Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Generic socket support routines. Memory allocators, socket lock/release
   7 *		handler for protocols to use and generic option handler.
   8 *
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 *
  85 *
  86 *		This program is free software; you can redistribute it and/or
  87 *		modify it under the terms of the GNU General Public License
  88 *		as published by the Free Software Foundation; either version
  89 *		2 of the License, or (at your option) any later version.
  90 */
  91
  92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  93
 
  94#include <linux/capability.h>
  95#include <linux/errno.h>
  96#include <linux/errqueue.h>
  97#include <linux/types.h>
  98#include <linux/socket.h>
  99#include <linux/in.h>
 100#include <linux/kernel.h>
 101#include <linux/module.h>
 102#include <linux/proc_fs.h>
 103#include <linux/seq_file.h>
 104#include <linux/sched.h>
 105#include <linux/sched/mm.h>
 106#include <linux/timer.h>
 107#include <linux/string.h>
 108#include <linux/sockios.h>
 109#include <linux/net.h>
 110#include <linux/mm.h>
 111#include <linux/slab.h>
 112#include <linux/interrupt.h>
 113#include <linux/poll.h>
 114#include <linux/tcp.h>
 115#include <linux/init.h>
 116#include <linux/highmem.h>
 117#include <linux/user_namespace.h>
 118#include <linux/static_key.h>
 119#include <linux/memcontrol.h>
 120#include <linux/prefetch.h>
 
 121
 122#include <linux/uaccess.h>
 123
 124#include <linux/netdevice.h>
 125#include <net/protocol.h>
 126#include <linux/skbuff.h>
 127#include <net/net_namespace.h>
 128#include <net/request_sock.h>
 129#include <net/sock.h>
 130#include <linux/net_tstamp.h>
 131#include <net/xfrm.h>
 132#include <linux/ipsec.h>
 133#include <net/cls_cgroup.h>
 134#include <net/netprio_cgroup.h>
 135#include <linux/sock_diag.h>
 136
 137#include <linux/filter.h>
 138#include <net/sock_reuseport.h>
 
 139
 140#include <trace/events/sock.h>
 141
 142#include <net/tcp.h>
 143#include <net/busy_poll.h>
 144
 
 
 
 
 145static DEFINE_MUTEX(proto_list_mutex);
 146static LIST_HEAD(proto_list);
 147
 148static void sock_inuse_add(struct net *net, int val);
 
 149
 150/**
 151 * sk_ns_capable - General socket capability test
 152 * @sk: Socket to use a capability on or through
 153 * @user_ns: The user namespace of the capability to use
 154 * @cap: The capability to use
 155 *
 156 * Test to see if the opener of the socket had when the socket was
 157 * created and the current process has the capability @cap in the user
 158 * namespace @user_ns.
 159 */
 160bool sk_ns_capable(const struct sock *sk,
 161		   struct user_namespace *user_ns, int cap)
 162{
 163	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 164		ns_capable(user_ns, cap);
 165}
 166EXPORT_SYMBOL(sk_ns_capable);
 167
 168/**
 169 * sk_capable - Socket global capability test
 170 * @sk: Socket to use a capability on or through
 171 * @cap: The global capability to use
 172 *
 173 * Test to see if the opener of the socket had when the socket was
 174 * created and the current process has the capability @cap in all user
 175 * namespaces.
 176 */
 177bool sk_capable(const struct sock *sk, int cap)
 178{
 179	return sk_ns_capable(sk, &init_user_ns, cap);
 180}
 181EXPORT_SYMBOL(sk_capable);
 182
 183/**
 184 * sk_net_capable - Network namespace socket capability test
 185 * @sk: Socket to use a capability on or through
 186 * @cap: The capability to use
 187 *
 188 * Test to see if the opener of the socket had when the socket was created
 189 * and the current process has the capability @cap over the network namespace
 190 * the socket is a member of.
 191 */
 192bool sk_net_capable(const struct sock *sk, int cap)
 193{
 194	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 195}
 196EXPORT_SYMBOL(sk_net_capable);
 197
 198/*
 199 * Each address family might have different locking rules, so we have
 200 * one slock key per address family and separate keys for internal and
 201 * userspace sockets.
 202 */
 203static struct lock_class_key af_family_keys[AF_MAX];
 204static struct lock_class_key af_family_kern_keys[AF_MAX];
 205static struct lock_class_key af_family_slock_keys[AF_MAX];
 206static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 207
 208/*
 209 * Make lock validator output more readable. (we pre-construct these
 210 * strings build-time, so that runtime initialization of socket
 211 * locks is fast):
 212 */
 213
 214#define _sock_locks(x)						  \
 215  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 216  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 217  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 218  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 219  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 220  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 221  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 222  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 223  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 224  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 225  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 226  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 227  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 228  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 229  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_MAX"
 
 
 230
 231static const char *const af_family_key_strings[AF_MAX+1] = {
 232	_sock_locks("sk_lock-")
 233};
 234static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 235	_sock_locks("slock-")
 236};
 237static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 238	_sock_locks("clock-")
 239};
 240
 241static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 242	_sock_locks("k-sk_lock-")
 243};
 244static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 245	_sock_locks("k-slock-")
 246};
 247static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 248	_sock_locks("k-clock-")
 249};
 250static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 251  "rlock-AF_UNSPEC", "rlock-AF_UNIX"     , "rlock-AF_INET"     ,
 252  "rlock-AF_AX25"  , "rlock-AF_IPX"      , "rlock-AF_APPLETALK",
 253  "rlock-AF_NETROM", "rlock-AF_BRIDGE"   , "rlock-AF_ATMPVC"   ,
 254  "rlock-AF_X25"   , "rlock-AF_INET6"    , "rlock-AF_ROSE"     ,
 255  "rlock-AF_DECnet", "rlock-AF_NETBEUI"  , "rlock-AF_SECURITY" ,
 256  "rlock-AF_KEY"   , "rlock-AF_NETLINK"  , "rlock-AF_PACKET"   ,
 257  "rlock-AF_ASH"   , "rlock-AF_ECONET"   , "rlock-AF_ATMSVC"   ,
 258  "rlock-AF_RDS"   , "rlock-AF_SNA"      , "rlock-AF_IRDA"     ,
 259  "rlock-AF_PPPOX" , "rlock-AF_WANPIPE"  , "rlock-AF_LLC"      ,
 260  "rlock-27"       , "rlock-28"          , "rlock-AF_CAN"      ,
 261  "rlock-AF_TIPC"  , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV"     ,
 262  "rlock-AF_RXRPC" , "rlock-AF_ISDN"     , "rlock-AF_PHONET"   ,
 263  "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG"      ,
 264  "rlock-AF_NFC"   , "rlock-AF_VSOCK"    , "rlock-AF_KCM"      ,
 265  "rlock-AF_QIPCRTR", "rlock-AF_SMC"     , "rlock-AF_MAX"
 266};
 267static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 268  "wlock-AF_UNSPEC", "wlock-AF_UNIX"     , "wlock-AF_INET"     ,
 269  "wlock-AF_AX25"  , "wlock-AF_IPX"      , "wlock-AF_APPLETALK",
 270  "wlock-AF_NETROM", "wlock-AF_BRIDGE"   , "wlock-AF_ATMPVC"   ,
 271  "wlock-AF_X25"   , "wlock-AF_INET6"    , "wlock-AF_ROSE"     ,
 272  "wlock-AF_DECnet", "wlock-AF_NETBEUI"  , "wlock-AF_SECURITY" ,
 273  "wlock-AF_KEY"   , "wlock-AF_NETLINK"  , "wlock-AF_PACKET"   ,
 274  "wlock-AF_ASH"   , "wlock-AF_ECONET"   , "wlock-AF_ATMSVC"   ,
 275  "wlock-AF_RDS"   , "wlock-AF_SNA"      , "wlock-AF_IRDA"     ,
 276  "wlock-AF_PPPOX" , "wlock-AF_WANPIPE"  , "wlock-AF_LLC"      ,
 277  "wlock-27"       , "wlock-28"          , "wlock-AF_CAN"      ,
 278  "wlock-AF_TIPC"  , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV"     ,
 279  "wlock-AF_RXRPC" , "wlock-AF_ISDN"     , "wlock-AF_PHONET"   ,
 280  "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG"      ,
 281  "wlock-AF_NFC"   , "wlock-AF_VSOCK"    , "wlock-AF_KCM"      ,
 282  "wlock-AF_QIPCRTR", "wlock-AF_SMC"     , "wlock-AF_MAX"
 283};
 284static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 285  "elock-AF_UNSPEC", "elock-AF_UNIX"     , "elock-AF_INET"     ,
 286  "elock-AF_AX25"  , "elock-AF_IPX"      , "elock-AF_APPLETALK",
 287  "elock-AF_NETROM", "elock-AF_BRIDGE"   , "elock-AF_ATMPVC"   ,
 288  "elock-AF_X25"   , "elock-AF_INET6"    , "elock-AF_ROSE"     ,
 289  "elock-AF_DECnet", "elock-AF_NETBEUI"  , "elock-AF_SECURITY" ,
 290  "elock-AF_KEY"   , "elock-AF_NETLINK"  , "elock-AF_PACKET"   ,
 291  "elock-AF_ASH"   , "elock-AF_ECONET"   , "elock-AF_ATMSVC"   ,
 292  "elock-AF_RDS"   , "elock-AF_SNA"      , "elock-AF_IRDA"     ,
 293  "elock-AF_PPPOX" , "elock-AF_WANPIPE"  , "elock-AF_LLC"      ,
 294  "elock-27"       , "elock-28"          , "elock-AF_CAN"      ,
 295  "elock-AF_TIPC"  , "elock-AF_BLUETOOTH", "elock-AF_IUCV"     ,
 296  "elock-AF_RXRPC" , "elock-AF_ISDN"     , "elock-AF_PHONET"   ,
 297  "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG"      ,
 298  "elock-AF_NFC"   , "elock-AF_VSOCK"    , "elock-AF_KCM"      ,
 299  "elock-AF_QIPCRTR", "elock-AF_SMC"     , "elock-AF_MAX"
 300};
 301
 302/*
 303 * sk_callback_lock and sk queues locking rules are per-address-family,
 304 * so split the lock classes by using a per-AF key:
 305 */
 306static struct lock_class_key af_callback_keys[AF_MAX];
 307static struct lock_class_key af_rlock_keys[AF_MAX];
 308static struct lock_class_key af_wlock_keys[AF_MAX];
 309static struct lock_class_key af_elock_keys[AF_MAX];
 310static struct lock_class_key af_kern_callback_keys[AF_MAX];
 311
 312/* Run time adjustable parameters. */
 313__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 314EXPORT_SYMBOL(sysctl_wmem_max);
 315__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 316EXPORT_SYMBOL(sysctl_rmem_max);
 317__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 318__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 319
 320/* Maximal space eaten by iovec or ancillary data plus some space */
 321int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 322EXPORT_SYMBOL(sysctl_optmem_max);
 323
 324int sysctl_tstamp_allow_data __read_mostly = 1;
 325
 326struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
 327EXPORT_SYMBOL_GPL(memalloc_socks);
 328
 329/**
 330 * sk_set_memalloc - sets %SOCK_MEMALLOC
 331 * @sk: socket to set it on
 332 *
 333 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 334 * It's the responsibility of the admin to adjust min_free_kbytes
 335 * to meet the requirements
 336 */
 337void sk_set_memalloc(struct sock *sk)
 338{
 339	sock_set_flag(sk, SOCK_MEMALLOC);
 340	sk->sk_allocation |= __GFP_MEMALLOC;
 341	static_key_slow_inc(&memalloc_socks);
 342}
 343EXPORT_SYMBOL_GPL(sk_set_memalloc);
 344
 345void sk_clear_memalloc(struct sock *sk)
 346{
 347	sock_reset_flag(sk, SOCK_MEMALLOC);
 348	sk->sk_allocation &= ~__GFP_MEMALLOC;
 349	static_key_slow_dec(&memalloc_socks);
 350
 351	/*
 352	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 353	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 354	 * it has rmem allocations due to the last swapfile being deactivated
 355	 * but there is a risk that the socket is unusable due to exceeding
 356	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 357	 */
 358	sk_mem_reclaim(sk);
 359}
 360EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 361
 362int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 363{
 364	int ret;
 365	unsigned int noreclaim_flag;
 366
 367	/* these should have been dropped before queueing */
 368	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 369
 370	noreclaim_flag = memalloc_noreclaim_save();
 371	ret = sk->sk_backlog_rcv(sk, skb);
 
