Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 *
  20 * Fixes:
  21 *		Alan Cox	:	Numerous verify_area() calls
  22 *		Alan Cox	:	Set the ACK bit on a reset
  23 *		Alan Cox	:	Stopped it crashing if it closed while
  24 *					sk->inuse=1 and was trying to connect
  25 *					(tcp_err()).
  26 *		Alan Cox	:	All icmp error handling was broken
  27 *					pointers passed where wrong and the
  28 *					socket was looked up backwards. Nobody
  29 *					tested any icmp error code obviously.
  30 *		Alan Cox	:	tcp_err() now handled properly. It
  31 *					wakes people on errors. poll
  32 *					behaves and the icmp error race
  33 *					has gone by moving it into sock.c
  34 *		Alan Cox	:	tcp_send_reset() fixed to work for
  35 *					everything not just packets for
  36 *					unknown sockets.
  37 *		Alan Cox	:	tcp option processing.
  38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
  39 *					syn rule wrong]
  40 *		Herp Rosmanith  :	More reset fixes
  41 *		Alan Cox	:	No longer acks invalid rst frames.
  42 *					Acking any kind of RST is right out.
  43 *		Alan Cox	:	Sets an ignore me flag on an rst
  44 *					receive otherwise odd bits of prattle
  45 *					escape still
  46 *		Alan Cox	:	Fixed another acking RST frame bug.
  47 *					Should stop LAN workplace lockups.
  48 *		Alan Cox	: 	Some tidyups using the new skb list
  49 *					facilities
  50 *		Alan Cox	:	sk->keepopen now seems to work
  51 *		Alan Cox	:	Pulls options out correctly on accepts
  52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
  53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
  54 *					bit to skb ops.
  55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
  56 *					nasty.
  57 *		Alan Cox	:	Added some better commenting, as the
  58 *					tcp is hard to follow
  59 *		Alan Cox	:	Removed incorrect check for 20 * psh
  60 *	Michael O'Reilly	:	ack < copied bug fix.
  61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
  62 *		Alan Cox	:	FIN with no memory -> CRASH
  63 *		Alan Cox	:	Added socket option proto entries.
  64 *					Also added awareness of them to accept.
  65 *		Alan Cox	:	Added TCP options (SOL_TCP)
  66 *		Alan Cox	:	Switched wakeup calls to callbacks,
  67 *					so the kernel can layer network
  68 *					sockets.
  69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
  70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
  71 *		Alan Cox	:	RST frames sent on unsynchronised
  72 *					state ack error.
  73 *		Alan Cox	:	Put in missing check for SYN bit.
  74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
  75 *					window non shrink trick.
  76 *		Alan Cox	:	Added a couple of small NET2E timer
  77 *					fixes
  78 *		Charles Hedrick :	TCP fixes
  79 *		Toomas Tamm	:	TCP window fixes
  80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
  81 *		Charles Hedrick	:	Rewrote most of it to actually work
  82 *		Linus		:	Rewrote tcp_read() and URG handling
  83 *					completely
  84 *		Gerhard Koerting:	Fixed some missing timer handling
  85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
  86 *		Gerhard Koerting:	PC/TCP workarounds
  87 *		Adam Caldwell	:	Assorted timer/timing errors
  88 *		Matthew Dillon	:	Fixed another RST bug
  89 *		Alan Cox	:	Move to kernel side addressing changes.
  90 *		Alan Cox	:	Beginning work on TCP fastpathing
  91 *					(not yet usable)
  92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
  93 *		Alan Cox	:	TCP fast path debugging
  94 *		Alan Cox	:	Window clamping
  95 *		Michael Riepe	:	Bug in tcp_check()
  96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
  97 *		Matt Dillon	:	Yet more small nasties remove from the
  98 *					TCP code (Be very nice to this man if
  99 *					tcp finally works 100%) 8)
 100 *		Alan Cox	:	BSD accept semantics.
 101 *		Alan Cox	:	Reset on closedown bug.
 102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
 103 *		Michael Pall	:	Handle poll() after URG properly in
 104 *					all cases.
 105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
 106 *					(multi URG PUSH broke rlogin).
 107 *		Michael Pall	:	Fix the multi URG PUSH problem in
 108 *					tcp_readable(), poll() after URG
 109 *					works now.
 110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
 111 *					BSD api.
 112 *		Alan Cox	:	Changed the semantics of sk->socket to
 113 *					fix a race and a signal problem with
 114 *					accept() and async I/O.
 115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
 116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
 117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
 118 *					clients/servers which listen in on
 119 *					fixed ports.
 120 *		Alan Cox	:	Cleaned the above up and shrank it to
 121 *					a sensible code size.
 122 *		Alan Cox	:	Self connect lockup fix.
 123 *		Alan Cox	:	No connect to multicast.
 124 *		Ross Biro	:	Close unaccepted children on master
 125 *					socket close.
 126 *		Alan Cox	:	Reset tracing code.
 127 *		Alan Cox	:	Spurious resets on shutdown.
 128 *		Alan Cox	:	Giant 15 minute/60 second timer error
 129 *		Alan Cox	:	Small whoops in polling before an
 130 *					accept.
 131 *		Alan Cox	:	Kept the state trace facility since
 132 *					it's handy for debugging.
 133 *		Alan Cox	:	More reset handler fixes.
 134 *		Alan Cox	:	Started rewriting the code based on
 135 *					the RFC's for other useful protocol
 136 *					references see: Comer, KA9Q NOS, and
 137 *					for a reference on the difference
 138 *					between specifications and how BSD
 139 *					works see the 4.4lite source.
 140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
 141 *					close.
 142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
 143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
 144 *		Alan Cox	:	Reimplemented timers as per the RFC
 145 *					and using multiple timers for sanity.
 146 *		Alan Cox	:	Small bug fixes, and a lot of new
 147 *					comments.
 148 *		Alan Cox	:	Fixed dual reader crash by locking
 149 *					the buffers (much like datagram.c)
 150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
 151 *					now gets fed up of retrying without
 152 *					(even a no space) answer.
 153 *		Alan Cox	:	Extracted closing code better
 154 *		Alan Cox	:	Fixed the closing state machine to
 155 *					resemble the RFC.
 156 *		Alan Cox	:	More 'per spec' fixes.
 157 *		Jorge Cwik	:	Even faster checksumming.
 158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
 159 *					only frames. At least one pc tcp stack
 160 *					generates them.
 161 *		Alan Cox	:	Cache last socket.
 162 *		Alan Cox	:	Per route irtt.
 163 *		Matt Day	:	poll()->select() match BSD precisely on error
 164 *		Alan Cox	:	New buffers
 165 *		Marc Tamsky	:	Various sk->prot->retransmits and
 166 *					sk->retransmits misupdating fixed.
 167 *					Fixed tcp_write_timeout: stuck close,
 168 *					and TCP syn retries gets used now.
 169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
 170 *					ack if state is TCP_CLOSED.
 171 *		Alan Cox	:	Look up device on a retransmit - routes may
 172 *					change. Doesn't yet cope with MSS shrink right
 173 *					but it's a start!
 174 *		Marc Tamsky	:	Closing in closing fixes.
 175 *		Mike Shaver	:	RFC1122 verifications.
 176 *		Alan Cox	:	rcv_saddr errors.
 177 *		Alan Cox	:	Block double connect().
 178 *		Alan Cox	:	Small hooks for enSKIP.
 179 *		Alexey Kuznetsov:	Path MTU discovery.
 180 *		Alan Cox	:	Support soft errors.
 181 *		Alan Cox	:	Fix MTU discovery pathological case
 182 *					when the remote claims no mtu!
 183 *		Marc Tamsky	:	TCP_CLOSE fix.
 184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
 185 *					window but wrong (fixes NT lpd problems)
 186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
 187 *		Joerg Reuter	:	No modification of locked buffers in
 188 *					tcp_do_retransmit()
 189 *		Eric Schenk	:	Changed receiver side silly window
 190 *					avoidance algorithm to BSD style
 191 *					algorithm. This doubles throughput
 192 *					against machines running Solaris,
 193 *					and seems to result in general
 194 *					improvement.
 195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
 196 *	Willy Konynenberg	:	Transparent proxying support.
 197 *	Mike McLagan		:	Routing by source
 198 *		Keith Owens	:	Do proper merging with partial SKB's in
 199 *					tcp_do_sendmsg to avoid burstiness.
 200 *		Eric Schenk	:	Fix fast close down bug with
 201 *					shutdown() followed by close().
 202 *		Andi Kleen 	:	Make poll agree with SIGIO
 203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
 204 *					lingertime == 0 (RFC 793 ABORT Call)
 205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
 206 *					csum_and_copy_from_user() if possible.
 207 *
 208 *		This program is free software; you can redistribute it and/or
 209 *		modify it under the terms of the GNU General Public License
 210 *		as published by the Free Software Foundation; either version
 211 *		2 of the License, or(at your option) any later version.
 212 *
 213 * Description of States:
 214 *
 215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
 216 *
 217 *	TCP_SYN_RECV		received a connection request, sent ack,
 218 *				waiting for final ack in three-way handshake.
 219 *
 220 *	TCP_ESTABLISHED		connection established
 221 *
 222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
 223 *				transmission of remaining buffered data
 224 *
 225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
 226 *				to shutdown
 227 *
 228 *	TCP_CLOSING		both sides have shutdown but we still have
 229 *				data we have to finish sending
 230 *
 231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
 232 *				closed, can only be entered from FIN_WAIT2
 233 *				or CLOSING.  Required because the other end
 234 *				may not have gotten our last ACK causing it
 235 *				to retransmit the data packet (which we ignore)
 236 *
 237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
 238 *				us to finish writing our data and to shutdown
 239 *				(we have to close() to move on to LAST_ACK)
 240 *
 241 *	TCP_LAST_ACK		out side has shutdown after remote has
 242 *				shutdown.  There may still be data in our
 243 *				buffer that we have to finish sending
 244 *
 245 *	TCP_CLOSE		socket is finished
 246 */
 247
 248#define pr_fmt(fmt) "TCP: " fmt
 249
 250#include <crypto/hash.h>
 251#include <linux/kernel.h>
 252#include <linux/module.h>
 253#include <linux/types.h>
 254#include <linux/fcntl.h>
 255#include <linux/poll.h>
 256#include <linux/inet_diag.h>
 257#include <linux/init.h>
 258#include <linux/fs.h>
 259#include <linux/skbuff.h>
 260#include <linux/scatterlist.h>
 261#include <linux/splice.h>
 262#include <linux/net.h>
 263#include <linux/socket.h>
 264#include <linux/random.h>
 265#include <linux/bootmem.h>
 266#include <linux/highmem.h>
 267#include <linux/swap.h>
 268#include <linux/cache.h>
 269#include <linux/err.h>
 270#include <linux/time.h>
 271#include <linux/slab.h>
 272#include <linux/errqueue.h>
 273#include <linux/static_key.h>
 274
 275#include <net/icmp.h>
 276#include <net/inet_common.h>
 277#include <net/tcp.h>
 278#include <net/xfrm.h>
 279#include <net/ip.h>
 280#include <net/sock.h>
 281
 282#include <linux/uaccess.h>
 283#include <asm/ioctls.h>
 
 284#include <net/busy_poll.h>
 285
 
 
 
 
 286struct percpu_counter tcp_orphan_count;
 287EXPORT_SYMBOL_GPL(tcp_orphan_count);
 288
 289long sysctl_tcp_mem[3] __read_mostly;
 
 
 
 290EXPORT_SYMBOL(sysctl_tcp_mem);
 
 
 291
 292atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
 293EXPORT_SYMBOL(tcp_memory_allocated);
 294
 295#if IS_ENABLED(CONFIG_SMC)
 296DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
 297EXPORT_SYMBOL(tcp_have_smc);
 298#endif
 299
 300/*
 301 * Current number of TCP sockets.
 302 */
 303struct percpu_counter tcp_sockets_allocated;
 304EXPORT_SYMBOL(tcp_sockets_allocated);
 305
 306/*
 307 * TCP splice context
 308 */
 309struct tcp_splice_state {
 310	struct pipe_inode_info *pipe;
 311	size_t len;
 312	unsigned int flags;
 313};
 314
 315/*
 316 * Pressure flag: try to collapse.
 317 * Technical note: it is used by multiple contexts non atomically.
 318 * All the __sk_mem_schedule() is of this nature: accounting
 319 * is strict, actions are advisory and have some latency.
 320 */
 321unsigned long tcp_memory_pressure __read_mostly;
 322EXPORT_SYMBOL_GPL(tcp_memory_pressure);
 323
 324void tcp_enter_memory_pressure(struct sock *sk)
 325{
 326	unsigned long val;
 327
 328	if (tcp_memory_pressure)
 329		return;
 330	val = jiffies;
 331
 332	if (!val)
 333		val--;
 334	if (!cmpxchg(&tcp_memory_pressure, 0, val))
 335		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
 
 
 336}
 337EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
 338
 339void tcp_leave_memory_pressure(struct sock *sk)
 340{
 341	unsigned long val;
 342
 343	if (!tcp_memory_pressure)
 344		return;
 345	val = xchg(&tcp_memory_pressure, 0);
 346	if (val)
 347		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
 348			      jiffies_to_msecs(jiffies - val));
 349}
 350EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
 351
 352/* Convert seconds to retransmits based on initial and max timeout */
 353static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
 354{
 355	u8 res = 0;
 356
 357	if (seconds > 0) {
 358		int period = timeout;
 359
 360		res = 1;
 361		while (seconds > period && res < 255) {
 362			res++;
 363			timeout <<= 1;
 364			if (timeout > rto_max)
 365				timeout = rto_max;
 366			period += timeout;
 367		}
 368	}
 369	return res;
 370}
 371
 372/* Convert retransmits to seconds based on initial and max timeout */
 373static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
 374{
 375	int period = 0;
 376
 377	if (retrans > 0) {
 378		period = timeout;
 379		while (--retrans) {
 380			timeout <<= 1;
 381			if (timeout > rto_max)
 382				timeout = rto_max;
 383			period += timeout;
 384		}
 385	}
 386	return period;
 387}
 388
 389static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
 390{
 391	u32 rate = READ_ONCE(tp->rate_delivered);
 392	u32 intv = READ_ONCE(tp->rate_interval_us);
 393	u64 rate64 = 0;
 394
 395	if (rate && intv) {
 396		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
 397		do_div(rate64, intv);
 398	}
 399	return rate64;
 400}
 401
 402/* Address-family independent initialization for a tcp_sock.
 403 *
 404 * NOTE: A lot of things set to zero explicitly by call to
 405 *       sk_alloc() so need not be done here.
 406 */
 407void tcp_init_sock(struct sock *sk)
 408{
 409	struct inet_connection_sock *icsk = inet_csk(sk);
 410	struct tcp_sock *tp = tcp_sk(sk);
 411
 412	tp->out_of_order_queue = RB_ROOT;
 413	sk->tcp_rtx_queue = RB_ROOT;
 414	tcp_init_xmit_timers(sk);
 
 415	INIT_LIST_HEAD(&tp->tsq_node);
 416	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
 417
 418	icsk->icsk_rto = TCP_TIMEOUT_INIT;
 419	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
 420	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
 421
 422	/* So many TCP implementations out there (incorrectly) count the
 423	 * initial SYN frame in their delayed-ACK and congestion control
 424	 * algorithms that we must have the following bandaid to talk
 425	 * efficiently to them.  -DaveM
 426	 */
 427	tp->snd_cwnd = TCP_INIT_CWND;
 428
 429	/* There's a bubble in the pipe until at least the first ACK. */
 430	tp->app_limited = ~0U;
 431
 432	/* See draft-stevens-tcpca-spec-01 for discussion of the
 433	 * initialization of these values.
 434	 */
 435	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 436	tp->snd_cwnd_clamp = ~0;
 437	tp->mss_cache = TCP_MSS_DEFAULT;
 
 438
 439	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
 
 440	tcp_assign_congestion_control(sk);
 441
 442	tp->tsoffset = 0;
 443	tp->rack.reo_wnd_steps = 1;
 444
 445	sk->sk_state = TCP_CLOSE;
 446
 447	sk->sk_write_space = sk_stream_write_space;
 448	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
 449
 450	icsk->icsk_sync_mss = tcp_sync_mss;
 451
 452	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
 453	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
 454
 
 
 
 455	sk_sockets_allocated_inc(sk);
 456	sk->sk_route_forced_caps = NETIF_F_GSO;
 457}
 458EXPORT_SYMBOL(tcp_init_sock);
 459
 460void tcp_init_transfer(struct sock *sk, int bpf_op)
 461{
 462	struct inet_connection_sock *icsk = inet_csk(sk);
 463
 464	tcp_mtup_init(sk);
 465	icsk->icsk_af_ops->rebuild_header(sk);
 466	tcp_init_metrics(sk);
 467	tcp_call_bpf(sk, bpf_op, 0, NULL);
 468	tcp_init_congestion_control(sk);
 469	tcp_init_buffer_space(sk);
 470}
 471
 472static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
 473{
 474	struct sk_buff *skb = tcp_write_queue_tail(sk);
 475
 476	if (tsflags && skb) {
 477		struct skb_shared_info *shinfo = skb_shinfo(skb);
 478		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 479
 480		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
 481		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
 482			tcb->txstamp_ack = 1;
 483		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
 484			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
 485	}
 486}
 487
 488static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
 489					  int target, struct sock *sk)
 490{
 491	return (tp->rcv_nxt - tp->copied_seq >= target) ||
 492		(sk->sk_prot->stream_memory_read ?
 493		sk->sk_prot->stream_memory_read(sk) : false);
 494}
 495
 496/*
 497 *	Wait for a TCP event.
 498 *
 499 *	Note that we don't need to lock the socket, as the upper poll layers
 500 *	take care of normal races (between the test and the event) and we don't
 501 *	go look at any of the socket buffers directly.
 502 */
 503__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
 504{
 505	__poll_t mask;
 506	struct sock *sk = sock->sk;
 507	const struct tcp_sock *tp = tcp_sk(sk);
 508	int state;
 509
 
 
 510	sock_poll_wait(file, sk_sleep(sk), wait);
 511
 512	state = inet_sk_state_load(sk);
 513	if (state == TCP_LISTEN)
 514		return inet_csk_listen_poll(sk);
 515
 516	/* Socket is not locked. We are protected from async events
 517	 * by poll logic and correct handling of state changes
 518	 * made by other threads is impossible in any case.
 519	 */
 520
 521	mask = 0;
 522
 523	/*
 524	 * EPOLLHUP is certainly not done right. But poll() doesn't
 525	 * have a notion of HUP in just one direction, and for a
 526	 * socket the read side is more interesting.
 527	 *
 528	 * Some poll() documentation says that EPOLLHUP is incompatible
 529	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
 530	 * all. But careful, it tends to be safer to return too many
 531	 * bits than too few, and you can easily break real applications
 532	 * if you don't tell them that something has hung up!
 533	 *
 534	 * Check-me.
 535	 *
 536	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
 537	 * our fs/select.c). It means that after we received EOF,
 538	 * poll always returns immediately, making impossible poll() on write()
 539	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
 540	 * if and only if shutdown has been made in both directions.
 541	 * Actually, it is interesting to look how Solaris and DUX
 542	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
 543	 * then we could set it on SND_SHUTDOWN. BTW examples given
 544	 * in Stevens' books assume exactly this behaviour, it explains
 545	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
 546	 *
 547	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
 548	 * blocking on fresh not-connected or disconnected socket. --ANK
 549	 */
 550	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
 551		mask |= EPOLLHUP;
 552	if (sk->sk_shutdown & RCV_SHUTDOWN)
 553		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
 554
 555	/* Connected or passive Fast Open socket? */
 556	if (state != TCP_SYN_SENT &&
 557	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
 558		int target = sock_rcvlowat(sk, 0, INT_MAX);
 559
 560		if (tp->urg_seq == tp->copied_seq &&
 561		    !sock_flag(sk, SOCK_URGINLINE) &&
 562		    tp->urg_data)
 563			target++;
 564
 565		if (tcp_stream_is_readable(tp, target, sk))
 566			mask |= EPOLLIN | EPOLLRDNORM;
 567
 568		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
 569			if (sk_stream_is_writeable(sk)) {
 570				mask |= EPOLLOUT | EPOLLWRNORM;
 571			} else {  /* send SIGIO later */
 572				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 573				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 574
 575				/* Race breaker. If space is freed after
 576				 * wspace test but before the flags are set,
 577				 * IO signal will be lost. Memory barrier
 578				 * pairs with the input side.
 579				 */
 580				smp_mb__after_atomic();
 581				if (sk_stream_is_writeable(sk))
 582					mask |= EPOLLOUT | EPOLLWRNORM;
 583			}
 584		} else
 585			mask |= EPOLLOUT | EPOLLWRNORM;
 586
 587		if (tp->urg_data & TCP_URG_VALID)
 588			mask |= EPOLLPRI;
 589	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
 590		/* Active TCP fastopen socket with defer_connect
 591		 * Return EPOLLOUT so application can call write()
 592		 * in order for kernel to generate SYN+data
 593		 */
 594		mask |= EPOLLOUT | EPOLLWRNORM;
 595	}
 596	/* This barrier is coupled with smp_wmb() in tcp_reset() */
 597	smp_rmb();
 598	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
 599		mask |= EPOLLERR;
 600
 601	return mask;
 602}
 603EXPORT_SYMBOL(tcp_poll);
 604
 605int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
 606{
 607	struct tcp_sock *tp = tcp_sk(sk);
 608	int answ;
 609	bool slow;
 610
 611	switch (cmd) {
 612	case SIOCINQ:
 613		if (sk->sk_state == TCP_LISTEN)
 614			return -EINVAL;
 615
 616		slow = lock_sock_fast(sk);
 617		answ = tcp_inq(sk);
 618		unlock_sock_fast(sk, slow);
 619		break;
 620	case SIOCATMARK:
 621		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
 622		break;
 623	case SIOCOUTQ:
 624		if (sk->sk_state == TCP_LISTEN)
 625			return -EINVAL;
 626
 627		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 628			answ = 0;
 629		else
 630			answ = tp->write_seq - tp->snd_una;
 631		break;
 632	case SIOCOUTQNSD:
 633		if (sk->sk_state == TCP_LISTEN)
 634			return -EINVAL;
 635
 636		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 637			answ = 0;
 638		else
 639			answ = tp->write_seq - tp->snd_nxt;
 640		break;
 641	default:
 642		return -ENOIOCTLCMD;
 643	}
 644
 645	return put_user(answ, (int __user *)arg);
 646}
 647EXPORT_SYMBOL(tcp_ioctl);
 648
 649static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
 650{
 651	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
 652	tp->pushed_seq = tp->write_seq;
 653}
 654
 655static inline bool forced_push(const struct tcp_sock *tp)
 656{
 657	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
 658}
 659
 660static void skb_entail(struct sock *sk, struct sk_buff *skb)
 661{
 662	struct tcp_sock *tp = tcp_sk(sk);
 663	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 664
 665	skb->csum    = 0;
 666	tcb->seq     = tcb->end_seq = tp->write_seq;
 667	tcb->tcp_flags = TCPHDR_ACK;
 668	tcb->sacked  = 0;
 669	__skb_header_release(skb);
 670	tcp_add_write_queue_tail(sk, skb);
 671	sk->sk_wmem_queued += skb->truesize;
 672	sk_mem_charge(sk, skb->truesize);
 673	if (tp->nonagle & TCP_NAGLE_PUSH)
 674		tp->nonagle &= ~TCP_NAGLE_PUSH;
 675
 676	tcp_slow_start_after_idle_check(sk);
 677}
 678
 679static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
 680{
 681	if (flags & MSG_OOB)
 682		tp->snd_up = tp->write_seq;
 683}
 684
 685/* If a not yet filled skb is pushed, do not send it if
 686 * we have data packets in Qdisc or NIC queues :
 687 * Because TX completion will happen shortly, it gives a chance
 688 * to coalesce future sendmsg() payload into this skb, without
 689 * need for a timer, and with no latency trade off.
 690 * As packets containing data payload have a bigger truesize
 691 * than pure acks (dataless) packets, the last checks prevent
 692 * autocorking if we only have an ACK in Qdisc/NIC queues,
 693 * or if TX completion was delayed after we processed ACK packet.
 694 */
 695static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
 696				int size_goal)
 697{
 698	return skb->len < size_goal &&
 699	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
 700	       !tcp_rtx_queue_empty(sk) &&
 701	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
 702}
 703
 704static void tcp_push(struct sock *sk, int flags, int mss_now,
 705		     int nonagle, int size_goal)
 706{
 707	struct tcp_sock *tp = tcp_sk(sk);
 708	struct sk_buff *skb;
 709
 710	skb = tcp_write_queue_tail(sk);
 711	if (!skb)
 712		return;
 
 
 713	if (!(flags & MSG_MORE) || forced_push(tp))
 714		tcp_mark_push(tp, skb);
 715
 716	tcp_mark_urg(tp, flags);
 717
 718	if (tcp_should_autocork(sk, skb, size_goal)) {
 719
 720		/* avoid atomic op if TSQ_THROTTLED bit is already set */
 721		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
 722			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
 723			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
 724		}
 725		/* It is possible TX completion already happened
 726		 * before we set TSQ_THROTTLED.
 727		 */
 728		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
 729			return;
 730	}
 731
 732	if (flags & MSG_MORE)
 733		nonagle = TCP_NAGLE_CORK;
 734
 735	__tcp_push_pending_frames(sk, mss_now, nonagle);
 736}
 737
 738static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
 739				unsigned int offset, size_t len)
 740{
 741	struct tcp_splice_state *tss = rd_desc->arg.data;
 742	int ret;
 743
 744	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
 745			      min(rd_desc->count, len), tss->flags);
 
