Loading...
1#include <linux/export.h>
2#include <linux/kref.h>
3#include <linux/list.h>
4#include <linux/mutex.h>
5#include <linux/phylink.h>
6#include <linux/rtnetlink.h>
7#include <linux/slab.h>
8
9#include "sfp.h"
10
11/**
12 * struct sfp_bus - internal representation of a sfp bus
13 */
14struct sfp_bus {
15 /* private: */
16 struct kref kref;
17 struct list_head node;
18 struct fwnode_handle *fwnode;
19
20 const struct sfp_socket_ops *socket_ops;
21 struct device *sfp_dev;
22 struct sfp *sfp;
23
24 const struct sfp_upstream_ops *upstream_ops;
25 void *upstream;
26 struct net_device *netdev;
27 struct phy_device *phydev;
28
29 bool registered;
30 bool started;
31};
32
33/**
34 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
35 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
36 * @id: a pointer to the module's &struct sfp_eeprom_id
37 * @support: optional pointer to an array of unsigned long for the
38 * ethtool support mask
39 *
40 * Parse the EEPROM identification given in @id, and return one of
41 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
42 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
43 * the connector type.
44 *
45 * If the port type is not known, returns %PORT_OTHER.
46 */
47int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
48 unsigned long *support)
49{
50 int port;
51
52 /* port is the physical connector, set this from the connector field. */
53 switch (id->base.connector) {
54 case SFP_CONNECTOR_SC:
55 case SFP_CONNECTOR_FIBERJACK:
56 case SFP_CONNECTOR_LC:
57 case SFP_CONNECTOR_MT_RJ:
58 case SFP_CONNECTOR_MU:
59 case SFP_CONNECTOR_OPTICAL_PIGTAIL:
60 port = PORT_FIBRE;
61 break;
62
63 case SFP_CONNECTOR_RJ45:
64 port = PORT_TP;
65 break;
66
67 case SFP_CONNECTOR_COPPER_PIGTAIL:
68 port = PORT_DA;
69 break;
70
71 case SFP_CONNECTOR_UNSPEC:
72 if (id->base.e1000_base_t) {
73 port = PORT_TP;
74 break;
75 }
76 /* fallthrough */
77 case SFP_CONNECTOR_SG: /* guess */
78 case SFP_CONNECTOR_MPO_1X12:
79 case SFP_CONNECTOR_MPO_2X16:
80 case SFP_CONNECTOR_HSSDC_II:
81 case SFP_CONNECTOR_NOSEPARATE:
82 case SFP_CONNECTOR_MXC_2X16:
83 port = PORT_OTHER;
84 break;
85 default:
86 dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
87 id->base.connector);
88 port = PORT_OTHER;
89 break;
90 }
91
92 if (support) {
93 switch (port) {
94 case PORT_FIBRE:
95 phylink_set(support, FIBRE);
96 break;
97
98 case PORT_TP:
99 phylink_set(support, TP);
100 break;
101 }
102 }
103
104 return port;
105}
106EXPORT_SYMBOL_GPL(sfp_parse_port);
107
108/**
109 * sfp_parse_support() - Parse the eeprom id for supported link modes
110 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
111 * @id: a pointer to the module's &struct sfp_eeprom_id
112 * @support: pointer to an array of unsigned long for the ethtool support mask
113 *
114 * Parse the EEPROM identification information and derive the supported
115 * ethtool link modes for the module.
116 */
117void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
118 unsigned long *support)
119{
120 unsigned int br_min, br_nom, br_max;
121 __ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
122
123 /* Decode the bitrate information to MBd */
124 br_min = br_nom = br_max = 0;
125 if (id->base.br_nominal) {
126 if (id->base.br_nominal != 255) {
127 br_nom = id->base.br_nominal * 100;
128 br_min = br_nom - id->base.br_nominal * id->ext.br_min;
129 br_max = br_nom + id->base.br_nominal * id->ext.br_max;
130 } else if (id->ext.br_max) {
131 br_nom = 250 * id->ext.br_max;
132 br_max = br_nom + br_nom * id->ext.br_min / 100;
133 br_min = br_nom - br_nom * id->ext.br_min / 100;
134 }
135 }
136
137 /* Set ethtool support from the compliance fields. */
138 if (id->base.e10g_base_sr)
139 phylink_set(modes, 10000baseSR_Full);
140 if (id->base.e10g_base_lr)
141 phylink_set(modes, 10000baseLR_Full);
142 if (id->base.e10g_base_lrm)
143 phylink_set(modes, 10000baseLRM_Full);
144 if (id->base.e10g_base_er)
145 phylink_set(modes, 10000baseER_Full);
146 if (id->base.e1000_base_sx ||
147 id->base.e1000_base_lx ||
148 id->base.e1000_base_cx)
149 phylink_set(modes, 1000baseX_Full);
150 if (id->base.e1000_base_t) {
151 phylink_set(modes, 1000baseT_Half);
152 phylink_set(modes, 1000baseT_Full);
153 }
154
155 /* 1000Base-PX or 1000Base-BX10 */
156 if ((id->base.e_base_px || id->base.e_base_bx10) &&
157 br_min <= 1300 && br_max >= 1200)
158 phylink_set(support, 1000baseX_Full);
159
160 /* For active or passive cables, select the link modes
161 * based on the bit rates and the cable compliance bytes.
