Loading...
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248#define pr_fmt(fmt) "TCP: " fmt
249
250#include <crypto/hash.h>
251#include <linux/kernel.h>
252#include <linux/module.h>
253#include <linux/types.h>
254#include <linux/fcntl.h>
255#include <linux/poll.h>
256#include <linux/inet_diag.h>
257#include <linux/init.h>
258#include <linux/fs.h>
259#include <linux/skbuff.h>
260#include <linux/scatterlist.h>
261#include <linux/splice.h>
262#include <linux/net.h>
263#include <linux/socket.h>
264#include <linux/random.h>
265#include <linux/bootmem.h>
266#include <linux/highmem.h>
267#include <linux/swap.h>
268#include <linux/cache.h>
269#include <linux/err.h>
270#include <linux/time.h>
271#include <linux/slab.h>
272#include <linux/errqueue.h>
273#include <linux/static_key.h>
274
275#include <net/icmp.h>
276#include <net/inet_common.h>
277#include <net/tcp.h>
278#include <net/xfrm.h>
279#include <net/ip.h>
280#include <net/sock.h>
281
282#include <linux/uaccess.h>
283#include <asm/ioctls.h>
284#include <net/busy_poll.h>
285
286struct percpu_counter tcp_orphan_count;
287EXPORT_SYMBOL_GPL(tcp_orphan_count);
288
289long sysctl_tcp_mem[3] __read_mostly;
290EXPORT_SYMBOL(sysctl_tcp_mem);
291
292atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
293EXPORT_SYMBOL(tcp_memory_allocated);
294
295#if IS_ENABLED(CONFIG_SMC)
296DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
297EXPORT_SYMBOL(tcp_have_smc);
298#endif
299
300/*
301 * Current number of TCP sockets.
302 */
303struct percpu_counter tcp_sockets_allocated;
304EXPORT_SYMBOL(tcp_sockets_allocated);
305
306/*
307 * TCP splice context
308 */
309struct tcp_splice_state {
310 struct pipe_inode_info *pipe;
311 size_t len;
312 unsigned int flags;
313};
314
315/*
316 * Pressure flag: try to collapse.
317 * Technical note: it is used by multiple contexts non atomically.
318 * All the __sk_mem_schedule() is of this nature: accounting
319 * is strict, actions are advisory and have some latency.
320 */
321unsigned long tcp_memory_pressure __read_mostly;
322EXPORT_SYMBOL_GPL(tcp_memory_pressure);
323
324void tcp_enter_memory_pressure(struct sock *sk)
325{
326 unsigned long val;
327
328 if (tcp_memory_pressure)
329 return;
330 val = jiffies;
331
332 if (!val)
333 val--;
334 if (!cmpxchg(&tcp_memory_pressure, 0, val))
335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
336}
337EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
338
339void tcp_leave_memory_pressure(struct sock *sk)
340{
341 unsigned long val;
342
343 if (!tcp_memory_pressure)
344 return;
345 val = xchg(&tcp_memory_pressure, 0);
346 if (val)
347 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
348 jiffies_to_msecs(jiffies - val));
349}
350EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
351
352/* Convert seconds to retransmits based on initial and max timeout */
353static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
354{
355 u8 res = 0;
356
357 if (seconds > 0) {
358 int period = timeout;
359
360 res = 1;
361 while (seconds > period && res < 255) {
362 res++;
363 timeout <<= 1;
364 if (timeout > rto_max)
365 timeout = rto_max;
366 period += timeout;
367 }
368 }
369 return res;
370}
371
372/* Convert retransmits to seconds based on initial and max timeout */
373static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
374{
375 int period = 0;
376
377 if (retrans > 0) {
378 period = timeout;
379 while (--retrans) {
380 timeout <<= 1;
381 if (timeout > rto_max)
382 timeout = rto_max;
383 period += timeout;
384 }
385 }
386 return period;
387}
388
389static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
390{
391 u32 rate = READ_ONCE(tp->rate_delivered);
392 u32 intv = READ_ONCE(tp->rate_interval_us);
393 u64 rate64 = 0;
394
395 if (rate && intv) {
396 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
397 do_div(rate64, intv);
398 }
399 return rate64;
400}
401
402/* Address-family independent initialization for a tcp_sock.
403 *
404 * NOTE: A lot of things set to zero explicitly by call to
405 * sk_alloc() so need not be done here.
406 */
407void tcp_init_sock(struct sock *sk)
408{
409 struct inet_connection_sock *icsk = inet_csk(sk);
410 struct tcp_sock *tp = tcp_sk(sk);
411
412 tp->out_of_order_queue = RB_ROOT;
413 sk->tcp_rtx_queue = RB_ROOT;
414 tcp_init_xmit_timers(sk);
415 INIT_LIST_HEAD(&tp->tsq_node);
416 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
417
418 icsk->icsk_rto = TCP_TIMEOUT_INIT;
419 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
420 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
421
422 /* So many TCP implementations out there (incorrectly) count the
423 * initial SYN frame in their delayed-ACK and congestion control
424 * algorithms that we must have the following bandaid to talk
425 * efficiently to them. -DaveM
426 */
427 tp->snd_cwnd = TCP_INIT_CWND;
428
429 /* There's a bubble in the pipe until at least the first ACK. */
430 tp->app_limited = ~0U;
431
432 /* See draft-stevens-tcpca-spec-01 for discussion of the
433 * initialization of these values.
434 */
435 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
436 tp->snd_cwnd_clamp = ~0;
437 tp->mss_cache = TCP_MSS_DEFAULT;
438
439 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
440 tcp_assign_congestion_control(sk);
441
442 tp->tsoffset = 0;
443 tp->rack.reo_wnd_steps = 1;
444
445 sk->sk_state = TCP_CLOSE;
446
447 sk->sk_write_space = sk_stream_write_space;
448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
449
450 icsk->icsk_sync_mss = tcp_sync_mss;
451
452 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
453 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
454
455 sk_sockets_allocated_inc(sk);
456 sk->sk_route_forced_caps = NETIF_F_GSO;
457}
458EXPORT_SYMBOL(tcp_init_sock);
459
460void tcp_init_transfer(struct sock *sk, int bpf_op)
461{
462 struct inet_connection_sock *icsk = inet_csk(sk);
463
464 tcp_mtup_init(sk);
465 icsk->icsk_af_ops->rebuild_header(sk);
466 tcp_init_metrics(sk);
467 tcp_call_bpf(sk, bpf_op, 0, NULL);
468 tcp_init_congestion_control(sk);
469 tcp_init_buffer_space(sk);
470}
471
472static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
473{
474 struct sk_buff *skb = tcp_write_queue_tail(sk);
475
476 if (tsflags && skb) {
477 struct skb_shared_info *shinfo = skb_shinfo(skb);
478 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
479
480 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
481 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
482 tcb->txstamp_ack = 1;
483 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
484 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
485 }
486}
487
488static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
489 int target, struct sock *sk)
490{
491 return (tp->rcv_nxt - tp->copied_seq >= target) ||
492 (sk->sk_prot->stream_memory_read ?
493 sk->sk_prot->stream_memory_read(sk) : false);
494}
495
496/*
497 * Wait for a TCP event.
498 *
499 * Note that we don't need to lock the socket, as the upper poll layers
500 * take care of normal races (between the test and the event) and we don't
501 * go look at any of the socket buffers directly.
502 */
503__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
504{
505 __poll_t mask;
506 struct sock *sk = sock->sk;
507 const struct tcp_sock *tp = tcp_sk(sk);
508 int state;
509
510 sock_poll_wait(file, sk_sleep(sk), wait);
511
512 state = inet_sk_state_load(sk);
513 if (state == TCP_LISTEN)
514 return inet_csk_listen_poll(sk);
515
516 /* Socket is not locked. We are protected from async events
517 * by poll logic and correct handling of state changes
518 * made by other threads is impossible in any case.
519 */
520
521 mask = 0;
522
523 /*
524 * EPOLLHUP is certainly not done right. But poll() doesn't
525 * have a notion of HUP in just one direction, and for a
526 * socket the read side is more interesting.
527 *
528 * Some poll() documentation says that EPOLLHUP is incompatible
529 * with the EPOLLOUT/POLLWR flags, so somebody should check this
530 * all. But careful, it tends to be safer to return too many
531 * bits than too few, and you can easily break real applications
532 * if you don't tell them that something has hung up!
533 *
534 * Check-me.
535 *
536 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
537 * our fs/select.c). It means that after we received EOF,
538 * poll always returns immediately, making impossible poll() on write()
539 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
540 * if and only if shutdown has been made in both directions.
541 * Actually, it is interesting to look how Solaris and DUX
542 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
543 * then we could set it on SND_SHUTDOWN. BTW examples given
544 * in Stevens' books assume exactly this behaviour, it explains
545 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
546 *
547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
548 * blocking on fresh not-connected or disconnected socket. --ANK
549 */
550 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
551 mask |= EPOLLHUP;
552 if (sk->sk_shutdown & RCV_SHUTDOWN)
553 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
554
555 /* Connected or passive Fast Open socket? */
556 if (state != TCP_SYN_SENT &&
557 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
558 int target = sock_rcvlowat(sk, 0, INT_MAX);
559
560 if (tp->urg_seq == tp->copied_seq &&
561 !sock_flag(sk, SOCK_URGINLINE) &&
562 tp->urg_data)
563 target++;
564
565 if (tcp_stream_is_readable(tp, target, sk))
566 mask |= EPOLLIN | EPOLLRDNORM;
567
568 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
569 if (sk_stream_is_writeable(sk)) {
570 mask |= EPOLLOUT | EPOLLWRNORM;
571 } else { /* send SIGIO later */
572 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
573 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
574
575 /* Race breaker. If space is freed after
576 * wspace test but before the flags are set,
577 * IO signal will be lost. Memory barrier
578 * pairs with the input side.
579 */
580 smp_mb__after_atomic();
581 if (sk_stream_is_writeable(sk))
582 mask |= EPOLLOUT | EPOLLWRNORM;
583 }
584 } else
585 mask |= EPOLLOUT | EPOLLWRNORM;
586
587 if (tp->urg_data & TCP_URG_VALID)
588 mask |= EPOLLPRI;
589 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
590 /* Active TCP fastopen socket with defer_connect
591 * Return EPOLLOUT so application can call write()
592 * in order for kernel to generate SYN+data
593 */
594 mask |= EPOLLOUT | EPOLLWRNORM;
595 }
596 /* This barrier is coupled with smp_wmb() in tcp_reset() */
597 smp_rmb();
598 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
599 mask |= EPOLLERR;
600
601 return mask;
602}
603EXPORT_SYMBOL(tcp_poll);
604
605int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
606{
607 struct tcp_sock *tp = tcp_sk(sk);
608 int answ;
609 bool slow;
610
611 switch (cmd) {
612 case SIOCINQ:
613 if (sk->sk_state == TCP_LISTEN)
614 return -EINVAL;
615
616 slow = lock_sock_fast(sk);
617 answ = tcp_inq(sk);
618 unlock_sock_fast(sk, slow);
619 break;
620 case SIOCATMARK:
621 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
622 break;
623 case SIOCOUTQ:
624 if (sk->sk_state == TCP_LISTEN)
625 return -EINVAL;
626
627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 answ = 0;
629 else
630 answ = tp->write_seq - tp->snd_una;
631 break;
632 case SIOCOUTQNSD:
633 if (sk->sk_state == TCP_LISTEN)
634 return -EINVAL;
635
636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 answ = 0;
638 else
639 answ = tp->write_seq - tp->snd_nxt;
640 break;
641 default:
642 return -ENOIOCTLCMD;
643 }
644
645 return put_user(answ, (int __user *)arg);
646}
647EXPORT_SYMBOL(tcp_ioctl);
648
649static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
650{
651 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
652 tp->pushed_seq = tp->write_seq;
653}
654
655static inline bool forced_push(const struct tcp_sock *tp)
656{
657 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
658}
659
660static void skb_entail(struct sock *sk, struct sk_buff *skb)
661{
662 struct tcp_sock *tp = tcp_sk(sk);
663 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
664
665 skb->csum = 0;
666 tcb->seq = tcb->end_seq = tp->write_seq;
667 tcb->tcp_flags = TCPHDR_ACK;
668 tcb->sacked = 0;
669 __skb_header_release(skb);
670 tcp_add_write_queue_tail(sk, skb);
671 sk->sk_wmem_queued += skb->truesize;
672 sk_mem_charge(sk, skb->truesize);
673 if (tp->nonagle & TCP_NAGLE_PUSH)
674 tp->nonagle &= ~TCP_NAGLE_PUSH;
675
676 tcp_slow_start_after_idle_check(sk);
677}
678
679static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680{
681 if (flags & MSG_OOB)
682 tp->snd_up = tp->write_seq;
683}
684
685/* If a not yet filled skb is pushed, do not send it if
686 * we have data packets in Qdisc or NIC queues :
687 * Because TX completion will happen shortly, it gives a chance
688 * to coalesce future sendmsg() payload into this skb, without
689 * need for a timer, and with no latency trade off.
690 * As packets containing data payload have a bigger truesize
691 * than pure acks (dataless) packets, the last checks prevent
692 * autocorking if we only have an ACK in Qdisc/NIC queues,
693 * or if TX completion was delayed after we processed ACK packet.
694 */
695static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 int size_goal)
697{
698 return skb->len < size_goal &&
699 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
700 !tcp_rtx_queue_empty(sk) &&
701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
702}
703
704static void tcp_push(struct sock *sk, int flags, int mss_now,
705 int nonagle, int size_goal)
706{
707 struct tcp_sock *tp = tcp_sk(sk);
708 struct sk_buff *skb;
709
710 skb = tcp_write_queue_tail(sk);
711 if (!skb)
712 return;
713 if (!(flags & MSG_MORE) || forced_push(tp))
714 tcp_mark_push(tp, skb);
715
716 tcp_mark_urg(tp, flags);
717
718 if (tcp_should_autocork(sk, skb, size_goal)) {
719
720 /* avoid atomic op if TSQ_THROTTLED bit is already set */
721 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
723 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
724 }
725 /* It is possible TX completion already happened
726 * before we set TSQ_THROTTLED.
727 */
728 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
729 return;
730 }
731
732 if (flags & MSG_MORE)
733 nonagle = TCP_NAGLE_CORK;
734
735 __tcp_push_pending_frames(sk, mss_now, nonagle);
736}
737
738static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
739 unsigned int offset, size_t len)
740{
741 struct tcp_splice_state *tss = rd_desc->arg.data;
742 int ret;
743
744 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
745 min(rd_desc->count, len), tss->flags);
746 if (ret > 0)
747 rd_desc->count -= ret;
748 return ret;
749}
750
751static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
752{
753 /* Store TCP splice context information in read_descriptor_t. */
754 read_descriptor_t rd_desc = {
755 .arg.data = tss,
756 .count = tss->len,
757 };
758
759 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
760}
761
762/**
763 * tcp_splice_read - splice data from TCP socket to a pipe
764 * @sock: socket to splice from
765 * @ppos: position (not valid)
766 * @pipe: pipe to splice to
767 * @len: number of bytes to splice
768 * @flags: splice modifier flags
769 *
770 * Description:
771 * Will read pages from given socket and fill them into a pipe.
772 *
773 **/
774ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
775 struct pipe_inode_info *pipe, size_t len,
776 unsigned int flags)
777{
778 struct sock *sk = sock->sk;
779 struct tcp_splice_state tss = {
780 .pipe = pipe,
781 .len = len,
782 .flags = flags,
783 };
784 long timeo;
785 ssize_t spliced;
786 int ret;
787
788 sock_rps_record_flow(sk);
789 /*
790 * We can't seek on a socket input
791 */
792 if (unlikely(*ppos))
793 return -ESPIPE;
794
795 ret = spliced = 0;
796
797 lock_sock(sk);
798
799 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
800 while (tss.len) {
801 ret = __tcp_splice_read(sk, &tss);
802 if (ret < 0)
803 break;
804 else if (!ret) {
805 if (spliced)
806 break;
807 if (sock_flag(sk, SOCK_DONE))
808 break;
809 if (sk->sk_err) {
810 ret = sock_error(sk);
811 break;
812 }
813 if (sk->sk_shutdown & RCV_SHUTDOWN)
814 break;
815 if (sk->sk_state == TCP_CLOSE) {
816 /*
817 * This occurs when user tries to read
818 * from never connected socket.
819 */
820 if (!sock_flag(sk, SOCK_DONE))
821 ret = -ENOTCONN;
822 break;
823 }
824 if (!timeo) {
825 ret = -EAGAIN;
826 break;
827 }
828 /* if __tcp_splice_read() got nothing while we have
829 * an skb in receive queue, we do not want to loop.
830 * This might happen with URG data.
831 */
832 if (!skb_queue_empty(&sk->sk_receive_queue))
833 break;
834 sk_wait_data(sk, &timeo, NULL);
835 if (signal_pending(current)) {
836 ret = sock_intr_errno(timeo);
837 break;
838 }
839 continue;
840 }
841 tss.len -= ret;
842 spliced += ret;
843
844 if (!timeo)
845 break;
846 release_sock(sk);
847 lock_sock(sk);
848
849 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
850 (sk->sk_shutdown & RCV_SHUTDOWN) ||
851 signal_pending(current))
852 break;
853 }
854
855 release_sock(sk);
856
857 if (spliced)
858 return spliced;
859
860 return ret;
861}
862EXPORT_SYMBOL(tcp_splice_read);
863
864struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
865 bool force_schedule)
866{
867 struct sk_buff *skb;
868
869 /* The TCP header must be at least 32-bit aligned. */
870 size = ALIGN(size, 4);
871
872 if (unlikely(tcp_under_memory_pressure(sk)))
873 sk_mem_reclaim_partial(sk);
874
875 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
876 if (likely(skb)) {
877 bool mem_scheduled;
878
879 if (force_schedule) {
880 mem_scheduled = true;
881 sk_forced_mem_schedule(sk, skb->truesize);
882 } else {
883 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
884 }
885 if (likely(mem_scheduled)) {
886 skb_reserve(skb, sk->sk_prot->max_header);
887 /*
888 * Make sure that we have exactly size bytes
889 * available to the caller, no more, no less.
890 */
891 skb->reserved_tailroom = skb->end - skb->tail - size;
892 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
893 return skb;
894 }
895 __kfree_skb(skb);
896 } else {
897 sk->sk_prot->enter_memory_pressure(sk);
898 sk_stream_moderate_sndbuf(sk);
899 }
900 return NULL;
901}
902
903static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
904 int large_allowed)
905{
906 struct tcp_sock *tp = tcp_sk(sk);
907 u32 new_size_goal, size_goal;
908
909 if (!large_allowed)
910 return mss_now;
911
912 /* Note : tcp_tso_autosize() will eventually split this later */
913 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
914 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
915
916 /* We try hard to avoid divides here */
917 size_goal = tp->gso_segs * mss_now;
918 if (unlikely(new_size_goal < size_goal ||
919 new_size_goal >= size_goal + mss_now)) {
920 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
921 sk->sk_gso_max_segs);
922 size_goal = tp->gso_segs * mss_now;
923 }
924
925 return max(size_goal, mss_now);
926}
927
928static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
929{
930 int mss_now;
931
932 mss_now = tcp_current_mss(sk);
933 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
934
935 return mss_now;
936}
937
938ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
939 size_t size, int flags)
940{
941 struct tcp_sock *tp = tcp_sk(sk);
942 int mss_now, size_goal;
943 int err;
944 ssize_t copied;
945 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
946
947 /* Wait for a connection to finish. One exception is TCP Fast Open
948 * (passive side) where data is allowed to be sent before a connection
949 * is fully established.
950 */
951 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
952 !tcp_passive_fastopen(sk)) {
953 err = sk_stream_wait_connect(sk, &timeo);
954 if (err != 0)
955 goto out_err;
956 }
957
958 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
959
960 mss_now = tcp_send_mss(sk, &size_goal, flags);
961 copied = 0;
962
963 err = -EPIPE;
964 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
965 goto out_err;
966
967 while (size > 0) {
968 struct sk_buff *skb = tcp_write_queue_tail(sk);
969 int copy, i;
970 bool can_coalesce;
971
972 if (!skb || (copy = size_goal - skb->len) <= 0 ||
973 !tcp_skb_can_collapse_to(skb)) {
974new_segment:
975 if (!sk_stream_memory_free(sk))
976 goto wait_for_sndbuf;
977
978 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
979 tcp_rtx_and_write_queues_empty(sk));
980 if (!skb)
981 goto wait_for_memory;
982
983 skb_entail(sk, skb);
984 copy = size_goal;
985 }
986
987 if (copy > size)
988 copy = size;
989
990 i = skb_shinfo(skb)->nr_frags;
991 can_coalesce = skb_can_coalesce(skb, i, page, offset);
992 if (!can_coalesce && i >= sysctl_max_skb_frags) {
993 tcp_mark_push(tp, skb);
994 goto new_segment;
995 }
996 if (!sk_wmem_schedule(sk, copy))
997 goto wait_for_memory;
998
999 if (can_coalesce) {
1000 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1001 } else {
1002 get_page(page);
1003 skb_fill_page_desc(skb, i, page, offset, copy);
1004 }
1005
1006 if (!(flags & MSG_NO_SHARED_FRAGS))
1007 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1008
1009 skb->len += copy;
1010 skb->data_len += copy;
1011 skb->truesize += copy;
1012 sk->sk_wmem_queued += copy;
1013 sk_mem_charge(sk, copy);
1014 skb->ip_summed = CHECKSUM_PARTIAL;
1015 tp->write_seq += copy;
1016 TCP_SKB_CB(skb)->end_seq += copy;
1017 tcp_skb_pcount_set(skb, 0);
1018
1019 if (!copied)
1020 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1021
1022 copied += copy;
1023 offset += copy;
1024 size -= copy;
1025 if (!size)
1026 goto out;
1027
1028 if (skb->len < size_goal || (flags & MSG_OOB))
1029 continue;
1030
1031 if (forced_push(tp)) {
1032 tcp_mark_push(tp, skb);
1033 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1034 } else if (skb == tcp_send_head(sk))
1035 tcp_push_one(sk, mss_now);
1036 continue;
1037
1038wait_for_sndbuf:
1039 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1040wait_for_memory:
1041 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1042 TCP_NAGLE_PUSH, size_goal);
1043
1044 err = sk_stream_wait_memory(sk, &timeo);
1045 if (err != 0)
1046 goto do_error;
1047
1048 mss_now = tcp_send_mss(sk, &size_goal, flags);
1049 }
1050
1051out:
1052 if (copied) {
1053 tcp_tx_timestamp(sk, sk->sk_tsflags);
1054 if (!(flags & MSG_SENDPAGE_NOTLAST))
1055 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1056 }
1057 return copied;
1058
1059do_error:
1060 if (copied)
1061 goto out;
1062out_err:
1063 /* make sure we wake any epoll edge trigger waiter */
1064 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1065 err == -EAGAIN)) {
1066 sk->sk_write_space(sk);
1067 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1068 }
1069 return sk_stream_error(sk, flags, err);
1070}
1071EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1072
1073int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1074 size_t size, int flags)
1075{
1076 if (!(sk->sk_route_caps & NETIF_F_SG))
1077 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1078
1079 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1080
1081 return do_tcp_sendpages(sk, page, offset, size, flags);
1082}
1083EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1084
1085int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1086 size_t size, int flags)
1087{
1088 int ret;
1089
1090 lock_sock(sk);
1091 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1092 release_sock(sk);
1093
1094 return ret;
1095}
1096EXPORT_SYMBOL(tcp_sendpage);
1097
1098/* Do not bother using a page frag for very small frames.
1099 * But use this heuristic only for the first skb in write queue.
1100 *
1101 * Having no payload in skb->head allows better SACK shifting
1102 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1103 * write queue has less skbs.