 746	if (ret > 0)
 747		rd_desc->count -= ret;
 748	return ret;
 749}
 750
 751static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
 752{
 753	/* Store TCP splice context information in read_descriptor_t. */
 754	read_descriptor_t rd_desc = {
 755		.arg.data = tss,
 756		.count	  = tss->len,
 757	};
 758
 759	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
 760}
 761
 762/**
 763 *  tcp_splice_read - splice data from TCP socket to a pipe
 764 * @sock:	socket to splice from
 765 * @ppos:	position (not valid)
 766 * @pipe:	pipe to splice to
 767 * @len:	number of bytes to splice
 768 * @flags:	splice modifier flags
 769 *
 770 * Description:
 771 *    Will read pages from given socket and fill them into a pipe.
 772 *
 773 **/
 774ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
 775			struct pipe_inode_info *pipe, size_t len,
 776			unsigned int flags)
 777{
 778	struct sock *sk = sock->sk;
 779	struct tcp_splice_state tss = {
 780		.pipe = pipe,
 781		.len = len,
 782		.flags = flags,
 783	};
 784	long timeo;
 785	ssize_t spliced;
 786	int ret;
 787
 788	sock_rps_record_flow(sk);
 789	/*
 790	 * We can't seek on a socket input
 791	 */
 792	if (unlikely(*ppos))
 793		return -ESPIPE;
 794
 795	ret = spliced = 0;
 796
 797	lock_sock(sk);
 798
 799	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
 800	while (tss.len) {
 801		ret = __tcp_splice_read(sk, &tss);
 802		if (ret < 0)
 803			break;
 804		else if (!ret) {
 805			if (spliced)
 806				break;
 807			if (sock_flag(sk, SOCK_DONE))
 808				break;
 809			if (sk->sk_err) {
 810				ret = sock_error(sk);
 811				break;
 812			}
 813			if (sk->sk_shutdown & RCV_SHUTDOWN)
 814				break;
 815			if (sk->sk_state == TCP_CLOSE) {
 816				/*
 817				 * This occurs when user tries to read
 818				 * from never connected socket.
 819				 */
 820				if (!sock_flag(sk, SOCK_DONE))
 821					ret = -ENOTCONN;
 822				break;
 823			}
 824			if (!timeo) {
 825				ret = -EAGAIN;
 826				break;
 827			}
 828			/* if __tcp_splice_read() got nothing while we have
 829			 * an skb in receive queue, we do not want to loop.
 830			 * This might happen with URG data.
 831			 */
 832			if (!skb_queue_empty(&sk->sk_receive_queue))
 833				break;
 834			sk_wait_data(sk, &timeo, NULL);
 835			if (signal_pending(current)) {
 836				ret = sock_intr_errno(timeo);
 837				break;
 838			}
 839			continue;
 840		}
 841		tss.len -= ret;
 842		spliced += ret;
 843
 844		if (!timeo)
 845			break;
 846		release_sock(sk);
 847		lock_sock(sk);
 848
 849		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
 850		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 851		    signal_pending(current))
 852			break;
 853	}
 854
 855	release_sock(sk);
 856
 857	if (spliced)
 858		return spliced;
 859
 860	return ret;
 861}
 862EXPORT_SYMBOL(tcp_splice_read);
 863
 864struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
 865				    bool force_schedule)
 866{
 867	struct sk_buff *skb;
 868
 869	/* The TCP header must be at least 32-bit aligned.  */
 870	size = ALIGN(size, 4);
 871
 872	if (unlikely(tcp_under_memory_pressure(sk)))
 873		sk_mem_reclaim_partial(sk);
 874
 875	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
 876	if (likely(skb)) {
 877		bool mem_scheduled;
 878
 879		if (force_schedule) {
 880			mem_scheduled = true;
 881			sk_forced_mem_schedule(sk, skb->truesize);
 882		} else {
 883			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
 884		}
 885		if (likely(mem_scheduled)) {
 886			skb_reserve(skb, sk->sk_prot->max_header);
 887			/*
 888			 * Make sure that we have exactly size bytes
 889			 * available to the caller, no more, no less.
 890			 */
 891			skb->reserved_tailroom = skb->end - skb->tail - size;
 892			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
 893			return skb;
 894		}
 895		__kfree_skb(skb);
 896	} else {
 897		sk->sk_prot->enter_memory_pressure(sk);
 898		sk_stream_moderate_sndbuf(sk);
 899	}
 900	return NULL;
 901}
 902
 903static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
 904				       int large_allowed)
 905{
 906	struct tcp_sock *tp = tcp_sk(sk);
 907	u32 new_size_goal, size_goal;
 908
 909	if (!large_allowed)
 910		return mss_now;
 911
 912	/* Note : tcp_tso_autosize() will eventually split this later */
 913	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
 914	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
 915
 916	/* We try hard to avoid divides here */
 917	size_goal = tp->gso_segs * mss_now;
 918	if (unlikely(new_size_goal < size_goal ||
 919		     new_size_goal >= size_goal + mss_now)) {
 920		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
 921				     sk->sk_gso_max_segs);
 922		size_goal = tp->gso_segs * mss_now;
 923	}
 924
 925	return max(size_goal, mss_now);
 926}
 927
 928static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
 929{
 930	int mss_now;
 931
 932	mss_now = tcp_current_mss(sk);
 933	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
 934
 935	return mss_now;
 936}
 937
 938ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 939			 size_t size, int flags)
 940{
 941	struct tcp_sock *tp = tcp_sk(sk);
 942	int mss_now, size_goal;
 943	int err;
 944	ssize_t copied;
 945	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 946
 947	/* Wait for a connection to finish. One exception is TCP Fast Open
 948	 * (passive side) where data is allowed to be sent before a connection
 949	 * is fully established.
 950	 */
 951	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
 952	    !tcp_passive_fastopen(sk)) {
 953		err = sk_stream_wait_connect(sk, &timeo);
 954		if (err != 0)
 955			goto out_err;
 956	}
 957
 958	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 959
 960	mss_now = tcp_send_mss(sk, &size_goal, flags);
 961	copied = 0;
 962
 963	err = -EPIPE;
 964	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
 965		goto out_err;
 966
 967	while (size > 0) {
 968		struct sk_buff *skb = tcp_write_queue_tail(sk);
 969		int copy, i;
 970		bool can_coalesce;
 971
 972		if (!skb || (copy = size_goal - skb->len) <= 0 ||
 973		    !tcp_skb_can_collapse_to(skb)) {
 974new_segment:
 975			if (!sk_stream_memory_free(sk))
 976				goto wait_for_sndbuf;
 977
 978			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
 979					tcp_rtx_and_write_queues_empty(sk));
 980			if (!skb)
 981				goto wait_for_memory;
 982
 983			skb_entail(sk, skb);
 984			copy = size_goal;
 985		}
 986
 987		if (copy > size)
 988			copy = size;
 989
 990		i = skb_shinfo(skb)->nr_frags;
 991		can_coalesce = skb_can_coalesce(skb, i, page, offset);
 992		if (!can_coalesce && i >= sysctl_max_skb_frags) {
 993			tcp_mark_push(tp, skb);
 994			goto new_segment;
 995		}
 996		if (!sk_wmem_schedule(sk, copy))
 997			goto wait_for_memory;
 998
 999		if (can_coalesce) {
1000			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1001		} else {
1002			get_page(page);
1003			skb_fill_page_desc(skb, i, page, offset, copy);
1004		}
1005
1006		if (!(flags & MSG_NO_SHARED_FRAGS))
1007			skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1008
1009		skb->len += copy;
1010		skb->data_len += copy;
1011		skb->truesize += copy;
1012		sk->sk_wmem_queued += copy;
1013		sk_mem_charge(sk, copy);
1014		skb->ip_summed = CHECKSUM_PARTIAL;
1015		tp->write_seq += copy;
1016		TCP_SKB_CB(skb)->end_seq += copy;
1017		tcp_skb_pcount_set(skb, 0);
1018
1019		if (!copied)
1020			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1021
1022		copied += copy;
1023		offset += copy;
1024		size -= copy;
1025		if (!size)
 
1026			goto out;
 
1027
1028		if (skb->len < size_goal || (flags & MSG_OOB))
1029			continue;
1030
1031		if (forced_push(tp)) {
1032			tcp_mark_push(tp, skb);
1033			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1034		} else if (skb == tcp_send_head(sk))
1035			tcp_push_one(sk, mss_now);
1036		continue;
1037
1038wait_for_sndbuf:
1039		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1040wait_for_memory:
1041		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1042			 TCP_NAGLE_PUSH, size_goal);
1043
1044		err = sk_stream_wait_memory(sk, &timeo);
1045		if (err != 0)
1046			goto do_error;
1047
1048		mss_now = tcp_send_mss(sk, &size_goal, flags);
1049	}
1050
1051out:
1052	if (copied) {
1053		tcp_tx_timestamp(sk, sk->sk_tsflags);
1054		if (!(flags & MSG_SENDPAGE_NOTLAST))
1055			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1056	}
1057	return copied;
1058
1059do_error:
1060	if (copied)
1061		goto out;
1062out_err:
1063	/* make sure we wake any epoll edge trigger waiter */
1064	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1065		     err == -EAGAIN)) {
1066		sk->sk_write_space(sk);
1067		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1068	}
1069	return sk_stream_error(sk, flags, err);
1070}
1071EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1072
1073int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1074			size_t size, int flags)
1075{
1076	if (!(sk->sk_route_caps & NETIF_F_SG))
1077		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1078
1079	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1080
1081	return do_tcp_sendpages(sk, page, offset, size, flags);
1082}
1083EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1084
1085int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1086		 size_t size, int flags)
1087{
1088	int ret;
 
 
 
 
 
1089
1090	lock_sock(sk);
1091	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1092	release_sock(sk);
1093
1094	return ret;
1095}
1096EXPORT_SYMBOL(tcp_sendpage);
1097
1098/* Do not bother using a page frag for very small frames.
1099 * But use this heuristic only for the first skb in write queue.
1100 *
1101 * Having no payload in skb->head allows better SACK shifting
1102 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1103 * write queue has less skbs.
1104 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1105 * This also speeds up tso_fragment(), since it wont fallback
1106 * to tcp_fragment().
1107 */
1108static int linear_payload_sz(bool first_skb)
1109{
1110	if (first_skb)
1111		return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1112	return 0;
1113}
1114
1115static int select_size(bool first_skb, bool zc)
1116{
1117	if (zc)
1118		return 0;
1119	return linear_payload_sz(first_skb);
 
 
 
 
 
 
 
 
 
 
 
1120}
1121
1122void tcp_free_fastopen_req(struct tcp_sock *tp)
1123{
1124	if (tp->fastopen_req) {
1125		kfree(tp->fastopen_req);
1126		tp->fastopen_req = NULL;
1127	}
1128}
1129
1130static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1131				int *copied, size_t size)
1132{
1133	struct tcp_sock *tp = tcp_sk(sk);
1134	struct inet_sock *inet = inet_sk(sk);
1135	struct sockaddr *uaddr = msg->msg_name;
1136	int err, flags;
1137
1138	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1139	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1140	     uaddr->sa_family == AF_UNSPEC))
1141		return -EOPNOTSUPP;
1142	if (tp->fastopen_req)
1143		return -EALREADY; /* Another Fast Open is in progress */
1144
1145	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1146				   sk->sk_allocation);
1147	if (unlikely(!tp->fastopen_req))
1148		return -ENOBUFS;
1149	tp->fastopen_req->data = msg;
1150	tp->fastopen_req->size = size;
1151
1152	if (inet->defer_connect) {
1153		err = tcp_connect(sk);
1154		/* Same failure procedure as in tcp_v4/6_connect */
1155		if (err) {
1156			tcp_set_state(sk, TCP_CLOSE);
1157			inet->inet_dport = 0;
1158			sk->sk_route_caps = 0;
1159		}
1160	}
1161	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1162	err = __inet_stream_connect(sk->sk_socket, uaddr,
1163				    msg->msg_namelen, flags, 1);
1164	/* fastopen_req could already be freed in __inet_stream_connect
1165	 * if the connection times out or gets rst
1166	 */
1167	if (tp->fastopen_req) {
1168		*copied = tp->fastopen_req->copied;
1169		tcp_free_fastopen_req(tp);
1170		inet->defer_connect = 0;
1171	}
1172	return err;
1173}
1174
1175int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1176{
1177	struct tcp_sock *tp = tcp_sk(sk);
1178	struct ubuf_info *uarg = NULL;
1179	struct sk_buff *skb;
1180	struct sockcm_cookie sockc;
1181	int flags, err, copied = 0;
1182	int mss_now = 0, size_goal, copied_syn = 0;
1183	bool process_backlog = false;
1184	bool zc = false;
1185	long timeo;
1186
1187	flags = msg->msg_flags;
1188
1189	if (flags & MSG_ZEROCOPY && size) {
1190		if (sk->sk_state != TCP_ESTABLISHED) {
1191			err = -EINVAL;
1192			goto out_err;
1193		}
1194
1195		skb = tcp_write_queue_tail(sk);
1196		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1197		if (!uarg) {
1198			err = -ENOBUFS;
1199			goto out_err;
1200		}
1201
1202		zc = sk->sk_route_caps & NETIF_F_SG;
1203		if (!zc)
1204			uarg->zerocopy = 0;
1205	}
1206
1207	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1208	    !tp->repair) {
1209		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1210		if (err == -EINPROGRESS && copied_syn > 0)
1211			goto out;
1212		else if (err)
1213			goto out_err;
1214	}
1215
1216	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1217
1218	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1219
1220	/* Wait for a connection to finish. One exception is TCP Fast Open
1221	 * (passive side) where data is allowed to be sent before a connection
1222	 * is fully established.
1223	 */
1224	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1225	    !tcp_passive_fastopen(sk)) {
1226		err = sk_stream_wait_connect(sk, &timeo);
1227		if (err != 0)
1228			goto do_error;
1229	}
1230
1231	if (unlikely(tp->repair)) {
1232		if (tp->repair_queue == TCP_RECV_QUEUE) {
1233			copied = tcp_send_rcvq(sk, msg, size);
1234			goto out_nopush;
1235		}
1236
1237		err = -EINVAL;
1238		if (tp->repair_queue == TCP_NO_QUEUE)
1239			goto out_err;
1240
1241		/* 'common' sending to sendq */
1242	}
1243
1244	sockc.tsflags = sk->sk_tsflags;
1245	if (msg->msg_controllen) {
1246		err = sock_cmsg_send(sk, msg, &sockc);
1247		if (unlikely(err)) {
1248			err = -EINVAL;
1249			goto out_err;
1250		}
1251	}
1252
1253	/* This should be in poll */
1254	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1255
 
 
1256	/* Ok commence sending. */
1257	copied = 0;
1258
1259restart:
1260	mss_now = tcp_send_mss(sk, &size_goal, flags);
1261
1262	err = -EPIPE;
1263	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1264		goto do_error;
 
 
1265
1266	while (msg_data_left(msg)) {
1267		int copy = 0;
 
1268
1269		skb = tcp_write_queue_tail(sk);
1270		if (skb)
1271			copy = size_goal - skb->len;
1272
1273		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1274			bool first_skb;
1275			int linear;
1276
 
1277new_segment:
1278			/* Allocate new segment. If the interface is SG,
1279			 * allocate skb fitting to single page.
1280			 */
1281			if (!sk_stream_memory_free(sk))
1282				goto wait_for_sndbuf;
1283
1284			if (process_backlog && sk_flush_backlog(sk)) {
1285				process_backlog = false;
1286				goto restart;
1287			}
1288			first_skb = tcp_rtx_and_write_queues_empty(sk);
1289			linear = select_size(first_skb, zc);
1290			skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation,
1291						  first_skb);
1292			if (!skb)
1293				goto wait_for_memory;
1294
1295			process_backlog = true;
1296			skb->ip_summed = CHECKSUM_PARTIAL;
 
 
 
1297
1298			skb_entail(sk, skb);
1299			copy = size_goal;
 
1300
1301			/* All packets are restored as if they have
1302			 * already been sent. skb_mstamp isn't set to
1303			 * avoid wrong rtt estimation.
1304			 */
1305			if (tp->repair)
1306				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1307		}
1308
1309		/* Try to append data to the end of skb. */
1310		if (copy > msg_data_left(msg))
1311			copy = msg_data_left(msg);
1312
1313		/* Where to copy to? */
1314		if (skb_availroom(skb) > 0 && !zc) {
1315			/* We have some space in skb head. Superb! */
1316			copy = min_t(int, copy, skb_availroom(skb));
1317			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1318			if (err)
1319				goto do_fault;
1320		} else if (!zc) {
1321			bool merge = true;
1322			int i = skb_shinfo(skb)->nr_frags;
1323			struct page_frag *pfrag = sk_page_frag(sk);
1324
1325			if (!sk_page_frag_refill(sk, pfrag))
1326				goto wait_for_memory;
1327
1328			if (!skb_can_coalesce(skb, i, pfrag->page,
1329					      pfrag->offset)) {
1330				if (i >= sysctl_max_skb_frags) {
1331					tcp_mark_push(tp, skb);
1332					goto new_segment;
1333				}
1334				merge = false;
1335			}
1336
1337			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1338
1339			if (!sk_wmem_schedule(sk, copy))
1340				goto wait_for_memory;
1341
1342			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1343						       pfrag->page,
1344						       pfrag->offset,
1345						       copy);
1346			if (err)
1347				goto do_error;
1348
1349			/* Update the skb. */
1350			if (merge) {
1351				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1352			} else {
1353				skb_fill_page_desc(skb, i, pfrag->page,
1354						   pfrag->offset, copy);
1355				page_ref_inc(pfrag->page);
1356			}
1357			pfrag->offset += copy;
1358		} else {
1359			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1360			if (err == -EMSGSIZE || err == -EEXIST) {
1361				tcp_mark_push(tp, skb);
1362				goto new_segment;
1363			}
1364			if (err < 0)
1365				goto do_error;
1366			copy = err;
1367		}
1368
1369		if (!copied)
1370			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1371
1372		tp->write_seq += copy;
1373		TCP_SKB_CB(skb)->end_seq += copy;
1374		tcp_skb_pcount_set(skb, 0);
1375
1376		copied += copy;
1377		if (!msg_data_left(msg)) {
1378			if (unlikely(flags & MSG_EOR))
1379				TCP_SKB_CB(skb)->eor = 1;
1380			goto out;
1381		}
1382
1383		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1384			continue;
1385
1386		if (forced_push(tp)) {
1387			tcp_mark_push(tp, skb);
1388			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1389		} else if (skb == tcp_send_head(sk))
1390			tcp_push_one(sk, mss_now);
1391		continue;
1392
1393wait_for_sndbuf:
1394		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1395wait_for_memory:
1396		if (copied)
1397			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1398				 TCP_NAGLE_PUSH, size_goal);
1399
1400		err = sk_stream_wait_memory(sk, &timeo);
1401		if (err != 0)
1402			goto do_error;
1403
1404		mss_now = tcp_send_mss(sk, &size_goal, flags);
1405	}
1406
1407out:
1408	if (copied) {
1409		tcp_tx_timestamp(sk, sockc.tsflags);
1410		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1411	}
1412out_nopush:
1413	sock_zerocopy_put(uarg);
1414	return copied + copied_syn;
1415
1416do_fault:
1417	if (!skb->len) {
1418		tcp_unlink_write_queue(skb, sk);
1419		/* It is the one place in all of TCP, except connection
1420		 * reset, where we can be unlinking the send_head.
1421		 */
1422		tcp_check_send_head(sk, skb);
1423		sk_wmem_free_skb(sk, skb);
1424	}
1425
1426do_error:
1427	if (copied + copied_syn)
1428		goto out;
1429out_err:
1430	sock_zerocopy_put_abort(uarg);
1431	err = sk_stream_error(sk, flags, err);
1432	/* make sure we wake any epoll edge trigger waiter */
1433	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1434		     err == -EAGAIN)) {
1435		sk->sk_write_space(sk);
1436		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1437	}
1438	return err;
1439}
1440EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1441
1442int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1443{
1444	int ret;
1445
1446	lock_sock(sk);
1447	ret = tcp_sendmsg_locked(sk, msg, size);
1448	release_sock(sk);
1449
1450	return ret;
1451}
1452EXPORT_SYMBOL(tcp_sendmsg);
1453
1454/*
1455 *	Handle reading urgent data. BSD has very simple semantics for
1456 *	this, no blocking and very strange errors 8)
1457 */
1458
1459static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1460{
1461	struct tcp_sock *tp = tcp_sk(sk);
1462
1463	/* No URG data to read. */
1464	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1465	    tp->urg_data == TCP_URG_READ)
1466		return -EINVAL;	/* Yes this is right ! */
1467
1468	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1469		return -ENOTCONN;
1470
1471	if (tp->urg_data & TCP_URG_VALID) {
1472		int err = 0;
1473		char c = tp->urg_data;
1474
1475		if (!(flags & MSG_PEEK))
1476			tp->urg_data = TCP_URG_READ;
1477
1478		/* Read urgent data. */
1479		msg->msg_flags |= MSG_OOB;
1480
1481		if (len > 0) {
1482			if (!(flags & MSG_TRUNC))
1483				err = memcpy_to_msg(msg, &c, 1);
1484			len = 1;
1485		} else
1486			msg->msg_flags |= MSG_TRUNC;
1487
1488		return err ? -EFAULT : len;
1489	}
1490
1491	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1492		return 0;
1493
1494	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1495	 * the available implementations agree in this case:
1496	 * this call should never block, independent of the
1497	 * blocking state of the socket.
1498	 * Mike <pall@rz.uni-karlsruhe.de>
1499	 */
1500	return -EAGAIN;
1501}
1502
1503static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1504{
1505	struct sk_buff *skb;
1506	int copied = 0, err = 0;
1507
1508	/* XXX -- need to support SO_PEEK_OFF */
1509
1510	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1511		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1512		if (err)
1513			return err;
1514		copied += skb->len;
1515	}
1516
1517	skb_queue_walk(&sk->sk_write_queue, skb) {
1518		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1519		if (err)
1520			break;
1521
1522		copied += skb->len;
1523	}
1524
1525	return err ?: copied;
1526}
1527
1528/* Clean up the receive buffer for full frames taken by the user,
1529 * then send an ACK if necessary.  COPIED is the number of bytes
1530 * tcp_recvmsg has given to the user so far, it speeds up the
1531 * calculation of whether or not we must ACK for the sake of
1532 * a window update.
1533 */
1534static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1535{
1536	struct tcp_sock *tp = tcp_sk(sk);
1537	bool time_to_ack = false;
1538
1539	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1540
1541	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1542	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1543	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1544
1545	if (inet_csk_ack_scheduled(sk)) {
1546		const struct inet_connection_sock *icsk = inet_csk(sk);
1547		   /* Delayed ACKs frequently hit locked sockets during bulk
1548		    * receive. */
1549		if (icsk->icsk_ack.blocked ||
1550		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1551		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1552		    /*
1553		     * If this read emptied read buffer, we send ACK, if
1554		     * connection is not bidirectional, user drained
1555		     * receive buffer and there was a small segment
1556		     * in queue.
1557		     */
1558		    (copied > 0 &&
1559		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1560		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1561		       !icsk->icsk_ack.pingpong)) &&
1562		      !atomic_read(&sk->sk_rmem_alloc)))
1563			time_to_ack = true;
1564	}
1565
1566	/* We send an ACK if we can now advertise a non-zero window
1567	 * which has been raised "significantly".
1568	 *
1569	 * Even if window raised up to infinity, do not send window open ACK
1570	 * in states, where we will not receive more. It is useless.
1571	 */
1572	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1573		__u32 rcv_window_now = tcp_receive_window(tp);
1574
1575		/* Optimize, __tcp_select_window() is not cheap. */
1576		if (2*rcv_window_now <= tp->window_clamp) {
1577			__u32 new_window = __tcp_select_window(sk);
1578
1579			/* Send ACK now, if this read freed lots of space
1580			 * in our buffer. Certainly, new_window is new window.
1581			 * We can advertise it now, if it is not less than current one.
1582			 * "Lots" means "at least twice" here.
1583			 */
1584			if (new_window && new_window >= 2 * rcv_window_now)
1585				time_to_ack = true;
1586		}
1587	}
1588	if (time_to_ack)
1589		tcp_send_ack(sk);
1590}
1591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1592static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1593{
1594	struct sk_buff *skb;
1595	u32 offset;
1596
1597	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1598		offset = seq - TCP_SKB_CB(skb)->seq;
1599		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1600			pr_err_once("%s: found a SYN, please report !\n", __func__);
1601			offset--;
1602		}
1603		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1604			*off = offset;
1605			return skb;
1606		}
1607		/* This looks weird, but this can happen if TCP collapsing
1608		 * splitted a fat GRO packet, while we released socket lock
1609		 * in skb_splice_bits()
1610		 */
1611		sk_eat_skb(sk, skb);
1612	}
1613	return NULL;
1614}
1615
1616/*
1617 * This routine provides an alternative to tcp_recvmsg() for routines
1618 * that would like to handle copying from skbuffs directly in 'sendfile'
1619 * fashion.
1620 * Note:
1621 *	- It is assumed that the socket was locked by the caller.
1622 *	- The routine does not block.
1623 *	- At present, there is no support for reading OOB data
1624 *	  or for 'peeking' the socket using this routine
1625 *	  (although both would be easy to implement).
1626 */
1627int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1628		  sk_read_actor_t recv_actor)
1629{
1630	struct sk_buff *skb;
1631	struct tcp_sock *tp = tcp_sk(sk);
1632	u32 seq = tp->copied_seq;
1633	u32 offset;
1634	int copied = 0;
1635
1636	if (sk->sk_state == TCP_LISTEN)
1637		return -ENOTCONN;
1638	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1639		if (offset < skb->len) {
1640			int used;
1641			size_t len;
1642
1643			len = skb->len - offset;
1644			/* Stop reading if we hit a patch of urgent data */
1645			if (tp->urg_data) {
1646				u32 urg_offset = tp->urg_seq - seq;
1647				if (urg_offset < len)
1648					len = urg_offset;
1649				if (!len)
1650					break;
1651			}
1652			used = recv_actor(desc, skb, offset, len);
1653			if (used <= 0) {
1654				if (!copied)
1655					copied = used;
1656				break;
1657			} else if (used <= len) {
1658				seq += used;
1659				copied += used;
1660				offset += used;
1661			}
1662			/* If recv_actor drops the lock (e.g. TCP splice
1663			 * receive) the skb pointer might be invalid when
1664			 * getting here: tcp_collapse might have deleted it
1665			 * while aggregating skbs from the socket queue.
1666			 */
1667			skb = tcp_recv_skb(sk, seq - 1, &offset);
1668			if (!skb)
1669				break;
1670			/* TCP coalescing might have appended data to the skb.
1671			 * Try to splice more frags
1672			 */
1673			if (offset + 1 != skb->len)
1674				continue;
1675		}
1676		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1677			sk_eat_skb(sk, skb);
1678			++seq;
1679			break;
1680		}
1681		sk_eat_skb(sk, skb);
1682		if (!desc->count)
1683			break;
1684		tp->copied_seq = seq;
1685	}
1686	tp->copied_seq = seq;
1687
1688	tcp_rcv_space_adjust(sk);
1689
1690	/* Clean up data we have read: This will do ACK frames. */
1691	if (copied > 0) {
1692		tcp_recv_skb(sk, seq, &offset);
1693		tcp_cleanup_rbuf(sk, copied);
1694	}
1695	return copied;
1696}
1697EXPORT_SYMBOL(tcp_read_sock);
1698
1699int tcp_peek_len(struct socket *sock)
1700{
1701	return tcp_inq(sock->sk);
1702}
1703EXPORT_SYMBOL(tcp_peek_len);
1704
1705static void tcp_update_recv_tstamps(struct sk_buff *skb,
1706				    struct scm_timestamping *tss)
1707{
1708	if (skb->tstamp)
1709		tss->ts[0] = ktime_to_timespec(skb->tstamp);
1710	else
1711		tss->ts[0] = (struct timespec) {0};
1712
1713	if (skb_hwtstamps(skb)->hwtstamp)
1714		tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1715	else
1716		tss->ts[2] = (struct timespec) {0};
1717}
1718
1719/* Similar to __sock_recv_timestamp, but does not require an skb */
1720static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1721			       struct scm_timestamping *tss)
1722{
1723	struct timeval tv;
1724	bool has_timestamping = false;
1725
1726	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1727		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1728			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1729				put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1730					 sizeof(tss->ts[0]), &tss->ts[0]);
1731			} else {
1732				tv.tv_sec = tss->ts[0].tv_sec;
1733				tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1734
1735				put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1736					 sizeof(tv), &tv);
1737			}
1738		}
1739
1740		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1741			has_timestamping = true;
1742		else
1743			tss->ts[0] = (struct timespec) {0};
1744	}
1745
1746	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1747		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1748			has_timestamping = true;
1749		else
1750			tss->ts[2] = (struct timespec) {0};
1751	}
1752
1753	if (has_timestamping) {
1754		tss->ts[1] = (struct timespec) {0};
1755		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1756			 sizeof(*tss), tss);
1757	}
1758}
1759
1760/*
1761 *	This routine copies from a sock struct into the user buffer.
1762 *
1763 *	Technical note: in 2.3 we work on _locked_ socket, so that
1764 *	tricks with *seq access order and skb->users are not required.
1765 *	Probably, code can be easily improved even more.
1766 */
1767
1768int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1769		int flags, int *addr_len)
1770{
1771	struct tcp_sock *tp = tcp_sk(sk);
1772	int copied = 0;
1773	u32 peek_seq;
1774	u32 *seq;
1775	unsigned long used;
1776	int err;
1777	int target;		/* Read at least this many bytes */
1778	long timeo;
 