162 */
163 if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
164 /* This may look odd, but some manufacturers use 12000MBd */
165 if (br_min <= 12000 && br_max >= 10300)
166 phylink_set(modes, 10000baseCR_Full);
167 if (br_min <= 3200 && br_max >= 3100)
168 phylink_set(modes, 2500baseX_Full);
169 if (br_min <= 1300 && br_max >= 1200)
170 phylink_set(modes, 1000baseX_Full);
171 }
172 if (id->base.sfp_ct_passive) {
173 if (id->base.passive.sff8431_app_e)
174 phylink_set(modes, 10000baseCR_Full);
175 }
176 if (id->base.sfp_ct_active) {
177 if (id->base.active.sff8431_app_e ||
178 id->base.active.sff8431_lim) {
179 phylink_set(modes, 10000baseCR_Full);
180 }
181 }
182
183 switch (id->base.extended_cc) {
184 case 0x00: /* Unspecified */
185 break;
186 case 0x02: /* 100Gbase-SR4 or 25Gbase-SR */
187 phylink_set(modes, 100000baseSR4_Full);
188 phylink_set(modes, 25000baseSR_Full);
189 break;
190 case 0x03: /* 100Gbase-LR4 or 25Gbase-LR */
191 case 0x04: /* 100Gbase-ER4 or 25Gbase-ER */
192 phylink_set(modes, 100000baseLR4_ER4_Full);
193 break;
194 case 0x0b: /* 100Gbase-CR4 or 25Gbase-CR CA-L */
195 case 0x0c: /* 25Gbase-CR CA-S */
196 case 0x0d: /* 25Gbase-CR CA-N */
197 phylink_set(modes, 100000baseCR4_Full);
198 phylink_set(modes, 25000baseCR_Full);
199 break;
200 default:
201 dev_warn(bus->sfp_dev,
202 "Unknown/unsupported extended compliance code: 0x%02x\n",
203 id->base.extended_cc);
204 break;
205 }
206
207 /* For fibre channel SFP, derive possible BaseX modes */
208 if (id->base.fc_speed_100 ||
209 id->base.fc_speed_200 ||
210 id->base.fc_speed_400) {
211 if (id->base.br_nominal >= 31)
212 phylink_set(modes, 2500baseX_Full);
213 if (id->base.br_nominal >= 12)
214 phylink_set(modes, 1000baseX_Full);
215 }
216
217 /* If we haven't discovered any modes that this module supports, try
218 * the encoding and bitrate to determine supported modes. Some BiDi
219 * modules (eg, 1310nm/1550nm) are not 1000BASE-BX compliant due to
220 * the differing wavelengths, so do not set any transceiver bits.
221 */
222 if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS)) {
223 /* If the encoding and bit rate allows 1000baseX */
224 if (id->base.encoding == SFP_ENCODING_8B10B && br_nom &&
225 br_min <= 1300 && br_max >= 1200)
226 phylink_set(modes, 1000baseX_Full);
227 }
228
229 bitmap_or(support, support, modes, __ETHTOOL_LINK_MODE_MASK_NBITS);
230
231 phylink_set(support, Autoneg);
232 phylink_set(support, Pause);
233 phylink_set(support, Asym_Pause);
234}
235EXPORT_SYMBOL_GPL(sfp_parse_support);
236
237/**
238 * sfp_select_interface() - Select appropriate phy_interface_t mode
239 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
240 * @id: a pointer to the module's &struct sfp_eeprom_id
241 * @link_modes: ethtool link modes mask
242 *
243 * Derive the phy_interface_t mode for the information found in the
244 * module's identifying EEPROM and the link modes mask. There is no
245 * standard or defined way to derive this information, so we decide
246 * based upon the link mode mask.
247 */
248phy_interface_t sfp_select_interface(struct sfp_bus *bus,
249 const struct sfp_eeprom_id *id,
250 unsigned long *link_modes)
251{
252 if (phylink_test(link_modes, 10000baseCR_Full) ||
253 phylink_test(link_modes, 10000baseSR_Full) ||
254 phylink_test(link_modes, 10000baseLR_Full) ||
255 phylink_test(link_modes, 10000baseLRM_Full) ||
256 phylink_test(link_modes, 10000baseER_Full))
257 return PHY_INTERFACE_MODE_10GKR;
258
259 if (phylink_test(link_modes, 2500baseX_Full))
260 return PHY_INTERFACE_MODE_2500BASEX;
261
262 if (id->base.e1000_base_t ||
263 id->base.e100_base_lx ||
264 id->base.e100_base_fx)
265 return PHY_INTERFACE_MODE_SGMII;
266
267 if (phylink_test(link_modes, 1000baseX_Full))
268 return PHY_INTERFACE_MODE_1000BASEX;
269
270 dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
271
272 return PHY_INTERFACE_MODE_NA;
273}
274EXPORT_SYMBOL_GPL(sfp_select_interface);
275
276static LIST_HEAD(sfp_buses);
277static DEFINE_MUTEX(sfp_mutex);
278
279static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
280{
281 return bus->registered ? bus->upstream_ops : NULL;
282}
283
284static struct sfp_bus *sfp_bus_get(struct fwnode_handle *fwnode)
285{
286 struct sfp_bus *sfp, *new, *found = NULL;
287
288 new = kzalloc(sizeof(*new), GFP_KERNEL);
289
290 mutex_lock(&sfp_mutex);
291
292 list_for_each_entry(sfp, &sfp_buses, node) {
293 if (sfp->fwnode == fwnode) {
294 kref_get(&sfp->kref);
295 found = sfp;
296 break;
297 }
298 }
299
300 if (!found && new) {
301 kref_init(&new->kref);
302 new->fwnode = fwnode;
303 list_add(&new->node, &sfp_buses);
304 found = new;
305 new = NULL;
306 }
307
308 mutex_unlock(&sfp_mutex);
309
310 kfree(new);
311
312 return found;
313}
314
315static void sfp_bus_release(struct kref *kref)
316{
317 struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
318
319 list_del(&bus->node);
320 mutex_unlock(&sfp_mutex);
321 kfree(bus);
322}
323
324static void sfp_bus_put(struct sfp_bus *bus)
325{
326 kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
327}
328
329static int sfp_register_bus(struct sfp_bus *bus)
330{
331 const struct sfp_upstream_ops *ops = bus->upstream_ops;
332 int ret;
333
334 if (ops) {
335 if (ops->link_down)
336 ops->link_down(bus->upstream);
337 if (ops->connect_phy && bus->phydev) {
338 ret = ops->connect_phy(bus->upstream, bus->phydev);
339 if (ret)
340 return ret;
341 }
342 }
343 if (bus->started)
344 bus->socket_ops->start(bus->sfp);
345 bus->netdev->sfp_bus = bus;
346 bus->registered = true;
347 return 0;
348}
349
350static void sfp_unregister_bus(struct sfp_bus *bus)
351{
352 const struct sfp_upstream_ops *ops = bus->upstream_ops;
353
354 if (bus->registered) {
355 if (bus->started)
356 bus->socket_ops->stop(bus->sfp);
357 if (bus->phydev && ops && ops->disconnect_phy)
358 ops->disconnect_phy(bus->upstream);
359 }
360 bus->netdev->sfp_bus = NULL;
361 bus->registered = false;
362}
363
364/**
365 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
366 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
367 * @modinfo: a &struct ethtool_modinfo
368 *
369 * Fill in the type and eeprom_len parameters in @modinfo for a module on
370 * the sfp bus specified by @bus.
