837 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6838 * of the resv_map.
6839 */
6840 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6841 }
6842
6843 /*
6844 * There must be enough pages in the subpool for the mapping. If
6845 * the subpool has a minimum size, there may be some global
6846 * reservations already in place (gbl_reserve).
6847 */
6848 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6849 if (gbl_reserve < 0)
6850 goto out_uncharge_cgroup;
6851
6852 /*
6853 * Check enough hugepages are available for the reservation.
6854 * Hand the pages back to the subpool if there are not
6855 */
6856 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6857 goto out_put_pages;
6858
6859 /*
6860 * Account for the reservations made. Shared mappings record regions
6861 * that have reservations as they are shared by multiple VMAs.
6862 * When the last VMA disappears, the region map says how much
6863 * the reservation was and the page cache tells how much of
6864 * the reservation was consumed. Private mappings are per-VMA and
6865 * only the consumed reservations are tracked. When the VMA
6866 * disappears, the original reservation is the VMA size and the
6867 * consumed reservations are stored in the map. Hence, nothing
6868 * else has to be done for private mappings here
6869 */
6870 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6871 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6872
6873 if (unlikely(add < 0)) {
6874 hugetlb_acct_memory(h, -gbl_reserve);
6875 goto out_put_pages;
6876 } else if (unlikely(chg > add)) {
6877 /*
6878 * pages in this range were added to the reserve
6879 * map between region_chg and region_add. This
6880 * indicates a race with alloc_huge_page. Adjust
6881 * the subpool and reserve counts modified above
6882 * based on the difference.
6883 */
6884 long rsv_adjust;
6885
6886 /*
6887 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6888 * reference to h_cg->css. See comment below for detail.
6889 */
6890 hugetlb_cgroup_uncharge_cgroup_rsvd(
6891 hstate_index(h),
6892 (chg - add) * pages_per_huge_page(h), h_cg);
6893
6894 rsv_adjust = hugepage_subpool_put_pages(spool,
6895 chg - add);
6896 hugetlb_acct_memory(h, -rsv_adjust);
6897 } else if (h_cg) {
6898 /*
6899 * The file_regions will hold their own reference to
6900 * h_cg->css. So we should release the reference held
6901 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6902 * done.
6903 */
6904 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6905 }
6906 }
6907 return true;
6908
6909out_put_pages:
6910 /* put back original number of pages, chg */
6911 (void)hugepage_subpool_put_pages(spool, chg);
6912out_uncharge_cgroup:
6913 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6914 chg * pages_per_huge_page(h), h_cg);
6915out_err:
6916 hugetlb_vma_lock_free(vma);
6917 if (!vma || vma->vm_flags & VM_MAYSHARE)
6918 /* Only call region_abort if the region_chg succeeded but the
6919 * region_add failed or didn't run.
6920 */
6921 if (chg >= 0 && add < 0)
6922 region_abort(resv_map, from, to, regions_needed);
6923 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6924 kref_put(&resv_map->refs, resv_map_release);
6925 return false;
6926}
6927
6928long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6929 long freed)
6930{
6931 struct hstate *h = hstate_inode(inode);
6932 struct resv_map *resv_map = inode_resv_map(inode);
6933 long chg = 0;
6934 struct hugepage_subpool *spool = subpool_inode(inode);
6935 long gbl_reserve;
6936
6937 /*
6938 * Since this routine can be called in the evict inode path for all
6939 * hugetlbfs inodes, resv_map could be NULL.
6940 */
6941 if (resv_map) {
6942 chg = region_del(resv_map, start, end);
6943 /*
6944 * region_del() can fail in the rare case where a region
6945 * must be split and another region descriptor can not be
6946 * allocated. If end == LONG_MAX, it will not fail.
6947 */
6948 if (chg < 0)
6949 return chg;
6950 }
6951
6952 spin_lock(&inode->i_lock);
6953 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6954 spin_unlock(&inode->i_lock);
6955
6956 /*
6957 * If the subpool has a minimum size, the number of global
6958 * reservations to be released may be adjusted.
6959 *
6960 * Note that !resv_map implies freed == 0. So (chg - freed)
6961 * won't go negative.
