Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Generic hugetlb support.
   3 * (C) Nadia Yvette Chambers, April 2004
   4 */
   5#include <linux/list.h>
   6#include <linux/init.h>
 
   7#include <linux/mm.h>
   8#include <linux/seq_file.h>
   9#include <linux/sysctl.h>
  10#include <linux/highmem.h>
  11#include <linux/mmu_notifier.h>
  12#include <linux/nodemask.h>
  13#include <linux/pagemap.h>
  14#include <linux/mempolicy.h>
  15#include <linux/compiler.h>
  16#include <linux/cpuset.h>
  17#include <linux/mutex.h>
  18#include <linux/bootmem.h>
  19#include <linux/sysfs.h>
  20#include <linux/slab.h>
  21#include <linux/mmdebug.h>
  22#include <linux/sched/signal.h>
  23#include <linux/rmap.h>
  24#include <linux/string_helpers.h>
  25#include <linux/swap.h>
  26#include <linux/swapops.h>
 
  27#include <linux/jhash.h>
  28
  29#include <asm/page.h>
  30#include <asm/pgtable.h>
  31#include <asm/tlb.h>
  32
  33#include <linux/io.h>
  34#include <linux/hugetlb.h>
  35#include <linux/hugetlb_cgroup.h>
  36#include <linux/node.h>
  37#include <linux/userfaultfd_k.h>
  38#include <linux/page_owner.h>
  39#include "internal.h"
  40
 
 
 
  41int hugetlb_max_hstate __read_mostly;
  42unsigned int default_hstate_idx;
  43struct hstate hstates[HUGE_MAX_HSTATE];
  44/*
  45 * Minimum page order among possible hugepage sizes, set to a proper value
  46 * at boot time.
  47 */
  48static unsigned int minimum_order __read_mostly = UINT_MAX;
  49
  50__initdata LIST_HEAD(huge_boot_pages);
  51
  52/* for command line parsing */
  53static struct hstate * __initdata parsed_hstate;
  54static unsigned long __initdata default_hstate_max_huge_pages;
  55static unsigned long __initdata default_hstate_size;
  56static bool __initdata parsed_valid_hugepagesz = true;
  57
  58/*
  59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  60 * free_huge_pages, and surplus_huge_pages.
  61 */
  62DEFINE_SPINLOCK(hugetlb_lock);
  63
  64/*
  65 * Serializes faults on the same logical page.  This is used to
  66 * prevent spurious OOMs when the hugepage pool is fully utilized.
  67 */
  68static int num_fault_mutexes;
  69struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  70
  71/* Forward declaration */
  72static int hugetlb_acct_memory(struct hstate *h, long delta);
  73
  74static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  75{
  76	bool free = (spool->count == 0) && (spool->used_hpages == 0);
  77
  78	spin_unlock(&spool->lock);
  79
  80	/* If no pages are used, and no other handles to the subpool
  81	 * remain, give up any reservations mased on minimum size and
  82	 * free the subpool */
  83	if (free) {
  84		if (spool->min_hpages != -1)
  85			hugetlb_acct_memory(spool->hstate,
  86						-spool->min_hpages);
  87		kfree(spool);
  88	}
  89}
  90
  91struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  92						long min_hpages)
  93{
  94	struct hugepage_subpool *spool;
  95
  96	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  97	if (!spool)
  98		return NULL;
  99
 100	spin_lock_init(&spool->lock);
 101	spool->count = 1;
 102	spool->max_hpages = max_hpages;
 103	spool->hstate = h;
 104	spool->min_hpages = min_hpages;
 105
 106	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 107		kfree(spool);
 108		return NULL;
 109	}
 110	spool->rsv_hpages = min_hpages;
 111
 112	return spool;
 113}
 114
 115void hugepage_put_subpool(struct hugepage_subpool *spool)
 116{
 117	spin_lock(&spool->lock);
 118	BUG_ON(!spool->count);
 119	spool->count--;
 120	unlock_or_release_subpool(spool);
 121}
 122
 123/*
 124 * Subpool accounting for allocating and reserving pages.
 125 * Return -ENOMEM if there are not enough resources to satisfy the
 126 * the request.  Otherwise, return the number of pages by which the
 127 * global pools must be adjusted (upward).  The returned value may
 128 * only be different than the passed value (delta) in the case where
 129 * a subpool minimum size must be manitained.
 130 */
 131static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 132				      long delta)
 133{
 134	long ret = delta;
 135
 136	if (!spool)
 137		return ret;
 138
 139	spin_lock(&spool->lock);
 140
 141	if (spool->max_hpages != -1) {		/* maximum size accounting */
 142		if ((spool->used_hpages + delta) <= spool->max_hpages)
 143			spool->used_hpages += delta;
 144		else {
 145			ret = -ENOMEM;
 146			goto unlock_ret;
 147		}
 148	}
 149
 150	/* minimum size accounting */
 151	if (spool->min_hpages != -1 && spool->rsv_hpages) {
 152		if (delta > spool->rsv_hpages) {
 153			/*
 154			 * Asking for more reserves than those already taken on
 155			 * behalf of subpool.  Return difference.
 156			 */
 157			ret = delta - spool->rsv_hpages;
 158			spool->rsv_hpages = 0;
 159		} else {
 160			ret = 0;	/* reserves already accounted for */
 161			spool->rsv_hpages -= delta;
 162		}
 163	}
 164
 165unlock_ret:
 166	spin_unlock(&spool->lock);
 
 167	return ret;
 168}
 169
 170/*
 171 * Subpool accounting for freeing and unreserving pages.
 172 * Return the number of global page reservations that must be dropped.
 173 * The return value may only be different than the passed value (delta)
 174 * in the case where a subpool minimum size must be maintained.
 175 */
 176static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 177				       long delta)
 178{
 179	long ret = delta;
 180
 181	if (!spool)
 182		return delta;
 183
 184	spin_lock(&spool->lock);
 185
 186	if (spool->max_hpages != -1)		/* maximum size accounting */
 187		spool->used_hpages -= delta;
 188
 189	 /* minimum size accounting */
 190	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 191		if (spool->rsv_hpages + delta <= spool->min_hpages)
 192			ret = 0;
 193		else
 194			ret = spool->rsv_hpages + delta - spool->min_hpages;
 195
 196		spool->rsv_hpages += delta;
 197		if (spool->rsv_hpages > spool->min_hpages)
 198			spool->rsv_hpages = spool->min_hpages;
 199	}
 200
 201	/*
 202	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
 203	 * quota reference, free it now.
 204	 */
 205	unlock_or_release_subpool(spool);
 206
 207	return ret;
 208}
 209
 210static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 211{
 212	return HUGETLBFS_SB(inode->i_sb)->spool;
 213}
 214
 215static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 216{
 217	return subpool_inode(file_inode(vma->vm_file));
 218}
 219
 220/*
 221 * Region tracking -- allows tracking of reservations and instantiated pages
 222 *                    across the pages in a mapping.
 223 *
 224 * The region data structures are embedded into a resv_map and protected
 225 * by a resv_map's lock.  The set of regions within the resv_map represent
 226 * reservations for huge pages, or huge pages that have already been
 227 * instantiated within the map.  The from and to elements are huge page
 228 * indicies into the associated mapping.  from indicates the starting index
 229 * of the region.  to represents the first index past the end of  the region.
 230 *
 231 * For example, a file region structure with from == 0 and to == 4 represents
 232 * four huge pages in a mapping.  It is important to note that the to element
 233 * represents the first element past the end of the region. This is used in
 234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 235 *
 236 * Interval notation of the form [from, to) will be used to indicate that
 237 * the endpoint from is inclusive and to is exclusive.
 238 */
 239struct file_region {
 240	struct list_head link;
 241	long from;
 242	long to;
 243};
 244
 245/*
 246 * Add the huge page range represented by [f, t) to the reserve
 247 * map.  In the normal case, existing regions will be expanded
 248 * to accommodate the specified range.  Sufficient regions should
 249 * exist for expansion due to the previous call to region_chg
 250 * with the same range.  However, it is possible that region_del
 251 * could have been called after region_chg and modifed the map
 252 * in such a way that no region exists to be expanded.  In this
 253 * case, pull a region descriptor from the cache associated with
 254 * the map and use that for the new range.
 255 *
 256 * Return the number of new huge pages added to the map.  This
 257 * number is greater than or equal to zero.
 258 */
 259static long region_add(struct resv_map *resv, long f, long t)
 260{
 261	struct list_head *head = &resv->regions;
 262	struct file_region *rg, *nrg, *trg;
 263	long add = 0;
 264
 265	spin_lock(&resv->lock);
 266	/* Locate the region we are either in or before. */
 267	list_for_each_entry(rg, head, link)
 268		if (f <= rg->to)
 269			break;
 270
 271	/*
 272	 * If no region exists which can be expanded to include the
 273	 * specified range, the list must have been modified by an
 274	 * interleving call to region_del().  Pull a region descriptor
 275	 * from the cache and use it for this range.
 276	 */
 277	if (&rg->link == head || t < rg->from) {
 278		VM_BUG_ON(resv->region_cache_count <= 0);
 279
 280		resv->region_cache_count--;
 281		nrg = list_first_entry(&resv->region_cache, struct file_region,
 282					link);
 283		list_del(&nrg->link);
 284
 285		nrg->from = f;
 286		nrg->to = t;
 287		list_add(&nrg->link, rg->link.prev);
 288
 289		add += t - f;
 290		goto out_locked;
 291	}
 292
 293	/* Round our left edge to the current segment if it encloses us. */
 294	if (f > rg->from)
 295		f = rg->from;
 296
 297	/* Check for and consume any regions we now overlap with. */
 298	nrg = rg;
 299	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 300		if (&rg->link == head)
 301			break;
 302		if (rg->from > t)
 303			break;
 304
 305		/* If this area reaches higher then extend our area to
 306		 * include it completely.  If this is not the first area
 307		 * which we intend to reuse, free it. */
 308		if (rg->to > t)
 309			t = rg->to;
 310		if (rg != nrg) {
 311			/* Decrement return value by the deleted range.
 312			 * Another range will span this area so that by
 313			 * end of routine add will be >= zero
 314			 */
 315			add -= (rg->to - rg->from);
 316			list_del(&rg->link);
 317			kfree(rg);
 318		}
 319	}
 320
 321	add += (nrg->from - f);		/* Added to beginning of region */
 322	nrg->from = f;
 323	add += t - nrg->to;		/* Added to end of region */
 324	nrg->to = t;
 325
 326out_locked:
 327	resv->adds_in_progress--;
 328	spin_unlock(&resv->lock);
 329	VM_BUG_ON(add < 0);
 330	return add;
 331}
 332
 333/*
 334 * Examine the existing reserve map and determine how many
 335 * huge pages in the specified range [f, t) are NOT currently
 336 * represented.  This routine is called before a subsequent
 337 * call to region_add that will actually modify the reserve
 338 * map to add the specified range [f, t).  region_chg does
 339 * not change the number of huge pages represented by the
 340 * map.  However, if the existing regions in the map can not
 341 * be expanded to represent the new range, a new file_region
 342 * structure is added to the map as a placeholder.  This is
 343 * so that the subsequent region_add call will have all the
 344 * regions it needs and will not fail.
 345 *
 346 * Upon entry, region_chg will also examine the cache of region descriptors
 347 * associated with the map.  If there are not enough descriptors cached, one
 348 * will be allocated for the in progress add operation.
 349 *
 350 * Returns the number of huge pages that need to be added to the existing
 351 * reservation map for the range [f, t).  This number is greater or equal to
 352 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 353 * is needed and can not be allocated.
 354 */
 355static long region_chg(struct resv_map *resv, long f, long t)
 356{
 357	struct list_head *head = &resv->regions;
 358	struct file_region *rg, *nrg = NULL;
 359	long chg = 0;
 360
 361retry:
 362	spin_lock(&resv->lock);
 363retry_locked:
 364	resv->adds_in_progress++;
 365
 366	/*
 367	 * Check for sufficient descriptors in the cache to accommodate
 368	 * the number of in progress add operations.
 369	 */
 370	if (resv->adds_in_progress > resv->region_cache_count) {
 371		struct file_region *trg;
 372
 373		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
 374		/* Must drop lock to allocate a new descriptor. */
 375		resv->adds_in_progress--;
 376		spin_unlock(&resv->lock);
 377
 378		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 379		if (!trg) {
 380			kfree(nrg);
 381			return -ENOMEM;
 382		}
 383
 384		spin_lock(&resv->lock);
 385		list_add(&trg->link, &resv->region_cache);
 386		resv->region_cache_count++;
 387		goto retry_locked;
 388	}
 389
 390	/* Locate the region we are before or in. */
 391	list_for_each_entry(rg, head, link)
 392		if (f <= rg->to)
 393			break;
 394
 395	/* If we are below the current region then a new region is required.
 396	 * Subtle, allocate a new region at the position but make it zero
 397	 * size such that we can guarantee to record the reservation. */
 398	if (&rg->link == head || t < rg->from) {
 399		if (!nrg) {
 400			resv->adds_in_progress--;
 401			spin_unlock(&resv->lock);
 402			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 403			if (!nrg)
 404				return -ENOMEM;
 405
 406			nrg->from = f;
 407			nrg->to   = f;
 408			INIT_LIST_HEAD(&nrg->link);
 409			goto retry;
 410		}
 411
 412		list_add(&nrg->link, rg->link.prev);
 413		chg = t - f;
 414		goto out_nrg;
 415	}
 416
 417	/* Round our left edge to the current segment if it encloses us. */
 418	if (f > rg->from)
 419		f = rg->from;
 420	chg = t - f;
 421
 422	/* Check for and consume any regions we now overlap with. */
 423	list_for_each_entry(rg, rg->link.prev, link) {
 424		if (&rg->link == head)
 425			break;
 426		if (rg->from > t)
 427			goto out;
 428
 429		/* We overlap with this area, if it extends further than
 430		 * us then we must extend ourselves.  Account for its
 431		 * existing reservation. */
 432		if (rg->to > t) {
 433			chg += rg->to - t;
 434			t = rg->to;
 435		}
 436		chg -= rg->to - rg->from;
 437	}
 438
 439out:
 440	spin_unlock(&resv->lock);
 441	/*  We already know we raced and no longer need the new region */
 442	kfree(nrg);
 443	return chg;
 444out_nrg:
 445	spin_unlock(&resv->lock);
 446	return chg;
 447}
 448
 449/*
 450 * Abort the in progress add operation.  The adds_in_progress field
 451 * of the resv_map keeps track of the operations in progress between
 452 * calls to region_chg and region_add.  Operations are sometimes
 453 * aborted after the call to region_chg.  In such cases, region_abort
 454 * is called to decrement the adds_in_progress counter.
 455 *
 456 * NOTE: The range arguments [f, t) are not needed or used in this
 457 * routine.  They are kept to make reading the calling code easier as
 458 * arguments will match the associated region_chg call.
 459 */
 460static void region_abort(struct resv_map *resv, long f, long t)
 461{
 462	spin_lock(&resv->lock);
 463	VM_BUG_ON(!resv->region_cache_count);
 464	resv->adds_in_progress--;
 465	spin_unlock(&resv->lock);
 466}
 467
 468/*
 469 * Delete the specified range [f, t) from the reserve map.  If the
 470 * t parameter is LONG_MAX, this indicates that ALL regions after f
 471 * should be deleted.  Locate the regions which intersect [f, t)
 472 * and either trim, delete or split the existing regions.
 473 *
 474 * Returns the number of huge pages deleted from the reserve map.
 475 * In the normal case, the return value is zero or more.  In the
 476 * case where a region must be split, a new region descriptor must
 477 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 478 * NOTE: If the parameter t == LONG_MAX, then we will never split
 479 * a region and possibly return -ENOMEM.  Callers specifying
 480 * t == LONG_MAX do not need to check for -ENOMEM error.
 481 */
 482static long region_del(struct resv_map *resv, long f, long t)
 483{
 484	struct list_head *head = &resv->regions;
 485	struct file_region *rg, *trg;
 486	struct file_region *nrg = NULL;
 487	long del = 0;
 488
 489retry:
 490	spin_lock(&resv->lock);
 491	list_for_each_entry_safe(rg, trg, head, link) {
 492		/*
 493		 * Skip regions before the range to be deleted.  file_region
 494		 * ranges are normally of the form [from, to).  However, there
 495		 * may be a "placeholder" entry in the map which is of the form
 496		 * (from, to) with from == to.  Check for placeholder entries
 497		 * at the beginning of the range to be deleted.
 498		 */
 499		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 500			continue;
 501
 502		if (rg->from >= t)
 503			break;
 
 
 504
 505		if (f > rg->from && t < rg->to) { /* Must split region */
 506			/*
 507			 * Check for an entry in the cache before dropping
 508			 * lock and attempting allocation.
 509			 */
 510			if (!nrg &&
 511			    resv->region_cache_count > resv->adds_in_progress) {
 512				nrg = list_first_entry(&resv->region_cache,
 513							struct file_region,
 514							link);
 515				list_del(&nrg->link);
 516				resv->region_cache_count--;
 517			}
 518
 519			if (!nrg) {
 520				spin_unlock(&resv->lock);
 521				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 522				if (!nrg)
 523					return -ENOMEM;
 524				goto retry;
 525			}
 526
 527			del += t - f;
 528
 529			/* New entry for end of split region */
 530			nrg->from = t;
 531			nrg->to = rg->to;
 532			INIT_LIST_HEAD(&nrg->link);
 533
 534			/* Original entry is trimmed */
 535			rg->to = f;
 536
 537			list_add(&nrg->link, &rg->link);
 538			nrg = NULL;
 
 539			break;
 540		}
 541
 542		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 543			del += rg->to - rg->from;
 544			list_del(&rg->link);
 545			kfree(rg);
 546			continue;
 547		}
 548
 549		if (f <= rg->from) {	/* Trim beginning of region */
 550			del += t - rg->from;
 551			rg->from = t;
 552		} else {		/* Trim end of region */
 553			del += rg->to - f;
 554			rg->to = f;
 555		}
 556	}
 557
 
 558	spin_unlock(&resv->lock);
 559	kfree(nrg);
 560	return del;
 561}
 562
 563/*
 564 * A rare out of memory error was encountered which prevented removal of
 565 * the reserve map region for a page.  The huge page itself was free'ed
 566 * and removed from the page cache.  This routine will adjust the subpool
 567 * usage count, and the global reserve count if needed.  By incrementing
 568 * these counts, the reserve map entry which could not be deleted will
 569 * appear as a "reserved" entry instead of simply dangling with incorrect
 570 * counts.
 571 */
 572void hugetlb_fix_reserve_counts(struct inode *inode)
 573{
 574	struct hugepage_subpool *spool = subpool_inode(inode);
 575	long rsv_adjust;
 576
 577	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 578	if (rsv_adjust) {
 579		struct hstate *h = hstate_inode(inode);
 580
 581		hugetlb_acct_memory(h, 1);
 582	}
 583}
 584
 585/*
 586 * Count and return the number of huge pages in the reserve map
 587 * that intersect with the range [f, t).
 588 */
 589static long region_count(struct resv_map *resv, long f, long t)
 590{
 591	struct list_head *head = &resv->regions;
 592	struct file_region *rg;
 593	long chg = 0;
 594
 595	spin_lock(&resv->lock);
 596	/* Locate each segment we overlap with, and count that overlap. */
 597	list_for_each_entry(rg, head, link) {
 598		long seg_from;
 599		long seg_to;
 600
 601		if (rg->to <= f)
 602			continue;
 603		if (rg->from >= t)
 604			break;
 605
 606		seg_from = max(rg->from, f);
 607		seg_to = min(rg->to, t);
 608
 609		chg += seg_to - seg_from;
 610	}
 611	spin_unlock(&resv->lock);
 612
 613	return chg;
 614}
 615
 616/*
 617 * Convert the address within this vma to the page offset within
 618 * the mapping, in pagecache page units; huge pages here.
 619 */
 620static pgoff_t vma_hugecache_offset(struct hstate *h,
 621			struct vm_area_struct *vma, unsigned long address)
 622{
 623	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 624			(vma->vm_pgoff >> huge_page_order(h));
 625}
 626
 627pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 628				     unsigned long address)
 629{
 630	return vma_hugecache_offset(hstate_vma(vma), vma, address);
 631}
 632EXPORT_SYMBOL_GPL(linear_hugepage_index);
 633
 634/*
 635 * Return the size of the pages allocated when backing a VMA. In the majority
 636 * cases this will be same size as used by the page table entries.
 637 */
 638unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 639{
 640	if (vma->vm_ops && vma->vm_ops->pagesize)
 641		return vma->vm_ops->pagesize(vma);
 642	return PAGE_SIZE;
 
 
 
 
 
 643}
 644EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 645
 646/*
 647 * Return the page size being used by the MMU to back a VMA. In the majority
 648 * of cases, the page size used by the kernel matches the MMU size. On
 649 * architectures where it differs, an architecture-specific 'strong'
 650 * version of this symbol is required.
 651 */
 652__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 
 653{
 654	return vma_kernel_pagesize(vma);
 655}
 
 656
 657/*
 658 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 659 * bits of the reservation map pointer, which are always clear due to
 660 * alignment.
 661 */
 662#define HPAGE_RESV_OWNER    (1UL << 0)
 663#define HPAGE_RESV_UNMAPPED (1UL << 1)
 664#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 665
 666/*
 667 * These helpers are used to track how many pages are reserved for
 668 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 669 * is guaranteed to have their future faults succeed.
 670 *
 671 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 672 * the reserve counters are updated with the hugetlb_lock held. It is safe
 673 * to reset the VMA at fork() time as it is not in use yet and there is no
 674 * chance of the global counters getting corrupted as a result of the values.
 675 *
 676 * The private mapping reservation is represented in a subtly different
 677 * manner to a shared mapping.  A shared mapping has a region map associated
 678 * with the underlying file, this region map represents the backing file
 679 * pages which have ever had a reservation assigned which this persists even
 680 * after the page is instantiated.  A private mapping has a region map
 681 * associated with the original mmap which is attached to all VMAs which
 682 * reference it, this region map represents those offsets which have consumed
 683 * reservation ie. where pages have been instantiated.
 684 */
 685static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 686{
 687	return (unsigned long)vma->vm_private_data;
 688}
 689
 690static void set_vma_private_data(struct vm_area_struct *vma,
 691							unsigned long value)
 692{
 693	vma->vm_private_data = (void *)value;
 694}
 695
 696struct resv_map *resv_map_alloc(void)
 697{
 698	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 699	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 700
 701	if (!resv_map || !rg) {
 702		kfree(resv_map);
 703		kfree(rg);
 704		return NULL;
 705	}
 706
 707	kref_init(&resv_map->refs);
 708	spin_lock_init(&resv_map->lock);
 709	INIT_LIST_HEAD(&resv_map->regions);
 710
 711	resv_map->adds_in_progress = 0;
 712
 713	INIT_LIST_HEAD(&resv_map->region_cache);
 714	list_add(&rg->link, &resv_map->region_cache);
 715	resv_map->region_cache_count = 1;
 716
 717	return resv_map;
 718}
 719
 720void resv_map_release(struct kref *ref)
 721{
 722	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 723	struct list_head *head = &resv_map->region_cache;
 724	struct file_region *rg, *trg;
 725
 726	/* Clear out any active regions before we release the map. */
 727	region_del(resv_map, 0, LONG_MAX);
 728
 729	/* ... and any entries left in the cache */
 730	list_for_each_entry_safe(rg, trg, head, link) {
 731		list_del(&rg->link);
 732		kfree(rg);
 733	}
 734
 735	VM_BUG_ON(resv_map->adds_in_progress);
 736
 737	kfree(resv_map);
 738}
 739
 740static inline struct resv_map *inode_resv_map(struct inode *inode)
 741{
 742	return inode->i_mapping->private_data;
 743}
 744
 745static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 746{
 747	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 748	if (vma->vm_flags & VM_MAYSHARE) {
 749		struct address_space *mapping = vma->vm_file->f_mapping;
 750		struct inode *inode = mapping->host;
 751
 752		return inode_resv_map(inode);
 753
 754	} else {
 755		return (struct resv_map *)(get_vma_private_data(vma) &
 756							~HPAGE_RESV_MASK);
 757	}
 758}
 759
 760static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 761{
 762	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 763	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 764
 765	set_vma_private_data(vma, (get_vma_private_data(vma) &
 766				HPAGE_RESV_MASK) | (unsigned long)map);
 767}
 768
 769static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 770{
 771	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 772	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 773
 774	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 775}
 776
 777static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 778{
 779	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 780
 781	return (get_vma_private_data(vma) & flag) != 0;
 782}
 783
 784/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 785void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 786{
 787	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 788	if (!(vma->vm_flags & VM_MAYSHARE))
 789		vma->vm_private_data = (void *)0;
 790}
 791
 792/* Returns true if the VMA has associated reserve pages */
 793static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 794{
 795	if (vma->vm_flags & VM_NORESERVE) {
 796		/*
 797		 * This address is already reserved by other process(chg == 0),
 798		 * so, we should decrement reserved count. Without decrementing,
 799		 * reserve count remains after releasing inode, because this
 800		 * allocated page will go into page cache and is regarded as
 801		 * coming from reserved pool in releasing step.  Currently, we
 802		 * don't have any other solution to deal with this situation
 803		 * properly, so add work-around here.
 804		 */
 805		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 806			return true;
 807		else
 808			return false;
 809	}
 810
 811	/* Shared mappings always use reserves */
 812	if (vma->vm_flags & VM_MAYSHARE) {
 813		/*
 814		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 815		 * be a region map for all pages.  The only situation where
 816		 * there is no region map is if a hole was punched via
 817		 * fallocate.  In this case, there really are no reverves to
 818		 * use.  This situation is indicated if chg != 0.
 819		 */
 820		if (chg)
 821			return false;
 822		else
 823			return true;
 824	}
 825
 826	/*
 827	 * Only the process that called mmap() has reserves for
 828	 * private mappings.
 829	 */
 830	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 831		/*
 832		 * Like the shared case above, a hole punch or truncate
 833		 * could have been performed on the private mapping.
 834		 * Examine the value of chg to determine if reserves
 835		 * actually exist or were previously consumed.
 836		 * Very Subtle - The value of chg comes from a previous
 837		 * call to vma_needs_reserves().  The reserve map for
 838		 * private mappings has different (opposite) semantics
 839		 * than that of shared mappings.  vma_needs_reserves()
 840		 * has already taken this difference in semantics into
 841		 * account.  Therefore, the meaning of chg is the same
 842		 * as in the shared case above.  Code could easily be
 843		 * combined, but keeping it separate draws attention to
 844		 * subtle differences.
 845		 */
 846		if (chg)
 847			return false;
 848		else
 849			return true;
 850	}
 851
 852	return false;
 853}
 854
 855static void enqueue_huge_page(struct hstate *h, struct page *page)
 856{
 857	int nid = page_to_nid(page);
 858	list_move(&page->lru, &h->hugepage_freelists[nid]);
 859	h->free_huge_pages++;
 860	h->free_huge_pages_node[nid]++;
 861}
 862
 863static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
 864{
 865	struct page *page;
 866
 867	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 868		if (!PageHWPoison(page))
 869			break;
 870	/*
 871	 * if 'non-isolated free hugepage' not found on the list,
 872	 * the allocation fails.
 873	 */
 874	if (&h->hugepage_freelists[nid] == &page->lru)
 875		return NULL;
 876	list_move(&page->lru, &h->hugepage_activelist);
 877	set_page_refcounted(page);
 878	h->free_huge_pages--;
 879	h->free_huge_pages_node[nid]--;
 880	return page;
 881}
 882
 883static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
 884		nodemask_t *nmask)
 885{
 886	unsigned int cpuset_mems_cookie;
 887	struct zonelist *zonelist;
 888	struct zone *zone;
 889	struct zoneref *z;
 890	int node = -1;
 891
 892	zonelist = node_zonelist(nid, gfp_mask);
 893
 894retry_cpuset:
 895	cpuset_mems_cookie = read_mems_allowed_begin();
 896	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
 897		struct page *page;
 898
 899		if (!cpuset_zone_allowed(zone, gfp_mask))
 900			continue;
 901		/*
 902		 * no need to ask again on the same node. Pool is node rather than
 903		 * zone aware
 904		 */
 905		if (zone_to_nid(zone) == node)
 906			continue;
 907		node = zone_to_nid(zone);
 908
 909		page = dequeue_huge_page_node_exact(h, node);
 910		if (page)
 911			return page;
 912	}
 913	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
 914		goto retry_cpuset;
 915
 916	return NULL;
 917}
 918
 919/* Movability of hugepages depends on migration support. */
 920static inline gfp_t htlb_alloc_mask(struct hstate *h)
 921{
 922	if (hugepage_migration_supported(h))
 923		return GFP_HIGHUSER_MOVABLE;
 924	else
 925		return GFP_HIGHUSER;
 926}
 927
 928static struct page *dequeue_huge_page_vma(struct hstate *h,
 929				struct vm_area_struct *vma,
 930				unsigned long address, int avoid_reserve,
 931				long chg)
 932{
 933	struct page *page;
 934	struct mempolicy *mpol;
 935	gfp_t gfp_mask;
 936	nodemask_t *nodemask;
 937	int nid;
 
 
 
 938
 939	/*
 940	 * A child process with MAP_PRIVATE mappings created by their parent
 941	 * have no page reserves. This check ensures that reservations are
 942	 * not "stolen". The child may still get SIGKILLed
 943	 */
 944	if (!vma_has_reserves(vma, chg) &&
 945			h->free_huge_pages - h->resv_huge_pages == 0)
 946		goto err;
 947
 948	/* If reserves cannot be used, ensure enough pages are in the pool */
 949	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 950		goto err;
 951
 952	gfp_mask = htlb_alloc_mask(h);
 953	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
 954	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
 955	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
 956		SetPagePrivate(page);
 957		h->resv_huge_pages--;
 958	}
 959
 960	mpol_cond_put(mpol);
 961	return page;
 962
 963err:
 964	return NULL;
 965}
 966
 967/*
 968 * common helper functions for hstate_next_node_to_{alloc|free}.
 969 * We may have allocated or freed a huge page based on a different
 970 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 971 * be outside of *nodes_allowed.  Ensure that we use an allowed
 972 * node for alloc or free.
 973 */
 974static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 975{
 976	nid = next_node_in(nid, *nodes_allowed);
 977	VM_BUG_ON(nid >= MAX_NUMNODES);
 978
 979	return nid;
 980}
 981
 982static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 983{
 984	if (!node_isset(nid, *nodes_allowed))
 985		nid = next_node_allowed(nid, nodes_allowed);
 986	return nid;
 987}
 988
 989/*
 990 * returns the previously saved node ["this node"] from which to
 991 * allocate a persistent huge page for the pool and advance the
 992 * next node from which to allocate, handling wrap at end of node
 993 * mask.
 994 */
 995static int hstate_next_node_to_alloc(struct hstate *h,
 996					nodemask_t *nodes_allowed)
 997{
 998	int nid;
 999
1000	VM_BUG_ON(!nodes_allowed);
1001
1002	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1003	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1004
1005	return nid;
1006}
1007
1008/*
1009 * helper for free_pool_huge_page() - return the previously saved
1010 * node ["this node"] from which to free a huge page.  Advance the
1011 * next node id whether or not we find a free huge page to free so
1012 * that the next attempt to free addresses the next node.
1013 */
1014static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1015{
1016	int nid;
1017
1018	VM_BUG_ON(!nodes_allowed);
1019
1020	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1021	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1022
1023	return nid;
1024}
1025
1026#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1027	for (nr_nodes = nodes_weight(*mask);				\
1028		nr_nodes > 0 &&						\
1029		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1030		nr_nodes--)
1031
1032#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1033	for (nr_nodes = nodes_weight(*mask);				\
1034		nr_nodes > 0 &&						\
1035		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1036		nr_nodes--)
1037
1038#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1039static void destroy_compound_gigantic_page(struct page *page,
1040					unsigned int order)
1041{
1042	int i;
1043	int nr_pages = 1 << order;
1044	struct page *p = page + 1;
1045
1046	atomic_set(compound_mapcount_ptr(page), 0);
1047	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1048		clear_compound_head(p);
1049		set_page_refcounted(p);
1050	}
1051
1052	set_compound_order(page, 0);
1053	__ClearPageHead(page);
1054}
1055
1056static void free_gigantic_page(struct page *page, unsigned int order)
1057{
1058	free_contig_range(page_to_pfn(page), 1 << order);
1059}
1060
1061static int __alloc_gigantic_page(unsigned long start_pfn,
1062				unsigned long nr_pages, gfp_t gfp_mask)
1063{
1064	unsigned long end_pfn = start_pfn + nr_pages;
1065	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1066				  gfp_mask);
1067}
1068
1069static bool pfn_range_valid_gigantic(struct zone *z,
1070			unsigned long start_pfn, unsigned long nr_pages)
1071{
1072	unsigned long i, end_pfn = start_pfn + nr_pages;
1073	struct page *page;
1074
1075	for (i = start_pfn; i < end_pfn; i++) {
1076		if (!pfn_valid(i))
1077			return false;
1078
1079		page = pfn_to_page(i);
1080
1081		if (page_zone(page) != z)
1082			return false;
1083
1084		if (PageReserved(page))
1085			return false;
1086
1087		if (page_count(page) > 0)
1088			return false;
1089
1090		if (PageHuge(page))
1091			return false;
1092	}
1093
1094	return true;
1095}
1096
1097static bool zone_spans_last_pfn(const struct zone *zone,
1098			unsigned long start_pfn, unsigned long nr_pages)
1099{
1100	unsigned long last_pfn = start_pfn + nr_pages - 1;
1101	return zone_spans_pfn(zone, last_pfn);
1102}
1103
1104static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1105		int nid, nodemask_t *nodemask)
1106{
1107	unsigned int order = huge_page_order(h);
1108	unsigned long nr_pages = 1 << order;
1109	unsigned long ret, pfn, flags;
1110	struct zonelist *zonelist;
1111	struct zone *zone;
1112	struct zoneref *z;
1113
1114	zonelist = node_zonelist(nid, gfp_mask);
1115	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1116		spin_lock_irqsave(&zone->lock, flags);
1117
1118		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1119		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1120			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1121				/*
1122				 * We release the zone lock here because
1123				 * alloc_contig_range() will also lock the zone
1124				 * at some point. If there's an allocation
1125				 * spinning on this lock, it may win the race
1126				 * and cause alloc_contig_range() to fail...
1127				 */
1128				spin_unlock_irqrestore(&zone->lock, flags);
1129				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1130				if (!ret)
1131					return pfn_to_page(pfn);
1132				spin_lock_irqsave(&zone->lock, flags);
1133			}
1134			pfn += nr_pages;
1135		}
1136
1137		spin_unlock_irqrestore(&zone->lock, flags);
1138	}
1139
 
