Loading...
1#include <linux/export.h>
2#include <linux/kref.h>
3#include <linux/list.h>
4#include <linux/mutex.h>
5#include <linux/phylink.h>
6#include <linux/rtnetlink.h>
7#include <linux/slab.h>
8
9#include "sfp.h"
10
11/**
12 * struct sfp_bus - internal representation of a sfp bus
13 */
14struct sfp_bus {
15 /* private: */
16 struct kref kref;
17 struct list_head node;
18 struct fwnode_handle *fwnode;
19
20 const struct sfp_socket_ops *socket_ops;
21 struct device *sfp_dev;
22 struct sfp *sfp;
23
24 const struct sfp_upstream_ops *upstream_ops;
25 void *upstream;
26 struct net_device *netdev;
27 struct phy_device *phydev;
28
29 bool registered;
30 bool started;
31};
32
33/**
34 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
35 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
36 * @id: a pointer to the module's &struct sfp_eeprom_id
37 * @support: optional pointer to an array of unsigned long for the
38 * ethtool support mask
39 *
40 * Parse the EEPROM identification given in @id, and return one of
41 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
42 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
43 * the connector type.
44 *
45 * If the port type is not known, returns %PORT_OTHER.
46 */
47int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
48 unsigned long *support)
49{
50 int port;
51
52 /* port is the physical connector, set this from the connector field. */
53 switch (id->base.connector) {
54 case SFP_CONNECTOR_SC:
55 case SFP_CONNECTOR_FIBERJACK:
56 case SFP_CONNECTOR_LC:
57 case SFP_CONNECTOR_MT_RJ:
58 case SFP_CONNECTOR_MU:
59 case SFP_CONNECTOR_OPTICAL_PIGTAIL:
60 port = PORT_FIBRE;
61 break;
62
63 case SFP_CONNECTOR_RJ45:
64 port = PORT_TP;
65 break;
66
67 case SFP_CONNECTOR_COPPER_PIGTAIL:
68 port = PORT_DA;
69 break;
70
71 case SFP_CONNECTOR_UNSPEC:
72 if (id->base.e1000_base_t) {
73 port = PORT_TP;
74 break;
75 }
76 /* fallthrough */
77 case SFP_CONNECTOR_SG: /* guess */
78 case SFP_CONNECTOR_MPO_1X12:
79 case SFP_CONNECTOR_MPO_2X16:
80 case SFP_CONNECTOR_HSSDC_II:
81 case SFP_CONNECTOR_NOSEPARATE:
82 case SFP_CONNECTOR_MXC_2X16:
83 port = PORT_OTHER;
84 break;
85 default:
86 dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
87 id->base.connector);
88 port = PORT_OTHER;
89 break;
90 }
91
92 if (support) {
93 switch (port) {
94 case PORT_FIBRE:
95 phylink_set(support, FIBRE);
96 break;
97
98 case PORT_TP:
99 phylink_set(support, TP);
100 break;
101 }
102 }
103
104 return port;
105}
106EXPORT_SYMBOL_GPL(sfp_parse_port);
107
108/**
109 * sfp_parse_support() - Parse the eeprom id for supported link modes
110 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
111 * @id: a pointer to the module's &struct sfp_eeprom_id
112 * @support: pointer to an array of unsigned long for the ethtool support mask
113 *
114 * Parse the EEPROM identification information and derive the supported
115 * ethtool link modes for the module.
116 */
117void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
118 unsigned long *support)
119{
120 unsigned int br_min, br_nom, br_max;
121 __ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
122
123 /* Decode the bitrate information to MBd */
124 br_min = br_nom = br_max = 0;
125 if (id->base.br_nominal) {
126 if (id->base.br_nominal != 255) {
127 br_nom = id->base.br_nominal * 100;
128 br_min = br_nom - id->base.br_nominal * id->ext.br_min;
129 br_max = br_nom + id->base.br_nominal * id->ext.br_max;
130 } else if (id->ext.br_max) {
131 br_nom = 250 * id->ext.br_max;
132 br_max = br_nom + br_nom * id->ext.br_min / 100;
133 br_min = br_nom - br_nom * id->ext.br_min / 100;
134 }
135 }
136
137 /* Set ethtool support from the compliance fields. */
138 if (id->base.e10g_base_sr)
139 phylink_set(modes, 10000baseSR_Full);
140 if (id->base.e10g_base_lr)
141 phylink_set(modes, 10000baseLR_Full);
142 if (id->base.e10g_base_lrm)
143 phylink_set(modes, 10000baseLRM_Full);
144 if (id->base.e10g_base_er)
145 phylink_set(modes, 10000baseER_Full);
146 if (id->base.e1000_base_sx ||
147 id->base.e1000_base_lx ||
148 id->base.e1000_base_cx)
149 phylink_set(modes, 1000baseX_Full);
150 if (id->base.e1000_base_t) {
151 phylink_set(modes, 1000baseT_Half);
152 phylink_set(modes, 1000baseT_Full);
153 }
154
155 /* 1000Base-PX or 1000Base-BX10 */
156 if ((id->base.e_base_px || id->base.e_base_bx10) &&
157 br_min <= 1300 && br_max >= 1200)
158 phylink_set(support, 1000baseX_Full);
159
160 /* For active or passive cables, select the link modes
161 * based on the bit rates and the cable compliance bytes.