6962 */
6963 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6964 hugetlb_acct_memory(h, -gbl_reserve);
6965
6966 return 0;
6967}
6968
6969#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6970static unsigned long page_table_shareable(struct vm_area_struct *svma,
6971 struct vm_area_struct *vma,
6972 unsigned long addr, pgoff_t idx)
6973{
6974 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6975 svma->vm_start;
6976 unsigned long sbase = saddr & PUD_MASK;
6977 unsigned long s_end = sbase + PUD_SIZE;
6978
6979 /* Allow segments to share if only one is marked locked */
6980 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6981 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6982
6983 /*
6984 * match the virtual addresses, permission and the alignment of the
6985 * page table page.
6986 *
6987 * Also, vma_lock (vm_private_data) is required for sharing.
6988 */
6989 if (pmd_index(addr) != pmd_index(saddr) ||
6990 vm_flags != svm_flags ||
6991 !range_in_vma(svma, sbase, s_end) ||
6992 !svma->vm_private_data)
6993 return 0;
6994
6995 return saddr;
6996}
6997
6998bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6999{
7000 unsigned long start = addr & PUD_MASK;
7001 unsigned long end = start + PUD_SIZE;
7002
7003#ifdef CONFIG_USERFAULTFD
7004 if (uffd_disable_huge_pmd_share(vma))
7005 return false;
7006#endif
7007 /*
7008 * check on proper vm_flags and page table alignment
7009 */
7010 if (!(vma->vm_flags & VM_MAYSHARE))
7011 return false;
7012 if (!vma->vm_private_data) /* vma lock required for sharing */
7013 return false;
7014 if (!range_in_vma(vma, start, end))
7015 return false;
7016 return true;
7017}
7018
7019/*
7020 * Determine if start,end range within vma could be mapped by shared pmd.
7021 * If yes, adjust start and end to cover range associated with possible
7022 * shared pmd mappings.
7023 */
7024void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7025 unsigned long *start, unsigned long *end)
7026{
7027 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7028 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7029
7030 /*
7031 * vma needs to span at least one aligned PUD size, and the range
7032 * must be at least partially within in.
7033 */
7034 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7035 (*end <= v_start) || (*start >= v_end))
7036 return;
7037
7038 /* Extend the range to be PUD aligned for a worst case scenario */
7039 if (*start > v_start)
7040 *start = ALIGN_DOWN(*start, PUD_SIZE);
7041
7042 if (*end < v_end)
7043 *end = ALIGN(*end, PUD_SIZE);
7044}
7045
7046/*
7047 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7048 * and returns the corresponding pte. While this is not necessary for the
7049 * !shared pmd case because we can allocate the pmd later as well, it makes the
7050 * code much cleaner. pmd allocation is essential for the shared case because
7051 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7052 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7053 * bad pmd for sharing.
7054 */
7055pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7056 unsigned long addr, pud_t *pud)
7057{
7058 struct address_space *mapping = vma->vm_file->f_mapping;
7059 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7060 vma->vm_pgoff;
7061 struct vm_area_struct *svma;
7062 unsigned long saddr;
7063 pte_t *spte = NULL;
7064 pte_t *pte;
7065 spinlock_t *ptl;
7066
7067 i_mmap_lock_read(mapping);
7068 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7069 if (svma == vma)
7070 continue;
7071
7072 saddr = page_table_shareable(svma, vma, addr, idx);
7073 if (saddr) {
7074 spte = huge_pte_offset(svma->vm_mm, saddr,
7075 vma_mmu_pagesize(svma));
7076 if (spte) {
7077 get_page(virt_to_page(spte));
7078 break;
7079 }
7080 }
7081 }
7082
7083 if (!spte)
7084 goto out;
7085
7086 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7087 if (pud_none(*pud)) {
7088 pud_populate(mm, pud,
7089 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7090 mm_inc_nr_pmds(mm);
7091 } else {
7092 put_page(virt_to_page(spte));
7093 }
7094 spin_unlock(ptl);
7095out:
7096 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7097 i_mmap_unlock_read(mapping);
7098 return pte;
7099}
7100
7101/*
7102 * unmap huge page backed by shared pte.
7103 *
7104 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7105 * indicated by page_count > 1, unmap is achieved by clearing pud and
7106 * decrementing the ref count. If count == 1, the pte page is not shared.
7107 *
7108 * Called with page table lock held.