 
 
 
 
 
1140	return NULL;
1141}
1142
1143static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1144static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1145
1146#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1147static inline bool gigantic_page_supported(void) { return false; }
1148static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1149		int nid, nodemask_t *nodemask) { return NULL; }
1150static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1151static inline void destroy_compound_gigantic_page(struct page *page,
1152						unsigned int order) { }
1153#endif
1154
1155static void update_and_free_page(struct hstate *h, struct page *page)
1156{
1157	int i;
1158
1159	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1160		return;
1161
1162	h->nr_huge_pages--;
1163	h->nr_huge_pages_node[page_to_nid(page)]--;
1164	for (i = 0; i < pages_per_huge_page(h); i++) {
1165		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1166				1 << PG_referenced | 1 << PG_dirty |
1167				1 << PG_active | 1 << PG_private |
1168				1 << PG_writeback);
1169	}
1170	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1171	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1172	set_page_refcounted(page);
1173	if (hstate_is_gigantic(h)) {
1174		destroy_compound_gigantic_page(page, huge_page_order(h));
1175		free_gigantic_page(page, huge_page_order(h));
1176	} else {
1177		__free_pages(page, huge_page_order(h));
1178	}
1179}
1180
1181struct hstate *size_to_hstate(unsigned long size)
1182{
1183	struct hstate *h;
1184
1185	for_each_hstate(h) {
1186		if (huge_page_size(h) == size)
1187			return h;
1188	}
1189	return NULL;
1190}
1191
1192/*
1193 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1194 * to hstate->hugepage_activelist.)
1195 *
1196 * This function can be called for tail pages, but never returns true for them.
1197 */
1198bool page_huge_active(struct page *page)
1199{
1200	VM_BUG_ON_PAGE(!PageHuge(page), page);
1201	return PageHead(page) && PagePrivate(&page[1]);
1202}
1203
1204/* never called for tail page */
1205static void set_page_huge_active(struct page *page)
1206{
1207	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1208	SetPagePrivate(&page[1]);
1209}
1210
1211static void clear_page_huge_active(struct page *page)
1212{
1213	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1214	ClearPagePrivate(&page[1]);
1215}
1216
1217/*
1218 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1219 * code
1220 */
1221static inline bool PageHugeTemporary(struct page *page)
1222{
1223	if (!PageHuge(page))
1224		return false;
1225
1226	return (unsigned long)page[2].mapping == -1U;
1227}
1228
1229static inline void SetPageHugeTemporary(struct page *page)
1230{
1231	page[2].mapping = (void *)-1U;
1232}
1233
1234static inline void ClearPageHugeTemporary(struct page *page)
1235{
1236	page[2].mapping = NULL;
1237}
1238
1239void free_huge_page(struct page *page)
1240{
1241	/*
1242	 * Can't pass hstate in here because it is called from the
1243	 * compound page destructor.
1244	 */
1245	struct hstate *h = page_hstate(page);
1246	int nid = page_to_nid(page);
1247	struct hugepage_subpool *spool =
1248		(struct hugepage_subpool *)page_private(page);
1249	bool restore_reserve;
1250
1251	set_page_private(page, 0);
1252	page->mapping = NULL;
1253	VM_BUG_ON_PAGE(page_count(page), page);
1254	VM_BUG_ON_PAGE(page_mapcount(page), page);
1255	restore_reserve = PagePrivate(page);
1256	ClearPagePrivate(page);
1257
1258	/*
1259	 * A return code of zero implies that the subpool will be under its
1260	 * minimum size if the reservation is not restored after page is free.
1261	 * Therefore, force restore_reserve operation.
1262	 */
1263	if (hugepage_subpool_put_pages(spool, 1) == 0)
1264		restore_reserve = true;
1265
1266	spin_lock(&hugetlb_lock);
1267	clear_page_huge_active(page);
1268	hugetlb_cgroup_uncharge_page(hstate_index(h),
1269				     pages_per_huge_page(h), page);
1270	if (restore_reserve)
1271		h->resv_huge_pages++;
1272
1273	if (PageHugeTemporary(page)) {
1274		list_del(&page->lru);
1275		ClearPageHugeTemporary(page);
1276		update_and_free_page(h, page);
1277	} else if (h->surplus_huge_pages_node[nid]) {
1278		/* remove the page from active list */
1279		list_del(&page->lru);
1280		update_and_free_page(h, page);
1281		h->surplus_huge_pages--;
1282		h->surplus_huge_pages_node[nid]--;
1283	} else {
1284		arch_clear_hugepage_flags(page);
1285		enqueue_huge_page(h, page);
1286	}
1287	spin_unlock(&hugetlb_lock);
 
1288}
1289
1290static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1291{
1292	INIT_LIST_HEAD(&page->lru);
1293	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1294	spin_lock(&hugetlb_lock);
1295	set_hugetlb_cgroup(page, NULL);
1296	h->nr_huge_pages++;
1297	h->nr_huge_pages_node[nid]++;
1298	spin_unlock(&hugetlb_lock);
 
1299}
1300
1301static void prep_compound_gigantic_page(struct page *page, unsigned int order)
 
1302{
1303	int i;
1304	int nr_pages = 1 << order;
1305	struct page *p = page + 1;
1306
1307	/* we rely on prep_new_huge_page to set the destructor */
1308	set_compound_order(page, order);
1309	__ClearPageReserved(page);
1310	__SetPageHead(page);
 
1311	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
 
1312		/*
1313		 * For gigantic hugepages allocated through bootmem at
1314		 * boot, it's safer to be consistent with the not-gigantic
1315		 * hugepages and clear the PG_reserved bit from all tail pages
1316		 * too.  Otherwse drivers using get_user_pages() to access tail
1317		 * pages may get the reference counting wrong if they see
1318		 * PG_reserved set on a tail page (despite the head page not
1319		 * having PG_reserved set).  Enforcing this consistency between
1320		 * head and tail pages allows drivers to optimize away a check
1321		 * on the head page when they need know if put_page() is needed
1322		 * after get_user_pages().
1323		 */
1324		__ClearPageReserved(p);
1325		set_page_count(p, 0);
1326		set_compound_head(p, page);
1327	}
1328	atomic_set(compound_mapcount_ptr(page), -1);
1329}
1330
1331/*
1332 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1333 * transparent huge pages.  See the PageTransHuge() documentation for more
1334 * details.
1335 */
1336int PageHuge(struct page *page)
1337{
1338	if (!PageCompound(page))
1339		return 0;
1340
1341	page = compound_head(page);
1342	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1343}
1344EXPORT_SYMBOL_GPL(PageHuge);
1345
1346/*
1347 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1348 * normal or transparent huge pages.
1349 */
1350int PageHeadHuge(struct page *page_head)
1351{
1352	if (!PageHead(page_head))
1353		return 0;
1354
1355	return get_compound_page_dtor(page_head) == free_huge_page;
1356}
1357
1358pgoff_t __basepage_index(struct page *page)
1359{
1360	struct page *page_head = compound_head(page);
1361	pgoff_t index = page_index(page_head);
1362	unsigned long compound_idx;
1363
1364	if (!PageHuge(page_head))
1365		return page_index(page);
1366
1367	if (compound_order(page_head) >= MAX_ORDER)
1368		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1369	else
1370		compound_idx = page - page_head;
1371
1372	return (index << compound_order(page_head)) + compound_idx;
1373}
1374
1375static struct page *alloc_buddy_huge_page(struct hstate *h,
1376		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1377{
1378	int order = huge_page_order(h);
1379	struct page *page;
1380
1381	gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1382	if (nid == NUMA_NO_NODE)
1383		nid = numa_mem_id();
1384	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1385	if (page)
1386		__count_vm_event(HTLB_BUDDY_PGALLOC);
1387	else
1388		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
 
 
 
 
 
 
1389
1390	return page;
1391}
1392
1393/*
1394 * Common helper to allocate a fresh hugetlb page. All specific allocators
1395 * should use this function to get new hugetlb pages
 
 
 
1396 */
1397static struct page *alloc_fresh_huge_page(struct hstate *h,
1398		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1399{
1400	struct page *page;
 
 
 
1401
1402	if (hstate_is_gigantic(h))
1403		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1404	else
1405		page = alloc_buddy_huge_page(h, gfp_mask,
1406				nid, nmask);
1407	if (!page)
1408		return NULL;
1409
1410	if (hstate_is_gigantic(h))
1411		prep_compound_gigantic_page(page, huge_page_order(h));
1412	prep_new_huge_page(h, page, page_to_nid(page));
 
 
 
1413
1414	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1415}
1416
1417/*
1418 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1419 * manner.
 
 
1420 */
1421static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1422{
1423	struct page *page;
1424	int nr_nodes, node;
1425	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1426
1427	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1428		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1429		if (page)
 
1430			break;
 
1431	}
1432
1433	if (!page)
1434		return 0;
1435
1436	put_page(page); /* free it into the hugepage allocator */
1437
1438	return 1;
1439}
1440
1441/*
1442 * Free huge page from pool from next node to free.
1443 * Attempt to keep persistent huge pages more or less
1444 * balanced over allowed nodes.
1445 * Called with hugetlb_lock locked.
1446 */
1447static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1448							 bool acct_surplus)
1449{
1450	int nr_nodes, node;
1451	int ret = 0;
1452
1453	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1454		/*
1455		 * If we're returning unused surplus pages, only examine
1456		 * nodes with surplus pages.
1457		 */
1458		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1459		    !list_empty(&h->hugepage_freelists[node])) {
1460			struct page *page =
1461				list_entry(h->hugepage_freelists[node].next,
1462					  struct page, lru);
1463			list_del(&page->lru);
1464			h->free_huge_pages--;
1465			h->free_huge_pages_node[node]--;
1466			if (acct_surplus) {
1467				h->surplus_huge_pages--;
1468				h->surplus_huge_pages_node[node]--;
1469			}
1470			update_and_free_page(h, page);
1471			ret = 1;
1472			break;
1473		}
1474	}
1475
1476	return ret;
1477}
1478
1479/*
1480 * Dissolve a given free hugepage into free buddy pages. This function does
1481 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1482 * number of free hugepages would be reduced below the number of reserved
1483 * hugepages.
1484 */
1485int dissolve_free_huge_page(struct page *page)
1486{
1487	int rc = 0;
1488
1489	spin_lock(&hugetlb_lock);
1490	if (PageHuge(page) && !page_count(page)) {
1491		struct page *head = compound_head(page);
1492		struct hstate *h = page_hstate(head);
1493		int nid = page_to_nid(head);
1494		if (h->free_huge_pages - h->resv_huge_pages == 0) {
1495			rc = -EBUSY;
1496			goto out;
1497		}
1498		/*
1499		 * Move PageHWPoison flag from head page to the raw error page,
1500		 * which makes any subpages rather than the error page reusable.
1501		 */
1502		if (PageHWPoison(head) && page != head) {
1503			SetPageHWPoison(page);
1504			ClearPageHWPoison(head);
1505		}
1506		list_del(&head->lru);
1507		h->free_huge_pages--;
1508		h->free_huge_pages_node[nid]--;
1509		h->max_huge_pages--;
1510		update_and_free_page(h, head);
1511	}
1512out:
1513	spin_unlock(&hugetlb_lock);
1514	return rc;
1515}
1516
1517/*
1518 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1519 * make specified memory blocks removable from the system.
1520 * Note that this will dissolve a free gigantic hugepage completely, if any
1521 * part of it lies within the given range.
1522 * Also note that if dissolve_free_huge_page() returns with an error, all
1523 * free hugepages that were dissolved before that error are lost.
1524 */
1525int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1526{
 
1527	unsigned long pfn;
1528	struct page *page;
1529	int rc = 0;
1530
1531	if (!hugepages_supported())
1532		return rc;
1533
1534	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1535		page = pfn_to_page(pfn);
1536		if (PageHuge(page) && !page_count(page)) {
1537			rc = dissolve_free_huge_page(page);
1538			if (rc)
1539				break;
1540		}
1541	}
1542
1543	return rc;
 
 
 
 
 
 
1544}
1545
1546/*
1547 * Allocates a fresh surplus page from the page allocator.
1548 */
1549static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1550		int nid, nodemask_t *nmask)
1551{
1552	struct page *page = NULL;
1553
1554	if (hstate_is_gigantic(h))
1555		return NULL;
1556
1557	spin_lock(&hugetlb_lock);
1558	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1559		goto out_unlock;
1560	spin_unlock(&hugetlb_lock);
1561
1562	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1563	if (!page)
1564		return NULL;
1565
1566	spin_lock(&hugetlb_lock);
1567	/*
1568	 * We could have raced with the pool size change.
1569	 * Double check that and simply deallocate the new page
1570	 * if we would end up overcommiting the surpluses. Abuse
1571	 * temporary page to workaround the nasty free_huge_page
1572	 * codeflow
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1573	 */
 
1574	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1575		SetPageHugeTemporary(page);
1576		put_page(page);
1577		page = NULL;
1578	} else {
 
1579		h->surplus_huge_pages++;
1580		h->surplus_huge_pages_node[page_to_nid(page)]++;
1581	}
1582
1583out_unlock:
1584	spin_unlock(&hugetlb_lock);
1585
1586	return page;
1587}
1588
1589static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1590		int nid, nodemask_t *nmask)
1591{
1592	struct page *page;
1593
1594	if (hstate_is_gigantic(h))
1595		return NULL;
1596
1597	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1598	if (!page)
1599		return NULL;
 
1600
1601	/*
1602	 * We do not account these pages as surplus because they are only
1603	 * temporary and will be released properly on the last reference
1604	 */
1605	SetPageHugeTemporary(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
1606
1607	return page;
1608}
1609
1610/*
1611 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 
 
1612 */
1613static
1614struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1615		struct vm_area_struct *vma, unsigned long addr)
1616{
1617	struct page *page;
1618	struct mempolicy *mpol;
1619	gfp_t gfp_mask = htlb_alloc_mask(h);
1620	int nid;
1621	nodemask_t *nodemask;
1622
1623	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1624	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1625	mpol_cond_put(mpol);
1626
1627	return page;
1628}
1629
1630/* page migration callback function */
1631struct page *alloc_huge_page_node(struct hstate *h, int nid)
1632{
1633	gfp_t gfp_mask = htlb_alloc_mask(h);
1634	struct page *page = NULL;
1635
1636	if (nid != NUMA_NO_NODE)
1637		gfp_mask |= __GFP_THISNODE;
1638
1639	spin_lock(&hugetlb_lock);
1640	if (h->free_huge_pages - h->resv_huge_pages > 0)
1641		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1642	spin_unlock(&hugetlb_lock);
1643
1644	if (!page)
1645		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1646
1647	return page;
1648}
1649
1650/* page migration callback function */
1651struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1652		nodemask_t *nmask)
1653{
1654	gfp_t gfp_mask = htlb_alloc_mask(h);
1655
1656	spin_lock(&hugetlb_lock);
1657	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1658		struct page *page;
1659
1660		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1661		if (page) {
1662			spin_unlock(&hugetlb_lock);
1663			return page;
1664		}
1665	}
1666	spin_unlock(&hugetlb_lock);
1667
1668	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1669}
1670
1671/* mempolicy aware migration callback */
1672struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1673		unsigned long address)
1674{
1675	struct mempolicy *mpol;
1676	nodemask_t *nodemask;
1677	struct page *page;
1678	gfp_t gfp_mask;
1679	int node;
1680
1681	gfp_mask = htlb_alloc_mask(h);
1682	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1683	page = alloc_huge_page_nodemask(h, node, nodemask);
1684	mpol_cond_put(mpol);
1685
1686	return page;
1687}
1688
1689/*
1690 * Increase the hugetlb pool such that it can accommodate a reservation
1691 * of size 'delta'.
1692 */
1693static int gather_surplus_pages(struct hstate *h, int delta)
1694{
1695	struct list_head surplus_list;
1696	struct page *page, *tmp;
1697	int ret, i;
1698	int needed, allocated;
1699	bool alloc_ok = true;
1700
1701	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1702	if (needed <= 0) {
1703		h->resv_huge_pages += delta;
1704		return 0;
1705	}
1706
1707	allocated = 0;
1708	INIT_LIST_HEAD(&surplus_list);
1709
1710	ret = -ENOMEM;
1711retry:
1712	spin_unlock(&hugetlb_lock);
1713	for (i = 0; i < needed; i++) {
1714		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1715				NUMA_NO_NODE, NULL);
1716		if (!page) {
1717			alloc_ok = false;
1718			break;
1719		}
1720		list_add(&page->lru, &surplus_list);
1721		cond_resched();
1722	}
1723	allocated += i;
1724
1725	/*
1726	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1727	 * because either resv_huge_pages or free_huge_pages may have changed.
1728	 */
1729	spin_lock(&hugetlb_lock);
1730	needed = (h->resv_huge_pages + delta) -
1731			(h->free_huge_pages + allocated);
1732	if (needed > 0) {
1733		if (alloc_ok)
1734			goto retry;
1735		/*
1736		 * We were not able to allocate enough pages to
1737		 * satisfy the entire reservation so we free what
1738		 * we've allocated so far.
1739		 */
1740		goto free;
1741	}
1742	/*
1743	 * The surplus_list now contains _at_least_ the number of extra pages
1744	 * needed to accommodate the reservation.  Add the appropriate number
1745	 * of pages to the hugetlb pool and free the extras back to the buddy
1746	 * allocator.  Commit the entire reservation here to prevent another
1747	 * process from stealing the pages as they are added to the pool but
1748	 * before they are reserved.
1749	 */
1750	needed += allocated;
1751	h->resv_huge_pages += delta;
1752	ret = 0;
1753
1754	/* Free the needed pages to the hugetlb pool */
1755	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1756		if ((--needed) < 0)
1757			break;
1758		/*
1759		 * This page is now managed by the hugetlb allocator and has
1760		 * no users -- drop the buddy allocator's reference.
1761		 */
1762		put_page_testzero(page);
1763		VM_BUG_ON_PAGE(page_count(page), page);
1764		enqueue_huge_page(h, page);
1765	}
1766free:
1767	spin_unlock(&hugetlb_lock);
1768
1769	/* Free unnecessary surplus pages to the buddy allocator */
1770	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1771		put_page(page);
1772	spin_lock(&hugetlb_lock);
1773
1774	return ret;
1775}
1776
1777/*
1778 * This routine has two main purposes:
1779 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1780 *    in unused_resv_pages.  This corresponds to the prior adjustments made
1781 *    to the associated reservation map.
1782 * 2) Free any unused surplus pages that may have been allocated to satisfy
1783 *    the reservation.  As many as unused_resv_pages may be freed.
1784 *
1785 * Called with hugetlb_lock held.  However, the lock could be dropped (and
1786 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1787 * we must make sure nobody else can claim pages we are in the process of
1788 * freeing.  Do this by ensuring resv_huge_page always is greater than the
1789 * number of huge pages we plan to free when dropping the lock.
1790 */
1791static void return_unused_surplus_pages(struct hstate *h,
1792					unsigned long unused_resv_pages)
1793{
1794	unsigned long nr_pages;
1795
 
 
 
1796	/* Cannot return gigantic pages currently */
1797	if (hstate_is_gigantic(h))
1798		goto out;
1799
1800	/*
1801	 * Part (or even all) of the reservation could have been backed
1802	 * by pre-allocated pages. Only free surplus pages.
1803	 */
1804	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1805
1806	/*
1807	 * We want to release as many surplus pages as possible, spread
1808	 * evenly across all nodes with memory. Iterate across these nodes
1809	 * until we can no longer free unreserved surplus pages. This occurs
1810	 * when the nodes with surplus pages have no free pages.
1811	 * free_pool_huge_page() will balance the the freed pages across the
1812	 * on-line nodes with memory and will handle the hstate accounting.
1813	 *
1814	 * Note that we decrement resv_huge_pages as we free the pages.  If
1815	 * we drop the lock, resv_huge_pages will still be sufficiently large
1816	 * to cover subsequent pages we may free.
1817	 */
1818	while (nr_pages--) {
1819		h->resv_huge_pages--;
1820		unused_resv_pages--;
1821		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1822			goto out;
1823		cond_resched_lock(&hugetlb_lock);
1824	}
1825
1826out:
1827	/* Fully uncommit the reservation */
1828	h->resv_huge_pages -= unused_resv_pages;
1829}
1830
1831
1832/*
1833 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1834 * are used by the huge page allocation routines to manage reservations.
1835 *
1836 * vma_needs_reservation is called to determine if the huge page at addr
1837 * within the vma has an associated reservation.  If a reservation is
1838 * needed, the value 1 is returned.  The caller is then responsible for
1839 * managing the global reservation and subpool usage counts.  After
1840 * the huge page has been allocated, vma_commit_reservation is called
1841 * to add the page to the reservation map.  If the page allocation fails,
1842 * the reservation must be ended instead of committed.  vma_end_reservation
1843 * is called in such cases.
1844 *
1845 * In the normal case, vma_commit_reservation returns the same value
1846 * as the preceding vma_needs_reservation call.  The only time this
1847 * is not the case is if a reserve map was changed between calls.  It
1848 * is the responsibility of the caller to notice the difference and
1849 * take appropriate action.
1850 *
1851 * vma_add_reservation is used in error paths where a reservation must
1852 * be restored when a newly allocated huge page must be freed.  It is
1853 * to be called after calling vma_needs_reservation to determine if a
1854 * reservation exists.
1855 */
1856enum vma_resv_mode {
1857	VMA_NEEDS_RESV,
1858	VMA_COMMIT_RESV,
1859	VMA_END_RESV,
1860	VMA_ADD_RESV,
1861};
1862static long __vma_reservation_common(struct hstate *h,
1863				struct vm_area_struct *vma, unsigned long addr,
1864				enum vma_resv_mode mode)
1865{
1866	struct resv_map *resv;
1867	pgoff_t idx;
1868	long ret;
1869
1870	resv = vma_resv_map(vma);
1871	if (!resv)
1872		return 1;
1873
1874	idx = vma_hugecache_offset(h, vma, addr);
1875	switch (mode) {
1876	case VMA_NEEDS_RESV:
1877		ret = region_chg(resv, idx, idx + 1);
1878		break;
1879	case VMA_COMMIT_RESV:
1880		ret = region_add(resv, idx, idx + 1);
1881		break;
1882	case VMA_END_RESV:
1883		region_abort(resv, idx, idx + 1);
1884		ret = 0;
1885		break;
1886	case VMA_ADD_RESV:
1887		if (vma->vm_flags & VM_MAYSHARE)
1888			ret = region_add(resv, idx, idx + 1);
1889		else {
1890			region_abort(resv, idx, idx + 1);
1891			ret = region_del(resv, idx, idx + 1);
1892		}
1893		break;
1894	default:
1895		BUG();
1896	}
1897
1898	if (vma->vm_flags & VM_MAYSHARE)
1899		return ret;
1900	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1901		/*
1902		 * In most cases, reserves always exist for private mappings.
1903		 * However, a file associated with mapping could have been
1904		 * hole punched or truncated after reserves were consumed.
1905		 * As subsequent fault on such a range will not use reserves.
1906		 * Subtle - The reserve map for private mappings has the
1907		 * opposite meaning than that of shared mappings.  If NO
1908		 * entry is in the reserve map, it means a reservation exists.
1909		 * If an entry exists in the reserve map, it means the
1910		 * reservation has already been consumed.  As a result, the
1911		 * return value of this routine is the opposite of the
1912		 * value returned from reserve map manipulation routines above.
1913		 */
1914		if (ret)
1915			return 0;
1916		else
1917			return 1;
1918	}
1919	else
1920		return ret < 0 ? ret : 0;
1921}
1922
1923static long vma_needs_reservation(struct hstate *h,
1924			struct vm_area_struct *vma, unsigned long addr)
1925{
1926	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1927}
1928
1929static long vma_commit_reservation(struct hstate *h,
1930			struct vm_area_struct *vma, unsigned long addr)
1931{
1932	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1933}
1934
1935static void vma_end_reservation(struct hstate *h,
1936			struct vm_area_struct *vma, unsigned long addr)
1937{
1938	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1939}
1940
1941static long vma_add_reservation(struct hstate *h,
1942			struct vm_area_struct *vma, unsigned long addr)
1943{
1944	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1945}
1946
1947/*
1948 * This routine is called to restore a reservation on error paths.  In the
1949 * specific error paths, a huge page was allocated (via alloc_huge_page)
1950 * and is about to be freed.  If a reservation for the page existed,
1951 * alloc_huge_page would have consumed the reservation and set PagePrivate
1952 * in the newly allocated page.  When the page is freed via free_huge_page,
1953 * the global reservation count will be incremented if PagePrivate is set.
1954 * However, free_huge_page can not adjust the reserve map.  Adjust the
1955 * reserve map here to be consistent with global reserve count adjustments
1956 * to be made by free_huge_page.
1957 */
1958static void restore_reserve_on_error(struct hstate *h,
1959			struct vm_area_struct *vma, unsigned long address,
1960			struct page *page)
1961{
1962	if (unlikely(PagePrivate(page))) {
1963		long rc = vma_needs_reservation(h, vma, address);
1964
1965		if (unlikely(rc < 0)) {
1966			/*
1967			 * Rare out of memory condition in reserve map
1968			 * manipulation.  Clear PagePrivate so that
1969			 * global reserve count will not be incremented
1970			 * by free_huge_page.  This will make it appear
1971			 * as though the reservation for this page was
1972			 * consumed.  This may prevent the task from
1973			 * faulting in the page at a later time.  This
1974			 * is better than inconsistent global huge page
1975			 * accounting of reserve counts.
1976			 */
1977			ClearPagePrivate(page);
1978		} else if (rc) {
1979			rc = vma_add_reservation(h, vma, address);
1980			if (unlikely(rc < 0))
1981				/*
1982				 * See above comment about rare out of
1983				 * memory condition.
1984				 */
1985				ClearPagePrivate(page);
1986		} else
1987			vma_end_reservation(h, vma, address);
1988	}
1989}
1990
1991struct page *alloc_huge_page(struct vm_area_struct *vma,
1992				    unsigned long addr, int avoid_reserve)
1993{
1994	struct hugepage_subpool *spool = subpool_vma(vma);
1995	struct hstate *h = hstate_vma(vma);
1996	struct page *page;
1997	long map_chg, map_commit;
1998	long gbl_chg;
1999	int ret, idx;
2000	struct hugetlb_cgroup *h_cg;
2001
2002	idx = hstate_index(h);
2003	/*
2004	 * Examine the region/reserve map to determine if the process
2005	 * has a reservation for the page to be allocated.  A return
2006	 * code of zero indicates a reservation exists (no change).
2007	 */
2008	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2009	if (map_chg < 0)
2010		return ERR_PTR(-ENOMEM);
2011
2012	/*
2013	 * Processes that did not create the mapping will have no
2014	 * reserves as indicated by the region/reserve map. Check
2015	 * that the allocation will not exceed the subpool limit.
2016	 * Allocations for MAP_NORESERVE mappings also need to be
2017	 * checked against any subpool limit.
 