371 *
372 * Returns 0 on success or a negative errno number.
373 */
374int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
375{
376 return bus->socket_ops->module_info(bus->sfp, modinfo);
377}
378EXPORT_SYMBOL_GPL(sfp_get_module_info);
379
380/**
381 * sfp_get_module_eeprom() - Read the SFP module EEPROM
382 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
383 * @ee: a &struct ethtool_eeprom
384 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
385 *
386 * Read the EEPROM as specified by the supplied @ee. See the documentation
387 * for &struct ethtool_eeprom for the region to be read.
388 *
389 * Returns 0 on success or a negative errno number.
390 */
391int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
392 u8 *data)
393{
394 return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
395}
396EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
397
398/**
399 * sfp_upstream_start() - Inform the SFP that the network device is up
400 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
401 *
402 * Inform the SFP socket that the network device is now up, so that the
403 * module can be enabled by allowing TX_DISABLE to be deasserted. This
404 * should be called from the network device driver's &struct net_device_ops
405 * ndo_open() method.
406 */
407void sfp_upstream_start(struct sfp_bus *bus)
408{
409 if (bus->registered)
410 bus->socket_ops->start(bus->sfp);
411 bus->started = true;
412}
413EXPORT_SYMBOL_GPL(sfp_upstream_start);
414
415/**
416 * sfp_upstream_stop() - Inform the SFP that the network device is down
417 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
418 *
419 * Inform the SFP socket that the network device is now up, so that the
420 * module can be disabled by asserting TX_DISABLE, disabling the laser
421 * in optical modules. This should be called from the network device
422 * driver's &struct net_device_ops ndo_stop() method.
423 */
424void sfp_upstream_stop(struct sfp_bus *bus)
425{
426 if (bus->registered)
427 bus->socket_ops->stop(bus->sfp);
428 bus->started = false;
429}
430EXPORT_SYMBOL_GPL(sfp_upstream_stop);
431
432/**
433 * sfp_register_upstream() - Register the neighbouring device
434 * @fwnode: firmware node for the SFP bus
435 * @ndev: network device associated with the interface
436 * @upstream: the upstream private data
437 * @ops: the upstream's &struct sfp_upstream_ops
438 *
439 * Register the upstream device (eg, PHY) with the SFP bus. MAC drivers
440 * should use phylink, which will call this function for them. Returns
441 * a pointer to the allocated &struct sfp_bus.
442 *
443 * On error, returns %NULL.
444 */
445struct sfp_bus *sfp_register_upstream(struct fwnode_handle *fwnode,
446 struct net_device *ndev, void *upstream,
447 const struct sfp_upstream_ops *ops)
448{
449 struct sfp_bus *bus = sfp_bus_get(fwnode);
450 int ret = 0;
451
452 if (bus) {
453 rtnl_lock();
454 bus->upstream_ops = ops;
455 bus->upstream = upstream;
456 bus->netdev = ndev;
457
458 if (bus->sfp)
459 ret = sfp_register_bus(bus);
460 rtnl_unlock();
461 }
462
463 if (ret) {
464 sfp_bus_put(bus);
465 bus = NULL;
466 }
467
468 return bus;
469}
470EXPORT_SYMBOL_GPL(sfp_register_upstream);
471
472/**
473 * sfp_unregister_upstream() - Unregister sfp bus
474 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
475 *
476 * Unregister a previously registered upstream connection for the SFP
477 * module. @bus is returned from sfp_register_upstream().