1104 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1105 * This also speeds up tso_fragment(), since it wont fallback
1106 * to tcp_fragment().
1107 */
1108static int linear_payload_sz(bool first_skb)
1109{
1110 if (first_skb)
1111 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1112 return 0;
1113}
1114
1115static int select_size(bool first_skb, bool zc)
1116{
1117 if (zc)
1118 return 0;
1119 return linear_payload_sz(first_skb);
1120}
1121
1122void tcp_free_fastopen_req(struct tcp_sock *tp)
1123{
1124 if (tp->fastopen_req) {
1125 kfree(tp->fastopen_req);
1126 tp->fastopen_req = NULL;
1127 }
1128}
1129
1130static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1131 int *copied, size_t size)
1132{
1133 struct tcp_sock *tp = tcp_sk(sk);
1134 struct inet_sock *inet = inet_sk(sk);
1135 struct sockaddr *uaddr = msg->msg_name;
1136 int err, flags;
1137
1138 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1139 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1140 uaddr->sa_family == AF_UNSPEC))
1141 return -EOPNOTSUPP;
1142 if (tp->fastopen_req)
1143 return -EALREADY; /* Another Fast Open is in progress */
1144
1145 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1146 sk->sk_allocation);
1147 if (unlikely(!tp->fastopen_req))
1148 return -ENOBUFS;
1149 tp->fastopen_req->data = msg;
1150 tp->fastopen_req->size = size;
1151
1152 if (inet->defer_connect) {
1153 err = tcp_connect(sk);
1154 /* Same failure procedure as in tcp_v4/6_connect */
1155 if (err) {
1156 tcp_set_state(sk, TCP_CLOSE);
1157 inet->inet_dport = 0;
1158 sk->sk_route_caps = 0;
1159 }
1160 }
1161 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1162 err = __inet_stream_connect(sk->sk_socket, uaddr,
1163 msg->msg_namelen, flags, 1);
1164 /* fastopen_req could already be freed in __inet_stream_connect
1165 * if the connection times out or gets rst
1166 */
1167 if (tp->fastopen_req) {
1168 *copied = tp->fastopen_req->copied;
1169 tcp_free_fastopen_req(tp);
1170 inet->defer_connect = 0;
1171 }
1172 return err;
1173}
1174
1175int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1176{
1177 struct tcp_sock *tp = tcp_sk(sk);
1178 struct ubuf_info *uarg = NULL;
1179 struct sk_buff *skb;
1180 struct sockcm_cookie sockc;
1181 int flags, err, copied = 0;
1182 int mss_now = 0, size_goal, copied_syn = 0;
1183 bool process_backlog = false;
1184 bool zc = false;
1185 long timeo;
1186
1187 flags = msg->msg_flags;
1188
1189 if (flags & MSG_ZEROCOPY && size) {
1190 if (sk->sk_state != TCP_ESTABLISHED) {
1191 err = -EINVAL;
1192 goto out_err;
1193 }
1194
1195 skb = tcp_write_queue_tail(sk);
1196 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1197 if (!uarg) {
1198 err = -ENOBUFS;
1199 goto out_err;
1200 }
1201
1202 zc = sk->sk_route_caps & NETIF_F_SG;
1203 if (!zc)
1204 uarg->zerocopy = 0;
1205 }
1206
1207 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1208 !tp->repair) {
1209 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1210 if (err == -EINPROGRESS && copied_syn > 0)
1211 goto out;
1212 else if (err)
1213 goto out_err;
1214 }
1215
1216 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1217
1218 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1219
1220 /* Wait for a connection to finish. One exception is TCP Fast Open
1221 * (passive side) where data is allowed to be sent before a connection
1222 * is fully established.
1223 */
1224 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1225 !tcp_passive_fastopen(sk)) {
1226 err = sk_stream_wait_connect(sk, &timeo);
1227 if (err != 0)
1228 goto do_error;
1229 }
1230
1231 if (unlikely(tp->repair)) {
1232 if (tp->repair_queue == TCP_RECV_QUEUE) {
1233 copied = tcp_send_rcvq(sk, msg, size);
1234 goto out_nopush;
1235 }
1236
1237 err = -EINVAL;
1238 if (tp->repair_queue == TCP_NO_QUEUE)
1239 goto out_err;
1240
1241 /* 'common' sending to sendq */
1242 }
1243
1244 sockc.tsflags = sk->sk_tsflags;
1245 if (msg->msg_controllen) {
1246 err = sock_cmsg_send(sk, msg, &sockc);
1247 if (unlikely(err)) {
1248 err = -EINVAL;
1249 goto out_err;
1250 }
1251 }
1252
1253 /* This should be in poll */
1254 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1255
1256 /* Ok commence sending. */
1257 copied = 0;
1258
1259restart:
1260 mss_now = tcp_send_mss(sk, &size_goal, flags);
1261
1262 err = -EPIPE;
1263 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1264 goto do_error;
1265
1266 while (msg_data_left(msg)) {
1267 int copy = 0;
1268
1269 skb = tcp_write_queue_tail(sk);
1270 if (skb)
1271 copy = size_goal - skb->len;
1272
1273 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1274 bool first_skb;
1275 int linear;
1276
1277new_segment:
1278 /* Allocate new segment. If the interface is SG,
1279 * allocate skb fitting to single page.
1280 */
1281 if (!sk_stream_memory_free(sk))
1282 goto wait_for_sndbuf;
1283
1284 if (process_backlog && sk_flush_backlog(sk)) {
1285 process_backlog = false;
1286 goto restart;
1287 }
1288 first_skb = tcp_rtx_and_write_queues_empty(sk);
1289 linear = select_size(first_skb, zc);
1290 skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation,
1291 first_skb);
1292 if (!skb)
1293 goto wait_for_memory;
1294
1295 process_backlog = true;
1296 skb->ip_summed = CHECKSUM_PARTIAL;
1297
1298 skb_entail(sk, skb);
1299 copy = size_goal;
1300
1301 /* All packets are restored as if they have
1302 * already been sent. skb_mstamp isn't set to
1303 * avoid wrong rtt estimation.
1304 */
1305 if (tp->repair)
1306 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1307 }
1308
1309 /* Try to append data to the end of skb. */
1310 if (copy > msg_data_left(msg))
1311 copy = msg_data_left(msg);
1312
1313 /* Where to copy to? */
1314 if (skb_availroom(skb) > 0 && !zc) {
1315 /* We have some space in skb head. Superb! */
1316 copy = min_t(int, copy, skb_availroom(skb));
1317 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1318 if (err)
1319 goto do_fault;
1320 } else if (!zc) {
1321 bool merge = true;
1322 int i = skb_shinfo(skb)->nr_frags;
1323 struct page_frag *pfrag = sk_page_frag(sk);
1324
1325 if (!sk_page_frag_refill(sk, pfrag))
1326 goto wait_for_memory;
1327
1328 if (!skb_can_coalesce(skb, i, pfrag->page,
1329 pfrag->offset)) {
1330 if (i >= sysctl_max_skb_frags) {
1331 tcp_mark_push(tp, skb);
1332 goto new_segment;
1333 }
1334 merge = false;
1335 }
1336
1337 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1338
1339 if (!sk_wmem_schedule(sk, copy))
1340 goto wait_for_memory;
1341
1342 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1343 pfrag->page,
1344 pfrag->offset,
1345 copy);
1346 if (err)
1347 goto do_error;
1348
1349 /* Update the skb. */
1350 if (merge) {
1351 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1352 } else {
1353 skb_fill_page_desc(skb, i, pfrag->page,
1354 pfrag->offset, copy);
1355 page_ref_inc(pfrag->page);
1356 }
1357 pfrag->offset += copy;
1358 } else {
1359 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1360 if (err == -EMSGSIZE || err == -EEXIST) {
1361 tcp_mark_push(tp, skb);
1362 goto new_segment;
1363 }
1364 if (err < 0)
1365 goto do_error;
1366 copy = err;
1367 }
1368
1369 if (!copied)
1370 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1371
1372 tp->write_seq += copy;
1373 TCP_SKB_CB(skb)->end_seq += copy;
1374 tcp_skb_pcount_set(skb, 0);
1375
1376 copied += copy;
1377 if (!msg_data_left(msg)) {
1378 if (unlikely(flags & MSG_EOR))
1379 TCP_SKB_CB(skb)->eor = 1;
1380 goto out;
1381 }
1382
1383 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1384 continue;
1385
1386 if (forced_push(tp)) {
1387 tcp_mark_push(tp, skb);
1388 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1389 } else if (skb == tcp_send_head(sk))
1390 tcp_push_one(sk, mss_now);
1391 continue;
1392
1393wait_for_sndbuf:
1394 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1395wait_for_memory:
1396 if (copied)
1397 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1398 TCP_NAGLE_PUSH, size_goal);
1399
1400 err = sk_stream_wait_memory(sk, &timeo);
1401 if (err != 0)
1402 goto do_error;
1403
1404 mss_now = tcp_send_mss(sk, &size_goal, flags);
1405 }
1406
1407out:
1408 if (copied) {
1409 tcp_tx_timestamp(sk, sockc.tsflags);
1410 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1411 }
1412out_nopush:
1413 sock_zerocopy_put(uarg);
1414 return copied + copied_syn;
1415
1416do_fault:
1417 if (!skb->len) {
1418 tcp_unlink_write_queue(skb, sk);
1419 /* It is the one place in all of TCP, except connection
1420 * reset, where we can be unlinking the send_head.
1421 */
1422 tcp_check_send_head(sk, skb);
1423 sk_wmem_free_skb(sk, skb);
1424 }
1425
1426do_error:
1427 if (copied + copied_syn)
1428 goto out;
1429out_err:
1430 sock_zerocopy_put_abort(uarg);
1431 err = sk_stream_error(sk, flags, err);
1432 /* make sure we wake any epoll edge trigger waiter */
1433 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1434 err == -EAGAIN)) {
1435 sk->sk_write_space(sk);
1436 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1437 }
1438 return err;
1439}
1440EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1441
1442int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1443{
1444 int ret;
1445
1446 lock_sock(sk);
1447 ret = tcp_sendmsg_locked(sk, msg, size);
1448 release_sock(sk);
1449
1450 return ret;
1451}
1452EXPORT_SYMBOL(tcp_sendmsg);
1453
1454/*
1455 * Handle reading urgent data. BSD has very simple semantics for
1456 * this, no blocking and very strange errors 8)
1457 */
1458
1459static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1460{
1461 struct tcp_sock *tp = tcp_sk(sk);
1462
1463 /* No URG data to read. */
1464 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1465 tp->urg_data == TCP_URG_READ)
1466 return -EINVAL; /* Yes this is right ! */
1467
1468 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1469 return -ENOTCONN;
1470
1471 if (tp->urg_data & TCP_URG_VALID) {
1472 int err = 0;
1473 char c = tp->urg_data;
1474
1475 if (!(flags & MSG_PEEK))
1476 tp->urg_data = TCP_URG_READ;
1477
1478 /* Read urgent data. */
1479 msg->msg_flags |= MSG_OOB;
1480
1481 if (len > 0) {
1482 if (!(flags & MSG_TRUNC))
1483 err = memcpy_to_msg(msg, &c, 1);
1484 len = 1;
1485 } else
1486 msg->msg_flags |= MSG_TRUNC;
1487
1488 return err ? -EFAULT : len;
1489 }
1490
1491 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1492 return 0;
1493
1494 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1495 * the available implementations agree in this case:
1496 * this call should never block, independent of the
1497 * blocking state of the socket.
1498 * Mike <pall@rz.uni-karlsruhe.de>
1499 */
1500 return -EAGAIN;
1501}
1502
1503static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1504{
1505 struct sk_buff *skb;
1506 int copied = 0, err = 0;
1507
1508 /* XXX -- need to support SO_PEEK_OFF */
1509
1510 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1511 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1512 if (err)
1513 return err;
1514 copied += skb->len;
1515 }
1516
1517 skb_queue_walk(&sk->sk_write_queue, skb) {
1518 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1519 if (err)
1520 break;
1521
1522 copied += skb->len;
1523 }
1524
1525 return err ?: copied;
1526}
1527
1528/* Clean up the receive buffer for full frames taken by the user,
1529 * then send an ACK if necessary. COPIED is the number of bytes
1530 * tcp_recvmsg has given to the user so far, it speeds up the
1531 * calculation of whether or not we must ACK for the sake of
1532 * a window update.
1533 */
1534static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1535{
1536 struct tcp_sock *tp = tcp_sk(sk);
1537 bool time_to_ack = false;
1538
1539 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1540
1541 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1542 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1543 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1544
1545 if (inet_csk_ack_scheduled(sk)) {
1546 const struct inet_connection_sock *icsk = inet_csk(sk);
1547 /* Delayed ACKs frequently hit locked sockets during bulk
1548 * receive. */
1549 if (icsk->icsk_ack.blocked ||
1550 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1551 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1552 /*
1553 * If this read emptied read buffer, we send ACK, if
1554 * connection is not bidirectional, user drained
1555 * receive buffer and there was a small segment
1556 * in queue.
1557 */
1558 (copied > 0 &&
1559 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1560 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1561 !icsk->icsk_ack.pingpong)) &&
1562 !atomic_read(&sk->sk_rmem_alloc)))
1563 time_to_ack = true;
1564 }
1565
1566 /* We send an ACK if we can now advertise a non-zero window
1567 * which has been raised "significantly".
1568 *
1569 * Even if window raised up to infinity, do not send window open ACK
1570 * in states, where we will not receive more. It is useless.
1571 */
1572 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1573 __u32 rcv_window_now = tcp_receive_window(tp);
1574
1575 /* Optimize, __tcp_select_window() is not cheap. */
1576 if (2*rcv_window_now <= tp->window_clamp) {
1577 __u32 new_window = __tcp_select_window(sk);
1578
1579 /* Send ACK now, if this read freed lots of space
1580 * in our buffer. Certainly, new_window is new window.
1581 * We can advertise it now, if it is not less than current one.
1582 * "Lots" means "at least twice" here.
1583 */
1584 if (new_window && new_window >= 2 * rcv_window_now)
1585 time_to_ack = true;
1586 }
1587 }
1588 if (time_to_ack)
1589 tcp_send_ack(sk);
1590}
1591
1592static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1593{
1594 struct sk_buff *skb;
1595 u32 offset;
1596
1597 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1598 offset = seq - TCP_SKB_CB(skb)->seq;
1599 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1600 pr_err_once("%s: found a SYN, please report !\n", __func__);
1601 offset--;
1602 }
1603 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1604 *off = offset;
1605 return skb;
1606 }
1607 /* This looks weird, but this can happen if TCP collapsing
1608 * splitted a fat GRO packet, while we released socket lock
1609 * in skb_splice_bits()
1610 */
1611 sk_eat_skb(sk, skb);
1612 }
1613 return NULL;
1614}
1615
1616/*
1617 * This routine provides an alternative to tcp_recvmsg() for routines
1618 * that would like to handle copying from skbuffs directly in 'sendfile'
1619 * fashion.
1620 * Note:
1621 * - It is assumed that the socket was locked by the caller.
1622 * - The routine does not block.
1623 * - At present, there is no support for reading OOB data
1624 * or for 'peeking' the socket using this routine
1625 * (although both would be easy to implement).
1626 */
1627int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1628 sk_read_actor_t recv_actor)
1629{
1630 struct sk_buff *skb;
1631 struct tcp_sock *tp = tcp_sk(sk);
1632 u32 seq = tp->copied_seq;
1633 u32 offset;
1634 int copied = 0;
1635
1636 if (sk->sk_state == TCP_LISTEN)
1637 return -ENOTCONN;
1638 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1639 if (offset < skb->len) {
1640 int used;
1641 size_t len;
1642
1643 len = skb->len - offset;
1644 /* Stop reading if we hit a patch of urgent data */
1645 if (tp->urg_data) {
1646 u32 urg_offset = tp->urg_seq - seq;
1647 if (urg_offset < len)
1648 len = urg_offset;
1649 if (!len)
1650 break;
1651 }
1652 used = recv_actor(desc, skb, offset, len);
1653 if (used <= 0) {
1654 if (!copied)
1655 copied = used;
1656 break;
1657 } else if (used <= len) {
1658 seq += used;
1659 copied += used;
1660 offset += used;
1661 }
1662 /* If recv_actor drops the lock (e.g. TCP splice
1663 * receive) the skb pointer might be invalid when
1664 * getting here: tcp_collapse might have deleted it
1665 * while aggregating skbs from the socket queue.
1666 */
1667 skb = tcp_recv_skb(sk, seq - 1, &offset);
1668 if (!skb)
1669 break;
1670 /* TCP coalescing might have appended data to the skb.
1671 * Try to splice more frags
1672 */
1673 if (offset + 1 != skb->len)
1674 continue;
1675 }
1676 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1677 sk_eat_skb(sk, skb);
1678 ++seq;
1679 break;
1680 }
1681 sk_eat_skb(sk, skb);
1682 if (!desc->count)
1683 break;
1684 tp->copied_seq = seq;
1685 }
1686 tp->copied_seq = seq;
1687
1688 tcp_rcv_space_adjust(sk);
1689
1690 /* Clean up data we have read: This will do ACK frames. */
1691 if (copied > 0) {
1692 tcp_recv_skb(sk, seq, &offset);
1693 tcp_cleanup_rbuf(sk, copied);
1694 }
1695 return copied;
1696}
1697EXPORT_SYMBOL(tcp_read_sock);
1698
1699int tcp_peek_len(struct socket *sock)
1700{
1701 return tcp_inq(sock->sk);
1702}
1703EXPORT_SYMBOL(tcp_peek_len);
1704
1705static void tcp_update_recv_tstamps(struct sk_buff *skb,
1706 struct scm_timestamping *tss)
1707{
1708 if (skb->tstamp)
1709 tss->ts[0] = ktime_to_timespec(skb->tstamp);
1710 else
1711 tss->ts[0] = (struct timespec) {0};
1712
1713 if (skb_hwtstamps(skb)->hwtstamp)
1714 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1715 else
1716 tss->ts[2] = (struct timespec) {0};
1717}
1718
1719/* Similar to __sock_recv_timestamp, but does not require an skb */
1720static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1721 struct scm_timestamping *tss)
1722{
1723 struct timeval tv;
1724 bool has_timestamping = false;
1725
1726 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1727 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1728 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1729 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1730 sizeof(tss->ts[0]), &tss->ts[0]);
1731 } else {
1732 tv.tv_sec = tss->ts[0].tv_sec;
1733 tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1734
1735 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1736 sizeof(tv), &tv);
1737 }
1738 }
1739
1740 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1741 has_timestamping = true;
1742 else
1743 tss->ts[0] = (struct timespec) {0};
1744 }
1745
1746 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1747 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1748 has_timestamping = true;
1749 else
1750 tss->ts[2] = (struct timespec) {0};
1751 }
1752
1753 if (has_timestamping) {
1754 tss->ts[1] = (struct timespec) {0};
1755 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1756 sizeof(*tss), tss);
1757 }
1758}
1759
1760/*
1761 * This routine copies from a sock struct into the user buffer.
1762 *
1763 * Technical note: in 2.3 we work on _locked_ socket, so that
1764 * tricks with *seq access order and skb->users are not required.
1765 * Probably, code can be easily improved even more.
1766 */
1767
1768int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1769 int flags, int *addr_len)
1770{
1771 struct tcp_sock *tp = tcp_sk(sk);
1772 int copied = 0;
1773 u32 peek_seq;
1774 u32 *seq;
1775 unsigned long used;
1776 int err;
1777 int target; /* Read at least this many bytes */
1778 long timeo;
1779 struct sk_buff *skb, *last;
1780 u32 urg_hole = 0;
1781 struct scm_timestamping tss;
1782 bool has_tss = false;
1783
1784 if (unlikely(flags & MSG_ERRQUEUE))
1785 return inet_recv_error(sk, msg, len, addr_len);
1786
1787 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1788 (sk->sk_state == TCP_ESTABLISHED))
1789 sk_busy_loop(sk, nonblock);
1790
1791 lock_sock(sk);
1792
1793 err = -ENOTCONN;
1794 if (sk->sk_state == TCP_LISTEN)
1795 goto out;
1796
1797 timeo = sock_rcvtimeo(sk, nonblock);
1798
1799 /* Urgent data needs to be handled specially. */
1800 if (flags & MSG_OOB)
1801 goto recv_urg;
1802
1803 if (unlikely(tp->repair)) {
1804 err = -EPERM;
1805 if (!(flags & MSG_PEEK))
1806 goto out;
1807
1808 if (tp->repair_queue == TCP_SEND_QUEUE)
1809 goto recv_sndq;
1810
1811 err = -EINVAL;
1812 if (tp->repair_queue == TCP_NO_QUEUE)
1813 goto out;
1814
1815 /* 'common' recv queue MSG_PEEK-ing */
1816 }
1817
1818 seq = &tp->copied_seq;
1819 if (flags & MSG_PEEK) {
1820 peek_seq = tp->copied_seq;
1821 seq = &peek_seq;
1822 }
1823
1824 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1825
1826 do {
1827 u32 offset;
1828
1829 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1830 if (tp->urg_data && tp->urg_seq == *seq) {
1831 if (copied)
1832 break;
1833 if (signal_pending(current)) {
1834 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1835 break;
1836 }
1837 }
1838
1839 /* Next get a buffer. */
1840
1841 last = skb_peek_tail(&sk->sk_receive_queue);
1842 skb_queue_walk(&sk->sk_receive_queue, skb) {
1843 last = skb;
1844 /* Now that we have two receive queues this
1845 * shouldn't happen.
1846 */
1847 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1848 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1849 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1850 flags))
1851 break;
1852
1853 offset = *seq - TCP_SKB_CB(skb)->seq;
1854 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1855 pr_err_once("%s: found a SYN, please report !\n", __func__);
1856 offset--;
1857 }
1858 if (offset < skb->len)
1859 goto found_ok_skb;
1860 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1861 goto found_fin_ok;
1862 WARN(!(flags & MSG_PEEK),
1863 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1864 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1865 }
1866
1867 /* Well, if we have backlog, try to process it now yet. */
1868
1869 if (copied >= target && !sk->sk_backlog.tail)
1870 break;
1871
1872 if (copied) {
1873 if (sk->sk_err ||
1874 sk->sk_state == TCP_CLOSE ||
1875 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1876 !timeo ||
1877 signal_pending(current))
1878 break;
1879 } else {
1880 if (sock_flag(sk, SOCK_DONE))
1881 break;
1882
1883 if (sk->sk_err) {
1884 copied = sock_error(sk);
1885 break;
1886 }
1887
1888 if (sk->sk_shutdown & RCV_SHUTDOWN)
1889 break;
1890
1891 if (sk->sk_state == TCP_CLOSE) {
1892 if (!sock_flag(sk, SOCK_DONE)) {
1893 /* This occurs when user tries to read
1894 * from never connected socket.