7109 *
7110 * returns: 1 successfully unmapped a shared pte page
7111 * 0 the underlying pte page is not shared, or it is the last user
7112 */
7113int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7114 unsigned long addr, pte_t *ptep)
7115{
7116 pgd_t *pgd = pgd_offset(mm, addr);
7117 p4d_t *p4d = p4d_offset(pgd, addr);
7118 pud_t *pud = pud_offset(p4d, addr);
7119
7120 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7121 hugetlb_vma_assert_locked(vma);
7122 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7123 if (page_count(virt_to_page(ptep)) == 1)
7124 return 0;
7125
7126 pud_clear(pud);
7127 put_page(virt_to_page(ptep));
7128 mm_dec_nr_pmds(mm);
7129 return 1;
7130}
7131
7132#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7133
7134pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7135 unsigned long addr, pud_t *pud)
7136{
7137 return NULL;
7138}
7139
7140int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7141 unsigned long addr, pte_t *ptep)
7142{
7143 return 0;
7144}
7145
7146void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7147 unsigned long *start, unsigned long *end)
7148{
7149}
7150
7151bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7152{
7153 return false;
7154}
7155#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7156
7157#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7158pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7159 unsigned long addr, unsigned long sz)
7160{
7161 pgd_t *pgd;
7162 p4d_t *p4d;
7163 pud_t *pud;
7164 pte_t *pte = NULL;
7165
7166 pgd = pgd_offset(mm, addr);
7167 p4d = p4d_alloc(mm, pgd, addr);
7168 if (!p4d)
7169 return NULL;
7170 pud = pud_alloc(mm, p4d, addr);
7171 if (pud) {
7172 if (sz == PUD_SIZE) {
7173 pte = (pte_t *)pud;
7174 } else {
7175 BUG_ON(sz != PMD_SIZE);
7176 if (want_pmd_share(vma, addr) && pud_none(*pud))
7177 pte = huge_pmd_share(mm, vma, addr, pud);
7178 else
7179 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7180 }
7181 }
7182 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7183
7184 return pte;
7185}
7186
7187/*
7188 * huge_pte_offset() - Walk the page table to resolve the hugepage
7189 * entry at address @addr
7190 *
7191 * Return: Pointer to page table entry (PUD or PMD) for
7192 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7193 * size @sz doesn't match the hugepage size at this level of the page
7194 * table.
7195 */
7196pte_t *huge_pte_offset(struct mm_struct *mm,
7197 unsigned long addr, unsigned long sz)
7198{
7199 pgd_t *pgd;
7200 p4d_t *p4d;
7201 pud_t *pud;
7202 pmd_t *pmd;
7203
7204 pgd = pgd_offset(mm, addr);
7205 if (!pgd_present(*pgd))
7206 return NULL;
7207 p4d = p4d_offset(pgd, addr);
7208 if (!p4d_present(*p4d))
7209 return NULL;
7210
7211 pud = pud_offset(p4d, addr);
7212 if (sz == PUD_SIZE)
7213 /* must be pud huge, non-present or none */
7214 return (pte_t *)pud;
7215 if (!pud_present(*pud))
7216 return NULL;
7217 /* must have a valid entry and size to go further */
7218
7219 pmd = pmd_offset(pud, addr);
7220 /* must be pmd huge, non-present or none */
7221 return (pte_t *)pmd;
7222}
7223
7224/*
7225 * Return a mask that can be used to update an address to the last huge
7226 * page in a page table page mapping size. Used to skip non-present
7227 * page table entries when linearly scanning address ranges. Architectures
7228 * with unique huge page to page table relationships can define their own
7229 * version of this routine.
7230 */
7231unsigned long hugetlb_mask_last_page(struct hstate *h)
7232{
7233 unsigned long hp_size = huge_page_size(h);
7234
7235 if (hp_size == PUD_SIZE)
7236 return P4D_SIZE - PUD_SIZE;
7237 else if (hp_size == PMD_SIZE)
7238 return PUD_SIZE - PMD_SIZE;
7239 else
7240 return 0UL;
7241}
7242
7243#else
7244
7245/* See description above. Architectures can provide their own version. */
7246__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7247{
7248#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7249 if (huge_page_size(h) == PMD_SIZE)
7250 return PUD_SIZE - PMD_SIZE;
7251#endif
7252 return 0UL;
7253}
7254
7255#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7256
7257/*
7258 * These functions are overwritable if your architecture needs its own
7259 * behavior.