 
 
 372	memalloc_noreclaim_restore(noreclaim_flag);
 373
 374	return ret;
 375}
 376EXPORT_SYMBOL(__sk_backlog_rcv);
 377
 378static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
 379{
 380	struct timeval tv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 381
 382	if (optlen < sizeof(tv))
 383		return -EINVAL;
 384	if (copy_from_user(&tv, optval, sizeof(tv)))
 385		return -EFAULT;
 386	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 387		return -EDOM;
 388
 389	if (tv.tv_sec < 0) {
 390		static int warned __read_mostly;
 391
 392		*timeo_p = 0;
 393		if (warned < 10 && net_ratelimit()) {
 394			warned++;
 395			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 396				__func__, current->comm, task_pid_nr(current));
 397		}
 398		return 0;
 399	}
 400	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 401	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 402		return 0;
 403	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
 404		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
 405	return 0;
 406}
 407
 408static void sock_warn_obsolete_bsdism(const char *name)
 409{
 410	static int warned;
 411	static char warncomm[TASK_COMM_LEN];
 412	if (strcmp(warncomm, current->comm) && warned < 5) {
 413		strcpy(warncomm,  current->comm);
 414		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
 415			warncomm, name);
 416		warned++;
 417	}
 418}
 419
 420static bool sock_needs_netstamp(const struct sock *sk)
 421{
 422	switch (sk->sk_family) {
 423	case AF_UNSPEC:
 424	case AF_UNIX:
 425		return false;
 426	default:
 427		return true;
 428	}
 429}
 430
 431static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 432{
 433	if (sk->sk_flags & flags) {
 434		sk->sk_flags &= ~flags;
 435		if (sock_needs_netstamp(sk) &&
 436		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 437			net_disable_timestamp();
 438	}
 439}
 440
 441
 442int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 443{
 444	unsigned long flags;
 445	struct sk_buff_head *list = &sk->sk_receive_queue;
 446
 447	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 448		atomic_inc(&sk->sk_drops);
 449		trace_sock_rcvqueue_full(sk, skb);
 450		return -ENOMEM;
 451	}
 452
 453	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 454		atomic_inc(&sk->sk_drops);
 455		return -ENOBUFS;
 456	}
 457
 458	skb->dev = NULL;
 459	skb_set_owner_r(skb, sk);
 460
 461	/* we escape from rcu protected region, make sure we dont leak
 462	 * a norefcounted dst
 463	 */
 464	skb_dst_force(skb);
 465
 466	spin_lock_irqsave(&list->lock, flags);
 467	sock_skb_set_dropcount(sk, skb);
 468	__skb_queue_tail(list, skb);
 469	spin_unlock_irqrestore(&list->lock, flags);
 470
 471	if (!sock_flag(sk, SOCK_DEAD))
 472		sk->sk_data_ready(sk);
 473	return 0;
 474}
 475EXPORT_SYMBOL(__sock_queue_rcv_skb);
 476
 477int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 
 478{
 
 479	int err;
 480
 481	err = sk_filter(sk, skb);
 482	if (err)
 483		return err;
 484
 485	return __sock_queue_rcv_skb(sk, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 486}
 487EXPORT_SYMBOL(sock_queue_rcv_skb);
 488
 489int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 490		     const int nested, unsigned int trim_cap, bool refcounted)
 491{
 492	int rc = NET_RX_SUCCESS;
 493
 494	if (sk_filter_trim_cap(sk, skb, trim_cap))
 495		goto discard_and_relse;
 496
 497	skb->dev = NULL;
 498
 499	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 500		atomic_inc(&sk->sk_drops);
 501		goto discard_and_relse;
 502	}
 503	if (nested)
 504		bh_lock_sock_nested(sk);
 505	else
 506		bh_lock_sock(sk);
 507	if (!sock_owned_by_user(sk)) {
 508		/*
 509		 * trylock + unlock semantics:
 510		 */
 511		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 512
 513		rc = sk_backlog_rcv(sk, skb);
 514
 515		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
 516	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
 517		bh_unlock_sock(sk);
 518		atomic_inc(&sk->sk_drops);
 519		goto discard_and_relse;
 520	}
 521
 522	bh_unlock_sock(sk);
 523out:
 524	if (refcounted)
 525		sock_put(sk);
 526	return rc;
 527discard_and_relse:
 528	kfree_skb(skb);
 529	goto out;
 530}
 531EXPORT_SYMBOL(__sk_receive_skb);
 532
 
 
 
 
 533struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 534{
 535	struct dst_entry *dst = __sk_dst_get(sk);
 536
 537	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 
 
 538		sk_tx_queue_clear(sk);
 539		sk->sk_dst_pending_confirm = 0;
 540		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 541		dst_release(dst);
 542		return NULL;
 543	}
 544
 545	return dst;
 546}
 547EXPORT_SYMBOL(__sk_dst_check);
 548
 549struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 550{
 551	struct dst_entry *dst = sk_dst_get(sk);
 552
 553	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 
 
 554		sk_dst_reset(sk);
 555		dst_release(dst);
 556		return NULL;
 557	}
 558
 559	return dst;
 560}
 561EXPORT_SYMBOL(sk_dst_check);
 562
 563static int sock_setbindtodevice(struct sock *sk, char __user *optval,
 564				int optlen)
 565{
 566	int ret = -ENOPROTOOPT;
 567#ifdef CONFIG_NETDEVICES
 568	struct net *net = sock_net(sk);
 569	char devname[IFNAMSIZ];
 570	int index;
 571
 572	/* Sorry... */
 573	ret = -EPERM;
 574	if (!ns_capable(net->user_ns, CAP_NET_RAW))
 575		goto out;
 576
 577	ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578	if (optlen < 0)
 579		goto out;
 580
 581	/* Bind this socket to a particular device like "eth0",
 582	 * as specified in the passed interface name. If the
 583	 * name is "" or the option length is zero the socket
 584	 * is not bound.
 585	 */
 586	if (optlen > IFNAMSIZ - 1)
 587		optlen = IFNAMSIZ - 1;
 588	memset(devname, 0, sizeof(devname));
 589
 590	ret = -EFAULT;
 591	if (copy_from_user(devname, optval, optlen))
 592		goto out;
 593
 594	index = 0;
 595	if (devname[0] != '\0') {
 596		struct net_device *dev;
 597
 598		rcu_read_lock();
 599		dev = dev_get_by_name_rcu(net, devname);
 600		if (dev)
 601			index = dev->ifindex;
 602		rcu_read_unlock();
 603		ret = -ENODEV;
 604		if (!dev)
 605			goto out;
 606	}
 607
 608	lock_sock(sk);
 609	sk->sk_bound_dev_if = index;
 610	sk_dst_reset(sk);
 611	release_sock(sk);
 612
 613	ret = 0;
 614
 615out:
 616#endif
 617
 618	return ret;
 619}
 620
 621static int sock_getbindtodevice(struct sock *sk, char __user *optval,
 622				int __user *optlen, int len)
 623{
 624	int ret = -ENOPROTOOPT;
 625#ifdef CONFIG_NETDEVICES
 