1895 */
1896 copied = -ENOTCONN;
1897 break;
1898 }
1899 break;
1900 }
1901
1902 if (!timeo) {
1903 copied = -EAGAIN;
1904 break;
1905 }
1906
1907 if (signal_pending(current)) {
1908 copied = sock_intr_errno(timeo);
1909 break;
1910 }
1911 }
1912
1913 tcp_cleanup_rbuf(sk, copied);
1914
1915 if (copied >= target) {
1916 /* Do not sleep, just process backlog. */
1917 release_sock(sk);
1918 lock_sock(sk);
1919 } else {
1920 sk_wait_data(sk, &timeo, last);
1921 }
1922
1923 if ((flags & MSG_PEEK) &&
1924 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1925 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1926 current->comm,
1927 task_pid_nr(current));
1928 peek_seq = tp->copied_seq;
1929 }
1930 continue;
1931
1932 found_ok_skb:
1933 /* Ok so how much can we use? */
1934 used = skb->len - offset;
1935 if (len < used)
1936 used = len;
1937
1938 /* Do we have urgent data here? */
1939 if (tp->urg_data) {
1940 u32 urg_offset = tp->urg_seq - *seq;
1941 if (urg_offset < used) {
1942 if (!urg_offset) {
1943 if (!sock_flag(sk, SOCK_URGINLINE)) {
1944 ++*seq;
1945 urg_hole++;
1946 offset++;
1947 used--;
1948 if (!used)
1949 goto skip_copy;
1950 }
1951 } else
1952 used = urg_offset;
1953 }
1954 }
1955
1956 if (!(flags & MSG_TRUNC)) {
1957 err = skb_copy_datagram_msg(skb, offset, msg, used);
1958 if (err) {
1959 /* Exception. Bailout! */
1960 if (!copied)
1961 copied = -EFAULT;
1962 break;
1963 }
1964 }
1965
1966 *seq += used;
1967 copied += used;
1968 len -= used;
1969
1970 tcp_rcv_space_adjust(sk);
1971
1972skip_copy:
1973 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1974 tp->urg_data = 0;
1975 tcp_fast_path_check(sk);
1976 }
1977 if (used + offset < skb->len)
1978 continue;
1979
1980 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1981 tcp_update_recv_tstamps(skb, &tss);
1982 has_tss = true;
1983 }
1984 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1985 goto found_fin_ok;
1986 if (!(flags & MSG_PEEK))
1987 sk_eat_skb(sk, skb);
1988 continue;
1989
1990 found_fin_ok:
1991 /* Process the FIN. */
1992 ++*seq;
1993 if (!(flags & MSG_PEEK))
1994 sk_eat_skb(sk, skb);
1995 break;
1996 } while (len > 0);
1997
1998 /* According to UNIX98, msg_name/msg_namelen are ignored
1999 * on connected socket. I was just happy when found this 8) --ANK
2000 */
2001
2002 if (has_tss)
2003 tcp_recv_timestamp(msg, sk, &tss);
2004
2005 /* Clean up data we have read: This will do ACK frames. */
2006 tcp_cleanup_rbuf(sk, copied);
2007
2008 release_sock(sk);
2009 return copied;
2010
2011out:
2012 release_sock(sk);
2013 return err;
2014
2015recv_urg:
2016 err = tcp_recv_urg(sk, msg, len, flags);
2017 goto out;
2018
2019recv_sndq:
2020 err = tcp_peek_sndq(sk, msg, len);
2021 goto out;
2022}
2023EXPORT_SYMBOL(tcp_recvmsg);
2024
2025void tcp_set_state(struct sock *sk, int state)
2026{
2027 int oldstate = sk->sk_state;
2028
2029 /* We defined a new enum for TCP states that are exported in BPF
2030 * so as not force the internal TCP states to be frozen. The
2031 * following checks will detect if an internal state value ever
2032 * differs from the BPF value. If this ever happens, then we will
2033 * need to remap the internal value to the BPF value before calling
2034 * tcp_call_bpf_2arg.
2035 */
2036 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2037 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2038 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2039 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2040 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2041 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2042 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2043 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2044 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2045 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2046 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2047 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2048 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2049
2050 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2051 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2052
2053 switch (state) {
2054 case TCP_ESTABLISHED:
2055 if (oldstate != TCP_ESTABLISHED)
2056 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2057 break;
2058
2059 case TCP_CLOSE:
2060 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2061 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2062
2063 sk->sk_prot->unhash(sk);
2064 if (inet_csk(sk)->icsk_bind_hash &&
2065 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2066 inet_put_port(sk);
2067 /* fall through */
2068 default:
2069 if (oldstate == TCP_ESTABLISHED)
2070 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2071 }
2072
2073 /* Change state AFTER socket is unhashed to avoid closed
2074 * socket sitting in hash tables.
2075 */
2076 inet_sk_state_store(sk, state);
2077
2078#ifdef STATE_TRACE
2079 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2080#endif
2081}
2082EXPORT_SYMBOL_GPL(tcp_set_state);
2083
2084/*
2085 * State processing on a close. This implements the state shift for
2086 * sending our FIN frame. Note that we only send a FIN for some
2087 * states. A shutdown() may have already sent the FIN, or we may be
2088 * closed.
2089 */
2090
2091static const unsigned char new_state[16] = {
2092 /* current state: new state: action: */
2093 [0 /* (Invalid) */] = TCP_CLOSE,
2094 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2095 [TCP_SYN_SENT] = TCP_CLOSE,
2096 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2097 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2098 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2099 [TCP_TIME_WAIT] = TCP_CLOSE,
2100 [TCP_CLOSE] = TCP_CLOSE,
2101 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2102 [TCP_LAST_ACK] = TCP_LAST_ACK,
2103 [TCP_LISTEN] = TCP_CLOSE,
2104 [TCP_CLOSING] = TCP_CLOSING,
2105 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2106};
2107
2108static int tcp_close_state(struct sock *sk)
2109{
2110 int next = (int)new_state[sk->sk_state];
2111 int ns = next & TCP_STATE_MASK;
2112
2113 tcp_set_state(sk, ns);
2114
2115 return next & TCP_ACTION_FIN;
2116}
2117
2118/*
2119 * Shutdown the sending side of a connection. Much like close except
2120 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2121 */
2122
2123void tcp_shutdown(struct sock *sk, int how)
2124{
2125 /* We need to grab some memory, and put together a FIN,
2126 * and then put it into the queue to be sent.
2127 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2128 */
2129 if (!(how & SEND_SHUTDOWN))
2130 return;
2131
2132 /* If we've already sent a FIN, or it's a closed state, skip this. */
2133 if ((1 << sk->sk_state) &
2134 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2135 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2136 /* Clear out any half completed packets. FIN if needed. */
2137 if (tcp_close_state(sk))
2138 tcp_send_fin(sk);
2139 }
2140}
2141EXPORT_SYMBOL(tcp_shutdown);
2142
2143bool tcp_check_oom(struct sock *sk, int shift)
2144{
2145 bool too_many_orphans, out_of_socket_memory;
2146
2147 too_many_orphans = tcp_too_many_orphans(sk, shift);
2148 out_of_socket_memory = tcp_out_of_memory(sk);
2149
2150 if (too_many_orphans)
2151 net_info_ratelimited("too many orphaned sockets\n");
2152 if (out_of_socket_memory)
2153 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2154 return too_many_orphans || out_of_socket_memory;
2155}
2156
2157void tcp_close(struct sock *sk, long timeout)
2158{
2159 struct sk_buff *skb;
2160 int data_was_unread = 0;
2161 int state;
2162
2163 lock_sock(sk);
2164 sk->sk_shutdown = SHUTDOWN_MASK;
2165
2166 if (sk->sk_state == TCP_LISTEN) {
2167 tcp_set_state(sk, TCP_CLOSE);
2168
2169 /* Special case. */
2170 inet_csk_listen_stop(sk);
2171
2172 goto adjudge_to_death;
2173 }
2174
2175 /* We need to flush the recv. buffs. We do this only on the
2176 * descriptor close, not protocol-sourced closes, because the
2177 * reader process may not have drained the data yet!
2178 */
2179 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2180 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2181
2182 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2183 len--;
2184 data_was_unread += len;
2185 __kfree_skb(skb);
2186 }
2187
2188 sk_mem_reclaim(sk);
2189
2190 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2191 if (sk->sk_state == TCP_CLOSE)
2192 goto adjudge_to_death;
2193
2194 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2195 * data was lost. To witness the awful effects of the old behavior of
2196 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2197 * GET in an FTP client, suspend the process, wait for the client to
2198 * advertise a zero window, then kill -9 the FTP client, wheee...
2199 * Note: timeout is always zero in such a case.
2200 */
2201 if (unlikely(tcp_sk(sk)->repair)) {
2202 sk->sk_prot->disconnect(sk, 0);
2203 } else if (data_was_unread) {
2204 /* Unread data was tossed, zap the connection. */
2205 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2206 tcp_set_state(sk, TCP_CLOSE);
2207 tcp_send_active_reset(sk, sk->sk_allocation);
2208 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2209 /* Check zero linger _after_ checking for unread data. */
2210 sk->sk_prot->disconnect(sk, 0);
2211 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2212 } else if (tcp_close_state(sk)) {
2213 /* We FIN if the application ate all the data before
2214 * zapping the connection.
2215 */
2216
2217 /* RED-PEN. Formally speaking, we have broken TCP state
2218 * machine. State transitions:
2219 *
2220 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2221 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2222 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2223 *
2224 * are legal only when FIN has been sent (i.e. in window),
2225 * rather than queued out of window. Purists blame.
2226 *
2227 * F.e. "RFC state" is ESTABLISHED,
2228 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2229 *
2230 * The visible declinations are that sometimes
2231 * we enter time-wait state, when it is not required really
2232 * (harmless), do not send active resets, when they are
2233 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2234 * they look as CLOSING or LAST_ACK for Linux)
2235 * Probably, I missed some more holelets.
2236 * --ANK
2237 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2238 * in a single packet! (May consider it later but will
2239 * probably need API support or TCP_CORK SYN-ACK until
2240 * data is written and socket is closed.)
2241 */
2242 tcp_send_fin(sk);
2243 }
2244
2245 sk_stream_wait_close(sk, timeout);
2246
2247adjudge_to_death:
2248 state = sk->sk_state;
2249 sock_hold(sk);
2250 sock_orphan(sk);
2251
2252 /* It is the last release_sock in its life. It will remove backlog. */
2253 release_sock(sk);
2254
2255
2256 /* Now socket is owned by kernel and we acquire BH lock
2257 * to finish close. No need to check for user refs.
2258 */
2259 local_bh_disable();
2260 bh_lock_sock(sk);
2261 WARN_ON(sock_owned_by_user(sk));
2262
2263 percpu_counter_inc(sk->sk_prot->orphan_count);
2264
2265 /* Have we already been destroyed by a softirq or backlog? */
2266 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2267 goto out;
2268
2269 /* This is a (useful) BSD violating of the RFC. There is a
2270 * problem with TCP as specified in that the other end could
2271 * keep a socket open forever with no application left this end.
2272 * We use a 1 minute timeout (about the same as BSD) then kill
2273 * our end. If they send after that then tough - BUT: long enough
2274 * that we won't make the old 4*rto = almost no time - whoops
2275 * reset mistake.
2276 *
2277 * Nope, it was not mistake. It is really desired behaviour
2278 * f.e. on http servers, when such sockets are useless, but
2279 * consume significant resources. Let's do it with special
2280 * linger2 option. --ANK
2281 */
2282
2283 if (sk->sk_state == TCP_FIN_WAIT2) {
2284 struct tcp_sock *tp = tcp_sk(sk);
2285 if (tp->linger2 < 0) {
2286 tcp_set_state(sk, TCP_CLOSE);
2287 tcp_send_active_reset(sk, GFP_ATOMIC);
2288 __NET_INC_STATS(sock_net(sk),
2289 LINUX_MIB_TCPABORTONLINGER);
2290 } else {
2291 const int tmo = tcp_fin_time(sk);
2292
2293 if (tmo > TCP_TIMEWAIT_LEN) {
2294 inet_csk_reset_keepalive_timer(sk,
2295 tmo - TCP_TIMEWAIT_LEN);
2296 } else {
2297 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2298 goto out;
2299 }
2300 }
2301 }
2302 if (sk->sk_state != TCP_CLOSE) {
2303 sk_mem_reclaim(sk);
2304 if (tcp_check_oom(sk, 0)) {
2305 tcp_set_state(sk, TCP_CLOSE);
2306 tcp_send_active_reset(sk, GFP_ATOMIC);
2307 __NET_INC_STATS(sock_net(sk),
2308 LINUX_MIB_TCPABORTONMEMORY);
2309 } else if (!check_net(sock_net(sk))) {
2310 /* Not possible to send reset; just close */
2311 tcp_set_state(sk, TCP_CLOSE);
2312 }
2313 }
2314
2315 if (sk->sk_state == TCP_CLOSE) {
2316 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2317 /* We could get here with a non-NULL req if the socket is
2318 * aborted (e.g., closed with unread data) before 3WHS
2319 * finishes.
2320 */
2321 if (req)
2322 reqsk_fastopen_remove(sk, req, false);
2323 inet_csk_destroy_sock(sk);
2324 }
2325 /* Otherwise, socket is reprieved until protocol close. */
2326
2327out:
2328 bh_unlock_sock(sk);
2329 local_bh_enable();
2330 sock_put(sk);
2331}
2332EXPORT_SYMBOL(tcp_close);
2333
2334/* These states need RST on ABORT according to RFC793 */
2335
2336static inline bool tcp_need_reset(int state)
2337{
2338 return (1 << state) &
2339 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2340 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2341}
2342
2343static void tcp_rtx_queue_purge(struct sock *sk)
2344{
2345 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2346
2347 while (p) {
2348 struct sk_buff *skb = rb_to_skb(p);
2349
2350 p = rb_next(p);
2351 /* Since we are deleting whole queue, no need to
2352 * list_del(&skb->tcp_tsorted_anchor)
2353 */
2354 tcp_rtx_queue_unlink(skb, sk);
2355 sk_wmem_free_skb(sk, skb);
2356 }
2357}
2358
2359void tcp_write_queue_purge(struct sock *sk)
2360{
2361 struct sk_buff *skb;
2362
2363 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2364 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2365 tcp_skb_tsorted_anchor_cleanup(skb);
2366 sk_wmem_free_skb(sk, skb);
2367 }
2368 tcp_rtx_queue_purge(sk);
2369 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2370 sk_mem_reclaim(sk);
2371 tcp_clear_all_retrans_hints(tcp_sk(sk));
2372 tcp_sk(sk)->packets_out = 0;
2373}
2374
2375int tcp_disconnect(struct sock *sk, int flags)
2376{
2377 struct inet_sock *inet = inet_sk(sk);
2378 struct inet_connection_sock *icsk = inet_csk(sk);
2379 struct tcp_sock *tp = tcp_sk(sk);
2380 int err = 0;
2381 int old_state = sk->sk_state;
2382
2383 if (old_state != TCP_CLOSE)
2384 tcp_set_state(sk, TCP_CLOSE);
2385
2386 /* ABORT function of RFC793 */
2387 if (old_state == TCP_LISTEN) {
2388 inet_csk_listen_stop(sk);
2389 } else if (unlikely(tp->repair)) {
2390 sk->sk_err = ECONNABORTED;
2391 } else if (tcp_need_reset(old_state) ||
2392 (tp->snd_nxt != tp->write_seq &&
2393 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2394 /* The last check adjusts for discrepancy of Linux wrt. RFC
2395 * states
2396 */
2397 tcp_send_active_reset(sk, gfp_any());
2398 sk->sk_err = ECONNRESET;
2399 } else if (old_state == TCP_SYN_SENT)
2400 sk->sk_err = ECONNRESET;
2401
2402 tcp_clear_xmit_timers(sk);
2403 __skb_queue_purge(&sk->sk_receive_queue);
2404 tcp_write_queue_purge(sk);
2405 tcp_fastopen_active_disable_ofo_check(sk);
2406 skb_rbtree_purge(&tp->out_of_order_queue);
2407
2408 inet->inet_dport = 0;
2409
2410 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2411 inet_reset_saddr(sk);
2412
2413 sk->sk_shutdown = 0;
2414 sock_reset_flag(sk, SOCK_DONE);
2415 tp->srtt_us = 0;
2416 tp->write_seq += tp->max_window + 2;
2417 if (tp->write_seq == 0)
2418 tp->write_seq = 1;
2419 icsk->icsk_backoff = 0;
2420 tp->snd_cwnd = 2;
2421 icsk->icsk_probes_out = 0;
2422 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2423 tp->snd_cwnd_cnt = 0;
2424 tp->window_clamp = 0;
2425 tcp_set_ca_state(sk, TCP_CA_Open);
2426 tp->is_sack_reneg = 0;
2427 tcp_clear_retrans(tp);
2428 inet_csk_delack_init(sk);
2429 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2430 * issue in __tcp_select_window()
2431 */
2432 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2433 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2434 __sk_dst_reset(sk);
2435 dst_release(sk->sk_rx_dst);
2436 sk->sk_rx_dst = NULL;
2437 tcp_saved_syn_free(tp);
2438
2439 /* Clean up fastopen related fields */
2440 tcp_free_fastopen_req(tp);
2441 inet->defer_connect = 0;
2442
2443 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2444
2445 if (sk->sk_frag.page) {
2446 put_page(sk->sk_frag.page);
2447 sk->sk_frag.page = NULL;
2448 sk->sk_frag.offset = 0;
2449 }
2450
2451 sk->sk_error_report(sk);
2452 return err;
2453}
2454EXPORT_SYMBOL(tcp_disconnect);
2455
2456static inline bool tcp_can_repair_sock(const struct sock *sk)
2457{
2458 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2459 (sk->sk_state != TCP_LISTEN);
2460}
2461
2462static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2463{
2464 struct tcp_repair_window opt;
2465
2466 if (!tp->repair)
2467 return -EPERM;
2468
2469 if (len != sizeof(opt))
2470 return -EINVAL;
2471
2472 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2473 return -EFAULT;
2474
2475 if (opt.max_window < opt.snd_wnd)
2476 return -EINVAL;
2477
2478 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2479 return -EINVAL;
2480
2481 if (after(opt.rcv_wup, tp->rcv_nxt))
2482 return -EINVAL;
2483
2484 tp->snd_wl1 = opt.snd_wl1;
2485 tp->snd_wnd = opt.snd_wnd;
2486 tp->max_window = opt.max_window;
2487
2488 tp->rcv_wnd = opt.rcv_wnd;
2489 tp->rcv_wup = opt.rcv_wup;
2490
2491 return 0;
2492}
2493
2494static int tcp_repair_options_est(struct sock *sk,
2495 struct tcp_repair_opt __user *optbuf, unsigned int len)
2496{
2497 struct tcp_sock *tp = tcp_sk(sk);
2498 struct tcp_repair_opt opt;
2499
2500 while (len >= sizeof(opt)) {
2501 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2502 return -EFAULT;
2503
2504 optbuf++;
2505 len -= sizeof(opt);
2506
2507 switch (opt.opt_code) {
2508 case TCPOPT_MSS:
2509 tp->rx_opt.mss_clamp = opt.opt_val;
2510 tcp_mtup_init(sk);
2511 break;
2512 case TCPOPT_WINDOW:
2513 {
2514 u16 snd_wscale = opt.opt_val & 0xFFFF;
2515 u16 rcv_wscale = opt.opt_val >> 16;
2516
2517 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2518 return -EFBIG;
2519
2520 tp->rx_opt.snd_wscale = snd_wscale;
2521 tp->rx_opt.rcv_wscale = rcv_wscale;
2522 tp->rx_opt.wscale_ok = 1;
2523 }
2524 break;
2525 case TCPOPT_SACK_PERM:
2526 if (opt.opt_val != 0)
2527 return -EINVAL;
2528
2529 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2530 break;
2531 case TCPOPT_TIMESTAMP:
2532 if (opt.opt_val != 0)
2533 return -EINVAL;
2534
2535 tp->rx_opt.tstamp_ok = 1;
2536 break;
2537 }
2538 }
2539
2540 return 0;
2541}
2542
2543/*
2544 * Socket option code for TCP.
2545 */
2546static int do_tcp_setsockopt(struct sock *sk, int level,
2547 int optname, char __user *optval, unsigned int optlen)
2548{
2549 struct tcp_sock *tp = tcp_sk(sk);
2550 struct inet_connection_sock *icsk = inet_csk(sk);
2551 struct net *net = sock_net(sk);
2552 int val;
2553 int err = 0;
2554
2555 /* These are data/string values, all the others are ints */
2556 switch (optname) {
2557 case TCP_CONGESTION: {
2558 char name[TCP_CA_NAME_MAX];
2559
2560 if (optlen < 1)
2561 return -EINVAL;
2562
2563 val = strncpy_from_user(name, optval,
2564 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2565 if (val < 0)
2566 return -EFAULT;
2567 name[val] = 0;
2568
2569 lock_sock(sk);
2570 err = tcp_set_congestion_control(sk, name, true, true);
2571 release_sock(sk);
2572 return err;
2573 }
2574 case TCP_ULP: {
2575 char name[TCP_ULP_NAME_MAX];
2576
2577 if (optlen < 1)
2578 return -EINVAL;
2579
2580 val = strncpy_from_user(name, optval,
2581 min_t(long, TCP_ULP_NAME_MAX - 1,
2582 optlen));
2583 if (val < 0)
2584 return -EFAULT;
2585 name[val] = 0;
2586
2587 lock_sock(sk);
2588 err = tcp_set_ulp(sk, name);
2589 release_sock(sk);
2590 return err;
2591 }
2592 case TCP_FASTOPEN_KEY: {
2593 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
2594
2595 if (optlen != sizeof(key))
2596 return -EINVAL;
2597
2598 if (copy_from_user(key, optval, optlen))
2599 return -EFAULT;
2600
2601 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2602 }
2603 default:
2604 /* fallthru */
2605 break;
2606 }
2607
2608 if (optlen < sizeof(int))
2609 return -EINVAL;
2610
2611 if (get_user(val, (int __user *)optval))
2612 return -EFAULT;
2613
2614 lock_sock(sk);
2615
2616 switch (optname) {
2617 case TCP_MAXSEG:
2618 /* Values greater than interface MTU won't take effect. However
2619 * at the point when this call is done we typically don't yet
2620 * know which interface is going to be used
2621 */
2622 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2623 err = -EINVAL;
2624 break;
2625 }
2626 tp->rx_opt.user_mss = val;
2627 break;
2628
2629 case TCP_NODELAY:
2630 if (val) {
2631 /* TCP_NODELAY is weaker than TCP_CORK, so that
2632 * this option on corked socket is remembered, but
2633 * it is not activated until cork is cleared.
2634 *
2635 * However, when TCP_NODELAY is set we make
2636 * an explicit push, which overrides even TCP_CORK
2637 * for currently queued segments.
2638 */
2639 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2640 tcp_push_pending_frames(sk);
2641 } else {
2642 tp->nonagle &= ~TCP_NAGLE_OFF;
2643 }
2644 break;
2645
2646 case TCP_THIN_LINEAR_TIMEOUTS:
2647 if (val < 0 || val > 1)
2648 err = -EINVAL;
2649 else
2650 tp->thin_lto = val;
2651 break;
2652
2653 case TCP_THIN_DUPACK:
2654 if (val < 0 || val > 1)
2655 err = -EINVAL;
2656 break;
2657
2658 case TCP_REPAIR:
2659 if (!tcp_can_repair_sock(sk))
2660 err = -EPERM;
2661 else if (val == 1) {
2662 tp->repair = 1;
2663 sk->sk_reuse = SK_FORCE_REUSE;
2664 tp->repair_queue = TCP_NO_QUEUE;
2665 } else if (val == 0) {
2666 tp->repair = 0;
2667 sk->sk_reuse = SK_NO_REUSE;
2668 tcp_send_window_probe(sk);
2669 } else
2670 err = -EINVAL;
2671
2672 break;
2673
2674 case TCP_REPAIR_QUEUE:
2675 if (!tp->repair)
2676 err = -EPERM;
2677 else if ((unsigned int)val < TCP_QUEUES_NR)
2678 tp->repair_queue = val;
2679 else
2680 err = -EINVAL;
2681 break;
2682
2683 case TCP_QUEUE_SEQ:
2684 if (sk->sk_state != TCP_CLOSE)
2685 err = -EPERM;
2686 else if (tp->repair_queue == TCP_SEND_QUEUE)
2687 tp->write_seq = val;
2688 else if (tp->repair_queue == TCP_RECV_QUEUE)
2689 tp->rcv_nxt = val;
2690 else
2691 err = -EINVAL;
2692 break;
2693
2694 case TCP_REPAIR_OPTIONS:
2695 if (!tp->repair)
2696 err = -EINVAL;
2697 else if (sk->sk_state == TCP_ESTABLISHED)
2698 err = tcp_repair_options_est(sk,
2699 (struct tcp_repair_opt __user *)optval,
2700 optlen);
2701 else
2702 err = -EPERM;
2703 break;
2704
2705 case TCP_CORK:
2706 /* When set indicates to always queue non-full frames.