478 */
479void sfp_unregister_upstream(struct sfp_bus *bus)
480{
481 rtnl_lock();
482 if (bus->sfp)
483 sfp_unregister_bus(bus);
484 bus->upstream = NULL;
485 bus->netdev = NULL;
486 rtnl_unlock();
487
488 sfp_bus_put(bus);
489}
490EXPORT_SYMBOL_GPL(sfp_unregister_upstream);
491
492/* Socket driver entry points */
493int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
494{
495 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
496 int ret = 0;
497
498 if (ops && ops->connect_phy)
499 ret = ops->connect_phy(bus->upstream, phydev);
500
501 if (ret == 0)
502 bus->phydev = phydev;
503
504 return ret;
505}
506EXPORT_SYMBOL_GPL(sfp_add_phy);
507
508void sfp_remove_phy(struct sfp_bus *bus)
509{
510 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
511
512 if (ops && ops->disconnect_phy)
513 ops->disconnect_phy(bus->upstream);
514 bus->phydev = NULL;
515}
516EXPORT_SYMBOL_GPL(sfp_remove_phy);
517
518void sfp_link_up(struct sfp_bus *bus)
519{
520 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
521
522 if (ops && ops->link_up)
523 ops->link_up(bus->upstream);
524}
525EXPORT_SYMBOL_GPL(sfp_link_up);
526
527void sfp_link_down(struct sfp_bus *bus)
528{
529 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
530
531 if (ops && ops->link_down)
532 ops->link_down(bus->upstream);
533}
534EXPORT_SYMBOL_GPL(sfp_link_down);
535
536int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
537{
538 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
539 int ret = 0;
540
541 if (ops && ops->module_insert)
542 ret = ops->module_insert(bus->upstream, id);
543
544 return ret;
545}
546EXPORT_SYMBOL_GPL(sfp_module_insert);
547
548void sfp_module_remove(struct sfp_bus *bus)
549{
550 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
551
552 if (ops && ops->module_remove)
553 ops->module_remove(bus->upstream);
554}
555EXPORT_SYMBOL_GPL(sfp_module_remove);
556
557struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
558 const struct sfp_socket_ops *ops)
559{
560 struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
561 int ret = 0;
562
563 if (bus) {
564 rtnl_lock();
565 bus->sfp_dev = dev;
566 bus->sfp = sfp;
567 bus->socket_ops = ops;
568
569 if (bus->netdev)
570 ret = sfp_register_bus(bus);
571 rtnl_unlock();
572 }
573
574 if (ret) {
575 sfp_bus_put(bus);
576 bus = NULL;
577 }
578
579 return bus;
580}
581EXPORT_SYMBOL_GPL(sfp_register_socket);
582
583void sfp_unregister_socket(struct sfp_bus *bus)
584{
585 rtnl_lock();
586 if (bus->netdev)
587 sfp_unregister_bus(bus);
588 bus->sfp_dev = NULL;
589 bus->sfp = NULL;
590 bus->socket_ops = NULL;
591 rtnl_unlock();
592
593 sfp_bus_put(bus);
594}
595EXPORT_SYMBOL_GPL(sfp_unregister_socket);
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/export.h>
3#include <linux/kref.h>
4#include <linux/list.h>
5#include <linux/mutex.h>
6#include <linux/phylink.h>
7#include <linux/property.h>
8#include <linux/rtnetlink.h>
9#include <linux/slab.h>
10
11#include "sfp.h"
12
13struct sfp_quirk {
14 const char *vendor;
15 const char *part;
16 void (*modes)(const struct sfp_eeprom_id *id, unsigned long *modes);
17};
18
19/**
20 * struct sfp_bus - internal representation of a sfp bus
21 */
22struct sfp_bus {
23 /* private: */
24 struct kref kref;
25 struct list_head node;
26 struct fwnode_handle *fwnode;
27
28 const struct sfp_socket_ops *socket_ops;
29 struct device *sfp_dev;
30 struct sfp *sfp;
31 const struct sfp_quirk *sfp_quirk;
32
33 const struct sfp_upstream_ops *upstream_ops;
34 void *upstream;
35 struct phy_device *phydev;
36
37 bool registered;
38 bool started;
39};
40
41static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
42 unsigned long *modes)
43{
44 phylink_set(modes, 2500baseX_Full);
45}
46
47static const struct sfp_quirk sfp_quirks[] = {
48 {
49 // Alcatel Lucent G-010S-P can operate at 2500base-X, but
50 // incorrectly report 2500MBd NRZ in their EEPROM
51 .vendor = "ALCATELLUCENT",
52 .part = "G010SP",
53 .modes = sfp_quirk_2500basex,
54 }, {
55 // Alcatel Lucent G-010S-A can operate at 2500base-X, but
56 // report 3.2GBd NRZ in their EEPROM
57 .vendor = "ALCATELLUCENT",
58 .part = "3FE46541AA",
59 .modes = sfp_quirk_2500basex,
60 }, {
61 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd
62 // NRZ in their EEPROM
63 .vendor = "HUAWEI",
64 .part = "MA5671A",
65 .modes = sfp_quirk_2500basex,
66 },
67};
68
69static size_t sfp_strlen(const char *str, size_t maxlen)
70{
71 size_t size, i;
72
73 /* Trailing characters should be filled with space chars */
74 for (i = 0, size = 0; i < maxlen; i++)
75 if (str[i] != ' ')
76 size = i + 1;
77
78 return size;
79}
80
81static bool sfp_match(const char *qs, const char *str, size_t len)
82{
83 if (!qs)
84 return true;
85 if (strlen(qs) != len)
86 return false;
87 return !strncmp(qs, str, len);
88}
89
90static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
91{
92 const struct sfp_quirk *q;
93 unsigned int i;
94 size_t vs, ps;
95
96 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
97 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
98
99 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
100 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
101 sfp_match(q->part, id->base.vendor_pn, ps))
102 return q;
103
104 return NULL;
105}
106
107/**
108 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
109 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
110 * @id: a pointer to the module's &struct sfp_eeprom_id
111 * @support: optional pointer to an array of unsigned long for the
112 * ethtool support mask
113 *
114 * Parse the EEPROM identification given in @id, and return one of
115 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
116 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
117 * the connector type.
118 *
119 * If the port type is not known, returns %PORT_OTHER.