 626	struct net *net = sock_net(sk);
 627	char devname[IFNAMSIZ];
 628
 629	if (sk->sk_bound_dev_if == 0) {
 630		len = 0;
 631		goto zero;
 632	}
 633
 634	ret = -EINVAL;
 635	if (len < IFNAMSIZ)
 636		goto out;
 637
 638	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
 639	if (ret)
 640		goto out;
 641
 642	len = strlen(devname) + 1;
 643
 644	ret = -EFAULT;
 645	if (copy_to_user(optval, devname, len))
 646		goto out;
 647
 648zero:
 649	ret = -EFAULT;
 650	if (put_user(len, optlen))
 651		goto out;
 652
 653	ret = 0;
 654
 655out:
 656#endif
 657
 658	return ret;
 659}
 660
 661static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
 662{
 663	if (valbool)
 664		sock_set_flag(sk, bit);
 665	else
 666		sock_reset_flag(sk, bit);
 667}
 668
 669bool sk_mc_loop(struct sock *sk)
 670{
 671	if (dev_recursion_level())
 672		return false;
 673	if (!sk)
 674		return true;
 675	switch (sk->sk_family) {
 676	case AF_INET:
 677		return inet_sk(sk)->mc_loop;
 678#if IS_ENABLED(CONFIG_IPV6)
 679	case AF_INET6:
 680		return inet6_sk(sk)->mc_loop;
 681#endif
 682	}
 683	WARN_ON(1);
 684	return true;
 685}
 686EXPORT_SYMBOL(sk_mc_loop);
 687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 688/*
 689 *	This is meant for all protocols to use and covers goings on
 690 *	at the socket level. Everything here is generic.
 691 */
 692
 693int sock_setsockopt(struct socket *sock, int level, int optname,
 694		    char __user *optval, unsigned int optlen)
 695{
 696	struct sock *sk = sock->sk;
 
 
 697	int val;
 698	int valbool;
 699	struct linger ling;
 700	int ret = 0;
 701
 702	/*
 703	 *	Options without arguments
 704	 */
 705
 706	if (optname == SO_BINDTODEVICE)
 707		return sock_setbindtodevice(sk, optval, optlen);
 708
 709	if (optlen < sizeof(int))
 710		return -EINVAL;
 711
 712	if (get_user(val, (int __user *)optval))
 713		return -EFAULT;
 714
 715	valbool = val ? 1 : 0;
 716
 717	lock_sock(sk);
 718
 719	switch (optname) {
 720	case SO_DEBUG:
 721		if (val && !capable(CAP_NET_ADMIN))
 722			ret = -EACCES;
 723		else
 724			sock_valbool_flag(sk, SOCK_DBG, valbool);
 725		break;
 726	case SO_REUSEADDR:
 727		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
 728		break;
 729	case SO_REUSEPORT:
 730		sk->sk_reuseport = valbool;
 731		break;
 732	case SO_TYPE:
 733	case SO_PROTOCOL:
 734	case SO_DOMAIN:
 735	case SO_ERROR:
 736		ret = -ENOPROTOOPT;
 737		break;
 738	case SO_DONTROUTE:
 739		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
 
 740		break;
 741	case SO_BROADCAST:
 742		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
 743		break;
 744	case SO_SNDBUF:
 745		/* Don't error on this BSD doesn't and if you think
 746		 * about it this is right. Otherwise apps have to
 747		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 748		 * are treated in BSD as hints
 749		 */
 750		val = min_t(u32, val, sysctl_wmem_max);
 751set_sndbuf:
 
 
 
 
 752		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
 753		sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
 
 754		/* Wake up sending tasks if we upped the value. */
 755		sk->sk_write_space(sk);
 756		break;
 757
 758	case SO_SNDBUFFORCE:
 759		if (!capable(CAP_NET_ADMIN)) {
 760			ret = -EPERM;
 761			break;
 762		}
 
 
 
 
 
 
 763		goto set_sndbuf;
 764
 765	case SO_RCVBUF:
 766		/* Don't error on this BSD doesn't and if you think
 767		 * about it this is right. Otherwise apps have to
 768		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 769		 * are treated in BSD as hints
 770		 */
 771		val = min_t(u32, val, sysctl_rmem_max);
 772set_rcvbuf:
 773		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 774		/*
 775		 * We double it on the way in to account for
 776		 * "struct sk_buff" etc. overhead.   Applications
 777		 * assume that the SO_RCVBUF setting they make will
 778		 * allow that much actual data to be received on that
 779		 * socket.
 780		 *
 781		 * Applications are unaware that "struct sk_buff" and
 782		 * other overheads allocate from the receive buffer
 783		 * during socket buffer allocation.
 784		 *
 785		 * And after considering the possible alternatives,
 786		 * returning the value we actually used in getsockopt
 787		 * is the most desirable behavior.
 788		 */
 789		sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
 790		break;
 791
 792	case SO_RCVBUFFORCE:
 793		if (!capable(CAP_NET_ADMIN)) {
 794			ret = -EPERM;
 795			break;
 796		}
 797		goto set_rcvbuf;
 
 
 
 
 
 798
 799	case SO_KEEPALIVE:
 800		if (sk->sk_prot->keepalive)
 801			sk->sk_prot->keepalive(sk, valbool);
 802		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
 803		break;
 804
 805	case SO_OOBINLINE:
 806		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
 807		break;
 808
 809	case SO_NO_CHECK:
 810		sk->sk_no_check_tx = valbool;
 811		break;
 812
 813	case SO_PRIORITY:
 814		if ((val >= 0 && val <= 6) ||
 815		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 
 816			sk->sk_priority = val;
 817		else
 818			ret = -EPERM;
 819		break;
 820
 821	case SO_LINGER:
 822		if (optlen < sizeof(ling)) {
 823			ret = -EINVAL;	/* 1003.1g */
 824			break;
 825		}
 826		if (copy_from_user(&ling, optval, sizeof(ling))) {
 827			ret = -EFAULT;
 828			break;
 829		}
 830		if (!ling.l_onoff)
 831			sock_reset_flag(sk, SOCK_LINGER);
 832		else {
 833#if (BITS_PER_LONG == 32)
 834			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
 835				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 836			else
 837#endif
 838				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
 839			sock_set_flag(sk, SOCK_LINGER);
 840		}
 841		break;
 842
 843	case SO_BSDCOMPAT:
 844		sock_warn_obsolete_bsdism("setsockopt");
 845		break;
 846
 847	case SO_PASSCRED:
 848		if (valbool)
 849			set_bit(SOCK_PASSCRED, &sock->flags);
 850		else
 851			clear_bit(SOCK_PASSCRED, &sock->flags);
 852		break;
 853
 854	case SO_TIMESTAMP:
 855	case SO_TIMESTAMPNS:
 856		if (valbool)  {
 857			if (optname == SO_TIMESTAMP)
 858				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 859			else
 860				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
 861			sock_set_flag(sk, SOCK_RCVTSTAMP);
 862			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 863		} else {
 864			sock_reset_flag(sk, SOCK_RCVTSTAMP);
 865			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 866		}
 867		break;
 868
 869	case SO_TIMESTAMPING:
 870		if (val & ~SOF_TIMESTAMPING_MASK) {
 871			ret = -EINVAL;
 872			break;
 873		}
 874
 875		if (val & SOF_TIMESTAMPING_OPT_ID &&
 876		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 877			if (sk->sk_protocol == IPPROTO_TCP &&
 878			    sk->sk_type == SOCK_STREAM) {
 879				if ((1 << sk->sk_state) &
 880				    (TCPF_CLOSE | TCPF_LISTEN)) {
 881					ret = -EINVAL;
 882					break;
 883				}
 884				sk->sk_tskey = tcp_sk(sk)->snd_una;
 885			} else {
 886				sk->sk_tskey = 0;
 887			}
 
 
 
 888		}
 889
 890		if (val & SOF_TIMESTAMPING_OPT_STATS &&
 891		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
 892			ret = -EINVAL;
 893			break;
 894		}
 895
 896		sk->sk_tsflags = val;
 897		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 898			sock_enable_timestamp(sk,
 899					      SOCK_TIMESTAMPING_RX_SOFTWARE);
 900		else
 901			sock_disable_timestamp(sk,
 902					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 903		break;
 904
 905	case SO_RCVLOWAT:
 906		if (val < 0)
 907			val = INT_MAX;
 908		sk->sk_rcvlowat = val ? : 1;
 
 
 
 909		break;
 910
 911	case SO_RCVTIMEO:
 912		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
 
 
 913		break;
 914
 915	case SO_SNDTIMEO:
 916		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
 
 
 917		break;
 918
 919	case SO_ATTACH_FILTER:
 920		ret = -EINVAL;
 921		if (optlen == sizeof(struct sock_fprog)) {
 922			struct sock_fprog fprog;
 923
 924			ret = -EFAULT;
 925			if (copy_from_user(&fprog, optval, sizeof(fprog)))
 926				break;
 927
 
 
 928			ret = sk_attach_filter(&fprog, sk);
 929		}
 930		break;
 931
 932	case SO_ATTACH_BPF:
 933		ret = -EINVAL;
 934		if (optlen == sizeof(u32)) {
 935			u32 ufd;
 936
 937			ret = -EFAULT;
 938			if (copy_from_user(&ufd, optval, sizeof(ufd)))
 939				break;
 940
 941			ret = sk_attach_bpf(ufd, sk);
 942		}
 943		break;
 944
 945	case SO_ATTACH_REUSEPORT_CBPF:
 946		ret = -EINVAL;
 947		if (optlen == sizeof(struct sock_fprog)) {
 948			struct sock_fprog fprog;
 949
 950			ret = -EFAULT;
 951			if (copy_from_user(&fprog, optval, sizeof(fprog)))
 952				break;
 953
 
 
 954			ret = sk_reuseport_attach_filter(&fprog, sk);
 955		}
 956		break;
 957
 958	case SO_ATTACH_REUSEPORT_EBPF:
 959		ret = -EINVAL;
 960		if (optlen == sizeof(u32)) {
 961			u32 ufd;
 962
 963			ret = -EFAULT;
 964			if (copy_from_user(&ufd, optval, sizeof(ufd)))
 965				break;
 966
 967			ret = sk_reuseport_attach_bpf(ufd, sk);
 968		}
 969		break;
 970
 
 
 