2707 * Later the user clears this option and we transmit
2708 * any pending partial frames in the queue. This is
2709 * meant to be used alongside sendfile() to get properly
2710 * filled frames when the user (for example) must write
2711 * out headers with a write() call first and then use
2712 * sendfile to send out the data parts.
2713 *
2714 * TCP_CORK can be set together with TCP_NODELAY and it is
2715 * stronger than TCP_NODELAY.
2716 */
2717 if (val) {
2718 tp->nonagle |= TCP_NAGLE_CORK;
2719 } else {
2720 tp->nonagle &= ~TCP_NAGLE_CORK;
2721 if (tp->nonagle&TCP_NAGLE_OFF)
2722 tp->nonagle |= TCP_NAGLE_PUSH;
2723 tcp_push_pending_frames(sk);
2724 }
2725 break;
2726
2727 case TCP_KEEPIDLE:
2728 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2729 err = -EINVAL;
2730 else {
2731 tp->keepalive_time = val * HZ;
2732 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2733 !((1 << sk->sk_state) &
2734 (TCPF_CLOSE | TCPF_LISTEN))) {
2735 u32 elapsed = keepalive_time_elapsed(tp);
2736 if (tp->keepalive_time > elapsed)
2737 elapsed = tp->keepalive_time - elapsed;
2738 else
2739 elapsed = 0;
2740 inet_csk_reset_keepalive_timer(sk, elapsed);
2741 }
2742 }
2743 break;
2744 case TCP_KEEPINTVL:
2745 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2746 err = -EINVAL;
2747 else
2748 tp->keepalive_intvl = val * HZ;
2749 break;
2750 case TCP_KEEPCNT:
2751 if (val < 1 || val > MAX_TCP_KEEPCNT)
2752 err = -EINVAL;
2753 else
2754 tp->keepalive_probes = val;
2755 break;
2756 case TCP_SYNCNT:
2757 if (val < 1 || val > MAX_TCP_SYNCNT)
2758 err = -EINVAL;
2759 else
2760 icsk->icsk_syn_retries = val;
2761 break;
2762
2763 case TCP_SAVE_SYN:
2764 if (val < 0 || val > 1)
2765 err = -EINVAL;
2766 else
2767 tp->save_syn = val;
2768 break;
2769
2770 case TCP_LINGER2:
2771 if (val < 0)
2772 tp->linger2 = -1;
2773 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2774 tp->linger2 = 0;
2775 else
2776 tp->linger2 = val * HZ;
2777 break;
2778
2779 case TCP_DEFER_ACCEPT:
2780 /* Translate value in seconds to number of retransmits */
2781 icsk->icsk_accept_queue.rskq_defer_accept =
2782 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2783 TCP_RTO_MAX / HZ);
2784 break;
2785
2786 case TCP_WINDOW_CLAMP:
2787 if (!val) {
2788 if (sk->sk_state != TCP_CLOSE) {
2789 err = -EINVAL;
2790 break;
2791 }
2792 tp->window_clamp = 0;
2793 } else
2794 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2795 SOCK_MIN_RCVBUF / 2 : val;
2796 break;
2797
2798 case TCP_QUICKACK:
2799 if (!val) {
2800 icsk->icsk_ack.pingpong = 1;
2801 } else {
2802 icsk->icsk_ack.pingpong = 0;
2803 if ((1 << sk->sk_state) &
2804 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2805 inet_csk_ack_scheduled(sk)) {
2806 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2807 tcp_cleanup_rbuf(sk, 1);
2808 if (!(val & 1))
2809 icsk->icsk_ack.pingpong = 1;
2810 }
2811 }
2812 break;
2813
2814#ifdef CONFIG_TCP_MD5SIG
2815 case TCP_MD5SIG:
2816 case TCP_MD5SIG_EXT:
2817 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
2818 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2819 else
2820 err = -EINVAL;
2821 break;
2822#endif
2823 case TCP_USER_TIMEOUT:
2824 /* Cap the max time in ms TCP will retry or probe the window
2825 * before giving up and aborting (ETIMEDOUT) a connection.
2826 */
2827 if (val < 0)
2828 err = -EINVAL;
2829 else
2830 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2831 break;
2832
2833 case TCP_FASTOPEN:
2834 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2835 TCPF_LISTEN))) {
2836 tcp_fastopen_init_key_once(net);
2837
2838 fastopen_queue_tune(sk, val);
2839 } else {
2840 err = -EINVAL;
2841 }
2842 break;
2843 case TCP_FASTOPEN_CONNECT:
2844 if (val > 1 || val < 0) {
2845 err = -EINVAL;
2846 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2847 if (sk->sk_state == TCP_CLOSE)
2848 tp->fastopen_connect = val;
2849 else
2850 err = -EINVAL;
2851 } else {
2852 err = -EOPNOTSUPP;
2853 }
2854 break;
2855 case TCP_FASTOPEN_NO_COOKIE:
2856 if (val > 1 || val < 0)
2857 err = -EINVAL;
2858 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2859 err = -EINVAL;
2860 else
2861 tp->fastopen_no_cookie = val;
2862 break;
2863 case TCP_TIMESTAMP:
2864 if (!tp->repair)
2865 err = -EPERM;
2866 else
2867 tp->tsoffset = val - tcp_time_stamp_raw();
2868 break;
2869 case TCP_REPAIR_WINDOW:
2870 err = tcp_repair_set_window(tp, optval, optlen);
2871 break;
2872 case TCP_NOTSENT_LOWAT:
2873 tp->notsent_lowat = val;
2874 sk->sk_write_space(sk);
2875 break;
2876 default:
2877 err = -ENOPROTOOPT;
2878 break;
2879 }
2880
2881 release_sock(sk);
2882 return err;
2883}
2884
2885int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2886 unsigned int optlen)
2887{
2888 const struct inet_connection_sock *icsk = inet_csk(sk);
2889
2890 if (level != SOL_TCP)
2891 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2892 optval, optlen);
2893 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2894}
2895EXPORT_SYMBOL(tcp_setsockopt);
2896
2897#ifdef CONFIG_COMPAT
2898int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2899 char __user *optval, unsigned int optlen)
2900{
2901 if (level != SOL_TCP)
2902 return inet_csk_compat_setsockopt(sk, level, optname,
2903 optval, optlen);
2904 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2905}
2906EXPORT_SYMBOL(compat_tcp_setsockopt);
2907#endif
2908
2909static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2910 struct tcp_info *info)
2911{
2912 u64 stats[__TCP_CHRONO_MAX], total = 0;
2913 enum tcp_chrono i;
2914
2915 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2916 stats[i] = tp->chrono_stat[i - 1];
2917 if (i == tp->chrono_type)
2918 stats[i] += tcp_jiffies32 - tp->chrono_start;
2919 stats[i] *= USEC_PER_SEC / HZ;
2920 total += stats[i];
2921 }
2922
2923 info->tcpi_busy_time = total;
2924 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2925 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2926}
2927
2928/* Return information about state of tcp endpoint in API format. */
2929void tcp_get_info(struct sock *sk, struct tcp_info *info)
2930{
2931 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2932 const struct inet_connection_sock *icsk = inet_csk(sk);
2933 u32 now;
2934 u64 rate64;
2935 bool slow;
2936 u32 rate;
2937
2938 memset(info, 0, sizeof(*info));
2939 if (sk->sk_type != SOCK_STREAM)
2940 return;
2941
2942 info->tcpi_state = inet_sk_state_load(sk);
2943
2944 /* Report meaningful fields for all TCP states, including listeners */
2945 rate = READ_ONCE(sk->sk_pacing_rate);
2946 rate64 = rate != ~0U ? rate : ~0ULL;
2947 info->tcpi_pacing_rate = rate64;
2948
2949 rate = READ_ONCE(sk->sk_max_pacing_rate);
2950 rate64 = rate != ~0U ? rate : ~0ULL;
2951 info->tcpi_max_pacing_rate = rate64;
2952
2953 info->tcpi_reordering = tp->reordering;
2954 info->tcpi_snd_cwnd = tp->snd_cwnd;
2955
2956 if (info->tcpi_state == TCP_LISTEN) {
2957 /* listeners aliased fields :
2958 * tcpi_unacked -> Number of children ready for accept()
2959 * tcpi_sacked -> max backlog
2960 */
2961 info->tcpi_unacked = sk->sk_ack_backlog;
2962 info->tcpi_sacked = sk->sk_max_ack_backlog;
2963 return;
2964 }
2965
2966 slow = lock_sock_fast(sk);
2967
2968 info->tcpi_ca_state = icsk->icsk_ca_state;
2969 info->tcpi_retransmits = icsk->icsk_retransmits;
2970 info->tcpi_probes = icsk->icsk_probes_out;
2971 info->tcpi_backoff = icsk->icsk_backoff;
2972
2973 if (tp->rx_opt.tstamp_ok)
2974 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2975 if (tcp_is_sack(tp))
2976 info->tcpi_options |= TCPI_OPT_SACK;
2977 if (tp->rx_opt.wscale_ok) {
2978 info->tcpi_options |= TCPI_OPT_WSCALE;
2979 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2980 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2981 }
2982
2983 if (tp->ecn_flags & TCP_ECN_OK)
2984 info->tcpi_options |= TCPI_OPT_ECN;
2985 if (tp->ecn_flags & TCP_ECN_SEEN)
2986 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2987 if (tp->syn_data_acked)
2988 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2989
2990 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2991 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2992 info->tcpi_snd_mss = tp->mss_cache;
2993 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2994
2995 info->tcpi_unacked = tp->packets_out;
2996 info->tcpi_sacked = tp->sacked_out;
2997
2998 info->tcpi_lost = tp->lost_out;
2999 info->tcpi_retrans = tp->retrans_out;
3000
3001 now = tcp_jiffies32;
3002 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3003 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3004 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3005
3006 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3007 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3008 info->tcpi_rtt = tp->srtt_us >> 3;
3009 info->tcpi_rttvar = tp->mdev_us >> 2;
3010 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3011 info->tcpi_advmss = tp->advmss;
3012
3013 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3014 info->tcpi_rcv_space = tp->rcvq_space.space;
3015
3016 info->tcpi_total_retrans = tp->total_retrans;
3017
3018 info->tcpi_bytes_acked = tp->bytes_acked;
3019 info->tcpi_bytes_received = tp->bytes_received;
3020 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3021 tcp_get_info_chrono_stats(tp, info);
3022
3023 info->tcpi_segs_out = tp->segs_out;
3024 info->tcpi_segs_in = tp->segs_in;
3025
3026 info->tcpi_min_rtt = tcp_min_rtt(tp);
3027 info->tcpi_data_segs_in = tp->data_segs_in;
3028 info->tcpi_data_segs_out = tp->data_segs_out;
3029
3030 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3031 rate64 = tcp_compute_delivery_rate(tp);
3032 if (rate64)
3033 info->tcpi_delivery_rate = rate64;
3034 unlock_sock_fast(sk, slow);
3035}
3036EXPORT_SYMBOL_GPL(tcp_get_info);
3037
3038struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3039{
3040 const struct tcp_sock *tp = tcp_sk(sk);
3041 struct sk_buff *stats;
3042 struct tcp_info info;
3043 u64 rate64;
3044 u32 rate;
3045
3046 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) +
3047 5 * nla_total_size(sizeof(u32)) +
3048 3 * nla_total_size(sizeof(u8)), GFP_ATOMIC);
3049 if (!stats)
3050 return NULL;
3051
3052 tcp_get_info_chrono_stats(tp, &info);
3053 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3054 info.tcpi_busy_time, TCP_NLA_PAD);
3055 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3056 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3057 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3058 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3059 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3060 tp->data_segs_out, TCP_NLA_PAD);
3061 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3062 tp->total_retrans, TCP_NLA_PAD);
3063
3064 rate = READ_ONCE(sk->sk_pacing_rate);
3065 rate64 = rate != ~0U ? rate : ~0ULL;
3066 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3067
3068 rate64 = tcp_compute_delivery_rate(tp);
3069 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3070
3071 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3072 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3073 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3074
3075 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3076 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3077 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3078
3079 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3080 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3081 return stats;
3082}
3083
3084static int do_tcp_getsockopt(struct sock *sk, int level,
3085 int optname, char __user *optval, int __user *optlen)
3086{
3087 struct inet_connection_sock *icsk = inet_csk(sk);
3088 struct tcp_sock *tp = tcp_sk(sk);
3089 struct net *net = sock_net(sk);
3090 int val, len;
3091
3092 if (get_user(len, optlen))
3093 return -EFAULT;
3094
3095 len = min_t(unsigned int, len, sizeof(int));
3096
3097 if (len < 0)
3098 return -EINVAL;
3099
3100 switch (optname) {
3101 case TCP_MAXSEG:
3102 val = tp->mss_cache;
3103 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3104 val = tp->rx_opt.user_mss;
3105 if (tp->repair)
3106 val = tp->rx_opt.mss_clamp;
3107 break;
3108 case TCP_NODELAY:
3109 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3110 break;
3111 case TCP_CORK:
3112 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3113 break;
3114 case TCP_KEEPIDLE:
3115 val = keepalive_time_when(tp) / HZ;
3116 break;
3117 case TCP_KEEPINTVL:
3118 val = keepalive_intvl_when(tp) / HZ;
3119 break;
3120 case TCP_KEEPCNT:
3121 val = keepalive_probes(tp);
3122 break;
3123 case TCP_SYNCNT:
3124 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3125 break;
3126 case TCP_LINGER2:
3127 val = tp->linger2;
3128 if (val >= 0)
3129 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3130 break;
3131 case TCP_DEFER_ACCEPT:
3132 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3133 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3134 break;
3135 case TCP_WINDOW_CLAMP:
3136 val = tp->window_clamp;
3137 break;
3138 case TCP_INFO: {
3139 struct tcp_info info;
3140
3141 if (get_user(len, optlen))
3142 return -EFAULT;
3143
3144 tcp_get_info(sk, &info);
3145
3146 len = min_t(unsigned int, len, sizeof(info));
3147 if (put_user(len, optlen))
3148 return -EFAULT;
3149 if (copy_to_user(optval, &info, len))
3150 return -EFAULT;
3151 return 0;
3152 }
3153 case TCP_CC_INFO: {
3154 const struct tcp_congestion_ops *ca_ops;
3155 union tcp_cc_info info;
3156 size_t sz = 0;
3157 int attr;
3158
3159 if (get_user(len, optlen))
3160 return -EFAULT;
3161
3162 ca_ops = icsk->icsk_ca_ops;
3163 if (ca_ops && ca_ops->get_info)
3164 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3165
3166 len = min_t(unsigned int, len, sz);
3167 if (put_user(len, optlen))
3168 return -EFAULT;
3169 if (copy_to_user(optval, &info, len))
3170 return -EFAULT;
3171 return 0;
3172 }
3173 case TCP_QUICKACK:
3174 val = !icsk->icsk_ack.pingpong;
3175 break;
3176
3177 case TCP_CONGESTION:
3178 if (get_user(len, optlen))
3179 return -EFAULT;
3180 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3181 if (put_user(len, optlen))
3182 return -EFAULT;
3183 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3184 return -EFAULT;
3185 return 0;
3186
3187 case TCP_ULP:
3188 if (get_user(len, optlen))
3189 return -EFAULT;
3190 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3191 if (!icsk->icsk_ulp_ops) {
3192 if (put_user(0, optlen))
3193 return -EFAULT;
3194 return 0;
3195 }
3196 if (put_user(len, optlen))
3197 return -EFAULT;
3198 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3199 return -EFAULT;
3200 return 0;
3201
3202 case TCP_FASTOPEN_KEY: {
3203 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
3204 struct tcp_fastopen_context *ctx;
3205
3206 if (get_user(len, optlen))
3207 return -EFAULT;
3208
3209 rcu_read_lock();
3210 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3211 if (ctx)
3212 memcpy(key, ctx->key, sizeof(key));
3213 else
3214 len = 0;
3215 rcu_read_unlock();
3216
3217 len = min_t(unsigned int, len, sizeof(key));
3218 if (put_user(len, optlen))
3219 return -EFAULT;
3220 if (copy_to_user(optval, key, len))
3221 return -EFAULT;
3222 return 0;
3223 }
3224 case TCP_THIN_LINEAR_TIMEOUTS:
3225 val = tp->thin_lto;
3226 break;
3227
3228 case TCP_THIN_DUPACK:
3229 val = 0;
3230 break;
3231
3232 case TCP_REPAIR:
3233 val = tp->repair;
3234 break;
3235
3236 case TCP_REPAIR_QUEUE:
3237 if (tp->repair)
3238 val = tp->repair_queue;
3239 else
3240 return -EINVAL;
3241 break;
3242
3243 case TCP_REPAIR_WINDOW: {
3244 struct tcp_repair_window opt;
3245
3246 if (get_user(len, optlen))
3247 return -EFAULT;
3248
3249 if (len != sizeof(opt))
3250 return -EINVAL;
3251
3252 if (!tp->repair)
3253 return -EPERM;
3254
3255 opt.snd_wl1 = tp->snd_wl1;
3256 opt.snd_wnd = tp->snd_wnd;
3257 opt.max_window = tp->max_window;
3258 opt.rcv_wnd = tp->rcv_wnd;
3259 opt.rcv_wup = tp->rcv_wup;
3260
3261 if (copy_to_user(optval, &opt, len))
3262 return -EFAULT;
3263 return 0;
3264 }
3265 case TCP_QUEUE_SEQ:
3266 if (tp->repair_queue == TCP_SEND_QUEUE)
3267 val = tp->write_seq;
3268 else if (tp->repair_queue == TCP_RECV_QUEUE)
3269 val = tp->rcv_nxt;
3270 else
3271 return -EINVAL;
3272 break;
3273
3274 case TCP_USER_TIMEOUT:
3275 val = jiffies_to_msecs(icsk->icsk_user_timeout);
3276 break;
3277
3278 case TCP_FASTOPEN:
3279 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3280 break;
3281
3282 case TCP_FASTOPEN_CONNECT:
3283 val = tp->fastopen_connect;
3284 break;
3285
3286 case TCP_FASTOPEN_NO_COOKIE:
3287 val = tp->fastopen_no_cookie;
3288 break;
3289
3290 case TCP_TIMESTAMP:
3291 val = tcp_time_stamp_raw() + tp->tsoffset;
3292 break;
3293 case TCP_NOTSENT_LOWAT:
3294 val = tp->notsent_lowat;
3295 break;
3296 case TCP_SAVE_SYN:
3297 val = tp->save_syn;
3298 break;
3299 case TCP_SAVED_SYN: {
3300 if (get_user(len, optlen))
3301 return -EFAULT;
3302
3303 lock_sock(sk);
3304 if (tp->saved_syn) {
3305 if (len < tp->saved_syn[0]) {
3306 if (put_user(tp->saved_syn[0], optlen)) {
3307 release_sock(sk);
3308 return -EFAULT;
3309 }
3310 release_sock(sk);
3311 return -EINVAL;
3312 }
3313 len = tp->saved_syn[0];
3314 if (put_user(len, optlen)) {
3315 release_sock(sk);
3316 return -EFAULT;
3317 }
3318 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3319 release_sock(sk);
3320 return -EFAULT;
3321 }
3322 tcp_saved_syn_free(tp);
3323 release_sock(sk);
3324 } else {
3325 release_sock(sk);
3326 len = 0;
3327 if (put_user(len, optlen))
3328 return -EFAULT;
3329 }
3330 return 0;
3331 }
3332 default:
3333 return -ENOPROTOOPT;
3334 }
3335
3336 if (put_user(len, optlen))
3337 return -EFAULT;
3338 if (copy_to_user(optval, &val, len))
3339 return -EFAULT;
3340 return 0;
3341}
3342
3343int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3344 int __user *optlen)
3345{
3346 struct inet_connection_sock *icsk = inet_csk(sk);
3347
3348 if (level != SOL_TCP)
3349 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3350 optval, optlen);
3351 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3352}
3353EXPORT_SYMBOL(tcp_getsockopt);
3354
3355#ifdef CONFIG_COMPAT
3356int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3357 char __user *optval, int __user *optlen)
3358{
3359 if (level != SOL_TCP)
3360 return inet_csk_compat_getsockopt(sk, level, optname,
3361 optval, optlen);
3362 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3363}
3364EXPORT_SYMBOL(compat_tcp_getsockopt);
3365#endif
3366
3367#ifdef CONFIG_TCP_MD5SIG
3368static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3369static DEFINE_MUTEX(tcp_md5sig_mutex);
3370static bool tcp_md5sig_pool_populated = false;
3371
3372static void __tcp_alloc_md5sig_pool(void)
3373{
3374 struct crypto_ahash *hash;
3375 int cpu;
3376
3377 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3378 if (IS_ERR(hash))
3379 return;
3380
3381 for_each_possible_cpu(cpu) {
3382 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3383 struct ahash_request *req;
3384
3385 if (!scratch) {
3386 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3387 sizeof(struct tcphdr),
3388 GFP_KERNEL,
3389 cpu_to_node(cpu));
3390 if (!scratch)
3391 return;
3392 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3393 }
3394 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3395 continue;
3396
3397 req = ahash_request_alloc(hash, GFP_KERNEL);
3398 if (!req)
3399 return;
3400
3401 ahash_request_set_callback(req, 0, NULL, NULL);
3402
3403 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3404 }
3405 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3406 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3407 */
3408 smp_wmb();
3409 tcp_md5sig_pool_populated = true;
3410}
3411
3412bool tcp_alloc_md5sig_pool(void)
3413{
3414 if (unlikely(!tcp_md5sig_pool_populated)) {
3415 mutex_lock(&tcp_md5sig_mutex);
3416
3417 if (!tcp_md5sig_pool_populated)
3418 __tcp_alloc_md5sig_pool();
3419
3420 mutex_unlock(&tcp_md5sig_mutex);
3421 }
3422 return tcp_md5sig_pool_populated;
3423}
3424EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3425
3426
3427/**
3428 * tcp_get_md5sig_pool - get md5sig_pool for this user
3429 *
3430 * We use percpu structure, so if we succeed, we exit with preemption
3431 * and BH disabled, to make sure another thread or softirq handling
3432 * wont try to get same context.