162 */
163 if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
164 /* This may look odd, but some manufacturers use 12000MBd */
165 if (br_min <= 12000 && br_max >= 10300)
166 phylink_set(modes, 10000baseCR_Full);
167 if (br_min <= 3200 && br_max >= 3100)
168 phylink_set(modes, 2500baseX_Full);
169 if (br_min <= 1300 && br_max >= 1200)
170 phylink_set(modes, 1000baseX_Full);
171 }
172 if (id->base.sfp_ct_passive) {
173 if (id->base.passive.sff8431_app_e)
174 phylink_set(modes, 10000baseCR_Full);
175 }
176 if (id->base.sfp_ct_active) {
177 if (id->base.active.sff8431_app_e ||
178 id->base.active.sff8431_lim) {
179 phylink_set(modes, 10000baseCR_Full);
180 }
181 }
182
183 switch (id->base.extended_cc) {
184 case 0x00: /* Unspecified */
185 break;
186 case 0x02: /* 100Gbase-SR4 or 25Gbase-SR */
187 phylink_set(modes, 100000baseSR4_Full);
188 phylink_set(modes, 25000baseSR_Full);
189 break;
190 case 0x03: /* 100Gbase-LR4 or 25Gbase-LR */
191 case 0x04: /* 100Gbase-ER4 or 25Gbase-ER */
192 phylink_set(modes, 100000baseLR4_ER4_Full);
193 break;
194 case 0x0b: /* 100Gbase-CR4 or 25Gbase-CR CA-L */
195 case 0x0c: /* 25Gbase-CR CA-S */
196 case 0x0d: /* 25Gbase-CR CA-N */
197 phylink_set(modes, 100000baseCR4_Full);
198 phylink_set(modes, 25000baseCR_Full);
199 break;
200 default:
201 dev_warn(bus->sfp_dev,
202 "Unknown/unsupported extended compliance code: 0x%02x\n",
203 id->base.extended_cc);
204 break;
205 }
206
207 /* For fibre channel SFP, derive possible BaseX modes */
208 if (id->base.fc_speed_100 ||
209 id->base.fc_speed_200 ||
210 id->base.fc_speed_400) {
211 if (id->base.br_nominal >= 31)
212 phylink_set(modes, 2500baseX_Full);
213 if (id->base.br_nominal >= 12)
214 phylink_set(modes, 1000baseX_Full);
215 }
216
217 /* If we haven't discovered any modes that this module supports, try
218 * the encoding and bitrate to determine supported modes. Some BiDi
219 * modules (eg, 1310nm/1550nm) are not 1000BASE-BX compliant due to
220 * the differing wavelengths, so do not set any transceiver bits.
221 */
222 if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS)) {
223 /* If the encoding and bit rate allows 1000baseX */
224 if (id->base.encoding == SFP_ENCODING_8B10B && br_nom &&
225 br_min <= 1300 && br_max >= 1200)
226 phylink_set(modes, 1000baseX_Full);
227 }
228
229 bitmap_or(support, support, modes, __ETHTOOL_LINK_MODE_MASK_NBITS);
230
231 phylink_set(support, Autoneg);
232 phylink_set(support, Pause);
233 phylink_set(support, Asym_Pause);
234}
235EXPORT_SYMBOL_GPL(sfp_parse_support);
236
237/**
238 * sfp_select_interface() - Select appropriate phy_interface_t mode
239 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
240 * @id: a pointer to the module's &struct sfp_eeprom_id
241 * @link_modes: ethtool link modes mask
242 *
243 * Derive the phy_interface_t mode for the information found in the
244 * module's identifying EEPROM and the link modes mask. There is no
245 * standard or defined way to derive this information, so we decide
246 * based upon the link mode mask.
247 */
248phy_interface_t sfp_select_interface(struct sfp_bus *bus,
249 const struct sfp_eeprom_id *id,
250 unsigned long *link_modes)
251{
252 if (phylink_test(link_modes, 10000baseCR_Full) ||
253 phylink_test(link_modes, 10000baseSR_Full) ||
254 phylink_test(link_modes, 10000baseLR_Full) ||
255 phylink_test(link_modes, 10000baseLRM_Full) ||
256 phylink_test(link_modes, 10000baseER_Full))
257 return PHY_INTERFACE_MODE_10GKR;
258
259 if (phylink_test(link_modes, 2500baseX_Full))
260 return PHY_INTERFACE_MODE_2500BASEX;
261
262 if (id->base.e1000_base_t ||
263 id->base.e100_base_lx ||
264 id->base.e100_base_fx)
265 return PHY_INTERFACE_MODE_SGMII;
266
267 if (phylink_test(link_modes, 1000baseX_Full))
268 return PHY_INTERFACE_MODE_1000BASEX;
269
270 dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
271
272 return PHY_INTERFACE_MODE_NA;
273}
274EXPORT_SYMBOL_GPL(sfp_select_interface);
275
276static LIST_HEAD(sfp_buses);
277static DEFINE_MUTEX(sfp_mutex);
278
279static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
280{
281 return bus->registered ? bus->upstream_ops : NULL;
282}
283
284static struct sfp_bus *sfp_bus_get(struct fwnode_handle *fwnode)
285{
286 struct sfp_bus *sfp, *new, *found = NULL;
287
288 new = kzalloc(sizeof(*new), GFP_KERNEL);
289
290 mutex_lock(&sfp_mutex);
291
292 list_for_each_entry(sfp, &sfp_buses, node) {
293 if (sfp->fwnode == fwnode) {
294 kref_get(&sfp->kref);
295 found = sfp;
296 break;
297 }
298 }
299
300 if (!found && new) {
301 kref_init(&new->kref);
302 new->fwnode = fwnode;
303 list_add(&new->node, &sfp_buses);
304 found = new;
305 new = NULL;
306 }
307
308 mutex_unlock(&sfp_mutex);
309
310 kfree(new);
311
312 return found;
313}
314
315static void sfp_bus_release(struct kref *kref)
316{
317 struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
318
319 list_del(&bus->node);
320 mutex_unlock(&sfp_mutex);
321 kfree(bus);
322}
323
324static void sfp_bus_put(struct sfp_bus *bus)
325{
326 kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
327}
328
329static int sfp_register_bus(struct sfp_bus *bus)
330{
331 const struct sfp_upstream_ops *ops = bus->upstream_ops;
332 int ret;
333
334 if (ops) {
335 if (ops->link_down)
336 ops->link_down(bus->upstream);
337 if (ops->connect_phy && bus->phydev) {
338 ret = ops->connect_phy(bus->upstream, bus->phydev);
339 if (ret)
340 return ret;
341 }
342 }
343 if (bus->started)
344 bus->socket_ops->start(bus->sfp);
345 bus->netdev->sfp_bus = bus;
346 bus->registered = true;
347 return 0;
348}
349
350static void sfp_unregister_bus(struct sfp_bus *bus)
351{
352 const struct sfp_upstream_ops *ops = bus->upstream_ops;
353
354 if (bus->registered) {
355 if (bus->started)
356 bus->socket_ops->stop(bus->sfp);
357 if (bus->phydev && ops && ops->disconnect_phy)
358 ops->disconnect_phy(bus->upstream);
359 }
360 bus->netdev->sfp_bus = NULL;
361 bus->registered = false;
362}
363
364/**
365 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
366 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
367 * @modinfo: a &struct ethtool_modinfo
368 *
369 * Fill in the type and eeprom_len parameters in @modinfo for a module on
370 * the sfp bus specified by @bus.