 
 971	case SO_DETACH_FILTER:
 972		ret = sk_detach_filter(sk);
 973		break;
 974
 975	case SO_LOCK_FILTER:
 976		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
 977			ret = -EPERM;
 978		else
 979			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
 980		break;
 981
 982	case SO_PASSSEC:
 983		if (valbool)
 984			set_bit(SOCK_PASSSEC, &sock->flags);
 985		else
 986			clear_bit(SOCK_PASSSEC, &sock->flags);
 987		break;
 988	case SO_MARK:
 989		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 
 990			ret = -EPERM;
 991		else
 992			sk->sk_mark = val;
 
 
 
 
 
 
 
 
 
 
 
 993		break;
 994
 995	case SO_RXQ_OVFL:
 996		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
 997		break;
 998
 999	case SO_WIFI_STATUS:
1000		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1001		break;
1002
1003	case SO_PEEK_OFF:
1004		if (sock->ops->set_peek_off)
1005			ret = sock->ops->set_peek_off(sk, val);
1006		else
1007			ret = -EOPNOTSUPP;
1008		break;
1009
1010	case SO_NOFCS:
1011		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1012		break;
1013
1014	case SO_SELECT_ERR_QUEUE:
1015		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1016		break;
1017
1018#ifdef CONFIG_NET_RX_BUSY_POLL
1019	case SO_BUSY_POLL:
1020		/* allow unprivileged users to decrease the value */
1021		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1022			ret = -EPERM;
1023		else {
1024			if (val < 0)
1025				ret = -EINVAL;
1026			else
1027				sk->sk_ll_usec = val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028		}
1029		break;
1030#endif
1031
1032	case SO_MAX_PACING_RATE:
1033		if (val != ~0U)
 
 
 
 
 
 
 
 
 
1034			cmpxchg(&sk->sk_pacing_status,
1035				SK_PACING_NONE,
1036				SK_PACING_NEEDED);
1037		sk->sk_max_pacing_rate = val;
1038		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1039					 sk->sk_max_pacing_rate);
1040		break;
1041
1042	case SO_INCOMING_CPU:
1043		sk->sk_incoming_cpu = val;
1044		break;
1045
1046	case SO_CNX_ADVICE:
1047		if (val == 1)
1048			dst_negative_advice(sk);
1049		break;
1050
1051	case SO_ZEROCOPY:
1052		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1053			if (sk->sk_protocol != IPPROTO_TCP)
1054				ret = -ENOTSUPP;
 
 
1055		} else if (sk->sk_family != PF_RDS) {
1056			ret = -ENOTSUPP;
1057		}
1058		if (!ret) {
1059			if (val < 0 || val > 1)
1060				ret = -EINVAL;
1061			else
1062				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1063		}
1064		break;
1065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1066	default:
1067		ret = -ENOPROTOOPT;
1068		break;
1069	}
1070	release_sock(sk);
1071	return ret;
1072}
 
 
 
 
 
 
 
1073EXPORT_SYMBOL(sock_setsockopt);
1074
 
 
 
 
 
 
 
 
 
 
1075
1076static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1077			  struct ucred *ucred)
1078{
1079	ucred->pid = pid_vnr(pid);
1080	ucred->uid = ucred->gid = -1;
1081	if (cred) {
1082		struct user_namespace *current_ns = current_user_ns();
1083
1084		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1085		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1086	}
1087}
1088
1089static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1090{
1091	struct user_namespace *user_ns = current_user_ns();
1092	int i;
1093
1094	for (i = 0; i < src->ngroups; i++)
1095		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
 
 
1096			return -EFAULT;
 
1097
1098	return 0;
1099}
1100
1101int sock_getsockopt(struct socket *sock, int level, int optname,
1102		    char __user *optval, int __user *optlen)
1103{
1104	struct sock *sk = sock->sk;
1105
1106	union {
1107		int val;
1108		u64 val64;
 
1109		struct linger ling;
1110		struct timeval tm;
 
 
 
 
1111	} v;
1112
1113	int lv = sizeof(int);
1114	int len;
1115
1116	if (get_user(len, optlen))
1117		return -EFAULT;
1118	if (len < 0)
1119		return -EINVAL;
1120
1121	memset(&v, 0, sizeof(v));
1122
1123	switch (optname) {
1124	case SO_DEBUG:
1125		v.val = sock_flag(sk, SOCK_DBG);
1126		break;
1127
1128	case SO_DONTROUTE:
1129		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1130		break;
1131
1132	case SO_BROADCAST:
1133		v.val = sock_flag(sk, SOCK_BROADCAST);
1134		break;
1135
1136	case SO_SNDBUF:
1137		v.val = sk->sk_sndbuf;
1138		break;
1139
1140	case SO_RCVBUF:
1141		v.val = sk->sk_rcvbuf;
1142		break;
1143
1144	case SO_REUSEADDR:
1145		v.val = sk->sk_reuse;
1146		break;
1147
1148	case SO_REUSEPORT:
1149		v.val = sk->sk_reuseport;
1150		break;
1151
1152	case SO_KEEPALIVE:
1153		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1154		break;
1155
1156	case SO_TYPE:
1157		v.val = sk->sk_type;
1158		break;
1159
1160	case SO_PROTOCOL:
1161		v.val = sk->sk_protocol;
1162		break;
1163
1164	case SO_DOMAIN:
1165		v.val = sk->sk_family;
1166		break;
1167
1168	case SO_ERROR:
1169		v.val = -sock_error(sk);
1170		if (v.val == 0)
1171			v.val = xchg(&sk->sk_err_soft, 0);
1172		break;
1173
1174	case SO_OOBINLINE:
1175		v.val = sock_flag(sk, SOCK_URGINLINE);
1176		break;
1177
1178	case SO_NO_CHECK:
1179		v.val = sk->sk_no_check_tx;
1180		break;
1181
1182	case SO_PRIORITY:
1183		v.val = sk->sk_priority;
1184		break;
1185
1186	case SO_LINGER:
1187		lv		= sizeof(v.ling);
1188		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1189		v.ling.l_linger	= sk->sk_lingertime / HZ;
1190		break;
1191
1192	case SO_BSDCOMPAT:
1193		sock_warn_obsolete_bsdism("getsockopt");
1194		break;
1195
1196	case SO_TIMESTAMP:
1197		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
 
1198				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1199		break;
1200
1201	case SO_TIMESTAMPNS:
1202		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1203		break;
1204
1205	case SO_TIMESTAMPING:
1206		v.val = sk->sk_tsflags;
1207		break;
1208
1209	case SO_RCVTIMEO:
1210		lv = sizeof(struct timeval);
1211		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1212			v.tm.tv_sec = 0;
1213			v.tm.tv_usec = 0;
1214		} else {
1215			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1216			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1217		}
1218		break;
1219
1220	case SO_SNDTIMEO:
1221		lv = sizeof(struct timeval);
1222		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1223			v.tm.tv_sec = 0;
1224			v.tm.tv_usec = 0;
1225		} else {
1226			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1227			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1228		}
 
 
 
 
 
1229		break;
1230
1231	case SO_RCVLOWAT:
1232		v.val = sk->sk_rcvlowat;
1233		break;
1234
1235	case SO_SNDLOWAT:
1236		v.val = 1;
1237		break;
1238
1239	case SO_PASSCRED:
1240		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1241		break;
1242
1243	case SO_PEERCRED:
1244	{
1245		struct ucred peercred;
1246		if (len > sizeof(peercred))
1247			len = sizeof(peercred);
 
 
1248		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1249		if (copy_to_user(optval, &peercred, len))
 
 
1250			return -EFAULT;
1251		goto lenout;
1252	}
1253
1254	case SO_PEERGROUPS:
1255	{
 
1256		int ret, n;
1257
1258		if (!sk->sk_peer_cred)
 
1259			return -ENODATA;
1260
1261		n = sk->sk_peer_cred->group_info->ngroups;
1262		if (len < n * sizeof(gid_t)) {
1263			len = n * sizeof(gid_t);
1264			return put_user(len, optlen) ? -EFAULT : -ERANGE;
 
1265		}
1266		len = n * sizeof(gid_t);
1267
1268		ret = groups_to_user((gid_t __user *)optval,
1269				     sk->sk_peer_cred->group_info);
1270		if (ret)
1271			return ret;
1272		goto lenout;
1273	}
1274
1275	case SO_PEERNAME:
1276	{
1277		char address[128];
1278
1279		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1280		if (lv < 0)
1281			return -ENOTCONN;
1282		if (lv < len)
1283			return -EINVAL;
1284		if (copy_to_user(optval, address, len))
1285			return -EFAULT;
1286		goto lenout;
1287	}
1288
1289	/* Dubious BSD thing... Probably nobody even uses it, but
1290	 * the UNIX standard wants it for whatever reason... -DaveM
1291	 */
1292	case SO_ACCEPTCONN:
1293		v.val = sk->sk_state == TCP_LISTEN;
1294		break;
1295
1296	case SO_PASSSEC:
1297		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1298		break;
1299
1300	case SO_PEERSEC:
1301		return security_socket_getpeersec_stream(sock, optval, optlen, len);
 
1302
1303	case SO_MARK:
1304		v.val = sk->sk_mark;
1305		break;
1306
 
 
 
 
1307	case SO_RXQ_OVFL:
1308		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1309		break;
1310
1311	case SO_WIFI_STATUS:
1312		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1313		break;
1314
1315	case SO_PEEK_OFF:
1316		if (!sock->ops->set_peek_off)
1317			return -EOPNOTSUPP;
1318
1319		v.val = sk->sk_peek_off;
1320		break;
1321	case SO_NOFCS:
1322		v.val = sock_flag(sk, SOCK_NOFCS);
1323		break;
1324
1325	case SO_BINDTODEVICE:
1326		return sock_getbindtodevice(sk, optval, optlen, len);
1327
1328	case SO_GET_FILTER:
1329		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1330		if (len < 0)
1331			return len;
1332
1333		goto lenout;
1334
1335	case SO_LOCK_FILTER:
1336		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1337		break;
1338
1339	case SO_BPF_EXTENSIONS:
1340		v.val = bpf_tell_extensions();
1341		break;
1342
1343	case SO_SELECT_ERR_QUEUE:
1344		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1345		break;
1346
1347#ifdef CONFIG_NET_RX_BUSY_POLL
1348	case SO_BUSY_POLL:
1349		v.val = sk->sk_ll_usec;
1350		break;
 