120 */
121int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
122 unsigned long *support)
123{
124 int port;
125
126 /* port is the physical connector, set this from the connector field. */
127 switch (id->base.connector) {
128 case SFF8024_CONNECTOR_SC:
129 case SFF8024_CONNECTOR_FIBERJACK:
130 case SFF8024_CONNECTOR_LC:
131 case SFF8024_CONNECTOR_MT_RJ:
132 case SFF8024_CONNECTOR_MU:
133 case SFF8024_CONNECTOR_OPTICAL_PIGTAIL:
134 case SFF8024_CONNECTOR_MPO_1X12:
135 case SFF8024_CONNECTOR_MPO_2X16:
136 port = PORT_FIBRE;
137 break;
138
139 case SFF8024_CONNECTOR_RJ45:
140 port = PORT_TP;
141 break;
142
143 case SFF8024_CONNECTOR_COPPER_PIGTAIL:
144 port = PORT_DA;
145 break;
146
147 case SFF8024_CONNECTOR_UNSPEC:
148 if (id->base.e1000_base_t) {
149 port = PORT_TP;
150 break;
151 }
152 fallthrough;
153 case SFF8024_CONNECTOR_SG: /* guess */
154 case SFF8024_CONNECTOR_HSSDC_II:
155 case SFF8024_CONNECTOR_NOSEPARATE:
156 case SFF8024_CONNECTOR_MXC_2X16:
157 port = PORT_OTHER;
158 break;
159 default:
160 dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
161 id->base.connector);
162 port = PORT_OTHER;
163 break;
164 }
165
166 if (support) {
167 switch (port) {
168 case PORT_FIBRE:
169 phylink_set(support, FIBRE);
170 break;
171
172 case PORT_TP:
173 phylink_set(support, TP);
174 break;
175 }
176 }
177
178 return port;
179}
180EXPORT_SYMBOL_GPL(sfp_parse_port);
181
182/**
183 * sfp_may_have_phy() - indicate whether the module may have a PHY
184 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
185 * @id: a pointer to the module's &struct sfp_eeprom_id
186 *
187 * Parse the EEPROM identification given in @id, and return whether
188 * this module may have a PHY.
189 */
190bool sfp_may_have_phy(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
191{
192 if (id->base.e1000_base_t)
193 return true;
194
195 if (id->base.phys_id != SFF8024_ID_DWDM_SFP) {
196 switch (id->base.extended_cc) {
197 case SFF8024_ECC_10GBASE_T_SFI:
198 case SFF8024_ECC_10GBASE_T_SR:
199 case SFF8024_ECC_5GBASE_T:
200 case SFF8024_ECC_2_5GBASE_T:
201 return true;
202 }
203 }
204
205 return false;
206}
207EXPORT_SYMBOL_GPL(sfp_may_have_phy);
208
209/**
210 * sfp_parse_support() - Parse the eeprom id for supported link modes
211 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
212 * @id: a pointer to the module's &struct sfp_eeprom_id
213 * @support: pointer to an array of unsigned long for the ethtool support mask
214 *
215 * Parse the EEPROM identification information and derive the supported
216 * ethtool link modes for the module.
217 */
218void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
219 unsigned long *support)
220{
221 unsigned int br_min, br_nom, br_max;
222 __ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
223
224 /* Decode the bitrate information to MBd */
225 br_min = br_nom = br_max = 0;
226 if (id->base.br_nominal) {
227 if (id->base.br_nominal != 255) {
228 br_nom = id->base.br_nominal * 100;
229 br_min = br_nom - id->base.br_nominal * id->ext.br_min;
230 br_max = br_nom + id->base.br_nominal * id->ext.br_max;
231 } else if (id->ext.br_max) {
232 br_nom = 250 * id->ext.br_max;
233 br_max = br_nom + br_nom * id->ext.br_min / 100;
234 br_min = br_nom - br_nom * id->ext.br_min / 100;
235 }
236
237 /* When using passive cables, in case neither BR,min nor BR,max
238 * are specified, set br_min to 0 as the nominal value is then
239 * used as the maximum.
240 */
241 if (br_min == br_max && id->base.sfp_ct_passive)
242 br_min = 0;
243 }
244
245 /* Set ethtool support from the compliance fields. */
246 if (id->base.e10g_base_sr)
247 phylink_set(modes, 10000baseSR_Full);
248 if (id->base.e10g_base_lr)
249 phylink_set(modes, 10000baseLR_Full);
250 if (id->base.e10g_base_lrm)
251 phylink_set(modes, 10000baseLRM_Full);
252 if (id->base.e10g_base_er)
253 phylink_set(modes, 10000baseER_Full);
254 if (id->base.e1000_base_sx ||
255 id->base.e1000_base_lx ||
256 id->base.e1000_base_cx)
257 phylink_set(modes, 1000baseX_Full);
258 if (id->base.e1000_base_t) {
259 phylink_set(modes, 1000baseT_Half);
260 phylink_set(modes, 1000baseT_Full);
261 }
262
263 /* 1000Base-PX or 1000Base-BX10 */
264 if ((id->base.e_base_px || id->base.e_base_bx10) &&
265 br_min <= 1300 && br_max >= 1200)
266 phylink_set(modes, 1000baseX_Full);
267
268 /* For active or passive cables, select the link modes
269 * based on the bit rates and the cable compliance bytes.