2018	 */
2019	if (map_chg || avoid_reserve) {
2020		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2021		if (gbl_chg < 0) {
2022			vma_end_reservation(h, vma, addr);
 
2023			return ERR_PTR(-ENOSPC);
2024		}
2025
2026		/*
2027		 * Even though there was no reservation in the region/reserve
2028		 * map, there could be reservations associated with the
2029		 * subpool that can be used.  This would be indicated if the
2030		 * return value of hugepage_subpool_get_pages() is zero.
2031		 * However, if avoid_reserve is specified we still avoid even
2032		 * the subpool reservations.
2033		 */
2034		if (avoid_reserve)
2035			gbl_chg = 1;
2036	}
2037
2038	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2039	if (ret)
2040		goto out_subpool_put;
2041
 
 
2042	spin_lock(&hugetlb_lock);
2043	/*
2044	 * glb_chg is passed to indicate whether or not a page must be taken
2045	 * from the global free pool (global change).  gbl_chg == 0 indicates
2046	 * a reservation exists for the allocation.
2047	 */
2048	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2049	if (!page) {
2050		spin_unlock(&hugetlb_lock);
2051		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2052		if (!page)
2053			goto out_uncharge_cgroup;
2054		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2055			SetPagePrivate(page);
2056			h->resv_huge_pages--;
 
 
2057		}
2058		spin_lock(&hugetlb_lock);
2059		list_move(&page->lru, &h->hugepage_activelist);
2060		/* Fall through */
2061	}
2062	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2063	spin_unlock(&hugetlb_lock);
2064
2065	set_page_private(page, (unsigned long)spool);
2066
2067	map_commit = vma_commit_reservation(h, vma, addr);
2068	if (unlikely(map_chg > map_commit)) {
2069		/*
2070		 * The page was added to the reservation map between
2071		 * vma_needs_reservation and vma_commit_reservation.
2072		 * This indicates a race with hugetlb_reserve_pages.
2073		 * Adjust for the subpool count incremented above AND
2074		 * in hugetlb_reserve_pages for the same page.  Also,
2075		 * the reservation count added in hugetlb_reserve_pages
2076		 * no longer applies.
2077		 */
2078		long rsv_adjust;
2079
2080		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2081		hugetlb_acct_memory(h, -rsv_adjust);
2082	}
2083	return page;
 
2084
2085out_uncharge_cgroup:
2086	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2087out_subpool_put:
2088	if (map_chg || avoid_reserve)
2089		hugepage_subpool_put_pages(spool, 1);
2090	vma_end_reservation(h, vma, addr);
2091	return ERR_PTR(-ENOSPC);
 
 
 
 
 
2092}
2093
2094int alloc_bootmem_huge_page(struct hstate *h)
2095	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2096int __alloc_bootmem_huge_page(struct hstate *h)
2097{
2098	struct huge_bootmem_page *m;
2099	int nr_nodes, node;
2100
2101	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2102		void *addr;
2103
2104		addr = memblock_virt_alloc_try_nid_nopanic(
2105				huge_page_size(h), huge_page_size(h),
2106				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2107		if (addr) {
2108			/*
2109			 * Use the beginning of the huge page to store the
2110			 * huge_bootmem_page struct (until gather_bootmem
2111			 * puts them into the mem_map).
2112			 */
2113			m = addr;
2114			goto found;
2115		}
2116	}
2117	return 0;
2118
2119found:
2120	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2121	/* Put them into a private list first because mem_map is not up yet */
2122	list_add(&m->list, &huge_boot_pages);
2123	m->hstate = h;
2124	return 1;
2125}
2126
2127static void __init prep_compound_huge_page(struct page *page,
2128		unsigned int order)
2129{
2130	if (unlikely(order > (MAX_ORDER - 1)))
2131		prep_compound_gigantic_page(page, order);
2132	else
2133		prep_compound_page(page, order);
2134}
2135
2136/* Put bootmem huge pages into the standard lists after mem_map is up */
2137static void __init gather_bootmem_prealloc(void)
2138{
2139	struct huge_bootmem_page *m;
2140
2141	list_for_each_entry(m, &huge_boot_pages, list) {
2142		struct hstate *h = m->hstate;
2143		struct page *page;
2144
2145#ifdef CONFIG_HIGHMEM
2146		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2147		memblock_free_late(__pa(m),
2148				   sizeof(struct huge_bootmem_page));
2149#else
2150		page = virt_to_page(m);
2151#endif
2152		WARN_ON(page_count(page) != 1);
2153		prep_compound_huge_page(page, h->order);
2154		WARN_ON(PageReserved(page));
2155		prep_new_huge_page(h, page, page_to_nid(page));
2156		put_page(page); /* free it into the hugepage allocator */
2157
2158		/*
2159		 * If we had gigantic hugepages allocated at boot time, we need
2160		 * to restore the 'stolen' pages to totalram_pages in order to
2161		 * fix confusing memory reports from free(1) and another
2162		 * side-effects, like CommitLimit going negative.
2163		 */
2164		if (hstate_is_gigantic(h))
2165			adjust_managed_page_count(page, 1 << h->order);
2166	}
2167}
2168
2169static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2170{
2171	unsigned long i;
2172
2173	for (i = 0; i < h->max_huge_pages; ++i) {
2174		if (hstate_is_gigantic(h)) {
2175			if (!alloc_bootmem_huge_page(h))
2176				break;
2177		} else if (!alloc_pool_huge_page(h,
2178					 &node_states[N_MEMORY]))
2179			break;
2180		cond_resched();
2181	}
2182	if (i < h->max_huge_pages) {
2183		char buf[32];
2184
2185		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2186		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2187			h->max_huge_pages, buf, i);
2188		h->max_huge_pages = i;
2189	}
 
2190}
2191
2192static void __init hugetlb_init_hstates(void)
2193{
2194	struct hstate *h;
2195
2196	for_each_hstate(h) {
2197		if (minimum_order > huge_page_order(h))
2198			minimum_order = huge_page_order(h);
2199
2200		/* oversize hugepages were init'ed in early boot */
2201		if (!hstate_is_gigantic(h))
2202			hugetlb_hstate_alloc_pages(h);
2203	}
2204	VM_BUG_ON(minimum_order == UINT_MAX);
 
 
 
 
 
 
 
 
 
 
2205}
2206
2207static void __init report_hugepages(void)
2208{
2209	struct hstate *h;
2210
2211	for_each_hstate(h) {
2212		char buf[32];
2213
2214		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2215		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2216			buf, h->free_huge_pages);
 
2217	}
2218}
2219
2220#ifdef CONFIG_HIGHMEM
2221static void try_to_free_low(struct hstate *h, unsigned long count,
2222						nodemask_t *nodes_allowed)
2223{
2224	int i;
2225
2226	if (hstate_is_gigantic(h))
2227		return;
2228
2229	for_each_node_mask(i, *nodes_allowed) {
2230		struct page *page, *next;
2231		struct list_head *freel = &h->hugepage_freelists[i];
2232		list_for_each_entry_safe(page, next, freel, lru) {
2233			if (count >= h->nr_huge_pages)
2234				return;
2235			if (PageHighMem(page))
2236				continue;
2237			list_del(&page->lru);
2238			update_and_free_page(h, page);
2239			h->free_huge_pages--;
2240			h->free_huge_pages_node[page_to_nid(page)]--;
2241		}
2242	}
2243}
2244#else
2245static inline void try_to_free_low(struct hstate *h, unsigned long count,
2246						nodemask_t *nodes_allowed)
2247{
2248}
2249#endif
2250
2251/*
2252 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2253 * balanced by operating on them in a round-robin fashion.
2254 * Returns 1 if an adjustment was made.
2255 */
2256static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2257				int delta)
2258{
2259	int nr_nodes, node;
2260
2261	VM_BUG_ON(delta != -1 && delta != 1);
2262
2263	if (delta < 0) {
2264		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2265			if (h->surplus_huge_pages_node[node])
2266				goto found;
2267		}
2268	} else {
2269		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2270			if (h->surplus_huge_pages_node[node] <
2271					h->nr_huge_pages_node[node])
2272				goto found;
2273		}
2274	}
2275	return 0;
2276
2277found:
2278	h->surplus_huge_pages += delta;
2279	h->surplus_huge_pages_node[node] += delta;
2280	return 1;
2281}
2282
2283#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2284static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2285						nodemask_t *nodes_allowed)
2286{
2287	unsigned long min_count, ret;
2288
2289	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2290		return h->max_huge_pages;
2291
2292	/*
2293	 * Increase the pool size
2294	 * First take pages out of surplus state.  Then make up the
2295	 * remaining difference by allocating fresh huge pages.
2296	 *
2297	 * We might race with alloc_surplus_huge_page() here and be unable
2298	 * to convert a surplus huge page to a normal huge page. That is
2299	 * not critical, though, it just means the overall size of the
2300	 * pool might be one hugepage larger than it needs to be, but
2301	 * within all the constraints specified by the sysctls.
2302	 */
2303	spin_lock(&hugetlb_lock);
2304	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2305		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2306			break;
2307	}
2308
2309	while (count > persistent_huge_pages(h)) {
2310		/*
2311		 * If this allocation races such that we no longer need the
2312		 * page, free_huge_page will handle it by freeing the page
2313		 * and reducing the surplus.
2314		 */
2315		spin_unlock(&hugetlb_lock);
2316
2317		/* yield cpu to avoid soft lockup */
2318		cond_resched();
2319
2320		ret = alloc_pool_huge_page(h, nodes_allowed);
2321		spin_lock(&hugetlb_lock);
2322		if (!ret)
2323			goto out;
2324
2325		/* Bail for signals. Probably ctrl-c from user */
2326		if (signal_pending(current))
2327			goto out;
2328	}
2329
2330	/*
2331	 * Decrease the pool size
2332	 * First return free pages to the buddy allocator (being careful
2333	 * to keep enough around to satisfy reservations).  Then place
2334	 * pages into surplus state as needed so the pool will shrink
2335	 * to the desired size as pages become free.
2336	 *
2337	 * By placing pages into the surplus state independent of the
2338	 * overcommit value, we are allowing the surplus pool size to
2339	 * exceed overcommit. There are few sane options here. Since
2340	 * alloc_surplus_huge_page() is checking the global counter,
2341	 * though, we'll note that we're not allowed to exceed surplus
2342	 * and won't grow the pool anywhere else. Not until one of the
2343	 * sysctls are changed, or the surplus pages go out of use.
2344	 */
2345	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2346	min_count = max(count, min_count);
2347	try_to_free_low(h, min_count, nodes_allowed);
2348	while (min_count < persistent_huge_pages(h)) {
2349		if (!free_pool_huge_page(h, nodes_allowed, 0))
2350			break;
2351		cond_resched_lock(&hugetlb_lock);
2352	}
2353	while (count < persistent_huge_pages(h)) {
2354		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2355			break;
2356	}
2357out:
2358	ret = persistent_huge_pages(h);
2359	spin_unlock(&hugetlb_lock);
2360	return ret;
2361}
2362
2363#define HSTATE_ATTR_RO(_name) \
2364	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2365
2366#define HSTATE_ATTR(_name) \
2367	static struct kobj_attribute _name##_attr = \
2368		__ATTR(_name, 0644, _name##_show, _name##_store)
2369
2370static struct kobject *hugepages_kobj;
2371static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2372
2373static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2374
2375static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2376{
2377	int i;
2378
2379	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2380		if (hstate_kobjs[i] == kobj) {
2381			if (nidp)
2382				*nidp = NUMA_NO_NODE;
2383			return &hstates[i];
2384		}
2385
2386	return kobj_to_node_hstate(kobj, nidp);
2387}
2388
2389static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2390					struct kobj_attribute *attr, char *buf)
2391{
2392	struct hstate *h;
2393	unsigned long nr_huge_pages;
2394	int nid;
2395
2396	h = kobj_to_hstate(kobj, &nid);
2397	if (nid == NUMA_NO_NODE)
2398		nr_huge_pages = h->nr_huge_pages;
2399	else
2400		nr_huge_pages = h->nr_huge_pages_node[nid];
2401
2402	return sprintf(buf, "%lu\n", nr_huge_pages);
2403}
2404
2405static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2406					   struct hstate *h, int nid,
2407					   unsigned long count, size_t len)
2408{
2409	int err;
 
 
 
2410	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2411
2412	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
 
 
 
 
 
2413		err = -EINVAL;
2414		goto out;
2415	}
2416
2417	if (nid == NUMA_NO_NODE) {
2418		/*
2419		 * global hstate attribute
2420		 */
2421		if (!(obey_mempolicy &&
2422				init_nodemask_of_mempolicy(nodes_allowed))) {
2423			NODEMASK_FREE(nodes_allowed);
2424			nodes_allowed = &node_states[N_MEMORY];
2425		}
2426	} else if (nodes_allowed) {
2427		/*
2428		 * per node hstate attribute: adjust count to global,
2429		 * but restrict alloc/free to the specified node.
2430		 */
2431		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2432		init_nodemask_of_node(nodes_allowed, nid);
2433	} else
2434		nodes_allowed = &node_states[N_MEMORY];
2435
2436	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2437
2438	if (nodes_allowed != &node_states[N_MEMORY])
2439		NODEMASK_FREE(nodes_allowed);
2440
2441	return len;
2442out:
2443	NODEMASK_FREE(nodes_allowed);
2444	return err;
2445}
2446
2447static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2448					 struct kobject *kobj, const char *buf,
2449					 size_t len)
2450{
2451	struct hstate *h;
2452	unsigned long count;
2453	int nid;
2454	int err;
2455
2456	err = kstrtoul(buf, 10, &count);
2457	if (err)
2458		return err;
2459
2460	h = kobj_to_hstate(kobj, &nid);
2461	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2462}
2463
2464static ssize_t nr_hugepages_show(struct kobject *kobj,
2465				       struct kobj_attribute *attr, char *buf)
2466{
2467	return nr_hugepages_show_common(kobj, attr, buf);
2468}
2469
2470static ssize_t nr_hugepages_store(struct kobject *kobj,
2471	       struct kobj_attribute *attr, const char *buf, size_t len)
2472{
2473	return nr_hugepages_store_common(false, kobj, buf, len);
2474}
2475HSTATE_ATTR(nr_hugepages);
2476
2477#ifdef CONFIG_NUMA
2478
2479/*
2480 * hstate attribute for optionally mempolicy-based constraint on persistent
2481 * huge page alloc/free.
2482 */
2483static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2484				       struct kobj_attribute *attr, char *buf)
2485{
2486	return nr_hugepages_show_common(kobj, attr, buf);
2487}
2488
2489static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2490	       struct kobj_attribute *attr, const char *buf, size_t len)
2491{
2492	return nr_hugepages_store_common(true, kobj, buf, len);
2493}
2494HSTATE_ATTR(nr_hugepages_mempolicy);
2495#endif
2496
2497
2498static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2499					struct kobj_attribute *attr, char *buf)
2500{
2501	struct hstate *h = kobj_to_hstate(kobj, NULL);
2502	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2503}
2504
2505static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2506		struct kobj_attribute *attr, const char *buf, size_t count)
2507{
2508	int err;
2509	unsigned long input;
2510	struct hstate *h = kobj_to_hstate(kobj, NULL);
2511
2512	if (hstate_is_gigantic(h))
2513		return -EINVAL;
2514
2515	err = kstrtoul(buf, 10, &input);
2516	if (err)
2517		return err;
2518
2519	spin_lock(&hugetlb_lock);
2520	h->nr_overcommit_huge_pages = input;
2521	spin_unlock(&hugetlb_lock);
2522
2523	return count;
2524}
2525HSTATE_ATTR(nr_overcommit_hugepages);
2526
2527static ssize_t free_hugepages_show(struct kobject *kobj,
2528					struct kobj_attribute *attr, char *buf)
2529{
2530	struct hstate *h;
2531	unsigned long free_huge_pages;
2532	int nid;
2533
2534	h = kobj_to_hstate(kobj, &nid);
2535	if (nid == NUMA_NO_NODE)
2536		free_huge_pages = h->free_huge_pages;
2537	else
2538		free_huge_pages = h->free_huge_pages_node[nid];
2539
2540	return sprintf(buf, "%lu\n", free_huge_pages);
2541}
2542HSTATE_ATTR_RO(free_hugepages);
2543
2544static ssize_t resv_hugepages_show(struct kobject *kobj,
2545					struct kobj_attribute *attr, char *buf)
2546{
2547	struct hstate *h = kobj_to_hstate(kobj, NULL);
2548	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2549}
2550HSTATE_ATTR_RO(resv_hugepages);
2551
2552static ssize_t surplus_hugepages_show(struct kobject *kobj,
2553					struct kobj_attribute *attr, char *buf)
2554{
2555	struct hstate *h;
2556	unsigned long surplus_huge_pages;
2557	int nid;
2558
2559	h = kobj_to_hstate(kobj, &nid);
2560	if (nid == NUMA_NO_NODE)
2561		surplus_huge_pages = h->surplus_huge_pages;
2562	else
2563		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2564
2565	return sprintf(buf, "%lu\n", surplus_huge_pages);
2566}
2567HSTATE_ATTR_RO(surplus_hugepages);
2568
2569static struct attribute *hstate_attrs[] = {
2570	&nr_hugepages_attr.attr,
2571	&nr_overcommit_hugepages_attr.attr,
2572	&free_hugepages_attr.attr,
2573	&resv_hugepages_attr.attr,
2574	&surplus_hugepages_attr.attr,
2575#ifdef CONFIG_NUMA
2576	&nr_hugepages_mempolicy_attr.attr,
2577#endif
2578	NULL,
2579};
2580
2581static const struct attribute_group hstate_attr_group = {
2582	.attrs = hstate_attrs,
2583};
2584
2585static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2586				    struct kobject **hstate_kobjs,
2587				    const struct attribute_group *hstate_attr_group)
2588{
2589	int retval;
2590	int hi = hstate_index(h);
2591
2592	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2593	if (!hstate_kobjs[hi])
2594		return -ENOMEM;
2595
2596	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2597	if (retval)
2598		kobject_put(hstate_kobjs[hi]);
2599
2600	return retval;
2601}
2602
2603static void __init hugetlb_sysfs_init(void)
2604{
2605	struct hstate *h;
2606	int err;
2607
2608	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2609	if (!hugepages_kobj)
2610		return;
2611
2612	for_each_hstate(h) {
2613		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2614					 hstate_kobjs, &hstate_attr_group);
2615		if (err)
2616			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2617	}
2618}
2619
2620#ifdef CONFIG_NUMA
2621
2622/*
2623 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2624 * with node devices in node_devices[] using a parallel array.  The array
2625 * index of a node device or _hstate == node id.
2626 * This is here to avoid any static dependency of the node device driver, in
2627 * the base kernel, on the hugetlb module.
2628 */
2629struct node_hstate {
2630	struct kobject		*hugepages_kobj;
2631	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2632};
2633static struct node_hstate node_hstates[MAX_NUMNODES];
2634
2635/*
2636 * A subset of global hstate attributes for node devices
2637 */
2638static struct attribute *per_node_hstate_attrs[] = {
2639	&nr_hugepages_attr.attr,
2640	&free_hugepages_attr.attr,
2641	&surplus_hugepages_attr.attr,
2642	NULL,
2643};
2644
2645static const struct attribute_group per_node_hstate_attr_group = {
2646	.attrs = per_node_hstate_attrs,
2647};
2648
2649/*
2650 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2651 * Returns node id via non-NULL nidp.
2652 */
2653static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2654{
2655	int nid;
2656
2657	for (nid = 0; nid < nr_node_ids; nid++) {
2658		struct node_hstate *nhs = &node_hstates[nid];
2659		int i;
2660		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2661			if (nhs->hstate_kobjs[i] == kobj) {
2662				if (nidp)
2663					*nidp = nid;
2664				return &hstates[i];
2665			}
2666	}
2667
2668	BUG();
2669	return NULL;
2670}
2671
2672/*
2673 * Unregister hstate attributes from a single node device.
2674 * No-op if no hstate attributes attached.
2675 */
2676static void hugetlb_unregister_node(struct node *node)
2677{
2678	struct hstate *h;
2679	struct node_hstate *nhs = &node_hstates[node->dev.id];
2680
2681	if (!nhs->hugepages_kobj)
2682		return;		/* no hstate attributes */
2683
2684	for_each_hstate(h) {
2685		int idx = hstate_index(h);
2686		if (nhs->hstate_kobjs[idx]) {
2687			kobject_put(nhs->hstate_kobjs[idx]);
2688			nhs->hstate_kobjs[idx] = NULL;
2689		}
2690	}
2691
2692	kobject_put(nhs->hugepages_kobj);
2693	nhs->hugepages_kobj = NULL;
2694}
2695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2696
2697/*
2698 * Register hstate attributes for a single node device.
2699 * No-op if attributes already registered.
2700 */
2701static void hugetlb_register_node(struct node *node)
2702{
2703	struct hstate *h;
2704	struct node_hstate *nhs = &node_hstates[node->dev.id];
2705	int err;
2706
2707	if (nhs->hugepages_kobj)
2708		return;		/* already allocated */
2709
2710	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2711							&node->dev.kobj);
2712	if (!nhs->hugepages_kobj)
2713		return;
2714
2715	for_each_hstate(h) {
2716		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2717						nhs->hstate_kobjs,
2718						&per_node_hstate_attr_group);
2719		if (err) {
2720			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2721				h->name, node->dev.id);
2722			hugetlb_unregister_node(node);
2723			break;
2724		}
2725	}
2726}
2727
2728/*
2729 * hugetlb init time:  register hstate attributes for all registered node
2730 * devices of nodes that have memory.  All on-line nodes should have
2731 * registered their associated device by this time.
2732 */
2733static void __init hugetlb_register_all_nodes(void)
2734{
2735	int nid;
2736
2737	for_each_node_state(nid, N_MEMORY) {
2738		struct node *node = node_devices[nid];
2739		if (node->dev.id == nid)
2740			hugetlb_register_node(node);
2741	}
2742
2743	/*
2744	 * Let the node device driver know we're here so it can
2745	 * [un]register hstate attributes on node hotplug.
2746	 */
2747	register_hugetlbfs_with_node(hugetlb_register_node,
2748				     hugetlb_unregister_node);
2749}
2750#else	/* !CONFIG_NUMA */
2751
2752static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2753{
2754	BUG();
2755	if (nidp)
2756		*nidp = -1;
2757	return NULL;
2758}
2759
 
 
2760static void hugetlb_register_all_nodes(void) { }
2761
2762#endif
2763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2764static int __init hugetlb_init(void)
2765{
2766	int i;
2767
2768	if (!hugepages_supported())
2769		return 0;
2770
2771	if (!size_to_hstate(default_hstate_size)) {
2772		if (default_hstate_size != 0) {
2773			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2774			       default_hstate_size, HPAGE_SIZE);
2775		}
2776
2777		default_hstate_size = HPAGE_SIZE;
2778		if (!size_to_hstate(default_hstate_size))
2779			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2780	}
2781	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2782	if (default_hstate_max_huge_pages) {
2783		if (!default_hstate.max_huge_pages)
2784			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2785	}
2786
2787	hugetlb_init_hstates();
2788	gather_bootmem_prealloc();
2789	report_hugepages();
2790
2791	hugetlb_sysfs_init();
2792	hugetlb_register_all_nodes();
2793	hugetlb_cgroup_file_init();
2794
2795#ifdef CONFIG_SMP
2796	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2797#else
2798	num_fault_mutexes = 1;
2799#endif
2800	hugetlb_fault_mutex_table =
2801		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2802	BUG_ON(!hugetlb_fault_mutex_table);
2803
2804	for (i = 0; i < num_fault_mutexes; i++)
2805		mutex_init(&hugetlb_fault_mutex_table[i]);
2806	return 0;
2807}
2808subsys_initcall(hugetlb_init);
2809
2810/* Should be called on processing a hugepagesz=... option */
2811void __init hugetlb_bad_size(void)
2812{
2813	parsed_valid_hugepagesz = false;
2814}
2815
2816void __init hugetlb_add_hstate(unsigned int order)
2817{
2818	struct hstate *h;
2819	unsigned long i;
2820
2821	if (size_to_hstate(PAGE_SIZE << order)) {
2822		pr_warn("hugepagesz= specified twice, ignoring\n");
2823		return;
2824	}
2825	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2826	BUG_ON(order == 0);
2827	h = &hstates[hugetlb_max_hstate++];
2828	h->order = order;
2829	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2830	h->nr_huge_pages = 0;
2831	h->free_huge_pages = 0;
2832	for (i = 0; i < MAX_NUMNODES; ++i)
2833		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2834	INIT_LIST_HEAD(&h->hugepage_activelist);
2835	h->next_nid_to_alloc = first_memory_node;
2836	h->next_nid_to_free = first_memory_node;
2837	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2838					huge_page_size(h)/1024);
2839
2840	parsed_hstate = h;
2841}
2842
2843static int __init hugetlb_nrpages_setup(char *s)
2844{
2845	unsigned long *mhp;
2846	static unsigned long *last_mhp;
2847
2848	if (!parsed_valid_hugepagesz) {
2849		pr_warn("hugepages = %s preceded by "
2850			"an unsupported hugepagesz, ignoring\n", s);
2851		parsed_valid_hugepagesz = true;
2852		return 1;
2853	}
2854	/*
2855	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2856	 * so this hugepages= parameter goes to the "default hstate".
2857	 */
2858	else if (!hugetlb_max_hstate)
2859		mhp = &default_hstate_max_huge_pages;
2860	else
2861		mhp = &parsed_hstate->max_huge_pages;
2862
2863	if (mhp == last_mhp) {
2864		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
 
2865		return 1;
2866	}
2867
2868	if (sscanf(s, "%lu", mhp) <= 0)
2869		*mhp = 0;
2870
2871	/*
2872	 * Global state is always initialized later in hugetlb_init.
2873	 * But we need to allocate >= MAX_ORDER hstates here early to still
2874	 * use the bootmem allocator.
2875	 */
2876	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2877		hugetlb_hstate_alloc_pages(parsed_hstate);
2878
2879	last_mhp = mhp;
2880
2881	return 1;
2882}
2883__setup("hugepages=", hugetlb_nrpages_setup);
2884
2885static int __init hugetlb_default_setup(char *s)
2886{
2887	default_hstate_size = memparse(s, &s);
2888	return 1;
2889}
2890__setup("default_hugepagesz=", hugetlb_default_setup);
2891
2892static unsigned int cpuset_mems_nr(unsigned int *array)
2893{
2894	int node;
2895	unsigned int nr = 0;
2896
2897	for_each_node_mask(node, cpuset_current_mems_allowed)
2898		nr += array[node];
2899
2900	return nr;
2901}
2902
2903#ifdef CONFIG_SYSCTL
2904static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2905			 struct ctl_table *table, int write,
2906			 void __user *buffer, size_t *length, loff_t *ppos)
2907{
2908	struct hstate *h = &default_hstate;
2909	unsigned long tmp = h->max_huge_pages;
2910	int ret;
2911
2912	if (!hugepages_supported())
2913		return -EOPNOTSUPP;
 
 
 
 
 
2914
2915	table->data = &tmp;
2916	table->maxlen = sizeof(unsigned long);
2917	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2918	if (ret)
2919		goto out;
2920
2921	if (write)
2922		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2923						  NUMA_NO_NODE, tmp, *length);
 
 
 
 
 
 
 
 
 
 
2924out:
2925	return ret;
2926}
2927
2928int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2929			  void __user *buffer, size_t *length, loff_t *ppos)
2930{
2931
2932	return hugetlb_sysctl_handler_common(false, table, write,
2933							buffer, length, ppos);
2934}
2935
2936#ifdef CONFIG_NUMA
2937int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2938			  void __user *buffer, size_t *length, loff_t *ppos)
2939{
2940	return hugetlb_sysctl_handler_common(true, table, write,
2941							buffer, length, ppos);
2942}
2943#endif /* CONFIG_NUMA */
2944
2945int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2946			void __user *buffer,
2947			size_t *length, loff_t *ppos)
2948{
2949	struct hstate *h = &default_hstate;
2950	unsigned long tmp;
2951	int ret;
2952
2953	if (!hugepages_supported())
2954		return -EOPNOTSUPP;
2955
2956	tmp = h->nr_overcommit_huge_pages;
2957
2958	if (write && hstate_is_gigantic(h))
2959		return -EINVAL;
2960
2961	table->data = &tmp;
2962	table->maxlen = sizeof(unsigned long);
2963	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2964	if (ret)
2965		goto out;
2966
2967	if (write) {
2968		spin_lock(&hugetlb_lock);
2969		h->nr_overcommit_huge_pages = tmp;
2970		spin_unlock(&hugetlb_lock);
2971	}
2972out:
2973	return ret;
2974}
2975
2976#endif /* CONFIG_SYSCTL */
2977
2978void hugetlb_report_meminfo(struct seq_file *m)
2979{
2980	struct hstate *h;
2981	unsigned long total = 0;
2982
2983	if (!hugepages_supported())
2984		return;
2985
2986	for_each_hstate(h) {
2987		unsigned long count = h->nr_huge_pages;
2988
2989		total += (PAGE_SIZE << huge_page_order(h)) * count;
2990
2991		if (h == &default_hstate)
2992			seq_printf(m,
2993				   "HugePages_Total:   %5lu\n"
2994				   "HugePages_Free:    %5lu\n"
2995				   "HugePages_Rsvd:    %5lu\n"
2996				   "HugePages_Surp:    %5lu\n"
2997				   "Hugepagesize:   %8lu kB\n",
2998				   count,
2999				   h->free_huge_pages,
3000				   h->resv_huge_pages,
3001				   h->surplus_huge_pages,
3002				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3003	}
3004
3005	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3006}
3007
3008int hugetlb_report_node_meminfo(int nid, char *buf)
3009{
3010	struct hstate *h = &default_hstate;
3011	if (!hugepages_supported())
3012		return 0;
3013	return sprintf(buf,
3014		"Node %d HugePages_Total: %5u\n"
3015		"Node %d HugePages_Free:  %5u\n"
3016		"Node %d HugePages_Surp:  %5u\n",
3017		nid, h->nr_huge_pages_node[nid],
3018		nid, h->free_huge_pages_node[nid],
3019		nid, h->surplus_huge_pages_node[nid]);
3020}
3021
3022void hugetlb_show_meminfo(void)
3023{
3024	struct hstate *h;
3025	int nid;
3026
3027	if (!hugepages_supported())
3028		return;
3029
3030	for_each_node_state(nid, N_MEMORY)
3031		for_each_hstate(h)
3032			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3033				nid,
3034				h->nr_huge_pages_node[nid],
3035				h->free_huge_pages_node[nid],
3036				h->surplus_huge_pages_node[nid],
3037				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3038}
3039
3040void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3041{
3042	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3043		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3044}
3045
3046/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3047unsigned long hugetlb_total_pages(void)
3048{
3049	struct hstate *h;
3050	unsigned long nr_total_pages = 0;
3051
3052	for_each_hstate(h)
3053		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3054	return nr_total_pages;
3055}
3056
3057static int hugetlb_acct_memory(struct hstate *h, long delta)
3058{
3059	int ret = -ENOMEM;
3060
3061	spin_lock(&hugetlb_lock);
3062	/*
3063	 * When cpuset is configured, it breaks the strict hugetlb page
3064	 * reservation as the accounting is done on a global variable. Such
3065	 * reservation is completely rubbish in the presence of cpuset because
3066	 * the reservation is not checked against page availability for the
3067	 * current cpuset. Application can still potentially OOM'ed by kernel
3068	 * with lack of free htlb page in cpuset that the task is in.
3069	 * Attempt to enforce strict accounting with cpuset is almost
3070	 * impossible (or too ugly) because cpuset is too fluid that
3071	 * task or memory node can be dynamically moved between cpusets.
3072	 *
3073	 * The change of semantics for shared hugetlb mapping with cpuset is
3074	 * undesirable. However, in order to preserve some of the semantics,
3075	 * we fall back to check against current free page availability as
3076	 * a best attempt and hopefully to minimize the impact of changing
3077	 * semantics that cpuset has.
3078	 */
3079	if (delta > 0) {
3080		if (gather_surplus_pages(h, delta) < 0)
3081			goto out;
3082
3083		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3084			return_unused_surplus_pages(h, delta);
3085			goto out;
3086		}
3087	}
3088
3089	ret = 0;
3090	if (delta < 0)
3091		return_unused_surplus_pages(h, (unsigned long) -delta);
3092
3093out:
3094	spin_unlock(&hugetlb_lock);
3095	return ret;
3096}
3097
3098static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3099{
3100	struct resv_map *resv = vma_resv_map(vma);
3101
3102	/*
3103	 * This new VMA should share its siblings reservation map if present.
3104	 * The VMA will only ever have a valid reservation map pointer where
3105	 * it is being copied for another still existing VMA.  As that VMA
3106	 * has a reference to the reservation map it cannot disappear until
3107	 * after this open call completes.  It is therefore safe to take a
3108	 * new reference here without additional locking.
3109	 */
3110	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3111		kref_get(&resv->refs);
3112}
3113
3114static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3115{
3116	struct hstate *h = hstate_vma(vma);
3117	struct resv_map *resv = vma_resv_map(vma);
3118	struct hugepage_subpool *spool = subpool_vma(vma);
3119	unsigned long reserve, start, end;
3120	long gbl_reserve;
3121
3122	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3123		return;
3124
3125	start = vma_hugecache_offset(h, vma, vma->vm_start);
3126	end = vma_hugecache_offset(h, vma, vma->vm_end);
3127
3128	reserve = (end - start) - region_count(resv, start, end);
3129
3130	kref_put(&resv->refs, resv_map_release);
3131
3132	if (reserve) {
3133		/*
3134		 * Decrement reserve counts.  The global reserve count may be
3135		 * adjusted if the subpool has a minimum size.
3136		 */
3137		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3138		hugetlb_acct_memory(h, -gbl_reserve);
3139	}
3140}
3141
3142static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3143{
3144	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3145		return -EINVAL;
3146	return 0;
3147}
3148
3149static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3150{
3151	struct hstate *hstate = hstate_vma(vma);
3152
3153	return 1UL << huge_page_shift(hstate);
3154}
3155
3156/*
3157 * We cannot handle pagefaults against hugetlb pages at all.  They cause
3158 * handle_mm_fault() to try to instantiate regular-sized pages in the
3159 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3160 * this far.
3161 */
3162static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3163{
3164	BUG();
3165	return 0;
3166}
3167
3168const struct vm_operations_struct hugetlb_vm_ops = {
3169	.fault = hugetlb_vm_op_fault,
3170	.open = hugetlb_vm_op_open,
3171	.close = hugetlb_vm_op_close,
3172	.split = hugetlb_vm_op_split,
3173	.pagesize = hugetlb_vm_op_pagesize,
3174};
3175
3176static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3177				int writable)
3178{
3179	pte_t entry;
3180
3181	if (writable) {
3182		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3183					 vma->vm_page_prot)));
3184	} else {
3185		entry = huge_pte_wrprotect(mk_huge_pte(page,
3186					   vma->vm_page_prot));
3187	}
3188	entry = pte_mkyoung(entry);
3189	entry = pte_mkhuge(entry);
3190	entry = arch_make_huge_pte(entry, vma, page, writable);
3191
3192	return entry;
3193}
3194
3195static void set_huge_ptep_writable(struct vm_area_struct *vma,
3196				   unsigned long address, pte_t *ptep)
3197{
3198	pte_t entry;
3199
3200	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3201	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3202		update_mmu_cache(vma, address, ptep);
3203}
3204
3205bool is_hugetlb_entry_migration(pte_t pte)
3206{
3207	swp_entry_t swp;
3208
3209	if (huge_pte_none(pte) || pte_present(pte))
3210		return false;
3211	swp = pte_to_swp_entry(pte);
3212	if (non_swap_entry(swp) && is_migration_entry(swp))
3213		return true;
3214	else
3215		return false;
3216}
3217
3218static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3219{
3220	swp_entry_t swp;
3221
3222	if (huge_pte_none(pte) || pte_present(pte))
3223		return 0;
3224	swp = pte_to_swp_entry(pte);
3225	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3226		return 1;
3227	else
3228		return 0;
3229}
3230
3231int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3232			    struct vm_area_struct *vma)
3233{
3234	pte_t *src_pte, *dst_pte, entry;
3235	struct page *ptepage;
3236	unsigned long addr;
3237	int cow;
3238	struct hstate *h = hstate_vma(vma);
3239	unsigned long sz = huge_page_size(h);
3240	unsigned long mmun_start;	/* For mmu_notifiers */
3241	unsigned long mmun_end;		/* For mmu_notifiers */
3242	int ret = 0;
3243
3244	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3245
3246	mmun_start = vma->vm_start;
3247	mmun_end = vma->vm_end;
3248	if (cow)
3249		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3250
3251	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3252		spinlock_t *src_ptl, *dst_ptl;
3253		src_pte = huge_pte_offset(src, addr, sz);
3254		if (!src_pte)
3255			continue;
3256		dst_pte = huge_pte_alloc(dst, addr, sz);
3257		if (!dst_pte) {
3258			ret = -ENOMEM;
3259			break;
3260		}
3261
3262		/* If the pagetables are shared don't copy or take references */
3263		if (dst_pte == src_pte)
3264			continue;
3265
3266		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3267		src_ptl = huge_pte_lockptr(h, src, src_pte);
3268		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3269		entry = huge_ptep_get(src_pte);
3270		if (huge_pte_none(entry)) { /* skip none entry */
3271			;
3272		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3273				    is_hugetlb_entry_hwpoisoned(entry))) {
3274			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3275
3276			if (is_write_migration_entry(swp_entry) && cow) {
3277				/*
3278				 * COW mappings require pages in both
3279				 * parent and child to be set to read.
3280				 */
3281				make_migration_entry_read(&swp_entry);
3282				entry = swp_entry_to_pte(swp_entry);
3283				set_huge_swap_pte_at(src, addr, src_pte,
3284						     entry, sz);
3285			}
3286			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3287		} else {
3288			if (cow) {
3289				/*
3290				 * No need to notify as we are downgrading page
3291				 * table protection not changing it to point
3292				 * to a new page.
3293				 *
3294				 * See Documentation/vm/mmu_notifier.txt
3295				 */
3296				huge_ptep_set_wrprotect(src, addr, src_pte);
3297			}
3298			entry = huge_ptep_get(src_pte);
3299			ptepage = pte_page(entry);
3300			get_page(ptepage);
3301			page_dup_rmap(ptepage, true);
3302			set_huge_pte_at(dst, addr, dst_pte, entry);
3303			hugetlb_count_add(pages_per_huge_page(h), dst);
3304		}
3305		spin_unlock(src_ptl);
3306		spin_unlock(dst_ptl);
3307	}
3308
3309	if (cow)
3310		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3311
3312	return ret;
3313}
3314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3315void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3316			    unsigned long start, unsigned long end,
3317			    struct page *ref_page)
3318{
 
