Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 *
  20 * Fixes:
  21 *		Alan Cox	:	Numerous verify_area() calls
  22 *		Alan Cox	:	Set the ACK bit on a reset
  23 *		Alan Cox	:	Stopped it crashing if it closed while
  24 *					sk->inuse=1 and was trying to connect
  25 *					(tcp_err()).
  26 *		Alan Cox	:	All icmp error handling was broken
  27 *					pointers passed where wrong and the
  28 *					socket was looked up backwards. Nobody
  29 *					tested any icmp error code obviously.
  30 *		Alan Cox	:	tcp_err() now handled properly. It
  31 *					wakes people on errors. poll
  32 *					behaves and the icmp error race
  33 *					has gone by moving it into sock.c
  34 *		Alan Cox	:	tcp_send_reset() fixed to work for
  35 *					everything not just packets for
  36 *					unknown sockets.
  37 *		Alan Cox	:	tcp option processing.
  38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
  39 *					syn rule wrong]
  40 *		Herp Rosmanith  :	More reset fixes
  41 *		Alan Cox	:	No longer acks invalid rst frames.
  42 *					Acking any kind of RST is right out.
  43 *		Alan Cox	:	Sets an ignore me flag on an rst
  44 *					receive otherwise odd bits of prattle
  45 *					escape still
  46 *		Alan Cox	:	Fixed another acking RST frame bug.
  47 *					Should stop LAN workplace lockups.
  48 *		Alan Cox	: 	Some tidyups using the new skb list
  49 *					facilities
  50 *		Alan Cox	:	sk->keepopen now seems to work
  51 *		Alan Cox	:	Pulls options out correctly on accepts
  52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
  53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
  54 *					bit to skb ops.
  55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
  56 *					nasty.
  57 *		Alan Cox	:	Added some better commenting, as the
  58 *					tcp is hard to follow
  59 *		Alan Cox	:	Removed incorrect check for 20 * psh
  60 *	Michael O'Reilly	:	ack < copied bug fix.
  61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
  62 *		Alan Cox	:	FIN with no memory -> CRASH
  63 *		Alan Cox	:	Added socket option proto entries.
  64 *					Also added awareness of them to accept.
  65 *		Alan Cox	:	Added TCP options (SOL_TCP)
  66 *		Alan Cox	:	Switched wakeup calls to callbacks,
  67 *					so the kernel can layer network
  68 *					sockets.
  69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
  70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
  71 *		Alan Cox	:	RST frames sent on unsynchronised
  72 *					state ack error.
  73 *		Alan Cox	:	Put in missing check for SYN bit.
  74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
  75 *					window non shrink trick.
  76 *		Alan Cox	:	Added a couple of small NET2E timer
  77 *					fixes
  78 *		Charles Hedrick :	TCP fixes
  79 *		Toomas Tamm	:	TCP window fixes
  80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
  81 *		Charles Hedrick	:	Rewrote most of it to actually work
  82 *		Linus		:	Rewrote tcp_read() and URG handling
  83 *					completely
  84 *		Gerhard Koerting:	Fixed some missing timer handling
  85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
  86 *		Gerhard Koerting:	PC/TCP workarounds
  87 *		Adam Caldwell	:	Assorted timer/timing errors
  88 *		Matthew Dillon	:	Fixed another RST bug
  89 *		Alan Cox	:	Move to kernel side addressing changes.
  90 *		Alan Cox	:	Beginning work on TCP fastpathing
  91 *					(not yet usable)
  92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
  93 *		Alan Cox	:	TCP fast path debugging
  94 *		Alan Cox	:	Window clamping
  95 *		Michael Riepe	:	Bug in tcp_check()
  96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
  97 *		Matt Dillon	:	Yet more small nasties remove from the
  98 *					TCP code (Be very nice to this man if
  99 *					tcp finally works 100%) 8)
 100 *		Alan Cox	:	BSD accept semantics.
 101 *		Alan Cox	:	Reset on closedown bug.
 102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
 103 *		Michael Pall	:	Handle poll() after URG properly in
 104 *					all cases.
 105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
 106 *					(multi URG PUSH broke rlogin).
 107 *		Michael Pall	:	Fix the multi URG PUSH problem in
 108 *					tcp_readable(), poll() after URG
 109 *					works now.
 110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
 111 *					BSD api.
 112 *		Alan Cox	:	Changed the semantics of sk->socket to
 113 *					fix a race and a signal problem with
 114 *					accept() and async I/O.
 115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
 116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
 117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
 118 *					clients/servers which listen in on
 119 *					fixed ports.
 120 *		Alan Cox	:	Cleaned the above up and shrank it to
 121 *					a sensible code size.
 122 *		Alan Cox	:	Self connect lockup fix.
 123 *		Alan Cox	:	No connect to multicast.
 124 *		Ross Biro	:	Close unaccepted children on master
 125 *					socket close.
 126 *		Alan Cox	:	Reset tracing code.
 127 *		Alan Cox	:	Spurious resets on shutdown.
 128 *		Alan Cox	:	Giant 15 minute/60 second timer error
 129 *		Alan Cox	:	Small whoops in polling before an
 130 *					accept.
 131 *		Alan Cox	:	Kept the state trace facility since
 132 *					it's handy for debugging.
 133 *		Alan Cox	:	More reset handler fixes.
 134 *		Alan Cox	:	Started rewriting the code based on
 135 *					the RFC's for other useful protocol
 136 *					references see: Comer, KA9Q NOS, and
 137 *					for a reference on the difference
 138 *					between specifications and how BSD
 139 *					works see the 4.4lite source.
 140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
 141 *					close.
 142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
 143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
 144 *		Alan Cox	:	Reimplemented timers as per the RFC
 145 *					and using multiple timers for sanity.
 146 *		Alan Cox	:	Small bug fixes, and a lot of new
 147 *					comments.
 148 *		Alan Cox	:	Fixed dual reader crash by locking
 149 *					the buffers (much like datagram.c)
 150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
 151 *					now gets fed up of retrying without
 152 *					(even a no space) answer.
 153 *		Alan Cox	:	Extracted closing code better
 154 *		Alan Cox	:	Fixed the closing state machine to
 155 *					resemble the RFC.
 156 *		Alan Cox	:	More 'per spec' fixes.
 157 *		Jorge Cwik	:	Even faster checksumming.
 158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
 159 *					only frames. At least one pc tcp stack
 160 *					generates them.
 161 *		Alan Cox	:	Cache last socket.
 162 *		Alan Cox	:	Per route irtt.
 163 *		Matt Day	:	poll()->select() match BSD precisely on error
 164 *		Alan Cox	:	New buffers
 165 *		Marc Tamsky	:	Various sk->prot->retransmits and
 166 *					sk->retransmits misupdating fixed.
 167 *					Fixed tcp_write_timeout: stuck close,
 168 *					and TCP syn retries gets used now.
 169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
 170 *					ack if state is TCP_CLOSED.
 171 *		Alan Cox	:	Look up device on a retransmit - routes may
 172 *					change. Doesn't yet cope with MSS shrink right
 173 *					but it's a start!
 174 *		Marc Tamsky	:	Closing in closing fixes.
 175 *		Mike Shaver	:	RFC1122 verifications.
 176 *		Alan Cox	:	rcv_saddr errors.
 177 *		Alan Cox	:	Block double connect().
 178 *		Alan Cox	:	Small hooks for enSKIP.
 179 *		Alexey Kuznetsov:	Path MTU discovery.
 180 *		Alan Cox	:	Support soft errors.
 181 *		Alan Cox	:	Fix MTU discovery pathological case
 182 *					when the remote claims no mtu!
 183 *		Marc Tamsky	:	TCP_CLOSE fix.
 184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
 185 *					window but wrong (fixes NT lpd problems)
 186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
 187 *		Joerg Reuter	:	No modification of locked buffers in
 188 *					tcp_do_retransmit()
 189 *		Eric Schenk	:	Changed receiver side silly window
 190 *					avoidance algorithm to BSD style
 191 *					algorithm. This doubles throughput
 192 *					against machines running Solaris,
 193 *					and seems to result in general
 194 *					improvement.
 195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
 196 *	Willy Konynenberg	:	Transparent proxying support.
 197 *	Mike McLagan		:	Routing by source
 198 *		Keith Owens	:	Do proper merging with partial SKB's in
 199 *					tcp_do_sendmsg to avoid burstiness.
 200 *		Eric Schenk	:	Fix fast close down bug with
 201 *					shutdown() followed by close().
 202 *		Andi Kleen 	:	Make poll agree with SIGIO
 203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
 204 *					lingertime == 0 (RFC 793 ABORT Call)
 205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
 206 *					csum_and_copy_from_user() if possible.
 207 *
 208 *		This program is free software; you can redistribute it and/or
 209 *		modify it under the terms of the GNU General Public License
 210 *		as published by the Free Software Foundation; either version
 211 *		2 of the License, or(at your option) any later version.
 212 *
 213 * Description of States:
 214 *
 215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
 216 *
 217 *	TCP_SYN_RECV		received a connection request, sent ack,
 218 *				waiting for final ack in three-way handshake.
 219 *
 220 *	TCP_ESTABLISHED		connection established
 221 *
 222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
 223 *				transmission of remaining buffered data
 224 *
 225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
 226 *				to shutdown
 227 *
 228 *	TCP_CLOSING		both sides have shutdown but we still have
 229 *				data we have to finish sending
 230 *
 231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
 232 *				closed, can only be entered from FIN_WAIT2
 233 *				or CLOSING.  Required because the other end
 234 *				may not have gotten our last ACK causing it
 235 *				to retransmit the data packet (which we ignore)
 236 *
 237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
 238 *				us to finish writing our data and to shutdown
 239 *				(we have to close() to move on to LAST_ACK)
 240 *
 241 *	TCP_LAST_ACK		out side has shutdown after remote has
 242 *				shutdown.  There may still be data in our
 243 *				buffer that we have to finish sending
 244 *
 245 *	TCP_CLOSE		socket is finished
 246 */
 247
 248#define pr_fmt(fmt) "TCP: " fmt
 249
 250#include <crypto/hash.h>
 251#include <linux/kernel.h>
 252#include <linux/module.h>
 253#include <linux/types.h>
 254#include <linux/fcntl.h>
 255#include <linux/poll.h>
 256#include <linux/inet_diag.h>
 257#include <linux/init.h>
 258#include <linux/fs.h>
 259#include <linux/skbuff.h>
 260#include <linux/scatterlist.h>
 261#include <linux/splice.h>
 262#include <linux/net.h>
 263#include <linux/socket.h>
 264#include <linux/random.h>
 265#include <linux/bootmem.h>
 266#include <linux/highmem.h>
 267#include <linux/swap.h>
 268#include <linux/cache.h>
 269#include <linux/err.h>
 270#include <linux/time.h>
 271#include <linux/slab.h>
 272#include <linux/errqueue.h>
 273#include <linux/static_key.h>
 
 274
 275#include <net/icmp.h>
 276#include <net/inet_common.h>
 277#include <net/tcp.h>
 
 278#include <net/xfrm.h>
 279#include <net/ip.h>
 280#include <net/sock.h>
 281
 282#include <linux/uaccess.h>
 283#include <asm/ioctls.h>
 284#include <net/busy_poll.h>
 285
 286struct percpu_counter tcp_orphan_count;
 287EXPORT_SYMBOL_GPL(tcp_orphan_count);
 
 
 
 
 
 
 288
 289long sysctl_tcp_mem[3] __read_mostly;
 290EXPORT_SYMBOL(sysctl_tcp_mem);
 291
 292atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
 293EXPORT_SYMBOL(tcp_memory_allocated);
 
 
 294
 295#if IS_ENABLED(CONFIG_SMC)
 296DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
 297EXPORT_SYMBOL(tcp_have_smc);
 298#endif
 299
 300/*
 301 * Current number of TCP sockets.
 302 */
 303struct percpu_counter tcp_sockets_allocated;
 304EXPORT_SYMBOL(tcp_sockets_allocated);
 305
 306/*
 307 * TCP splice context
 308 */
 309struct tcp_splice_state {
 310	struct pipe_inode_info *pipe;
 311	size_t len;
 312	unsigned int flags;
 313};
 314
 315/*
 316 * Pressure flag: try to collapse.
 317 * Technical note: it is used by multiple contexts non atomically.
 318 * All the __sk_mem_schedule() is of this nature: accounting
 319 * is strict, actions are advisory and have some latency.
 320 */
 321unsigned long tcp_memory_pressure __read_mostly;
 322EXPORT_SYMBOL_GPL(tcp_memory_pressure);
 323
 324void tcp_enter_memory_pressure(struct sock *sk)
 325{
 326	unsigned long val;
 327
 328	if (tcp_memory_pressure)
 329		return;
 330	val = jiffies;
 331
 332	if (!val)
 333		val--;
 334	if (!cmpxchg(&tcp_memory_pressure, 0, val))
 335		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
 336}
 337EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
 338
 339void tcp_leave_memory_pressure(struct sock *sk)
 340{
 341	unsigned long val;
 342
 343	if (!tcp_memory_pressure)
 344		return;
 345	val = xchg(&tcp_memory_pressure, 0);
 346	if (val)
 347		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
 348			      jiffies_to_msecs(jiffies - val));
 349}
 350EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
 351
 352/* Convert seconds to retransmits based on initial and max timeout */
 353static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
 354{
 355	u8 res = 0;
 356
 357	if (seconds > 0) {
 358		int period = timeout;
 359
 360		res = 1;
 361		while (seconds > period && res < 255) {
 362			res++;
 363			timeout <<= 1;
 364			if (timeout > rto_max)
 365				timeout = rto_max;
 366			period += timeout;
 367		}
 368	}
 369	return res;
 370}
 371
 372/* Convert retransmits to seconds based on initial and max timeout */
 373static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
 374{
 375	int period = 0;
 376
 377	if (retrans > 0) {
 378		period = timeout;
 379		while (--retrans) {
 380			timeout <<= 1;
 381			if (timeout > rto_max)
 382				timeout = rto_max;
 383			period += timeout;
 384		}
 385	}
 386	return period;
 387}
 388
 389static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
 390{
 391	u32 rate = READ_ONCE(tp->rate_delivered);
 392	u32 intv = READ_ONCE(tp->rate_interval_us);
 393	u64 rate64 = 0;
 394
 395	if (rate && intv) {
 396		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
 397		do_div(rate64, intv);
 398	}
 399	return rate64;
 400}
 401
 402/* Address-family independent initialization for a tcp_sock.
 403 *
 404 * NOTE: A lot of things set to zero explicitly by call to
 405 *       sk_alloc() so need not be done here.
 406 */
 407void tcp_init_sock(struct sock *sk)
 408{
 409	struct inet_connection_sock *icsk = inet_csk(sk);
 410	struct tcp_sock *tp = tcp_sk(sk);
 411
 412	tp->out_of_order_queue = RB_ROOT;
 413	sk->tcp_rtx_queue = RB_ROOT;
 414	tcp_init_xmit_timers(sk);
 415	INIT_LIST_HEAD(&tp->tsq_node);
 416	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
 417
 418	icsk->icsk_rto = TCP_TIMEOUT_INIT;
 
 
 419	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
 420	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
 421
 422	/* So many TCP implementations out there (incorrectly) count the
 423	 * initial SYN frame in their delayed-ACK and congestion control
 424	 * algorithms that we must have the following bandaid to talk
 425	 * efficiently to them.  -DaveM
 426	 */
 427	tp->snd_cwnd = TCP_INIT_CWND;
 428
 429	/* There's a bubble in the pipe until at least the first ACK. */
 430	tp->app_limited = ~0U;
 
 431
 432	/* See draft-stevens-tcpca-spec-01 for discussion of the
 433	 * initialization of these values.
 434	 */
 435	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 436	tp->snd_cwnd_clamp = ~0;
 437	tp->mss_cache = TCP_MSS_DEFAULT;
 438
 439	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
 440	tcp_assign_congestion_control(sk);
 441
 442	tp->tsoffset = 0;
 443	tp->rack.reo_wnd_steps = 1;
 444
 445	sk->sk_state = TCP_CLOSE;
 446
 447	sk->sk_write_space = sk_stream_write_space;
 448	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
 449
 450	icsk->icsk_sync_mss = tcp_sync_mss;
 451
 452	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
 453	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
 454
 
 455	sk_sockets_allocated_inc(sk);
 456	sk->sk_route_forced_caps = NETIF_F_GSO;
 457}
 458EXPORT_SYMBOL(tcp_init_sock);
 459
 460void tcp_init_transfer(struct sock *sk, int bpf_op)
 461{
 462	struct inet_connection_sock *icsk = inet_csk(sk);
 463
 464	tcp_mtup_init(sk);
 465	icsk->icsk_af_ops->rebuild_header(sk);
 466	tcp_init_metrics(sk);
 467	tcp_call_bpf(sk, bpf_op, 0, NULL);
 468	tcp_init_congestion_control(sk);
 469	tcp_init_buffer_space(sk);
 470}
 471
 472static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
 473{
 474	struct sk_buff *skb = tcp_write_queue_tail(sk);
 475
 476	if (tsflags && skb) {
 477		struct skb_shared_info *shinfo = skb_shinfo(skb);
 478		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 479
 480		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
 481		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
 482			tcb->txstamp_ack = 1;
 483		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
 484			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
 485	}
 486}
 487
 488static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
 489					  int target, struct sock *sk)
 490{
 491	return (tp->rcv_nxt - tp->copied_seq >= target) ||
 492		(sk->sk_prot->stream_memory_read ?
 493		sk->sk_prot->stream_memory_read(sk) : false);
 494}
 495
 496/*
 497 *	Wait for a TCP event.
 498 *
 499 *	Note that we don't need to lock the socket, as the upper poll layers
 500 *	take care of normal races (between the test and the event) and we don't
 501 *	go look at any of the socket buffers directly.
 502 */
 503__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
 504{
 505	__poll_t mask;
 506	struct sock *sk = sock->sk;
 507	const struct tcp_sock *tp = tcp_sk(sk);
 508	int state;
 509
 510	sock_poll_wait(file, sk_sleep(sk), wait);
 511
 512	state = inet_sk_state_load(sk);
 513	if (state == TCP_LISTEN)
 514		return inet_csk_listen_poll(sk);
 515
 516	/* Socket is not locked. We are protected from async events
 517	 * by poll logic and correct handling of state changes
 518	 * made by other threads is impossible in any case.
 519	 */
 520
 521	mask = 0;
 522
 523	/*
 524	 * EPOLLHUP is certainly not done right. But poll() doesn't
 525	 * have a notion of HUP in just one direction, and for a
 526	 * socket the read side is more interesting.
 527	 *
 528	 * Some poll() documentation says that EPOLLHUP is incompatible
 529	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
 530	 * all. But careful, it tends to be safer to return too many
 531	 * bits than too few, and you can easily break real applications
 532	 * if you don't tell them that something has hung up!
 533	 *
 534	 * Check-me.
 535	 *
 536	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
 537	 * our fs/select.c). It means that after we received EOF,
 538	 * poll always returns immediately, making impossible poll() on write()
 539	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
 540	 * if and only if shutdown has been made in both directions.
 541	 * Actually, it is interesting to look how Solaris and DUX
 542	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
 543	 * then we could set it on SND_SHUTDOWN. BTW examples given
 544	 * in Stevens' books assume exactly this behaviour, it explains
 545	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
 546	 *
 547	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
 548	 * blocking on fresh not-connected or disconnected socket. --ANK
 549	 */
 550	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
 551		mask |= EPOLLHUP;
 552	if (sk->sk_shutdown & RCV_SHUTDOWN)
 553		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
 554
 555	/* Connected or passive Fast Open socket? */
 556	if (state != TCP_SYN_SENT &&
 557	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
 558		int target = sock_rcvlowat(sk, 0, INT_MAX);
 
 559
 560		if (tp->urg_seq == tp->copied_seq &&
 561		    !sock_flag(sk, SOCK_URGINLINE) &&
 562		    tp->urg_data)
 563			target++;
 564
 565		if (tcp_stream_is_readable(tp, target, sk))
 566			mask |= EPOLLIN | EPOLLRDNORM;
 567
 568		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
 569			if (sk_stream_is_writeable(sk)) {
 570				mask |= EPOLLOUT | EPOLLWRNORM;
 571			} else {  /* send SIGIO later */
 572				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 573				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 574
 575				/* Race breaker. If space is freed after
 576				 * wspace test but before the flags are set,
 577				 * IO signal will be lost. Memory barrier
 578				 * pairs with the input side.
 579				 */
 580				smp_mb__after_atomic();
 581				if (sk_stream_is_writeable(sk))
 582					mask |= EPOLLOUT | EPOLLWRNORM;
 583			}
 584		} else
 585			mask |= EPOLLOUT | EPOLLWRNORM;
 586
 587		if (tp->urg_data & TCP_URG_VALID)
 588			mask |= EPOLLPRI;
 589	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
 590		/* Active TCP fastopen socket with defer_connect
 591		 * Return EPOLLOUT so application can call write()
 592		 * in order for kernel to generate SYN+data
 593		 */
 594		mask |= EPOLLOUT | EPOLLWRNORM;
 595	}
 596	/* This barrier is coupled with smp_wmb() in tcp_reset() */
 597	smp_rmb();
 598	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
 599		mask |= EPOLLERR;
 600
 601	return mask;
 602}
 603EXPORT_SYMBOL(tcp_poll);
 604
 605int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
 606{
 607	struct tcp_sock *tp = tcp_sk(sk);
 608	int answ;
 609	bool slow;
 610
 611	switch (cmd) {
 612	case SIOCINQ:
 613		if (sk->sk_state == TCP_LISTEN)
 614			return -EINVAL;
 615
 616		slow = lock_sock_fast(sk);
 617		answ = tcp_inq(sk);
 618		unlock_sock_fast(sk, slow);
 619		break;
 620	case SIOCATMARK:
 621		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
 
 622		break;
 623	case SIOCOUTQ:
 624		if (sk->sk_state == TCP_LISTEN)
 625			return -EINVAL;
 626
 627		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 628			answ = 0;
 629		else
 630			answ = tp->write_seq - tp->snd_una;
 631		break;
 632	case SIOCOUTQNSD:
 633		if (sk->sk_state == TCP_LISTEN)
 634			return -EINVAL;
 635
 636		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 637			answ = 0;
 638		else
 639			answ = tp->write_seq - tp->snd_nxt;
 
 640		break;
 641	default:
 642		return -ENOIOCTLCMD;
 643	}
 644
 645	return put_user(answ, (int __user *)arg);
 646}
 647EXPORT_SYMBOL(tcp_ioctl);
 648
 649static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
 650{
 651	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
 652	tp->pushed_seq = tp->write_seq;
 653}
 654
 655static inline bool forced_push(const struct tcp_sock *tp)
 656{
 657	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
 658}
 659
 660static void skb_entail(struct sock *sk, struct sk_buff *skb)
 661{
 662	struct tcp_sock *tp = tcp_sk(sk);
 663	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 664
 665	skb->csum    = 0;
 666	tcb->seq     = tcb->end_seq = tp->write_seq;
 667	tcb->tcp_flags = TCPHDR_ACK;
 668	tcb->sacked  = 0;
 669	__skb_header_release(skb);
 670	tcp_add_write_queue_tail(sk, skb);
 671	sk->sk_wmem_queued += skb->truesize;
 672	sk_mem_charge(sk, skb->truesize);
 673	if (tp->nonagle & TCP_NAGLE_PUSH)
 674		tp->nonagle &= ~TCP_NAGLE_PUSH;
 675
 676	tcp_slow_start_after_idle_check(sk);
 677}
 678
 679static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
 680{
 681	if (flags & MSG_OOB)
 682		tp->snd_up = tp->write_seq;
 683}
 684
 685/* If a not yet filled skb is pushed, do not send it if
 686 * we have data packets in Qdisc or NIC queues :
 687 * Because TX completion will happen shortly, it gives a chance
 688 * to coalesce future sendmsg() payload into this skb, without
 689 * need for a timer, and with no latency trade off.
 690 * As packets containing data payload have a bigger truesize
 691 * than pure acks (dataless) packets, the last checks prevent
 692 * autocorking if we only have an ACK in Qdisc/NIC queues,
 693 * or if TX completion was delayed after we processed ACK packet.
 694 */
 695static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
 696				int size_goal)
 697{
 698	return skb->len < size_goal &&
 699	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
 700	       !tcp_rtx_queue_empty(sk) &&
 701	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
 
 702}
 703
 704static void tcp_push(struct sock *sk, int flags, int mss_now,
 705		     int nonagle, int size_goal)
 706{
 707	struct tcp_sock *tp = tcp_sk(sk);
 708	struct sk_buff *skb;
 709
 710	skb = tcp_write_queue_tail(sk);
 711	if (!skb)
 712		return;
 713	if (!(flags & MSG_MORE) || forced_push(tp))
 714		tcp_mark_push(tp, skb);
 715
 716	tcp_mark_urg(tp, flags);
 717
 718	if (tcp_should_autocork(sk, skb, size_goal)) {
 719
 720		/* avoid atomic op if TSQ_THROTTLED bit is already set */
 721		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
 722			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
 723			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
 724		}
 725		/* It is possible TX completion already happened
 726		 * before we set TSQ_THROTTLED.
 727		 */
 728		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
 729			return;
 730	}
 731
 732	if (flags & MSG_MORE)
 733		nonagle = TCP_NAGLE_CORK;
 734
 735	__tcp_push_pending_frames(sk, mss_now, nonagle);
 736}
 737
 738static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
 739				unsigned int offset, size_t len)
 740{
 741	struct tcp_splice_state *tss = rd_desc->arg.data;
 742	int ret;
 743
 744	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
 745			      min(rd_desc->count, len), tss->flags);
 746	if (ret > 0)
 747		rd_desc->count -= ret;
 748	return ret;
 749}
 750
 751static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
 752{
 753	/* Store TCP splice context information in read_descriptor_t. */
 754	read_descriptor_t rd_desc = {
 755		.arg.data = tss,
 756		.count	  = tss->len,
 757	};
 758
 759	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
 760}
 761
 762/**
 763 *  tcp_splice_read - splice data from TCP socket to a pipe
 764 * @sock:	socket to splice from
 765 * @ppos:	position (not valid)
 766 * @pipe:	pipe to splice to
 767 * @len:	number of bytes to splice
 768 * @flags:	splice modifier flags
 769 *
 770 * Description:
 771 *    Will read pages from given socket and fill them into a pipe.
 772 *
 773 **/
 774ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
 775			struct pipe_inode_info *pipe, size_t len,
 776			unsigned int flags)
 777{
 778	struct sock *sk = sock->sk;
 779	struct tcp_splice_state tss = {
 780		.pipe = pipe,
 781		.len = len,
 782		.flags = flags,
 783	};
 784	long timeo;
 785	ssize_t spliced;
 786	int ret;
 787
 788	sock_rps_record_flow(sk);
 789	/*
 790	 * We can't seek on a socket input
 791	 */
 792	if (unlikely(*ppos))
 793		return -ESPIPE;
 794
 795	ret = spliced = 0;
 796
 797	lock_sock(sk);
 798
 799	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
 800	while (tss.len) {
 801		ret = __tcp_splice_read(sk, &tss);
 802		if (ret < 0)
 803			break;
 804		else if (!ret) {
 805			if (spliced)
 806				break;
 807			if (sock_flag(sk, SOCK_DONE))
 808				break;
 809			if (sk->sk_err) {
 810				ret = sock_error(sk);
 811				break;
 812			}
 813			if (sk->sk_shutdown & RCV_SHUTDOWN)
 814				break;
 815			if (sk->sk_state == TCP_CLOSE) {
 816				/*
 817				 * This occurs when user tries to read
 818				 * from never connected socket.
 819				 */
 820				if (!sock_flag(sk, SOCK_DONE))
 821					ret = -ENOTCONN;
 822				break;
 823			}
 824			if (!timeo) {
 825				ret = -EAGAIN;
 826				break;
 827			}
 828			/* if __tcp_splice_read() got nothing while we have
 829			 * an skb in receive queue, we do not want to loop.
 830			 * This might happen with URG data.
 831			 */
 832			if (!skb_queue_empty(&sk->sk_receive_queue))
 833				break;
 834			sk_wait_data(sk, &timeo, NULL);
 835			if (signal_pending(current)) {
 836				ret = sock_intr_errno(timeo);
 837				break;
 838			}
 839			continue;
 840		}
 841		tss.len -= ret;
 842		spliced += ret;
 843
 844		if (!timeo)
 845			break;
 846		release_sock(sk);
 847		lock_sock(sk);
 848
 849		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
 850		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 851		    signal_pending(current))
 852			break;
 853	}
 854
 855	release_sock(sk);
 856
 857	if (spliced)
 858		return spliced;
 859
 860	return ret;
 861}
 862EXPORT_SYMBOL(tcp_splice_read);
 863
 864struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
 865				    bool force_schedule)
 866{
 867	struct sk_buff *skb;
 868
 869	/* The TCP header must be at least 32-bit aligned.  */
 870	size = ALIGN(size, 4);
 871
 872	if (unlikely(tcp_under_memory_pressure(sk)))
 873		sk_mem_reclaim_partial(sk);
 874
 875	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
 876	if (likely(skb)) {
 877		bool mem_scheduled;
 878
 
 879		if (force_schedule) {
 880			mem_scheduled = true;
 881			sk_forced_mem_schedule(sk, skb->truesize);
 882		} else {
 883			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
 884		}
 885		if (likely(mem_scheduled)) {
 886			skb_reserve(skb, sk->sk_prot->max_header);
 887			/*
 888			 * Make sure that we have exactly size bytes
 889			 * available to the caller, no more, no less.
 890			 */
 891			skb->reserved_tailroom = skb->end - skb->tail - size;
 892			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
 893			return skb;
 894		}
 895		__kfree_skb(skb);
 896	} else {
 897		sk->sk_prot->enter_memory_pressure(sk);
 898		sk_stream_moderate_sndbuf(sk);
 899	}
 900	return NULL;
 901}
 902
 903static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
 904				       int large_allowed)
 905{
 906	struct tcp_sock *tp = tcp_sk(sk);
 907	u32 new_size_goal, size_goal;
 908
 909	if (!large_allowed)
 910		return mss_now;
 911
 912	/* Note : tcp_tso_autosize() will eventually split this later */
 913	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
 914	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
 915
 916	/* We try hard to avoid divides here */
 917	size_goal = tp->gso_segs * mss_now;
 918	if (unlikely(new_size_goal < size_goal ||
 919		     new_size_goal >= size_goal + mss_now)) {
 920		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
 921				     sk->sk_gso_max_segs);
 922		size_goal = tp->gso_segs * mss_now;
 923	}
 924
 925	return max(size_goal, mss_now);
 926}
 927
 928static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
 929{
 930	int mss_now;
 931
 932	mss_now = tcp_current_mss(sk);
 933	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
 934
 935	return mss_now;
 936}
 937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 938ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 939			 size_t size, int flags)
 940{
 941	struct tcp_sock *tp = tcp_sk(sk);
 942	int mss_now, size_goal;
 943	int err;
 944	ssize_t copied;
 945	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 946
 
 
 
 
 