371 *
372 * Returns 0 on success or a negative errno number.
373 */
374int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
375{
376 return bus->socket_ops->module_info(bus->sfp, modinfo);
377}
378EXPORT_SYMBOL_GPL(sfp_get_module_info);
379
380/**
381 * sfp_get_module_eeprom() - Read the SFP module EEPROM
382 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
383 * @ee: a &struct ethtool_eeprom
384 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
385 *
386 * Read the EEPROM as specified by the supplied @ee. See the documentation
387 * for &struct ethtool_eeprom for the region to be read.
388 *
389 * Returns 0 on success or a negative errno number.
390 */
391int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
392 u8 *data)
393{
394 return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
395}
396EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
397
398/**
399 * sfp_upstream_start() - Inform the SFP that the network device is up
400 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
401 *
402 * Inform the SFP socket that the network device is now up, so that the
403 * module can be enabled by allowing TX_DISABLE to be deasserted. This
404 * should be called from the network device driver's &struct net_device_ops
405 * ndo_open() method.
406 */
407void sfp_upstream_start(struct sfp_bus *bus)
408{
409 if (bus->registered)
410 bus->socket_ops->start(bus->sfp);
411 bus->started = true;
412}
413EXPORT_SYMBOL_GPL(sfp_upstream_start);
414
415/**
416 * sfp_upstream_stop() - Inform the SFP that the network device is down
417 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
418 *
419 * Inform the SFP socket that the network device is now up, so that the
420 * module can be disabled by asserting TX_DISABLE, disabling the laser
421 * in optical modules. This should be called from the network device
422 * driver's &struct net_device_ops ndo_stop() method.
423 */
424void sfp_upstream_stop(struct sfp_bus *bus)
425{
426 if (bus->registered)
427 bus->socket_ops->stop(bus->sfp);
428 bus->started = false;
429}
430EXPORT_SYMBOL_GPL(sfp_upstream_stop);
431
432/**
433 * sfp_register_upstream() - Register the neighbouring device
434 * @fwnode: firmware node for the SFP bus
435 * @ndev: network device associated with the interface
436 * @upstream: the upstream private data
437 * @ops: the upstream's &struct sfp_upstream_ops
438 *
439 * Register the upstream device (eg, PHY) with the SFP bus. MAC drivers
440 * should use phylink, which will call this function for them. Returns
441 * a pointer to the allocated &struct sfp_bus.
442 *
443 * On error, returns %NULL.
444 */
445struct sfp_bus *sfp_register_upstream(struct fwnode_handle *fwnode,
446 struct net_device *ndev, void *upstream,
447 const struct sfp_upstream_ops *ops)
448{
449 struct sfp_bus *bus = sfp_bus_get(fwnode);
450 int ret = 0;
451
452 if (bus) {
453 rtnl_lock();
454 bus->upstream_ops = ops;
455 bus->upstream = upstream;
456 bus->netdev = ndev;
457
458 if (bus->sfp)
459 ret = sfp_register_bus(bus);
460 rtnl_unlock();
461 }
462
463 if (ret) {
464 sfp_bus_put(bus);
465 bus = NULL;
466 }
467
468 return bus;
469}
470EXPORT_SYMBOL_GPL(sfp_register_upstream);
471
472/**
473 * sfp_unregister_upstream() - Unregister sfp bus
474 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
475 *
476 * Unregister a previously registered upstream connection for the SFP
477 * module. @bus is returned from sfp_register_upstream().