3319	struct mm_struct *mm = vma->vm_mm;
3320	unsigned long address;
3321	pte_t *ptep;
3322	pte_t pte;
3323	spinlock_t *ptl;
3324	struct page *page;
3325	struct hstate *h = hstate_vma(vma);
3326	unsigned long sz = huge_page_size(h);
3327	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3328	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3329
3330	WARN_ON(!is_vm_hugetlb_page(vma));
3331	BUG_ON(start & ~huge_page_mask(h));
3332	BUG_ON(end & ~huge_page_mask(h));
3333
3334	/*
3335	 * This is a hugetlb vma, all the pte entries should point
3336	 * to huge page.
3337	 */
3338	tlb_remove_check_page_size_change(tlb, sz);
3339	tlb_start_vma(tlb, vma);
3340	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3341	address = start;
3342	for (; address < end; address += sz) {
3343		ptep = huge_pte_offset(mm, address, sz);
3344		if (!ptep)
3345			continue;
3346
3347		ptl = huge_pte_lock(h, mm, ptep);
3348		if (huge_pmd_unshare(mm, &address, ptep)) {
3349			spin_unlock(ptl);
3350			continue;
3351		}
3352
3353		pte = huge_ptep_get(ptep);
3354		if (huge_pte_none(pte)) {
3355			spin_unlock(ptl);
3356			continue;
3357		}
3358
3359		/*
3360		 * Migrating hugepage or HWPoisoned hugepage is already
3361		 * unmapped and its refcount is dropped, so just clear pte here.
3362		 */
3363		if (unlikely(!pte_present(pte))) {
3364			huge_pte_clear(mm, address, ptep, sz);
3365			spin_unlock(ptl);
3366			continue;
3367		}
3368
3369		page = pte_page(pte);
3370		/*
3371		 * If a reference page is supplied, it is because a specific
3372		 * page is being unmapped, not a range. Ensure the page we
3373		 * are about to unmap is the actual page of interest.
3374		 */
3375		if (ref_page) {
3376			if (page != ref_page) {
3377				spin_unlock(ptl);
3378				continue;
3379			}
3380			/*
3381			 * Mark the VMA as having unmapped its page so that
3382			 * future faults in this VMA will fail rather than
3383			 * looking like data was lost
3384			 */
3385			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3386		}
3387
3388		pte = huge_ptep_get_and_clear(mm, address, ptep);
3389		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3390		if (huge_pte_dirty(pte))
3391			set_page_dirty(page);
3392
3393		hugetlb_count_sub(pages_per_huge_page(h), mm);
3394		page_remove_rmap(page, true);
3395
3396		spin_unlock(ptl);
3397		tlb_remove_page_size(tlb, page, huge_page_size(h));
3398		/*
3399		 * Bail out after unmapping reference page if supplied
3400		 */
3401		if (ref_page)
3402			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3403	}
3404	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3405	tlb_end_vma(tlb, vma);
3406}
3407
3408void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3409			  struct vm_area_struct *vma, unsigned long start,
3410			  unsigned long end, struct page *ref_page)
3411{
3412	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3413
3414	/*
3415	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3416	 * test will fail on a vma being torn down, and not grab a page table
3417	 * on its way out.  We're lucky that the flag has such an appropriate
3418	 * name, and can in fact be safely cleared here. We could clear it
3419	 * before the __unmap_hugepage_range above, but all that's necessary
3420	 * is to clear it before releasing the i_mmap_rwsem. This works
3421	 * because in the context this is called, the VMA is about to be
3422	 * destroyed and the i_mmap_rwsem is held.
3423	 */
3424	vma->vm_flags &= ~VM_MAYSHARE;
3425}
3426
3427void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3428			  unsigned long end, struct page *ref_page)
3429{
3430	struct mm_struct *mm;
3431	struct mmu_gather tlb;
3432
3433	mm = vma->vm_mm;
3434
3435	tlb_gather_mmu(&tlb, mm, start, end);
3436	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3437	tlb_finish_mmu(&tlb, start, end);
3438}
3439
3440/*
3441 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3442 * mappping it owns the reserve page for. The intention is to unmap the page
3443 * from other VMAs and let the children be SIGKILLed if they are faulting the
3444 * same region.
3445 */
3446static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3447			      struct page *page, unsigned long address)
3448{
3449	struct hstate *h = hstate_vma(vma);
3450	struct vm_area_struct *iter_vma;
3451	struct address_space *mapping;
3452	pgoff_t pgoff;
3453
3454	/*
3455	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3456	 * from page cache lookup which is in HPAGE_SIZE units.
3457	 */
3458	address = address & huge_page_mask(h);
3459	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3460			vma->vm_pgoff;
3461	mapping = vma->vm_file->f_mapping;
3462
3463	/*
3464	 * Take the mapping lock for the duration of the table walk. As
3465	 * this mapping should be shared between all the VMAs,
3466	 * __unmap_hugepage_range() is called as the lock is already held
3467	 */
3468	i_mmap_lock_write(mapping);
3469	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3470		/* Do not unmap the current VMA */
3471		if (iter_vma == vma)
3472			continue;
3473
3474		/*
3475		 * Shared VMAs have their own reserves and do not affect
3476		 * MAP_PRIVATE accounting but it is possible that a shared
3477		 * VMA is using the same page so check and skip such VMAs.
3478		 */
3479		if (iter_vma->vm_flags & VM_MAYSHARE)
3480			continue;
3481
3482		/*
3483		 * Unmap the page from other VMAs without their own reserves.
3484		 * They get marked to be SIGKILLed if they fault in these
3485		 * areas. This is because a future no-page fault on this VMA
3486		 * could insert a zeroed page instead of the data existing
3487		 * from the time of fork. This would look like data corruption
3488		 */
3489		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3490			unmap_hugepage_range(iter_vma, address,
3491					     address + huge_page_size(h), page);
3492	}
3493	i_mmap_unlock_write(mapping);
 
 
3494}
3495
3496/*
3497 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3498 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3499 * cannot race with other handlers or page migration.
3500 * Keep the pte_same checks anyway to make transition from the mutex easier.
3501 */
3502static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3503		       unsigned long address, pte_t *ptep,
3504		       struct page *pagecache_page, spinlock_t *ptl)
3505{
3506	pte_t pte;
3507	struct hstate *h = hstate_vma(vma);
3508	struct page *old_page, *new_page;
3509	int ret = 0, outside_reserve = 0;
3510	unsigned long mmun_start;	/* For mmu_notifiers */
3511	unsigned long mmun_end;		/* For mmu_notifiers */
3512
3513	pte = huge_ptep_get(ptep);
3514	old_page = pte_page(pte);
3515
3516retry_avoidcopy:
3517	/* If no-one else is actually using this page, avoid the copy
3518	 * and just make the page writable */
3519	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3520		page_move_anon_rmap(old_page, vma);
3521		set_huge_ptep_writable(vma, address, ptep);
3522		return 0;
3523	}
3524
3525	/*
3526	 * If the process that created a MAP_PRIVATE mapping is about to
3527	 * perform a COW due to a shared page count, attempt to satisfy
3528	 * the allocation without using the existing reserves. The pagecache
3529	 * page is used to determine if the reserve at this address was
3530	 * consumed or not. If reserves were used, a partial faulted mapping
3531	 * at the time of fork() could consume its reserves on COW instead
3532	 * of the full address range.
3533	 */
3534	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3535			old_page != pagecache_page)
3536		outside_reserve = 1;
3537
3538	get_page(old_page);
3539
3540	/*
3541	 * Drop page table lock as buddy allocator may be called. It will
3542	 * be acquired again before returning to the caller, as expected.
3543	 */
3544	spin_unlock(ptl);
3545	new_page = alloc_huge_page(vma, address, outside_reserve);
3546
3547	if (IS_ERR(new_page)) {
 
 
 
3548		/*
3549		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3550		 * it is due to references held by a child and an insufficient
3551		 * huge page pool. To guarantee the original mappers
3552		 * reliability, unmap the page from child processes. The child
3553		 * may get SIGKILLed if it later faults.
3554		 */
3555		if (outside_reserve) {
3556			put_page(old_page);
3557			BUG_ON(huge_pte_none(pte));
3558			unmap_ref_private(mm, vma, old_page, address);
3559			BUG_ON(huge_pte_none(pte));
3560			spin_lock(ptl);
3561			ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3562					       huge_page_size(h));
3563			if (likely(ptep &&
3564				   pte_same(huge_ptep_get(ptep), pte)))
3565				goto retry_avoidcopy;
3566			/*
3567			 * race occurs while re-acquiring page table
3568			 * lock, and our job is done.
3569			 */
3570			return 0;
 
3571		}
3572
3573		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3574			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3575		goto out_release_old;
 
 
 
3576	}
3577
3578	/*
3579	 * When the original hugepage is shared one, it does not have
3580	 * anon_vma prepared.
3581	 */
3582	if (unlikely(anon_vma_prepare(vma))) {
3583		ret = VM_FAULT_OOM;
3584		goto out_release_all;
 
 
 
3585	}
3586
3587	copy_user_huge_page(new_page, old_page, address, vma,
3588			    pages_per_huge_page(h));
3589	__SetPageUptodate(new_page);
3590	set_page_huge_active(new_page);
3591
3592	mmun_start = address & huge_page_mask(h);
3593	mmun_end = mmun_start + huge_page_size(h);
3594	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3595
3596	/*
3597	 * Retake the page table lock to check for racing updates
3598	 * before the page tables are altered
3599	 */
3600	spin_lock(ptl);
3601	ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3602			       huge_page_size(h));
3603	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3604		ClearPagePrivate(new_page);
3605
3606		/* Break COW */
3607		huge_ptep_clear_flush(vma, address, ptep);
3608		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3609		set_huge_pte_at(mm, address, ptep,
3610				make_huge_pte(vma, new_page, 1));
3611		page_remove_rmap(old_page, true);
3612		hugepage_add_new_anon_rmap(new_page, vma, address);
3613		/* Make the old page be freed below */
3614		new_page = old_page;
3615	}
3616	spin_unlock(ptl);
3617	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3618out_release_all:
3619	restore_reserve_on_error(h, vma, address, new_page);
3620	put_page(new_page);
3621out_release_old:
3622	put_page(old_page);
3623
3624	spin_lock(ptl); /* Caller expects lock to be held */
3625	return ret;
 
3626}
3627
3628/* Return the pagecache page at a given address within a VMA */
3629static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3630			struct vm_area_struct *vma, unsigned long address)
3631{
3632	struct address_space *mapping;
3633	pgoff_t idx;
3634
3635	mapping = vma->vm_file->f_mapping;
3636	idx = vma_hugecache_offset(h, vma, address);
3637
3638	return find_lock_page(mapping, idx);
3639}
3640
3641/*
3642 * Return whether there is a pagecache page to back given address within VMA.
3643 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3644 */
3645static bool hugetlbfs_pagecache_present(struct hstate *h,
3646			struct vm_area_struct *vma, unsigned long address)
3647{
3648	struct address_space *mapping;
3649	pgoff_t idx;
3650	struct page *page;
3651
3652	mapping = vma->vm_file->f_mapping;
3653	idx = vma_hugecache_offset(h, vma, address);
3654
3655	page = find_get_page(mapping, idx);
3656	if (page)
3657		put_page(page);
3658	return page != NULL;
3659}
3660
3661int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3662			   pgoff_t idx)
3663{
3664	struct inode *inode = mapping->host;
3665	struct hstate *h = hstate_inode(inode);
3666	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3667
3668	if (err)
3669		return err;
3670	ClearPagePrivate(page);
3671
3672	spin_lock(&inode->i_lock);
3673	inode->i_blocks += blocks_per_huge_page(h);
3674	spin_unlock(&inode->i_lock);
3675	return 0;
3676}
3677
3678static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3679			   struct address_space *mapping, pgoff_t idx,
3680			   unsigned long address, pte_t *ptep, unsigned int flags)
3681{
3682	struct hstate *h = hstate_vma(vma);
3683	int ret = VM_FAULT_SIGBUS;
3684	int anon_rmap = 0;
3685	unsigned long size;
3686	struct page *page;
3687	pte_t new_pte;
3688	spinlock_t *ptl;
3689
3690	/*
3691	 * Currently, we are forced to kill the process in the event the
3692	 * original mapper has unmapped pages from the child due to a failed
3693	 * COW. Warn that such a situation has occurred as it may not be obvious
3694	 */
3695	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3696		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3697			   current->pid);
3698		return ret;
3699	}
3700
3701	/*
3702	 * Use page lock to guard against racing truncation
3703	 * before we get page_table_lock.
3704	 */
3705retry:
3706	page = find_lock_page(mapping, idx);
3707	if (!page) {
3708		size = i_size_read(mapping->host) >> huge_page_shift(h);
3709		if (idx >= size)
3710			goto out;
3711
3712		/*
3713		 * Check for page in userfault range
3714		 */
3715		if (userfaultfd_missing(vma)) {
3716			u32 hash;
3717			struct vm_fault vmf = {
3718				.vma = vma,
3719				.address = address,
3720				.flags = flags,
3721				/*
3722				 * Hard to debug if it ends up being
3723				 * used by a callee that assumes
3724				 * something about the other
3725				 * uninitialized fields... same as in
3726				 * memory.c
3727				 */
3728			};
3729
3730			/*
3731			 * hugetlb_fault_mutex must be dropped before
3732			 * handling userfault.  Reacquire after handling
3733			 * fault to make calling code simpler.
3734			 */
3735			hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3736							idx, address);
3737			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3738			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3739			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3740			goto out;
3741		}
3742
3743		page = alloc_huge_page(vma, address, 0);
3744		if (IS_ERR(page)) {
3745			ret = PTR_ERR(page);
3746			if (ret == -ENOMEM)
3747				ret = VM_FAULT_OOM;
3748			else
3749				ret = VM_FAULT_SIGBUS;
3750			goto out;
3751		}
3752		clear_huge_page(page, address, pages_per_huge_page(h));
3753		__SetPageUptodate(page);
3754		set_page_huge_active(page);
3755
3756		if (vma->vm_flags & VM_MAYSHARE) {
3757			int err = huge_add_to_page_cache(page, mapping, idx);
 
 
 
3758			if (err) {
3759				put_page(page);
3760				if (err == -EEXIST)
3761					goto retry;
3762				goto out;
3763			}
 
 
 
 
 
3764		} else {
3765			lock_page(page);
3766			if (unlikely(anon_vma_prepare(vma))) {
3767				ret = VM_FAULT_OOM;
3768				goto backout_unlocked;
3769			}
3770			anon_rmap = 1;
3771		}
3772	} else {
3773		/*
3774		 * If memory error occurs between mmap() and fault, some process
3775		 * don't have hwpoisoned swap entry for errored virtual address.
3776		 * So we need to block hugepage fault by PG_hwpoison bit check.
3777		 */
3778		if (unlikely(PageHWPoison(page))) {
3779			ret = VM_FAULT_HWPOISON |
3780				VM_FAULT_SET_HINDEX(hstate_index(h));
3781			goto backout_unlocked;
3782		}
3783	}
3784
3785	/*
3786	 * If we are going to COW a private mapping later, we examine the
3787	 * pending reservations for this page now. This will ensure that
3788	 * any allocations necessary to record that reservation occur outside
3789	 * the spinlock.
3790	 */
3791	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3792		if (vma_needs_reservation(h, vma, address) < 0) {
3793			ret = VM_FAULT_OOM;
3794			goto backout_unlocked;
3795		}
3796		/* Just decrements count, does not deallocate */
3797		vma_end_reservation(h, vma, address);
3798	}
3799
3800	ptl = huge_pte_lock(h, mm, ptep);
 
3801	size = i_size_read(mapping->host) >> huge_page_shift(h);
3802	if (idx >= size)
3803		goto backout;
3804
3805	ret = 0;
3806	if (!huge_pte_none(huge_ptep_get(ptep)))
3807		goto backout;
3808
3809	if (anon_rmap) {
3810		ClearPagePrivate(page);
3811		hugepage_add_new_anon_rmap(page, vma, address);
3812	} else
3813		page_dup_rmap(page, true);
3814	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3815				&& (vma->vm_flags & VM_SHARED)));
3816	set_huge_pte_at(mm, address, ptep, new_pte);
3817
3818	hugetlb_count_add(pages_per_huge_page(h), mm);
3819	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3820		/* Optimization, do the COW without a second fault */
3821		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3822	}
3823
3824	spin_unlock(ptl);
3825	unlock_page(page);
3826out:
3827	return ret;
3828
3829backout:
3830	spin_unlock(ptl);
3831backout_unlocked:
3832	unlock_page(page);
3833	restore_reserve_on_error(h, vma, address, page);
3834	put_page(page);
3835	goto out;
3836}
3837
3838#ifdef CONFIG_SMP
3839u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3840			    struct vm_area_struct *vma,
3841			    struct address_space *mapping,
3842			    pgoff_t idx, unsigned long address)
3843{
3844	unsigned long key[2];
3845	u32 hash;
3846
3847	if (vma->vm_flags & VM_SHARED) {
3848		key[0] = (unsigned long) mapping;
3849		key[1] = idx;
3850	} else {
3851		key[0] = (unsigned long) mm;
3852		key[1] = address >> huge_page_shift(h);
3853	}
3854
3855	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3856
3857	return hash & (num_fault_mutexes - 1);
3858}
3859#else
3860/*
3861 * For uniprocesor systems we always use a single mutex, so just
3862 * return 0 and avoid the hashing overhead.
3863 */
3864u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3865			    struct vm_area_struct *vma,
3866			    struct address_space *mapping,
3867			    pgoff_t idx, unsigned long address)
3868{
3869	return 0;
3870}
3871#endif
3872
3873int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3874			unsigned long address, unsigned int flags)
3875{
3876	pte_t *ptep, entry;
3877	spinlock_t *ptl;
3878	int ret;
3879	u32 hash;
3880	pgoff_t idx;
3881	struct page *page = NULL;
3882	struct page *pagecache_page = NULL;
3883	struct hstate *h = hstate_vma(vma);
3884	struct address_space *mapping;
3885	int need_wait_lock = 0;
3886
3887	address &= huge_page_mask(h);
3888
3889	ptep = huge_pte_offset(mm, address, huge_page_size(h));
3890	if (ptep) {
3891		entry = huge_ptep_get(ptep);
3892		if (unlikely(is_hugetlb_entry_migration(entry))) {
3893			migration_entry_wait_huge(vma, mm, ptep);
3894			return 0;
3895		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3896			return VM_FAULT_HWPOISON_LARGE |
3897				VM_FAULT_SET_HINDEX(hstate_index(h));
3898	} else {
3899		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3900		if (!ptep)
3901			return VM_FAULT_OOM;
3902	}
3903
 
 
 
 
3904	mapping = vma->vm_file->f_mapping;
3905	idx = vma_hugecache_offset(h, vma, address);
3906
3907	/*
3908	 * Serialize hugepage allocation and instantiation, so that we don't
3909	 * get spurious allocation failures if two CPUs race to instantiate
3910	 * the same page in the page cache.
3911	 */
3912	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3913	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3914
3915	entry = huge_ptep_get(ptep);
3916	if (huge_pte_none(entry)) {
3917		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3918		goto out_mutex;
3919	}
3920
3921	ret = 0;
3922
3923	/*
3924	 * entry could be a migration/hwpoison entry at this point, so this
3925	 * check prevents the kernel from going below assuming that we have
3926	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3927	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3928	 * handle it.
3929	 */
3930	if (!pte_present(entry))
3931		goto out_mutex;
3932
3933	/*
3934	 * If we are going to COW the mapping later, we examine the pending
3935	 * reservations for this page now. This will ensure that any
3936	 * allocations necessary to record that reservation occur outside the
3937	 * spinlock. For private mappings, we also lookup the pagecache
3938	 * page now as it is used to determine if a reservation has been
3939	 * consumed.
3940	 */
3941	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3942		if (vma_needs_reservation(h, vma, address) < 0) {
3943			ret = VM_FAULT_OOM;
3944			goto out_mutex;
3945		}
3946		/* Just decrements count, does not deallocate */
3947		vma_end_reservation(h, vma, address);
3948
3949		if (!(vma->vm_flags & VM_MAYSHARE))
3950			pagecache_page = hugetlbfs_pagecache_page(h,
3951								vma, address);
3952	}
3953
3954	ptl = huge_pte_lock(h, mm, ptep);
3955
3956	/* Check for a racing update before calling hugetlb_cow */
3957	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3958		goto out_ptl;
3959
3960	/*
3961	 * hugetlb_cow() requires page locks of pte_page(entry) and
3962	 * pagecache_page, so here we need take the former one
3963	 * when page != pagecache_page or !pagecache_page.
 
 
3964	 */
3965	page = pte_page(entry);
 
3966	if (page != pagecache_page)
3967		if (!trylock_page(page)) {
3968			need_wait_lock = 1;
3969			goto out_ptl;
3970		}
 
 
 
3971
3972	get_page(page);
3973
3974	if (flags & FAULT_FLAG_WRITE) {
3975		if (!huge_pte_write(entry)) {
3976			ret = hugetlb_cow(mm, vma, address, ptep,
3977					  pagecache_page, ptl);
3978			goto out_put_page;
3979		}
3980		entry = huge_pte_mkdirty(entry);
3981	}
3982	entry = pte_mkyoung(entry);
3983	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3984						flags & FAULT_FLAG_WRITE))
3985		update_mmu_cache(vma, address, ptep);
3986out_put_page:
3987	if (page != pagecache_page)
3988		unlock_page(page);
3989	put_page(page);
3990out_ptl:
3991	spin_unlock(ptl);
3992
3993	if (pagecache_page) {
3994		unlock_page(pagecache_page);
3995		put_page(pagecache_page);
3996	}
3997out_mutex:
3998	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3999	/*
4000	 * Generally it's safe to hold refcount during waiting page lock. But
4001	 * here we just wait to defer the next page fault to avoid busy loop and
4002	 * the page is not used after unlocked before returning from the current
4003	 * page fault. So we are safe from accessing freed page, even if we wait
4004	 * here without taking refcount.
4005	 */
4006	if (need_wait_lock)
4007		wait_on_page_locked(page);
4008	return ret;
4009}
4010
4011/*
4012 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4013 * modifications for huge pages.
4014 */
4015int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4016			    pte_t *dst_pte,
4017			    struct vm_area_struct *dst_vma,
4018			    unsigned long dst_addr,
4019			    unsigned long src_addr,
4020			    struct page **pagep)
4021{
4022	struct address_space *mapping;
4023	pgoff_t idx;
4024	unsigned long size;
4025	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4026	struct hstate *h = hstate_vma(dst_vma);
4027	pte_t _dst_pte;
4028	spinlock_t *ptl;
4029	int ret;
4030	struct page *page;
4031
4032	if (!*pagep) {
4033		ret = -ENOMEM;
4034		page = alloc_huge_page(dst_vma, dst_addr, 0);
4035		if (IS_ERR(page))
4036			goto out;
4037
4038		ret = copy_huge_page_from_user(page,
4039						(const void __user *) src_addr,
4040						pages_per_huge_page(h), false);
4041
4042		/* fallback to copy_from_user outside mmap_sem */
4043		if (unlikely(ret)) {
4044			ret = -EFAULT;
4045			*pagep = page;
4046			/* don't free the page */
4047			goto out;
4048		}
4049	} else {
4050		page = *pagep;
4051		*pagep = NULL;
4052	}
4053
4054	/*
4055	 * The memory barrier inside __SetPageUptodate makes sure that
4056	 * preceding stores to the page contents become visible before
4057	 * the set_pte_at() write.
4058	 */
4059	__SetPageUptodate(page);
4060	set_page_huge_active(page);
4061
4062	mapping = dst_vma->vm_file->f_mapping;
4063	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4064
4065	/*
4066	 * If shared, add to page cache
4067	 */
4068	if (vm_shared) {
4069		size = i_size_read(mapping->host) >> huge_page_shift(h);
4070		ret = -EFAULT;
4071		if (idx >= size)
4072			goto out_release_nounlock;
4073
4074		/*
4075		 * Serialization between remove_inode_hugepages() and
4076		 * huge_add_to_page_cache() below happens through the
4077		 * hugetlb_fault_mutex_table that here must be hold by
4078		 * the caller.
4079		 */
4080		ret = huge_add_to_page_cache(page, mapping, idx);
4081		if (ret)
4082			goto out_release_nounlock;
4083	}
4084
4085	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4086	spin_lock(ptl);
4087
4088	/*
4089	 * Recheck the i_size after holding PT lock to make sure not
4090	 * to leave any page mapped (as page_mapped()) beyond the end
4091	 * of the i_size (remove_inode_hugepages() is strict about
4092	 * enforcing that). If we bail out here, we'll also leave a
4093	 * page in the radix tree in the vm_shared case beyond the end
4094	 * of the i_size, but remove_inode_hugepages() will take care
4095	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4096	 */
4097	size = i_size_read(mapping->host) >> huge_page_shift(h);
4098	ret = -EFAULT;
4099	if (idx >= size)
4100		goto out_release_unlock;
4101
4102	ret = -EEXIST;
4103	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4104		goto out_release_unlock;
4105
4106	if (vm_shared) {
4107		page_dup_rmap(page, true);
4108	} else {
4109		ClearPagePrivate(page);
4110		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4111	}
4112
4113	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4114	if (dst_vma->vm_flags & VM_WRITE)
4115		_dst_pte = huge_pte_mkdirty(_dst_pte);
4116	_dst_pte = pte_mkyoung(_dst_pte);
4117
4118	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4119
4120	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4121					dst_vma->vm_flags & VM_WRITE);
4122	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4123
4124	/* No need to invalidate - it was non-present before */
4125	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4126
4127	spin_unlock(ptl);
4128	if (vm_shared)
4129		unlock_page(page);
4130	ret = 0;
4131out:
4132	return ret;
4133out_release_unlock:
4134	spin_unlock(ptl);
4135	if (vm_shared)
4136		unlock_page(page);
4137out_release_nounlock:
4138	put_page(page);
4139	goto out;
 
 
 
