Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Generic hugetlb support.
   3 * (C) Nadia Yvette Chambers, April 2004
   4 */
   5#include <linux/list.h>
   6#include <linux/init.h>
   7#include <linux/mm.h>
   8#include <linux/seq_file.h>
   9#include <linux/sysctl.h>
  10#include <linux/highmem.h>
  11#include <linux/mmu_notifier.h>
  12#include <linux/nodemask.h>
  13#include <linux/pagemap.h>
  14#include <linux/mempolicy.h>
  15#include <linux/compiler.h>
  16#include <linux/cpuset.h>
  17#include <linux/mutex.h>
  18#include <linux/bootmem.h>
  19#include <linux/sysfs.h>
  20#include <linux/slab.h>
  21#include <linux/mmdebug.h>
  22#include <linux/sched/signal.h>
  23#include <linux/rmap.h>
  24#include <linux/string_helpers.h>
  25#include <linux/swap.h>
  26#include <linux/swapops.h>
 
  27#include <linux/jhash.h>
  28
  29#include <asm/page.h>
  30#include <asm/pgtable.h>
  31#include <asm/tlb.h>
  32
  33#include <linux/io.h>
  34#include <linux/hugetlb.h>
  35#include <linux/hugetlb_cgroup.h>
  36#include <linux/node.h>
  37#include <linux/userfaultfd_k.h>
  38#include <linux/page_owner.h>
  39#include "internal.h"
  40
 
 
  41int hugetlb_max_hstate __read_mostly;
  42unsigned int default_hstate_idx;
  43struct hstate hstates[HUGE_MAX_HSTATE];
  44/*
  45 * Minimum page order among possible hugepage sizes, set to a proper value
  46 * at boot time.
  47 */
  48static unsigned int minimum_order __read_mostly = UINT_MAX;
  49
  50__initdata LIST_HEAD(huge_boot_pages);
  51
  52/* for command line parsing */
  53static struct hstate * __initdata parsed_hstate;
  54static unsigned long __initdata default_hstate_max_huge_pages;
  55static unsigned long __initdata default_hstate_size;
  56static bool __initdata parsed_valid_hugepagesz = true;
  57
  58/*
  59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  60 * free_huge_pages, and surplus_huge_pages.
  61 */
  62DEFINE_SPINLOCK(hugetlb_lock);
  63
  64/*
  65 * Serializes faults on the same logical page.  This is used to
  66 * prevent spurious OOMs when the hugepage pool is fully utilized.
  67 */
  68static int num_fault_mutexes;
  69struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  70
  71/* Forward declaration */
  72static int hugetlb_acct_memory(struct hstate *h, long delta);
  73
  74static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  75{
  76	bool free = (spool->count == 0) && (spool->used_hpages == 0);
  77
  78	spin_unlock(&spool->lock);
  79
  80	/* If no pages are used, and no other handles to the subpool
  81	 * remain, give up any reservations mased on minimum size and
  82	 * free the subpool */
  83	if (free) {
  84		if (spool->min_hpages != -1)
  85			hugetlb_acct_memory(spool->hstate,
  86						-spool->min_hpages);
  87		kfree(spool);
  88	}
  89}
  90
  91struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  92						long min_hpages)
  93{
  94	struct hugepage_subpool *spool;
  95
  96	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  97	if (!spool)
  98		return NULL;
  99
 100	spin_lock_init(&spool->lock);
 101	spool->count = 1;
 102	spool->max_hpages = max_hpages;
 103	spool->hstate = h;
 104	spool->min_hpages = min_hpages;
 105
 106	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 107		kfree(spool);
 108		return NULL;
 109	}
 110	spool->rsv_hpages = min_hpages;
 111
 112	return spool;
 113}
 114
 115void hugepage_put_subpool(struct hugepage_subpool *spool)
 116{
 117	spin_lock(&spool->lock);
 118	BUG_ON(!spool->count);
 119	spool->count--;
 120	unlock_or_release_subpool(spool);
 121}
 122
 123/*
 124 * Subpool accounting for allocating and reserving pages.
 125 * Return -ENOMEM if there are not enough resources to satisfy the
 126 * the request.  Otherwise, return the number of pages by which the
 127 * global pools must be adjusted (upward).  The returned value may
 128 * only be different than the passed value (delta) in the case where
 129 * a subpool minimum size must be manitained.
 130 */
 131static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 132				      long delta)
 133{
 134	long ret = delta;
 135
 136	if (!spool)
 137		return ret;
 138
 139	spin_lock(&spool->lock);
 140
 141	if (spool->max_hpages != -1) {		/* maximum size accounting */
 142		if ((spool->used_hpages + delta) <= spool->max_hpages)
 143			spool->used_hpages += delta;
 144		else {
 145			ret = -ENOMEM;
 146			goto unlock_ret;
 147		}
 148	}
 149
 150	/* minimum size accounting */
 151	if (spool->min_hpages != -1 && spool->rsv_hpages) {
 152		if (delta > spool->rsv_hpages) {
 153			/*
 154			 * Asking for more reserves than those already taken on
 155			 * behalf of subpool.  Return difference.
 156			 */
 157			ret = delta - spool->rsv_hpages;
 158			spool->rsv_hpages = 0;
 159		} else {
 160			ret = 0;	/* reserves already accounted for */
 161			spool->rsv_hpages -= delta;
 162		}
 163	}
 164
 165unlock_ret:
 166	spin_unlock(&spool->lock);
 167	return ret;
 168}
 169
 170/*
 171 * Subpool accounting for freeing and unreserving pages.
 172 * Return the number of global page reservations that must be dropped.
 173 * The return value may only be different than the passed value (delta)
 174 * in the case where a subpool minimum size must be maintained.
 175 */
 176static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 177				       long delta)
 178{
 179	long ret = delta;
 180
 181	if (!spool)
 182		return delta;
 183
 184	spin_lock(&spool->lock);
 185
 186	if (spool->max_hpages != -1)		/* maximum size accounting */
 187		spool->used_hpages -= delta;
 188
 189	 /* minimum size accounting */
 190	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 191		if (spool->rsv_hpages + delta <= spool->min_hpages)
 192			ret = 0;
 193		else
 194			ret = spool->rsv_hpages + delta - spool->min_hpages;
 195
 196		spool->rsv_hpages += delta;
 197		if (spool->rsv_hpages > spool->min_hpages)
 198			spool->rsv_hpages = spool->min_hpages;
 199	}
 200
 201	/*
 202	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
 203	 * quota reference, free it now.
 204	 */
 205	unlock_or_release_subpool(spool);
 206
 207	return ret;
 208}
 209
 210static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 211{
 212	return HUGETLBFS_SB(inode->i_sb)->spool;
 213}
 214
 215static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 216{
 217	return subpool_inode(file_inode(vma->vm_file));
 218}
 219
 220/*
 221 * Region tracking -- allows tracking of reservations and instantiated pages
 222 *                    across the pages in a mapping.
 223 *
 224 * The region data structures are embedded into a resv_map and protected
 225 * by a resv_map's lock.  The set of regions within the resv_map represent
 226 * reservations for huge pages, or huge pages that have already been
 227 * instantiated within the map.  The from and to elements are huge page
 228 * indicies into the associated mapping.  from indicates the starting index
 229 * of the region.  to represents the first index past the end of  the region.
 230 *
 231 * For example, a file region structure with from == 0 and to == 4 represents
 232 * four huge pages in a mapping.  It is important to note that the to element
 233 * represents the first element past the end of the region. This is used in
 234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 235 *
 236 * Interval notation of the form [from, to) will be used to indicate that
 237 * the endpoint from is inclusive and to is exclusive.
 238 */
 239struct file_region {
 240	struct list_head link;
 241	long from;
 242	long to;
 243};
 244
 245/*
 246 * Add the huge page range represented by [f, t) to the reserve
 247 * map.  In the normal case, existing regions will be expanded
 248 * to accommodate the specified range.  Sufficient regions should
 249 * exist for expansion due to the previous call to region_chg
 250 * with the same range.  However, it is possible that region_del
 251 * could have been called after region_chg and modifed the map
 252 * in such a way that no region exists to be expanded.  In this
 253 * case, pull a region descriptor from the cache associated with
 254 * the map and use that for the new range.
 255 *
 256 * Return the number of new huge pages added to the map.  This
 257 * number is greater than or equal to zero.
 258 */
 259static long region_add(struct resv_map *resv, long f, long t)
 260{
 261	struct list_head *head = &resv->regions;
 262	struct file_region *rg, *nrg, *trg;
 263	long add = 0;
 264
 265	spin_lock(&resv->lock);
 266	/* Locate the region we are either in or before. */
 267	list_for_each_entry(rg, head, link)
 268		if (f <= rg->to)
 269			break;
 270
 271	/*
 272	 * If no region exists which can be expanded to include the
 273	 * specified range, the list must have been modified by an
 274	 * interleving call to region_del().  Pull a region descriptor
 275	 * from the cache and use it for this range.
 276	 */
 277	if (&rg->link == head || t < rg->from) {
 278		VM_BUG_ON(resv->region_cache_count <= 0);
 279
 280		resv->region_cache_count--;
 281		nrg = list_first_entry(&resv->region_cache, struct file_region,
 282					link);
 283		list_del(&nrg->link);
 284
 285		nrg->from = f;
 286		nrg->to = t;
 287		list_add(&nrg->link, rg->link.prev);
 288
 289		add += t - f;
 290		goto out_locked;
 291	}
 292
 293	/* Round our left edge to the current segment if it encloses us. */
 294	if (f > rg->from)
 295		f = rg->from;
 296
 297	/* Check for and consume any regions we now overlap with. */
 298	nrg = rg;
 299	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 300		if (&rg->link == head)
 301			break;
 302		if (rg->from > t)
 303			break;
 304
 305		/* If this area reaches higher then extend our area to
 306		 * include it completely.  If this is not the first area
 307		 * which we intend to reuse, free it. */
 308		if (rg->to > t)
 309			t = rg->to;
 310		if (rg != nrg) {
 311			/* Decrement return value by the deleted range.
 312			 * Another range will span this area so that by
 313			 * end of routine add will be >= zero
 314			 */
 315			add -= (rg->to - rg->from);
 316			list_del(&rg->link);
 317			kfree(rg);
 318		}
 319	}
 320
 321	add += (nrg->from - f);		/* Added to beginning of region */
 322	nrg->from = f;
 323	add += t - nrg->to;		/* Added to end of region */
 324	nrg->to = t;
 325
 326out_locked:
 327	resv->adds_in_progress--;
 328	spin_unlock(&resv->lock);
 329	VM_BUG_ON(add < 0);
 330	return add;
 331}
 332
 333/*
 334 * Examine the existing reserve map and determine how many
 335 * huge pages in the specified range [f, t) are NOT currently
 336 * represented.  This routine is called before a subsequent
 337 * call to region_add that will actually modify the reserve
 338 * map to add the specified range [f, t).  region_chg does
 339 * not change the number of huge pages represented by the
 340 * map.  However, if the existing regions in the map can not
 341 * be expanded to represent the new range, a new file_region
 342 * structure is added to the map as a placeholder.  This is
 343 * so that the subsequent region_add call will have all the
 344 * regions it needs and will not fail.
 345 *
 346 * Upon entry, region_chg will also examine the cache of region descriptors
 347 * associated with the map.  If there are not enough descriptors cached, one
 348 * will be allocated for the in progress add operation.
 349 *
 350 * Returns the number of huge pages that need to be added to the existing
 351 * reservation map for the range [f, t).  This number is greater or equal to
 352 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 353 * is needed and can not be allocated.
 354 */
 355static long region_chg(struct resv_map *resv, long f, long t)
 356{
 357	struct list_head *head = &resv->regions;
 358	struct file_region *rg, *nrg = NULL;
 359	long chg = 0;
 360
 361retry:
 362	spin_lock(&resv->lock);
 363retry_locked:
 364	resv->adds_in_progress++;
 365
 366	/*
 367	 * Check for sufficient descriptors in the cache to accommodate
 368	 * the number of in progress add operations.
 369	 */
 370	if (resv->adds_in_progress > resv->region_cache_count) {
 371		struct file_region *trg;
 372
 373		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
 374		/* Must drop lock to allocate a new descriptor. */
 375		resv->adds_in_progress--;
 376		spin_unlock(&resv->lock);
 377
 378		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 379		if (!trg) {
 380			kfree(nrg);
 381			return -ENOMEM;
 382		}
 383
 384		spin_lock(&resv->lock);
 385		list_add(&trg->link, &resv->region_cache);
 386		resv->region_cache_count++;
 387		goto retry_locked;
 388	}
 389
 390	/* Locate the region we are before or in. */
 391	list_for_each_entry(rg, head, link)
 392		if (f <= rg->to)
 393			break;
 394
 395	/* If we are below the current region then a new region is required.
 396	 * Subtle, allocate a new region at the position but make it zero
 397	 * size such that we can guarantee to record the reservation. */
 398	if (&rg->link == head || t < rg->from) {
 399		if (!nrg) {
 400			resv->adds_in_progress--;
 401			spin_unlock(&resv->lock);
 402			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 403			if (!nrg)
 404				return -ENOMEM;
 405
 406			nrg->from = f;
 407			nrg->to   = f;
 408			INIT_LIST_HEAD(&nrg->link);
 409			goto retry;
 410		}
 411
 412		list_add(&nrg->link, rg->link.prev);
 413		chg = t - f;
 414		goto out_nrg;
 415	}
 416
 417	/* Round our left edge to the current segment if it encloses us. */
 418	if (f > rg->from)
 419		f = rg->from;
 420	chg = t - f;
 421
 422	/* Check for and consume any regions we now overlap with. */
 423	list_for_each_entry(rg, rg->link.prev, link) {
 424		if (&rg->link == head)
 425			break;
 426		if (rg->from > t)
 427			goto out;
 428
 429		/* We overlap with this area, if it extends further than
 430		 * us then we must extend ourselves.  Account for its
 431		 * existing reservation. */
 432		if (rg->to > t) {
 433			chg += rg->to - t;
 434			t = rg->to;
 435		}
 436		chg -= rg->to - rg->from;
 437	}
 438
 439out:
 440	spin_unlock(&resv->lock);
 441	/*  We already know we raced and no longer need the new region */
 442	kfree(nrg);
 443	return chg;
 444out_nrg:
 445	spin_unlock(&resv->lock);
 446	return chg;
 447}
 448
 449/*
 450 * Abort the in progress add operation.  The adds_in_progress field
 451 * of the resv_map keeps track of the operations in progress between
 452 * calls to region_chg and region_add.  Operations are sometimes
 453 * aborted after the call to region_chg.  In such cases, region_abort
 454 * is called to decrement the adds_in_progress counter.
 455 *
 456 * NOTE: The range arguments [f, t) are not needed or used in this
 457 * routine.  They are kept to make reading the calling code easier as
 458 * arguments will match the associated region_chg call.
 459 */
 460static void region_abort(struct resv_map *resv, long f, long t)
 461{
 462	spin_lock(&resv->lock);
 463	VM_BUG_ON(!resv->region_cache_count);
 464	resv->adds_in_progress--;
 465	spin_unlock(&resv->lock);
 466}
 467
 468/*
 469 * Delete the specified range [f, t) from the reserve map.  If the
 470 * t parameter is LONG_MAX, this indicates that ALL regions after f
 471 * should be deleted.  Locate the regions which intersect [f, t)
 472 * and either trim, delete or split the existing regions.
 473 *
 474 * Returns the number of huge pages deleted from the reserve map.
 475 * In the normal case, the return value is zero or more.  In the
 476 * case where a region must be split, a new region descriptor must
 477 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 478 * NOTE: If the parameter t == LONG_MAX, then we will never split
 479 * a region and possibly return -ENOMEM.  Callers specifying
 480 * t == LONG_MAX do not need to check for -ENOMEM error.
 481 */
 482static long region_del(struct resv_map *resv, long f, long t)
 483{
 484	struct list_head *head = &resv->regions;
 485	struct file_region *rg, *trg;
 486	struct file_region *nrg = NULL;
 487	long del = 0;
 488
 489retry:
 490	spin_lock(&resv->lock);
 491	list_for_each_entry_safe(rg, trg, head, link) {
 492		/*
 493		 * Skip regions before the range to be deleted.  file_region
 494		 * ranges are normally of the form [from, to).  However, there
 495		 * may be a "placeholder" entry in the map which is of the form
 496		 * (from, to) with from == to.  Check for placeholder entries
 497		 * at the beginning of the range to be deleted.
 498		 */
 499		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 500			continue;
 501
 502		if (rg->from >= t)
 503			break;
 504
 505		if (f > rg->from && t < rg->to) { /* Must split region */
 506			/*
 507			 * Check for an entry in the cache before dropping
 508			 * lock and attempting allocation.
 509			 */
 510			if (!nrg &&
 511			    resv->region_cache_count > resv->adds_in_progress) {
 512				nrg = list_first_entry(&resv->region_cache,
 513							struct file_region,
 514							link);
 515				list_del(&nrg->link);
 516				resv->region_cache_count--;
 517			}
 518
 519			if (!nrg) {
 520				spin_unlock(&resv->lock);
 521				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 522				if (!nrg)
 523					return -ENOMEM;
 524				goto retry;
 525			}
 526
 527			del += t - f;
 528
 529			/* New entry for end of split region */
 530			nrg->from = t;
 531			nrg->to = rg->to;
 532			INIT_LIST_HEAD(&nrg->link);
 533
 534			/* Original entry is trimmed */
 535			rg->to = f;
 536
 537			list_add(&nrg->link, &rg->link);
 538			nrg = NULL;
 539			break;
 540		}
 541
 542		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 543			del += rg->to - rg->from;
 544			list_del(&rg->link);
 545			kfree(rg);
 546			continue;
 547		}
 548
 549		if (f <= rg->from) {	/* Trim beginning of region */
 550			del += t - rg->from;
 551			rg->from = t;
 552		} else {		/* Trim end of region */
 553			del += rg->to - f;
 554			rg->to = f;
 555		}
 556	}
 557
 558	spin_unlock(&resv->lock);
 559	kfree(nrg);
 560	return del;
 561}
 562
 563/*
 564 * A rare out of memory error was encountered which prevented removal of
 565 * the reserve map region for a page.  The huge page itself was free'ed
 566 * and removed from the page cache.  This routine will adjust the subpool
 567 * usage count, and the global reserve count if needed.  By incrementing
 568 * these counts, the reserve map entry which could not be deleted will
 569 * appear as a "reserved" entry instead of simply dangling with incorrect
 570 * counts.
 571 */
 572void hugetlb_fix_reserve_counts(struct inode *inode)
 573{
 574	struct hugepage_subpool *spool = subpool_inode(inode);
 575	long rsv_adjust;
 576
 577	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 578	if (rsv_adjust) {
 579		struct hstate *h = hstate_inode(inode);
 580
 581		hugetlb_acct_memory(h, 1);
 582	}
 583}
 584
 585/*
 586 * Count and return the number of huge pages in the reserve map
 587 * that intersect with the range [f, t).
 588 */
 589static long region_count(struct resv_map *resv, long f, long t)
 590{
 591	struct list_head *head = &resv->regions;
 592	struct file_region *rg;
 593	long chg = 0;
 594
 595	spin_lock(&resv->lock);
 596	/* Locate each segment we overlap with, and count that overlap. */
 597	list_for_each_entry(rg, head, link) {
 598		long seg_from;
 599		long seg_to;
 600
 601		if (rg->to <= f)
 602			continue;
 603		if (rg->from >= t)
 604			break;
 605
 606		seg_from = max(rg->from, f);
 607		seg_to = min(rg->to, t);
 608
 609		chg += seg_to - seg_from;
 610	}
 611	spin_unlock(&resv->lock);
 612
 613	return chg;
 614}
 615
 616/*
 617 * Convert the address within this vma to the page offset within
 618 * the mapping, in pagecache page units; huge pages here.
 619 */
 620static pgoff_t vma_hugecache_offset(struct hstate *h,
 621			struct vm_area_struct *vma, unsigned long address)
 622{
 623	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 624			(vma->vm_pgoff >> huge_page_order(h));
 625}
 626
 627pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 628				     unsigned long address)
 629{
 630	return vma_hugecache_offset(hstate_vma(vma), vma, address);
 631}
 632EXPORT_SYMBOL_GPL(linear_hugepage_index);
 633
 634/*
 635 * Return the size of the pages allocated when backing a VMA. In the majority
 636 * cases this will be same size as used by the page table entries.
 637 */
 638unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 639{
 640	if (vma->vm_ops && vma->vm_ops->pagesize)
 641		return vma->vm_ops->pagesize(vma);
 642	return PAGE_SIZE;
 
 
 
 
 
 643}
 644EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 645
 646/*
 647 * Return the page size being used by the MMU to back a VMA. In the majority
 648 * of cases, the page size used by the kernel matches the MMU size. On
 649 * architectures where it differs, an architecture-specific 'strong'
 650 * version of this symbol is required.
 651 */
 652__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 
 653{
 654	return vma_kernel_pagesize(vma);
 655}
 
 656
 657/*
 658 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 659 * bits of the reservation map pointer, which are always clear due to
 660 * alignment.
 661 */
 662#define HPAGE_RESV_OWNER    (1UL << 0)
 663#define HPAGE_RESV_UNMAPPED (1UL << 1)
 664#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 665
 666/*
 667 * These helpers are used to track how many pages are reserved for
 668 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 669 * is guaranteed to have their future faults succeed.
 670 *
 671 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 672 * the reserve counters are updated with the hugetlb_lock held. It is safe
 673 * to reset the VMA at fork() time as it is not in use yet and there is no
 674 * chance of the global counters getting corrupted as a result of the values.
 675 *
 676 * The private mapping reservation is represented in a subtly different
 677 * manner to a shared mapping.  A shared mapping has a region map associated
 678 * with the underlying file, this region map represents the backing file
 679 * pages which have ever had a reservation assigned which this persists even
 680 * after the page is instantiated.  A private mapping has a region map
 681 * associated with the original mmap which is attached to all VMAs which
 682 * reference it, this region map represents those offsets which have consumed
 683 * reservation ie. where pages have been instantiated.
 684 */
 685static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 686{
 687	return (unsigned long)vma->vm_private_data;
 688}
 689
 690static void set_vma_private_data(struct vm_area_struct *vma,
 691							unsigned long value)
 692{
 693	vma->vm_private_data = (void *)value;
 694}
 695
 696struct resv_map *resv_map_alloc(void)
 697{
 698	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 699	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 700
 701	if (!resv_map || !rg) {
 702		kfree(resv_map);
 703		kfree(rg);
 704		return NULL;
 705	}
 706
 707	kref_init(&resv_map->refs);
 708	spin_lock_init(&resv_map->lock);
 709	INIT_LIST_HEAD(&resv_map->regions);
 710
 711	resv_map->adds_in_progress = 0;
 712
 713	INIT_LIST_HEAD(&resv_map->region_cache);
 714	list_add(&rg->link, &resv_map->region_cache);
 715	resv_map->region_cache_count = 1;
 716
 717	return resv_map;
 718}
 719
 720void resv_map_release(struct kref *ref)
 721{
 722	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 723	struct list_head *head = &resv_map->region_cache;
 724	struct file_region *rg, *trg;
 725
 726	/* Clear out any active regions before we release the map. */
 727	region_del(resv_map, 0, LONG_MAX);
 728
 729	/* ... and any entries left in the cache */
 730	list_for_each_entry_safe(rg, trg, head, link) {
 731		list_del(&rg->link);
 732		kfree(rg);
 733	}
 734
 735	VM_BUG_ON(resv_map->adds_in_progress);
 736
 737	kfree(resv_map);
 738}
 739
 740static inline struct resv_map *inode_resv_map(struct inode *inode)
 741{
 742	return inode->i_mapping->private_data;
 743}
 744
 745static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 746{
 747	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 748	if (vma->vm_flags & VM_MAYSHARE) {
 749		struct address_space *mapping = vma->vm_file->f_mapping;
 750		struct inode *inode = mapping->host;
 751
 752		return inode_resv_map(inode);
 753
 754	} else {
 755		return (struct resv_map *)(get_vma_private_data(vma) &
 756							~HPAGE_RESV_MASK);
 757	}
 758}
 759
 760static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 761{
 762	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 763	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 764
 765	set_vma_private_data(vma, (get_vma_private_data(vma) &
 766				HPAGE_RESV_MASK) | (unsigned long)map);
 767}
 768
 769static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 770{
 771	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 772	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 773
 774	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 775}
 776
 777static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 778{
 779	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 780
 781	return (get_vma_private_data(vma) & flag) != 0;
 782}
 783
 784/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 785void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 786{
 787	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 788	if (!(vma->vm_flags & VM_MAYSHARE))
 789		vma->vm_private_data = (void *)0;
 790}
 791
 792/* Returns true if the VMA has associated reserve pages */
 793static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 794{
 795	if (vma->vm_flags & VM_NORESERVE) {
 796		/*
 797		 * This address is already reserved by other process(chg == 0),
 798		 * so, we should decrement reserved count. Without decrementing,
 799		 * reserve count remains after releasing inode, because this
 800		 * allocated page will go into page cache and is regarded as
 801		 * coming from reserved pool in releasing step.  Currently, we
 802		 * don't have any other solution to deal with this situation
 803		 * properly, so add work-around here.
 804		 */
 805		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 806			return true;
 807		else
 808			return false;
 809	}
 810
 811	/* Shared mappings always use reserves */
 812	if (vma->vm_flags & VM_MAYSHARE) {
 813		/*
 814		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 815		 * be a region map for all pages.  The only situation where
 816		 * there is no region map is if a hole was punched via
 817		 * fallocate.  In this case, there really are no reverves to
 818		 * use.  This situation is indicated if chg != 0.
 819		 */
 820		if (chg)
 821			return false;
 822		else
 823			return true;
 824	}
 825
 826	/*
 827	 * Only the process that called mmap() has reserves for
 828	 * private mappings.
 829	 */
 830	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 831		/*
 832		 * Like the shared case above, a hole punch or truncate
 833		 * could have been performed on the private mapping.
 834		 * Examine the value of chg to determine if reserves
 835		 * actually exist or were previously consumed.
 836		 * Very Subtle - The value of chg comes from a previous
 837		 * call to vma_needs_reserves().  The reserve map for
 838		 * private mappings has different (opposite) semantics
 839		 * than that of shared mappings.  vma_needs_reserves()
 840		 * has already taken this difference in semantics into
 841		 * account.  Therefore, the meaning of chg is the same
 842		 * as in the shared case above.  Code could easily be
 843		 * combined, but keeping it separate draws attention to
 844		 * subtle differences.
 845		 */
 846		if (chg)
 847			return false;
 848		else
 849			return true;
 850	}
 851
 852	return false;
 853}
 854
 855static void enqueue_huge_page(struct hstate *h, struct page *page)
 856{
 857	int nid = page_to_nid(page);
 858	list_move(&page->lru, &h->hugepage_freelists[nid]);
 859	h->free_huge_pages++;
 860	h->free_huge_pages_node[nid]++;
 861}
 862
 863static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
 864{
 865	struct page *page;
 866
 867	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 868		if (!PageHWPoison(page))
 869			break;
 870	/*
 871	 * if 'non-isolated free hugepage' not found on the list,
 872	 * the allocation fails.
 873	 */
 874	if (&h->hugepage_freelists[nid] == &page->lru)
 875		return NULL;
 876	list_move(&page->lru, &h->hugepage_activelist);
 877	set_page_refcounted(page);
 878	h->free_huge_pages--;
 879	h->free_huge_pages_node[nid]--;
 880	return page;
 881}
 882
 883static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
 884		nodemask_t *nmask)
 885{
 886	unsigned int cpuset_mems_cookie;
 887	struct zonelist *zonelist;
 888	struct zone *zone;
 889	struct zoneref *z;
 890	int node = -1;
 891
 892	zonelist = node_zonelist(nid, gfp_mask);
 893
 894retry_cpuset:
 895	cpuset_mems_cookie = read_mems_allowed_begin();
 896	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
 897		struct page *page;
 898
 899		if (!cpuset_zone_allowed(zone, gfp_mask))
 900			continue;
 901		/*
 902		 * no need to ask again on the same node. Pool is node rather than
 903		 * zone aware
 904		 */
 905		if (zone_to_nid(zone) == node)
 906			continue;
 907		node = zone_to_nid(zone);
 908
 909		page = dequeue_huge_page_node_exact(h, node);
 910		if (page)
 911			return page;
 912	}
 913	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
 914		goto retry_cpuset;
 915
 916	return NULL;
 917}
 918
 919/* Movability of hugepages depends on migration support. */
 920static inline gfp_t htlb_alloc_mask(struct hstate *h)
 921{
 922	if (hugepage_migration_supported(h))
 923		return GFP_HIGHUSER_MOVABLE;
 924	else
 925		return GFP_HIGHUSER;
 926}
 927
 928static struct page *dequeue_huge_page_vma(struct hstate *h,
 929				struct vm_area_struct *vma,
 930				unsigned long address, int avoid_reserve,
 931				long chg)
 932{
 933	struct page *page;
 934	struct mempolicy *mpol;
 935	gfp_t gfp_mask;
 936	nodemask_t *nodemask;
 937	int nid;
 
 
 
 938
 939	/*
 940	 * A child process with MAP_PRIVATE mappings created by their parent
 941	 * have no page reserves. This check ensures that reservations are
 942	 * not "stolen". The child may still get SIGKILLed
 943	 */
 944	if (!vma_has_reserves(vma, chg) &&
 945			h->free_huge_pages - h->resv_huge_pages == 0)
 946		goto err;
 947
 948	/* If reserves cannot be used, ensure enough pages are in the pool */
 949	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 950		goto err;
 951
 952	gfp_mask = htlb_alloc_mask(h);
 953	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
 954	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
 955	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
 956		SetPagePrivate(page);
 957		h->resv_huge_pages--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 958	}
 959
 960	mpol_cond_put(mpol);
 
 
 961	return page;
 962
 963err:
 964	return NULL;
 965}
 966
 967/*
 968 * common helper functions for hstate_next_node_to_{alloc|free}.
 969 * We may have allocated or freed a huge page based on a different
 970 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 971 * be outside of *nodes_allowed.  Ensure that we use an allowed
 972 * node for alloc or free.
 973 */
 974static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 975{
 976	nid = next_node_in(nid, *nodes_allowed);
 
 
 977	VM_BUG_ON(nid >= MAX_NUMNODES);
 978
 979	return nid;
 980}
 981
 982static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 983{
 984	if (!node_isset(nid, *nodes_allowed))
 985		nid = next_node_allowed(nid, nodes_allowed);
 986	return nid;
 987}
 988
 989/*
 990 * returns the previously saved node ["this node"] from which to
 991 * allocate a persistent huge page for the pool and advance the
 992 * next node from which to allocate, handling wrap at end of node
 993 * mask.
 994 */
 995static int hstate_next_node_to_alloc(struct hstate *h,
 996					nodemask_t *nodes_allowed)
 997{
 998	int nid;
 999
1000	VM_BUG_ON(!nodes_allowed);
1001
1002	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1003	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1004
1005	return nid;
1006}
1007
1008/*
1009 * helper for free_pool_huge_page() - return the previously saved
1010 * node ["this node"] from which to free a huge page.  Advance the
1011 * next node id whether or not we find a free huge page to free so
1012 * that the next attempt to free addresses the next node.
1013 */
1014static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1015{
1016	int nid;
1017
1018	VM_BUG_ON(!nodes_allowed);
1019
1020	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1021	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1022
1023	return nid;
1024}
1025
1026#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1027	for (nr_nodes = nodes_weight(*mask);				\
1028		nr_nodes > 0 &&						\
1029		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1030		nr_nodes--)
1031
1032#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1033	for (nr_nodes = nodes_weight(*mask);				\
1034		nr_nodes > 0 &&						\
1035		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1036		nr_nodes--)
1037
1038#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1039static void destroy_compound_gigantic_page(struct page *page,
1040					unsigned int order)
1041{
1042	int i;
1043	int nr_pages = 1 << order;
1044	struct page *p = page + 1;
1045
1046	atomic_set(compound_mapcount_ptr(page), 0);
1047	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1048		clear_compound_head(p);
1049		set_page_refcounted(p);
1050	}
1051
1052	set_compound_order(page, 0);
1053	__ClearPageHead(page);
1054}
1055
1056static void free_gigantic_page(struct page *page, unsigned int order)
1057{
1058	free_contig_range(page_to_pfn(page), 1 << order);
1059}
1060
1061static int __alloc_gigantic_page(unsigned long start_pfn,
1062				unsigned long nr_pages, gfp_t gfp_mask)
1063{
1064	unsigned long end_pfn = start_pfn + nr_pages;
1065	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1066				  gfp_mask);
1067}
1068
1069static bool pfn_range_valid_gigantic(struct zone *z,
1070			unsigned long start_pfn, unsigned long nr_pages)
1071{
1072	unsigned long i, end_pfn = start_pfn + nr_pages;
1073	struct page *page;
1074
1075	for (i = start_pfn; i < end_pfn; i++) {
1076		if (!pfn_valid(i))
1077			return false;
1078
1079		page = pfn_to_page(i);
1080
1081		if (page_zone(page) != z)
1082			return false;
1083
1084		if (PageReserved(page))
1085			return false;
1086
1087		if (page_count(page) > 0)
1088			return false;
1089
1090		if (PageHuge(page))
1091			return false;
1092	}
1093
1094	return true;
1095}
1096
1097static bool zone_spans_last_pfn(const struct zone *zone,
1098			unsigned long start_pfn, unsigned long nr_pages)
1099{
1100	unsigned long last_pfn = start_pfn + nr_pages - 1;
1101	return zone_spans_pfn(zone, last_pfn);
1102}
1103
1104static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1105		int nid, nodemask_t *nodemask)
1106{
1107	unsigned int order = huge_page_order(h);
1108	unsigned long nr_pages = 1 << order;
1109	unsigned long ret, pfn, flags;
1110	struct zonelist *zonelist;
1111	struct zone *zone;
1112	struct zoneref *z;
1113
1114	zonelist = node_zonelist(nid, gfp_mask);
1115	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1116		spin_lock_irqsave(&zone->lock, flags);
1117
1118		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1119		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1120			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1121				/*
1122				 * We release the zone lock here because
1123				 * alloc_contig_range() will also lock the zone
1124				 * at some point. If there's an allocation
1125				 * spinning on this lock, it may win the race
1126				 * and cause alloc_contig_range() to fail...
1127				 */
1128				spin_unlock_irqrestore(&zone->lock, flags);
1129				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1130				if (!ret)
1131					return pfn_to_page(pfn);
1132				spin_lock_irqsave(&zone->lock, flags);
1133			}
1134			pfn += nr_pages;
1135		}
1136
1137		spin_unlock_irqrestore(&zone->lock, flags);
1138	}
1139
1140	return NULL;
1141}
1142
1143static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1144static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1145
1146#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147static inline bool gigantic_page_supported(void) { return false; }
1148static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1149		int nid, nodemask_t *nodemask) { return NULL; }
1150static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1151static inline void destroy_compound_gigantic_page(struct page *page,
1152						unsigned int order) { }
 