 947	/* Wait for a connection to finish. One exception is TCP Fast Open
 948	 * (passive side) where data is allowed to be sent before a connection
 949	 * is fully established.
 950	 */
 951	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
 952	    !tcp_passive_fastopen(sk)) {
 953		err = sk_stream_wait_connect(sk, &timeo);
 954		if (err != 0)
 955			goto out_err;
 956	}
 957
 958	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 959
 960	mss_now = tcp_send_mss(sk, &size_goal, flags);
 961	copied = 0;
 962
 963	err = -EPIPE;
 964	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
 965		goto out_err;
 966
 967	while (size > 0) {
 968		struct sk_buff *skb = tcp_write_queue_tail(sk);
 969		int copy, i;
 970		bool can_coalesce;
 971
 972		if (!skb || (copy = size_goal - skb->len) <= 0 ||
 973		    !tcp_skb_can_collapse_to(skb)) {
 974new_segment:
 975			if (!sk_stream_memory_free(sk))
 976				goto wait_for_sndbuf;
 977
 978			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
 979					tcp_rtx_and_write_queues_empty(sk));
 980			if (!skb)
 981				goto wait_for_memory;
 982
 983			skb_entail(sk, skb);
 984			copy = size_goal;
 985		}
 986
 987		if (copy > size)
 988			copy = size;
 989
 990		i = skb_shinfo(skb)->nr_frags;
 991		can_coalesce = skb_can_coalesce(skb, i, page, offset);
 992		if (!can_coalesce && i >= sysctl_max_skb_frags) {
 993			tcp_mark_push(tp, skb);
 994			goto new_segment;
 995		}
 996		if (!sk_wmem_schedule(sk, copy))
 997			goto wait_for_memory;
 998
 999		if (can_coalesce) {
1000			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1001		} else {
1002			get_page(page);
1003			skb_fill_page_desc(skb, i, page, offset, copy);
1004		}
1005
1006		if (!(flags & MSG_NO_SHARED_FRAGS))
1007			skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1008
1009		skb->len += copy;
1010		skb->data_len += copy;
1011		skb->truesize += copy;
1012		sk->sk_wmem_queued += copy;
1013		sk_mem_charge(sk, copy);
1014		skb->ip_summed = CHECKSUM_PARTIAL;
1015		tp->write_seq += copy;
1016		TCP_SKB_CB(skb)->end_seq += copy;
1017		tcp_skb_pcount_set(skb, 0);
1018
1019		if (!copied)
1020			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1021
1022		copied += copy;
1023		offset += copy;
1024		size -= copy;
1025		if (!size)
1026			goto out;
1027
1028		if (skb->len < size_goal || (flags & MSG_OOB))
1029			continue;
1030
1031		if (forced_push(tp)) {
1032			tcp_mark_push(tp, skb);
1033			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1034		} else if (skb == tcp_send_head(sk))
1035			tcp_push_one(sk, mss_now);
1036		continue;
1037
1038wait_for_sndbuf:
1039		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1040wait_for_memory:
1041		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1042			 TCP_NAGLE_PUSH, size_goal);
1043
1044		err = sk_stream_wait_memory(sk, &timeo);
1045		if (err != 0)
1046			goto do_error;
1047
1048		mss_now = tcp_send_mss(sk, &size_goal, flags);
1049	}
1050
1051out:
1052	if (copied) {
1053		tcp_tx_timestamp(sk, sk->sk_tsflags);
1054		if (!(flags & MSG_SENDPAGE_NOTLAST))
1055			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1056	}
1057	return copied;
1058
1059do_error:
 
1060	if (copied)
1061		goto out;
1062out_err:
1063	/* make sure we wake any epoll edge trigger waiter */
1064	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1065		     err == -EAGAIN)) {
1066		sk->sk_write_space(sk);
1067		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1068	}
1069	return sk_stream_error(sk, flags, err);
1070}
1071EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1072
1073int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1074			size_t size, int flags)
1075{
1076	if (!(sk->sk_route_caps & NETIF_F_SG))
1077		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1078
1079	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1080
1081	return do_tcp_sendpages(sk, page, offset, size, flags);
1082}
1083EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1084
1085int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1086		 size_t size, int flags)
1087{
1088	int ret;
1089
1090	lock_sock(sk);
1091	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1092	release_sock(sk);
1093
1094	return ret;
1095}
1096EXPORT_SYMBOL(tcp_sendpage);
1097
1098/* Do not bother using a page frag for very small frames.
1099 * But use this heuristic only for the first skb in write queue.
1100 *
1101 * Having no payload in skb->head allows better SACK shifting
1102 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1103 * write queue has less skbs.
1104 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1105 * This also speeds up tso_fragment(), since it wont fallback
1106 * to tcp_fragment().
1107 */
1108static int linear_payload_sz(bool first_skb)
1109{
1110	if (first_skb)
1111		return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1112	return 0;
1113}
1114
1115static int select_size(bool first_skb, bool zc)
1116{
1117	if (zc)
1118		return 0;
1119	return linear_payload_sz(first_skb);
1120}
1121
1122void tcp_free_fastopen_req(struct tcp_sock *tp)
1123{
1124	if (tp->fastopen_req) {
1125		kfree(tp->fastopen_req);
1126		tp->fastopen_req = NULL;
1127	}
1128}
1129
1130static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1131				int *copied, size_t size)
1132{
1133	struct tcp_sock *tp = tcp_sk(sk);
1134	struct inet_sock *inet = inet_sk(sk);
1135	struct sockaddr *uaddr = msg->msg_name;
1136	int err, flags;
1137
1138	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
 
1139	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1140	     uaddr->sa_family == AF_UNSPEC))
1141		return -EOPNOTSUPP;
1142	if (tp->fastopen_req)
1143		return -EALREADY; /* Another Fast Open is in progress */
1144
1145	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1146				   sk->sk_allocation);
1147	if (unlikely(!tp->fastopen_req))
1148		return -ENOBUFS;
1149	tp->fastopen_req->data = msg;
1150	tp->fastopen_req->size = size;
 
1151
1152	if (inet->defer_connect) {
1153		err = tcp_connect(sk);
1154		/* Same failure procedure as in tcp_v4/6_connect */
1155		if (err) {
1156			tcp_set_state(sk, TCP_CLOSE);
1157			inet->inet_dport = 0;
1158			sk->sk_route_caps = 0;
1159		}
1160	}
1161	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1162	err = __inet_stream_connect(sk->sk_socket, uaddr,
1163				    msg->msg_namelen, flags, 1);
1164	/* fastopen_req could already be freed in __inet_stream_connect
1165	 * if the connection times out or gets rst
1166	 */
1167	if (tp->fastopen_req) {
1168		*copied = tp->fastopen_req->copied;
1169		tcp_free_fastopen_req(tp);
1170		inet->defer_connect = 0;
1171	}
1172	return err;
1173}
1174
1175int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1176{
1177	struct tcp_sock *tp = tcp_sk(sk);
1178	struct ubuf_info *uarg = NULL;
1179	struct sk_buff *skb;
1180	struct sockcm_cookie sockc;
1181	int flags, err, copied = 0;
1182	int mss_now = 0, size_goal, copied_syn = 0;
1183	bool process_backlog = false;
1184	bool zc = false;
1185	long timeo;
1186
1187	flags = msg->msg_flags;
1188
1189	if (flags & MSG_ZEROCOPY && size) {
1190		if (sk->sk_state != TCP_ESTABLISHED) {
1191			err = -EINVAL;
1192			goto out_err;
1193		}
1194
1195		skb = tcp_write_queue_tail(sk);
1196		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1197		if (!uarg) {
1198			err = -ENOBUFS;
1199			goto out_err;
1200		}
1201
1202		zc = sk->sk_route_caps & NETIF_F_SG;
1203		if (!zc)
1204			uarg->zerocopy = 0;
 
 
 
 
 
 
 
 
 
 
 
1205	}
1206
1207	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1208	    !tp->repair) {
1209		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1210		if (err == -EINPROGRESS && copied_syn > 0)
1211			goto out;
1212		else if (err)
1213			goto out_err;
1214	}
1215
1216	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1217
1218	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1219
1220	/* Wait for a connection to finish. One exception is TCP Fast Open
1221	 * (passive side) where data is allowed to be sent before a connection
1222	 * is fully established.
1223	 */
1224	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1225	    !tcp_passive_fastopen(sk)) {
1226		err = sk_stream_wait_connect(sk, &timeo);
1227		if (err != 0)
1228			goto do_error;
1229	}
1230
1231	if (unlikely(tp->repair)) {
1232		if (tp->repair_queue == TCP_RECV_QUEUE) {
1233			copied = tcp_send_rcvq(sk, msg, size);
1234			goto out_nopush;
1235		}
1236
1237		err = -EINVAL;
1238		if (tp->repair_queue == TCP_NO_QUEUE)
1239			goto out_err;
1240
1241		/* 'common' sending to sendq */
1242	}
1243
1244	sockc.tsflags = sk->sk_tsflags;
1245	if (msg->msg_controllen) {
1246		err = sock_cmsg_send(sk, msg, &sockc);
1247		if (unlikely(err)) {
1248			err = -EINVAL;
1249			goto out_err;
1250		}
1251	}
1252
1253	/* This should be in poll */
1254	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1255
1256	/* Ok commence sending. */
1257	copied = 0;
1258
1259restart:
1260	mss_now = tcp_send_mss(sk, &size_goal, flags);
1261
1262	err = -EPIPE;
1263	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1264		goto do_error;
1265
1266	while (msg_data_left(msg)) {
1267		int copy = 0;
1268
1269		skb = tcp_write_queue_tail(sk);
1270		if (skb)
1271			copy = size_goal - skb->len;
1272
1273		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1274			bool first_skb;
1275			int linear;
1276
1277new_segment:
1278			/* Allocate new segment. If the interface is SG,
1279			 * allocate skb fitting to single page.
1280			 */
1281			if (!sk_stream_memory_free(sk))
1282				goto wait_for_sndbuf;
1283
1284			if (process_backlog && sk_flush_backlog(sk)) {
1285				process_backlog = false;
1286				goto restart;
 
1287			}
1288			first_skb = tcp_rtx_and_write_queues_empty(sk);
1289			linear = select_size(first_skb, zc);
1290			skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation,
1291						  first_skb);
1292			if (!skb)
1293				goto wait_for_memory;
1294
1295			process_backlog = true;
1296			skb->ip_summed = CHECKSUM_PARTIAL;
1297
1298			skb_entail(sk, skb);
1299			copy = size_goal;
1300
1301			/* All packets are restored as if they have
1302			 * already been sent. skb_mstamp isn't set to
1303			 * avoid wrong rtt estimation.
1304			 */
1305			if (tp->repair)
1306				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1307		}
1308
1309		/* Try to append data to the end of skb. */
1310		if (copy > msg_data_left(msg))
1311			copy = msg_data_left(msg);
1312
1313		/* Where to copy to? */
1314		if (skb_availroom(skb) > 0 && !zc) {
1315			/* We have some space in skb head. Superb! */
1316			copy = min_t(int, copy, skb_availroom(skb));
1317			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1318			if (err)
1319				goto do_fault;
1320		} else if (!zc) {
1321			bool merge = true;
1322			int i = skb_shinfo(skb)->nr_frags;
1323			struct page_frag *pfrag = sk_page_frag(sk);
1324
1325			if (!sk_page_frag_refill(sk, pfrag))
1326				goto wait_for_memory;
1327
1328			if (!skb_can_coalesce(skb, i, pfrag->page,
1329					      pfrag->offset)) {
1330				if (i >= sysctl_max_skb_frags) {
1331					tcp_mark_push(tp, skb);
1332					goto new_segment;
1333				}
1334				merge = false;
1335			}
1336
1337			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1338
1339			if (!sk_wmem_schedule(sk, copy))
1340				goto wait_for_memory;
 
 
 
 
 
 
 
1341
1342			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1343						       pfrag->page,
1344						       pfrag->offset,
1345						       copy);
1346			if (err)
1347				goto do_error;
1348
1349			/* Update the skb. */
1350			if (merge) {
1351				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1352			} else {
1353				skb_fill_page_desc(skb, i, pfrag->page,
1354						   pfrag->offset, copy);
1355				page_ref_inc(pfrag->page);
1356			}
1357			pfrag->offset += copy;
1358		} else {
 
 
 
 
 
 
 
 
 
 
 
 
1359			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1360			if (err == -EMSGSIZE || err == -EEXIST) {
1361				tcp_mark_push(tp, skb);
1362				goto new_segment;
1363			}
1364			if (err < 0)
1365				goto do_error;
1366			copy = err;
1367		}
1368
1369		if (!copied)
1370			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1371
1372		tp->write_seq += copy;
1373		TCP_SKB_CB(skb)->end_seq += copy;
1374		tcp_skb_pcount_set(skb, 0);
1375
1376		copied += copy;
1377		if (!msg_data_left(msg)) {
1378			if (unlikely(flags & MSG_EOR))
1379				TCP_SKB_CB(skb)->eor = 1;
1380			goto out;
1381		}
1382
1383		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1384			continue;
1385
1386		if (forced_push(tp)) {
1387			tcp_mark_push(tp, skb);
1388			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1389		} else if (skb == tcp_send_head(sk))
1390			tcp_push_one(sk, mss_now);
1391		continue;
1392
1393wait_for_sndbuf:
1394		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1395wait_for_memory:
1396		if (copied)
1397			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1398				 TCP_NAGLE_PUSH, size_goal);
1399
1400		err = sk_stream_wait_memory(sk, &timeo);
1401		if (err != 0)
1402			goto do_error;
1403
1404		mss_now = tcp_send_mss(sk, &size_goal, flags);
1405	}
1406
1407out:
1408	if (copied) {
1409		tcp_tx_timestamp(sk, sockc.tsflags);
1410		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1411	}
1412out_nopush:
1413	sock_zerocopy_put(uarg);
1414	return copied + copied_syn;
1415
1416do_fault:
1417	if (!skb->len) {
1418		tcp_unlink_write_queue(skb, sk);
1419		/* It is the one place in all of TCP, except connection
1420		 * reset, where we can be unlinking the send_head.
1421		 */
1422		tcp_check_send_head(sk, skb);
1423		sk_wmem_free_skb(sk, skb);
1424	}
1425
1426do_error:
 
 
1427	if (copied + copied_syn)
1428		goto out;
1429out_err:
1430	sock_zerocopy_put_abort(uarg);
1431	err = sk_stream_error(sk, flags, err);
1432	/* make sure we wake any epoll edge trigger waiter */
1433	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1434		     err == -EAGAIN)) {
1435		sk->sk_write_space(sk);
1436		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1437	}
1438	return err;
1439}
1440EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1441
1442int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1443{
1444	int ret;
1445
1446	lock_sock(sk);
1447	ret = tcp_sendmsg_locked(sk, msg, size);
1448	release_sock(sk);
1449
1450	return ret;
1451}
1452EXPORT_SYMBOL(tcp_sendmsg);
1453
1454/*
1455 *	Handle reading urgent data. BSD has very simple semantics for
1456 *	this, no blocking and very strange errors 8)
1457 */
1458
1459static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1460{
1461	struct tcp_sock *tp = tcp_sk(sk);
1462
1463	/* No URG data to read. */
1464	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1465	    tp->urg_data == TCP_URG_READ)
1466		return -EINVAL;	/* Yes this is right ! */
1467
1468	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1469		return -ENOTCONN;
1470
1471	if (tp->urg_data & TCP_URG_VALID) {
1472		int err = 0;
1473		char c = tp->urg_data;
1474
1475		if (!(flags & MSG_PEEK))
1476			tp->urg_data = TCP_URG_READ;
1477
1478		/* Read urgent data. */
1479		msg->msg_flags |= MSG_OOB;
1480
1481		if (len > 0) {
1482			if (!(flags & MSG_TRUNC))
1483				err = memcpy_to_msg(msg, &c, 1);
1484			len = 1;
1485		} else
1486			msg->msg_flags |= MSG_TRUNC;
1487
1488		return err ? -EFAULT : len;
1489	}
1490
1491	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1492		return 0;
1493
1494	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1495	 * the available implementations agree in this case:
1496	 * this call should never block, independent of the
1497	 * blocking state of the socket.
1498	 * Mike <pall@rz.uni-karlsruhe.de>
1499	 */
1500	return -EAGAIN;
1501}
1502
1503static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1504{
1505	struct sk_buff *skb;
1506	int copied = 0, err = 0;
1507
1508	/* XXX -- need to support SO_PEEK_OFF */
1509
1510	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1511		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1512		if (err)
1513			return err;
1514		copied += skb->len;
1515	}
1516
1517	skb_queue_walk(&sk->sk_write_queue, skb) {
1518		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1519		if (err)
1520			break;
1521
1522		copied += skb->len;
1523	}
1524
1525	return err ?: copied;
1526}
1527
1528/* Clean up the receive buffer for full frames taken by the user,
1529 * then send an ACK if necessary.  COPIED is the number of bytes
1530 * tcp_recvmsg has given to the user so far, it speeds up the
1531 * calculation of whether or not we must ACK for the sake of
1532 * a window update.
1533 */
1534static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1535{
1536	struct tcp_sock *tp = tcp_sk(sk);
1537	bool time_to_ack = false;
1538
1539	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1540
1541	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1542	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1543	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1544
1545	if (inet_csk_ack_scheduled(sk)) {
1546		const struct inet_connection_sock *icsk = inet_csk(sk);
1547		   /* Delayed ACKs frequently hit locked sockets during bulk
1548		    * receive. */
1549		if (icsk->icsk_ack.blocked ||
1550		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1551		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1552		    /*
1553		     * If this read emptied read buffer, we send ACK, if
1554		     * connection is not bidirectional, user drained
1555		     * receive buffer and there was a small segment
1556		     * in queue.
1557		     */
1558		    (copied > 0 &&
1559		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1560		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1561		       !icsk->icsk_ack.pingpong)) &&
1562		      !atomic_read(&sk->sk_rmem_alloc)))
1563			time_to_ack = true;
1564	}
1565
1566	/* We send an ACK if we can now advertise a non-zero window
1567	 * which has been raised "significantly".
1568	 *
1569	 * Even if window raised up to infinity, do not send window open ACK
1570	 * in states, where we will not receive more. It is useless.
1571	 */
1572	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1573		__u32 rcv_window_now = tcp_receive_window(tp);
1574
1575		/* Optimize, __tcp_select_window() is not cheap. */
1576		if (2*rcv_window_now <= tp->window_clamp) {
1577			__u32 new_window = __tcp_select_window(sk);
1578
1579			/* Send ACK now, if this read freed lots of space
1580			 * in our buffer. Certainly, new_window is new window.
1581			 * We can advertise it now, if it is not less than current one.
1582			 * "Lots" means "at least twice" here.
1583			 */
1584			if (new_window && new_window >= 2 * rcv_window_now)
1585				time_to_ack = true;
1586		}
1587	}
1588	if (time_to_ack)
1589		tcp_send_ack(sk);
1590}
1591
1592static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1593{
1594	struct sk_buff *skb;
1595	u32 offset;
1596
1597	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1598		offset = seq - TCP_SKB_CB(skb)->seq;
1599		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1600			pr_err_once("%s: found a SYN, please report !\n", __func__);
1601			offset--;
1602		}
1603		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1604			*off = offset;
1605			return skb;
1606		}
1607		/* This looks weird, but this can happen if TCP collapsing
1608		 * splitted a fat GRO packet, while we released socket lock
1609		 * in skb_splice_bits()
1610		 */
1611		sk_eat_skb(sk, skb);
1612	}
1613	return NULL;
1614}
 
1615
1616/*
1617 * This routine provides an alternative to tcp_recvmsg() for routines
1618 * that would like to handle copying from skbuffs directly in 'sendfile'
1619 * fashion.
1620 * Note:
1621 *	- It is assumed that the socket was locked by the caller.
1622 *	- The routine does not block.
1623 *	- At present, there is no support for reading OOB data
1624 *	  or for 'peeking' the socket using this routine
1625 *	  (although both would be easy to implement).
1626 */
1627int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1628		  sk_read_actor_t recv_actor)
1629{
1630	struct sk_buff *skb;
1631	struct tcp_sock *tp = tcp_sk(sk);
1632	u32 seq = tp->copied_seq;
1633	u32 offset;
1634	int copied = 0;
1635
1636	if (sk->sk_state == TCP_LISTEN)
1637		return -ENOTCONN;
1638	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1639		if (offset < skb->len) {
1640			int used;
1641			size_t len;
1642
1643			len = skb->len - offset;
1644			/* Stop reading if we hit a patch of urgent data */
1645			if (tp->urg_data) {
1646				u32 urg_offset = tp->urg_seq - seq;
1647				if (urg_offset < len)
1648					len = urg_offset;
1649				if (!len)
1650					break;
1651			}
1652			used = recv_actor(desc, skb, offset, len);
1653			if (used <= 0) {
1654				if (!copied)
1655					copied = used;
1656				break;
1657			} else if (used <= len) {
1658				seq += used;
1659				copied += used;
1660				offset += used;
1661			}
 
 
 
 
 
 
1662			/* If recv_actor drops the lock (e.g. TCP splice
1663			 * receive) the skb pointer might be invalid when
1664			 * getting here: tcp_collapse might have deleted it
1665			 * while aggregating skbs from the socket queue.
1666			 */
1667			skb = tcp_recv_skb(sk, seq - 1, &offset);
1668			if (!skb)
1669				break;
1670			/* TCP coalescing might have appended data to the skb.
1671			 * Try to splice more frags
1672			 */
1673			if (offset + 1 != skb->len)
1674				continue;
1675		}
1676		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1677			sk_eat_skb(sk, skb);
1678			++seq;
1679			break;
1680		}
1681		sk_eat_skb(sk, skb);
1682		if (!desc->count)
1683			break;
1684		tp->copied_seq = seq;
1685	}
1686	tp->copied_seq = seq;
1687
1688	tcp_rcv_space_adjust(sk);
1689
1690	/* Clean up data we have read: This will do ACK frames. */
1691	if (copied > 0) {
1692		tcp_recv_skb(sk, seq, &offset);
1693		tcp_cleanup_rbuf(sk, copied);
1694	}
1695	return copied;
1696}
1697EXPORT_SYMBOL(tcp_read_sock);
1698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1699int tcp_peek_len(struct socket *sock)
1700{
1701	return tcp_inq(sock->sk);
1702}
1703EXPORT_SYMBOL(tcp_peek_len);
1704
1705static void tcp_update_recv_tstamps(struct sk_buff *skb,
1706				    struct scm_timestamping *tss)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1707{
1708	if (skb->tstamp)
1709		tss->ts[0] = ktime_to_timespec(skb->tstamp);
1710	else
1711		tss->ts[0] = (struct timespec) {0};
1712
1713	if (skb_hwtstamps(skb)->hwtstamp)
1714		tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1715	else
1716		tss->ts[2] = (struct timespec) {0};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1717}
1718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1719/* Similar to __sock_recv_timestamp, but does not require an skb */
1720static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1721			       struct scm_timestamping *tss)
1722{
1723	struct timeval tv;
1724	bool has_timestamping = false;
1725
1726	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1727		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1728			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1729				put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1730					 sizeof(tss->ts[0]), &tss->ts[0]);
 
 
 
 
 
 
 
 
 
 
 
 
 
1731			} else {
1732				tv.tv_sec = tss->ts[0].tv_sec;
1733				tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1734
1735				put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1736					 sizeof(tv), &tv);
 
 
 
 
 
 
 
 
 
 
1737			}
1738		}
1739
1740		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1741			has_timestamping = true;
1742		else
1743			tss->ts[0] = (struct timespec) {0};
1744	}
1745
1746	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1747		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1748			has_timestamping = true;
1749		else
1750			tss->ts[2] = (struct timespec) {0};
1751	}
1752
1753	if (has_timestamping) {
1754		tss->ts[1] = (struct timespec) {0};
1755		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1756			 sizeof(*tss), tss);
 
 
1757	}
1758}
1759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1760/*
1761 *	This routine copies from a sock struct into the user buffer.
1762 *
1763 *	Technical note: in 2.3 we work on _locked_ socket, so that
1764 *	tricks with *seq access order and skb->users are not required.
1765 *	Probably, code can be easily improved even more.
1766 */
1767
1768int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1769		int flags, int *addr_len)
 
1770{
1771	struct tcp_sock *tp = tcp_sk(sk);
1772	int copied = 0;
1773	u32 peek_seq;
1774	u32 *seq;
1775	unsigned long used;
1776	int err;
1777	int target;		/* Read at least this many bytes */
1778	long timeo;
1779	struct sk_buff *skb, *last;
1780	u32 urg_hole = 0;
1781	struct scm_timestamping tss;
1782	bool has_tss = false;
1783
1784	if (unlikely(flags & MSG_ERRQUEUE))
1785		return inet_recv_error(sk, msg, len, addr_len);
1786
1787	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1788	    (sk->sk_state == TCP_ESTABLISHED))
1789		sk_busy_loop(sk, nonblock);
1790
1791	lock_sock(sk);
1792
1793	err = -ENOTCONN;
1794	if (sk->sk_state == TCP_LISTEN)
1795		goto out;
1796
1797	timeo = sock_rcvtimeo(sk, nonblock);
 
 
 
 
1798
1799	/* Urgent data needs to be handled specially. */
1800	if (flags & MSG_OOB)
1801		goto recv_urg;
1802
1803	if (unlikely(tp->repair)) {
1804		err = -EPERM;
1805		if (!(flags & MSG_PEEK))
1806			goto out;
1807
1808		if (tp->repair_queue == TCP_SEND_QUEUE)
1809			goto recv_sndq;
1810
1811		err = -EINVAL;
1812		if (tp->repair_queue == TCP_NO_QUEUE)
1813			goto out;
1814
1815		/* 'common' recv queue MSG_PEEK-ing */
1816	}
1817
1818	seq = &tp->copied_seq;
1819	if (flags & MSG_PEEK) {
1820		peek_seq = tp->copied_seq;
1821		seq = &peek_seq;
1822	}
1823
1824	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1825
1826	do {
1827		u32 offset;
1828
1829		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1830		if (tp->urg_data && tp->urg_seq == *seq) {
1831			if (copied)
1832				break;
1833			if (signal_pending(current)) {
1834				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1835				break;
1836			}
1837		}
1838
1839		/* Next get a buffer. */
1840
1841		last = skb_peek_tail(&sk->sk_receive_queue);
1842		skb_queue_walk(&sk->sk_receive_queue, skb) {
1843			last = skb;
1844			/* Now that we have two receive queues this
1845			 * shouldn't happen.
1846			 */
1847			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1848				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1849				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1850				 flags))
1851				break;
1852
1853			offset = *seq - TCP_SKB_CB(skb)->seq;
1854			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1855				pr_err_once("%s: found a SYN, please report !\n", __func__);
1856				offset--;
1857			}
1858			if (offset < skb->len)
1859				goto found_ok_skb;
1860			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1861				goto found_fin_ok;
1862			WARN(!(flags & MSG_PEEK),
1863			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1864			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1865		}
1866
1867		/* Well, if we have backlog, try to process it now yet. */
1868
1869		if (copied >= target && !sk->sk_backlog.tail)
1870			break;
1871
1872		if (copied) {
1873			if (sk->sk_err ||
 
1874			    sk->sk_state == TCP_CLOSE ||
1875			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1876			    !timeo ||
1877			    signal_pending(current))
1878				break;
1879		} else {
1880			if (sock_flag(sk, SOCK_DONE))
1881				break;
1882
1883			if (sk->sk_err) {
1884				copied = sock_error(sk);
1885				break;
1886			}
1887
1888			if (sk->sk_shutdown & RCV_SHUTDOWN)
1889				break;
1890
1891			if (sk->sk_state == TCP_CLOSE) {
1892				if (!sock_flag(sk, SOCK_DONE)) {
1893					/* This occurs when user tries to read
1894					 * from never connected socket.
1895					 */
1896					copied = -ENOTCONN;
1897					break;
1898				}
1899				break;
1900			}
1901
1902			if (!timeo) {
1903				copied = -EAGAIN;
1904				break;
1905			}
1906
1907			if (signal_pending(current)) {
1908				copied = sock_intr_errno(timeo);
1909				break;
1910			}
1911		}
1912
1913		tcp_cleanup_rbuf(sk, copied);
1914
1915		if (copied >= target) {
1916			/* Do not sleep, just process backlog. */
1917			release_sock(sk);
1918			lock_sock(sk);
1919		} else {
 
1920			sk_wait_data(sk, &timeo, last);
1921		}
1922
1923		if ((flags & MSG_PEEK) &&
1924		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1925			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1926					    current->comm,
1927					    task_pid_nr(current));
1928			peek_seq = tp->copied_seq;
1929		}
1930		continue;
1931
1932	found_ok_skb:
1933		/* Ok so how much can we use? */
1934		used = skb->len - offset;
1935		if (len < used)
1936			used = len;
1937
1938		/* Do we have urgent data here? */
1939		if (tp->urg_data) {
1940			u32 urg_offset = tp->urg_seq - *seq;
1941			if (urg_offset < used) {
1942				if (!urg_offset) {
1943					if (!sock_flag(sk, SOCK_URGINLINE)) {
1944						++*seq;
1945						urg_hole++;
1946						offset++;
1947						used--;
1948						if (!used)
1949							goto skip_copy;
1950					}
1951				} else
1952					used = urg_offset;
1953			}
1954		}
1955
1956		if (!(flags & MSG_TRUNC)) {
1957			err = skb_copy_datagram_msg(skb, offset, msg, used);
1958			if (err) {
1959				/* Exception. Bailout! */
1960				if (!copied)
1961					copied = -EFAULT;
1962				break;
1963			}
1964		}
1965
1966		*seq += used;
1967		copied += used;
1968		len -= used;
1969
1970		tcp_rcv_space_adjust(sk);
1971
1972skip_copy:
1973		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1974			tp->urg_data = 0;
1975			tcp_fast_path_check(sk);
1976		}
1977		if (used + offset < skb->len)
1978			continue;
1979
1980		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1981			tcp_update_recv_tstamps(skb, &tss);
1982			has_tss = true;
1983		}
 
 
 
 
1984		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1985			goto found_fin_ok;
1986		if (!(flags & MSG_PEEK))
1987			sk_eat_skb(sk, skb);
1988		continue;
1989
1990	found_fin_ok:
1991		/* Process the FIN. */
1992		++*seq;
1993		if (!(flags & MSG_PEEK))
1994			sk_eat_skb(sk, skb);
1995		break;
1996	} while (len > 0);
1997
1998	/* According to UNIX98, msg_name/msg_namelen are ignored
1999	 * on connected socket. I was just happy when found this 8) --ANK
2000	 */
2001
2002	if (has_tss)
2003		tcp_recv_timestamp(msg, sk, &tss);
2004
2005	/* Clean up data we have read: This will do ACK frames. */
2006	tcp_cleanup_rbuf(sk, copied);
2007
2008	release_sock(sk);
2009	return copied;
2010
2011out:
2012	release_sock(sk);
2013	return err;
2014
2015recv_urg:
2016	err = tcp_recv_urg(sk, msg, len, flags);
2017	goto out;
2018
2019recv_sndq:
2020	err = tcp_peek_sndq(sk, msg, len);
2021	goto out;
2022}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2023EXPORT_SYMBOL(tcp_recvmsg);
2024
2025void tcp_set_state(struct sock *sk, int state)
2026{
2027	int oldstate = sk->sk_state;
2028
2029	/* We defined a new enum for TCP states that are exported in BPF
2030	 * so as not force the internal TCP states to be frozen. The
2031	 * following checks will detect if an internal state value ever
2032	 * differs from the BPF value. If this ever happens, then we will
2033	 * need to remap the internal value to the BPF value before calling
2034	 * tcp_call_bpf_2arg.
2035	 */
2036	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2037	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2038	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2039	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2040	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2041	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2042	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2043	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2044	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2045	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2046	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2047	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2048	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2049
 
 
 
 
 
 
 
 
 
 
 