478 */
479void sfp_unregister_upstream(struct sfp_bus *bus)
480{
481 rtnl_lock();
482 if (bus->sfp)
483 sfp_unregister_bus(bus);
484 bus->upstream = NULL;
485 bus->netdev = NULL;
486 rtnl_unlock();
487
488 sfp_bus_put(bus);
489}
490EXPORT_SYMBOL_GPL(sfp_unregister_upstream);
491
492/* Socket driver entry points */
493int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
494{
495 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
496 int ret = 0;
497
498 if (ops && ops->connect_phy)
499 ret = ops->connect_phy(bus->upstream, phydev);
500
501 if (ret == 0)
502 bus->phydev = phydev;
503
504 return ret;
505}
506EXPORT_SYMBOL_GPL(sfp_add_phy);
507
508void sfp_remove_phy(struct sfp_bus *bus)
509{
510 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
511
512 if (ops && ops->disconnect_phy)
513 ops->disconnect_phy(bus->upstream);
514 bus->phydev = NULL;
515}
516EXPORT_SYMBOL_GPL(sfp_remove_phy);
517
518void sfp_link_up(struct sfp_bus *bus)
519{
520 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
521
522 if (ops && ops->link_up)
523 ops->link_up(bus->upstream);
524}
525EXPORT_SYMBOL_GPL(sfp_link_up);
526
527void sfp_link_down(struct sfp_bus *bus)
528{
529 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
530
531 if (ops && ops->link_down)
532 ops->link_down(bus->upstream);
533}
534EXPORT_SYMBOL_GPL(sfp_link_down);
535
536int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
537{
538 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
539 int ret = 0;
540
541 if (ops && ops->module_insert)
542 ret = ops->module_insert(bus->upstream, id);
543
544 return ret;
545}
546EXPORT_SYMBOL_GPL(sfp_module_insert);
547
548void sfp_module_remove(struct sfp_bus *bus)
549{
550 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
551
552 if (ops && ops->module_remove)
553 ops->module_remove(bus->upstream);
554}
555EXPORT_SYMBOL_GPL(sfp_module_remove);
556
557struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
558 const struct sfp_socket_ops *ops)
559{
560 struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
561 int ret = 0;
562
563 if (bus) {
564 rtnl_lock();
565 bus->sfp_dev = dev;
566 bus->sfp = sfp;
567 bus->socket_ops = ops;
568
569 if (bus->netdev)
570 ret = sfp_register_bus(bus);
571 rtnl_unlock();
572 }
573
574 if (ret) {
575 sfp_bus_put(bus);
576 bus = NULL;
577 }
578
579 return bus;
580}
581EXPORT_SYMBOL_GPL(sfp_register_socket);
582
583void sfp_unregister_socket(struct sfp_bus *bus)
584{
585 rtnl_lock();
586 if (bus->netdev)
587 sfp_unregister_bus(bus);
588 bus->sfp_dev = NULL;
589 bus->sfp = NULL;
590 bus->socket_ops = NULL;
591 rtnl_unlock();
592
593 sfp_bus_put(bus);
594}
595EXPORT_SYMBOL_GPL(sfp_unregister_socket);
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/export.h>
3#include <linux/kref.h>
4#include <linux/list.h>
5#include <linux/mutex.h>
6#include <linux/phylink.h>
7#include <linux/property.h>
8#include <linux/rtnetlink.h>
9#include <linux/slab.h>
10
11#include "sfp.h"
12
13/**
14 * struct sfp_bus - internal representation of a sfp bus
15 */
16struct sfp_bus {
17 /* private: */
18 struct kref kref;
19 struct list_head node;
20 const struct fwnode_handle *fwnode;
21
22 const struct sfp_socket_ops *socket_ops;
23 struct device *sfp_dev;
24 struct sfp *sfp;
25 const struct sfp_quirk *sfp_quirk;
26
27 const struct sfp_upstream_ops *upstream_ops;
28 void *upstream;
29 struct phy_device *phydev;
30
31 bool registered;
32 bool started;
33};
34
35/**
36 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
37 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
38 * @id: a pointer to the module's &struct sfp_eeprom_id
39 * @support: optional pointer to an array of unsigned long for the
40 * ethtool support mask
41 *
42 * Parse the EEPROM identification given in @id, and return one of
43 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
44 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
45 * the connector type.
46 *
47 * If the port type is not known, returns %PORT_OTHER.
48 */
49int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
50 unsigned long *support)
51{
52 int port;
53
54 /* port is the physical connector, set this from the connector field. */
55 switch (id->base.connector) {
56 case SFF8024_CONNECTOR_SC:
57 case SFF8024_CONNECTOR_FIBERJACK:
58 case SFF8024_CONNECTOR_LC:
59 case SFF8024_CONNECTOR_MT_RJ:
60 case SFF8024_CONNECTOR_MU:
61 case SFF8024_CONNECTOR_OPTICAL_PIGTAIL:
62 case SFF8024_CONNECTOR_MPO_1X12:
63 case SFF8024_CONNECTOR_MPO_2X16:
64 port = PORT_FIBRE;
65 break;
66
67 case SFF8024_CONNECTOR_RJ45:
68 port = PORT_TP;
69 break;
70
71 case SFF8024_CONNECTOR_COPPER_PIGTAIL:
72 port = PORT_DA;
73 break;
74
75 case SFF8024_CONNECTOR_UNSPEC:
76 if (id->base.e1000_base_t) {
77 port = PORT_TP;
78 break;
79 }
80 fallthrough;
81 case SFF8024_CONNECTOR_SG: /* guess */
82 case SFF8024_CONNECTOR_HSSDC_II:
83 case SFF8024_CONNECTOR_NOSEPARATE:
84 case SFF8024_CONNECTOR_MXC_2X16:
85 port = PORT_OTHER;
86 break;
87 default:
88 dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
89 id->base.connector);
90 port = PORT_OTHER;
91 break;
92 }
93
94 if (support) {
95 switch (port) {
96 case PORT_FIBRE:
97 phylink_set(support, FIBRE);
98 break;
99
100 case PORT_TP:
101 phylink_set(support, TP);
102 break;
103 }
104 }
105
106 return port;
107}
108EXPORT_SYMBOL_GPL(sfp_parse_port);
109
110/**
111 * sfp_may_have_phy() - indicate whether the module may have a PHY
112 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
113 * @id: a pointer to the module's &struct sfp_eeprom_id
114 *
115 * Parse the EEPROM identification given in @id, and return whether
116 * this module may have a PHY.
117 */
118bool sfp_may_have_phy(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
119{
120 if (id->base.e1000_base_t)
121 return true;
122
123 if (id->base.phys_id != SFF8024_ID_DWDM_SFP) {
124 switch (id->base.extended_cc) {
125 case SFF8024_ECC_10GBASE_T_SFI:
126 case SFF8024_ECC_10GBASE_T_SR:
127 case SFF8024_ECC_5GBASE_T:
128 case SFF8024_ECC_2_5GBASE_T:
129 return true;
130 }
131 }
132
133 return false;
134}
135EXPORT_SYMBOL_GPL(sfp_may_have_phy);
136
137/**
138 * sfp_parse_support() - Parse the eeprom id for supported link modes
139 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
140 * @id: a pointer to the module's &struct sfp_eeprom_id
141 * @support: pointer to an array of unsigned long for the ethtool support mask
142 * @interfaces: pointer to an array of unsigned long for phy interface modes
143 * mask
144 *
145 * Parse the EEPROM identification information and derive the supported
146 * ethtool link modes for the module.