 
1153#endif
1154
1155static void update_and_free_page(struct hstate *h, struct page *page)
1156{
1157	int i;
1158
1159	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1160		return;
1161
1162	h->nr_huge_pages--;
1163	h->nr_huge_pages_node[page_to_nid(page)]--;
1164	for (i = 0; i < pages_per_huge_page(h); i++) {
1165		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1166				1 << PG_referenced | 1 << PG_dirty |
1167				1 << PG_active | 1 << PG_private |
1168				1 << PG_writeback);
1169	}
1170	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1171	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1172	set_page_refcounted(page);
1173	if (hstate_is_gigantic(h)) {
1174		destroy_compound_gigantic_page(page, huge_page_order(h));
1175		free_gigantic_page(page, huge_page_order(h));
1176	} else {
1177		__free_pages(page, huge_page_order(h));
1178	}
1179}
1180
1181struct hstate *size_to_hstate(unsigned long size)
1182{
1183	struct hstate *h;
1184
1185	for_each_hstate(h) {
1186		if (huge_page_size(h) == size)
1187			return h;
1188	}
1189	return NULL;
1190}
1191
1192/*
1193 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1194 * to hstate->hugepage_activelist.)
1195 *
1196 * This function can be called for tail pages, but never returns true for them.
1197 */
1198bool page_huge_active(struct page *page)
1199{
1200	VM_BUG_ON_PAGE(!PageHuge(page), page);
1201	return PageHead(page) && PagePrivate(&page[1]);
1202}
1203
1204/* never called for tail page */
1205static void set_page_huge_active(struct page *page)
1206{
1207	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1208	SetPagePrivate(&page[1]);
1209}
1210
1211static void clear_page_huge_active(struct page *page)
1212{
1213	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1214	ClearPagePrivate(&page[1]);
1215}
1216
1217/*
1218 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1219 * code
1220 */
1221static inline bool PageHugeTemporary(struct page *page)
1222{
1223	if (!PageHuge(page))
1224		return false;
1225
1226	return (unsigned long)page[2].mapping == -1U;
1227}
1228
1229static inline void SetPageHugeTemporary(struct page *page)
1230{
1231	page[2].mapping = (void *)-1U;
1232}
1233
1234static inline void ClearPageHugeTemporary(struct page *page)
1235{
1236	page[2].mapping = NULL;
1237}
1238
1239void free_huge_page(struct page *page)
1240{
1241	/*
1242	 * Can't pass hstate in here because it is called from the
1243	 * compound page destructor.
1244	 */
1245	struct hstate *h = page_hstate(page);
1246	int nid = page_to_nid(page);
1247	struct hugepage_subpool *spool =
1248		(struct hugepage_subpool *)page_private(page);
1249	bool restore_reserve;
1250
1251	set_page_private(page, 0);
1252	page->mapping = NULL;
1253	VM_BUG_ON_PAGE(page_count(page), page);
1254	VM_BUG_ON_PAGE(page_mapcount(page), page);
1255	restore_reserve = PagePrivate(page);
1256	ClearPagePrivate(page);
1257
1258	/*
1259	 * A return code of zero implies that the subpool will be under its
1260	 * minimum size if the reservation is not restored after page is free.
1261	 * Therefore, force restore_reserve operation.
1262	 */
1263	if (hugepage_subpool_put_pages(spool, 1) == 0)
1264		restore_reserve = true;
1265
1266	spin_lock(&hugetlb_lock);
1267	clear_page_huge_active(page);
1268	hugetlb_cgroup_uncharge_page(hstate_index(h),
1269				     pages_per_huge_page(h), page);
1270	if (restore_reserve)
1271		h->resv_huge_pages++;
1272
1273	if (PageHugeTemporary(page)) {
1274		list_del(&page->lru);
1275		ClearPageHugeTemporary(page);
1276		update_and_free_page(h, page);
1277	} else if (h->surplus_huge_pages_node[nid]) {
1278		/* remove the page from active list */
1279		list_del(&page->lru);
1280		update_and_free_page(h, page);
1281		h->surplus_huge_pages--;
1282		h->surplus_huge_pages_node[nid]--;
1283	} else {
1284		arch_clear_hugepage_flags(page);
1285		enqueue_huge_page(h, page);
1286	}
1287	spin_unlock(&hugetlb_lock);
1288}
1289
1290static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1291{
1292	INIT_LIST_HEAD(&page->lru);
1293	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1294	spin_lock(&hugetlb_lock);
1295	set_hugetlb_cgroup(page, NULL);
1296	h->nr_huge_pages++;
1297	h->nr_huge_pages_node[nid]++;
1298	spin_unlock(&hugetlb_lock);
 
1299}
1300
1301static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1302{
1303	int i;
1304	int nr_pages = 1 << order;
1305	struct page *p = page + 1;
1306
1307	/* we rely on prep_new_huge_page to set the destructor */
1308	set_compound_order(page, order);
1309	__ClearPageReserved(page);
1310	__SetPageHead(page);
1311	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1312		/*
1313		 * For gigantic hugepages allocated through bootmem at
1314		 * boot, it's safer to be consistent with the not-gigantic
1315		 * hugepages and clear the PG_reserved bit from all tail pages
1316		 * too.  Otherwse drivers using get_user_pages() to access tail
1317		 * pages may get the reference counting wrong if they see
1318		 * PG_reserved set on a tail page (despite the head page not
1319		 * having PG_reserved set).  Enforcing this consistency between
1320		 * head and tail pages allows drivers to optimize away a check
1321		 * on the head page when they need know if put_page() is needed
1322		 * after get_user_pages().
1323		 */
1324		__ClearPageReserved(p);
1325		set_page_count(p, 0);
1326		set_compound_head(p, page);
1327	}
1328	atomic_set(compound_mapcount_ptr(page), -1);
1329}
1330
1331/*
1332 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1333 * transparent huge pages.  See the PageTransHuge() documentation for more
1334 * details.
1335 */
1336int PageHuge(struct page *page)
1337{
1338	if (!PageCompound(page))
1339		return 0;
1340
1341	page = compound_head(page);
1342	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1343}
1344EXPORT_SYMBOL_GPL(PageHuge);
1345
1346/*
1347 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1348 * normal or transparent huge pages.
1349 */
1350int PageHeadHuge(struct page *page_head)
1351{
1352	if (!PageHead(page_head))
1353		return 0;
1354
1355	return get_compound_page_dtor(page_head) == free_huge_page;
1356}
1357
1358pgoff_t __basepage_index(struct page *page)
1359{
1360	struct page *page_head = compound_head(page);
1361	pgoff_t index = page_index(page_head);
1362	unsigned long compound_idx;
1363
1364	if (!PageHuge(page_head))
1365		return page_index(page);
1366
1367	if (compound_order(page_head) >= MAX_ORDER)
1368		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1369	else
1370		compound_idx = page - page_head;
1371
1372	return (index << compound_order(page_head)) + compound_idx;
1373}
1374
1375static struct page *alloc_buddy_huge_page(struct hstate *h,
1376		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1377{
1378	int order = huge_page_order(h);
1379	struct page *page;
1380
1381	gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1382	if (nid == NUMA_NO_NODE)
1383		nid = numa_mem_id();
1384	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1385	if (page)
1386		__count_vm_event(HTLB_BUDDY_PGALLOC);
1387	else
1388		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1389
1390	return page;
1391}
1392
1393/*
1394 * Common helper to allocate a fresh hugetlb page. All specific allocators
1395 * should use this function to get new hugetlb pages
1396 */
1397static struct page *alloc_fresh_huge_page(struct hstate *h,
1398		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1399{
1400	struct page *page;
1401
1402	if (hstate_is_gigantic(h))
1403		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1404	else
1405		page = alloc_buddy_huge_page(h, gfp_mask,
1406				nid, nmask);
1407	if (!page)
1408		return NULL;
1409
1410	if (hstate_is_gigantic(h))
1411		prep_compound_gigantic_page(page, huge_page_order(h));
1412	prep_new_huge_page(h, page, page_to_nid(page));
1413
1414	return page;
1415}
1416
1417/*
1418 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1419 * manner.
1420 */
1421static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1422{
1423	struct page *page;
1424	int nr_nodes, node;
1425	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1426
1427	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1428		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1429		if (page)
 
1430			break;
 
1431	}
1432
1433	if (!page)
1434		return 0;
1435
1436	put_page(page); /* free it into the hugepage allocator */
1437
1438	return 1;
1439}
1440
1441/*
1442 * Free huge page from pool from next node to free.
1443 * Attempt to keep persistent huge pages more or less
1444 * balanced over allowed nodes.
1445 * Called with hugetlb_lock locked.
1446 */
1447static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1448							 bool acct_surplus)
1449{
1450	int nr_nodes, node;
1451	int ret = 0;
1452
1453	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1454		/*
1455		 * If we're returning unused surplus pages, only examine
1456		 * nodes with surplus pages.
1457		 */
1458		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1459		    !list_empty(&h->hugepage_freelists[node])) {
1460			struct page *page =
1461				list_entry(h->hugepage_freelists[node].next,
1462					  struct page, lru);
1463			list_del(&page->lru);
1464			h->free_huge_pages--;
1465			h->free_huge_pages_node[node]--;
1466			if (acct_surplus) {
1467				h->surplus_huge_pages--;
1468				h->surplus_huge_pages_node[node]--;
1469			}
1470			update_and_free_page(h, page);
1471			ret = 1;
1472			break;
1473		}
1474	}
1475
1476	return ret;
1477}
1478
1479/*
1480 * Dissolve a given free hugepage into free buddy pages. This function does
1481 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1482 * number of free hugepages would be reduced below the number of reserved
1483 * hugepages.
1484 */
1485int dissolve_free_huge_page(struct page *page)
1486{
1487	int rc = 0;
1488
1489	spin_lock(&hugetlb_lock);
1490	if (PageHuge(page) && !page_count(page)) {
1491		struct page *head = compound_head(page);
1492		struct hstate *h = page_hstate(head);
1493		int nid = page_to_nid(head);
1494		if (h->free_huge_pages - h->resv_huge_pages == 0) {
1495			rc = -EBUSY;
1496			goto out;
1497		}
1498		/*
1499		 * Move PageHWPoison flag from head page to the raw error page,
1500		 * which makes any subpages rather than the error page reusable.
1501		 */
1502		if (PageHWPoison(head) && page != head) {
1503			SetPageHWPoison(page);
1504			ClearPageHWPoison(head);
1505		}
1506		list_del(&head->lru);
1507		h->free_huge_pages--;
1508		h->free_huge_pages_node[nid]--;
1509		h->max_huge_pages--;
1510		update_and_free_page(h, head);
1511	}
1512out:
1513	spin_unlock(&hugetlb_lock);
1514	return rc;
1515}
1516
1517/*
1518 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1519 * make specified memory blocks removable from the system.
1520 * Note that this will dissolve a free gigantic hugepage completely, if any
1521 * part of it lies within the given range.
1522 * Also note that if dissolve_free_huge_page() returns with an error, all
1523 * free hugepages that were dissolved before that error are lost.
1524 */
1525int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1526{
1527	unsigned long pfn;
1528	struct page *page;
1529	int rc = 0;
1530
1531	if (!hugepages_supported())
1532		return rc;
1533
1534	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1535		page = pfn_to_page(pfn);
1536		if (PageHuge(page) && !page_count(page)) {
1537			rc = dissolve_free_huge_page(page);
1538			if (rc)
1539				break;
1540		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1541	}
1542
1543	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544}
1545
1546/*
1547 * Allocates a fresh surplus page from the page allocator.
 
 
 
 
 
 
 
 
 
1548 */
1549static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1550		int nid, nodemask_t *nmask)
1551{
1552	struct page *page = NULL;
 
1553
1554	if (hstate_is_gigantic(h))
1555		return NULL;
1556
1557	spin_lock(&hugetlb_lock);
1558	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1559		goto out_unlock;
1560	spin_unlock(&hugetlb_lock);
1561
1562	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1563	if (!page)
1564		return NULL;
1565
1566	spin_lock(&hugetlb_lock);
1567	/*
1568	 * We could have raced with the pool size change.
1569	 * Double check that and simply deallocate the new page
1570	 * if we would end up overcommiting the surpluses. Abuse
1571	 * temporary page to workaround the nasty free_huge_page
1572	 * codeflow
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1573	 */
 
1574	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1575		SetPageHugeTemporary(page);
1576		put_page(page);
1577		page = NULL;
1578	} else {
 
1579		h->surplus_huge_pages++;
1580		h->surplus_huge_pages_node[page_to_nid(page)]++;
1581	}
 
1582
1583out_unlock:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1584	spin_unlock(&hugetlb_lock);
1585
1586	return page;
1587}
1588
1589static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1590		int nid, nodemask_t *nmask)
 
 
 
 
 
1591{
1592	struct page *page;
1593
1594	if (hstate_is_gigantic(h))
1595		return NULL;
1596
1597	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1598	if (!page)
1599		return NULL;
1600
1601	/*
1602	 * We do not account these pages as surplus because they are only
1603	 * temporary and will be released properly on the last reference
1604	 */
1605	SetPageHugeTemporary(page);
1606
1607	return page;
1608}
1609
1610/*
1611 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1612 */
1613static
1614struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1615		struct vm_area_struct *vma, unsigned long addr)
1616{
1617	struct page *page;
1618	struct mempolicy *mpol;
1619	gfp_t gfp_mask = htlb_alloc_mask(h);
1620	int nid;
1621	nodemask_t *nodemask;
1622
1623	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1624	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1625	mpol_cond_put(mpol);
1626
1627	return page;
1628}
1629
1630/* page migration callback function */
 
 
 
 
1631struct page *alloc_huge_page_node(struct hstate *h, int nid)
1632{
1633	gfp_t gfp_mask = htlb_alloc_mask(h);
1634	struct page *page = NULL;
1635
1636	if (nid != NUMA_NO_NODE)
1637		gfp_mask |= __GFP_THISNODE;
1638
1639	spin_lock(&hugetlb_lock);
1640	if (h->free_huge_pages - h->resv_huge_pages > 0)
1641		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1642	spin_unlock(&hugetlb_lock);
1643
1644	if (!page)
1645		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1646
1647	return page;
1648}
1649
1650/* page migration callback function */
1651struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1652		nodemask_t *nmask)
1653{
1654	gfp_t gfp_mask = htlb_alloc_mask(h);
1655
1656	spin_lock(&hugetlb_lock);
1657	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1658		struct page *page;
1659
1660		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1661		if (page) {
1662			spin_unlock(&hugetlb_lock);
1663			return page;
1664		}
1665	}
1666	spin_unlock(&hugetlb_lock);
1667
1668	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1669}
1670
1671/* mempolicy aware migration callback */
1672struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1673		unsigned long address)
1674{
1675	struct mempolicy *mpol;
1676	nodemask_t *nodemask;
1677	struct page *page;
1678	gfp_t gfp_mask;
1679	int node;
1680
1681	gfp_mask = htlb_alloc_mask(h);
1682	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1683	page = alloc_huge_page_nodemask(h, node, nodemask);
1684	mpol_cond_put(mpol);
1685
1686	return page;
1687}
1688
1689/*
1690 * Increase the hugetlb pool such that it can accommodate a reservation
1691 * of size 'delta'.
1692 */
1693static int gather_surplus_pages(struct hstate *h, int delta)
1694{
1695	struct list_head surplus_list;
1696	struct page *page, *tmp;
1697	int ret, i;
1698	int needed, allocated;
1699	bool alloc_ok = true;
1700
1701	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1702	if (needed <= 0) {
1703		h->resv_huge_pages += delta;
1704		return 0;
1705	}
1706
1707	allocated = 0;
1708	INIT_LIST_HEAD(&surplus_list);
1709
1710	ret = -ENOMEM;
1711retry:
1712	spin_unlock(&hugetlb_lock);
1713	for (i = 0; i < needed; i++) {
1714		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1715				NUMA_NO_NODE, NULL);
1716		if (!page) {
1717			alloc_ok = false;
1718			break;
1719		}
1720		list_add(&page->lru, &surplus_list);
1721		cond_resched();
1722	}
1723	allocated += i;
1724
1725	/*
1726	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1727	 * because either resv_huge_pages or free_huge_pages may have changed.
1728	 */
1729	spin_lock(&hugetlb_lock);
1730	needed = (h->resv_huge_pages + delta) -
1731			(h->free_huge_pages + allocated);
1732	if (needed > 0) {
1733		if (alloc_ok)
1734			goto retry;
1735		/*
1736		 * We were not able to allocate enough pages to
1737		 * satisfy the entire reservation so we free what
1738		 * we've allocated so far.
1739		 */
1740		goto free;
1741	}
1742	/*
1743	 * The surplus_list now contains _at_least_ the number of extra pages
1744	 * needed to accommodate the reservation.  Add the appropriate number
1745	 * of pages to the hugetlb pool and free the extras back to the buddy
1746	 * allocator.  Commit the entire reservation here to prevent another
1747	 * process from stealing the pages as they are added to the pool but
1748	 * before they are reserved.
1749	 */
1750	needed += allocated;
1751	h->resv_huge_pages += delta;
1752	ret = 0;
1753
1754	/* Free the needed pages to the hugetlb pool */
1755	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1756		if ((--needed) < 0)
1757			break;
1758		/*
1759		 * This page is now managed by the hugetlb allocator and has
1760		 * no users -- drop the buddy allocator's reference.
1761		 */
1762		put_page_testzero(page);
1763		VM_BUG_ON_PAGE(page_count(page), page);
1764		enqueue_huge_page(h, page);
1765	}
1766free:
1767	spin_unlock(&hugetlb_lock);
1768
1769	/* Free unnecessary surplus pages to the buddy allocator */
1770	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1771		put_page(page);
1772	spin_lock(&hugetlb_lock);
1773
1774	return ret;
1775}
1776
1777/*
1778 * This routine has two main purposes:
1779 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1780 *    in unused_resv_pages.  This corresponds to the prior adjustments made
1781 *    to the associated reservation map.
1782 * 2) Free any unused surplus pages that may have been allocated to satisfy
1783 *    the reservation.  As many as unused_resv_pages may be freed.
1784 *
1785 * Called with hugetlb_lock held.  However, the lock could be dropped (and
1786 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1787 * we must make sure nobody else can claim pages we are in the process of
1788 * freeing.  Do this by ensuring resv_huge_page always is greater than the
1789 * number of huge pages we plan to free when dropping the lock.
1790 */
1791static void return_unused_surplus_pages(struct hstate *h,
1792					unsigned long unused_resv_pages)
1793{
1794	unsigned long nr_pages;
1795
 
 
 
1796	/* Cannot return gigantic pages currently */
1797	if (hstate_is_gigantic(h))
1798		goto out;
1799
1800	/*
1801	 * Part (or even all) of the reservation could have been backed
1802	 * by pre-allocated pages. Only free surplus pages.
1803	 */
1804	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1805
1806	/*
1807	 * We want to release as many surplus pages as possible, spread
1808	 * evenly across all nodes with memory. Iterate across these nodes
1809	 * until we can no longer free unreserved surplus pages. This occurs
1810	 * when the nodes with surplus pages have no free pages.
1811	 * free_pool_huge_page() will balance the the freed pages across the
1812	 * on-line nodes with memory and will handle the hstate accounting.
1813	 *
1814	 * Note that we decrement resv_huge_pages as we free the pages.  If
1815	 * we drop the lock, resv_huge_pages will still be sufficiently large
1816	 * to cover subsequent pages we may free.
1817	 */
1818	while (nr_pages--) {
1819		h->resv_huge_pages--;
1820		unused_resv_pages--;
1821		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1822			goto out;
1823		cond_resched_lock(&hugetlb_lock);
1824	}
1825
1826out:
1827	/* Fully uncommit the reservation */
1828	h->resv_huge_pages -= unused_resv_pages;
1829}
1830
1831
1832/*
1833 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1834 * are used by the huge page allocation routines to manage reservations.
1835 *
1836 * vma_needs_reservation is called to determine if the huge page at addr
1837 * within the vma has an associated reservation.  If a reservation is
1838 * needed, the value 1 is returned.  The caller is then responsible for
1839 * managing the global reservation and subpool usage counts.  After
1840 * the huge page has been allocated, vma_commit_reservation is called
1841 * to add the page to the reservation map.  If the page allocation fails,
1842 * the reservation must be ended instead of committed.  vma_end_reservation
1843 * is called in such cases.
1844 *
1845 * In the normal case, vma_commit_reservation returns the same value
1846 * as the preceding vma_needs_reservation call.  The only time this
1847 * is not the case is if a reserve map was changed between calls.  It
1848 * is the responsibility of the caller to notice the difference and
1849 * take appropriate action.
1850 *
1851 * vma_add_reservation is used in error paths where a reservation must
1852 * be restored when a newly allocated huge page must be freed.  It is
1853 * to be called after calling vma_needs_reservation to determine if a
1854 * reservation exists.
1855 */
1856enum vma_resv_mode {
1857	VMA_NEEDS_RESV,
1858	VMA_COMMIT_RESV,
1859	VMA_END_RESV,
1860	VMA_ADD_RESV,
1861};
1862static long __vma_reservation_common(struct hstate *h,
1863				struct vm_area_struct *vma, unsigned long addr,
1864				enum vma_resv_mode mode)
1865{
1866	struct resv_map *resv;
1867	pgoff_t idx;
1868	long ret;
1869
1870	resv = vma_resv_map(vma);
1871	if (!resv)
1872		return 1;
1873
1874	idx = vma_hugecache_offset(h, vma, addr);
1875	switch (mode) {
1876	case VMA_NEEDS_RESV:
1877		ret = region_chg(resv, idx, idx + 1);
1878		break;
1879	case VMA_COMMIT_RESV:
1880		ret = region_add(resv, idx, idx + 1);
1881		break;
1882	case VMA_END_RESV:
1883		region_abort(resv, idx, idx + 1);
1884		ret = 0;
1885		break;
1886	case VMA_ADD_RESV:
1887		if (vma->vm_flags & VM_MAYSHARE)
1888			ret = region_add(resv, idx, idx + 1);
1889		else {
1890			region_abort(resv, idx, idx + 1);
1891			ret = region_del(resv, idx, idx + 1);
1892		}
1893		break;
1894	default:
1895		BUG();
1896	}
1897
1898	if (vma->vm_flags & VM_MAYSHARE)
1899		return ret;
1900	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1901		/*
1902		 * In most cases, reserves always exist for private mappings.
1903		 * However, a file associated with mapping could have been
1904		 * hole punched or truncated after reserves were consumed.
1905		 * As subsequent fault on such a range will not use reserves.
1906		 * Subtle - The reserve map for private mappings has the
1907		 * opposite meaning than that of shared mappings.  If NO
1908		 * entry is in the reserve map, it means a reservation exists.
1909		 * If an entry exists in the reserve map, it means the
1910		 * reservation has already been consumed.  As a result, the
1911		 * return value of this routine is the opposite of the
1912		 * value returned from reserve map manipulation routines above.
1913		 */
1914		if (ret)
1915			return 0;
1916		else
1917			return 1;
1918	}
1919	else
1920		return ret < 0 ? ret : 0;
1921}
1922
1923static long vma_needs_reservation(struct hstate *h,
1924			struct vm_area_struct *vma, unsigned long addr)
1925{
1926	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1927}
1928
1929static long vma_commit_reservation(struct hstate *h,
1930			struct vm_area_struct *vma, unsigned long addr)
1931{
1932	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1933}
1934
1935static void vma_end_reservation(struct hstate *h,
1936			struct vm_area_struct *vma, unsigned long addr)
1937{
1938	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1939}
1940
1941static long vma_add_reservation(struct hstate *h,
1942			struct vm_area_struct *vma, unsigned long addr)
1943{
1944	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1945}
1946
1947/*
1948 * This routine is called to restore a reservation on error paths.  In the
1949 * specific error paths, a huge page was allocated (via alloc_huge_page)
1950 * and is about to be freed.  If a reservation for the page existed,
1951 * alloc_huge_page would have consumed the reservation and set PagePrivate
1952 * in the newly allocated page.  When the page is freed via free_huge_page,
1953 * the global reservation count will be incremented if PagePrivate is set.
1954 * However, free_huge_page can not adjust the reserve map.  Adjust the
1955 * reserve map here to be consistent with global reserve count adjustments
1956 * to be made by free_huge_page.
1957 */
1958static void restore_reserve_on_error(struct hstate *h,
1959			struct vm_area_struct *vma, unsigned long address,
1960			struct page *page)
1961{
1962	if (unlikely(PagePrivate(page))) {
1963		long rc = vma_needs_reservation(h, vma, address);
1964
1965		if (unlikely(rc < 0)) {
1966			/*
1967			 * Rare out of memory condition in reserve map
1968			 * manipulation.  Clear PagePrivate so that
1969			 * global reserve count will not be incremented
1970			 * by free_huge_page.  This will make it appear
1971			 * as though the reservation for this page was
1972			 * consumed.  This may prevent the task from
1973			 * faulting in the page at a later time.  This
1974			 * is better than inconsistent global huge page
1975			 * accounting of reserve counts.
1976			 */
1977			ClearPagePrivate(page);
1978		} else if (rc) {
1979			rc = vma_add_reservation(h, vma, address);
1980			if (unlikely(rc < 0))
1981				/*
1982				 * See above comment about rare out of
1983				 * memory condition.
1984				 */
1985				ClearPagePrivate(page);
1986		} else
1987			vma_end_reservation(h, vma, address);
1988	}
1989}
1990
1991struct page *alloc_huge_page(struct vm_area_struct *vma,
1992				    unsigned long addr, int avoid_reserve)
1993{
1994	struct hugepage_subpool *spool = subpool_vma(vma);
1995	struct hstate *h = hstate_vma(vma);
1996	struct page *page;
1997	long map_chg, map_commit;
1998	long gbl_chg;
1999	int ret, idx;
2000	struct hugetlb_cgroup *h_cg;
2001
2002	idx = hstate_index(h);
2003	/*
2004	 * Examine the region/reserve map to determine if the process
2005	 * has a reservation for the page to be allocated.  A return
2006	 * code of zero indicates a reservation exists (no change).
2007	 */
2008	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2009	if (map_chg < 0)
2010		return ERR_PTR(-ENOMEM);
2011
2012	/*
2013	 * Processes that did not create the mapping will have no
2014	 * reserves as indicated by the region/reserve map. Check
2015	 * that the allocation will not exceed the subpool limit.
2016	 * Allocations for MAP_NORESERVE mappings also need to be
2017	 * checked against any subpool limit.
2018	 */
2019	if (map_chg || avoid_reserve) {
2020		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2021		if (gbl_chg < 0) {
2022			vma_end_reservation(h, vma, addr);
2023			return ERR_PTR(-ENOSPC);
2024		}
2025
2026		/*
2027		 * Even though there was no reservation in the region/reserve
2028		 * map, there could be reservations associated with the
2029		 * subpool that can be used.  This would be indicated if the
2030		 * return value of hugepage_subpool_get_pages() is zero.
2031		 * However, if avoid_reserve is specified we still avoid even
2032		 * the subpool reservations.
2033		 */
2034		if (avoid_reserve)
2035			gbl_chg = 1;
2036	}
2037
2038	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2039	if (ret)
2040		goto out_subpool_put;
2041
2042	spin_lock(&hugetlb_lock);
2043	/*
2044	 * glb_chg is passed to indicate whether or not a page must be taken
2045	 * from the global free pool (global change).  gbl_chg == 0 indicates
2046	 * a reservation exists for the allocation.
2047	 */
2048	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2049	if (!page) {
2050		spin_unlock(&hugetlb_lock);
2051		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2052		if (!page)
2053			goto out_uncharge_cgroup;
2054		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2055			SetPagePrivate(page);
2056			h->resv_huge_pages--;
2057		}
2058		spin_lock(&hugetlb_lock);
2059		list_move(&page->lru, &h->hugepage_activelist);
2060		/* Fall through */
2061	}
2062	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2063	spin_unlock(&hugetlb_lock);
2064
2065	set_page_private(page, (unsigned long)spool);
2066
2067	map_commit = vma_commit_reservation(h, vma, addr);
2068	if (unlikely(map_chg > map_commit)) {
2069		/*
2070		 * The page was added to the reservation map between
2071		 * vma_needs_reservation and vma_commit_reservation.
2072		 * This indicates a race with hugetlb_reserve_pages.
2073		 * Adjust for the subpool count incremented above AND
2074		 * in hugetlb_reserve_pages for the same page.  Also,
2075		 * the reservation count added in hugetlb_reserve_pages
2076		 * no longer applies.
2077		 */
2078		long rsv_adjust;
2079
2080		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2081		hugetlb_acct_memory(h, -rsv_adjust);
2082	}
2083	return page;
2084
2085out_uncharge_cgroup:
2086	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2087out_subpool_put:
2088	if (map_chg || avoid_reserve)
2089		hugepage_subpool_put_pages(spool, 1);
2090	vma_end_reservation(h, vma, addr);
2091	return ERR_PTR(-ENOSPC);
2092}
2093
2094int alloc_bootmem_huge_page(struct hstate *h)
2095	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2096int __alloc_bootmem_huge_page(struct hstate *h)
 
 
 
 
 
 
 
 
 
 
 
 
2097{
2098	struct huge_bootmem_page *m;
2099	int nr_nodes, node;
2100
2101	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2102		void *addr;
2103
2104		addr = memblock_virt_alloc_try_nid_nopanic(
2105				huge_page_size(h), huge_page_size(h),
2106				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2107		if (addr) {
2108			/*
2109			 * Use the beginning of the huge page to store the
2110			 * huge_bootmem_page struct (until gather_bootmem
2111			 * puts them into the mem_map).
2112			 */
2113			m = addr;
2114			goto found;
2115		}
2116	}
2117	return 0;
2118
2119found:
2120	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2121	/* Put them into a private list first because mem_map is not up yet */
2122	list_add(&m->list, &huge_boot_pages);
2123	m->hstate = h;
2124	return 1;
2125}
2126
2127static void __init prep_compound_huge_page(struct page *page,
2128		unsigned int order)
2129{
2130	if (unlikely(order > (MAX_ORDER - 1)))
2131		prep_compound_gigantic_page(page, order);
2132	else
2133		prep_compound_page(page, order);
2134}
2135
2136/* Put bootmem huge pages into the standard lists after mem_map is up */
2137static void __init gather_bootmem_prealloc(void)
2138{
2139	struct huge_bootmem_page *m;
2140
2141	list_for_each_entry(m, &huge_boot_pages, list) {
2142		struct hstate *h = m->hstate;
2143		struct page *page;
2144
2145#ifdef CONFIG_HIGHMEM
2146		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2147		memblock_free_late(__pa(m),
2148				   sizeof(struct huge_bootmem_page));
2149#else
2150		page = virt_to_page(m);
2151#endif
2152		WARN_ON(page_count(page) != 1);
2153		prep_compound_huge_page(page, h->order);
2154		WARN_ON(PageReserved(page));
2155		prep_new_huge_page(h, page, page_to_nid(page));
2156		put_page(page); /* free it into the hugepage allocator */
2157
2158		/*
2159		 * If we had gigantic hugepages allocated at boot time, we need
2160		 * to restore the 'stolen' pages to totalram_pages in order to
2161		 * fix confusing memory reports from free(1) and another
2162		 * side-effects, like CommitLimit going negative.
2163		 */
2164		if (hstate_is_gigantic(h))
2165			adjust_managed_page_count(page, 1 << h->order);
2166	}
2167}
2168
2169static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2170{
2171	unsigned long i;
2172
2173	for (i = 0; i < h->max_huge_pages; ++i) {
2174		if (hstate_is_gigantic(h)) {
2175			if (!alloc_bootmem_huge_page(h))
2176				break;
2177		} else if (!alloc_pool_huge_page(h,
2178					 &node_states[N_MEMORY]))
2179			break;
2180		cond_resched();
2181	}
2182	if (i < h->max_huge_pages) {
2183		char buf[32];
2184
2185		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2186		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2187			h->max_huge_pages, buf, i);
2188		h->max_huge_pages = i;
2189	}
 
2190}
2191
2192static void __init hugetlb_init_hstates(void)
2193{
2194	struct hstate *h;
2195
2196	for_each_hstate(h) {
2197		if (minimum_order > huge_page_order(h))
2198			minimum_order = huge_page_order(h);
2199
2200		/* oversize hugepages were init'ed in early boot */
2201		if (!hstate_is_gigantic(h))
2202			hugetlb_hstate_alloc_pages(h);
2203	}
2204	VM_BUG_ON(minimum_order == UINT_MAX);
2205}
2206
 
 
 
 
 
 
 
 
 
 
 
2207static void __init report_hugepages(void)
2208{
2209	struct hstate *h;
2210
2211	for_each_hstate(h) {
2212		char buf[32];
2213
2214		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2215		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2216			buf, h->free_huge_pages);
 