1779	struct sk_buff *skb, *last;
1780	u32 urg_hole = 0;
1781	struct scm_timestamping tss;
1782	bool has_tss = false;
1783
1784	if (unlikely(flags & MSG_ERRQUEUE))
1785		return inet_recv_error(sk, msg, len, addr_len);
1786
1787	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1788	    (sk->sk_state == TCP_ESTABLISHED))
1789		sk_busy_loop(sk, nonblock);
1790
1791	lock_sock(sk);
1792
1793	err = -ENOTCONN;
1794	if (sk->sk_state == TCP_LISTEN)
1795		goto out;
1796
1797	timeo = sock_rcvtimeo(sk, nonblock);
1798
1799	/* Urgent data needs to be handled specially. */
1800	if (flags & MSG_OOB)
1801		goto recv_urg;
1802
1803	if (unlikely(tp->repair)) {
1804		err = -EPERM;
1805		if (!(flags & MSG_PEEK))
1806			goto out;
1807
1808		if (tp->repair_queue == TCP_SEND_QUEUE)
1809			goto recv_sndq;
1810
1811		err = -EINVAL;
1812		if (tp->repair_queue == TCP_NO_QUEUE)
1813			goto out;
1814
1815		/* 'common' recv queue MSG_PEEK-ing */
1816	}
1817
1818	seq = &tp->copied_seq;
1819	if (flags & MSG_PEEK) {
1820		peek_seq = tp->copied_seq;
1821		seq = &peek_seq;
1822	}
1823
1824	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1825
1826	do {
1827		u32 offset;
1828
1829		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1830		if (tp->urg_data && tp->urg_seq == *seq) {
1831			if (copied)
1832				break;
1833			if (signal_pending(current)) {
1834				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1835				break;
1836			}
1837		}
1838
1839		/* Next get a buffer. */
1840
1841		last = skb_peek_tail(&sk->sk_receive_queue);
1842		skb_queue_walk(&sk->sk_receive_queue, skb) {
1843			last = skb;
1844			/* Now that we have two receive queues this
1845			 * shouldn't happen.
1846			 */
1847			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1848				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1849				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1850				 flags))
1851				break;
1852
1853			offset = *seq - TCP_SKB_CB(skb)->seq;
1854			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1855				pr_err_once("%s: found a SYN, please report !\n", __func__);
1856				offset--;
1857			}
1858			if (offset < skb->len)
1859				goto found_ok_skb;
1860			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1861				goto found_fin_ok;
1862			WARN(!(flags & MSG_PEEK),
1863			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1864			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1865		}
1866
1867		/* Well, if we have backlog, try to process it now yet. */
1868
1869		if (copied >= target && !sk->sk_backlog.tail)
1870			break;
1871
1872		if (copied) {
1873			if (sk->sk_err ||
1874			    sk->sk_state == TCP_CLOSE ||
1875			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1876			    !timeo ||
1877			    signal_pending(current))
1878				break;
1879		} else {
1880			if (sock_flag(sk, SOCK_DONE))
1881				break;
1882
1883			if (sk->sk_err) {
1884				copied = sock_error(sk);
1885				break;
1886			}
1887
1888			if (sk->sk_shutdown & RCV_SHUTDOWN)
1889				break;
1890
1891			if (sk->sk_state == TCP_CLOSE) {
1892				if (!sock_flag(sk, SOCK_DONE)) {
1893					/* This occurs when user tries to read
1894					 * from never connected socket.
1895					 */
1896					copied = -ENOTCONN;
1897					break;
1898				}
1899				break;
1900			}
1901
1902			if (!timeo) {
1903				copied = -EAGAIN;
1904				break;
1905			}
1906
1907			if (signal_pending(current)) {
1908				copied = sock_intr_errno(timeo);
1909				break;
1910			}
1911		}
1912
1913		tcp_cleanup_rbuf(sk, copied);
1914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1915		if (copied >= target) {
1916			/* Do not sleep, just process backlog. */
1917			release_sock(sk);
1918			lock_sock(sk);
1919		} else {
1920			sk_wait_data(sk, &timeo, last);
1921		}
1922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923		if ((flags & MSG_PEEK) &&
1924		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1925			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1926					    current->comm,
1927					    task_pid_nr(current));
1928			peek_seq = tp->copied_seq;
1929		}
1930		continue;
1931
1932	found_ok_skb:
1933		/* Ok so how much can we use? */
1934		used = skb->len - offset;
1935		if (len < used)
1936			used = len;
1937
1938		/* Do we have urgent data here? */
1939		if (tp->urg_data) {
1940			u32 urg_offset = tp->urg_seq - *seq;
1941			if (urg_offset < used) {
1942				if (!urg_offset) {
1943					if (!sock_flag(sk, SOCK_URGINLINE)) {
1944						++*seq;
1945						urg_hole++;
1946						offset++;
1947						used--;
1948						if (!used)
1949							goto skip_copy;
1950					}
1951				} else
1952					used = urg_offset;
1953			}
1954		}
1955
1956		if (!(flags & MSG_TRUNC)) {
1957			err = skb_copy_datagram_msg(skb, offset, msg, used);
1958			if (err) {
1959				/* Exception. Bailout! */
1960				if (!copied)
1961					copied = -EFAULT;
1962				break;
1963			}
1964		}
1965
1966		*seq += used;
1967		copied += used;
1968		len -= used;
1969
1970		tcp_rcv_space_adjust(sk);
1971
1972skip_copy:
1973		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1974			tp->urg_data = 0;
1975			tcp_fast_path_check(sk);
1976		}
1977		if (used + offset < skb->len)
1978			continue;
1979
1980		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1981			tcp_update_recv_tstamps(skb, &tss);
1982			has_tss = true;
1983		}
1984		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1985			goto found_fin_ok;
1986		if (!(flags & MSG_PEEK))
1987			sk_eat_skb(sk, skb);
1988		continue;
1989
1990	found_fin_ok:
1991		/* Process the FIN. */
1992		++*seq;
1993		if (!(flags & MSG_PEEK))
1994			sk_eat_skb(sk, skb);
1995		break;
1996	} while (len > 0);
1997
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1998	/* According to UNIX98, msg_name/msg_namelen are ignored
1999	 * on connected socket. I was just happy when found this 8) --ANK
2000	 */
2001
2002	if (has_tss)
2003		tcp_recv_timestamp(msg, sk, &tss);
2004
2005	/* Clean up data we have read: This will do ACK frames. */
2006	tcp_cleanup_rbuf(sk, copied);
2007
2008	release_sock(sk);
2009	return copied;
2010
2011out:
2012	release_sock(sk);
2013	return err;
2014
2015recv_urg:
2016	err = tcp_recv_urg(sk, msg, len, flags);
2017	goto out;
2018
2019recv_sndq:
2020	err = tcp_peek_sndq(sk, msg, len);
2021	goto out;
2022}
2023EXPORT_SYMBOL(tcp_recvmsg);
2024
2025void tcp_set_state(struct sock *sk, int state)
2026{
2027	int oldstate = sk->sk_state;
2028
2029	/* We defined a new enum for TCP states that are exported in BPF
2030	 * so as not force the internal TCP states to be frozen. The
2031	 * following checks will detect if an internal state value ever
2032	 * differs from the BPF value. If this ever happens, then we will
2033	 * need to remap the internal value to the BPF value before calling
2034	 * tcp_call_bpf_2arg.
2035	 */
2036	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2037	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2038	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2039	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2040	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2041	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2042	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2043	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2044	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2045	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2046	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2047	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2048	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2049
2050	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2051		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2052
2053	switch (state) {
2054	case TCP_ESTABLISHED:
2055		if (oldstate != TCP_ESTABLISHED)
2056			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2057		break;
2058
2059	case TCP_CLOSE:
2060		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2061			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2062
2063		sk->sk_prot->unhash(sk);
2064		if (inet_csk(sk)->icsk_bind_hash &&
2065		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2066			inet_put_port(sk);
2067		/* fall through */
2068	default:
2069		if (oldstate == TCP_ESTABLISHED)
2070			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2071	}
2072
2073	/* Change state AFTER socket is unhashed to avoid closed
2074	 * socket sitting in hash tables.
2075	 */
2076	inet_sk_state_store(sk, state);
2077
2078#ifdef STATE_TRACE
2079	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2080#endif
2081}
2082EXPORT_SYMBOL_GPL(tcp_set_state);
2083
2084/*
2085 *	State processing on a close. This implements the state shift for
2086 *	sending our FIN frame. Note that we only send a FIN for some
2087 *	states. A shutdown() may have already sent the FIN, or we may be
2088 *	closed.
2089 */
2090
2091static const unsigned char new_state[16] = {
2092  /* current state:        new state:      action:	*/
2093  [0 /* (Invalid) */]	= TCP_CLOSE,
2094  [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2095  [TCP_SYN_SENT]	= TCP_CLOSE,
2096  [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2097  [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2098  [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2099  [TCP_TIME_WAIT]	= TCP_CLOSE,
2100  [TCP_CLOSE]		= TCP_CLOSE,
2101  [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2102  [TCP_LAST_ACK]	= TCP_LAST_ACK,
2103  [TCP_LISTEN]		= TCP_CLOSE,
2104  [TCP_CLOSING]		= TCP_CLOSING,
2105  [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2106};
2107
2108static int tcp_close_state(struct sock *sk)
2109{
2110	int next = (int)new_state[sk->sk_state];
2111	int ns = next & TCP_STATE_MASK;
2112
2113	tcp_set_state(sk, ns);
2114
2115	return next & TCP_ACTION_FIN;
2116}
2117
2118/*
2119 *	Shutdown the sending side of a connection. Much like close except
2120 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2121 */
2122
2123void tcp_shutdown(struct sock *sk, int how)
2124{
2125	/*	We need to grab some memory, and put together a FIN,
2126	 *	and then put it into the queue to be sent.
2127	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2128	 */
2129	if (!(how & SEND_SHUTDOWN))
2130		return;
2131
2132	/* If we've already sent a FIN, or it's a closed state, skip this. */
2133	if ((1 << sk->sk_state) &
2134	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2135	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2136		/* Clear out any half completed packets.  FIN if needed. */
2137		if (tcp_close_state(sk))
2138			tcp_send_fin(sk);
2139	}
2140}
2141EXPORT_SYMBOL(tcp_shutdown);
2142
2143bool tcp_check_oom(struct sock *sk, int shift)
2144{
2145	bool too_many_orphans, out_of_socket_memory;
2146
2147	too_many_orphans = tcp_too_many_orphans(sk, shift);
2148	out_of_socket_memory = tcp_out_of_memory(sk);
2149
2150	if (too_many_orphans)
2151		net_info_ratelimited("too many orphaned sockets\n");
2152	if (out_of_socket_memory)
2153		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2154	return too_many_orphans || out_of_socket_memory;
2155}
2156
2157void tcp_close(struct sock *sk, long timeout)
2158{
2159	struct sk_buff *skb;
2160	int data_was_unread = 0;
2161	int state;
2162
2163	lock_sock(sk);
2164	sk->sk_shutdown = SHUTDOWN_MASK;
2165
2166	if (sk->sk_state == TCP_LISTEN) {
2167		tcp_set_state(sk, TCP_CLOSE);
2168
2169		/* Special case. */
2170		inet_csk_listen_stop(sk);
2171
2172		goto adjudge_to_death;
2173	}
2174
2175	/*  We need to flush the recv. buffs.  We do this only on the
2176	 *  descriptor close, not protocol-sourced closes, because the
2177	 *  reader process may not have drained the data yet!
2178	 */
2179	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2180		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2181
2182		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2183			len--;
2184		data_was_unread += len;
2185		__kfree_skb(skb);
2186	}
2187
2188	sk_mem_reclaim(sk);
2189
2190	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2191	if (sk->sk_state == TCP_CLOSE)
2192		goto adjudge_to_death;
2193
2194	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2195	 * data was lost. To witness the awful effects of the old behavior of
2196	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2197	 * GET in an FTP client, suspend the process, wait for the client to
2198	 * advertise a zero window, then kill -9 the FTP client, wheee...
2199	 * Note: timeout is always zero in such a case.
2200	 */
2201	if (unlikely(tcp_sk(sk)->repair)) {
2202		sk->sk_prot->disconnect(sk, 0);
2203	} else if (data_was_unread) {
2204		/* Unread data was tossed, zap the connection. */
2205		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2206		tcp_set_state(sk, TCP_CLOSE);
2207		tcp_send_active_reset(sk, sk->sk_allocation);
2208	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2209		/* Check zero linger _after_ checking for unread data. */
2210		sk->sk_prot->disconnect(sk, 0);
2211		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2212	} else if (tcp_close_state(sk)) {
2213		/* We FIN if the application ate all the data before
2214		 * zapping the connection.
2215		 */
2216
2217		/* RED-PEN. Formally speaking, we have broken TCP state
2218		 * machine. State transitions:
2219		 *
2220		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2221		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2222		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2223		 *
2224		 * are legal only when FIN has been sent (i.e. in window),
2225		 * rather than queued out of window. Purists blame.
2226		 *
2227		 * F.e. "RFC state" is ESTABLISHED,
2228		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2229		 *
2230		 * The visible declinations are that sometimes
2231		 * we enter time-wait state, when it is not required really
2232		 * (harmless), do not send active resets, when they are
2233		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2234		 * they look as CLOSING or LAST_ACK for Linux)
2235		 * Probably, I missed some more holelets.
2236		 * 						--ANK
2237		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2238		 * in a single packet! (May consider it later but will
2239		 * probably need API support or TCP_CORK SYN-ACK until
2240		 * data is written and socket is closed.)
2241		 */
2242		tcp_send_fin(sk);
2243	}
2244
2245	sk_stream_wait_close(sk, timeout);
2246
2247adjudge_to_death:
2248	state = sk->sk_state;
2249	sock_hold(sk);
2250	sock_orphan(sk);
2251
2252	/* It is the last release_sock in its life. It will remove backlog. */
2253	release_sock(sk);
2254
2255
2256	/* Now socket is owned by kernel and we acquire BH lock
2257	 *  to finish close. No need to check for user refs.
2258	 */
2259	local_bh_disable();
2260	bh_lock_sock(sk);
2261	WARN_ON(sock_owned_by_user(sk));
2262
2263	percpu_counter_inc(sk->sk_prot->orphan_count);
2264
2265	/* Have we already been destroyed by a softirq or backlog? */
2266	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2267		goto out;
2268
2269	/*	This is a (useful) BSD violating of the RFC. There is a
2270	 *	problem with TCP as specified in that the other end could
2271	 *	keep a socket open forever with no application left this end.
2272	 *	We use a 1 minute timeout (about the same as BSD) then kill
2273	 *	our end. If they send after that then tough - BUT: long enough
2274	 *	that we won't make the old 4*rto = almost no time - whoops
2275	 *	reset mistake.
2276	 *
2277	 *	Nope, it was not mistake. It is really desired behaviour
2278	 *	f.e. on http servers, when such sockets are useless, but
2279	 *	consume significant resources. Let's do it with special
2280	 *	linger2	option.					--ANK
2281	 */
2282
2283	if (sk->sk_state == TCP_FIN_WAIT2) {
2284		struct tcp_sock *tp = tcp_sk(sk);
2285		if (tp->linger2 < 0) {
2286			tcp_set_state(sk, TCP_CLOSE);
2287			tcp_send_active_reset(sk, GFP_ATOMIC);
2288			__NET_INC_STATS(sock_net(sk),
2289					LINUX_MIB_TCPABORTONLINGER);
2290		} else {
2291			const int tmo = tcp_fin_time(sk);
2292
2293			if (tmo > TCP_TIMEWAIT_LEN) {
2294				inet_csk_reset_keepalive_timer(sk,
2295						tmo - TCP_TIMEWAIT_LEN);
2296			} else {
2297				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2298				goto out;
2299			}
2300		}
2301	}
2302	if (sk->sk_state != TCP_CLOSE) {
2303		sk_mem_reclaim(sk);
2304		if (tcp_check_oom(sk, 0)) {
2305			tcp_set_state(sk, TCP_CLOSE);
2306			tcp_send_active_reset(sk, GFP_ATOMIC);
2307			__NET_INC_STATS(sock_net(sk),
2308					LINUX_MIB_TCPABORTONMEMORY);
2309		} else if (!check_net(sock_net(sk))) {
2310			/* Not possible to send reset; just close */
2311			tcp_set_state(sk, TCP_CLOSE);
2312		}
2313	}
2314
2315	if (sk->sk_state == TCP_CLOSE) {
2316		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2317		/* We could get here with a non-NULL req if the socket is
2318		 * aborted (e.g., closed with unread data) before 3WHS
2319		 * finishes.
2320		 */
2321		if (req)
2322			reqsk_fastopen_remove(sk, req, false);
2323		inet_csk_destroy_sock(sk);
2324	}
2325	/* Otherwise, socket is reprieved until protocol close. */
2326
2327out:
2328	bh_unlock_sock(sk);
2329	local_bh_enable();
2330	sock_put(sk);
2331}
2332EXPORT_SYMBOL(tcp_close);
2333
2334/* These states need RST on ABORT according to RFC793 */
2335
2336static inline bool tcp_need_reset(int state)
2337{
2338	return (1 << state) &
2339	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2340		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2341}
2342
2343static void tcp_rtx_queue_purge(struct sock *sk)
2344{
2345	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2346
2347	while (p) {
2348		struct sk_buff *skb = rb_to_skb(p);
2349
2350		p = rb_next(p);
2351		/* Since we are deleting whole queue, no need to
2352		 * list_del(&skb->tcp_tsorted_anchor)
2353		 */
2354		tcp_rtx_queue_unlink(skb, sk);
2355		sk_wmem_free_skb(sk, skb);
2356	}
2357}
2358
2359void tcp_write_queue_purge(struct sock *sk)
2360{
2361	struct sk_buff *skb;
2362
2363	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2364	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2365		tcp_skb_tsorted_anchor_cleanup(skb);
2366		sk_wmem_free_skb(sk, skb);
2367	}
2368	tcp_rtx_queue_purge(sk);
2369	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2370	sk_mem_reclaim(sk);
2371	tcp_clear_all_retrans_hints(tcp_sk(sk));
2372	tcp_sk(sk)->packets_out = 0;
2373}
2374
2375int tcp_disconnect(struct sock *sk, int flags)
2376{
2377	struct inet_sock *inet = inet_sk(sk);
2378	struct inet_connection_sock *icsk = inet_csk(sk);
2379	struct tcp_sock *tp = tcp_sk(sk);
2380	int err = 0;
2381	int old_state = sk->sk_state;
2382
2383	if (old_state != TCP_CLOSE)
2384		tcp_set_state(sk, TCP_CLOSE);
2385
2386	/* ABORT function of RFC793 */
2387	if (old_state == TCP_LISTEN) {
2388		inet_csk_listen_stop(sk);
2389	} else if (unlikely(tp->repair)) {
2390		sk->sk_err = ECONNABORTED;
2391	} else if (tcp_need_reset(old_state) ||
2392		   (tp->snd_nxt != tp->write_seq &&
2393		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2394		/* The last check adjusts for discrepancy of Linux wrt. RFC
2395		 * states
2396		 */
2397		tcp_send_active_reset(sk, gfp_any());
2398		sk->sk_err = ECONNRESET;
2399	} else if (old_state == TCP_SYN_SENT)
2400		sk->sk_err = ECONNRESET;
2401
2402	tcp_clear_xmit_timers(sk);
2403	__skb_queue_purge(&sk->sk_receive_queue);
2404	tcp_write_queue_purge(sk);
2405	tcp_fastopen_active_disable_ofo_check(sk);
2406	skb_rbtree_purge(&tp->out_of_order_queue);
2407
2408	inet->inet_dport = 0;
2409
2410	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2411		inet_reset_saddr(sk);
2412
2413	sk->sk_shutdown = 0;
2414	sock_reset_flag(sk, SOCK_DONE);
2415	tp->srtt_us = 0;
2416	tp->write_seq += tp->max_window + 2;
2417	if (tp->write_seq == 0)
2418		tp->write_seq = 1;
2419	icsk->icsk_backoff = 0;
2420	tp->snd_cwnd = 2;
2421	icsk->icsk_probes_out = 0;
 
2422	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2423	tp->snd_cwnd_cnt = 0;
2424	tp->window_clamp = 0;
2425	tcp_set_ca_state(sk, TCP_CA_Open);
2426	tp->is_sack_reneg = 0;
2427	tcp_clear_retrans(tp);
2428	inet_csk_delack_init(sk);
2429	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2430	 * issue in __tcp_select_window()
2431	 */
2432	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2433	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2434	__sk_dst_reset(sk);
2435	dst_release(sk->sk_rx_dst);
2436	sk->sk_rx_dst = NULL;
2437	tcp_saved_syn_free(tp);
2438
2439	/* Clean up fastopen related fields */
2440	tcp_free_fastopen_req(tp);
2441	inet->defer_connect = 0;
2442
2443	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2444
2445	if (sk->sk_frag.page) {
2446		put_page(sk->sk_frag.page);
2447		sk->sk_frag.page = NULL;
2448		sk->sk_frag.offset = 0;
2449	}
2450
2451	sk->sk_error_report(sk);
2452	return err;
2453}
2454EXPORT_SYMBOL(tcp_disconnect);
2455
2456static inline bool tcp_can_repair_sock(const struct sock *sk)
2457{
2458	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2459		(sk->sk_state != TCP_LISTEN);
2460}
2461
2462static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2463{
2464	struct tcp_repair_window opt;
2465
2466	if (!tp->repair)
2467		return -EPERM;
2468
2469	if (len != sizeof(opt))
2470		return -EINVAL;
2471
2472	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2473		return -EFAULT;
2474
2475	if (opt.max_window < opt.snd_wnd)
2476		return -EINVAL;
2477
2478	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2479		return -EINVAL;
2480
2481	if (after(opt.rcv_wup, tp->rcv_nxt))
2482		return -EINVAL;
2483
2484	tp->snd_wl1	= opt.snd_wl1;
2485	tp->snd_wnd	= opt.snd_wnd;
2486	tp->max_window	= opt.max_window;
2487
2488	tp->rcv_wnd	= opt.rcv_wnd;
2489	tp->rcv_wup	= opt.rcv_wup;
2490
2491	return 0;
2492}
2493
2494static int tcp_repair_options_est(struct sock *sk,
2495		struct tcp_repair_opt __user *optbuf, unsigned int len)
2496{
2497	struct tcp_sock *tp = tcp_sk(sk);
2498	struct tcp_repair_opt opt;
2499
2500	while (len >= sizeof(opt)) {
2501		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2502			return -EFAULT;
2503
2504		optbuf++;
2505		len -= sizeof(opt);
2506
2507		switch (opt.opt_code) {
2508		case TCPOPT_MSS:
2509			tp->rx_opt.mss_clamp = opt.opt_val;
2510			tcp_mtup_init(sk);
2511			break;
2512		case TCPOPT_WINDOW:
2513			{
2514				u16 snd_wscale = opt.opt_val & 0xFFFF;
2515				u16 rcv_wscale = opt.opt_val >> 16;
2516
2517				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2518					return -EFBIG;
2519
2520				tp->rx_opt.snd_wscale = snd_wscale;
2521				tp->rx_opt.rcv_wscale = rcv_wscale;
2522				tp->rx_opt.wscale_ok = 1;
2523			}
2524			break;
2525		case TCPOPT_SACK_PERM:
2526			if (opt.opt_val != 0)
2527				return -EINVAL;
2528
2529			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
 
 
2530			break;
2531		case TCPOPT_TIMESTAMP:
2532			if (opt.opt_val != 0)
2533				return -EINVAL;
2534
2535			tp->rx_opt.tstamp_ok = 1;
2536			break;
2537		}
2538	}
2539
2540	return 0;
2541}
2542
2543/*
2544 *	Socket option code for TCP.
2545 */
2546static int do_tcp_setsockopt(struct sock *sk, int level,
2547		int optname, char __user *optval, unsigned int optlen)
2548{
2549	struct tcp_sock *tp = tcp_sk(sk);
2550	struct inet_connection_sock *icsk = inet_csk(sk);
2551	struct net *net = sock_net(sk);
2552	int val;
2553	int err = 0;
2554
2555	/* These are data/string values, all the others are ints */
2556	switch (optname) {
2557	case TCP_CONGESTION: {
2558		char name[TCP_CA_NAME_MAX];
2559
2560		if (optlen < 1)
2561			return -EINVAL;
2562
2563		val = strncpy_from_user(name, optval,
2564					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2565		if (val < 0)
2566			return -EFAULT;
2567		name[val] = 0;
2568
2569		lock_sock(sk);
2570		err = tcp_set_congestion_control(sk, name, true, true);
2571		release_sock(sk);
2572		return err;
2573	}
2574	case TCP_ULP: {
2575		char name[TCP_ULP_NAME_MAX];
2576
2577		if (optlen < 1)
2578			return -EINVAL;
2579
2580		val = strncpy_from_user(name, optval,
2581					min_t(long, TCP_ULP_NAME_MAX - 1,
2582					      optlen));
2583		if (val < 0)
2584			return -EFAULT;
2585		name[val] = 0;
2586
2587		lock_sock(sk);
2588		err = tcp_set_ulp(sk, name);
2589		release_sock(sk);
2590		return err;
2591	}
2592	case TCP_FASTOPEN_KEY: {
2593		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
2594
2595		if (optlen != sizeof(key))
2596			return -EINVAL;
2597
2598		if (copy_from_user(key, optval, optlen))
2599			return -EFAULT;
2600
2601		return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2602	}
2603	default:
2604		/* fallthru */
2605		break;
2606	}
2607
2608	if (optlen < sizeof(int))
2609		return -EINVAL;
2610
2611	if (get_user(val, (int __user *)optval))
2612		return -EFAULT;
2613
2614	lock_sock(sk);
2615
2616	switch (optname) {
2617	case TCP_MAXSEG:
2618		/* Values greater than interface MTU won't take effect. However
2619		 * at the point when this call is done we typically don't yet
2620		 * know which interface is going to be used
2621		 */
2622		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2623			err = -EINVAL;
2624			break;
2625		}
2626		tp->rx_opt.user_mss = val;
2627		break;
2628
2629	case TCP_NODELAY:
2630		if (val) {
2631			/* TCP_NODELAY is weaker than TCP_CORK, so that
2632			 * this option on corked socket is remembered, but
2633			 * it is not activated until cork is cleared.
2634			 *
2635			 * However, when TCP_NODELAY is set we make
2636			 * an explicit push, which overrides even TCP_CORK
2637			 * for currently queued segments.
2638			 */
2639			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2640			tcp_push_pending_frames(sk);
2641		} else {
2642			tp->nonagle &= ~TCP_NAGLE_OFF;
2643		}
2644		break;
2645
2646	case TCP_THIN_LINEAR_TIMEOUTS:
2647		if (val < 0 || val > 1)
2648			err = -EINVAL;
2649		else
2650			tp->thin_lto = val;
2651		break;
2652
2653	case TCP_THIN_DUPACK:
2654		if (val < 0 || val > 1)
2655			err = -EINVAL;
 