4140}
4141
4142long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4143			 struct page **pages, struct vm_area_struct **vmas,
4144			 unsigned long *position, unsigned long *nr_pages,
4145			 long i, unsigned int flags, int *nonblocking)
4146{
4147	unsigned long pfn_offset;
4148	unsigned long vaddr = *position;
4149	unsigned long remainder = *nr_pages;
4150	struct hstate *h = hstate_vma(vma);
4151	int err = -EFAULT;
4152
4153	while (vaddr < vma->vm_end && remainder) {
4154		pte_t *pte;
4155		spinlock_t *ptl = NULL;
4156		int absent;
4157		struct page *page;
4158
4159		/*
4160		 * If we have a pending SIGKILL, don't keep faulting pages and
4161		 * potentially allocating memory.
4162		 */
4163		if (unlikely(fatal_signal_pending(current))) {
4164			remainder = 0;
4165			break;
4166		}
4167
4168		/*
4169		 * Some archs (sparc64, sh*) have multiple pte_ts to
4170		 * each hugepage.  We have to make sure we get the
4171		 * first, for the page indexing below to work.
4172		 *
4173		 * Note that page table lock is not held when pte is null.
4174		 */
4175		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4176				      huge_page_size(h));
4177		if (pte)
4178			ptl = huge_pte_lock(h, mm, pte);
4179		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4180
4181		/*
4182		 * When coredumping, it suits get_dump_page if we just return
4183		 * an error where there's an empty slot with no huge pagecache
4184		 * to back it.  This way, we avoid allocating a hugepage, and
4185		 * the sparse dumpfile avoids allocating disk blocks, but its
4186		 * huge holes still show up with zeroes where they need to be.
4187		 */
4188		if (absent && (flags & FOLL_DUMP) &&
4189		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4190			if (pte)
4191				spin_unlock(ptl);
4192			remainder = 0;
4193			break;
4194		}
4195
4196		/*
4197		 * We need call hugetlb_fault for both hugepages under migration
4198		 * (in which case hugetlb_fault waits for the migration,) and
4199		 * hwpoisoned hugepages (in which case we need to prevent the
4200		 * caller from accessing to them.) In order to do this, we use
4201		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4202		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4203		 * both cases, and because we can't follow correct pages
4204		 * directly from any kind of swap entries.
4205		 */
4206		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4207		    ((flags & FOLL_WRITE) &&
4208		      !huge_pte_write(huge_ptep_get(pte)))) {
4209			int ret;
4210			unsigned int fault_flags = 0;
4211
4212			if (pte)
4213				spin_unlock(ptl);
4214			if (flags & FOLL_WRITE)
4215				fault_flags |= FAULT_FLAG_WRITE;
4216			if (nonblocking)
4217				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4218			if (flags & FOLL_NOWAIT)
4219				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4220					FAULT_FLAG_RETRY_NOWAIT;
4221			if (flags & FOLL_TRIED) {
4222				VM_WARN_ON_ONCE(fault_flags &
4223						FAULT_FLAG_ALLOW_RETRY);
4224				fault_flags |= FAULT_FLAG_TRIED;
4225			}
4226			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4227			if (ret & VM_FAULT_ERROR) {
4228				err = vm_fault_to_errno(ret, flags);
4229				remainder = 0;
4230				break;
4231			}
4232			if (ret & VM_FAULT_RETRY) {
4233				if (nonblocking)
4234					*nonblocking = 0;
4235				*nr_pages = 0;
4236				/*
4237				 * VM_FAULT_RETRY must not return an
4238				 * error, it will return zero
4239				 * instead.
4240				 *
4241				 * No need to update "position" as the
4242				 * caller will not check it after
4243				 * *nr_pages is set to 0.
4244				 */
4245				return i;
4246			}
4247			continue;
4248		}
4249
4250		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4251		page = pte_page(huge_ptep_get(pte));
4252same_page:
4253		if (pages) {
4254			pages[i] = mem_map_offset(page, pfn_offset);
4255			get_page(pages[i]);
4256		}
4257
4258		if (vmas)
4259			vmas[i] = vma;
4260
4261		vaddr += PAGE_SIZE;
4262		++pfn_offset;
4263		--remainder;
4264		++i;
4265		if (vaddr < vma->vm_end && remainder &&
4266				pfn_offset < pages_per_huge_page(h)) {
4267			/*
4268			 * We use pfn_offset to avoid touching the pageframes
4269			 * of this compound page.
4270			 */
4271			goto same_page;
4272		}
4273		spin_unlock(ptl);
4274	}
4275	*nr_pages = remainder;
4276	/*
4277	 * setting position is actually required only if remainder is
4278	 * not zero but it's faster not to add a "if (remainder)"
4279	 * branch.
4280	 */
4281	*position = vaddr;
4282
4283	return i ? i : err;
4284}
4285
4286#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4287/*
4288 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4289 * implement this.
4290 */
4291#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4292#endif
4293
4294unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4295		unsigned long address, unsigned long end, pgprot_t newprot)
4296{
4297	struct mm_struct *mm = vma->vm_mm;
4298	unsigned long start = address;
4299	pte_t *ptep;
4300	pte_t pte;
4301	struct hstate *h = hstate_vma(vma);
4302	unsigned long pages = 0;
4303
4304	BUG_ON(address >= end);
4305	flush_cache_range(vma, address, end);
4306
4307	mmu_notifier_invalidate_range_start(mm, start, end);
4308	i_mmap_lock_write(vma->vm_file->f_mapping);
4309	for (; address < end; address += huge_page_size(h)) {
4310		spinlock_t *ptl;
4311		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4312		if (!ptep)
4313			continue;
4314		ptl = huge_pte_lock(h, mm, ptep);
4315		if (huge_pmd_unshare(mm, &address, ptep)) {
4316			pages++;
4317			spin_unlock(ptl);
4318			continue;
4319		}
4320		pte = huge_ptep_get(ptep);
4321		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4322			spin_unlock(ptl);
4323			continue;
4324		}
4325		if (unlikely(is_hugetlb_entry_migration(pte))) {
4326			swp_entry_t entry = pte_to_swp_entry(pte);
4327
4328			if (is_write_migration_entry(entry)) {
4329				pte_t newpte;
4330
4331				make_migration_entry_read(&entry);
4332				newpte = swp_entry_to_pte(entry);
4333				set_huge_swap_pte_at(mm, address, ptep,
4334						     newpte, huge_page_size(h));
4335				pages++;
4336			}
4337			spin_unlock(ptl);
4338			continue;
4339		}
4340		if (!huge_pte_none(pte)) {
4341			pte = huge_ptep_get_and_clear(mm, address, ptep);
4342			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4343			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4344			set_huge_pte_at(mm, address, ptep, pte);
4345			pages++;
4346		}
4347		spin_unlock(ptl);
4348	}
4349	/*
4350	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4351	 * may have cleared our pud entry and done put_page on the page table:
4352	 * once we release i_mmap_rwsem, another task can do the final put_page
4353	 * and that page table be reused and filled with junk.
4354	 */
4355	flush_hugetlb_tlb_range(vma, start, end);
4356	/*
4357	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4358	 * page table protection not changing it to point to a new page.
4359	 *
4360	 * See Documentation/vm/mmu_notifier.txt
4361	 */
4362	i_mmap_unlock_write(vma->vm_file->f_mapping);
4363	mmu_notifier_invalidate_range_end(mm, start, end);
4364
4365	return pages << h->order;
4366}
4367
4368int hugetlb_reserve_pages(struct inode *inode,
4369					long from, long to,
4370					struct vm_area_struct *vma,
4371					vm_flags_t vm_flags)
4372{
4373	long ret, chg;
4374	struct hstate *h = hstate_inode(inode);
4375	struct hugepage_subpool *spool = subpool_inode(inode);
4376	struct resv_map *resv_map;
4377	long gbl_reserve;
4378
4379	/* This should never happen */
4380	if (from > to) {
4381		VM_WARN(1, "%s called with a negative range\n", __func__);
4382		return -EINVAL;
4383	}
4384
4385	/*
4386	 * Only apply hugepage reservation if asked. At fault time, an
4387	 * attempt will be made for VM_NORESERVE to allocate a page
4388	 * without using reserves
4389	 */
4390	if (vm_flags & VM_NORESERVE)
4391		return 0;
4392
4393	/*
4394	 * Shared mappings base their reservation on the number of pages that
4395	 * are already allocated on behalf of the file. Private mappings need
4396	 * to reserve the full area even if read-only as mprotect() may be
4397	 * called to make the mapping read-write. Assume !vma is a shm mapping
4398	 */
4399	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4400		resv_map = inode_resv_map(inode);
4401
4402		chg = region_chg(resv_map, from, to);
4403
4404	} else {
4405		resv_map = resv_map_alloc();
4406		if (!resv_map)
4407			return -ENOMEM;
4408
4409		chg = to - from;
4410
4411		set_vma_resv_map(vma, resv_map);
4412		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4413	}
4414
4415	if (chg < 0) {
4416		ret = chg;
4417		goto out_err;
4418	}
4419
4420	/*
4421	 * There must be enough pages in the subpool for the mapping. If
4422	 * the subpool has a minimum size, there may be some global
4423	 * reservations already in place (gbl_reserve).
4424	 */
4425	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4426	if (gbl_reserve < 0) {
4427		ret = -ENOSPC;
4428		goto out_err;
4429	}
4430
4431	/*
4432	 * Check enough hugepages are available for the reservation.
4433	 * Hand the pages back to the subpool if there are not
4434	 */
4435	ret = hugetlb_acct_memory(h, gbl_reserve);
4436	if (ret < 0) {
4437		/* put back original number of pages, chg */
4438		(void)hugepage_subpool_put_pages(spool, chg);
4439		goto out_err;
4440	}
4441
4442	/*
4443	 * Account for the reservations made. Shared mappings record regions
4444	 * that have reservations as they are shared by multiple VMAs.
4445	 * When the last VMA disappears, the region map says how much
4446	 * the reservation was and the page cache tells how much of
4447	 * the reservation was consumed. Private mappings are per-VMA and
4448	 * only the consumed reservations are tracked. When the VMA
4449	 * disappears, the original reservation is the VMA size and the
4450	 * consumed reservations are stored in the map. Hence, nothing
4451	 * else has to be done for private mappings here
4452	 */
4453	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4454		long add = region_add(resv_map, from, to);
4455
4456		if (unlikely(chg > add)) {
4457			/*
4458			 * pages in this range were added to the reserve
4459			 * map between region_chg and region_add.  This
4460			 * indicates a race with alloc_huge_page.  Adjust
4461			 * the subpool and reserve counts modified above
4462			 * based on the difference.
4463			 */
4464			long rsv_adjust;
4465
4466			rsv_adjust = hugepage_subpool_put_pages(spool,
4467								chg - add);
4468			hugetlb_acct_memory(h, -rsv_adjust);
4469		}
4470	}
4471	return 0;
4472out_err:
4473	if (!vma || vma->vm_flags & VM_MAYSHARE)
4474		/* Don't call region_abort if region_chg failed */
4475		if (chg >= 0)
4476			region_abort(resv_map, from, to);
4477	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4478		kref_put(&resv_map->refs, resv_map_release);
4479	return ret;
4480}
4481
4482long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4483								long freed)
4484{
4485	struct hstate *h = hstate_inode(inode);
4486	struct resv_map *resv_map = inode_resv_map(inode);
4487	long chg = 0;
4488	struct hugepage_subpool *spool = subpool_inode(inode);
4489	long gbl_reserve;
4490
4491	if (resv_map) {
4492		chg = region_del(resv_map, start, end);
4493		/*
4494		 * region_del() can fail in the rare case where a region
4495		 * must be split and another region descriptor can not be
4496		 * allocated.  If end == LONG_MAX, it will not fail.
4497		 */
4498		if (chg < 0)
4499			return chg;
4500	}
4501
 
 
4502	spin_lock(&inode->i_lock);
4503	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4504	spin_unlock(&inode->i_lock);
4505
4506	/*
4507	 * If the subpool has a minimum size, the number of global
4508	 * reservations to be released may be adjusted.
4509	 */
4510	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4511	hugetlb_acct_memory(h, -gbl_reserve);
4512
4513	return 0;
4514}
4515
4516#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4517static unsigned long page_table_shareable(struct vm_area_struct *svma,
4518				struct vm_area_struct *vma,
4519				unsigned long addr, pgoff_t idx)
4520{
4521	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4522				svma->vm_start;
4523	unsigned long sbase = saddr & PUD_MASK;
4524	unsigned long s_end = sbase + PUD_SIZE;
4525
4526	/* Allow segments to share if only one is marked locked */
4527	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4528	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4529
4530	/*
4531	 * match the virtual addresses, permission and the alignment of the
4532	 * page table page.
4533	 */
4534	if (pmd_index(addr) != pmd_index(saddr) ||
4535	    vm_flags != svm_flags ||
4536	    sbase < svma->vm_start || svma->vm_end < s_end)
4537		return 0;
4538
4539	return saddr;
4540}
4541
4542static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4543{
4544	unsigned long base = addr & PUD_MASK;
4545	unsigned long end = base + PUD_SIZE;
4546
4547	/*
4548	 * check on proper vm_flags and page table alignment
4549	 */
4550	if (vma->vm_flags & VM_MAYSHARE &&
4551	    vma->vm_start <= base && end <= vma->vm_end)
4552		return true;
4553	return false;
4554}
4555
4556/*
4557 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4558 * and returns the corresponding pte. While this is not necessary for the
4559 * !shared pmd case because we can allocate the pmd later as well, it makes the
4560 * code much cleaner. pmd allocation is essential for the shared case because
4561 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4562 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4563 * bad pmd for sharing.
4564 */
4565pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4566{
4567	struct vm_area_struct *vma = find_vma(mm, addr);
4568	struct address_space *mapping = vma->vm_file->f_mapping;
4569	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4570			vma->vm_pgoff;
4571	struct vm_area_struct *svma;
4572	unsigned long saddr;
4573	pte_t *spte = NULL;
4574	pte_t *pte;
4575	spinlock_t *ptl;
4576
4577	if (!vma_shareable(vma, addr))
4578		return (pte_t *)pmd_alloc(mm, pud, addr);
4579
4580	i_mmap_lock_write(mapping);
4581	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4582		if (svma == vma)
4583			continue;
4584
4585		saddr = page_table_shareable(svma, vma, addr, idx);
4586		if (saddr) {
4587			spte = huge_pte_offset(svma->vm_mm, saddr,
4588					       vma_mmu_pagesize(svma));
4589			if (spte) {
4590				get_page(virt_to_page(spte));
4591				break;
4592			}
4593		}
4594	}
4595
4596	if (!spte)
4597		goto out;
4598
4599	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4600	if (pud_none(*pud)) {
 
4601		pud_populate(mm, pud,
4602				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4603		mm_inc_nr_pmds(mm);
4604	} else {
4605		put_page(virt_to_page(spte));
4606	}
4607	spin_unlock(ptl);
4608out:
4609	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4610	i_mmap_unlock_write(mapping);
4611	return pte;
4612}
4613
4614/*
4615 * unmap huge page backed by shared pte.
4616 *
4617 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4618 * indicated by page_count > 1, unmap is achieved by clearing pud and
4619 * decrementing the ref count. If count == 1, the pte page is not shared.
4620 *
4621 * called with page table lock held.
4622 *
4623 * returns: 1 successfully unmapped a shared pte page
4624 *	    0 the underlying pte page is not shared, or it is the last user
4625 */
4626int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4627{
4628	pgd_t *pgd = pgd_offset(mm, *addr);
4629	p4d_t *p4d = p4d_offset(pgd, *addr);
4630	pud_t *pud = pud_offset(p4d, *addr);
4631
4632	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4633	if (page_count(virt_to_page(ptep)) == 1)
4634		return 0;
4635
4636	pud_clear(pud);
4637	put_page(virt_to_page(ptep));
4638	mm_dec_nr_pmds(mm);
4639	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4640	return 1;
4641}
4642#define want_pmd_share()	(1)
4643#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4644pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4645{
4646	return NULL;
4647}
4648
4649int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4650{
4651	return 0;
4652}
4653#define want_pmd_share()	(0)
4654#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4655
4656#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4657pte_t *huge_pte_alloc(struct mm_struct *mm,
4658			unsigned long addr, unsigned long sz)
4659{
4660	pgd_t *pgd;
4661	p4d_t *p4d;
4662	pud_t *pud;
4663	pte_t *pte = NULL;
4664
4665	pgd = pgd_offset(mm, addr);
4666	p4d = p4d_alloc(mm, pgd, addr);
4667	if (!p4d)
4668		return NULL;
4669	pud = pud_alloc(mm, p4d, addr);
4670	if (pud) {
4671		if (sz == PUD_SIZE) {
4672			pte = (pte_t *)pud;
4673		} else {
4674			BUG_ON(sz != PMD_SIZE);
4675			if (want_pmd_share() && pud_none(*pud))
4676				pte = huge_pmd_share(mm, addr, pud);
4677			else
4678				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4679		}
4680	}
4681	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4682
4683	return pte;
4684}
4685
4686/*
4687 * huge_pte_offset() - Walk the page table to resolve the hugepage
4688 * entry at address @addr
4689 *
4690 * Return: Pointer to page table or swap entry (PUD or PMD) for
4691 * address @addr, or NULL if a p*d_none() entry is encountered and the
4692 * size @sz doesn't match the hugepage size at this level of the page
4693 * table.
4694 */
4695pte_t *huge_pte_offset(struct mm_struct *mm,
4696		       unsigned long addr, unsigned long sz)
4697{
4698	pgd_t *pgd;
4699	p4d_t *p4d;
4700	pud_t *pud;
4701	pmd_t *pmd;
4702
4703	pgd = pgd_offset(mm, addr);
4704	if (!pgd_present(*pgd))
4705		return NULL;
4706	p4d = p4d_offset(pgd, addr);
4707	if (!p4d_present(*p4d))
4708		return NULL;
4709
4710	pud = pud_offset(p4d, addr);
4711	if (sz != PUD_SIZE && pud_none(*pud))
4712		return NULL;
4713	/* hugepage or swap? */
4714	if (pud_huge(*pud) || !pud_present(*pud))
4715		return (pte_t *)pud;
4716
4717	pmd = pmd_offset(pud, addr);
4718	if (sz != PMD_SIZE && pmd_none(*pmd))
4719		return NULL;
4720	/* hugepage or swap? */
4721	if (pmd_huge(*pmd) || !pmd_present(*pmd))
4722		return (pte_t *)pmd;
4723
4724	return NULL;
 
 
 
4725}
4726
4727#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4728
4729/*
4730 * These functions are overwritable if your architecture needs its own
4731 * behavior.
4732 */
4733struct page * __weak
4734follow_huge_addr(struct mm_struct *mm, unsigned long address,
4735			      int write)
4736{
4737	return ERR_PTR(-EINVAL);
 
 
 
 
 
4738}
4739
 
 
 
4740struct page * __weak
4741follow_huge_pd(struct vm_area_struct *vma,
4742	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
4743{
4744	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4745	return NULL;
4746}
4747
4748struct page * __weak
4749follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4750		pmd_t *pmd, int flags)
4751{
4752	struct page *page = NULL;
4753	spinlock_t *ptl;
4754	pte_t pte;
4755retry:
4756	ptl = pmd_lockptr(mm, pmd);
4757	spin_lock(ptl);
4758	/*
4759	 * make sure that the address range covered by this pmd is not
4760	 * unmapped from other threads.
4761	 */
4762	if (!pmd_huge(*pmd))
4763		goto out;
4764	pte = huge_ptep_get((pte_t *)pmd);
4765	if (pte_present(pte)) {
4766		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4767		if (flags & FOLL_GET)
4768			get_page(page);
4769	} else {
4770		if (is_hugetlb_entry_migration(pte)) {
4771			spin_unlock(ptl);
4772			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4773			goto retry;
4774		}
4775		/*
4776		 * hwpoisoned entry is treated as no_page_table in
4777		 * follow_page_mask().
4778		 */
4779	}
4780out:
4781	spin_unlock(ptl);
4782	return page;
4783}
4784
4785struct page * __weak
4786follow_huge_pud(struct mm_struct *mm, unsigned long address,
4787		pud_t *pud, int flags)
 
4788{
4789	if (flags & FOLL_GET)
4790		return NULL;
 
 
4791
4792	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
 
 
 
4793}
4794
4795struct page * __weak
4796follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
 
 
 
4797{
4798	if (flags & FOLL_GET)
4799		return NULL;
 
4800
4801	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4802}
 
4803
4804bool isolate_huge_page(struct page *page, struct list_head *list)
4805{
4806	bool ret = true;
4807
4808	VM_BUG_ON_PAGE(!PageHead(page), page);
 
 
4809	spin_lock(&hugetlb_lock);
4810	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4811		ret = false;
4812		goto unlock;
4813	}
4814	clear_page_huge_active(page);
4815	list_move_tail(&page->lru, list);
4816unlock:
4817	spin_unlock(&hugetlb_lock);
4818	return ret;
4819}
4820
4821void putback_active_hugepage(struct page *page)
4822{
4823	VM_BUG_ON_PAGE(!PageHead(page), page);
4824	spin_lock(&hugetlb_lock);
4825	set_page_huge_active(page);
4826	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4827	spin_unlock(&hugetlb_lock);
4828	put_page(page);
4829}
4830
4831void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4832{
4833	struct hstate *h = page_hstate(oldpage);
4834
4835	hugetlb_cgroup_migrate(oldpage, newpage);
4836	set_page_owner_migrate_reason(newpage, reason);
4837
4838	/*
4839	 * transfer temporary state of the new huge page. This is
4840	 * reverse to other transitions because the newpage is going to
4841	 * be final while the old one will be freed so it takes over
4842	 * the temporary status.
4843	 *
4844	 * Also note that we have to transfer the per-node surplus state
4845	 * here as well otherwise the global surplus count will not match
4846	 * the per-node's.
4847	 */
4848	if (PageHugeTemporary(newpage)) {
4849		int old_nid = page_to_nid(oldpage);
4850		int new_nid = page_to_nid(newpage);
4851
4852		SetPageHugeTemporary(oldpage);
4853		ClearPageHugeTemporary(newpage);
4854
4855		spin_lock(&hugetlb_lock);
4856		if (h->surplus_huge_pages_node[old_nid]) {
4857			h->surplus_huge_pages_node[old_nid]--;
4858			h->surplus_huge_pages_node[new_nid]++;
4859		}
4860		spin_unlock(&hugetlb_lock);
4861	}
4862}
v3.15
   1/*
   2 * Generic hugetlb support.
   3 * (C) Nadia Yvette Chambers, April 2004
   4 */
   5#include <linux/list.h>
   6#include <linux/init.h>
   7#include <linux/module.h>
   8#include <linux/mm.h>
   9#include <linux/seq_file.h>
  10#include <linux/sysctl.h>
  11#include <linux/highmem.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/nodemask.h>
  14#include <linux/pagemap.h>
  15#include <linux/mempolicy.h>
  16#include <linux/compiler.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/bootmem.h>
  20#include <linux/sysfs.h>
  21#include <linux/slab.h>
 
 
  22#include <linux/rmap.h>
 
  23#include <linux/swap.h>
  24#include <linux/swapops.h>
  25#include <linux/page-isolation.h>
  26#include <linux/jhash.h>
  27
  28#include <asm/page.h>
  29#include <asm/pgtable.h>
  30#include <asm/tlb.h>
  31
  32#include <linux/io.h>
  33#include <linux/hugetlb.h>
  34#include <linux/hugetlb_cgroup.h>
  35#include <linux/node.h>
 
 
  36#include "internal.h"
  37
  38const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  39unsigned long hugepages_treat_as_movable;
  40
  41int hugetlb_max_hstate __read_mostly;
  42unsigned int default_hstate_idx;
  43struct hstate hstates[HUGE_MAX_HSTATE];
 
 
 
 
 
  44
  45__initdata LIST_HEAD(huge_boot_pages);
  46
  47/* for command line parsing */
  48static struct hstate * __initdata parsed_hstate;
  49static unsigned long __initdata default_hstate_max_huge_pages;
  50static unsigned long __initdata default_hstate_size;
 
  51
  52/*
  53 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  54 * free_huge_pages, and surplus_huge_pages.
  55 */
  56DEFINE_SPINLOCK(hugetlb_lock);
  57
  58/*
  59 * Serializes faults on the same logical page.  This is used to
  60 * prevent spurious OOMs when the hugepage pool is fully utilized.
  61 */
  62static int num_fault_mutexes;
  63static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
 
 
 
  64
  65static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  66{
  67	bool free = (spool->count == 0) && (spool->used_hpages == 0);
  68
  69	spin_unlock(&spool->lock);
  70
  71	/* If no pages are used, and no other handles to the subpool
  72	 * remain, free the subpool the subpool remain */
  73	if (free)
 
 
 
 
  74		kfree(spool);
 
  75}
  76
  77struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
 
  78{
  79	struct hugepage_subpool *spool;
  80
  81	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
  82	if (!spool)
  83		return NULL;
  84
  85	spin_lock_init(&spool->lock);
  86	spool->count = 1;
  87	spool->max_hpages = nr_blocks;
  88	spool->used_hpages = 0;
 
 
 
 
 
 
 
  89
  90	return spool;
  91}
  92
  93void hugepage_put_subpool(struct hugepage_subpool *spool)
  94{
  95	spin_lock(&spool->lock);
  96	BUG_ON(!spool->count);
  97	spool->count--;
  98	unlock_or_release_subpool(spool);
  99}
 100
 101static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 
 
 
 
 
 
 
 
 102				      long delta)
 103{
 104	int ret = 0;
 105
 106	if (!spool)
 107		return 0;
 108
 109	spin_lock(&spool->lock);
 110	if ((spool->used_hpages + delta) <= spool->max_hpages) {
 111		spool->used_hpages += delta;
 112	} else {
 113		ret = -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114	}
 
 
 115	spin_unlock(&spool->lock);
 116
 117	return ret;
 118}
 119
 120static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 
 
 
 
 
 
 121				       long delta)
 122{
 
 
 123	if (!spool)
 124		return;
 125
 126	spin_lock(&spool->lock);
 127	spool->used_hpages -= delta;
 128	/* If hugetlbfs_put_super couldn't free spool due to
 129	* an outstanding quota reference, free it now. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130	unlock_or_release_subpool(spool);
 
 
 131}
 132
 133static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 134{
 135	return HUGETLBFS_SB(inode->i_sb)->spool;
 136}
 137
 138static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 139{
 140	return subpool_inode(file_inode(vma->vm_file));
 141}
 142
 143/*
 144 * Region tracking -- allows tracking of reservations and instantiated pages
 145 *                    across the pages in a mapping.
 146 *
 147 * The region data structures are embedded into a resv_map and
 148 * protected by a resv_map's lock
 
 
 
 
 
 
 
 
 
 
 
 
 149 */
 150struct file_region {
 151	struct list_head link;
 152	long from;
 153	long to;
 154};
 155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156static long region_add(struct resv_map *resv, long f, long t)
 157{
 158	struct list_head *head = &resv->regions;
 159	struct file_region *rg, *nrg, *trg;
 
 160
 161	spin_lock(&resv->lock);
 162	/* Locate the region we are either in or before. */
 163	list_for_each_entry(rg, head, link)
 164		if (f <= rg->to)
 165			break;
 166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167	/* Round our left edge to the current segment if it encloses us. */
 168	if (f > rg->from)
 169		f = rg->from;
 170
 171	/* Check for and consume any regions we now overlap with. */
 172	nrg = rg;
 173	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 174		if (&rg->link == head)
 175			break;
 176		if (rg->from > t)
 177			break;
 178
 179		/* If this area reaches higher then extend our area to
 180		 * include it completely.  If this is not the first area
 181		 * which we intend to reuse, free it. */
 182		if (rg->to > t)
 183			t = rg->to;
 184		if (rg != nrg) {
 
 
 
 
 
 185			list_del(&rg->link);
 186			kfree(rg);
 187		}
 188	}
 
 
 189	nrg->from = f;
 
 190	nrg->to = t;
 
 
 
 191	spin_unlock(&resv->lock);
 192	return 0;
 
 193}
 194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 195static long region_chg(struct resv_map *resv, long f, long t)
 196{
 197	struct list_head *head = &resv->regions;
 198	struct file_region *rg, *nrg = NULL;
 199	long chg = 0;
 200
 201retry:
 202	spin_lock(&resv->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203	/* Locate the region we are before or in. */
 204	list_for_each_entry(rg, head, link)
 205		if (f <= rg->to)
 206			break;
 207
 208	/* If we are below the current region then a new region is required.
 209	 * Subtle, allocate a new region at the position but make it zero
 210	 * size such that we can guarantee to record the reservation. */
 211	if (&rg->link == head || t < rg->from) {
 212		if (!nrg) {
 
 213			spin_unlock(&resv->lock);
 214			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 215			if (!nrg)
 216				return -ENOMEM;
 217
 218			nrg->from = f;
 219			nrg->to   = f;
 220			INIT_LIST_HEAD(&nrg->link);
 221			goto retry;
 222		}
 223
 224		list_add(&nrg->link, rg->link.prev);
 225		chg = t - f;
 226		goto out_nrg;
 227	}
 228
 229	/* Round our left edge to the current segment if it encloses us. */
 230	if (f > rg->from)
 231		f = rg->from;
 232	chg = t - f;
 233
 234	/* Check for and consume any regions we now overlap with. */
 235	list_for_each_entry(rg, rg->link.prev, link) {
 236		if (&rg->link == head)
 237			break;
 238		if (rg->from > t)
 239			goto out;
 240
 241		/* We overlap with this area, if it extends further than
 242		 * us then we must extend ourselves.  Account for its
 243		 * existing reservation. */
 244		if (rg->to > t) {
 245			chg += rg->to - t;
 246			t = rg->to;
 247		}
 248		chg -= rg->to - rg->from;
 249	}
 250
 251out:
 252	spin_unlock(&resv->lock);
 253	/*  We already know we raced and no longer need the new region */
 254	kfree(nrg);
 255	return chg;
 256out_nrg:
 257	spin_unlock(&resv->lock);
 258	return chg;
 259}
 260
 261static long region_truncate(struct resv_map *resv, long end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262{
 263	struct list_head *head = &resv->regions;
 264	struct file_region *rg, *trg;
 265	long chg = 0;
 
 266
 
 267	spin_lock(&resv->lock);
 268	/* Locate the region we are either in or before. */
 269	list_for_each_entry(rg, head, link)
 270		if (end <= rg->to)
 
 
 
 
 
 
 
 
 
 271			break;
 272	if (&rg->link == head)
 273		goto out;
 274
 275	/* If we are in the middle of a region then adjust it. */
 276	if (end > rg->from) {
 277		chg = rg->to - end;
 278		rg->to = end;
 279		rg = list_entry(rg->link.next, typeof(*rg), link);
 280	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 281
 282	/* Drop any remaining regions. */
 283	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 284		if (&rg->link == head)
 285			break;
 286		chg += rg->to - rg->from;
 287		list_del(&rg->link);
 288		kfree(rg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 289	}
 290
 291out:
 292	spin_unlock(&resv->lock);
 293	return chg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 294}
 295
 
 
 
 
 296static long region_count(struct resv_map *resv, long f, long t)
 297{
 298	struct list_head *head = &resv->regions;
 299	struct file_region *rg;
 300	long chg = 0;
 301
 302	spin_lock(&resv->lock);
 303	/* Locate each segment we overlap with, and count that overlap. */
 304	list_for_each_entry(rg, head, link) {
 305		long seg_from;
 306		long seg_to;
 307
 308		if (rg->to <= f)
 309			continue;
 310		if (rg->from >= t)
 311			break;
 312
 313		seg_from = max(rg->from, f);
 314		seg_to = min(rg->to, t);
 315
 316		chg += seg_to - seg_from;
 317	}
 318	spin_unlock(&resv->lock);
 319
 320	return chg;
 321}
 322
 323/*
 324 * Convert the address within this vma to the page offset within
 325 * the mapping, in pagecache page units; huge pages here.
 326 */
 327static pgoff_t vma_hugecache_offset(struct hstate *h,
 328			struct vm_area_struct *vma, unsigned long address)
 329{
 330	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 331			(vma->vm_pgoff >> huge_page_order(h));
 332}
 333
 334pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 335				     unsigned long address)
 336{
 337	return vma_hugecache_offset(hstate_vma(vma), vma, address);
 338}
 
 339
 340/*
 341 * Return the size of the pages allocated when backing a VMA. In the majority
 342 * cases this will be same size as used by the page table entries.
 343 */
 344unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 345{
 346	struct hstate *hstate;
 347
 348	if (!is_vm_hugetlb_page(vma))
 349		return PAGE_SIZE;
 350
 351	hstate = hstate_vma(vma);
 352
 353	return 1UL << huge_page_shift(hstate);
 354}
 355EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 356
 357/*
 358 * Return the page size being used by the MMU to back a VMA. In the majority
 359 * of cases, the page size used by the kernel matches the MMU size. On
 360 * architectures where it differs, an architecture-specific version of this
 361 * function is required.
 362 */
 363#ifndef vma_mmu_pagesize
 364unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 365{
 366	return vma_kernel_pagesize(vma);
 367}
 368#endif
 369
 370/*
 371 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 372 * bits of the reservation map pointer, which are always clear due to
 373 * alignment.
 374 */
 375#define HPAGE_RESV_OWNER    (1UL << 0)
 376#define HPAGE_RESV_UNMAPPED (1UL << 1)
 377#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 378
 379/*
 380 * These helpers are used to track how many pages are reserved for
 381 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 382 * is guaranteed to have their future faults succeed.
 383 *
 384 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 385 * the reserve counters are updated with the hugetlb_lock held. It is safe
 386 * to reset the VMA at fork() time as it is not in use yet and there is no
 387 * chance of the global counters getting corrupted as a result of the values.
 388 *
 389 * The private mapping reservation is represented in a subtly different
 390 * manner to a shared mapping.  A shared mapping has a region map associated
 391 * with the underlying file, this region map represents the backing file
 392 * pages which have ever had a reservation assigned which this persists even
 393 * after the page is instantiated.  A private mapping has a region map
 394 * associated with the original mmap which is attached to all VMAs which
 395 * reference it, this region map represents those offsets which have consumed
 396 * reservation ie. where pages have been instantiated.
 397 */
 398static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 399{
 400	return (unsigned long)vma->vm_private_data;
 401}
 402
 403static void set_vma_private_data(struct vm_area_struct *vma,
 404							unsigned long value)
 405{
 406	vma->vm_private_data = (void *)value;
 407}
 408
 409struct resv_map *resv_map_alloc(void)
 410{
 411	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 412	if (!resv_map)
 
 
 
 
 413		return NULL;
 
 414
 415	kref_init(&resv_map->refs);
 416	spin_lock_init(&resv_map->lock);
 417	INIT_LIST_HEAD(&resv_map->regions);
 418
 
 
 
 
 
 
 419	return resv_map;
 420}
 421
 422void resv_map_release(struct kref *ref)
 423{
 424	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 
 
 425
 426	/* Clear out any active regions before we release the map. */
 427	region_truncate(resv_map, 0);
 
 
 
 
 
 
 
 
 
 428	kfree(resv_map);
 429}
 430
 431static inline struct resv_map *inode_resv_map(struct inode *inode)
 432{
 433	return inode->i_mapping->private_data;
 434}
 435
 436static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 437{
 438	VM_BUG_ON(!is_vm_hugetlb_page(vma));
 439	if (vma->vm_flags & VM_MAYSHARE) {
 440		struct address_space *mapping = vma->vm_file->f_mapping;
 441		struct inode *inode = mapping->host;
 442
 443		return inode_resv_map(inode);
 444
 445	} else {
 446		return (struct resv_map *)(get_vma_private_data(vma) &
 447							~HPAGE_RESV_MASK);
 448	}
 449}
 450
 451static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 452{
 453	VM_BUG_ON(!is_vm_hugetlb_page(vma));
 454	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
 455
 456	set_vma_private_data(vma, (get_vma_private_data(vma) &
 457				HPAGE_RESV_MASK) | (unsigned long)map);
 458}
 459
 460static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 461{
 462	VM_BUG_ON(!is_vm_hugetlb_page(vma));
 463	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
 464
 465	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 466}
 467
 468static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 469{
 470	VM_BUG_ON(!is_vm_hugetlb_page(vma));
 471
 472	return (get_vma_private_data(vma) & flag) != 0;
 473}
 474
 475/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 476void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 477{
 478	VM_BUG_ON(!is_vm_hugetlb_page(vma));
 479	if (!(vma->vm_flags & VM_MAYSHARE))
 480		vma->vm_private_data = (void *)0;
 481}
 482
 483/* Returns true if the VMA has associated reserve pages */
 484static int vma_has_reserves(struct vm_area_struct *vma, long chg)
 485{
 486	if (vma->vm_flags & VM_NORESERVE) {
 487		/*
 488		 * This address is already reserved by other process(chg == 0),
 489		 * so, we should decrement reserved count. Without decrementing,
 490		 * reserve count remains after releasing inode, because this
 491		 * allocated page will go into page cache and is regarded as
 492		 * coming from reserved pool in releasing step.  Currently, we
 493		 * don't have any other solution to deal with this situation
 494		 * properly, so add work-around here.
 495		 */
 496		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 497			return 1;
 498		else
 499			return 0;
 500	}
 501
 502	/* Shared mappings always use reserves */
 503	if (vma->vm_flags & VM_MAYSHARE)
 504		return 1;
 