2217	}
2218}
2219
2220#ifdef CONFIG_HIGHMEM
2221static void try_to_free_low(struct hstate *h, unsigned long count,
2222						nodemask_t *nodes_allowed)
2223{
2224	int i;
2225
2226	if (hstate_is_gigantic(h))
2227		return;
2228
2229	for_each_node_mask(i, *nodes_allowed) {
2230		struct page *page, *next;
2231		struct list_head *freel = &h->hugepage_freelists[i];
2232		list_for_each_entry_safe(page, next, freel, lru) {
2233			if (count >= h->nr_huge_pages)
2234				return;
2235			if (PageHighMem(page))
2236				continue;
2237			list_del(&page->lru);
2238			update_and_free_page(h, page);
2239			h->free_huge_pages--;
2240			h->free_huge_pages_node[page_to_nid(page)]--;
2241		}
2242	}
2243}
2244#else
2245static inline void try_to_free_low(struct hstate *h, unsigned long count,
2246						nodemask_t *nodes_allowed)
2247{
2248}
2249#endif
2250
2251/*
2252 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2253 * balanced by operating on them in a round-robin fashion.
2254 * Returns 1 if an adjustment was made.
2255 */
2256static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2257				int delta)
2258{
2259	int nr_nodes, node;
2260
2261	VM_BUG_ON(delta != -1 && delta != 1);
2262
2263	if (delta < 0) {
2264		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2265			if (h->surplus_huge_pages_node[node])
2266				goto found;
2267		}
2268	} else {
2269		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2270			if (h->surplus_huge_pages_node[node] <
2271					h->nr_huge_pages_node[node])
2272				goto found;
2273		}
2274	}
2275	return 0;
2276
2277found:
2278	h->surplus_huge_pages += delta;
2279	h->surplus_huge_pages_node[node] += delta;
2280	return 1;
2281}
2282
2283#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2284static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2285						nodemask_t *nodes_allowed)
2286{
2287	unsigned long min_count, ret;
2288
2289	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2290		return h->max_huge_pages;
2291
2292	/*
2293	 * Increase the pool size
2294	 * First take pages out of surplus state.  Then make up the
2295	 * remaining difference by allocating fresh huge pages.
2296	 *
2297	 * We might race with alloc_surplus_huge_page() here and be unable
2298	 * to convert a surplus huge page to a normal huge page. That is
2299	 * not critical, though, it just means the overall size of the
2300	 * pool might be one hugepage larger than it needs to be, but
2301	 * within all the constraints specified by the sysctls.
2302	 */
2303	spin_lock(&hugetlb_lock);
2304	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2305		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2306			break;
2307	}
2308
2309	while (count > persistent_huge_pages(h)) {
2310		/*
2311		 * If this allocation races such that we no longer need the
2312		 * page, free_huge_page will handle it by freeing the page
2313		 * and reducing the surplus.
2314		 */
2315		spin_unlock(&hugetlb_lock);
2316
2317		/* yield cpu to avoid soft lockup */
2318		cond_resched();
2319
2320		ret = alloc_pool_huge_page(h, nodes_allowed);
2321		spin_lock(&hugetlb_lock);
2322		if (!ret)
2323			goto out;
2324
2325		/* Bail for signals. Probably ctrl-c from user */
2326		if (signal_pending(current))
2327			goto out;
2328	}
2329
2330	/*
2331	 * Decrease the pool size
2332	 * First return free pages to the buddy allocator (being careful
2333	 * to keep enough around to satisfy reservations).  Then place
2334	 * pages into surplus state as needed so the pool will shrink
2335	 * to the desired size as pages become free.
2336	 *
2337	 * By placing pages into the surplus state independent of the
2338	 * overcommit value, we are allowing the surplus pool size to
2339	 * exceed overcommit. There are few sane options here. Since
2340	 * alloc_surplus_huge_page() is checking the global counter,
2341	 * though, we'll note that we're not allowed to exceed surplus
2342	 * and won't grow the pool anywhere else. Not until one of the
2343	 * sysctls are changed, or the surplus pages go out of use.
2344	 */
2345	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2346	min_count = max(count, min_count);
2347	try_to_free_low(h, min_count, nodes_allowed);
2348	while (min_count < persistent_huge_pages(h)) {
2349		if (!free_pool_huge_page(h, nodes_allowed, 0))
2350			break;
2351		cond_resched_lock(&hugetlb_lock);
2352	}
2353	while (count < persistent_huge_pages(h)) {
2354		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2355			break;
2356	}
2357out:
2358	ret = persistent_huge_pages(h);
2359	spin_unlock(&hugetlb_lock);
2360	return ret;
2361}
2362
2363#define HSTATE_ATTR_RO(_name) \
2364	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2365
2366#define HSTATE_ATTR(_name) \
2367	static struct kobj_attribute _name##_attr = \
2368		__ATTR(_name, 0644, _name##_show, _name##_store)
2369
2370static struct kobject *hugepages_kobj;
2371static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2372
2373static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2374
2375static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2376{
2377	int i;
2378
2379	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2380		if (hstate_kobjs[i] == kobj) {
2381			if (nidp)
2382				*nidp = NUMA_NO_NODE;
2383			return &hstates[i];
2384		}
2385
2386	return kobj_to_node_hstate(kobj, nidp);
2387}
2388
2389static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2390					struct kobj_attribute *attr, char *buf)
2391{
2392	struct hstate *h;
2393	unsigned long nr_huge_pages;
2394	int nid;
2395
2396	h = kobj_to_hstate(kobj, &nid);
2397	if (nid == NUMA_NO_NODE)
2398		nr_huge_pages = h->nr_huge_pages;
2399	else
2400		nr_huge_pages = h->nr_huge_pages_node[nid];
2401
2402	return sprintf(buf, "%lu\n", nr_huge_pages);
2403}
2404
2405static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2406					   struct hstate *h, int nid,
2407					   unsigned long count, size_t len)
2408{
2409	int err;
2410	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2411
2412	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2413		err = -EINVAL;
2414		goto out;
2415	}
2416
2417	if (nid == NUMA_NO_NODE) {
2418		/*
2419		 * global hstate attribute
2420		 */
2421		if (!(obey_mempolicy &&
2422				init_nodemask_of_mempolicy(nodes_allowed))) {
2423			NODEMASK_FREE(nodes_allowed);
2424			nodes_allowed = &node_states[N_MEMORY];
2425		}
2426	} else if (nodes_allowed) {
2427		/*
2428		 * per node hstate attribute: adjust count to global,
2429		 * but restrict alloc/free to the specified node.
2430		 */
2431		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2432		init_nodemask_of_node(nodes_allowed, nid);
2433	} else
2434		nodes_allowed = &node_states[N_MEMORY];
2435
2436	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2437
2438	if (nodes_allowed != &node_states[N_MEMORY])
2439		NODEMASK_FREE(nodes_allowed);
2440
2441	return len;
2442out:
2443	NODEMASK_FREE(nodes_allowed);
2444	return err;
2445}
2446
2447static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2448					 struct kobject *kobj, const char *buf,
2449					 size_t len)
2450{
2451	struct hstate *h;
2452	unsigned long count;
2453	int nid;
2454	int err;
2455
2456	err = kstrtoul(buf, 10, &count);
2457	if (err)
2458		return err;
2459
2460	h = kobj_to_hstate(kobj, &nid);
2461	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2462}
2463
2464static ssize_t nr_hugepages_show(struct kobject *kobj,
2465				       struct kobj_attribute *attr, char *buf)
2466{
2467	return nr_hugepages_show_common(kobj, attr, buf);
2468}
2469
2470static ssize_t nr_hugepages_store(struct kobject *kobj,
2471	       struct kobj_attribute *attr, const char *buf, size_t len)
2472{
2473	return nr_hugepages_store_common(false, kobj, buf, len);
2474}
2475HSTATE_ATTR(nr_hugepages);
2476
2477#ifdef CONFIG_NUMA
2478
2479/*
2480 * hstate attribute for optionally mempolicy-based constraint on persistent
2481 * huge page alloc/free.
2482 */
2483static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2484				       struct kobj_attribute *attr, char *buf)
2485{
2486	return nr_hugepages_show_common(kobj, attr, buf);
2487}
2488
2489static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2490	       struct kobj_attribute *attr, const char *buf, size_t len)
2491{
2492	return nr_hugepages_store_common(true, kobj, buf, len);
2493}
2494HSTATE_ATTR(nr_hugepages_mempolicy);
2495#endif
2496
2497
2498static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2499					struct kobj_attribute *attr, char *buf)
2500{
2501	struct hstate *h = kobj_to_hstate(kobj, NULL);
2502	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2503}
2504
2505static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2506		struct kobj_attribute *attr, const char *buf, size_t count)
2507{
2508	int err;
2509	unsigned long input;
2510	struct hstate *h = kobj_to_hstate(kobj, NULL);
2511
2512	if (hstate_is_gigantic(h))
2513		return -EINVAL;
2514
2515	err = kstrtoul(buf, 10, &input);
2516	if (err)
2517		return err;
2518
2519	spin_lock(&hugetlb_lock);
2520	h->nr_overcommit_huge_pages = input;
2521	spin_unlock(&hugetlb_lock);
2522
2523	return count;
2524}
2525HSTATE_ATTR(nr_overcommit_hugepages);
2526
2527static ssize_t free_hugepages_show(struct kobject *kobj,
2528					struct kobj_attribute *attr, char *buf)
2529{
2530	struct hstate *h;
2531	unsigned long free_huge_pages;
2532	int nid;
2533
2534	h = kobj_to_hstate(kobj, &nid);
2535	if (nid == NUMA_NO_NODE)
2536		free_huge_pages = h->free_huge_pages;
2537	else
2538		free_huge_pages = h->free_huge_pages_node[nid];
2539
2540	return sprintf(buf, "%lu\n", free_huge_pages);
2541}
2542HSTATE_ATTR_RO(free_hugepages);
2543
2544static ssize_t resv_hugepages_show(struct kobject *kobj,
2545					struct kobj_attribute *attr, char *buf)
2546{
2547	struct hstate *h = kobj_to_hstate(kobj, NULL);
2548	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2549}
2550HSTATE_ATTR_RO(resv_hugepages);
2551
2552static ssize_t surplus_hugepages_show(struct kobject *kobj,
2553					struct kobj_attribute *attr, char *buf)
2554{
2555	struct hstate *h;
2556	unsigned long surplus_huge_pages;
2557	int nid;
2558
2559	h = kobj_to_hstate(kobj, &nid);
2560	if (nid == NUMA_NO_NODE)
2561		surplus_huge_pages = h->surplus_huge_pages;
2562	else
2563		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2564
2565	return sprintf(buf, "%lu\n", surplus_huge_pages);
2566}
2567HSTATE_ATTR_RO(surplus_hugepages);
2568
2569static struct attribute *hstate_attrs[] = {
2570	&nr_hugepages_attr.attr,
2571	&nr_overcommit_hugepages_attr.attr,
2572	&free_hugepages_attr.attr,
2573	&resv_hugepages_attr.attr,
2574	&surplus_hugepages_attr.attr,
2575#ifdef CONFIG_NUMA
2576	&nr_hugepages_mempolicy_attr.attr,
2577#endif
2578	NULL,
2579};
2580
2581static const struct attribute_group hstate_attr_group = {
2582	.attrs = hstate_attrs,
2583};
2584
2585static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2586				    struct kobject **hstate_kobjs,
2587				    const struct attribute_group *hstate_attr_group)
2588{
2589	int retval;
2590	int hi = hstate_index(h);
2591
2592	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2593	if (!hstate_kobjs[hi])
2594		return -ENOMEM;
2595
2596	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2597	if (retval)
2598		kobject_put(hstate_kobjs[hi]);
2599
2600	return retval;
2601}
2602
2603static void __init hugetlb_sysfs_init(void)
2604{
2605	struct hstate *h;
2606	int err;
2607
2608	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2609	if (!hugepages_kobj)
2610		return;
2611
2612	for_each_hstate(h) {
2613		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2614					 hstate_kobjs, &hstate_attr_group);
2615		if (err)
2616			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2617	}
2618}
2619
2620#ifdef CONFIG_NUMA
2621
2622/*
2623 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2624 * with node devices in node_devices[] using a parallel array.  The array
2625 * index of a node device or _hstate == node id.
2626 * This is here to avoid any static dependency of the node device driver, in
2627 * the base kernel, on the hugetlb module.
2628 */
2629struct node_hstate {
2630	struct kobject		*hugepages_kobj;
2631	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2632};
2633static struct node_hstate node_hstates[MAX_NUMNODES];
2634
2635/*
2636 * A subset of global hstate attributes for node devices
2637 */
2638static struct attribute *per_node_hstate_attrs[] = {
2639	&nr_hugepages_attr.attr,
2640	&free_hugepages_attr.attr,
2641	&surplus_hugepages_attr.attr,
2642	NULL,
2643};
2644
2645static const struct attribute_group per_node_hstate_attr_group = {
2646	.attrs = per_node_hstate_attrs,
2647};
2648
2649/*
2650 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2651 * Returns node id via non-NULL nidp.
2652 */
2653static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2654{
2655	int nid;
2656
2657	for (nid = 0; nid < nr_node_ids; nid++) {
2658		struct node_hstate *nhs = &node_hstates[nid];
2659		int i;
2660		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2661			if (nhs->hstate_kobjs[i] == kobj) {
2662				if (nidp)
2663					*nidp = nid;
2664				return &hstates[i];
2665			}
2666	}
2667
2668	BUG();
2669	return NULL;
2670}
2671
2672/*
2673 * Unregister hstate attributes from a single node device.
2674 * No-op if no hstate attributes attached.
2675 */
2676static void hugetlb_unregister_node(struct node *node)
2677{
2678	struct hstate *h;
2679	struct node_hstate *nhs = &node_hstates[node->dev.id];
2680
2681	if (!nhs->hugepages_kobj)
2682		return;		/* no hstate attributes */
2683
2684	for_each_hstate(h) {
2685		int idx = hstate_index(h);
2686		if (nhs->hstate_kobjs[idx]) {
2687			kobject_put(nhs->hstate_kobjs[idx]);
2688			nhs->hstate_kobjs[idx] = NULL;
2689		}
2690	}
2691
2692	kobject_put(nhs->hugepages_kobj);
2693	nhs->hugepages_kobj = NULL;
2694}
2695
2696
2697/*
2698 * Register hstate attributes for a single node device.
2699 * No-op if attributes already registered.
2700 */
2701static void hugetlb_register_node(struct node *node)
2702{
2703	struct hstate *h;
2704	struct node_hstate *nhs = &node_hstates[node->dev.id];
2705	int err;
2706
2707	if (nhs->hugepages_kobj)
2708		return;		/* already allocated */
2709
2710	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2711							&node->dev.kobj);
2712	if (!nhs->hugepages_kobj)
2713		return;
2714
2715	for_each_hstate(h) {
2716		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2717						nhs->hstate_kobjs,
2718						&per_node_hstate_attr_group);
2719		if (err) {
2720			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2721				h->name, node->dev.id);
2722			hugetlb_unregister_node(node);
2723			break;
2724		}
2725	}
2726}
2727
2728/*
2729 * hugetlb init time:  register hstate attributes for all registered node
2730 * devices of nodes that have memory.  All on-line nodes should have
2731 * registered their associated device by this time.
2732 */
2733static void __init hugetlb_register_all_nodes(void)
2734{
2735	int nid;
2736
2737	for_each_node_state(nid, N_MEMORY) {
2738		struct node *node = node_devices[nid];
2739		if (node->dev.id == nid)
2740			hugetlb_register_node(node);
2741	}
2742
2743	/*
2744	 * Let the node device driver know we're here so it can
2745	 * [un]register hstate attributes on node hotplug.
2746	 */
2747	register_hugetlbfs_with_node(hugetlb_register_node,
2748				     hugetlb_unregister_node);
2749}
2750#else	/* !CONFIG_NUMA */
2751
2752static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2753{
2754	BUG();
2755	if (nidp)
2756		*nidp = -1;
2757	return NULL;
2758}
2759
2760static void hugetlb_register_all_nodes(void) { }
2761
2762#endif
2763
2764static int __init hugetlb_init(void)
2765{
2766	int i;
2767
2768	if (!hugepages_supported())
2769		return 0;
2770
2771	if (!size_to_hstate(default_hstate_size)) {
2772		if (default_hstate_size != 0) {
2773			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2774			       default_hstate_size, HPAGE_SIZE);
2775		}
2776
2777		default_hstate_size = HPAGE_SIZE;
2778		if (!size_to_hstate(default_hstate_size))
2779			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2780	}
2781	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2782	if (default_hstate_max_huge_pages) {
2783		if (!default_hstate.max_huge_pages)
2784			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2785	}
2786
2787	hugetlb_init_hstates();
2788	gather_bootmem_prealloc();
2789	report_hugepages();
2790
2791	hugetlb_sysfs_init();
2792	hugetlb_register_all_nodes();
2793	hugetlb_cgroup_file_init();
2794
2795#ifdef CONFIG_SMP
2796	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2797#else
2798	num_fault_mutexes = 1;
2799#endif
2800	hugetlb_fault_mutex_table =
2801		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2802	BUG_ON(!hugetlb_fault_mutex_table);
2803
2804	for (i = 0; i < num_fault_mutexes; i++)
2805		mutex_init(&hugetlb_fault_mutex_table[i]);
2806	return 0;
2807}
2808subsys_initcall(hugetlb_init);
2809
2810/* Should be called on processing a hugepagesz=... option */
2811void __init hugetlb_bad_size(void)
2812{
2813	parsed_valid_hugepagesz = false;
2814}
2815
2816void __init hugetlb_add_hstate(unsigned int order)
2817{
2818	struct hstate *h;
2819	unsigned long i;
2820
2821	if (size_to_hstate(PAGE_SIZE << order)) {
2822		pr_warn("hugepagesz= specified twice, ignoring\n");
2823		return;
2824	}
2825	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2826	BUG_ON(order == 0);
2827	h = &hstates[hugetlb_max_hstate++];
2828	h->order = order;
2829	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2830	h->nr_huge_pages = 0;
2831	h->free_huge_pages = 0;
2832	for (i = 0; i < MAX_NUMNODES; ++i)
2833		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2834	INIT_LIST_HEAD(&h->hugepage_activelist);
2835	h->next_nid_to_alloc = first_memory_node;
2836	h->next_nid_to_free = first_memory_node;
2837	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2838					huge_page_size(h)/1024);
2839
2840	parsed_hstate = h;
2841}
2842
2843static int __init hugetlb_nrpages_setup(char *s)
2844{
2845	unsigned long *mhp;
2846	static unsigned long *last_mhp;
2847
2848	if (!parsed_valid_hugepagesz) {
2849		pr_warn("hugepages = %s preceded by "
2850			"an unsupported hugepagesz, ignoring\n", s);
2851		parsed_valid_hugepagesz = true;
2852		return 1;
2853	}
2854	/*
2855	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2856	 * so this hugepages= parameter goes to the "default hstate".
2857	 */
2858	else if (!hugetlb_max_hstate)
2859		mhp = &default_hstate_max_huge_pages;
2860	else
2861		mhp = &parsed_hstate->max_huge_pages;
2862
2863	if (mhp == last_mhp) {
2864		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2865		return 1;
2866	}
2867
2868	if (sscanf(s, "%lu", mhp) <= 0)
2869		*mhp = 0;
2870
2871	/*
2872	 * Global state is always initialized later in hugetlb_init.
2873	 * But we need to allocate >= MAX_ORDER hstates here early to still
2874	 * use the bootmem allocator.
2875	 */
2876	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2877		hugetlb_hstate_alloc_pages(parsed_hstate);
2878
2879	last_mhp = mhp;
2880
2881	return 1;
2882}
2883__setup("hugepages=", hugetlb_nrpages_setup);
2884
2885static int __init hugetlb_default_setup(char *s)
2886{
2887	default_hstate_size = memparse(s, &s);
2888	return 1;
2889}
2890__setup("default_hugepagesz=", hugetlb_default_setup);
2891
2892static unsigned int cpuset_mems_nr(unsigned int *array)
2893{
2894	int node;
2895	unsigned int nr = 0;
2896
2897	for_each_node_mask(node, cpuset_current_mems_allowed)
2898		nr += array[node];
2899
2900	return nr;
2901}
2902
2903#ifdef CONFIG_SYSCTL
2904static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2905			 struct ctl_table *table, int write,
2906			 void __user *buffer, size_t *length, loff_t *ppos)
2907{
2908	struct hstate *h = &default_hstate;
2909	unsigned long tmp = h->max_huge_pages;
2910	int ret;
2911
2912	if (!hugepages_supported())
2913		return -EOPNOTSUPP;
2914
2915	table->data = &tmp;
2916	table->maxlen = sizeof(unsigned long);
2917	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2918	if (ret)
2919		goto out;
2920
2921	if (write)
2922		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2923						  NUMA_NO_NODE, tmp, *length);
2924out:
2925	return ret;
2926}
2927
2928int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2929			  void __user *buffer, size_t *length, loff_t *ppos)
2930{
2931
2932	return hugetlb_sysctl_handler_common(false, table, write,
2933							buffer, length, ppos);
2934}
2935
2936#ifdef CONFIG_NUMA
2937int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2938			  void __user *buffer, size_t *length, loff_t *ppos)
2939{
2940	return hugetlb_sysctl_handler_common(true, table, write,
2941							buffer, length, ppos);
2942}
2943#endif /* CONFIG_NUMA */
2944
2945int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2946			void __user *buffer,
2947			size_t *length, loff_t *ppos)
2948{
2949	struct hstate *h = &default_hstate;
2950	unsigned long tmp;
2951	int ret;
2952
2953	if (!hugepages_supported())
2954		return -EOPNOTSUPP;
2955
2956	tmp = h->nr_overcommit_huge_pages;
2957
2958	if (write && hstate_is_gigantic(h))
2959		return -EINVAL;
2960
2961	table->data = &tmp;
2962	table->maxlen = sizeof(unsigned long);
2963	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2964	if (ret)
2965		goto out;
2966
2967	if (write) {
2968		spin_lock(&hugetlb_lock);
2969		h->nr_overcommit_huge_pages = tmp;
2970		spin_unlock(&hugetlb_lock);
2971	}
2972out:
2973	return ret;
2974}
2975
2976#endif /* CONFIG_SYSCTL */
2977
2978void hugetlb_report_meminfo(struct seq_file *m)
2979{
2980	struct hstate *h;
2981	unsigned long total = 0;
2982
2983	if (!hugepages_supported())
2984		return;
2985
2986	for_each_hstate(h) {
2987		unsigned long count = h->nr_huge_pages;
2988
2989		total += (PAGE_SIZE << huge_page_order(h)) * count;
2990
2991		if (h == &default_hstate)
2992			seq_printf(m,
2993				   "HugePages_Total:   %5lu\n"
2994				   "HugePages_Free:    %5lu\n"
2995				   "HugePages_Rsvd:    %5lu\n"
2996				   "HugePages_Surp:    %5lu\n"
2997				   "Hugepagesize:   %8lu kB\n",
2998				   count,
2999				   h->free_huge_pages,
3000				   h->resv_huge_pages,
3001				   h->surplus_huge_pages,
3002				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3003	}
3004
3005	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3006}
3007
3008int hugetlb_report_node_meminfo(int nid, char *buf)
3009{
3010	struct hstate *h = &default_hstate;
3011	if (!hugepages_supported())
3012		return 0;
3013	return sprintf(buf,
3014		"Node %d HugePages_Total: %5u\n"
3015		"Node %d HugePages_Free:  %5u\n"
3016		"Node %d HugePages_Surp:  %5u\n",
3017		nid, h->nr_huge_pages_node[nid],
3018		nid, h->free_huge_pages_node[nid],
3019		nid, h->surplus_huge_pages_node[nid]);
3020}
3021
3022void hugetlb_show_meminfo(void)
3023{
3024	struct hstate *h;
3025	int nid;
3026
3027	if (!hugepages_supported())
3028		return;
3029
3030	for_each_node_state(nid, N_MEMORY)
3031		for_each_hstate(h)
3032			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3033				nid,
3034				h->nr_huge_pages_node[nid],
3035				h->free_huge_pages_node[nid],
3036				h->surplus_huge_pages_node[nid],
3037				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3038}
3039
3040void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3041{
3042	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3043		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3044}
3045
3046/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3047unsigned long hugetlb_total_pages(void)
3048{
3049	struct hstate *h;
3050	unsigned long nr_total_pages = 0;
3051
3052	for_each_hstate(h)
3053		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3054	return nr_total_pages;
3055}
3056
3057static int hugetlb_acct_memory(struct hstate *h, long delta)
3058{
3059	int ret = -ENOMEM;
3060
3061	spin_lock(&hugetlb_lock);
3062	/*
3063	 * When cpuset is configured, it breaks the strict hugetlb page
3064	 * reservation as the accounting is done on a global variable. Such
3065	 * reservation is completely rubbish in the presence of cpuset because
3066	 * the reservation is not checked against page availability for the
3067	 * current cpuset. Application can still potentially OOM'ed by kernel
3068	 * with lack of free htlb page in cpuset that the task is in.
3069	 * Attempt to enforce strict accounting with cpuset is almost
3070	 * impossible (or too ugly) because cpuset is too fluid that
3071	 * task or memory node can be dynamically moved between cpusets.
3072	 *
3073	 * The change of semantics for shared hugetlb mapping with cpuset is
3074	 * undesirable. However, in order to preserve some of the semantics,
3075	 * we fall back to check against current free page availability as
3076	 * a best attempt and hopefully to minimize the impact of changing
3077	 * semantics that cpuset has.
3078	 */
3079	if (delta > 0) {
3080		if (gather_surplus_pages(h, delta) < 0)
3081			goto out;
3082
3083		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3084			return_unused_surplus_pages(h, delta);
3085			goto out;
3086		}
3087	}
3088
3089	ret = 0;
3090	if (delta < 0)
3091		return_unused_surplus_pages(h, (unsigned long) -delta);
3092
3093out:
3094	spin_unlock(&hugetlb_lock);
3095	return ret;
3096}
3097
3098static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3099{
3100	struct resv_map *resv = vma_resv_map(vma);
3101
3102	/*
3103	 * This new VMA should share its siblings reservation map if present.
3104	 * The VMA will only ever have a valid reservation map pointer where
3105	 * it is being copied for another still existing VMA.  As that VMA
3106	 * has a reference to the reservation map it cannot disappear until
3107	 * after this open call completes.  It is therefore safe to take a
3108	 * new reference here without additional locking.
3109	 */
3110	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3111		kref_get(&resv->refs);
3112}
3113
3114static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3115{
3116	struct hstate *h = hstate_vma(vma);
3117	struct resv_map *resv = vma_resv_map(vma);
3118	struct hugepage_subpool *spool = subpool_vma(vma);
3119	unsigned long reserve, start, end;
3120	long gbl_reserve;
3121
3122	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3123		return;
3124
3125	start = vma_hugecache_offset(h, vma, vma->vm_start);
3126	end = vma_hugecache_offset(h, vma, vma->vm_end);
3127
3128	reserve = (end - start) - region_count(resv, start, end);
3129
3130	kref_put(&resv->refs, resv_map_release);
3131
3132	if (reserve) {
3133		/*
3134		 * Decrement reserve counts.  The global reserve count may be
3135		 * adjusted if the subpool has a minimum size.
3136		 */
3137		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3138		hugetlb_acct_memory(h, -gbl_reserve);
3139	}
3140}
3141
3142static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3143{
3144	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3145		return -EINVAL;
3146	return 0;
3147}
3148
3149static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3150{
3151	struct hstate *hstate = hstate_vma(vma);
3152
3153	return 1UL << huge_page_shift(hstate);
3154}
3155
3156/*
3157 * We cannot handle pagefaults against hugetlb pages at all.  They cause
3158 * handle_mm_fault() to try to instantiate regular-sized pages in the
3159 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3160 * this far.
3161 */
3162static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3163{
3164	BUG();
3165	return 0;
3166}
3167
3168const struct vm_operations_struct hugetlb_vm_ops = {
3169	.fault = hugetlb_vm_op_fault,
3170	.open = hugetlb_vm_op_open,
3171	.close = hugetlb_vm_op_close,
3172	.split = hugetlb_vm_op_split,
3173	.pagesize = hugetlb_vm_op_pagesize,
3174};
3175
3176static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3177				int writable)
3178{
3179	pte_t entry;
3180
3181	if (writable) {
3182		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3183					 vma->vm_page_prot)));
3184	} else {
3185		entry = huge_pte_wrprotect(mk_huge_pte(page,
3186					   vma->vm_page_prot));
3187	}
3188	entry = pte_mkyoung(entry);
3189	entry = pte_mkhuge(entry);
3190	entry = arch_make_huge_pte(entry, vma, page, writable);
3191
3192	return entry;
3193}
3194
3195static void set_huge_ptep_writable(struct vm_area_struct *vma,
3196				   unsigned long address, pte_t *ptep)
3197{
3198	pte_t entry;
3199
3200	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3201	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3202		update_mmu_cache(vma, address, ptep);
3203}
3204
3205bool is_hugetlb_entry_migration(pte_t pte)
3206{
3207	swp_entry_t swp;
3208
3209	if (huge_pte_none(pte) || pte_present(pte))
3210		return false;
3211	swp = pte_to_swp_entry(pte);
3212	if (non_swap_entry(swp) && is_migration_entry(swp))
3213		return true;
3214	else
3215		return false;
3216}
3217
3218static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3219{
3220	swp_entry_t swp;
3221
3222	if (huge_pte_none(pte) || pte_present(pte))
3223		return 0;
3224	swp = pte_to_swp_entry(pte);
3225	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3226		return 1;
3227	else
3228		return 0;
3229}
3230
3231int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3232			    struct vm_area_struct *vma)
3233{
3234	pte_t *src_pte, *dst_pte, entry;
3235	struct page *ptepage;
3236	unsigned long addr;
3237	int cow;
3238	struct hstate *h = hstate_vma(vma);
3239	unsigned long sz = huge_page_size(h);
3240	unsigned long mmun_start;	/* For mmu_notifiers */
3241	unsigned long mmun_end;		/* For mmu_notifiers */
3242	int ret = 0;
3243
3244	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3245
3246	mmun_start = vma->vm_start;
3247	mmun_end = vma->vm_end;
3248	if (cow)
3249		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3250
3251	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3252		spinlock_t *src_ptl, *dst_ptl;
3253		src_pte = huge_pte_offset(src, addr, sz);
3254		if (!src_pte)
3255			continue;
3256		dst_pte = huge_pte_alloc(dst, addr, sz);
3257		if (!dst_pte) {
3258			ret = -ENOMEM;
3259			break;
3260		}
3261
3262		/* If the pagetables are shared don't copy or take references */
3263		if (dst_pte == src_pte)
3264			continue;
3265
3266		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3267		src_ptl = huge_pte_lockptr(h, src, src_pte);
3268		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3269		entry = huge_ptep_get(src_pte);
3270		if (huge_pte_none(entry)) { /* skip none entry */
3271			;
3272		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3273				    is_hugetlb_entry_hwpoisoned(entry))) {
3274			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3275
3276			if (is_write_migration_entry(swp_entry) && cow) {
3277				/*
3278				 * COW mappings require pages in both
3279				 * parent and child to be set to read.
3280				 */
3281				make_migration_entry_read(&swp_entry);
3282				entry = swp_entry_to_pte(swp_entry);
3283				set_huge_swap_pte_at(src, addr, src_pte,
3284						     entry, sz);
3285			}
3286			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3287		} else {
3288			if (cow) {
3289				/*
3290				 * No need to notify as we are downgrading page
3291				 * table protection not changing it to point
3292				 * to a new page.
3293				 *
3294				 * See Documentation/vm/mmu_notifier.txt
3295				 */
3296				huge_ptep_set_wrprotect(src, addr, src_pte);
 
 
3297			}
3298			entry = huge_ptep_get(src_pte);
3299			ptepage = pte_page(entry);
3300			get_page(ptepage);
3301			page_dup_rmap(ptepage, true);
3302			set_huge_pte_at(dst, addr, dst_pte, entry);
3303			hugetlb_count_add(pages_per_huge_page(h), dst);
3304		}
3305		spin_unlock(src_ptl);
3306		spin_unlock(dst_ptl);
3307	}
3308
3309	if (cow)
3310		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3311
3312	return ret;
3313}
3314
3315void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3316			    unsigned long start, unsigned long end,
3317			    struct page *ref_page)
3318{
 
3319	struct mm_struct *mm = vma->vm_mm;
3320	unsigned long address;
3321	pte_t *ptep;
3322	pte_t pte;
3323	spinlock_t *ptl;
3324	struct page *page;
3325	struct hstate *h = hstate_vma(vma);
3326	unsigned long sz = huge_page_size(h);
3327	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3328	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3329
3330	WARN_ON(!is_vm_hugetlb_page(vma));
3331	BUG_ON(start & ~huge_page_mask(h));
3332	BUG_ON(end & ~huge_page_mask(h));
3333
3334	/*
3335	 * This is a hugetlb vma, all the pte entries should point
3336	 * to huge page.
3337	 */
3338	tlb_remove_check_page_size_change(tlb, sz);
3339	tlb_start_vma(tlb, vma);
3340	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3341	address = start;
 
3342	for (; address < end; address += sz) {
3343		ptep = huge_pte_offset(mm, address, sz);
3344		if (!ptep)
3345			continue;
3346
3347		ptl = huge_pte_lock(h, mm, ptep);
3348		if (huge_pmd_unshare(mm, &address, ptep)) {
3349			spin_unlock(ptl);
3350			continue;
3351		}
3352
3353		pte = huge_ptep_get(ptep);
3354		if (huge_pte_none(pte)) {
3355			spin_unlock(ptl);
3356			continue;
3357		}
3358
3359		/*
3360		 * Migrating hugepage or HWPoisoned hugepage is already
3361		 * unmapped and its refcount is dropped, so just clear pte here.
3362		 */
3363		if (unlikely(!pte_present(pte))) {
3364			huge_pte_clear(mm, address, ptep, sz);
3365			spin_unlock(ptl);
3366			continue;
3367		}
3368
3369		page = pte_page(pte);
3370		/*
3371		 * If a reference page is supplied, it is because a specific
3372		 * page is being unmapped, not a range. Ensure the page we
3373		 * are about to unmap is the actual page of interest.
3374		 */
3375		if (ref_page) {
3376			if (page != ref_page) {
3377				spin_unlock(ptl);
3378				continue;
3379			}
3380			/*
3381			 * Mark the VMA as having unmapped its page so that
3382			 * future faults in this VMA will fail rather than
3383			 * looking like data was lost
3384			 */
3385			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3386		}
3387
3388		pte = huge_ptep_get_and_clear(mm, address, ptep);
3389		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3390		if (huge_pte_dirty(pte))
3391			set_page_dirty(page);
3392
3393		hugetlb_count_sub(pages_per_huge_page(h), mm);
3394		page_remove_rmap(page, true);
3395
3396		spin_unlock(ptl);
3397		tlb_remove_page_size(tlb, page, huge_page_size(h));
3398		/*
3399		 * Bail out after unmapping reference page if supplied
3400		 */
3401		if (ref_page)
 
