Loading...
1#include <linux/export.h>
2#include <linux/kref.h>
3#include <linux/list.h>
4#include <linux/mutex.h>
5#include <linux/phylink.h>
6#include <linux/rtnetlink.h>
7#include <linux/slab.h>
8
9#include "sfp.h"
10
11/**
12 * struct sfp_bus - internal representation of a sfp bus
13 */
14struct sfp_bus {
15 /* private: */
16 struct kref kref;
17 struct list_head node;
18 struct fwnode_handle *fwnode;
19
20 const struct sfp_socket_ops *socket_ops;
21 struct device *sfp_dev;
22 struct sfp *sfp;
23
24 const struct sfp_upstream_ops *upstream_ops;
25 void *upstream;
26 struct net_device *netdev;
27 struct phy_device *phydev;
28
29 bool registered;
30 bool started;
31};
32
33/**
34 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
35 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
36 * @id: a pointer to the module's &struct sfp_eeprom_id
37 * @support: optional pointer to an array of unsigned long for the
38 * ethtool support mask
39 *
40 * Parse the EEPROM identification given in @id, and return one of
41 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
42 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
43 * the connector type.
44 *
45 * If the port type is not known, returns %PORT_OTHER.
46 */
47int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
48 unsigned long *support)
49{
50 int port;
51
52 /* port is the physical connector, set this from the connector field. */
53 switch (id->base.connector) {
54 case SFP_CONNECTOR_SC:
55 case SFP_CONNECTOR_FIBERJACK:
56 case SFP_CONNECTOR_LC:
57 case SFP_CONNECTOR_MT_RJ:
58 case SFP_CONNECTOR_MU:
59 case SFP_CONNECTOR_OPTICAL_PIGTAIL:
60 port = PORT_FIBRE;
61 break;
62
63 case SFP_CONNECTOR_RJ45:
64 port = PORT_TP;
65 break;
66
67 case SFP_CONNECTOR_COPPER_PIGTAIL:
68 port = PORT_DA;
69 break;
70
71 case SFP_CONNECTOR_UNSPEC:
72 if (id->base.e1000_base_t) {
73 port = PORT_TP;
74 break;
75 }
76 /* fallthrough */
77 case SFP_CONNECTOR_SG: /* guess */
78 case SFP_CONNECTOR_MPO_1X12:
79 case SFP_CONNECTOR_MPO_2X16:
80 case SFP_CONNECTOR_HSSDC_II:
81 case SFP_CONNECTOR_NOSEPARATE:
82 case SFP_CONNECTOR_MXC_2X16:
83 port = PORT_OTHER;
84 break;
85 default:
86 dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
87 id->base.connector);
88 port = PORT_OTHER;
89 break;
90 }
91
92 if (support) {
93 switch (port) {
94 case PORT_FIBRE:
95 phylink_set(support, FIBRE);
96 break;
97
98 case PORT_TP:
99 phylink_set(support, TP);
100 break;
101 }
102 }
103
104 return port;
105}
106EXPORT_SYMBOL_GPL(sfp_parse_port);
107
108/**
109 * sfp_parse_support() - Parse the eeprom id for supported link modes
110 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
111 * @id: a pointer to the module's &struct sfp_eeprom_id
112 * @support: pointer to an array of unsigned long for the ethtool support mask
113 *
114 * Parse the EEPROM identification information and derive the supported
115 * ethtool link modes for the module.
116 */
117void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
118 unsigned long *support)
119{
120 unsigned int br_min, br_nom, br_max;
121 __ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
122
123 /* Decode the bitrate information to MBd */
124 br_min = br_nom = br_max = 0;
125 if (id->base.br_nominal) {
126 if (id->base.br_nominal != 255) {
127 br_nom = id->base.br_nominal * 100;
128 br_min = br_nom - id->base.br_nominal * id->ext.br_min;
129 br_max = br_nom + id->base.br_nominal * id->ext.br_max;
130 } else if (id->ext.br_max) {
131 br_nom = 250 * id->ext.br_max;
132 br_max = br_nom + br_nom * id->ext.br_min / 100;
133 br_min = br_nom - br_nom * id->ext.br_min / 100;
134 }
135 }
136
137 /* Set ethtool support from the compliance fields. */
138 if (id->base.e10g_base_sr)
139 phylink_set(modes, 10000baseSR_Full);
140 if (id->base.e10g_base_lr)
141 phylink_set(modes, 10000baseLR_Full);
142 if (id->base.e10g_base_lrm)
143 phylink_set(modes, 10000baseLRM_Full);
144 if (id->base.e10g_base_er)
145 phylink_set(modes, 10000baseER_Full);
146 if (id->base.e1000_base_sx ||
147 id->base.e1000_base_lx ||
148 id->base.e1000_base_cx)
149 phylink_set(modes, 1000baseX_Full);
150 if (id->base.e1000_base_t) {
151 phylink_set(modes, 1000baseT_Half);
152 phylink_set(modes, 1000baseT_Full);
153 }
154
155 /* 1000Base-PX or 1000Base-BX10 */
156 if ((id->base.e_base_px || id->base.e_base_bx10) &&
157 br_min <= 1300 && br_max >= 1200)
158 phylink_set(support, 1000baseX_Full);
159
160 /* For active or passive cables, select the link modes
161 * based on the bit rates and the cable compliance bytes.