2050	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2051		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2052
2053	switch (state) {
2054	case TCP_ESTABLISHED:
2055		if (oldstate != TCP_ESTABLISHED)
2056			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2057		break;
2058
2059	case TCP_CLOSE:
2060		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2061			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2062
2063		sk->sk_prot->unhash(sk);
2064		if (inet_csk(sk)->icsk_bind_hash &&
2065		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2066			inet_put_port(sk);
2067		/* fall through */
2068	default:
2069		if (oldstate == TCP_ESTABLISHED)
2070			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2071	}
2072
2073	/* Change state AFTER socket is unhashed to avoid closed
2074	 * socket sitting in hash tables.
2075	 */
2076	inet_sk_state_store(sk, state);
2077
2078#ifdef STATE_TRACE
2079	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2080#endif
2081}
2082EXPORT_SYMBOL_GPL(tcp_set_state);
2083
2084/*
2085 *	State processing on a close. This implements the state shift for
2086 *	sending our FIN frame. Note that we only send a FIN for some
2087 *	states. A shutdown() may have already sent the FIN, or we may be
2088 *	closed.
2089 */
2090
2091static const unsigned char new_state[16] = {
2092  /* current state:        new state:      action:	*/
2093  [0 /* (Invalid) */]	= TCP_CLOSE,
2094  [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2095  [TCP_SYN_SENT]	= TCP_CLOSE,
2096  [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2097  [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2098  [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2099  [TCP_TIME_WAIT]	= TCP_CLOSE,
2100  [TCP_CLOSE]		= TCP_CLOSE,
2101  [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2102  [TCP_LAST_ACK]	= TCP_LAST_ACK,
2103  [TCP_LISTEN]		= TCP_CLOSE,
2104  [TCP_CLOSING]		= TCP_CLOSING,
2105  [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2106};
2107
2108static int tcp_close_state(struct sock *sk)
2109{
2110	int next = (int)new_state[sk->sk_state];
2111	int ns = next & TCP_STATE_MASK;
2112
2113	tcp_set_state(sk, ns);
2114
2115	return next & TCP_ACTION_FIN;
2116}
2117
2118/*
2119 *	Shutdown the sending side of a connection. Much like close except
2120 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2121 */
2122
2123void tcp_shutdown(struct sock *sk, int how)
2124{
2125	/*	We need to grab some memory, and put together a FIN,
2126	 *	and then put it into the queue to be sent.
2127	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2128	 */
2129	if (!(how & SEND_SHUTDOWN))
2130		return;
2131
2132	/* If we've already sent a FIN, or it's a closed state, skip this. */
2133	if ((1 << sk->sk_state) &
2134	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2135	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2136		/* Clear out any half completed packets.  FIN if needed. */
2137		if (tcp_close_state(sk))
2138			tcp_send_fin(sk);
2139	}
2140}
2141EXPORT_SYMBOL(tcp_shutdown);
2142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2143bool tcp_check_oom(struct sock *sk, int shift)
2144{
2145	bool too_many_orphans, out_of_socket_memory;
2146
2147	too_many_orphans = tcp_too_many_orphans(sk, shift);
2148	out_of_socket_memory = tcp_out_of_memory(sk);
2149
2150	if (too_many_orphans)
2151		net_info_ratelimited("too many orphaned sockets\n");
2152	if (out_of_socket_memory)
2153		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2154	return too_many_orphans || out_of_socket_memory;
2155}
2156
2157void tcp_close(struct sock *sk, long timeout)
2158{
2159	struct sk_buff *skb;
2160	int data_was_unread = 0;
2161	int state;
2162
2163	lock_sock(sk);
2164	sk->sk_shutdown = SHUTDOWN_MASK;
2165
2166	if (sk->sk_state == TCP_LISTEN) {
2167		tcp_set_state(sk, TCP_CLOSE);
2168
2169		/* Special case. */
2170		inet_csk_listen_stop(sk);
2171
2172		goto adjudge_to_death;
2173	}
2174
2175	/*  We need to flush the recv. buffs.  We do this only on the
2176	 *  descriptor close, not protocol-sourced closes, because the
2177	 *  reader process may not have drained the data yet!
2178	 */
2179	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2180		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2181
2182		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2183			len--;
2184		data_was_unread += len;
2185		__kfree_skb(skb);
2186	}
2187
2188	sk_mem_reclaim(sk);
2189
2190	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2191	if (sk->sk_state == TCP_CLOSE)
2192		goto adjudge_to_death;
2193
2194	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2195	 * data was lost. To witness the awful effects of the old behavior of
2196	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2197	 * GET in an FTP client, suspend the process, wait for the client to
2198	 * advertise a zero window, then kill -9 the FTP client, wheee...
2199	 * Note: timeout is always zero in such a case.
2200	 */
2201	if (unlikely(tcp_sk(sk)->repair)) {
2202		sk->sk_prot->disconnect(sk, 0);
2203	} else if (data_was_unread) {
2204		/* Unread data was tossed, zap the connection. */
2205		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2206		tcp_set_state(sk, TCP_CLOSE);
2207		tcp_send_active_reset(sk, sk->sk_allocation);
2208	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2209		/* Check zero linger _after_ checking for unread data. */
2210		sk->sk_prot->disconnect(sk, 0);
2211		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2212	} else if (tcp_close_state(sk)) {
2213		/* We FIN if the application ate all the data before
2214		 * zapping the connection.
2215		 */
2216
2217		/* RED-PEN. Formally speaking, we have broken TCP state
2218		 * machine. State transitions:
2219		 *
2220		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2221		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2222		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2223		 *
2224		 * are legal only when FIN has been sent (i.e. in window),
2225		 * rather than queued out of window. Purists blame.
2226		 *
2227		 * F.e. "RFC state" is ESTABLISHED,
2228		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2229		 *
2230		 * The visible declinations are that sometimes
2231		 * we enter time-wait state, when it is not required really
2232		 * (harmless), do not send active resets, when they are
2233		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2234		 * they look as CLOSING or LAST_ACK for Linux)
2235		 * Probably, I missed some more holelets.
2236		 * 						--ANK
2237		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2238		 * in a single packet! (May consider it later but will
2239		 * probably need API support or TCP_CORK SYN-ACK until
2240		 * data is written and socket is closed.)
2241		 */
2242		tcp_send_fin(sk);
2243	}
2244
2245	sk_stream_wait_close(sk, timeout);
2246
2247adjudge_to_death:
2248	state = sk->sk_state;
2249	sock_hold(sk);
2250	sock_orphan(sk);
2251
2252	/* It is the last release_sock in its life. It will remove backlog. */
2253	release_sock(sk);
2254
2255
2256	/* Now socket is owned by kernel and we acquire BH lock
2257	 *  to finish close. No need to check for user refs.
2258	 */
2259	local_bh_disable();
2260	bh_lock_sock(sk);
2261	WARN_ON(sock_owned_by_user(sk));
 
2262
2263	percpu_counter_inc(sk->sk_prot->orphan_count);
2264
2265	/* Have we already been destroyed by a softirq or backlog? */
2266	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2267		goto out;
2268
2269	/*	This is a (useful) BSD violating of the RFC. There is a
2270	 *	problem with TCP as specified in that the other end could
2271	 *	keep a socket open forever with no application left this end.
2272	 *	We use a 1 minute timeout (about the same as BSD) then kill
2273	 *	our end. If they send after that then tough - BUT: long enough
2274	 *	that we won't make the old 4*rto = almost no time - whoops
2275	 *	reset mistake.
2276	 *
2277	 *	Nope, it was not mistake. It is really desired behaviour
2278	 *	f.e. on http servers, when such sockets are useless, but
2279	 *	consume significant resources. Let's do it with special
2280	 *	linger2	option.					--ANK
2281	 */
2282
2283	if (sk->sk_state == TCP_FIN_WAIT2) {
2284		struct tcp_sock *tp = tcp_sk(sk);
2285		if (tp->linger2 < 0) {
2286			tcp_set_state(sk, TCP_CLOSE);
2287			tcp_send_active_reset(sk, GFP_ATOMIC);
2288			__NET_INC_STATS(sock_net(sk),
2289					LINUX_MIB_TCPABORTONLINGER);
2290		} else {
2291			const int tmo = tcp_fin_time(sk);
2292
2293			if (tmo > TCP_TIMEWAIT_LEN) {
2294				inet_csk_reset_keepalive_timer(sk,
2295						tmo - TCP_TIMEWAIT_LEN);
2296			} else {
2297				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2298				goto out;
2299			}
2300		}
2301	}
2302	if (sk->sk_state != TCP_CLOSE) {
2303		sk_mem_reclaim(sk);
2304		if (tcp_check_oom(sk, 0)) {
2305			tcp_set_state(sk, TCP_CLOSE);
2306			tcp_send_active_reset(sk, GFP_ATOMIC);
2307			__NET_INC_STATS(sock_net(sk),
2308					LINUX_MIB_TCPABORTONMEMORY);
2309		} else if (!check_net(sock_net(sk))) {
2310			/* Not possible to send reset; just close */
2311			tcp_set_state(sk, TCP_CLOSE);
2312		}
2313	}
2314
2315	if (sk->sk_state == TCP_CLOSE) {
2316		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
 
 
 
2317		/* We could get here with a non-NULL req if the socket is
2318		 * aborted (e.g., closed with unread data) before 3WHS
2319		 * finishes.
2320		 */
2321		if (req)
2322			reqsk_fastopen_remove(sk, req, false);
2323		inet_csk_destroy_sock(sk);
2324	}
2325	/* Otherwise, socket is reprieved until protocol close. */
2326
2327out:
2328	bh_unlock_sock(sk);
2329	local_bh_enable();
 
 
 
 
 
 
 
2330	sock_put(sk);
2331}
2332EXPORT_SYMBOL(tcp_close);
2333
2334/* These states need RST on ABORT according to RFC793 */
2335
2336static inline bool tcp_need_reset(int state)
2337{
2338	return (1 << state) &
2339	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2340		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2341}
2342
2343static void tcp_rtx_queue_purge(struct sock *sk)
2344{
2345	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2346
 
2347	while (p) {
2348		struct sk_buff *skb = rb_to_skb(p);
2349
2350		p = rb_next(p);
2351		/* Since we are deleting whole queue, no need to
2352		 * list_del(&skb->tcp_tsorted_anchor)
2353		 */
2354		tcp_rtx_queue_unlink(skb, sk);
2355		sk_wmem_free_skb(sk, skb);
2356	}
2357}
2358
2359void tcp_write_queue_purge(struct sock *sk)
2360{
2361	struct sk_buff *skb;
2362
2363	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2364	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2365		tcp_skb_tsorted_anchor_cleanup(skb);
2366		sk_wmem_free_skb(sk, skb);
2367	}
2368	tcp_rtx_queue_purge(sk);
2369	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2370	sk_mem_reclaim(sk);
2371	tcp_clear_all_retrans_hints(tcp_sk(sk));
2372	tcp_sk(sk)->packets_out = 0;
 
2373}
2374
2375int tcp_disconnect(struct sock *sk, int flags)
2376{
2377	struct inet_sock *inet = inet_sk(sk);
2378	struct inet_connection_sock *icsk = inet_csk(sk);
2379	struct tcp_sock *tp = tcp_sk(sk);
2380	int err = 0;
2381	int old_state = sk->sk_state;
 
2382
2383	if (old_state != TCP_CLOSE)
2384		tcp_set_state(sk, TCP_CLOSE);
2385
2386	/* ABORT function of RFC793 */
2387	if (old_state == TCP_LISTEN) {
2388		inet_csk_listen_stop(sk);
2389	} else if (unlikely(tp->repair)) {
2390		sk->sk_err = ECONNABORTED;
2391	} else if (tcp_need_reset(old_state) ||
2392		   (tp->snd_nxt != tp->write_seq &&
2393		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2394		/* The last check adjusts for discrepancy of Linux wrt. RFC
2395		 * states
2396		 */
2397		tcp_send_active_reset(sk, gfp_any());
2398		sk->sk_err = ECONNRESET;
2399	} else if (old_state == TCP_SYN_SENT)
2400		sk->sk_err = ECONNRESET;
2401
2402	tcp_clear_xmit_timers(sk);
2403	__skb_queue_purge(&sk->sk_receive_queue);
 
 
2404	tcp_write_queue_purge(sk);
2405	tcp_fastopen_active_disable_ofo_check(sk);
2406	skb_rbtree_purge(&tp->out_of_order_queue);
2407
2408	inet->inet_dport = 0;
2409
2410	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2411		inet_reset_saddr(sk);
2412
2413	sk->sk_shutdown = 0;
2414	sock_reset_flag(sk, SOCK_DONE);
2415	tp->srtt_us = 0;
2416	tp->write_seq += tp->max_window + 2;
2417	if (tp->write_seq == 0)
2418		tp->write_seq = 1;
 
 
 
 
 
2419	icsk->icsk_backoff = 0;
2420	tp->snd_cwnd = 2;
2421	icsk->icsk_probes_out = 0;
 
 
 
 
2422	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 
2423	tp->snd_cwnd_cnt = 0;
 
 
2424	tp->window_clamp = 0;
 
 
 
 
 
 
2425	tcp_set_ca_state(sk, TCP_CA_Open);
2426	tp->is_sack_reneg = 0;
2427	tcp_clear_retrans(tp);
 
2428	inet_csk_delack_init(sk);
2429	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2430	 * issue in __tcp_select_window()
2431	 */
2432	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2433	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2434	__sk_dst_reset(sk);
2435	dst_release(sk->sk_rx_dst);
2436	sk->sk_rx_dst = NULL;
2437	tcp_saved_syn_free(tp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2438
2439	/* Clean up fastopen related fields */
2440	tcp_free_fastopen_req(tp);
2441	inet->defer_connect = 0;
 
2442
2443	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2444
2445	if (sk->sk_frag.page) {
2446		put_page(sk->sk_frag.page);
2447		sk->sk_frag.page = NULL;
2448		sk->sk_frag.offset = 0;
2449	}
2450
2451	sk->sk_error_report(sk);
2452	return err;
2453}
2454EXPORT_SYMBOL(tcp_disconnect);
2455
2456static inline bool tcp_can_repair_sock(const struct sock *sk)
2457{
2458	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2459		(sk->sk_state != TCP_LISTEN);
2460}
2461
2462static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2463{
2464	struct tcp_repair_window opt;
2465
2466	if (!tp->repair)
2467		return -EPERM;
2468
2469	if (len != sizeof(opt))
2470		return -EINVAL;
2471
2472	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2473		return -EFAULT;
2474
2475	if (opt.max_window < opt.snd_wnd)
2476		return -EINVAL;
2477
2478	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2479		return -EINVAL;
2480
2481	if (after(opt.rcv_wup, tp->rcv_nxt))
2482		return -EINVAL;
2483
2484	tp->snd_wl1	= opt.snd_wl1;
2485	tp->snd_wnd	= opt.snd_wnd;
2486	tp->max_window	= opt.max_window;
2487
2488	tp->rcv_wnd	= opt.rcv_wnd;
2489	tp->rcv_wup	= opt.rcv_wup;
2490
2491	return 0;
2492}
2493
2494static int tcp_repair_options_est(struct sock *sk,
2495		struct tcp_repair_opt __user *optbuf, unsigned int len)
2496{
2497	struct tcp_sock *tp = tcp_sk(sk);
2498	struct tcp_repair_opt opt;
 
2499
2500	while (len >= sizeof(opt)) {
2501		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2502			return -EFAULT;
2503
2504		optbuf++;
2505		len -= sizeof(opt);
2506
2507		switch (opt.opt_code) {
2508		case TCPOPT_MSS:
2509			tp->rx_opt.mss_clamp = opt.opt_val;
2510			tcp_mtup_init(sk);
2511			break;
2512		case TCPOPT_WINDOW:
2513			{
2514				u16 snd_wscale = opt.opt_val & 0xFFFF;
2515				u16 rcv_wscale = opt.opt_val >> 16;
2516
2517				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2518					return -EFBIG;
2519
2520				tp->rx_opt.snd_wscale = snd_wscale;
2521				tp->rx_opt.rcv_wscale = rcv_wscale;
2522				tp->rx_opt.wscale_ok = 1;
2523			}
2524			break;
2525		case TCPOPT_SACK_PERM:
2526			if (opt.opt_val != 0)
2527				return -EINVAL;
2528
2529			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2530			break;
2531		case TCPOPT_TIMESTAMP:
2532			if (opt.opt_val != 0)
2533				return -EINVAL;
2534
2535			tp->rx_opt.tstamp_ok = 1;
2536			break;
2537		}
2538	}
2539
2540	return 0;
2541}
2542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2543/*
2544 *	Socket option code for TCP.
2545 */
2546static int do_tcp_setsockopt(struct sock *sk, int level,
2547		int optname, char __user *optval, unsigned int optlen)
2548{
2549	struct tcp_sock *tp = tcp_sk(sk);
2550	struct inet_connection_sock *icsk = inet_csk(sk);
2551	struct net *net = sock_net(sk);
2552	int val;
2553	int err = 0;
2554
2555	/* These are data/string values, all the others are ints */
2556	switch (optname) {
2557	case TCP_CONGESTION: {
2558		char name[TCP_CA_NAME_MAX];
2559
2560		if (optlen < 1)
2561			return -EINVAL;
2562
2563		val = strncpy_from_user(name, optval,
2564					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2565		if (val < 0)
2566			return -EFAULT;
2567		name[val] = 0;
2568
2569		lock_sock(sk);
2570		err = tcp_set_congestion_control(sk, name, true, true);
2571		release_sock(sk);
 
 
2572		return err;
2573	}
2574	case TCP_ULP: {
2575		char name[TCP_ULP_NAME_MAX];
2576
2577		if (optlen < 1)
2578			return -EINVAL;
2579
2580		val = strncpy_from_user(name, optval,
2581					min_t(long, TCP_ULP_NAME_MAX - 1,
2582					      optlen));
2583		if (val < 0)
2584			return -EFAULT;
2585		name[val] = 0;
2586
2587		lock_sock(sk);
2588		err = tcp_set_ulp(sk, name);
2589		release_sock(sk);
2590		return err;
2591	}
2592	case TCP_FASTOPEN_KEY: {
2593		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
 
2594
2595		if (optlen != sizeof(key))
 
 
 
 
2596			return -EINVAL;
2597
2598		if (copy_from_user(key, optval, optlen))
2599			return -EFAULT;
2600
2601		return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
 
 
 
2602	}
2603	default:
2604		/* fallthru */
2605		break;
2606	}
2607
2608	if (optlen < sizeof(int))
2609		return -EINVAL;
2610
2611	if (get_user(val, (int __user *)optval))
2612		return -EFAULT;
2613
2614	lock_sock(sk);
2615
2616	switch (optname) {
2617	case TCP_MAXSEG:
2618		/* Values greater than interface MTU won't take effect. However
2619		 * at the point when this call is done we typically don't yet
2620		 * know which interface is going to be used
2621		 */
2622		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2623			err = -EINVAL;
2624			break;
2625		}
2626		tp->rx_opt.user_mss = val;
2627		break;
2628
2629	case TCP_NODELAY:
2630		if (val) {
2631			/* TCP_NODELAY is weaker than TCP_CORK, so that
2632			 * this option on corked socket is remembered, but
2633			 * it is not activated until cork is cleared.
2634			 *
2635			 * However, when TCP_NODELAY is set we make
2636			 * an explicit push, which overrides even TCP_CORK
2637			 * for currently queued segments.
2638			 */
2639			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2640			tcp_push_pending_frames(sk);
2641		} else {
2642			tp->nonagle &= ~TCP_NAGLE_OFF;
2643		}
2644		break;
2645
2646	case TCP_THIN_LINEAR_TIMEOUTS:
2647		if (val < 0 || val > 1)
2648			err = -EINVAL;
2649		else
2650			tp->thin_lto = val;
2651		break;
2652
2653	case TCP_THIN_DUPACK:
2654		if (val < 0 || val > 1)
2655			err = -EINVAL;
2656		break;
2657
2658	case TCP_REPAIR:
2659		if (!tcp_can_repair_sock(sk))
2660			err = -EPERM;
2661		else if (val == 1) {
2662			tp->repair = 1;
2663			sk->sk_reuse = SK_FORCE_REUSE;
2664			tp->repair_queue = TCP_NO_QUEUE;
2665		} else if (val == 0) {
2666			tp->repair = 0;
2667			sk->sk_reuse = SK_NO_REUSE;
2668			tcp_send_window_probe(sk);
 
 
 
2669		} else
2670			err = -EINVAL;
2671
2672		break;
2673
2674	case TCP_REPAIR_QUEUE:
2675		if (!tp->repair)
2676			err = -EPERM;
2677		else if ((unsigned int)val < TCP_QUEUES_NR)
2678			tp->repair_queue = val;
2679		else
2680			err = -EINVAL;
2681		break;
2682
2683	case TCP_QUEUE_SEQ:
2684		if (sk->sk_state != TCP_CLOSE)
2685			err = -EPERM;
2686		else if (tp->repair_queue == TCP_SEND_QUEUE)
2687			tp->write_seq = val;
2688		else if (tp->repair_queue == TCP_RECV_QUEUE)
2689			tp->rcv_nxt = val;
2690		else
 
 
 
 
 
 
 
 
2691			err = -EINVAL;
 
2692		break;
2693
2694	case TCP_REPAIR_OPTIONS:
2695		if (!tp->repair)
2696			err = -EINVAL;
2697		else if (sk->sk_state == TCP_ESTABLISHED)
2698			err = tcp_repair_options_est(sk,
2699					(struct tcp_repair_opt __user *)optval,
2700					optlen);
2701		else
2702			err = -EPERM;
2703		break;
2704
2705	case TCP_CORK:
2706		/* When set indicates to always queue non-full frames.
2707		 * Later the user clears this option and we transmit
2708		 * any pending partial frames in the queue.  This is
2709		 * meant to be used alongside sendfile() to get properly
2710		 * filled frames when the user (for example) must write
2711		 * out headers with a write() call first and then use
2712		 * sendfile to send out the data parts.
2713		 *
2714		 * TCP_CORK can be set together with TCP_NODELAY and it is
2715		 * stronger than TCP_NODELAY.
2716		 */
2717		if (val) {
2718			tp->nonagle |= TCP_NAGLE_CORK;
2719		} else {
2720			tp->nonagle &= ~TCP_NAGLE_CORK;
2721			if (tp->nonagle&TCP_NAGLE_OFF)
2722				tp->nonagle |= TCP_NAGLE_PUSH;
2723			tcp_push_pending_frames(sk);
2724		}
2725		break;
2726
2727	case TCP_KEEPIDLE:
2728		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2729			err = -EINVAL;
2730		else {
2731			tp->keepalive_time = val * HZ;
2732			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2733			    !((1 << sk->sk_state) &
2734			      (TCPF_CLOSE | TCPF_LISTEN))) {
2735				u32 elapsed = keepalive_time_elapsed(tp);
2736				if (tp->keepalive_time > elapsed)
2737					elapsed = tp->keepalive_time - elapsed;
2738				else
2739					elapsed = 0;
2740				inet_csk_reset_keepalive_timer(sk, elapsed);
2741			}
2742		}
2743		break;
2744	case TCP_KEEPINTVL:
2745		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2746			err = -EINVAL;
2747		else
2748			tp->keepalive_intvl = val * HZ;
2749		break;
2750	case TCP_KEEPCNT:
2751		if (val < 1 || val > MAX_TCP_KEEPCNT)
2752			err = -EINVAL;
2753		else
2754			tp->keepalive_probes = val;
2755		break;
2756	case TCP_SYNCNT:
2757		if (val < 1 || val > MAX_TCP_SYNCNT)
2758			err = -EINVAL;
2759		else
2760			icsk->icsk_syn_retries = val;
2761		break;
2762
2763	case TCP_SAVE_SYN:
2764		if (val < 0 || val > 1)
 
2765			err = -EINVAL;
2766		else
2767			tp->save_syn = val;
2768		break;
2769
2770	case TCP_LINGER2:
2771		if (val < 0)
2772			tp->linger2 = -1;
2773		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2774			tp->linger2 = 0;
2775		else
2776			tp->linger2 = val * HZ;
2777		break;
2778
2779	case TCP_DEFER_ACCEPT:
2780		/* Translate value in seconds to number of retransmits */
2781		icsk->icsk_accept_queue.rskq_defer_accept =
2782			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2783					TCP_RTO_MAX / HZ);
2784		break;
2785
2786	case TCP_WINDOW_CLAMP:
2787		if (!val) {
2788			if (sk->sk_state != TCP_CLOSE) {
2789				err = -EINVAL;
2790				break;
2791			}
2792			tp->window_clamp = 0;
2793		} else
2794			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2795						SOCK_MIN_RCVBUF / 2 : val;
2796		break;
2797
2798	case TCP_QUICKACK:
2799		if (!val) {
2800			icsk->icsk_ack.pingpong = 1;
2801		} else {
2802			icsk->icsk_ack.pingpong = 0;
2803			if ((1 << sk->sk_state) &
2804			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2805			    inet_csk_ack_scheduled(sk)) {
2806				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2807				tcp_cleanup_rbuf(sk, 1);
2808				if (!(val & 1))
2809					icsk->icsk_ack.pingpong = 1;
2810			}
2811		}
2812		break;
2813
2814#ifdef CONFIG_TCP_MD5SIG
2815	case TCP_MD5SIG:
2816	case TCP_MD5SIG_EXT:
2817		if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
2818			err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2819		else
2820			err = -EINVAL;
2821		break;
2822#endif
2823	case TCP_USER_TIMEOUT:
2824		/* Cap the max time in ms TCP will retry or probe the window
2825		 * before giving up and aborting (ETIMEDOUT) a connection.
2826		 */
2827		if (val < 0)
2828			err = -EINVAL;
2829		else
2830			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2831		break;
2832
2833	case TCP_FASTOPEN:
2834		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2835		    TCPF_LISTEN))) {
2836			tcp_fastopen_init_key_once(net);
2837
2838			fastopen_queue_tune(sk, val);
2839		} else {
2840			err = -EINVAL;
2841		}
2842		break;
2843	case TCP_FASTOPEN_CONNECT:
2844		if (val > 1 || val < 0) {
2845			err = -EINVAL;
2846		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
 
2847			if (sk->sk_state == TCP_CLOSE)
2848				tp->fastopen_connect = val;
2849			else
2850				err = -EINVAL;
2851		} else {
2852			err = -EOPNOTSUPP;
2853		}
2854		break;
2855	case TCP_FASTOPEN_NO_COOKIE:
2856		if (val > 1 || val < 0)
2857			err = -EINVAL;
2858		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2859			err = -EINVAL;
2860		else
2861			tp->fastopen_no_cookie = val;
2862		break;
2863	case TCP_TIMESTAMP:
2864		if (!tp->repair)
2865			err = -EPERM;
2866		else
2867			tp->tsoffset = val - tcp_time_stamp_raw();
2868		break;
2869	case TCP_REPAIR_WINDOW:
2870		err = tcp_repair_set_window(tp, optval, optlen);
2871		break;
2872	case TCP_NOTSENT_LOWAT:
2873		tp->notsent_lowat = val;
2874		sk->sk_write_space(sk);
2875		break;
 
 
 
 
 
 
 
 
 
 
 
2876	default:
2877		err = -ENOPROTOOPT;
2878		break;
2879	}
2880
2881	release_sock(sk);
2882	return err;
2883}
2884
2885int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2886		   unsigned int optlen)
2887{
2888	const struct inet_connection_sock *icsk = inet_csk(sk);
2889
2890	if (level != SOL_TCP)
2891		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2892						     optval, optlen);
 
2893	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2894}
2895EXPORT_SYMBOL(tcp_setsockopt);
2896
2897#ifdef CONFIG_COMPAT
2898int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2899			  char __user *optval, unsigned int optlen)
2900{
2901	if (level != SOL_TCP)
2902		return inet_csk_compat_setsockopt(sk, level, optname,
2903						  optval, optlen);
2904	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2905}
2906EXPORT_SYMBOL(compat_tcp_setsockopt);
2907#endif
2908
2909static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2910				      struct tcp_info *info)
2911{
2912	u64 stats[__TCP_CHRONO_MAX], total = 0;
2913	enum tcp_chrono i;
2914
2915	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2916		stats[i] = tp->chrono_stat[i - 1];
2917		if (i == tp->chrono_type)
2918			stats[i] += tcp_jiffies32 - tp->chrono_start;
2919		stats[i] *= USEC_PER_SEC / HZ;
2920		total += stats[i];
2921	}
2922
2923	info->tcpi_busy_time = total;
2924	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2925	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2926}
2927
2928/* Return information about state of tcp endpoint in API format. */
2929void tcp_get_info(struct sock *sk, struct tcp_info *info)
2930{
2931	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2932	const struct inet_connection_sock *icsk = inet_csk(sk);
 
2933	u32 now;
2934	u64 rate64;
2935	bool slow;
2936	u32 rate;
2937
2938	memset(info, 0, sizeof(*info));
2939	if (sk->sk_type != SOCK_STREAM)
2940		return;
2941
2942	info->tcpi_state = inet_sk_state_load(sk);
2943
2944	/* Report meaningful fields for all TCP states, including listeners */
2945	rate = READ_ONCE(sk->sk_pacing_rate);
2946	rate64 = rate != ~0U ? rate : ~0ULL;
2947	info->tcpi_pacing_rate = rate64;
2948
2949	rate = READ_ONCE(sk->sk_max_pacing_rate);
2950	rate64 = rate != ~0U ? rate : ~0ULL;
2951	info->tcpi_max_pacing_rate = rate64;
2952
2953	info->tcpi_reordering = tp->reordering;
2954	info->tcpi_snd_cwnd = tp->snd_cwnd;
2955
2956	if (info->tcpi_state == TCP_LISTEN) {
2957		/* listeners aliased fields :
2958		 * tcpi_unacked -> Number of children ready for accept()
2959		 * tcpi_sacked  -> max backlog
2960		 */
2961		info->tcpi_unacked = sk->sk_ack_backlog;
2962		info->tcpi_sacked = sk->sk_max_ack_backlog;
2963		return;
2964	}
2965
2966	slow = lock_sock_fast(sk);
2967
2968	info->tcpi_ca_state = icsk->icsk_ca_state;
2969	info->tcpi_retransmits = icsk->icsk_retransmits;
2970	info->tcpi_probes = icsk->icsk_probes_out;
2971	info->tcpi_backoff = icsk->icsk_backoff;
2972
2973	if (tp->rx_opt.tstamp_ok)
2974		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2975	if (tcp_is_sack(tp))
2976		info->tcpi_options |= TCPI_OPT_SACK;
2977	if (tp->rx_opt.wscale_ok) {
2978		info->tcpi_options |= TCPI_OPT_WSCALE;
2979		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2980		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2981	}
2982
2983	if (tp->ecn_flags & TCP_ECN_OK)
2984		info->tcpi_options |= TCPI_OPT_ECN;
2985	if (tp->ecn_flags & TCP_ECN_SEEN)
2986		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2987	if (tp->syn_data_acked)
2988		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2989
2990	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2991	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2992	info->tcpi_snd_mss = tp->mss_cache;
2993	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2994
2995	info->tcpi_unacked = tp->packets_out;
2996	info->tcpi_sacked = tp->sacked_out;
2997
2998	info->tcpi_lost = tp->lost_out;
2999	info->tcpi_retrans = tp->retrans_out;
3000
3001	now = tcp_jiffies32;
3002	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3003	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3004	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3005
3006	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3007	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3008	info->tcpi_rtt = tp->srtt_us >> 3;
3009	info->tcpi_rttvar = tp->mdev_us >> 2;
3010	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3011	info->tcpi_advmss = tp->advmss;
3012
3013	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3014	info->tcpi_rcv_space = tp->rcvq_space.space;
3015
3016	info->tcpi_total_retrans = tp->total_retrans;
3017
3018	info->tcpi_bytes_acked = tp->bytes_acked;
3019	info->tcpi_bytes_received = tp->bytes_received;
3020	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3021	tcp_get_info_chrono_stats(tp, info);
3022
3023	info->tcpi_segs_out = tp->segs_out;
3024	info->tcpi_segs_in = tp->segs_in;
 
 
 
3025
3026	info->tcpi_min_rtt = tcp_min_rtt(tp);
3027	info->tcpi_data_segs_in = tp->data_segs_in;
3028	info->tcpi_data_segs_out = tp->data_segs_out;
3029
3030	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3031	rate64 = tcp_compute_delivery_rate(tp);
3032	if (rate64)
3033		info->tcpi_delivery_rate = rate64;
 
 
 
 
 
 
 
 
 
 
 
3034	unlock_sock_fast(sk, slow);
3035}
3036EXPORT_SYMBOL_GPL(tcp_get_info);
3037
3038struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3039{
3040	const struct tcp_sock *tp = tcp_sk(sk);
3041	struct sk_buff *stats;
3042	struct tcp_info info;
 
3043	u64 rate64;
3044	u32 rate;
3045
3046	stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) +
3047			  5 * nla_total_size(sizeof(u32)) +
3048			  3 * nla_total_size(sizeof(u8)), GFP_ATOMIC);
3049	if (!stats)
3050		return NULL;
3051
3052	tcp_get_info_chrono_stats(tp, &info);
3053	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3054			  info.tcpi_busy_time, TCP_NLA_PAD);
3055	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3056			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3057	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3058			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3059	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3060			  tp->data_segs_out, TCP_NLA_PAD);
3061	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3062			  tp->total_retrans, TCP_NLA_PAD);
3063
3064	rate = READ_ONCE(sk->sk_pacing_rate);
3065	rate64 = rate != ~0U ? rate : ~0ULL;
3066	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3067
3068	rate64 = tcp_compute_delivery_rate(tp);
3069	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3070
3071	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3072	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3073	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3074
3075	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3076	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3077	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
 
 
3078
3079	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3080	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3081	return stats;
3082}
3083
3084static int do_tcp_getsockopt(struct sock *sk, int level,
3085		int optname, char __user *optval, int __user *optlen)
3086{
3087	struct inet_connection_sock *icsk = inet_csk(sk);
3088	struct tcp_sock *tp = tcp_sk(sk);
3089	struct net *net = sock_net(sk);
3090	int val, len;
3091
3092	if (get_user(len, optlen))
3093		return -EFAULT;
3094
3095	len = min_t(unsigned int, len, sizeof(int));
3096
3097	if (len < 0)
3098		return -EINVAL;
3099
3100	switch (optname) {
3101	case TCP_MAXSEG:
3102		val = tp->mss_cache;
3103		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3104			val = tp->rx_opt.user_mss;
3105		if (tp->repair)
3106			val = tp->rx_opt.mss_clamp;
3107		break;
3108	case TCP_NODELAY:
3109		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3110		break;
3111	case TCP_CORK:
3112		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3113		break;
3114	case TCP_KEEPIDLE:
3115		val = keepalive_time_when(tp) / HZ;
3116		break;
3117	case TCP_KEEPINTVL:
3118		val = keepalive_intvl_when(tp) / HZ;
3119		break;
3120	case TCP_KEEPCNT:
3121		val = keepalive_probes(tp);
3122		break;
3123	case TCP_SYNCNT:
3124		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
 