147 */
148void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
149 unsigned long *support, unsigned long *interfaces)
150{
151 unsigned int br_min, br_nom, br_max;
152 __ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
153
154 /* Decode the bitrate information to MBd */
155 br_min = br_nom = br_max = 0;
156 if (id->base.br_nominal) {
157 if (id->base.br_nominal != 255) {
158 br_nom = id->base.br_nominal * 100;
159 br_min = br_nom - id->base.br_nominal * id->ext.br_min;
160 br_max = br_nom + id->base.br_nominal * id->ext.br_max;
161 } else if (id->ext.br_max) {
162 br_nom = 250 * id->ext.br_max;
163 br_max = br_nom + br_nom * id->ext.br_min / 100;
164 br_min = br_nom - br_nom * id->ext.br_min / 100;
165 }
166
167 /* When using passive cables, in case neither BR,min nor BR,max
168 * are specified, set br_min to 0 as the nominal value is then
169 * used as the maximum.
170 */
171 if (br_min == br_max && id->base.sfp_ct_passive)
172 br_min = 0;
173 }
174
175 /* Set ethtool support from the compliance fields. */
176 if (id->base.e10g_base_sr) {
177 phylink_set(modes, 10000baseSR_Full);
178 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
179 }
180 if (id->base.e10g_base_lr) {
181 phylink_set(modes, 10000baseLR_Full);
182 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
183 }
184 if (id->base.e10g_base_lrm) {
185 phylink_set(modes, 10000baseLRM_Full);
186 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
187 }
188 if (id->base.e10g_base_er) {
189 phylink_set(modes, 10000baseER_Full);
190 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
191 }
192 if (id->base.e1000_base_sx ||
193 id->base.e1000_base_lx ||
194 id->base.e1000_base_cx) {
195 phylink_set(modes, 1000baseX_Full);
196 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
197 }
198 if (id->base.e1000_base_t) {
199 phylink_set(modes, 1000baseT_Half);
200 phylink_set(modes, 1000baseT_Full);
201 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
202 __set_bit(PHY_INTERFACE_MODE_SGMII, interfaces);
203 }
204
205 /* 1000Base-PX or 1000Base-BX10 */
206 if ((id->base.e_base_px || id->base.e_base_bx10) &&
207 br_min <= 1300 && br_max >= 1200) {
208 phylink_set(modes, 1000baseX_Full);
209 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
210 }
211
212 /* 100Base-FX, 100Base-LX, 100Base-PX, 100Base-BX10 */
213 if (id->base.e100_base_fx || id->base.e100_base_lx) {
214 phylink_set(modes, 100baseFX_Full);
215 __set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces);
216 }
217 if ((id->base.e_base_px || id->base.e_base_bx10) && br_nom == 100) {
218 phylink_set(modes, 100baseFX_Full);
219 __set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces);
220 }
221
222 /* For active or passive cables, select the link modes
223 * based on the bit rates and the cable compliance bytes.
224 */
225 if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
226 /* This may look odd, but some manufacturers use 12000MBd */
227 if (br_min <= 12000 && br_max >= 10300) {
228 phylink_set(modes, 10000baseCR_Full);
229 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
230 }
231 if (br_min <= 3200 && br_max >= 3100) {
232 phylink_set(modes, 2500baseX_Full);
233 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
234 }
235 if (br_min <= 1300 && br_max >= 1200) {
236 phylink_set(modes, 1000baseX_Full);
237 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
238 }
239 }
240 if (id->base.sfp_ct_passive) {
241 if (id->base.passive.sff8431_app_e) {
242 phylink_set(modes, 10000baseCR_Full);
243 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
244 }
245 }
246 if (id->base.sfp_ct_active) {
247 if (id->base.active.sff8431_app_e ||
248 id->base.active.sff8431_lim) {
249 phylink_set(modes, 10000baseCR_Full);
250 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
251 }
252 }
253
254 switch (id->base.extended_cc) {
255 case SFF8024_ECC_UNSPEC:
256 break;
257 case SFF8024_ECC_100G_25GAUI_C2M_AOC:
258 if (br_min <= 28000 && br_max >= 25000) {
259 /* 25GBASE-R, possibly with FEC */
260 __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
261 /* There is currently no link mode for 25000base
262 * with unspecified range, reuse SR.
263 */
264 phylink_set(modes, 25000baseSR_Full);
265 }
266 break;
267 case SFF8024_ECC_100GBASE_SR4_25GBASE_SR:
268 phylink_set(modes, 100000baseSR4_Full);
269 phylink_set(modes, 25000baseSR_Full);
270 __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
271 break;
272 case SFF8024_ECC_100GBASE_LR4_25GBASE_LR:
273 case SFF8024_ECC_100GBASE_ER4_25GBASE_ER:
274 phylink_set(modes, 100000baseLR4_ER4_Full);
275 break;
276 case SFF8024_ECC_100GBASE_CR4:
277 phylink_set(modes, 100000baseCR4_Full);
278 fallthrough;
279 case SFF8024_ECC_25GBASE_CR_S:
280 case SFF8024_ECC_25GBASE_CR_N:
281 phylink_set(modes, 25000baseCR_Full);
282 __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
283 break;
284 case SFF8024_ECC_10GBASE_T_SFI:
285 case SFF8024_ECC_10GBASE_T_SR:
286 phylink_set(modes, 10000baseT_Full);
287 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
288 break;
289 case SFF8024_ECC_5GBASE_T:
290 phylink_set(modes, 5000baseT_Full);
291 __set_bit(PHY_INTERFACE_MODE_5GBASER, interfaces);
292 break;
293 case SFF8024_ECC_2_5GBASE_T:
294 phylink_set(modes, 2500baseT_Full);
295 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
296 break;
297 default:
298 dev_warn(bus->sfp_dev,
299 "Unknown/unsupported extended compliance code: 0x%02x\n",
300 id->base.extended_cc);
301 break;
302 }
303
304 /* For fibre channel SFP, derive possible BaseX modes */
305 if (id->base.fc_speed_100 ||
306 id->base.fc_speed_200 ||
307 id->base.fc_speed_400) {
308 if (id->base.br_nominal >= 31) {
309 phylink_set(modes, 2500baseX_Full);
310 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
311 }
312 if (id->base.br_nominal >= 12) {
313 phylink_set(modes, 1000baseX_Full);
314 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
315 }
316 }
317
318 /* If we haven't discovered any modes that this module supports, try
319 * the bitrate to determine supported modes. Some BiDi modules (eg,
320 * 1310nm/1550nm) are not 1000BASE-BX compliant due to the differing
321 * wavelengths, so do not set any transceiver bits.