162 */
163 if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
164 /* This may look odd, but some manufacturers use 12000MBd */
165 if (br_min <= 12000 && br_max >= 10300)
166 phylink_set(modes, 10000baseCR_Full);
167 if (br_min <= 3200 && br_max >= 3100)
168 phylink_set(modes, 2500baseX_Full);
169 if (br_min <= 1300 && br_max >= 1200)
170 phylink_set(modes, 1000baseX_Full);
171 }
172 if (id->base.sfp_ct_passive) {
173 if (id->base.passive.sff8431_app_e)
174 phylink_set(modes, 10000baseCR_Full);
175 }
176 if (id->base.sfp_ct_active) {
177 if (id->base.active.sff8431_app_e ||
178 id->base.active.sff8431_lim) {
179 phylink_set(modes, 10000baseCR_Full);
180 }
181 }
182
183 switch (id->base.extended_cc) {
184 case 0x00: /* Unspecified */
185 break;
186 case 0x02: /* 100Gbase-SR4 or 25Gbase-SR */
187 phylink_set(modes, 100000baseSR4_Full);
188 phylink_set(modes, 25000baseSR_Full);
189 break;
190 case 0x03: /* 100Gbase-LR4 or 25Gbase-LR */
191 case 0x04: /* 100Gbase-ER4 or 25Gbase-ER */
192 phylink_set(modes, 100000baseLR4_ER4_Full);
193 break;
194 case 0x0b: /* 100Gbase-CR4 or 25Gbase-CR CA-L */
195 case 0x0c: /* 25Gbase-CR CA-S */
196 case 0x0d: /* 25Gbase-CR CA-N */
197 phylink_set(modes, 100000baseCR4_Full);
198 phylink_set(modes, 25000baseCR_Full);
199 break;
200 default:
201 dev_warn(bus->sfp_dev,
202 "Unknown/unsupported extended compliance code: 0x%02x\n",
203 id->base.extended_cc);
204 break;
205 }
206
207 /* For fibre channel SFP, derive possible BaseX modes */
208 if (id->base.fc_speed_100 ||
209 id->base.fc_speed_200 ||
210 id->base.fc_speed_400) {
211 if (id->base.br_nominal >= 31)
212 phylink_set(modes, 2500baseX_Full);
213 if (id->base.br_nominal >= 12)
214 phylink_set(modes, 1000baseX_Full);
215 }
216
217 /* If we haven't discovered any modes that this module supports, try
218 * the encoding and bitrate to determine supported modes. Some BiDi
219 * modules (eg, 1310nm/1550nm) are not 1000BASE-BX compliant due to
220 * the differing wavelengths, so do not set any transceiver bits.
221 */
222 if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS)) {
223 /* If the encoding and bit rate allows 1000baseX */
224 if (id->base.encoding == SFP_ENCODING_8B10B && br_nom &&
225 br_min <= 1300 && br_max >= 1200)
226 phylink_set(modes, 1000baseX_Full);
227 }
228
229 bitmap_or(support, support, modes, __ETHTOOL_LINK_MODE_MASK_NBITS);
230
231 phylink_set(support, Autoneg);
232 phylink_set(support, Pause);
233 phylink_set(support, Asym_Pause);
234}
235EXPORT_SYMBOL_GPL(sfp_parse_support);
236
237/**
238 * sfp_select_interface() - Select appropriate phy_interface_t mode
239 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
240 * @id: a pointer to the module's &struct sfp_eeprom_id
241 * @link_modes: ethtool link modes mask
242 *
243 * Derive the phy_interface_t mode for the information found in the
244 * module's identifying EEPROM and the link modes mask. There is no
245 * standard or defined way to derive this information, so we decide
246 * based upon the link mode mask.
247 */
248phy_interface_t sfp_select_interface(struct sfp_bus *bus,
249 const struct sfp_eeprom_id *id,
250 unsigned long *link_modes)
251{
252 if (phylink_test(link_modes, 10000baseCR_Full) ||
253 phylink_test(link_modes, 10000baseSR_Full) ||
254 phylink_test(link_modes, 10000baseLR_Full) ||
255 phylink_test(link_modes, 10000baseLRM_Full) ||
256 phylink_test(link_modes, 10000baseER_Full))
257 return PHY_INTERFACE_MODE_10GKR;
258
259 if (phylink_test(link_modes, 2500baseX_Full))
260 return PHY_INTERFACE_MODE_2500BASEX;
261
262 if (id->base.e1000_base_t ||
263 id->base.e100_base_lx ||
264 id->base.e100_base_fx)
265 return PHY_INTERFACE_MODE_SGMII;
266
267 if (phylink_test(link_modes, 1000baseX_Full))
268 return PHY_INTERFACE_MODE_1000BASEX;
269
270 dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
271
272 return PHY_INTERFACE_MODE_NA;
273}
274EXPORT_SYMBOL_GPL(sfp_select_interface);
275
276static LIST_HEAD(sfp_buses);
277static DEFINE_MUTEX(sfp_mutex);
278
279static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
280{
281 return bus->registered ? bus->upstream_ops : NULL;
282}
283
284static struct sfp_bus *sfp_bus_get(struct fwnode_handle *fwnode)
285{
286 struct sfp_bus *sfp, *new, *found = NULL;
287
288 new = kzalloc(sizeof(*new), GFP_KERNEL);
289
290 mutex_lock(&sfp_mutex);
291
292 list_for_each_entry(sfp, &sfp_buses, node) {
293 if (sfp->fwnode == fwnode) {
294 kref_get(&sfp->kref);
295 found = sfp;
296 break;
297 }
298 }
299
300 if (!found && new) {
301 kref_init(&new->kref);
302 new->fwnode = fwnode;
303 list_add(&new->node, &sfp_buses);
304 found = new;
305 new = NULL;
306 }
307
308 mutex_unlock(&sfp_mutex);
309
310 kfree(new);
311
312 return found;
313}
314
315static void sfp_bus_release(struct kref *kref)
316{
317 struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
318
319 list_del(&bus->node);
320 mutex_unlock(&sfp_mutex);
321 kfree(bus);
322}
323
324static void sfp_bus_put(struct sfp_bus *bus)
325{
326 kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
327}
328
329static int sfp_register_bus(struct sfp_bus *bus)
330{
331 const struct sfp_upstream_ops *ops = bus->upstream_ops;
332 int ret;
333
334 if (ops) {
335 if (ops->link_down)
336 ops->link_down(bus->upstream);
337 if (ops->connect_phy && bus->phydev) {
338 ret = ops->connect_phy(bus->upstream, bus->phydev);
339 if (ret)
340 return ret;
341 }
342 }
343 if (bus->started)
344 bus->socket_ops->start(bus->sfp);
345 bus->netdev->sfp_bus = bus;
346 bus->registered = true;
347 return 0;
348}
349
350static void sfp_unregister_bus(struct sfp_bus *bus)
351{
352 const struct sfp_upstream_ops *ops = bus->upstream_ops;
353
354 if (bus->registered) {
355 if (bus->started)
356 bus->socket_ops->stop(bus->sfp);
357 if (bus->phydev && ops && ops->disconnect_phy)
358 ops->disconnect_phy(bus->upstream);
359 }
360 bus->netdev->sfp_bus = NULL;
361 bus->registered = false;
362}
363
364/**
365 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
366 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
367 * @modinfo: a &struct ethtool_modinfo
368 *
369 * Fill in the type and eeprom_len parameters in @modinfo for a module on
370 * the sfp bus specified by @bus.