 
 
1351#endif
1352
1353	case SO_MAX_PACING_RATE:
1354		v.val = sk->sk_max_pacing_rate;
 
 
 
 
 
 
1355		break;
1356
1357	case SO_INCOMING_CPU:
1358		v.val = sk->sk_incoming_cpu;
1359		break;
1360
1361	case SO_MEMINFO:
1362	{
1363		u32 meminfo[SK_MEMINFO_VARS];
1364
1365		if (get_user(len, optlen))
1366			return -EFAULT;
1367
1368		sk_get_meminfo(sk, meminfo);
1369
1370		len = min_t(unsigned int, len, sizeof(meminfo));
1371		if (copy_to_user(optval, &meminfo, len))
1372			return -EFAULT;
1373
1374		goto lenout;
1375	}
1376
1377#ifdef CONFIG_NET_RX_BUSY_POLL
1378	case SO_INCOMING_NAPI_ID:
1379		v.val = READ_ONCE(sk->sk_napi_id);
1380
1381		/* aggregate non-NAPI IDs down to 0 */
1382		if (v.val < MIN_NAPI_ID)
1383			v.val = 0;
1384
1385		break;
1386#endif
1387
1388	case SO_COOKIE:
1389		lv = sizeof(u64);
1390		if (len < lv)
1391			return -EINVAL;
1392		v.val64 = sock_gen_cookie(sk);
1393		break;
1394
1395	case SO_ZEROCOPY:
1396		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1397		break;
1398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1399	default:
1400		/* We implement the SO_SNDLOWAT etc to not be settable
1401		 * (1003.1g 7).
1402		 */
1403		return -ENOPROTOOPT;
1404	}
1405
1406	if (len > lv)
1407		len = lv;
1408	if (copy_to_user(optval, &v, len))
1409		return -EFAULT;
1410lenout:
1411	if (put_user(len, optlen))
1412		return -EFAULT;
1413	return 0;
1414}
1415
 
 
 
 
 
 
 
 
1416/*
1417 * Initialize an sk_lock.
1418 *
1419 * (We also register the sk_lock with the lock validator.)
1420 */
1421static inline void sock_lock_init(struct sock *sk)
1422{
1423	if (sk->sk_kern_sock)
1424		sock_lock_init_class_and_name(
1425			sk,
1426			af_family_kern_slock_key_strings[sk->sk_family],
1427			af_family_kern_slock_keys + sk->sk_family,
1428			af_family_kern_key_strings[sk->sk_family],
1429			af_family_kern_keys + sk->sk_family);
1430	else
1431		sock_lock_init_class_and_name(
1432			sk,
1433			af_family_slock_key_strings[sk->sk_family],
1434			af_family_slock_keys + sk->sk_family,
1435			af_family_key_strings[sk->sk_family],
1436			af_family_keys + sk->sk_family);
1437}
1438
1439/*
1440 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1441 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1442 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1443 */
1444static void sock_copy(struct sock *nsk, const struct sock *osk)
1445{
 
1446#ifdef CONFIG_SECURITY_NETWORK
1447	void *sptr = nsk->sk_security;
1448#endif
 
 
 
 
 
 
 
 
 
 
1449	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1450
1451	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1452	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1453
1454#ifdef CONFIG_SECURITY_NETWORK
1455	nsk->sk_security = sptr;
1456	security_sk_clone(osk, nsk);
1457#endif
1458}
1459
1460static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1461		int family)
1462{
1463	struct sock *sk;
1464	struct kmem_cache *slab;
1465
1466	slab = prot->slab;
1467	if (slab != NULL) {
1468		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1469		if (!sk)
1470			return sk;
1471		if (priority & __GFP_ZERO)
1472			sk_prot_clear_nulls(sk, prot->obj_size);
1473	} else
1474		sk = kmalloc(prot->obj_size, priority);
1475
1476	if (sk != NULL) {
1477		if (security_sk_alloc(sk, family, priority))
1478			goto out_free;
1479
1480		if (!try_module_get(prot->owner))
1481			goto out_free_sec;
1482		sk_tx_queue_clear(sk);
1483	}
1484
1485	return sk;
1486
1487out_free_sec:
1488	security_sk_free(sk);
1489out_free:
1490	if (slab != NULL)
1491		kmem_cache_free(slab, sk);
1492	else
1493		kfree(sk);
1494	return NULL;
1495}
1496
1497static void sk_prot_free(struct proto *prot, struct sock *sk)
1498{
1499	struct kmem_cache *slab;
1500	struct module *owner;
1501
1502	owner = prot->owner;
1503	slab = prot->slab;
1504
1505	cgroup_sk_free(&sk->sk_cgrp_data);
1506	mem_cgroup_sk_free(sk);
1507	security_sk_free(sk);
1508	if (slab != NULL)
1509		kmem_cache_free(slab, sk);
1510	else
1511		kfree(sk);
1512	module_put(owner);
1513}
1514
1515/**
1516 *	sk_alloc - All socket objects are allocated here
1517 *	@net: the applicable net namespace
1518 *	@family: protocol family
1519 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1520 *	@prot: struct proto associated with this new sock instance
1521 *	@kern: is this to be a kernel socket?
1522 */
1523struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1524		      struct proto *prot, int kern)
1525{
1526	struct sock *sk;
1527
1528	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1529	if (sk) {
1530		sk->sk_family = family;
1531		/*
1532		 * See comment in struct sock definition to understand
1533		 * why we need sk_prot_creator -acme
1534		 */
1535		sk->sk_prot = sk->sk_prot_creator = prot;
1536		sk->sk_kern_sock = kern;
1537		sock_lock_init(sk);
1538		sk->sk_net_refcnt = kern ? 0 : 1;
1539		if (likely(sk->sk_net_refcnt)) {
1540			get_net(net);
1541			sock_inuse_add(net, 1);
 
 
 
1542		}
1543
1544		sock_net_set(sk, net);
1545		refcount_set(&sk->sk_wmem_alloc, 1);
1546
1547		mem_cgroup_sk_alloc(sk);
1548		cgroup_sk_alloc(&sk->sk_cgrp_data);
1549		sock_update_classid(&sk->sk_cgrp_data);
1550		sock_update_netprioidx(&sk->sk_cgrp_data);
 
1551	}
1552
1553	return sk;
1554}
1555EXPORT_SYMBOL(sk_alloc);
1556
1557/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1558 * grace period. This is the case for UDP sockets and TCP listeners.
1559 */
1560static void __sk_destruct(struct rcu_head *head)
1561{
1562	struct sock *sk = container_of(head, struct sock, sk_rcu);
1563	struct sk_filter *filter;
1564
1565	if (sk->sk_destruct)
1566		sk->sk_destruct(sk);
1567
1568	filter = rcu_dereference_check(sk->sk_filter,
1569				       refcount_read(&sk->sk_wmem_alloc) == 0);
1570	if (filter) {
1571		sk_filter_uncharge(sk, filter);
1572		RCU_INIT_POINTER(sk->sk_filter, NULL);
1573	}
1574	if (rcu_access_pointer(sk->sk_reuseport_cb))
1575		reuseport_detach_sock(sk);
1576
1577	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1578
 
 
 
 
1579	if (atomic_read(&sk->sk_omem_alloc))
1580		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1581			 __func__, atomic_read(&sk->sk_omem_alloc));
1582
1583	if (sk->sk_frag.page) {
1584		put_page(sk->sk_frag.page);
1585		sk->sk_frag.page = NULL;
1586	}
1587
1588	if (sk->sk_peer_cred)
1589		put_cred(sk->sk_peer_cred);
1590	put_pid(sk->sk_peer_pid);
 
1591	if (likely(sk->sk_net_refcnt))
1592		put_net(sock_net(sk));
 
 
 
1593	sk_prot_free(sk->sk_prot_creator, sk);
1594}
1595
1596void sk_destruct(struct sock *sk)
1597{
1598	if (sock_flag(sk, SOCK_RCU_FREE))
 
 
 
 
 
 
 
1599		call_rcu(&sk->sk_rcu, __sk_destruct);
1600	else
1601		__sk_destruct(&sk->sk_rcu);
1602}
1603
1604static void __sk_free(struct sock *sk)
1605{
1606	if (likely(sk->sk_net_refcnt))
1607		sock_inuse_add(sock_net(sk), -1);
1608
1609	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1610		sock_diag_broadcast_destroy(sk);
1611	else
1612		sk_destruct(sk);
1613}
1614
1615void sk_free(struct sock *sk)
1616{
1617	/*
1618	 * We subtract one from sk_wmem_alloc and can know if
1619	 * some packets are still in some tx queue.
1620	 * If not null, sock_wfree() will call __sk_free(sk) later
1621	 */
1622	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1623		__sk_free(sk);
1624}
1625EXPORT_SYMBOL(sk_free);
1626
1627static void sk_init_common(struct sock *sk)
1628{
1629	skb_queue_head_init(&sk->sk_receive_queue);
1630	skb_queue_head_init(&sk->sk_write_queue);
1631	skb_queue_head_init(&sk->sk_error_queue);
1632
1633	rwlock_init(&sk->sk_callback_lock);
1634	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1635			af_rlock_keys + sk->sk_family,
1636			af_family_rlock_key_strings[sk->sk_family]);
1637	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1638			af_wlock_keys + sk->sk_family,
1639			af_family_wlock_key_strings[sk->sk_family]);
1640	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1641			af_elock_keys + sk->sk_family,
1642			af_family_elock_key_strings[sk->sk_family]);
1643	lockdep_set_class_and_name(&sk->sk_callback_lock,
1644			af_callback_keys + sk->sk_family,
1645			af_family_clock_key_strings[sk->sk_family]);
1646}
1647
1648/**
1649 *	sk_clone_lock - clone a socket, and lock its clone
1650 *	@sk: the socket to clone
1651 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1652 *
1653 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1654 */
1655struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1656{
1657	struct sock *newsk;
 