3433 */
3434struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3435{
3436 local_bh_disable();
3437
3438 if (tcp_md5sig_pool_populated) {
3439 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3440 smp_rmb();
3441 return this_cpu_ptr(&tcp_md5sig_pool);
3442 }
3443 local_bh_enable();
3444 return NULL;
3445}
3446EXPORT_SYMBOL(tcp_get_md5sig_pool);
3447
3448int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3449 const struct sk_buff *skb, unsigned int header_len)
3450{
3451 struct scatterlist sg;
3452 const struct tcphdr *tp = tcp_hdr(skb);
3453 struct ahash_request *req = hp->md5_req;
3454 unsigned int i;
3455 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3456 skb_headlen(skb) - header_len : 0;
3457 const struct skb_shared_info *shi = skb_shinfo(skb);
3458 struct sk_buff *frag_iter;
3459
3460 sg_init_table(&sg, 1);
3461
3462 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3463 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3464 if (crypto_ahash_update(req))
3465 return 1;
3466
3467 for (i = 0; i < shi->nr_frags; ++i) {
3468 const struct skb_frag_struct *f = &shi->frags[i];
3469 unsigned int offset = f->page_offset;
3470 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3471
3472 sg_set_page(&sg, page, skb_frag_size(f),
3473 offset_in_page(offset));
3474 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3475 if (crypto_ahash_update(req))
3476 return 1;
3477 }
3478
3479 skb_walk_frags(skb, frag_iter)
3480 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3481 return 1;
3482
3483 return 0;
3484}
3485EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3486
3487int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3488{
3489 struct scatterlist sg;
3490
3491 sg_init_one(&sg, key->key, key->keylen);
3492 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3493 return crypto_ahash_update(hp->md5_req);
3494}
3495EXPORT_SYMBOL(tcp_md5_hash_key);
3496
3497#endif
3498
3499void tcp_done(struct sock *sk)
3500{
3501 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3502
3503 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3504 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3505
3506 tcp_set_state(sk, TCP_CLOSE);
3507 tcp_clear_xmit_timers(sk);
3508 if (req)
3509 reqsk_fastopen_remove(sk, req, false);
3510
3511 sk->sk_shutdown = SHUTDOWN_MASK;
3512
3513 if (!sock_flag(sk, SOCK_DEAD))
3514 sk->sk_state_change(sk);
3515 else
3516 inet_csk_destroy_sock(sk);
3517}
3518EXPORT_SYMBOL_GPL(tcp_done);
3519
3520int tcp_abort(struct sock *sk, int err)
3521{
3522 if (!sk_fullsock(sk)) {
3523 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3524 struct request_sock *req = inet_reqsk(sk);
3525
3526 local_bh_disable();
3527 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3528 req);
3529 local_bh_enable();
3530 return 0;
3531 }
3532 return -EOPNOTSUPP;
3533 }
3534
3535 /* Don't race with userspace socket closes such as tcp_close. */
3536 lock_sock(sk);
3537
3538 if (sk->sk_state == TCP_LISTEN) {
3539 tcp_set_state(sk, TCP_CLOSE);
3540 inet_csk_listen_stop(sk);
3541 }
3542
3543 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3544 local_bh_disable();
3545 bh_lock_sock(sk);
3546
3547 if (!sock_flag(sk, SOCK_DEAD)) {
3548 sk->sk_err = err;
3549 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3550 smp_wmb();
3551 sk->sk_error_report(sk);
3552 if (tcp_need_reset(sk->sk_state))
3553 tcp_send_active_reset(sk, GFP_ATOMIC);
3554 tcp_done(sk);
3555 }
3556
3557 bh_unlock_sock(sk);
3558 local_bh_enable();
3559 tcp_write_queue_purge(sk);
3560 release_sock(sk);
3561 return 0;
3562}
3563EXPORT_SYMBOL_GPL(tcp_abort);
3564
3565extern struct tcp_congestion_ops tcp_reno;
3566
3567static __initdata unsigned long thash_entries;
3568static int __init set_thash_entries(char *str)
3569{
3570 ssize_t ret;
3571
3572 if (!str)
3573 return 0;
3574
3575 ret = kstrtoul(str, 0, &thash_entries);
3576 if (ret)
3577 return 0;
3578
3579 return 1;
3580}
3581__setup("thash_entries=", set_thash_entries);
3582
3583static void __init tcp_init_mem(void)
3584{
3585 unsigned long limit = nr_free_buffer_pages() / 16;
3586
3587 limit = max(limit, 128UL);
3588 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3589 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3590 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3591}
3592
3593void __init tcp_init(void)
3594{
3595 int max_rshare, max_wshare, cnt;
3596 unsigned long limit;
3597 unsigned int i;
3598
3599 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3600 FIELD_SIZEOF(struct sk_buff, cb));
3601
3602 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3603 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3604 inet_hashinfo_init(&tcp_hashinfo);
3605 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3606 thash_entries, 21, /* one slot per 2 MB*/
3607 0, 64 * 1024);
3608 tcp_hashinfo.bind_bucket_cachep =
3609 kmem_cache_create("tcp_bind_bucket",
3610 sizeof(struct inet_bind_bucket), 0,
3611 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3612
3613 /* Size and allocate the main established and bind bucket
3614 * hash tables.
3615 *
3616 * The methodology is similar to that of the buffer cache.
3617 */
3618 tcp_hashinfo.ehash =
3619 alloc_large_system_hash("TCP established",
3620 sizeof(struct inet_ehash_bucket),
3621 thash_entries,
3622 17, /* one slot per 128 KB of memory */
3623 0,
3624 NULL,
3625 &tcp_hashinfo.ehash_mask,
3626 0,
3627 thash_entries ? 0 : 512 * 1024);
3628 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3629 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3630
3631 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3632 panic("TCP: failed to alloc ehash_locks");
3633 tcp_hashinfo.bhash =
3634 alloc_large_system_hash("TCP bind",
3635 sizeof(struct inet_bind_hashbucket),
3636 tcp_hashinfo.ehash_mask + 1,
3637 17, /* one slot per 128 KB of memory */
3638 0,
3639 &tcp_hashinfo.bhash_size,
3640 NULL,
3641 0,
3642 64 * 1024);
3643 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3644 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3645 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3646 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3647 }
3648
3649
3650 cnt = tcp_hashinfo.ehash_mask + 1;
3651 sysctl_tcp_max_orphans = cnt / 2;
3652
3653 tcp_init_mem();
3654 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3655 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3656 max_wshare = min(4UL*1024*1024, limit);
3657 max_rshare = min(6UL*1024*1024, limit);
3658
3659 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3660 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3661 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3662
3663 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3664 init_net.ipv4.sysctl_tcp_rmem[1] = 87380;
3665 init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare);
3666
3667 pr_info("Hash tables configured (established %u bind %u)\n",
3668 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3669
3670 tcp_v4_init();
3671 tcp_metrics_init();
3672 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3673 tcp_tasklet_init();
3674}
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248#define pr_fmt(fmt) "TCP: " fmt
249
250#include <crypto/hash.h>
251#include <linux/kernel.h>
252#include <linux/module.h>
253#include <linux/types.h>
254#include <linux/fcntl.h>
255#include <linux/poll.h>
256#include <linux/inet_diag.h>
257#include <linux/init.h>
258#include <linux/fs.h>
259#include <linux/skbuff.h>
260#include <linux/scatterlist.h>
261#include <linux/splice.h>
262#include <linux/net.h>
263#include <linux/socket.h>
264#include <linux/random.h>
265#include <linux/bootmem.h>
266#include <linux/highmem.h>
267#include <linux/swap.h>
268#include <linux/cache.h>
269#include <linux/err.h>
270#include <linux/time.h>
271#include <linux/slab.h>
272
273#include <net/icmp.h>
274#include <net/inet_common.h>
275#include <net/tcp.h>
276#include <net/xfrm.h>
277#include <net/ip.h>
278#include <net/sock.h>
279
280#include <asm/uaccess.h>
281#include <asm/ioctls.h>
282#include <asm/unaligned.h>
283#include <net/busy_poll.h>
284
285int sysctl_tcp_min_tso_segs __read_mostly = 2;
286
287int sysctl_tcp_autocorking __read_mostly = 1;
288
289struct percpu_counter tcp_orphan_count;
290EXPORT_SYMBOL_GPL(tcp_orphan_count);
291
292long sysctl_tcp_mem[3] __read_mostly;
293int sysctl_tcp_wmem[3] __read_mostly;
294int sysctl_tcp_rmem[3] __read_mostly;
295
296EXPORT_SYMBOL(sysctl_tcp_mem);
297EXPORT_SYMBOL(sysctl_tcp_rmem);
298EXPORT_SYMBOL(sysctl_tcp_wmem);
299
300atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
301EXPORT_SYMBOL(tcp_memory_allocated);
302
303/*
304 * Current number of TCP sockets.
305 */
306struct percpu_counter tcp_sockets_allocated;
307EXPORT_SYMBOL(tcp_sockets_allocated);
308
309/*
310 * TCP splice context
311 */
312struct tcp_splice_state {
313 struct pipe_inode_info *pipe;
314 size_t len;
315 unsigned int flags;
316};
317
318/*
319 * Pressure flag: try to collapse.
320 * Technical note: it is used by multiple contexts non atomically.
321 * All the __sk_mem_schedule() is of this nature: accounting
322 * is strict, actions are advisory and have some latency.
323 */
324int tcp_memory_pressure __read_mostly;
325EXPORT_SYMBOL(tcp_memory_pressure);
326
327void tcp_enter_memory_pressure(struct sock *sk)
328{
329 if (!tcp_memory_pressure) {
330 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
331 tcp_memory_pressure = 1;
332 }
333}
334EXPORT_SYMBOL(tcp_enter_memory_pressure);
335
336/* Convert seconds to retransmits based on initial and max timeout */
337static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
338{
339 u8 res = 0;
340
341 if (seconds > 0) {
342 int period = timeout;
343
344 res = 1;
345 while (seconds > period && res < 255) {
346 res++;
347 timeout <<= 1;
348 if (timeout > rto_max)
349 timeout = rto_max;
350 period += timeout;
351 }
352 }
353 return res;
354}
355
356/* Convert retransmits to seconds based on initial and max timeout */
357static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
358{
359 int period = 0;
360
361 if (retrans > 0) {
362 period = timeout;
363 while (--retrans) {
364 timeout <<= 1;
365 if (timeout > rto_max)
366 timeout = rto_max;
367 period += timeout;
368 }
369 }
370 return period;
371}
372
373/* Address-family independent initialization for a tcp_sock.
374 *
375 * NOTE: A lot of things set to zero explicitly by call to
376 * sk_alloc() so need not be done here.
377 */
378void tcp_init_sock(struct sock *sk)
379{
380 struct inet_connection_sock *icsk = inet_csk(sk);
381 struct tcp_sock *tp = tcp_sk(sk);
382
383 __skb_queue_head_init(&tp->out_of_order_queue);
384 tcp_init_xmit_timers(sk);
385 tcp_prequeue_init(tp);
386 INIT_LIST_HEAD(&tp->tsq_node);
387
388 icsk->icsk_rto = TCP_TIMEOUT_INIT;
389 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
390 tp->rtt_min[0].rtt = ~0U;
391
392 /* So many TCP implementations out there (incorrectly) count the
393 * initial SYN frame in their delayed-ACK and congestion control
394 * algorithms that we must have the following bandaid to talk
395 * efficiently to them. -DaveM
396 */
397 tp->snd_cwnd = TCP_INIT_CWND;
398
399 /* See draft-stevens-tcpca-spec-01 for discussion of the
400 * initialization of these values.
401 */
402 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
403 tp->snd_cwnd_clamp = ~0;
404 tp->mss_cache = TCP_MSS_DEFAULT;
405 u64_stats_init(&tp->syncp);
406
407 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
408 tcp_enable_early_retrans(tp);
409 tcp_assign_congestion_control(sk);
410
411 tp->tsoffset = 0;
412
413 sk->sk_state = TCP_CLOSE;
414
415 sk->sk_write_space = sk_stream_write_space;
416 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
417
418 icsk->icsk_sync_mss = tcp_sync_mss;
419
420 sk->sk_sndbuf = sysctl_tcp_wmem[1];
421 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
422
423 local_bh_disable();
424 if (mem_cgroup_sockets_enabled)
425 sock_update_memcg(sk);
426 sk_sockets_allocated_inc(sk);
427 local_bh_enable();
428}
429EXPORT_SYMBOL(tcp_init_sock);
430
431static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
432{
433 if (sk->sk_tsflags) {
434 struct skb_shared_info *shinfo = skb_shinfo(skb);
435
436 sock_tx_timestamp(sk, &shinfo->tx_flags);
437 if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
438 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
439 }
440}
441
442/*
443 * Wait for a TCP event.
444 *
445 * Note that we don't need to lock the socket, as the upper poll layers
446 * take care of normal races (between the test and the event) and we don't
447 * go look at any of the socket buffers directly.
448 */
449unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
450{
451 unsigned int mask;
452 struct sock *sk = sock->sk;
453 const struct tcp_sock *tp = tcp_sk(sk);
454 int state;
455
456 sock_rps_record_flow(sk);
457
458 sock_poll_wait(file, sk_sleep(sk), wait);
459
460 state = sk_state_load(sk);
461 if (state == TCP_LISTEN)
462 return inet_csk_listen_poll(sk);
463
464 /* Socket is not locked. We are protected from async events
465 * by poll logic and correct handling of state changes
466 * made by other threads is impossible in any case.
467 */
468
469 mask = 0;
470
471 /*
472 * POLLHUP is certainly not done right. But poll() doesn't
473 * have a notion of HUP in just one direction, and for a
474 * socket the read side is more interesting.
475 *
476 * Some poll() documentation says that POLLHUP is incompatible
477 * with the POLLOUT/POLLWR flags, so somebody should check this
478 * all. But careful, it tends to be safer to return too many
479 * bits than too few, and you can easily break real applications
480 * if you don't tell them that something has hung up!
481 *
482 * Check-me.
483 *
484 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
485 * our fs/select.c). It means that after we received EOF,
486 * poll always returns immediately, making impossible poll() on write()
487 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
488 * if and only if shutdown has been made in both directions.
489 * Actually, it is interesting to look how Solaris and DUX
490 * solve this dilemma. I would prefer, if POLLHUP were maskable,
491 * then we could set it on SND_SHUTDOWN. BTW examples given
492 * in Stevens' books assume exactly this behaviour, it explains
493 * why POLLHUP is incompatible with POLLOUT. --ANK
494 *
495 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
496 * blocking on fresh not-connected or disconnected socket. --ANK
497 */
498 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
499 mask |= POLLHUP;
500 if (sk->sk_shutdown & RCV_SHUTDOWN)
501 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
502
503 /* Connected or passive Fast Open socket? */
504 if (state != TCP_SYN_SENT &&
505 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
506 int target = sock_rcvlowat(sk, 0, INT_MAX);
507
508 if (tp->urg_seq == tp->copied_seq &&
509 !sock_flag(sk, SOCK_URGINLINE) &&
510 tp->urg_data)
511 target++;
512
513 if (tp->rcv_nxt - tp->copied_seq >= target)
514 mask |= POLLIN | POLLRDNORM;
515
516 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
517 if (sk_stream_is_writeable(sk)) {
518 mask |= POLLOUT | POLLWRNORM;
519 } else { /* send SIGIO later */
520 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
521 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
522
523 /* Race breaker. If space is freed after
524 * wspace test but before the flags are set,
525 * IO signal will be lost. Memory barrier
526 * pairs with the input side.
527 */
528 smp_mb__after_atomic();
529 if (sk_stream_is_writeable(sk))
530 mask |= POLLOUT | POLLWRNORM;
531 }
532 } else
533 mask |= POLLOUT | POLLWRNORM;
534
535 if (tp->urg_data & TCP_URG_VALID)
536 mask |= POLLPRI;
537 }
538 /* This barrier is coupled with smp_wmb() in tcp_reset() */
539 smp_rmb();
540 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
541 mask |= POLLERR;
542
543 return mask;
544}
545EXPORT_SYMBOL(tcp_poll);
546
547int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
548{
549 struct tcp_sock *tp = tcp_sk(sk);
550 int answ;
551 bool slow;
552
553 switch (cmd) {
554 case SIOCINQ:
555 if (sk->sk_state == TCP_LISTEN)
556 return -EINVAL;
557
558 slow = lock_sock_fast(sk);
559 answ = tcp_inq(sk);
560 unlock_sock_fast(sk, slow);
561 break;
562 case SIOCATMARK:
563 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
564 break;
565 case SIOCOUTQ:
566 if (sk->sk_state == TCP_LISTEN)
567 return -EINVAL;
568
569 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
570 answ = 0;
571 else
572 answ = tp->write_seq - tp->snd_una;
573 break;
574 case SIOCOUTQNSD:
575 if (sk->sk_state == TCP_LISTEN)
576 return -EINVAL;
577
578 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
579 answ = 0;
580 else
581 answ = tp->write_seq - tp->snd_nxt;
582 break;
583 default:
584 return -ENOIOCTLCMD;
585 }
586
587 return put_user(answ, (int __user *)arg);
588}
589EXPORT_SYMBOL(tcp_ioctl);
590
591static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
592{
593 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
594 tp->pushed_seq = tp->write_seq;
595}
596
597static inline bool forced_push(const struct tcp_sock *tp)
598{
599 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
600}
601
602static void skb_entail(struct sock *sk, struct sk_buff *skb)
603{
604 struct tcp_sock *tp = tcp_sk(sk);
605 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
606
607 skb->csum = 0;
608 tcb->seq = tcb->end_seq = tp->write_seq;
609 tcb->tcp_flags = TCPHDR_ACK;
610 tcb->sacked = 0;
611 __skb_header_release(skb);
612 tcp_add_write_queue_tail(sk, skb);
613 sk->sk_wmem_queued += skb->truesize;
614 sk_mem_charge(sk, skb->truesize);
615 if (tp->nonagle & TCP_NAGLE_PUSH)
616 tp->nonagle &= ~TCP_NAGLE_PUSH;
617
618 tcp_slow_start_after_idle_check(sk);
619}
620
621static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
622{
623 if (flags & MSG_OOB)
624 tp->snd_up = tp->write_seq;
625}
626
627/* If a not yet filled skb is pushed, do not send it if
628 * we have data packets in Qdisc or NIC queues :
629 * Because TX completion will happen shortly, it gives a chance
630 * to coalesce future sendmsg() payload into this skb, without
631 * need for a timer, and with no latency trade off.
632 * As packets containing data payload have a bigger truesize
633 * than pure acks (dataless) packets, the last checks prevent
634 * autocorking if we only have an ACK in Qdisc/NIC queues,
635 * or if TX completion was delayed after we processed ACK packet.
636 */
637static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
638 int size_goal)
639{
640 return skb->len < size_goal &&
641 sysctl_tcp_autocorking &&
642 skb != tcp_write_queue_head(sk) &&
643 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
644}
645
646static void tcp_push(struct sock *sk, int flags, int mss_now,
647 int nonagle, int size_goal)
648{
649 struct tcp_sock *tp = tcp_sk(sk);
650 struct sk_buff *skb;
651
652 if (!tcp_send_head(sk))
653 return;
654
655 skb = tcp_write_queue_tail(sk);
656 if (!(flags & MSG_MORE) || forced_push(tp))
657 tcp_mark_push(tp, skb);
658
659 tcp_mark_urg(tp, flags);
660
661 if (tcp_should_autocork(sk, skb, size_goal)) {
662
663 /* avoid atomic op if TSQ_THROTTLED bit is already set */
664 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
665 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
666 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
667 }
668 /* It is possible TX completion already happened
669 * before we set TSQ_THROTTLED.
670 */
671 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
672 return;
673 }
674
675 if (flags & MSG_MORE)
676 nonagle = TCP_NAGLE_CORK;
677
678 __tcp_push_pending_frames(sk, mss_now, nonagle);
679}
680
681static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
682 unsigned int offset, size_t len)
683{
684 struct tcp_splice_state *tss = rd_desc->arg.data;
685 int ret;
686
687 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
688 min(rd_desc->count, len), tss->flags,
689 skb_socket_splice);
690 if (ret > 0)
691 rd_desc->count -= ret;
692 return ret;
693}
694
695static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
696{
697 /* Store TCP splice context information in read_descriptor_t. */
698 read_descriptor_t rd_desc = {
699 .arg.data = tss,
700 .count = tss->len,
701 };
702
703 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
704}
705
706/**
707 * tcp_splice_read - splice data from TCP socket to a pipe
708 * @sock: socket to splice from
709 * @ppos: position (not valid)
710 * @pipe: pipe to splice to
711 * @len: number of bytes to splice
712 * @flags: splice modifier flags
713 *
714 * Description:
715 * Will read pages from given socket and fill them into a pipe.
716 *
717 **/
718ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
719 struct pipe_inode_info *pipe, size_t len,
720 unsigned int flags)
721{
722 struct sock *sk = sock->sk;
723 struct tcp_splice_state tss = {
724 .pipe = pipe,
725 .len = len,
726 .flags = flags,
727 };
728 long timeo;
729 ssize_t spliced;
730 int ret;
731
732 sock_rps_record_flow(sk);
733 /*
734 * We can't seek on a socket input
735 */
736 if (unlikely(*ppos))
737 return -ESPIPE;
738
739 ret = spliced = 0;
740
741 lock_sock(sk);
742
743 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
744 while (tss.len) {
745 ret = __tcp_splice_read(sk, &tss);
746 if (ret < 0)
747 break;
748 else if (!ret) {
749 if (spliced)
750 break;
751 if (sock_flag(sk, SOCK_DONE))
752 break;
753 if (sk->sk_err) {
754 ret = sock_error(sk);
755 break;
756 }
757 if (sk->sk_shutdown & RCV_SHUTDOWN)
758 break;
759 if (sk->sk_state == TCP_CLOSE) {
760 /*
761 * This occurs when user tries to read
762 * from never connected socket.
763 */
764 if (!sock_flag(sk, SOCK_DONE))
765 ret = -ENOTCONN;
766 break;
767 }
768 if (!timeo) {
769 ret = -EAGAIN;
770 break;
771 }
772 sk_wait_data(sk, &timeo, NULL);
773 if (signal_pending(current)) {
774 ret = sock_intr_errno(timeo);
775 break;
776 }
777 continue;
778 }
779 tss.len -= ret;
780 spliced += ret;
781
782 if (!timeo)
783 break;
784 release_sock(sk);
785 lock_sock(sk);
786
787 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
788 (sk->sk_shutdown & RCV_SHUTDOWN) ||
789 signal_pending(current))
790 break;
791 }
792
793 release_sock(sk);
794
795 if (spliced)
796 return spliced;
797
798 return ret;
799}
800EXPORT_SYMBOL(tcp_splice_read);
801
802struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
803 bool force_schedule)
804{
805 struct sk_buff *skb;
806
807 /* The TCP header must be at least 32-bit aligned. */
808 size = ALIGN(size, 4);
809
810 if (unlikely(tcp_under_memory_pressure(sk)))
811 sk_mem_reclaim_partial(sk);
812
813 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
814 if (likely(skb)) {
815 bool mem_scheduled;
816
817 if (force_schedule) {
818 mem_scheduled = true;
819 sk_forced_mem_schedule(sk, skb->truesize);
820 } else {
821 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
822 }
823 if (likely(mem_scheduled)) {
824 skb_reserve(skb, sk->sk_prot->max_header);
825 /*
826 * Make sure that we have exactly size bytes
827 * available to the caller, no more, no less.
828 */
829 skb->reserved_tailroom = skb->end - skb->tail - size;
830 return skb;
831 }
832 __kfree_skb(skb);
833 } else {
834 sk->sk_prot->enter_memory_pressure(sk);
835 sk_stream_moderate_sndbuf(sk);
836 }
837 return NULL;
838}
839
840static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
841 int large_allowed)
842{
843 struct tcp_sock *tp = tcp_sk(sk);
844 u32 new_size_goal, size_goal;
845
846 if (!large_allowed || !sk_can_gso(sk))
847 return mss_now;
848
849 /* Note : tcp_tso_autosize() will eventually split this later */
850 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
851 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
852
853 /* We try hard to avoid divides here */
854 size_goal = tp->gso_segs * mss_now;
855 if (unlikely(new_size_goal < size_goal ||
856 new_size_goal >= size_goal + mss_now)) {
857 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
858 sk->sk_gso_max_segs);
859 size_goal = tp->gso_segs * mss_now;
860 }
861
862 return max(size_goal, mss_now);
863}
864
865static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
866{
867 int mss_now;
868
869 mss_now = tcp_current_mss(sk);
870 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
871
872 return mss_now;
873}
874
875static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
876 size_t size, int flags)
877{
878 struct tcp_sock *tp = tcp_sk(sk);
879 int mss_now, size_goal;
880 int err;
881 ssize_t copied;
882 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
883
884 /* Wait for a connection to finish. One exception is TCP Fast Open
885 * (passive side) where data is allowed to be sent before a connection
886 * is fully established.