270 */
271 if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
272 /* This may look odd, but some manufacturers use 12000MBd */
273 if (br_min <= 12000 && br_max >= 10300)
274 phylink_set(modes, 10000baseCR_Full);
275 if (br_min <= 3200 && br_max >= 3100)
276 phylink_set(modes, 2500baseX_Full);
277 if (br_min <= 1300 && br_max >= 1200)
278 phylink_set(modes, 1000baseX_Full);
279 }
280 if (id->base.sfp_ct_passive) {
281 if (id->base.passive.sff8431_app_e)
282 phylink_set(modes, 10000baseCR_Full);
283 }
284 if (id->base.sfp_ct_active) {
285 if (id->base.active.sff8431_app_e ||
286 id->base.active.sff8431_lim) {
287 phylink_set(modes, 10000baseCR_Full);
288 }
289 }
290
291 switch (id->base.extended_cc) {
292 case SFF8024_ECC_UNSPEC:
293 break;
294 case SFF8024_ECC_100GBASE_SR4_25GBASE_SR:
295 phylink_set(modes, 100000baseSR4_Full);
296 phylink_set(modes, 25000baseSR_Full);
297 break;
298 case SFF8024_ECC_100GBASE_LR4_25GBASE_LR:
299 case SFF8024_ECC_100GBASE_ER4_25GBASE_ER:
300 phylink_set(modes, 100000baseLR4_ER4_Full);
301 break;
302 case SFF8024_ECC_100GBASE_CR4:
303 phylink_set(modes, 100000baseCR4_Full);
304 fallthrough;
305 case SFF8024_ECC_25GBASE_CR_S:
306 case SFF8024_ECC_25GBASE_CR_N:
307 phylink_set(modes, 25000baseCR_Full);
308 break;
309 case SFF8024_ECC_10GBASE_T_SFI:
310 case SFF8024_ECC_10GBASE_T_SR:
311 phylink_set(modes, 10000baseT_Full);
312 break;
313 case SFF8024_ECC_5GBASE_T:
314 phylink_set(modes, 5000baseT_Full);
315 break;
316 case SFF8024_ECC_2_5GBASE_T:
317 phylink_set(modes, 2500baseT_Full);
318 break;
319 default:
320 dev_warn(bus->sfp_dev,
321 "Unknown/unsupported extended compliance code: 0x%02x\n",
322 id->base.extended_cc);
323 break;
324 }
325
326 /* For fibre channel SFP, derive possible BaseX modes */
327 if (id->base.fc_speed_100 ||
328 id->base.fc_speed_200 ||
329 id->base.fc_speed_400) {
330 if (id->base.br_nominal >= 31)
331 phylink_set(modes, 2500baseX_Full);
332 if (id->base.br_nominal >= 12)
333 phylink_set(modes, 1000baseX_Full);
334 }
335
336 /* If we haven't discovered any modes that this module supports, try
337 * the encoding and bitrate to determine supported modes. Some BiDi
338 * modules (eg, 1310nm/1550nm) are not 1000BASE-BX compliant due to
339 * the differing wavelengths, so do not set any transceiver bits.
340 */
341 if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS)) {
342 /* If the encoding and bit rate allows 1000baseX */
343 if (id->base.encoding == SFF8024_ENCODING_8B10B && br_nom &&
344 br_min <= 1300 && br_max >= 1200)
345 phylink_set(modes, 1000baseX_Full);
346 }
347
348 if (bus->sfp_quirk)
349 bus->sfp_quirk->modes(id, modes);
350
351 bitmap_or(support, support, modes, __ETHTOOL_LINK_MODE_MASK_NBITS);
352
353 phylink_set(support, Autoneg);
354 phylink_set(support, Pause);
355 phylink_set(support, Asym_Pause);
356}
357EXPORT_SYMBOL_GPL(sfp_parse_support);
358
359/**
360 * sfp_select_interface() - Select appropriate phy_interface_t mode
361 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
362 * @link_modes: ethtool link modes mask
363 *
364 * Derive the phy_interface_t mode for the SFP module from the link
365 * modes mask.
366 */
367phy_interface_t sfp_select_interface(struct sfp_bus *bus,
368 unsigned long *link_modes)
369{
370 if (phylink_test(link_modes, 10000baseCR_Full) ||
371 phylink_test(link_modes, 10000baseSR_Full) ||
372 phylink_test(link_modes, 10000baseLR_Full) ||
373 phylink_test(link_modes, 10000baseLRM_Full) ||
374 phylink_test(link_modes, 10000baseER_Full) ||
375 phylink_test(link_modes, 10000baseT_Full))
376 return PHY_INTERFACE_MODE_10GBASER;
377
378 if (phylink_test(link_modes, 2500baseX_Full))
379 return PHY_INTERFACE_MODE_2500BASEX;
380
381 if (phylink_test(link_modes, 1000baseT_Half) ||
382 phylink_test(link_modes, 1000baseT_Full))
383 return PHY_INTERFACE_MODE_SGMII;
384
385 if (phylink_test(link_modes, 1000baseX_Full))
386 return PHY_INTERFACE_MODE_1000BASEX;
387
388 dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
389
390 return PHY_INTERFACE_MODE_NA;
391}
392EXPORT_SYMBOL_GPL(sfp_select_interface);
393
394static LIST_HEAD(sfp_buses);
395static DEFINE_MUTEX(sfp_mutex);
396
397static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
398{
399 return bus->registered ? bus->upstream_ops : NULL;
400}
401
402static struct sfp_bus *sfp_bus_get(struct fwnode_handle *fwnode)
403{
404 struct sfp_bus *sfp, *new, *found = NULL;
405
406 new = kzalloc(sizeof(*new), GFP_KERNEL);
407
408 mutex_lock(&sfp_mutex);
409
410 list_for_each_entry(sfp, &sfp_buses, node) {
411 if (sfp->fwnode == fwnode) {
412 kref_get(&sfp->kref);
413 found = sfp;
414 break;
415 }
416 }
417
418 if (!found && new) {
419 kref_init(&new->kref);
420 new->fwnode = fwnode;
421 list_add(&new->node, &sfp_buses);
422 found = new;
423 new = NULL;
424 }
425
426 mutex_unlock(&sfp_mutex);
427
428 kfree(new);
429
430 return found;
431}
432
433static void sfp_bus_release(struct kref *kref)
434{
435 struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
436
437 list_del(&bus->node);
438 mutex_unlock(&sfp_mutex);
439 kfree(bus);
440}
441
442/**
443 * sfp_bus_put() - put a reference on the &struct sfp_bus
444 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
445 *
446 * Put a reference on the &struct sfp_bus and free the underlying structure
447 * if this was the last reference.