1658	bool is_charged = true;
 
1659
1660	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1661	if (newsk != NULL) {
1662		struct sk_filter *filter;
1663
1664		sock_copy(newsk, sk);
1665
1666		newsk->sk_prot_creator = sk->sk_prot;
1667
1668		/* SANITY */
1669		if (likely(newsk->sk_net_refcnt))
1670			get_net(sock_net(newsk));
1671		sk_node_init(&newsk->sk_node);
1672		sock_lock_init(newsk);
1673		bh_lock_sock(newsk);
1674		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1675		newsk->sk_backlog.len = 0;
1676
1677		atomic_set(&newsk->sk_rmem_alloc, 0);
1678		/*
1679		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
 
 
 
 
 
 
 
 
 
 
1680		 */
1681		refcount_set(&newsk->sk_wmem_alloc, 1);
1682		atomic_set(&newsk->sk_omem_alloc, 0);
1683		sk_init_common(newsk);
1684
1685		newsk->sk_dst_cache	= NULL;
1686		newsk->sk_dst_pending_confirm = 0;
1687		newsk->sk_wmem_queued	= 0;
1688		newsk->sk_forward_alloc = 0;
1689		atomic_set(&newsk->sk_drops, 0);
1690		newsk->sk_send_head	= NULL;
1691		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1692		atomic_set(&newsk->sk_zckey, 0);
1693
1694		sock_reset_flag(newsk, SOCK_DONE);
1695		mem_cgroup_sk_alloc(newsk);
1696		cgroup_sk_alloc(&newsk->sk_cgrp_data);
 
 
 
 
 
 
 
 
 
 
1697
1698		rcu_read_lock();
1699		filter = rcu_dereference(sk->sk_filter);
1700		if (filter != NULL)
1701			/* though it's an empty new sock, the charging may fail
1702			 * if sysctl_optmem_max was changed between creation of
1703			 * original socket and cloning
1704			 */
1705			is_charged = sk_filter_charge(newsk, filter);
1706		RCU_INIT_POINTER(newsk->sk_filter, filter);
1707		rcu_read_unlock();
1708
1709		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1710			/* We need to make sure that we don't uncharge the new
1711			 * socket if we couldn't charge it in the first place
1712			 * as otherwise we uncharge the parent's filter.
1713			 */
1714			if (!is_charged)
1715				RCU_INIT_POINTER(newsk->sk_filter, NULL);
1716			sk_free_unlock_clone(newsk);
1717			newsk = NULL;
1718			goto out;
1719		}
1720		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1721
1722		newsk->sk_err	   = 0;
1723		newsk->sk_err_soft = 0;
1724		newsk->sk_priority = 0;
1725		newsk->sk_incoming_cpu = raw_smp_processor_id();
1726		atomic64_set(&newsk->sk_cookie, 0);
1727		if (likely(newsk->sk_net_refcnt))
1728			sock_inuse_add(sock_net(newsk), 1);
1729
1730		/*
1731		 * Before updating sk_refcnt, we must commit prior changes to memory
1732		 * (Documentation/RCU/rculist_nulls.txt for details)
 
 
 
1733		 */
1734		smp_wmb();
1735		refcount_set(&newsk->sk_refcnt, 2);
 
1736
1737		/*
1738		 * Increment the counter in the same struct proto as the master
1739		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1740		 * is the same as sk->sk_prot->socks, as this field was copied
1741		 * with memcpy).
1742		 *
1743		 * This _changes_ the previous behaviour, where
1744		 * tcp_create_openreq_child always was incrementing the
1745		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1746		 * to be taken into account in all callers. -acme
1747		 */
1748		sk_refcnt_debug_inc(newsk);
1749		sk_set_socket(newsk, NULL);
1750		newsk->sk_wq = NULL;
1751
1752		if (newsk->sk_prot->sockets_allocated)
1753			sk_sockets_allocated_inc(newsk);
 
1754
1755		if (sock_needs_netstamp(sk) &&
1756		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1757			net_enable_timestamp();
 
1758	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1759out:
1760	return newsk;
1761}
1762EXPORT_SYMBOL_GPL(sk_clone_lock);
1763
1764void sk_free_unlock_clone(struct sock *sk)
1765{
1766	/* It is still raw copy of parent, so invalidate
1767	 * destructor and make plain sk_free() */
1768	sk->sk_destruct = NULL;
1769	bh_unlock_sock(sk);
1770	sk_free(sk);
1771}
1772EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1773
 
 
 
 
 
 
 
 
 
 
 
 
 
1774void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1775{
1776	u32 max_segs = 1;
1777
1778	sk_dst_set(sk, dst);
1779	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
 
 
1780	if (sk->sk_route_caps & NETIF_F_GSO)
1781		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1782	sk->sk_route_caps &= ~sk->sk_route_nocaps;
 
1783	if (sk_can_gso(sk)) {
1784		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1785			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1786		} else {
1787			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1788			sk->sk_gso_max_size = dst->dev->gso_max_size;
1789			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
 
 
 
 
1790		}
1791	}
1792	sk->sk_gso_max_segs = max_segs;
1793}
1794EXPORT_SYMBOL_GPL(sk_setup_caps);
1795
1796/*
1797 *	Simple resource managers for sockets.
1798 */
1799
1800
1801/*
1802 * Write buffer destructor automatically called from kfree_skb.
1803 */
1804void sock_wfree(struct sk_buff *skb)
1805{
1806	struct sock *sk = skb->sk;
1807	unsigned int len = skb->truesize;
 
1808
1809	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
 
 
 
 
 
 
 
 
 
 
 
1810		/*
1811		 * Keep a reference on sk_wmem_alloc, this will be released
1812		 * after sk_write_space() call
1813		 */
1814		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1815		sk->sk_write_space(sk);
1816		len = 1;
1817	}
1818	/*
1819	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1820	 * could not do because of in-flight packets
1821	 */
1822	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1823		__sk_free(sk);
1824}
1825EXPORT_SYMBOL(sock_wfree);
1826
1827/* This variant of sock_wfree() is used by TCP,
1828 * since it sets SOCK_USE_WRITE_QUEUE.
1829 */
1830void __sock_wfree(struct sk_buff *skb)
1831{
1832	struct sock *sk = skb->sk;
1833
1834	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1835		__sk_free(sk);
1836}
1837
1838void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1839{
1840	skb_orphan(skb);
1841	skb->sk = sk;
1842#ifdef CONFIG_INET
1843	if (unlikely(!sk_fullsock(sk))) {
1844		skb->destructor = sock_edemux;
1845		sock_hold(sk);
1846		return;
1847	}
1848#endif
1849	skb->destructor = sock_wfree;
1850	skb_set_hash_from_sk(skb, sk);
1851	/*
1852	 * We used to take a refcount on sk, but following operation
1853	 * is enough to guarantee sk_free() wont free this sock until
1854	 * all in-flight packets are completed
1855	 */
1856	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1857}
1858EXPORT_SYMBOL(skb_set_owner_w);
1859
 
 
 
 
 
 
 
 
 
 
 
 
 
1860/* This helper is used by netem, as it can hold packets in its
1861 * delay queue. We want to allow the owner socket to send more
1862 * packets, as if they were already TX completed by a typical driver.
1863 * But we also want to keep skb->sk set because some packet schedulers
1864 * rely on it (sch_fq for example).
1865 */
1866void skb_orphan_partial(struct sk_buff *skb)
1867{
1868	if (skb_is_tcp_pure_ack(skb))
1869		return;
1870
1871	if (skb->destructor == sock_wfree
1872#ifdef CONFIG_INET
1873	    || skb->destructor == tcp_wfree
1874#endif
1875		) {
1876		struct sock *sk = skb->sk;
1877
1878		if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1879			WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
1880			skb->destructor = sock_efree;
1881		}
1882	} else {
1883		skb_orphan(skb);
1884	}
1885}
1886EXPORT_SYMBOL(skb_orphan_partial);
1887
1888/*
1889 * Read buffer destructor automatically called from kfree_skb.
1890 */
1891void sock_rfree(struct sk_buff *skb)
1892{
1893	struct sock *sk = skb->sk;
1894	unsigned int len = skb->truesize;
1895
1896	atomic_sub(len, &sk->sk_rmem_alloc);
1897	sk_mem_uncharge(sk, len);
1898}
1899EXPORT_SYMBOL(sock_rfree);
1900
1901/*
1902 * Buffer destructor for skbs that are not used directly in read or write
1903 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1904 */
1905void sock_efree(struct sk_buff *skb)
1906{
1907	sock_put(skb->sk);
1908}
1909EXPORT_SYMBOL(sock_efree);
1910
 
 
 
 
 
 
 
 
 
 
 
 
1911kuid_t sock_i_uid(struct sock *sk)
1912{
1913	kuid_t uid;
1914
1915	read_lock_bh(&sk->sk_callback_lock);
1916	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1917	read_unlock_bh(&sk->sk_callback_lock);
1918	return uid;
1919}
1920EXPORT_SYMBOL(sock_i_uid);
1921
1922unsigned long sock_i_ino(struct sock *sk)
1923{
1924	unsigned long ino;
1925
1926	read_lock_bh(&sk->sk_callback_lock);
1927	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1928	read_unlock_bh(&sk->sk_callback_lock);
1929	return ino;
1930}
1931EXPORT_SYMBOL(sock_i_ino);
1932
1933/*
1934 * Allocate a skb from the socket's send buffer.
1935 */
1936struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1937			     gfp_t priority)
1938{
1939	if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
 
1940		struct sk_buff *skb = alloc_skb(size, priority);
 