887 */
888 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
889 !tcp_passive_fastopen(sk)) {
890 err = sk_stream_wait_connect(sk, &timeo);
891 if (err != 0)
892 goto out_err;
893 }
894
895 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
896
897 mss_now = tcp_send_mss(sk, &size_goal, flags);
898 copied = 0;
899
900 err = -EPIPE;
901 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
902 goto out_err;
903
904 while (size > 0) {
905 struct sk_buff *skb = tcp_write_queue_tail(sk);
906 int copy, i;
907 bool can_coalesce;
908
909 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
910new_segment:
911 if (!sk_stream_memory_free(sk))
912 goto wait_for_sndbuf;
913
914 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
915 skb_queue_empty(&sk->sk_write_queue));
916 if (!skb)
917 goto wait_for_memory;
918
919 skb_entail(sk, skb);
920 copy = size_goal;
921 }
922
923 if (copy > size)
924 copy = size;
925
926 i = skb_shinfo(skb)->nr_frags;
927 can_coalesce = skb_can_coalesce(skb, i, page, offset);
928 if (!can_coalesce && i >= sysctl_max_skb_frags) {
929 tcp_mark_push(tp, skb);
930 goto new_segment;
931 }
932 if (!sk_wmem_schedule(sk, copy))
933 goto wait_for_memory;
934
935 if (can_coalesce) {
936 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
937 } else {
938 get_page(page);
939 skb_fill_page_desc(skb, i, page, offset, copy);
940 }
941 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
942
943 skb->len += copy;
944 skb->data_len += copy;
945 skb->truesize += copy;
946 sk->sk_wmem_queued += copy;
947 sk_mem_charge(sk, copy);
948 skb->ip_summed = CHECKSUM_PARTIAL;
949 tp->write_seq += copy;
950 TCP_SKB_CB(skb)->end_seq += copy;
951 tcp_skb_pcount_set(skb, 0);
952
953 if (!copied)
954 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
955
956 copied += copy;
957 offset += copy;
958 size -= copy;
959 if (!size) {
960 tcp_tx_timestamp(sk, skb);
961 goto out;
962 }
963
964 if (skb->len < size_goal || (flags & MSG_OOB))
965 continue;
966
967 if (forced_push(tp)) {
968 tcp_mark_push(tp, skb);
969 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
970 } else if (skb == tcp_send_head(sk))
971 tcp_push_one(sk, mss_now);
972 continue;
973
974wait_for_sndbuf:
975 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
976wait_for_memory:
977 tcp_push(sk, flags & ~MSG_MORE, mss_now,
978 TCP_NAGLE_PUSH, size_goal);
979
980 err = sk_stream_wait_memory(sk, &timeo);
981 if (err != 0)
982 goto do_error;
983
984 mss_now = tcp_send_mss(sk, &size_goal, flags);
985 }
986
987out:
988 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
989 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
990 return copied;
991
992do_error:
993 if (copied)
994 goto out;
995out_err:
996 /* make sure we wake any epoll edge trigger waiter */
997 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
998 sk->sk_write_space(sk);
999 return sk_stream_error(sk, flags, err);
1000}
1001
1002int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1003 size_t size, int flags)
1004{
1005 ssize_t res;
1006
1007 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1008 !sk_check_csum_caps(sk))
1009 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1010 flags);
1011
1012 lock_sock(sk);
1013 res = do_tcp_sendpages(sk, page, offset, size, flags);
1014 release_sock(sk);
1015 return res;
1016}
1017EXPORT_SYMBOL(tcp_sendpage);
1018
1019static inline int select_size(const struct sock *sk, bool sg)
1020{
1021 const struct tcp_sock *tp = tcp_sk(sk);
1022 int tmp = tp->mss_cache;
1023
1024 if (sg) {
1025 if (sk_can_gso(sk)) {
1026 /* Small frames wont use a full page:
1027 * Payload will immediately follow tcp header.
1028 */
1029 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1030 } else {
1031 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1032
1033 if (tmp >= pgbreak &&
1034 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1035 tmp = pgbreak;
1036 }
1037 }
1038
1039 return tmp;
1040}
1041
1042void tcp_free_fastopen_req(struct tcp_sock *tp)
1043{
1044 if (tp->fastopen_req) {
1045 kfree(tp->fastopen_req);
1046 tp->fastopen_req = NULL;
1047 }
1048}
1049
1050static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1051 int *copied, size_t size)
1052{
1053 struct tcp_sock *tp = tcp_sk(sk);
1054 int err, flags;
1055
1056 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1057 return -EOPNOTSUPP;
1058 if (tp->fastopen_req)
1059 return -EALREADY; /* Another Fast Open is in progress */
1060
1061 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1062 sk->sk_allocation);
1063 if (unlikely(!tp->fastopen_req))
1064 return -ENOBUFS;
1065 tp->fastopen_req->data = msg;
1066 tp->fastopen_req->size = size;
1067
1068 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1069 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1070 msg->msg_namelen, flags);
1071 *copied = tp->fastopen_req->copied;
1072 tcp_free_fastopen_req(tp);
1073 return err;
1074}
1075
1076int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1077{
1078 struct tcp_sock *tp = tcp_sk(sk);
1079 struct sk_buff *skb;
1080 int flags, err, copied = 0;
1081 int mss_now = 0, size_goal, copied_syn = 0;
1082 bool sg;
1083 long timeo;
1084
1085 lock_sock(sk);
1086
1087 flags = msg->msg_flags;
1088 if (flags & MSG_FASTOPEN) {
1089 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1090 if (err == -EINPROGRESS && copied_syn > 0)
1091 goto out;
1092 else if (err)
1093 goto out_err;
1094 }
1095
1096 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1097
1098 /* Wait for a connection to finish. One exception is TCP Fast Open
1099 * (passive side) where data is allowed to be sent before a connection
1100 * is fully established.
1101 */
1102 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1103 !tcp_passive_fastopen(sk)) {
1104 err = sk_stream_wait_connect(sk, &timeo);
1105 if (err != 0)
1106 goto do_error;
1107 }
1108
1109 if (unlikely(tp->repair)) {
1110 if (tp->repair_queue == TCP_RECV_QUEUE) {
1111 copied = tcp_send_rcvq(sk, msg, size);
1112 goto out_nopush;
1113 }
1114
1115 err = -EINVAL;
1116 if (tp->repair_queue == TCP_NO_QUEUE)
1117 goto out_err;
1118
1119 /* 'common' sending to sendq */
1120 }
1121
1122 /* This should be in poll */
1123 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1124
1125 mss_now = tcp_send_mss(sk, &size_goal, flags);
1126
1127 /* Ok commence sending. */
1128 copied = 0;
1129
1130 err = -EPIPE;
1131 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1132 goto out_err;
1133
1134 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1135
1136 while (msg_data_left(msg)) {
1137 int copy = 0;
1138 int max = size_goal;
1139
1140 skb = tcp_write_queue_tail(sk);
1141 if (tcp_send_head(sk)) {
1142 if (skb->ip_summed == CHECKSUM_NONE)
1143 max = mss_now;
1144 copy = max - skb->len;
1145 }
1146
1147 if (copy <= 0) {
1148new_segment:
1149 /* Allocate new segment. If the interface is SG,
1150 * allocate skb fitting to single page.
1151 */
1152 if (!sk_stream_memory_free(sk))
1153 goto wait_for_sndbuf;
1154
1155 skb = sk_stream_alloc_skb(sk,
1156 select_size(sk, sg),
1157 sk->sk_allocation,
1158 skb_queue_empty(&sk->sk_write_queue));
1159 if (!skb)
1160 goto wait_for_memory;
1161
1162 /*
1163 * Check whether we can use HW checksum.
1164 */
1165 if (sk_check_csum_caps(sk))
1166 skb->ip_summed = CHECKSUM_PARTIAL;
1167
1168 skb_entail(sk, skb);
1169 copy = size_goal;
1170 max = size_goal;
1171
1172 /* All packets are restored as if they have
1173 * already been sent. skb_mstamp isn't set to
1174 * avoid wrong rtt estimation.
1175 */
1176 if (tp->repair)
1177 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1178 }
1179
1180 /* Try to append data to the end of skb. */
1181 if (copy > msg_data_left(msg))
1182 copy = msg_data_left(msg);
1183
1184 /* Where to copy to? */
1185 if (skb_availroom(skb) > 0) {
1186 /* We have some space in skb head. Superb! */
1187 copy = min_t(int, copy, skb_availroom(skb));
1188 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1189 if (err)
1190 goto do_fault;
1191 } else {
1192 bool merge = true;
1193 int i = skb_shinfo(skb)->nr_frags;
1194 struct page_frag *pfrag = sk_page_frag(sk);
1195
1196 if (!sk_page_frag_refill(sk, pfrag))
1197 goto wait_for_memory;
1198
1199 if (!skb_can_coalesce(skb, i, pfrag->page,
1200 pfrag->offset)) {
1201 if (i == sysctl_max_skb_frags || !sg) {
1202 tcp_mark_push(tp, skb);
1203 goto new_segment;
1204 }
1205 merge = false;
1206 }
1207
1208 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1209
1210 if (!sk_wmem_schedule(sk, copy))
1211 goto wait_for_memory;
1212
1213 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1214 pfrag->page,
1215 pfrag->offset,
1216 copy);
1217 if (err)
1218 goto do_error;
1219
1220 /* Update the skb. */
1221 if (merge) {
1222 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1223 } else {
1224 skb_fill_page_desc(skb, i, pfrag->page,
1225 pfrag->offset, copy);
1226 get_page(pfrag->page);
1227 }
1228 pfrag->offset += copy;
1229 }
1230
1231 if (!copied)
1232 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1233
1234 tp->write_seq += copy;
1235 TCP_SKB_CB(skb)->end_seq += copy;
1236 tcp_skb_pcount_set(skb, 0);
1237
1238 copied += copy;
1239 if (!msg_data_left(msg)) {
1240 tcp_tx_timestamp(sk, skb);
1241 goto out;
1242 }
1243
1244 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1245 continue;
1246
1247 if (forced_push(tp)) {
1248 tcp_mark_push(tp, skb);
1249 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1250 } else if (skb == tcp_send_head(sk))
1251 tcp_push_one(sk, mss_now);
1252 continue;
1253
1254wait_for_sndbuf:
1255 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1256wait_for_memory:
1257 if (copied)
1258 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1259 TCP_NAGLE_PUSH, size_goal);
1260
1261 err = sk_stream_wait_memory(sk, &timeo);
1262 if (err != 0)
1263 goto do_error;
1264
1265 mss_now = tcp_send_mss(sk, &size_goal, flags);
1266 }
1267
1268out:
1269 if (copied)
1270 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1271out_nopush:
1272 release_sock(sk);
1273 return copied + copied_syn;
1274
1275do_fault:
1276 if (!skb->len) {
1277 tcp_unlink_write_queue(skb, sk);
1278 /* It is the one place in all of TCP, except connection
1279 * reset, where we can be unlinking the send_head.
1280 */
1281 tcp_check_send_head(sk, skb);
1282 sk_wmem_free_skb(sk, skb);
1283 }
1284
1285do_error:
1286 if (copied + copied_syn)
1287 goto out;
1288out_err:
1289 err = sk_stream_error(sk, flags, err);
1290 /* make sure we wake any epoll edge trigger waiter */
1291 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1292 sk->sk_write_space(sk);
1293 release_sock(sk);
1294 return err;
1295}
1296EXPORT_SYMBOL(tcp_sendmsg);
1297
1298/*
1299 * Handle reading urgent data. BSD has very simple semantics for
1300 * this, no blocking and very strange errors 8)
1301 */
1302
1303static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1304{
1305 struct tcp_sock *tp = tcp_sk(sk);
1306
1307 /* No URG data to read. */
1308 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1309 tp->urg_data == TCP_URG_READ)
1310 return -EINVAL; /* Yes this is right ! */
1311
1312 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1313 return -ENOTCONN;
1314
1315 if (tp->urg_data & TCP_URG_VALID) {
1316 int err = 0;
1317 char c = tp->urg_data;
1318
1319 if (!(flags & MSG_PEEK))
1320 tp->urg_data = TCP_URG_READ;
1321
1322 /* Read urgent data. */
1323 msg->msg_flags |= MSG_OOB;
1324
1325 if (len > 0) {
1326 if (!(flags & MSG_TRUNC))
1327 err = memcpy_to_msg(msg, &c, 1);
1328 len = 1;
1329 } else
1330 msg->msg_flags |= MSG_TRUNC;
1331
1332 return err ? -EFAULT : len;
1333 }
1334
1335 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1336 return 0;
1337
1338 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1339 * the available implementations agree in this case:
1340 * this call should never block, independent of the
1341 * blocking state of the socket.
1342 * Mike <pall@rz.uni-karlsruhe.de>
1343 */
1344 return -EAGAIN;
1345}
1346
1347static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1348{
1349 struct sk_buff *skb;
1350 int copied = 0, err = 0;
1351
1352 /* XXX -- need to support SO_PEEK_OFF */
1353
1354 skb_queue_walk(&sk->sk_write_queue, skb) {
1355 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1356 if (err)
1357 break;
1358
1359 copied += skb->len;
1360 }
1361
1362 return err ?: copied;
1363}
1364
1365/* Clean up the receive buffer for full frames taken by the user,
1366 * then send an ACK if necessary. COPIED is the number of bytes
1367 * tcp_recvmsg has given to the user so far, it speeds up the
1368 * calculation of whether or not we must ACK for the sake of
1369 * a window update.
1370 */
1371static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1372{
1373 struct tcp_sock *tp = tcp_sk(sk);
1374 bool time_to_ack = false;
1375
1376 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1377
1378 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1379 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1380 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1381
1382 if (inet_csk_ack_scheduled(sk)) {
1383 const struct inet_connection_sock *icsk = inet_csk(sk);
1384 /* Delayed ACKs frequently hit locked sockets during bulk
1385 * receive. */
1386 if (icsk->icsk_ack.blocked ||
1387 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1388 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1389 /*
1390 * If this read emptied read buffer, we send ACK, if
1391 * connection is not bidirectional, user drained
1392 * receive buffer and there was a small segment
1393 * in queue.
1394 */
1395 (copied > 0 &&
1396 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1397 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1398 !icsk->icsk_ack.pingpong)) &&
1399 !atomic_read(&sk->sk_rmem_alloc)))
1400 time_to_ack = true;
1401 }
1402
1403 /* We send an ACK if we can now advertise a non-zero window
1404 * which has been raised "significantly".
1405 *
1406 * Even if window raised up to infinity, do not send window open ACK
1407 * in states, where we will not receive more. It is useless.
1408 */
1409 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1410 __u32 rcv_window_now = tcp_receive_window(tp);
1411
1412 /* Optimize, __tcp_select_window() is not cheap. */
1413 if (2*rcv_window_now <= tp->window_clamp) {
1414 __u32 new_window = __tcp_select_window(sk);
1415
1416 /* Send ACK now, if this read freed lots of space
1417 * in our buffer. Certainly, new_window is new window.
1418 * We can advertise it now, if it is not less than current one.
1419 * "Lots" means "at least twice" here.
1420 */
1421 if (new_window && new_window >= 2 * rcv_window_now)
1422 time_to_ack = true;
1423 }
1424 }
1425 if (time_to_ack)
1426 tcp_send_ack(sk);
1427}
1428
1429static void tcp_prequeue_process(struct sock *sk)
1430{
1431 struct sk_buff *skb;
1432 struct tcp_sock *tp = tcp_sk(sk);
1433
1434 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1435
1436 /* RX process wants to run with disabled BHs, though it is not
1437 * necessary */
1438 local_bh_disable();
1439 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1440 sk_backlog_rcv(sk, skb);
1441 local_bh_enable();
1442
1443 /* Clear memory counter. */
1444 tp->ucopy.memory = 0;
1445}
1446
1447static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1448{
1449 struct sk_buff *skb;
1450 u32 offset;
1451
1452 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1453 offset = seq - TCP_SKB_CB(skb)->seq;
1454 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1455 pr_err_once("%s: found a SYN, please report !\n", __func__);
1456 offset--;
1457 }
1458 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1459 *off = offset;
1460 return skb;
1461 }
1462 /* This looks weird, but this can happen if TCP collapsing
1463 * splitted a fat GRO packet, while we released socket lock
1464 * in skb_splice_bits()
1465 */
1466 sk_eat_skb(sk, skb);
1467 }
1468 return NULL;
1469}
1470
1471/*
1472 * This routine provides an alternative to tcp_recvmsg() for routines
1473 * that would like to handle copying from skbuffs directly in 'sendfile'
1474 * fashion.
1475 * Note:
1476 * - It is assumed that the socket was locked by the caller.
1477 * - The routine does not block.
1478 * - At present, there is no support for reading OOB data
1479 * or for 'peeking' the socket using this routine
1480 * (although both would be easy to implement).
1481 */
1482int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1483 sk_read_actor_t recv_actor)
1484{
1485 struct sk_buff *skb;
1486 struct tcp_sock *tp = tcp_sk(sk);
1487 u32 seq = tp->copied_seq;
1488 u32 offset;
1489 int copied = 0;
1490
1491 if (sk->sk_state == TCP_LISTEN)
1492 return -ENOTCONN;
1493 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1494 if (offset < skb->len) {
1495 int used;
1496 size_t len;
1497
1498 len = skb->len - offset;
1499 /* Stop reading if we hit a patch of urgent data */
1500 if (tp->urg_data) {
1501 u32 urg_offset = tp->urg_seq - seq;
1502 if (urg_offset < len)
1503 len = urg_offset;
1504 if (!len)
1505 break;
1506 }
1507 used = recv_actor(desc, skb, offset, len);
1508 if (used <= 0) {
1509 if (!copied)
1510 copied = used;
1511 break;
1512 } else if (used <= len) {
1513 seq += used;
1514 copied += used;
1515 offset += used;
1516 }
1517 /* If recv_actor drops the lock (e.g. TCP splice
1518 * receive) the skb pointer might be invalid when
1519 * getting here: tcp_collapse might have deleted it
1520 * while aggregating skbs from the socket queue.
1521 */
1522 skb = tcp_recv_skb(sk, seq - 1, &offset);
1523 if (!skb)
1524 break;
1525 /* TCP coalescing might have appended data to the skb.
1526 * Try to splice more frags
1527 */
1528 if (offset + 1 != skb->len)
1529 continue;
1530 }
1531 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1532 sk_eat_skb(sk, skb);
1533 ++seq;
1534 break;
1535 }
1536 sk_eat_skb(sk, skb);
1537 if (!desc->count)
1538 break;
1539 tp->copied_seq = seq;
1540 }
1541 tp->copied_seq = seq;
1542
1543 tcp_rcv_space_adjust(sk);
1544
1545 /* Clean up data we have read: This will do ACK frames. */
1546 if (copied > 0) {
1547 tcp_recv_skb(sk, seq, &offset);
1548 tcp_cleanup_rbuf(sk, copied);
1549 }
1550 return copied;
1551}
1552EXPORT_SYMBOL(tcp_read_sock);
1553
1554/*
1555 * This routine copies from a sock struct into the user buffer.
1556 *
1557 * Technical note: in 2.3 we work on _locked_ socket, so that
1558 * tricks with *seq access order and skb->users are not required.
1559 * Probably, code can be easily improved even more.
1560 */
1561
1562int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1563 int flags, int *addr_len)
1564{
1565 struct tcp_sock *tp = tcp_sk(sk);
1566 int copied = 0;
1567 u32 peek_seq;
1568 u32 *seq;
1569 unsigned long used;
1570 int err;
1571 int target; /* Read at least this many bytes */
1572 long timeo;
1573 struct task_struct *user_recv = NULL;
1574 struct sk_buff *skb, *last;
1575 u32 urg_hole = 0;
1576
1577 if (unlikely(flags & MSG_ERRQUEUE))
1578 return inet_recv_error(sk, msg, len, addr_len);
1579
1580 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1581 (sk->sk_state == TCP_ESTABLISHED))
1582 sk_busy_loop(sk, nonblock);
1583
1584 lock_sock(sk);
1585
1586 err = -ENOTCONN;
1587 if (sk->sk_state == TCP_LISTEN)
1588 goto out;
1589
1590 timeo = sock_rcvtimeo(sk, nonblock);
1591
1592 /* Urgent data needs to be handled specially. */
1593 if (flags & MSG_OOB)
1594 goto recv_urg;
1595
1596 if (unlikely(tp->repair)) {
1597 err = -EPERM;
1598 if (!(flags & MSG_PEEK))
1599 goto out;
1600
1601 if (tp->repair_queue == TCP_SEND_QUEUE)
1602 goto recv_sndq;
1603
1604 err = -EINVAL;
1605 if (tp->repair_queue == TCP_NO_QUEUE)
1606 goto out;
1607
1608 /* 'common' recv queue MSG_PEEK-ing */
1609 }
1610
1611 seq = &tp->copied_seq;
1612 if (flags & MSG_PEEK) {
1613 peek_seq = tp->copied_seq;
1614 seq = &peek_seq;
1615 }
1616
1617 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1618
1619 do {
1620 u32 offset;
1621
1622 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1623 if (tp->urg_data && tp->urg_seq == *seq) {
1624 if (copied)
1625 break;
1626 if (signal_pending(current)) {
1627 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1628 break;
1629 }
1630 }
1631
1632 /* Next get a buffer. */
1633
1634 last = skb_peek_tail(&sk->sk_receive_queue);
1635 skb_queue_walk(&sk->sk_receive_queue, skb) {
1636 last = skb;
1637 /* Now that we have two receive queues this
1638 * shouldn't happen.
1639 */
1640 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1641 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1642 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1643 flags))
1644 break;
1645
1646 offset = *seq - TCP_SKB_CB(skb)->seq;
1647 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1648 pr_err_once("%s: found a SYN, please report !\n", __func__);
1649 offset--;
1650 }
1651 if (offset < skb->len)
1652 goto found_ok_skb;
1653 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1654 goto found_fin_ok;
1655 WARN(!(flags & MSG_PEEK),
1656 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1657 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1658 }
1659
1660 /* Well, if we have backlog, try to process it now yet. */
1661
1662 if (copied >= target && !sk->sk_backlog.tail)
1663 break;
1664
1665 if (copied) {
1666 if (sk->sk_err ||
1667 sk->sk_state == TCP_CLOSE ||
1668 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1669 !timeo ||
1670 signal_pending(current))
1671 break;
1672 } else {
1673 if (sock_flag(sk, SOCK_DONE))
1674 break;
1675
1676 if (sk->sk_err) {
1677 copied = sock_error(sk);
1678 break;
1679 }
1680
1681 if (sk->sk_shutdown & RCV_SHUTDOWN)
1682 break;
1683
1684 if (sk->sk_state == TCP_CLOSE) {
1685 if (!sock_flag(sk, SOCK_DONE)) {
1686 /* This occurs when user tries to read
1687 * from never connected socket.
1688 */
1689 copied = -ENOTCONN;
1690 break;
1691 }
1692 break;
1693 }
1694
1695 if (!timeo) {
1696 copied = -EAGAIN;
1697 break;
1698 }
1699
1700 if (signal_pending(current)) {
1701 copied = sock_intr_errno(timeo);
1702 break;
1703 }
1704 }
1705
1706 tcp_cleanup_rbuf(sk, copied);
1707
1708 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1709 /* Install new reader */
1710 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1711 user_recv = current;
1712 tp->ucopy.task = user_recv;
1713 tp->ucopy.msg = msg;
1714 }
1715
1716 tp->ucopy.len = len;
1717
1718 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1719 !(flags & (MSG_PEEK | MSG_TRUNC)));
1720
1721 /* Ugly... If prequeue is not empty, we have to
1722 * process it before releasing socket, otherwise
1723 * order will be broken at second iteration.