 
 
 
 
2656		break;
2657
2658	case TCP_REPAIR:
2659		if (!tcp_can_repair_sock(sk))
2660			err = -EPERM;
2661		else if (val == 1) {
2662			tp->repair = 1;
2663			sk->sk_reuse = SK_FORCE_REUSE;
2664			tp->repair_queue = TCP_NO_QUEUE;
2665		} else if (val == 0) {
2666			tp->repair = 0;
2667			sk->sk_reuse = SK_NO_REUSE;
2668			tcp_send_window_probe(sk);
2669		} else
2670			err = -EINVAL;
2671
2672		break;
2673
2674	case TCP_REPAIR_QUEUE:
2675		if (!tp->repair)
2676			err = -EPERM;
2677		else if ((unsigned int)val < TCP_QUEUES_NR)
2678			tp->repair_queue = val;
2679		else
2680			err = -EINVAL;
2681		break;
2682
2683	case TCP_QUEUE_SEQ:
2684		if (sk->sk_state != TCP_CLOSE)
2685			err = -EPERM;
2686		else if (tp->repair_queue == TCP_SEND_QUEUE)
2687			tp->write_seq = val;
2688		else if (tp->repair_queue == TCP_RECV_QUEUE)
2689			tp->rcv_nxt = val;
2690		else
2691			err = -EINVAL;
2692		break;
2693
2694	case TCP_REPAIR_OPTIONS:
2695		if (!tp->repair)
2696			err = -EINVAL;
2697		else if (sk->sk_state == TCP_ESTABLISHED)
2698			err = tcp_repair_options_est(sk,
2699					(struct tcp_repair_opt __user *)optval,
2700					optlen);
2701		else
2702			err = -EPERM;
2703		break;
2704
2705	case TCP_CORK:
2706		/* When set indicates to always queue non-full frames.
2707		 * Later the user clears this option and we transmit
2708		 * any pending partial frames in the queue.  This is
2709		 * meant to be used alongside sendfile() to get properly
2710		 * filled frames when the user (for example) must write
2711		 * out headers with a write() call first and then use
2712		 * sendfile to send out the data parts.
2713		 *
2714		 * TCP_CORK can be set together with TCP_NODELAY and it is
2715		 * stronger than TCP_NODELAY.
2716		 */
2717		if (val) {
2718			tp->nonagle |= TCP_NAGLE_CORK;
2719		} else {
2720			tp->nonagle &= ~TCP_NAGLE_CORK;
2721			if (tp->nonagle&TCP_NAGLE_OFF)
2722				tp->nonagle |= TCP_NAGLE_PUSH;
2723			tcp_push_pending_frames(sk);
2724		}
2725		break;
2726
2727	case TCP_KEEPIDLE:
2728		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2729			err = -EINVAL;
2730		else {
2731			tp->keepalive_time = val * HZ;
2732			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2733			    !((1 << sk->sk_state) &
2734			      (TCPF_CLOSE | TCPF_LISTEN))) {
2735				u32 elapsed = keepalive_time_elapsed(tp);
2736				if (tp->keepalive_time > elapsed)
2737					elapsed = tp->keepalive_time - elapsed;
2738				else
2739					elapsed = 0;
2740				inet_csk_reset_keepalive_timer(sk, elapsed);
2741			}
2742		}
2743		break;
2744	case TCP_KEEPINTVL:
2745		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2746			err = -EINVAL;
2747		else
2748			tp->keepalive_intvl = val * HZ;
2749		break;
2750	case TCP_KEEPCNT:
2751		if (val < 1 || val > MAX_TCP_KEEPCNT)
2752			err = -EINVAL;
2753		else
2754			tp->keepalive_probes = val;
2755		break;
2756	case TCP_SYNCNT:
2757		if (val < 1 || val > MAX_TCP_SYNCNT)
2758			err = -EINVAL;
2759		else
2760			icsk->icsk_syn_retries = val;
2761		break;
2762
2763	case TCP_SAVE_SYN:
2764		if (val < 0 || val > 1)
2765			err = -EINVAL;
2766		else
2767			tp->save_syn = val;
2768		break;
2769
2770	case TCP_LINGER2:
2771		if (val < 0)
2772			tp->linger2 = -1;
2773		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2774			tp->linger2 = 0;
2775		else
2776			tp->linger2 = val * HZ;
2777		break;
2778
2779	case TCP_DEFER_ACCEPT:
2780		/* Translate value in seconds to number of retransmits */
2781		icsk->icsk_accept_queue.rskq_defer_accept =
2782			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2783					TCP_RTO_MAX / HZ);
2784		break;
2785
2786	case TCP_WINDOW_CLAMP:
2787		if (!val) {
2788			if (sk->sk_state != TCP_CLOSE) {
2789				err = -EINVAL;
2790				break;
2791			}
2792			tp->window_clamp = 0;
2793		} else
2794			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2795						SOCK_MIN_RCVBUF / 2 : val;
2796		break;
2797
2798	case TCP_QUICKACK:
2799		if (!val) {
2800			icsk->icsk_ack.pingpong = 1;
2801		} else {
2802			icsk->icsk_ack.pingpong = 0;
2803			if ((1 << sk->sk_state) &
2804			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2805			    inet_csk_ack_scheduled(sk)) {
2806				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2807				tcp_cleanup_rbuf(sk, 1);
2808				if (!(val & 1))
2809					icsk->icsk_ack.pingpong = 1;
2810			}
2811		}
2812		break;
2813
2814#ifdef CONFIG_TCP_MD5SIG
2815	case TCP_MD5SIG:
2816	case TCP_MD5SIG_EXT:
2817		if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
2818			err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2819		else
2820			err = -EINVAL;
2821		break;
2822#endif
2823	case TCP_USER_TIMEOUT:
2824		/* Cap the max time in ms TCP will retry or probe the window
2825		 * before giving up and aborting (ETIMEDOUT) a connection.
2826		 */
2827		if (val < 0)
2828			err = -EINVAL;
2829		else
2830			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2831		break;
2832
2833	case TCP_FASTOPEN:
2834		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2835		    TCPF_LISTEN))) {
2836			tcp_fastopen_init_key_once(net);
2837
2838			fastopen_queue_tune(sk, val);
2839		} else {
2840			err = -EINVAL;
2841		}
2842		break;
2843	case TCP_FASTOPEN_CONNECT:
2844		if (val > 1 || val < 0) {
2845			err = -EINVAL;
2846		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2847			if (sk->sk_state == TCP_CLOSE)
2848				tp->fastopen_connect = val;
2849			else
2850				err = -EINVAL;
2851		} else {
2852			err = -EOPNOTSUPP;
2853		}
2854		break;
2855	case TCP_FASTOPEN_NO_COOKIE:
2856		if (val > 1 || val < 0)
2857			err = -EINVAL;
2858		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2859			err = -EINVAL;
2860		else
2861			tp->fastopen_no_cookie = val;
2862		break;
2863	case TCP_TIMESTAMP:
2864		if (!tp->repair)
2865			err = -EPERM;
2866		else
2867			tp->tsoffset = val - tcp_time_stamp_raw();
2868		break;
2869	case TCP_REPAIR_WINDOW:
2870		err = tcp_repair_set_window(tp, optval, optlen);
2871		break;
2872	case TCP_NOTSENT_LOWAT:
2873		tp->notsent_lowat = val;
2874		sk->sk_write_space(sk);
2875		break;
2876	default:
2877		err = -ENOPROTOOPT;
2878		break;
2879	}
2880
2881	release_sock(sk);
2882	return err;
2883}
2884
2885int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2886		   unsigned int optlen)
2887{
2888	const struct inet_connection_sock *icsk = inet_csk(sk);
2889
2890	if (level != SOL_TCP)
2891		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2892						     optval, optlen);
2893	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2894}
2895EXPORT_SYMBOL(tcp_setsockopt);
2896
2897#ifdef CONFIG_COMPAT
2898int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2899			  char __user *optval, unsigned int optlen)
2900{
2901	if (level != SOL_TCP)
2902		return inet_csk_compat_setsockopt(sk, level, optname,
2903						  optval, optlen);
2904	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2905}
2906EXPORT_SYMBOL(compat_tcp_setsockopt);
2907#endif
2908
2909static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2910				      struct tcp_info *info)
2911{
2912	u64 stats[__TCP_CHRONO_MAX], total = 0;
2913	enum tcp_chrono i;
2914
2915	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2916		stats[i] = tp->chrono_stat[i - 1];
2917		if (i == tp->chrono_type)
2918			stats[i] += tcp_jiffies32 - tp->chrono_start;
2919		stats[i] *= USEC_PER_SEC / HZ;
2920		total += stats[i];
2921	}
2922
2923	info->tcpi_busy_time = total;
2924	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2925	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2926}
2927
2928/* Return information about state of tcp endpoint in API format. */
2929void tcp_get_info(struct sock *sk, struct tcp_info *info)
2930{
2931	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2932	const struct inet_connection_sock *icsk = inet_csk(sk);
2933	u32 now;
 
 
2934	u64 rate64;
2935	bool slow;
2936	u32 rate;
2937
2938	memset(info, 0, sizeof(*info));
2939	if (sk->sk_type != SOCK_STREAM)
2940		return;
2941
2942	info->tcpi_state = inet_sk_state_load(sk);
2943
2944	/* Report meaningful fields for all TCP states, including listeners */
2945	rate = READ_ONCE(sk->sk_pacing_rate);
2946	rate64 = rate != ~0U ? rate : ~0ULL;
2947	info->tcpi_pacing_rate = rate64;
2948
2949	rate = READ_ONCE(sk->sk_max_pacing_rate);
2950	rate64 = rate != ~0U ? rate : ~0ULL;
2951	info->tcpi_max_pacing_rate = rate64;
2952
2953	info->tcpi_reordering = tp->reordering;
2954	info->tcpi_snd_cwnd = tp->snd_cwnd;
2955
2956	if (info->tcpi_state == TCP_LISTEN) {
2957		/* listeners aliased fields :
2958		 * tcpi_unacked -> Number of children ready for accept()
2959		 * tcpi_sacked  -> max backlog
2960		 */
2961		info->tcpi_unacked = sk->sk_ack_backlog;
2962		info->tcpi_sacked = sk->sk_max_ack_backlog;
2963		return;
2964	}
2965
2966	slow = lock_sock_fast(sk);
2967
2968	info->tcpi_ca_state = icsk->icsk_ca_state;
2969	info->tcpi_retransmits = icsk->icsk_retransmits;
2970	info->tcpi_probes = icsk->icsk_probes_out;
2971	info->tcpi_backoff = icsk->icsk_backoff;
2972
2973	if (tp->rx_opt.tstamp_ok)
2974		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2975	if (tcp_is_sack(tp))
2976		info->tcpi_options |= TCPI_OPT_SACK;
2977	if (tp->rx_opt.wscale_ok) {
2978		info->tcpi_options |= TCPI_OPT_WSCALE;
2979		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2980		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2981	}
2982
2983	if (tp->ecn_flags & TCP_ECN_OK)
2984		info->tcpi_options |= TCPI_OPT_ECN;
2985	if (tp->ecn_flags & TCP_ECN_SEEN)
2986		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2987	if (tp->syn_data_acked)
2988		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2989
2990	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2991	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2992	info->tcpi_snd_mss = tp->mss_cache;
2993	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2994
2995	info->tcpi_unacked = tp->packets_out;
2996	info->tcpi_sacked = tp->sacked_out;
2997
 
 
 
 
2998	info->tcpi_lost = tp->lost_out;
2999	info->tcpi_retrans = tp->retrans_out;
 
3000
3001	now = tcp_jiffies32;
3002	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3003	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3004	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3005
3006	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3007	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3008	info->tcpi_rtt = tp->srtt_us >> 3;
3009	info->tcpi_rttvar = tp->mdev_us >> 2;
3010	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
 
3011	info->tcpi_advmss = tp->advmss;
 
3012
3013	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3014	info->tcpi_rcv_space = tp->rcvq_space.space;
3015
3016	info->tcpi_total_retrans = tp->total_retrans;
3017
3018	info->tcpi_bytes_acked = tp->bytes_acked;
3019	info->tcpi_bytes_received = tp->bytes_received;
3020	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3021	tcp_get_info_chrono_stats(tp, info);
 
 
 
3022
 
 
 
 
 
3023	info->tcpi_segs_out = tp->segs_out;
3024	info->tcpi_segs_in = tp->segs_in;
3025
 
 
 
3026	info->tcpi_min_rtt = tcp_min_rtt(tp);
3027	info->tcpi_data_segs_in = tp->data_segs_in;
3028	info->tcpi_data_segs_out = tp->data_segs_out;
3029
3030	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3031	rate64 = tcp_compute_delivery_rate(tp);
3032	if (rate64)
3033		info->tcpi_delivery_rate = rate64;
3034	unlock_sock_fast(sk, slow);
3035}
3036EXPORT_SYMBOL_GPL(tcp_get_info);
3037
3038struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3039{
3040	const struct tcp_sock *tp = tcp_sk(sk);
3041	struct sk_buff *stats;
3042	struct tcp_info info;
3043	u64 rate64;
3044	u32 rate;
3045
3046	stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) +
3047			  5 * nla_total_size(sizeof(u32)) +
3048			  3 * nla_total_size(sizeof(u8)), GFP_ATOMIC);
3049	if (!stats)
3050		return NULL;
3051
3052	tcp_get_info_chrono_stats(tp, &info);
3053	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3054			  info.tcpi_busy_time, TCP_NLA_PAD);
3055	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3056			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3057	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3058			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3059	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3060			  tp->data_segs_out, TCP_NLA_PAD);
3061	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3062			  tp->total_retrans, TCP_NLA_PAD);
3063
3064	rate = READ_ONCE(sk->sk_pacing_rate);
3065	rate64 = rate != ~0U ? rate : ~0ULL;
3066	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3067
3068	rate64 = tcp_compute_delivery_rate(tp);
3069	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3070
3071	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3072	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3073	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3074
3075	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3076	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3077	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3078
3079	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3080	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3081	return stats;
3082}
3083
3084static int do_tcp_getsockopt(struct sock *sk, int level,
3085		int optname, char __user *optval, int __user *optlen)
3086{
3087	struct inet_connection_sock *icsk = inet_csk(sk);
3088	struct tcp_sock *tp = tcp_sk(sk);
3089	struct net *net = sock_net(sk);
3090	int val, len;
3091
3092	if (get_user(len, optlen))
3093		return -EFAULT;
3094
3095	len = min_t(unsigned int, len, sizeof(int));
3096
3097	if (len < 0)
3098		return -EINVAL;
3099
3100	switch (optname) {
3101	case TCP_MAXSEG:
3102		val = tp->mss_cache;
3103		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3104			val = tp->rx_opt.user_mss;
3105		if (tp->repair)
3106			val = tp->rx_opt.mss_clamp;
3107		break;
3108	case TCP_NODELAY:
3109		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3110		break;
3111	case TCP_CORK:
3112		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3113		break;
3114	case TCP_KEEPIDLE:
3115		val = keepalive_time_when(tp) / HZ;
3116		break;
3117	case TCP_KEEPINTVL:
3118		val = keepalive_intvl_when(tp) / HZ;
3119		break;
3120	case TCP_KEEPCNT:
3121		val = keepalive_probes(tp);
3122		break;
3123	case TCP_SYNCNT:
3124		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3125		break;
3126	case TCP_LINGER2:
3127		val = tp->linger2;
3128		if (val >= 0)
3129			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3130		break;
3131	case TCP_DEFER_ACCEPT:
3132		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3133				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3134		break;
3135	case TCP_WINDOW_CLAMP:
3136		val = tp->window_clamp;
3137		break;
3138	case TCP_INFO: {
3139		struct tcp_info info;
3140
3141		if (get_user(len, optlen))
3142			return -EFAULT;
3143
3144		tcp_get_info(sk, &info);
3145
3146		len = min_t(unsigned int, len, sizeof(info));
3147		if (put_user(len, optlen))
3148			return -EFAULT;
3149		if (copy_to_user(optval, &info, len))
3150			return -EFAULT;
3151		return 0;
3152	}
3153	case TCP_CC_INFO: {
3154		const struct tcp_congestion_ops *ca_ops;
3155		union tcp_cc_info info;
3156		size_t sz = 0;
3157		int attr;
3158
3159		if (get_user(len, optlen))
3160			return -EFAULT;
3161
3162		ca_ops = icsk->icsk_ca_ops;
3163		if (ca_ops && ca_ops->get_info)
3164			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3165
3166		len = min_t(unsigned int, len, sz);
3167		if (put_user(len, optlen))
3168			return -EFAULT;
3169		if (copy_to_user(optval, &info, len))
3170			return -EFAULT;
3171		return 0;
3172	}
3173	case TCP_QUICKACK:
3174		val = !icsk->icsk_ack.pingpong;
3175		break;
3176
3177	case TCP_CONGESTION:
3178		if (get_user(len, optlen))
3179			return -EFAULT;
3180		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3181		if (put_user(len, optlen))
3182			return -EFAULT;
3183		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3184			return -EFAULT;
3185		return 0;
3186
3187	case TCP_ULP:
3188		if (get_user(len, optlen))
3189			return -EFAULT;
3190		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3191		if (!icsk->icsk_ulp_ops) {
3192			if (put_user(0, optlen))
3193				return -EFAULT;
3194			return 0;
3195		}
3196		if (put_user(len, optlen))
3197			return -EFAULT;
3198		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3199			return -EFAULT;
3200		return 0;
3201
3202	case TCP_FASTOPEN_KEY: {
3203		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
3204		struct tcp_fastopen_context *ctx;
3205
3206		if (get_user(len, optlen))
3207			return -EFAULT;
3208
3209		rcu_read_lock();
3210		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3211		if (ctx)
3212			memcpy(key, ctx->key, sizeof(key));
3213		else
3214			len = 0;
3215		rcu_read_unlock();
3216
3217		len = min_t(unsigned int, len, sizeof(key));
3218		if (put_user(len, optlen))
3219			return -EFAULT;
3220		if (copy_to_user(optval, key, len))
3221			return -EFAULT;
3222		return 0;
3223	}
3224	case TCP_THIN_LINEAR_TIMEOUTS:
3225		val = tp->thin_lto;
3226		break;
3227
3228	case TCP_THIN_DUPACK:
3229		val = 0;
3230		break;
3231
3232	case TCP_REPAIR:
3233		val = tp->repair;
3234		break;
3235
3236	case TCP_REPAIR_QUEUE:
3237		if (tp->repair)
3238			val = tp->repair_queue;
3239		else
3240			return -EINVAL;
3241		break;
3242
3243	case TCP_REPAIR_WINDOW: {
3244		struct tcp_repair_window opt;
3245
3246		if (get_user(len, optlen))
3247			return -EFAULT;
3248
3249		if (len != sizeof(opt))
3250			return -EINVAL;
3251
3252		if (!tp->repair)
3253			return -EPERM;
3254
3255		opt.snd_wl1	= tp->snd_wl1;
3256		opt.snd_wnd	= tp->snd_wnd;
3257		opt.max_window	= tp->max_window;
3258		opt.rcv_wnd	= tp->rcv_wnd;
3259		opt.rcv_wup	= tp->rcv_wup;
3260
3261		if (copy_to_user(optval, &opt, len))
3262			return -EFAULT;
3263		return 0;
3264	}
3265	case TCP_QUEUE_SEQ:
3266		if (tp->repair_queue == TCP_SEND_QUEUE)
3267			val = tp->write_seq;
3268		else if (tp->repair_queue == TCP_RECV_QUEUE)
3269			val = tp->rcv_nxt;
3270		else
3271			return -EINVAL;
3272		break;
3273
3274	case TCP_USER_TIMEOUT:
3275		val = jiffies_to_msecs(icsk->icsk_user_timeout);
3276		break;
3277
3278	case TCP_FASTOPEN:
3279		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3280		break;
3281
3282	case TCP_FASTOPEN_CONNECT:
3283		val = tp->fastopen_connect;
3284		break;
3285
3286	case TCP_FASTOPEN_NO_COOKIE:
3287		val = tp->fastopen_no_cookie;
3288		break;
3289
3290	case TCP_TIMESTAMP:
3291		val = tcp_time_stamp_raw() + tp->tsoffset;
3292		break;
3293	case TCP_NOTSENT_LOWAT:
3294		val = tp->notsent_lowat;
3295		break;
3296	case TCP_SAVE_SYN:
3297		val = tp->save_syn;
3298		break;
3299	case TCP_SAVED_SYN: {
3300		if (get_user(len, optlen))
3301			return -EFAULT;
3302
3303		lock_sock(sk);
3304		if (tp->saved_syn) {
3305			if (len < tp->saved_syn[0]) {
3306				if (put_user(tp->saved_syn[0], optlen)) {
3307					release_sock(sk);
3308					return -EFAULT;
3309				}
3310				release_sock(sk);
3311				return -EINVAL;
3312			}
3313			len = tp->saved_syn[0];
3314			if (put_user(len, optlen)) {
3315				release_sock(sk);
3316				return -EFAULT;
3317			}
3318			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3319				release_sock(sk);
3320				return -EFAULT;
3321			}
3322			tcp_saved_syn_free(tp);
3323			release_sock(sk);
3324		} else {
3325			release_sock(sk);
3326			len = 0;
3327			if (put_user(len, optlen))
3328				return -EFAULT;
3329		}
3330		return 0;
3331	}
3332	default:
3333		return -ENOPROTOOPT;
3334	}
3335
3336	if (put_user(len, optlen))
3337		return -EFAULT;
3338	if (copy_to_user(optval, &val, len))
3339		return -EFAULT;
3340	return 0;
3341}
3342
3343int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3344		   int __user *optlen)
3345{
3346	struct inet_connection_sock *icsk = inet_csk(sk);
3347
3348	if (level != SOL_TCP)
3349		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3350						     optval, optlen);
3351	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3352}
3353EXPORT_SYMBOL(tcp_getsockopt);
3354
3355#ifdef CONFIG_COMPAT
3356int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3357			  char __user *optval, int __user *optlen)
3358{
3359	if (level != SOL_TCP)
3360		return inet_csk_compat_getsockopt(sk, level, optname,
3361						  optval, optlen);
3362	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3363}
3364EXPORT_SYMBOL(compat_tcp_getsockopt);
3365#endif
3366
3367#ifdef CONFIG_TCP_MD5SIG
3368static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3369static DEFINE_MUTEX(tcp_md5sig_mutex);
3370static bool tcp_md5sig_pool_populated = false;
3371
3372static void __tcp_alloc_md5sig_pool(void)
3373{
3374	struct crypto_ahash *hash;
3375	int cpu;
3376
3377	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3378	if (IS_ERR(hash))
3379		return;
3380
3381	for_each_possible_cpu(cpu) {
3382		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3383		struct ahash_request *req;
3384
3385		if (!scratch) {
3386			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3387					       sizeof(struct tcphdr),
3388					       GFP_KERNEL,
3389					       cpu_to_node(cpu));
3390			if (!scratch)
3391				return;
3392			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3393		}
3394		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3395			continue;
3396
3397		req = ahash_request_alloc(hash, GFP_KERNEL);
3398		if (!req)
3399			return;
3400
3401		ahash_request_set_callback(req, 0, NULL, NULL);
3402
3403		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3404	}
3405	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3406	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3407	 */
3408	smp_wmb();
3409	tcp_md5sig_pool_populated = true;
3410}
3411
3412bool tcp_alloc_md5sig_pool(void)
3413{
3414	if (unlikely(!tcp_md5sig_pool_populated)) {
3415		mutex_lock(&tcp_md5sig_mutex);
3416
3417		if (!tcp_md5sig_pool_populated)
3418			__tcp_alloc_md5sig_pool();
3419
3420		mutex_unlock(&tcp_md5sig_mutex);
3421	}
3422	return tcp_md5sig_pool_populated;
3423}
3424EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3425
3426
3427/**
3428 *	tcp_get_md5sig_pool - get md5sig_pool for this user
3429 *
3430 *	We use percpu structure, so if we succeed, we exit with preemption
3431 *	and BH disabled, to make sure another thread or softirq handling
3432 *	wont try to get same context.
3433 */
3434struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3435{
3436	local_bh_disable();
3437
3438	if (tcp_md5sig_pool_populated) {
3439		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3440		smp_rmb();
3441		return this_cpu_ptr(&tcp_md5sig_pool);
3442	}
3443	local_bh_enable();
3444	return NULL;
3445}
3446EXPORT_SYMBOL(tcp_get_md5sig_pool);
3447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3448int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3449			  const struct sk_buff *skb, unsigned int header_len)
3450{
3451	struct scatterlist sg;
3452	const struct tcphdr *tp = tcp_hdr(skb);
3453	struct ahash_request *req = hp->md5_req;
3454	unsigned int i;
3455	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3456					   skb_headlen(skb) - header_len : 0;
3457	const struct skb_shared_info *shi = skb_shinfo(skb);
3458	struct sk_buff *frag_iter;
3459
3460	sg_init_table(&sg, 1);
3461
3462	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3463	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3464	if (crypto_ahash_update(req))
3465		return 1;
3466
3467	for (i = 0; i < shi->nr_frags; ++i) {
3468		const struct skb_frag_struct *f = &shi->frags[i];
3469		unsigned int offset = f->page_offset;
3470		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3471
3472		sg_set_page(&sg, page, skb_frag_size(f),
3473			    offset_in_page(offset));
3474		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3475		if (crypto_ahash_update(req))
3476			return 1;
3477	}
3478
3479	skb_walk_frags(skb, frag_iter)
3480		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3481			return 1;
3482
3483	return 0;
3484}
3485EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3486
3487int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3488{
3489	struct scatterlist sg;
3490
3491	sg_init_one(&sg, key->key, key->keylen);
3492	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3493	return crypto_ahash_update(hp->md5_req);
3494}
3495EXPORT_SYMBOL(tcp_md5_hash_key);
3496
3497#endif
3498
3499void tcp_done(struct sock *sk)
3500{
3501	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3502
3503	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3504		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3505
3506	tcp_set_state(sk, TCP_CLOSE);
3507	tcp_clear_xmit_timers(sk);
3508	if (req)
3509		reqsk_fastopen_remove(sk, req, false);
3510
3511	sk->sk_shutdown = SHUTDOWN_MASK;
3512
3513	if (!sock_flag(sk, SOCK_DEAD))
3514		sk->sk_state_change(sk);
3515	else
3516		inet_csk_destroy_sock(sk);
3517}
3518EXPORT_SYMBOL_GPL(tcp_done);
3519
3520int tcp_abort(struct sock *sk, int err)
3521{
3522	if (!sk_fullsock(sk)) {
3523		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3524			struct request_sock *req = inet_reqsk(sk);
3525
3526			local_bh_disable();
3527			inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3528							  req);
3529			local_bh_enable();
3530			return 0;
3531		}
 