1941		if (skb) {
1942			skb_set_owner_w(skb, sk);
1943			return skb;
1944		}
1945	}
1946	return NULL;
1947}
1948EXPORT_SYMBOL(sock_wmalloc);
1949
1950static void sock_ofree(struct sk_buff *skb)
1951{
1952	struct sock *sk = skb->sk;
1953
1954	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
1955}
1956
1957struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1958			     gfp_t priority)
1959{
1960	struct sk_buff *skb;
1961
1962	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1963	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
1964	    sysctl_optmem_max)
1965		return NULL;
1966
1967	skb = alloc_skb(size, priority);
1968	if (!skb)
1969		return NULL;
1970
1971	atomic_add(skb->truesize, &sk->sk_omem_alloc);
1972	skb->sk = sk;
1973	skb->destructor = sock_ofree;
1974	return skb;
1975}
1976
1977/*
1978 * Allocate a memory block from the socket's option memory buffer.
1979 */
1980void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1981{
1982	if ((unsigned int)size <= sysctl_optmem_max &&
1983	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
 
 
1984		void *mem;
1985		/* First do the add, to avoid the race if kmalloc
1986		 * might sleep.
1987		 */
1988		atomic_add(size, &sk->sk_omem_alloc);
1989		mem = kmalloc(size, priority);
1990		if (mem)
1991			return mem;
1992		atomic_sub(size, &sk->sk_omem_alloc);
1993	}
1994	return NULL;
1995}
1996EXPORT_SYMBOL(sock_kmalloc);
1997
1998/* Free an option memory block. Note, we actually want the inline
1999 * here as this allows gcc to detect the nullify and fold away the
2000 * condition entirely.
2001 */
2002static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2003				  const bool nullify)
2004{
2005	if (WARN_ON_ONCE(!mem))
2006		return;
2007	if (nullify)
2008		kzfree(mem);
2009	else
2010		kfree(mem);
2011	atomic_sub(size, &sk->sk_omem_alloc);
2012}
2013
2014void sock_kfree_s(struct sock *sk, void *mem, int size)
2015{
2016	__sock_kfree_s(sk, mem, size, false);
2017}
2018EXPORT_SYMBOL(sock_kfree_s);
2019
2020void sock_kzfree_s(struct sock *sk, void *mem, int size)
2021{
2022	__sock_kfree_s(sk, mem, size, true);
2023}
2024EXPORT_SYMBOL(sock_kzfree_s);
2025
2026/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2027   I think, these locks should be removed for datagram sockets.
2028 */
2029static long sock_wait_for_wmem(struct sock *sk, long timeo)
2030{
2031	DEFINE_WAIT(wait);
2032
2033	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2034	for (;;) {
2035		if (!timeo)
2036			break;
2037		if (signal_pending(current))
2038			break;
2039		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2040		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2041		if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2042			break;
2043		if (sk->sk_shutdown & SEND_SHUTDOWN)
2044			break;
2045		if (sk->sk_err)
2046			break;
2047		timeo = schedule_timeout(timeo);
2048	}
2049	finish_wait(sk_sleep(sk), &wait);
2050	return timeo;
2051}
2052
2053
2054/*
2055 *	Generic send/receive buffer handlers
2056 */
2057
2058struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2059				     unsigned long data_len, int noblock,
2060				     int *errcode, int max_page_order)
2061{
2062	struct sk_buff *skb;
2063	long timeo;
2064	int err;
2065
2066	timeo = sock_sndtimeo(sk, noblock);
2067	for (;;) {
2068		err = sock_error(sk);
2069		if (err != 0)
2070			goto failure;
2071
2072		err = -EPIPE;
2073		if (sk->sk_shutdown & SEND_SHUTDOWN)
2074			goto failure;
2075
2076		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2077			break;
2078
2079		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2080		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2081		err = -EAGAIN;
2082		if (!timeo)
2083			goto failure;
2084		if (signal_pending(current))
2085			goto interrupted;
2086		timeo = sock_wait_for_wmem(sk, timeo);
2087	}
2088	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2089				   errcode, sk->sk_allocation);
2090	if (skb)
2091		skb_set_owner_w(skb, sk);
2092	return skb;
2093
2094interrupted:
2095	err = sock_intr_errno(timeo);
2096failure:
2097	*errcode = err;
2098	return NULL;
2099}
2100EXPORT_SYMBOL(sock_alloc_send_pskb);
2101
2102struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2103				    int noblock, int *errcode)
2104{
2105	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2106}
2107EXPORT_SYMBOL(sock_alloc_send_skb);
2108
2109int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2110		     struct sockcm_cookie *sockc)
2111{
2112	u32 tsflags;
2113
2114	switch (cmsg->cmsg_type) {
2115	case SO_MARK:
2116		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 
2117			return -EPERM;
2118		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2119			return -EINVAL;
2120		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2121		break;
2122	case SO_TIMESTAMPING:
2123		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2124			return -EINVAL;
2125
2126		tsflags = *(u32 *)CMSG_DATA(cmsg);
2127		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2128			return -EINVAL;
2129
2130		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2131		sockc->tsflags |= tsflags;
2132		break;
 
 
 
 
 
 
 
2133	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2134	case SCM_RIGHTS:
2135	case SCM_CREDENTIALS:
2136		break;
2137	default:
2138		return -EINVAL;
2139	}
2140	return 0;
2141}
2142EXPORT_SYMBOL(__sock_cmsg_send);
2143
2144int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2145		   struct sockcm_cookie *sockc)
2146{
2147	struct cmsghdr *cmsg;
2148	int ret;
2149
2150	for_each_cmsghdr(cmsg, msg) {
2151		if (!CMSG_OK(msg, cmsg))
2152			return -EINVAL;
2153		if (cmsg->cmsg_level != SOL_SOCKET)
2154			continue;
2155		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2156		if (ret)
2157			return ret;
2158	}
2159	return 0;
2160}
2161EXPORT_SYMBOL(sock_cmsg_send);
2162
2163static void sk_enter_memory_pressure(struct sock *sk)
2164{
2165	if (!sk->sk_prot->enter_memory_pressure)
2166		return;
2167
2168	sk->sk_prot->enter_memory_pressure(sk);
2169}
2170
2171static void sk_leave_memory_pressure(struct sock *sk)
2172{
2173	if (sk->sk_prot->leave_memory_pressure) {
2174		sk->sk_prot->leave_memory_pressure(sk);
2175	} else {
2176		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2177
2178		if (memory_pressure && *memory_pressure)
2179			*memory_pressure = 0;
2180	}
2181}
2182
2183/* On 32bit arches, an skb frag is limited to 2^15 */
2184#define SKB_FRAG_PAGE_ORDER	get_order(32768)
2185
2186/**
2187 * skb_page_frag_refill - check that a page_frag contains enough room
2188 * @sz: minimum size of the fragment we want to get
2189 * @pfrag: pointer to page_frag
2190 * @gfp: priority for memory allocation
2191 *
2192 * Note: While this allocator tries to use high order pages, there is
2193 * no guarantee that allocations succeed. Therefore, @sz MUST be
2194 * less or equal than PAGE_SIZE.
2195 */
2196bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2197{
2198	if (pfrag->page) {
2199		if (page_ref_count(pfrag->page) == 1) {
2200			pfrag->offset = 0;
2201			return true;
2202		}
2203		if (pfrag->offset + sz <= pfrag->size)
2204			return true;
2205		put_page(pfrag->page);
2206	}
2207
2208	pfrag->offset = 0;
2209	if (SKB_FRAG_PAGE_ORDER) {
 
2210		/* Avoid direct reclaim but allow kswapd to wake */
2211		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2212					  __GFP_COMP | __GFP_NOWARN |
2213					  __GFP_NORETRY,
2214					  SKB_FRAG_PAGE_ORDER);
2215		if (likely(pfrag->page)) {
2216			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2217			return true;
2218		}
2219	}
2220	pfrag->page = alloc_page(gfp);
2221	if (likely(pfrag->page)) {
2222		pfrag->size = PAGE_SIZE;
2223		return true;
2224	}
2225	return false;
2226}
2227EXPORT_SYMBOL(skb_page_frag_refill);
2228
2229bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2230{
2231	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2232		return true;
2233
2234	sk_enter_memory_pressure(sk);
2235	sk_stream_moderate_sndbuf(sk);
2236	return false;
2237}
2238EXPORT_SYMBOL(sk_page_frag_refill);
2239
2240int sk_alloc_sg(struct sock *sk, int len, struct scatterlist *sg,
2241		int sg_start, int *sg_curr_index, unsigned int *sg_curr_size,
2242		int first_coalesce)
2243{
2244	int sg_curr = *sg_curr_index, use = 0, rc = 0;
2245	unsigned int size = *sg_curr_size;
2246	struct page_frag *pfrag;
2247	struct scatterlist *sge;
2248
2249	len -= size;
2250	pfrag = sk_page_frag(sk);
2251
2252	while (len > 0) {
2253		unsigned int orig_offset;
2254
2255		if (!sk_page_frag_refill(sk, pfrag)) {
2256			rc = -ENOMEM;
2257			goto out;
2258		}
2259
2260		use = min_t(int, len, pfrag->size - pfrag->offset);
2261
2262		if (!sk_wmem_schedule(sk, use)) {
2263			rc = -ENOMEM;
2264			goto out;
2265		}
2266
2267		sk_mem_charge(sk, use);
2268		size += use;
2269		orig_offset = pfrag->offset;
2270		pfrag->offset += use;
2271
2272		sge = sg + sg_curr - 1;
2273		if (sg_curr > first_coalesce && sg_page(sg) == pfrag->page &&
2274		    sg->offset + sg->length == orig_offset) {
2275			sg->length += use;
2276		} else {
2277			sge = sg + sg_curr;
2278			sg_unmark_end(sge);
2279			sg_set_page(sge, pfrag->page, use, orig_offset);
2280			get_page(pfrag->page);
2281			sg_curr++;
2282
2283			if (sg_curr == MAX_SKB_FRAGS)
2284				sg_curr = 0;
2285
2286			if (sg_curr == sg_start) {
2287				rc = -ENOSPC;
2288				break;
2289			}
2290		}
2291
2292		len -= use;
2293	}
2294out:
2295	*sg_curr_size = size;
2296	*sg_curr_index = sg_curr;
2297	return rc;
2298}
2299EXPORT_SYMBOL(sk_alloc_sg);
2300
2301static void __lock_sock(struct sock *sk)
2302	__releases(&sk->sk_lock.slock)
2303	__acquires(&sk->sk_lock.slock)
2304{
2305	DEFINE_WAIT(wait);
2306
2307	for (;;) {
2308		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2309					TASK_UNINTERRUPTIBLE);
2310		spin_unlock_bh(&sk->sk_lock.slock);
2311		schedule();
2312		spin_lock_bh(&sk->sk_lock.slock);
2313		if (!sock_owned_by_user(sk))
2314			break;
2315	}
2316	finish_wait(&sk->sk_lock.wq, &wait);
2317}
2318
2319static void __release_sock(struct sock *sk)
2320	__releases(&sk->sk_lock.slock)
2321	__acquires(&sk->sk_lock.slock)
2322{
2323	struct sk_buff *skb, *next;
2324
2325	while ((skb = sk->sk_backlog.head) != NULL) {
2326		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2327
2328		spin_unlock_bh(&sk->sk_lock.slock);
2329
2330		do {
2331			next = skb->next;
2332			prefetch(next);
2333			WARN_ON_ONCE(skb_dst_is_noref(skb));
2334			skb->next = NULL;
2335			sk_backlog_rcv(sk, skb);
2336
2337			cond_resched();
2338
2339			skb = next;
2340		} while (skb != NULL);
2341
2342		spin_lock_bh(&sk->sk_lock.slock);
2343	}
2344
2345	/*
2346	 * Doing the zeroing here guarantee we can not loop forever
2347	 * while a wild producer attempts to flood us.
2348	 */
2349	sk->sk_backlog.len = 0;
2350}
2351
2352void __sk_flush_backlog(struct sock *sk)
2353{
2354	spin_lock_bh(&sk->sk_lock.slock);
2355	__release_sock(sk);
2356	spin_unlock_bh(&sk->sk_lock.slock);
2357}
 