448 */
449void sfp_bus_put(struct sfp_bus *bus)
450{
451 if (bus)
452 kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
453}
454EXPORT_SYMBOL_GPL(sfp_bus_put);
455
456static int sfp_register_bus(struct sfp_bus *bus)
457{
458 const struct sfp_upstream_ops *ops = bus->upstream_ops;
459 int ret;
460
461 if (ops) {
462 if (ops->link_down)
463 ops->link_down(bus->upstream);
464 if (ops->connect_phy && bus->phydev) {
465 ret = ops->connect_phy(bus->upstream, bus->phydev);
466 if (ret)
467 return ret;
468 }
469 }
470 bus->registered = true;
471 bus->socket_ops->attach(bus->sfp);
472 if (bus->started)
473 bus->socket_ops->start(bus->sfp);
474 bus->upstream_ops->attach(bus->upstream, bus);
475 return 0;
476}
477
478static void sfp_unregister_bus(struct sfp_bus *bus)
479{
480 const struct sfp_upstream_ops *ops = bus->upstream_ops;
481
482 if (bus->registered) {
483 bus->upstream_ops->detach(bus->upstream, bus);
484 if (bus->started)
485 bus->socket_ops->stop(bus->sfp);
486 bus->socket_ops->detach(bus->sfp);
487 if (bus->phydev && ops && ops->disconnect_phy)
488 ops->disconnect_phy(bus->upstream);
489 }
490 bus->registered = false;
491}
492
493/**
494 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
495 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
496 * @modinfo: a &struct ethtool_modinfo
497 *
498 * Fill in the type and eeprom_len parameters in @modinfo for a module on
499 * the sfp bus specified by @bus.
500 *
501 * Returns 0 on success or a negative errno number.
502 */
503int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
504{
505 return bus->socket_ops->module_info(bus->sfp, modinfo);
506}
507EXPORT_SYMBOL_GPL(sfp_get_module_info);
508
509/**
510 * sfp_get_module_eeprom() - Read the SFP module EEPROM
511 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
512 * @ee: a &struct ethtool_eeprom
513 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
514 *
515 * Read the EEPROM as specified by the supplied @ee. See the documentation
516 * for &struct ethtool_eeprom for the region to be read.
517 *
518 * Returns 0 on success or a negative errno number.
519 */
520int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
521 u8 *data)
522{
523 return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
524}
525EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
526
527/**
528 * sfp_upstream_start() - Inform the SFP that the network device is up
529 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
530 *
531 * Inform the SFP socket that the network device is now up, so that the
532 * module can be enabled by allowing TX_DISABLE to be deasserted. This
533 * should be called from the network device driver's &struct net_device_ops
534 * ndo_open() method.
535 */
536void sfp_upstream_start(struct sfp_bus *bus)
537{
538 if (bus->registered)
539 bus->socket_ops->start(bus->sfp);
540 bus->started = true;
541}
542EXPORT_SYMBOL_GPL(sfp_upstream_start);
543
544/**
545 * sfp_upstream_stop() - Inform the SFP that the network device is down
546 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
547 *
548 * Inform the SFP socket that the network device is now up, so that the
549 * module can be disabled by asserting TX_DISABLE, disabling the laser
550 * in optical modules. This should be called from the network device
551 * driver's &struct net_device_ops ndo_stop() method.
552 */
553void sfp_upstream_stop(struct sfp_bus *bus)
554{
555 if (bus->registered)
556 bus->socket_ops->stop(bus->sfp);
557 bus->started = false;
558}
559EXPORT_SYMBOL_GPL(sfp_upstream_stop);
560
561static void sfp_upstream_clear(struct sfp_bus *bus)
562{
563 bus->upstream_ops = NULL;
564 bus->upstream = NULL;
565}
566
567/**
568 * sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode
569 * @fwnode: firmware node for the parent device (MAC or PHY)
570 *
571 * Parse the parent device's firmware node for a SFP bus, and locate
572 * the sfp_bus structure, incrementing its reference count. This must
573 * be put via sfp_bus_put() when done.
574 *
575 * Returns:
576 * - on success, a pointer to the sfp_bus structure,
577 * - %NULL if no SFP is specified,
578 * - on failure, an error pointer value:
579 *
580 * - corresponding to the errors detailed for
581 * fwnode_property_get_reference_args().
582 * - %-ENOMEM if we failed to allocate the bus.
583 * - an error from the upstream's connect_phy() method.
584 */
585struct sfp_bus *sfp_bus_find_fwnode(struct fwnode_handle *fwnode)
586{
587 struct fwnode_reference_args ref;
588 struct sfp_bus *bus;
589 int ret;
590
591 ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL,
592 0, 0, &ref);
593 if (ret == -ENOENT)
594 return NULL;
595 else if (ret < 0)
596 return ERR_PTR(ret);
597
598 bus = sfp_bus_get(ref.fwnode);
599 fwnode_handle_put(ref.fwnode);
600 if (!bus)
601 return ERR_PTR(-ENOMEM);
602
603 return bus;
604}
605EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode);
606
607/**
608 * sfp_bus_add_upstream() - parse and register the neighbouring device
609 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
610 * @upstream: the upstream private data
611 * @ops: the upstream's &struct sfp_upstream_ops
612 *
613 * Add upstream driver for the SFP bus, and if the bus is complete, register
614 * the SFP bus using sfp_register_upstream(). This takes a reference on the
615 * bus, so it is safe to put the bus after this call.