3125		break;
3126	case TCP_LINGER2:
3127		val = tp->linger2;
3128		if (val >= 0)
3129			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3130		break;
3131	case TCP_DEFER_ACCEPT:
3132		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3133				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3134		break;
3135	case TCP_WINDOW_CLAMP:
3136		val = tp->window_clamp;
3137		break;
3138	case TCP_INFO: {
3139		struct tcp_info info;
3140
3141		if (get_user(len, optlen))
3142			return -EFAULT;
3143
3144		tcp_get_info(sk, &info);
3145
3146		len = min_t(unsigned int, len, sizeof(info));
3147		if (put_user(len, optlen))
3148			return -EFAULT;
3149		if (copy_to_user(optval, &info, len))
3150			return -EFAULT;
3151		return 0;
3152	}
3153	case TCP_CC_INFO: {
3154		const struct tcp_congestion_ops *ca_ops;
3155		union tcp_cc_info info;
3156		size_t sz = 0;
3157		int attr;
3158
3159		if (get_user(len, optlen))
3160			return -EFAULT;
3161
3162		ca_ops = icsk->icsk_ca_ops;
3163		if (ca_ops && ca_ops->get_info)
3164			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3165
3166		len = min_t(unsigned int, len, sz);
3167		if (put_user(len, optlen))
3168			return -EFAULT;
3169		if (copy_to_user(optval, &info, len))
3170			return -EFAULT;
3171		return 0;
3172	}
3173	case TCP_QUICKACK:
3174		val = !icsk->icsk_ack.pingpong;
3175		break;
3176
3177	case TCP_CONGESTION:
3178		if (get_user(len, optlen))
3179			return -EFAULT;
3180		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3181		if (put_user(len, optlen))
3182			return -EFAULT;
3183		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3184			return -EFAULT;
3185		return 0;
3186
3187	case TCP_ULP:
3188		if (get_user(len, optlen))
3189			return -EFAULT;
3190		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3191		if (!icsk->icsk_ulp_ops) {
3192			if (put_user(0, optlen))
 
3193				return -EFAULT;
3194			return 0;
3195		}
3196		if (put_user(len, optlen))
3197			return -EFAULT;
3198		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3199			return -EFAULT;
3200		return 0;
3201
3202	case TCP_FASTOPEN_KEY: {
3203		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
3204		struct tcp_fastopen_context *ctx;
3205
3206		if (get_user(len, optlen))
3207			return -EFAULT;
3208
3209		rcu_read_lock();
3210		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3211		if (ctx)
3212			memcpy(key, ctx->key, sizeof(key));
3213		else
3214			len = 0;
3215		rcu_read_unlock();
3216
3217		len = min_t(unsigned int, len, sizeof(key));
3218		if (put_user(len, optlen))
3219			return -EFAULT;
3220		if (copy_to_user(optval, key, len))
3221			return -EFAULT;
3222		return 0;
3223	}
3224	case TCP_THIN_LINEAR_TIMEOUTS:
3225		val = tp->thin_lto;
3226		break;
3227
3228	case TCP_THIN_DUPACK:
3229		val = 0;
3230		break;
3231
3232	case TCP_REPAIR:
3233		val = tp->repair;
3234		break;
3235
3236	case TCP_REPAIR_QUEUE:
3237		if (tp->repair)
3238			val = tp->repair_queue;
3239		else
3240			return -EINVAL;
3241		break;
3242
3243	case TCP_REPAIR_WINDOW: {
3244		struct tcp_repair_window opt;
3245
3246		if (get_user(len, optlen))
3247			return -EFAULT;
3248
3249		if (len != sizeof(opt))
3250			return -EINVAL;
3251
3252		if (!tp->repair)
3253			return -EPERM;
3254
3255		opt.snd_wl1	= tp->snd_wl1;
3256		opt.snd_wnd	= tp->snd_wnd;
3257		opt.max_window	= tp->max_window;
3258		opt.rcv_wnd	= tp->rcv_wnd;
3259		opt.rcv_wup	= tp->rcv_wup;
3260
3261		if (copy_to_user(optval, &opt, len))
3262			return -EFAULT;
3263		return 0;
3264	}
3265	case TCP_QUEUE_SEQ:
3266		if (tp->repair_queue == TCP_SEND_QUEUE)
3267			val = tp->write_seq;
3268		else if (tp->repair_queue == TCP_RECV_QUEUE)
3269			val = tp->rcv_nxt;
3270		else
3271			return -EINVAL;
3272		break;
3273
3274	case TCP_USER_TIMEOUT:
3275		val = jiffies_to_msecs(icsk->icsk_user_timeout);
3276		break;
3277
3278	case TCP_FASTOPEN:
3279		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3280		break;
3281
3282	case TCP_FASTOPEN_CONNECT:
3283		val = tp->fastopen_connect;
3284		break;
3285
3286	case TCP_FASTOPEN_NO_COOKIE:
3287		val = tp->fastopen_no_cookie;
3288		break;
3289
 
 
 
 
3290	case TCP_TIMESTAMP:
3291		val = tcp_time_stamp_raw() + tp->tsoffset;
3292		break;
3293	case TCP_NOTSENT_LOWAT:
3294		val = tp->notsent_lowat;
3295		break;
 
 
 
3296	case TCP_SAVE_SYN:
3297		val = tp->save_syn;
3298		break;
3299	case TCP_SAVED_SYN: {
3300		if (get_user(len, optlen))
3301			return -EFAULT;
3302
3303		lock_sock(sk);
3304		if (tp->saved_syn) {
3305			if (len < tp->saved_syn[0]) {
3306				if (put_user(tp->saved_syn[0], optlen)) {
3307					release_sock(sk);
 
3308					return -EFAULT;
3309				}
3310				release_sock(sk);
3311				return -EINVAL;
3312			}
3313			len = tp->saved_syn[0];
3314			if (put_user(len, optlen)) {
3315				release_sock(sk);
3316				return -EFAULT;
3317			}
3318			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3319				release_sock(sk);
3320				return -EFAULT;
3321			}
3322			tcp_saved_syn_free(tp);
3323			release_sock(sk);
3324		} else {
3325			release_sock(sk);
3326			len = 0;
3327			if (put_user(len, optlen))
3328				return -EFAULT;
3329		}
3330		return 0;
3331	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3332	default:
3333		return -ENOPROTOOPT;
3334	}
3335
3336	if (put_user(len, optlen))
3337		return -EFAULT;
3338	if (copy_to_user(optval, &val, len))
3339		return -EFAULT;
3340	return 0;
3341}
3342
 
 
 
 
 
 
 
 
 
 
 
 
3343int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3344		   int __user *optlen)
3345{
3346	struct inet_connection_sock *icsk = inet_csk(sk);
3347
3348	if (level != SOL_TCP)
3349		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3350						     optval, optlen);
3351	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
 
 
3352}
3353EXPORT_SYMBOL(tcp_getsockopt);
3354
3355#ifdef CONFIG_COMPAT
3356int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3357			  char __user *optval, int __user *optlen)
3358{
3359	if (level != SOL_TCP)
3360		return inet_csk_compat_getsockopt(sk, level, optname,
3361						  optval, optlen);
3362	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3363}
3364EXPORT_SYMBOL(compat_tcp_getsockopt);
3365#endif
3366
3367#ifdef CONFIG_TCP_MD5SIG
3368static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3369static DEFINE_MUTEX(tcp_md5sig_mutex);
3370static bool tcp_md5sig_pool_populated = false;
3371
3372static void __tcp_alloc_md5sig_pool(void)
3373{
3374	struct crypto_ahash *hash;
3375	int cpu;
3376
3377	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3378	if (IS_ERR(hash))
3379		return;
3380
3381	for_each_possible_cpu(cpu) {
3382		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3383		struct ahash_request *req;
3384
3385		if (!scratch) {
3386			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3387					       sizeof(struct tcphdr),
3388					       GFP_KERNEL,
3389					       cpu_to_node(cpu));
3390			if (!scratch)
3391				return;
3392			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3393		}
3394		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3395			continue;
3396
3397		req = ahash_request_alloc(hash, GFP_KERNEL);
3398		if (!req)
3399			return;
3400
3401		ahash_request_set_callback(req, 0, NULL, NULL);
3402
3403		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3404	}
3405	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3406	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3407	 */
3408	smp_wmb();
3409	tcp_md5sig_pool_populated = true;
 
 
 
3410}
3411
3412bool tcp_alloc_md5sig_pool(void)
3413{
3414	if (unlikely(!tcp_md5sig_pool_populated)) {
 
3415		mutex_lock(&tcp_md5sig_mutex);
3416
3417		if (!tcp_md5sig_pool_populated)
3418			__tcp_alloc_md5sig_pool();
3419
3420		mutex_unlock(&tcp_md5sig_mutex);
3421	}
3422	return tcp_md5sig_pool_populated;
 
3423}
3424EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3425
3426
3427/**
3428 *	tcp_get_md5sig_pool - get md5sig_pool for this user
3429 *
3430 *	We use percpu structure, so if we succeed, we exit with preemption
3431 *	and BH disabled, to make sure another thread or softirq handling
3432 *	wont try to get same context.
3433 */
3434struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3435{
3436	local_bh_disable();
3437
3438	if (tcp_md5sig_pool_populated) {
 
3439		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3440		smp_rmb();
3441		return this_cpu_ptr(&tcp_md5sig_pool);
3442	}
3443	local_bh_enable();
3444	return NULL;
3445}
3446EXPORT_SYMBOL(tcp_get_md5sig_pool);
3447
3448int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3449			  const struct sk_buff *skb, unsigned int header_len)
3450{
3451	struct scatterlist sg;
3452	const struct tcphdr *tp = tcp_hdr(skb);
3453	struct ahash_request *req = hp->md5_req;
3454	unsigned int i;
3455	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3456					   skb_headlen(skb) - header_len : 0;
3457	const struct skb_shared_info *shi = skb_shinfo(skb);
3458	struct sk_buff *frag_iter;
3459
3460	sg_init_table(&sg, 1);
3461
3462	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3463	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3464	if (crypto_ahash_update(req))
3465		return 1;
3466
3467	for (i = 0; i < shi->nr_frags; ++i) {
3468		const struct skb_frag_struct *f = &shi->frags[i];
3469		unsigned int offset = f->page_offset;
3470		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3471
3472		sg_set_page(&sg, page, skb_frag_size(f),
3473			    offset_in_page(offset));
3474		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3475		if (crypto_ahash_update(req))
3476			return 1;
3477	}
3478
3479	skb_walk_frags(skb, frag_iter)
3480		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3481			return 1;
3482
3483	return 0;
3484}
3485EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3486
3487int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3488{
 
3489	struct scatterlist sg;
3490
3491	sg_init_one(&sg, key->key, key->keylen);
3492	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3493	return crypto_ahash_update(hp->md5_req);
 
 
3494}
3495EXPORT_SYMBOL(tcp_md5_hash_key);
3496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3497#endif
3498
3499void tcp_done(struct sock *sk)
3500{
3501	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
 
 
 
 
 
 
3502
3503	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3504		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3505
3506	tcp_set_state(sk, TCP_CLOSE);
3507	tcp_clear_xmit_timers(sk);
3508	if (req)
3509		reqsk_fastopen_remove(sk, req, false);
3510
3511	sk->sk_shutdown = SHUTDOWN_MASK;
3512
3513	if (!sock_flag(sk, SOCK_DEAD))
3514		sk->sk_state_change(sk);
3515	else
3516		inet_csk_destroy_sock(sk);
3517}
3518EXPORT_SYMBOL_GPL(tcp_done);
3519
3520int tcp_abort(struct sock *sk, int err)
3521{
3522	if (!sk_fullsock(sk)) {
3523		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3524			struct request_sock *req = inet_reqsk(sk);
3525
3526			local_bh_disable();
3527			inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3528							  req);
3529			local_bh_enable();
3530			return 0;
3531		}
3532		return -EOPNOTSUPP;
 
 
 
 
 
 
 
3533	}
3534
3535	/* Don't race with userspace socket closes such as tcp_close. */
3536	lock_sock(sk);
3537
3538	if (sk->sk_state == TCP_LISTEN) {
3539		tcp_set_state(sk, TCP_CLOSE);
3540		inet_csk_listen_stop(sk);
3541	}
3542
3543	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3544	local_bh_disable();
3545	bh_lock_sock(sk);
3546
3547	if (!sock_flag(sk, SOCK_DEAD)) {
3548		sk->sk_err = err;
3549		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3550		smp_wmb();
3551		sk->sk_error_report(sk);
3552		if (tcp_need_reset(sk->sk_state))
3553			tcp_send_active_reset(sk, GFP_ATOMIC);
3554		tcp_done(sk);
3555	}
3556
3557	bh_unlock_sock(sk);
3558	local_bh_enable();
3559	tcp_write_queue_purge(sk);
3560	release_sock(sk);
3561	return 0;
3562}
3563EXPORT_SYMBOL_GPL(tcp_abort);
3564
3565extern struct tcp_congestion_ops tcp_reno;
3566
3567static __initdata unsigned long thash_entries;
3568static int __init set_thash_entries(char *str)
3569{
3570	ssize_t ret;
3571
3572	if (!str)
3573		return 0;
3574
3575	ret = kstrtoul(str, 0, &thash_entries);
3576	if (ret)
3577		return 0;
3578
3579	return 1;
3580}
3581__setup("thash_entries=", set_thash_entries);
3582
3583static void __init tcp_init_mem(void)
3584{
3585	unsigned long limit = nr_free_buffer_pages() / 16;
3586
3587	limit = max(limit, 128UL);
3588	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3589	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3590	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3591}
3592
3593void __init tcp_init(void)
3594{
3595	int max_rshare, max_wshare, cnt;
3596	unsigned long limit;
3597	unsigned int i;
3598
 
3599	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3600		     FIELD_SIZEOF(struct sk_buff, cb));
3601
3602	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3603	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3604	inet_hashinfo_init(&tcp_hashinfo);
 
 
3605	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3606			    thash_entries, 21,  /* one slot per 2 MB*/
3607			    0, 64 * 1024);
3608	tcp_hashinfo.bind_bucket_cachep =
3609		kmem_cache_create("tcp_bind_bucket",
3610				  sizeof(struct inet_bind_bucket), 0,
3611				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
 
 
 
 
 
 
 
 
3612
3613	/* Size and allocate the main established and bind bucket
3614	 * hash tables.
3615	 *
3616	 * The methodology is similar to that of the buffer cache.
3617	 */
3618	tcp_hashinfo.ehash =
3619		alloc_large_system_hash("TCP established",
3620					sizeof(struct inet_ehash_bucket),
3621					thash_entries,
3622					17, /* one slot per 128 KB of memory */
3623					0,
3624					NULL,
3625					&tcp_hashinfo.ehash_mask,
3626					0,
3627					thash_entries ? 0 : 512 * 1024);
3628	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3629		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3630
3631	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3632		panic("TCP: failed to alloc ehash_locks");
3633	tcp_hashinfo.bhash =
3634		alloc_large_system_hash("TCP bind",
3635					sizeof(struct inet_bind_hashbucket),
3636					tcp_hashinfo.ehash_mask + 1,
3637					17, /* one slot per 128 KB of memory */
3638					0,
3639					&tcp_hashinfo.bhash_size,
3640					NULL,
3641					0,
3642					64 * 1024);
3643	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
 
3644	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3645		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3646		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
 
 
3647	}
3648
 
3649
3650	cnt = tcp_hashinfo.ehash_mask + 1;
3651	sysctl_tcp_max_orphans = cnt / 2;
3652
3653	tcp_init_mem();
3654	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3655	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3656	max_wshare = min(4UL*1024*1024, limit);
3657	max_rshare = min(6UL*1024*1024, limit);
3658
3659	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3660	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3661	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3662
3663	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3664	init_net.ipv4.sysctl_tcp_rmem[1] = 87380;
3665	init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare);
3666
3667	pr_info("Hash tables configured (established %u bind %u)\n",
3668		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3669
3670	tcp_v4_init();
3671	tcp_metrics_init();
3672	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3673	tcp_tasklet_init();
 
3674}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 *
  21 * Fixes:
  22 *		Alan Cox	:	Numerous verify_area() calls
  23 *		Alan Cox	:	Set the ACK bit on a reset
  24 *		Alan Cox	:	Stopped it crashing if it closed while
  25 *					sk->inuse=1 and was trying to connect
  26 *					(tcp_err()).
  27 *		Alan Cox	:	All icmp error handling was broken
  28 *					pointers passed where wrong and the
  29 *					socket was looked up backwards. Nobody
  30 *					tested any icmp error code obviously.
  31 *		Alan Cox	:	tcp_err() now handled properly. It
  32 *					wakes people on errors. poll
  33 *					behaves and the icmp error race
  34 *					has gone by moving it into sock.c
  35 *		Alan Cox	:	tcp_send_reset() fixed to work for
  36 *					everything not just packets for
  37 *					unknown sockets.
  38 *		Alan Cox	:	tcp option processing.
  39 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
  40 *					syn rule wrong]
  41 *		Herp Rosmanith  :	More reset fixes
  42 *		Alan Cox	:	No longer acks invalid rst frames.
  43 *					Acking any kind of RST is right out.
  44 *		Alan Cox	:	Sets an ignore me flag on an rst
  45 *					receive otherwise odd bits of prattle
  46 *					escape still
  47 *		Alan Cox	:	Fixed another acking RST frame bug.
  48 *					Should stop LAN workplace lockups.
  49 *		Alan Cox	: 	Some tidyups using the new skb list
  50 *					facilities
  51 *		Alan Cox	:	sk->keepopen now seems to work
  52 *		Alan Cox	:	Pulls options out correctly on accepts
  53 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
  54 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
  55 *					bit to skb ops.
  56 *		Alan Cox	:	Tidied tcp_data to avoid a potential
  57 *					nasty.
  58 *		Alan Cox	:	Added some better commenting, as the
  59 *					tcp is hard to follow
  60 *		Alan Cox	:	Removed incorrect check for 20 * psh
  61 *	Michael O'Reilly	:	ack < copied bug fix.
  62 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
  63 *		Alan Cox	:	FIN with no memory -> CRASH
  64 *		Alan Cox	:	Added socket option proto entries.
  65 *					Also added awareness of them to accept.
  66 *		Alan Cox	:	Added TCP options (SOL_TCP)
  67 *		Alan Cox	:	Switched wakeup calls to callbacks,
  68 *					so the kernel can layer network
  69 *					sockets.
  70 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
  71 *		Alan Cox	:	Handle FIN (more) properly (we hope).
  72 *		Alan Cox	:	RST frames sent on unsynchronised
  73 *					state ack error.
  74 *		Alan Cox	:	Put in missing check for SYN bit.
  75 *		Alan Cox	:	Added tcp_select_window() aka NET2E
  76 *					window non shrink trick.
  77 *		Alan Cox	:	Added a couple of small NET2E timer
  78 *					fixes
  79 *		Charles Hedrick :	TCP fixes
  80 *		Toomas Tamm	:	TCP window fixes
  81 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
  82 *		Charles Hedrick	:	Rewrote most of it to actually work
  83 *		Linus		:	Rewrote tcp_read() and URG handling
  84 *					completely
  85 *		Gerhard Koerting:	Fixed some missing timer handling
  86 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
  87 *		Gerhard Koerting:	PC/TCP workarounds
  88 *		Adam Caldwell	:	Assorted timer/timing errors
  89 *		Matthew Dillon	:	Fixed another RST bug
  90 *		Alan Cox	:	Move to kernel side addressing changes.
  91 *		Alan Cox	:	Beginning work on TCP fastpathing
  92 *					(not yet usable)
  93 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
  94 *		Alan Cox	:	TCP fast path debugging
  95 *		Alan Cox	:	Window clamping
  96 *		Michael Riepe	:	Bug in tcp_check()
  97 *		Matt Dillon	:	More TCP improvements and RST bug fixes
  98 *		Matt Dillon	:	Yet more small nasties remove from the
  99 *					TCP code (Be very nice to this man if
 100 *					tcp finally works 100%) 8)
 101 *		Alan Cox	:	BSD accept semantics.
 102 *		Alan Cox	:	Reset on closedown bug.
 103 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
 104 *		Michael Pall	:	Handle poll() after URG properly in
 105 *					all cases.
 106 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
 107 *					(multi URG PUSH broke rlogin).
 108 *		Michael Pall	:	Fix the multi URG PUSH problem in
 109 *					tcp_readable(), poll() after URG
 110 *					works now.
 111 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
 112 *					BSD api.
 113 *		Alan Cox	:	Changed the semantics of sk->socket to
 114 *					fix a race and a signal problem with
 115 *					accept() and async I/O.
 116 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
 117 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
 118 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
 119 *					clients/servers which listen in on
 120 *					fixed ports.
 121 *		Alan Cox	:	Cleaned the above up and shrank it to
 122 *					a sensible code size.
 123 *		Alan Cox	:	Self connect lockup fix.
 124 *		Alan Cox	:	No connect to multicast.
 125 *		Ross Biro	:	Close unaccepted children on master
 126 *					socket close.
 127 *		Alan Cox	:	Reset tracing code.
 128 *		Alan Cox	:	Spurious resets on shutdown.
 129 *		Alan Cox	:	Giant 15 minute/60 second timer error
 130 *		Alan Cox	:	Small whoops in polling before an
 131 *					accept.
 132 *		Alan Cox	:	Kept the state trace facility since
 133 *					it's handy for debugging.
 134 *		Alan Cox	:	More reset handler fixes.
 135 *		Alan Cox	:	Started rewriting the code based on
 136 *					the RFC's for other useful protocol
 137 *					references see: Comer, KA9Q NOS, and
 138 *					for a reference on the difference
 139 *					between specifications and how BSD
 140 *					works see the 4.4lite source.
 141 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
 142 *					close.
 143 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
 144 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
 145 *		Alan Cox	:	Reimplemented timers as per the RFC
 146 *					and using multiple timers for sanity.
 147 *		Alan Cox	:	Small bug fixes, and a lot of new
 148 *					comments.
 149 *		Alan Cox	:	Fixed dual reader crash by locking
 150 *					the buffers (much like datagram.c)
 151 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
 152 *					now gets fed up of retrying without
 153 *					(even a no space) answer.
 154 *		Alan Cox	:	Extracted closing code better
 155 *		Alan Cox	:	Fixed the closing state machine to
 156 *					resemble the RFC.
 157 *		Alan Cox	:	More 'per spec' fixes.
 158 *		Jorge Cwik	:	Even faster checksumming.
 159 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
 160 *					only frames. At least one pc tcp stack
 161 *					generates them.
 162 *		Alan Cox	:	Cache last socket.
 163 *		Alan Cox	:	Per route irtt.
 164 *		Matt Day	:	poll()->select() match BSD precisely on error
 165 *		Alan Cox	:	New buffers
 166 *		Marc Tamsky	:	Various sk->prot->retransmits and
 167 *					sk->retransmits misupdating fixed.
 168 *					Fixed tcp_write_timeout: stuck close,
 169 *					and TCP syn retries gets used now.
 170 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
 171 *					ack if state is TCP_CLOSED.
 172 *		Alan Cox	:	Look up device on a retransmit - routes may
 173 *					change. Doesn't yet cope with MSS shrink right
 174 *					but it's a start!
 175 *		Marc Tamsky	:	Closing in closing fixes.
 176 *		Mike Shaver	:	RFC1122 verifications.
 177 *		Alan Cox	:	rcv_saddr errors.
 178 *		Alan Cox	:	Block double connect().
 179 *		Alan Cox	:	Small hooks for enSKIP.
 180 *		Alexey Kuznetsov:	Path MTU discovery.
 181 *		Alan Cox	:	Support soft errors.
 182 *		Alan Cox	:	Fix MTU discovery pathological case
 183 *					when the remote claims no mtu!
 184 *		Marc Tamsky	:	TCP_CLOSE fix.
 185 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
 186 *					window but wrong (fixes NT lpd problems)
 187 *		Pedro Roque	:	Better TCP window handling, delayed ack.
 188 *		Joerg Reuter	:	No modification of locked buffers in
 189 *					tcp_do_retransmit()
 190 *		Eric Schenk	:	Changed receiver side silly window
 191 *					avoidance algorithm to BSD style
 192 *					algorithm. This doubles throughput
 193 *					against machines running Solaris,
 194 *					and seems to result in general
 195 *					improvement.
 196 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
 197 *	Willy Konynenberg	:	Transparent proxying support.
 198 *	Mike McLagan		:	Routing by source
 199 *		Keith Owens	:	Do proper merging with partial SKB's in
 200 *					tcp_do_sendmsg to avoid burstiness.
 201 *		Eric Schenk	:	Fix fast close down bug with
 202 *					shutdown() followed by close().
 203 *		Andi Kleen 	:	Make poll agree with SIGIO
 204 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
 205 *					lingertime == 0 (RFC 793 ABORT Call)
 206 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
 207 *					csum_and_copy_from_user() if possible.
 208 *
 
 
 
 
 
 209 * Description of States:
 210 *
 211 *	TCP_SYN_SENT		sent a connection request, waiting for ack
 212 *
 213 *	TCP_SYN_RECV		received a connection request, sent ack,
 214 *				waiting for final ack in three-way handshake.
 215 *
 216 *	TCP_ESTABLISHED		connection established
 217 *
 218 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
 219 *				transmission of remaining buffered data
 220 *
 221 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
 222 *				to shutdown
 223 *
 224 *	TCP_CLOSING		both sides have shutdown but we still have
 225 *				data we have to finish sending
 226 *
 227 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
 228 *				closed, can only be entered from FIN_WAIT2
 229 *				or CLOSING.  Required because the other end
 230 *				may not have gotten our last ACK causing it
 231 *				to retransmit the data packet (which we ignore)
 232 *
 233 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
 234 *				us to finish writing our data and to shutdown
 235 *				(we have to close() to move on to LAST_ACK)
 236 *
 237 *	TCP_LAST_ACK		out side has shutdown after remote has
 238 *				shutdown.  There may still be data in our
 239 *				buffer that we have to finish sending
 240 *
 241 *	TCP_CLOSE		socket is finished
 242 */
 243
 244#define pr_fmt(fmt) "TCP: " fmt
 245
 246#include <crypto/hash.h>
 247#include <linux/kernel.h>
 248#include <linux/module.h>
 249#include <linux/types.h>
 250#include <linux/fcntl.h>
 251#include <linux/poll.h>
 252#include <linux/inet_diag.h>
 253#include <linux/init.h>
 254#include <linux/fs.h>
 255#include <linux/skbuff.h>
 256#include <linux/scatterlist.h>
 257#include <linux/splice.h>
 258#include <linux/net.h>
 259#include <linux/socket.h>
 260#include <linux/random.h>
 261#include <linux/memblock.h>
 262#include <linux/highmem.h>
 
 263#include <linux/cache.h>
 264#include <linux/err.h>
 265#include <linux/time.h>
 266#include <linux/slab.h>
 267#include <linux/errqueue.h>
 268#include <linux/static_key.h>
 269#include <linux/btf.h>
 270
 271#include <net/icmp.h>
 272#include <net/inet_common.h>
 273#include <net/tcp.h>
 274#include <net/mptcp.h>
 275#include <net/xfrm.h>
 276#include <net/ip.h>
 277#include <net/sock.h>
 278
 279#include <linux/uaccess.h>
 280#include <asm/ioctls.h>
 281#include <net/busy_poll.h>
 282
 283/* Track pending CMSGs. */
 284enum {
 285	TCP_CMSG_INQ = 1,
 286	TCP_CMSG_TS = 2
 287};
 288
 289DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
 290EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
 291
 292long sysctl_tcp_mem[3] __read_mostly;
 293EXPORT_SYMBOL(sysctl_tcp_mem);
 294
 295atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
 296EXPORT_SYMBOL(tcp_memory_allocated);
 297DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
 298EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
 299
 300#if IS_ENABLED(CONFIG_SMC)
 301DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
 302EXPORT_SYMBOL(tcp_have_smc);
 303#endif
 304
 305/*
 306 * Current number of TCP sockets.
 307 */
 308struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
 309EXPORT_SYMBOL(tcp_sockets_allocated);
 310
 311/*
 312 * TCP splice context
 313 */
 314struct tcp_splice_state {
 315	struct pipe_inode_info *pipe;
 316	size_t len;
 317	unsigned int flags;
 318};
 319
 320/*
 321 * Pressure flag: try to collapse.
 322 * Technical note: it is used by multiple contexts non atomically.
 323 * All the __sk_mem_schedule() is of this nature: accounting
 324 * is strict, actions are advisory and have some latency.
 325 */
 326unsigned long tcp_memory_pressure __read_mostly;
 327EXPORT_SYMBOL_GPL(tcp_memory_pressure);
 328
 329void tcp_enter_memory_pressure(struct sock *sk)
 330{
 331	unsigned long val;
 332
 333	if (READ_ONCE(tcp_memory_pressure))
 334		return;
 335	val = jiffies;
 336
 337	if (!val)
 338		val--;
 339	if (!cmpxchg(&tcp_memory_pressure, 0, val))
 340		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
 341}
 342EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
 343
 344void tcp_leave_memory_pressure(struct sock *sk)
 345{
 346	unsigned long val;
 347
 348	if (!READ_ONCE(tcp_memory_pressure))
 349		return;
 350	val = xchg(&tcp_memory_pressure, 0);
 351	if (val)
 352		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
 353			      jiffies_to_msecs(jiffies - val));
 354}
 355EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
 356
 357/* Convert seconds to retransmits based on initial and max timeout */
 358static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
 359{
 360	u8 res = 0;
 361
 362	if (seconds > 0) {
 363		int period = timeout;
 364
 365		res = 1;
 366		while (seconds > period && res < 255) {
 367			res++;
 368			timeout <<= 1;
 369			if (timeout > rto_max)
 370				timeout = rto_max;
 371			period += timeout;
 372		}
 373	}
 374	return res;
 375}
 376
 377/* Convert retransmits to seconds based on initial and max timeout */
 378static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
 379{
 380	int period = 0;
 381
 382	if (retrans > 0) {
 383		period = timeout;
 384		while (--retrans) {
 385			timeout <<= 1;
 386			if (timeout > rto_max)
 387				timeout = rto_max;
 388			period += timeout;
 389		}
 390	}
 391	return period;
 392}
 393
 394static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
 395{
 396	u32 rate = READ_ONCE(tp->rate_delivered);
 397	u32 intv = READ_ONCE(tp->rate_interval_us);
 398	u64 rate64 = 0;
 399
 400	if (rate && intv) {
 401		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
 402		do_div(rate64, intv);
 403	}
 404	return rate64;
 405}
 406
 407/* Address-family independent initialization for a tcp_sock.
 408 *
 409 * NOTE: A lot of things set to zero explicitly by call to
 410 *       sk_alloc() so need not be done here.
 411 */
 412void tcp_init_sock(struct sock *sk)
 413{
 414	struct inet_connection_sock *icsk = inet_csk(sk);
 415	struct tcp_sock *tp = tcp_sk(sk);
 416
 417	tp->out_of_order_queue = RB_ROOT;
 418	sk->tcp_rtx_queue = RB_ROOT;
 419	tcp_init_xmit_timers(sk);
 420	INIT_LIST_HEAD(&tp->tsq_node);
 421	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
 422
 423	icsk->icsk_rto = TCP_TIMEOUT_INIT;
 424	icsk->icsk_rto_min = TCP_RTO_MIN;
 425	icsk->icsk_delack_max = TCP_DELACK_MAX;
 426	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
 427	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
 428
 429	/* So many TCP implementations out there (incorrectly) count the
 430	 * initial SYN frame in their delayed-ACK and congestion control
 431	 * algorithms that we must have the following bandaid to talk
 432	 * efficiently to them.  -DaveM
 433	 */
 434	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
 435
 436	/* There's a bubble in the pipe until at least the first ACK. */
 437	tp->app_limited = ~0U;
 438	tp->rate_app_limited = 1;
 439
 440	/* See draft-stevens-tcpca-spec-01 for discussion of the
 441	 * initialization of these values.
 442	 */
 443	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 444	tp->snd_cwnd_clamp = ~0;
 445	tp->mss_cache = TCP_MSS_DEFAULT;
 446
 447	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
 448	tcp_assign_congestion_control(sk);
 449
 450	tp->tsoffset = 0;
 451	tp->rack.reo_wnd_steps = 1;
 452
 