 
3402			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3403	}
3404	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3405	tlb_end_vma(tlb, vma);
3406}
3407
3408void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3409			  struct vm_area_struct *vma, unsigned long start,
3410			  unsigned long end, struct page *ref_page)
3411{
3412	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3413
3414	/*
3415	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3416	 * test will fail on a vma being torn down, and not grab a page table
3417	 * on its way out.  We're lucky that the flag has such an appropriate
3418	 * name, and can in fact be safely cleared here. We could clear it
3419	 * before the __unmap_hugepage_range above, but all that's necessary
3420	 * is to clear it before releasing the i_mmap_rwsem. This works
3421	 * because in the context this is called, the VMA is about to be
3422	 * destroyed and the i_mmap_rwsem is held.
3423	 */
3424	vma->vm_flags &= ~VM_MAYSHARE;
3425}
3426
3427void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3428			  unsigned long end, struct page *ref_page)
3429{
3430	struct mm_struct *mm;
3431	struct mmu_gather tlb;
3432
3433	mm = vma->vm_mm;
3434
3435	tlb_gather_mmu(&tlb, mm, start, end);
3436	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3437	tlb_finish_mmu(&tlb, start, end);
3438}
3439
3440/*
3441 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3442 * mappping it owns the reserve page for. The intention is to unmap the page
3443 * from other VMAs and let the children be SIGKILLed if they are faulting the
3444 * same region.
3445 */
3446static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3447			      struct page *page, unsigned long address)
3448{
3449	struct hstate *h = hstate_vma(vma);
3450	struct vm_area_struct *iter_vma;
3451	struct address_space *mapping;
3452	pgoff_t pgoff;
3453
3454	/*
3455	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3456	 * from page cache lookup which is in HPAGE_SIZE units.
3457	 */
3458	address = address & huge_page_mask(h);
3459	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3460			vma->vm_pgoff;
3461	mapping = vma->vm_file->f_mapping;
3462
3463	/*
3464	 * Take the mapping lock for the duration of the table walk. As
3465	 * this mapping should be shared between all the VMAs,
3466	 * __unmap_hugepage_range() is called as the lock is already held
3467	 */
3468	i_mmap_lock_write(mapping);
3469	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3470		/* Do not unmap the current VMA */
3471		if (iter_vma == vma)
3472			continue;
3473
3474		/*
3475		 * Shared VMAs have their own reserves and do not affect
3476		 * MAP_PRIVATE accounting but it is possible that a shared
3477		 * VMA is using the same page so check and skip such VMAs.
3478		 */
3479		if (iter_vma->vm_flags & VM_MAYSHARE)
3480			continue;
3481
3482		/*
3483		 * Unmap the page from other VMAs without their own reserves.
3484		 * They get marked to be SIGKILLed if they fault in these
3485		 * areas. This is because a future no-page fault on this VMA
3486		 * could insert a zeroed page instead of the data existing
3487		 * from the time of fork. This would look like data corruption
3488		 */
3489		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3490			unmap_hugepage_range(iter_vma, address,
3491					     address + huge_page_size(h), page);
3492	}
3493	i_mmap_unlock_write(mapping);
3494}
3495
3496/*
3497 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3498 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3499 * cannot race with other handlers or page migration.
3500 * Keep the pte_same checks anyway to make transition from the mutex easier.
3501 */
3502static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3503		       unsigned long address, pte_t *ptep,
3504		       struct page *pagecache_page, spinlock_t *ptl)
3505{
3506	pte_t pte;
3507	struct hstate *h = hstate_vma(vma);
3508	struct page *old_page, *new_page;
3509	int ret = 0, outside_reserve = 0;
3510	unsigned long mmun_start;	/* For mmu_notifiers */
3511	unsigned long mmun_end;		/* For mmu_notifiers */
3512
3513	pte = huge_ptep_get(ptep);
3514	old_page = pte_page(pte);
3515
3516retry_avoidcopy:
3517	/* If no-one else is actually using this page, avoid the copy
3518	 * and just make the page writable */
3519	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3520		page_move_anon_rmap(old_page, vma);
3521		set_huge_ptep_writable(vma, address, ptep);
3522		return 0;
3523	}
3524
3525	/*
3526	 * If the process that created a MAP_PRIVATE mapping is about to
3527	 * perform a COW due to a shared page count, attempt to satisfy
3528	 * the allocation without using the existing reserves. The pagecache
3529	 * page is used to determine if the reserve at this address was
3530	 * consumed or not. If reserves were used, a partial faulted mapping
3531	 * at the time of fork() could consume its reserves on COW instead
3532	 * of the full address range.
3533	 */
3534	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3535			old_page != pagecache_page)
3536		outside_reserve = 1;
3537
3538	get_page(old_page);
3539
3540	/*
3541	 * Drop page table lock as buddy allocator may be called. It will
3542	 * be acquired again before returning to the caller, as expected.
3543	 */
3544	spin_unlock(ptl);
3545	new_page = alloc_huge_page(vma, address, outside_reserve);
3546
3547	if (IS_ERR(new_page)) {
3548		/*
3549		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3550		 * it is due to references held by a child and an insufficient
3551		 * huge page pool. To guarantee the original mappers
3552		 * reliability, unmap the page from child processes. The child
3553		 * may get SIGKILLed if it later faults.
3554		 */
3555		if (outside_reserve) {
3556			put_page(old_page);
3557			BUG_ON(huge_pte_none(pte));
3558			unmap_ref_private(mm, vma, old_page, address);
3559			BUG_ON(huge_pte_none(pte));
3560			spin_lock(ptl);
3561			ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3562					       huge_page_size(h));
3563			if (likely(ptep &&
3564				   pte_same(huge_ptep_get(ptep), pte)))
3565				goto retry_avoidcopy;
3566			/*
3567			 * race occurs while re-acquiring page table
3568			 * lock, and our job is done.
3569			 */
3570			return 0;
3571		}
3572
3573		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3574			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3575		goto out_release_old;
3576	}
3577
3578	/*
3579	 * When the original hugepage is shared one, it does not have
3580	 * anon_vma prepared.
3581	 */
3582	if (unlikely(anon_vma_prepare(vma))) {
3583		ret = VM_FAULT_OOM;
3584		goto out_release_all;
3585	}
3586
3587	copy_user_huge_page(new_page, old_page, address, vma,
3588			    pages_per_huge_page(h));
3589	__SetPageUptodate(new_page);
3590	set_page_huge_active(new_page);
3591
3592	mmun_start = address & huge_page_mask(h);
3593	mmun_end = mmun_start + huge_page_size(h);
3594	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3595
3596	/*
3597	 * Retake the page table lock to check for racing updates
3598	 * before the page tables are altered
3599	 */
3600	spin_lock(ptl);
3601	ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3602			       huge_page_size(h));
3603	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3604		ClearPagePrivate(new_page);
3605
3606		/* Break COW */
3607		huge_ptep_clear_flush(vma, address, ptep);
3608		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3609		set_huge_pte_at(mm, address, ptep,
3610				make_huge_pte(vma, new_page, 1));
3611		page_remove_rmap(old_page, true);
3612		hugepage_add_new_anon_rmap(new_page, vma, address);
3613		/* Make the old page be freed below */
3614		new_page = old_page;
3615	}
3616	spin_unlock(ptl);
3617	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3618out_release_all:
3619	restore_reserve_on_error(h, vma, address, new_page);
3620	put_page(new_page);
3621out_release_old:
3622	put_page(old_page);
3623
3624	spin_lock(ptl); /* Caller expects lock to be held */
3625	return ret;
3626}
3627
3628/* Return the pagecache page at a given address within a VMA */
3629static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3630			struct vm_area_struct *vma, unsigned long address)
3631{
3632	struct address_space *mapping;
3633	pgoff_t idx;
3634
3635	mapping = vma->vm_file->f_mapping;
3636	idx = vma_hugecache_offset(h, vma, address);
3637
3638	return find_lock_page(mapping, idx);
3639}
3640
3641/*
3642 * Return whether there is a pagecache page to back given address within VMA.
3643 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3644 */
3645static bool hugetlbfs_pagecache_present(struct hstate *h,
3646			struct vm_area_struct *vma, unsigned long address)
3647{
3648	struct address_space *mapping;
3649	pgoff_t idx;
3650	struct page *page;
3651
3652	mapping = vma->vm_file->f_mapping;
3653	idx = vma_hugecache_offset(h, vma, address);
3654
3655	page = find_get_page(mapping, idx);
3656	if (page)
3657		put_page(page);
3658	return page != NULL;
3659}
3660
3661int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3662			   pgoff_t idx)
3663{
3664	struct inode *inode = mapping->host;
3665	struct hstate *h = hstate_inode(inode);
3666	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3667
3668	if (err)
3669		return err;
3670	ClearPagePrivate(page);
3671
3672	spin_lock(&inode->i_lock);
3673	inode->i_blocks += blocks_per_huge_page(h);
3674	spin_unlock(&inode->i_lock);
3675	return 0;
3676}
3677
3678static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3679			   struct address_space *mapping, pgoff_t idx,
3680			   unsigned long address, pte_t *ptep, unsigned int flags)
3681{
3682	struct hstate *h = hstate_vma(vma);
3683	int ret = VM_FAULT_SIGBUS;
3684	int anon_rmap = 0;
3685	unsigned long size;
3686	struct page *page;
3687	pte_t new_pte;
3688	spinlock_t *ptl;
3689
3690	/*
3691	 * Currently, we are forced to kill the process in the event the
3692	 * original mapper has unmapped pages from the child due to a failed
3693	 * COW. Warn that such a situation has occurred as it may not be obvious
3694	 */
3695	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3696		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3697			   current->pid);
3698		return ret;
3699	}
3700
3701	/*
3702	 * Use page lock to guard against racing truncation
3703	 * before we get page_table_lock.
3704	 */
3705retry:
3706	page = find_lock_page(mapping, idx);
3707	if (!page) {
3708		size = i_size_read(mapping->host) >> huge_page_shift(h);
3709		if (idx >= size)
3710			goto out;
3711
3712		/*
3713		 * Check for page in userfault range
3714		 */
3715		if (userfaultfd_missing(vma)) {
3716			u32 hash;
3717			struct vm_fault vmf = {
3718				.vma = vma,
3719				.address = address,
3720				.flags = flags,
3721				/*
3722				 * Hard to debug if it ends up being
3723				 * used by a callee that assumes
3724				 * something about the other
3725				 * uninitialized fields... same as in
3726				 * memory.c
3727				 */
3728			};
3729
3730			/*
3731			 * hugetlb_fault_mutex must be dropped before
3732			 * handling userfault.  Reacquire after handling
3733			 * fault to make calling code simpler.
3734			 */
3735			hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3736							idx, address);
3737			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3738			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3739			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3740			goto out;
3741		}
3742
3743		page = alloc_huge_page(vma, address, 0);
3744		if (IS_ERR(page)) {
3745			ret = PTR_ERR(page);
3746			if (ret == -ENOMEM)
3747				ret = VM_FAULT_OOM;
3748			else
3749				ret = VM_FAULT_SIGBUS;
3750			goto out;
3751		}
3752		clear_huge_page(page, address, pages_per_huge_page(h));
3753		__SetPageUptodate(page);
3754		set_page_huge_active(page);
3755
3756		if (vma->vm_flags & VM_MAYSHARE) {
3757			int err = huge_add_to_page_cache(page, mapping, idx);
3758			if (err) {
3759				put_page(page);
3760				if (err == -EEXIST)
3761					goto retry;
3762				goto out;
3763			}
3764		} else {
3765			lock_page(page);
3766			if (unlikely(anon_vma_prepare(vma))) {
3767				ret = VM_FAULT_OOM;
3768				goto backout_unlocked;
3769			}
3770			anon_rmap = 1;
3771		}
3772	} else {
3773		/*
3774		 * If memory error occurs between mmap() and fault, some process
3775		 * don't have hwpoisoned swap entry for errored virtual address.
3776		 * So we need to block hugepage fault by PG_hwpoison bit check.
3777		 */
3778		if (unlikely(PageHWPoison(page))) {
3779			ret = VM_FAULT_HWPOISON |
3780				VM_FAULT_SET_HINDEX(hstate_index(h));
3781			goto backout_unlocked;
3782		}
3783	}
3784
3785	/*
3786	 * If we are going to COW a private mapping later, we examine the
3787	 * pending reservations for this page now. This will ensure that
3788	 * any allocations necessary to record that reservation occur outside
3789	 * the spinlock.
3790	 */
3791	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3792		if (vma_needs_reservation(h, vma, address) < 0) {
3793			ret = VM_FAULT_OOM;
3794			goto backout_unlocked;
3795		}
3796		/* Just decrements count, does not deallocate */
3797		vma_end_reservation(h, vma, address);
3798	}
3799
3800	ptl = huge_pte_lock(h, mm, ptep);
 
3801	size = i_size_read(mapping->host) >> huge_page_shift(h);
3802	if (idx >= size)
3803		goto backout;
3804
3805	ret = 0;
3806	if (!huge_pte_none(huge_ptep_get(ptep)))
3807		goto backout;
3808
3809	if (anon_rmap) {
3810		ClearPagePrivate(page);
3811		hugepage_add_new_anon_rmap(page, vma, address);
3812	} else
3813		page_dup_rmap(page, true);
3814	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3815				&& (vma->vm_flags & VM_SHARED)));
3816	set_huge_pte_at(mm, address, ptep, new_pte);
3817
3818	hugetlb_count_add(pages_per_huge_page(h), mm);
3819	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3820		/* Optimization, do the COW without a second fault */
3821		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3822	}
3823
3824	spin_unlock(ptl);
3825	unlock_page(page);
3826out:
3827	return ret;
3828
3829backout:
3830	spin_unlock(ptl);
3831backout_unlocked:
3832	unlock_page(page);
3833	restore_reserve_on_error(h, vma, address, page);
3834	put_page(page);
3835	goto out;
3836}
3837
3838#ifdef CONFIG_SMP
3839u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3840			    struct vm_area_struct *vma,
3841			    struct address_space *mapping,
3842			    pgoff_t idx, unsigned long address)
3843{
3844	unsigned long key[2];
3845	u32 hash;
3846
3847	if (vma->vm_flags & VM_SHARED) {
3848		key[0] = (unsigned long) mapping;
3849		key[1] = idx;
3850	} else {
3851		key[0] = (unsigned long) mm;
3852		key[1] = address >> huge_page_shift(h);
3853	}
3854
3855	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3856
3857	return hash & (num_fault_mutexes - 1);
3858}
3859#else
3860/*
3861 * For uniprocesor systems we always use a single mutex, so just
3862 * return 0 and avoid the hashing overhead.
3863 */
3864u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3865			    struct vm_area_struct *vma,
3866			    struct address_space *mapping,
3867			    pgoff_t idx, unsigned long address)
3868{
3869	return 0;
3870}
3871#endif
3872
3873int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3874			unsigned long address, unsigned int flags)
3875{
3876	pte_t *ptep, entry;
3877	spinlock_t *ptl;
3878	int ret;
3879	u32 hash;
3880	pgoff_t idx;
3881	struct page *page = NULL;
3882	struct page *pagecache_page = NULL;
3883	struct hstate *h = hstate_vma(vma);
3884	struct address_space *mapping;
3885	int need_wait_lock = 0;
3886
3887	address &= huge_page_mask(h);
3888
3889	ptep = huge_pte_offset(mm, address, huge_page_size(h));
3890	if (ptep) {
3891		entry = huge_ptep_get(ptep);
3892		if (unlikely(is_hugetlb_entry_migration(entry))) {
3893			migration_entry_wait_huge(vma, mm, ptep);
3894			return 0;
3895		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3896			return VM_FAULT_HWPOISON_LARGE |
3897				VM_FAULT_SET_HINDEX(hstate_index(h));
3898	} else {
3899		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3900		if (!ptep)
3901			return VM_FAULT_OOM;
3902	}
3903
3904	mapping = vma->vm_file->f_mapping;
3905	idx = vma_hugecache_offset(h, vma, address);
3906
3907	/*
3908	 * Serialize hugepage allocation and instantiation, so that we don't
3909	 * get spurious allocation failures if two CPUs race to instantiate
3910	 * the same page in the page cache.
3911	 */
3912	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3913	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3914
3915	entry = huge_ptep_get(ptep);
3916	if (huge_pte_none(entry)) {
3917		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3918		goto out_mutex;
3919	}
3920
3921	ret = 0;
3922
3923	/*
3924	 * entry could be a migration/hwpoison entry at this point, so this
3925	 * check prevents the kernel from going below assuming that we have
3926	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3927	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3928	 * handle it.
3929	 */
3930	if (!pte_present(entry))
3931		goto out_mutex;
3932
3933	/*
3934	 * If we are going to COW the mapping later, we examine the pending
3935	 * reservations for this page now. This will ensure that any
3936	 * allocations necessary to record that reservation occur outside the
3937	 * spinlock. For private mappings, we also lookup the pagecache
3938	 * page now as it is used to determine if a reservation has been
3939	 * consumed.
3940	 */
3941	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3942		if (vma_needs_reservation(h, vma, address) < 0) {
3943			ret = VM_FAULT_OOM;
3944			goto out_mutex;
3945		}
3946		/* Just decrements count, does not deallocate */
3947		vma_end_reservation(h, vma, address);
3948
3949		if (!(vma->vm_flags & VM_MAYSHARE))
3950			pagecache_page = hugetlbfs_pagecache_page(h,
3951								vma, address);
3952	}
3953
3954	ptl = huge_pte_lock(h, mm, ptep);
3955
3956	/* Check for a racing update before calling hugetlb_cow */
3957	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3958		goto out_ptl;
3959
3960	/*
3961	 * hugetlb_cow() requires page locks of pte_page(entry) and
3962	 * pagecache_page, so here we need take the former one
3963	 * when page != pagecache_page or !pagecache_page.
3964	 */
3965	page = pte_page(entry);
3966	if (page != pagecache_page)
3967		if (!trylock_page(page)) {
3968			need_wait_lock = 1;
3969			goto out_ptl;
3970		}
3971
3972	get_page(page);
3973
3974	if (flags & FAULT_FLAG_WRITE) {
3975		if (!huge_pte_write(entry)) {
3976			ret = hugetlb_cow(mm, vma, address, ptep,
3977					  pagecache_page, ptl);
3978			goto out_put_page;
3979		}
3980		entry = huge_pte_mkdirty(entry);
3981	}
3982	entry = pte_mkyoung(entry);
3983	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3984						flags & FAULT_FLAG_WRITE))
3985		update_mmu_cache(vma, address, ptep);
3986out_put_page:
3987	if (page != pagecache_page)
3988		unlock_page(page);
3989	put_page(page);
3990out_ptl:
3991	spin_unlock(ptl);
3992
3993	if (pagecache_page) {
3994		unlock_page(pagecache_page);
3995		put_page(pagecache_page);
3996	}
3997out_mutex:
3998	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3999	/*
4000	 * Generally it's safe to hold refcount during waiting page lock. But
4001	 * here we just wait to defer the next page fault to avoid busy loop and
4002	 * the page is not used after unlocked before returning from the current
4003	 * page fault. So we are safe from accessing freed page, even if we wait
4004	 * here without taking refcount.
4005	 */
4006	if (need_wait_lock)
4007		wait_on_page_locked(page);
4008	return ret;
4009}
4010
4011/*
4012 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4013 * modifications for huge pages.
4014 */
4015int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4016			    pte_t *dst_pte,
4017			    struct vm_area_struct *dst_vma,
4018			    unsigned long dst_addr,
4019			    unsigned long src_addr,
4020			    struct page **pagep)
4021{
4022	struct address_space *mapping;
4023	pgoff_t idx;
4024	unsigned long size;
4025	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4026	struct hstate *h = hstate_vma(dst_vma);
4027	pte_t _dst_pte;
4028	spinlock_t *ptl;
4029	int ret;
4030	struct page *page;
4031
4032	if (!*pagep) {
4033		ret = -ENOMEM;
4034		page = alloc_huge_page(dst_vma, dst_addr, 0);
4035		if (IS_ERR(page))
4036			goto out;
4037
4038		ret = copy_huge_page_from_user(page,
4039						(const void __user *) src_addr,
4040						pages_per_huge_page(h), false);
4041
4042		/* fallback to copy_from_user outside mmap_sem */
4043		if (unlikely(ret)) {
4044			ret = -EFAULT;
4045			*pagep = page;
4046			/* don't free the page */
4047			goto out;
4048		}
4049	} else {
4050		page = *pagep;
4051		*pagep = NULL;
4052	}
4053
4054	/*
4055	 * The memory barrier inside __SetPageUptodate makes sure that
4056	 * preceding stores to the page contents become visible before
4057	 * the set_pte_at() write.
4058	 */
4059	__SetPageUptodate(page);
4060	set_page_huge_active(page);
4061
4062	mapping = dst_vma->vm_file->f_mapping;
4063	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4064
4065	/*
4066	 * If shared, add to page cache
4067	 */
4068	if (vm_shared) {
4069		size = i_size_read(mapping->host) >> huge_page_shift(h);
4070		ret = -EFAULT;
4071		if (idx >= size)
4072			goto out_release_nounlock;
4073
4074		/*
4075		 * Serialization between remove_inode_hugepages() and
4076		 * huge_add_to_page_cache() below happens through the
4077		 * hugetlb_fault_mutex_table that here must be hold by
4078		 * the caller.
4079		 */
4080		ret = huge_add_to_page_cache(page, mapping, idx);
4081		if (ret)
4082			goto out_release_nounlock;
4083	}
4084
4085	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4086	spin_lock(ptl);
4087
4088	/*
4089	 * Recheck the i_size after holding PT lock to make sure not
4090	 * to leave any page mapped (as page_mapped()) beyond the end
4091	 * of the i_size (remove_inode_hugepages() is strict about
4092	 * enforcing that). If we bail out here, we'll also leave a
4093	 * page in the radix tree in the vm_shared case beyond the end
4094	 * of the i_size, but remove_inode_hugepages() will take care
4095	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4096	 */
4097	size = i_size_read(mapping->host) >> huge_page_shift(h);
4098	ret = -EFAULT;
4099	if (idx >= size)
4100		goto out_release_unlock;
4101
4102	ret = -EEXIST;
4103	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4104		goto out_release_unlock;
4105
4106	if (vm_shared) {
4107		page_dup_rmap(page, true);
4108	} else {
4109		ClearPagePrivate(page);
4110		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4111	}
4112
4113	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4114	if (dst_vma->vm_flags & VM_WRITE)
4115		_dst_pte = huge_pte_mkdirty(_dst_pte);
4116	_dst_pte = pte_mkyoung(_dst_pte);
4117
4118	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4119
4120	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4121					dst_vma->vm_flags & VM_WRITE);
4122	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4123
4124	/* No need to invalidate - it was non-present before */
4125	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4126
4127	spin_unlock(ptl);
4128	if (vm_shared)
4129		unlock_page(page);
4130	ret = 0;
4131out:
4132	return ret;
4133out_release_unlock:
4134	spin_unlock(ptl);
4135	if (vm_shared)
4136		unlock_page(page);
4137out_release_nounlock:
4138	put_page(page);
4139	goto out;
4140}
4141
4142long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4143			 struct page **pages, struct vm_area_struct **vmas,
4144			 unsigned long *position, unsigned long *nr_pages,
4145			 long i, unsigned int flags, int *nonblocking)
4146{
4147	unsigned long pfn_offset;
4148	unsigned long vaddr = *position;
4149	unsigned long remainder = *nr_pages;
4150	struct hstate *h = hstate_vma(vma);
4151	int err = -EFAULT;
4152
4153	while (vaddr < vma->vm_end && remainder) {
4154		pte_t *pte;
4155		spinlock_t *ptl = NULL;
4156		int absent;
4157		struct page *page;
4158
4159		/*
4160		 * If we have a pending SIGKILL, don't keep faulting pages and
4161		 * potentially allocating memory.
4162		 */
4163		if (unlikely(fatal_signal_pending(current))) {
4164			remainder = 0;
4165			break;
4166		}
4167
4168		/*
4169		 * Some archs (sparc64, sh*) have multiple pte_ts to
4170		 * each hugepage.  We have to make sure we get the
4171		 * first, for the page indexing below to work.
4172		 *
4173		 * Note that page table lock is not held when pte is null.
4174		 */
4175		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4176				      huge_page_size(h));
4177		if (pte)
4178			ptl = huge_pte_lock(h, mm, pte);
4179		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4180
4181		/*
4182		 * When coredumping, it suits get_dump_page if we just return
4183		 * an error where there's an empty slot with no huge pagecache
4184		 * to back it.  This way, we avoid allocating a hugepage, and
4185		 * the sparse dumpfile avoids allocating disk blocks, but its
4186		 * huge holes still show up with zeroes where they need to be.
4187		 */
4188		if (absent && (flags & FOLL_DUMP) &&
4189		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4190			if (pte)
4191				spin_unlock(ptl);
4192			remainder = 0;
4193			break;
4194		}
4195
4196		/*
4197		 * We need call hugetlb_fault for both hugepages under migration
4198		 * (in which case hugetlb_fault waits for the migration,) and
4199		 * hwpoisoned hugepages (in which case we need to prevent the
4200		 * caller from accessing to them.) In order to do this, we use
4201		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4202		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4203		 * both cases, and because we can't follow correct pages
4204		 * directly from any kind of swap entries.
4205		 */
4206		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4207		    ((flags & FOLL_WRITE) &&
4208		      !huge_pte_write(huge_ptep_get(pte)))) {
4209			int ret;
4210			unsigned int fault_flags = 0;
4211
4212			if (pte)
4213				spin_unlock(ptl);
4214			if (flags & FOLL_WRITE)
4215				fault_flags |= FAULT_FLAG_WRITE;
4216			if (nonblocking)
4217				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4218			if (flags & FOLL_NOWAIT)
4219				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4220					FAULT_FLAG_RETRY_NOWAIT;
4221			if (flags & FOLL_TRIED) {
4222				VM_WARN_ON_ONCE(fault_flags &
4223						FAULT_FLAG_ALLOW_RETRY);
4224				fault_flags |= FAULT_FLAG_TRIED;
4225			}
4226			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4227			if (ret & VM_FAULT_ERROR) {
4228				err = vm_fault_to_errno(ret, flags);
4229				remainder = 0;
4230				break;
4231			}
4232			if (ret & VM_FAULT_RETRY) {
4233				if (nonblocking)
4234					*nonblocking = 0;
4235				*nr_pages = 0;
4236				/*
4237				 * VM_FAULT_RETRY must not return an
4238				 * error, it will return zero
4239				 * instead.
4240				 *
4241				 * No need to update "position" as the
4242				 * caller will not check it after
4243				 * *nr_pages is set to 0.
4244				 */
4245				return i;
4246			}
4247			continue;
4248		}
4249
4250		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4251		page = pte_page(huge_ptep_get(pte));
4252same_page:
4253		if (pages) {
4254			pages[i] = mem_map_offset(page, pfn_offset);
4255			get_page(pages[i]);
4256		}
4257
4258		if (vmas)
4259			vmas[i] = vma;
4260
4261		vaddr += PAGE_SIZE;
4262		++pfn_offset;
4263		--remainder;
4264		++i;
4265		if (vaddr < vma->vm_end && remainder &&
4266				pfn_offset < pages_per_huge_page(h)) {
4267			/*
4268			 * We use pfn_offset to avoid touching the pageframes
4269			 * of this compound page.
4270			 */
4271			goto same_page;
4272		}
4273		spin_unlock(ptl);
4274	}
4275	*nr_pages = remainder;
4276	/*
4277	 * setting position is actually required only if remainder is
4278	 * not zero but it's faster not to add a "if (remainder)"
4279	 * branch.
4280	 */
4281	*position = vaddr;
4282
4283	return i ? i : err;
4284}
4285
4286#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4287/*
4288 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4289 * implement this.
4290 */
4291#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4292#endif
4293
4294unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4295		unsigned long address, unsigned long end, pgprot_t newprot)
4296{
4297	struct mm_struct *mm = vma->vm_mm;
4298	unsigned long start = address;
4299	pte_t *ptep;
4300	pte_t pte;
4301	struct hstate *h = hstate_vma(vma);
4302	unsigned long pages = 0;
4303
4304	BUG_ON(address >= end);
4305	flush_cache_range(vma, address, end);
4306
4307	mmu_notifier_invalidate_range_start(mm, start, end);
4308	i_mmap_lock_write(vma->vm_file->f_mapping);
4309	for (; address < end; address += huge_page_size(h)) {
4310		spinlock_t *ptl;
4311		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4312		if (!ptep)
4313			continue;
4314		ptl = huge_pte_lock(h, mm, ptep);
4315		if (huge_pmd_unshare(mm, &address, ptep)) {
4316			pages++;
4317			spin_unlock(ptl);
4318			continue;
4319		}
4320		pte = huge_ptep_get(ptep);
4321		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4322			spin_unlock(ptl);
4323			continue;
4324		}
4325		if (unlikely(is_hugetlb_entry_migration(pte))) {
4326			swp_entry_t entry = pte_to_swp_entry(pte);
4327
4328			if (is_write_migration_entry(entry)) {
4329				pte_t newpte;
4330
4331				make_migration_entry_read(&entry);
4332				newpte = swp_entry_to_pte(entry);
4333				set_huge_swap_pte_at(mm, address, ptep,
4334						     newpte, huge_page_size(h));
4335				pages++;
4336			}
4337			spin_unlock(ptl);
4338			continue;
4339		}
4340		if (!huge_pte_none(pte)) {
4341			pte = huge_ptep_get_and_clear(mm, address, ptep);
4342			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4343			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4344			set_huge_pte_at(mm, address, ptep, pte);
4345			pages++;
4346		}
4347		spin_unlock(ptl);
4348	}
4349	/*
4350	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4351	 * may have cleared our pud entry and done put_page on the page table:
4352	 * once we release i_mmap_rwsem, another task can do the final put_page
4353	 * and that page table be reused and filled with junk.
4354	 */
4355	flush_hugetlb_tlb_range(vma, start, end);
4356	/*
4357	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4358	 * page table protection not changing it to point to a new page.
4359	 *
4360	 * See Documentation/vm/mmu_notifier.txt
4361	 */
4362	i_mmap_unlock_write(vma->vm_file->f_mapping);
4363	mmu_notifier_invalidate_range_end(mm, start, end);
4364
4365	return pages << h->order;
4366}
4367
4368int hugetlb_reserve_pages(struct inode *inode,
4369					long from, long to,
4370					struct vm_area_struct *vma,
4371					vm_flags_t vm_flags)
4372{
4373	long ret, chg;
4374	struct hstate *h = hstate_inode(inode);
4375	struct hugepage_subpool *spool = subpool_inode(inode);
4376	struct resv_map *resv_map;
4377	long gbl_reserve;
4378
4379	/* This should never happen */
4380	if (from > to) {
4381		VM_WARN(1, "%s called with a negative range\n", __func__);
4382		return -EINVAL;
4383	}
4384
4385	/*
4386	 * Only apply hugepage reservation if asked. At fault time, an
4387	 * attempt will be made for VM_NORESERVE to allocate a page
4388	 * without using reserves
4389	 */
4390	if (vm_flags & VM_NORESERVE)
4391		return 0;
4392
4393	/*
4394	 * Shared mappings base their reservation on the number of pages that
4395	 * are already allocated on behalf of the file. Private mappings need
4396	 * to reserve the full area even if read-only as mprotect() may be
4397	 * called to make the mapping read-write. Assume !vma is a shm mapping
4398	 */
4399	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4400		resv_map = inode_resv_map(inode);
4401
4402		chg = region_chg(resv_map, from, to);
4403
4404	} else {
4405		resv_map = resv_map_alloc();
4406		if (!resv_map)
4407			return -ENOMEM;
4408
4409		chg = to - from;
4410
4411		set_vma_resv_map(vma, resv_map);
4412		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4413	}
4414
4415	if (chg < 0) {
4416		ret = chg;
4417		goto out_err;
4418	}
4419
4420	/*
4421	 * There must be enough pages in the subpool for the mapping. If
4422	 * the subpool has a minimum size, there may be some global
4423	 * reservations already in place (gbl_reserve).
4424	 */
4425	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4426	if (gbl_reserve < 0) {
4427		ret = -ENOSPC;
4428		goto out_err;
4429	}
4430
4431	/*
4432	 * Check enough hugepages are available for the reservation.
4433	 * Hand the pages back to the subpool if there are not
4434	 */
4435	ret = hugetlb_acct_memory(h, gbl_reserve);
4436	if (ret < 0) {
4437		/* put back original number of pages, chg */
4438		(void)hugepage_subpool_put_pages(spool, chg);
4439		goto out_err;
4440	}
4441
4442	/*
4443	 * Account for the reservations made. Shared mappings record regions
4444	 * that have reservations as they are shared by multiple VMAs.
4445	 * When the last VMA disappears, the region map says how much
4446	 * the reservation was and the page cache tells how much of
4447	 * the reservation was consumed. Private mappings are per-VMA and
4448	 * only the consumed reservations are tracked. When the VMA
4449	 * disappears, the original reservation is the VMA size and the
4450	 * consumed reservations are stored in the map. Hence, nothing
4451	 * else has to be done for private mappings here
4452	 */
4453	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4454		long add = region_add(resv_map, from, to);
4455
4456		if (unlikely(chg > add)) {
4457			/*
4458			 * pages in this range were added to the reserve
4459			 * map between region_chg and region_add.  This
4460			 * indicates a race with alloc_huge_page.  Adjust
4461			 * the subpool and reserve counts modified above
4462			 * based on the difference.
4463			 */
4464			long rsv_adjust;
4465
4466			rsv_adjust = hugepage_subpool_put_pages(spool,
4467								chg - add);
4468			hugetlb_acct_memory(h, -rsv_adjust);
4469		}
4470	}
4471	return 0;
4472out_err:
4473	if (!vma || vma->vm_flags & VM_MAYSHARE)
4474		/* Don't call region_abort if region_chg failed */
4475		if (chg >= 0)
4476			region_abort(resv_map, from, to);
4477	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4478		kref_put(&resv_map->refs, resv_map_release);
4479	return ret;
4480}
4481
4482long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4483								long freed)
4484{
4485	struct hstate *h = hstate_inode(inode);
4486	struct resv_map *resv_map = inode_resv_map(inode);
4487	long chg = 0;
4488	struct hugepage_subpool *spool = subpool_inode(inode);
4489	long gbl_reserve;
4490
4491	if (resv_map) {
4492		chg = region_del(resv_map, start, end);
4493		/*
4494		 * region_del() can fail in the rare case where a region
4495		 * must be split and another region descriptor can not be
4496		 * allocated.  If end == LONG_MAX, it will not fail.
4497		 */
4498		if (chg < 0)
4499			return chg;
4500	}
4501
4502	spin_lock(&inode->i_lock);
4503	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4504	spin_unlock(&inode->i_lock);
4505
4506	/*
4507	 * If the subpool has a minimum size, the number of global
4508	 * reservations to be released may be adjusted.
4509	 */
4510	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4511	hugetlb_acct_memory(h, -gbl_reserve);
4512
4513	return 0;
4514}
4515
4516#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4517static unsigned long page_table_shareable(struct vm_area_struct *svma,
4518				struct vm_area_struct *vma,
4519				unsigned long addr, pgoff_t idx)
4520{
4521	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4522				svma->vm_start;
4523	unsigned long sbase = saddr & PUD_MASK;
4524	unsigned long s_end = sbase + PUD_SIZE;
4525
4526	/* Allow segments to share if only one is marked locked */
4527	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4528	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4529
4530	/*
4531	 * match the virtual addresses, permission and the alignment of the
4532	 * page table page.
4533	 */
4534	if (pmd_index(addr) != pmd_index(saddr) ||
4535	    vm_flags != svm_flags ||
4536	    sbase < svma->vm_start || svma->vm_end < s_end)
4537		return 0;
4538
4539	return saddr;
4540}
4541
4542static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4543{
4544	unsigned long base = addr & PUD_MASK;
4545	unsigned long end = base + PUD_SIZE;
4546
4547	/*
4548	 * check on proper vm_flags and page table alignment
4549	 */
4550	if (vma->vm_flags & VM_MAYSHARE &&
4551	    vma->vm_start <= base && end <= vma->vm_end)
4552		return true;
4553	return false;
4554}
4555
4556/*
4557 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4558 * and returns the corresponding pte. While this is not necessary for the
4559 * !shared pmd case because we can allocate the pmd later as well, it makes the
4560 * code much cleaner. pmd allocation is essential for the shared case because
4561 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4562 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4563 * bad pmd for sharing.
4564 */
4565pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4566{
4567	struct vm_area_struct *vma = find_vma(mm, addr);
4568	struct address_space *mapping = vma->vm_file->f_mapping;
4569	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4570			vma->vm_pgoff;
4571	struct vm_area_struct *svma;
4572	unsigned long saddr;
4573	pte_t *spte = NULL;
4574	pte_t *pte;
4575	spinlock_t *ptl;
4576
4577	if (!vma_shareable(vma, addr))
4578		return (pte_t *)pmd_alloc(mm, pud, addr);
4579
4580	i_mmap_lock_write(mapping);
4581	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4582		if (svma == vma)
4583			continue;
4584
4585		saddr = page_table_shareable(svma, vma, addr, idx);
4586		if (saddr) {
4587			spte = huge_pte_offset(svma->vm_mm, saddr,
4588					       vma_mmu_pagesize(svma));
4589			if (spte) {
 
4590				get_page(virt_to_page(spte));
4591				break;
4592			}
4593		}
4594	}
4595
4596	if (!spte)
4597		goto out;
4598
4599	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
 
4600	if (pud_none(*pud)) {
4601		pud_populate(mm, pud,
4602				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4603		mm_inc_nr_pmds(mm);
4604	} else {
4605		put_page(virt_to_page(spte));
 