 
 
 
 
 
 
 
 
 
 
 505
 506	/*
 507	 * Only the process that called mmap() has reserves for
 508	 * private mappings.
 509	 */
 510	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 511		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 512
 513	return 0;
 514}
 515
 516static void enqueue_huge_page(struct hstate *h, struct page *page)
 517{
 518	int nid = page_to_nid(page);
 519	list_move(&page->lru, &h->hugepage_freelists[nid]);
 520	h->free_huge_pages++;
 521	h->free_huge_pages_node[nid]++;
 522}
 523
 524static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
 525{
 526	struct page *page;
 527
 528	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 529		if (!is_migrate_isolate_page(page))
 530			break;
 531	/*
 532	 * if 'non-isolated free hugepage' not found on the list,
 533	 * the allocation fails.
 534	 */
 535	if (&h->hugepage_freelists[nid] == &page->lru)
 536		return NULL;
 537	list_move(&page->lru, &h->hugepage_activelist);
 538	set_page_refcounted(page);
 539	h->free_huge_pages--;
 540	h->free_huge_pages_node[nid]--;
 541	return page;
 542}
 543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 544/* Movability of hugepages depends on migration support. */
 545static inline gfp_t htlb_alloc_mask(struct hstate *h)
 546{
 547	if (hugepages_treat_as_movable || hugepage_migration_support(h))
 548		return GFP_HIGHUSER_MOVABLE;
 549	else
 550		return GFP_HIGHUSER;
 551}
 552
 553static struct page *dequeue_huge_page_vma(struct hstate *h,
 554				struct vm_area_struct *vma,
 555				unsigned long address, int avoid_reserve,
 556				long chg)
 557{
 558	struct page *page = NULL;
 559	struct mempolicy *mpol;
 
 560	nodemask_t *nodemask;
 561	struct zonelist *zonelist;
 562	struct zone *zone;
 563	struct zoneref *z;
 564	unsigned int cpuset_mems_cookie;
 565
 566	/*
 567	 * A child process with MAP_PRIVATE mappings created by their parent
 568	 * have no page reserves. This check ensures that reservations are
 569	 * not "stolen". The child may still get SIGKILLed
 570	 */
 571	if (!vma_has_reserves(vma, chg) &&
 572			h->free_huge_pages - h->resv_huge_pages == 0)
 573		goto err;
 574
 575	/* If reserves cannot be used, ensure enough pages are in the pool */
 576	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 577		goto err;
 578
 579retry_cpuset:
 580	cpuset_mems_cookie = read_mems_allowed_begin();
 581	zonelist = huge_zonelist(vma, address,
 582					htlb_alloc_mask(h), &mpol, &nodemask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 583
 584	for_each_zone_zonelist_nodemask(zone, z, zonelist,
 585						MAX_NR_ZONES - 1, nodemask) {
 586		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
 587			page = dequeue_huge_page_node(h, zone_to_nid(zone));
 588			if (page) {
 589				if (avoid_reserve)
 590					break;
 591				if (!vma_has_reserves(vma, chg))
 592					break;
 593
 594				SetPagePrivate(page);
 595				h->resv_huge_pages--;
 596				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597			}
 
 598		}
 
 
 599	}
 600
 601	mpol_cond_put(mpol);
 602	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
 603		goto retry_cpuset;
 604	return page;
 605
 606err:
 607	return NULL;
 608}
 609
 
 
 
 
 
 
 
 
 
 
 
 
 610static void update_and_free_page(struct hstate *h, struct page *page)
 611{
 612	int i;
 613
 614	VM_BUG_ON(h->order >= MAX_ORDER);
 
 615
 616	h->nr_huge_pages--;
 617	h->nr_huge_pages_node[page_to_nid(page)]--;
 618	for (i = 0; i < pages_per_huge_page(h); i++) {
 619		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
 620				1 << PG_referenced | 1 << PG_dirty |
 621				1 << PG_active | 1 << PG_reserved |
 622				1 << PG_private | 1 << PG_writeback);
 623	}
 624	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
 625	set_compound_page_dtor(page, NULL);
 626	set_page_refcounted(page);
 627	arch_release_hugepage(page);
 628	__free_pages(page, huge_page_order(h));
 
 
 
 
 629}
 630
 631struct hstate *size_to_hstate(unsigned long size)
 632{
 633	struct hstate *h;
 634
 635	for_each_hstate(h) {
 636		if (huge_page_size(h) == size)
 637			return h;
 638	}
 639	return NULL;
 640}
 641
 642static void free_huge_page(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643{
 644	/*
 645	 * Can't pass hstate in here because it is called from the
 646	 * compound page destructor.
 647	 */
 648	struct hstate *h = page_hstate(page);
 649	int nid = page_to_nid(page);
 650	struct hugepage_subpool *spool =
 651		(struct hugepage_subpool *)page_private(page);
 652	bool restore_reserve;
 653
 654	set_page_private(page, 0);
 655	page->mapping = NULL;
 656	BUG_ON(page_count(page));
 657	BUG_ON(page_mapcount(page));
 658	restore_reserve = PagePrivate(page);
 659	ClearPagePrivate(page);
 660
 
 
 
 
 
 
 
 
 661	spin_lock(&hugetlb_lock);
 
 662	hugetlb_cgroup_uncharge_page(hstate_index(h),
 663				     pages_per_huge_page(h), page);
 664	if (restore_reserve)
 665		h->resv_huge_pages++;
 666
 667	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
 
 
 
 
 668		/* remove the page from active list */
 669		list_del(&page->lru);
 670		update_and_free_page(h, page);
 671		h->surplus_huge_pages--;
 672		h->surplus_huge_pages_node[nid]--;
 673	} else {
 674		arch_clear_hugepage_flags(page);
 675		enqueue_huge_page(h, page);
 676	}
 677	spin_unlock(&hugetlb_lock);
 678	hugepage_subpool_put_pages(spool, 1);
 679}
 680
 681static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
 682{
 683	INIT_LIST_HEAD(&page->lru);
 684	set_compound_page_dtor(page, free_huge_page);
 685	spin_lock(&hugetlb_lock);
 686	set_hugetlb_cgroup(page, NULL);
 687	h->nr_huge_pages++;
 688	h->nr_huge_pages_node[nid]++;
 689	spin_unlock(&hugetlb_lock);
 690	put_page(page); /* free it into the hugepage allocator */
 691}
 692
 693static void __init prep_compound_gigantic_page(struct page *page,
 694					       unsigned long order)
 695{
 696	int i;
 697	int nr_pages = 1 << order;
 698	struct page *p = page + 1;
 699
 700	/* we rely on prep_new_huge_page to set the destructor */
 701	set_compound_order(page, order);
 
 702	__SetPageHead(page);
 703	__ClearPageReserved(page);
 704	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
 705		__SetPageTail(p);
 706		/*
 707		 * For gigantic hugepages allocated through bootmem at
 708		 * boot, it's safer to be consistent with the not-gigantic
 709		 * hugepages and clear the PG_reserved bit from all tail pages
 710		 * too.  Otherwse drivers using get_user_pages() to access tail
 711		 * pages may get the reference counting wrong if they see
 712		 * PG_reserved set on a tail page (despite the head page not
 713		 * having PG_reserved set).  Enforcing this consistency between
 714		 * head and tail pages allows drivers to optimize away a check
 715		 * on the head page when they need know if put_page() is needed
 716		 * after get_user_pages().
 717		 */
 718		__ClearPageReserved(p);
 719		set_page_count(p, 0);
 720		p->first_page = page;
 721	}
 
 722}
 723
 724/*
 725 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 726 * transparent huge pages.  See the PageTransHuge() documentation for more
 727 * details.
 728 */
 729int PageHuge(struct page *page)
 730{
 731	if (!PageCompound(page))
 732		return 0;
 733
 734	page = compound_head(page);
 735	return get_compound_page_dtor(page) == free_huge_page;
 736}
 737EXPORT_SYMBOL_GPL(PageHuge);
 738
 739/*
 740 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 741 * normal or transparent huge pages.
 742 */
 743int PageHeadHuge(struct page *page_head)
 744{
 745	if (!PageHead(page_head))
 746		return 0;
 747
 748	return get_compound_page_dtor(page_head) == free_huge_page;
 749}
 750
 751pgoff_t __basepage_index(struct page *page)
 752{
 753	struct page *page_head = compound_head(page);
 754	pgoff_t index = page_index(page_head);
 755	unsigned long compound_idx;
 756
 757	if (!PageHuge(page_head))
 758		return page_index(page);
 759
 760	if (compound_order(page_head) >= MAX_ORDER)
 761		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
 762	else
 763		compound_idx = page - page_head;
 764
 765	return (index << compound_order(page_head)) + compound_idx;
 766}
 767
 768static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
 
 769{
 
 770	struct page *page;
 771
 772	if (h->order >= MAX_ORDER)
 773		return NULL;
 774
 775	page = alloc_pages_exact_node(nid,
 776		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
 777						__GFP_REPEAT|__GFP_NOWARN,
 778		huge_page_order(h));
 779	if (page) {
 780		if (arch_prepare_hugepage(page)) {
 781			__free_pages(page, huge_page_order(h));
 782			return NULL;
 783		}
 784		prep_new_huge_page(h, page, nid);
 785	}
 786
 787	return page;
 788}
 789
 790/*
 791 * common helper functions for hstate_next_node_to_{alloc|free}.
 792 * We may have allocated or freed a huge page based on a different
 793 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 794 * be outside of *nodes_allowed.  Ensure that we use an allowed
 795 * node for alloc or free.
 796 */
 797static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 
 798{
 799	nid = next_node(nid, *nodes_allowed);
 800	if (nid == MAX_NUMNODES)
 801		nid = first_node(*nodes_allowed);
 802	VM_BUG_ON(nid >= MAX_NUMNODES);
 803
 804	return nid;
 805}
 
 
 
 
 
 806
 807static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 808{
 809	if (!node_isset(nid, *nodes_allowed))
 810		nid = next_node_allowed(nid, nodes_allowed);
 811	return nid;
 812}
 813
 814/*
 815 * returns the previously saved node ["this node"] from which to
 816 * allocate a persistent huge page for the pool and advance the
 817 * next node from which to allocate, handling wrap at end of node
 818 * mask.
 819 */
 820static int hstate_next_node_to_alloc(struct hstate *h,
 821					nodemask_t *nodes_allowed)
 822{
 823	int nid;
 824
 825	VM_BUG_ON(!nodes_allowed);
 826
 827	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
 828	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
 829
 830	return nid;
 831}
 832
 833/*
 834 * helper for free_pool_huge_page() - return the previously saved
 835 * node ["this node"] from which to free a huge page.  Advance the
 836 * next node id whether or not we find a free huge page to free so
 837 * that the next attempt to free addresses the next node.
 838 */
 839static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
 840{
 841	int nid;
 842
 843	VM_BUG_ON(!nodes_allowed);
 844
 845	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
 846	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
 847
 848	return nid;
 849}
 850
 851#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
 852	for (nr_nodes = nodes_weight(*mask);				\
 853		nr_nodes > 0 &&						\
 854		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
 855		nr_nodes--)
 856
 857#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
 858	for (nr_nodes = nodes_weight(*mask);				\
 859		nr_nodes > 0 &&						\
 860		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
 861		nr_nodes--)
 862
 863static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
 864{
 865	struct page *page;
 866	int nr_nodes, node;
 867	int ret = 0;
 868
 869	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
 870		page = alloc_fresh_huge_page_node(h, node);
 871		if (page) {
 872			ret = 1;
 873			break;
 874		}
 875	}
 876
 877	if (ret)
 878		count_vm_event(HTLB_BUDDY_PGALLOC);
 879	else
 880		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
 881
 882	return ret;
 883}
 884
 885/*
 886 * Free huge page from pool from next node to free.
 887 * Attempt to keep persistent huge pages more or less
 888 * balanced over allowed nodes.
 889 * Called with hugetlb_lock locked.
 890 */
 891static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
 892							 bool acct_surplus)
 893{
 894	int nr_nodes, node;
 895	int ret = 0;
 896
 897	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
 898		/*
 899		 * If we're returning unused surplus pages, only examine
 900		 * nodes with surplus pages.
 901		 */
 902		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
 903		    !list_empty(&h->hugepage_freelists[node])) {
 904			struct page *page =
 905				list_entry(h->hugepage_freelists[node].next,
 906					  struct page, lru);
 907			list_del(&page->lru);
 908			h->free_huge_pages--;
 909			h->free_huge_pages_node[node]--;
 910			if (acct_surplus) {
 911				h->surplus_huge_pages--;
 912				h->surplus_huge_pages_node[node]--;
 913			}
 914			update_and_free_page(h, page);
 915			ret = 1;
 916			break;
 917		}
 918	}
 919
 920	return ret;
 921}
 922
 923/*
 924 * Dissolve a given free hugepage into free buddy pages. This function does
 925 * nothing for in-use (including surplus) hugepages.
 
 
 926 */
 927static void dissolve_free_huge_page(struct page *page)
 928{
 
 
 929	spin_lock(&hugetlb_lock);
 930	if (PageHuge(page) && !page_count(page)) {
 931		struct hstate *h = page_hstate(page);
 932		int nid = page_to_nid(page);
 933		list_del(&page->lru);
 
 
 
 
 
 
 
 
 
 
 
 
 
 934		h->free_huge_pages--;
 935		h->free_huge_pages_node[nid]--;
 936		update_and_free_page(h, page);
 
 937	}
 
 938	spin_unlock(&hugetlb_lock);
 
 939}
 940
 941/*
 942 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 943 * make specified memory blocks removable from the system.
 944 * Note that start_pfn should aligned with (minimum) hugepage size.
 
 
 
 945 */
 946void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
 947{
 948	unsigned int order = 8 * sizeof(void *);
 949	unsigned long pfn;
 950	struct hstate *h;
 
 
 
 
 
 
 
 
 
 
 
 
 
 951
 952	/* Set scan step to minimum hugepage size */
 953	for_each_hstate(h)
 954		if (order > huge_page_order(h))
 955			order = huge_page_order(h);
 956	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
 957	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
 958		dissolve_free_huge_page(pfn_to_page(pfn));
 959}
 960
 961static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
 
 
 
 
 962{
 963	struct page *page;
 964	unsigned int r_nid;
 
 
 
 
 
 
 
 965
 966	if (h->order >= MAX_ORDER)
 
 967		return NULL;
 968
 
 969	/*
 970	 * Assume we will successfully allocate the surplus page to
 971	 * prevent racing processes from causing the surplus to exceed
 972	 * overcommit
 973	 *
 974	 * This however introduces a different race, where a process B
 975	 * tries to grow the static hugepage pool while alloc_pages() is
 976	 * called by process A. B will only examine the per-node
 977	 * counters in determining if surplus huge pages can be
 978	 * converted to normal huge pages in adjust_pool_surplus(). A
 979	 * won't be able to increment the per-node counter, until the
 980	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
 981	 * no more huge pages can be converted from surplus to normal
 982	 * state (and doesn't try to convert again). Thus, we have a
 983	 * case where a surplus huge page exists, the pool is grown, and
 984	 * the surplus huge page still exists after, even though it
 985	 * should just have been converted to a normal huge page. This
 986	 * does not leak memory, though, as the hugepage will be freed
 987	 * once it is out of use. It also does not allow the counters to
 988	 * go out of whack in adjust_pool_surplus() as we don't modify
 989	 * the node values until we've gotten the hugepage and only the
 990	 * per-node value is checked there.
 991	 */
 992	spin_lock(&hugetlb_lock);
 993	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
 994		spin_unlock(&hugetlb_lock);
 995		return NULL;
 
 996	} else {
 997		h->nr_huge_pages++;
 998		h->surplus_huge_pages++;
 
 999	}
 
 
1000	spin_unlock(&hugetlb_lock);
1001
1002	if (nid == NUMA_NO_NODE)
1003		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1004				   __GFP_REPEAT|__GFP_NOWARN,
1005				   huge_page_order(h));
1006	else
1007		page = alloc_pages_exact_node(nid,
1008			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1009			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
 
 
1010
1011	if (page && arch_prepare_hugepage(page)) {
1012		__free_pages(page, huge_page_order(h));
1013		page = NULL;
1014	}
1015
1016	spin_lock(&hugetlb_lock);
1017	if (page) {
1018		INIT_LIST_HEAD(&page->lru);
1019		r_nid = page_to_nid(page);
1020		set_compound_page_dtor(page, free_huge_page);
1021		set_hugetlb_cgroup(page, NULL);
1022		/*
1023		 * We incremented the global counters already
1024		 */
1025		h->nr_huge_pages_node[r_nid]++;
1026		h->surplus_huge_pages_node[r_nid]++;
1027		__count_vm_event(HTLB_BUDDY_PGALLOC);
1028	} else {
1029		h->nr_huge_pages--;
1030		h->surplus_huge_pages--;
1031		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1032	}
1033	spin_unlock(&hugetlb_lock);
1034
1035	return page;
1036}
1037
1038/*
1039 * This allocation function is useful in the context where vma is irrelevant.
1040 * E.g. soft-offlining uses this function because it only cares physical
1041 * address of error page.
1042 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1043struct page *alloc_huge_page_node(struct hstate *h, int nid)
1044{
 
1045	struct page *page = NULL;
1046
 
 
 
1047	spin_lock(&hugetlb_lock);
1048	if (h->free_huge_pages - h->resv_huge_pages > 0)
1049		page = dequeue_huge_page_node(h, nid);
1050	spin_unlock(&hugetlb_lock);
1051
1052	if (!page)
1053		page = alloc_buddy_huge_page(h, nid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054
1055	return page;
1056}
1057
1058/*
1059 * Increase the hugetlb pool such that it can accommodate a reservation
1060 * of size 'delta'.
1061 */
1062static int gather_surplus_pages(struct hstate *h, int delta)
1063{
1064	struct list_head surplus_list;
1065	struct page *page, *tmp;
1066	int ret, i;
1067	int needed, allocated;
1068	bool alloc_ok = true;
1069
1070	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1071	if (needed <= 0) {
1072		h->resv_huge_pages += delta;
1073		return 0;
1074	}
1075
1076	allocated = 0;
1077	INIT_LIST_HEAD(&surplus_list);
1078
1079	ret = -ENOMEM;
1080retry:
1081	spin_unlock(&hugetlb_lock);
1082	for (i = 0; i < needed; i++) {
1083		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
 
1084		if (!page) {
1085			alloc_ok = false;
1086			break;
1087		}
1088		list_add(&page->lru, &surplus_list);
 
1089	}
1090	allocated += i;
1091
1092	/*
1093	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1094	 * because either resv_huge_pages or free_huge_pages may have changed.
1095	 */
1096	spin_lock(&hugetlb_lock);
1097	needed = (h->resv_huge_pages + delta) -
1098			(h->free_huge_pages + allocated);
1099	if (needed > 0) {
1100		if (alloc_ok)
1101			goto retry;
1102		/*
1103		 * We were not able to allocate enough pages to
1104		 * satisfy the entire reservation so we free what
1105		 * we've allocated so far.
1106		 */
1107		goto free;
1108	}
1109	/*
1110	 * The surplus_list now contains _at_least_ the number of extra pages
1111	 * needed to accommodate the reservation.  Add the appropriate number
1112	 * of pages to the hugetlb pool and free the extras back to the buddy
1113	 * allocator.  Commit the entire reservation here to prevent another
1114	 * process from stealing the pages as they are added to the pool but
1115	 * before they are reserved.
1116	 */
1117	needed += allocated;
1118	h->resv_huge_pages += delta;
1119	ret = 0;
1120
1121	/* Free the needed pages to the hugetlb pool */
1122	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1123		if ((--needed) < 0)
1124			break;
1125		/*
1126		 * This page is now managed by the hugetlb allocator and has
1127		 * no users -- drop the buddy allocator's reference.
1128		 */
1129		put_page_testzero(page);
1130		VM_BUG_ON_PAGE(page_count(page), page);
1131		enqueue_huge_page(h, page);
1132	}
1133free:
1134	spin_unlock(&hugetlb_lock);
1135
1136	/* Free unnecessary surplus pages to the buddy allocator */
1137	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1138		put_page(page);
1139	spin_lock(&hugetlb_lock);
1140
1141	return ret;
1142}
1143
1144/*
1145 * When releasing a hugetlb pool reservation, any surplus pages that were
1146 * allocated to satisfy the reservation must be explicitly freed if they were
1147 * never used.
1148 * Called with hugetlb_lock held.
 
 
 
 
 
 
 
 
1149 */
1150static void return_unused_surplus_pages(struct hstate *h,
1151					unsigned long unused_resv_pages)
1152{
1153	unsigned long nr_pages;
1154
1155	/* Uncommit the reservation */
1156	h->resv_huge_pages -= unused_resv_pages;
1157
1158	/* Cannot return gigantic pages currently */
1159	if (h->order >= MAX_ORDER)
1160		return;
1161
 
 
 
 
1162	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1163
1164	/*
1165	 * We want to release as many surplus pages as possible, spread
1166	 * evenly across all nodes with memory. Iterate across these nodes
1167	 * until we can no longer free unreserved surplus pages. This occurs
1168	 * when the nodes with surplus pages have no free pages.
1169	 * free_pool_huge_page() will balance the the freed pages across the
1170	 * on-line nodes with memory and will handle the hstate accounting.
 
 
 
 
1171	 */
1172	while (nr_pages--) {
 
 
1173		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1174			break;
1175		cond_resched_lock(&hugetlb_lock);
1176	}
 
 
 
 
1177}
1178
 
1179/*
1180 * Determine if the huge page at addr within the vma has an associated
1181 * reservation.  Where it does not we will need to logically increase
1182 * reservation and actually increase subpool usage before an allocation
1183 * can occur.  Where any new reservation would be required the
1184 * reservation change is prepared, but not committed.  Once the page
1185 * has been allocated from the subpool and instantiated the change should
1186 * be committed via vma_commit_reservation.  No action is required on
1187 * failure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1188 */
1189static long vma_needs_reservation(struct hstate *h,
1190			struct vm_area_struct *vma, unsigned long addr)
 
 
 
 
 
 
 
1191{
1192	struct resv_map *resv;
1193	pgoff_t idx;
1194	long chg;
1195
1196	resv = vma_resv_map(vma);
1197	if (!resv)
1198		return 1;
1199
1200	idx = vma_hugecache_offset(h, vma, addr);
1201	chg = region_chg(resv, idx, idx + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1202
1203	if (vma->vm_flags & VM_MAYSHARE)
1204		return chg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1205	else
1206		return chg < 0 ? chg : 0;
 
 
 
 
 
 
1207}
1208static void vma_commit_reservation(struct hstate *h,
 
1209			struct vm_area_struct *vma, unsigned long addr)
1210{
1211	struct resv_map *resv;
1212	pgoff_t idx;
 
 
 
 
 
 
 
 
 
 
 
 
1213
1214	resv = vma_resv_map(vma);
1215	if (!resv)
1216		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1217
1218	idx = vma_hugecache_offset(h, vma, addr);
1219	region_add(resv, idx, idx + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1220}
1221
1222static struct page *alloc_huge_page(struct vm_area_struct *vma,
1223				    unsigned long addr, int avoid_reserve)
1224{
1225	struct hugepage_subpool *spool = subpool_vma(vma);
1226	struct hstate *h = hstate_vma(vma);
1227	struct page *page;
1228	long chg;
 
1229	int ret, idx;
1230	struct hugetlb_cgroup *h_cg;
1231
1232	idx = hstate_index(h);
1233	/*
 
 
 
 
 
 
 
 
 
1234	 * Processes that did not create the mapping will have no
1235	 * reserves and will not have accounted against subpool
1236	 * limit. Check that the subpool limit can be made before
1237	 * satisfying the allocation MAP_NORESERVE mappings may also
1238	 * need pages and subpool limit allocated allocated if no reserve
1239	 * mapping overlaps.
1240	 */
1241	chg = vma_needs_reservation(h, vma, addr);
1242	if (chg < 0)
1243		return ERR_PTR(-ENOMEM);
1244	if (chg || avoid_reserve)
1245		if (hugepage_subpool_get_pages(spool, 1))
1246			return ERR_PTR(-ENOSPC);
 
 
 
 
 
 
 
 
 
 
 
 
 
1247
1248	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1249	if (ret) {
1250		if (chg || avoid_reserve)
1251			hugepage_subpool_put_pages(spool, 1);
1252		return ERR_PTR(-ENOSPC);
1253	}
1254	spin_lock(&hugetlb_lock);
1255	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
 
 
 
 
 
1256	if (!page) {
1257		spin_unlock(&hugetlb_lock);
1258		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1259		if (!page) {
1260			hugetlb_cgroup_uncharge_cgroup(idx,
1261						       pages_per_huge_page(h),
1262						       h_cg);
1263			if (chg || avoid_reserve)
1264				hugepage_subpool_put_pages(spool, 1);
1265			return ERR_PTR(-ENOSPC);
1266		}
1267		spin_lock(&hugetlb_lock);
1268		list_move(&page->lru, &h->hugepage_activelist);
1269		/* Fall through */
1270	}
1271	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1272	spin_unlock(&hugetlb_lock);
1273
1274	set_page_private(page, (unsigned long)spool);
1275
1276	vma_commit_reservation(h, vma, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1277	return page;
1278}
1279
1280/*
1281 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1282 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1283 * where no ERR_VALUE is expected to be returned.
1284 */
1285struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1286				unsigned long addr, int avoid_reserve)
1287{
1288	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1289	if (IS_ERR(page))
1290		page = NULL;
1291	return page;
1292}
1293
1294int __weak alloc_bootmem_huge_page(struct hstate *h)
 
 
1295{
1296	struct huge_bootmem_page *m;
1297	int nr_nodes, node;
1298
1299	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1300		void *addr;
1301
1302		addr = memblock_virt_alloc_try_nid_nopanic(
1303				huge_page_size(h), huge_page_size(h),
1304				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1305		if (addr) {
1306			/*
1307			 * Use the beginning of the huge page to store the
1308			 * huge_bootmem_page struct (until gather_bootmem
1309			 * puts them into the mem_map).
1310			 */
1311			m = addr;
1312			goto found;
1313		}
1314	}
1315	return 0;
1316
1317found:
1318	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1319	/* Put them into a private list first because mem_map is not up yet */
1320	list_add(&m->list, &huge_boot_pages);
1321	m->hstate = h;
1322	return 1;
1323}
1324
1325static void __init prep_compound_huge_page(struct page *page, int order)
 
1326{
1327	if (unlikely(order > (MAX_ORDER - 1)))
1328		prep_compound_gigantic_page(page, order);
1329	else
1330		prep_compound_page(page, order);
1331}
1332
1333/* Put bootmem huge pages into the standard lists after mem_map is up */
1334static void __init gather_bootmem_prealloc(void)
1335{
1336	struct huge_bootmem_page *m;
1337
1338	list_for_each_entry(m, &huge_boot_pages, list) {
1339		struct hstate *h = m->hstate;
1340		struct page *page;
1341
1342#ifdef CONFIG_HIGHMEM
1343		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1344		memblock_free_late(__pa(m),
1345				   sizeof(struct huge_bootmem_page));
1346#else
1347		page = virt_to_page(m);
1348#endif
1349		WARN_ON(page_count(page) != 1);
1350		prep_compound_huge_page(page, h->order);
1351		WARN_ON(PageReserved(page));
1352		prep_new_huge_page(h, page, page_to_nid(page));
 
 
1353		/*
1354		 * If we had gigantic hugepages allocated at boot time, we need
1355		 * to restore the 'stolen' pages to totalram_pages in order to
1356		 * fix confusing memory reports from free(1) and another
1357		 * side-effects, like CommitLimit going negative.
1358		 */
1359		if (h->order > (MAX_ORDER - 1))
1360			adjust_managed_page_count(page, 1 << h->order);
1361	}
1362}
1363
1364static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1365{
1366	unsigned long i;
1367
1368	for (i = 0; i < h->max_huge_pages; ++i) {
1369		if (h->order >= MAX_ORDER) {
1370			if (!alloc_bootmem_huge_page(h))
1371				break;
1372		} else if (!alloc_fresh_huge_page(h,
1373					 &node_states[N_MEMORY]))
1374			break;
 
 
 
 
 
 
 
 
 
1375	}
1376	h->max_huge_pages = i;
1377}
1378
1379static void __init hugetlb_init_hstates(void)
1380{
1381	struct hstate *h;
1382
1383	for_each_hstate(h) {
 
 
 
1384		/* oversize hugepages were init'ed in early boot */
1385		if (h->order < MAX_ORDER)
1386			hugetlb_hstate_alloc_pages(h);
1387	}
1388}
1389
1390static char * __init memfmt(char *buf, unsigned long n)
1391{
1392	if (n >= (1UL << 30))
1393		sprintf(buf, "%lu GB", n >> 30);
1394	else if (n >= (1UL << 20))
1395		sprintf(buf, "%lu MB", n >> 20);
1396	else
1397		sprintf(buf, "%lu KB", n >> 10);
1398	return buf;
1399}
1400
1401static void __init report_hugepages(void)
1402{
1403	struct hstate *h;
1404
1405	for_each_hstate(h) {
1406		char buf[32];
 
 
1407		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1408			memfmt(buf, huge_page_size(h)),
1409			h->free_huge_pages);
1410	}
1411}
1412
1413#ifdef CONFIG_HIGHMEM
1414static void try_to_free_low(struct hstate *h, unsigned long count,
1415						nodemask_t *nodes_allowed)
1416{
1417	int i;
1418
1419	if (h->order >= MAX_ORDER)
1420		return;
1421
1422	for_each_node_mask(i, *nodes_allowed) {
1423		struct page *page, *next;
1424		struct list_head *freel = &h->hugepage_freelists[i];
1425		list_for_each_entry_safe(page, next, freel, lru) {
1426			if (count >= h->nr_huge_pages)
1427				return;
1428			if (PageHighMem(page))
1429				continue;
1430			list_del(&page->lru);
1431			update_and_free_page(h, page);
1432			h->free_huge_pages--;
1433			h->free_huge_pages_node[page_to_nid(page)]--;
1434		}
1435	}
1436}
1437#else
1438static inline void try_to_free_low(struct hstate *h, unsigned long count,
1439						nodemask_t *nodes_allowed)
1440{
1441}
1442#endif
1443
1444/*
1445 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1446 * balanced by operating on them in a round-robin fashion.
1447 * Returns 1 if an adjustment was made.
1448 */
1449static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1450				int delta)
1451{
1452	int nr_nodes, node;
1453
1454	VM_BUG_ON(delta != -1 && delta != 1);
1455
1456	if (delta < 0) {
1457		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1458			if (h->surplus_huge_pages_node[node])
1459				goto found;
1460		}
1461	} else {
1462		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1463			if (h->surplus_huge_pages_node[node] <
1464					h->nr_huge_pages_node[node])
1465				goto found;
1466		}
1467	}
1468	return 0;
1469
1470found:
1471	h->surplus_huge_pages += delta;
1472	h->surplus_huge_pages_node[node] += delta;
1473	return 1;
1474}
1475
1476#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1477static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1478						nodemask_t *nodes_allowed)
1479{
1480	unsigned long min_count, ret;
1481
1482	if (h->order >= MAX_ORDER)
1483		return h->max_huge_pages;
1484
1485	/*
1486	 * Increase the pool size
1487	 * First take pages out of surplus state.  Then make up the
1488	 * remaining difference by allocating fresh huge pages.
1489	 *
1490	 * We might race with alloc_buddy_huge_page() here and be unable
1491	 * to convert a surplus huge page to a normal huge page. That is
1492	 * not critical, though, it just means the overall size of the
1493	 * pool might be one hugepage larger than it needs to be, but
1494	 * within all the constraints specified by the sysctls.
1495	 */
1496	spin_lock(&hugetlb_lock);
1497	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1498		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1499			break;
1500	}
1501
1502	while (count > persistent_huge_pages(h)) {
1503		/*
1504		 * If this allocation races such that we no longer need the
1505		 * page, free_huge_page will handle it by freeing the page
1506		 * and reducing the surplus.
1507		 */
1508		spin_unlock(&hugetlb_lock);
1509		ret = alloc_fresh_huge_page(h, nodes_allowed);
 
 
 