 
 453	sk->sk_write_space = sk_stream_write_space;
 454	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
 455
 456	icsk->icsk_sync_mss = tcp_sync_mss;
 457
 458	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
 459	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
 460
 461	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
 462	sk_sockets_allocated_inc(sk);
 
 463}
 464EXPORT_SYMBOL(tcp_init_sock);
 465
 
 
 
 
 
 
 
 
 
 
 
 
 466static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
 467{
 468	struct sk_buff *skb = tcp_write_queue_tail(sk);
 469
 470	if (tsflags && skb) {
 471		struct skb_shared_info *shinfo = skb_shinfo(skb);
 472		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 473
 474		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
 475		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
 476			tcb->txstamp_ack = 1;
 477		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
 478			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
 479	}
 480}
 481
 482static bool tcp_stream_is_readable(struct sock *sk, int target)
 
 483{
 484	if (tcp_epollin_ready(sk, target))
 485		return true;
 486	return sk_is_readable(sk);
 487}
 488
 489/*
 490 *	Wait for a TCP event.
 491 *
 492 *	Note that we don't need to lock the socket, as the upper poll layers
 493 *	take care of normal races (between the test and the event) and we don't
 494 *	go look at any of the socket buffers directly.
 495 */
 496__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
 497{
 498	__poll_t mask;
 499	struct sock *sk = sock->sk;
 500	const struct tcp_sock *tp = tcp_sk(sk);
 501	int state;
 502
 503	sock_poll_wait(file, sock, wait);
 504
 505	state = inet_sk_state_load(sk);
 506	if (state == TCP_LISTEN)
 507		return inet_csk_listen_poll(sk);
 508
 509	/* Socket is not locked. We are protected from async events
 510	 * by poll logic and correct handling of state changes
 511	 * made by other threads is impossible in any case.
 512	 */
 513
 514	mask = 0;
 515
 516	/*
 517	 * EPOLLHUP is certainly not done right. But poll() doesn't
 518	 * have a notion of HUP in just one direction, and for a
 519	 * socket the read side is more interesting.
 520	 *
 521	 * Some poll() documentation says that EPOLLHUP is incompatible
 522	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
 523	 * all. But careful, it tends to be safer to return too many
 524	 * bits than too few, and you can easily break real applications
 525	 * if you don't tell them that something has hung up!
 526	 *
 527	 * Check-me.
 528	 *
 529	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
 530	 * our fs/select.c). It means that after we received EOF,
 531	 * poll always returns immediately, making impossible poll() on write()
 532	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
 533	 * if and only if shutdown has been made in both directions.
 534	 * Actually, it is interesting to look how Solaris and DUX
 535	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
 536	 * then we could set it on SND_SHUTDOWN. BTW examples given
 537	 * in Stevens' books assume exactly this behaviour, it explains
 538	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
 539	 *
 540	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
 541	 * blocking on fresh not-connected or disconnected socket. --ANK
 542	 */
 543	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
 544		mask |= EPOLLHUP;
 545	if (sk->sk_shutdown & RCV_SHUTDOWN)
 546		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
 547
 548	/* Connected or passive Fast Open socket? */
 549	if (state != TCP_SYN_SENT &&
 550	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
 551		int target = sock_rcvlowat(sk, 0, INT_MAX);
 552		u16 urg_data = READ_ONCE(tp->urg_data);
 553
 554		if (unlikely(urg_data) &&
 555		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
 556		    !sock_flag(sk, SOCK_URGINLINE))
 557			target++;
 558
 559		if (tcp_stream_is_readable(sk, target))
 560			mask |= EPOLLIN | EPOLLRDNORM;
 561
 562		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
 563			if (__sk_stream_is_writeable(sk, 1)) {
 564				mask |= EPOLLOUT | EPOLLWRNORM;
 565			} else {  /* send SIGIO later */
 566				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 567				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 568
 569				/* Race breaker. If space is freed after
 570				 * wspace test but before the flags are set,
 571				 * IO signal will be lost. Memory barrier
 572				 * pairs with the input side.
 573				 */
 574				smp_mb__after_atomic();
 575				if (__sk_stream_is_writeable(sk, 1))
 576					mask |= EPOLLOUT | EPOLLWRNORM;
 577			}
 578		} else
 579			mask |= EPOLLOUT | EPOLLWRNORM;
 580
 581		if (urg_data & TCP_URG_VALID)
 582			mask |= EPOLLPRI;
 583	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
 584		/* Active TCP fastopen socket with defer_connect
 585		 * Return EPOLLOUT so application can call write()
 586		 * in order for kernel to generate SYN+data
 587		 */
 588		mask |= EPOLLOUT | EPOLLWRNORM;
 589	}
 590	/* This barrier is coupled with smp_wmb() in tcp_reset() */
 591	smp_rmb();
 592	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
 593		mask |= EPOLLERR;
 594
 595	return mask;
 596}
 597EXPORT_SYMBOL(tcp_poll);
 598
 599int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
 600{
 601	struct tcp_sock *tp = tcp_sk(sk);
 602	int answ;
 603	bool slow;
 604
 605	switch (cmd) {
 606	case SIOCINQ:
 607		if (sk->sk_state == TCP_LISTEN)
 608			return -EINVAL;
 609
 610		slow = lock_sock_fast(sk);
 611		answ = tcp_inq(sk);
 612		unlock_sock_fast(sk, slow);
 613		break;
 614	case SIOCATMARK:
 615		answ = READ_ONCE(tp->urg_data) &&
 616		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
 617		break;
 618	case SIOCOUTQ:
 619		if (sk->sk_state == TCP_LISTEN)
 620			return -EINVAL;
 621
 622		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 623			answ = 0;
 624		else
 625			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
 626		break;
 627	case SIOCOUTQNSD:
 628		if (sk->sk_state == TCP_LISTEN)
 629			return -EINVAL;
 630
 631		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 632			answ = 0;
 633		else
 634			answ = READ_ONCE(tp->write_seq) -
 635			       READ_ONCE(tp->snd_nxt);
 636		break;
 637	default:
 638		return -ENOIOCTLCMD;
 639	}
 640
 641	return put_user(answ, (int __user *)arg);
 642}
 643EXPORT_SYMBOL(tcp_ioctl);
 644
 645void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
 646{
 647	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
 648	tp->pushed_seq = tp->write_seq;
 649}
 650
 651static inline bool forced_push(const struct tcp_sock *tp)
 652{
 653	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
 654}
 655
 656void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
 657{
 658	struct tcp_sock *tp = tcp_sk(sk);
 659	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 660
 
 661	tcb->seq     = tcb->end_seq = tp->write_seq;
 662	tcb->tcp_flags = TCPHDR_ACK;
 
 663	__skb_header_release(skb);
 664	tcp_add_write_queue_tail(sk, skb);
 665	sk_wmem_queued_add(sk, skb->truesize);
 666	sk_mem_charge(sk, skb->truesize);
 667	if (tp->nonagle & TCP_NAGLE_PUSH)
 668		tp->nonagle &= ~TCP_NAGLE_PUSH;
 669
 670	tcp_slow_start_after_idle_check(sk);
 671}
 672
 673static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
 674{
 675	if (flags & MSG_OOB)
 676		tp->snd_up = tp->write_seq;
 677}
 678
 679/* If a not yet filled skb is pushed, do not send it if
 680 * we have data packets in Qdisc or NIC queues :
 681 * Because TX completion will happen shortly, it gives a chance
 682 * to coalesce future sendmsg() payload into this skb, without
 683 * need for a timer, and with no latency trade off.
 684 * As packets containing data payload have a bigger truesize
 685 * than pure acks (dataless) packets, the last checks prevent
 686 * autocorking if we only have an ACK in Qdisc/NIC queues,
 687 * or if TX completion was delayed after we processed ACK packet.
 688 */
 689static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
 690				int size_goal)
 691{
 692	return skb->len < size_goal &&
 693	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
 694	       !tcp_rtx_queue_empty(sk) &&
 695	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
 696	       tcp_skb_can_collapse_to(skb);
 697}
 698
 699void tcp_push(struct sock *sk, int flags, int mss_now,
 700	      int nonagle, int size_goal)
 701{
 702	struct tcp_sock *tp = tcp_sk(sk);
 703	struct sk_buff *skb;
 704
 705	skb = tcp_write_queue_tail(sk);
 706	if (!skb)
 707		return;
 708	if (!(flags & MSG_MORE) || forced_push(tp))
 709		tcp_mark_push(tp, skb);
 710
 711	tcp_mark_urg(tp, flags);
 712
 713	if (tcp_should_autocork(sk, skb, size_goal)) {
 714
 715		/* avoid atomic op if TSQ_THROTTLED bit is already set */
 716		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
 717			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
 718			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
 719		}
 720		/* It is possible TX completion already happened
 721		 * before we set TSQ_THROTTLED.
 722		 */
 723		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
 724			return;
 725	}
 726
 727	if (flags & MSG_MORE)
 728		nonagle = TCP_NAGLE_CORK;
 729
 730	__tcp_push_pending_frames(sk, mss_now, nonagle);
 731}
 732
 733static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
 734				unsigned int offset, size_t len)
 735{
 736	struct tcp_splice_state *tss = rd_desc->arg.data;
 737	int ret;
 738
 739	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
 740			      min(rd_desc->count, len), tss->flags);
 741	if (ret > 0)
 742		rd_desc->count -= ret;
 743	return ret;
 744}
 745
 746static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
 747{
 748	/* Store TCP splice context information in read_descriptor_t. */
 749	read_descriptor_t rd_desc = {
 750		.arg.data = tss,
 751		.count	  = tss->len,
 752	};
 753
 754	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
 755}
 756
 757/**
 758 *  tcp_splice_read - splice data from TCP socket to a pipe
 759 * @sock:	socket to splice from
 760 * @ppos:	position (not valid)
 761 * @pipe:	pipe to splice to
 762 * @len:	number of bytes to splice
 763 * @flags:	splice modifier flags
 764 *
 765 * Description:
 766 *    Will read pages from given socket and fill them into a pipe.
 767 *
 768 **/
 769ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
 770			struct pipe_inode_info *pipe, size_t len,
 771			unsigned int flags)
 772{
 773	struct sock *sk = sock->sk;
 774	struct tcp_splice_state tss = {
 775		.pipe = pipe,
 776		.len = len,
 777		.flags = flags,
 778	};
 779	long timeo;
 780	ssize_t spliced;
 781	int ret;
 782
 783	sock_rps_record_flow(sk);
 784	/*
 785	 * We can't seek on a socket input
 786	 */
 787	if (unlikely(*ppos))
 788		return -ESPIPE;
 789
 790	ret = spliced = 0;
 791
 792	lock_sock(sk);
 793
 794	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
 795	while (tss.len) {
 796		ret = __tcp_splice_read(sk, &tss);
 797		if (ret < 0)
 798			break;
 799		else if (!ret) {
 800			if (spliced)
 801				break;
 802			if (sock_flag(sk, SOCK_DONE))
 803				break;
 804			if (sk->sk_err) {
 805				ret = sock_error(sk);
 806				break;
 807			}
 808			if (sk->sk_shutdown & RCV_SHUTDOWN)
 809				break;
 810			if (sk->sk_state == TCP_CLOSE) {
 811				/*
 812				 * This occurs when user tries to read
 813				 * from never connected socket.
 814				 */
 815				ret = -ENOTCONN;
 
 816				break;
 817			}
 818			if (!timeo) {
 819				ret = -EAGAIN;
 820				break;
 821			}
 822			/* if __tcp_splice_read() got nothing while we have
 823			 * an skb in receive queue, we do not want to loop.
 824			 * This might happen with URG data.
 825			 */
 826			if (!skb_queue_empty(&sk->sk_receive_queue))
 827				break;
 828			sk_wait_data(sk, &timeo, NULL);
 829			if (signal_pending(current)) {
 830				ret = sock_intr_errno(timeo);
 831				break;
 832			}
 833			continue;
 834		}
 835		tss.len -= ret;
 836		spliced += ret;
 837
 838		if (!timeo)
 839			break;
 840		release_sock(sk);
 841		lock_sock(sk);
 842
 843		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
 844		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 845		    signal_pending(current))
 846			break;
 847	}
 848
 849	release_sock(sk);
 850
 851	if (spliced)
 852		return spliced;
 853
 854	return ret;
 855}
 856EXPORT_SYMBOL(tcp_splice_read);
 857
 858struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
 859				     bool force_schedule)
 860{
 861	struct sk_buff *skb;
 862
 863	skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
 
 
 
 
 
 
 864	if (likely(skb)) {
 865		bool mem_scheduled;
 866
 867		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
 868		if (force_schedule) {
 869			mem_scheduled = true;
 870			sk_forced_mem_schedule(sk, skb->truesize);
 871		} else {
 872			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
 873		}
 874		if (likely(mem_scheduled)) {
 875			skb_reserve(skb, MAX_TCP_HEADER);
 876			skb->ip_summed = CHECKSUM_PARTIAL;
 
 
 
 
 877			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
 878			return skb;
 879		}
 880		__kfree_skb(skb);
 881	} else {
 882		sk->sk_prot->enter_memory_pressure(sk);
 883		sk_stream_moderate_sndbuf(sk);
 884	}
 885	return NULL;
 886}
 887
 888static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
 889				       int large_allowed)
 890{
 891	struct tcp_sock *tp = tcp_sk(sk);
 892	u32 new_size_goal, size_goal;
 893
 894	if (!large_allowed)
 895		return mss_now;
 896
 897	/* Note : tcp_tso_autosize() will eventually split this later */
 898	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
 
 899
 900	/* We try hard to avoid divides here */
 901	size_goal = tp->gso_segs * mss_now;
 902	if (unlikely(new_size_goal < size_goal ||
 903		     new_size_goal >= size_goal + mss_now)) {
 904		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
 905				     sk->sk_gso_max_segs);
 906		size_goal = tp->gso_segs * mss_now;
 907	}
 908
 909	return max(size_goal, mss_now);
 910}
 911
 912int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
 913{
 914	int mss_now;
 915
 916	mss_now = tcp_current_mss(sk);
 917	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
 918
 919	return mss_now;
 920}
 921
 922/* In some cases, both sendpage() and sendmsg() could have added
 923 * an skb to the write queue, but failed adding payload on it.
 924 * We need to remove it to consume less memory, but more
 925 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
 926 * users.
 927 */
 928void tcp_remove_empty_skb(struct sock *sk)
 929{
 930	struct sk_buff *skb = tcp_write_queue_tail(sk);
 931
 932	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
 933		tcp_unlink_write_queue(skb, sk);
 934		if (tcp_write_queue_empty(sk))
 935			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
 936		tcp_wmem_free_skb(sk, skb);
 937	}
 938}
 939
 940/* skb changing from pure zc to mixed, must charge zc */
 941static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
 942{
 943	if (unlikely(skb_zcopy_pure(skb))) {
 944		u32 extra = skb->truesize -
 945			    SKB_TRUESIZE(skb_end_offset(skb));
 946
 947		if (!sk_wmem_schedule(sk, extra))
 948			return -ENOMEM;
 949
 950		sk_mem_charge(sk, extra);
 951		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
 952	}
 953	return 0;
 954}
 955
 956
 957static int tcp_wmem_schedule(struct sock *sk, int copy)
 958{
 959	int left;
 960
 961	if (likely(sk_wmem_schedule(sk, copy)))
 962		return copy;
 963
 964	/* We could be in trouble if we have nothing queued.
 965	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
 966	 * to guarantee some progress.
 967	 */
 968	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
 969	if (left > 0)
 970		sk_forced_mem_schedule(sk, min(left, copy));
 971	return min(copy, sk->sk_forward_alloc);
 972}
 973
 974static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
 975				      struct page *page, int offset, size_t *size)
 976{
 977	struct sk_buff *skb = tcp_write_queue_tail(sk);
 978	struct tcp_sock *tp = tcp_sk(sk);
 979	bool can_coalesce;
 980	int copy, i;
 981
 982	if (!skb || (copy = size_goal - skb->len) <= 0 ||
 983	    !tcp_skb_can_collapse_to(skb)) {
 984new_segment:
 985		if (!sk_stream_memory_free(sk))
 986			return NULL;
 987
 988		skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
 989					   tcp_rtx_and_write_queues_empty(sk));
 990		if (!skb)
 991			return NULL;
 992
 993#ifdef CONFIG_TLS_DEVICE
 994		skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
 995#endif
 996		tcp_skb_entail(sk, skb);
 997		copy = size_goal;
 998	}
 999
1000	if (copy > *size)
1001		copy = *size;
1002
1003	i = skb_shinfo(skb)->nr_frags;
1004	can_coalesce = skb_can_coalesce(skb, i, page, offset);
1005	if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1006		tcp_mark_push(tp, skb);
1007		goto new_segment;
1008	}
1009	if (tcp_downgrade_zcopy_pure(sk, skb))
1010		return NULL;
1011
1012	copy = tcp_wmem_schedule(sk, copy);
1013	if (!copy)
1014		return NULL;
1015
1016	if (can_coalesce) {
1017		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1018	} else {
1019		get_page(page);
1020		skb_fill_page_desc_noacc(skb, i, page, offset, copy);
1021	}
1022
1023	if (!(flags & MSG_NO_SHARED_FRAGS))
1024		skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1025
1026	skb->len += copy;
1027	skb->data_len += copy;
1028	skb->truesize += copy;
1029	sk_wmem_queued_add(sk, copy);
1030	sk_mem_charge(sk, copy);
1031	WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1032	TCP_SKB_CB(skb)->end_seq += copy;
1033	tcp_skb_pcount_set(skb, 0);
1034
1035	*size = copy;
1036	return skb;
1037}
1038
1039ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1040			 size_t size, int flags)
1041{
1042	struct tcp_sock *tp = tcp_sk(sk);
1043	int mss_now, size_goal;
1044	int err;
1045	ssize_t copied;
1046	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1047
1048	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1049	    WARN_ONCE(!sendpage_ok(page),
1050		      "page must not be a Slab one and have page_count > 0"))
1051		return -EINVAL;
1052
1053	/* Wait for a connection to finish. One exception is TCP Fast Open
1054	 * (passive side) where data is allowed to be sent before a connection
1055	 * is fully established.
1056	 */
1057	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1058	    !tcp_passive_fastopen(sk)) {
1059		err = sk_stream_wait_connect(sk, &timeo);
1060		if (err != 0)
1061			goto out_err;
1062	}
1063
1064	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1065
1066	mss_now = tcp_send_mss(sk, &size_goal, flags);
1067	copied = 0;
1068
1069	err = -EPIPE;
1070	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1071		goto out_err;
1072
1073	while (size > 0) {
1074		struct sk_buff *skb;
1075		size_t copy = size;
 
1076
1077		skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
1078		if (!skb)
1079			goto wait_for_space;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080
1081		if (!copied)
1082			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1083
1084		copied += copy;
1085		offset += copy;
1086		size -= copy;
1087		if (!size)
1088			goto out;
1089
1090		if (skb->len < size_goal || (flags & MSG_OOB))
1091			continue;
1092
1093		if (forced_push(tp)) {
1094			tcp_mark_push(tp, skb);
1095			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1096		} else if (skb == tcp_send_head(sk))
1097			tcp_push_one(sk, mss_now);
1098		continue;
1099
1100wait_for_space:
1101		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 
1102		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1103			 TCP_NAGLE_PUSH, size_goal);
1104
1105		err = sk_stream_wait_memory(sk, &timeo);
1106		if (err != 0)
1107			goto do_error;
1108
1109		mss_now = tcp_send_mss(sk, &size_goal, flags);
1110	}
1111
1112out:
1113	if (copied) {
1114		tcp_tx_timestamp(sk, sk->sk_tsflags);
1115		if (!(flags & MSG_SENDPAGE_NOTLAST))
1116			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1117	}
1118	return copied;
1119
1120do_error:
1121	tcp_remove_empty_skb(sk);
1122	if (copied)
1123		goto out;
1124out_err:
1125	/* make sure we wake any epoll edge trigger waiter */
1126	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
 
1127		sk->sk_write_space(sk);
1128		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1129	}
1130	return sk_stream_error(sk, flags, err);
1131}
1132EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1133
1134int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1135			size_t size, int flags)
1136{
1137	if (!(sk->sk_route_caps & NETIF_F_SG))
1138		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1139
1140	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1141
1142	return do_tcp_sendpages(sk, page, offset, size, flags);
1143}
1144EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1145
1146int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1147		 size_t size, int flags)
1148{
1149	int ret;
1150
1151	lock_sock(sk);
1152	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1153	release_sock(sk);
1154
1155	return ret;
1156}
1157EXPORT_SYMBOL(tcp_sendpage);
1158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1159void tcp_free_fastopen_req(struct tcp_sock *tp)
1160{
1161	if (tp->fastopen_req) {
1162		kfree(tp->fastopen_req);
1163		tp->fastopen_req = NULL;
1164	}
1165}
1166
1167int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1168			 size_t size, struct ubuf_info *uarg)
1169{
1170	struct tcp_sock *tp = tcp_sk(sk);
1171	struct inet_sock *inet = inet_sk(sk);
1172	struct sockaddr *uaddr = msg->msg_name;
1173	int err, flags;
1174
1175	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1176	      TFO_CLIENT_ENABLE) ||
1177	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1178	     uaddr->sa_family == AF_UNSPEC))
1179		return -EOPNOTSUPP;
1180	if (tp->fastopen_req)
1181		return -EALREADY; /* Another Fast Open is in progress */
1182
1183	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1184				   sk->sk_allocation);
1185	if (unlikely(!tp->fastopen_req))
1186		return -ENOBUFS;
1187	tp->fastopen_req->data = msg;
1188	tp->fastopen_req->size = size;
1189	tp->fastopen_req->uarg = uarg;
1190
1191	if (inet->defer_connect) {
1192		err = tcp_connect(sk);
1193		/* Same failure procedure as in tcp_v4/6_connect */
1194		if (err) {
1195			tcp_set_state(sk, TCP_CLOSE);
1196			inet->inet_dport = 0;
1197			sk->sk_route_caps = 0;
1198		}
1199	}
1200	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1201	err = __inet_stream_connect(sk->sk_socket, uaddr,
1202				    msg->msg_namelen, flags, 1);
1203	/* fastopen_req could already be freed in __inet_stream_connect
1204	 * if the connection times out or gets rst
1205	 */
1206	if (tp->fastopen_req) {
1207		*copied = tp->fastopen_req->copied;
1208		tcp_free_fastopen_req(tp);
1209		inet->defer_connect = 0;
1210	}
1211	return err;
1212}
1213
1214int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1215{
1216	struct tcp_sock *tp = tcp_sk(sk);
1217	struct ubuf_info *uarg = NULL;
1218	struct sk_buff *skb;
1219	struct sockcm_cookie sockc;
1220	int flags, err, copied = 0;
1221	int mss_now = 0, size_goal, copied_syn = 0;
1222	int process_backlog = 0;
1223	bool zc = false;
1224	long timeo;
1225
1226	flags = msg->msg_flags;
1227
1228	if ((flags & MSG_ZEROCOPY) && size) {
 
 
 
 
 
1229		skb = tcp_write_queue_tail(sk);
 
 
 
 
 
1230
1231		if (msg->msg_ubuf) {
1232			uarg = msg->msg_ubuf;
1233			net_zcopy_get(uarg);
1234			zc = sk->sk_route_caps & NETIF_F_SG;
1235		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1236			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1237			if (!uarg) {
1238				err = -ENOBUFS;
1239				goto out_err;
1240			}
1241			zc = sk->sk_route_caps & NETIF_F_SG;
1242			if (!zc)
1243				uarg_to_msgzc(uarg)->zerocopy = 0;
1244		}
1245	}
1246
1247	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1248	    !tp->repair) {
1249		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1250		if (err == -EINPROGRESS && copied_syn > 0)
1251			goto out;
1252		else if (err)
1253			goto out_err;
1254	}
1255
1256	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1257
1258	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1259
1260	/* Wait for a connection to finish. One exception is TCP Fast Open
1261	 * (passive side) where data is allowed to be sent before a connection
1262	 * is fully established.
1263	 */
1264	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1265	    !tcp_passive_fastopen(sk)) {
1266		err = sk_stream_wait_connect(sk, &timeo);
1267		if (err != 0)
1268			goto do_error;
1269	}
1270
1271	if (unlikely(tp->repair)) {
1272		if (tp->repair_queue == TCP_RECV_QUEUE) {
1273			copied = tcp_send_rcvq(sk, msg, size);
1274			goto out_nopush;
1275		}
1276
1277		err = -EINVAL;
1278		if (tp->repair_queue == TCP_NO_QUEUE)
1279			goto out_err;
1280
1281		/* 'common' sending to sendq */
1282	}
1283
1284	sockcm_init(&sockc, sk);
1285	if (msg->msg_controllen) {
1286		err = sock_cmsg_send(sk, msg, &sockc);
1287		if (unlikely(err)) {
1288			err = -EINVAL;
1289			goto out_err;
1290		}
1291	}
1292
1293	/* This should be in poll */
1294	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1295
1296	/* Ok commence sending. */
1297	copied = 0;
1298
1299restart:
1300	mss_now = tcp_send_mss(sk, &size_goal, flags);
1301
1302	err = -EPIPE;
1303	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1304		goto do_error;
1305
1306	while (msg_data_left(msg)) {
1307		int copy = 0;
1308
1309		skb = tcp_write_queue_tail(sk);
1310		if (skb)
1311			copy = size_goal - skb->len;
1312
1313		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1314			bool first_skb;
 
1315
1316new_segment:
 
 
 
1317			if (!sk_stream_memory_free(sk))
1318				goto wait_for_space;
1319
1320			if (unlikely(process_backlog >= 16)) {
1321				process_backlog = 0;
1322				if (sk_flush_backlog(sk))
1323					goto restart;
1324			}
1325			first_skb = tcp_rtx_and_write_queues_empty(sk);
1326			skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1327						   first_skb);
 
1328			if (!skb)
1329				goto wait_for_space;
1330
1331			process_backlog++;
 
1332
1333			tcp_skb_entail(sk, skb);
1334			copy = size_goal;
1335
1336			/* All packets are restored as if they have
1337			 * already been sent. skb_mstamp_ns isn't set to
1338			 * avoid wrong rtt estimation.
1339			 */
1340			if (tp->repair)
1341				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1342		}
1343
1344		/* Try to append data to the end of skb. */
1345		if (copy > msg_data_left(msg))
1346			copy = msg_data_left(msg);
1347
1348		if (!zc) {
 
 
 
 
 
 
 
1349			bool merge = true;
1350			int i = skb_shinfo(skb)->nr_frags;
1351			struct page_frag *pfrag = sk_page_frag(sk);
1352
1353			if (!sk_page_frag_refill(sk, pfrag))
1354				goto wait_for_space;
1355
1356			if (!skb_can_coalesce(skb, i, pfrag->page,
1357					      pfrag->offset)) {
1358				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1359					tcp_mark_push(tp, skb);
1360					goto new_segment;
1361				}
1362				merge = false;
1363			}
1364
1365			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1366
1367			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1368				if (tcp_downgrade_zcopy_pure(sk, skb))
1369					goto wait_for_space;
1370				skb_zcopy_downgrade_managed(skb);
1371			}
1372
1373			copy = tcp_wmem_schedule(sk, copy);
1374			if (!copy)
1375				goto wait_for_space;
1376
1377			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1378						       pfrag->page,
1379						       pfrag->offset,
1380						       copy);
1381			if (err)
1382				goto do_error;
1383
1384			/* Update the skb. */
1385			if (merge) {
1386				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1387			} else {
1388				skb_fill_page_desc(skb, i, pfrag->page,
1389						   pfrag->offset, copy);
1390				page_ref_inc(pfrag->page);
1391			}
1392			pfrag->offset += copy;
1393		} else {
1394			/* First append to a fragless skb builds initial
1395			 * pure zerocopy skb
1396			 */
1397			if (!skb->len)
1398				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1399
1400			if (!skb_zcopy_pure(skb)) {
1401				copy = tcp_wmem_schedule(sk, copy);
1402				if (!copy)
1403					goto wait_for_space;
1404			}
1405
1406			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1407			if (err == -EMSGSIZE || err == -EEXIST) {
1408				tcp_mark_push(tp, skb);
1409				goto new_segment;
1410			}
1411			if (err < 0)
1412				goto do_error;
1413			copy = err;
1414		}
1415
1416		if (!copied)
1417			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1418
1419		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1420		TCP_SKB_CB(skb)->end_seq += copy;
1421		tcp_skb_pcount_set(skb, 0);
1422
1423		copied += copy;
1424		if (!msg_data_left(msg)) {
1425			if (unlikely(flags & MSG_EOR))
1426				TCP_SKB_CB(skb)->eor = 1;
1427			goto out;
1428		}
1429
1430		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1431			continue;
1432
1433		if (forced_push(tp)) {
1434			tcp_mark_push(tp, skb);
1435			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1436		} else if (skb == tcp_send_head(sk))
1437			tcp_push_one(sk, mss_now);
1438		continue;
1439
1440wait_for_space:
1441		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 
1442		if (copied)
1443			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1444				 TCP_NAGLE_PUSH, size_goal);
1445
1446		err = sk_stream_wait_memory(sk, &timeo);
1447		if (err != 0)
1448			goto do_error;
1449
1450		mss_now = tcp_send_mss(sk, &size_goal, flags);
1451	}
1452
1453out:
1454	if (copied) {
1455		tcp_tx_timestamp(sk, sockc.tsflags);
1456		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1457	}
1458out_nopush:
1459	net_zcopy_put(uarg);
1460	return copied + copied_syn;
1461
 
 
 
 
 
 
 
 
 
 
1462do_error:
1463	tcp_remove_empty_skb(sk);
1464
1465	if (copied + copied_syn)
1466		goto out;
1467out_err:
1468	net_zcopy_put_abort(uarg, true);
1469	err = sk_stream_error(sk, flags, err);
1470	/* make sure we wake any epoll edge trigger waiter */
1471	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
 
1472		sk->sk_write_space(sk);
1473		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1474	}
1475	return err;
1476}
1477EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1478
1479int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1480{
1481	int ret;
1482
1483	lock_sock(sk);
1484	ret = tcp_sendmsg_locked(sk, msg, size);
1485	release_sock(sk);
1486
1487	return ret;
1488}
1489EXPORT_SYMBOL(tcp_sendmsg);
1490
1491/*
1492 *	Handle reading urgent data. BSD has very simple semantics for
1493 *	this, no blocking and very strange errors 8)
1494 */
1495
1496static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1497{
1498	struct tcp_sock *tp = tcp_sk(sk);
1499
1500	/* No URG data to read. */
1501	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1502	    tp->urg_data == TCP_URG_READ)
1503		return -EINVAL;	/* Yes this is right ! */
1504
1505	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1506		return -ENOTCONN;
1507
1508	if (tp->urg_data & TCP_URG_VALID) {
1509		int err = 0;
1510		char c = tp->urg_data;
1511
1512		if (!(flags & MSG_PEEK))
1513			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1514
1515		/* Read urgent data. */
1516		msg->msg_flags |= MSG_OOB;
1517
1518		if (len > 0) {
1519			if (!(flags & MSG_TRUNC))
1520				err = memcpy_to_msg(msg, &c, 1);
1521			len = 1;
1522		} else
1523			msg->msg_flags |= MSG_TRUNC;
1524
1525		return err ? -EFAULT : len;
1526	}
1527
1528	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1529		return 0;
1530
1531	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1532	 * the available implementations agree in this case:
1533	 * this call should never block, independent of the
1534	 * blocking state of the socket.
1535	 * Mike <pall@rz.uni-karlsruhe.de>
1536	 */
1537	return -EAGAIN;
1538}
1539
1540static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1541{
1542	struct sk_buff *skb;
1543	int copied = 0, err = 0;
1544
1545	/* XXX -- need to support SO_PEEK_OFF */
1546
1547	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1548		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1549		if (err)
1550			return err;
1551		copied += skb->len;
1552	}
1553
1554	skb_queue_walk(&sk->sk_write_queue, skb) {
1555		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1556		if (err)
1557			break;
1558
1559		copied += skb->len;
1560	}
1561
1562	return err ?: copied;
1563}
1564
1565/* Clean up the receive buffer for full frames taken by the user,
1566 * then send an ACK if necessary.  COPIED is the number of bytes
1567 * tcp_recvmsg has given to the user so far, it speeds up the
1568 * calculation of whether or not we must ACK for the sake of
1569 * a window update.
1570 */
1571static void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1572{
1573	struct tcp_sock *tp = tcp_sk(sk);
1574	bool time_to_ack = false;
1575
 
 
 
 
 
 
1576	if (inet_csk_ack_scheduled(sk)) {
1577		const struct inet_connection_sock *icsk = inet_csk(sk);
1578
1579		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
 