371 *
372 * Returns 0 on success or a negative errno number.
373 */
374int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
375{
376 return bus->socket_ops->module_info(bus->sfp, modinfo);
377}
378EXPORT_SYMBOL_GPL(sfp_get_module_info);
379
380/**
381 * sfp_get_module_eeprom() - Read the SFP module EEPROM
382 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
383 * @ee: a &struct ethtool_eeprom
384 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
385 *
386 * Read the EEPROM as specified by the supplied @ee. See the documentation
387 * for &struct ethtool_eeprom for the region to be read.
388 *
389 * Returns 0 on success or a negative errno number.
390 */
391int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
392 u8 *data)
393{
394 return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
395}
396EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
397
398/**
399 * sfp_upstream_start() - Inform the SFP that the network device is up
400 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
401 *
402 * Inform the SFP socket that the network device is now up, so that the
403 * module can be enabled by allowing TX_DISABLE to be deasserted. This
404 * should be called from the network device driver's &struct net_device_ops
405 * ndo_open() method.
406 */
407void sfp_upstream_start(struct sfp_bus *bus)
408{
409 if (bus->registered)
410 bus->socket_ops->start(bus->sfp);
411 bus->started = true;
412}
413EXPORT_SYMBOL_GPL(sfp_upstream_start);
414
415/**
416 * sfp_upstream_stop() - Inform the SFP that the network device is down
417 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
418 *
419 * Inform the SFP socket that the network device is now up, so that the
420 * module can be disabled by asserting TX_DISABLE, disabling the laser
421 * in optical modules. This should be called from the network device
422 * driver's &struct net_device_ops ndo_stop() method.
423 */
424void sfp_upstream_stop(struct sfp_bus *bus)
425{
426 if (bus->registered)
427 bus->socket_ops->stop(bus->sfp);
428 bus->started = false;
429}
430EXPORT_SYMBOL_GPL(sfp_upstream_stop);
431
432/**
433 * sfp_register_upstream() - Register the neighbouring device
434 * @fwnode: firmware node for the SFP bus
435 * @ndev: network device associated with the interface
436 * @upstream: the upstream private data
437 * @ops: the upstream's &struct sfp_upstream_ops
438 *
439 * Register the upstream device (eg, PHY) with the SFP bus. MAC drivers
440 * should use phylink, which will call this function for them. Returns
441 * a pointer to the allocated &struct sfp_bus.
442 *
443 * On error, returns %NULL.
444 */
445struct sfp_bus *sfp_register_upstream(struct fwnode_handle *fwnode,
446 struct net_device *ndev, void *upstream,
447 const struct sfp_upstream_ops *ops)
448{
449 struct sfp_bus *bus = sfp_bus_get(fwnode);
450 int ret = 0;
451
452 if (bus) {
453 rtnl_lock();
454 bus->upstream_ops = ops;
455 bus->upstream = upstream;
456 bus->netdev = ndev;
457
458 if (bus->sfp)
459 ret = sfp_register_bus(bus);
460 rtnl_unlock();
461 }
462
463 if (ret) {
464 sfp_bus_put(bus);
465 bus = NULL;
466 }
467
468 return bus;
469}
470EXPORT_SYMBOL_GPL(sfp_register_upstream);
471
472/**
473 * sfp_unregister_upstream() - Unregister sfp bus
474 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
475 *
476 * Unregister a previously registered upstream connection for the SFP
477 * module. @bus is returned from sfp_register_upstream().