4606	}
4607	spin_unlock(ptl);
4608out:
4609	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4610	i_mmap_unlock_write(mapping);
4611	return pte;
4612}
4613
4614/*
4615 * unmap huge page backed by shared pte.
4616 *
4617 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4618 * indicated by page_count > 1, unmap is achieved by clearing pud and
4619 * decrementing the ref count. If count == 1, the pte page is not shared.
4620 *
4621 * called with page table lock held.
4622 *
4623 * returns: 1 successfully unmapped a shared pte page
4624 *	    0 the underlying pte page is not shared, or it is the last user
4625 */
4626int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4627{
4628	pgd_t *pgd = pgd_offset(mm, *addr);
4629	p4d_t *p4d = p4d_offset(pgd, *addr);
4630	pud_t *pud = pud_offset(p4d, *addr);
4631
4632	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4633	if (page_count(virt_to_page(ptep)) == 1)
4634		return 0;
4635
4636	pud_clear(pud);
4637	put_page(virt_to_page(ptep));
4638	mm_dec_nr_pmds(mm);
4639	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4640	return 1;
4641}
4642#define want_pmd_share()	(1)
4643#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4644pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4645{
4646	return NULL;
4647}
4648
4649int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4650{
4651	return 0;
4652}
4653#define want_pmd_share()	(0)
4654#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4655
4656#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4657pte_t *huge_pte_alloc(struct mm_struct *mm,
4658			unsigned long addr, unsigned long sz)
4659{
4660	pgd_t *pgd;
4661	p4d_t *p4d;
4662	pud_t *pud;
4663	pte_t *pte = NULL;
4664
4665	pgd = pgd_offset(mm, addr);
4666	p4d = p4d_alloc(mm, pgd, addr);
4667	if (!p4d)
4668		return NULL;
4669	pud = pud_alloc(mm, p4d, addr);
4670	if (pud) {
4671		if (sz == PUD_SIZE) {
4672			pte = (pte_t *)pud;
4673		} else {
4674			BUG_ON(sz != PMD_SIZE);
4675			if (want_pmd_share() && pud_none(*pud))
4676				pte = huge_pmd_share(mm, addr, pud);
4677			else
4678				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4679		}
4680	}
4681	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4682
4683	return pte;
4684}
4685
4686/*
4687 * huge_pte_offset() - Walk the page table to resolve the hugepage
4688 * entry at address @addr
4689 *
4690 * Return: Pointer to page table or swap entry (PUD or PMD) for
4691 * address @addr, or NULL if a p*d_none() entry is encountered and the
4692 * size @sz doesn't match the hugepage size at this level of the page
4693 * table.
4694 */
4695pte_t *huge_pte_offset(struct mm_struct *mm,
4696		       unsigned long addr, unsigned long sz)
4697{
4698	pgd_t *pgd;
4699	p4d_t *p4d;
4700	pud_t *pud;
4701	pmd_t *pmd;
4702
4703	pgd = pgd_offset(mm, addr);
4704	if (!pgd_present(*pgd))
4705		return NULL;
4706	p4d = p4d_offset(pgd, addr);
4707	if (!p4d_present(*p4d))
4708		return NULL;
4709
4710	pud = pud_offset(p4d, addr);
4711	if (sz != PUD_SIZE && pud_none(*pud))
4712		return NULL;
4713	/* hugepage or swap? */
4714	if (pud_huge(*pud) || !pud_present(*pud))
4715		return (pte_t *)pud;
4716
4717	pmd = pmd_offset(pud, addr);
4718	if (sz != PMD_SIZE && pmd_none(*pmd))
4719		return NULL;
4720	/* hugepage or swap? */
4721	if (pmd_huge(*pmd) || !pmd_present(*pmd))
4722		return (pte_t *)pmd;
4723
4724	return NULL;
4725}
4726
4727#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4728
4729/*
4730 * These functions are overwritable if your architecture needs its own
4731 * behavior.
4732 */
4733struct page * __weak
4734follow_huge_addr(struct mm_struct *mm, unsigned long address,
4735			      int write)
4736{
4737	return ERR_PTR(-EINVAL);
4738}
4739
4740struct page * __weak
4741follow_huge_pd(struct vm_area_struct *vma,
4742	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
4743{
4744	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4745	return NULL;
4746}
4747
4748struct page * __weak
4749follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4750		pmd_t *pmd, int flags)
4751{
4752	struct page *page = NULL;
4753	spinlock_t *ptl;
4754	pte_t pte;
4755retry:
4756	ptl = pmd_lockptr(mm, pmd);
4757	spin_lock(ptl);
4758	/*
4759	 * make sure that the address range covered by this pmd is not
4760	 * unmapped from other threads.
4761	 */
4762	if (!pmd_huge(*pmd))
4763		goto out;
4764	pte = huge_ptep_get((pte_t *)pmd);
4765	if (pte_present(pte)) {
4766		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4767		if (flags & FOLL_GET)
4768			get_page(page);
4769	} else {
4770		if (is_hugetlb_entry_migration(pte)) {
4771			spin_unlock(ptl);
4772			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4773			goto retry;
4774		}
4775		/*
4776		 * hwpoisoned entry is treated as no_page_table in
4777		 * follow_page_mask().
4778		 */
4779	}
4780out:
4781	spin_unlock(ptl);
4782	return page;
4783}
4784
4785struct page * __weak
4786follow_huge_pud(struct mm_struct *mm, unsigned long address,
4787		pud_t *pud, int flags)
4788{
4789	if (flags & FOLL_GET)
4790		return NULL;
4791
4792	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4793}
4794
4795struct page * __weak
4796follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
 
 
 
 
 
4797{
4798	if (flags & FOLL_GET)
4799		return NULL;
 
4800
4801	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4802}
 
4803
4804bool isolate_huge_page(struct page *page, struct list_head *list)
4805{
4806	bool ret = true;
4807
4808	VM_BUG_ON_PAGE(!PageHead(page), page);
4809	spin_lock(&hugetlb_lock);
4810	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4811		ret = false;
4812		goto unlock;
4813	}
4814	clear_page_huge_active(page);
4815	list_move_tail(&page->lru, list);
4816unlock:
4817	spin_unlock(&hugetlb_lock);
4818	return ret;
4819}
4820
4821void putback_active_hugepage(struct page *page)
4822{
4823	VM_BUG_ON_PAGE(!PageHead(page), page);
4824	spin_lock(&hugetlb_lock);
4825	set_page_huge_active(page);
4826	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4827	spin_unlock(&hugetlb_lock);
4828	put_page(page);
4829}
4830
4831void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4832{
4833	struct hstate *h = page_hstate(oldpage);
4834
4835	hugetlb_cgroup_migrate(oldpage, newpage);
4836	set_page_owner_migrate_reason(newpage, reason);
4837
4838	/*
4839	 * transfer temporary state of the new huge page. This is
4840	 * reverse to other transitions because the newpage is going to
4841	 * be final while the old one will be freed so it takes over
4842	 * the temporary status.
4843	 *
4844	 * Also note that we have to transfer the per-node surplus state
4845	 * here as well otherwise the global surplus count will not match
4846	 * the per-node's.
4847	 */
4848	if (PageHugeTemporary(newpage)) {
4849		int old_nid = page_to_nid(oldpage);
4850		int new_nid = page_to_nid(newpage);
4851
4852		SetPageHugeTemporary(oldpage);
4853		ClearPageHugeTemporary(newpage);
4854
4855		spin_lock(&hugetlb_lock);
4856		if (h->surplus_huge_pages_node[old_nid]) {
4857			h->surplus_huge_pages_node[old_nid]--;
4858			h->surplus_huge_pages_node[new_nid]++;
4859		}
4860		spin_unlock(&hugetlb_lock);
4861	}
4862}
v4.6
   1/*
   2 * Generic hugetlb support.
   3 * (C) Nadia Yvette Chambers, April 2004
   4 */
   5#include <linux/list.h>
   6#include <linux/init.h>
   7#include <linux/mm.h>
   8#include <linux/seq_file.h>
   9#include <linux/sysctl.h>
  10#include <linux/highmem.h>
  11#include <linux/mmu_notifier.h>
  12#include <linux/nodemask.h>
  13#include <linux/pagemap.h>
  14#include <linux/mempolicy.h>
  15#include <linux/compiler.h>
  16#include <linux/cpuset.h>
  17#include <linux/mutex.h>
  18#include <linux/bootmem.h>
  19#include <linux/sysfs.h>
  20#include <linux/slab.h>
 
 
  21#include <linux/rmap.h>
 
  22#include <linux/swap.h>
  23#include <linux/swapops.h>
  24#include <linux/page-isolation.h>
  25#include <linux/jhash.h>
  26
  27#include <asm/page.h>
  28#include <asm/pgtable.h>
  29#include <asm/tlb.h>
  30
  31#include <linux/io.h>
  32#include <linux/hugetlb.h>
  33#include <linux/hugetlb_cgroup.h>
  34#include <linux/node.h>
 
 
  35#include "internal.h"
  36
  37int hugepages_treat_as_movable;
  38
  39int hugetlb_max_hstate __read_mostly;
  40unsigned int default_hstate_idx;
  41struct hstate hstates[HUGE_MAX_HSTATE];
  42/*
  43 * Minimum page order among possible hugepage sizes, set to a proper value
  44 * at boot time.
  45 */
  46static unsigned int minimum_order __read_mostly = UINT_MAX;
  47
  48__initdata LIST_HEAD(huge_boot_pages);
  49
  50/* for command line parsing */
  51static struct hstate * __initdata parsed_hstate;
  52static unsigned long __initdata default_hstate_max_huge_pages;
  53static unsigned long __initdata default_hstate_size;
 
  54
  55/*
  56 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  57 * free_huge_pages, and surplus_huge_pages.
  58 */
  59DEFINE_SPINLOCK(hugetlb_lock);
  60
  61/*
  62 * Serializes faults on the same logical page.  This is used to
  63 * prevent spurious OOMs when the hugepage pool is fully utilized.
  64 */
  65static int num_fault_mutexes;
  66struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  67
  68/* Forward declaration */
  69static int hugetlb_acct_memory(struct hstate *h, long delta);
  70
  71static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  72{
  73	bool free = (spool->count == 0) && (spool->used_hpages == 0);
  74
  75	spin_unlock(&spool->lock);
  76
  77	/* If no pages are used, and no other handles to the subpool
  78	 * remain, give up any reservations mased on minimum size and
  79	 * free the subpool */
  80	if (free) {
  81		if (spool->min_hpages != -1)
  82			hugetlb_acct_memory(spool->hstate,
  83						-spool->min_hpages);
  84		kfree(spool);
  85	}
  86}
  87
  88struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  89						long min_hpages)
  90{
  91	struct hugepage_subpool *spool;
  92
  93	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  94	if (!spool)
  95		return NULL;
  96
  97	spin_lock_init(&spool->lock);
  98	spool->count = 1;
  99	spool->max_hpages = max_hpages;
 100	spool->hstate = h;
 101	spool->min_hpages = min_hpages;
 102
 103	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 104		kfree(spool);
 105		return NULL;
 106	}
 107	spool->rsv_hpages = min_hpages;
 108
 109	return spool;
 110}
 111
 112void hugepage_put_subpool(struct hugepage_subpool *spool)
 113{
 114	spin_lock(&spool->lock);
 115	BUG_ON(!spool->count);
 116	spool->count--;
 117	unlock_or_release_subpool(spool);
 118}
 119
 120/*
 121 * Subpool accounting for allocating and reserving pages.
 122 * Return -ENOMEM if there are not enough resources to satisfy the
 123 * the request.  Otherwise, return the number of pages by which the
 124 * global pools must be adjusted (upward).  The returned value may
 125 * only be different than the passed value (delta) in the case where
 126 * a subpool minimum size must be manitained.
 127 */
 128static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 129				      long delta)
 130{
 131	long ret = delta;
 132
 133	if (!spool)
 134		return ret;
 135
 136	spin_lock(&spool->lock);
 137
 138	if (spool->max_hpages != -1) {		/* maximum size accounting */
 139		if ((spool->used_hpages + delta) <= spool->max_hpages)
 140			spool->used_hpages += delta;
 141		else {
 142			ret = -ENOMEM;
 143			goto unlock_ret;
 144		}
 145	}
 146
 147	if (spool->min_hpages != -1) {		/* minimum size accounting */
 
 148		if (delta > spool->rsv_hpages) {
 149			/*
 150			 * Asking for more reserves than those already taken on
 151			 * behalf of subpool.  Return difference.
 152			 */
 153			ret = delta - spool->rsv_hpages;
 154			spool->rsv_hpages = 0;
 155		} else {
 156			ret = 0;	/* reserves already accounted for */
 157			spool->rsv_hpages -= delta;
 158		}
 159	}
 160
 161unlock_ret:
 162	spin_unlock(&spool->lock);
 163	return ret;
 164}
 165
 166/*
 167 * Subpool accounting for freeing and unreserving pages.
 168 * Return the number of global page reservations that must be dropped.
 169 * The return value may only be different than the passed value (delta)
 170 * in the case where a subpool minimum size must be maintained.
 171 */
 172static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 173				       long delta)
 174{
 175	long ret = delta;
 176
 177	if (!spool)
 178		return delta;
 179
 180	spin_lock(&spool->lock);
 181
 182	if (spool->max_hpages != -1)		/* maximum size accounting */
 183		spool->used_hpages -= delta;
 184
 185	if (spool->min_hpages != -1) {		/* minimum size accounting */
 
 186		if (spool->rsv_hpages + delta <= spool->min_hpages)
 187			ret = 0;
 188		else
 189			ret = spool->rsv_hpages + delta - spool->min_hpages;
 190
 191		spool->rsv_hpages += delta;
 192		if (spool->rsv_hpages > spool->min_hpages)
 193			spool->rsv_hpages = spool->min_hpages;
 194	}
 195
 196	/*
 197	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
 198	 * quota reference, free it now.
 199	 */
 200	unlock_or_release_subpool(spool);
 201
 202	return ret;
 203}
 204
 205static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 206{
 207	return HUGETLBFS_SB(inode->i_sb)->spool;
 208}
 209
 210static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 211{
 212	return subpool_inode(file_inode(vma->vm_file));
 213}
 214
 215/*
 216 * Region tracking -- allows tracking of reservations and instantiated pages
 217 *                    across the pages in a mapping.
 218 *
 219 * The region data structures are embedded into a resv_map and protected
 220 * by a resv_map's lock.  The set of regions within the resv_map represent
 221 * reservations for huge pages, or huge pages that have already been
 222 * instantiated within the map.  The from and to elements are huge page
 223 * indicies into the associated mapping.  from indicates the starting index
 224 * of the region.  to represents the first index past the end of  the region.
 225 *
 226 * For example, a file region structure with from == 0 and to == 4 represents
 227 * four huge pages in a mapping.  It is important to note that the to element
 228 * represents the first element past the end of the region. This is used in
 229 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 230 *
 231 * Interval notation of the form [from, to) will be used to indicate that
 232 * the endpoint from is inclusive and to is exclusive.
 233 */
 234struct file_region {
 235	struct list_head link;
 236	long from;
 237	long to;
 238};
 239
 240/*
 241 * Add the huge page range represented by [f, t) to the reserve
 242 * map.  In the normal case, existing regions will be expanded
 243 * to accommodate the specified range.  Sufficient regions should
 244 * exist for expansion due to the previous call to region_chg
 245 * with the same range.  However, it is possible that region_del
 246 * could have been called after region_chg and modifed the map
 247 * in such a way that no region exists to be expanded.  In this
 248 * case, pull a region descriptor from the cache associated with
 249 * the map and use that for the new range.
 250 *
 251 * Return the number of new huge pages added to the map.  This
 252 * number is greater than or equal to zero.
 253 */
 254static long region_add(struct resv_map *resv, long f, long t)
 255{
 256	struct list_head *head = &resv->regions;
 257	struct file_region *rg, *nrg, *trg;
 258	long add = 0;
 259
 260	spin_lock(&resv->lock);
 261	/* Locate the region we are either in or before. */
 262	list_for_each_entry(rg, head, link)
 263		if (f <= rg->to)
 264			break;
 265
 266	/*
 267	 * If no region exists which can be expanded to include the
 268	 * specified range, the list must have been modified by an
 269	 * interleving call to region_del().  Pull a region descriptor
 270	 * from the cache and use it for this range.
 271	 */
 272	if (&rg->link == head || t < rg->from) {
 273		VM_BUG_ON(resv->region_cache_count <= 0);
 274
 275		resv->region_cache_count--;
 276		nrg = list_first_entry(&resv->region_cache, struct file_region,
 277					link);
 278		list_del(&nrg->link);
 279
 280		nrg->from = f;
 281		nrg->to = t;
 282		list_add(&nrg->link, rg->link.prev);
 283
 284		add += t - f;
 285		goto out_locked;
 286	}
 287
 288	/* Round our left edge to the current segment if it encloses us. */
 289	if (f > rg->from)
 290		f = rg->from;
 291
 292	/* Check for and consume any regions we now overlap with. */
 293	nrg = rg;
 294	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 295		if (&rg->link == head)
 296			break;
 297		if (rg->from > t)
 298			break;
 299
 300		/* If this area reaches higher then extend our area to
 301		 * include it completely.  If this is not the first area
 302		 * which we intend to reuse, free it. */
 303		if (rg->to > t)
 304			t = rg->to;
 305		if (rg != nrg) {
 306			/* Decrement return value by the deleted range.
 307			 * Another range will span this area so that by
 308			 * end of routine add will be >= zero
 309			 */
 310			add -= (rg->to - rg->from);
 311			list_del(&rg->link);
 312			kfree(rg);
 313		}
 314	}
 315
 316	add += (nrg->from - f);		/* Added to beginning of region */
 317	nrg->from = f;
 318	add += t - nrg->to;		/* Added to end of region */
 319	nrg->to = t;
 320
 321out_locked:
 322	resv->adds_in_progress--;
 323	spin_unlock(&resv->lock);
 324	VM_BUG_ON(add < 0);
 325	return add;
 326}
 327
 328/*
 329 * Examine the existing reserve map and determine how many
 330 * huge pages in the specified range [f, t) are NOT currently
 331 * represented.  This routine is called before a subsequent
 332 * call to region_add that will actually modify the reserve
 333 * map to add the specified range [f, t).  region_chg does
 334 * not change the number of huge pages represented by the
 335 * map.  However, if the existing regions in the map can not
 336 * be expanded to represent the new range, a new file_region
 337 * structure is added to the map as a placeholder.  This is
 338 * so that the subsequent region_add call will have all the
 339 * regions it needs and will not fail.
 340 *
 341 * Upon entry, region_chg will also examine the cache of region descriptors
 342 * associated with the map.  If there are not enough descriptors cached, one
 343 * will be allocated for the in progress add operation.
 344 *
 345 * Returns the number of huge pages that need to be added to the existing
 346 * reservation map for the range [f, t).  This number is greater or equal to
 347 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 348 * is needed and can not be allocated.
 349 */
 350static long region_chg(struct resv_map *resv, long f, long t)
 351{
 352	struct list_head *head = &resv->regions;
 353	struct file_region *rg, *nrg = NULL;
 354	long chg = 0;
 355
 356retry:
 357	spin_lock(&resv->lock);
 358retry_locked:
 359	resv->adds_in_progress++;
 360
 361	/*
 362	 * Check for sufficient descriptors in the cache to accommodate
 363	 * the number of in progress add operations.
 364	 */
 365	if (resv->adds_in_progress > resv->region_cache_count) {
 366		struct file_region *trg;
 367
 368		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
 369		/* Must drop lock to allocate a new descriptor. */
 370		resv->adds_in_progress--;
 371		spin_unlock(&resv->lock);
 372
 373		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 374		if (!trg) {
 375			kfree(nrg);
 376			return -ENOMEM;
 377		}
 378
 379		spin_lock(&resv->lock);
 380		list_add(&trg->link, &resv->region_cache);
 381		resv->region_cache_count++;
 382		goto retry_locked;
 383	}
 384
 385	/* Locate the region we are before or in. */
 386	list_for_each_entry(rg, head, link)
 387		if (f <= rg->to)
 388			break;
 389
 390	/* If we are below the current region then a new region is required.
 391	 * Subtle, allocate a new region at the position but make it zero
 392	 * size such that we can guarantee to record the reservation. */
 393	if (&rg->link == head || t < rg->from) {
 394		if (!nrg) {
 395			resv->adds_in_progress--;
 396			spin_unlock(&resv->lock);
 397			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 398			if (!nrg)
 399				return -ENOMEM;
 400
 401			nrg->from = f;
 402			nrg->to   = f;
 403			INIT_LIST_HEAD(&nrg->link);
 404			goto retry;
 405		}
 406
 407		list_add(&nrg->link, rg->link.prev);
 408		chg = t - f;
 409		goto out_nrg;
 410	}
 411
 412	/* Round our left edge to the current segment if it encloses us. */
 413	if (f > rg->from)
 414		f = rg->from;
 415	chg = t - f;
 416
 417	/* Check for and consume any regions we now overlap with. */
 418	list_for_each_entry(rg, rg->link.prev, link) {
 419		if (&rg->link == head)
 420			break;
 421		if (rg->from > t)
 422			goto out;
 423
 424		/* We overlap with this area, if it extends further than
 425		 * us then we must extend ourselves.  Account for its
 426		 * existing reservation. */
 427		if (rg->to > t) {
 428			chg += rg->to - t;
 429			t = rg->to;
 430		}
 431		chg -= rg->to - rg->from;
 432	}
 433
 434out:
 435	spin_unlock(&resv->lock);
 436	/*  We already know we raced and no longer need the new region */
 437	kfree(nrg);
 438	return chg;
 439out_nrg:
 440	spin_unlock(&resv->lock);
 441	return chg;
 442}
 443
 444/*
 445 * Abort the in progress add operation.  The adds_in_progress field
 446 * of the resv_map keeps track of the operations in progress between
 447 * calls to region_chg and region_add.  Operations are sometimes
 448 * aborted after the call to region_chg.  In such cases, region_abort
 449 * is called to decrement the adds_in_progress counter.
 450 *
 451 * NOTE: The range arguments [f, t) are not needed or used in this
 452 * routine.  They are kept to make reading the calling code easier as
 453 * arguments will match the associated region_chg call.
 454 */
 455static void region_abort(struct resv_map *resv, long f, long t)
 456{
 457	spin_lock(&resv->lock);
 458	VM_BUG_ON(!resv->region_cache_count);
 459	resv->adds_in_progress--;
 460	spin_unlock(&resv->lock);
 461}
 462
 463/*
 464 * Delete the specified range [f, t) from the reserve map.  If the
 465 * t parameter is LONG_MAX, this indicates that ALL regions after f
 466 * should be deleted.  Locate the regions which intersect [f, t)
 467 * and either trim, delete or split the existing regions.
 468 *
 469 * Returns the number of huge pages deleted from the reserve map.
 470 * In the normal case, the return value is zero or more.  In the
 471 * case where a region must be split, a new region descriptor must
 472 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 473 * NOTE: If the parameter t == LONG_MAX, then we will never split
 474 * a region and possibly return -ENOMEM.  Callers specifying
 475 * t == LONG_MAX do not need to check for -ENOMEM error.
 476 */
 477static long region_del(struct resv_map *resv, long f, long t)
 478{
 479	struct list_head *head = &resv->regions;
 480	struct file_region *rg, *trg;
 481	struct file_region *nrg = NULL;
 482	long del = 0;
 483
 484retry:
 485	spin_lock(&resv->lock);
 486	list_for_each_entry_safe(rg, trg, head, link) {
 487		/*
 488		 * Skip regions before the range to be deleted.  file_region
 489		 * ranges are normally of the form [from, to).  However, there
 490		 * may be a "placeholder" entry in the map which is of the form
 491		 * (from, to) with from == to.  Check for placeholder entries
 492		 * at the beginning of the range to be deleted.
 493		 */
 494		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 495			continue;
 496
 497		if (rg->from >= t)
 498			break;
 499
 500		if (f > rg->from && t < rg->to) { /* Must split region */
 501			/*
 502			 * Check for an entry in the cache before dropping
 503			 * lock and attempting allocation.
 504			 */
 505			if (!nrg &&
 506			    resv->region_cache_count > resv->adds_in_progress) {
 507				nrg = list_first_entry(&resv->region_cache,
 508							struct file_region,
 509							link);
 510				list_del(&nrg->link);
 511				resv->region_cache_count--;
 512			}
 513
 514			if (!nrg) {
 515				spin_unlock(&resv->lock);
 516				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 517				if (!nrg)
 518					return -ENOMEM;
 519				goto retry;
 520			}
 521
 522			del += t - f;
 523
 524			/* New entry for end of split region */
 525			nrg->from = t;
 526			nrg->to = rg->to;
 527			INIT_LIST_HEAD(&nrg->link);
 528
 529			/* Original entry is trimmed */
 530			rg->to = f;
 531
 532			list_add(&nrg->link, &rg->link);
 533			nrg = NULL;
 534			break;
 535		}
 536
 537		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 538			del += rg->to - rg->from;
 539			list_del(&rg->link);
 540			kfree(rg);
 541			continue;
 542		}
 543
 544		if (f <= rg->from) {	/* Trim beginning of region */
 545			del += t - rg->from;
 546			rg->from = t;
 547		} else {		/* Trim end of region */
 548			del += rg->to - f;
 549			rg->to = f;
 550		}
 551	}
 552
 553	spin_unlock(&resv->lock);
 554	kfree(nrg);
 555	return del;
 556}
 557
 558/*
 559 * A rare out of memory error was encountered which prevented removal of
 560 * the reserve map region for a page.  The huge page itself was free'ed
 561 * and removed from the page cache.  This routine will adjust the subpool
 562 * usage count, and the global reserve count if needed.  By incrementing
 563 * these counts, the reserve map entry which could not be deleted will
 564 * appear as a "reserved" entry instead of simply dangling with incorrect
 565 * counts.
 566 */
 567void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
 568{
 569	struct hugepage_subpool *spool = subpool_inode(inode);
 570	long rsv_adjust;
 571
 572	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 573	if (restore_reserve && rsv_adjust) {
 574		struct hstate *h = hstate_inode(inode);
 575
 576		hugetlb_acct_memory(h, 1);
 577	}
 578}
 579
 580/*
 581 * Count and return the number of huge pages in the reserve map
 582 * that intersect with the range [f, t).
 583 */
 584static long region_count(struct resv_map *resv, long f, long t)
 585{
 586	struct list_head *head = &resv->regions;
 587	struct file_region *rg;
 588	long chg = 0;
 589
 590	spin_lock(&resv->lock);
 591	/* Locate each segment we overlap with, and count that overlap. */
 592	list_for_each_entry(rg, head, link) {
 593		long seg_from;
 594		long seg_to;
 595
 596		if (rg->to <= f)
 597			continue;
 598		if (rg->from >= t)
 599			break;
 600
 601		seg_from = max(rg->from, f);
 602		seg_to = min(rg->to, t);
 603
 604		chg += seg_to - seg_from;
 605	}
 606	spin_unlock(&resv->lock);
 607
 608	return chg;
 609}
 610
 611/*
 612 * Convert the address within this vma to the page offset within
 613 * the mapping, in pagecache page units; huge pages here.
 614 */
 615static pgoff_t vma_hugecache_offset(struct hstate *h,
 616			struct vm_area_struct *vma, unsigned long address)
 617{
 618	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 619			(vma->vm_pgoff >> huge_page_order(h));
 620}
 621
 622pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 623				     unsigned long address)
 624{
 625	return vma_hugecache_offset(hstate_vma(vma), vma, address);
 626}
 
 627
 628/*
 629 * Return the size of the pages allocated when backing a VMA. In the majority
 630 * cases this will be same size as used by the page table entries.
 631 */
 632unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 633{
 634	struct hstate *hstate;
 635
 636	if (!is_vm_hugetlb_page(vma))
 637		return PAGE_SIZE;
 638
 639	hstate = hstate_vma(vma);
 640
 641	return 1UL << huge_page_shift(hstate);
 642}
 643EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 644
 645/*
 646 * Return the page size being used by the MMU to back a VMA. In the majority
 647 * of cases, the page size used by the kernel matches the MMU size. On
 648 * architectures where it differs, an architecture-specific version of this
 649 * function is required.
 650 */
 651#ifndef vma_mmu_pagesize
 652unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 653{
 654	return vma_kernel_pagesize(vma);
 655}
 656#endif
 657
 658/*
 659 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 660 * bits of the reservation map pointer, which are always clear due to
 661 * alignment.
 662 */
 663#define HPAGE_RESV_OWNER    (1UL << 0)
 664#define HPAGE_RESV_UNMAPPED (1UL << 1)
 665#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 666
 667/*
 668 * These helpers are used to track how many pages are reserved for
 669 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 670 * is guaranteed to have their future faults succeed.
 671 *
 672 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 673 * the reserve counters are updated with the hugetlb_lock held. It is safe
 674 * to reset the VMA at fork() time as it is not in use yet and there is no
 675 * chance of the global counters getting corrupted as a result of the values.
 676 *
 677 * The private mapping reservation is represented in a subtly different
 678 * manner to a shared mapping.  A shared mapping has a region map associated
 679 * with the underlying file, this region map represents the backing file
 680 * pages which have ever had a reservation assigned which this persists even
 681 * after the page is instantiated.  A private mapping has a region map
 682 * associated with the original mmap which is attached to all VMAs which
 683 * reference it, this region map represents those offsets which have consumed
 684 * reservation ie. where pages have been instantiated.
 685 */
 686static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 687{
 688	return (unsigned long)vma->vm_private_data;
 689}
 690
 691static void set_vma_private_data(struct vm_area_struct *vma,
 692							unsigned long value)
 693{
 694	vma->vm_private_data = (void *)value;
 695}
 696
 697struct resv_map *resv_map_alloc(void)
 698{
 699	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 700	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 701
 702	if (!resv_map || !rg) {
 703		kfree(resv_map);
 704		kfree(rg);
 705		return NULL;
 706	}
 707
 708	kref_init(&resv_map->refs);
 709	spin_lock_init(&resv_map->lock);
 710	INIT_LIST_HEAD(&resv_map->regions);
 711
 712	resv_map->adds_in_progress = 0;
 713
 714	INIT_LIST_HEAD(&resv_map->region_cache);
 715	list_add(&rg->link, &resv_map->region_cache);
 716	resv_map->region_cache_count = 1;
 717
 718	return resv_map;
 719}
 720
 721void resv_map_release(struct kref *ref)
 722{
 723	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 724	struct list_head *head = &resv_map->region_cache;
 725	struct file_region *rg, *trg;
 726
 727	/* Clear out any active regions before we release the map. */
 728	region_del(resv_map, 0, LONG_MAX);
 729
 730	/* ... and any entries left in the cache */
 731	list_for_each_entry_safe(rg, trg, head, link) {
 732		list_del(&rg->link);
 733		kfree(rg);
 734	}
 735
 736	VM_BUG_ON(resv_map->adds_in_progress);
 737
 738	kfree(resv_map);
 739}
 740
 741static inline struct resv_map *inode_resv_map(struct inode *inode)
 742{
 743	return inode->i_mapping->private_data;
 744}
 745
 746static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 747{
 748	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 749	if (vma->vm_flags & VM_MAYSHARE) {
 750		struct address_space *mapping = vma->vm_file->f_mapping;
 751		struct inode *inode = mapping->host;
 752
 753		return inode_resv_map(inode);
 754
 755	} else {
 756		return (struct resv_map *)(get_vma_private_data(vma) &
 757							~HPAGE_RESV_MASK);
 758	}
 759}
 760
 761static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 762{
 763	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 764	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 765
 766	set_vma_private_data(vma, (get_vma_private_data(vma) &
 767				HPAGE_RESV_MASK) | (unsigned long)map);
 768}
 769
 770static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 771{
 772	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 773	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 774
 775	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 776}
 777
 778static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 779{
 780	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 781
 782	return (get_vma_private_data(vma) & flag) != 0;
 783}
 784
 785/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 786void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 787{
 788	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 789	if (!(vma->vm_flags & VM_MAYSHARE))
 790		vma->vm_private_data = (void *)0;
 791}
 792
 793/* Returns true if the VMA has associated reserve pages */
 794static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 795{
 796	if (vma->vm_flags & VM_NORESERVE) {
 797		/*
 798		 * This address is already reserved by other process(chg == 0),
 799		 * so, we should decrement reserved count. Without decrementing,
 800		 * reserve count remains after releasing inode, because this
 801		 * allocated page will go into page cache and is regarded as
 802		 * coming from reserved pool in releasing step.  Currently, we
 803		 * don't have any other solution to deal with this situation
 804		 * properly, so add work-around here.
 805		 */
 806		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 807			return true;
 808		else
 809			return false;
 810	}
 811
 812	/* Shared mappings always use reserves */
 813	if (vma->vm_flags & VM_MAYSHARE) {
 814		/*
 815		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 816		 * be a region map for all pages.  The only situation where
 817		 * there is no region map is if a hole was punched via
 818		 * fallocate.  In this case, there really are no reverves to
 819		 * use.  This situation is indicated if chg != 0.
 820		 */
 821		if (chg)
 822			return false;
 823		else
 824			return true;
 825	}
 826
 827	/*
 828	 * Only the process that called mmap() has reserves for
 829	 * private mappings.
 830	 */
 831	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 832		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833
 834	return false;
 835}
 836
 837static void enqueue_huge_page(struct hstate *h, struct page *page)
 838{
 839	int nid = page_to_nid(page);
 840	list_move(&page->lru, &h->hugepage_freelists[nid]);
 841	h->free_huge_pages++;
 842	h->free_huge_pages_node[nid]++;
 843}
 844
 845static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
 846{
 847	struct page *page;
 848
 849	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 850		if (!is_migrate_isolate_page(page))
 851			break;
 852	/*
 853	 * if 'non-isolated free hugepage' not found on the list,
 854	 * the allocation fails.
 855	 */
 856	if (&h->hugepage_freelists[nid] == &page->lru)
 857		return NULL;
 858	list_move(&page->lru, &h->hugepage_activelist);
 859	set_page_refcounted(page);
 860	h->free_huge_pages--;
 861	h->free_huge_pages_node[nid]--;
 862	return page;
 863}
 864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865/* Movability of hugepages depends on migration support. */
 866static inline gfp_t htlb_alloc_mask(struct hstate *h)
 867{
 868	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
 869		return GFP_HIGHUSER_MOVABLE;
 870	else
 871		return GFP_HIGHUSER;
 872}
 873
 874static struct page *dequeue_huge_page_vma(struct hstate *h,
 875				struct vm_area_struct *vma,
 876				unsigned long address, int avoid_reserve,
 877				long chg)
 878{
 879	struct page *page = NULL;
 880	struct mempolicy *mpol;
 
 881	nodemask_t *nodemask;
 882	struct zonelist *zonelist;
 883	struct zone *zone;
 884	struct zoneref *z;
 885	unsigned int cpuset_mems_cookie;
 886
 887	/*
 888	 * A child process with MAP_PRIVATE mappings created by their parent
 889	 * have no page reserves. This check ensures that reservations are
 890	 * not "stolen". The child may still get SIGKILLed
 891	 */
 892	if (!vma_has_reserves(vma, chg) &&
 893			h->free_huge_pages - h->resv_huge_pages == 0)
 894		goto err;
 895
 896	/* If reserves cannot be used, ensure enough pages are in the pool */
 897	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 898		goto err;
 899
 900retry_cpuset:
 901	cpuset_mems_cookie = read_mems_allowed_begin();
 902	zonelist = huge_zonelist(vma, address,
 903					htlb_alloc_mask(h), &mpol, &nodemask);
 904
 905	for_each_zone_zonelist_nodemask(zone, z, zonelist,
 906						MAX_NR_ZONES - 1, nodemask) {
 907		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
 908			page = dequeue_huge_page_node(h, zone_to_nid(zone));
 909			if (page) {
 910				if (avoid_reserve)
 911					break;
 912				if (!vma_has_reserves(vma, chg))
 913					break;
 914
 915				SetPagePrivate(page);
 916				h->resv_huge_pages--;
 917				break;
 918			}
 919		}
 920	}
 921
 922	mpol_cond_put(mpol);
 923	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
 924		goto retry_cpuset;
 925	return page;
 926
 927err:
 928	return NULL;
 929}
 930
 931/*
 932 * common helper functions for hstate_next_node_to_{alloc|free}.
 933 * We may have allocated or freed a huge page based on a different
 934 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 935 * be outside of *nodes_allowed.  Ensure that we use an allowed
 936 * node for alloc or free.
 937 */
 938static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 939{
 940	nid = next_node(nid, *nodes_allowed);
 941	if (nid == MAX_NUMNODES)
 942		nid = first_node(*nodes_allowed);
 943	VM_BUG_ON(nid >= MAX_NUMNODES);
 944
 945	return nid;
 946}
 947
 948static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 949{
 950	if (!node_isset(nid, *nodes_allowed))
 951		nid = next_node_allowed(nid, nodes_allowed);
 952	return nid;
 953}
 954
 955/*
 956 * returns the previously saved node ["this node"] from which to
 957 * allocate a persistent huge page for the pool and advance the
 958 * next node from which to allocate, handling wrap at end of node
 959 * mask.
 960 */
 961static int hstate_next_node_to_alloc(struct hstate *h,
 962					nodemask_t *nodes_allowed)
 963{
 964	int nid;
 965
 966	VM_BUG_ON(!nodes_allowed);
 967
 968	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
 969	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
 970
 971	return nid;
 972}
 973
 974/*
 975 * helper for free_pool_huge_page() - return the previously saved
 976 * node ["this node"] from which to free a huge page.  Advance the
 977 * next node id whether or not we find a free huge page to free so
 978 * that the next attempt to free addresses the next node.
 979 */
 980static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
 981{
 982	int nid;
 983
 984	VM_BUG_ON(!nodes_allowed);
 985
 986	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
 987	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
 988
 989	return nid;
 990}
 991
 992#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
 993	for (nr_nodes = nodes_weight(*mask);				\
 994		nr_nodes > 0 &&						\
 995		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
 996		nr_nodes--)
 997
 998#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
 999	for (nr_nodes = nodes_weight(*mask);				\
1000		nr_nodes > 0 &&						\
1001		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1002		nr_nodes--)
1003
1004#if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
1005static void destroy_compound_gigantic_page(struct page *page,
1006					unsigned int order)
1007{
1008	int i;
1009	int nr_pages = 1 << order;
1010	struct page *p = page + 1;
1011
 