 
1580		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1581		    /*
1582		     * If this read emptied read buffer, we send ACK, if
1583		     * connection is not bidirectional, user drained
1584		     * receive buffer and there was a small segment
1585		     * in queue.
1586		     */
1587		    (copied > 0 &&
1588		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1589		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1590		       !inet_csk_in_pingpong_mode(sk))) &&
1591		      !atomic_read(&sk->sk_rmem_alloc)))
1592			time_to_ack = true;
1593	}
1594
1595	/* We send an ACK if we can now advertise a non-zero window
1596	 * which has been raised "significantly".
1597	 *
1598	 * Even if window raised up to infinity, do not send window open ACK
1599	 * in states, where we will not receive more. It is useless.
1600	 */
1601	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1602		__u32 rcv_window_now = tcp_receive_window(tp);
1603
1604		/* Optimize, __tcp_select_window() is not cheap. */
1605		if (2*rcv_window_now <= tp->window_clamp) {
1606			__u32 new_window = __tcp_select_window(sk);
1607
1608			/* Send ACK now, if this read freed lots of space
1609			 * in our buffer. Certainly, new_window is new window.
1610			 * We can advertise it now, if it is not less than current one.
1611			 * "Lots" means "at least twice" here.
1612			 */
1613			if (new_window && new_window >= 2 * rcv_window_now)
1614				time_to_ack = true;
1615		}
1616	}
1617	if (time_to_ack)
1618		tcp_send_ack(sk);
1619}
1620
1621void tcp_cleanup_rbuf(struct sock *sk, int copied)
1622{
1623	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1624	struct tcp_sock *tp = tcp_sk(sk);
1625
1626	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1627	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1628	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1629	__tcp_cleanup_rbuf(sk, copied);
1630}
1631
1632static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1633{
1634	__skb_unlink(skb, &sk->sk_receive_queue);
1635	if (likely(skb->destructor == sock_rfree)) {
1636		sock_rfree(skb);
1637		skb->destructor = NULL;
1638		skb->sk = NULL;
1639		return skb_attempt_defer_free(skb);
1640	}
1641	__kfree_skb(skb);
1642}
1643
1644struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1645{
1646	struct sk_buff *skb;
1647	u32 offset;
1648
1649	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1650		offset = seq - TCP_SKB_CB(skb)->seq;
1651		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1652			pr_err_once("%s: found a SYN, please report !\n", __func__);
1653			offset--;
1654		}
1655		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1656			*off = offset;
1657			return skb;
1658		}
1659		/* This looks weird, but this can happen if TCP collapsing
1660		 * splitted a fat GRO packet, while we released socket lock
1661		 * in skb_splice_bits()
1662		 */
1663		tcp_eat_recv_skb(sk, skb);
1664	}
1665	return NULL;
1666}
1667EXPORT_SYMBOL(tcp_recv_skb);
1668
1669/*
1670 * This routine provides an alternative to tcp_recvmsg() for routines
1671 * that would like to handle copying from skbuffs directly in 'sendfile'
1672 * fashion.
1673 * Note:
1674 *	- It is assumed that the socket was locked by the caller.
1675 *	- The routine does not block.
1676 *	- At present, there is no support for reading OOB data
1677 *	  or for 'peeking' the socket using this routine
1678 *	  (although both would be easy to implement).
1679 */
1680int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1681		  sk_read_actor_t recv_actor)
1682{
1683	struct sk_buff *skb;
1684	struct tcp_sock *tp = tcp_sk(sk);
1685	u32 seq = tp->copied_seq;
1686	u32 offset;
1687	int copied = 0;
1688
1689	if (sk->sk_state == TCP_LISTEN)
1690		return -ENOTCONN;
1691	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1692		if (offset < skb->len) {
1693			int used;
1694			size_t len;
1695
1696			len = skb->len - offset;
1697			/* Stop reading if we hit a patch of urgent data */
1698			if (unlikely(tp->urg_data)) {
1699				u32 urg_offset = tp->urg_seq - seq;
1700				if (urg_offset < len)
1701					len = urg_offset;
1702				if (!len)
1703					break;
1704			}
1705			used = recv_actor(desc, skb, offset, len);
1706			if (used <= 0) {
1707				if (!copied)
1708					copied = used;
1709				break;
 
 
 
 
1710			}
1711			if (WARN_ON_ONCE(used > len))
1712				used = len;
1713			seq += used;
1714			copied += used;
1715			offset += used;
1716
1717			/* If recv_actor drops the lock (e.g. TCP splice
1718			 * receive) the skb pointer might be invalid when
1719			 * getting here: tcp_collapse might have deleted it
1720			 * while aggregating skbs from the socket queue.
1721			 */
1722			skb = tcp_recv_skb(sk, seq - 1, &offset);
1723			if (!skb)
1724				break;
1725			/* TCP coalescing might have appended data to the skb.
1726			 * Try to splice more frags
1727			 */
1728			if (offset + 1 != skb->len)
1729				continue;
1730		}
1731		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1732			tcp_eat_recv_skb(sk, skb);
1733			++seq;
1734			break;
1735		}
1736		tcp_eat_recv_skb(sk, skb);
1737		if (!desc->count)
1738			break;
1739		WRITE_ONCE(tp->copied_seq, seq);
1740	}
1741	WRITE_ONCE(tp->copied_seq, seq);
1742
1743	tcp_rcv_space_adjust(sk);
1744
1745	/* Clean up data we have read: This will do ACK frames. */
1746	if (copied > 0) {
1747		tcp_recv_skb(sk, seq, &offset);
1748		tcp_cleanup_rbuf(sk, copied);
1749	}
1750	return copied;
1751}
1752EXPORT_SYMBOL(tcp_read_sock);
1753
1754int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1755{
1756	struct tcp_sock *tp = tcp_sk(sk);
1757	u32 seq = tp->copied_seq;
1758	struct sk_buff *skb;
1759	int copied = 0;
1760	u32 offset;
1761
1762	if (sk->sk_state == TCP_LISTEN)
1763		return -ENOTCONN;
1764
1765	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1766		u8 tcp_flags;
1767		int used;
1768
1769		__skb_unlink(skb, &sk->sk_receive_queue);
1770		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1771		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1772		used = recv_actor(sk, skb);
1773		consume_skb(skb);
1774		if (used < 0) {
1775			if (!copied)
1776				copied = used;
1777			break;
1778		}
1779		seq += used;
1780		copied += used;
1781
1782		if (tcp_flags & TCPHDR_FIN) {
1783			++seq;
1784			break;
1785		}
1786	}
1787	WRITE_ONCE(tp->copied_seq, seq);
1788
1789	tcp_rcv_space_adjust(sk);
1790
1791	/* Clean up data we have read: This will do ACK frames. */
1792	if (copied > 0)
1793		__tcp_cleanup_rbuf(sk, copied);
1794
1795	return copied;
1796}
1797EXPORT_SYMBOL(tcp_read_skb);
1798
1799void tcp_read_done(struct sock *sk, size_t len)
1800{
1801	struct tcp_sock *tp = tcp_sk(sk);
1802	u32 seq = tp->copied_seq;
1803	struct sk_buff *skb;
1804	size_t left;
1805	u32 offset;
1806
1807	if (sk->sk_state == TCP_LISTEN)
1808		return;
1809
1810	left = len;
1811	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1812		int used;
1813
1814		used = min_t(size_t, skb->len - offset, left);
1815		seq += used;
1816		left -= used;
1817
1818		if (skb->len > offset + used)
1819			break;
1820
1821		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1822			tcp_eat_recv_skb(sk, skb);
1823			++seq;
1824			break;
1825		}
1826		tcp_eat_recv_skb(sk, skb);
1827	}
1828	WRITE_ONCE(tp->copied_seq, seq);
1829
1830	tcp_rcv_space_adjust(sk);
1831
1832	/* Clean up data we have read: This will do ACK frames. */
1833	if (left != len)
1834		tcp_cleanup_rbuf(sk, len - left);
1835}
1836EXPORT_SYMBOL(tcp_read_done);
1837
1838int tcp_peek_len(struct socket *sock)
1839{
1840	return tcp_inq(sock->sk);
1841}
1842EXPORT_SYMBOL(tcp_peek_len);
1843
1844/* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1845int tcp_set_rcvlowat(struct sock *sk, int val)
1846{
1847	int cap;
1848
1849	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1850		cap = sk->sk_rcvbuf >> 1;
1851	else
1852		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1853	val = min(val, cap);
1854	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1855
1856	/* Check if we need to signal EPOLLIN right now */
1857	tcp_data_ready(sk);
1858
1859	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1860		return 0;
1861
1862	val <<= 1;
1863	if (val > sk->sk_rcvbuf) {
1864		WRITE_ONCE(sk->sk_rcvbuf, val);
1865		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1866	}
1867	return 0;
1868}
1869EXPORT_SYMBOL(tcp_set_rcvlowat);
1870
1871void tcp_update_recv_tstamps(struct sk_buff *skb,
1872			     struct scm_timestamping_internal *tss)
1873{
1874	if (skb->tstamp)
1875		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1876	else
1877		tss->ts[0] = (struct timespec64) {0};
1878
1879	if (skb_hwtstamps(skb)->hwtstamp)
1880		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1881	else
1882		tss->ts[2] = (struct timespec64) {0};
1883}
1884
1885#ifdef CONFIG_MMU
1886static const struct vm_operations_struct tcp_vm_ops = {
1887};
1888
1889int tcp_mmap(struct file *file, struct socket *sock,
1890	     struct vm_area_struct *vma)
1891{
1892	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1893		return -EPERM;
1894	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1895
1896	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1897	vma->vm_flags |= VM_MIXEDMAP;
1898
1899	vma->vm_ops = &tcp_vm_ops;
1900	return 0;
1901}
1902EXPORT_SYMBOL(tcp_mmap);
1903
1904static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1905				       u32 *offset_frag)
1906{
1907	skb_frag_t *frag;
1908
1909	if (unlikely(offset_skb >= skb->len))
1910		return NULL;
1911
1912	offset_skb -= skb_headlen(skb);
1913	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1914		return NULL;
1915
1916	frag = skb_shinfo(skb)->frags;
1917	while (offset_skb) {
1918		if (skb_frag_size(frag) > offset_skb) {
1919			*offset_frag = offset_skb;
1920			return frag;
1921		}
1922		offset_skb -= skb_frag_size(frag);
1923		++frag;
1924	}
1925	*offset_frag = 0;
1926	return frag;
1927}
1928
1929static bool can_map_frag(const skb_frag_t *frag)
1930{
1931	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1932}
1933
1934static int find_next_mappable_frag(const skb_frag_t *frag,
1935				   int remaining_in_skb)
1936{
1937	int offset = 0;
1938
1939	if (likely(can_map_frag(frag)))
1940		return 0;
1941
1942	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1943		offset += skb_frag_size(frag);
1944		++frag;
1945	}
1946	return offset;
1947}
1948
1949static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1950					  struct tcp_zerocopy_receive *zc,
1951					  struct sk_buff *skb, u32 offset)
1952{
1953	u32 frag_offset, partial_frag_remainder = 0;
1954	int mappable_offset;
1955	skb_frag_t *frag;
1956
1957	/* worst case: skip to next skb. try to improve on this case below */
1958	zc->recv_skip_hint = skb->len - offset;
1959
1960	/* Find the frag containing this offset (and how far into that frag) */
1961	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1962	if (!frag)
1963		return;
1964
1965	if (frag_offset) {
1966		struct skb_shared_info *info = skb_shinfo(skb);
1967
1968		/* We read part of the last frag, must recvmsg() rest of skb. */
1969		if (frag == &info->frags[info->nr_frags - 1])
1970			return;
1971
1972		/* Else, we must at least read the remainder in this frag. */
1973		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1974		zc->recv_skip_hint -= partial_frag_remainder;
1975		++frag;
1976	}
1977
1978	/* partial_frag_remainder: If part way through a frag, must read rest.
1979	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1980	 * in partial_frag_remainder.
1981	 */
1982	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1983	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1984}
1985
1986static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1987			      int flags, struct scm_timestamping_internal *tss,
1988			      int *cmsg_flags);
1989static int receive_fallback_to_copy(struct sock *sk,
1990				    struct tcp_zerocopy_receive *zc, int inq,
1991				    struct scm_timestamping_internal *tss)
1992{
1993	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1994	struct msghdr msg = {};
1995	struct iovec iov;
1996	int err;
1997
1998	zc->length = 0;
1999	zc->recv_skip_hint = 0;
2000
2001	if (copy_address != zc->copybuf_address)
2002		return -EINVAL;
2003
2004	err = import_single_range(ITER_DEST, (void __user *)copy_address,
2005				  inq, &iov, &msg.msg_iter);
2006	if (err)
2007		return err;
2008
2009	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
2010				 tss, &zc->msg_flags);
2011	if (err < 0)
2012		return err;
2013
2014	zc->copybuf_len = err;
2015	if (likely(zc->copybuf_len)) {
2016		struct sk_buff *skb;
2017		u32 offset;
2018
2019		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
2020		if (skb)
2021			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
2022	}
2023	return 0;
2024}
2025
2026static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
2027				   struct sk_buff *skb, u32 copylen,
2028				   u32 *offset, u32 *seq)
2029{
2030	unsigned long copy_address = (unsigned long)zc->copybuf_address;
2031	struct msghdr msg = {};
2032	struct iovec iov;
2033	int err;
2034
2035	if (copy_address != zc->copybuf_address)
2036		return -EINVAL;
2037
2038	err = import_single_range(ITER_DEST, (void __user *)copy_address,
2039				  copylen, &iov, &msg.msg_iter);
2040	if (err)
2041		return err;
2042	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
2043	if (err)
2044		return err;
2045	zc->recv_skip_hint -= copylen;
2046	*offset += copylen;
2047	*seq += copylen;
2048	return (__s32)copylen;
2049}
2050
2051static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
2052				  struct sock *sk,
2053				  struct sk_buff *skb,
2054				  u32 *seq,
2055				  s32 copybuf_len,
2056				  struct scm_timestamping_internal *tss)
2057{
2058	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
2059
2060	if (!copylen)
2061		return 0;
2062	/* skb is null if inq < PAGE_SIZE. */
2063	if (skb) {
2064		offset = *seq - TCP_SKB_CB(skb)->seq;
2065	} else {
2066		skb = tcp_recv_skb(sk, *seq, &offset);
2067		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2068			tcp_update_recv_tstamps(skb, tss);
2069			zc->msg_flags |= TCP_CMSG_TS;
2070		}
2071	}
2072
2073	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
2074						  seq);
2075	return zc->copybuf_len < 0 ? 0 : copylen;
2076}
2077
2078static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2079					      struct page **pending_pages,
2080					      unsigned long pages_remaining,
2081					      unsigned long *address,
2082					      u32 *length,
2083					      u32 *seq,
2084					      struct tcp_zerocopy_receive *zc,
2085					      u32 total_bytes_to_map,
2086					      int err)
2087{
2088	/* At least one page did not map. Try zapping if we skipped earlier. */
2089	if (err == -EBUSY &&
2090	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2091		u32 maybe_zap_len;
2092
2093		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
2094				*length + /* Mapped or pending */
2095				(pages_remaining * PAGE_SIZE); /* Failed map. */
2096		zap_page_range(vma, *address, maybe_zap_len);
2097		err = 0;
2098	}
2099
2100	if (!err) {
2101		unsigned long leftover_pages = pages_remaining;
2102		int bytes_mapped;
2103
2104		/* We called zap_page_range, try to reinsert. */
2105		err = vm_insert_pages(vma, *address,
2106				      pending_pages,
2107				      &pages_remaining);
2108		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2109		*seq += bytes_mapped;
2110		*address += bytes_mapped;
2111	}
2112	if (err) {
2113		/* Either we were unable to zap, OR we zapped, retried an
2114		 * insert, and still had an issue. Either ways, pages_remaining
2115		 * is the number of pages we were unable to map, and we unroll
2116		 * some state we speculatively touched before.
2117		 */
2118		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2119
2120		*length -= bytes_not_mapped;
2121		zc->recv_skip_hint += bytes_not_mapped;
2122	}
2123	return err;
2124}
2125
2126static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2127					struct page **pages,
2128					unsigned int pages_to_map,
2129					unsigned long *address,
2130					u32 *length,
2131					u32 *seq,
2132					struct tcp_zerocopy_receive *zc,
2133					u32 total_bytes_to_map)
2134{
2135	unsigned long pages_remaining = pages_to_map;
2136	unsigned int pages_mapped;
2137	unsigned int bytes_mapped;
2138	int err;
2139
2140	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2141	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2142	bytes_mapped = PAGE_SIZE * pages_mapped;
2143	/* Even if vm_insert_pages fails, it may have partially succeeded in
2144	 * mapping (some but not all of the pages).
2145	 */
2146	*seq += bytes_mapped;
2147	*address += bytes_mapped;
2148
2149	if (likely(!err))
2150		return 0;
2151
2152	/* Error: maybe zap and retry + rollback state for failed inserts. */
2153	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2154		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2155		err);
2156}
2157
2158#define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2159static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2160				      struct tcp_zerocopy_receive *zc,
2161				      struct scm_timestamping_internal *tss)
2162{
2163	unsigned long msg_control_addr;
2164	struct msghdr cmsg_dummy;
2165
2166	msg_control_addr = (unsigned long)zc->msg_control;
2167	cmsg_dummy.msg_control = (void *)msg_control_addr;
2168	cmsg_dummy.msg_controllen =
2169		(__kernel_size_t)zc->msg_controllen;
2170	cmsg_dummy.msg_flags = in_compat_syscall()
2171		? MSG_CMSG_COMPAT : 0;
2172	cmsg_dummy.msg_control_is_user = true;
2173	zc->msg_flags = 0;
2174	if (zc->msg_control == msg_control_addr &&
2175	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2176		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2177		zc->msg_control = (__u64)
2178			((uintptr_t)cmsg_dummy.msg_control);
2179		zc->msg_controllen =
2180			(__u64)cmsg_dummy.msg_controllen;
2181		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2182	}
2183}
2184
2185#define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2186static int tcp_zerocopy_receive(struct sock *sk,
2187				struct tcp_zerocopy_receive *zc,
2188				struct scm_timestamping_internal *tss)
2189{
2190	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2191	unsigned long address = (unsigned long)zc->address;
2192	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2193	s32 copybuf_len = zc->copybuf_len;
2194	struct tcp_sock *tp = tcp_sk(sk);
2195	const skb_frag_t *frags = NULL;
2196	unsigned int pages_to_map = 0;
2197	struct vm_area_struct *vma;
2198	struct sk_buff *skb = NULL;
2199	u32 seq = tp->copied_seq;
2200	u32 total_bytes_to_map;
2201	int inq = tcp_inq(sk);
2202	int ret;
2203
2204	zc->copybuf_len = 0;
2205	zc->msg_flags = 0;
2206
2207	if (address & (PAGE_SIZE - 1) || address != zc->address)
2208		return -EINVAL;
2209
2210	if (sk->sk_state == TCP_LISTEN)
2211		return -ENOTCONN;
2212
2213	sock_rps_record_flow(sk);
2214
2215	if (inq && inq <= copybuf_len)
2216		return receive_fallback_to_copy(sk, zc, inq, tss);
2217
2218	if (inq < PAGE_SIZE) {
2219		zc->length = 0;
2220		zc->recv_skip_hint = inq;
2221		if (!inq && sock_flag(sk, SOCK_DONE))
2222			return -EIO;
2223		return 0;
2224	}
2225
2226	mmap_read_lock(current->mm);
2227
2228	vma = vma_lookup(current->mm, address);
2229	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2230		mmap_read_unlock(current->mm);
2231		return -EINVAL;
2232	}
2233	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2234	avail_len = min_t(u32, vma_len, inq);
2235	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2236	if (total_bytes_to_map) {
2237		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2238			zap_page_range(vma, address, total_bytes_to_map);
2239		zc->length = total_bytes_to_map;
2240		zc->recv_skip_hint = 0;
2241	} else {
2242		zc->length = avail_len;
2243		zc->recv_skip_hint = avail_len;
2244	}
2245	ret = 0;
2246	while (length + PAGE_SIZE <= zc->length) {
2247		int mappable_offset;
2248		struct page *page;
2249
2250		if (zc->recv_skip_hint < PAGE_SIZE) {
2251			u32 offset_frag;
2252
2253			if (skb) {
2254				if (zc->recv_skip_hint > 0)
2255					break;
2256				skb = skb->next;
2257				offset = seq - TCP_SKB_CB(skb)->seq;
2258			} else {
2259				skb = tcp_recv_skb(sk, seq, &offset);
2260			}
2261
2262			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2263				tcp_update_recv_tstamps(skb, tss);
2264				zc->msg_flags |= TCP_CMSG_TS;
2265			}
2266			zc->recv_skip_hint = skb->len - offset;
2267			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2268			if (!frags || offset_frag)
2269				break;
2270		}
2271
2272		mappable_offset = find_next_mappable_frag(frags,
2273							  zc->recv_skip_hint);
2274		if (mappable_offset) {
2275			zc->recv_skip_hint = mappable_offset;
2276			break;
2277		}
2278		page = skb_frag_page(frags);
2279		prefetchw(page);
2280		pages[pages_to_map++] = page;
2281		length += PAGE_SIZE;
2282		zc->recv_skip_hint -= PAGE_SIZE;
2283		frags++;
2284		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2285		    zc->recv_skip_hint < PAGE_SIZE) {
2286			/* Either full batch, or we're about to go to next skb
2287			 * (and we cannot unroll failed ops across skbs).
2288			 */
2289			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2290							   pages_to_map,
2291							   &address, &length,
2292							   &seq, zc,
2293							   total_bytes_to_map);
2294			if (ret)
2295				goto out;
2296			pages_to_map = 0;
2297		}
2298	}
2299	if (pages_to_map) {
2300		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2301						   &address, &length, &seq,
2302						   zc, total_bytes_to_map);
2303	}
2304out:
2305	mmap_read_unlock(current->mm);
2306	/* Try to copy straggler data. */
2307	if (!ret)
2308		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2309
2310	if (length + copylen) {
2311		WRITE_ONCE(tp->copied_seq, seq);
2312		tcp_rcv_space_adjust(sk);
2313
2314		/* Clean up data we have read: This will do ACK frames. */
2315		tcp_recv_skb(sk, seq, &offset);
2316		tcp_cleanup_rbuf(sk, length + copylen);
2317		ret = 0;
2318		if (length == zc->length)
2319			zc->recv_skip_hint = 0;
2320	} else {
2321		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2322			ret = -EIO;
2323	}
2324	zc->length = length;
2325	return ret;
2326}
2327#endif
2328
2329/* Similar to __sock_recv_timestamp, but does not require an skb */
2330void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2331			struct scm_timestamping_internal *tss)
2332{
2333	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2334	bool has_timestamping = false;
2335
2336	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2337		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2338			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2339				if (new_tstamp) {
2340					struct __kernel_timespec kts = {
2341						.tv_sec = tss->ts[0].tv_sec,
2342						.tv_nsec = tss->ts[0].tv_nsec,
2343					};
2344					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2345						 sizeof(kts), &kts);
2346				} else {
2347					struct __kernel_old_timespec ts_old = {
2348						.tv_sec = tss->ts[0].tv_sec,
2349						.tv_nsec = tss->ts[0].tv_nsec,
2350					};
2351					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2352						 sizeof(ts_old), &ts_old);
2353				}
2354			} else {
2355				if (new_tstamp) {
2356					struct __kernel_sock_timeval stv = {
2357						.tv_sec = tss->ts[0].tv_sec,
2358						.tv_usec = tss->ts[0].tv_nsec / 1000,
2359					};
2360					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2361						 sizeof(stv), &stv);
2362				} else {
2363					struct __kernel_old_timeval tv = {
2364						.tv_sec = tss->ts[0].tv_sec,
2365						.tv_usec = tss->ts[0].tv_nsec / 1000,
2366					};
2367					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2368						 sizeof(tv), &tv);
2369				}
2370			}
2371		}
2372
2373		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2374			has_timestamping = true;
2375		else
2376			tss->ts[0] = (struct timespec64) {0};
2377	}
2378
2379	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2380		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2381			has_timestamping = true;
2382		else
2383			tss->ts[2] = (struct timespec64) {0};
2384	}
2385
2386	if (has_timestamping) {
2387		tss->ts[1] = (struct timespec64) {0};
2388		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2389			put_cmsg_scm_timestamping64(msg, tss);
2390		else
2391			put_cmsg_scm_timestamping(msg, tss);
2392	}
2393}
2394
2395static int tcp_inq_hint(struct sock *sk)
2396{
2397	const struct tcp_sock *tp = tcp_sk(sk);
2398	u32 copied_seq = READ_ONCE(tp->copied_seq);
2399	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2400	int inq;
2401
2402	inq = rcv_nxt - copied_seq;
2403	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2404		lock_sock(sk);
2405		inq = tp->rcv_nxt - tp->copied_seq;
2406		release_sock(sk);
2407	}
2408	/* After receiving a FIN, tell the user-space to continue reading
2409	 * by returning a non-zero inq.
2410	 */
2411	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2412		inq = 1;
2413	return inq;
2414}
2415
2416/*
2417 *	This routine copies from a sock struct into the user buffer.
2418 *
2419 *	Technical note: in 2.3 we work on _locked_ socket, so that
2420 *	tricks with *seq access order and skb->users are not required.
2421 *	Probably, code can be easily improved even more.
2422 */
2423
2424static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2425			      int flags, struct scm_timestamping_internal *tss,
2426			      int *cmsg_flags)
2427{
2428	struct tcp_sock *tp = tcp_sk(sk);
2429	int copied = 0;
2430	u32 peek_seq;
2431	u32 *seq;
2432	unsigned long used;
2433	int err;
2434	int target;		/* Read at least this many bytes */
2435	long timeo;
2436	struct sk_buff *skb, *last;
2437	u32 urg_hole = 0;
 
 
 
 
 
 
 
 
 
 
 
2438
2439	err = -ENOTCONN;
2440	if (sk->sk_state == TCP_LISTEN)
2441		goto out;
2442
2443	if (tp->recvmsg_inq) {
2444		*cmsg_flags = TCP_CMSG_INQ;
2445		msg->msg_get_inq = 1;
2446	}
2447	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2448
2449	/* Urgent data needs to be handled specially. */
2450	if (flags & MSG_OOB)
2451		goto recv_urg;
2452
2453	if (unlikely(tp->repair)) {
2454		err = -EPERM;
2455		if (!(flags & MSG_PEEK))
2456			goto out;
2457
2458		if (tp->repair_queue == TCP_SEND_QUEUE)
2459			goto recv_sndq;
2460
2461		err = -EINVAL;
2462		if (tp->repair_queue == TCP_NO_QUEUE)
2463			goto out;
2464
2465		/* 'common' recv queue MSG_PEEK-ing */
2466	}
2467
2468	seq = &tp->copied_seq;
2469	if (flags & MSG_PEEK) {
2470		peek_seq = tp->copied_seq;
2471		seq = &peek_seq;
2472	}
2473
2474	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2475
2476	do {
2477		u32 offset;
2478
2479		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2480		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2481			if (copied)
2482				break;
2483			if (signal_pending(current)) {
2484				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2485				break;
2486			}
2487		}
2488
2489		/* Next get a buffer. */
2490
2491		last = skb_peek_tail(&sk->sk_receive_queue);
2492		skb_queue_walk(&sk->sk_receive_queue, skb) {
2493			last = skb;
2494			/* Now that we have two receive queues this
2495			 * shouldn't happen.
2496			 */
2497			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2498				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2499				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2500				 flags))
2501				break;
2502
2503			offset = *seq - TCP_SKB_CB(skb)->seq;
2504			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2505				pr_err_once("%s: found a SYN, please report !\n", __func__);
2506				offset--;
2507			}
2508			if (offset < skb->len)
2509				goto found_ok_skb;
2510			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2511				goto found_fin_ok;
2512			WARN(!(flags & MSG_PEEK),
2513			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2514			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2515		}
2516
2517		/* Well, if we have backlog, try to process it now yet. */
2518
2519		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2520			break;
2521
2522		if (copied) {
2523			if (!timeo ||
2524			    sk->sk_err ||
2525			    sk->sk_state == TCP_CLOSE ||
2526			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 
2527			    signal_pending(current))
2528				break;
2529		} else {
2530			if (sock_flag(sk, SOCK_DONE))
2531				break;
2532
2533			if (sk->sk_err) {
2534				copied = sock_error(sk);
2535				break;
2536			}
2537
2538			if (sk->sk_shutdown & RCV_SHUTDOWN)
2539				break;
2540
2541			if (sk->sk_state == TCP_CLOSE) {
2542				/* This occurs when user tries to read
2543				 * from never connected socket.
2544				 */
2545				copied = -ENOTCONN;
 
 
 
2546				break;
2547			}
2548
2549			if (!timeo) {
2550				copied = -EAGAIN;
2551				break;
2552			}
2553
2554			if (signal_pending(current)) {
2555				copied = sock_intr_errno(timeo);
2556				break;
2557			}
2558		}
2559
 
 
2560		if (copied >= target) {
2561			/* Do not sleep, just process backlog. */
2562			__sk_flush_backlog(sk);
 
2563		} else {
2564			tcp_cleanup_rbuf(sk, copied);
2565			sk_wait_data(sk, &timeo, last);
2566		}
2567
2568		if ((flags & MSG_PEEK) &&
2569		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2570			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2571					    current->comm,
2572					    task_pid_nr(current));
2573			peek_seq = tp->copied_seq;
2574		}
2575		continue;
2576
2577found_ok_skb:
2578		/* Ok so how much can we use? */
2579		used = skb->len - offset;
2580		if (len < used)
2581			used = len;
2582
2583		/* Do we have urgent data here? */
2584		if (unlikely(tp->urg_data)) {
2585			u32 urg_offset = tp->urg_seq - *seq;
2586			if (urg_offset < used) {
2587				if (!urg_offset) {
2588					if (!sock_flag(sk, SOCK_URGINLINE)) {
2589						WRITE_ONCE(*seq, *seq + 1);
2590						urg_hole++;
2591						offset++;
2592						used--;
2593						if (!used)
2594							goto skip_copy;
2595					}
2596				} else
2597					used = urg_offset;
2598			}
2599		}
2600
2601		if (!(flags & MSG_TRUNC)) {
2602			err = skb_copy_datagram_msg(skb, offset, msg, used);
2603			if (err) {
2604				/* Exception. Bailout! */
2605				if (!copied)
2606					copied = -EFAULT;
2607				break;
2608			}
2609		}
2610
2611		WRITE_ONCE(*seq, *seq + used);
2612		copied += used;
2613		len -= used;
2614
2615		tcp_rcv_space_adjust(sk);
2616
2617skip_copy:
2618		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2619			WRITE_ONCE(tp->urg_data, 0);
2620			tcp_fast_path_check(sk);
2621		}
 
 
2622
2623		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2624			tcp_update_recv_tstamps(skb, tss);
2625			*cmsg_flags |= TCP_CMSG_TS;
2626		}
2627
2628		if (used + offset < skb->len)
2629			continue;
2630
2631		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2632			goto found_fin_ok;
2633		if (!(flags & MSG_PEEK))
2634			tcp_eat_recv_skb(sk, skb);
2635		continue;
2636
2637found_fin_ok:
2638		/* Process the FIN. */
2639		WRITE_ONCE(*seq, *seq + 1);
2640		if (!(flags & MSG_PEEK))
2641			tcp_eat_recv_skb(sk, skb);
2642		break;
2643	} while (len > 0);
2644
2645	/* According to UNIX98, msg_name/msg_namelen are ignored
2646	 * on connected socket. I was just happy when found this 8) --ANK
2647	 */
2648
 
 
 
2649	/* Clean up data we have read: This will do ACK frames. */
2650	tcp_cleanup_rbuf(sk, copied);
 
 
2651	return copied;
2652
2653out:
 