3532		return -EOPNOTSUPP;
3533	}
3534
3535	/* Don't race with userspace socket closes such as tcp_close. */
3536	lock_sock(sk);
3537
3538	if (sk->sk_state == TCP_LISTEN) {
3539		tcp_set_state(sk, TCP_CLOSE);
3540		inet_csk_listen_stop(sk);
3541	}
3542
3543	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3544	local_bh_disable();
3545	bh_lock_sock(sk);
3546
3547	if (!sock_flag(sk, SOCK_DEAD)) {
3548		sk->sk_err = err;
3549		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3550		smp_wmb();
3551		sk->sk_error_report(sk);
3552		if (tcp_need_reset(sk->sk_state))
3553			tcp_send_active_reset(sk, GFP_ATOMIC);
3554		tcp_done(sk);
3555	}
3556
3557	bh_unlock_sock(sk);
3558	local_bh_enable();
3559	tcp_write_queue_purge(sk);
3560	release_sock(sk);
 
3561	return 0;
3562}
3563EXPORT_SYMBOL_GPL(tcp_abort);
3564
3565extern struct tcp_congestion_ops tcp_reno;
3566
3567static __initdata unsigned long thash_entries;
3568static int __init set_thash_entries(char *str)
3569{
3570	ssize_t ret;
3571
3572	if (!str)
3573		return 0;
3574
3575	ret = kstrtoul(str, 0, &thash_entries);
3576	if (ret)
3577		return 0;
3578
3579	return 1;
3580}
3581__setup("thash_entries=", set_thash_entries);
3582
3583static void __init tcp_init_mem(void)
3584{
3585	unsigned long limit = nr_free_buffer_pages() / 16;
3586
3587	limit = max(limit, 128UL);
3588	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3589	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3590	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3591}
3592
3593void __init tcp_init(void)
3594{
3595	int max_rshare, max_wshare, cnt;
3596	unsigned long limit;
 
3597	unsigned int i;
3598
3599	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3600		     FIELD_SIZEOF(struct sk_buff, cb));
3601
3602	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3603	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3604	inet_hashinfo_init(&tcp_hashinfo);
3605	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3606			    thash_entries, 21,  /* one slot per 2 MB*/
3607			    0, 64 * 1024);
3608	tcp_hashinfo.bind_bucket_cachep =
3609		kmem_cache_create("tcp_bind_bucket",
3610				  sizeof(struct inet_bind_bucket), 0,
3611				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3612
3613	/* Size and allocate the main established and bind bucket
3614	 * hash tables.
3615	 *
3616	 * The methodology is similar to that of the buffer cache.
3617	 */
3618	tcp_hashinfo.ehash =
3619		alloc_large_system_hash("TCP established",
3620					sizeof(struct inet_ehash_bucket),
3621					thash_entries,
3622					17, /* one slot per 128 KB of memory */
3623					0,
3624					NULL,
3625					&tcp_hashinfo.ehash_mask,
3626					0,
3627					thash_entries ? 0 : 512 * 1024);
3628	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3629		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3630
3631	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3632		panic("TCP: failed to alloc ehash_locks");
3633	tcp_hashinfo.bhash =
3634		alloc_large_system_hash("TCP bind",
3635					sizeof(struct inet_bind_hashbucket),
3636					tcp_hashinfo.ehash_mask + 1,
3637					17, /* one slot per 128 KB of memory */
3638					0,
3639					&tcp_hashinfo.bhash_size,
3640					NULL,
3641					0,
3642					64 * 1024);
3643	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3644	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3645		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3646		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3647	}
3648
3649
3650	cnt = tcp_hashinfo.ehash_mask + 1;
 
 
3651	sysctl_tcp_max_orphans = cnt / 2;
 
3652
3653	tcp_init_mem();
3654	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3655	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3656	max_wshare = min(4UL*1024*1024, limit);
3657	max_rshare = min(6UL*1024*1024, limit);
3658
3659	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3660	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3661	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3662
3663	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3664	init_net.ipv4.sysctl_tcp_rmem[1] = 87380;
3665	init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare);
3666
3667	pr_info("Hash tables configured (established %u bind %u)\n",
3668		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3669
3670	tcp_v4_init();
3671	tcp_metrics_init();
3672	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3673	tcp_tasklet_init();
3674}
v4.6
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 *
  20 * Fixes:
  21 *		Alan Cox	:	Numerous verify_area() calls
  22 *		Alan Cox	:	Set the ACK bit on a reset
  23 *		Alan Cox	:	Stopped it crashing if it closed while
  24 *					sk->inuse=1 and was trying to connect
  25 *					(tcp_err()).
  26 *		Alan Cox	:	All icmp error handling was broken
  27 *					pointers passed where wrong and the
  28 *					socket was looked up backwards. Nobody
  29 *					tested any icmp error code obviously.
  30 *		Alan Cox	:	tcp_err() now handled properly. It
  31 *					wakes people on errors. poll
  32 *					behaves and the icmp error race
  33 *					has gone by moving it into sock.c
  34 *		Alan Cox	:	tcp_send_reset() fixed to work for
  35 *					everything not just packets for
  36 *					unknown sockets.
  37 *		Alan Cox	:	tcp option processing.
  38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
  39 *					syn rule wrong]
  40 *		Herp Rosmanith  :	More reset fixes
  41 *		Alan Cox	:	No longer acks invalid rst frames.
  42 *					Acking any kind of RST is right out.
  43 *		Alan Cox	:	Sets an ignore me flag on an rst
  44 *					receive otherwise odd bits of prattle
  45 *					escape still
  46 *		Alan Cox	:	Fixed another acking RST frame bug.
  47 *					Should stop LAN workplace lockups.
  48 *		Alan Cox	: 	Some tidyups using the new skb list
  49 *					facilities
  50 *		Alan Cox	:	sk->keepopen now seems to work
  51 *		Alan Cox	:	Pulls options out correctly on accepts
  52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
  53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
  54 *					bit to skb ops.
  55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
  56 *					nasty.
  57 *		Alan Cox	:	Added some better commenting, as the
  58 *					tcp is hard to follow
  59 *		Alan Cox	:	Removed incorrect check for 20 * psh
  60 *	Michael O'Reilly	:	ack < copied bug fix.
  61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
  62 *		Alan Cox	:	FIN with no memory -> CRASH
  63 *		Alan Cox	:	Added socket option proto entries.
  64 *					Also added awareness of them to accept.
  65 *		Alan Cox	:	Added TCP options (SOL_TCP)
  66 *		Alan Cox	:	Switched wakeup calls to callbacks,
  67 *					so the kernel can layer network
  68 *					sockets.
  69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
  70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
  71 *		Alan Cox	:	RST frames sent on unsynchronised
  72 *					state ack error.
  73 *		Alan Cox	:	Put in missing check for SYN bit.
  74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
  75 *					window non shrink trick.
  76 *		Alan Cox	:	Added a couple of small NET2E timer
  77 *					fixes
  78 *		Charles Hedrick :	TCP fixes
  79 *		Toomas Tamm	:	TCP window fixes
  80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
  81 *		Charles Hedrick	:	Rewrote most of it to actually work
  82 *		Linus		:	Rewrote tcp_read() and URG handling
  83 *					completely
  84 *		Gerhard Koerting:	Fixed some missing timer handling
  85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
  86 *		Gerhard Koerting:	PC/TCP workarounds
  87 *		Adam Caldwell	:	Assorted timer/timing errors
  88 *		Matthew Dillon	:	Fixed another RST bug
  89 *		Alan Cox	:	Move to kernel side addressing changes.
  90 *		Alan Cox	:	Beginning work on TCP fastpathing
  91 *					(not yet usable)
  92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
  93 *		Alan Cox	:	TCP fast path debugging
  94 *		Alan Cox	:	Window clamping
  95 *		Michael Riepe	:	Bug in tcp_check()
  96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
  97 *		Matt Dillon	:	Yet more small nasties remove from the
  98 *					TCP code (Be very nice to this man if
  99 *					tcp finally works 100%) 8)
 100 *		Alan Cox	:	BSD accept semantics.
 101 *		Alan Cox	:	Reset on closedown bug.
 102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
 103 *		Michael Pall	:	Handle poll() after URG properly in
 104 *					all cases.
 105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
 106 *					(multi URG PUSH broke rlogin).
 107 *		Michael Pall	:	Fix the multi URG PUSH problem in
 108 *					tcp_readable(), poll() after URG
 109 *					works now.
 110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
 111 *					BSD api.
 112 *		Alan Cox	:	Changed the semantics of sk->socket to
 113 *					fix a race and a signal problem with
 114 *					accept() and async I/O.
 115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
 116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
 117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
 118 *					clients/servers which listen in on
 119 *					fixed ports.
 120 *		Alan Cox	:	Cleaned the above up and shrank it to
 121 *					a sensible code size.
 122 *		Alan Cox	:	Self connect lockup fix.
 123 *		Alan Cox	:	No connect to multicast.
 124 *		Ross Biro	:	Close unaccepted children on master
 125 *					socket close.
 126 *		Alan Cox	:	Reset tracing code.
 127 *		Alan Cox	:	Spurious resets on shutdown.
 128 *		Alan Cox	:	Giant 15 minute/60 second timer error
 129 *		Alan Cox	:	Small whoops in polling before an
 130 *					accept.
 131 *		Alan Cox	:	Kept the state trace facility since
 132 *					it's handy for debugging.
 133 *		Alan Cox	:	More reset handler fixes.
 134 *		Alan Cox	:	Started rewriting the code based on
 135 *					the RFC's for other useful protocol
 136 *					references see: Comer, KA9Q NOS, and
 137 *					for a reference on the difference
 138 *					between specifications and how BSD
 139 *					works see the 4.4lite source.
 140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
 141 *					close.
 142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
 143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
 144 *		Alan Cox	:	Reimplemented timers as per the RFC
 145 *					and using multiple timers for sanity.
 146 *		Alan Cox	:	Small bug fixes, and a lot of new
 147 *					comments.
 148 *		Alan Cox	:	Fixed dual reader crash by locking
 149 *					the buffers (much like datagram.c)
 150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
 151 *					now gets fed up of retrying without
 152 *					(even a no space) answer.
 153 *		Alan Cox	:	Extracted closing code better
 154 *		Alan Cox	:	Fixed the closing state machine to
 155 *					resemble the RFC.
 156 *		Alan Cox	:	More 'per spec' fixes.
 157 *		Jorge Cwik	:	Even faster checksumming.
 158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
 159 *					only frames. At least one pc tcp stack
 160 *					generates them.
 161 *		Alan Cox	:	Cache last socket.
 162 *		Alan Cox	:	Per route irtt.
 163 *		Matt Day	:	poll()->select() match BSD precisely on error
 164 *		Alan Cox	:	New buffers
 165 *		Marc Tamsky	:	Various sk->prot->retransmits and
 166 *					sk->retransmits misupdating fixed.
 167 *					Fixed tcp_write_timeout: stuck close,
 168 *					and TCP syn retries gets used now.
 169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
 170 *					ack if state is TCP_CLOSED.
 171 *		Alan Cox	:	Look up device on a retransmit - routes may
 172 *					change. Doesn't yet cope with MSS shrink right
 173 *					but it's a start!
 174 *		Marc Tamsky	:	Closing in closing fixes.
 175 *		Mike Shaver	:	RFC1122 verifications.
 176 *		Alan Cox	:	rcv_saddr errors.
 177 *		Alan Cox	:	Block double connect().
 178 *		Alan Cox	:	Small hooks for enSKIP.
 179 *		Alexey Kuznetsov:	Path MTU discovery.
 180 *		Alan Cox	:	Support soft errors.
 181 *		Alan Cox	:	Fix MTU discovery pathological case
 182 *					when the remote claims no mtu!
 183 *		Marc Tamsky	:	TCP_CLOSE fix.
 184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
 185 *					window but wrong (fixes NT lpd problems)
 186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
 187 *		Joerg Reuter	:	No modification of locked buffers in
 188 *					tcp_do_retransmit()
 189 *		Eric Schenk	:	Changed receiver side silly window
 190 *					avoidance algorithm to BSD style
 191 *					algorithm. This doubles throughput
 192 *					against machines running Solaris,
 193 *					and seems to result in general
 194 *					improvement.
 195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
 196 *	Willy Konynenberg	:	Transparent proxying support.
 197 *	Mike McLagan		:	Routing by source
 198 *		Keith Owens	:	Do proper merging with partial SKB's in
 199 *					tcp_do_sendmsg to avoid burstiness.
 200 *		Eric Schenk	:	Fix fast close down bug with
 201 *					shutdown() followed by close().
 202 *		Andi Kleen 	:	Make poll agree with SIGIO
 203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
 204 *					lingertime == 0 (RFC 793 ABORT Call)
 205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
 206 *					csum_and_copy_from_user() if possible.
 207 *
 208 *		This program is free software; you can redistribute it and/or
 209 *		modify it under the terms of the GNU General Public License
 210 *		as published by the Free Software Foundation; either version
 211 *		2 of the License, or(at your option) any later version.
 212 *
 213 * Description of States:
 214 *
 215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
 216 *
 217 *	TCP_SYN_RECV		received a connection request, sent ack,
 218 *				waiting for final ack in three-way handshake.
 219 *
 220 *	TCP_ESTABLISHED		connection established
 221 *
 222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
 223 *				transmission of remaining buffered data
 224 *
 225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
 226 *				to shutdown
 227 *
 228 *	TCP_CLOSING		both sides have shutdown but we still have
 229 *				data we have to finish sending
 230 *
 231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
 232 *				closed, can only be entered from FIN_WAIT2
 233 *				or CLOSING.  Required because the other end
 234 *				may not have gotten our last ACK causing it
 235 *				to retransmit the data packet (which we ignore)
 236 *
 237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
 238 *				us to finish writing our data and to shutdown
 239 *				(we have to close() to move on to LAST_ACK)
 240 *
 241 *	TCP_LAST_ACK		out side has shutdown after remote has
 242 *				shutdown.  There may still be data in our
 243 *				buffer that we have to finish sending
 244 *
 245 *	TCP_CLOSE		socket is finished
 246 */
 247
 248#define pr_fmt(fmt) "TCP: " fmt
 249
 250#include <crypto/hash.h>
 251#include <linux/kernel.h>
 252#include <linux/module.h>
 253#include <linux/types.h>
 254#include <linux/fcntl.h>
 255#include <linux/poll.h>
 256#include <linux/inet_diag.h>
 257#include <linux/init.h>
 258#include <linux/fs.h>
 259#include <linux/skbuff.h>
 260#include <linux/scatterlist.h>
 261#include <linux/splice.h>
 262#include <linux/net.h>
 263#include <linux/socket.h>
 264#include <linux/random.h>
 265#include <linux/bootmem.h>
 266#include <linux/highmem.h>
 267#include <linux/swap.h>
 268#include <linux/cache.h>
 269#include <linux/err.h>
 270#include <linux/time.h>
 271#include <linux/slab.h>
 
 
 272
 273#include <net/icmp.h>
 274#include <net/inet_common.h>
 275#include <net/tcp.h>
 276#include <net/xfrm.h>
 277#include <net/ip.h>
 278#include <net/sock.h>
 279
 280#include <asm/uaccess.h>
 281#include <asm/ioctls.h>
 282#include <asm/unaligned.h>
 283#include <net/busy_poll.h>
 284
 285int sysctl_tcp_min_tso_segs __read_mostly = 2;
 286
 287int sysctl_tcp_autocorking __read_mostly = 1;
 288
 289struct percpu_counter tcp_orphan_count;
 290EXPORT_SYMBOL_GPL(tcp_orphan_count);
 291
 292long sysctl_tcp_mem[3] __read_mostly;
 293int sysctl_tcp_wmem[3] __read_mostly;
 294int sysctl_tcp_rmem[3] __read_mostly;
 295
 296EXPORT_SYMBOL(sysctl_tcp_mem);
 297EXPORT_SYMBOL(sysctl_tcp_rmem);
 298EXPORT_SYMBOL(sysctl_tcp_wmem);
 299
 300atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
 301EXPORT_SYMBOL(tcp_memory_allocated);
 302
 
 
 
 
 
 303/*
 304 * Current number of TCP sockets.
 305 */
 306struct percpu_counter tcp_sockets_allocated;
 307EXPORT_SYMBOL(tcp_sockets_allocated);
 308
 309/*
 310 * TCP splice context
 311 */
 312struct tcp_splice_state {
 313	struct pipe_inode_info *pipe;
 314	size_t len;
 315	unsigned int flags;
 316};
 317
 318/*
 319 * Pressure flag: try to collapse.
 320 * Technical note: it is used by multiple contexts non atomically.
 321 * All the __sk_mem_schedule() is of this nature: accounting
 322 * is strict, actions are advisory and have some latency.
 323 */
 324int tcp_memory_pressure __read_mostly;
 325EXPORT_SYMBOL(tcp_memory_pressure);
 326
 327void tcp_enter_memory_pressure(struct sock *sk)
 328{
 329	if (!tcp_memory_pressure) {
 
 
 
 
 
 
 
 
 330		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
 331		tcp_memory_pressure = 1;
 332	}
 333}
 334EXPORT_SYMBOL(tcp_enter_memory_pressure);
 
 
 
 
 
 
 
 
 
 
 
 
 
 335
 336/* Convert seconds to retransmits based on initial and max timeout */
 337static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
 338{
 339	u8 res = 0;
 340
 341	if (seconds > 0) {
 342		int period = timeout;
 343
 344		res = 1;
 345		while (seconds > period && res < 255) {
 346			res++;
 347			timeout <<= 1;
 348			if (timeout > rto_max)
 349				timeout = rto_max;
 350			period += timeout;
 351		}
 352	}
 353	return res;
 354}
 355
 356/* Convert retransmits to seconds based on initial and max timeout */
 357static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
 358{
 359	int period = 0;
 360
 361	if (retrans > 0) {
 362		period = timeout;
 363		while (--retrans) {
 364			timeout <<= 1;
 365			if (timeout > rto_max)
 366				timeout = rto_max;
 367			period += timeout;
 368		}
 369	}
 370	return period;
 371}
 372
 
 
 
 
 
 
 
 
 
 
 
 
 
 373/* Address-family independent initialization for a tcp_sock.
 374 *
 375 * NOTE: A lot of things set to zero explicitly by call to
 376 *       sk_alloc() so need not be done here.
 377 */
 378void tcp_init_sock(struct sock *sk)
 379{
 380	struct inet_connection_sock *icsk = inet_csk(sk);
 381	struct tcp_sock *tp = tcp_sk(sk);
 382
 383	__skb_queue_head_init(&tp->out_of_order_queue);
 
 384	tcp_init_xmit_timers(sk);
 385	tcp_prequeue_init(tp);
 386	INIT_LIST_HEAD(&tp->tsq_node);
 
 387
 388	icsk->icsk_rto = TCP_TIMEOUT_INIT;
 389	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
 390	tp->rtt_min[0].rtt = ~0U;
 391
 392	/* So many TCP implementations out there (incorrectly) count the
 393	 * initial SYN frame in their delayed-ACK and congestion control
 394	 * algorithms that we must have the following bandaid to talk
 395	 * efficiently to them.  -DaveM
 396	 */
 397	tp->snd_cwnd = TCP_INIT_CWND;
 398
 
 
 
 399	/* See draft-stevens-tcpca-spec-01 for discussion of the
 400	 * initialization of these values.
 401	 */
 402	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 403	tp->snd_cwnd_clamp = ~0;
 404	tp->mss_cache = TCP_MSS_DEFAULT;
 405	u64_stats_init(&tp->syncp);
 406
 407	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
 408	tcp_enable_early_retrans(tp);
 409	tcp_assign_congestion_control(sk);
 410
 411	tp->tsoffset = 0;
 
 412
 413	sk->sk_state = TCP_CLOSE;
 414
 415	sk->sk_write_space = sk_stream_write_space;
 416	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
 417
 418	icsk->icsk_sync_mss = tcp_sync_mss;
 419
 420	sk->sk_sndbuf = sysctl_tcp_wmem[1];
 421	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
 422
 423	local_bh_disable();
 424	if (mem_cgroup_sockets_enabled)
 425		sock_update_memcg(sk);
 426	sk_sockets_allocated_inc(sk);
 427	local_bh_enable();
 428}
 429EXPORT_SYMBOL(tcp_init_sock);
 430
 431static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 432{
 433	if (sk->sk_tsflags) {
 
 
 434		struct skb_shared_info *shinfo = skb_shinfo(skb);
 
 435
 436		sock_tx_timestamp(sk, &shinfo->tx_flags);
 437		if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
 
 
 438			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
 439	}
 440}
 441
 
 
 
 
 
 
 
 
 442/*
 443 *	Wait for a TCP event.
 444 *
 445 *	Note that we don't need to lock the socket, as the upper poll layers
 446 *	take care of normal races (between the test and the event) and we don't
 447 *	go look at any of the socket buffers directly.
 448 */
 449unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
 450{
 451	unsigned int mask;
 452	struct sock *sk = sock->sk;
 453	const struct tcp_sock *tp = tcp_sk(sk);
 454	int state;
 455
 456	sock_rps_record_flow(sk);
 457
 458	sock_poll_wait(file, sk_sleep(sk), wait);
 459
 460	state = sk_state_load(sk);
 461	if (state == TCP_LISTEN)
 462		return inet_csk_listen_poll(sk);
 463
 464	/* Socket is not locked. We are protected from async events
 465	 * by poll logic and correct handling of state changes
 466	 * made by other threads is impossible in any case.
 467	 */
 468
 469	mask = 0;
 470
 471	/*
 472	 * POLLHUP is certainly not done right. But poll() doesn't
 473	 * have a notion of HUP in just one direction, and for a
 474	 * socket the read side is more interesting.
 475	 *
 476	 * Some poll() documentation says that POLLHUP is incompatible
 477	 * with the POLLOUT/POLLWR flags, so somebody should check this
 478	 * all. But careful, it tends to be safer to return too many
 479	 * bits than too few, and you can easily break real applications
 480	 * if you don't tell them that something has hung up!
 481	 *
 482	 * Check-me.
 483	 *
 484	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
 485	 * our fs/select.c). It means that after we received EOF,
 486	 * poll always returns immediately, making impossible poll() on write()
 487	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
 488	 * if and only if shutdown has been made in both directions.
 489	 * Actually, it is interesting to look how Solaris and DUX
 490	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
 491	 * then we could set it on SND_SHUTDOWN. BTW examples given
 492	 * in Stevens' books assume exactly this behaviour, it explains
 493	 * why POLLHUP is incompatible with POLLOUT.	--ANK
 494	 *
 495	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
 496	 * blocking on fresh not-connected or disconnected socket. --ANK
 497	 */
 498	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
 499		mask |= POLLHUP;
 500	if (sk->sk_shutdown & RCV_SHUTDOWN)
 501		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
 502
 503	/* Connected or passive Fast Open socket? */
 504	if (state != TCP_SYN_SENT &&
 505	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
 506		int target = sock_rcvlowat(sk, 0, INT_MAX);
 507
 508		if (tp->urg_seq == tp->copied_seq &&
 509		    !sock_flag(sk, SOCK_URGINLINE) &&
 510		    tp->urg_data)
 511			target++;
 512
 513		if (tp->rcv_nxt - tp->copied_seq >= target)
 514			mask |= POLLIN | POLLRDNORM;
 515
 516		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
 517			if (sk_stream_is_writeable(sk)) {
 518				mask |= POLLOUT | POLLWRNORM;
 519			} else {  /* send SIGIO later */
 520				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 521				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 522
 523				/* Race breaker. If space is freed after
 524				 * wspace test but before the flags are set,
 525				 * IO signal will be lost. Memory barrier
 526				 * pairs with the input side.
 527				 */
 528				smp_mb__after_atomic();
 529				if (sk_stream_is_writeable(sk))
 530					mask |= POLLOUT | POLLWRNORM;
 531			}
 532		} else
 533			mask |= POLLOUT | POLLWRNORM;
 534
 535		if (tp->urg_data & TCP_URG_VALID)
 536			mask |= POLLPRI;
 
 
 
 
 