478 */
479void sfp_unregister_upstream(struct sfp_bus *bus)
480{
481 rtnl_lock();
482 if (bus->sfp)
483 sfp_unregister_bus(bus);
484 bus->upstream = NULL;
485 bus->netdev = NULL;
486 rtnl_unlock();
487
488 sfp_bus_put(bus);
489}
490EXPORT_SYMBOL_GPL(sfp_unregister_upstream);
491
492/* Socket driver entry points */
493int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
494{
495 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
496 int ret = 0;
497
498 if (ops && ops->connect_phy)
499 ret = ops->connect_phy(bus->upstream, phydev);
500
501 if (ret == 0)
502 bus->phydev = phydev;
503
504 return ret;
505}
506EXPORT_SYMBOL_GPL(sfp_add_phy);
507
508void sfp_remove_phy(struct sfp_bus *bus)
509{
510 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
511
512 if (ops && ops->disconnect_phy)
513 ops->disconnect_phy(bus->upstream);
514 bus->phydev = NULL;
515}
516EXPORT_SYMBOL_GPL(sfp_remove_phy);
517
518void sfp_link_up(struct sfp_bus *bus)
519{
520 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
521
522 if (ops && ops->link_up)
523 ops->link_up(bus->upstream);
524}
525EXPORT_SYMBOL_GPL(sfp_link_up);
526
527void sfp_link_down(struct sfp_bus *bus)
528{
529 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
530
531 if (ops && ops->link_down)
532 ops->link_down(bus->upstream);
533}
534EXPORT_SYMBOL_GPL(sfp_link_down);
535
536int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
537{
538 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
539 int ret = 0;
540
541 if (ops && ops->module_insert)
542 ret = ops->module_insert(bus->upstream, id);
543
544 return ret;
545}
546EXPORT_SYMBOL_GPL(sfp_module_insert);
547
548void sfp_module_remove(struct sfp_bus *bus)
549{
550 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
551
552 if (ops && ops->module_remove)
553 ops->module_remove(bus->upstream);
554}
555EXPORT_SYMBOL_GPL(sfp_module_remove);
556
557struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
558 const struct sfp_socket_ops *ops)
559{
560 struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
561 int ret = 0;
562
563 if (bus) {
564 rtnl_lock();
565 bus->sfp_dev = dev;
566 bus->sfp = sfp;
567 bus->socket_ops = ops;
568
569 if (bus->netdev)
570 ret = sfp_register_bus(bus);
571 rtnl_unlock();
572 }
573
574 if (ret) {
575 sfp_bus_put(bus);
576 bus = NULL;
577 }
578
579 return bus;
580}
581EXPORT_SYMBOL_GPL(sfp_register_socket);
582
583void sfp_unregister_socket(struct sfp_bus *bus)
584{
585 rtnl_lock();
586 if (bus->netdev)
587 sfp_unregister_bus(bus);
588 bus->sfp_dev = NULL;
589 bus->sfp = NULL;
590 bus->socket_ops = NULL;
591 rtnl_unlock();
592
593 sfp_bus_put(bus);
594}
595EXPORT_SYMBOL_GPL(sfp_unregister_socket);
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/export.h>
3#include <linux/kref.h>
4#include <linux/list.h>
5#include <linux/mutex.h>
6#include <linux/phylink.h>
7#include <linux/property.h>
8#include <linux/rtnetlink.h>
9#include <linux/slab.h>
10
11#include "sfp.h"
12
13/**
14 * struct sfp_bus - internal representation of a sfp bus
15 */
16struct sfp_bus {
17 /* private: */
18 struct kref kref;
19 struct list_head node;
20 struct fwnode_handle *fwnode;
21
22 const struct sfp_socket_ops *socket_ops;
23 struct device *sfp_dev;
24 struct sfp *sfp;
25 const struct sfp_quirk *sfp_quirk;
26
27 const struct sfp_upstream_ops *upstream_ops;
28 void *upstream;
29 struct phy_device *phydev;
30
31 bool registered;
32 bool started;
33};
34
35/**
36 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
37 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
38 * @id: a pointer to the module's &struct sfp_eeprom_id
39 * @support: optional pointer to an array of unsigned long for the
40 * ethtool support mask
41 *
42 * Parse the EEPROM identification given in @id, and return one of
43 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
44 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
45 * the connector type.
46 *
47 * If the port type is not known, returns %PORT_OTHER.
48 */
49int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
50 unsigned long *support)
51{
52 int port;
53
54 /* port is the physical connector, set this from the connector field. */
55 switch (id->base.connector) {
56 case SFF8024_CONNECTOR_SC:
57 case SFF8024_CONNECTOR_FIBERJACK:
58 case SFF8024_CONNECTOR_LC:
59 case SFF8024_CONNECTOR_MT_RJ:
60 case SFF8024_CONNECTOR_MU:
61 case SFF8024_CONNECTOR_OPTICAL_PIGTAIL:
62 case SFF8024_CONNECTOR_MPO_1X12:
63 case SFF8024_CONNECTOR_MPO_2X16:
64 port = PORT_FIBRE;
65 break;
66
67 case SFF8024_CONNECTOR_RJ45:
68 port = PORT_TP;
69 break;
70
71 case SFF8024_CONNECTOR_COPPER_PIGTAIL:
72 port = PORT_DA;
73 break;
74
75 case SFF8024_CONNECTOR_UNSPEC:
76 if (id->base.e1000_base_t) {
77 port = PORT_TP;
78 break;
79 }
80 fallthrough;
81 case SFF8024_CONNECTOR_SG: /* guess */
82 case SFF8024_CONNECTOR_HSSDC_II:
83 case SFF8024_CONNECTOR_NOSEPARATE:
84 case SFF8024_CONNECTOR_MXC_2X16:
85 port = PORT_OTHER;
86 break;
87 default:
88 dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
89 id->base.connector);
90 port = PORT_OTHER;
91 break;
92 }
93
94 if (support) {
95 switch (port) {
96 case PORT_FIBRE:
97 phylink_set(support, FIBRE);
98 break;
99
100 case PORT_TP:
101 phylink_set(support, TP);
102 break;
103 }
104 }
105
106 return port;
107}
108EXPORT_SYMBOL_GPL(sfp_parse_port);
109
110/**
111 * sfp_may_have_phy() - indicate whether the module may have a PHY
112 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
113 * @id: a pointer to the module's &struct sfp_eeprom_id
114 *
115 * Parse the EEPROM identification given in @id, and return whether
116 * this module may have a PHY.