2654	return err;
2655
2656recv_urg:
2657	err = tcp_recv_urg(sk, msg, len, flags);
2658	goto out;
2659
2660recv_sndq:
2661	err = tcp_peek_sndq(sk, msg, len);
2662	goto out;
2663}
2664
2665int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2666		int *addr_len)
2667{
2668	int cmsg_flags = 0, ret;
2669	struct scm_timestamping_internal tss;
2670
2671	if (unlikely(flags & MSG_ERRQUEUE))
2672		return inet_recv_error(sk, msg, len, addr_len);
2673
2674	if (sk_can_busy_loop(sk) &&
2675	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2676	    sk->sk_state == TCP_ESTABLISHED)
2677		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2678
2679	lock_sock(sk);
2680	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2681	release_sock(sk);
2682
2683	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2684		if (cmsg_flags & TCP_CMSG_TS)
2685			tcp_recv_timestamp(msg, sk, &tss);
2686		if (msg->msg_get_inq) {
2687			msg->msg_inq = tcp_inq_hint(sk);
2688			if (cmsg_flags & TCP_CMSG_INQ)
2689				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2690					 sizeof(msg->msg_inq), &msg->msg_inq);
2691		}
2692	}
2693	return ret;
2694}
2695EXPORT_SYMBOL(tcp_recvmsg);
2696
2697void tcp_set_state(struct sock *sk, int state)
2698{
2699	int oldstate = sk->sk_state;
2700
2701	/* We defined a new enum for TCP states that are exported in BPF
2702	 * so as not force the internal TCP states to be frozen. The
2703	 * following checks will detect if an internal state value ever
2704	 * differs from the BPF value. If this ever happens, then we will
2705	 * need to remap the internal value to the BPF value before calling
2706	 * tcp_call_bpf_2arg.
2707	 */
2708	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2709	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2710	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2711	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2712	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2713	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2714	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2715	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2716	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2717	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2718	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2719	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2720	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2721
2722	/* bpf uapi header bpf.h defines an anonymous enum with values
2723	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2724	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2725	 * But clang built vmlinux does not have this enum in DWARF
2726	 * since clang removes the above code before generating IR/debuginfo.
2727	 * Let us explicitly emit the type debuginfo to ensure the
2728	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2729	 * regardless of which compiler is used.
2730	 */
2731	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2732
2733	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2734		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2735
2736	switch (state) {
2737	case TCP_ESTABLISHED:
2738		if (oldstate != TCP_ESTABLISHED)
2739			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2740		break;
2741
2742	case TCP_CLOSE:
2743		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2744			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2745
2746		sk->sk_prot->unhash(sk);
2747		if (inet_csk(sk)->icsk_bind_hash &&
2748		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2749			inet_put_port(sk);
2750		fallthrough;
2751	default:
2752		if (oldstate == TCP_ESTABLISHED)
2753			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2754	}
2755
2756	/* Change state AFTER socket is unhashed to avoid closed
2757	 * socket sitting in hash tables.
2758	 */
2759	inet_sk_state_store(sk, state);
 
 
 
 
2760}
2761EXPORT_SYMBOL_GPL(tcp_set_state);
2762
2763/*
2764 *	State processing on a close. This implements the state shift for
2765 *	sending our FIN frame. Note that we only send a FIN for some
2766 *	states. A shutdown() may have already sent the FIN, or we may be
2767 *	closed.
2768 */
2769
2770static const unsigned char new_state[16] = {
2771  /* current state:        new state:      action:	*/
2772  [0 /* (Invalid) */]	= TCP_CLOSE,
2773  [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2774  [TCP_SYN_SENT]	= TCP_CLOSE,
2775  [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2776  [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2777  [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2778  [TCP_TIME_WAIT]	= TCP_CLOSE,
2779  [TCP_CLOSE]		= TCP_CLOSE,
2780  [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2781  [TCP_LAST_ACK]	= TCP_LAST_ACK,
2782  [TCP_LISTEN]		= TCP_CLOSE,
2783  [TCP_CLOSING]		= TCP_CLOSING,
2784  [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2785};
2786
2787static int tcp_close_state(struct sock *sk)
2788{
2789	int next = (int)new_state[sk->sk_state];
2790	int ns = next & TCP_STATE_MASK;
2791
2792	tcp_set_state(sk, ns);
2793
2794	return next & TCP_ACTION_FIN;
2795}
2796
2797/*
2798 *	Shutdown the sending side of a connection. Much like close except
2799 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2800 */
2801
2802void tcp_shutdown(struct sock *sk, int how)
2803{
2804	/*	We need to grab some memory, and put together a FIN,
2805	 *	and then put it into the queue to be sent.
2806	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2807	 */
2808	if (!(how & SEND_SHUTDOWN))
2809		return;
2810
2811	/* If we've already sent a FIN, or it's a closed state, skip this. */
2812	if ((1 << sk->sk_state) &
2813	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2814	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2815		/* Clear out any half completed packets.  FIN if needed. */
2816		if (tcp_close_state(sk))
2817			tcp_send_fin(sk);
2818	}
2819}
2820EXPORT_SYMBOL(tcp_shutdown);
2821
2822int tcp_orphan_count_sum(void)
2823{
2824	int i, total = 0;
2825
2826	for_each_possible_cpu(i)
2827		total += per_cpu(tcp_orphan_count, i);
2828
2829	return max(total, 0);
2830}
2831
2832static int tcp_orphan_cache;
2833static struct timer_list tcp_orphan_timer;
2834#define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2835
2836static void tcp_orphan_update(struct timer_list *unused)
2837{
2838	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2839	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2840}
2841
2842static bool tcp_too_many_orphans(int shift)
2843{
2844	return READ_ONCE(tcp_orphan_cache) << shift >
2845		READ_ONCE(sysctl_tcp_max_orphans);
2846}
2847
2848bool tcp_check_oom(struct sock *sk, int shift)
2849{
2850	bool too_many_orphans, out_of_socket_memory;
2851
2852	too_many_orphans = tcp_too_many_orphans(shift);
2853	out_of_socket_memory = tcp_out_of_memory(sk);
2854
2855	if (too_many_orphans)
2856		net_info_ratelimited("too many orphaned sockets\n");
2857	if (out_of_socket_memory)
2858		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2859	return too_many_orphans || out_of_socket_memory;
2860}
2861
2862void __tcp_close(struct sock *sk, long timeout)
2863{
2864	struct sk_buff *skb;
2865	int data_was_unread = 0;
2866	int state;
2867
 
2868	sk->sk_shutdown = SHUTDOWN_MASK;
2869
2870	if (sk->sk_state == TCP_LISTEN) {
2871		tcp_set_state(sk, TCP_CLOSE);
2872
2873		/* Special case. */
2874		inet_csk_listen_stop(sk);
2875
2876		goto adjudge_to_death;
2877	}
2878
2879	/*  We need to flush the recv. buffs.  We do this only on the
2880	 *  descriptor close, not protocol-sourced closes, because the
2881	 *  reader process may not have drained the data yet!
2882	 */
2883	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2884		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2885
2886		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2887			len--;
2888		data_was_unread += len;
2889		__kfree_skb(skb);
2890	}
2891
 
 
2892	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2893	if (sk->sk_state == TCP_CLOSE)
2894		goto adjudge_to_death;
2895
2896	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2897	 * data was lost. To witness the awful effects of the old behavior of
2898	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2899	 * GET in an FTP client, suspend the process, wait for the client to
2900	 * advertise a zero window, then kill -9 the FTP client, wheee...
2901	 * Note: timeout is always zero in such a case.
2902	 */
2903	if (unlikely(tcp_sk(sk)->repair)) {
2904		sk->sk_prot->disconnect(sk, 0);
2905	} else if (data_was_unread) {
2906		/* Unread data was tossed, zap the connection. */
2907		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2908		tcp_set_state(sk, TCP_CLOSE);
2909		tcp_send_active_reset(sk, sk->sk_allocation);
2910	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2911		/* Check zero linger _after_ checking for unread data. */
2912		sk->sk_prot->disconnect(sk, 0);
2913		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2914	} else if (tcp_close_state(sk)) {
2915		/* We FIN if the application ate all the data before
2916		 * zapping the connection.
2917		 */
2918
2919		/* RED-PEN. Formally speaking, we have broken TCP state
2920		 * machine. State transitions:
2921		 *
2922		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2923		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2924		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2925		 *
2926		 * are legal only when FIN has been sent (i.e. in window),
2927		 * rather than queued out of window. Purists blame.
2928		 *
2929		 * F.e. "RFC state" is ESTABLISHED,
2930		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2931		 *
2932		 * The visible declinations are that sometimes
2933		 * we enter time-wait state, when it is not required really
2934		 * (harmless), do not send active resets, when they are
2935		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2936		 * they look as CLOSING or LAST_ACK for Linux)
2937		 * Probably, I missed some more holelets.
2938		 * 						--ANK
2939		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2940		 * in a single packet! (May consider it later but will
2941		 * probably need API support or TCP_CORK SYN-ACK until
2942		 * data is written and socket is closed.)
2943		 */
2944		tcp_send_fin(sk);
2945	}
2946
2947	sk_stream_wait_close(sk, timeout);
2948
2949adjudge_to_death:
2950	state = sk->sk_state;
2951	sock_hold(sk);
2952	sock_orphan(sk);
2953
 
 
 
 
 
 
 
2954	local_bh_disable();
2955	bh_lock_sock(sk);
2956	/* remove backlog if any, without releasing ownership. */
2957	__release_sock(sk);
2958
2959	this_cpu_inc(tcp_orphan_count);
2960
2961	/* Have we already been destroyed by a softirq or backlog? */
2962	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2963		goto out;
2964
2965	/*	This is a (useful) BSD violating of the RFC. There is a
2966	 *	problem with TCP as specified in that the other end could
2967	 *	keep a socket open forever with no application left this end.
2968	 *	We use a 1 minute timeout (about the same as BSD) then kill
2969	 *	our end. If they send after that then tough - BUT: long enough
2970	 *	that we won't make the old 4*rto = almost no time - whoops
2971	 *	reset mistake.
2972	 *
2973	 *	Nope, it was not mistake. It is really desired behaviour
2974	 *	f.e. on http servers, when such sockets are useless, but
2975	 *	consume significant resources. Let's do it with special
2976	 *	linger2	option.					--ANK
2977	 */
2978
2979	if (sk->sk_state == TCP_FIN_WAIT2) {
2980		struct tcp_sock *tp = tcp_sk(sk);
2981		if (tp->linger2 < 0) {
2982			tcp_set_state(sk, TCP_CLOSE);
2983			tcp_send_active_reset(sk, GFP_ATOMIC);
2984			__NET_INC_STATS(sock_net(sk),
2985					LINUX_MIB_TCPABORTONLINGER);
2986		} else {
2987			const int tmo = tcp_fin_time(sk);
2988
2989			if (tmo > TCP_TIMEWAIT_LEN) {
2990				inet_csk_reset_keepalive_timer(sk,
2991						tmo - TCP_TIMEWAIT_LEN);
2992			} else {
2993				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2994				goto out;
2995			}
2996		}
2997	}
2998	if (sk->sk_state != TCP_CLOSE) {
 
2999		if (tcp_check_oom(sk, 0)) {
3000			tcp_set_state(sk, TCP_CLOSE);
3001			tcp_send_active_reset(sk, GFP_ATOMIC);
3002			__NET_INC_STATS(sock_net(sk),
3003					LINUX_MIB_TCPABORTONMEMORY);
3004		} else if (!check_net(sock_net(sk))) {
3005			/* Not possible to send reset; just close */
3006			tcp_set_state(sk, TCP_CLOSE);
3007		}
3008	}
3009
3010	if (sk->sk_state == TCP_CLOSE) {
3011		struct request_sock *req;
3012
3013		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3014						lockdep_sock_is_held(sk));
3015		/* We could get here with a non-NULL req if the socket is
3016		 * aborted (e.g., closed with unread data) before 3WHS
3017		 * finishes.
3018		 */
3019		if (req)
3020			reqsk_fastopen_remove(sk, req, false);
3021		inet_csk_destroy_sock(sk);
3022	}
3023	/* Otherwise, socket is reprieved until protocol close. */
3024
3025out:
3026	bh_unlock_sock(sk);
3027	local_bh_enable();
3028}
3029
3030void tcp_close(struct sock *sk, long timeout)
3031{
3032	lock_sock(sk);
3033	__tcp_close(sk, timeout);
3034	release_sock(sk);
3035	sock_put(sk);
3036}
3037EXPORT_SYMBOL(tcp_close);
3038
3039/* These states need RST on ABORT according to RFC793 */
3040
3041static inline bool tcp_need_reset(int state)
3042{
3043	return (1 << state) &
3044	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3045		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3046}
3047
3048static void tcp_rtx_queue_purge(struct sock *sk)
3049{
3050	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3051
3052	tcp_sk(sk)->highest_sack = NULL;
3053	while (p) {
3054		struct sk_buff *skb = rb_to_skb(p);
3055
3056		p = rb_next(p);
3057		/* Since we are deleting whole queue, no need to
3058		 * list_del(&skb->tcp_tsorted_anchor)
3059		 */
3060		tcp_rtx_queue_unlink(skb, sk);
3061		tcp_wmem_free_skb(sk, skb);
3062	}
3063}
3064
3065void tcp_write_queue_purge(struct sock *sk)
3066{
3067	struct sk_buff *skb;
3068
3069	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3070	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3071		tcp_skb_tsorted_anchor_cleanup(skb);
3072		tcp_wmem_free_skb(sk, skb);
3073	}
3074	tcp_rtx_queue_purge(sk);
3075	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
 
3076	tcp_clear_all_retrans_hints(tcp_sk(sk));
3077	tcp_sk(sk)->packets_out = 0;
3078	inet_csk(sk)->icsk_backoff = 0;
3079}
3080
3081int tcp_disconnect(struct sock *sk, int flags)
3082{
3083	struct inet_sock *inet = inet_sk(sk);
3084	struct inet_connection_sock *icsk = inet_csk(sk);
3085	struct tcp_sock *tp = tcp_sk(sk);
 
3086	int old_state = sk->sk_state;
3087	u32 seq;
3088
3089	if (old_state != TCP_CLOSE)
3090		tcp_set_state(sk, TCP_CLOSE);
3091
3092	/* ABORT function of RFC793 */
3093	if (old_state == TCP_LISTEN) {
3094		inet_csk_listen_stop(sk);
3095	} else if (unlikely(tp->repair)) {
3096		sk->sk_err = ECONNABORTED;
3097	} else if (tcp_need_reset(old_state) ||
3098		   (tp->snd_nxt != tp->write_seq &&
3099		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3100		/* The last check adjusts for discrepancy of Linux wrt. RFC
3101		 * states
3102		 */
3103		tcp_send_active_reset(sk, gfp_any());
3104		sk->sk_err = ECONNRESET;
3105	} else if (old_state == TCP_SYN_SENT)
3106		sk->sk_err = ECONNRESET;
3107
3108	tcp_clear_xmit_timers(sk);
3109	__skb_queue_purge(&sk->sk_receive_queue);
3110	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3111	WRITE_ONCE(tp->urg_data, 0);
3112	tcp_write_queue_purge(sk);
3113	tcp_fastopen_active_disable_ofo_check(sk);
3114	skb_rbtree_purge(&tp->out_of_order_queue);
3115
3116	inet->inet_dport = 0;
3117
3118	inet_bhash2_reset_saddr(sk);
 
3119
3120	sk->sk_shutdown = 0;
3121	sock_reset_flag(sk, SOCK_DONE);
3122	tp->srtt_us = 0;
3123	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3124	tp->rcv_rtt_last_tsecr = 0;
3125
3126	seq = tp->write_seq + tp->max_window + 2;
3127	if (!seq)
3128		seq = 1;
3129	WRITE_ONCE(tp->write_seq, seq);
3130
3131	icsk->icsk_backoff = 0;
 
3132	icsk->icsk_probes_out = 0;
3133	icsk->icsk_probes_tstamp = 0;
3134	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3135	icsk->icsk_rto_min = TCP_RTO_MIN;
3136	icsk->icsk_delack_max = TCP_DELACK_MAX;
3137	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3138	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3139	tp->snd_cwnd_cnt = 0;
3140	tp->is_cwnd_limited = 0;
3141	tp->max_packets_out = 0;
3142	tp->window_clamp = 0;
3143	tp->delivered = 0;
3144	tp->delivered_ce = 0;
3145	if (icsk->icsk_ca_ops->release)
3146		icsk->icsk_ca_ops->release(sk);
3147	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3148	icsk->icsk_ca_initialized = 0;
3149	tcp_set_ca_state(sk, TCP_CA_Open);
3150	tp->is_sack_reneg = 0;
3151	tcp_clear_retrans(tp);
3152	tp->total_retrans = 0;
3153	inet_csk_delack_init(sk);
3154	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3155	 * issue in __tcp_select_window()
3156	 */
3157	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3158	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3159	__sk_dst_reset(sk);
3160	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
 
3161	tcp_saved_syn_free(tp);
3162	tp->compressed_ack = 0;
3163	tp->segs_in = 0;
3164	tp->segs_out = 0;
3165	tp->bytes_sent = 0;
3166	tp->bytes_acked = 0;
3167	tp->bytes_received = 0;
3168	tp->bytes_retrans = 0;
3169	tp->data_segs_in = 0;
3170	tp->data_segs_out = 0;
3171	tp->duplicate_sack[0].start_seq = 0;
3172	tp->duplicate_sack[0].end_seq = 0;
3173	tp->dsack_dups = 0;
3174	tp->reord_seen = 0;
3175	tp->retrans_out = 0;
3176	tp->sacked_out = 0;
3177	tp->tlp_high_seq = 0;
3178	tp->last_oow_ack_time = 0;
3179	tp->plb_rehash = 0;
3180	/* There's a bubble in the pipe until at least the first ACK. */
3181	tp->app_limited = ~0U;
3182	tp->rate_app_limited = 1;
3183	tp->rack.mstamp = 0;
3184	tp->rack.advanced = 0;
3185	tp->rack.reo_wnd_steps = 1;
3186	tp->rack.last_delivered = 0;
3187	tp->rack.reo_wnd_persist = 0;
3188	tp->rack.dsack_seen = 0;
3189	tp->syn_data_acked = 0;
3190	tp->rx_opt.saw_tstamp = 0;
3191	tp->rx_opt.dsack = 0;
3192	tp->rx_opt.num_sacks = 0;
3193	tp->rcv_ooopack = 0;
3194
3195
3196	/* Clean up fastopen related fields */
3197	tcp_free_fastopen_req(tp);
3198	inet->defer_connect = 0;
3199	tp->fastopen_client_fail = 0;
3200
3201	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3202
3203	if (sk->sk_frag.page) {
3204		put_page(sk->sk_frag.page);
3205		sk->sk_frag.page = NULL;
3206		sk->sk_frag.offset = 0;
3207	}
3208	sk_error_report(sk);
3209	return 0;
 
3210}
3211EXPORT_SYMBOL(tcp_disconnect);
3212
3213static inline bool tcp_can_repair_sock(const struct sock *sk)
3214{
3215	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3216		(sk->sk_state != TCP_LISTEN);
3217}
3218
3219static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3220{
3221	struct tcp_repair_window opt;
3222
3223	if (!tp->repair)
3224		return -EPERM;
3225
3226	if (len != sizeof(opt))
3227		return -EINVAL;
3228
3229	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3230		return -EFAULT;
3231
3232	if (opt.max_window < opt.snd_wnd)
3233		return -EINVAL;
3234
3235	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3236		return -EINVAL;
3237
3238	if (after(opt.rcv_wup, tp->rcv_nxt))
3239		return -EINVAL;
3240
3241	tp->snd_wl1	= opt.snd_wl1;
3242	tp->snd_wnd	= opt.snd_wnd;
3243	tp->max_window	= opt.max_window;
3244
3245	tp->rcv_wnd	= opt.rcv_wnd;
3246	tp->rcv_wup	= opt.rcv_wup;
3247
3248	return 0;
3249}
3250
3251static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3252		unsigned int len)
3253{
3254	struct tcp_sock *tp = tcp_sk(sk);
3255	struct tcp_repair_opt opt;
3256	size_t offset = 0;
3257
3258	while (len >= sizeof(opt)) {
3259		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3260			return -EFAULT;
3261
3262		offset += sizeof(opt);
3263		len -= sizeof(opt);
3264
3265		switch (opt.opt_code) {
3266		case TCPOPT_MSS:
3267			tp->rx_opt.mss_clamp = opt.opt_val;
3268			tcp_mtup_init(sk);
3269			break;
3270		case TCPOPT_WINDOW:
3271			{
3272				u16 snd_wscale = opt.opt_val & 0xFFFF;
3273				u16 rcv_wscale = opt.opt_val >> 16;
3274
3275				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3276					return -EFBIG;
3277
3278				tp->rx_opt.snd_wscale = snd_wscale;
3279				tp->rx_opt.rcv_wscale = rcv_wscale;
3280				tp->rx_opt.wscale_ok = 1;
3281			}
3282			break;
3283		case TCPOPT_SACK_PERM:
3284			if (opt.opt_val != 0)
3285				return -EINVAL;
3286
3287			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3288			break;
3289		case TCPOPT_TIMESTAMP:
3290			if (opt.opt_val != 0)
3291				return -EINVAL;
3292
3293			tp->rx_opt.tstamp_ok = 1;
3294			break;
3295		}
3296	}
3297
3298	return 0;
3299}
3300
3301DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3302EXPORT_SYMBOL(tcp_tx_delay_enabled);
3303
3304static void tcp_enable_tx_delay(void)
3305{
3306	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3307		static int __tcp_tx_delay_enabled = 0;
3308
3309		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3310			static_branch_enable(&tcp_tx_delay_enabled);
3311			pr_info("TCP_TX_DELAY enabled\n");
3312		}
3313	}
3314}
3315
3316/* When set indicates to always queue non-full frames.  Later the user clears
3317 * this option and we transmit any pending partial frames in the queue.  This is
3318 * meant to be used alongside sendfile() to get properly filled frames when the
3319 * user (for example) must write out headers with a write() call first and then
3320 * use sendfile to send out the data parts.
3321 *
3322 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3323 * TCP_NODELAY.
3324 */
3325void __tcp_sock_set_cork(struct sock *sk, bool on)
3326{
3327	struct tcp_sock *tp = tcp_sk(sk);
3328
3329	if (on) {
3330		tp->nonagle |= TCP_NAGLE_CORK;
3331	} else {
3332		tp->nonagle &= ~TCP_NAGLE_CORK;
3333		if (tp->nonagle & TCP_NAGLE_OFF)
3334			tp->nonagle |= TCP_NAGLE_PUSH;
3335		tcp_push_pending_frames(sk);
3336	}
3337}
3338
3339void tcp_sock_set_cork(struct sock *sk, bool on)
3340{
3341	lock_sock(sk);
3342	__tcp_sock_set_cork(sk, on);
3343	release_sock(sk);
3344}
3345EXPORT_SYMBOL(tcp_sock_set_cork);
3346
3347/* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3348 * remembered, but it is not activated until cork is cleared.
3349 *
3350 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3351 * even TCP_CORK for currently queued segments.
3352 */
3353void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3354{
3355	if (on) {
3356		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3357		tcp_push_pending_frames(sk);
3358	} else {
3359		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3360	}
3361}
3362
3363void tcp_sock_set_nodelay(struct sock *sk)
3364{
3365	lock_sock(sk);
3366	__tcp_sock_set_nodelay(sk, true);
3367	release_sock(sk);
3368}
3369EXPORT_SYMBOL(tcp_sock_set_nodelay);
3370
3371static void __tcp_sock_set_quickack(struct sock *sk, int val)
3372{
3373	if (!val) {
3374		inet_csk_enter_pingpong_mode(sk);
3375		return;
3376	}
3377
3378	inet_csk_exit_pingpong_mode(sk);
3379	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3380	    inet_csk_ack_scheduled(sk)) {
3381		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3382		tcp_cleanup_rbuf(sk, 1);
3383		if (!(val & 1))
3384			inet_csk_enter_pingpong_mode(sk);
3385	}
3386}
3387
3388void tcp_sock_set_quickack(struct sock *sk, int val)
3389{
3390	lock_sock(sk);
3391	__tcp_sock_set_quickack(sk, val);
3392	release_sock(sk);
3393}
3394EXPORT_SYMBOL(tcp_sock_set_quickack);
3395
3396int tcp_sock_set_syncnt(struct sock *sk, int val)
3397{
3398	if (val < 1 || val > MAX_TCP_SYNCNT)
3399		return -EINVAL;
3400
3401	lock_sock(sk);
3402	inet_csk(sk)->icsk_syn_retries = val;
3403	release_sock(sk);
3404	return 0;
3405}
3406EXPORT_SYMBOL(tcp_sock_set_syncnt);
3407
3408void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3409{
3410	lock_sock(sk);
3411	inet_csk(sk)->icsk_user_timeout = val;
3412	release_sock(sk);
3413}
3414EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3415
3416int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3417{
3418	struct tcp_sock *tp = tcp_sk(sk);
3419
3420	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3421		return -EINVAL;
3422
3423	tp->keepalive_time = val * HZ;
3424	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3425	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3426		u32 elapsed = keepalive_time_elapsed(tp);
3427
3428		if (tp->keepalive_time > elapsed)
3429			elapsed = tp->keepalive_time - elapsed;
3430		else
3431			elapsed = 0;
3432		inet_csk_reset_keepalive_timer(sk, elapsed);
3433	}
3434
3435	return 0;
3436}
3437
3438int tcp_sock_set_keepidle(struct sock *sk, int val)
3439{
3440	int err;
3441
3442	lock_sock(sk);
3443	err = tcp_sock_set_keepidle_locked(sk, val);
3444	release_sock(sk);
3445	return err;
3446}
3447EXPORT_SYMBOL(tcp_sock_set_keepidle);
3448
3449int tcp_sock_set_keepintvl(struct sock *sk, int val)
3450{
3451	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3452		return -EINVAL;
3453
3454	lock_sock(sk);
3455	tcp_sk(sk)->keepalive_intvl = val * HZ;
3456	release_sock(sk);
3457	return 0;
3458}
3459EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3460
3461int tcp_sock_set_keepcnt(struct sock *sk, int val)
3462{
3463	if (val < 1 || val > MAX_TCP_KEEPCNT)
3464		return -EINVAL;
3465
3466	lock_sock(sk);
3467	tcp_sk(sk)->keepalive_probes = val;
3468	release_sock(sk);
3469	return 0;
3470}
3471EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3472
3473int tcp_set_window_clamp(struct sock *sk, int val)
3474{
3475	struct tcp_sock *tp = tcp_sk(sk);
3476
3477	if (!val) {
3478		if (sk->sk_state != TCP_CLOSE)
3479			return -EINVAL;
3480		tp->window_clamp = 0;
3481	} else {
3482		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3483			SOCK_MIN_RCVBUF / 2 : val;
3484		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3485	}
3486	return 0;
3487}
3488
3489/*
3490 *	Socket option code for TCP.
3491 */
3492int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3493		      sockptr_t optval, unsigned int optlen)
3494{
3495	struct tcp_sock *tp = tcp_sk(sk);
3496	struct inet_connection_sock *icsk = inet_csk(sk);
3497	struct net *net = sock_net(sk);
3498	int val;
3499	int err = 0;
3500
3501	/* These are data/string values, all the others are ints */
3502	switch (optname) {
3503	case TCP_CONGESTION: {
3504		char name[TCP_CA_NAME_MAX];
3505
3506		if (optlen < 1)
3507			return -EINVAL;
3508
3509		val = strncpy_from_sockptr(name, optval,
3510					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3511		if (val < 0)
3512			return -EFAULT;
3513		name[val] = 0;
3514
3515		sockopt_lock_sock(sk);
3516		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3517						 sockopt_ns_capable(sock_net(sk)->user_ns,
3518								    CAP_NET_ADMIN));
3519		sockopt_release_sock(sk);
3520		return err;
3521	}
3522	case TCP_ULP: {
3523		char name[TCP_ULP_NAME_MAX];
3524
3525		if (optlen < 1)
3526			return -EINVAL;
3527
3528		val = strncpy_from_sockptr(name, optval,
3529					min_t(long, TCP_ULP_NAME_MAX - 1,
3530					      optlen));
3531		if (val < 0)
3532			return -EFAULT;
3533		name[val] = 0;
3534
3535		sockopt_lock_sock(sk);
3536		err = tcp_set_ulp(sk, name);
3537		sockopt_release_sock(sk);
3538		return err;
3539	}
3540	case TCP_FASTOPEN_KEY: {
3541		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3542		__u8 *backup_key = NULL;
3543
3544		/* Allow a backup key as well to facilitate key rotation
3545		 * First key is the active one.
3546		 */
3547		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3548		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3549			return -EINVAL;
3550
3551		if (copy_from_sockptr(key, optval, optlen))
3552			return -EFAULT;
3553
3554		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3555			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3556
3557		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3558	}
3559	default:
3560		/* fallthru */
3561		break;
3562	}
3563
3564	if (optlen < sizeof(int))
3565		return -EINVAL;
3566
3567	if (copy_from_sockptr(&val, optval, sizeof(val)))
3568		return -EFAULT;
3569
3570	sockopt_lock_sock(sk);
3571
3572	switch (optname) {
3573	case TCP_MAXSEG:
3574		/* Values greater than interface MTU won't take effect. However
3575		 * at the point when this call is done we typically don't yet
3576		 * know which interface is going to be used
3577		 */
3578		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3579			err = -EINVAL;
3580			break;
3581		}
3582		tp->rx_opt.user_mss = val;
3583		break;
3584
3585	case TCP_NODELAY:
3586		__tcp_sock_set_nodelay(sk, val);
 
 
 
 
 
 
 
 
 
 
 
 
 
3587		break;
3588
3589	case TCP_THIN_LINEAR_TIMEOUTS:
3590		if (val < 0 || val > 1)
3591			err = -EINVAL;
3592		else
3593			tp->thin_lto = val;
3594		break;
3595
3596	case TCP_THIN_DUPACK:
3597		if (val < 0 || val > 1)
3598			err = -EINVAL;
3599		break;
3600
3601	case TCP_REPAIR:
3602		if (!tcp_can_repair_sock(sk))
3603			err = -EPERM;
3604		else if (val == TCP_REPAIR_ON) {
3605			tp->repair = 1;
3606			sk->sk_reuse = SK_FORCE_REUSE;
3607			tp->repair_queue = TCP_NO_QUEUE;
3608		} else if (val == TCP_REPAIR_OFF) {
3609			tp->repair = 0;
3610			sk->sk_reuse = SK_NO_REUSE;
3611			tcp_send_window_probe(sk);
3612		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3613			tp->repair = 0;
3614			sk->sk_reuse = SK_NO_REUSE;
3615		} else
3616			err = -EINVAL;
3617
3618		break;
3619
3620	case TCP_REPAIR_QUEUE:
3621		if (!tp->repair)
3622			err = -EPERM;
3623		else if ((unsigned int)val < TCP_QUEUES_NR)
3624			tp->repair_queue = val;
3625		else
3626			err = -EINVAL;
3627		break;
3628
3629	case TCP_QUEUE_SEQ:
3630		if (sk->sk_state != TCP_CLOSE) {
3631			err = -EPERM;
3632		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3633			if (!tcp_rtx_queue_empty(sk))
3634				err = -EPERM;
3635			else
3636				WRITE_ONCE(tp->write_seq, val);
3637		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3638			if (tp->rcv_nxt != tp->copied_seq) {
3639				err = -EPERM;
3640			} else {
3641				WRITE_ONCE(tp->rcv_nxt, val);
3642				WRITE_ONCE(tp->copied_seq, val);
3643			}
3644		} else {
3645			err = -EINVAL;
3646		}
3647		break;
3648
3649	case TCP_REPAIR_OPTIONS:
3650		if (!tp->repair)
3651			err = -EINVAL;
3652		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3653			err = tcp_repair_options_est(sk, optval, optlen);
 
 
3654		else
3655			err = -EPERM;
3656		break;
3657
3658	case TCP_CORK:
3659		__tcp_sock_set_cork(sk, val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3660		break;
3661
3662	case TCP_KEEPIDLE:
3663		err = tcp_sock_set_keepidle_locked(sk, val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3664		break;
3665	case TCP_KEEPINTVL:
3666		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3667			err = -EINVAL;
3668		else
3669			tp->keepalive_intvl = val * HZ;
3670		break;
3671	case TCP_KEEPCNT:
3672		if (val < 1 || val > MAX_TCP_KEEPCNT)
3673			err = -EINVAL;
3674		else
3675			tp->keepalive_probes = val;
3676		break;
3677	case TCP_SYNCNT:
3678		if (val < 1 || val > MAX_TCP_SYNCNT)
3679			err = -EINVAL;
3680		else
3681			icsk->icsk_syn_retries = val;
3682		break;
3683
3684	case TCP_SAVE_SYN:
3685		/* 0: disable, 1: enable, 2: start from ether_header */
3686		if (val < 0 || val > 2)
3687			err = -EINVAL;
3688		else
3689			tp->save_syn = val;
3690		break;
3691
3692	case TCP_LINGER2:
3693		if (val < 0)
3694			tp->linger2 = -1;
3695		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3696			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3697		else
3698			tp->linger2 = val * HZ;
3699		break;
3700
3701	case TCP_DEFER_ACCEPT:
3702		/* Translate value in seconds to number of retransmits */
3703		icsk->icsk_accept_queue.rskq_defer_accept =
3704			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3705					TCP_RTO_MAX / HZ);
3706		break;
3707
3708	case TCP_WINDOW_CLAMP:
3709		err = tcp_set_window_clamp(sk, val);
 