7260 */
7261int isolate_hugetlb(struct page *page, struct list_head *list)
7262{
7263 int ret = 0;
7264
7265 spin_lock_irq(&hugetlb_lock);
7266 if (!PageHeadHuge(page) ||
7267 !HPageMigratable(page) ||
7268 !get_page_unless_zero(page)) {
7269 ret = -EBUSY;
7270 goto unlock;
7271 }
7272 ClearHPageMigratable(page);
7273 list_move_tail(&page->lru, list);
7274unlock:
7275 spin_unlock_irq(&hugetlb_lock);
7276 return ret;
7277}
7278
7279int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison)
7280{
7281 int ret = 0;
7282
7283 *hugetlb = false;
7284 spin_lock_irq(&hugetlb_lock);
7285 if (PageHeadHuge(page)) {
7286 *hugetlb = true;
7287 if (HPageFreed(page))
7288 ret = 0;
7289 else if (HPageMigratable(page) || unpoison)
7290 ret = get_page_unless_zero(page);
7291 else
7292 ret = -EBUSY;
7293 }
7294 spin_unlock_irq(&hugetlb_lock);
7295 return ret;
7296}
7297
7298int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7299 bool *migratable_cleared)
7300{
7301 int ret;
7302
7303 spin_lock_irq(&hugetlb_lock);
7304 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7305 spin_unlock_irq(&hugetlb_lock);
7306 return ret;
7307}
7308
7309void putback_active_hugepage(struct page *page)
7310{
7311 spin_lock_irq(&hugetlb_lock);
7312 SetHPageMigratable(page);
7313 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7314 spin_unlock_irq(&hugetlb_lock);
7315 put_page(page);
7316}
7317
7318void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7319{
7320 struct hstate *h = folio_hstate(old_folio);
7321
7322 hugetlb_cgroup_migrate(old_folio, new_folio);
7323 set_page_owner_migrate_reason(&new_folio->page, reason);
7324
7325 /*
7326 * transfer temporary state of the new hugetlb folio. This is
7327 * reverse to other transitions because the newpage is going to
7328 * be final while the old one will be freed so it takes over
7329 * the temporary status.
7330 *
7331 * Also note that we have to transfer the per-node surplus state
7332 * here as well otherwise the global surplus count will not match
7333 * the per-node's.
7334 */
7335 if (folio_test_hugetlb_temporary(new_folio)) {
7336 int old_nid = folio_nid(old_folio);
7337 int new_nid = folio_nid(new_folio);
7338
7339 folio_set_hugetlb_temporary(old_folio);
7340 folio_clear_hugetlb_temporary(new_folio);
7341
7342
7343 /*
7344 * There is no need to transfer the per-node surplus state
7345 * when we do not cross the node.
7346 */
7347 if (new_nid == old_nid)
7348 return;
7349 spin_lock_irq(&hugetlb_lock);
7350 if (h->surplus_huge_pages_node[old_nid]) {
7351 h->surplus_huge_pages_node[old_nid]--;
7352 h->surplus_huge_pages_node[new_nid]++;
7353 }
7354 spin_unlock_irq(&hugetlb_lock);
7355 }
7356}
7357
7358static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7359 unsigned long start,
7360 unsigned long end)
7361{
7362 struct hstate *h = hstate_vma(vma);
7363 unsigned long sz = huge_page_size(h);
7364 struct mm_struct *mm = vma->vm_mm;
7365 struct mmu_notifier_range range;
7366 unsigned long address;
7367 spinlock_t *ptl;
7368 pte_t *ptep;
7369
7370 if (!(vma->vm_flags & VM_MAYSHARE))
7371 return;
7372
7373 if (start >= end)
7374 return;
7375
7376 flush_cache_range(vma, start, end);
7377 /*
7378 * No need to call adjust_range_if_pmd_sharing_possible(), because
7379 * we have already done the PUD_SIZE alignment.
7380 */
7381 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7382 start, end);
7383 mmu_notifier_invalidate_range_start(&range);
7384 hugetlb_vma_lock_write(vma);
7385 i_mmap_lock_write(vma->vm_file->f_mapping);
7386 for (address = start; address < end; address += PUD_SIZE) {
7387 ptep = huge_pte_offset(mm, address, sz);
7388 if (!ptep)
7389 continue;
7390 ptl = huge_pte_lock(h, mm, ptep);
7391 huge_pmd_unshare(mm, vma, address, ptep);
7392 spin_unlock(ptl);
7393 }
7394 flush_hugetlb_tlb_range(vma, start, end);
7395 i_mmap_unlock_write(vma->vm_file->f_mapping);
7396 hugetlb_vma_unlock_write(vma);
7397 /*
7398 * No need to call mmu_notifier_invalidate_range(), see
7399 * Documentation/mm/mmu_notifier.rst.