616 *
617 * Returns:
618 * - on success, a pointer to the sfp_bus structure,
619 * - %NULL if no SFP is specified,
620 * - on failure, an error pointer value:
621 *
622 * - corresponding to the errors detailed for
623 * fwnode_property_get_reference_args().
624 * - %-ENOMEM if we failed to allocate the bus.
625 * - an error from the upstream's connect_phy() method.
626 */
627int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream,
628 const struct sfp_upstream_ops *ops)
629{
630 int ret;
631
632 /* If no bus, return success */
633 if (!bus)
634 return 0;
635
636 rtnl_lock();
637 kref_get(&bus->kref);
638 bus->upstream_ops = ops;
639 bus->upstream = upstream;
640
641 if (bus->sfp) {
642 ret = sfp_register_bus(bus);
643 if (ret)
644 sfp_upstream_clear(bus);
645 } else {
646 ret = 0;
647 }
648 rtnl_unlock();
649
650 if (ret)
651 sfp_bus_put(bus);
652
653 return ret;
654}
655EXPORT_SYMBOL_GPL(sfp_bus_add_upstream);
656
657/**
658 * sfp_bus_del_upstream() - Delete a sfp bus
659 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
660 *
661 * Delete a previously registered upstream connection for the SFP
662 * module. @bus should have been added by sfp_bus_add_upstream().
663 */
664void sfp_bus_del_upstream(struct sfp_bus *bus)
665{
666 if (bus) {
667 rtnl_lock();
668 if (bus->sfp)
669 sfp_unregister_bus(bus);
670 sfp_upstream_clear(bus);
671 rtnl_unlock();
672
673 sfp_bus_put(bus);
674 }
675}
676EXPORT_SYMBOL_GPL(sfp_bus_del_upstream);
677
678/* Socket driver entry points */
679int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
680{
681 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
682 int ret = 0;
683
684 if (ops && ops->connect_phy)
685 ret = ops->connect_phy(bus->upstream, phydev);
686
687 if (ret == 0)
688 bus->phydev = phydev;
689
690 return ret;
691}
692EXPORT_SYMBOL_GPL(sfp_add_phy);
693
694void sfp_remove_phy(struct sfp_bus *bus)
695{
696 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
697
698 if (ops && ops->disconnect_phy)
699 ops->disconnect_phy(bus->upstream);
700 bus->phydev = NULL;
701}
702EXPORT_SYMBOL_GPL(sfp_remove_phy);
703
704void sfp_link_up(struct sfp_bus *bus)
705{
706 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
707
708 if (ops && ops->link_up)
709 ops->link_up(bus->upstream);
710}
711EXPORT_SYMBOL_GPL(sfp_link_up);
712
713void sfp_link_down(struct sfp_bus *bus)
714{
715 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
716
717 if (ops && ops->link_down)
718 ops->link_down(bus->upstream);
719}
720EXPORT_SYMBOL_GPL(sfp_link_down);
721
722int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
723{
724 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
725 int ret = 0;
726
727 bus->sfp_quirk = sfp_lookup_quirk(id);
728
729 if (ops && ops->module_insert)
730 ret = ops->module_insert(bus->upstream, id);
731
732 return ret;
733}
734EXPORT_SYMBOL_GPL(sfp_module_insert);
735
736void sfp_module_remove(struct sfp_bus *bus)
737{
738 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
739
740 if (ops && ops->module_remove)
741 ops->module_remove(bus->upstream);
742
743 bus->sfp_quirk = NULL;
744}
745EXPORT_SYMBOL_GPL(sfp_module_remove);
746
747int sfp_module_start(struct sfp_bus *bus)
748{
749 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
750 int ret = 0;
751
752 if (ops && ops->module_start)
753 ret = ops->module_start(bus->upstream);
754
755 return ret;
756}
757EXPORT_SYMBOL_GPL(sfp_module_start);
758
759void sfp_module_stop(struct sfp_bus *bus)
760{
761 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
762
763 if (ops && ops->module_stop)
764 ops->module_stop(bus->upstream);
765}
766EXPORT_SYMBOL_GPL(sfp_module_stop);
767
768static void sfp_socket_clear(struct sfp_bus *bus)
769{
770 bus->sfp_dev = NULL;
771 bus->sfp = NULL;
772 bus->socket_ops = NULL;
773}
774
775struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
776 const struct sfp_socket_ops *ops)
777{
778 struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
779 int ret = 0;
780
781 if (bus) {
782 rtnl_lock();
783 bus->sfp_dev = dev;
784 bus->sfp = sfp;
785 bus->socket_ops = ops;
786
787 if (bus->upstream_ops) {
788 ret = sfp_register_bus(bus);
789 if (ret)
790 sfp_socket_clear(bus);
791 }
792 rtnl_unlock();
793 }
794
795 if (ret) {
796 sfp_bus_put(bus);
797 bus = NULL;
798 }
799
800 return bus;
801}
802EXPORT_SYMBOL_GPL(sfp_register_socket);
803
804void sfp_unregister_socket(struct sfp_bus *bus)
805{
806 rtnl_lock();
807 if (bus->upstream_ops)
808 sfp_unregister_bus(bus);
809 sfp_socket_clear(bus);
810 rtnl_unlock();
811
812 sfp_bus_put(bus);
813}
814EXPORT_SYMBOL_GPL(sfp_unregister_socket);