1012	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1013		clear_compound_head(p);
1014		set_page_refcounted(p);
1015	}
1016
1017	set_compound_order(page, 0);
1018	__ClearPageHead(page);
1019}
1020
1021static void free_gigantic_page(struct page *page, unsigned int order)
1022{
1023	free_contig_range(page_to_pfn(page), 1 << order);
1024}
1025
1026static int __alloc_gigantic_page(unsigned long start_pfn,
1027				unsigned long nr_pages)
1028{
1029	unsigned long end_pfn = start_pfn + nr_pages;
1030	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
 
1031}
1032
1033static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1034				unsigned long nr_pages)
1035{
1036	unsigned long i, end_pfn = start_pfn + nr_pages;
1037	struct page *page;
1038
1039	for (i = start_pfn; i < end_pfn; i++) {
1040		if (!pfn_valid(i))
1041			return false;
1042
1043		page = pfn_to_page(i);
1044
 
 
 
1045		if (PageReserved(page))
1046			return false;
1047
1048		if (page_count(page) > 0)
1049			return false;
1050
1051		if (PageHuge(page))
1052			return false;
1053	}
1054
1055	return true;
1056}
1057
1058static bool zone_spans_last_pfn(const struct zone *zone,
1059			unsigned long start_pfn, unsigned long nr_pages)
1060{
1061	unsigned long last_pfn = start_pfn + nr_pages - 1;
1062	return zone_spans_pfn(zone, last_pfn);
1063}
1064
1065static struct page *alloc_gigantic_page(int nid, unsigned int order)
 
1066{
 
1067	unsigned long nr_pages = 1 << order;
1068	unsigned long ret, pfn, flags;
1069	struct zone *z;
 
 
1070
1071	z = NODE_DATA(nid)->node_zones;
1072	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1073		spin_lock_irqsave(&z->lock, flags);
1074
1075		pfn = ALIGN(z->zone_start_pfn, nr_pages);
1076		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1077			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1078				/*
1079				 * We release the zone lock here because
1080				 * alloc_contig_range() will also lock the zone
1081				 * at some point. If there's an allocation
1082				 * spinning on this lock, it may win the race
1083				 * and cause alloc_contig_range() to fail...
1084				 */
1085				spin_unlock_irqrestore(&z->lock, flags);
1086				ret = __alloc_gigantic_page(pfn, nr_pages);
1087				if (!ret)
1088					return pfn_to_page(pfn);
1089				spin_lock_irqsave(&z->lock, flags);
1090			}
1091			pfn += nr_pages;
1092		}
1093
1094		spin_unlock_irqrestore(&z->lock, flags);
1095	}
1096
1097	return NULL;
1098}
1099
1100static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1101static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1102
1103static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1104{
1105	struct page *page;
1106
1107	page = alloc_gigantic_page(nid, huge_page_order(h));
1108	if (page) {
1109		prep_compound_gigantic_page(page, huge_page_order(h));
1110		prep_new_huge_page(h, page, nid);
1111	}
1112
1113	return page;
1114}
1115
1116static int alloc_fresh_gigantic_page(struct hstate *h,
1117				nodemask_t *nodes_allowed)
1118{
1119	struct page *page = NULL;
1120	int nr_nodes, node;
1121
1122	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1123		page = alloc_fresh_gigantic_page_node(h, node);
1124		if (page)
1125			return 1;
1126	}
1127
1128	return 0;
1129}
1130
1131static inline bool gigantic_page_supported(void) { return true; }
1132#else
1133static inline bool gigantic_page_supported(void) { return false; }
 
 
1134static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1135static inline void destroy_compound_gigantic_page(struct page *page,
1136						unsigned int order) { }
1137static inline int alloc_fresh_gigantic_page(struct hstate *h,
1138					nodemask_t *nodes_allowed) { return 0; }
1139#endif
1140
1141static void update_and_free_page(struct hstate *h, struct page *page)
1142{
1143	int i;
1144
1145	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1146		return;
1147
1148	h->nr_huge_pages--;
1149	h->nr_huge_pages_node[page_to_nid(page)]--;
1150	for (i = 0; i < pages_per_huge_page(h); i++) {
1151		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1152				1 << PG_referenced | 1 << PG_dirty |
1153				1 << PG_active | 1 << PG_private |
1154				1 << PG_writeback);
1155	}
1156	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1157	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1158	set_page_refcounted(page);
1159	if (hstate_is_gigantic(h)) {
1160		destroy_compound_gigantic_page(page, huge_page_order(h));
1161		free_gigantic_page(page, huge_page_order(h));
1162	} else {
1163		__free_pages(page, huge_page_order(h));
1164	}
1165}
1166
1167struct hstate *size_to_hstate(unsigned long size)
1168{
1169	struct hstate *h;
1170
1171	for_each_hstate(h) {
1172		if (huge_page_size(h) == size)
1173			return h;
1174	}
1175	return NULL;
1176}
1177
1178/*
1179 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1180 * to hstate->hugepage_activelist.)
1181 *
1182 * This function can be called for tail pages, but never returns true for them.
1183 */
1184bool page_huge_active(struct page *page)
1185{
1186	VM_BUG_ON_PAGE(!PageHuge(page), page);
1187	return PageHead(page) && PagePrivate(&page[1]);
1188}
1189
1190/* never called for tail page */
1191static void set_page_huge_active(struct page *page)
1192{
1193	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1194	SetPagePrivate(&page[1]);
1195}
1196
1197static void clear_page_huge_active(struct page *page)
1198{
1199	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1200	ClearPagePrivate(&page[1]);
1201}
1202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203void free_huge_page(struct page *page)
1204{
1205	/*
1206	 * Can't pass hstate in here because it is called from the
1207	 * compound page destructor.
1208	 */
1209	struct hstate *h = page_hstate(page);
1210	int nid = page_to_nid(page);
1211	struct hugepage_subpool *spool =
1212		(struct hugepage_subpool *)page_private(page);
1213	bool restore_reserve;
1214
1215	set_page_private(page, 0);
1216	page->mapping = NULL;
1217	VM_BUG_ON_PAGE(page_count(page), page);
1218	VM_BUG_ON_PAGE(page_mapcount(page), page);
1219	restore_reserve = PagePrivate(page);
1220	ClearPagePrivate(page);
1221
1222	/*
1223	 * A return code of zero implies that the subpool will be under its
1224	 * minimum size if the reservation is not restored after page is free.
1225	 * Therefore, force restore_reserve operation.
1226	 */
1227	if (hugepage_subpool_put_pages(spool, 1) == 0)
1228		restore_reserve = true;
1229
1230	spin_lock(&hugetlb_lock);
1231	clear_page_huge_active(page);
1232	hugetlb_cgroup_uncharge_page(hstate_index(h),
1233				     pages_per_huge_page(h), page);
1234	if (restore_reserve)
1235		h->resv_huge_pages++;
1236
1237	if (h->surplus_huge_pages_node[nid]) {
 
 
 
 
1238		/* remove the page from active list */
1239		list_del(&page->lru);
1240		update_and_free_page(h, page);
1241		h->surplus_huge_pages--;
1242		h->surplus_huge_pages_node[nid]--;
1243	} else {
1244		arch_clear_hugepage_flags(page);
1245		enqueue_huge_page(h, page);
1246	}
1247	spin_unlock(&hugetlb_lock);
1248}
1249
1250static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1251{
1252	INIT_LIST_HEAD(&page->lru);
1253	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1254	spin_lock(&hugetlb_lock);
1255	set_hugetlb_cgroup(page, NULL);
1256	h->nr_huge_pages++;
1257	h->nr_huge_pages_node[nid]++;
1258	spin_unlock(&hugetlb_lock);
1259	put_page(page); /* free it into the hugepage allocator */
1260}
1261
1262static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1263{
1264	int i;
1265	int nr_pages = 1 << order;
1266	struct page *p = page + 1;
1267
1268	/* we rely on prep_new_huge_page to set the destructor */
1269	set_compound_order(page, order);
1270	__ClearPageReserved(page);
1271	__SetPageHead(page);
1272	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1273		/*
1274		 * For gigantic hugepages allocated through bootmem at
1275		 * boot, it's safer to be consistent with the not-gigantic
1276		 * hugepages and clear the PG_reserved bit from all tail pages
1277		 * too.  Otherwse drivers using get_user_pages() to access tail
1278		 * pages may get the reference counting wrong if they see
1279		 * PG_reserved set on a tail page (despite the head page not
1280		 * having PG_reserved set).  Enforcing this consistency between
1281		 * head and tail pages allows drivers to optimize away a check
1282		 * on the head page when they need know if put_page() is needed
1283		 * after get_user_pages().
1284		 */
1285		__ClearPageReserved(p);
1286		set_page_count(p, 0);
1287		set_compound_head(p, page);
1288	}
1289	atomic_set(compound_mapcount_ptr(page), -1);
1290}
1291
1292/*
1293 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1294 * transparent huge pages.  See the PageTransHuge() documentation for more
1295 * details.
1296 */
1297int PageHuge(struct page *page)
1298{
1299	if (!PageCompound(page))
1300		return 0;
1301
1302	page = compound_head(page);
1303	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1304}
1305EXPORT_SYMBOL_GPL(PageHuge);
1306
1307/*
1308 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1309 * normal or transparent huge pages.
1310 */
1311int PageHeadHuge(struct page *page_head)
1312{
1313	if (!PageHead(page_head))
1314		return 0;
1315
1316	return get_compound_page_dtor(page_head) == free_huge_page;
1317}
1318
1319pgoff_t __basepage_index(struct page *page)
1320{
1321	struct page *page_head = compound_head(page);
1322	pgoff_t index = page_index(page_head);
1323	unsigned long compound_idx;
1324
1325	if (!PageHuge(page_head))
1326		return page_index(page);
1327
1328	if (compound_order(page_head) >= MAX_ORDER)
1329		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1330	else
1331		compound_idx = page - page_head;
1332
1333	return (index << compound_order(page_head)) + compound_idx;
1334}
1335
1336static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
 
1337{
 
1338	struct page *page;
1339
1340	page = __alloc_pages_node(nid,
1341		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1342						__GFP_REPEAT|__GFP_NOWARN,
1343		huge_page_order(h));
1344	if (page) {
1345		prep_new_huge_page(h, page, nid);
1346	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1347
1348	return page;
1349}
1350
1351static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
 
 
 
 
1352{
1353	struct page *page;
1354	int nr_nodes, node;
1355	int ret = 0;
1356
1357	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1358		page = alloc_fresh_huge_page_node(h, node);
1359		if (page) {
1360			ret = 1;
1361			break;
1362		}
1363	}
1364
1365	if (ret)
1366		count_vm_event(HTLB_BUDDY_PGALLOC);
1367	else
1368		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1369
1370	return ret;
1371}
1372
1373/*
1374 * Free huge page from pool from next node to free.
1375 * Attempt to keep persistent huge pages more or less
1376 * balanced over allowed nodes.
1377 * Called with hugetlb_lock locked.
1378 */
1379static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1380							 bool acct_surplus)
1381{
1382	int nr_nodes, node;
1383	int ret = 0;
1384
1385	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1386		/*
1387		 * If we're returning unused surplus pages, only examine
1388		 * nodes with surplus pages.
1389		 */
1390		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1391		    !list_empty(&h->hugepage_freelists[node])) {
1392			struct page *page =
1393				list_entry(h->hugepage_freelists[node].next,
1394					  struct page, lru);
1395			list_del(&page->lru);
1396			h->free_huge_pages--;
1397			h->free_huge_pages_node[node]--;
1398			if (acct_surplus) {
1399				h->surplus_huge_pages--;
1400				h->surplus_huge_pages_node[node]--;
1401			}
1402			update_and_free_page(h, page);
1403			ret = 1;
1404			break;
1405		}
1406	}
1407
1408	return ret;
1409}
1410
1411/*
1412 * Dissolve a given free hugepage into free buddy pages. This function does
1413 * nothing for in-use (including surplus) hugepages.
 
 
1414 */
1415static void dissolve_free_huge_page(struct page *page)
1416{
 
 
1417	spin_lock(&hugetlb_lock);
1418	if (PageHuge(page) && !page_count(page)) {
1419		struct hstate *h = page_hstate(page);
1420		int nid = page_to_nid(page);
1421		list_del(&page->lru);
 
 
 
 
 
 
 
 
 
 
 
 
 
1422		h->free_huge_pages--;
1423		h->free_huge_pages_node[nid]--;
1424		update_and_free_page(h, page);
 
1425	}
 
1426	spin_unlock(&hugetlb_lock);
 
1427}
1428
1429/*
1430 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1431 * make specified memory blocks removable from the system.
1432 * Note that start_pfn should aligned with (minimum) hugepage size.
 
 
 
1433 */
1434void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1435{
1436	unsigned long pfn;
 
 
1437
1438	if (!hugepages_supported())
1439		return;
1440
1441	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1442	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1443		dissolve_free_huge_page(pfn_to_page(pfn));
1444}
1445
1446/*
1447 * There are 3 ways this can get called:
1448 * 1. With vma+addr: we use the VMA's memory policy
1449 * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1450 *    page from any node, and let the buddy allocator itself figure
1451 *    it out.
1452 * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1453 *    strictly from 'nid'
1454 */
1455static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1456		struct vm_area_struct *vma, unsigned long addr, int nid)
1457{
1458	int order = huge_page_order(h);
1459	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1460	unsigned int cpuset_mems_cookie;
1461
1462	/*
1463	 * We need a VMA to get a memory policy.  If we do not
1464	 * have one, we use the 'nid' argument.
1465	 *
1466	 * The mempolicy stuff below has some non-inlined bits
1467	 * and calls ->vm_ops.  That makes it hard to optimize at
1468	 * compile-time, even when NUMA is off and it does
1469	 * nothing.  This helps the compiler optimize it out.
1470	 */
1471	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1472		/*
1473		 * If a specific node is requested, make sure to
1474		 * get memory from there, but only when a node
1475		 * is explicitly specified.
1476		 */
1477		if (nid != NUMA_NO_NODE)
1478			gfp |= __GFP_THISNODE;
1479		/*
1480		 * Make sure to call something that can handle
1481		 * nid=NUMA_NO_NODE
1482		 */
1483		return alloc_pages_node(nid, gfp, order);
1484	}
1485
1486	/*
1487	 * OK, so we have a VMA.  Fetch the mempolicy and try to
1488	 * allocate a huge page with it.  We will only reach this
1489	 * when CONFIG_NUMA=y.
1490	 */
1491	do {
1492		struct page *page;
1493		struct mempolicy *mpol;
1494		struct zonelist *zl;
1495		nodemask_t *nodemask;
1496
1497		cpuset_mems_cookie = read_mems_allowed_begin();
1498		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1499		mpol_cond_put(mpol);
1500		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1501		if (page)
1502			return page;
1503	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1504
1505	return NULL;
1506}
1507
1508/*
1509 * There are two ways to allocate a huge page:
1510 * 1. When you have a VMA and an address (like a fault)
1511 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1512 *
1513 * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1514 * this case which signifies that the allocation should be done with
1515 * respect for the VMA's memory policy.
1516 *
1517 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1518 * implies that memory policies will not be taken in to account.
1519 */
1520static struct page *__alloc_buddy_huge_page(struct hstate *h,
1521		struct vm_area_struct *vma, unsigned long addr, int nid)
1522{
1523	struct page *page;
1524	unsigned int r_nid;
1525
1526	if (hstate_is_gigantic(h))
1527		return NULL;
1528
 
 
 
 
 
 
 
 
 
 
1529	/*
1530	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1531	 * This makes sure the caller is picking _one_ of the modes with which
1532	 * we can call this function, not both.
1533	 */
1534	if (vma || (addr != -1)) {
1535		VM_WARN_ON_ONCE(addr == -1);
1536		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1537	}
1538	/*
1539	 * Assume we will successfully allocate the surplus page to
1540	 * prevent racing processes from causing the surplus to exceed
1541	 * overcommit
1542	 *
1543	 * This however introduces a different race, where a process B
1544	 * tries to grow the static hugepage pool while alloc_pages() is
1545	 * called by process A. B will only examine the per-node
1546	 * counters in determining if surplus huge pages can be
1547	 * converted to normal huge pages in adjust_pool_surplus(). A
1548	 * won't be able to increment the per-node counter, until the
1549	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1550	 * no more huge pages can be converted from surplus to normal
1551	 * state (and doesn't try to convert again). Thus, we have a
1552	 * case where a surplus huge page exists, the pool is grown, and
1553	 * the surplus huge page still exists after, even though it
1554	 * should just have been converted to a normal huge page. This
1555	 * does not leak memory, though, as the hugepage will be freed
1556	 * once it is out of use. It also does not allow the counters to
1557	 * go out of whack in adjust_pool_surplus() as we don't modify
1558	 * the node values until we've gotten the hugepage and only the
1559	 * per-node value is checked there.
1560	 */
1561	spin_lock(&hugetlb_lock);
1562	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1563		spin_unlock(&hugetlb_lock);
1564		return NULL;
 
1565	} else {
1566		h->nr_huge_pages++;
1567		h->surplus_huge_pages++;
 
1568	}
1569	spin_unlock(&hugetlb_lock);
1570
1571	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1572
1573	spin_lock(&hugetlb_lock);
1574	if (page) {
1575		INIT_LIST_HEAD(&page->lru);
1576		r_nid = page_to_nid(page);
1577		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1578		set_hugetlb_cgroup(page, NULL);
1579		/*
1580		 * We incremented the global counters already
1581		 */
1582		h->nr_huge_pages_node[r_nid]++;
1583		h->surplus_huge_pages_node[r_nid]++;
1584		__count_vm_event(HTLB_BUDDY_PGALLOC);
1585	} else {
1586		h->nr_huge_pages--;
1587		h->surplus_huge_pages--;
1588		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1589	}
1590	spin_unlock(&hugetlb_lock);
1591
1592	return page;
1593}
1594
1595/*
1596 * Allocate a huge page from 'nid'.  Note, 'nid' may be
1597 * NUMA_NO_NODE, which means that it may be allocated
1598 * anywhere.
1599 */
1600static
1601struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1602{
1603	unsigned long addr = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
1604
1605	return __alloc_buddy_huge_page(h, NULL, addr, nid);
1606}
1607
1608/*
1609 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1610 */
1611static
1612struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1613		struct vm_area_struct *vma, unsigned long addr)
1614{
1615	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
 
 
 
 
 
 
 
 
 
 
1616}
1617
1618/*
1619 * This allocation function is useful in the context where vma is irrelevant.
1620 * E.g. soft-offlining uses this function because it only cares physical
1621 * address of error page.
1622 */
1623struct page *alloc_huge_page_node(struct hstate *h, int nid)
1624{
 
1625	struct page *page = NULL;
1626
 
 
 
1627	spin_lock(&hugetlb_lock);
1628	if (h->free_huge_pages - h->resv_huge_pages > 0)
1629		page = dequeue_huge_page_node(h, nid);
1630	spin_unlock(&hugetlb_lock);
1631
1632	if (!page)
1633		page = __alloc_buddy_huge_page_no_mpol(h, nid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1634
1635	return page;
1636}
1637
1638/*
1639 * Increase the hugetlb pool such that it can accommodate a reservation
1640 * of size 'delta'.
1641 */
1642static int gather_surplus_pages(struct hstate *h, int delta)
1643{
1644	struct list_head surplus_list;
1645	struct page *page, *tmp;
1646	int ret, i;
1647	int needed, allocated;
1648	bool alloc_ok = true;
1649
1650	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1651	if (needed <= 0) {
1652		h->resv_huge_pages += delta;
1653		return 0;
1654	}
1655
1656	allocated = 0;
1657	INIT_LIST_HEAD(&surplus_list);
1658
1659	ret = -ENOMEM;
1660retry:
1661	spin_unlock(&hugetlb_lock);
1662	for (i = 0; i < needed; i++) {
1663		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
 
1664		if (!page) {
1665			alloc_ok = false;
1666			break;
1667		}
1668		list_add(&page->lru, &surplus_list);
 
1669	}
1670	allocated += i;
1671
1672	/*
1673	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1674	 * because either resv_huge_pages or free_huge_pages may have changed.
1675	 */
1676	spin_lock(&hugetlb_lock);
1677	needed = (h->resv_huge_pages + delta) -
1678			(h->free_huge_pages + allocated);
1679	if (needed > 0) {
1680		if (alloc_ok)
1681			goto retry;
1682		/*
1683		 * We were not able to allocate enough pages to
1684		 * satisfy the entire reservation so we free what
1685		 * we've allocated so far.
1686		 */
1687		goto free;
1688	}
1689	/*
1690	 * The surplus_list now contains _at_least_ the number of extra pages
1691	 * needed to accommodate the reservation.  Add the appropriate number
1692	 * of pages to the hugetlb pool and free the extras back to the buddy
1693	 * allocator.  Commit the entire reservation here to prevent another
1694	 * process from stealing the pages as they are added to the pool but
1695	 * before they are reserved.
1696	 */
1697	needed += allocated;
1698	h->resv_huge_pages += delta;
1699	ret = 0;
1700
1701	/* Free the needed pages to the hugetlb pool */
1702	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1703		if ((--needed) < 0)
1704			break;
1705		/*
1706		 * This page is now managed by the hugetlb allocator and has
1707		 * no users -- drop the buddy allocator's reference.
1708		 */
1709		put_page_testzero(page);
1710		VM_BUG_ON_PAGE(page_count(page), page);
1711		enqueue_huge_page(h, page);
1712	}
1713free:
1714	spin_unlock(&hugetlb_lock);
1715
1716	/* Free unnecessary surplus pages to the buddy allocator */
1717	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1718		put_page(page);
1719	spin_lock(&hugetlb_lock);
1720
1721	return ret;
1722}
1723
1724/*
1725 * When releasing a hugetlb pool reservation, any surplus pages that were
1726 * allocated to satisfy the reservation must be explicitly freed if they were
1727 * never used.
1728 * Called with hugetlb_lock held.
 
 
 
 
 
 
 
 
1729 */
1730static void return_unused_surplus_pages(struct hstate *h,
1731					unsigned long unused_resv_pages)
1732{
1733	unsigned long nr_pages;
1734
1735	/* Uncommit the reservation */
1736	h->resv_huge_pages -= unused_resv_pages;
1737
1738	/* Cannot return gigantic pages currently */
1739	if (hstate_is_gigantic(h))
1740		return;
1741
 
 
 
 
1742	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1743
1744	/*
1745	 * We want to release as many surplus pages as possible, spread
1746	 * evenly across all nodes with memory. Iterate across these nodes
1747	 * until we can no longer free unreserved surplus pages. This occurs
1748	 * when the nodes with surplus pages have no free pages.
1749	 * free_pool_huge_page() will balance the the freed pages across the
1750	 * on-line nodes with memory and will handle the hstate accounting.
 
 
 
 
1751	 */
1752	while (nr_pages--) {
 
 
1753		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1754			break;
1755		cond_resched_lock(&hugetlb_lock);
1756	}
 
 
 
 
1757}
1758
1759
1760/*
1761 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1762 * are used by the huge page allocation routines to manage reservations.
1763 *
1764 * vma_needs_reservation is called to determine if the huge page at addr
1765 * within the vma has an associated reservation.  If a reservation is
1766 * needed, the value 1 is returned.  The caller is then responsible for
1767 * managing the global reservation and subpool usage counts.  After
1768 * the huge page has been allocated, vma_commit_reservation is called
1769 * to add the page to the reservation map.  If the page allocation fails,
1770 * the reservation must be ended instead of committed.  vma_end_reservation
1771 * is called in such cases.
1772 *
1773 * In the normal case, vma_commit_reservation returns the same value
1774 * as the preceding vma_needs_reservation call.  The only time this
1775 * is not the case is if a reserve map was changed between calls.  It
1776 * is the responsibility of the caller to notice the difference and
1777 * take appropriate action.
 
 
 
 
 
1778 */
1779enum vma_resv_mode {
1780	VMA_NEEDS_RESV,
1781	VMA_COMMIT_RESV,
1782	VMA_END_RESV,
 
1783};
1784static long __vma_reservation_common(struct hstate *h,
1785				struct vm_area_struct *vma, unsigned long addr,
1786				enum vma_resv_mode mode)
1787{
1788	struct resv_map *resv;
1789	pgoff_t idx;
1790	long ret;
1791
1792	resv = vma_resv_map(vma);
1793	if (!resv)
1794		return 1;
1795
1796	idx = vma_hugecache_offset(h, vma, addr);
1797	switch (mode) {
1798	case VMA_NEEDS_RESV:
1799		ret = region_chg(resv, idx, idx + 1);
1800		break;
1801	case VMA_COMMIT_RESV:
1802		ret = region_add(resv, idx, idx + 1);
1803		break;
1804	case VMA_END_RESV:
1805		region_abort(resv, idx, idx + 1);
1806		ret = 0;
1807		break;
 
 
 
 
 
 
 
 
1808	default:
1809		BUG();
1810	}
1811
1812	if (vma->vm_flags & VM_MAYSHARE)
1813		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1814	else
1815		return ret < 0 ? ret : 0;
1816}
1817
1818static long vma_needs_reservation(struct hstate *h,
1819			struct vm_area_struct *vma, unsigned long addr)
1820{
1821	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1822}
1823
1824static long vma_commit_reservation(struct hstate *h,
1825			struct vm_area_struct *vma, unsigned long addr)
1826{
1827	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1828}
1829
1830static void vma_end_reservation(struct hstate *h,
1831			struct vm_area_struct *vma, unsigned long addr)
1832{
1833	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1834}
1835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1836struct page *alloc_huge_page(struct vm_area_struct *vma,
1837				    unsigned long addr, int avoid_reserve)
1838{
1839	struct hugepage_subpool *spool = subpool_vma(vma);
1840	struct hstate *h = hstate_vma(vma);
1841	struct page *page;
1842	long map_chg, map_commit;
1843	long gbl_chg;
1844	int ret, idx;
1845	struct hugetlb_cgroup *h_cg;
1846
1847	idx = hstate_index(h);
1848	/*
1849	 * Examine the region/reserve map to determine if the process
1850	 * has a reservation for the page to be allocated.  A return
1851	 * code of zero indicates a reservation exists (no change).
1852	 */
1853	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1854	if (map_chg < 0)
1855		return ERR_PTR(-ENOMEM);
1856
1857	/*
1858	 * Processes that did not create the mapping will have no
1859	 * reserves as indicated by the region/reserve map. Check
1860	 * that the allocation will not exceed the subpool limit.
1861	 * Allocations for MAP_NORESERVE mappings also need to be
1862	 * checked against any subpool limit.
1863	 */
1864	if (map_chg || avoid_reserve) {
1865		gbl_chg = hugepage_subpool_get_pages(spool, 1);
1866		if (gbl_chg < 0) {
1867			vma_end_reservation(h, vma, addr);
1868			return ERR_PTR(-ENOSPC);
1869		}
1870
1871		/*
1872		 * Even though there was no reservation in the region/reserve
1873		 * map, there could be reservations associated with the
1874		 * subpool that can be used.  This would be indicated if the
1875		 * return value of hugepage_subpool_get_pages() is zero.
1876		 * However, if avoid_reserve is specified we still avoid even
1877		 * the subpool reservations.
1878		 */
1879		if (avoid_reserve)
1880			gbl_chg = 1;
1881	}
1882
1883	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1884	if (ret)
1885		goto out_subpool_put;
1886
1887	spin_lock(&hugetlb_lock);
1888	/*
1889	 * glb_chg is passed to indicate whether or not a page must be taken
1890	 * from the global free pool (global change).  gbl_chg == 0 indicates
1891	 * a reservation exists for the allocation.
1892	 */
1893	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1894	if (!page) {
1895		spin_unlock(&hugetlb_lock);
1896		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1897		if (!page)
1898			goto out_uncharge_cgroup;
1899		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1900			SetPagePrivate(page);
1901			h->resv_huge_pages--;
1902		}
1903		spin_lock(&hugetlb_lock);
1904		list_move(&page->lru, &h->hugepage_activelist);
1905		/* Fall through */
1906	}
1907	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1908	spin_unlock(&hugetlb_lock);
1909
1910	set_page_private(page, (unsigned long)spool);
1911
1912	map_commit = vma_commit_reservation(h, vma, addr);
1913	if (unlikely(map_chg > map_commit)) {
1914		/*
1915		 * The page was added to the reservation map between
1916		 * vma_needs_reservation and vma_commit_reservation.
1917		 * This indicates a race with hugetlb_reserve_pages.
1918		 * Adjust for the subpool count incremented above AND
1919		 * in hugetlb_reserve_pages for the same page.  Also,
1920		 * the reservation count added in hugetlb_reserve_pages
1921		 * no longer applies.
1922		 */
1923		long rsv_adjust;
1924
1925		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1926		hugetlb_acct_memory(h, -rsv_adjust);
1927	}
1928	return page;
1929
1930out_uncharge_cgroup:
1931	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1932out_subpool_put:
1933	if (map_chg || avoid_reserve)
1934		hugepage_subpool_put_pages(spool, 1);
1935	vma_end_reservation(h, vma, addr);
1936	return ERR_PTR(-ENOSPC);
1937}
1938
1939/*
1940 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1941 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1942 * where no ERR_VALUE is expected to be returned.
1943 */
1944struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1945				unsigned long addr, int avoid_reserve)
1946{
1947	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1948	if (IS_ERR(page))
1949		page = NULL;
1950	return page;
1951}
1952
1953int __weak alloc_bootmem_huge_page(struct hstate *h)
1954{
1955	struct huge_bootmem_page *m;
1956	int nr_nodes, node;
1957
1958	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1959		void *addr;
1960
1961		addr = memblock_virt_alloc_try_nid_nopanic(
1962				huge_page_size(h), huge_page_size(h),
1963				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1964		if (addr) {
1965			/*
1966			 * Use the beginning of the huge page to store the
1967			 * huge_bootmem_page struct (until gather_bootmem
1968			 * puts them into the mem_map).
1969			 */
1970			m = addr;
1971			goto found;
1972		}
1973	}
1974	return 0;
1975
1976found:
1977	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1978	/* Put them into a private list first because mem_map is not up yet */
1979	list_add(&m->list, &huge_boot_pages);
1980	m->hstate = h;
1981	return 1;
1982}
1983
1984static void __init prep_compound_huge_page(struct page *page,
1985		unsigned int order)
1986{
1987	if (unlikely(order > (MAX_ORDER - 1)))
1988		prep_compound_gigantic_page(page, order);
1989	else
1990		prep_compound_page(page, order);
1991}
1992
1993/* Put bootmem huge pages into the standard lists after mem_map is up */
1994static void __init gather_bootmem_prealloc(void)
1995{
1996	struct huge_bootmem_page *m;
1997
1998	list_for_each_entry(m, &huge_boot_pages, list) {
1999		struct hstate *h = m->hstate;
2000		struct page *page;
2001
2002#ifdef CONFIG_HIGHMEM
2003		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2004		memblock_free_late(__pa(m),
2005				   sizeof(struct huge_bootmem_page));
2006#else
2007		page = virt_to_page(m);
2008#endif
2009		WARN_ON(page_count(page) != 1);
2010		prep_compound_huge_page(page, h->order);
2011		WARN_ON(PageReserved(page));
2012		prep_new_huge_page(h, page, page_to_nid(page));
 
 
2013		/*
2014		 * If we had gigantic hugepages allocated at boot time, we need
2015		 * to restore the 'stolen' pages to totalram_pages in order to
2016		 * fix confusing memory reports from free(1) and another
2017		 * side-effects, like CommitLimit going negative.
2018		 */
2019		if (hstate_is_gigantic(h))
2020			adjust_managed_page_count(page, 1 << h->order);
2021	}
2022}
2023
2024static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2025{
2026	unsigned long i;
2027
2028	for (i = 0; i < h->max_huge_pages; ++i) {
2029		if (hstate_is_gigantic(h)) {
2030			if (!alloc_bootmem_huge_page(h))
2031				break;
2032		} else if (!alloc_fresh_huge_page(h,
2033					 &node_states[N_MEMORY]))
2034			break;
 
 
 
 
 
 
 
 
 
2035	}
2036	h->max_huge_pages = i;
2037}
2038
2039static void __init hugetlb_init_hstates(void)
2040{
2041	struct hstate *h;
2042
2043	for_each_hstate(h) {
2044		if (minimum_order > huge_page_order(h))
2045			minimum_order = huge_page_order(h);
2046
2047		/* oversize hugepages were init'ed in early boot */
2048		if (!hstate_is_gigantic(h))
2049			hugetlb_hstate_alloc_pages(h);
2050	}
2051	VM_BUG_ON(minimum_order == UINT_MAX);
2052}
2053
2054static char * __init memfmt(char *buf, unsigned long n)
2055{
2056	if (n >= (1UL << 30))
2057		sprintf(buf, "%lu GB", n >> 30);
2058	else if (n >= (1UL << 20))
2059		sprintf(buf, "%lu MB", n >> 20);
2060	else
2061		sprintf(buf, "%lu KB", n >> 10);
2062	return buf;
2063}
2064
2065static void __init report_hugepages(void)
2066{
2067	struct hstate *h;
2068
2069	for_each_hstate(h) {
2070		char buf[32];
 