117 */
118bool sfp_may_have_phy(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
119{
120 if (id->base.e1000_base_t)
121 return true;
122
123 if (id->base.phys_id != SFF8024_ID_DWDM_SFP) {
124 switch (id->base.extended_cc) {
125 case SFF8024_ECC_10GBASE_T_SFI:
126 case SFF8024_ECC_10GBASE_T_SR:
127 case SFF8024_ECC_5GBASE_T:
128 case SFF8024_ECC_2_5GBASE_T:
129 return true;
130 }
131 }
132
133 return false;
134}
135EXPORT_SYMBOL_GPL(sfp_may_have_phy);
136
137/**
138 * sfp_parse_support() - Parse the eeprom id for supported link modes
139 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
140 * @id: a pointer to the module's &struct sfp_eeprom_id
141 * @support: pointer to an array of unsigned long for the ethtool support mask
142 * @interfaces: pointer to an array of unsigned long for phy interface modes
143 * mask
144 *
145 * Parse the EEPROM identification information and derive the supported
146 * ethtool link modes for the module.
147 */
148void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
149 unsigned long *support, unsigned long *interfaces)
150{
151 unsigned int br_min, br_nom, br_max;
152 __ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
153
154 /* Decode the bitrate information to MBd */
155 br_min = br_nom = br_max = 0;
156 if (id->base.br_nominal) {
157 if (id->base.br_nominal != 255) {
158 br_nom = id->base.br_nominal * 100;
159 br_min = br_nom - id->base.br_nominal * id->ext.br_min;
160 br_max = br_nom + id->base.br_nominal * id->ext.br_max;
161 } else if (id->ext.br_max) {
162 br_nom = 250 * id->ext.br_max;
163 br_max = br_nom + br_nom * id->ext.br_min / 100;
164 br_min = br_nom - br_nom * id->ext.br_min / 100;
165 }
166
167 /* When using passive cables, in case neither BR,min nor BR,max
168 * are specified, set br_min to 0 as the nominal value is then
169 * used as the maximum.
170 */
171 if (br_min == br_max && id->base.sfp_ct_passive)
172 br_min = 0;
173 }
174
175 /* Set ethtool support from the compliance fields. */
176 if (id->base.e10g_base_sr) {
177 phylink_set(modes, 10000baseSR_Full);
178 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
179 }
180 if (id->base.e10g_base_lr) {
181 phylink_set(modes, 10000baseLR_Full);
182 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
183 }
184 if (id->base.e10g_base_lrm) {
185 phylink_set(modes, 10000baseLRM_Full);
186 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
187 }
188 if (id->base.e10g_base_er) {
189 phylink_set(modes, 10000baseER_Full);
190 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
191 }
192 if (id->base.e1000_base_sx ||
193 id->base.e1000_base_lx ||
194 id->base.e1000_base_cx) {
195 phylink_set(modes, 1000baseX_Full);
196 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
197 }
198 if (id->base.e1000_base_t) {
199 phylink_set(modes, 1000baseT_Half);
200 phylink_set(modes, 1000baseT_Full);
201 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
202 __set_bit(PHY_INTERFACE_MODE_SGMII, interfaces);
203 }
204
205 /* 1000Base-PX or 1000Base-BX10 */
206 if ((id->base.e_base_px || id->base.e_base_bx10) &&
207 br_min <= 1300 && br_max >= 1200) {
208 phylink_set(modes, 1000baseX_Full);
209 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
210 }
211
212 /* 100Base-FX, 100Base-LX, 100Base-PX, 100Base-BX10 */
213 if (id->base.e100_base_fx || id->base.e100_base_lx) {
214 phylink_set(modes, 100baseFX_Full);
215 __set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces);
216 }
217 if ((id->base.e_base_px || id->base.e_base_bx10) && br_nom == 100) {
218 phylink_set(modes, 100baseFX_Full);
219 __set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces);
220 }
221
222 /* For active or passive cables, select the link modes
223 * based on the bit rates and the cable compliance bytes.
224 */
225 if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
226 /* This may look odd, but some manufacturers use 12000MBd */
227 if (br_min <= 12000 && br_max >= 10300) {
228 phylink_set(modes, 10000baseCR_Full);
229 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
230 }
231 if (br_min <= 3200 && br_max >= 3100) {
232 phylink_set(modes, 2500baseX_Full);
233 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
234 }
235 if (br_min <= 1300 && br_max >= 1200) {
236 phylink_set(modes, 1000baseX_Full);
237 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
238 }
239 }
240 if (id->base.sfp_ct_passive) {
241 if (id->base.passive.sff8431_app_e) {
242 phylink_set(modes, 10000baseCR_Full);
243 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
244 }
245 }
246 if (id->base.sfp_ct_active) {
247 if (id->base.active.sff8431_app_e ||
248 id->base.active.sff8431_lim) {
249 phylink_set(modes, 10000baseCR_Full);
250 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
251 }
252 }
253
254 switch (id->base.extended_cc) {
255 case SFF8024_ECC_UNSPEC:
256 break;
257 case SFF8024_ECC_100GBASE_SR4_25GBASE_SR:
258 phylink_set(modes, 100000baseSR4_Full);
259 phylink_set(modes, 25000baseSR_Full);
260 __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
261 break;
262 case SFF8024_ECC_100GBASE_LR4_25GBASE_LR:
263 case SFF8024_ECC_100GBASE_ER4_25GBASE_ER:
264 phylink_set(modes, 100000baseLR4_ER4_Full);
265 break;
266 case SFF8024_ECC_100GBASE_CR4:
267 phylink_set(modes, 100000baseCR4_Full);
268 fallthrough;
269 case SFF8024_ECC_25GBASE_CR_S:
270 case SFF8024_ECC_25GBASE_CR_N:
271 phylink_set(modes, 25000baseCR_Full);
272 __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
273 break;
274 case SFF8024_ECC_10GBASE_T_SFI:
275 case SFF8024_ECC_10GBASE_T_SR:
276 phylink_set(modes, 10000baseT_Full);
277 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
278 break;
279 case SFF8024_ECC_5GBASE_T:
280 phylink_set(modes, 5000baseT_Full);
281 __set_bit(PHY_INTERFACE_MODE_5GBASER, interfaces);
282 break;
283 case SFF8024_ECC_2_5GBASE_T:
284 phylink_set(modes, 2500baseT_Full);
285 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
286 break;
287 default:
288 dev_warn(bus->sfp_dev,
289 "Unknown/unsupported extended compliance code: 0x%02x\n",
290 id->base.extended_cc);
291 break;
292 }
293
294 /* For fibre channel SFP, derive possible BaseX modes */
295 if (id->base.fc_speed_100 ||
296 id->base.fc_speed_200 ||
297 id->base.fc_speed_400) {
298 if (id->base.br_nominal >= 31) {
299 phylink_set(modes, 2500baseX_Full);
300 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
301 }
302 if (id->base.br_nominal >= 12) {
303 phylink_set(modes, 1000baseX_Full);
304 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
305 }
306 }
307
308 /* If we haven't discovered any modes that this module supports, try
309 * the bitrate to determine supported modes. Some BiDi modules (eg,
310 * 1310nm/1550nm) are not 1000BASE-BX compliant due to the differing
311 * wavelengths, so do not set any transceiver bits.