1724 * More elegant solution is required!!!
1725 *
1726 * Look: we have the following (pseudo)queues:
1727 *
1728 * 1. packets in flight
1729 * 2. backlog
1730 * 3. prequeue
1731 * 4. receive_queue
1732 *
1733 * Each queue can be processed only if the next ones
1734 * are empty. At this point we have empty receive_queue.
1735 * But prequeue _can_ be not empty after 2nd iteration,
1736 * when we jumped to start of loop because backlog
1737 * processing added something to receive_queue.
1738 * We cannot release_sock(), because backlog contains
1739 * packets arrived _after_ prequeued ones.
1740 *
1741 * Shortly, algorithm is clear --- to process all
1742 * the queues in order. We could make it more directly,
1743 * requeueing packets from backlog to prequeue, if
1744 * is not empty. It is more elegant, but eats cycles,
1745 * unfortunately.
1746 */
1747 if (!skb_queue_empty(&tp->ucopy.prequeue))
1748 goto do_prequeue;
1749
1750 /* __ Set realtime policy in scheduler __ */
1751 }
1752
1753 if (copied >= target) {
1754 /* Do not sleep, just process backlog. */
1755 release_sock(sk);
1756 lock_sock(sk);
1757 } else {
1758 sk_wait_data(sk, &timeo, last);
1759 }
1760
1761 if (user_recv) {
1762 int chunk;
1763
1764 /* __ Restore normal policy in scheduler __ */
1765
1766 chunk = len - tp->ucopy.len;
1767 if (chunk != 0) {
1768 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1769 len -= chunk;
1770 copied += chunk;
1771 }
1772
1773 if (tp->rcv_nxt == tp->copied_seq &&
1774 !skb_queue_empty(&tp->ucopy.prequeue)) {
1775do_prequeue:
1776 tcp_prequeue_process(sk);
1777
1778 chunk = len - tp->ucopy.len;
1779 if (chunk != 0) {
1780 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1781 len -= chunk;
1782 copied += chunk;
1783 }
1784 }
1785 }
1786 if ((flags & MSG_PEEK) &&
1787 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1788 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1789 current->comm,
1790 task_pid_nr(current));
1791 peek_seq = tp->copied_seq;
1792 }
1793 continue;
1794
1795 found_ok_skb:
1796 /* Ok so how much can we use? */
1797 used = skb->len - offset;
1798 if (len < used)
1799 used = len;
1800
1801 /* Do we have urgent data here? */
1802 if (tp->urg_data) {
1803 u32 urg_offset = tp->urg_seq - *seq;
1804 if (urg_offset < used) {
1805 if (!urg_offset) {
1806 if (!sock_flag(sk, SOCK_URGINLINE)) {
1807 ++*seq;
1808 urg_hole++;
1809 offset++;
1810 used--;
1811 if (!used)
1812 goto skip_copy;
1813 }
1814 } else
1815 used = urg_offset;
1816 }
1817 }
1818
1819 if (!(flags & MSG_TRUNC)) {
1820 err = skb_copy_datagram_msg(skb, offset, msg, used);
1821 if (err) {
1822 /* Exception. Bailout! */
1823 if (!copied)
1824 copied = -EFAULT;
1825 break;
1826 }
1827 }
1828
1829 *seq += used;
1830 copied += used;
1831 len -= used;
1832
1833 tcp_rcv_space_adjust(sk);
1834
1835skip_copy:
1836 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1837 tp->urg_data = 0;
1838 tcp_fast_path_check(sk);
1839 }
1840 if (used + offset < skb->len)
1841 continue;
1842
1843 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1844 goto found_fin_ok;
1845 if (!(flags & MSG_PEEK))
1846 sk_eat_skb(sk, skb);
1847 continue;
1848
1849 found_fin_ok:
1850 /* Process the FIN. */
1851 ++*seq;
1852 if (!(flags & MSG_PEEK))
1853 sk_eat_skb(sk, skb);
1854 break;
1855 } while (len > 0);
1856
1857 if (user_recv) {
1858 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1859 int chunk;
1860
1861 tp->ucopy.len = copied > 0 ? len : 0;
1862
1863 tcp_prequeue_process(sk);
1864
1865 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1866 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1867 len -= chunk;
1868 copied += chunk;
1869 }
1870 }
1871
1872 tp->ucopy.task = NULL;
1873 tp->ucopy.len = 0;
1874 }
1875
1876 /* According to UNIX98, msg_name/msg_namelen are ignored
1877 * on connected socket. I was just happy when found this 8) --ANK
1878 */
1879
1880 /* Clean up data we have read: This will do ACK frames. */
1881 tcp_cleanup_rbuf(sk, copied);
1882
1883 release_sock(sk);
1884 return copied;
1885
1886out:
1887 release_sock(sk);
1888 return err;
1889
1890recv_urg:
1891 err = tcp_recv_urg(sk, msg, len, flags);
1892 goto out;
1893
1894recv_sndq:
1895 err = tcp_peek_sndq(sk, msg, len);
1896 goto out;
1897}
1898EXPORT_SYMBOL(tcp_recvmsg);
1899
1900void tcp_set_state(struct sock *sk, int state)
1901{
1902 int oldstate = sk->sk_state;
1903
1904 switch (state) {
1905 case TCP_ESTABLISHED:
1906 if (oldstate != TCP_ESTABLISHED)
1907 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1908 break;
1909
1910 case TCP_CLOSE:
1911 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1912 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1913
1914 sk->sk_prot->unhash(sk);
1915 if (inet_csk(sk)->icsk_bind_hash &&
1916 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1917 inet_put_port(sk);
1918 /* fall through */
1919 default:
1920 if (oldstate == TCP_ESTABLISHED)
1921 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1922 }
1923
1924 /* Change state AFTER socket is unhashed to avoid closed
1925 * socket sitting in hash tables.
1926 */
1927 sk_state_store(sk, state);
1928
1929#ifdef STATE_TRACE
1930 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1931#endif
1932}
1933EXPORT_SYMBOL_GPL(tcp_set_state);
1934
1935/*
1936 * State processing on a close. This implements the state shift for
1937 * sending our FIN frame. Note that we only send a FIN for some
1938 * states. A shutdown() may have already sent the FIN, or we may be
1939 * closed.
1940 */
1941
1942static const unsigned char new_state[16] = {
1943 /* current state: new state: action: */
1944 [0 /* (Invalid) */] = TCP_CLOSE,
1945 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1946 [TCP_SYN_SENT] = TCP_CLOSE,
1947 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1948 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
1949 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
1950 [TCP_TIME_WAIT] = TCP_CLOSE,
1951 [TCP_CLOSE] = TCP_CLOSE,
1952 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
1953 [TCP_LAST_ACK] = TCP_LAST_ACK,
1954 [TCP_LISTEN] = TCP_CLOSE,
1955 [TCP_CLOSING] = TCP_CLOSING,
1956 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
1957};
1958
1959static int tcp_close_state(struct sock *sk)
1960{
1961 int next = (int)new_state[sk->sk_state];
1962 int ns = next & TCP_STATE_MASK;
1963
1964 tcp_set_state(sk, ns);
1965
1966 return next & TCP_ACTION_FIN;
1967}
1968
1969/*
1970 * Shutdown the sending side of a connection. Much like close except
1971 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1972 */
1973
1974void tcp_shutdown(struct sock *sk, int how)
1975{
1976 /* We need to grab some memory, and put together a FIN,
1977 * and then put it into the queue to be sent.
1978 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1979 */
1980 if (!(how & SEND_SHUTDOWN))
1981 return;
1982
1983 /* If we've already sent a FIN, or it's a closed state, skip this. */
1984 if ((1 << sk->sk_state) &
1985 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1986 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1987 /* Clear out any half completed packets. FIN if needed. */
1988 if (tcp_close_state(sk))
1989 tcp_send_fin(sk);
1990 }
1991}
1992EXPORT_SYMBOL(tcp_shutdown);
1993
1994bool tcp_check_oom(struct sock *sk, int shift)
1995{
1996 bool too_many_orphans, out_of_socket_memory;
1997
1998 too_many_orphans = tcp_too_many_orphans(sk, shift);
1999 out_of_socket_memory = tcp_out_of_memory(sk);
2000
2001 if (too_many_orphans)
2002 net_info_ratelimited("too many orphaned sockets\n");
2003 if (out_of_socket_memory)
2004 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2005 return too_many_orphans || out_of_socket_memory;
2006}
2007
2008void tcp_close(struct sock *sk, long timeout)
2009{
2010 struct sk_buff *skb;
2011 int data_was_unread = 0;
2012 int state;
2013
2014 lock_sock(sk);
2015 sk->sk_shutdown = SHUTDOWN_MASK;
2016
2017 if (sk->sk_state == TCP_LISTEN) {
2018 tcp_set_state(sk, TCP_CLOSE);
2019
2020 /* Special case. */
2021 inet_csk_listen_stop(sk);
2022
2023 goto adjudge_to_death;
2024 }
2025
2026 /* We need to flush the recv. buffs. We do this only on the
2027 * descriptor close, not protocol-sourced closes, because the
2028 * reader process may not have drained the data yet!
2029 */
2030 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2031 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2032
2033 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2034 len--;
2035 data_was_unread += len;
2036 __kfree_skb(skb);
2037 }
2038
2039 sk_mem_reclaim(sk);
2040
2041 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2042 if (sk->sk_state == TCP_CLOSE)
2043 goto adjudge_to_death;
2044
2045 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2046 * data was lost. To witness the awful effects of the old behavior of
2047 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2048 * GET in an FTP client, suspend the process, wait for the client to
2049 * advertise a zero window, then kill -9 the FTP client, wheee...
2050 * Note: timeout is always zero in such a case.
2051 */
2052 if (unlikely(tcp_sk(sk)->repair)) {
2053 sk->sk_prot->disconnect(sk, 0);
2054 } else if (data_was_unread) {
2055 /* Unread data was tossed, zap the connection. */
2056 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2057 tcp_set_state(sk, TCP_CLOSE);
2058 tcp_send_active_reset(sk, sk->sk_allocation);
2059 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2060 /* Check zero linger _after_ checking for unread data. */
2061 sk->sk_prot->disconnect(sk, 0);
2062 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2063 } else if (tcp_close_state(sk)) {
2064 /* We FIN if the application ate all the data before
2065 * zapping the connection.
2066 */
2067
2068 /* RED-PEN. Formally speaking, we have broken TCP state
2069 * machine. State transitions:
2070 *
2071 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2072 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2073 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2074 *
2075 * are legal only when FIN has been sent (i.e. in window),
2076 * rather than queued out of window. Purists blame.
2077 *
2078 * F.e. "RFC state" is ESTABLISHED,
2079 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2080 *
2081 * The visible declinations are that sometimes
2082 * we enter time-wait state, when it is not required really
2083 * (harmless), do not send active resets, when they are
2084 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2085 * they look as CLOSING or LAST_ACK for Linux)
2086 * Probably, I missed some more holelets.
2087 * --ANK
2088 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2089 * in a single packet! (May consider it later but will
2090 * probably need API support or TCP_CORK SYN-ACK until
2091 * data is written and socket is closed.)
2092 */
2093 tcp_send_fin(sk);
2094 }
2095
2096 sk_stream_wait_close(sk, timeout);
2097
2098adjudge_to_death:
2099 state = sk->sk_state;
2100 sock_hold(sk);
2101 sock_orphan(sk);
2102
2103 /* It is the last release_sock in its life. It will remove backlog. */
2104 release_sock(sk);
2105
2106
2107 /* Now socket is owned by kernel and we acquire BH lock
2108 to finish close. No need to check for user refs.
2109 */
2110 local_bh_disable();
2111 bh_lock_sock(sk);
2112 WARN_ON(sock_owned_by_user(sk));
2113
2114 percpu_counter_inc(sk->sk_prot->orphan_count);
2115
2116 /* Have we already been destroyed by a softirq or backlog? */
2117 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2118 goto out;
2119
2120 /* This is a (useful) BSD violating of the RFC. There is a
2121 * problem with TCP as specified in that the other end could
2122 * keep a socket open forever with no application left this end.
2123 * We use a 1 minute timeout (about the same as BSD) then kill
2124 * our end. If they send after that then tough - BUT: long enough
2125 * that we won't make the old 4*rto = almost no time - whoops
2126 * reset mistake.
2127 *
2128 * Nope, it was not mistake. It is really desired behaviour
2129 * f.e. on http servers, when such sockets are useless, but
2130 * consume significant resources. Let's do it with special
2131 * linger2 option. --ANK
2132 */
2133
2134 if (sk->sk_state == TCP_FIN_WAIT2) {
2135 struct tcp_sock *tp = tcp_sk(sk);
2136 if (tp->linger2 < 0) {
2137 tcp_set_state(sk, TCP_CLOSE);
2138 tcp_send_active_reset(sk, GFP_ATOMIC);
2139 NET_INC_STATS_BH(sock_net(sk),
2140 LINUX_MIB_TCPABORTONLINGER);
2141 } else {
2142 const int tmo = tcp_fin_time(sk);
2143
2144 if (tmo > TCP_TIMEWAIT_LEN) {
2145 inet_csk_reset_keepalive_timer(sk,
2146 tmo - TCP_TIMEWAIT_LEN);
2147 } else {
2148 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2149 goto out;
2150 }
2151 }
2152 }
2153 if (sk->sk_state != TCP_CLOSE) {
2154 sk_mem_reclaim(sk);
2155 if (tcp_check_oom(sk, 0)) {
2156 tcp_set_state(sk, TCP_CLOSE);
2157 tcp_send_active_reset(sk, GFP_ATOMIC);
2158 NET_INC_STATS_BH(sock_net(sk),
2159 LINUX_MIB_TCPABORTONMEMORY);
2160 }
2161 }
2162
2163 if (sk->sk_state == TCP_CLOSE) {
2164 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2165 /* We could get here with a non-NULL req if the socket is
2166 * aborted (e.g., closed with unread data) before 3WHS
2167 * finishes.
2168 */
2169 if (req)
2170 reqsk_fastopen_remove(sk, req, false);
2171 inet_csk_destroy_sock(sk);
2172 }
2173 /* Otherwise, socket is reprieved until protocol close. */
2174
2175out:
2176 bh_unlock_sock(sk);
2177 local_bh_enable();
2178 sock_put(sk);
2179}
2180EXPORT_SYMBOL(tcp_close);
2181
2182/* These states need RST on ABORT according to RFC793 */
2183
2184static inline bool tcp_need_reset(int state)
2185{
2186 return (1 << state) &
2187 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2188 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2189}
2190
2191int tcp_disconnect(struct sock *sk, int flags)
2192{
2193 struct inet_sock *inet = inet_sk(sk);
2194 struct inet_connection_sock *icsk = inet_csk(sk);
2195 struct tcp_sock *tp = tcp_sk(sk);
2196 int err = 0;
2197 int old_state = sk->sk_state;
2198
2199 if (old_state != TCP_CLOSE)
2200 tcp_set_state(sk, TCP_CLOSE);
2201
2202 /* ABORT function of RFC793 */
2203 if (old_state == TCP_LISTEN) {
2204 inet_csk_listen_stop(sk);
2205 } else if (unlikely(tp->repair)) {
2206 sk->sk_err = ECONNABORTED;
2207 } else if (tcp_need_reset(old_state) ||
2208 (tp->snd_nxt != tp->write_seq &&
2209 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2210 /* The last check adjusts for discrepancy of Linux wrt. RFC
2211 * states
2212 */
2213 tcp_send_active_reset(sk, gfp_any());
2214 sk->sk_err = ECONNRESET;
2215 } else if (old_state == TCP_SYN_SENT)
2216 sk->sk_err = ECONNRESET;
2217
2218 tcp_clear_xmit_timers(sk);
2219 __skb_queue_purge(&sk->sk_receive_queue);
2220 tcp_write_queue_purge(sk);
2221 __skb_queue_purge(&tp->out_of_order_queue);
2222
2223 inet->inet_dport = 0;
2224
2225 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2226 inet_reset_saddr(sk);
2227
2228 sk->sk_shutdown = 0;
2229 sock_reset_flag(sk, SOCK_DONE);
2230 tp->srtt_us = 0;
2231 tp->write_seq += tp->max_window + 2;
2232 if (tp->write_seq == 0)
2233 tp->write_seq = 1;
2234 icsk->icsk_backoff = 0;
2235 tp->snd_cwnd = 2;
2236 icsk->icsk_probes_out = 0;
2237 tp->packets_out = 0;
2238 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2239 tp->snd_cwnd_cnt = 0;
2240 tp->window_clamp = 0;
2241 tcp_set_ca_state(sk, TCP_CA_Open);
2242 tcp_clear_retrans(tp);
2243 inet_csk_delack_init(sk);
2244 tcp_init_send_head(sk);
2245 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2246 __sk_dst_reset(sk);
2247
2248 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2249
2250 sk->sk_error_report(sk);
2251 return err;
2252}
2253EXPORT_SYMBOL(tcp_disconnect);
2254
2255static inline bool tcp_can_repair_sock(const struct sock *sk)
2256{
2257 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2258 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2259}
2260
2261static int tcp_repair_options_est(struct tcp_sock *tp,
2262 struct tcp_repair_opt __user *optbuf, unsigned int len)
2263{
2264 struct tcp_repair_opt opt;
2265
2266 while (len >= sizeof(opt)) {
2267 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2268 return -EFAULT;
2269
2270 optbuf++;
2271 len -= sizeof(opt);
2272
2273 switch (opt.opt_code) {
2274 case TCPOPT_MSS:
2275 tp->rx_opt.mss_clamp = opt.opt_val;
2276 break;
2277 case TCPOPT_WINDOW:
2278 {
2279 u16 snd_wscale = opt.opt_val & 0xFFFF;
2280 u16 rcv_wscale = opt.opt_val >> 16;
2281
2282 if (snd_wscale > 14 || rcv_wscale > 14)
2283 return -EFBIG;
2284
2285 tp->rx_opt.snd_wscale = snd_wscale;
2286 tp->rx_opt.rcv_wscale = rcv_wscale;
2287 tp->rx_opt.wscale_ok = 1;
2288 }
2289 break;
2290 case TCPOPT_SACK_PERM:
2291 if (opt.opt_val != 0)
2292 return -EINVAL;
2293
2294 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2295 if (sysctl_tcp_fack)
2296 tcp_enable_fack(tp);
2297 break;
2298 case TCPOPT_TIMESTAMP:
2299 if (opt.opt_val != 0)
2300 return -EINVAL;
2301
2302 tp->rx_opt.tstamp_ok = 1;
2303 break;
2304 }
2305 }
2306
2307 return 0;
2308}
2309
2310/*
2311 * Socket option code for TCP.
2312 */
2313static int do_tcp_setsockopt(struct sock *sk, int level,
2314 int optname, char __user *optval, unsigned int optlen)
2315{
2316 struct tcp_sock *tp = tcp_sk(sk);
2317 struct inet_connection_sock *icsk = inet_csk(sk);
2318 struct net *net = sock_net(sk);
2319 int val;
2320 int err = 0;
2321
2322 /* These are data/string values, all the others are ints */
2323 switch (optname) {
2324 case TCP_CONGESTION: {
2325 char name[TCP_CA_NAME_MAX];
2326
2327 if (optlen < 1)
2328 return -EINVAL;
2329
2330 val = strncpy_from_user(name, optval,
2331 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2332 if (val < 0)
2333 return -EFAULT;
2334 name[val] = 0;
2335
2336 lock_sock(sk);
2337 err = tcp_set_congestion_control(sk, name);
2338 release_sock(sk);
2339 return err;
2340 }
2341 default:
2342 /* fallthru */
2343 break;
2344 }
2345
2346 if (optlen < sizeof(int))
2347 return -EINVAL;
2348
2349 if (get_user(val, (int __user *)optval))
2350 return -EFAULT;
2351
2352 lock_sock(sk);
2353
2354 switch (optname) {
2355 case TCP_MAXSEG:
2356 /* Values greater than interface MTU won't take effect. However
2357 * at the point when this call is done we typically don't yet
2358 * know which interface is going to be used */
2359 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2360 err = -EINVAL;
2361 break;
2362 }
2363 tp->rx_opt.user_mss = val;
2364 break;
2365
2366 case TCP_NODELAY:
2367 if (val) {
2368 /* TCP_NODELAY is weaker than TCP_CORK, so that
2369 * this option on corked socket is remembered, but
2370 * it is not activated until cork is cleared.
2371 *
2372 * However, when TCP_NODELAY is set we make
2373 * an explicit push, which overrides even TCP_CORK
2374 * for currently queued segments.
2375 */
2376 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2377 tcp_push_pending_frames(sk);
2378 } else {
2379 tp->nonagle &= ~TCP_NAGLE_OFF;
2380 }
2381 break;
2382
2383 case TCP_THIN_LINEAR_TIMEOUTS:
2384 if (val < 0 || val > 1)
2385 err = -EINVAL;
2386 else
2387 tp->thin_lto = val;
2388 break;
2389
2390 case TCP_THIN_DUPACK:
2391 if (val < 0 || val > 1)
2392 err = -EINVAL;
2393 else {
2394 tp->thin_dupack = val;
2395 if (tp->thin_dupack)
2396 tcp_disable_early_retrans(tp);
2397 }
2398 break;
2399
2400 case TCP_REPAIR:
2401 if (!tcp_can_repair_sock(sk))
2402 err = -EPERM;
2403 else if (val == 1) {
2404 tp->repair = 1;
2405 sk->sk_reuse = SK_FORCE_REUSE;
2406 tp->repair_queue = TCP_NO_QUEUE;
2407 } else if (val == 0) {
2408 tp->repair = 0;
2409 sk->sk_reuse = SK_NO_REUSE;
2410 tcp_send_window_probe(sk);
2411 } else
2412 err = -EINVAL;
2413
2414 break;
2415
2416 case TCP_REPAIR_QUEUE:
2417 if (!tp->repair)
2418 err = -EPERM;
2419 else if (val < TCP_QUEUES_NR)
2420 tp->repair_queue = val;
2421 else
2422 err = -EINVAL;
2423 break;
2424
2425 case TCP_QUEUE_SEQ:
2426 if (sk->sk_state != TCP_CLOSE)
2427 err = -EPERM;
2428 else if (tp->repair_queue == TCP_SEND_QUEUE)
2429 tp->write_seq = val;
2430 else if (tp->repair_queue == TCP_RECV_QUEUE)
2431 tp->rcv_nxt = val;
2432 else
2433 err = -EINVAL;
2434 break;
2435
2436 case TCP_REPAIR_OPTIONS:
2437 if (!tp->repair)
2438 err = -EINVAL;
2439 else if (sk->sk_state == TCP_ESTABLISHED)
2440 err = tcp_repair_options_est(tp,
2441 (struct tcp_repair_opt __user *)optval,
2442 optlen);
2443 else
2444 err = -EPERM;
2445 break;
2446
2447 case TCP_CORK:
2448 /* When set indicates to always queue non-full frames.
2449 * Later the user clears this option and we transmit
2450 * any pending partial frames in the queue. This is
2451 * meant to be used alongside sendfile() to get properly
2452 * filled frames when the user (for example) must write
2453 * out headers with a write() call first and then use
2454 * sendfile to send out the data parts.
2455 *
2456 * TCP_CORK can be set together with TCP_NODELAY and it is
2457 * stronger than TCP_NODELAY.