 
2071		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2072			memfmt(buf, huge_page_size(h)),
2073			h->free_huge_pages);
2074	}
2075}
2076
2077#ifdef CONFIG_HIGHMEM
2078static void try_to_free_low(struct hstate *h, unsigned long count,
2079						nodemask_t *nodes_allowed)
2080{
2081	int i;
2082
2083	if (hstate_is_gigantic(h))
2084		return;
2085
2086	for_each_node_mask(i, *nodes_allowed) {
2087		struct page *page, *next;
2088		struct list_head *freel = &h->hugepage_freelists[i];
2089		list_for_each_entry_safe(page, next, freel, lru) {
2090			if (count >= h->nr_huge_pages)
2091				return;
2092			if (PageHighMem(page))
2093				continue;
2094			list_del(&page->lru);
2095			update_and_free_page(h, page);
2096			h->free_huge_pages--;
2097			h->free_huge_pages_node[page_to_nid(page)]--;
2098		}
2099	}
2100}
2101#else
2102static inline void try_to_free_low(struct hstate *h, unsigned long count,
2103						nodemask_t *nodes_allowed)
2104{
2105}
2106#endif
2107
2108/*
2109 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2110 * balanced by operating on them in a round-robin fashion.
2111 * Returns 1 if an adjustment was made.
2112 */
2113static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2114				int delta)
2115{
2116	int nr_nodes, node;
2117
2118	VM_BUG_ON(delta != -1 && delta != 1);
2119
2120	if (delta < 0) {
2121		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2122			if (h->surplus_huge_pages_node[node])
2123				goto found;
2124		}
2125	} else {
2126		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2127			if (h->surplus_huge_pages_node[node] <
2128					h->nr_huge_pages_node[node])
2129				goto found;
2130		}
2131	}
2132	return 0;
2133
2134found:
2135	h->surplus_huge_pages += delta;
2136	h->surplus_huge_pages_node[node] += delta;
2137	return 1;
2138}
2139
2140#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2141static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2142						nodemask_t *nodes_allowed)
2143{
2144	unsigned long min_count, ret;
2145
2146	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2147		return h->max_huge_pages;
2148
2149	/*
2150	 * Increase the pool size
2151	 * First take pages out of surplus state.  Then make up the
2152	 * remaining difference by allocating fresh huge pages.
2153	 *
2154	 * We might race with __alloc_buddy_huge_page() here and be unable
2155	 * to convert a surplus huge page to a normal huge page. That is
2156	 * not critical, though, it just means the overall size of the
2157	 * pool might be one hugepage larger than it needs to be, but
2158	 * within all the constraints specified by the sysctls.
2159	 */
2160	spin_lock(&hugetlb_lock);
2161	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2162		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2163			break;
2164	}
2165
2166	while (count > persistent_huge_pages(h)) {
2167		/*
2168		 * If this allocation races such that we no longer need the
2169		 * page, free_huge_page will handle it by freeing the page
2170		 * and reducing the surplus.
2171		 */
2172		spin_unlock(&hugetlb_lock);
2173		if (hstate_is_gigantic(h))
2174			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2175		else
2176			ret = alloc_fresh_huge_page(h, nodes_allowed);
 
2177		spin_lock(&hugetlb_lock);
2178		if (!ret)
2179			goto out;
2180
2181		/* Bail for signals. Probably ctrl-c from user */
2182		if (signal_pending(current))
2183			goto out;
2184	}
2185
2186	/*
2187	 * Decrease the pool size
2188	 * First return free pages to the buddy allocator (being careful
2189	 * to keep enough around to satisfy reservations).  Then place
2190	 * pages into surplus state as needed so the pool will shrink
2191	 * to the desired size as pages become free.
2192	 *
2193	 * By placing pages into the surplus state independent of the
2194	 * overcommit value, we are allowing the surplus pool size to
2195	 * exceed overcommit. There are few sane options here. Since
2196	 * __alloc_buddy_huge_page() is checking the global counter,
2197	 * though, we'll note that we're not allowed to exceed surplus
2198	 * and won't grow the pool anywhere else. Not until one of the
2199	 * sysctls are changed, or the surplus pages go out of use.
2200	 */
2201	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2202	min_count = max(count, min_count);
2203	try_to_free_low(h, min_count, nodes_allowed);
2204	while (min_count < persistent_huge_pages(h)) {
2205		if (!free_pool_huge_page(h, nodes_allowed, 0))
2206			break;
2207		cond_resched_lock(&hugetlb_lock);
2208	}
2209	while (count < persistent_huge_pages(h)) {
2210		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2211			break;
2212	}
2213out:
2214	ret = persistent_huge_pages(h);
2215	spin_unlock(&hugetlb_lock);
2216	return ret;
2217}
2218
2219#define HSTATE_ATTR_RO(_name) \
2220	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2221
2222#define HSTATE_ATTR(_name) \
2223	static struct kobj_attribute _name##_attr = \
2224		__ATTR(_name, 0644, _name##_show, _name##_store)
2225
2226static struct kobject *hugepages_kobj;
2227static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2228
2229static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2230
2231static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2232{
2233	int i;
2234
2235	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2236		if (hstate_kobjs[i] == kobj) {
2237			if (nidp)
2238				*nidp = NUMA_NO_NODE;
2239			return &hstates[i];
2240		}
2241
2242	return kobj_to_node_hstate(kobj, nidp);
2243}
2244
2245static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2246					struct kobj_attribute *attr, char *buf)
2247{
2248	struct hstate *h;
2249	unsigned long nr_huge_pages;
2250	int nid;
2251
2252	h = kobj_to_hstate(kobj, &nid);
2253	if (nid == NUMA_NO_NODE)
2254		nr_huge_pages = h->nr_huge_pages;
2255	else
2256		nr_huge_pages = h->nr_huge_pages_node[nid];
2257
2258	return sprintf(buf, "%lu\n", nr_huge_pages);
2259}
2260
2261static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2262					   struct hstate *h, int nid,
2263					   unsigned long count, size_t len)
2264{
2265	int err;
2266	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2267
2268	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2269		err = -EINVAL;
2270		goto out;
2271	}
2272
2273	if (nid == NUMA_NO_NODE) {
2274		/*
2275		 * global hstate attribute
2276		 */
2277		if (!(obey_mempolicy &&
2278				init_nodemask_of_mempolicy(nodes_allowed))) {
2279			NODEMASK_FREE(nodes_allowed);
2280			nodes_allowed = &node_states[N_MEMORY];
2281		}
2282	} else if (nodes_allowed) {
2283		/*
2284		 * per node hstate attribute: adjust count to global,
2285		 * but restrict alloc/free to the specified node.
2286		 */
2287		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2288		init_nodemask_of_node(nodes_allowed, nid);
2289	} else
2290		nodes_allowed = &node_states[N_MEMORY];
2291
2292	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2293
2294	if (nodes_allowed != &node_states[N_MEMORY])
2295		NODEMASK_FREE(nodes_allowed);
2296
2297	return len;
2298out:
2299	NODEMASK_FREE(nodes_allowed);
2300	return err;
2301}
2302
2303static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2304					 struct kobject *kobj, const char *buf,
2305					 size_t len)
2306{
2307	struct hstate *h;
2308	unsigned long count;
2309	int nid;
2310	int err;
2311
2312	err = kstrtoul(buf, 10, &count);
2313	if (err)
2314		return err;
2315
2316	h = kobj_to_hstate(kobj, &nid);
2317	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2318}
2319
2320static ssize_t nr_hugepages_show(struct kobject *kobj,
2321				       struct kobj_attribute *attr, char *buf)
2322{
2323	return nr_hugepages_show_common(kobj, attr, buf);
2324}
2325
2326static ssize_t nr_hugepages_store(struct kobject *kobj,
2327	       struct kobj_attribute *attr, const char *buf, size_t len)
2328{
2329	return nr_hugepages_store_common(false, kobj, buf, len);
2330}
2331HSTATE_ATTR(nr_hugepages);
2332
2333#ifdef CONFIG_NUMA
2334
2335/*
2336 * hstate attribute for optionally mempolicy-based constraint on persistent
2337 * huge page alloc/free.
2338 */
2339static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2340				       struct kobj_attribute *attr, char *buf)
2341{
2342	return nr_hugepages_show_common(kobj, attr, buf);
2343}
2344
2345static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2346	       struct kobj_attribute *attr, const char *buf, size_t len)
2347{
2348	return nr_hugepages_store_common(true, kobj, buf, len);
2349}
2350HSTATE_ATTR(nr_hugepages_mempolicy);
2351#endif
2352
2353
2354static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2355					struct kobj_attribute *attr, char *buf)
2356{
2357	struct hstate *h = kobj_to_hstate(kobj, NULL);
2358	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2359}
2360
2361static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2362		struct kobj_attribute *attr, const char *buf, size_t count)
2363{
2364	int err;
2365	unsigned long input;
2366	struct hstate *h = kobj_to_hstate(kobj, NULL);
2367
2368	if (hstate_is_gigantic(h))
2369		return -EINVAL;
2370
2371	err = kstrtoul(buf, 10, &input);
2372	if (err)
2373		return err;
2374
2375	spin_lock(&hugetlb_lock);
2376	h->nr_overcommit_huge_pages = input;
2377	spin_unlock(&hugetlb_lock);
2378
2379	return count;
2380}
2381HSTATE_ATTR(nr_overcommit_hugepages);
2382
2383static ssize_t free_hugepages_show(struct kobject *kobj,
2384					struct kobj_attribute *attr, char *buf)
2385{
2386	struct hstate *h;
2387	unsigned long free_huge_pages;
2388	int nid;
2389
2390	h = kobj_to_hstate(kobj, &nid);
2391	if (nid == NUMA_NO_NODE)
2392		free_huge_pages = h->free_huge_pages;
2393	else
2394		free_huge_pages = h->free_huge_pages_node[nid];
2395
2396	return sprintf(buf, "%lu\n", free_huge_pages);
2397}
2398HSTATE_ATTR_RO(free_hugepages);
2399
2400static ssize_t resv_hugepages_show(struct kobject *kobj,
2401					struct kobj_attribute *attr, char *buf)
2402{
2403	struct hstate *h = kobj_to_hstate(kobj, NULL);
2404	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2405}
2406HSTATE_ATTR_RO(resv_hugepages);
2407
2408static ssize_t surplus_hugepages_show(struct kobject *kobj,
2409					struct kobj_attribute *attr, char *buf)
2410{
2411	struct hstate *h;
2412	unsigned long surplus_huge_pages;
2413	int nid;
2414
2415	h = kobj_to_hstate(kobj, &nid);
2416	if (nid == NUMA_NO_NODE)
2417		surplus_huge_pages = h->surplus_huge_pages;
2418	else
2419		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2420
2421	return sprintf(buf, "%lu\n", surplus_huge_pages);
2422}
2423HSTATE_ATTR_RO(surplus_hugepages);
2424
2425static struct attribute *hstate_attrs[] = {
2426	&nr_hugepages_attr.attr,
2427	&nr_overcommit_hugepages_attr.attr,
2428	&free_hugepages_attr.attr,
2429	&resv_hugepages_attr.attr,
2430	&surplus_hugepages_attr.attr,
2431#ifdef CONFIG_NUMA
2432	&nr_hugepages_mempolicy_attr.attr,
2433#endif
2434	NULL,
2435};
2436
2437static struct attribute_group hstate_attr_group = {
2438	.attrs = hstate_attrs,
2439};
2440
2441static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2442				    struct kobject **hstate_kobjs,
2443				    struct attribute_group *hstate_attr_group)
2444{
2445	int retval;
2446	int hi = hstate_index(h);
2447
2448	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2449	if (!hstate_kobjs[hi])
2450		return -ENOMEM;
2451
2452	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2453	if (retval)
2454		kobject_put(hstate_kobjs[hi]);
2455
2456	return retval;
2457}
2458
2459static void __init hugetlb_sysfs_init(void)
2460{
2461	struct hstate *h;
2462	int err;
2463
2464	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2465	if (!hugepages_kobj)
2466		return;
2467
2468	for_each_hstate(h) {
2469		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2470					 hstate_kobjs, &hstate_attr_group);
2471		if (err)
2472			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2473	}
2474}
2475
2476#ifdef CONFIG_NUMA
2477
2478/*
2479 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2480 * with node devices in node_devices[] using a parallel array.  The array
2481 * index of a node device or _hstate == node id.
2482 * This is here to avoid any static dependency of the node device driver, in
2483 * the base kernel, on the hugetlb module.
2484 */
2485struct node_hstate {
2486	struct kobject		*hugepages_kobj;
2487	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2488};
2489static struct node_hstate node_hstates[MAX_NUMNODES];
2490
2491/*
2492 * A subset of global hstate attributes for node devices
2493 */
2494static struct attribute *per_node_hstate_attrs[] = {
2495	&nr_hugepages_attr.attr,
2496	&free_hugepages_attr.attr,
2497	&surplus_hugepages_attr.attr,
2498	NULL,
2499};
2500
2501static struct attribute_group per_node_hstate_attr_group = {
2502	.attrs = per_node_hstate_attrs,
2503};
2504
2505/*
2506 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2507 * Returns node id via non-NULL nidp.
2508 */
2509static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2510{
2511	int nid;
2512
2513	for (nid = 0; nid < nr_node_ids; nid++) {
2514		struct node_hstate *nhs = &node_hstates[nid];
2515		int i;
2516		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2517			if (nhs->hstate_kobjs[i] == kobj) {
2518				if (nidp)
2519					*nidp = nid;
2520				return &hstates[i];
2521			}
2522	}
2523
2524	BUG();
2525	return NULL;
2526}
2527
2528/*
2529 * Unregister hstate attributes from a single node device.
2530 * No-op if no hstate attributes attached.
2531 */
2532static void hugetlb_unregister_node(struct node *node)
2533{
2534	struct hstate *h;
2535	struct node_hstate *nhs = &node_hstates[node->dev.id];
2536
2537	if (!nhs->hugepages_kobj)
2538		return;		/* no hstate attributes */
2539
2540	for_each_hstate(h) {
2541		int idx = hstate_index(h);
2542		if (nhs->hstate_kobjs[idx]) {
2543			kobject_put(nhs->hstate_kobjs[idx]);
2544			nhs->hstate_kobjs[idx] = NULL;
2545		}
2546	}
2547
2548	kobject_put(nhs->hugepages_kobj);
2549	nhs->hugepages_kobj = NULL;
2550}
2551
2552
2553/*
2554 * Register hstate attributes for a single node device.
2555 * No-op if attributes already registered.
2556 */
2557static void hugetlb_register_node(struct node *node)
2558{
2559	struct hstate *h;
2560	struct node_hstate *nhs = &node_hstates[node->dev.id];
2561	int err;
2562
2563	if (nhs->hugepages_kobj)
2564		return;		/* already allocated */
2565
2566	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2567							&node->dev.kobj);
2568	if (!nhs->hugepages_kobj)
2569		return;
2570
2571	for_each_hstate(h) {
2572		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2573						nhs->hstate_kobjs,
2574						&per_node_hstate_attr_group);
2575		if (err) {
2576			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2577				h->name, node->dev.id);
2578			hugetlb_unregister_node(node);
2579			break;
2580		}
2581	}
2582}
2583
2584/*
2585 * hugetlb init time:  register hstate attributes for all registered node
2586 * devices of nodes that have memory.  All on-line nodes should have
2587 * registered their associated device by this time.
2588 */
2589static void __init hugetlb_register_all_nodes(void)
2590{
2591	int nid;
2592
2593	for_each_node_state(nid, N_MEMORY) {
2594		struct node *node = node_devices[nid];
2595		if (node->dev.id == nid)
2596			hugetlb_register_node(node);
2597	}
2598
2599	/*
2600	 * Let the node device driver know we're here so it can
2601	 * [un]register hstate attributes on node hotplug.
2602	 */
2603	register_hugetlbfs_with_node(hugetlb_register_node,
2604				     hugetlb_unregister_node);
2605}
2606#else	/* !CONFIG_NUMA */
2607
2608static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2609{
2610	BUG();
2611	if (nidp)
2612		*nidp = -1;
2613	return NULL;
2614}
2615
2616static void hugetlb_register_all_nodes(void) { }
2617
2618#endif
2619
2620static int __init hugetlb_init(void)
2621{
2622	int i;
2623
2624	if (!hugepages_supported())
2625		return 0;
2626
2627	if (!size_to_hstate(default_hstate_size)) {
 
 
 
 
 
2628		default_hstate_size = HPAGE_SIZE;
2629		if (!size_to_hstate(default_hstate_size))
2630			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2631	}
2632	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2633	if (default_hstate_max_huge_pages) {
2634		if (!default_hstate.max_huge_pages)
2635			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2636	}
2637
2638	hugetlb_init_hstates();
2639	gather_bootmem_prealloc();
2640	report_hugepages();
2641
2642	hugetlb_sysfs_init();
2643	hugetlb_register_all_nodes();
2644	hugetlb_cgroup_file_init();
2645
2646#ifdef CONFIG_SMP
2647	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2648#else
2649	num_fault_mutexes = 1;
2650#endif
2651	hugetlb_fault_mutex_table =
2652		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2653	BUG_ON(!hugetlb_fault_mutex_table);
2654
2655	for (i = 0; i < num_fault_mutexes; i++)
2656		mutex_init(&hugetlb_fault_mutex_table[i]);
2657	return 0;
2658}
2659subsys_initcall(hugetlb_init);
2660
2661/* Should be called on processing a hugepagesz=... option */
 
 
 
 
 
2662void __init hugetlb_add_hstate(unsigned int order)
2663{
2664	struct hstate *h;
2665	unsigned long i;
2666
2667	if (size_to_hstate(PAGE_SIZE << order)) {
2668		pr_warn("hugepagesz= specified twice, ignoring\n");
2669		return;
2670	}
2671	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2672	BUG_ON(order == 0);
2673	h = &hstates[hugetlb_max_hstate++];
2674	h->order = order;
2675	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2676	h->nr_huge_pages = 0;
2677	h->free_huge_pages = 0;
2678	for (i = 0; i < MAX_NUMNODES; ++i)
2679		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2680	INIT_LIST_HEAD(&h->hugepage_activelist);
2681	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2682	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2683	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2684					huge_page_size(h)/1024);
2685
2686	parsed_hstate = h;
2687}
2688
2689static int __init hugetlb_nrpages_setup(char *s)
2690{
2691	unsigned long *mhp;
2692	static unsigned long *last_mhp;
2693
 
 
 
 
 
 
2694	/*
2695	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2696	 * so this hugepages= parameter goes to the "default hstate".
2697	 */
2698	if (!hugetlb_max_hstate)
2699		mhp = &default_hstate_max_huge_pages;
2700	else
2701		mhp = &parsed_hstate->max_huge_pages;
2702
2703	if (mhp == last_mhp) {
2704		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2705		return 1;
2706	}
2707
2708	if (sscanf(s, "%lu", mhp) <= 0)
2709		*mhp = 0;
2710
2711	/*
2712	 * Global state is always initialized later in hugetlb_init.
2713	 * But we need to allocate >= MAX_ORDER hstates here early to still
2714	 * use the bootmem allocator.
2715	 */
2716	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2717		hugetlb_hstate_alloc_pages(parsed_hstate);
2718
2719	last_mhp = mhp;
2720
2721	return 1;
2722}
2723__setup("hugepages=", hugetlb_nrpages_setup);
2724
2725static int __init hugetlb_default_setup(char *s)
2726{
2727	default_hstate_size = memparse(s, &s);
2728	return 1;
2729}
2730__setup("default_hugepagesz=", hugetlb_default_setup);
2731
2732static unsigned int cpuset_mems_nr(unsigned int *array)
2733{
2734	int node;
2735	unsigned int nr = 0;
2736
2737	for_each_node_mask(node, cpuset_current_mems_allowed)
2738		nr += array[node];
2739
2740	return nr;
2741}
2742
2743#ifdef CONFIG_SYSCTL
2744static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2745			 struct ctl_table *table, int write,
2746			 void __user *buffer, size_t *length, loff_t *ppos)
2747{
2748	struct hstate *h = &default_hstate;
2749	unsigned long tmp = h->max_huge_pages;
2750	int ret;
2751
2752	if (!hugepages_supported())
2753		return -EOPNOTSUPP;
2754
2755	table->data = &tmp;
2756	table->maxlen = sizeof(unsigned long);
2757	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2758	if (ret)
2759		goto out;
2760
2761	if (write)
2762		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2763						  NUMA_NO_NODE, tmp, *length);
2764out:
2765	return ret;
2766}
2767
2768int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2769			  void __user *buffer, size_t *length, loff_t *ppos)
2770{
2771
2772	return hugetlb_sysctl_handler_common(false, table, write,
2773							buffer, length, ppos);
2774}
2775
2776#ifdef CONFIG_NUMA
2777int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2778			  void __user *buffer, size_t *length, loff_t *ppos)
2779{
2780	return hugetlb_sysctl_handler_common(true, table, write,
2781							buffer, length, ppos);
2782}
2783#endif /* CONFIG_NUMA */
2784
2785int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2786			void __user *buffer,
2787			size_t *length, loff_t *ppos)
2788{
2789	struct hstate *h = &default_hstate;
2790	unsigned long tmp;
2791	int ret;
2792
2793	if (!hugepages_supported())
2794		return -EOPNOTSUPP;
2795
2796	tmp = h->nr_overcommit_huge_pages;
2797
2798	if (write && hstate_is_gigantic(h))
2799		return -EINVAL;
2800
2801	table->data = &tmp;
2802	table->maxlen = sizeof(unsigned long);
2803	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2804	if (ret)
2805		goto out;
2806
2807	if (write) {
2808		spin_lock(&hugetlb_lock);
2809		h->nr_overcommit_huge_pages = tmp;
2810		spin_unlock(&hugetlb_lock);
2811	}
2812out:
2813	return ret;
2814}
2815
2816#endif /* CONFIG_SYSCTL */
2817
2818void hugetlb_report_meminfo(struct seq_file *m)
2819{
2820	struct hstate *h = &default_hstate;
 
 
2821	if (!hugepages_supported())
2822		return;
2823	seq_printf(m,
2824			"HugePages_Total:   %5lu\n"
2825			"HugePages_Free:    %5lu\n"
2826			"HugePages_Rsvd:    %5lu\n"
2827			"HugePages_Surp:    %5lu\n"
2828			"Hugepagesize:   %8lu kB\n",
2829			h->nr_huge_pages,
2830			h->free_huge_pages,
2831			h->resv_huge_pages,
2832			h->surplus_huge_pages,
2833			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
 
 
 
 
 
 
 
 
 
 
2834}
2835
2836int hugetlb_report_node_meminfo(int nid, char *buf)
2837{
2838	struct hstate *h = &default_hstate;
2839	if (!hugepages_supported())
2840		return 0;
2841	return sprintf(buf,
2842		"Node %d HugePages_Total: %5u\n"
2843		"Node %d HugePages_Free:  %5u\n"
2844		"Node %d HugePages_Surp:  %5u\n",
2845		nid, h->nr_huge_pages_node[nid],
2846		nid, h->free_huge_pages_node[nid],
2847		nid, h->surplus_huge_pages_node[nid]);
2848}
2849
2850void hugetlb_show_meminfo(void)
2851{
2852	struct hstate *h;
2853	int nid;
2854
2855	if (!hugepages_supported())
2856		return;
2857
2858	for_each_node_state(nid, N_MEMORY)
2859		for_each_hstate(h)
2860			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2861				nid,
2862				h->nr_huge_pages_node[nid],
2863				h->free_huge_pages_node[nid],
2864				h->surplus_huge_pages_node[nid],
2865				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2866}
2867
2868void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2869{
2870	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2871		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2872}
2873
2874/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2875unsigned long hugetlb_total_pages(void)
2876{
2877	struct hstate *h;
2878	unsigned long nr_total_pages = 0;
2879
2880	for_each_hstate(h)
2881		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2882	return nr_total_pages;
2883}
2884
2885static int hugetlb_acct_memory(struct hstate *h, long delta)
2886{
2887	int ret = -ENOMEM;
2888
2889	spin_lock(&hugetlb_lock);
2890	/*
2891	 * When cpuset is configured, it breaks the strict hugetlb page
2892	 * reservation as the accounting is done on a global variable. Such
2893	 * reservation is completely rubbish in the presence of cpuset because
2894	 * the reservation is not checked against page availability for the
2895	 * current cpuset. Application can still potentially OOM'ed by kernel
2896	 * with lack of free htlb page in cpuset that the task is in.
2897	 * Attempt to enforce strict accounting with cpuset is almost
2898	 * impossible (or too ugly) because cpuset is too fluid that
2899	 * task or memory node can be dynamically moved between cpusets.
2900	 *
2901	 * The change of semantics for shared hugetlb mapping with cpuset is
2902	 * undesirable. However, in order to preserve some of the semantics,
2903	 * we fall back to check against current free page availability as
2904	 * a best attempt and hopefully to minimize the impact of changing
2905	 * semantics that cpuset has.
2906	 */
2907	if (delta > 0) {
2908		if (gather_surplus_pages(h, delta) < 0)
2909			goto out;
2910
2911		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2912			return_unused_surplus_pages(h, delta);
2913			goto out;
2914		}
2915	}
2916
2917	ret = 0;
2918	if (delta < 0)
2919		return_unused_surplus_pages(h, (unsigned long) -delta);
2920
2921out:
2922	spin_unlock(&hugetlb_lock);
2923	return ret;
2924}
2925
2926static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2927{
2928	struct resv_map *resv = vma_resv_map(vma);
2929
2930	/*
2931	 * This new VMA should share its siblings reservation map if present.
2932	 * The VMA will only ever have a valid reservation map pointer where
2933	 * it is being copied for another still existing VMA.  As that VMA
2934	 * has a reference to the reservation map it cannot disappear until
2935	 * after this open call completes.  It is therefore safe to take a
2936	 * new reference here without additional locking.
2937	 */
2938	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2939		kref_get(&resv->refs);
2940}
2941
2942static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2943{
2944	struct hstate *h = hstate_vma(vma);
2945	struct resv_map *resv = vma_resv_map(vma);
2946	struct hugepage_subpool *spool = subpool_vma(vma);
2947	unsigned long reserve, start, end;
2948	long gbl_reserve;
2949
2950	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2951		return;
2952
2953	start = vma_hugecache_offset(h, vma, vma->vm_start);
2954	end = vma_hugecache_offset(h, vma, vma->vm_end);
2955
2956	reserve = (end - start) - region_count(resv, start, end);
2957
2958	kref_put(&resv->refs, resv_map_release);
2959
2960	if (reserve) {
2961		/*
2962		 * Decrement reserve counts.  The global reserve count may be
2963		 * adjusted if the subpool has a minimum size.
2964		 */
2965		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2966		hugetlb_acct_memory(h, -gbl_reserve);
2967	}
2968}
2969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2970/*
2971 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2972 * handle_mm_fault() to try to instantiate regular-sized pages in the
2973 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2974 * this far.
2975 */
2976static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2977{
2978	BUG();
2979	return 0;
2980}
2981
2982const struct vm_operations_struct hugetlb_vm_ops = {
2983	.fault = hugetlb_vm_op_fault,
2984	.open = hugetlb_vm_op_open,
2985	.close = hugetlb_vm_op_close,
 
 
2986};
2987
2988static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2989				int writable)
2990{
2991	pte_t entry;
2992
2993	if (writable) {
2994		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2995					 vma->vm_page_prot)));
2996	} else {
2997		entry = huge_pte_wrprotect(mk_huge_pte(page,
2998					   vma->vm_page_prot));
2999	}
3000	entry = pte_mkyoung(entry);
3001	entry = pte_mkhuge(entry);
3002	entry = arch_make_huge_pte(entry, vma, page, writable);
3003
3004	return entry;
3005}
3006
3007static void set_huge_ptep_writable(struct vm_area_struct *vma,
3008				   unsigned long address, pte_t *ptep)
3009{
3010	pte_t entry;
3011
3012	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3013	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3014		update_mmu_cache(vma, address, ptep);
3015}
3016
3017static int is_hugetlb_entry_migration(pte_t pte)
3018{
3019	swp_entry_t swp;
3020
3021	if (huge_pte_none(pte) || pte_present(pte))
3022		return 0;
3023	swp = pte_to_swp_entry(pte);
3024	if (non_swap_entry(swp) && is_migration_entry(swp))
3025		return 1;
3026	else
3027		return 0;
3028}
3029
3030static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3031{
3032	swp_entry_t swp;
3033
3034	if (huge_pte_none(pte) || pte_present(pte))
3035		return 0;
3036	swp = pte_to_swp_entry(pte);
3037	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3038		return 1;
3039	else
3040		return 0;
3041}
3042
3043int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3044			    struct vm_area_struct *vma)
3045{
3046	pte_t *src_pte, *dst_pte, entry;
3047	struct page *ptepage;
3048	unsigned long addr;
3049	int cow;
3050	struct hstate *h = hstate_vma(vma);
3051	unsigned long sz = huge_page_size(h);
3052	unsigned long mmun_start;	/* For mmu_notifiers */
3053	unsigned long mmun_end;		/* For mmu_notifiers */
3054	int ret = 0;
3055
3056	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3057
3058	mmun_start = vma->vm_start;
3059	mmun_end = vma->vm_end;
3060	if (cow)
3061		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3062
3063	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3064		spinlock_t *src_ptl, *dst_ptl;
3065		src_pte = huge_pte_offset(src, addr);
3066		if (!src_pte)
3067			continue;
3068		dst_pte = huge_pte_alloc(dst, addr, sz);
3069		if (!dst_pte) {
3070			ret = -ENOMEM;
3071			break;
3072		}
3073
3074		/* If the pagetables are shared don't copy or take references */
3075		if (dst_pte == src_pte)
3076			continue;
3077
3078		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3079		src_ptl = huge_pte_lockptr(h, src, src_pte);
3080		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3081		entry = huge_ptep_get(src_pte);
3082		if (huge_pte_none(entry)) { /* skip none entry */
3083			;
3084		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3085				    is_hugetlb_entry_hwpoisoned(entry))) {
3086			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3087
3088			if (is_write_migration_entry(swp_entry) && cow) {
3089				/*
3090				 * COW mappings require pages in both
3091				 * parent and child to be set to read.
3092				 */
3093				make_migration_entry_read(&swp_entry);
3094				entry = swp_entry_to_pte(swp_entry);
3095				set_huge_pte_at(src, addr, src_pte, entry);
 
3096			}
3097			set_huge_pte_at(dst, addr, dst_pte, entry);
3098		} else {
3099			if (cow) {
 
 
 
 
 
 
 
3100				huge_ptep_set_wrprotect(src, addr, src_pte);
3101				mmu_notifier_invalidate_range(src, mmun_start,
3102								   mmun_end);
3103			}
3104			entry = huge_ptep_get(src_pte);
3105			ptepage = pte_page(entry);
3106			get_page(ptepage);
3107			page_dup_rmap(ptepage, true);
3108			set_huge_pte_at(dst, addr, dst_pte, entry);
3109			hugetlb_count_add(pages_per_huge_page(h), dst);
3110		}
3111		spin_unlock(src_ptl);
3112		spin_unlock(dst_ptl);
3113	}
3114
3115	if (cow)
3116		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3117
3118	return ret;
3119}
3120
3121void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3122			    unsigned long start, unsigned long end,
3123			    struct page *ref_page)
3124{
3125	int force_flush = 0;
3126	struct mm_struct *mm = vma->vm_mm;
3127	unsigned long address;
3128	pte_t *ptep;
3129	pte_t pte;
3130	spinlock_t *ptl;
3131	struct page *page;
3132	struct hstate *h = hstate_vma(vma);
3133	unsigned long sz = huge_page_size(h);
3134	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3135	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3136
3137	WARN_ON(!is_vm_hugetlb_page(vma));
3138	BUG_ON(start & ~huge_page_mask(h));
3139	BUG_ON(end & ~huge_page_mask(h));
3140
 
 
 
 
 
3141	tlb_start_vma(tlb, vma);
3142	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3143	address = start;
3144again:
3145	for (; address < end; address += sz) {
3146		ptep = huge_pte_offset(mm, address);
3147		if (!ptep)
3148			continue;
3149
3150		ptl = huge_pte_lock(h, mm, ptep);
3151		if (huge_pmd_unshare(mm, &address, ptep))
3152			goto unlock;
 
 
3153
3154		pte = huge_ptep_get(ptep);
3155		if (huge_pte_none(pte))
3156			goto unlock;
 
 
3157
3158		/*
3159		 * Migrating hugepage or HWPoisoned hugepage is already
3160		 * unmapped and its refcount is dropped, so just clear pte here.
3161		 */
3162		if (unlikely(!pte_present(pte))) {
3163			huge_pte_clear(mm, address, ptep);
3164			goto unlock;
 
3165		}
3166
3167		page = pte_page(pte);
3168		/*
3169		 * If a reference page is supplied, it is because a specific
3170		 * page is being unmapped, not a range. Ensure the page we
3171		 * are about to unmap is the actual page of interest.
3172		 */
3173		if (ref_page) {
3174			if (page != ref_page)
3175				goto unlock;
3176
 
3177			/*
3178			 * Mark the VMA as having unmapped its page so that
3179			 * future faults in this VMA will fail rather than
3180			 * looking like data was lost
3181			 */
3182			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3183		}
3184
3185		pte = huge_ptep_get_and_clear(mm, address, ptep);
3186		tlb_remove_tlb_entry(tlb, ptep, address);
3187		if (huge_pte_dirty(pte))
3188			set_page_dirty(page);
3189
3190		hugetlb_count_sub(pages_per_huge_page(h), mm);
3191		page_remove_rmap(page, true);
3192		force_flush = !__tlb_remove_page(tlb, page);
3193		if (force_flush) {
3194			address += sz;
3195			spin_unlock(ptl);
3196			break;
3197		}
3198		/* Bail out after unmapping reference page if supplied */
3199		if (ref_page) {
3200			spin_unlock(ptl);
3201			break;
3202		}
3203unlock:
3204		spin_unlock(ptl);
3205	}
3206	/*
3207	 * mmu_gather ran out of room to batch pages, we break out of
3208	 * the PTE lock to avoid doing the potential expensive TLB invalidate
3209	 * and page-free while holding it.
3210	 */
3211	if (force_flush) {
3212		force_flush = 0;
3213		tlb_flush_mmu(tlb);
3214		if (address < end && !ref_page)
3215			goto again;
3216	}
3217	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3218	tlb_end_vma(tlb, vma);
3219}
3220
3221void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3222			  struct vm_area_struct *vma, unsigned long start,
3223			  unsigned long end, struct page *ref_page)
3224{
3225	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3226
3227	/*
3228	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3229	 * test will fail on a vma being torn down, and not grab a page table
3230	 * on its way out.  We're lucky that the flag has such an appropriate
3231	 * name, and can in fact be safely cleared here. We could clear it
3232	 * before the __unmap_hugepage_range above, but all that's necessary
3233	 * is to clear it before releasing the i_mmap_rwsem. This works
3234	 * because in the context this is called, the VMA is about to be
3235	 * destroyed and the i_mmap_rwsem is held.
3236	 */
3237	vma->vm_flags &= ~VM_MAYSHARE;
3238}
3239
3240void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3241			  unsigned long end, struct page *ref_page)
3242{
3243	struct mm_struct *mm;
3244	struct mmu_gather tlb;
3245
3246	mm = vma->vm_mm;
3247
3248	tlb_gather_mmu(&tlb, mm, start, end);
3249	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3250	tlb_finish_mmu(&tlb, start, end);
3251}
3252
3253/*
3254 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3255 * mappping it owns the reserve page for. The intention is to unmap the page
3256 * from other VMAs and let the children be SIGKILLed if they are faulting the
3257 * same region.
3258 */
3259static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3260			      struct page *page, unsigned long address)
3261{
3262	struct hstate *h = hstate_vma(vma);
3263	struct vm_area_struct *iter_vma;
3264	struct address_space *mapping;
3265	pgoff_t pgoff;
3266
3267	/*
3268	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3269	 * from page cache lookup which is in HPAGE_SIZE units.
3270	 */
3271	address = address & huge_page_mask(h);
3272	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3273			vma->vm_pgoff;
3274	mapping = file_inode(vma->vm_file)->i_mapping;
3275
3276	/*
3277	 * Take the mapping lock for the duration of the table walk. As
3278	 * this mapping should be shared between all the VMAs,
3279	 * __unmap_hugepage_range() is called as the lock is already held
3280	 */
3281	i_mmap_lock_write(mapping);
3282	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3283		/* Do not unmap the current VMA */
3284		if (iter_vma == vma)
3285			continue;
3286
3287		/*
3288		 * Shared VMAs have their own reserves and do not affect
3289		 * MAP_PRIVATE accounting but it is possible that a shared
3290		 * VMA is using the same page so check and skip such VMAs.
3291		 */
3292		if (iter_vma->vm_flags & VM_MAYSHARE)
3293			continue;
3294
3295		/*
3296		 * Unmap the page from other VMAs without their own reserves.
3297		 * They get marked to be SIGKILLed if they fault in these
3298		 * areas. This is because a future no-page fault on this VMA
3299		 * could insert a zeroed page instead of the data existing
3300		 * from the time of fork. This would look like data corruption
3301		 */
3302		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3303			unmap_hugepage_range(iter_vma, address,
3304					     address + huge_page_size(h), page);
3305	}
3306	i_mmap_unlock_write(mapping);
3307}
3308
3309/*
3310 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3311 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3312 * cannot race with other handlers or page migration.
3313 * Keep the pte_same checks anyway to make transition from the mutex easier.
3314 */
3315static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3316			unsigned long address, pte_t *ptep, pte_t pte,
3317			struct page *pagecache_page, spinlock_t *ptl)
3318{
 