 
 537	}
 538	/* This barrier is coupled with smp_wmb() in tcp_reset() */
 539	smp_rmb();
 540	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
 541		mask |= POLLERR;
 542
 543	return mask;
 544}
 545EXPORT_SYMBOL(tcp_poll);
 546
 547int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
 548{
 549	struct tcp_sock *tp = tcp_sk(sk);
 550	int answ;
 551	bool slow;
 552
 553	switch (cmd) {
 554	case SIOCINQ:
 555		if (sk->sk_state == TCP_LISTEN)
 556			return -EINVAL;
 557
 558		slow = lock_sock_fast(sk);
 559		answ = tcp_inq(sk);
 560		unlock_sock_fast(sk, slow);
 561		break;
 562	case SIOCATMARK:
 563		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
 564		break;
 565	case SIOCOUTQ:
 566		if (sk->sk_state == TCP_LISTEN)
 567			return -EINVAL;
 568
 569		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 570			answ = 0;
 571		else
 572			answ = tp->write_seq - tp->snd_una;
 573		break;
 574	case SIOCOUTQNSD:
 575		if (sk->sk_state == TCP_LISTEN)
 576			return -EINVAL;
 577
 578		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 579			answ = 0;
 580		else
 581			answ = tp->write_seq - tp->snd_nxt;
 582		break;
 583	default:
 584		return -ENOIOCTLCMD;
 585	}
 586
 587	return put_user(answ, (int __user *)arg);
 588}
 589EXPORT_SYMBOL(tcp_ioctl);
 590
 591static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
 592{
 593	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
 594	tp->pushed_seq = tp->write_seq;
 595}
 596
 597static inline bool forced_push(const struct tcp_sock *tp)
 598{
 599	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
 600}
 601
 602static void skb_entail(struct sock *sk, struct sk_buff *skb)
 603{
 604	struct tcp_sock *tp = tcp_sk(sk);
 605	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 606
 607	skb->csum    = 0;
 608	tcb->seq     = tcb->end_seq = tp->write_seq;
 609	tcb->tcp_flags = TCPHDR_ACK;
 610	tcb->sacked  = 0;
 611	__skb_header_release(skb);
 612	tcp_add_write_queue_tail(sk, skb);
 613	sk->sk_wmem_queued += skb->truesize;
 614	sk_mem_charge(sk, skb->truesize);
 615	if (tp->nonagle & TCP_NAGLE_PUSH)
 616		tp->nonagle &= ~TCP_NAGLE_PUSH;
 617
 618	tcp_slow_start_after_idle_check(sk);
 619}
 620
 621static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
 622{
 623	if (flags & MSG_OOB)
 624		tp->snd_up = tp->write_seq;
 625}
 626
 627/* If a not yet filled skb is pushed, do not send it if
 628 * we have data packets in Qdisc or NIC queues :
 629 * Because TX completion will happen shortly, it gives a chance
 630 * to coalesce future sendmsg() payload into this skb, without
 631 * need for a timer, and with no latency trade off.
 632 * As packets containing data payload have a bigger truesize
 633 * than pure acks (dataless) packets, the last checks prevent
 634 * autocorking if we only have an ACK in Qdisc/NIC queues,
 635 * or if TX completion was delayed after we processed ACK packet.
 636 */
 637static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
 638				int size_goal)
 639{
 640	return skb->len < size_goal &&
 641	       sysctl_tcp_autocorking &&
 642	       skb != tcp_write_queue_head(sk) &&
 643	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
 644}
 645
 646static void tcp_push(struct sock *sk, int flags, int mss_now,
 647		     int nonagle, int size_goal)
 648{
 649	struct tcp_sock *tp = tcp_sk(sk);
 650	struct sk_buff *skb;
 651
 652	if (!tcp_send_head(sk))
 
 653		return;
 654
 655	skb = tcp_write_queue_tail(sk);
 656	if (!(flags & MSG_MORE) || forced_push(tp))
 657		tcp_mark_push(tp, skb);
 658
 659	tcp_mark_urg(tp, flags);
 660
 661	if (tcp_should_autocork(sk, skb, size_goal)) {
 662
 663		/* avoid atomic op if TSQ_THROTTLED bit is already set */
 664		if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
 665			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
 666			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
 667		}
 668		/* It is possible TX completion already happened
 669		 * before we set TSQ_THROTTLED.
 670		 */
 671		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
 672			return;
 673	}
 674
 675	if (flags & MSG_MORE)
 676		nonagle = TCP_NAGLE_CORK;
 677
 678	__tcp_push_pending_frames(sk, mss_now, nonagle);
 679}
 680
 681static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
 682				unsigned int offset, size_t len)
 683{
 684	struct tcp_splice_state *tss = rd_desc->arg.data;
 685	int ret;
 686
 687	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
 688			      min(rd_desc->count, len), tss->flags,
 689			      skb_socket_splice);
 690	if (ret > 0)
 691		rd_desc->count -= ret;
 692	return ret;
 693}
 694
 695static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
 696{
 697	/* Store TCP splice context information in read_descriptor_t. */
 698	read_descriptor_t rd_desc = {
 699		.arg.data = tss,
 700		.count	  = tss->len,
 701	};
 702
 703	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
 704}
 705
 706/**
 707 *  tcp_splice_read - splice data from TCP socket to a pipe
 708 * @sock:	socket to splice from
 709 * @ppos:	position (not valid)
 710 * @pipe:	pipe to splice to
 711 * @len:	number of bytes to splice
 712 * @flags:	splice modifier flags
 713 *
 714 * Description:
 715 *    Will read pages from given socket and fill them into a pipe.
 716 *
 717 **/
 718ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
 719			struct pipe_inode_info *pipe, size_t len,
 720			unsigned int flags)
 721{
 722	struct sock *sk = sock->sk;
 723	struct tcp_splice_state tss = {
 724		.pipe = pipe,
 725		.len = len,
 726		.flags = flags,
 727	};
 728	long timeo;
 729	ssize_t spliced;
 730	int ret;
 731
 732	sock_rps_record_flow(sk);
 733	/*
 734	 * We can't seek on a socket input
 735	 */
 736	if (unlikely(*ppos))
 737		return -ESPIPE;
 738
 739	ret = spliced = 0;
 740
 741	lock_sock(sk);
 742
 743	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
 744	while (tss.len) {
 745		ret = __tcp_splice_read(sk, &tss);
 746		if (ret < 0)
 747			break;
 748		else if (!ret) {
 749			if (spliced)
 750				break;
 751			if (sock_flag(sk, SOCK_DONE))
 752				break;
 753			if (sk->sk_err) {
 754				ret = sock_error(sk);
 755				break;
 756			}
 757			if (sk->sk_shutdown & RCV_SHUTDOWN)
 758				break;
 759			if (sk->sk_state == TCP_CLOSE) {
 760				/*
 761				 * This occurs when user tries to read
 762				 * from never connected socket.
 763				 */
 764				if (!sock_flag(sk, SOCK_DONE))
 765					ret = -ENOTCONN;
 766				break;
 767			}
 768			if (!timeo) {
 769				ret = -EAGAIN;
 770				break;
 771			}
 
 
 
 
 
 
 772			sk_wait_data(sk, &timeo, NULL);
 773			if (signal_pending(current)) {
 774				ret = sock_intr_errno(timeo);
 775				break;
 776			}
 777			continue;
 778		}
 779		tss.len -= ret;
 780		spliced += ret;
 781
 782		if (!timeo)
 783			break;
 784		release_sock(sk);
 785		lock_sock(sk);
 786
 787		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
 788		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 789		    signal_pending(current))
 790			break;
 791	}
 792
 793	release_sock(sk);
 794
 795	if (spliced)
 796		return spliced;
 797
 798	return ret;
 799}
 800EXPORT_SYMBOL(tcp_splice_read);
 801
 802struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
 803				    bool force_schedule)
 804{
 805	struct sk_buff *skb;
 806
 807	/* The TCP header must be at least 32-bit aligned.  */
 808	size = ALIGN(size, 4);
 809
 810	if (unlikely(tcp_under_memory_pressure(sk)))
 811		sk_mem_reclaim_partial(sk);
 812
 813	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
 814	if (likely(skb)) {
 815		bool mem_scheduled;
 816
 817		if (force_schedule) {
 818			mem_scheduled = true;
 819			sk_forced_mem_schedule(sk, skb->truesize);
 820		} else {
 821			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
 822		}
 823		if (likely(mem_scheduled)) {
 824			skb_reserve(skb, sk->sk_prot->max_header);
 825			/*
 826			 * Make sure that we have exactly size bytes
 827			 * available to the caller, no more, no less.
 828			 */
 829			skb->reserved_tailroom = skb->end - skb->tail - size;
 
 830			return skb;
 831		}
 832		__kfree_skb(skb);
 833	} else {
 834		sk->sk_prot->enter_memory_pressure(sk);
 835		sk_stream_moderate_sndbuf(sk);
 836	}
 837	return NULL;
 838}
 839
 840static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
 841				       int large_allowed)
 842{
 843	struct tcp_sock *tp = tcp_sk(sk);
 844	u32 new_size_goal, size_goal;
 845
 846	if (!large_allowed || !sk_can_gso(sk))
 847		return mss_now;
 848
 849	/* Note : tcp_tso_autosize() will eventually split this later */
 850	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
 851	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
 852
 853	/* We try hard to avoid divides here */
 854	size_goal = tp->gso_segs * mss_now;
 855	if (unlikely(new_size_goal < size_goal ||
 856		     new_size_goal >= size_goal + mss_now)) {
 857		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
 858				     sk->sk_gso_max_segs);
 859		size_goal = tp->gso_segs * mss_now;
 860	}
 861
 862	return max(size_goal, mss_now);
 863}
 864
 865static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
 866{
 867	int mss_now;
 868
 869	mss_now = tcp_current_mss(sk);
 870	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
 871
 872	return mss_now;
 873}
 874
 875static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 876				size_t size, int flags)
 877{
 878	struct tcp_sock *tp = tcp_sk(sk);
 879	int mss_now, size_goal;
 880	int err;
 881	ssize_t copied;
 882	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 883
 884	/* Wait for a connection to finish. One exception is TCP Fast Open
 885	 * (passive side) where data is allowed to be sent before a connection
 886	 * is fully established.
 887	 */
 888	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
 889	    !tcp_passive_fastopen(sk)) {
 890		err = sk_stream_wait_connect(sk, &timeo);
 891		if (err != 0)
 892			goto out_err;
 893	}
 894
 895	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 896
 897	mss_now = tcp_send_mss(sk, &size_goal, flags);
 898	copied = 0;
 899
 900	err = -EPIPE;
 901	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
 902		goto out_err;
 903
 904	while (size > 0) {
 905		struct sk_buff *skb = tcp_write_queue_tail(sk);
 906		int copy, i;
 907		bool can_coalesce;
 908
 909		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
 
 910new_segment:
 911			if (!sk_stream_memory_free(sk))
 912				goto wait_for_sndbuf;
 913
 914			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
 915						  skb_queue_empty(&sk->sk_write_queue));
 916			if (!skb)
 917				goto wait_for_memory;
 918
 919			skb_entail(sk, skb);
 920			copy = size_goal;
 921		}
 922
 923		if (copy > size)
 924			copy = size;
 925
 926		i = skb_shinfo(skb)->nr_frags;
 927		can_coalesce = skb_can_coalesce(skb, i, page, offset);
 928		if (!can_coalesce && i >= sysctl_max_skb_frags) {
 929			tcp_mark_push(tp, skb);
 930			goto new_segment;
 931		}
 932		if (!sk_wmem_schedule(sk, copy))
 933			goto wait_for_memory;
 934
 935		if (can_coalesce) {
 936			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
 937		} else {
 938			get_page(page);
 939			skb_fill_page_desc(skb, i, page, offset, copy);
 940		}
 941		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
 
 
 942
 943		skb->len += copy;
 944		skb->data_len += copy;
 945		skb->truesize += copy;
 946		sk->sk_wmem_queued += copy;
 947		sk_mem_charge(sk, copy);
 948		skb->ip_summed = CHECKSUM_PARTIAL;
 949		tp->write_seq += copy;
 950		TCP_SKB_CB(skb)->end_seq += copy;
 951		tcp_skb_pcount_set(skb, 0);
 952
 953		if (!copied)
 954			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
 955
 956		copied += copy;
 957		offset += copy;
 958		size -= copy;
 959		if (!size) {
 960			tcp_tx_timestamp(sk, skb);
 961			goto out;
 962		}
 963
 964		if (skb->len < size_goal || (flags & MSG_OOB))
 965			continue;
 966
 967		if (forced_push(tp)) {
 968			tcp_mark_push(tp, skb);
 969			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
 970		} else if (skb == tcp_send_head(sk))
 971			tcp_push_one(sk, mss_now);
 972		continue;
 973
 974wait_for_sndbuf:
 975		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 976wait_for_memory:
 977		tcp_push(sk, flags & ~MSG_MORE, mss_now,
 978			 TCP_NAGLE_PUSH, size_goal);
 979
 980		err = sk_stream_wait_memory(sk, &timeo);
 981		if (err != 0)
 982			goto do_error;
 983
 984		mss_now = tcp_send_mss(sk, &size_goal, flags);
 985	}
 986
 987out:
 988	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
 989		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
 
 
 
 990	return copied;
 991
 992do_error:
 993	if (copied)
 994		goto out;
 995out_err:
 996	/* make sure we wake any epoll edge trigger waiter */
 997	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
 
 998		sk->sk_write_space(sk);
 
 
 999	return sk_stream_error(sk, flags, err);
1000}
 
 
 
 
 
 
 
 
 
 
 
 
 
1001
1002int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1003		 size_t size, int flags)
1004{
1005	ssize_t res;
1006
1007	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1008	    !sk_check_csum_caps(sk))
1009		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1010					flags);
1011
1012	lock_sock(sk);
1013	res = do_tcp_sendpages(sk, page, offset, size, flags);
1014	release_sock(sk);
1015	return res;
 
1016}
1017EXPORT_SYMBOL(tcp_sendpage);
1018
1019static inline int select_size(const struct sock *sk, bool sg)
 
 
 
 
 
 
 
 
 
 
1020{
1021	const struct tcp_sock *tp = tcp_sk(sk);
1022	int tmp = tp->mss_cache;
 
 
1023
1024	if (sg) {
1025		if (sk_can_gso(sk)) {
1026			/* Small frames wont use a full page:
1027			 * Payload will immediately follow tcp header.
1028			 */
1029			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1030		} else {
1031			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1032
1033			if (tmp >= pgbreak &&
1034			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1035				tmp = pgbreak;
1036		}
1037	}
1038
1039	return tmp;
1040}
1041
1042void tcp_free_fastopen_req(struct tcp_sock *tp)
1043{
1044	if (tp->fastopen_req) {
1045		kfree(tp->fastopen_req);
1046		tp->fastopen_req = NULL;
1047	}
1048}
1049
1050static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1051				int *copied, size_t size)
1052{
1053	struct tcp_sock *tp = tcp_sk(sk);
 
 
1054	int err, flags;
1055
1056	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
 
 
1057		return -EOPNOTSUPP;
1058	if (tp->fastopen_req)
1059		return -EALREADY; /* Another Fast Open is in progress */
1060
1061	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1062				   sk->sk_allocation);
1063	if (unlikely(!tp->fastopen_req))
1064		return -ENOBUFS;
1065	tp->fastopen_req->data = msg;
1066	tp->fastopen_req->size = size;
1067
 
 
 
 
 
 
 
 
 
1068	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1069	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1070				    msg->msg_namelen, flags);
1071	*copied = tp->fastopen_req->copied;
1072	tcp_free_fastopen_req(tp);
 
 
 
 
 
 
1073	return err;
1074}
1075
1076int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1077{
1078	struct tcp_sock *tp = tcp_sk(sk);
 
1079	struct sk_buff *skb;
 
1080	int flags, err, copied = 0;
1081	int mss_now = 0, size_goal, copied_syn = 0;
1082	bool sg;
 
1083	long timeo;
1084
1085	lock_sock(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086
1087	flags = msg->msg_flags;
1088	if (flags & MSG_FASTOPEN) {
1089		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1090		if (err == -EINPROGRESS && copied_syn > 0)
1091			goto out;
1092		else if (err)
1093			goto out_err;
1094	}
1095
1096	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1097
 
 
1098	/* Wait for a connection to finish. One exception is TCP Fast Open
1099	 * (passive side) where data is allowed to be sent before a connection
1100	 * is fully established.
1101	 */
1102	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1103	    !tcp_passive_fastopen(sk)) {
1104		err = sk_stream_wait_connect(sk, &timeo);
1105		if (err != 0)
1106			goto do_error;
1107	}
1108
1109	if (unlikely(tp->repair)) {
1110		if (tp->repair_queue == TCP_RECV_QUEUE) {
1111			copied = tcp_send_rcvq(sk, msg, size);
1112			goto out_nopush;
1113		}
1114
1115		err = -EINVAL;
1116		if (tp->repair_queue == TCP_NO_QUEUE)
1117			goto out_err;
1118
1119		/* 'common' sending to sendq */
1120	}
1121
 
 
 
 
 
 
 
 
 
1122	/* This should be in poll */
1123	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1124
1125	mss_now = tcp_send_mss(sk, &size_goal, flags);
1126
1127	/* Ok commence sending. */
1128	copied = 0;
1129
 
 
 
1130	err = -EPIPE;
1131	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1132		goto out_err;
1133
1134	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1135
1136	while (msg_data_left(msg)) {
1137		int copy = 0;
1138		int max = size_goal;
1139
1140		skb = tcp_write_queue_tail(sk);
1141		if (tcp_send_head(sk)) {
1142			if (skb->ip_summed == CHECKSUM_NONE)
1143				max = mss_now;
1144			copy = max - skb->len;
1145		}
 
1146
1147		if (copy <= 0) {
1148new_segment:
1149			/* Allocate new segment. If the interface is SG,
1150			 * allocate skb fitting to single page.
1151			 */
1152			if (!sk_stream_memory_free(sk))
1153				goto wait_for_sndbuf;
1154
1155			skb = sk_stream_alloc_skb(sk,
1156						  select_size(sk, sg),
1157						  sk->sk_allocation,
1158						  skb_queue_empty(&sk->sk_write_queue));
 
 
 
 
1159			if (!skb)
1160				goto wait_for_memory;
1161
1162			/*
1163			 * Check whether we can use HW checksum.
1164			 */
1165			if (sk_check_csum_caps(sk))
1166				skb->ip_summed = CHECKSUM_PARTIAL;
1167
1168			skb_entail(sk, skb);
1169			copy = size_goal;
1170			max = size_goal;
1171
1172			/* All packets are restored as if they have
1173			 * already been sent. skb_mstamp isn't set to
1174			 * avoid wrong rtt estimation.
1175			 */
1176			if (tp->repair)
1177				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1178		}
1179
1180		/* Try to append data to the end of skb. */
1181		if (copy > msg_data_left(msg))
1182			copy = msg_data_left(msg);
1183
1184		/* Where to copy to? */
1185		if (skb_availroom(skb) > 0) {
1186			/* We have some space in skb head. Superb! */
1187			copy = min_t(int, copy, skb_availroom(skb));
1188			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1189			if (err)
1190				goto do_fault;
1191		} else {
1192			bool merge = true;
1193			int i = skb_shinfo(skb)->nr_frags;
1194			struct page_frag *pfrag = sk_page_frag(sk);
1195
1196			if (!sk_page_frag_refill(sk, pfrag))
1197				goto wait_for_memory;
1198
1199			if (!skb_can_coalesce(skb, i, pfrag->page,
1200					      pfrag->offset)) {
1201				if (i == sysctl_max_skb_frags || !sg) {
1202					tcp_mark_push(tp, skb);
1203					goto new_segment;
1204				}
1205				merge = false;
1206			}
1207
1208			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1209
1210			if (!sk_wmem_schedule(sk, copy))
1211				goto wait_for_memory;
1212
1213			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1214						       pfrag->page,
1215						       pfrag->offset,
1216						       copy);
1217			if (err)
1218				goto do_error;
1219
1220			/* Update the skb. */
1221			if (merge) {
1222				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1223			} else {
1224				skb_fill_page_desc(skb, i, pfrag->page,
1225						   pfrag->offset, copy);
1226				get_page(pfrag->page);
1227			}
1228			pfrag->offset += copy;
 
 
 
 
 
 
 
 
 
1229		}
1230
1231		if (!copied)
1232			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1233
1234		tp->write_seq += copy;
1235		TCP_SKB_CB(skb)->end_seq += copy;
1236		tcp_skb_pcount_set(skb, 0);
1237
1238		copied += copy;
1239		if (!msg_data_left(msg)) {
1240			tcp_tx_timestamp(sk, skb);
 
1241			goto out;
1242		}
1243
1244		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1245			continue;
1246
1247		if (forced_push(tp)) {
1248			tcp_mark_push(tp, skb);
1249			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1250		} else if (skb == tcp_send_head(sk))
1251			tcp_push_one(sk, mss_now);
1252		continue;
1253
1254wait_for_sndbuf:
1255		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1256wait_for_memory:
1257		if (copied)
1258			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1259				 TCP_NAGLE_PUSH, size_goal);
1260
1261		err = sk_stream_wait_memory(sk, &timeo);
1262		if (err != 0)
1263			goto do_error;
1264
1265		mss_now = tcp_send_mss(sk, &size_goal, flags);
1266	}
1267
1268out:
1269	if (copied)
 
1270		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
 
1271out_nopush:
1272	release_sock(sk);
1273	return copied + copied_syn;
1274
1275do_fault:
1276	if (!skb->len) {
1277		tcp_unlink_write_queue(skb, sk);
1278		/* It is the one place in all of TCP, except connection
1279		 * reset, where we can be unlinking the send_head.
1280		 */
1281		tcp_check_send_head(sk, skb);
1282		sk_wmem_free_skb(sk, skb);
1283	}
1284
1285do_error:
1286	if (copied + copied_syn)
1287		goto out;
1288out_err:
 
1289	err = sk_stream_error(sk, flags, err);
1290	/* make sure we wake any epoll edge trigger waiter */
1291	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
 
1292		sk->sk_write_space(sk);
 
 
 
 
 
 
 
 
 
 
 
 
1293	release_sock(sk);
1294	return err;
 
1295}
1296EXPORT_SYMBOL(tcp_sendmsg);
1297
1298/*
1299 *	Handle reading urgent data. BSD has very simple semantics for
1300 *	this, no blocking and very strange errors 8)
1301 */
1302
1303static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1304{
1305	struct tcp_sock *tp = tcp_sk(sk);
1306
1307	/* No URG data to read. */
1308	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1309	    tp->urg_data == TCP_URG_READ)
1310		return -EINVAL;	/* Yes this is right ! */
1311
1312	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1313		return -ENOTCONN;
1314
1315	if (tp->urg_data & TCP_URG_VALID) {
1316		int err = 0;
1317		char c = tp->urg_data;
1318
1319		if (!(flags & MSG_PEEK))
1320			tp->urg_data = TCP_URG_READ;
1321
1322		/* Read urgent data. */
1323		msg->msg_flags |= MSG_OOB;
1324
1325		if (len > 0) {
1326			if (!(flags & MSG_TRUNC))
1327				err = memcpy_to_msg(msg, &c, 1);
1328			len = 1;
1329		} else
1330			msg->msg_flags |= MSG_TRUNC;
1331
1332		return err ? -EFAULT : len;
1333	}
1334
1335	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1336		return 0;
1337
1338	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1339	 * the available implementations agree in this case:
1340	 * this call should never block, independent of the
1341	 * blocking state of the socket.
1342	 * Mike <pall@rz.uni-karlsruhe.de>
1343	 */
1344	return -EAGAIN;
1345}
1346
1347static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1348{
1349	struct sk_buff *skb;
1350	int copied = 0, err = 0;
1351
1352	/* XXX -- need to support SO_PEEK_OFF */
1353
 
 
 
 
 
 
 
1354	skb_queue_walk(&sk->sk_write_queue, skb) {
1355		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1356		if (err)
1357			break;
1358
1359		copied += skb->len;
1360	}
1361
1362	return err ?: copied;
1363}
1364
1365/* Clean up the receive buffer for full frames taken by the user,
1366 * then send an ACK if necessary.  COPIED is the number of bytes
1367 * tcp_recvmsg has given to the user so far, it speeds up the
1368 * calculation of whether or not we must ACK for the sake of
1369 * a window update.
1370 */
1371static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1372{
1373	struct tcp_sock *tp = tcp_sk(sk);
1374	bool time_to_ack = false;
1375
1376	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1377
1378	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1379	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1380	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1381
1382	if (inet_csk_ack_scheduled(sk)) {
1383		const struct inet_connection_sock *icsk = inet_csk(sk);
1384		   /* Delayed ACKs frequently hit locked sockets during bulk
1385		    * receive. */
1386		if (icsk->icsk_ack.blocked ||
1387		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1388		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1389		    /*
1390		     * If this read emptied read buffer, we send ACK, if
1391		     * connection is not bidirectional, user drained
1392		     * receive buffer and there was a small segment
1393		     * in queue.
1394		     */
1395		    (copied > 0 &&
1396		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1397		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1398		       !icsk->icsk_ack.pingpong)) &&
1399		      !atomic_read(&sk->sk_rmem_alloc)))
1400			time_to_ack = true;
1401	}
1402
1403	/* We send an ACK if we can now advertise a non-zero window
1404	 * which has been raised "significantly".
1405	 *
1406	 * Even if window raised up to infinity, do not send window open ACK
1407	 * in states, where we will not receive more. It is useless.
1408	 */
1409	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1410		__u32 rcv_window_now = tcp_receive_window(tp);
1411
1412		/* Optimize, __tcp_select_window() is not cheap. */
1413		if (2*rcv_window_now <= tp->window_clamp) {
1414			__u32 new_window = __tcp_select_window(sk);
1415
1416			/* Send ACK now, if this read freed lots of space
1417			 * in our buffer. Certainly, new_window is new window.
1418			 * We can advertise it now, if it is not less than current one.
1419			 * "Lots" means "at least twice" here.
1420			 */
1421			if (new_window && new_window >= 2 * rcv_window_now)
1422				time_to_ack = true;
1423		}
1424	}
1425	if (time_to_ack)
1426		tcp_send_ack(sk);
1427}
1428
1429static void tcp_prequeue_process(struct sock *sk)
1430{
1431	struct sk_buff *skb;
1432	struct tcp_sock *tp = tcp_sk(sk);
1433
1434	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1435
1436	/* RX process wants to run with disabled BHs, though it is not
1437	 * necessary */
1438	local_bh_disable();
1439	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1440		sk_backlog_rcv(sk, skb);
1441	local_bh_enable();
1442
1443	/* Clear memory counter. */
1444	tp->ucopy.memory = 0;
1445}
1446
1447static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1448{
1449	struct sk_buff *skb;
1450	u32 offset;
1451
1452	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1453		offset = seq - TCP_SKB_CB(skb)->seq;
1454		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1455			pr_err_once("%s: found a SYN, please report !\n", __func__);
1456			offset--;
1457		}
1458		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1459			*off = offset;
1460			return skb;
1461		}
1462		/* This looks weird, but this can happen if TCP collapsing
1463		 * splitted a fat GRO packet, while we released socket lock
1464		 * in skb_splice_bits()
1465		 */
1466		sk_eat_skb(sk, skb);
1467	}
1468	return NULL;
1469}
1470
1471/*
1472 * This routine provides an alternative to tcp_recvmsg() for routines
1473 * that would like to handle copying from skbuffs directly in 'sendfile'
1474 * fashion.
1475 * Note:
1476 *	- It is assumed that the socket was locked by the caller.
1477 *	- The routine does not block.
1478 *	- At present, there is no support for reading OOB data
1479 *	  or for 'peeking' the socket using this routine
1480 *	  (although both would be easy to implement).
1481 */
1482int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1483		  sk_read_actor_t recv_actor)
1484{
1485	struct sk_buff *skb;
1486	struct tcp_sock *tp = tcp_sk(sk);
1487	u32 seq = tp->copied_seq;
1488	u32 offset;
1489	int copied = 0;
1490
1491	if (sk->sk_state == TCP_LISTEN)
1492		return -ENOTCONN;
1493	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1494		if (offset < skb->len) {
1495			int used;
1496			size_t len;
1497
1498			len = skb->len - offset;
1499			/* Stop reading if we hit a patch of urgent data */
1500			if (tp->urg_data) {
1501				u32 urg_offset = tp->urg_seq - seq;
1502				if (urg_offset < len)
1503					len = urg_offset;
1504				if (!len)
1505					break;
1506			}
1507			used = recv_actor(desc, skb, offset, len);
1508			if (used <= 0) {
1509				if (!copied)
1510					copied = used;
1511				break;
1512			} else if (used <= len) {
1513				seq += used;
1514				copied += used;
1515				offset += used;
1516			}
1517			/* If recv_actor drops the lock (e.g. TCP splice
1518			 * receive) the skb pointer might be invalid when
1519			 * getting here: tcp_collapse might have deleted it
1520			 * while aggregating skbs from the socket queue.
1521			 */
1522			skb = tcp_recv_skb(sk, seq - 1, &offset);
1523			if (!skb)
1524				break;
1525			/* TCP coalescing might have appended data to the skb.
1526			 * Try to splice more frags
1527			 */
1528			if (offset + 1 != skb->len)
1529				continue;
1530		}
1531		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1532			sk_eat_skb(sk, skb);
1533			++seq;
1534			break;
1535		}
1536		sk_eat_skb(sk, skb);
1537		if (!desc->count)
1538			break;
1539		tp->copied_seq = seq;
1540	}
1541	tp->copied_seq = seq;
1542
1543	tcp_rcv_space_adjust(sk);
1544
1545	/* Clean up data we have read: This will do ACK frames. */
1546	if (copied > 0) {
1547		tcp_recv_skb(sk, seq, &offset);
1548		tcp_cleanup_rbuf(sk, copied);
1549	}
1550	return copied;
1551}
1552EXPORT_SYMBOL(tcp_read_sock);
1553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554/*
1555 *	This routine copies from a sock struct into the user buffer.
1556 *
1557 *	Technical note: in 2.3 we work on _locked_ socket, so that
1558 *	tricks with *seq access order and skb->users are not required.
1559 *	Probably, code can be easily improved even more.
1560 */
1561
1562int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1563		int flags, int *addr_len)
1564{
1565	struct tcp_sock *tp = tcp_sk(sk);
1566	int copied = 0;
1567	u32 peek_seq;
1568	u32 *seq;
1569	unsigned long used;
1570	int err;
1571	int target;		/* Read at least this many bytes */
1572	long timeo;
1573	struct task_struct *user_recv = NULL;
1574	struct sk_buff *skb, *last;
1575	u32 urg_hole = 0;
 