322 *
323 * Do the same for modules supporting 2500BASE-X. Note that some
324 * modules use 2500Mbaud rather than 3100 or 3200Mbaud for
325 * 2500BASE-X, so we allow some slack here.
326 */
327 if (linkmode_empty(modes) && br_nom) {
328 if (br_min <= 1300 && br_max >= 1200) {
329 phylink_set(modes, 1000baseX_Full);
330 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
331 }
332 if (br_min <= 3200 && br_max >= 2500) {
333 phylink_set(modes, 2500baseX_Full);
334 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
335 }
336 }
337
338 phylink_set(modes, Autoneg);
339 phylink_set(modes, Pause);
340 phylink_set(modes, Asym_Pause);
341
342 if (bus->sfp_quirk && bus->sfp_quirk->modes)
343 bus->sfp_quirk->modes(id, modes, interfaces);
344
345 linkmode_or(support, support, modes);
346}
347EXPORT_SYMBOL_GPL(sfp_parse_support);
348
349/**
350 * sfp_select_interface() - Select appropriate phy_interface_t mode
351 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
352 * @link_modes: ethtool link modes mask
353 *
354 * Derive the phy_interface_t mode for the SFP module from the link
355 * modes mask.
356 */
357phy_interface_t sfp_select_interface(struct sfp_bus *bus,
358 unsigned long *link_modes)
359{
360 if (phylink_test(link_modes, 25000baseCR_Full) ||
361 phylink_test(link_modes, 25000baseKR_Full) ||
362 phylink_test(link_modes, 25000baseSR_Full))
363 return PHY_INTERFACE_MODE_25GBASER;
364
365 if (phylink_test(link_modes, 10000baseCR_Full) ||
366 phylink_test(link_modes, 10000baseSR_Full) ||
367 phylink_test(link_modes, 10000baseLR_Full) ||
368 phylink_test(link_modes, 10000baseLRM_Full) ||
369 phylink_test(link_modes, 10000baseER_Full) ||
370 phylink_test(link_modes, 10000baseT_Full))
371 return PHY_INTERFACE_MODE_10GBASER;
372
373 if (phylink_test(link_modes, 5000baseT_Full))
374 return PHY_INTERFACE_MODE_5GBASER;
375
376 if (phylink_test(link_modes, 2500baseX_Full))
377 return PHY_INTERFACE_MODE_2500BASEX;
378
379 if (phylink_test(link_modes, 1000baseT_Half) ||
380 phylink_test(link_modes, 1000baseT_Full))
381 return PHY_INTERFACE_MODE_SGMII;
382
383 if (phylink_test(link_modes, 1000baseX_Full))
384 return PHY_INTERFACE_MODE_1000BASEX;
385
386 if (phylink_test(link_modes, 100baseFX_Full))
387 return PHY_INTERFACE_MODE_100BASEX;
388
389 dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
390
391 return PHY_INTERFACE_MODE_NA;
392}
393EXPORT_SYMBOL_GPL(sfp_select_interface);
394
395static LIST_HEAD(sfp_buses);
396static DEFINE_MUTEX(sfp_mutex);
397
398static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
399{
400 return bus->registered ? bus->upstream_ops : NULL;
401}
402
403static struct sfp_bus *sfp_bus_get(const struct fwnode_handle *fwnode)
404{
405 struct sfp_bus *sfp, *new, *found = NULL;
406
407 new = kzalloc(sizeof(*new), GFP_KERNEL);
408
409 mutex_lock(&sfp_mutex);
410
411 list_for_each_entry(sfp, &sfp_buses, node) {
412 if (sfp->fwnode == fwnode) {
413 kref_get(&sfp->kref);
414 found = sfp;
415 break;
416 }
417 }
418
419 if (!found && new) {
420 kref_init(&new->kref);
421 new->fwnode = fwnode;
422 list_add(&new->node, &sfp_buses);
423 found = new;
424 new = NULL;
425 }
426
427 mutex_unlock(&sfp_mutex);
428
429 kfree(new);
430
431 return found;
432}
433
434static void sfp_bus_release(struct kref *kref)
435{
436 struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
437
438 list_del(&bus->node);
439 mutex_unlock(&sfp_mutex);
440 kfree(bus);
441}
442
443/**
444 * sfp_bus_put() - put a reference on the &struct sfp_bus
445 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
446 *
447 * Put a reference on the &struct sfp_bus and free the underlying structure
448 * if this was the last reference.