7400 */
7401 mmu_notifier_invalidate_range_end(&range);
7402}
7403
7404/*
7405 * This function will unconditionally remove all the shared pmd pgtable entries
7406 * within the specific vma for a hugetlbfs memory range.
7407 */
7408void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7409{
7410 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7411 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7412}
7413
7414#ifdef CONFIG_CMA
7415static bool cma_reserve_called __initdata;
7416
7417static int __init cmdline_parse_hugetlb_cma(char *p)
7418{
7419 int nid, count = 0;
7420 unsigned long tmp;
7421 char *s = p;
7422
7423 while (*s) {
7424 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7425 break;
7426
7427 if (s[count] == ':') {
7428 if (tmp >= MAX_NUMNODES)
7429 break;
7430 nid = array_index_nospec(tmp, MAX_NUMNODES);
7431
7432 s += count + 1;
7433 tmp = memparse(s, &s);
7434 hugetlb_cma_size_in_node[nid] = tmp;
7435 hugetlb_cma_size += tmp;
7436
7437 /*
7438 * Skip the separator if have one, otherwise
7439 * break the parsing.
7440 */
7441 if (*s == ',')
7442 s++;
7443 else
7444 break;
7445 } else {
7446 hugetlb_cma_size = memparse(p, &p);
7447 break;
7448 }
7449 }
7450
7451 return 0;
7452}
7453
7454early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7455
7456void __init hugetlb_cma_reserve(int order)
7457{
7458 unsigned long size, reserved, per_node;
7459 bool node_specific_cma_alloc = false;
7460 int nid;
7461
7462 cma_reserve_called = true;
7463
7464 if (!hugetlb_cma_size)
7465 return;
7466
7467 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7468 if (hugetlb_cma_size_in_node[nid] == 0)
7469 continue;
7470
7471 if (!node_online(nid)) {
7472 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7473 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7474 hugetlb_cma_size_in_node[nid] = 0;
7475 continue;
7476 }
7477
7478 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7479 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7480 nid, (PAGE_SIZE << order) / SZ_1M);
7481 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7482 hugetlb_cma_size_in_node[nid] = 0;
7483 } else {
7484 node_specific_cma_alloc = true;
7485 }
7486 }
7487
7488 /* Validate the CMA size again in case some invalid nodes specified. */
7489 if (!hugetlb_cma_size)
7490 return;
7491
7492 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7493 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7494 (PAGE_SIZE << order) / SZ_1M);
7495 hugetlb_cma_size = 0;
7496 return;
7497 }
7498
7499 if (!node_specific_cma_alloc) {
7500 /*
7501 * If 3 GB area is requested on a machine with 4 numa nodes,
7502 * let's allocate 1 GB on first three nodes and ignore the last one.
7503 */
7504 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7505 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7506 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7507 }
7508
7509 reserved = 0;
7510 for_each_online_node(nid) {
7511 int res;
7512 char name[CMA_MAX_NAME];
7513
7514 if (node_specific_cma_alloc) {
7515 if (hugetlb_cma_size_in_node[nid] == 0)
7516 continue;
7517
7518 size = hugetlb_cma_size_in_node[nid];
7519 } else {
7520 size = min(per_node, hugetlb_cma_size - reserved);
7521 }
7522
7523 size = round_up(size, PAGE_SIZE << order);
7524
7525 snprintf(name, sizeof(name), "hugetlb%d", nid);
7526 /*
7527 * Note that 'order per bit' is based on smallest size that
7528 * may be returned to CMA allocator in the case of
7529 * huge page demotion.
7530 */
7531 res = cma_declare_contiguous_nid(0, size, 0,
7532 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7533 0, false, name,
7534 &hugetlb_cma[nid], nid);
7535 if (res) {
7536 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7537 res, nid);
7538 continue;
7539 }
7540
7541 reserved += size;
7542 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7543 size / SZ_1M, nid);
7544
7545 if (reserved >= hugetlb_cma_size)
7546 break;
7547 }
7548
7549 if (!reserved)
7550 /*
7551 * hugetlb_cma_size is used to determine if allocations from
7552 * cma are possible. Set to zero if no cma regions are set up.
7553 */
7554 hugetlb_cma_size = 0;
7555}
7556
7557static void __init hugetlb_cma_check(void)
7558{
7559 if (!hugetlb_cma_size || cma_reserve_called)
7560 return;
7561
7562 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7563}
7564
7565#endif /* CONFIG_CMA */