 
1576
1577	if (unlikely(flags & MSG_ERRQUEUE))
1578		return inet_recv_error(sk, msg, len, addr_len);
1579
1580	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1581	    (sk->sk_state == TCP_ESTABLISHED))
1582		sk_busy_loop(sk, nonblock);
1583
1584	lock_sock(sk);
1585
1586	err = -ENOTCONN;
1587	if (sk->sk_state == TCP_LISTEN)
1588		goto out;
1589
1590	timeo = sock_rcvtimeo(sk, nonblock);
1591
1592	/* Urgent data needs to be handled specially. */
1593	if (flags & MSG_OOB)
1594		goto recv_urg;
1595
1596	if (unlikely(tp->repair)) {
1597		err = -EPERM;
1598		if (!(flags & MSG_PEEK))
1599			goto out;
1600
1601		if (tp->repair_queue == TCP_SEND_QUEUE)
1602			goto recv_sndq;
1603
1604		err = -EINVAL;
1605		if (tp->repair_queue == TCP_NO_QUEUE)
1606			goto out;
1607
1608		/* 'common' recv queue MSG_PEEK-ing */
1609	}
1610
1611	seq = &tp->copied_seq;
1612	if (flags & MSG_PEEK) {
1613		peek_seq = tp->copied_seq;
1614		seq = &peek_seq;
1615	}
1616
1617	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1618
1619	do {
1620		u32 offset;
1621
1622		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1623		if (tp->urg_data && tp->urg_seq == *seq) {
1624			if (copied)
1625				break;
1626			if (signal_pending(current)) {
1627				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1628				break;
1629			}
1630		}
1631
1632		/* Next get a buffer. */
1633
1634		last = skb_peek_tail(&sk->sk_receive_queue);
1635		skb_queue_walk(&sk->sk_receive_queue, skb) {
1636			last = skb;
1637			/* Now that we have two receive queues this
1638			 * shouldn't happen.
1639			 */
1640			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1641				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1642				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1643				 flags))
1644				break;
1645
1646			offset = *seq - TCP_SKB_CB(skb)->seq;
1647			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1648				pr_err_once("%s: found a SYN, please report !\n", __func__);
1649				offset--;
1650			}
1651			if (offset < skb->len)
1652				goto found_ok_skb;
1653			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1654				goto found_fin_ok;
1655			WARN(!(flags & MSG_PEEK),
1656			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1657			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1658		}
1659
1660		/* Well, if we have backlog, try to process it now yet. */
1661
1662		if (copied >= target && !sk->sk_backlog.tail)
1663			break;
1664
1665		if (copied) {
1666			if (sk->sk_err ||
1667			    sk->sk_state == TCP_CLOSE ||
1668			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1669			    !timeo ||
1670			    signal_pending(current))
1671				break;
1672		} else {
1673			if (sock_flag(sk, SOCK_DONE))
1674				break;
1675
1676			if (sk->sk_err) {
1677				copied = sock_error(sk);
1678				break;
1679			}
1680
1681			if (sk->sk_shutdown & RCV_SHUTDOWN)
1682				break;
1683
1684			if (sk->sk_state == TCP_CLOSE) {
1685				if (!sock_flag(sk, SOCK_DONE)) {
1686					/* This occurs when user tries to read
1687					 * from never connected socket.
1688					 */
1689					copied = -ENOTCONN;
1690					break;
1691				}
1692				break;
1693			}
1694
1695			if (!timeo) {
1696				copied = -EAGAIN;
1697				break;
1698			}
1699
1700			if (signal_pending(current)) {
1701				copied = sock_intr_errno(timeo);
1702				break;
1703			}
1704		}
1705
1706		tcp_cleanup_rbuf(sk, copied);
1707
1708		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1709			/* Install new reader */
1710			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1711				user_recv = current;
1712				tp->ucopy.task = user_recv;
1713				tp->ucopy.msg = msg;
1714			}
1715
1716			tp->ucopy.len = len;
1717
1718			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1719				!(flags & (MSG_PEEK | MSG_TRUNC)));
1720
1721			/* Ugly... If prequeue is not empty, we have to
1722			 * process it before releasing socket, otherwise
1723			 * order will be broken at second iteration.
1724			 * More elegant solution is required!!!
1725			 *
1726			 * Look: we have the following (pseudo)queues:
1727			 *
1728			 * 1. packets in flight
1729			 * 2. backlog
1730			 * 3. prequeue
1731			 * 4. receive_queue
1732			 *
1733			 * Each queue can be processed only if the next ones
1734			 * are empty. At this point we have empty receive_queue.
1735			 * But prequeue _can_ be not empty after 2nd iteration,
1736			 * when we jumped to start of loop because backlog
1737			 * processing added something to receive_queue.
1738			 * We cannot release_sock(), because backlog contains
1739			 * packets arrived _after_ prequeued ones.
1740			 *
1741			 * Shortly, algorithm is clear --- to process all
1742			 * the queues in order. We could make it more directly,
1743			 * requeueing packets from backlog to prequeue, if
1744			 * is not empty. It is more elegant, but eats cycles,
1745			 * unfortunately.
1746			 */
1747			if (!skb_queue_empty(&tp->ucopy.prequeue))
1748				goto do_prequeue;
1749
1750			/* __ Set realtime policy in scheduler __ */
1751		}
1752
1753		if (copied >= target) {
1754			/* Do not sleep, just process backlog. */
1755			release_sock(sk);
1756			lock_sock(sk);
1757		} else {
1758			sk_wait_data(sk, &timeo, last);
1759		}
1760
1761		if (user_recv) {
1762			int chunk;
1763
1764			/* __ Restore normal policy in scheduler __ */
1765
1766			chunk = len - tp->ucopy.len;
1767			if (chunk != 0) {
1768				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1769				len -= chunk;
1770				copied += chunk;
1771			}
1772
1773			if (tp->rcv_nxt == tp->copied_seq &&
1774			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1775do_prequeue:
1776				tcp_prequeue_process(sk);
1777
1778				chunk = len - tp->ucopy.len;
1779				if (chunk != 0) {
1780					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1781					len -= chunk;
1782					copied += chunk;
1783				}
1784			}
1785		}
1786		if ((flags & MSG_PEEK) &&
1787		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1788			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1789					    current->comm,
1790					    task_pid_nr(current));
1791			peek_seq = tp->copied_seq;
1792		}
1793		continue;
1794
1795	found_ok_skb:
1796		/* Ok so how much can we use? */
1797		used = skb->len - offset;
1798		if (len < used)
1799			used = len;
1800
1801		/* Do we have urgent data here? */
1802		if (tp->urg_data) {
1803			u32 urg_offset = tp->urg_seq - *seq;
1804			if (urg_offset < used) {
1805				if (!urg_offset) {
1806					if (!sock_flag(sk, SOCK_URGINLINE)) {
1807						++*seq;
1808						urg_hole++;
1809						offset++;
1810						used--;
1811						if (!used)
1812							goto skip_copy;
1813					}
1814				} else
1815					used = urg_offset;
1816			}
1817		}
1818
1819		if (!(flags & MSG_TRUNC)) {
1820			err = skb_copy_datagram_msg(skb, offset, msg, used);
1821			if (err) {
1822				/* Exception. Bailout! */
1823				if (!copied)
1824					copied = -EFAULT;
1825				break;
1826			}
1827		}
1828
1829		*seq += used;
1830		copied += used;
1831		len -= used;
1832
1833		tcp_rcv_space_adjust(sk);
1834
1835skip_copy:
1836		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1837			tp->urg_data = 0;
1838			tcp_fast_path_check(sk);
1839		}
1840		if (used + offset < skb->len)
1841			continue;
1842
 
 
 
 
1843		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1844			goto found_fin_ok;
1845		if (!(flags & MSG_PEEK))
1846			sk_eat_skb(sk, skb);
1847		continue;
1848
1849	found_fin_ok:
1850		/* Process the FIN. */
1851		++*seq;
1852		if (!(flags & MSG_PEEK))
1853			sk_eat_skb(sk, skb);
1854		break;
1855	} while (len > 0);
1856
1857	if (user_recv) {
1858		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1859			int chunk;
1860
1861			tp->ucopy.len = copied > 0 ? len : 0;
1862
1863			tcp_prequeue_process(sk);
1864
1865			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1866				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1867				len -= chunk;
1868				copied += chunk;
1869			}
1870		}
1871
1872		tp->ucopy.task = NULL;
1873		tp->ucopy.len = 0;
1874	}
1875
1876	/* According to UNIX98, msg_name/msg_namelen are ignored
1877	 * on connected socket. I was just happy when found this 8) --ANK
1878	 */
1879
 
 
 
1880	/* Clean up data we have read: This will do ACK frames. */
1881	tcp_cleanup_rbuf(sk, copied);
1882
1883	release_sock(sk);
1884	return copied;
1885
1886out:
1887	release_sock(sk);
1888	return err;
1889
1890recv_urg:
1891	err = tcp_recv_urg(sk, msg, len, flags);
1892	goto out;
1893
1894recv_sndq:
1895	err = tcp_peek_sndq(sk, msg, len);
1896	goto out;
1897}
1898EXPORT_SYMBOL(tcp_recvmsg);
1899
1900void tcp_set_state(struct sock *sk, int state)
1901{
1902	int oldstate = sk->sk_state;
1903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1904	switch (state) {
1905	case TCP_ESTABLISHED:
1906		if (oldstate != TCP_ESTABLISHED)
1907			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1908		break;
1909
1910	case TCP_CLOSE:
1911		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1912			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1913
1914		sk->sk_prot->unhash(sk);
1915		if (inet_csk(sk)->icsk_bind_hash &&
1916		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1917			inet_put_port(sk);
1918		/* fall through */
1919	default:
1920		if (oldstate == TCP_ESTABLISHED)
1921			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1922	}
1923
1924	/* Change state AFTER socket is unhashed to avoid closed
1925	 * socket sitting in hash tables.
1926	 */
1927	sk_state_store(sk, state);
1928
1929#ifdef STATE_TRACE
1930	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1931#endif
1932}
1933EXPORT_SYMBOL_GPL(tcp_set_state);
1934
1935/*
1936 *	State processing on a close. This implements the state shift for
1937 *	sending our FIN frame. Note that we only send a FIN for some
1938 *	states. A shutdown() may have already sent the FIN, or we may be
1939 *	closed.
1940 */
1941
1942static const unsigned char new_state[16] = {
1943  /* current state:        new state:      action:	*/
1944  [0 /* (Invalid) */]	= TCP_CLOSE,
1945  [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1946  [TCP_SYN_SENT]	= TCP_CLOSE,
1947  [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1948  [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
1949  [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
1950  [TCP_TIME_WAIT]	= TCP_CLOSE,
1951  [TCP_CLOSE]		= TCP_CLOSE,
1952  [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
1953  [TCP_LAST_ACK]	= TCP_LAST_ACK,
1954  [TCP_LISTEN]		= TCP_CLOSE,
1955  [TCP_CLOSING]		= TCP_CLOSING,
1956  [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
1957};
1958
1959static int tcp_close_state(struct sock *sk)
1960{
1961	int next = (int)new_state[sk->sk_state];
1962	int ns = next & TCP_STATE_MASK;
1963
1964	tcp_set_state(sk, ns);
1965
1966	return next & TCP_ACTION_FIN;
1967}
1968
1969/*
1970 *	Shutdown the sending side of a connection. Much like close except
1971 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1972 */
1973
1974void tcp_shutdown(struct sock *sk, int how)
1975{
1976	/*	We need to grab some memory, and put together a FIN,
1977	 *	and then put it into the queue to be sent.
1978	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1979	 */
1980	if (!(how & SEND_SHUTDOWN))
1981		return;
1982
1983	/* If we've already sent a FIN, or it's a closed state, skip this. */
1984	if ((1 << sk->sk_state) &
1985	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1986	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1987		/* Clear out any half completed packets.  FIN if needed. */
1988		if (tcp_close_state(sk))
1989			tcp_send_fin(sk);
1990	}
1991}
1992EXPORT_SYMBOL(tcp_shutdown);
1993
1994bool tcp_check_oom(struct sock *sk, int shift)
1995{
1996	bool too_many_orphans, out_of_socket_memory;
1997
1998	too_many_orphans = tcp_too_many_orphans(sk, shift);
1999	out_of_socket_memory = tcp_out_of_memory(sk);
2000
2001	if (too_many_orphans)
2002		net_info_ratelimited("too many orphaned sockets\n");
2003	if (out_of_socket_memory)
2004		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2005	return too_many_orphans || out_of_socket_memory;
2006}
2007
2008void tcp_close(struct sock *sk, long timeout)
2009{
2010	struct sk_buff *skb;
2011	int data_was_unread = 0;
2012	int state;
2013
2014	lock_sock(sk);
2015	sk->sk_shutdown = SHUTDOWN_MASK;
2016
2017	if (sk->sk_state == TCP_LISTEN) {
2018		tcp_set_state(sk, TCP_CLOSE);
2019
2020		/* Special case. */
2021		inet_csk_listen_stop(sk);
2022
2023		goto adjudge_to_death;
2024	}
2025
2026	/*  We need to flush the recv. buffs.  We do this only on the
2027	 *  descriptor close, not protocol-sourced closes, because the
2028	 *  reader process may not have drained the data yet!
2029	 */
2030	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2031		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2032
2033		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2034			len--;
2035		data_was_unread += len;
2036		__kfree_skb(skb);
2037	}
2038
2039	sk_mem_reclaim(sk);
2040
2041	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2042	if (sk->sk_state == TCP_CLOSE)
2043		goto adjudge_to_death;
2044
2045	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2046	 * data was lost. To witness the awful effects of the old behavior of
2047	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2048	 * GET in an FTP client, suspend the process, wait for the client to
2049	 * advertise a zero window, then kill -9 the FTP client, wheee...
2050	 * Note: timeout is always zero in such a case.
2051	 */
2052	if (unlikely(tcp_sk(sk)->repair)) {
2053		sk->sk_prot->disconnect(sk, 0);
2054	} else if (data_was_unread) {
2055		/* Unread data was tossed, zap the connection. */
2056		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2057		tcp_set_state(sk, TCP_CLOSE);
2058		tcp_send_active_reset(sk, sk->sk_allocation);
2059	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2060		/* Check zero linger _after_ checking for unread data. */
2061		sk->sk_prot->disconnect(sk, 0);
2062		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2063	} else if (tcp_close_state(sk)) {
2064		/* We FIN if the application ate all the data before
2065		 * zapping the connection.
2066		 */
2067
2068		/* RED-PEN. Formally speaking, we have broken TCP state
2069		 * machine. State transitions:
2070		 *
2071		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2072		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2073		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2074		 *
2075		 * are legal only when FIN has been sent (i.e. in window),
2076		 * rather than queued out of window. Purists blame.
2077		 *
2078		 * F.e. "RFC state" is ESTABLISHED,
2079		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2080		 *
2081		 * The visible declinations are that sometimes
2082		 * we enter time-wait state, when it is not required really
2083		 * (harmless), do not send active resets, when they are
2084		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2085		 * they look as CLOSING or LAST_ACK for Linux)
2086		 * Probably, I missed some more holelets.
2087		 * 						--ANK
2088		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2089		 * in a single packet! (May consider it later but will
2090		 * probably need API support or TCP_CORK SYN-ACK until
2091		 * data is written and socket is closed.)
2092		 */
2093		tcp_send_fin(sk);
2094	}
2095
2096	sk_stream_wait_close(sk, timeout);
2097
2098adjudge_to_death:
2099	state = sk->sk_state;
2100	sock_hold(sk);
2101	sock_orphan(sk);
2102
2103	/* It is the last release_sock in its life. It will remove backlog. */
2104	release_sock(sk);
2105
2106
2107	/* Now socket is owned by kernel and we acquire BH lock
2108	   to finish close. No need to check for user refs.
2109	 */
2110	local_bh_disable();
2111	bh_lock_sock(sk);
2112	WARN_ON(sock_owned_by_user(sk));
2113
2114	percpu_counter_inc(sk->sk_prot->orphan_count);
2115
2116	/* Have we already been destroyed by a softirq or backlog? */
2117	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2118		goto out;
2119
2120	/*	This is a (useful) BSD violating of the RFC. There is a
2121	 *	problem with TCP as specified in that the other end could
2122	 *	keep a socket open forever with no application left this end.
2123	 *	We use a 1 minute timeout (about the same as BSD) then kill
2124	 *	our end. If they send after that then tough - BUT: long enough
2125	 *	that we won't make the old 4*rto = almost no time - whoops
2126	 *	reset mistake.
2127	 *
2128	 *	Nope, it was not mistake. It is really desired behaviour
2129	 *	f.e. on http servers, when such sockets are useless, but
2130	 *	consume significant resources. Let's do it with special
2131	 *	linger2	option.					--ANK
2132	 */
2133
2134	if (sk->sk_state == TCP_FIN_WAIT2) {
2135		struct tcp_sock *tp = tcp_sk(sk);
2136		if (tp->linger2 < 0) {
2137			tcp_set_state(sk, TCP_CLOSE);
2138			tcp_send_active_reset(sk, GFP_ATOMIC);
2139			NET_INC_STATS_BH(sock_net(sk),
2140					LINUX_MIB_TCPABORTONLINGER);
2141		} else {
2142			const int tmo = tcp_fin_time(sk);
2143
2144			if (tmo > TCP_TIMEWAIT_LEN) {
2145				inet_csk_reset_keepalive_timer(sk,
2146						tmo - TCP_TIMEWAIT_LEN);
2147			} else {
2148				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2149				goto out;
2150			}
2151		}
2152	}
2153	if (sk->sk_state != TCP_CLOSE) {
2154		sk_mem_reclaim(sk);
2155		if (tcp_check_oom(sk, 0)) {
2156			tcp_set_state(sk, TCP_CLOSE);
2157			tcp_send_active_reset(sk, GFP_ATOMIC);
2158			NET_INC_STATS_BH(sock_net(sk),
2159					LINUX_MIB_TCPABORTONMEMORY);
 
 
 
2160		}
2161	}
2162
2163	if (sk->sk_state == TCP_CLOSE) {
2164		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2165		/* We could get here with a non-NULL req if the socket is
2166		 * aborted (e.g., closed with unread data) before 3WHS
2167		 * finishes.
2168		 */
2169		if (req)
2170			reqsk_fastopen_remove(sk, req, false);
2171		inet_csk_destroy_sock(sk);
2172	}
2173	/* Otherwise, socket is reprieved until protocol close. */
2174
2175out:
2176	bh_unlock_sock(sk);
2177	local_bh_enable();
2178	sock_put(sk);
2179}
2180EXPORT_SYMBOL(tcp_close);
2181
2182/* These states need RST on ABORT according to RFC793 */
2183
2184static inline bool tcp_need_reset(int state)
2185{
2186	return (1 << state) &
2187	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2188		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2189}
2190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2191int tcp_disconnect(struct sock *sk, int flags)
2192{
2193	struct inet_sock *inet = inet_sk(sk);
2194	struct inet_connection_sock *icsk = inet_csk(sk);
2195	struct tcp_sock *tp = tcp_sk(sk);
2196	int err = 0;
2197	int old_state = sk->sk_state;
2198
2199	if (old_state != TCP_CLOSE)
2200		tcp_set_state(sk, TCP_CLOSE);
2201
2202	/* ABORT function of RFC793 */
2203	if (old_state == TCP_LISTEN) {
2204		inet_csk_listen_stop(sk);
2205	} else if (unlikely(tp->repair)) {
2206		sk->sk_err = ECONNABORTED;
2207	} else if (tcp_need_reset(old_state) ||
2208		   (tp->snd_nxt != tp->write_seq &&
2209		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2210		/* The last check adjusts for discrepancy of Linux wrt. RFC
2211		 * states
2212		 */
2213		tcp_send_active_reset(sk, gfp_any());
2214		sk->sk_err = ECONNRESET;
2215	} else if (old_state == TCP_SYN_SENT)
2216		sk->sk_err = ECONNRESET;
2217
2218	tcp_clear_xmit_timers(sk);
2219	__skb_queue_purge(&sk->sk_receive_queue);
2220	tcp_write_queue_purge(sk);
2221	__skb_queue_purge(&tp->out_of_order_queue);
 
2222
2223	inet->inet_dport = 0;
2224
2225	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2226		inet_reset_saddr(sk);
2227
2228	sk->sk_shutdown = 0;
2229	sock_reset_flag(sk, SOCK_DONE);
2230	tp->srtt_us = 0;
2231	tp->write_seq += tp->max_window + 2;
2232	if (tp->write_seq == 0)
2233		tp->write_seq = 1;
2234	icsk->icsk_backoff = 0;
2235	tp->snd_cwnd = 2;
2236	icsk->icsk_probes_out = 0;
2237	tp->packets_out = 0;
2238	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2239	tp->snd_cwnd_cnt = 0;
2240	tp->window_clamp = 0;
2241	tcp_set_ca_state(sk, TCP_CA_Open);
 
2242	tcp_clear_retrans(tp);
2243	inet_csk_delack_init(sk);
2244	tcp_init_send_head(sk);
 
 
 
2245	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2246	__sk_dst_reset(sk);
 
 
 
 
 
 
 
2247
2248	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2249
 
 
 
 
 
 
2250	sk->sk_error_report(sk);
2251	return err;
2252}
2253EXPORT_SYMBOL(tcp_disconnect);
2254
2255static inline bool tcp_can_repair_sock(const struct sock *sk)
2256{
2257	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2258		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2259}
2260
2261static int tcp_repair_options_est(struct tcp_sock *tp,
2262		struct tcp_repair_opt __user *optbuf, unsigned int len)
2263{
 
2264	struct tcp_repair_opt opt;
2265
2266	while (len >= sizeof(opt)) {
2267		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2268			return -EFAULT;
2269
2270		optbuf++;
2271		len -= sizeof(opt);
2272
2273		switch (opt.opt_code) {
2274		case TCPOPT_MSS:
2275			tp->rx_opt.mss_clamp = opt.opt_val;
 
2276			break;
2277		case TCPOPT_WINDOW:
2278			{
2279				u16 snd_wscale = opt.opt_val & 0xFFFF;
2280				u16 rcv_wscale = opt.opt_val >> 16;
2281
2282				if (snd_wscale > 14 || rcv_wscale > 14)
2283					return -EFBIG;
2284
2285				tp->rx_opt.snd_wscale = snd_wscale;
2286				tp->rx_opt.rcv_wscale = rcv_wscale;
2287				tp->rx_opt.wscale_ok = 1;
2288			}
2289			break;
2290		case TCPOPT_SACK_PERM:
2291			if (opt.opt_val != 0)
2292				return -EINVAL;
2293
2294			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2295			if (sysctl_tcp_fack)
2296				tcp_enable_fack(tp);
2297			break;
2298		case TCPOPT_TIMESTAMP:
2299			if (opt.opt_val != 0)
2300				return -EINVAL;
2301
2302			tp->rx_opt.tstamp_ok = 1;
2303			break;
2304		}
2305	}
2306
2307	return 0;
2308}
2309
2310/*
2311 *	Socket option code for TCP.
2312 */
2313static int do_tcp_setsockopt(struct sock *sk, int level,
2314		int optname, char __user *optval, unsigned int optlen)
2315{
2316	struct tcp_sock *tp = tcp_sk(sk);
2317	struct inet_connection_sock *icsk = inet_csk(sk);
2318	struct net *net = sock_net(sk);
2319	int val;
2320	int err = 0;
2321
2322	/* These are data/string values, all the others are ints */
2323	switch (optname) {
2324	case TCP_CONGESTION: {
2325		char name[TCP_CA_NAME_MAX];
2326
2327		if (optlen < 1)
2328			return -EINVAL;
2329
2330		val = strncpy_from_user(name, optval,
2331					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2332		if (val < 0)
2333			return -EFAULT;
2334		name[val] = 0;
2335
2336		lock_sock(sk);
2337		err = tcp_set_congestion_control(sk, name);
2338		release_sock(sk);
2339		return err;
2340	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2341	default:
2342		/* fallthru */
2343		break;
2344	}
2345
2346	if (optlen < sizeof(int))
2347		return -EINVAL;
2348
2349	if (get_user(val, (int __user *)optval))
2350		return -EFAULT;
2351
2352	lock_sock(sk);
2353
2354	switch (optname) {
2355	case TCP_MAXSEG:
2356		/* Values greater than interface MTU won't take effect. However
2357		 * at the point when this call is done we typically don't yet
2358		 * know which interface is going to be used */
2359		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
 