449 */
450void sfp_bus_put(struct sfp_bus *bus)
451{
452 if (bus)
453 kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
454}
455EXPORT_SYMBOL_GPL(sfp_bus_put);
456
457static int sfp_register_bus(struct sfp_bus *bus)
458{
459 const struct sfp_upstream_ops *ops = bus->upstream_ops;
460 int ret;
461
462 if (ops) {
463 if (ops->link_down)
464 ops->link_down(bus->upstream);
465 if (ops->connect_phy && bus->phydev) {
466 ret = ops->connect_phy(bus->upstream, bus->phydev);
467 if (ret)
468 return ret;
469 }
470 }
471 bus->registered = true;
472 bus->socket_ops->attach(bus->sfp);
473 if (bus->started)
474 bus->socket_ops->start(bus->sfp);
475 bus->upstream_ops->attach(bus->upstream, bus);
476 return 0;
477}
478
479static void sfp_unregister_bus(struct sfp_bus *bus)
480{
481 const struct sfp_upstream_ops *ops = bus->upstream_ops;
482
483 if (bus->registered) {
484 bus->upstream_ops->detach(bus->upstream, bus);
485 if (bus->started)
486 bus->socket_ops->stop(bus->sfp);
487 bus->socket_ops->detach(bus->sfp);
488 if (bus->phydev && ops && ops->disconnect_phy)
489 ops->disconnect_phy(bus->upstream);
490 }
491 bus->registered = false;
492}
493
494/**
495 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
496 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
497 * @modinfo: a &struct ethtool_modinfo
498 *
499 * Fill in the type and eeprom_len parameters in @modinfo for a module on
500 * the sfp bus specified by @bus.
501 *
502 * Returns 0 on success or a negative errno number.
503 */
504int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
505{
506 return bus->socket_ops->module_info(bus->sfp, modinfo);
507}
508EXPORT_SYMBOL_GPL(sfp_get_module_info);
509
510/**
511 * sfp_get_module_eeprom() - Read the SFP module EEPROM
512 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
513 * @ee: a &struct ethtool_eeprom
514 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
515 *
516 * Read the EEPROM as specified by the supplied @ee. See the documentation
517 * for &struct ethtool_eeprom for the region to be read.
518 *
519 * Returns 0 on success or a negative errno number.
520 */
521int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
522 u8 *data)
523{
524 return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
525}
526EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
527
528/**
529 * sfp_get_module_eeprom_by_page() - Read a page from the SFP module EEPROM
530 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
531 * @page: a &struct ethtool_module_eeprom
532 * @extack: extack for reporting problems
533 *
534 * Read an EEPROM page as specified by the supplied @page. See the
535 * documentation for &struct ethtool_module_eeprom for the page to be read.
536 *
537 * Returns 0 on success or a negative errno number. More error
538 * information might be provided via extack
539 */
540int sfp_get_module_eeprom_by_page(struct sfp_bus *bus,
541 const struct ethtool_module_eeprom *page,
542 struct netlink_ext_ack *extack)
543{
544 return bus->socket_ops->module_eeprom_by_page(bus->sfp, page, extack);
545}
546EXPORT_SYMBOL_GPL(sfp_get_module_eeprom_by_page);
547
548/**
549 * sfp_upstream_start() - Inform the SFP that the network device is up
550 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
551 *
552 * Inform the SFP socket that the network device is now up, so that the
553 * module can be enabled by allowing TX_DISABLE to be deasserted. This
554 * should be called from the network device driver's &struct net_device_ops
555 * ndo_open() method.
556 */
557void sfp_upstream_start(struct sfp_bus *bus)
558{
559 if (bus->registered)
560 bus->socket_ops->start(bus->sfp);
561 bus->started = true;
562}
563EXPORT_SYMBOL_GPL(sfp_upstream_start);
564
565/**
566 * sfp_upstream_stop() - Inform the SFP that the network device is down
567 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
568 *
569 * Inform the SFP socket that the network device is now up, so that the
570 * module can be disabled by asserting TX_DISABLE, disabling the laser
571 * in optical modules. This should be called from the network device
572 * driver's &struct net_device_ops ndo_stop() method.
573 */
574void sfp_upstream_stop(struct sfp_bus *bus)
575{
576 if (bus->registered)
577 bus->socket_ops->stop(bus->sfp);
578 bus->started = false;
579}
580EXPORT_SYMBOL_GPL(sfp_upstream_stop);
581
582static void sfp_upstream_clear(struct sfp_bus *bus)
583{
584 bus->upstream_ops = NULL;
585 bus->upstream = NULL;
586}
587
588/**
589 * sfp_upstream_set_signal_rate() - set data signalling rate
590 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
591 * @rate_kbd: signalling rate in units of 1000 baud
592 *
593 * Configure the rate select settings on the SFP module for the signalling
594 * rate (not the same as the data rate).
595 *
596 * Locks that may be held:
597 * Phylink's state_mutex
598 * rtnl lock
599 * SFP's sm_mutex
600 */
601void sfp_upstream_set_signal_rate(struct sfp_bus *bus, unsigned int rate_kbd)
602{
603 if (bus->registered)
604 bus->socket_ops->set_signal_rate(bus->sfp, rate_kbd);
605}
606EXPORT_SYMBOL_GPL(sfp_upstream_set_signal_rate);
607
608/**
609 * sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode
610 * @fwnode: firmware node for the parent device (MAC or PHY)
611 *
612 * Parse the parent device's firmware node for a SFP bus, and locate
613 * the sfp_bus structure, incrementing its reference count. This must
614 * be put via sfp_bus_put() when done.
615 *
616 * Returns:
617 * - on success, a pointer to the sfp_bus structure,
618 * - %NULL if no SFP is specified,
619 * - on failure, an error pointer value:
620 *
621 * - corresponding to the errors detailed for
622 * fwnode_property_get_reference_args().
623 * - %-ENOMEM if we failed to allocate the bus.
624 * - an error from the upstream's connect_phy() method.
625 */
626struct sfp_bus *sfp_bus_find_fwnode(const struct fwnode_handle *fwnode)
627{
628 struct fwnode_reference_args ref;
629 struct sfp_bus *bus;
630 int ret;
631
632 ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL,
633 0, 0, &ref);
634 if (ret == -ENOENT)
635 return NULL;
636 else if (ret < 0)
637 return ERR_PTR(ret);
638
639 if (!fwnode_device_is_available(ref.fwnode)) {
640 fwnode_handle_put(ref.fwnode);
641 return NULL;
642 }
643
644 bus = sfp_bus_get(ref.fwnode);
645 fwnode_handle_put(ref.fwnode);
646 if (!bus)
647 return ERR_PTR(-ENOMEM);
648
649 return bus;
650}
651EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode);
652
653/**
654 * sfp_bus_add_upstream() - parse and register the neighbouring device
655 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
656 * @upstream: the upstream private data
657 * @ops: the upstream's &struct sfp_upstream_ops
658 *
659 * Add upstream driver for the SFP bus, and if the bus is complete, register
660 * the SFP bus using sfp_register_upstream(). This takes a reference on the
661 * bus, so it is safe to put the bus after this call.