 
 
 
 
 
 
 
3710		break;
3711
3712	case TCP_QUICKACK:
3713		__tcp_sock_set_quickack(sk, val);
 
 
 
 
 
 
 
 
 
 
 
 
3714		break;
3715
3716#ifdef CONFIG_TCP_MD5SIG
3717	case TCP_MD5SIG:
3718	case TCP_MD5SIG_EXT:
3719		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
 
 
 
3720		break;
3721#endif
3722	case TCP_USER_TIMEOUT:
3723		/* Cap the max time in ms TCP will retry or probe the window
3724		 * before giving up and aborting (ETIMEDOUT) a connection.
3725		 */
3726		if (val < 0)
3727			err = -EINVAL;
3728		else
3729			icsk->icsk_user_timeout = val;
3730		break;
3731
3732	case TCP_FASTOPEN:
3733		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3734		    TCPF_LISTEN))) {
3735			tcp_fastopen_init_key_once(net);
3736
3737			fastopen_queue_tune(sk, val);
3738		} else {
3739			err = -EINVAL;
3740		}
3741		break;
3742	case TCP_FASTOPEN_CONNECT:
3743		if (val > 1 || val < 0) {
3744			err = -EINVAL;
3745		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3746			   TFO_CLIENT_ENABLE) {
3747			if (sk->sk_state == TCP_CLOSE)
3748				tp->fastopen_connect = val;
3749			else
3750				err = -EINVAL;
3751		} else {
3752			err = -EOPNOTSUPP;
3753		}
3754		break;
3755	case TCP_FASTOPEN_NO_COOKIE:
3756		if (val > 1 || val < 0)
3757			err = -EINVAL;
3758		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3759			err = -EINVAL;
3760		else
3761			tp->fastopen_no_cookie = val;
3762		break;
3763	case TCP_TIMESTAMP:
3764		if (!tp->repair)
3765			err = -EPERM;
3766		else
3767			tp->tsoffset = val - tcp_time_stamp_raw();
3768		break;
3769	case TCP_REPAIR_WINDOW:
3770		err = tcp_repair_set_window(tp, optval, optlen);
3771		break;
3772	case TCP_NOTSENT_LOWAT:
3773		tp->notsent_lowat = val;
3774		sk->sk_write_space(sk);
3775		break;
3776	case TCP_INQ:
3777		if (val > 1 || val < 0)
3778			err = -EINVAL;
3779		else
3780			tp->recvmsg_inq = val;
3781		break;
3782	case TCP_TX_DELAY:
3783		if (val)
3784			tcp_enable_tx_delay();
3785		tp->tcp_tx_delay = val;
3786		break;
3787	default:
3788		err = -ENOPROTOOPT;
3789		break;
3790	}
3791
3792	sockopt_release_sock(sk);
3793	return err;
3794}
3795
3796int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3797		   unsigned int optlen)
3798{
3799	const struct inet_connection_sock *icsk = inet_csk(sk);
3800
3801	if (level != SOL_TCP)
3802		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3803		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3804								optval, optlen);
3805	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3806}
3807EXPORT_SYMBOL(tcp_setsockopt);
3808
 
 
 
 
 
 
 
 
 
 
 
 
3809static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3810				      struct tcp_info *info)
3811{
3812	u64 stats[__TCP_CHRONO_MAX], total = 0;
3813	enum tcp_chrono i;
3814
3815	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3816		stats[i] = tp->chrono_stat[i - 1];
3817		if (i == tp->chrono_type)
3818			stats[i] += tcp_jiffies32 - tp->chrono_start;
3819		stats[i] *= USEC_PER_SEC / HZ;
3820		total += stats[i];
3821	}
3822
3823	info->tcpi_busy_time = total;
3824	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3825	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3826}
3827
3828/* Return information about state of tcp endpoint in API format. */
3829void tcp_get_info(struct sock *sk, struct tcp_info *info)
3830{
3831	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3832	const struct inet_connection_sock *icsk = inet_csk(sk);
3833	unsigned long rate;
3834	u32 now;
3835	u64 rate64;
3836	bool slow;
 
3837
3838	memset(info, 0, sizeof(*info));
3839	if (sk->sk_type != SOCK_STREAM)
3840		return;
3841
3842	info->tcpi_state = inet_sk_state_load(sk);
3843
3844	/* Report meaningful fields for all TCP states, including listeners */
3845	rate = READ_ONCE(sk->sk_pacing_rate);
3846	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3847	info->tcpi_pacing_rate = rate64;
3848
3849	rate = READ_ONCE(sk->sk_max_pacing_rate);
3850	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3851	info->tcpi_max_pacing_rate = rate64;
3852
3853	info->tcpi_reordering = tp->reordering;
3854	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3855
3856	if (info->tcpi_state == TCP_LISTEN) {
3857		/* listeners aliased fields :
3858		 * tcpi_unacked -> Number of children ready for accept()
3859		 * tcpi_sacked  -> max backlog
3860		 */
3861		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3862		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3863		return;
3864	}
3865
3866	slow = lock_sock_fast(sk);
3867
3868	info->tcpi_ca_state = icsk->icsk_ca_state;
3869	info->tcpi_retransmits = icsk->icsk_retransmits;
3870	info->tcpi_probes = icsk->icsk_probes_out;
3871	info->tcpi_backoff = icsk->icsk_backoff;
3872
3873	if (tp->rx_opt.tstamp_ok)
3874		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3875	if (tcp_is_sack(tp))
3876		info->tcpi_options |= TCPI_OPT_SACK;
3877	if (tp->rx_opt.wscale_ok) {
3878		info->tcpi_options |= TCPI_OPT_WSCALE;
3879		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3880		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3881	}
3882
3883	if (tp->ecn_flags & TCP_ECN_OK)
3884		info->tcpi_options |= TCPI_OPT_ECN;
3885	if (tp->ecn_flags & TCP_ECN_SEEN)
3886		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3887	if (tp->syn_data_acked)
3888		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3889
3890	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3891	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3892	info->tcpi_snd_mss = tp->mss_cache;
3893	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3894
3895	info->tcpi_unacked = tp->packets_out;
3896	info->tcpi_sacked = tp->sacked_out;
3897
3898	info->tcpi_lost = tp->lost_out;
3899	info->tcpi_retrans = tp->retrans_out;
3900
3901	now = tcp_jiffies32;
3902	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3903	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3904	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3905
3906	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3907	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3908	info->tcpi_rtt = tp->srtt_us >> 3;
3909	info->tcpi_rttvar = tp->mdev_us >> 2;
3910	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3911	info->tcpi_advmss = tp->advmss;
3912
3913	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3914	info->tcpi_rcv_space = tp->rcvq_space.space;
3915
3916	info->tcpi_total_retrans = tp->total_retrans;
3917
3918	info->tcpi_bytes_acked = tp->bytes_acked;
3919	info->tcpi_bytes_received = tp->bytes_received;
3920	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3921	tcp_get_info_chrono_stats(tp, info);
3922
3923	info->tcpi_segs_out = tp->segs_out;
3924
3925	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3926	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3927	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3928
3929	info->tcpi_min_rtt = tcp_min_rtt(tp);
 
3930	info->tcpi_data_segs_out = tp->data_segs_out;
3931
3932	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3933	rate64 = tcp_compute_delivery_rate(tp);
3934	if (rate64)
3935		info->tcpi_delivery_rate = rate64;
3936	info->tcpi_delivered = tp->delivered;
3937	info->tcpi_delivered_ce = tp->delivered_ce;
3938	info->tcpi_bytes_sent = tp->bytes_sent;
3939	info->tcpi_bytes_retrans = tp->bytes_retrans;
3940	info->tcpi_dsack_dups = tp->dsack_dups;
3941	info->tcpi_reord_seen = tp->reord_seen;
3942	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3943	info->tcpi_snd_wnd = tp->snd_wnd;
3944	info->tcpi_rcv_wnd = tp->rcv_wnd;
3945	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3946	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3947	unlock_sock_fast(sk, slow);
3948}
3949EXPORT_SYMBOL_GPL(tcp_get_info);
3950
3951static size_t tcp_opt_stats_get_size(void)
3952{
3953	return
3954		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3955		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3956		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3957		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3958		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3959		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3960		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3961		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3962		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3963		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3964		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3965		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3966		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3967		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3968		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3969		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3970		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3971		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3972		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3973		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3974		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3975		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3976		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3977		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3978		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3979		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3980		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3981		0;
3982}
3983
3984/* Returns TTL or hop limit of an incoming packet from skb. */
3985static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3986{
3987	if (skb->protocol == htons(ETH_P_IP))
3988		return ip_hdr(skb)->ttl;
3989	else if (skb->protocol == htons(ETH_P_IPV6))
3990		return ipv6_hdr(skb)->hop_limit;
3991	else
3992		return 0;
3993}
3994
3995struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3996					       const struct sk_buff *orig_skb,
3997					       const struct sk_buff *ack_skb)
3998{
3999	const struct tcp_sock *tp = tcp_sk(sk);
4000	struct sk_buff *stats;
4001	struct tcp_info info;
4002	unsigned long rate;
4003	u64 rate64;
 
4004
4005	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
 
 
4006	if (!stats)
4007		return NULL;
4008
4009	tcp_get_info_chrono_stats(tp, &info);
4010	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4011			  info.tcpi_busy_time, TCP_NLA_PAD);
4012	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4013			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4014	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4015			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4016	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4017			  tp->data_segs_out, TCP_NLA_PAD);
4018	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4019			  tp->total_retrans, TCP_NLA_PAD);
4020
4021	rate = READ_ONCE(sk->sk_pacing_rate);
4022	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4023	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4024
4025	rate64 = tcp_compute_delivery_rate(tp);
4026	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4027
4028	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4029	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4030	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4031
4032	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4033	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4034	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4035	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4036	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4037
4038	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4039	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4040
4041	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4042			  TCP_NLA_PAD);
4043	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4044			  TCP_NLA_PAD);
4045	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4046	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4047	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4048	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4049	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4050		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4051	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4052			  TCP_NLA_PAD);
4053	if (ack_skb)
4054		nla_put_u8(stats, TCP_NLA_TTL,
4055			   tcp_skb_ttl_or_hop_limit(ack_skb));
4056
4057	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4058	return stats;
4059}
4060
4061int do_tcp_getsockopt(struct sock *sk, int level,
4062		      int optname, sockptr_t optval, sockptr_t optlen)
4063{
4064	struct inet_connection_sock *icsk = inet_csk(sk);
4065	struct tcp_sock *tp = tcp_sk(sk);
4066	struct net *net = sock_net(sk);
4067	int val, len;
4068
4069	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4070		return -EFAULT;
4071
4072	len = min_t(unsigned int, len, sizeof(int));
4073
4074	if (len < 0)
4075		return -EINVAL;
4076
4077	switch (optname) {
4078	case TCP_MAXSEG:
4079		val = tp->mss_cache;
4080		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4081			val = tp->rx_opt.user_mss;
4082		if (tp->repair)
4083			val = tp->rx_opt.mss_clamp;
4084		break;
4085	case TCP_NODELAY:
4086		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4087		break;
4088	case TCP_CORK:
4089		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4090		break;
4091	case TCP_KEEPIDLE:
4092		val = keepalive_time_when(tp) / HZ;
4093		break;
4094	case TCP_KEEPINTVL:
4095		val = keepalive_intvl_when(tp) / HZ;
4096		break;
4097	case TCP_KEEPCNT:
4098		val = keepalive_probes(tp);
4099		break;
4100	case TCP_SYNCNT:
4101		val = icsk->icsk_syn_retries ? :
4102			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4103		break;
4104	case TCP_LINGER2:
4105		val = tp->linger2;
4106		if (val >= 0)
4107			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4108		break;
4109	case TCP_DEFER_ACCEPT:
4110		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
4111				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
4112		break;
4113	case TCP_WINDOW_CLAMP:
4114		val = tp->window_clamp;
4115		break;
4116	case TCP_INFO: {
4117		struct tcp_info info;
4118
4119		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4120			return -EFAULT;
4121
4122		tcp_get_info(sk, &info);
4123
4124		len = min_t(unsigned int, len, sizeof(info));
4125		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4126			return -EFAULT;
4127		if (copy_to_sockptr(optval, &info, len))
4128			return -EFAULT;
4129		return 0;
4130	}
4131	case TCP_CC_INFO: {
4132		const struct tcp_congestion_ops *ca_ops;
4133		union tcp_cc_info info;
4134		size_t sz = 0;
4135		int attr;
4136
4137		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4138			return -EFAULT;
4139
4140		ca_ops = icsk->icsk_ca_ops;
4141		if (ca_ops && ca_ops->get_info)
4142			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4143
4144		len = min_t(unsigned int, len, sz);
4145		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4146			return -EFAULT;
4147		if (copy_to_sockptr(optval, &info, len))
4148			return -EFAULT;
4149		return 0;
4150	}
4151	case TCP_QUICKACK:
4152		val = !inet_csk_in_pingpong_mode(sk);
4153		break;
4154
4155	case TCP_CONGESTION:
4156		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4157			return -EFAULT;
4158		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4159		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4160			return -EFAULT;
4161		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4162			return -EFAULT;
4163		return 0;
4164
4165	case TCP_ULP:
4166		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4167			return -EFAULT;
4168		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4169		if (!icsk->icsk_ulp_ops) {
4170			len = 0;
4171			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4172				return -EFAULT;
4173			return 0;
4174		}
4175		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4176			return -EFAULT;
4177		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4178			return -EFAULT;
4179		return 0;
4180
4181	case TCP_FASTOPEN_KEY: {
4182		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4183		unsigned int key_len;
4184
4185		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4186			return -EFAULT;
4187
4188		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4189				TCP_FASTOPEN_KEY_LENGTH;
4190		len = min_t(unsigned int, len, key_len);
4191		if (copy_to_sockptr(optlen, &len, sizeof(int)))
 
 
 
 
 
 
4192			return -EFAULT;
4193		if (copy_to_sockptr(optval, key, len))
4194			return -EFAULT;
4195		return 0;
4196	}
4197	case TCP_THIN_LINEAR_TIMEOUTS:
4198		val = tp->thin_lto;
4199		break;
4200
4201	case TCP_THIN_DUPACK:
4202		val = 0;
4203		break;
4204
4205	case TCP_REPAIR:
4206		val = tp->repair;
4207		break;
4208
4209	case TCP_REPAIR_QUEUE:
4210		if (tp->repair)
4211			val = tp->repair_queue;
4212		else
4213			return -EINVAL;
4214		break;
4215
4216	case TCP_REPAIR_WINDOW: {
4217		struct tcp_repair_window opt;
4218
4219		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4220			return -EFAULT;
4221
4222		if (len != sizeof(opt))
4223			return -EINVAL;
4224
4225		if (!tp->repair)
4226			return -EPERM;
4227
4228		opt.snd_wl1	= tp->snd_wl1;
4229		opt.snd_wnd	= tp->snd_wnd;
4230		opt.max_window	= tp->max_window;
4231		opt.rcv_wnd	= tp->rcv_wnd;
4232		opt.rcv_wup	= tp->rcv_wup;
4233
4234		if (copy_to_sockptr(optval, &opt, len))
4235			return -EFAULT;
4236		return 0;
4237	}
4238	case TCP_QUEUE_SEQ:
4239		if (tp->repair_queue == TCP_SEND_QUEUE)
4240			val = tp->write_seq;
4241		else if (tp->repair_queue == TCP_RECV_QUEUE)
4242			val = tp->rcv_nxt;
4243		else
4244			return -EINVAL;
4245		break;
4246
4247	case TCP_USER_TIMEOUT:
4248		val = icsk->icsk_user_timeout;
4249		break;
4250
4251	case TCP_FASTOPEN:
4252		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4253		break;
4254
4255	case TCP_FASTOPEN_CONNECT:
4256		val = tp->fastopen_connect;
4257		break;
4258
4259	case TCP_FASTOPEN_NO_COOKIE:
4260		val = tp->fastopen_no_cookie;
4261		break;
4262
4263	case TCP_TX_DELAY:
4264		val = tp->tcp_tx_delay;
4265		break;
4266
4267	case TCP_TIMESTAMP:
4268		val = tcp_time_stamp_raw() + tp->tsoffset;
4269		break;
4270	case TCP_NOTSENT_LOWAT:
4271		val = tp->notsent_lowat;
4272		break;
4273	case TCP_INQ:
4274		val = tp->recvmsg_inq;
4275		break;
4276	case TCP_SAVE_SYN:
4277		val = tp->save_syn;
4278		break;
4279	case TCP_SAVED_SYN: {
4280		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4281			return -EFAULT;
4282
4283		sockopt_lock_sock(sk);
4284		if (tp->saved_syn) {
4285			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4286				len = tcp_saved_syn_len(tp->saved_syn);
4287				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4288					sockopt_release_sock(sk);
4289					return -EFAULT;
4290				}
4291				sockopt_release_sock(sk);
4292				return -EINVAL;
4293			}
4294			len = tcp_saved_syn_len(tp->saved_syn);
4295			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4296				sockopt_release_sock(sk);
4297				return -EFAULT;
4298			}
4299			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4300				sockopt_release_sock(sk);
4301				return -EFAULT;
4302			}
4303			tcp_saved_syn_free(tp);
4304			sockopt_release_sock(sk);
4305		} else {
4306			sockopt_release_sock(sk);
4307			len = 0;
4308			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4309				return -EFAULT;
4310		}
4311		return 0;
4312	}
4313#ifdef CONFIG_MMU
4314	case TCP_ZEROCOPY_RECEIVE: {
4315		struct scm_timestamping_internal tss;
4316		struct tcp_zerocopy_receive zc = {};
4317		int err;
4318
4319		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4320			return -EFAULT;
4321		if (len < 0 ||
4322		    len < offsetofend(struct tcp_zerocopy_receive, length))
4323			return -EINVAL;
4324		if (unlikely(len > sizeof(zc))) {
4325			err = check_zeroed_sockptr(optval, sizeof(zc),
4326						   len - sizeof(zc));
4327			if (err < 1)
4328				return err == 0 ? -EINVAL : err;
4329			len = sizeof(zc);
4330			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4331				return -EFAULT;
4332		}
4333		if (copy_from_sockptr(&zc, optval, len))
4334			return -EFAULT;
4335		if (zc.reserved)
4336			return -EINVAL;
4337		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4338			return -EINVAL;
4339		sockopt_lock_sock(sk);
4340		err = tcp_zerocopy_receive(sk, &zc, &tss);
4341		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4342							  &zc, &len, err);
4343		sockopt_release_sock(sk);
4344		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4345			goto zerocopy_rcv_cmsg;
4346		switch (len) {
4347		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4348			goto zerocopy_rcv_cmsg;
4349		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4350		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4351		case offsetofend(struct tcp_zerocopy_receive, flags):
4352		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4353		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4354		case offsetofend(struct tcp_zerocopy_receive, err):
4355			goto zerocopy_rcv_sk_err;
4356		case offsetofend(struct tcp_zerocopy_receive, inq):
4357			goto zerocopy_rcv_inq;
4358		case offsetofend(struct tcp_zerocopy_receive, length):
4359		default:
4360			goto zerocopy_rcv_out;
4361		}
4362zerocopy_rcv_cmsg:
4363		if (zc.msg_flags & TCP_CMSG_TS)
4364			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4365		else
4366			zc.msg_flags = 0;
4367zerocopy_rcv_sk_err:
4368		if (!err)
4369			zc.err = sock_error(sk);
4370zerocopy_rcv_inq:
4371		zc.inq = tcp_inq_hint(sk);
4372zerocopy_rcv_out:
4373		if (!err && copy_to_sockptr(optval, &zc, len))
4374			err = -EFAULT;
4375		return err;
4376	}
4377#endif
4378	default:
4379		return -ENOPROTOOPT;
4380	}
4381
4382	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4383		return -EFAULT;
4384	if (copy_to_sockptr(optval, &val, len))
4385		return -EFAULT;
4386	return 0;
4387}
4388
4389bool tcp_bpf_bypass_getsockopt(int level, int optname)
4390{
4391	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4392	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4393	 */
4394	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4395		return true;
4396
4397	return false;
4398}
4399EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4400
4401int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4402		   int __user *optlen)
4403{
4404	struct inet_connection_sock *icsk = inet_csk(sk);
4405
4406	if (level != SOL_TCP)
4407		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4408		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4409								optval, optlen);
4410	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4411				 USER_SOCKPTR(optlen));
4412}
4413EXPORT_SYMBOL(tcp_getsockopt);
4414
 
 
 
 
 
 
 
 
 
 
 
 
4415#ifdef CONFIG_TCP_MD5SIG
4416static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4417static DEFINE_MUTEX(tcp_md5sig_mutex);
4418static bool tcp_md5sig_pool_populated = false;
4419
4420static void __tcp_alloc_md5sig_pool(void)
4421{
4422	struct crypto_ahash *hash;
4423	int cpu;
4424
4425	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4426	if (IS_ERR(hash))
4427		return;
4428
4429	for_each_possible_cpu(cpu) {
4430		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4431		struct ahash_request *req;
4432
4433		if (!scratch) {
4434			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4435					       sizeof(struct tcphdr),
4436					       GFP_KERNEL,
4437					       cpu_to_node(cpu));
4438			if (!scratch)
4439				return;
4440			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4441		}
4442		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4443			continue;
4444
4445		req = ahash_request_alloc(hash, GFP_KERNEL);
4446		if (!req)
4447			return;
4448
4449		ahash_request_set_callback(req, 0, NULL, NULL);
4450
4451		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4452	}
4453	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4454	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4455	 */
4456	smp_wmb();
4457	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4458	 * and tcp_get_md5sig_pool().
4459	*/
4460	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4461}
4462
4463bool tcp_alloc_md5sig_pool(void)
4464{
4465	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4466	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4467		mutex_lock(&tcp_md5sig_mutex);
4468
4469		if (!tcp_md5sig_pool_populated)
4470			__tcp_alloc_md5sig_pool();
4471
4472		mutex_unlock(&tcp_md5sig_mutex);
4473	}
4474	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4475	return READ_ONCE(tcp_md5sig_pool_populated);
4476}
4477EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4478
4479
4480/**
4481 *	tcp_get_md5sig_pool - get md5sig_pool for this user
4482 *
4483 *	We use percpu structure, so if we succeed, we exit with preemption
4484 *	and BH disabled, to make sure another thread or softirq handling
4485 *	wont try to get same context.
4486 */
4487struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4488{
4489	local_bh_disable();
4490
4491	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4492	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4493		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4494		smp_rmb();
4495		return this_cpu_ptr(&tcp_md5sig_pool);
4496	}
4497	local_bh_enable();
4498	return NULL;
4499}
4500EXPORT_SYMBOL(tcp_get_md5sig_pool);
4501
4502int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4503			  const struct sk_buff *skb, unsigned int header_len)
4504{
4505	struct scatterlist sg;
4506	const struct tcphdr *tp = tcp_hdr(skb);
4507	struct ahash_request *req = hp->md5_req;
4508	unsigned int i;
4509	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4510					   skb_headlen(skb) - header_len : 0;
4511	const struct skb_shared_info *shi = skb_shinfo(skb);
4512	struct sk_buff *frag_iter;
4513
4514	sg_init_table(&sg, 1);
4515
4516	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4517	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4518	if (crypto_ahash_update(req))
4519		return 1;
4520
4521	for (i = 0; i < shi->nr_frags; ++i) {
4522		const skb_frag_t *f = &shi->frags[i];
4523		unsigned int offset = skb_frag_off(f);
4524		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4525
4526		sg_set_page(&sg, page, skb_frag_size(f),
4527			    offset_in_page(offset));
4528		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4529		if (crypto_ahash_update(req))
4530			return 1;
4531	}
4532
4533	skb_walk_frags(skb, frag_iter)
4534		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4535			return 1;
4536
4537	return 0;
4538}
4539EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4540
4541int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4542{
4543	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4544	struct scatterlist sg;
4545
4546	sg_init_one(&sg, key->key, keylen);
4547	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4548
4549	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4550	return data_race(crypto_ahash_update(hp->md5_req));
4551}
4552EXPORT_SYMBOL(tcp_md5_hash_key);
4553
4554/* Called with rcu_read_lock() */
4555enum skb_drop_reason
4556tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4557		     const void *saddr, const void *daddr,
4558		     int family, int dif, int sdif)
4559{
4560	/*
4561	 * This gets called for each TCP segment that arrives
4562	 * so we want to be efficient.
4563	 * We have 3 drop cases:
4564	 * o No MD5 hash and one expected.
4565	 * o MD5 hash and we're not expecting one.
4566	 * o MD5 hash and its wrong.
4567	 */
4568	const __u8 *hash_location = NULL;
4569	struct tcp_md5sig_key *hash_expected;
4570	const struct tcphdr *th = tcp_hdr(skb);
4571	struct tcp_sock *tp = tcp_sk(sk);
4572	int genhash, l3index;
4573	u8 newhash[16];
4574
4575	/* sdif set, means packet ingressed via a device
4576	 * in an L3 domain and dif is set to the l3mdev
4577	 */
4578	l3index = sdif ? dif : 0;
4579
4580	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4581	hash_location = tcp_parse_md5sig_option(th);
4582
4583	/* We've parsed the options - do we have a hash? */
4584	if (!hash_expected && !hash_location)
4585		return SKB_NOT_DROPPED_YET;
4586
4587	if (hash_expected && !hash_location) {
4588		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4589		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4590	}
4591
4592	if (!hash_expected && hash_location) {
4593		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4594		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4595	}
4596
4597	/* Check the signature.
4598	 * To support dual stack listeners, we need to handle
4599	 * IPv4-mapped case.
4600	 */
4601	if (family == AF_INET)
4602		genhash = tcp_v4_md5_hash_skb(newhash,
4603					      hash_expected,
4604					      NULL, skb);
4605	else
4606		genhash = tp->af_specific->calc_md5_hash(newhash,
4607							 hash_expected,
4608							 NULL, skb);
4609
4610	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4611		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4612		if (family == AF_INET) {
4613			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4614					saddr, ntohs(th->source),
4615					daddr, ntohs(th->dest),
4616					genhash ? " tcp_v4_calc_md5_hash failed"
4617					: "", l3index);
4618		} else {
4619			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4620					genhash ? "failed" : "mismatch",
4621					saddr, ntohs(th->source),
4622					daddr, ntohs(th->dest), l3index);
4623		}
4624		return SKB_DROP_REASON_TCP_MD5FAILURE;
4625	}
4626	return SKB_NOT_DROPPED_YET;
4627}
4628EXPORT_SYMBOL(tcp_inbound_md5_hash);
4629
4630#endif
4631
4632void tcp_done(struct sock *sk)
4633{
4634	struct request_sock *req;
4635
4636	/* We might be called with a new socket, after
4637	 * inet_csk_prepare_forced_close() has been called
4638	 * so we can not use lockdep_sock_is_held(sk)
4639	 */
4640	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4641
4642	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4643		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4644
4645	tcp_set_state(sk, TCP_CLOSE);
4646	tcp_clear_xmit_timers(sk);
4647	if (req)
4648		reqsk_fastopen_remove(sk, req, false);
4649
4650	sk->sk_shutdown = SHUTDOWN_MASK;
4651
4652	if (!sock_flag(sk, SOCK_DEAD))
4653		sk->sk_state_change(sk);
4654	else
4655		inet_csk_destroy_sock(sk);
4656}
4657EXPORT_SYMBOL_GPL(tcp_done);
4658
4659int tcp_abort(struct sock *sk, int err)
4660{
4661	int state = inet_sk_state_load(sk);
4662
4663	if (state == TCP_NEW_SYN_RECV) {
4664		struct request_sock *req = inet_reqsk(sk);
4665
4666		local_bh_disable();
4667		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4668		local_bh_enable();
4669		return 0;
4670	}
4671	if (state == TCP_TIME_WAIT) {
4672		struct inet_timewait_sock *tw = inet_twsk(sk);
4673
4674		refcount_inc(&tw->tw_refcnt);
4675		local_bh_disable();
4676		inet_twsk_deschedule_put(tw);
4677		local_bh_enable();
4678		return 0;
4679	}
4680
4681	/* Don't race with userspace socket closes such as tcp_close. */
4682	lock_sock(sk);
4683
4684	if (sk->sk_state == TCP_LISTEN) {
4685		tcp_set_state(sk, TCP_CLOSE);
4686		inet_csk_listen_stop(sk);
4687	}
4688
4689	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4690	local_bh_disable();
4691	bh_lock_sock(sk);
4692
4693	if (!sock_flag(sk, SOCK_DEAD)) {
4694		sk->sk_err = err;
4695		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4696		smp_wmb();
4697		sk_error_report(sk);
4698		if (tcp_need_reset(sk->sk_state))
4699			tcp_send_active_reset(sk, GFP_ATOMIC);
4700		tcp_done(sk);
4701	}
4702
4703	bh_unlock_sock(sk);
4704	local_bh_enable();
4705	tcp_write_queue_purge(sk);
4706	release_sock(sk);
4707	return 0;
4708}
4709EXPORT_SYMBOL_GPL(tcp_abort);
4710
4711extern struct tcp_congestion_ops tcp_reno;
4712
4713static __initdata unsigned long thash_entries;
4714static int __init set_thash_entries(char *str)
4715{
4716	ssize_t ret;
4717
4718	if (!str)
4719		return 0;
4720
4721	ret = kstrtoul(str, 0, &thash_entries);
4722	if (ret)
4723		return 0;
4724
4725	return 1;
4726}
4727__setup("thash_entries=", set_thash_entries);
4728
4729static void __init tcp_init_mem(void)
4730{
4731	unsigned long limit = nr_free_buffer_pages() / 16;
4732
4733	limit = max(limit, 128UL);
4734	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4735	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4736	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4737}
4738
4739void __init tcp_init(void)
4740{
4741	int max_rshare, max_wshare, cnt;
4742	unsigned long limit;
4743	unsigned int i;
4744
4745	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4746	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4747		     sizeof_field(struct sk_buff, cb));
4748
4749	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4750
4751	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4752	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4753
4754	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4755			    thash_entries, 21,  /* one slot per 2 MB*/
4756			    0, 64 * 1024);
4757	tcp_hashinfo.bind_bucket_cachep =
4758		kmem_cache_create("tcp_bind_bucket",
4759				  sizeof(struct inet_bind_bucket), 0,
4760				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4761				  SLAB_ACCOUNT,
4762				  NULL);
4763	tcp_hashinfo.bind2_bucket_cachep =
4764		kmem_cache_create("tcp_bind2_bucket",
4765				  sizeof(struct inet_bind2_bucket), 0,
4766				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4767				  SLAB_ACCOUNT,
4768				  NULL);
4769
4770	/* Size and allocate the main established and bind bucket
4771	 * hash tables.
4772	 *
4773	 * The methodology is similar to that of the buffer cache.
4774	 */
4775	tcp_hashinfo.ehash =
4776		alloc_large_system_hash("TCP established",
4777					sizeof(struct inet_ehash_bucket),
4778					thash_entries,
4779					17, /* one slot per 128 KB of memory */
4780					0,
4781					NULL,
4782					&tcp_hashinfo.ehash_mask,
4783					0,
4784					thash_entries ? 0 : 512 * 1024);
4785	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4786		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4787
4788	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4789		panic("TCP: failed to alloc ehash_locks");
4790	tcp_hashinfo.bhash =
4791		alloc_large_system_hash("TCP bind",
4792					2 * sizeof(struct inet_bind_hashbucket),
4793					tcp_hashinfo.ehash_mask + 1,
4794					17, /* one slot per 128 KB of memory */
4795					0,
4796					&tcp_hashinfo.bhash_size,
4797					NULL,
4798					0,
4799					64 * 1024);
4800	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4801	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4802	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4803		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4804		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4805		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4806		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4807	}
4808
4809	tcp_hashinfo.pernet = false;
4810
4811	cnt = tcp_hashinfo.ehash_mask + 1;
4812	sysctl_tcp_max_orphans = cnt / 2;
4813
4814	tcp_init_mem();
4815	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4816	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4817	max_wshare = min(4UL*1024*1024, limit);
4818	max_rshare = min(6UL*1024*1024, limit);
4819
4820	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4821	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4822	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4823
4824	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4825	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4826	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4827
4828	pr_info("Hash tables configured (established %u bind %u)\n",
4829		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4830
4831	tcp_v4_init();
4832	tcp_metrics_init();
4833	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4834	tcp_tasklet_init();
4835	mptcp_init();
4836}