2458 */
2459 if (val) {
2460 tp->nonagle |= TCP_NAGLE_CORK;
2461 } else {
2462 tp->nonagle &= ~TCP_NAGLE_CORK;
2463 if (tp->nonagle&TCP_NAGLE_OFF)
2464 tp->nonagle |= TCP_NAGLE_PUSH;
2465 tcp_push_pending_frames(sk);
2466 }
2467 break;
2468
2469 case TCP_KEEPIDLE:
2470 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2471 err = -EINVAL;
2472 else {
2473 tp->keepalive_time = val * HZ;
2474 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2475 !((1 << sk->sk_state) &
2476 (TCPF_CLOSE | TCPF_LISTEN))) {
2477 u32 elapsed = keepalive_time_elapsed(tp);
2478 if (tp->keepalive_time > elapsed)
2479 elapsed = tp->keepalive_time - elapsed;
2480 else
2481 elapsed = 0;
2482 inet_csk_reset_keepalive_timer(sk, elapsed);
2483 }
2484 }
2485 break;
2486 case TCP_KEEPINTVL:
2487 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2488 err = -EINVAL;
2489 else
2490 tp->keepalive_intvl = val * HZ;
2491 break;
2492 case TCP_KEEPCNT:
2493 if (val < 1 || val > MAX_TCP_KEEPCNT)
2494 err = -EINVAL;
2495 else
2496 tp->keepalive_probes = val;
2497 break;
2498 case TCP_SYNCNT:
2499 if (val < 1 || val > MAX_TCP_SYNCNT)
2500 err = -EINVAL;
2501 else
2502 icsk->icsk_syn_retries = val;
2503 break;
2504
2505 case TCP_SAVE_SYN:
2506 if (val < 0 || val > 1)
2507 err = -EINVAL;
2508 else
2509 tp->save_syn = val;
2510 break;
2511
2512 case TCP_LINGER2:
2513 if (val < 0)
2514 tp->linger2 = -1;
2515 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2516 tp->linger2 = 0;
2517 else
2518 tp->linger2 = val * HZ;
2519 break;
2520
2521 case TCP_DEFER_ACCEPT:
2522 /* Translate value in seconds to number of retransmits */
2523 icsk->icsk_accept_queue.rskq_defer_accept =
2524 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2525 TCP_RTO_MAX / HZ);
2526 break;
2527
2528 case TCP_WINDOW_CLAMP:
2529 if (!val) {
2530 if (sk->sk_state != TCP_CLOSE) {
2531 err = -EINVAL;
2532 break;
2533 }
2534 tp->window_clamp = 0;
2535 } else
2536 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2537 SOCK_MIN_RCVBUF / 2 : val;
2538 break;
2539
2540 case TCP_QUICKACK:
2541 if (!val) {
2542 icsk->icsk_ack.pingpong = 1;
2543 } else {
2544 icsk->icsk_ack.pingpong = 0;
2545 if ((1 << sk->sk_state) &
2546 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2547 inet_csk_ack_scheduled(sk)) {
2548 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2549 tcp_cleanup_rbuf(sk, 1);
2550 if (!(val & 1))
2551 icsk->icsk_ack.pingpong = 1;
2552 }
2553 }
2554 break;
2555
2556#ifdef CONFIG_TCP_MD5SIG
2557 case TCP_MD5SIG:
2558 /* Read the IP->Key mappings from userspace */
2559 err = tp->af_specific->md5_parse(sk, optval, optlen);
2560 break;
2561#endif
2562 case TCP_USER_TIMEOUT:
2563 /* Cap the max time in ms TCP will retry or probe the window
2564 * before giving up and aborting (ETIMEDOUT) a connection.
2565 */
2566 if (val < 0)
2567 err = -EINVAL;
2568 else
2569 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2570 break;
2571
2572 case TCP_FASTOPEN:
2573 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2574 TCPF_LISTEN))) {
2575 tcp_fastopen_init_key_once(true);
2576
2577 fastopen_queue_tune(sk, val);
2578 } else {
2579 err = -EINVAL;
2580 }
2581 break;
2582 case TCP_TIMESTAMP:
2583 if (!tp->repair)
2584 err = -EPERM;
2585 else
2586 tp->tsoffset = val - tcp_time_stamp;
2587 break;
2588 case TCP_NOTSENT_LOWAT:
2589 tp->notsent_lowat = val;
2590 sk->sk_write_space(sk);
2591 break;
2592 default:
2593 err = -ENOPROTOOPT;
2594 break;
2595 }
2596
2597 release_sock(sk);
2598 return err;
2599}
2600
2601int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2602 unsigned int optlen)
2603{
2604 const struct inet_connection_sock *icsk = inet_csk(sk);
2605
2606 if (level != SOL_TCP)
2607 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2608 optval, optlen);
2609 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2610}
2611EXPORT_SYMBOL(tcp_setsockopt);
2612
2613#ifdef CONFIG_COMPAT
2614int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2615 char __user *optval, unsigned int optlen)
2616{
2617 if (level != SOL_TCP)
2618 return inet_csk_compat_setsockopt(sk, level, optname,
2619 optval, optlen);
2620 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2621}
2622EXPORT_SYMBOL(compat_tcp_setsockopt);
2623#endif
2624
2625/* Return information about state of tcp endpoint in API format. */
2626void tcp_get_info(struct sock *sk, struct tcp_info *info)
2627{
2628 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2629 const struct inet_connection_sock *icsk = inet_csk(sk);
2630 u32 now = tcp_time_stamp;
2631 unsigned int start;
2632 int notsent_bytes;
2633 u64 rate64;
2634 u32 rate;
2635
2636 memset(info, 0, sizeof(*info));
2637 if (sk->sk_type != SOCK_STREAM)
2638 return;
2639
2640 info->tcpi_state = sk_state_load(sk);
2641
2642 info->tcpi_ca_state = icsk->icsk_ca_state;
2643 info->tcpi_retransmits = icsk->icsk_retransmits;
2644 info->tcpi_probes = icsk->icsk_probes_out;
2645 info->tcpi_backoff = icsk->icsk_backoff;
2646
2647 if (tp->rx_opt.tstamp_ok)
2648 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2649 if (tcp_is_sack(tp))
2650 info->tcpi_options |= TCPI_OPT_SACK;
2651 if (tp->rx_opt.wscale_ok) {
2652 info->tcpi_options |= TCPI_OPT_WSCALE;
2653 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2654 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2655 }
2656
2657 if (tp->ecn_flags & TCP_ECN_OK)
2658 info->tcpi_options |= TCPI_OPT_ECN;
2659 if (tp->ecn_flags & TCP_ECN_SEEN)
2660 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2661 if (tp->syn_data_acked)
2662 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2663
2664 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2665 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2666 info->tcpi_snd_mss = tp->mss_cache;
2667 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2668
2669 if (info->tcpi_state == TCP_LISTEN) {
2670 info->tcpi_unacked = sk->sk_ack_backlog;
2671 info->tcpi_sacked = sk->sk_max_ack_backlog;
2672 } else {
2673 info->tcpi_unacked = tp->packets_out;
2674 info->tcpi_sacked = tp->sacked_out;
2675 }
2676 info->tcpi_lost = tp->lost_out;
2677 info->tcpi_retrans = tp->retrans_out;
2678 info->tcpi_fackets = tp->fackets_out;
2679
2680 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2681 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2682 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2683
2684 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2685 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2686 info->tcpi_rtt = tp->srtt_us >> 3;
2687 info->tcpi_rttvar = tp->mdev_us >> 2;
2688 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2689 info->tcpi_snd_cwnd = tp->snd_cwnd;
2690 info->tcpi_advmss = tp->advmss;
2691 info->tcpi_reordering = tp->reordering;
2692
2693 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2694 info->tcpi_rcv_space = tp->rcvq_space.space;
2695
2696 info->tcpi_total_retrans = tp->total_retrans;
2697
2698 rate = READ_ONCE(sk->sk_pacing_rate);
2699 rate64 = rate != ~0U ? rate : ~0ULL;
2700 put_unaligned(rate64, &info->tcpi_pacing_rate);
2701
2702 rate = READ_ONCE(sk->sk_max_pacing_rate);
2703 rate64 = rate != ~0U ? rate : ~0ULL;
2704 put_unaligned(rate64, &info->tcpi_max_pacing_rate);
2705
2706 do {
2707 start = u64_stats_fetch_begin_irq(&tp->syncp);
2708 put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked);
2709 put_unaligned(tp->bytes_received, &info->tcpi_bytes_received);
2710 } while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2711 info->tcpi_segs_out = tp->segs_out;
2712 info->tcpi_segs_in = tp->segs_in;
2713
2714 notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt);
2715 info->tcpi_notsent_bytes = max(0, notsent_bytes);
2716
2717 info->tcpi_min_rtt = tcp_min_rtt(tp);
2718 info->tcpi_data_segs_in = tp->data_segs_in;
2719 info->tcpi_data_segs_out = tp->data_segs_out;
2720}
2721EXPORT_SYMBOL_GPL(tcp_get_info);
2722
2723static int do_tcp_getsockopt(struct sock *sk, int level,
2724 int optname, char __user *optval, int __user *optlen)
2725{
2726 struct inet_connection_sock *icsk = inet_csk(sk);
2727 struct tcp_sock *tp = tcp_sk(sk);
2728 struct net *net = sock_net(sk);
2729 int val, len;
2730
2731 if (get_user(len, optlen))
2732 return -EFAULT;
2733
2734 len = min_t(unsigned int, len, sizeof(int));
2735
2736 if (len < 0)
2737 return -EINVAL;
2738
2739 switch (optname) {
2740 case TCP_MAXSEG:
2741 val = tp->mss_cache;
2742 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2743 val = tp->rx_opt.user_mss;
2744 if (tp->repair)
2745 val = tp->rx_opt.mss_clamp;
2746 break;
2747 case TCP_NODELAY:
2748 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2749 break;
2750 case TCP_CORK:
2751 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2752 break;
2753 case TCP_KEEPIDLE:
2754 val = keepalive_time_when(tp) / HZ;
2755 break;
2756 case TCP_KEEPINTVL:
2757 val = keepalive_intvl_when(tp) / HZ;
2758 break;
2759 case TCP_KEEPCNT:
2760 val = keepalive_probes(tp);
2761 break;
2762 case TCP_SYNCNT:
2763 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2764 break;
2765 case TCP_LINGER2:
2766 val = tp->linger2;
2767 if (val >= 0)
2768 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2769 break;
2770 case TCP_DEFER_ACCEPT:
2771 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2772 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2773 break;
2774 case TCP_WINDOW_CLAMP:
2775 val = tp->window_clamp;
2776 break;
2777 case TCP_INFO: {
2778 struct tcp_info info;
2779
2780 if (get_user(len, optlen))
2781 return -EFAULT;
2782
2783 tcp_get_info(sk, &info);
2784
2785 len = min_t(unsigned int, len, sizeof(info));
2786 if (put_user(len, optlen))
2787 return -EFAULT;
2788 if (copy_to_user(optval, &info, len))
2789 return -EFAULT;
2790 return 0;
2791 }
2792 case TCP_CC_INFO: {
2793 const struct tcp_congestion_ops *ca_ops;
2794 union tcp_cc_info info;
2795 size_t sz = 0;
2796 int attr;
2797
2798 if (get_user(len, optlen))
2799 return -EFAULT;
2800
2801 ca_ops = icsk->icsk_ca_ops;
2802 if (ca_ops && ca_ops->get_info)
2803 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2804
2805 len = min_t(unsigned int, len, sz);
2806 if (put_user(len, optlen))
2807 return -EFAULT;
2808 if (copy_to_user(optval, &info, len))
2809 return -EFAULT;
2810 return 0;
2811 }
2812 case TCP_QUICKACK:
2813 val = !icsk->icsk_ack.pingpong;
2814 break;
2815
2816 case TCP_CONGESTION:
2817 if (get_user(len, optlen))
2818 return -EFAULT;
2819 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2820 if (put_user(len, optlen))
2821 return -EFAULT;
2822 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2823 return -EFAULT;
2824 return 0;
2825
2826 case TCP_THIN_LINEAR_TIMEOUTS:
2827 val = tp->thin_lto;
2828 break;
2829 case TCP_THIN_DUPACK:
2830 val = tp->thin_dupack;
2831 break;
2832
2833 case TCP_REPAIR:
2834 val = tp->repair;
2835 break;
2836
2837 case TCP_REPAIR_QUEUE:
2838 if (tp->repair)
2839 val = tp->repair_queue;
2840 else
2841 return -EINVAL;
2842 break;
2843
2844 case TCP_QUEUE_SEQ:
2845 if (tp->repair_queue == TCP_SEND_QUEUE)
2846 val = tp->write_seq;
2847 else if (tp->repair_queue == TCP_RECV_QUEUE)
2848 val = tp->rcv_nxt;
2849 else
2850 return -EINVAL;
2851 break;
2852
2853 case TCP_USER_TIMEOUT:
2854 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2855 break;
2856
2857 case TCP_FASTOPEN:
2858 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
2859 break;
2860
2861 case TCP_TIMESTAMP:
2862 val = tcp_time_stamp + tp->tsoffset;
2863 break;
2864 case TCP_NOTSENT_LOWAT:
2865 val = tp->notsent_lowat;
2866 break;
2867 case TCP_SAVE_SYN:
2868 val = tp->save_syn;
2869 break;
2870 case TCP_SAVED_SYN: {
2871 if (get_user(len, optlen))
2872 return -EFAULT;
2873
2874 lock_sock(sk);
2875 if (tp->saved_syn) {
2876 if (len < tp->saved_syn[0]) {
2877 if (put_user(tp->saved_syn[0], optlen)) {
2878 release_sock(sk);
2879 return -EFAULT;
2880 }
2881 release_sock(sk);
2882 return -EINVAL;
2883 }
2884 len = tp->saved_syn[0];
2885 if (put_user(len, optlen)) {
2886 release_sock(sk);
2887 return -EFAULT;
2888 }
2889 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
2890 release_sock(sk);
2891 return -EFAULT;
2892 }
2893 tcp_saved_syn_free(tp);
2894 release_sock(sk);
2895 } else {
2896 release_sock(sk);
2897 len = 0;
2898 if (put_user(len, optlen))
2899 return -EFAULT;
2900 }
2901 return 0;
2902 }
2903 default:
2904 return -ENOPROTOOPT;
2905 }
2906
2907 if (put_user(len, optlen))
2908 return -EFAULT;
2909 if (copy_to_user(optval, &val, len))
2910 return -EFAULT;
2911 return 0;
2912}
2913
2914int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2915 int __user *optlen)
2916{
2917 struct inet_connection_sock *icsk = inet_csk(sk);
2918
2919 if (level != SOL_TCP)
2920 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2921 optval, optlen);
2922 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2923}
2924EXPORT_SYMBOL(tcp_getsockopt);
2925
2926#ifdef CONFIG_COMPAT
2927int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2928 char __user *optval, int __user *optlen)
2929{
2930 if (level != SOL_TCP)
2931 return inet_csk_compat_getsockopt(sk, level, optname,
2932 optval, optlen);
2933 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2934}
2935EXPORT_SYMBOL(compat_tcp_getsockopt);
2936#endif
2937
2938#ifdef CONFIG_TCP_MD5SIG
2939static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2940static DEFINE_MUTEX(tcp_md5sig_mutex);
2941static bool tcp_md5sig_pool_populated = false;
2942
2943static void __tcp_alloc_md5sig_pool(void)
2944{
2945 struct crypto_ahash *hash;
2946 int cpu;
2947
2948 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
2949 if (IS_ERR(hash))
2950 return;
2951
2952 for_each_possible_cpu(cpu) {
2953 struct ahash_request *req;
2954
2955 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
2956 continue;
2957
2958 req = ahash_request_alloc(hash, GFP_KERNEL);
2959 if (!req)
2960 return;
2961
2962 ahash_request_set_callback(req, 0, NULL, NULL);
2963
2964 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
2965 }
2966 /* before setting tcp_md5sig_pool_populated, we must commit all writes
2967 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2968 */
2969 smp_wmb();
2970 tcp_md5sig_pool_populated = true;
2971}
2972
2973bool tcp_alloc_md5sig_pool(void)
2974{
2975 if (unlikely(!tcp_md5sig_pool_populated)) {
2976 mutex_lock(&tcp_md5sig_mutex);
2977
2978 if (!tcp_md5sig_pool_populated)
2979 __tcp_alloc_md5sig_pool();
2980
2981 mutex_unlock(&tcp_md5sig_mutex);
2982 }
2983 return tcp_md5sig_pool_populated;
2984}
2985EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2986
2987
2988/**
2989 * tcp_get_md5sig_pool - get md5sig_pool for this user
2990 *
2991 * We use percpu structure, so if we succeed, we exit with preemption
2992 * and BH disabled, to make sure another thread or softirq handling
2993 * wont try to get same context.
2994 */
2995struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2996{
2997 local_bh_disable();
2998
2999 if (tcp_md5sig_pool_populated) {
3000 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3001 smp_rmb();
3002 return this_cpu_ptr(&tcp_md5sig_pool);
3003 }
3004 local_bh_enable();
3005 return NULL;
3006}
3007EXPORT_SYMBOL(tcp_get_md5sig_pool);
3008
3009int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3010 const struct tcphdr *th)
3011{
3012 struct scatterlist sg;
3013 struct tcphdr hdr;
3014
3015 /* We are not allowed to change tcphdr, make a local copy */
3016 memcpy(&hdr, th, sizeof(hdr));
3017 hdr.check = 0;
3018
3019 /* options aren't included in the hash */
3020 sg_init_one(&sg, &hdr, sizeof(hdr));
3021 ahash_request_set_crypt(hp->md5_req, &sg, NULL, sizeof(hdr));
3022 return crypto_ahash_update(hp->md5_req);
3023}
3024EXPORT_SYMBOL(tcp_md5_hash_header);
3025
3026int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3027 const struct sk_buff *skb, unsigned int header_len)
3028{
3029 struct scatterlist sg;
3030 const struct tcphdr *tp = tcp_hdr(skb);
3031 struct ahash_request *req = hp->md5_req;
3032 unsigned int i;
3033 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3034 skb_headlen(skb) - header_len : 0;
3035 const struct skb_shared_info *shi = skb_shinfo(skb);
3036 struct sk_buff *frag_iter;
3037
3038 sg_init_table(&sg, 1);
3039
3040 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3041 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3042 if (crypto_ahash_update(req))
3043 return 1;
3044
3045 for (i = 0; i < shi->nr_frags; ++i) {
3046 const struct skb_frag_struct *f = &shi->frags[i];
3047 unsigned int offset = f->page_offset;
3048 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3049
3050 sg_set_page(&sg, page, skb_frag_size(f),
3051 offset_in_page(offset));
3052 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3053 if (crypto_ahash_update(req))
3054 return 1;
3055 }
3056
3057 skb_walk_frags(skb, frag_iter)
3058 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3059 return 1;
3060
3061 return 0;
3062}
3063EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3064
3065int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3066{
3067 struct scatterlist sg;
3068
3069 sg_init_one(&sg, key->key, key->keylen);
3070 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3071 return crypto_ahash_update(hp->md5_req);
3072}
3073EXPORT_SYMBOL(tcp_md5_hash_key);
3074
3075#endif
3076
3077void tcp_done(struct sock *sk)
3078{
3079 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3080
3081 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3082 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3083
3084 tcp_set_state(sk, TCP_CLOSE);
3085 tcp_clear_xmit_timers(sk);
3086 if (req)
3087 reqsk_fastopen_remove(sk, req, false);
3088
3089 sk->sk_shutdown = SHUTDOWN_MASK;
3090
3091 if (!sock_flag(sk, SOCK_DEAD))
3092 sk->sk_state_change(sk);
3093 else
3094 inet_csk_destroy_sock(sk);
3095}
3096EXPORT_SYMBOL_GPL(tcp_done);
3097
3098int tcp_abort(struct sock *sk, int err)
3099{
3100 if (!sk_fullsock(sk)) {
3101 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3102 struct request_sock *req = inet_reqsk(sk);
3103
3104 local_bh_disable();
3105 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3106 req);
3107 local_bh_enable();
3108 return 0;
3109 }
3110 sock_gen_put(sk);
3111 return -EOPNOTSUPP;
3112 }
3113
3114 /* Don't race with userspace socket closes such as tcp_close. */
3115 lock_sock(sk);
3116
3117 if (sk->sk_state == TCP_LISTEN) {
3118 tcp_set_state(sk, TCP_CLOSE);
3119 inet_csk_listen_stop(sk);
3120 }
3121
3122 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3123 local_bh_disable();
3124 bh_lock_sock(sk);
3125
3126 if (!sock_flag(sk, SOCK_DEAD)) {
3127 sk->sk_err = err;
3128 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3129 smp_wmb();
3130 sk->sk_error_report(sk);
3131 if (tcp_need_reset(sk->sk_state))
3132 tcp_send_active_reset(sk, GFP_ATOMIC);
3133 tcp_done(sk);
3134 }
3135
3136 bh_unlock_sock(sk);
3137 local_bh_enable();
3138 release_sock(sk);
3139 sock_put(sk);
3140 return 0;
3141}
3142EXPORT_SYMBOL_GPL(tcp_abort);
3143
3144extern struct tcp_congestion_ops tcp_reno;
3145
3146static __initdata unsigned long thash_entries;
3147static int __init set_thash_entries(char *str)
3148{
3149 ssize_t ret;
3150
3151 if (!str)
3152 return 0;
3153
3154 ret = kstrtoul(str, 0, &thash_entries);
3155 if (ret)
3156 return 0;
3157
3158 return 1;
3159}
3160__setup("thash_entries=", set_thash_entries);
3161
3162static void __init tcp_init_mem(void)
3163{
3164 unsigned long limit = nr_free_buffer_pages() / 16;
3165
3166 limit = max(limit, 128UL);
3167 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3168 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3169 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3170}
3171
3172void __init tcp_init(void)
3173{
3174 unsigned long limit;
3175 int max_rshare, max_wshare, cnt;
3176 unsigned int i;
3177
3178 sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3179
3180 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3181 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3182 tcp_hashinfo.bind_bucket_cachep =
3183 kmem_cache_create("tcp_bind_bucket",
3184 sizeof(struct inet_bind_bucket), 0,
3185 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3186
3187 /* Size and allocate the main established and bind bucket
3188 * hash tables.
3189 *
3190 * The methodology is similar to that of the buffer cache.
3191 */
3192 tcp_hashinfo.ehash =
3193 alloc_large_system_hash("TCP established",
3194 sizeof(struct inet_ehash_bucket),
3195 thash_entries,
3196 17, /* one slot per 128 KB of memory */
3197 0,
3198 NULL,
3199 &tcp_hashinfo.ehash_mask,
3200 0,
3201 thash_entries ? 0 : 512 * 1024);
3202 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3203 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3204
3205 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3206 panic("TCP: failed to alloc ehash_locks");
3207 tcp_hashinfo.bhash =
3208 alloc_large_system_hash("TCP bind",
3209 sizeof(struct inet_bind_hashbucket),
3210 tcp_hashinfo.ehash_mask + 1,
3211 17, /* one slot per 128 KB of memory */
3212 0,
3213 &tcp_hashinfo.bhash_size,
3214 NULL,
3215 0,
3216 64 * 1024);
3217 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3218 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3219 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3220 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3221 }
3222
3223
3224 cnt = tcp_hashinfo.ehash_mask + 1;
3225
3226 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3227 sysctl_tcp_max_orphans = cnt / 2;
3228 sysctl_max_syn_backlog = max(128, cnt / 256);
3229
3230 tcp_init_mem();
3231 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3232 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3233 max_wshare = min(4UL*1024*1024, limit);
3234 max_rshare = min(6UL*1024*1024, limit);
3235
3236 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3237 sysctl_tcp_wmem[1] = 16*1024;
3238 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3239
3240 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3241 sysctl_tcp_rmem[1] = 87380;
3242 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3243
3244 pr_info("Hash tables configured (established %u bind %u)\n",
3245 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3246
3247 tcp_metrics_init();
3248 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3249 tcp_tasklet_init();
3250}