 
1510		spin_lock(&hugetlb_lock);
1511		if (!ret)
1512			goto out;
1513
1514		/* Bail for signals. Probably ctrl-c from user */
1515		if (signal_pending(current))
1516			goto out;
1517	}
1518
1519	/*
1520	 * Decrease the pool size
1521	 * First return free pages to the buddy allocator (being careful
1522	 * to keep enough around to satisfy reservations).  Then place
1523	 * pages into surplus state as needed so the pool will shrink
1524	 * to the desired size as pages become free.
1525	 *
1526	 * By placing pages into the surplus state independent of the
1527	 * overcommit value, we are allowing the surplus pool size to
1528	 * exceed overcommit. There are few sane options here. Since
1529	 * alloc_buddy_huge_page() is checking the global counter,
1530	 * though, we'll note that we're not allowed to exceed surplus
1531	 * and won't grow the pool anywhere else. Not until one of the
1532	 * sysctls are changed, or the surplus pages go out of use.
1533	 */
1534	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1535	min_count = max(count, min_count);
1536	try_to_free_low(h, min_count, nodes_allowed);
1537	while (min_count < persistent_huge_pages(h)) {
1538		if (!free_pool_huge_page(h, nodes_allowed, 0))
1539			break;
1540		cond_resched_lock(&hugetlb_lock);
1541	}
1542	while (count < persistent_huge_pages(h)) {
1543		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1544			break;
1545	}
1546out:
1547	ret = persistent_huge_pages(h);
1548	spin_unlock(&hugetlb_lock);
1549	return ret;
1550}
1551
1552#define HSTATE_ATTR_RO(_name) \
1553	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1554
1555#define HSTATE_ATTR(_name) \
1556	static struct kobj_attribute _name##_attr = \
1557		__ATTR(_name, 0644, _name##_show, _name##_store)
1558
1559static struct kobject *hugepages_kobj;
1560static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1561
1562static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1563
1564static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1565{
1566	int i;
1567
1568	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1569		if (hstate_kobjs[i] == kobj) {
1570			if (nidp)
1571				*nidp = NUMA_NO_NODE;
1572			return &hstates[i];
1573		}
1574
1575	return kobj_to_node_hstate(kobj, nidp);
1576}
1577
1578static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1579					struct kobj_attribute *attr, char *buf)
1580{
1581	struct hstate *h;
1582	unsigned long nr_huge_pages;
1583	int nid;
1584
1585	h = kobj_to_hstate(kobj, &nid);
1586	if (nid == NUMA_NO_NODE)
1587		nr_huge_pages = h->nr_huge_pages;
1588	else
1589		nr_huge_pages = h->nr_huge_pages_node[nid];
1590
1591	return sprintf(buf, "%lu\n", nr_huge_pages);
1592}
1593
1594static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1595			struct kobject *kobj, struct kobj_attribute *attr,
1596			const char *buf, size_t len)
1597{
1598	int err;
1599	int nid;
1600	unsigned long count;
1601	struct hstate *h;
1602	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1603
1604	err = kstrtoul(buf, 10, &count);
1605	if (err)
1606		goto out;
1607
1608	h = kobj_to_hstate(kobj, &nid);
1609	if (h->order >= MAX_ORDER) {
1610		err = -EINVAL;
1611		goto out;
1612	}
1613
1614	if (nid == NUMA_NO_NODE) {
1615		/*
1616		 * global hstate attribute
1617		 */
1618		if (!(obey_mempolicy &&
1619				init_nodemask_of_mempolicy(nodes_allowed))) {
1620			NODEMASK_FREE(nodes_allowed);
1621			nodes_allowed = &node_states[N_MEMORY];
1622		}
1623	} else if (nodes_allowed) {
1624		/*
1625		 * per node hstate attribute: adjust count to global,
1626		 * but restrict alloc/free to the specified node.
1627		 */
1628		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1629		init_nodemask_of_node(nodes_allowed, nid);
1630	} else
1631		nodes_allowed = &node_states[N_MEMORY];
1632
1633	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1634
1635	if (nodes_allowed != &node_states[N_MEMORY])
1636		NODEMASK_FREE(nodes_allowed);
1637
1638	return len;
1639out:
1640	NODEMASK_FREE(nodes_allowed);
1641	return err;
1642}
1643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1644static ssize_t nr_hugepages_show(struct kobject *kobj,
1645				       struct kobj_attribute *attr, char *buf)
1646{
1647	return nr_hugepages_show_common(kobj, attr, buf);
1648}
1649
1650static ssize_t nr_hugepages_store(struct kobject *kobj,
1651	       struct kobj_attribute *attr, const char *buf, size_t len)
1652{
1653	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1654}
1655HSTATE_ATTR(nr_hugepages);
1656
1657#ifdef CONFIG_NUMA
1658
1659/*
1660 * hstate attribute for optionally mempolicy-based constraint on persistent
1661 * huge page alloc/free.
1662 */
1663static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1664				       struct kobj_attribute *attr, char *buf)
1665{
1666	return nr_hugepages_show_common(kobj, attr, buf);
1667}
1668
1669static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1670	       struct kobj_attribute *attr, const char *buf, size_t len)
1671{
1672	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1673}
1674HSTATE_ATTR(nr_hugepages_mempolicy);
1675#endif
1676
1677
1678static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1679					struct kobj_attribute *attr, char *buf)
1680{
1681	struct hstate *h = kobj_to_hstate(kobj, NULL);
1682	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1683}
1684
1685static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1686		struct kobj_attribute *attr, const char *buf, size_t count)
1687{
1688	int err;
1689	unsigned long input;
1690	struct hstate *h = kobj_to_hstate(kobj, NULL);
1691
1692	if (h->order >= MAX_ORDER)
1693		return -EINVAL;
1694
1695	err = kstrtoul(buf, 10, &input);
1696	if (err)
1697		return err;
1698
1699	spin_lock(&hugetlb_lock);
1700	h->nr_overcommit_huge_pages = input;
1701	spin_unlock(&hugetlb_lock);
1702
1703	return count;
1704}
1705HSTATE_ATTR(nr_overcommit_hugepages);
1706
1707static ssize_t free_hugepages_show(struct kobject *kobj,
1708					struct kobj_attribute *attr, char *buf)
1709{
1710	struct hstate *h;
1711	unsigned long free_huge_pages;
1712	int nid;
1713
1714	h = kobj_to_hstate(kobj, &nid);
1715	if (nid == NUMA_NO_NODE)
1716		free_huge_pages = h->free_huge_pages;
1717	else
1718		free_huge_pages = h->free_huge_pages_node[nid];
1719
1720	return sprintf(buf, "%lu\n", free_huge_pages);
1721}
1722HSTATE_ATTR_RO(free_hugepages);
1723
1724static ssize_t resv_hugepages_show(struct kobject *kobj,
1725					struct kobj_attribute *attr, char *buf)
1726{
1727	struct hstate *h = kobj_to_hstate(kobj, NULL);
1728	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1729}
1730HSTATE_ATTR_RO(resv_hugepages);
1731
1732static ssize_t surplus_hugepages_show(struct kobject *kobj,
1733					struct kobj_attribute *attr, char *buf)
1734{
1735	struct hstate *h;
1736	unsigned long surplus_huge_pages;
1737	int nid;
1738
1739	h = kobj_to_hstate(kobj, &nid);
1740	if (nid == NUMA_NO_NODE)
1741		surplus_huge_pages = h->surplus_huge_pages;
1742	else
1743		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1744
1745	return sprintf(buf, "%lu\n", surplus_huge_pages);
1746}
1747HSTATE_ATTR_RO(surplus_hugepages);
1748
1749static struct attribute *hstate_attrs[] = {
1750	&nr_hugepages_attr.attr,
1751	&nr_overcommit_hugepages_attr.attr,
1752	&free_hugepages_attr.attr,
1753	&resv_hugepages_attr.attr,
1754	&surplus_hugepages_attr.attr,
1755#ifdef CONFIG_NUMA
1756	&nr_hugepages_mempolicy_attr.attr,
1757#endif
1758	NULL,
1759};
1760
1761static struct attribute_group hstate_attr_group = {
1762	.attrs = hstate_attrs,
1763};
1764
1765static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1766				    struct kobject **hstate_kobjs,
1767				    struct attribute_group *hstate_attr_group)
1768{
1769	int retval;
1770	int hi = hstate_index(h);
1771
1772	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1773	if (!hstate_kobjs[hi])
1774		return -ENOMEM;
1775
1776	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1777	if (retval)
1778		kobject_put(hstate_kobjs[hi]);
1779
1780	return retval;
1781}
1782
1783static void __init hugetlb_sysfs_init(void)
1784{
1785	struct hstate *h;
1786	int err;
1787
1788	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1789	if (!hugepages_kobj)
1790		return;
1791
1792	for_each_hstate(h) {
1793		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1794					 hstate_kobjs, &hstate_attr_group);
1795		if (err)
1796			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1797	}
1798}
1799
1800#ifdef CONFIG_NUMA
1801
1802/*
1803 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1804 * with node devices in node_devices[] using a parallel array.  The array
1805 * index of a node device or _hstate == node id.
1806 * This is here to avoid any static dependency of the node device driver, in
1807 * the base kernel, on the hugetlb module.
1808 */
1809struct node_hstate {
1810	struct kobject		*hugepages_kobj;
1811	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1812};
1813struct node_hstate node_hstates[MAX_NUMNODES];
1814
1815/*
1816 * A subset of global hstate attributes for node devices
1817 */
1818static struct attribute *per_node_hstate_attrs[] = {
1819	&nr_hugepages_attr.attr,
1820	&free_hugepages_attr.attr,
1821	&surplus_hugepages_attr.attr,
1822	NULL,
1823};
1824
1825static struct attribute_group per_node_hstate_attr_group = {
1826	.attrs = per_node_hstate_attrs,
1827};
1828
1829/*
1830 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1831 * Returns node id via non-NULL nidp.
1832 */
1833static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1834{
1835	int nid;
1836
1837	for (nid = 0; nid < nr_node_ids; nid++) {
1838		struct node_hstate *nhs = &node_hstates[nid];
1839		int i;
1840		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1841			if (nhs->hstate_kobjs[i] == kobj) {
1842				if (nidp)
1843					*nidp = nid;
1844				return &hstates[i];
1845			}
1846	}
1847
1848	BUG();
1849	return NULL;
1850}
1851
1852/*
1853 * Unregister hstate attributes from a single node device.
1854 * No-op if no hstate attributes attached.
1855 */
1856static void hugetlb_unregister_node(struct node *node)
1857{
1858	struct hstate *h;
1859	struct node_hstate *nhs = &node_hstates[node->dev.id];
1860
1861	if (!nhs->hugepages_kobj)
1862		return;		/* no hstate attributes */
1863
1864	for_each_hstate(h) {
1865		int idx = hstate_index(h);
1866		if (nhs->hstate_kobjs[idx]) {
1867			kobject_put(nhs->hstate_kobjs[idx]);
1868			nhs->hstate_kobjs[idx] = NULL;
1869		}
1870	}
1871
1872	kobject_put(nhs->hugepages_kobj);
1873	nhs->hugepages_kobj = NULL;
1874}
1875
1876/*
1877 * hugetlb module exit:  unregister hstate attributes from node devices
1878 * that have them.
1879 */
1880static void hugetlb_unregister_all_nodes(void)
1881{
1882	int nid;
1883
1884	/*
1885	 * disable node device registrations.
1886	 */
1887	register_hugetlbfs_with_node(NULL, NULL);
1888
1889	/*
1890	 * remove hstate attributes from any nodes that have them.
1891	 */
1892	for (nid = 0; nid < nr_node_ids; nid++)
1893		hugetlb_unregister_node(node_devices[nid]);
1894}
1895
1896/*
1897 * Register hstate attributes for a single node device.
1898 * No-op if attributes already registered.
1899 */
1900static void hugetlb_register_node(struct node *node)
1901{
1902	struct hstate *h;
1903	struct node_hstate *nhs = &node_hstates[node->dev.id];
1904	int err;
1905
1906	if (nhs->hugepages_kobj)
1907		return;		/* already allocated */
1908
1909	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1910							&node->dev.kobj);
1911	if (!nhs->hugepages_kobj)
1912		return;
1913
1914	for_each_hstate(h) {
1915		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1916						nhs->hstate_kobjs,
1917						&per_node_hstate_attr_group);
1918		if (err) {
1919			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1920				h->name, node->dev.id);
1921			hugetlb_unregister_node(node);
1922			break;
1923		}
1924	}
1925}
1926
1927/*
1928 * hugetlb init time:  register hstate attributes for all registered node
1929 * devices of nodes that have memory.  All on-line nodes should have
1930 * registered their associated device by this time.
1931 */
1932static void hugetlb_register_all_nodes(void)
1933{
1934	int nid;
1935
1936	for_each_node_state(nid, N_MEMORY) {
1937		struct node *node = node_devices[nid];
1938		if (node->dev.id == nid)
1939			hugetlb_register_node(node);
1940	}
1941
1942	/*
1943	 * Let the node device driver know we're here so it can
1944	 * [un]register hstate attributes on node hotplug.
1945	 */
1946	register_hugetlbfs_with_node(hugetlb_register_node,
1947				     hugetlb_unregister_node);
1948}
1949#else	/* !CONFIG_NUMA */
1950
1951static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1952{
1953	BUG();
1954	if (nidp)
1955		*nidp = -1;
1956	return NULL;
1957}
1958
1959static void hugetlb_unregister_all_nodes(void) { }
1960
1961static void hugetlb_register_all_nodes(void) { }
1962
1963#endif
1964
1965static void __exit hugetlb_exit(void)
1966{
1967	struct hstate *h;
1968
1969	hugetlb_unregister_all_nodes();
1970
1971	for_each_hstate(h) {
1972		kobject_put(hstate_kobjs[hstate_index(h)]);
1973	}
1974
1975	kobject_put(hugepages_kobj);
1976	kfree(htlb_fault_mutex_table);
1977}
1978module_exit(hugetlb_exit);
1979
1980static int __init hugetlb_init(void)
1981{
1982	int i;
1983
1984	if (!hugepages_supported())
1985		return 0;
1986
1987	if (!size_to_hstate(default_hstate_size)) {
 
 
 
 
 
1988		default_hstate_size = HPAGE_SIZE;
1989		if (!size_to_hstate(default_hstate_size))
1990			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1991	}
1992	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1993	if (default_hstate_max_huge_pages)
1994		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
 
 
1995
1996	hugetlb_init_hstates();
1997	gather_bootmem_prealloc();
1998	report_hugepages();
1999
2000	hugetlb_sysfs_init();
2001	hugetlb_register_all_nodes();
2002	hugetlb_cgroup_file_init();
2003
2004#ifdef CONFIG_SMP
2005	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2006#else
2007	num_fault_mutexes = 1;
2008#endif
2009	htlb_fault_mutex_table =
2010		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2011	BUG_ON(!htlb_fault_mutex_table);
2012
2013	for (i = 0; i < num_fault_mutexes; i++)
2014		mutex_init(&htlb_fault_mutex_table[i]);
2015	return 0;
2016}
2017module_init(hugetlb_init);
2018
2019/* Should be called on processing a hugepagesz=... option */
2020void __init hugetlb_add_hstate(unsigned order)
 
 
 
 
 
2021{
2022	struct hstate *h;
2023	unsigned long i;
2024
2025	if (size_to_hstate(PAGE_SIZE << order)) {
2026		pr_warning("hugepagesz= specified twice, ignoring\n");
2027		return;
2028	}
2029	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2030	BUG_ON(order == 0);
2031	h = &hstates[hugetlb_max_hstate++];
2032	h->order = order;
2033	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2034	h->nr_huge_pages = 0;
2035	h->free_huge_pages = 0;
2036	for (i = 0; i < MAX_NUMNODES; ++i)
2037		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2038	INIT_LIST_HEAD(&h->hugepage_activelist);
2039	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2040	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2041	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2042					huge_page_size(h)/1024);
2043
2044	parsed_hstate = h;
2045}
2046
2047static int __init hugetlb_nrpages_setup(char *s)
2048{
2049	unsigned long *mhp;
2050	static unsigned long *last_mhp;
2051
 
 
 
 
 
 
2052	/*
2053	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2054	 * so this hugepages= parameter goes to the "default hstate".
2055	 */
2056	if (!hugetlb_max_hstate)
2057		mhp = &default_hstate_max_huge_pages;
2058	else
2059		mhp = &parsed_hstate->max_huge_pages;
2060
2061	if (mhp == last_mhp) {
2062		pr_warning("hugepages= specified twice without "
2063			   "interleaving hugepagesz=, ignoring\n");
2064		return 1;
2065	}
2066
2067	if (sscanf(s, "%lu", mhp) <= 0)
2068		*mhp = 0;
2069
2070	/*
2071	 * Global state is always initialized later in hugetlb_init.
2072	 * But we need to allocate >= MAX_ORDER hstates here early to still
2073	 * use the bootmem allocator.
2074	 */
2075	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2076		hugetlb_hstate_alloc_pages(parsed_hstate);
2077
2078	last_mhp = mhp;
2079
2080	return 1;
2081}
2082__setup("hugepages=", hugetlb_nrpages_setup);
2083
2084static int __init hugetlb_default_setup(char *s)
2085{
2086	default_hstate_size = memparse(s, &s);
2087	return 1;
2088}
2089__setup("default_hugepagesz=", hugetlb_default_setup);
2090
2091static unsigned int cpuset_mems_nr(unsigned int *array)
2092{
2093	int node;
2094	unsigned int nr = 0;
2095
2096	for_each_node_mask(node, cpuset_current_mems_allowed)
2097		nr += array[node];
2098
2099	return nr;
2100}
2101
2102#ifdef CONFIG_SYSCTL
2103static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2104			 struct ctl_table *table, int write,
2105			 void __user *buffer, size_t *length, loff_t *ppos)
2106{
2107	struct hstate *h = &default_hstate;
2108	unsigned long tmp;
2109	int ret;
2110
2111	if (!hugepages_supported())
2112		return -ENOTSUPP;
2113
2114	tmp = h->max_huge_pages;
2115
2116	if (write && h->order >= MAX_ORDER)
2117		return -EINVAL;
2118
2119	table->data = &tmp;
2120	table->maxlen = sizeof(unsigned long);
2121	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2122	if (ret)
2123		goto out;
2124
2125	if (write) {
2126		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2127						GFP_KERNEL | __GFP_NORETRY);
2128		if (!(obey_mempolicy &&
2129			       init_nodemask_of_mempolicy(nodes_allowed))) {
2130			NODEMASK_FREE(nodes_allowed);
2131			nodes_allowed = &node_states[N_MEMORY];
2132		}
2133		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2134
2135		if (nodes_allowed != &node_states[N_MEMORY])
2136			NODEMASK_FREE(nodes_allowed);
2137	}
2138out:
2139	return ret;
2140}
2141
2142int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2143			  void __user *buffer, size_t *length, loff_t *ppos)
2144{
2145
2146	return hugetlb_sysctl_handler_common(false, table, write,
2147							buffer, length, ppos);
2148}
2149
2150#ifdef CONFIG_NUMA
2151int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2152			  void __user *buffer, size_t *length, loff_t *ppos)
2153{
2154	return hugetlb_sysctl_handler_common(true, table, write,
2155							buffer, length, ppos);
2156}
2157#endif /* CONFIG_NUMA */
2158
2159int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2160			void __user *buffer,
2161			size_t *length, loff_t *ppos)
2162{
2163	struct hstate *h = &default_hstate;
2164	unsigned long tmp;
2165	int ret;
2166
2167	if (!hugepages_supported())
2168		return -ENOTSUPP;
2169
2170	tmp = h->nr_overcommit_huge_pages;
2171
2172	if (write && h->order >= MAX_ORDER)
2173		return -EINVAL;
2174
2175	table->data = &tmp;
2176	table->maxlen = sizeof(unsigned long);
2177	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2178	if (ret)
2179		goto out;
2180
2181	if (write) {
2182		spin_lock(&hugetlb_lock);
2183		h->nr_overcommit_huge_pages = tmp;
2184		spin_unlock(&hugetlb_lock);
2185	}
2186out:
2187	return ret;
2188}
2189
2190#endif /* CONFIG_SYSCTL */
2191
2192void hugetlb_report_meminfo(struct seq_file *m)
2193{
2194	struct hstate *h = &default_hstate;
 
 
2195	if (!hugepages_supported())
2196		return;
2197	seq_printf(m,
2198			"HugePages_Total:   %5lu\n"
2199			"HugePages_Free:    %5lu\n"
2200			"HugePages_Rsvd:    %5lu\n"
2201			"HugePages_Surp:    %5lu\n"
2202			"Hugepagesize:   %8lu kB\n",
2203			h->nr_huge_pages,
2204			h->free_huge_pages,
2205			h->resv_huge_pages,
2206			h->surplus_huge_pages,
2207			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
 
 
 
 
 
 
 
 
 
 
2208}
2209
2210int hugetlb_report_node_meminfo(int nid, char *buf)
2211{
2212	struct hstate *h = &default_hstate;
2213	if (!hugepages_supported())
2214		return 0;
2215	return sprintf(buf,
2216		"Node %d HugePages_Total: %5u\n"
2217		"Node %d HugePages_Free:  %5u\n"
2218		"Node %d HugePages_Surp:  %5u\n",
2219		nid, h->nr_huge_pages_node[nid],
2220		nid, h->free_huge_pages_node[nid],
2221		nid, h->surplus_huge_pages_node[nid]);
2222}
2223
2224void hugetlb_show_meminfo(void)
2225{
2226	struct hstate *h;
2227	int nid;
2228
2229	if (!hugepages_supported())
2230		return;
2231
2232	for_each_node_state(nid, N_MEMORY)
2233		for_each_hstate(h)
2234			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2235				nid,
2236				h->nr_huge_pages_node[nid],
2237				h->free_huge_pages_node[nid],
2238				h->surplus_huge_pages_node[nid],
2239				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2240}
2241
 
 
 
 
 
 
2242/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2243unsigned long hugetlb_total_pages(void)
2244{
2245	struct hstate *h;
2246	unsigned long nr_total_pages = 0;
2247
2248	for_each_hstate(h)
2249		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2250	return nr_total_pages;
2251}
2252
2253static int hugetlb_acct_memory(struct hstate *h, long delta)
2254{
2255	int ret = -ENOMEM;
2256
2257	spin_lock(&hugetlb_lock);
2258	/*
2259	 * When cpuset is configured, it breaks the strict hugetlb page
2260	 * reservation as the accounting is done on a global variable. Such
2261	 * reservation is completely rubbish in the presence of cpuset because
2262	 * the reservation is not checked against page availability for the
2263	 * current cpuset. Application can still potentially OOM'ed by kernel
2264	 * with lack of free htlb page in cpuset that the task is in.
2265	 * Attempt to enforce strict accounting with cpuset is almost
2266	 * impossible (or too ugly) because cpuset is too fluid that
2267	 * task or memory node can be dynamically moved between cpusets.
2268	 *
2269	 * The change of semantics for shared hugetlb mapping with cpuset is
2270	 * undesirable. However, in order to preserve some of the semantics,
2271	 * we fall back to check against current free page availability as
2272	 * a best attempt and hopefully to minimize the impact of changing
2273	 * semantics that cpuset has.
2274	 */
2275	if (delta > 0) {
2276		if (gather_surplus_pages(h, delta) < 0)
2277			goto out;
2278
2279		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2280			return_unused_surplus_pages(h, delta);
2281			goto out;
2282		}
2283	}
2284
2285	ret = 0;
2286	if (delta < 0)
2287		return_unused_surplus_pages(h, (unsigned long) -delta);
2288
2289out:
2290	spin_unlock(&hugetlb_lock);
2291	return ret;
2292}
2293
2294static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2295{
2296	struct resv_map *resv = vma_resv_map(vma);
2297
2298	/*
2299	 * This new VMA should share its siblings reservation map if present.
2300	 * The VMA will only ever have a valid reservation map pointer where
2301	 * it is being copied for another still existing VMA.  As that VMA
2302	 * has a reference to the reservation map it cannot disappear until
2303	 * after this open call completes.  It is therefore safe to take a
2304	 * new reference here without additional locking.
2305	 */
2306	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2307		kref_get(&resv->refs);
2308}
2309
2310static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2311{
2312	struct hstate *h = hstate_vma(vma);
2313	struct resv_map *resv = vma_resv_map(vma);
2314	struct hugepage_subpool *spool = subpool_vma(vma);
2315	unsigned long reserve, start, end;
 
2316
2317	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2318		return;
2319
2320	start = vma_hugecache_offset(h, vma, vma->vm_start);
2321	end = vma_hugecache_offset(h, vma, vma->vm_end);
2322
2323	reserve = (end - start) - region_count(resv, start, end);
2324
2325	kref_put(&resv->refs, resv_map_release);
2326
2327	if (reserve) {
2328		hugetlb_acct_memory(h, -reserve);
2329		hugepage_subpool_put_pages(spool, reserve);
 
 
 
 
2330	}
2331}
2332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2333/*
2334 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2335 * handle_mm_fault() to try to instantiate regular-sized pages in the
2336 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2337 * this far.
2338 */
2339static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2340{
2341	BUG();
2342	return 0;
2343}
2344
2345const struct vm_operations_struct hugetlb_vm_ops = {
2346	.fault = hugetlb_vm_op_fault,
2347	.open = hugetlb_vm_op_open,
2348	.close = hugetlb_vm_op_close,
 
 
2349};
2350
2351static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2352				int writable)
2353{
2354	pte_t entry;
2355
2356	if (writable) {
2357		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2358					 vma->vm_page_prot)));
2359	} else {
2360		entry = huge_pte_wrprotect(mk_huge_pte(page,
2361					   vma->vm_page_prot));
2362	}
2363	entry = pte_mkyoung(entry);
2364	entry = pte_mkhuge(entry);
2365	entry = arch_make_huge_pte(entry, vma, page, writable);
2366
2367	return entry;
2368}
2369
2370static void set_huge_ptep_writable(struct vm_area_struct *vma,
2371				   unsigned long address, pte_t *ptep)
2372{
2373	pte_t entry;
2374
2375	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2376	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2377		update_mmu_cache(vma, address, ptep);
2378}
2379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2380
2381int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2382			    struct vm_area_struct *vma)
2383{
2384	pte_t *src_pte, *dst_pte, entry;
2385	struct page *ptepage;
2386	unsigned long addr;
2387	int cow;
2388	struct hstate *h = hstate_vma(vma);
2389	unsigned long sz = huge_page_size(h);
2390	unsigned long mmun_start;	/* For mmu_notifiers */
2391	unsigned long mmun_end;		/* For mmu_notifiers */
2392	int ret = 0;
2393
2394	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2395
2396	mmun_start = vma->vm_start;
2397	mmun_end = vma->vm_end;
2398	if (cow)
2399		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2400
2401	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2402		spinlock_t *src_ptl, *dst_ptl;
2403		src_pte = huge_pte_offset(src, addr);
2404		if (!src_pte)
2405			continue;
2406		dst_pte = huge_pte_alloc(dst, addr, sz);
2407		if (!dst_pte) {
2408			ret = -ENOMEM;
2409			break;
2410		}
2411
2412		/* If the pagetables are shared don't copy or take references */
2413		if (dst_pte == src_pte)
2414			continue;
2415
2416		dst_ptl = huge_pte_lock(h, dst, dst_pte);
2417		src_ptl = huge_pte_lockptr(h, src, src_pte);
2418		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2419		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2420			if (cow)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2421				huge_ptep_set_wrprotect(src, addr, src_pte);
 
2422			entry = huge_ptep_get(src_pte);
2423			ptepage = pte_page(entry);
2424			get_page(ptepage);
2425			page_dup_rmap(ptepage);
2426			set_huge_pte_at(dst, addr, dst_pte, entry);
 
2427		}
2428		spin_unlock(src_ptl);
2429		spin_unlock(dst_ptl);
2430	}
2431
2432	if (cow)
2433		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2434
2435	return ret;
2436}
2437
2438static int is_hugetlb_entry_migration(pte_t pte)
2439{
2440	swp_entry_t swp;
2441
2442	if (huge_pte_none(pte) || pte_present(pte))
2443		return 0;
2444	swp = pte_to_swp_entry(pte);
2445	if (non_swap_entry(swp) && is_migration_entry(swp))
2446		return 1;
2447	else
2448		return 0;
2449}
2450
2451static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2452{
2453	swp_entry_t swp;
2454
2455	if (huge_pte_none(pte) || pte_present(pte))
2456		return 0;
2457	swp = pte_to_swp_entry(pte);
2458	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2459		return 1;
2460	else
2461		return 0;
2462}
2463
2464void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2465			    unsigned long start, unsigned long end,
2466			    struct page *ref_page)
2467{
2468	int force_flush = 0;
2469	struct mm_struct *mm = vma->vm_mm;
2470	unsigned long address;
2471	pte_t *ptep;
2472	pte_t pte;
2473	spinlock_t *ptl;
2474	struct page *page;
2475	struct hstate *h = hstate_vma(vma);
2476	unsigned long sz = huge_page_size(h);
2477	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2478	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2479
2480	WARN_ON(!is_vm_hugetlb_page(vma));
2481	BUG_ON(start & ~huge_page_mask(h));
2482	BUG_ON(end & ~huge_page_mask(h));
2483
 
 
 
 
 
2484	tlb_start_vma(tlb, vma);
2485	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2486again:
2487	for (address = start; address < end; address += sz) {
2488		ptep = huge_pte_offset(mm, address);
2489		if (!ptep)
2490			continue;
2491
2492		ptl = huge_pte_lock(h, mm, ptep);
2493		if (huge_pmd_unshare(mm, &address, ptep))
2494			goto unlock;
 
 
2495
2496		pte = huge_ptep_get(ptep);
2497		if (huge_pte_none(pte))
2498			goto unlock;
 
 
2499
2500		/*
2501		 * HWPoisoned hugepage is already unmapped and dropped reference
 
2502		 */
2503		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2504			huge_pte_clear(mm, address, ptep);
2505			goto unlock;
 
2506		}
2507
2508		page = pte_page(pte);
2509		/*
2510		 * If a reference page is supplied, it is because a specific
2511		 * page is being unmapped, not a range. Ensure the page we
2512		 * are about to unmap is the actual page of interest.
2513		 */
2514		if (ref_page) {
2515			if (page != ref_page)
2516				goto unlock;
2517
 
2518			/*
2519			 * Mark the VMA as having unmapped its page so that
2520			 * future faults in this VMA will fail rather than
2521			 * looking like data was lost
2522			 */
2523			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2524		}
2525
2526		pte = huge_ptep_get_and_clear(mm, address, ptep);
2527		tlb_remove_tlb_entry(tlb, ptep, address);
2528		if (huge_pte_dirty(pte))
2529			set_page_dirty(page);
2530
2531		page_remove_rmap(page);
2532		force_flush = !__tlb_remove_page(tlb, page);
2533		if (force_flush) {
2534			spin_unlock(ptl);
2535			break;
2536		}
2537		/* Bail out after unmapping reference page if supplied */
2538		if (ref_page) {
2539			spin_unlock(ptl);
2540			break;
2541		}
2542unlock:
2543		spin_unlock(ptl);
2544	}
2545	/*
2546	 * mmu_gather ran out of room to batch pages, we break out of
2547	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2548	 * and page-free while holding it.
2549	 */
2550	if (force_flush) {
2551		force_flush = 0;
2552		tlb_flush_mmu(tlb);
2553		if (address < end && !ref_page)
2554			goto again;
2555	}
2556	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2557	tlb_end_vma(tlb, vma);
2558}
2559
2560void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2561			  struct vm_area_struct *vma, unsigned long start,
2562			  unsigned long end, struct page *ref_page)
2563{
2564	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2565
2566	/*
2567	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2568	 * test will fail on a vma being torn down, and not grab a page table
2569	 * on its way out.  We're lucky that the flag has such an appropriate
2570	 * name, and can in fact be safely cleared here. We could clear it
2571	 * before the __unmap_hugepage_range above, but all that's necessary
2572	 * is to clear it before releasing the i_mmap_mutex. This works
2573	 * because in the context this is called, the VMA is about to be
2574	 * destroyed and the i_mmap_mutex is held.
2575	 */
2576	vma->vm_flags &= ~VM_MAYSHARE;
2577}
2578
2579void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2580			  unsigned long end, struct page *ref_page)
2581{
2582	struct mm_struct *mm;
2583	struct mmu_gather tlb;
2584
2585	mm = vma->vm_mm;
2586
2587	tlb_gather_mmu(&tlb, mm, start, end);
2588	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2589	tlb_finish_mmu(&tlb, start, end);
2590}
2591
2592/*
2593 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2594 * mappping it owns the reserve page for. The intention is to unmap the page
2595 * from other VMAs and let the children be SIGKILLed if they are faulting the
2596 * same region.
2597 */
2598static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2599				struct page *page, unsigned long address)
2600{
2601	struct hstate *h = hstate_vma(vma);
2602	struct vm_area_struct *iter_vma;
2603	struct address_space *mapping;
2604	pgoff_t pgoff;
2605
2606	/*
2607	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2608	 * from page cache lookup which is in HPAGE_SIZE units.
2609	 */
2610	address = address & huge_page_mask(h);
2611	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2612			vma->vm_pgoff;
2613	mapping = file_inode(vma->vm_file)->i_mapping;
2614
2615	/*
2616	 * Take the mapping lock for the duration of the table walk. As
2617	 * this mapping should be shared between all the VMAs,
2618	 * __unmap_hugepage_range() is called as the lock is already held
2619	 */
2620	mutex_lock(&mapping->i_mmap_mutex);
2621	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2622		/* Do not unmap the current VMA */
2623		if (iter_vma == vma)
2624			continue;
2625
2626		/*
 