312 *
313 * Do the same for modules supporting 2500BASE-X. Note that some
314 * modules use 2500Mbaud rather than 3100 or 3200Mbaud for
315 * 2500BASE-X, so we allow some slack here.
316 */
317 if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS) && br_nom) {
318 if (br_min <= 1300 && br_max >= 1200) {
319 phylink_set(modes, 1000baseX_Full);
320 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
321 }
322 if (br_min <= 3200 && br_max >= 2500) {
323 phylink_set(modes, 2500baseX_Full);
324 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
325 }
326 }
327
328 if (bus->sfp_quirk && bus->sfp_quirk->modes)
329 bus->sfp_quirk->modes(id, modes, interfaces);
330
331 linkmode_or(support, support, modes);
332
333 phylink_set(support, Autoneg);
334 phylink_set(support, Pause);
335 phylink_set(support, Asym_Pause);
336}
337EXPORT_SYMBOL_GPL(sfp_parse_support);
338
339/**
340 * sfp_select_interface() - Select appropriate phy_interface_t mode
341 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
342 * @link_modes: ethtool link modes mask
343 *
344 * Derive the phy_interface_t mode for the SFP module from the link
345 * modes mask.
346 */
347phy_interface_t sfp_select_interface(struct sfp_bus *bus,
348 unsigned long *link_modes)
349{
350 if (phylink_test(link_modes, 25000baseCR_Full) ||
351 phylink_test(link_modes, 25000baseKR_Full) ||
352 phylink_test(link_modes, 25000baseSR_Full))
353 return PHY_INTERFACE_MODE_25GBASER;
354
355 if (phylink_test(link_modes, 10000baseCR_Full) ||
356 phylink_test(link_modes, 10000baseSR_Full) ||
357 phylink_test(link_modes, 10000baseLR_Full) ||
358 phylink_test(link_modes, 10000baseLRM_Full) ||
359 phylink_test(link_modes, 10000baseER_Full) ||
360 phylink_test(link_modes, 10000baseT_Full))
361 return PHY_INTERFACE_MODE_10GBASER;
362
363 if (phylink_test(link_modes, 5000baseT_Full))
364 return PHY_INTERFACE_MODE_5GBASER;
365
366 if (phylink_test(link_modes, 2500baseX_Full))
367 return PHY_INTERFACE_MODE_2500BASEX;
368
369 if (phylink_test(link_modes, 1000baseT_Half) ||
370 phylink_test(link_modes, 1000baseT_Full))
371 return PHY_INTERFACE_MODE_SGMII;
372
373 if (phylink_test(link_modes, 1000baseX_Full))
374 return PHY_INTERFACE_MODE_1000BASEX;
375
376 if (phylink_test(link_modes, 100baseFX_Full))
377 return PHY_INTERFACE_MODE_100BASEX;
378
379 dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
380
381 return PHY_INTERFACE_MODE_NA;
382}
383EXPORT_SYMBOL_GPL(sfp_select_interface);
384
385static LIST_HEAD(sfp_buses);
386static DEFINE_MUTEX(sfp_mutex);
387
388static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
389{
390 return bus->registered ? bus->upstream_ops : NULL;
391}
392
393static struct sfp_bus *sfp_bus_get(struct fwnode_handle *fwnode)
394{
395 struct sfp_bus *sfp, *new, *found = NULL;
396
397 new = kzalloc(sizeof(*new), GFP_KERNEL);
398
399 mutex_lock(&sfp_mutex);
400
401 list_for_each_entry(sfp, &sfp_buses, node) {
402 if (sfp->fwnode == fwnode) {
403 kref_get(&sfp->kref);
404 found = sfp;
405 break;
406 }
407 }
408
409 if (!found && new) {
410 kref_init(&new->kref);
411 new->fwnode = fwnode;
412 list_add(&new->node, &sfp_buses);
413 found = new;
414 new = NULL;
415 }
416
417 mutex_unlock(&sfp_mutex);
418
419 kfree(new);
420
421 return found;
422}
423
424static void sfp_bus_release(struct kref *kref)
425{
426 struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
427
428 list_del(&bus->node);
429 mutex_unlock(&sfp_mutex);
430 kfree(bus);
431}
432
433/**
434 * sfp_bus_put() - put a reference on the &struct sfp_bus
435 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
436 *
437 * Put a reference on the &struct sfp_bus and free the underlying structure
438 * if this was the last reference.