3319	struct hstate *h = hstate_vma(vma);
3320	struct page *old_page, *new_page;
3321	int ret = 0, outside_reserve = 0;
3322	unsigned long mmun_start;	/* For mmu_notifiers */
3323	unsigned long mmun_end;		/* For mmu_notifiers */
3324
 
3325	old_page = pte_page(pte);
3326
3327retry_avoidcopy:
3328	/* If no-one else is actually using this page, avoid the copy
3329	 * and just make the page writable */
3330	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3331		page_move_anon_rmap(old_page, vma, address);
3332		set_huge_ptep_writable(vma, address, ptep);
3333		return 0;
3334	}
3335
3336	/*
3337	 * If the process that created a MAP_PRIVATE mapping is about to
3338	 * perform a COW due to a shared page count, attempt to satisfy
3339	 * the allocation without using the existing reserves. The pagecache
3340	 * page is used to determine if the reserve at this address was
3341	 * consumed or not. If reserves were used, a partial faulted mapping
3342	 * at the time of fork() could consume its reserves on COW instead
3343	 * of the full address range.
3344	 */
3345	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3346			old_page != pagecache_page)
3347		outside_reserve = 1;
3348
3349	get_page(old_page);
3350
3351	/*
3352	 * Drop page table lock as buddy allocator may be called. It will
3353	 * be acquired again before returning to the caller, as expected.
3354	 */
3355	spin_unlock(ptl);
3356	new_page = alloc_huge_page(vma, address, outside_reserve);
3357
3358	if (IS_ERR(new_page)) {
3359		/*
3360		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3361		 * it is due to references held by a child and an insufficient
3362		 * huge page pool. To guarantee the original mappers
3363		 * reliability, unmap the page from child processes. The child
3364		 * may get SIGKILLed if it later faults.
3365		 */
3366		if (outside_reserve) {
3367			put_page(old_page);
3368			BUG_ON(huge_pte_none(pte));
3369			unmap_ref_private(mm, vma, old_page, address);
3370			BUG_ON(huge_pte_none(pte));
3371			spin_lock(ptl);
3372			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
 
3373			if (likely(ptep &&
3374				   pte_same(huge_ptep_get(ptep), pte)))
3375				goto retry_avoidcopy;
3376			/*
3377			 * race occurs while re-acquiring page table
3378			 * lock, and our job is done.
3379			 */
3380			return 0;
3381		}
3382
3383		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3384			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3385		goto out_release_old;
3386	}
3387
3388	/*
3389	 * When the original hugepage is shared one, it does not have
3390	 * anon_vma prepared.
3391	 */
3392	if (unlikely(anon_vma_prepare(vma))) {
3393		ret = VM_FAULT_OOM;
3394		goto out_release_all;
3395	}
3396
3397	copy_user_huge_page(new_page, old_page, address, vma,
3398			    pages_per_huge_page(h));
3399	__SetPageUptodate(new_page);
3400	set_page_huge_active(new_page);
3401
3402	mmun_start = address & huge_page_mask(h);
3403	mmun_end = mmun_start + huge_page_size(h);
3404	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3405
3406	/*
3407	 * Retake the page table lock to check for racing updates
3408	 * before the page tables are altered
3409	 */
3410	spin_lock(ptl);
3411	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
 
3412	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3413		ClearPagePrivate(new_page);
3414
3415		/* Break COW */
3416		huge_ptep_clear_flush(vma, address, ptep);
3417		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3418		set_huge_pte_at(mm, address, ptep,
3419				make_huge_pte(vma, new_page, 1));
3420		page_remove_rmap(old_page, true);
3421		hugepage_add_new_anon_rmap(new_page, vma, address);
3422		/* Make the old page be freed below */
3423		new_page = old_page;
3424	}
3425	spin_unlock(ptl);
3426	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3427out_release_all:
 
3428	put_page(new_page);
3429out_release_old:
3430	put_page(old_page);
3431
3432	spin_lock(ptl); /* Caller expects lock to be held */
3433	return ret;
3434}
3435
3436/* Return the pagecache page at a given address within a VMA */
3437static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3438			struct vm_area_struct *vma, unsigned long address)
3439{
3440	struct address_space *mapping;
3441	pgoff_t idx;
3442
3443	mapping = vma->vm_file->f_mapping;
3444	idx = vma_hugecache_offset(h, vma, address);
3445
3446	return find_lock_page(mapping, idx);
3447}
3448
3449/*
3450 * Return whether there is a pagecache page to back given address within VMA.
3451 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3452 */
3453static bool hugetlbfs_pagecache_present(struct hstate *h,
3454			struct vm_area_struct *vma, unsigned long address)
3455{
3456	struct address_space *mapping;
3457	pgoff_t idx;
3458	struct page *page;
3459
3460	mapping = vma->vm_file->f_mapping;
3461	idx = vma_hugecache_offset(h, vma, address);
3462
3463	page = find_get_page(mapping, idx);
3464	if (page)
3465		put_page(page);
3466	return page != NULL;
3467}
3468
3469int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3470			   pgoff_t idx)
3471{
3472	struct inode *inode = mapping->host;
3473	struct hstate *h = hstate_inode(inode);
3474	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3475
3476	if (err)
3477		return err;
3478	ClearPagePrivate(page);
3479
3480	spin_lock(&inode->i_lock);
3481	inode->i_blocks += blocks_per_huge_page(h);
3482	spin_unlock(&inode->i_lock);
3483	return 0;
3484}
3485
3486static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3487			   struct address_space *mapping, pgoff_t idx,
3488			   unsigned long address, pte_t *ptep, unsigned int flags)
3489{
3490	struct hstate *h = hstate_vma(vma);
3491	int ret = VM_FAULT_SIGBUS;
3492	int anon_rmap = 0;
3493	unsigned long size;
3494	struct page *page;
3495	pte_t new_pte;
3496	spinlock_t *ptl;
3497
3498	/*
3499	 * Currently, we are forced to kill the process in the event the
3500	 * original mapper has unmapped pages from the child due to a failed
3501	 * COW. Warn that such a situation has occurred as it may not be obvious
3502	 */
3503	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3504		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3505			   current->pid);
3506		return ret;
3507	}
3508
3509	/*
3510	 * Use page lock to guard against racing truncation
3511	 * before we get page_table_lock.
3512	 */
3513retry:
3514	page = find_lock_page(mapping, idx);
3515	if (!page) {
3516		size = i_size_read(mapping->host) >> huge_page_shift(h);
3517		if (idx >= size)
3518			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3519		page = alloc_huge_page(vma, address, 0);
3520		if (IS_ERR(page)) {
3521			ret = PTR_ERR(page);
3522			if (ret == -ENOMEM)
3523				ret = VM_FAULT_OOM;
3524			else
3525				ret = VM_FAULT_SIGBUS;
3526			goto out;
3527		}
3528		clear_huge_page(page, address, pages_per_huge_page(h));
3529		__SetPageUptodate(page);
3530		set_page_huge_active(page);
3531
3532		if (vma->vm_flags & VM_MAYSHARE) {
3533			int err = huge_add_to_page_cache(page, mapping, idx);
3534			if (err) {
3535				put_page(page);
3536				if (err == -EEXIST)
3537					goto retry;
3538				goto out;
3539			}
3540		} else {
3541			lock_page(page);
3542			if (unlikely(anon_vma_prepare(vma))) {
3543				ret = VM_FAULT_OOM;
3544				goto backout_unlocked;
3545			}
3546			anon_rmap = 1;
3547		}
3548	} else {
3549		/*
3550		 * If memory error occurs between mmap() and fault, some process
3551		 * don't have hwpoisoned swap entry for errored virtual address.
3552		 * So we need to block hugepage fault by PG_hwpoison bit check.
3553		 */
3554		if (unlikely(PageHWPoison(page))) {
3555			ret = VM_FAULT_HWPOISON |
3556				VM_FAULT_SET_HINDEX(hstate_index(h));
3557			goto backout_unlocked;
3558		}
3559	}
3560
3561	/*
3562	 * If we are going to COW a private mapping later, we examine the
3563	 * pending reservations for this page now. This will ensure that
3564	 * any allocations necessary to record that reservation occur outside
3565	 * the spinlock.
3566	 */
3567	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3568		if (vma_needs_reservation(h, vma, address) < 0) {
3569			ret = VM_FAULT_OOM;
3570			goto backout_unlocked;
3571		}
3572		/* Just decrements count, does not deallocate */
3573		vma_end_reservation(h, vma, address);
3574	}
3575
3576	ptl = huge_pte_lockptr(h, mm, ptep);
3577	spin_lock(ptl);
3578	size = i_size_read(mapping->host) >> huge_page_shift(h);
3579	if (idx >= size)
3580		goto backout;
3581
3582	ret = 0;
3583	if (!huge_pte_none(huge_ptep_get(ptep)))
3584		goto backout;
3585
3586	if (anon_rmap) {
3587		ClearPagePrivate(page);
3588		hugepage_add_new_anon_rmap(page, vma, address);
3589	} else
3590		page_dup_rmap(page, true);
3591	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3592				&& (vma->vm_flags & VM_SHARED)));
3593	set_huge_pte_at(mm, address, ptep, new_pte);
3594
3595	hugetlb_count_add(pages_per_huge_page(h), mm);
3596	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3597		/* Optimization, do the COW without a second fault */
3598		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3599	}
3600
3601	spin_unlock(ptl);
3602	unlock_page(page);
3603out:
3604	return ret;
3605
3606backout:
3607	spin_unlock(ptl);
3608backout_unlocked:
3609	unlock_page(page);
 
3610	put_page(page);
3611	goto out;
3612}
3613
3614#ifdef CONFIG_SMP
3615u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3616			    struct vm_area_struct *vma,
3617			    struct address_space *mapping,
3618			    pgoff_t idx, unsigned long address)
3619{
3620	unsigned long key[2];
3621	u32 hash;
3622
3623	if (vma->vm_flags & VM_SHARED) {
3624		key[0] = (unsigned long) mapping;
3625		key[1] = idx;
3626	} else {
3627		key[0] = (unsigned long) mm;
3628		key[1] = address >> huge_page_shift(h);
3629	}
3630
3631	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3632
3633	return hash & (num_fault_mutexes - 1);
3634}
3635#else
3636/*
3637 * For uniprocesor systems we always use a single mutex, so just
3638 * return 0 and avoid the hashing overhead.
3639 */
3640u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3641			    struct vm_area_struct *vma,
3642			    struct address_space *mapping,
3643			    pgoff_t idx, unsigned long address)
3644{
3645	return 0;
3646}
3647#endif
3648
3649int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3650			unsigned long address, unsigned int flags)
3651{
3652	pte_t *ptep, entry;
3653	spinlock_t *ptl;
3654	int ret;
3655	u32 hash;
3656	pgoff_t idx;
3657	struct page *page = NULL;
3658	struct page *pagecache_page = NULL;
3659	struct hstate *h = hstate_vma(vma);
3660	struct address_space *mapping;
3661	int need_wait_lock = 0;
3662
3663	address &= huge_page_mask(h);
3664
3665	ptep = huge_pte_offset(mm, address);
3666	if (ptep) {
3667		entry = huge_ptep_get(ptep);
3668		if (unlikely(is_hugetlb_entry_migration(entry))) {
3669			migration_entry_wait_huge(vma, mm, ptep);
3670			return 0;
3671		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3672			return VM_FAULT_HWPOISON_LARGE |
3673				VM_FAULT_SET_HINDEX(hstate_index(h));
3674	} else {
3675		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3676		if (!ptep)
3677			return VM_FAULT_OOM;
3678	}
3679
3680	mapping = vma->vm_file->f_mapping;
3681	idx = vma_hugecache_offset(h, vma, address);
3682
3683	/*
3684	 * Serialize hugepage allocation and instantiation, so that we don't
3685	 * get spurious allocation failures if two CPUs race to instantiate
3686	 * the same page in the page cache.
3687	 */
3688	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3689	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3690
3691	entry = huge_ptep_get(ptep);
3692	if (huge_pte_none(entry)) {
3693		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3694		goto out_mutex;
3695	}
3696
3697	ret = 0;
3698
3699	/*
3700	 * entry could be a migration/hwpoison entry at this point, so this
3701	 * check prevents the kernel from going below assuming that we have
3702	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3703	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3704	 * handle it.
3705	 */
3706	if (!pte_present(entry))
3707		goto out_mutex;
3708
3709	/*
3710	 * If we are going to COW the mapping later, we examine the pending
3711	 * reservations for this page now. This will ensure that any
3712	 * allocations necessary to record that reservation occur outside the
3713	 * spinlock. For private mappings, we also lookup the pagecache
3714	 * page now as it is used to determine if a reservation has been
3715	 * consumed.
3716	 */
3717	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3718		if (vma_needs_reservation(h, vma, address) < 0) {
3719			ret = VM_FAULT_OOM;
3720			goto out_mutex;
3721		}
3722		/* Just decrements count, does not deallocate */
3723		vma_end_reservation(h, vma, address);
3724
3725		if (!(vma->vm_flags & VM_MAYSHARE))
3726			pagecache_page = hugetlbfs_pagecache_page(h,
3727								vma, address);
3728	}
3729
3730	ptl = huge_pte_lock(h, mm, ptep);
3731
3732	/* Check for a racing update before calling hugetlb_cow */
3733	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3734		goto out_ptl;
3735
3736	/*
3737	 * hugetlb_cow() requires page locks of pte_page(entry) and
3738	 * pagecache_page, so here we need take the former one
3739	 * when page != pagecache_page or !pagecache_page.
3740	 */
3741	page = pte_page(entry);
3742	if (page != pagecache_page)
3743		if (!trylock_page(page)) {
3744			need_wait_lock = 1;
3745			goto out_ptl;
3746		}
3747
3748	get_page(page);
3749
3750	if (flags & FAULT_FLAG_WRITE) {
3751		if (!huge_pte_write(entry)) {
3752			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3753					pagecache_page, ptl);
3754			goto out_put_page;
3755		}
3756		entry = huge_pte_mkdirty(entry);
3757	}
3758	entry = pte_mkyoung(entry);
3759	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3760						flags & FAULT_FLAG_WRITE))
3761		update_mmu_cache(vma, address, ptep);
3762out_put_page:
3763	if (page != pagecache_page)
3764		unlock_page(page);
3765	put_page(page);
3766out_ptl:
3767	spin_unlock(ptl);
3768
3769	if (pagecache_page) {
3770		unlock_page(pagecache_page);
3771		put_page(pagecache_page);
3772	}
3773out_mutex:
3774	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3775	/*
3776	 * Generally it's safe to hold refcount during waiting page lock. But
3777	 * here we just wait to defer the next page fault to avoid busy loop and
3778	 * the page is not used after unlocked before returning from the current
3779	 * page fault. So we are safe from accessing freed page, even if we wait
3780	 * here without taking refcount.
3781	 */
3782	if (need_wait_lock)
3783		wait_on_page_locked(page);
3784	return ret;
3785}
3786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3787long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3788			 struct page **pages, struct vm_area_struct **vmas,
3789			 unsigned long *position, unsigned long *nr_pages,
3790			 long i, unsigned int flags)
3791{
3792	unsigned long pfn_offset;
3793	unsigned long vaddr = *position;
3794	unsigned long remainder = *nr_pages;
3795	struct hstate *h = hstate_vma(vma);
 
3796
3797	while (vaddr < vma->vm_end && remainder) {
3798		pte_t *pte;
3799		spinlock_t *ptl = NULL;
3800		int absent;
3801		struct page *page;
3802
3803		/*
3804		 * If we have a pending SIGKILL, don't keep faulting pages and
3805		 * potentially allocating memory.
3806		 */
3807		if (unlikely(fatal_signal_pending(current))) {
3808			remainder = 0;
3809			break;
3810		}
3811
3812		/*
3813		 * Some archs (sparc64, sh*) have multiple pte_ts to
3814		 * each hugepage.  We have to make sure we get the
3815		 * first, for the page indexing below to work.
3816		 *
3817		 * Note that page table lock is not held when pte is null.
3818		 */
3819		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
 
3820		if (pte)
3821			ptl = huge_pte_lock(h, mm, pte);
3822		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3823
3824		/*
3825		 * When coredumping, it suits get_dump_page if we just return
3826		 * an error where there's an empty slot with no huge pagecache
3827		 * to back it.  This way, we avoid allocating a hugepage, and
3828		 * the sparse dumpfile avoids allocating disk blocks, but its
3829		 * huge holes still show up with zeroes where they need to be.
3830		 */
3831		if (absent && (flags & FOLL_DUMP) &&
3832		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3833			if (pte)
3834				spin_unlock(ptl);
3835			remainder = 0;
3836			break;
3837		}
3838
3839		/*
3840		 * We need call hugetlb_fault for both hugepages under migration
3841		 * (in which case hugetlb_fault waits for the migration,) and
3842		 * hwpoisoned hugepages (in which case we need to prevent the
3843		 * caller from accessing to them.) In order to do this, we use
3844		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3845		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3846		 * both cases, and because we can't follow correct pages
3847		 * directly from any kind of swap entries.
3848		 */
3849		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3850		    ((flags & FOLL_WRITE) &&
3851		      !huge_pte_write(huge_ptep_get(pte)))) {
3852			int ret;
 
3853
3854			if (pte)
3855				spin_unlock(ptl);
3856			ret = hugetlb_fault(mm, vma, vaddr,
3857				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3858			if (!(ret & VM_FAULT_ERROR))
3859				continue;
3860
3861			remainder = 0;
3862			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3863		}
3864
3865		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3866		page = pte_page(huge_ptep_get(pte));
3867same_page:
3868		if (pages) {
3869			pages[i] = mem_map_offset(page, pfn_offset);
3870			get_page(pages[i]);
3871		}
3872
3873		if (vmas)
3874			vmas[i] = vma;
3875
3876		vaddr += PAGE_SIZE;
3877		++pfn_offset;
3878		--remainder;
3879		++i;
3880		if (vaddr < vma->vm_end && remainder &&
3881				pfn_offset < pages_per_huge_page(h)) {
3882			/*
3883			 * We use pfn_offset to avoid touching the pageframes
3884			 * of this compound page.
3885			 */
3886			goto same_page;
3887		}
3888		spin_unlock(ptl);
3889	}
3890	*nr_pages = remainder;
 
 
 
 
 
3891	*position = vaddr;
3892
3893	return i ? i : -EFAULT;
3894}
3895
 
 
 
 
 
 
 
 
3896unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3897		unsigned long address, unsigned long end, pgprot_t newprot)
3898{
3899	struct mm_struct *mm = vma->vm_mm;
3900	unsigned long start = address;
3901	pte_t *ptep;
3902	pte_t pte;
3903	struct hstate *h = hstate_vma(vma);
3904	unsigned long pages = 0;
3905
3906	BUG_ON(address >= end);
3907	flush_cache_range(vma, address, end);
3908
3909	mmu_notifier_invalidate_range_start(mm, start, end);
3910	i_mmap_lock_write(vma->vm_file->f_mapping);
3911	for (; address < end; address += huge_page_size(h)) {
3912		spinlock_t *ptl;
3913		ptep = huge_pte_offset(mm, address);
3914		if (!ptep)
3915			continue;
3916		ptl = huge_pte_lock(h, mm, ptep);
3917		if (huge_pmd_unshare(mm, &address, ptep)) {
3918			pages++;
3919			spin_unlock(ptl);
3920			continue;
3921		}
3922		pte = huge_ptep_get(ptep);
3923		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3924			spin_unlock(ptl);
3925			continue;
3926		}
3927		if (unlikely(is_hugetlb_entry_migration(pte))) {
3928			swp_entry_t entry = pte_to_swp_entry(pte);
3929
3930			if (is_write_migration_entry(entry)) {
3931				pte_t newpte;
3932
3933				make_migration_entry_read(&entry);
3934				newpte = swp_entry_to_pte(entry);
3935				set_huge_pte_at(mm, address, ptep, newpte);
 
3936				pages++;
3937			}
3938			spin_unlock(ptl);
3939			continue;
3940		}
3941		if (!huge_pte_none(pte)) {
3942			pte = huge_ptep_get_and_clear(mm, address, ptep);
3943			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3944			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3945			set_huge_pte_at(mm, address, ptep, pte);
3946			pages++;
3947		}
3948		spin_unlock(ptl);
3949	}
3950	/*
3951	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3952	 * may have cleared our pud entry and done put_page on the page table:
3953	 * once we release i_mmap_rwsem, another task can do the final put_page
3954	 * and that page table be reused and filled with junk.
3955	 */
3956	flush_tlb_range(vma, start, end);
3957	mmu_notifier_invalidate_range(mm, start, end);
 
 
 
 
 
3958	i_mmap_unlock_write(vma->vm_file->f_mapping);
3959	mmu_notifier_invalidate_range_end(mm, start, end);
3960
3961	return pages << h->order;
3962}
3963
3964int hugetlb_reserve_pages(struct inode *inode,
3965					long from, long to,
3966					struct vm_area_struct *vma,
3967					vm_flags_t vm_flags)
3968{
3969	long ret, chg;
3970	struct hstate *h = hstate_inode(inode);
3971	struct hugepage_subpool *spool = subpool_inode(inode);
3972	struct resv_map *resv_map;
3973	long gbl_reserve;
3974
 
 
 
 
 
 
3975	/*
3976	 * Only apply hugepage reservation if asked. At fault time, an
3977	 * attempt will be made for VM_NORESERVE to allocate a page
3978	 * without using reserves
3979	 */
3980	if (vm_flags & VM_NORESERVE)
3981		return 0;
3982
3983	/*
3984	 * Shared mappings base their reservation on the number of pages that
3985	 * are already allocated on behalf of the file. Private mappings need
3986	 * to reserve the full area even if read-only as mprotect() may be
3987	 * called to make the mapping read-write. Assume !vma is a shm mapping
3988	 */
3989	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3990		resv_map = inode_resv_map(inode);
3991
3992		chg = region_chg(resv_map, from, to);
3993
3994	} else {
3995		resv_map = resv_map_alloc();
3996		if (!resv_map)
3997			return -ENOMEM;
3998
3999		chg = to - from;
4000
4001		set_vma_resv_map(vma, resv_map);
4002		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4003	}
4004
4005	if (chg < 0) {
4006		ret = chg;
4007		goto out_err;
4008	}
4009
4010	/*
4011	 * There must be enough pages in the subpool for the mapping. If
4012	 * the subpool has a minimum size, there may be some global
4013	 * reservations already in place (gbl_reserve).
4014	 */
4015	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4016	if (gbl_reserve < 0) {
4017		ret = -ENOSPC;
4018		goto out_err;
4019	}
4020
4021	/*
4022	 * Check enough hugepages are available for the reservation.
4023	 * Hand the pages back to the subpool if there are not
4024	 */
4025	ret = hugetlb_acct_memory(h, gbl_reserve);
4026	if (ret < 0) {
4027		/* put back original number of pages, chg */
4028		(void)hugepage_subpool_put_pages(spool, chg);
4029		goto out_err;
4030	}
4031
4032	/*
4033	 * Account for the reservations made. Shared mappings record regions
4034	 * that have reservations as they are shared by multiple VMAs.
4035	 * When the last VMA disappears, the region map says how much
4036	 * the reservation was and the page cache tells how much of
4037	 * the reservation was consumed. Private mappings are per-VMA and
4038	 * only the consumed reservations are tracked. When the VMA
4039	 * disappears, the original reservation is the VMA size and the
4040	 * consumed reservations are stored in the map. Hence, nothing
4041	 * else has to be done for private mappings here
4042	 */
4043	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4044		long add = region_add(resv_map, from, to);
4045
4046		if (unlikely(chg > add)) {
4047			/*
4048			 * pages in this range were added to the reserve
4049			 * map between region_chg and region_add.  This
4050			 * indicates a race with alloc_huge_page.  Adjust
4051			 * the subpool and reserve counts modified above
4052			 * based on the difference.
4053			 */
4054			long rsv_adjust;
4055
4056			rsv_adjust = hugepage_subpool_put_pages(spool,
4057								chg - add);
4058			hugetlb_acct_memory(h, -rsv_adjust);
4059		}
4060	}
4061	return 0;
4062out_err:
4063	if (!vma || vma->vm_flags & VM_MAYSHARE)
4064		region_abort(resv_map, from, to);
 
 
4065	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4066		kref_put(&resv_map->refs, resv_map_release);
4067	return ret;
4068}
4069
4070long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4071								long freed)
4072{
4073	struct hstate *h = hstate_inode(inode);
4074	struct resv_map *resv_map = inode_resv_map(inode);
4075	long chg = 0;
4076	struct hugepage_subpool *spool = subpool_inode(inode);
4077	long gbl_reserve;
4078
4079	if (resv_map) {
4080		chg = region_del(resv_map, start, end);
4081		/*
4082		 * region_del() can fail in the rare case where a region
4083		 * must be split and another region descriptor can not be
4084		 * allocated.  If end == LONG_MAX, it will not fail.
4085		 */
4086		if (chg < 0)
4087			return chg;
4088	}
4089
4090	spin_lock(&inode->i_lock);
4091	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4092	spin_unlock(&inode->i_lock);
4093
4094	/*
4095	 * If the subpool has a minimum size, the number of global
4096	 * reservations to be released may be adjusted.
4097	 */
4098	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4099	hugetlb_acct_memory(h, -gbl_reserve);
4100
4101	return 0;
4102}
4103
4104#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4105static unsigned long page_table_shareable(struct vm_area_struct *svma,
4106				struct vm_area_struct *vma,
4107				unsigned long addr, pgoff_t idx)
4108{
4109	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4110				svma->vm_start;
4111	unsigned long sbase = saddr & PUD_MASK;
4112	unsigned long s_end = sbase + PUD_SIZE;
4113
4114	/* Allow segments to share if only one is marked locked */
4115	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4116	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4117
4118	/*
4119	 * match the virtual addresses, permission and the alignment of the
4120	 * page table page.
4121	 */
4122	if (pmd_index(addr) != pmd_index(saddr) ||
4123	    vm_flags != svm_flags ||
4124	    sbase < svma->vm_start || svma->vm_end < s_end)
4125		return 0;
4126
4127	return saddr;
4128}
4129
4130static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4131{
4132	unsigned long base = addr & PUD_MASK;
4133	unsigned long end = base + PUD_SIZE;
4134
4135	/*
4136	 * check on proper vm_flags and page table alignment
4137	 */
4138	if (vma->vm_flags & VM_MAYSHARE &&
4139	    vma->vm_start <= base && end <= vma->vm_end)
4140		return true;
4141	return false;
4142}
4143
4144/*
4145 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4146 * and returns the corresponding pte. While this is not necessary for the
4147 * !shared pmd case because we can allocate the pmd later as well, it makes the
4148 * code much cleaner. pmd allocation is essential for the shared case because
4149 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4150 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4151 * bad pmd for sharing.
4152 */
4153pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4154{
4155	struct vm_area_struct *vma = find_vma(mm, addr);
4156	struct address_space *mapping = vma->vm_file->f_mapping;
4157	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4158			vma->vm_pgoff;
4159	struct vm_area_struct *svma;
4160	unsigned long saddr;
4161	pte_t *spte = NULL;
4162	pte_t *pte;
4163	spinlock_t *ptl;
4164
4165	if (!vma_shareable(vma, addr))
4166		return (pte_t *)pmd_alloc(mm, pud, addr);
4167
4168	i_mmap_lock_write(mapping);
4169	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4170		if (svma == vma)
4171			continue;
4172
4173		saddr = page_table_shareable(svma, vma, addr, idx);
4174		if (saddr) {
4175			spte = huge_pte_offset(svma->vm_mm, saddr);
 
4176			if (spte) {
4177				mm_inc_nr_pmds(mm);
4178				get_page(virt_to_page(spte));
4179				break;
4180			}
4181		}
4182	}
4183
4184	if (!spte)
4185		goto out;
4186
4187	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4188	spin_lock(ptl);
4189	if (pud_none(*pud)) {
4190		pud_populate(mm, pud,
4191				(pmd_t *)((unsigned long)spte & PAGE_MASK));
 
4192	} else {
4193		put_page(virt_to_page(spte));
4194		mm_inc_nr_pmds(mm);
4195	}
4196	spin_unlock(ptl);
4197out:
4198	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4199	i_mmap_unlock_write(mapping);
4200	return pte;
4201}
4202
4203/*
4204 * unmap huge page backed by shared pte.
4205 *
4206 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4207 * indicated by page_count > 1, unmap is achieved by clearing pud and
4208 * decrementing the ref count. If count == 1, the pte page is not shared.
4209 *
4210 * called with page table lock held.
4211 *
4212 * returns: 1 successfully unmapped a shared pte page
4213 *	    0 the underlying pte page is not shared, or it is the last user
4214 */
4215int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4216{
4217	pgd_t *pgd = pgd_offset(mm, *addr);
4218	pud_t *pud = pud_offset(pgd, *addr);
 
4219
4220	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4221	if (page_count(virt_to_page(ptep)) == 1)
4222		return 0;
4223
4224	pud_clear(pud);
4225	put_page(virt_to_page(ptep));
4226	mm_dec_nr_pmds(mm);
4227	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4228	return 1;
4229}
4230#define want_pmd_share()	(1)
4231#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4232pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4233{
4234	return NULL;
4235}
4236
4237int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4238{
4239	return 0;
4240}
4241#define want_pmd_share()	(0)
4242#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4243
4244#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4245pte_t *huge_pte_alloc(struct mm_struct *mm,
4246			unsigned long addr, unsigned long sz)
4247{
4248	pgd_t *pgd;
 
4249	pud_t *pud;
4250	pte_t *pte = NULL;
4251
4252	pgd = pgd_offset(mm, addr);
4253	pud = pud_alloc(mm, pgd, addr);
 
 
 
4254	if (pud) {
4255		if (sz == PUD_SIZE) {
4256			pte = (pte_t *)pud;
4257		} else {
4258			BUG_ON(sz != PMD_SIZE);
4259			if (want_pmd_share() && pud_none(*pud))
4260				pte = huge_pmd_share(mm, addr, pud);
4261			else
4262				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4263		}
4264	}
4265	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4266
4267	return pte;
4268}
4269
4270pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
 
 
 
 
 
 
 
 
 
 
4271{
4272	pgd_t *pgd;
 
4273	pud_t *pud;
4274	pmd_t *pmd = NULL;
4275
4276	pgd = pgd_offset(mm, addr);
4277	if (pgd_present(*pgd)) {
4278		pud = pud_offset(pgd, addr);
4279		if (pud_present(*pud)) {
4280			if (pud_huge(*pud))
4281				return (pte_t *)pud;
4282			pmd = pmd_offset(pud, addr);
4283		}
4284	}
4285	return (pte_t *) pmd;
 
 
 
 
 
 
 
 
 
 
 
 
4286}
4287
4288#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4289
4290/*
4291 * These functions are overwritable if your architecture needs its own
4292 * behavior.
4293 */
4294struct page * __weak
4295follow_huge_addr(struct mm_struct *mm, unsigned long address,
4296			      int write)
4297{
4298	return ERR_PTR(-EINVAL);
4299}
4300
4301struct page * __weak
 
 
 
 
 
 
 
 
4302follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4303		pmd_t *pmd, int flags)
4304{
4305	struct page *page = NULL;
4306	spinlock_t *ptl;
 
4307retry:
4308	ptl = pmd_lockptr(mm, pmd);
4309	spin_lock(ptl);
4310	/*
4311	 * make sure that the address range covered by this pmd is not
4312	 * unmapped from other threads.
4313	 */
4314	if (!pmd_huge(*pmd))
4315		goto out;
4316	if (pmd_present(*pmd)) {
 
4317		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4318		if (flags & FOLL_GET)
4319			get_page(page);
4320	} else {
4321		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4322			spin_unlock(ptl);
4323			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4324			goto retry;
4325		}
4326		/*
4327		 * hwpoisoned entry is treated as no_page_table in
4328		 * follow_page_mask().
4329		 */
4330	}
4331out:
4332	spin_unlock(ptl);
4333	return page;
4334}
4335
4336struct page * __weak
4337follow_huge_pud(struct mm_struct *mm, unsigned long address,
4338		pud_t *pud, int flags)
4339{
4340	if (flags & FOLL_GET)
4341		return NULL;
4342
4343	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4344}
4345
4346#ifdef CONFIG_MEMORY_FAILURE
4347
4348/*
4349 * This function is called from memory failure code.
4350 * Assume the caller holds page lock of the head page.
4351 */
4352int dequeue_hwpoisoned_huge_page(struct page *hpage)
4353{
4354	struct hstate *h = page_hstate(hpage);
4355	int nid = page_to_nid(hpage);
4356	int ret = -EBUSY;
4357
4358	spin_lock(&hugetlb_lock);
4359	/*
4360	 * Just checking !page_huge_active is not enough, because that could be
4361	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4362	 */
4363	if (!page_huge_active(hpage) && !page_count(hpage)) {
4364		/*
4365		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4366		 * but dangling hpage->lru can trigger list-debug warnings
4367		 * (this happens when we call unpoison_memory() on it),
4368		 * so let it point to itself with list_del_init().
4369		 */
4370		list_del_init(&hpage->lru);
4371		set_page_refcounted(hpage);
4372		h->free_huge_pages--;
4373		h->free_huge_pages_node[nid]--;
4374		ret = 0;
4375	}
4376	spin_unlock(&hugetlb_lock);
4377	return ret;
4378}
4379#endif
4380
4381bool isolate_huge_page(struct page *page, struct list_head *list)
4382{
4383	bool ret = true;
4384
4385	VM_BUG_ON_PAGE(!PageHead(page), page);
4386	spin_lock(&hugetlb_lock);
4387	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4388		ret = false;
4389		goto unlock;
4390	}
4391	clear_page_huge_active(page);
4392	list_move_tail(&page->lru, list);
4393unlock:
4394	spin_unlock(&hugetlb_lock);
4395	return ret;
4396}
4397
4398void putback_active_hugepage(struct page *page)
4399{
4400	VM_BUG_ON_PAGE(!PageHead(page), page);
4401	spin_lock(&hugetlb_lock);
4402	set_page_huge_active(page);
4403	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4404	spin_unlock(&hugetlb_lock);
4405	put_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4406}