 
 
 
 
 
 
 
2627		 * Unmap the page from other VMAs without their own reserves.
2628		 * They get marked to be SIGKILLed if they fault in these
2629		 * areas. This is because a future no-page fault on this VMA
2630		 * could insert a zeroed page instead of the data existing
2631		 * from the time of fork. This would look like data corruption
2632		 */
2633		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2634			unmap_hugepage_range(iter_vma, address,
2635					     address + huge_page_size(h), page);
2636	}
2637	mutex_unlock(&mapping->i_mmap_mutex);
2638
2639	return 1;
2640}
2641
2642/*
2643 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2644 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2645 * cannot race with other handlers or page migration.
2646 * Keep the pte_same checks anyway to make transition from the mutex easier.
2647 */
2648static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2649			unsigned long address, pte_t *ptep, pte_t pte,
2650			struct page *pagecache_page, spinlock_t *ptl)
2651{
 
2652	struct hstate *h = hstate_vma(vma);
2653	struct page *old_page, *new_page;
2654	int outside_reserve = 0;
2655	unsigned long mmun_start;	/* For mmu_notifiers */
2656	unsigned long mmun_end;		/* For mmu_notifiers */
2657
 
2658	old_page = pte_page(pte);
2659
2660retry_avoidcopy:
2661	/* If no-one else is actually using this page, avoid the copy
2662	 * and just make the page writable */
2663	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2664		page_move_anon_rmap(old_page, vma, address);
2665		set_huge_ptep_writable(vma, address, ptep);
2666		return 0;
2667	}
2668
2669	/*
2670	 * If the process that created a MAP_PRIVATE mapping is about to
2671	 * perform a COW due to a shared page count, attempt to satisfy
2672	 * the allocation without using the existing reserves. The pagecache
2673	 * page is used to determine if the reserve at this address was
2674	 * consumed or not. If reserves were used, a partial faulted mapping
2675	 * at the time of fork() could consume its reserves on COW instead
2676	 * of the full address range.
2677	 */
2678	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2679			old_page != pagecache_page)
2680		outside_reserve = 1;
2681
2682	page_cache_get(old_page);
2683
2684	/* Drop page table lock as buddy allocator may be called */
 
 
 
2685	spin_unlock(ptl);
2686	new_page = alloc_huge_page(vma, address, outside_reserve);
2687
2688	if (IS_ERR(new_page)) {
2689		long err = PTR_ERR(new_page);
2690		page_cache_release(old_page);
2691
2692		/*
2693		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2694		 * it is due to references held by a child and an insufficient
2695		 * huge page pool. To guarantee the original mappers
2696		 * reliability, unmap the page from child processes. The child
2697		 * may get SIGKILLed if it later faults.
2698		 */
2699		if (outside_reserve) {
 
2700			BUG_ON(huge_pte_none(pte));
2701			if (unmap_ref_private(mm, vma, old_page, address)) {
2702				BUG_ON(huge_pte_none(pte));
2703				spin_lock(ptl);
2704				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2705				if (likely(ptep &&
2706					   pte_same(huge_ptep_get(ptep), pte)))
2707					goto retry_avoidcopy;
2708				/*
2709				 * race occurs while re-acquiring page table
2710				 * lock, and our job is done.
2711				 */
2712				return 0;
2713			}
2714			WARN_ON_ONCE(1);
2715		}
2716
2717		/* Caller expects lock to be held */
2718		spin_lock(ptl);
2719		if (err == -ENOMEM)
2720			return VM_FAULT_OOM;
2721		else
2722			return VM_FAULT_SIGBUS;
2723	}
2724
2725	/*
2726	 * When the original hugepage is shared one, it does not have
2727	 * anon_vma prepared.
2728	 */
2729	if (unlikely(anon_vma_prepare(vma))) {
2730		page_cache_release(new_page);
2731		page_cache_release(old_page);
2732		/* Caller expects lock to be held */
2733		spin_lock(ptl);
2734		return VM_FAULT_OOM;
2735	}
2736
2737	copy_user_huge_page(new_page, old_page, address, vma,
2738			    pages_per_huge_page(h));
2739	__SetPageUptodate(new_page);
 
2740
2741	mmun_start = address & huge_page_mask(h);
2742	mmun_end = mmun_start + huge_page_size(h);
2743	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 
2744	/*
2745	 * Retake the page table lock to check for racing updates
2746	 * before the page tables are altered
2747	 */
2748	spin_lock(ptl);
2749	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
 
2750	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2751		ClearPagePrivate(new_page);
2752
2753		/* Break COW */
2754		huge_ptep_clear_flush(vma, address, ptep);
 
2755		set_huge_pte_at(mm, address, ptep,
2756				make_huge_pte(vma, new_page, 1));
2757		page_remove_rmap(old_page);
2758		hugepage_add_new_anon_rmap(new_page, vma, address);
2759		/* Make the old page be freed below */
2760		new_page = old_page;
2761	}
2762	spin_unlock(ptl);
2763	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2764	page_cache_release(new_page);
2765	page_cache_release(old_page);
 
 
 
2766
2767	/* Caller expects lock to be held */
2768	spin_lock(ptl);
2769	return 0;
2770}
2771
2772/* Return the pagecache page at a given address within a VMA */
2773static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2774			struct vm_area_struct *vma, unsigned long address)
2775{
2776	struct address_space *mapping;
2777	pgoff_t idx;
2778
2779	mapping = vma->vm_file->f_mapping;
2780	idx = vma_hugecache_offset(h, vma, address);
2781
2782	return find_lock_page(mapping, idx);
2783}
2784
2785/*
2786 * Return whether there is a pagecache page to back given address within VMA.
2787 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2788 */
2789static bool hugetlbfs_pagecache_present(struct hstate *h,
2790			struct vm_area_struct *vma, unsigned long address)
2791{
2792	struct address_space *mapping;
2793	pgoff_t idx;
2794	struct page *page;
2795
2796	mapping = vma->vm_file->f_mapping;
2797	idx = vma_hugecache_offset(h, vma, address);
2798
2799	page = find_get_page(mapping, idx);
2800	if (page)
2801		put_page(page);
2802	return page != NULL;
2803}
2804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2805static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2806			   struct address_space *mapping, pgoff_t idx,
2807			   unsigned long address, pte_t *ptep, unsigned int flags)
2808{
2809	struct hstate *h = hstate_vma(vma);
2810	int ret = VM_FAULT_SIGBUS;
2811	int anon_rmap = 0;
2812	unsigned long size;
2813	struct page *page;
2814	pte_t new_pte;
2815	spinlock_t *ptl;
2816
2817	/*
2818	 * Currently, we are forced to kill the process in the event the
2819	 * original mapper has unmapped pages from the child due to a failed
2820	 * COW. Warn that such a situation has occurred as it may not be obvious
2821	 */
2822	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2823		pr_warning("PID %d killed due to inadequate hugepage pool\n",
2824			   current->pid);
2825		return ret;
2826	}
2827
2828	/*
2829	 * Use page lock to guard against racing truncation
2830	 * before we get page_table_lock.
2831	 */
2832retry:
2833	page = find_lock_page(mapping, idx);
2834	if (!page) {
2835		size = i_size_read(mapping->host) >> huge_page_shift(h);
2836		if (idx >= size)
2837			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2838		page = alloc_huge_page(vma, address, 0);
2839		if (IS_ERR(page)) {
2840			ret = PTR_ERR(page);
2841			if (ret == -ENOMEM)
2842				ret = VM_FAULT_OOM;
2843			else
2844				ret = VM_FAULT_SIGBUS;
2845			goto out;
2846		}
2847		clear_huge_page(page, address, pages_per_huge_page(h));
2848		__SetPageUptodate(page);
 
2849
2850		if (vma->vm_flags & VM_MAYSHARE) {
2851			int err;
2852			struct inode *inode = mapping->host;
2853
2854			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2855			if (err) {
2856				put_page(page);
2857				if (err == -EEXIST)
2858					goto retry;
2859				goto out;
2860			}
2861			ClearPagePrivate(page);
2862
2863			spin_lock(&inode->i_lock);
2864			inode->i_blocks += blocks_per_huge_page(h);
2865			spin_unlock(&inode->i_lock);
2866		} else {
2867			lock_page(page);
2868			if (unlikely(anon_vma_prepare(vma))) {
2869				ret = VM_FAULT_OOM;
2870				goto backout_unlocked;
2871			}
2872			anon_rmap = 1;
2873		}
2874	} else {
2875		/*
2876		 * If memory error occurs between mmap() and fault, some process
2877		 * don't have hwpoisoned swap entry for errored virtual address.
2878		 * So we need to block hugepage fault by PG_hwpoison bit check.
2879		 */
2880		if (unlikely(PageHWPoison(page))) {
2881			ret = VM_FAULT_HWPOISON |
2882				VM_FAULT_SET_HINDEX(hstate_index(h));
2883			goto backout_unlocked;
2884		}
2885	}
2886
2887	/*
2888	 * If we are going to COW a private mapping later, we examine the
2889	 * pending reservations for this page now. This will ensure that
2890	 * any allocations necessary to record that reservation occur outside
2891	 * the spinlock.
2892	 */
2893	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2894		if (vma_needs_reservation(h, vma, address) < 0) {
2895			ret = VM_FAULT_OOM;
2896			goto backout_unlocked;
2897		}
 
 
 
2898
2899	ptl = huge_pte_lockptr(h, mm, ptep);
2900	spin_lock(ptl);
2901	size = i_size_read(mapping->host) >> huge_page_shift(h);
2902	if (idx >= size)
2903		goto backout;
2904
2905	ret = 0;
2906	if (!huge_pte_none(huge_ptep_get(ptep)))
2907		goto backout;
2908
2909	if (anon_rmap) {
2910		ClearPagePrivate(page);
2911		hugepage_add_new_anon_rmap(page, vma, address);
2912	} else
2913		page_dup_rmap(page);
2914	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2915				&& (vma->vm_flags & VM_SHARED)));
2916	set_huge_pte_at(mm, address, ptep, new_pte);
2917
 
2918	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2919		/* Optimization, do the COW without a second fault */
2920		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2921	}
2922
2923	spin_unlock(ptl);
2924	unlock_page(page);
2925out:
2926	return ret;
2927
2928backout:
2929	spin_unlock(ptl);
2930backout_unlocked:
2931	unlock_page(page);
 
2932	put_page(page);
2933	goto out;
2934}
2935
2936#ifdef CONFIG_SMP
2937static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2938			    struct vm_area_struct *vma,
2939			    struct address_space *mapping,
2940			    pgoff_t idx, unsigned long address)
2941{
2942	unsigned long key[2];
2943	u32 hash;
2944
2945	if (vma->vm_flags & VM_SHARED) {
2946		key[0] = (unsigned long) mapping;
2947		key[1] = idx;
2948	} else {
2949		key[0] = (unsigned long) mm;
2950		key[1] = address >> huge_page_shift(h);
2951	}
2952
2953	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
2954
2955	return hash & (num_fault_mutexes - 1);
2956}
2957#else
2958/*
2959 * For uniprocesor systems we always use a single mutex, so just
2960 * return 0 and avoid the hashing overhead.
2961 */
2962static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2963			    struct vm_area_struct *vma,
2964			    struct address_space *mapping,
2965			    pgoff_t idx, unsigned long address)
2966{
2967	return 0;
2968}
2969#endif
2970
2971int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2972			unsigned long address, unsigned int flags)
2973{
2974	pte_t *ptep, entry;
2975	spinlock_t *ptl;
2976	int ret;
2977	u32 hash;
2978	pgoff_t idx;
2979	struct page *page = NULL;
2980	struct page *pagecache_page = NULL;
2981	struct hstate *h = hstate_vma(vma);
2982	struct address_space *mapping;
 
2983
2984	address &= huge_page_mask(h);
2985
2986	ptep = huge_pte_offset(mm, address);
2987	if (ptep) {
2988		entry = huge_ptep_get(ptep);
2989		if (unlikely(is_hugetlb_entry_migration(entry))) {
2990			migration_entry_wait_huge(vma, mm, ptep);
2991			return 0;
2992		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2993			return VM_FAULT_HWPOISON_LARGE |
2994				VM_FAULT_SET_HINDEX(hstate_index(h));
 
 
 
 
2995	}
2996
2997	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2998	if (!ptep)
2999		return VM_FAULT_OOM;
3000
3001	mapping = vma->vm_file->f_mapping;
3002	idx = vma_hugecache_offset(h, vma, address);
3003
3004	/*
3005	 * Serialize hugepage allocation and instantiation, so that we don't
3006	 * get spurious allocation failures if two CPUs race to instantiate
3007	 * the same page in the page cache.
3008	 */
3009	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3010	mutex_lock(&htlb_fault_mutex_table[hash]);
3011
3012	entry = huge_ptep_get(ptep);
3013	if (huge_pte_none(entry)) {
3014		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3015		goto out_mutex;
3016	}
3017
3018	ret = 0;
3019
3020	/*
 
 
 
 
 
 
 
 
 
 
3021	 * If we are going to COW the mapping later, we examine the pending
3022	 * reservations for this page now. This will ensure that any
3023	 * allocations necessary to record that reservation occur outside the
3024	 * spinlock. For private mappings, we also lookup the pagecache
3025	 * page now as it is used to determine if a reservation has been
3026	 * consumed.
3027	 */
3028	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3029		if (vma_needs_reservation(h, vma, address) < 0) {
3030			ret = VM_FAULT_OOM;
3031			goto out_mutex;
3032		}
 
 
3033
3034		if (!(vma->vm_flags & VM_MAYSHARE))
3035			pagecache_page = hugetlbfs_pagecache_page(h,
3036								vma, address);
3037	}
3038
 
 
 
 
 
 
3039	/*
3040	 * hugetlb_cow() requires page locks of pte_page(entry) and
3041	 * pagecache_page, so here we need take the former one
3042	 * when page != pagecache_page or !pagecache_page.
3043	 * Note that locking order is always pagecache_page -> page,
3044	 * so no worry about deadlock.
3045	 */
3046	page = pte_page(entry);
3047	get_page(page);
3048	if (page != pagecache_page)
3049		lock_page(page);
3050
3051	ptl = huge_pte_lockptr(h, mm, ptep);
3052	spin_lock(ptl);
3053	/* Check for a racing update before calling hugetlb_cow */
3054	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3055		goto out_ptl;
3056
 
3057
3058	if (flags & FAULT_FLAG_WRITE) {
3059		if (!huge_pte_write(entry)) {
3060			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3061					pagecache_page, ptl);
3062			goto out_ptl;
3063		}
3064		entry = huge_pte_mkdirty(entry);
3065	}
3066	entry = pte_mkyoung(entry);
3067	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3068						flags & FAULT_FLAG_WRITE))
3069		update_mmu_cache(vma, address, ptep);
3070
 
 
 
3071out_ptl:
3072	spin_unlock(ptl);
3073
3074	if (pagecache_page) {
3075		unlock_page(pagecache_page);
3076		put_page(pagecache_page);
3077	}
3078	if (page != pagecache_page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3079		unlock_page(page);
 
3080	put_page(page);
3081
3082out_mutex:
3083	mutex_unlock(&htlb_fault_mutex_table[hash]);
3084	return ret;
3085}
3086
3087long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3088			 struct page **pages, struct vm_area_struct **vmas,
3089			 unsigned long *position, unsigned long *nr_pages,
3090			 long i, unsigned int flags)
3091{
3092	unsigned long pfn_offset;
3093	unsigned long vaddr = *position;
3094	unsigned long remainder = *nr_pages;
3095	struct hstate *h = hstate_vma(vma);
 
3096
3097	while (vaddr < vma->vm_end && remainder) {
3098		pte_t *pte;
3099		spinlock_t *ptl = NULL;
3100		int absent;
3101		struct page *page;
3102
3103		/*
 
 
 
 
 
 
 
 
 
3104		 * Some archs (sparc64, sh*) have multiple pte_ts to
3105		 * each hugepage.  We have to make sure we get the
3106		 * first, for the page indexing below to work.
3107		 *
3108		 * Note that page table lock is not held when pte is null.
3109		 */
3110		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
 
3111		if (pte)
3112			ptl = huge_pte_lock(h, mm, pte);
3113		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3114
3115		/*
3116		 * When coredumping, it suits get_dump_page if we just return
3117		 * an error where there's an empty slot with no huge pagecache
3118		 * to back it.  This way, we avoid allocating a hugepage, and
3119		 * the sparse dumpfile avoids allocating disk blocks, but its
3120		 * huge holes still show up with zeroes where they need to be.
3121		 */
3122		if (absent && (flags & FOLL_DUMP) &&
3123		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3124			if (pte)
3125				spin_unlock(ptl);
3126			remainder = 0;
3127			break;
3128		}
3129
3130		/*
3131		 * We need call hugetlb_fault for both hugepages under migration
3132		 * (in which case hugetlb_fault waits for the migration,) and
3133		 * hwpoisoned hugepages (in which case we need to prevent the
3134		 * caller from accessing to them.) In order to do this, we use
3135		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3136		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3137		 * both cases, and because we can't follow correct pages
3138		 * directly from any kind of swap entries.
3139		 */
3140		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3141		    ((flags & FOLL_WRITE) &&
3142		      !huge_pte_write(huge_ptep_get(pte)))) {
3143			int ret;
 
3144
3145			if (pte)
3146				spin_unlock(ptl);
3147			ret = hugetlb_fault(mm, vma, vaddr,
3148				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3149			if (!(ret & VM_FAULT_ERROR))
3150				continue;
3151
3152			remainder = 0;
3153			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3154		}
3155
3156		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3157		page = pte_page(huge_ptep_get(pte));
3158same_page:
3159		if (pages) {
3160			pages[i] = mem_map_offset(page, pfn_offset);
3161			get_page_foll(pages[i]);
3162		}
3163
3164		if (vmas)
3165			vmas[i] = vma;
3166
3167		vaddr += PAGE_SIZE;
3168		++pfn_offset;
3169		--remainder;
3170		++i;
3171		if (vaddr < vma->vm_end && remainder &&
3172				pfn_offset < pages_per_huge_page(h)) {
3173			/*
3174			 * We use pfn_offset to avoid touching the pageframes
3175			 * of this compound page.
3176			 */
3177			goto same_page;
3178		}
3179		spin_unlock(ptl);
3180	}
3181	*nr_pages = remainder;
 
 
 
 
 
3182	*position = vaddr;
3183
3184	return i ? i : -EFAULT;
3185}
3186
 
 
 
 
 
 
 
 
3187unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3188		unsigned long address, unsigned long end, pgprot_t newprot)
3189{
3190	struct mm_struct *mm = vma->vm_mm;
3191	unsigned long start = address;
3192	pte_t *ptep;
3193	pte_t pte;
3194	struct hstate *h = hstate_vma(vma);
3195	unsigned long pages = 0;
3196
3197	BUG_ON(address >= end);
3198	flush_cache_range(vma, address, end);
3199
3200	mmu_notifier_invalidate_range_start(mm, start, end);
3201	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3202	for (; address < end; address += huge_page_size(h)) {
3203		spinlock_t *ptl;
3204		ptep = huge_pte_offset(mm, address);
3205		if (!ptep)
3206			continue;
3207		ptl = huge_pte_lock(h, mm, ptep);
3208		if (huge_pmd_unshare(mm, &address, ptep)) {
3209			pages++;
3210			spin_unlock(ptl);
3211			continue;
3212		}
3213		if (!huge_pte_none(huge_ptep_get(ptep))) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3214			pte = huge_ptep_get_and_clear(mm, address, ptep);
3215			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3216			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3217			set_huge_pte_at(mm, address, ptep, pte);
3218			pages++;
3219		}
3220		spin_unlock(ptl);
3221	}
3222	/*
3223	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3224	 * may have cleared our pud entry and done put_page on the page table:
3225	 * once we release i_mmap_mutex, another task can do the final put_page
3226	 * and that page table be reused and filled with junk.
3227	 */
3228	flush_tlb_range(vma, start, end);
3229	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
 
 
 
 
 
 
3230	mmu_notifier_invalidate_range_end(mm, start, end);
3231
3232	return pages << h->order;
3233}
3234
3235int hugetlb_reserve_pages(struct inode *inode,
3236					long from, long to,
3237					struct vm_area_struct *vma,
3238					vm_flags_t vm_flags)
3239{
3240	long ret, chg;
3241	struct hstate *h = hstate_inode(inode);
3242	struct hugepage_subpool *spool = subpool_inode(inode);
3243	struct resv_map *resv_map;
 
 
 
 
 
 
 
3244
3245	/*
3246	 * Only apply hugepage reservation if asked. At fault time, an
3247	 * attempt will be made for VM_NORESERVE to allocate a page
3248	 * without using reserves
3249	 */
3250	if (vm_flags & VM_NORESERVE)
3251		return 0;
3252
3253	/*
3254	 * Shared mappings base their reservation on the number of pages that
3255	 * are already allocated on behalf of the file. Private mappings need
3256	 * to reserve the full area even if read-only as mprotect() may be
3257	 * called to make the mapping read-write. Assume !vma is a shm mapping
3258	 */
3259	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3260		resv_map = inode_resv_map(inode);
3261
3262		chg = region_chg(resv_map, from, to);
3263
3264	} else {
3265		resv_map = resv_map_alloc();
3266		if (!resv_map)
3267			return -ENOMEM;
3268
3269		chg = to - from;
3270
3271		set_vma_resv_map(vma, resv_map);
3272		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3273	}
3274
3275	if (chg < 0) {
3276		ret = chg;
3277		goto out_err;
3278	}
3279
3280	/* There must be enough pages in the subpool for the mapping */
3281	if (hugepage_subpool_get_pages(spool, chg)) {
 
 
 
 
 
3282		ret = -ENOSPC;
3283		goto out_err;
3284	}
3285
3286	/*
3287	 * Check enough hugepages are available for the reservation.
3288	 * Hand the pages back to the subpool if there are not
3289	 */
3290	ret = hugetlb_acct_memory(h, chg);
3291	if (ret < 0) {
3292		hugepage_subpool_put_pages(spool, chg);
 
3293		goto out_err;
3294	}
3295
3296	/*
3297	 * Account for the reservations made. Shared mappings record regions
3298	 * that have reservations as they are shared by multiple VMAs.
3299	 * When the last VMA disappears, the region map says how much
3300	 * the reservation was and the page cache tells how much of
3301	 * the reservation was consumed. Private mappings are per-VMA and
3302	 * only the consumed reservations are tracked. When the VMA
3303	 * disappears, the original reservation is the VMA size and the
3304	 * consumed reservations are stored in the map. Hence, nothing
3305	 * else has to be done for private mappings here
3306	 */
3307	if (!vma || vma->vm_flags & VM_MAYSHARE)
3308		region_add(resv_map, from, to);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3309	return 0;
3310out_err:
 
 
 
 
3311	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3312		kref_put(&resv_map->refs, resv_map_release);
3313	return ret;
3314}
3315
3316void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
 
3317{
3318	struct hstate *h = hstate_inode(inode);
3319	struct resv_map *resv_map = inode_resv_map(inode);
3320	long chg = 0;
3321	struct hugepage_subpool *spool = subpool_inode(inode);
 
 
 
 
 
 
 
 
 
 
 
 
3322
3323	if (resv_map)
3324		chg = region_truncate(resv_map, offset);
3325	spin_lock(&inode->i_lock);
3326	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3327	spin_unlock(&inode->i_lock);
3328
3329	hugepage_subpool_put_pages(spool, (chg - freed));
3330	hugetlb_acct_memory(h, -(chg - freed));
 
 
 
 
 
 
3331}
3332
3333#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3334static unsigned long page_table_shareable(struct vm_area_struct *svma,
3335				struct vm_area_struct *vma,
3336				unsigned long addr, pgoff_t idx)
3337{
3338	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3339				svma->vm_start;
3340	unsigned long sbase = saddr & PUD_MASK;
3341	unsigned long s_end = sbase + PUD_SIZE;
3342
3343	/* Allow segments to share if only one is marked locked */
3344	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3345	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3346
3347	/*
3348	 * match the virtual addresses, permission and the alignment of the
3349	 * page table page.
3350	 */
3351	if (pmd_index(addr) != pmd_index(saddr) ||
3352	    vm_flags != svm_flags ||
3353	    sbase < svma->vm_start || svma->vm_end < s_end)
3354		return 0;
3355
3356	return saddr;
3357}
3358
3359static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3360{
3361	unsigned long base = addr & PUD_MASK;
3362	unsigned long end = base + PUD_SIZE;
3363
3364	/*
3365	 * check on proper vm_flags and page table alignment
3366	 */
3367	if (vma->vm_flags & VM_MAYSHARE &&
3368	    vma->vm_start <= base && end <= vma->vm_end)
3369		return 1;
3370	return 0;
3371}
3372
3373/*
3374 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3375 * and returns the corresponding pte. While this is not necessary for the
3376 * !shared pmd case because we can allocate the pmd later as well, it makes the
3377 * code much cleaner. pmd allocation is essential for the shared case because
3378 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3379 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3380 * bad pmd for sharing.
3381 */
3382pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3383{
3384	struct vm_area_struct *vma = find_vma(mm, addr);
3385	struct address_space *mapping = vma->vm_file->f_mapping;
3386	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3387			vma->vm_pgoff;
3388	struct vm_area_struct *svma;
3389	unsigned long saddr;
3390	pte_t *spte = NULL;
3391	pte_t *pte;
3392	spinlock_t *ptl;
3393
3394	if (!vma_shareable(vma, addr))
3395		return (pte_t *)pmd_alloc(mm, pud, addr);
3396
3397	mutex_lock(&mapping->i_mmap_mutex);
3398	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3399		if (svma == vma)
3400			continue;
3401
3402		saddr = page_table_shareable(svma, vma, addr, idx);
3403		if (saddr) {
3404			spte = huge_pte_offset(svma->vm_mm, saddr);
 
3405			if (spte) {
3406				get_page(virt_to_page(spte));
3407				break;
3408			}
3409		}
3410	}
3411
3412	if (!spte)
3413		goto out;
3414
3415	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3416	spin_lock(ptl);
3417	if (pud_none(*pud))
3418		pud_populate(mm, pud,
3419				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3420	else
 
3421		put_page(virt_to_page(spte));
 
3422	spin_unlock(ptl);
3423out:
3424	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3425	mutex_unlock(&mapping->i_mmap_mutex);
3426	return pte;
3427}
3428
3429/*
3430 * unmap huge page backed by shared pte.
3431 *
3432 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3433 * indicated by page_count > 1, unmap is achieved by clearing pud and
3434 * decrementing the ref count. If count == 1, the pte page is not shared.
3435 *
3436 * called with page table lock held.
3437 *
3438 * returns: 1 successfully unmapped a shared pte page
3439 *	    0 the underlying pte page is not shared, or it is the last user
3440 */
3441int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3442{
3443	pgd_t *pgd = pgd_offset(mm, *addr);
3444	pud_t *pud = pud_offset(pgd, *addr);
 
3445
3446	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3447	if (page_count(virt_to_page(ptep)) == 1)
3448		return 0;
3449
3450	pud_clear(pud);
3451	put_page(virt_to_page(ptep));
 
3452	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3453	return 1;
3454}
3455#define want_pmd_share()	(1)
3456#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3457pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3458{
3459	return NULL;
3460}
 
 
 
 
 
3461#define want_pmd_share()	(0)
3462#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3463
3464#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3465pte_t *huge_pte_alloc(struct mm_struct *mm,
3466			unsigned long addr, unsigned long sz)
3467{
3468	pgd_t *pgd;
 
3469	pud_t *pud;
3470	pte_t *pte = NULL;
3471
3472	pgd = pgd_offset(mm, addr);
3473	pud = pud_alloc(mm, pgd, addr);
 
 
 
3474	if (pud) {
3475		if (sz == PUD_SIZE) {
3476			pte = (pte_t *)pud;
3477		} else {
3478			BUG_ON(sz != PMD_SIZE);
3479			if (want_pmd_share() && pud_none(*pud))
3480				pte = huge_pmd_share(mm, addr, pud);
3481			else
3482				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3483		}
3484	}
3485	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3486
3487	return pte;
3488}
3489
3490pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
 
 
 
 
 
 
 
 
 
 
3491{
3492	pgd_t *pgd;
 
3493	pud_t *pud;
3494	pmd_t *pmd = NULL;
3495
3496	pgd = pgd_offset(mm, addr);
3497	if (pgd_present(*pgd)) {
3498		pud = pud_offset(pgd, addr);
3499		if (pud_present(*pud)) {
3500			if (pud_huge(*pud))
3501				return (pte_t *)pud;
3502			pmd = pmd_offset(pud, addr);
3503		}
3504	}
3505	return (pte_t *) pmd;
3506}
 
 
3507
3508struct page *
3509follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3510		pmd_t *pmd, int write)
3511{
3512	struct page *page;
 
3513
3514	page = pte_page(*(pte_t *)pmd);
3515	if (page)
3516		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3517	return page;
3518}
3519
3520struct page *
3521follow_huge_pud(struct mm_struct *mm, unsigned long address,
3522		pud_t *pud, int write)
 
 
 
 
 
 
3523{
3524	struct page *page;
3525
3526	page = pte_page(*(pte_t *)pud);
3527	if (page)
3528		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3529	return page;
3530}
3531
3532#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3533
3534/* Can be overriden by architectures */
3535struct page * __weak
3536follow_huge_pud(struct mm_struct *mm, unsigned long address,
3537	       pud_t *pud, int write)
3538{
3539	BUG();
3540	return NULL;
3541}
3542
3543#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3544
3545#ifdef CONFIG_MEMORY_FAILURE
3546
3547/* Should be called in hugetlb_lock */
3548static int is_hugepage_on_freelist(struct page *hpage)
3549{
3550	struct page *page;
3551	struct page *tmp;
3552	struct hstate *h = page_hstate(hpage);
3553	int nid = page_to_nid(hpage);
3554
3555	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3556		if (page == hpage)
3557			return 1;
3558	return 0;
3559}
3560
3561/*
3562 * This function is called from memory failure code.
3563 * Assume the caller holds page lock of the head page.
3564 */
3565int dequeue_hwpoisoned_huge_page(struct page *hpage)
3566{
3567	struct hstate *h = page_hstate(hpage);
3568	int nid = page_to_nid(hpage);
3569	int ret = -EBUSY;
3570
3571	spin_lock(&hugetlb_lock);
3572	if (is_hugepage_on_freelist(hpage)) {
3573		/*
3574		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3575		 * but dangling hpage->lru can trigger list-debug warnings
3576		 * (this happens when we call unpoison_memory() on it),
3577		 * so let it point to itself with list_del_init().
3578		 */
3579		list_del_init(&hpage->lru);
3580		set_page_refcounted(hpage);
3581		h->free_huge_pages--;
3582		h->free_huge_pages_node[nid]--;
3583		ret = 0;
3584	}
3585	spin_unlock(&hugetlb_lock);
3586	return ret;
3587}
3588#endif
3589
3590bool isolate_huge_page(struct page *page, struct list_head *list)
3591{
 
 
3592	VM_BUG_ON_PAGE(!PageHead(page), page);
3593	if (!get_page_unless_zero(page))
3594		return false;
3595	spin_lock(&hugetlb_lock);
 
 
 
 
 
3596	list_move_tail(&page->lru, list);
 
3597	spin_unlock(&hugetlb_lock);
3598	return true;
3599}
3600
3601void putback_active_hugepage(struct page *page)
3602{
3603	VM_BUG_ON_PAGE(!PageHead(page), page);
3604	spin_lock(&hugetlb_lock);
 
3605	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3606	spin_unlock(&hugetlb_lock);
3607	put_page(page);
3608}
3609
3610bool is_hugepage_active(struct page *page)
3611{
3612	VM_BUG_ON_PAGE(!PageHuge(page), page);
 
 
 
 
3613	/*
3614	 * This function can be called for a tail page because the caller,
3615	 * scan_movable_pages, scans through a given pfn-range which typically
3616	 * covers one memory block. In systems using gigantic hugepage (1GB
3617	 * for x86_64,) a hugepage is larger than a memory block, and we don't
3618	 * support migrating such large hugepages for now, so return false
3619	 * when called for tail pages.
 
 
3620	 */
3621	if (PageTail(page))
3622		return false;
3623	/*
3624	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3625	 * so we should return false for them.
3626	 */
3627	if (unlikely(PageHWPoison(page)))
3628		return false;
3629	return page_count(page) > 0;
 
 
 
 
 
3630}