439 */
440void sfp_bus_put(struct sfp_bus *bus)
441{
442 if (bus)
443 kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
444}
445EXPORT_SYMBOL_GPL(sfp_bus_put);
446
447static int sfp_register_bus(struct sfp_bus *bus)
448{
449 const struct sfp_upstream_ops *ops = bus->upstream_ops;
450 int ret;
451
452 if (ops) {
453 if (ops->link_down)
454 ops->link_down(bus->upstream);
455 if (ops->connect_phy && bus->phydev) {
456 ret = ops->connect_phy(bus->upstream, bus->phydev);
457 if (ret)
458 return ret;
459 }
460 }
461 bus->registered = true;
462 bus->socket_ops->attach(bus->sfp);
463 if (bus->started)
464 bus->socket_ops->start(bus->sfp);
465 bus->upstream_ops->attach(bus->upstream, bus);
466 return 0;
467}
468
469static void sfp_unregister_bus(struct sfp_bus *bus)
470{
471 const struct sfp_upstream_ops *ops = bus->upstream_ops;
472
473 if (bus->registered) {
474 bus->upstream_ops->detach(bus->upstream, bus);
475 if (bus->started)
476 bus->socket_ops->stop(bus->sfp);
477 bus->socket_ops->detach(bus->sfp);
478 if (bus->phydev && ops && ops->disconnect_phy)
479 ops->disconnect_phy(bus->upstream);
480 }
481 bus->registered = false;
482}
483
484/**
485 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
486 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
487 * @modinfo: a &struct ethtool_modinfo
488 *
489 * Fill in the type and eeprom_len parameters in @modinfo for a module on
490 * the sfp bus specified by @bus.
491 *
492 * Returns 0 on success or a negative errno number.
493 */
494int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
495{
496 return bus->socket_ops->module_info(bus->sfp, modinfo);
497}
498EXPORT_SYMBOL_GPL(sfp_get_module_info);
499
500/**
501 * sfp_get_module_eeprom() - Read the SFP module EEPROM
502 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
503 * @ee: a &struct ethtool_eeprom
504 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
505 *
506 * Read the EEPROM as specified by the supplied @ee. See the documentation
507 * for &struct ethtool_eeprom for the region to be read.
508 *
509 * Returns 0 on success or a negative errno number.
510 */
511int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
512 u8 *data)
513{
514 return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
515}
516EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
517
518/**
519 * sfp_get_module_eeprom_by_page() - Read a page from the SFP module EEPROM
520 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
521 * @page: a &struct ethtool_module_eeprom
522 * @extack: extack for reporting problems
523 *
524 * Read an EEPROM page as specified by the supplied @page. See the
525 * documentation for &struct ethtool_module_eeprom for the page to be read.
526 *
527 * Returns 0 on success or a negative errno number. More error
528 * information might be provided via extack
529 */
530int sfp_get_module_eeprom_by_page(struct sfp_bus *bus,
531 const struct ethtool_module_eeprom *page,
532 struct netlink_ext_ack *extack)
533{
534 return bus->socket_ops->module_eeprom_by_page(bus->sfp, page, extack);
535}
536EXPORT_SYMBOL_GPL(sfp_get_module_eeprom_by_page);
537
538/**
539 * sfp_upstream_start() - Inform the SFP that the network device is up
540 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
541 *
542 * Inform the SFP socket that the network device is now up, so that the
543 * module can be enabled by allowing TX_DISABLE to be deasserted. This
544 * should be called from the network device driver's &struct net_device_ops
545 * ndo_open() method.
546 */
547void sfp_upstream_start(struct sfp_bus *bus)
548{
549 if (bus->registered)
550 bus->socket_ops->start(bus->sfp);
551 bus->started = true;
552}
553EXPORT_SYMBOL_GPL(sfp_upstream_start);
554
555/**
556 * sfp_upstream_stop() - Inform the SFP that the network device is down
557 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
558 *
559 * Inform the SFP socket that the network device is now up, so that the
560 * module can be disabled by asserting TX_DISABLE, disabling the laser
561 * in optical modules. This should be called from the network device
562 * driver's &struct net_device_ops ndo_stop() method.
563 */
564void sfp_upstream_stop(struct sfp_bus *bus)
565{
566 if (bus->registered)
567 bus->socket_ops->stop(bus->sfp);
568 bus->started = false;
569}
570EXPORT_SYMBOL_GPL(sfp_upstream_stop);
571
572static void sfp_upstream_clear(struct sfp_bus *bus)
573{
574 bus->upstream_ops = NULL;
575 bus->upstream = NULL;
576}
577
578/**
579 * sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode
580 * @fwnode: firmware node for the parent device (MAC or PHY)
581 *
582 * Parse the parent device's firmware node for a SFP bus, and locate
583 * the sfp_bus structure, incrementing its reference count. This must
584 * be put via sfp_bus_put() when done.
585 *
586 * Returns:
587 * - on success, a pointer to the sfp_bus structure,
588 * - %NULL if no SFP is specified,
589 * - on failure, an error pointer value:
590 *
591 * - corresponding to the errors detailed for
592 * fwnode_property_get_reference_args().
593 * - %-ENOMEM if we failed to allocate the bus.
594 * - an error from the upstream's connect_phy() method.
595 */
596struct sfp_bus *sfp_bus_find_fwnode(struct fwnode_handle *fwnode)
597{
598 struct fwnode_reference_args ref;
599 struct sfp_bus *bus;
600 int ret;
601
602 ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL,
603 0, 0, &ref);
604 if (ret == -ENOENT)
605 return NULL;
606 else if (ret < 0)
607 return ERR_PTR(ret);
608
609 if (!fwnode_device_is_available(ref.fwnode)) {
610 fwnode_handle_put(ref.fwnode);
611 return NULL;
612 }
613
614 bus = sfp_bus_get(ref.fwnode);
615 fwnode_handle_put(ref.fwnode);
616 if (!bus)
617 return ERR_PTR(-ENOMEM);
618
619 return bus;
620}
621EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode);
622
623/**
624 * sfp_bus_add_upstream() - parse and register the neighbouring device
625 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
626 * @upstream: the upstream private data
627 * @ops: the upstream's &struct sfp_upstream_ops
628 *
629 * Add upstream driver for the SFP bus, and if the bus is complete, register
630 * the SFP bus using sfp_register_upstream(). This takes a reference on the
631 * bus, so it is safe to put the bus after this call.