2360			err = -EINVAL;
2361			break;
2362		}
2363		tp->rx_opt.user_mss = val;
2364		break;
2365
2366	case TCP_NODELAY:
2367		if (val) {
2368			/* TCP_NODELAY is weaker than TCP_CORK, so that
2369			 * this option on corked socket is remembered, but
2370			 * it is not activated until cork is cleared.
2371			 *
2372			 * However, when TCP_NODELAY is set we make
2373			 * an explicit push, which overrides even TCP_CORK
2374			 * for currently queued segments.
2375			 */
2376			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2377			tcp_push_pending_frames(sk);
2378		} else {
2379			tp->nonagle &= ~TCP_NAGLE_OFF;
2380		}
2381		break;
2382
2383	case TCP_THIN_LINEAR_TIMEOUTS:
2384		if (val < 0 || val > 1)
2385			err = -EINVAL;
2386		else
2387			tp->thin_lto = val;
2388		break;
2389
2390	case TCP_THIN_DUPACK:
2391		if (val < 0 || val > 1)
2392			err = -EINVAL;
2393		else {
2394			tp->thin_dupack = val;
2395			if (tp->thin_dupack)
2396				tcp_disable_early_retrans(tp);
2397		}
2398		break;
2399
2400	case TCP_REPAIR:
2401		if (!tcp_can_repair_sock(sk))
2402			err = -EPERM;
2403		else if (val == 1) {
2404			tp->repair = 1;
2405			sk->sk_reuse = SK_FORCE_REUSE;
2406			tp->repair_queue = TCP_NO_QUEUE;
2407		} else if (val == 0) {
2408			tp->repair = 0;
2409			sk->sk_reuse = SK_NO_REUSE;
2410			tcp_send_window_probe(sk);
2411		} else
2412			err = -EINVAL;
2413
2414		break;
2415
2416	case TCP_REPAIR_QUEUE:
2417		if (!tp->repair)
2418			err = -EPERM;
2419		else if (val < TCP_QUEUES_NR)
2420			tp->repair_queue = val;
2421		else
2422			err = -EINVAL;
2423		break;
2424
2425	case TCP_QUEUE_SEQ:
2426		if (sk->sk_state != TCP_CLOSE)
2427			err = -EPERM;
2428		else if (tp->repair_queue == TCP_SEND_QUEUE)
2429			tp->write_seq = val;
2430		else if (tp->repair_queue == TCP_RECV_QUEUE)
2431			tp->rcv_nxt = val;
2432		else
2433			err = -EINVAL;
2434		break;
2435
2436	case TCP_REPAIR_OPTIONS:
2437		if (!tp->repair)
2438			err = -EINVAL;
2439		else if (sk->sk_state == TCP_ESTABLISHED)
2440			err = tcp_repair_options_est(tp,
2441					(struct tcp_repair_opt __user *)optval,
2442					optlen);
2443		else
2444			err = -EPERM;
2445		break;
2446
2447	case TCP_CORK:
2448		/* When set indicates to always queue non-full frames.
2449		 * Later the user clears this option and we transmit
2450		 * any pending partial frames in the queue.  This is
2451		 * meant to be used alongside sendfile() to get properly
2452		 * filled frames when the user (for example) must write
2453		 * out headers with a write() call first and then use
2454		 * sendfile to send out the data parts.
2455		 *
2456		 * TCP_CORK can be set together with TCP_NODELAY and it is
2457		 * stronger than TCP_NODELAY.
2458		 */
2459		if (val) {
2460			tp->nonagle |= TCP_NAGLE_CORK;
2461		} else {
2462			tp->nonagle &= ~TCP_NAGLE_CORK;
2463			if (tp->nonagle&TCP_NAGLE_OFF)
2464				tp->nonagle |= TCP_NAGLE_PUSH;
2465			tcp_push_pending_frames(sk);
2466		}
2467		break;
2468
2469	case TCP_KEEPIDLE:
2470		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2471			err = -EINVAL;
2472		else {
2473			tp->keepalive_time = val * HZ;
2474			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2475			    !((1 << sk->sk_state) &
2476			      (TCPF_CLOSE | TCPF_LISTEN))) {
2477				u32 elapsed = keepalive_time_elapsed(tp);
2478				if (tp->keepalive_time > elapsed)
2479					elapsed = tp->keepalive_time - elapsed;
2480				else
2481					elapsed = 0;
2482				inet_csk_reset_keepalive_timer(sk, elapsed);
2483			}
2484		}
2485		break;
2486	case TCP_KEEPINTVL:
2487		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2488			err = -EINVAL;
2489		else
2490			tp->keepalive_intvl = val * HZ;
2491		break;
2492	case TCP_KEEPCNT:
2493		if (val < 1 || val > MAX_TCP_KEEPCNT)
2494			err = -EINVAL;
2495		else
2496			tp->keepalive_probes = val;
2497		break;
2498	case TCP_SYNCNT:
2499		if (val < 1 || val > MAX_TCP_SYNCNT)
2500			err = -EINVAL;
2501		else
2502			icsk->icsk_syn_retries = val;
2503		break;
2504
2505	case TCP_SAVE_SYN:
2506		if (val < 0 || val > 1)
2507			err = -EINVAL;
2508		else
2509			tp->save_syn = val;
2510		break;
2511
2512	case TCP_LINGER2:
2513		if (val < 0)
2514			tp->linger2 = -1;
2515		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2516			tp->linger2 = 0;
2517		else
2518			tp->linger2 = val * HZ;
2519		break;
2520
2521	case TCP_DEFER_ACCEPT:
2522		/* Translate value in seconds to number of retransmits */
2523		icsk->icsk_accept_queue.rskq_defer_accept =
2524			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2525					TCP_RTO_MAX / HZ);
2526		break;
2527
2528	case TCP_WINDOW_CLAMP:
2529		if (!val) {
2530			if (sk->sk_state != TCP_CLOSE) {
2531				err = -EINVAL;
2532				break;
2533			}
2534			tp->window_clamp = 0;
2535		} else
2536			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2537						SOCK_MIN_RCVBUF / 2 : val;
2538		break;
2539
2540	case TCP_QUICKACK:
2541		if (!val) {
2542			icsk->icsk_ack.pingpong = 1;
2543		} else {
2544			icsk->icsk_ack.pingpong = 0;
2545			if ((1 << sk->sk_state) &
2546			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2547			    inet_csk_ack_scheduled(sk)) {
2548				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2549				tcp_cleanup_rbuf(sk, 1);
2550				if (!(val & 1))
2551					icsk->icsk_ack.pingpong = 1;
2552			}
2553		}
2554		break;
2555
2556#ifdef CONFIG_TCP_MD5SIG
2557	case TCP_MD5SIG:
2558		/* Read the IP->Key mappings from userspace */
2559		err = tp->af_specific->md5_parse(sk, optval, optlen);
 
 
 
2560		break;
2561#endif
2562	case TCP_USER_TIMEOUT:
2563		/* Cap the max time in ms TCP will retry or probe the window
2564		 * before giving up and aborting (ETIMEDOUT) a connection.
2565		 */
2566		if (val < 0)
2567			err = -EINVAL;
2568		else
2569			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2570		break;
2571
2572	case TCP_FASTOPEN:
2573		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2574		    TCPF_LISTEN))) {
2575			tcp_fastopen_init_key_once(true);
2576
2577			fastopen_queue_tune(sk, val);
2578		} else {
2579			err = -EINVAL;
2580		}
2581		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2582	case TCP_TIMESTAMP:
2583		if (!tp->repair)
2584			err = -EPERM;
2585		else
2586			tp->tsoffset = val - tcp_time_stamp;
 
 
 
2587		break;
2588	case TCP_NOTSENT_LOWAT:
2589		tp->notsent_lowat = val;
2590		sk->sk_write_space(sk);
2591		break;
2592	default:
2593		err = -ENOPROTOOPT;
2594		break;
2595	}
2596
2597	release_sock(sk);
2598	return err;
2599}
2600
2601int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2602		   unsigned int optlen)
2603{
2604	const struct inet_connection_sock *icsk = inet_csk(sk);
2605
2606	if (level != SOL_TCP)
2607		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2608						     optval, optlen);
2609	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2610}
2611EXPORT_SYMBOL(tcp_setsockopt);
2612
2613#ifdef CONFIG_COMPAT
2614int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2615			  char __user *optval, unsigned int optlen)
2616{
2617	if (level != SOL_TCP)
2618		return inet_csk_compat_setsockopt(sk, level, optname,
2619						  optval, optlen);
2620	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2621}
2622EXPORT_SYMBOL(compat_tcp_setsockopt);
2623#endif
2624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2625/* Return information about state of tcp endpoint in API format. */
2626void tcp_get_info(struct sock *sk, struct tcp_info *info)
2627{
2628	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2629	const struct inet_connection_sock *icsk = inet_csk(sk);
2630	u32 now = tcp_time_stamp;
2631	unsigned int start;
2632	int notsent_bytes;
2633	u64 rate64;
 
2634	u32 rate;
2635
2636	memset(info, 0, sizeof(*info));
2637	if (sk->sk_type != SOCK_STREAM)
2638		return;
2639
2640	info->tcpi_state = sk_state_load(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2641
2642	info->tcpi_ca_state = icsk->icsk_ca_state;
2643	info->tcpi_retransmits = icsk->icsk_retransmits;
2644	info->tcpi_probes = icsk->icsk_probes_out;
2645	info->tcpi_backoff = icsk->icsk_backoff;
2646
2647	if (tp->rx_opt.tstamp_ok)
2648		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2649	if (tcp_is_sack(tp))
2650		info->tcpi_options |= TCPI_OPT_SACK;
2651	if (tp->rx_opt.wscale_ok) {
2652		info->tcpi_options |= TCPI_OPT_WSCALE;
2653		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2654		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2655	}
2656
2657	if (tp->ecn_flags & TCP_ECN_OK)
2658		info->tcpi_options |= TCPI_OPT_ECN;
2659	if (tp->ecn_flags & TCP_ECN_SEEN)
2660		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2661	if (tp->syn_data_acked)
2662		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2663
2664	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2665	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2666	info->tcpi_snd_mss = tp->mss_cache;
2667	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2668
2669	if (info->tcpi_state == TCP_LISTEN) {
2670		info->tcpi_unacked = sk->sk_ack_backlog;
2671		info->tcpi_sacked = sk->sk_max_ack_backlog;
2672	} else {
2673		info->tcpi_unacked = tp->packets_out;
2674		info->tcpi_sacked = tp->sacked_out;
2675	}
2676	info->tcpi_lost = tp->lost_out;
2677	info->tcpi_retrans = tp->retrans_out;
2678	info->tcpi_fackets = tp->fackets_out;
2679
 
2680	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2681	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2682	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2683
2684	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2685	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2686	info->tcpi_rtt = tp->srtt_us >> 3;
2687	info->tcpi_rttvar = tp->mdev_us >> 2;
2688	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2689	info->tcpi_snd_cwnd = tp->snd_cwnd;
2690	info->tcpi_advmss = tp->advmss;
2691	info->tcpi_reordering = tp->reordering;
2692
2693	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2694	info->tcpi_rcv_space = tp->rcvq_space.space;
2695
2696	info->tcpi_total_retrans = tp->total_retrans;
2697
2698	rate = READ_ONCE(sk->sk_pacing_rate);
2699	rate64 = rate != ~0U ? rate : ~0ULL;
2700	put_unaligned(rate64, &info->tcpi_pacing_rate);
2701
2702	rate = READ_ONCE(sk->sk_max_pacing_rate);
2703	rate64 = rate != ~0U ? rate : ~0ULL;
2704	put_unaligned(rate64, &info->tcpi_max_pacing_rate);
2705
2706	do {
2707		start = u64_stats_fetch_begin_irq(&tp->syncp);
2708		put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked);
2709		put_unaligned(tp->bytes_received, &info->tcpi_bytes_received);
2710	} while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2711	info->tcpi_segs_out = tp->segs_out;
2712	info->tcpi_segs_in = tp->segs_in;
2713
2714	notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt);
2715	info->tcpi_notsent_bytes = max(0, notsent_bytes);
2716
2717	info->tcpi_min_rtt = tcp_min_rtt(tp);
2718	info->tcpi_data_segs_in = tp->data_segs_in;
2719	info->tcpi_data_segs_out = tp->data_segs_out;
 
 
 
 
 
 
2720}
2721EXPORT_SYMBOL_GPL(tcp_get_info);
2722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2723static int do_tcp_getsockopt(struct sock *sk, int level,
2724		int optname, char __user *optval, int __user *optlen)
2725{
2726	struct inet_connection_sock *icsk = inet_csk(sk);
2727	struct tcp_sock *tp = tcp_sk(sk);
2728	struct net *net = sock_net(sk);
2729	int val, len;
2730
2731	if (get_user(len, optlen))
2732		return -EFAULT;
2733
2734	len = min_t(unsigned int, len, sizeof(int));
2735
2736	if (len < 0)
2737		return -EINVAL;
2738
2739	switch (optname) {
2740	case TCP_MAXSEG:
2741		val = tp->mss_cache;
2742		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2743			val = tp->rx_opt.user_mss;
2744		if (tp->repair)
2745			val = tp->rx_opt.mss_clamp;
2746		break;
2747	case TCP_NODELAY:
2748		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2749		break;
2750	case TCP_CORK:
2751		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2752		break;
2753	case TCP_KEEPIDLE:
2754		val = keepalive_time_when(tp) / HZ;
2755		break;
2756	case TCP_KEEPINTVL:
2757		val = keepalive_intvl_when(tp) / HZ;
2758		break;
2759	case TCP_KEEPCNT:
2760		val = keepalive_probes(tp);
2761		break;
2762	case TCP_SYNCNT:
2763		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2764		break;
2765	case TCP_LINGER2:
2766		val = tp->linger2;
2767		if (val >= 0)
2768			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2769		break;
2770	case TCP_DEFER_ACCEPT:
2771		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2772				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2773		break;
2774	case TCP_WINDOW_CLAMP:
2775		val = tp->window_clamp;
2776		break;
2777	case TCP_INFO: {
2778		struct tcp_info info;
2779
2780		if (get_user(len, optlen))
2781			return -EFAULT;
2782
2783		tcp_get_info(sk, &info);
2784
2785		len = min_t(unsigned int, len, sizeof(info));
2786		if (put_user(len, optlen))
2787			return -EFAULT;
2788		if (copy_to_user(optval, &info, len))
2789			return -EFAULT;
2790		return 0;
2791	}
2792	case TCP_CC_INFO: {
2793		const struct tcp_congestion_ops *ca_ops;
2794		union tcp_cc_info info;
2795		size_t sz = 0;
2796		int attr;
2797
2798		if (get_user(len, optlen))
2799			return -EFAULT;
2800
2801		ca_ops = icsk->icsk_ca_ops;
2802		if (ca_ops && ca_ops->get_info)
2803			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2804
2805		len = min_t(unsigned int, len, sz);
2806		if (put_user(len, optlen))
2807			return -EFAULT;
2808		if (copy_to_user(optval, &info, len))
2809			return -EFAULT;
2810		return 0;
2811	}
2812	case TCP_QUICKACK:
2813		val = !icsk->icsk_ack.pingpong;
2814		break;
2815
2816	case TCP_CONGESTION:
2817		if (get_user(len, optlen))
2818			return -EFAULT;
2819		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2820		if (put_user(len, optlen))
2821			return -EFAULT;
2822		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2823			return -EFAULT;
2824		return 0;
2825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2826	case TCP_THIN_LINEAR_TIMEOUTS:
2827		val = tp->thin_lto;
2828		break;
 
2829	case TCP_THIN_DUPACK:
2830		val = tp->thin_dupack;
2831		break;
2832
2833	case TCP_REPAIR:
2834		val = tp->repair;
2835		break;
2836
2837	case TCP_REPAIR_QUEUE:
2838		if (tp->repair)
2839			val = tp->repair_queue;
2840		else
2841			return -EINVAL;
2842		break;
2843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2844	case TCP_QUEUE_SEQ:
2845		if (tp->repair_queue == TCP_SEND_QUEUE)
2846			val = tp->write_seq;
2847		else if (tp->repair_queue == TCP_RECV_QUEUE)
2848			val = tp->rcv_nxt;
2849		else
2850			return -EINVAL;
2851		break;
2852
2853	case TCP_USER_TIMEOUT:
2854		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2855		break;
2856
2857	case TCP_FASTOPEN:
2858		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
2859		break;
2860
 
 
 
 
 
 
 
 
2861	case TCP_TIMESTAMP:
2862		val = tcp_time_stamp + tp->tsoffset;
2863		break;
2864	case TCP_NOTSENT_LOWAT:
2865		val = tp->notsent_lowat;
2866		break;
2867	case TCP_SAVE_SYN:
2868		val = tp->save_syn;
2869		break;
2870	case TCP_SAVED_SYN: {
2871		if (get_user(len, optlen))
2872			return -EFAULT;
2873
2874		lock_sock(sk);
2875		if (tp->saved_syn) {
2876			if (len < tp->saved_syn[0]) {
2877				if (put_user(tp->saved_syn[0], optlen)) {
2878					release_sock(sk);
2879					return -EFAULT;
2880				}
2881				release_sock(sk);
2882				return -EINVAL;
2883			}
2884			len = tp->saved_syn[0];
2885			if (put_user(len, optlen)) {
2886				release_sock(sk);
2887				return -EFAULT;
2888			}
2889			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
2890				release_sock(sk);
2891				return -EFAULT;
2892			}
2893			tcp_saved_syn_free(tp);
2894			release_sock(sk);
2895		} else {
2896			release_sock(sk);
2897			len = 0;
2898			if (put_user(len, optlen))
2899				return -EFAULT;
2900		}
2901		return 0;
2902	}
2903	default:
2904		return -ENOPROTOOPT;
2905	}
2906
2907	if (put_user(len, optlen))
2908		return -EFAULT;
2909	if (copy_to_user(optval, &val, len))
2910		return -EFAULT;
2911	return 0;
2912}
2913
2914int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2915		   int __user *optlen)
2916{
2917	struct inet_connection_sock *icsk = inet_csk(sk);
2918
2919	if (level != SOL_TCP)
2920		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2921						     optval, optlen);
2922	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2923}
2924EXPORT_SYMBOL(tcp_getsockopt);
2925
2926#ifdef CONFIG_COMPAT
2927int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2928			  char __user *optval, int __user *optlen)
2929{
2930	if (level != SOL_TCP)
2931		return inet_csk_compat_getsockopt(sk, level, optname,
2932						  optval, optlen);
2933	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2934}
2935EXPORT_SYMBOL(compat_tcp_getsockopt);
2936#endif
2937
2938#ifdef CONFIG_TCP_MD5SIG
2939static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2940static DEFINE_MUTEX(tcp_md5sig_mutex);
2941static bool tcp_md5sig_pool_populated = false;
2942
2943static void __tcp_alloc_md5sig_pool(void)
2944{
2945	struct crypto_ahash *hash;
2946	int cpu;
2947
2948	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
2949	if (IS_ERR(hash))
2950		return;
2951
2952	for_each_possible_cpu(cpu) {
 
2953		struct ahash_request *req;
2954
 
 
 
 
 
 
 
 
 
2955		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
2956			continue;
2957
2958		req = ahash_request_alloc(hash, GFP_KERNEL);
2959		if (!req)
2960			return;
2961
2962		ahash_request_set_callback(req, 0, NULL, NULL);
2963
2964		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
2965	}
2966	/* before setting tcp_md5sig_pool_populated, we must commit all writes
2967	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2968	 */
2969	smp_wmb();
2970	tcp_md5sig_pool_populated = true;
2971}
2972
2973bool tcp_alloc_md5sig_pool(void)
2974{
2975	if (unlikely(!tcp_md5sig_pool_populated)) {
2976		mutex_lock(&tcp_md5sig_mutex);
2977
2978		if (!tcp_md5sig_pool_populated)
2979			__tcp_alloc_md5sig_pool();
2980
2981		mutex_unlock(&tcp_md5sig_mutex);
2982	}
2983	return tcp_md5sig_pool_populated;
2984}
2985EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2986
2987
2988/**
2989 *	tcp_get_md5sig_pool - get md5sig_pool for this user
2990 *
2991 *	We use percpu structure, so if we succeed, we exit with preemption
2992 *	and BH disabled, to make sure another thread or softirq handling
2993 *	wont try to get same context.
2994 */
2995struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2996{
2997	local_bh_disable();
2998
2999	if (tcp_md5sig_pool_populated) {
3000		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3001		smp_rmb();
3002		return this_cpu_ptr(&tcp_md5sig_pool);
3003	}
3004	local_bh_enable();
3005	return NULL;
3006}
3007EXPORT_SYMBOL(tcp_get_md5sig_pool);
3008
3009int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3010			const struct tcphdr *th)
3011{
3012	struct scatterlist sg;
3013	struct tcphdr hdr;
3014
3015	/* We are not allowed to change tcphdr, make a local copy */
3016	memcpy(&hdr, th, sizeof(hdr));
3017	hdr.check = 0;
3018
3019	/* options aren't included in the hash */
3020	sg_init_one(&sg, &hdr, sizeof(hdr));
3021	ahash_request_set_crypt(hp->md5_req, &sg, NULL, sizeof(hdr));
3022	return crypto_ahash_update(hp->md5_req);
3023}
3024EXPORT_SYMBOL(tcp_md5_hash_header);
3025
3026int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3027			  const struct sk_buff *skb, unsigned int header_len)
3028{
3029	struct scatterlist sg;
3030	const struct tcphdr *tp = tcp_hdr(skb);
3031	struct ahash_request *req = hp->md5_req;
3032	unsigned int i;
3033	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3034					   skb_headlen(skb) - header_len : 0;
3035	const struct skb_shared_info *shi = skb_shinfo(skb);
3036	struct sk_buff *frag_iter;
3037
3038	sg_init_table(&sg, 1);
3039
3040	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3041	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3042	if (crypto_ahash_update(req))
3043		return 1;
3044
3045	for (i = 0; i < shi->nr_frags; ++i) {
3046		const struct skb_frag_struct *f = &shi->frags[i];
3047		unsigned int offset = f->page_offset;
3048		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3049
3050		sg_set_page(&sg, page, skb_frag_size(f),
3051			    offset_in_page(offset));
3052		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3053		if (crypto_ahash_update(req))
3054			return 1;
3055	}
3056
3057	skb_walk_frags(skb, frag_iter)
3058		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3059			return 1;
3060
3061	return 0;
3062}
3063EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3064
3065int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3066{
3067	struct scatterlist sg;
3068
3069	sg_init_one(&sg, key->key, key->keylen);
3070	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3071	return crypto_ahash_update(hp->md5_req);
3072}
3073EXPORT_SYMBOL(tcp_md5_hash_key);
3074
3075#endif
3076
3077void tcp_done(struct sock *sk)
3078{
3079	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3080
3081	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3082		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3083
3084	tcp_set_state(sk, TCP_CLOSE);
3085	tcp_clear_xmit_timers(sk);
3086	if (req)
3087		reqsk_fastopen_remove(sk, req, false);
3088
3089	sk->sk_shutdown = SHUTDOWN_MASK;
3090
3091	if (!sock_flag(sk, SOCK_DEAD))
3092		sk->sk_state_change(sk);
3093	else
3094		inet_csk_destroy_sock(sk);
3095}
3096EXPORT_SYMBOL_GPL(tcp_done);
3097
3098int tcp_abort(struct sock *sk, int err)
3099{
3100	if (!sk_fullsock(sk)) {
3101		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3102			struct request_sock *req = inet_reqsk(sk);
3103
3104			local_bh_disable();
3105			inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3106							  req);
3107			local_bh_enable();
3108			return 0;
3109		}
3110		sock_gen_put(sk);
3111		return -EOPNOTSUPP;
3112	}
3113
3114	/* Don't race with userspace socket closes such as tcp_close. */
3115	lock_sock(sk);
3116
3117	if (sk->sk_state == TCP_LISTEN) {
3118		tcp_set_state(sk, TCP_CLOSE);
3119		inet_csk_listen_stop(sk);
3120	}
3121
3122	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3123	local_bh_disable();
3124	bh_lock_sock(sk);
3125
3126	if (!sock_flag(sk, SOCK_DEAD)) {
3127		sk->sk_err = err;
3128		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3129		smp_wmb();
3130		sk->sk_error_report(sk);
3131		if (tcp_need_reset(sk->sk_state))
3132			tcp_send_active_reset(sk, GFP_ATOMIC);
3133		tcp_done(sk);
3134	}
3135
3136	bh_unlock_sock(sk);
3137	local_bh_enable();
 
3138	release_sock(sk);
3139	sock_put(sk);
3140	return 0;
3141}
3142EXPORT_SYMBOL_GPL(tcp_abort);
3143
3144extern struct tcp_congestion_ops tcp_reno;
3145
3146static __initdata unsigned long thash_entries;
3147static int __init set_thash_entries(char *str)
3148{
3149	ssize_t ret;
3150
3151	if (!str)
3152		return 0;
3153
3154	ret = kstrtoul(str, 0, &thash_entries);
3155	if (ret)
3156		return 0;
3157
3158	return 1;
3159}
3160__setup("thash_entries=", set_thash_entries);
3161
3162static void __init tcp_init_mem(void)
3163{
3164	unsigned long limit = nr_free_buffer_pages() / 16;
3165
3166	limit = max(limit, 128UL);
3167	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3168	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3169	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3170}
3171
3172void __init tcp_init(void)
3173{
 
3174	unsigned long limit;
3175	int max_rshare, max_wshare, cnt;
3176	unsigned int i;
3177
3178	sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
 
3179
3180	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3181	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
 
 
 
 
3182	tcp_hashinfo.bind_bucket_cachep =
3183		kmem_cache_create("tcp_bind_bucket",
3184				  sizeof(struct inet_bind_bucket), 0,
3185				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3186
3187	/* Size and allocate the main established and bind bucket
3188	 * hash tables.
3189	 *
3190	 * The methodology is similar to that of the buffer cache.
3191	 */
3192	tcp_hashinfo.ehash =
3193		alloc_large_system_hash("TCP established",
3194					sizeof(struct inet_ehash_bucket),
3195					thash_entries,
3196					17, /* one slot per 128 KB of memory */
3197					0,
3198					NULL,
3199					&tcp_hashinfo.ehash_mask,
3200					0,
3201					thash_entries ? 0 : 512 * 1024);
3202	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3203		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3204
3205	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3206		panic("TCP: failed to alloc ehash_locks");
3207	tcp_hashinfo.bhash =
3208		alloc_large_system_hash("TCP bind",
3209					sizeof(struct inet_bind_hashbucket),
3210					tcp_hashinfo.ehash_mask + 1,
3211					17, /* one slot per 128 KB of memory */
3212					0,
3213					&tcp_hashinfo.bhash_size,
3214					NULL,
3215					0,
3216					64 * 1024);
3217	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3218	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3219		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3220		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3221	}
3222
3223
3224	cnt = tcp_hashinfo.ehash_mask + 1;
3225
3226	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3227	sysctl_tcp_max_orphans = cnt / 2;
3228	sysctl_max_syn_backlog = max(128, cnt / 256);
3229
3230	tcp_init_mem();
3231	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3232	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3233	max_wshare = min(4UL*1024*1024, limit);
3234	max_rshare = min(6UL*1024*1024, limit);
3235
3236	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3237	sysctl_tcp_wmem[1] = 16*1024;
3238	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3239
3240	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3241	sysctl_tcp_rmem[1] = 87380;
3242	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3243
3244	pr_info("Hash tables configured (established %u bind %u)\n",
3245		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3246
 
3247	tcp_metrics_init();
3248	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3249	tcp_tasklet_init();
3250}