662 *
663 * Returns:
664 * - on success, a pointer to the sfp_bus structure,
665 * - %NULL if no SFP is specified,
666 * - on failure, an error pointer value:
667 *
668 * - corresponding to the errors detailed for
669 * fwnode_property_get_reference_args().
670 * - %-ENOMEM if we failed to allocate the bus.
671 * - an error from the upstream's connect_phy() method.
672 */
673int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream,
674 const struct sfp_upstream_ops *ops)
675{
676 int ret;
677
678 /* If no bus, return success */
679 if (!bus)
680 return 0;
681
682 rtnl_lock();
683 kref_get(&bus->kref);
684 bus->upstream_ops = ops;
685 bus->upstream = upstream;
686
687 if (bus->sfp) {
688 ret = sfp_register_bus(bus);
689 if (ret)
690 sfp_upstream_clear(bus);
691 } else {
692 ret = 0;
693 }
694 rtnl_unlock();
695
696 if (ret)
697 sfp_bus_put(bus);
698
699 return ret;
700}
701EXPORT_SYMBOL_GPL(sfp_bus_add_upstream);
702
703/**
704 * sfp_bus_del_upstream() - Delete a sfp bus
705 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
706 *
707 * Delete a previously registered upstream connection for the SFP
708 * module. @bus should have been added by sfp_bus_add_upstream().
709 */
710void sfp_bus_del_upstream(struct sfp_bus *bus)
711{
712 if (bus) {
713 rtnl_lock();
714 if (bus->sfp)
715 sfp_unregister_bus(bus);
716 sfp_upstream_clear(bus);
717 rtnl_unlock();
718
719 sfp_bus_put(bus);
720 }
721}
722EXPORT_SYMBOL_GPL(sfp_bus_del_upstream);
723
724/* Socket driver entry points */
725int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
726{
727 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
728 int ret = 0;
729
730 if (ops && ops->connect_phy)
731 ret = ops->connect_phy(bus->upstream, phydev);
732
733 if (ret == 0)
734 bus->phydev = phydev;
735
736 return ret;
737}
738EXPORT_SYMBOL_GPL(sfp_add_phy);
739
740void sfp_remove_phy(struct sfp_bus *bus)
741{
742 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
743
744 if (ops && ops->disconnect_phy)
745 ops->disconnect_phy(bus->upstream);
746 bus->phydev = NULL;
747}
748EXPORT_SYMBOL_GPL(sfp_remove_phy);
749
750void sfp_link_up(struct sfp_bus *bus)
751{
752 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
753
754 if (ops && ops->link_up)
755 ops->link_up(bus->upstream);
756}
757EXPORT_SYMBOL_GPL(sfp_link_up);
758
759void sfp_link_down(struct sfp_bus *bus)
760{
761 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
762
763 if (ops && ops->link_down)
764 ops->link_down(bus->upstream);
765}
766EXPORT_SYMBOL_GPL(sfp_link_down);
767
768int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
769 const struct sfp_quirk *quirk)
770{
771 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
772 int ret = 0;
773
774 bus->sfp_quirk = quirk;
775
776 if (ops && ops->module_insert)
777 ret = ops->module_insert(bus->upstream, id);
778
779 return ret;
780}
781EXPORT_SYMBOL_GPL(sfp_module_insert);
782
783void sfp_module_remove(struct sfp_bus *bus)
784{
785 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
786
787 if (ops && ops->module_remove)
788 ops->module_remove(bus->upstream);
789
790 bus->sfp_quirk = NULL;
791}
792EXPORT_SYMBOL_GPL(sfp_module_remove);
793
794int sfp_module_start(struct sfp_bus *bus)
795{
796 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
797 int ret = 0;
798
799 if (ops && ops->module_start)
800 ret = ops->module_start(bus->upstream);
801
802 return ret;
803}
804EXPORT_SYMBOL_GPL(sfp_module_start);
805
806void sfp_module_stop(struct sfp_bus *bus)
807{
808 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
809
810 if (ops && ops->module_stop)
811 ops->module_stop(bus->upstream);
812}
813EXPORT_SYMBOL_GPL(sfp_module_stop);
814
815static void sfp_socket_clear(struct sfp_bus *bus)
816{
817 bus->sfp_dev = NULL;
818 bus->sfp = NULL;
819 bus->socket_ops = NULL;
820}
821
822struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
823 const struct sfp_socket_ops *ops)
824{
825 struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
826 int ret = 0;
827
828 if (bus) {
829 rtnl_lock();
830 bus->sfp_dev = dev;
831 bus->sfp = sfp;
832 bus->socket_ops = ops;
833
834 if (bus->upstream_ops) {
835 ret = sfp_register_bus(bus);
836 if (ret)
837 sfp_socket_clear(bus);
838 }
839 rtnl_unlock();
840 }
841
842 if (ret) {
843 sfp_bus_put(bus);
844 bus = NULL;
845 }
846
847 return bus;
848}
849EXPORT_SYMBOL_GPL(sfp_register_socket);
850
851void sfp_unregister_socket(struct sfp_bus *bus)
852{
853 rtnl_lock();
854 if (bus->upstream_ops)
855 sfp_unregister_bus(bus);
856 sfp_socket_clear(bus);
857 rtnl_unlock();
858
859 sfp_bus_put(bus);
860}
861EXPORT_SYMBOL_GPL(sfp_unregister_socket);