632 *
633 * Returns:
634 * - on success, a pointer to the sfp_bus structure,
635 * - %NULL if no SFP is specified,
636 * - on failure, an error pointer value:
637 *
638 * - corresponding to the errors detailed for
639 * fwnode_property_get_reference_args().
640 * - %-ENOMEM if we failed to allocate the bus.
641 * - an error from the upstream's connect_phy() method.
642 */
643int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream,
644 const struct sfp_upstream_ops *ops)
645{
646 int ret;
647
648 /* If no bus, return success */
649 if (!bus)
650 return 0;
651
652 rtnl_lock();
653 kref_get(&bus->kref);
654 bus->upstream_ops = ops;
655 bus->upstream = upstream;
656
657 if (bus->sfp) {
658 ret = sfp_register_bus(bus);
659 if (ret)
660 sfp_upstream_clear(bus);
661 } else {
662 ret = 0;
663 }
664 rtnl_unlock();
665
666 if (ret)
667 sfp_bus_put(bus);
668
669 return ret;
670}
671EXPORT_SYMBOL_GPL(sfp_bus_add_upstream);
672
673/**
674 * sfp_bus_del_upstream() - Delete a sfp bus
675 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
676 *
677 * Delete a previously registered upstream connection for the SFP
678 * module. @bus should have been added by sfp_bus_add_upstream().
679 */
680void sfp_bus_del_upstream(struct sfp_bus *bus)
681{
682 if (bus) {
683 rtnl_lock();
684 if (bus->sfp)
685 sfp_unregister_bus(bus);
686 sfp_upstream_clear(bus);
687 rtnl_unlock();
688
689 sfp_bus_put(bus);
690 }
691}
692EXPORT_SYMBOL_GPL(sfp_bus_del_upstream);
693
694/* Socket driver entry points */
695int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
696{
697 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
698 int ret = 0;
699
700 if (ops && ops->connect_phy)
701 ret = ops->connect_phy(bus->upstream, phydev);
702
703 if (ret == 0)
704 bus->phydev = phydev;
705
706 return ret;
707}
708EXPORT_SYMBOL_GPL(sfp_add_phy);
709
710void sfp_remove_phy(struct sfp_bus *bus)
711{
712 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
713
714 if (ops && ops->disconnect_phy)
715 ops->disconnect_phy(bus->upstream);
716 bus->phydev = NULL;
717}
718EXPORT_SYMBOL_GPL(sfp_remove_phy);
719
720void sfp_link_up(struct sfp_bus *bus)
721{
722 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
723
724 if (ops && ops->link_up)
725 ops->link_up(bus->upstream);
726}
727EXPORT_SYMBOL_GPL(sfp_link_up);
728
729void sfp_link_down(struct sfp_bus *bus)
730{
731 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
732
733 if (ops && ops->link_down)
734 ops->link_down(bus->upstream);
735}
736EXPORT_SYMBOL_GPL(sfp_link_down);
737
738int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
739 const struct sfp_quirk *quirk)
740{
741 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
742 int ret = 0;
743
744 bus->sfp_quirk = quirk;
745
746 if (ops && ops->module_insert)
747 ret = ops->module_insert(bus->upstream, id);
748
749 return ret;
750}
751EXPORT_SYMBOL_GPL(sfp_module_insert);
752
753void sfp_module_remove(struct sfp_bus *bus)
754{
755 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
756
757 if (ops && ops->module_remove)
758 ops->module_remove(bus->upstream);
759
760 bus->sfp_quirk = NULL;
761}
762EXPORT_SYMBOL_GPL(sfp_module_remove);
763
764int sfp_module_start(struct sfp_bus *bus)
765{
766 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
767 int ret = 0;
768
769 if (ops && ops->module_start)
770 ret = ops->module_start(bus->upstream);
771
772 return ret;
773}
774EXPORT_SYMBOL_GPL(sfp_module_start);
775
776void sfp_module_stop(struct sfp_bus *bus)
777{
778 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
779
780 if (ops && ops->module_stop)
781 ops->module_stop(bus->upstream);
782}
783EXPORT_SYMBOL_GPL(sfp_module_stop);
784
785static void sfp_socket_clear(struct sfp_bus *bus)
786{
787 bus->sfp_dev = NULL;
788 bus->sfp = NULL;
789 bus->socket_ops = NULL;
790}
791
792struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
793 const struct sfp_socket_ops *ops)
794{
795 struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
796 int ret = 0;
797
798 if (bus) {
799 rtnl_lock();
800 bus->sfp_dev = dev;
801 bus->sfp = sfp;
802 bus->socket_ops = ops;
803
804 if (bus->upstream_ops) {
805 ret = sfp_register_bus(bus);
806 if (ret)
807 sfp_socket_clear(bus);
808 }
809 rtnl_unlock();
810 }
811
812 if (ret) {
813 sfp_bus_put(bus);
814 bus = NULL;
815 }
816
817 return bus;
818}
819EXPORT_SYMBOL_GPL(sfp_register_socket);
820
821void sfp_unregister_socket(struct sfp_bus *bus)
822{
823 rtnl_lock();
824 if (bus->upstream_ops)
825 sfp_unregister_bus(bus);
826 sfp_socket_clear(bus);
827 rtnl_unlock();
828
829 sfp_bus_put(bus);
830}
831EXPORT_SYMBOL_GPL(sfp_unregister_socket);