2358
2359/**
2360 * sk_wait_data - wait for data to arrive at sk_receive_queue
2361 * @sk:    sock to wait on
2362 * @timeo: for how long
2363 * @skb:   last skb seen on sk_receive_queue
2364 *
2365 * Now socket state including sk->sk_err is changed only under lock,
2366 * hence we may omit checks after joining wait queue.
2367 * We check receive queue before schedule() only as optimization;
2368 * it is very likely that release_sock() added new data.
2369 */
2370int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2371{
2372	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2373	int rc;
2374
2375	add_wait_queue(sk_sleep(sk), &wait);
2376	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2377	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2378	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2379	remove_wait_queue(sk_sleep(sk), &wait);
2380	return rc;
2381}
2382EXPORT_SYMBOL(sk_wait_data);
2383
2384/**
2385 *	__sk_mem_raise_allocated - increase memory_allocated
2386 *	@sk: socket
2387 *	@size: memory size to allocate
2388 *	@amt: pages to allocate
2389 *	@kind: allocation type
2390 *
2391 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2392 */
2393int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2394{
 
2395	struct proto *prot = sk->sk_prot;
2396	long allocated = sk_memory_allocated_add(sk, amt);
 
2397
2398	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2399	    !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
 
 
 
2400		goto suppress_allocation;
2401
2402	/* Under limit. */
2403	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2404		sk_leave_memory_pressure(sk);
2405		return 1;
2406	}
2407
2408	/* Under pressure. */
2409	if (allocated > sk_prot_mem_limits(sk, 1))
2410		sk_enter_memory_pressure(sk);
2411
2412	/* Over hard limit. */
2413	if (allocated > sk_prot_mem_limits(sk, 2))
2414		goto suppress_allocation;
2415
2416	/* guarantee minimum buffer size under pressure */
2417	if (kind == SK_MEM_RECV) {
2418		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2419			return 1;
2420
2421	} else { /* SK_MEM_SEND */
2422		int wmem0 = sk_get_wmem0(sk, prot);
2423
2424		if (sk->sk_type == SOCK_STREAM) {
2425			if (sk->sk_wmem_queued < wmem0)
2426				return 1;
2427		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2428				return 1;
2429		}
2430	}
2431
2432	if (sk_has_memory_pressure(sk)) {
2433		int alloc;
2434
2435		if (!sk_under_memory_pressure(sk))
2436			return 1;
2437		alloc = sk_sockets_allocated_read_positive(sk);
2438		if (sk_prot_mem_limits(sk, 2) > alloc *
2439		    sk_mem_pages(sk->sk_wmem_queued +
2440				 atomic_read(&sk->sk_rmem_alloc) +
2441				 sk->sk_forward_alloc))
2442			return 1;
2443	}
2444
2445suppress_allocation:
2446
2447	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2448		sk_stream_moderate_sndbuf(sk);
2449
2450		/* Fail only if socket is _under_ its sndbuf.
2451		 * In this case we cannot block, so that we have to fail.
2452		 */
2453		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
 
 
 
 
 
2454			return 1;
 
2455	}
2456
2457	trace_sock_exceed_buf_limit(sk, prot, allocated);
 
2458
2459	sk_memory_allocated_sub(sk, amt);
2460
2461	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2462		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2463
2464	return 0;
2465}
2466EXPORT_SYMBOL(__sk_mem_raise_allocated);
2467
2468/**
2469 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2470 *	@sk: socket
2471 *	@size: memory size to allocate
2472 *	@kind: allocation type
2473 *
2474 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2475 *	rmem allocation. This function assumes that protocols which have
2476 *	memory_pressure use sk_wmem_queued as write buffer accounting.
2477 */
2478int __sk_mem_schedule(struct sock *sk, int size, int kind)
2479{
2480	int ret, amt = sk_mem_pages(size);
2481
2482	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2483	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2484	if (!ret)
2485		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2486	return ret;
2487}
2488EXPORT_SYMBOL(__sk_mem_schedule);
2489
2490/**
2491 *	__sk_mem_reduce_allocated - reclaim memory_allocated
2492 *	@sk: socket
2493 *	@amount: number of quanta
2494 *
2495 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2496 */
2497void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2498{
2499	sk_memory_allocated_sub(sk, amount);
2500
2501	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2502		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2503
2504	if (sk_under_memory_pressure(sk) &&
2505	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2506		sk_leave_memory_pressure(sk);
2507}
2508EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2509
2510/**
2511 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2512 *	@sk: socket
2513 *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2514 */
2515void __sk_mem_reclaim(struct sock *sk, int amount)
2516{
2517	amount >>= SK_MEM_QUANTUM_SHIFT;
2518	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2519	__sk_mem_reduce_allocated(sk, amount);
2520}
2521EXPORT_SYMBOL(__sk_mem_reclaim);
2522
2523int sk_set_peek_off(struct sock *sk, int val)
2524{
2525	sk->sk_peek_off = val;
2526	return 0;
2527}
2528EXPORT_SYMBOL_GPL(sk_set_peek_off);
2529
2530/*
2531 * Set of default routines for initialising struct proto_ops when
2532 * the protocol does not support a particular function. In certain
2533 * cases where it makes no sense for a protocol to have a "do nothing"
2534 * function, some default processing is provided.
2535 */
2536
2537int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2538{
2539	return -EOPNOTSUPP;
2540}
2541EXPORT_SYMBOL(sock_no_bind);
2542
2543int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2544		    int len, int flags)
2545{
2546	return -EOPNOTSUPP;
2547}
2548EXPORT_SYMBOL(sock_no_connect);
2549
2550int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2551{
2552	return -EOPNOTSUPP;
2553}
2554EXPORT_SYMBOL(sock_no_socketpair);
2555
2556int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2557		   bool kern)
2558{
2559	return -EOPNOTSUPP;
2560}
2561EXPORT_SYMBOL(sock_no_accept);
2562
2563int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2564		    int peer)
2565{
2566	return -EOPNOTSUPP;
2567}
2568EXPORT_SYMBOL(sock_no_getname);
2569
2570__poll_t sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2571{
2572	return 0;
2573}
2574EXPORT_SYMBOL(sock_no_poll);
2575
2576int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2577{
2578	return -EOPNOTSUPP;
2579}
2580EXPORT_SYMBOL(sock_no_ioctl);
2581
2582int sock_no_listen(struct socket *sock, int backlog)
2583{
2584	return -EOPNOTSUPP;
2585}
2586EXPORT_SYMBOL(sock_no_listen);
2587
2588int sock_no_shutdown(struct socket *sock, int how)
2589{
2590	return -EOPNOTSUPP;
2591}
2592EXPORT_SYMBOL(sock_no_shutdown);
2593
2594int sock_no_setsockopt(struct socket *sock, int level, int optname,
2595		    char __user *optval, unsigned int optlen)
2596{
2597	return -EOPNOTSUPP;
2598}
2599EXPORT_SYMBOL(sock_no_setsockopt);
2600
2601int sock_no_getsockopt(struct socket *sock, int level, int optname,
2602		    char __user *optval, int __user *optlen)
2603{
2604	return -EOPNOTSUPP;
2605}
2606EXPORT_SYMBOL(sock_no_getsockopt);
2607
2608int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2609{
2610	return -EOPNOTSUPP;
2611}
2612EXPORT_SYMBOL(sock_no_sendmsg);
2613
2614int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2615{
2616	return -EOPNOTSUPP;
2617}
2618EXPORT_SYMBOL(sock_no_sendmsg_locked);
2619
2620int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2621		    int flags)
2622{
2623	return -EOPNOTSUPP;
2624}
2625EXPORT_SYMBOL(sock_no_recvmsg);
2626
2627int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2628{
2629	/* Mirror missing mmap method error code */
2630	return -ENODEV;
2631}
2632EXPORT_SYMBOL(sock_no_mmap);
2633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2634ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2635{
2636	ssize_t res;
2637	struct msghdr msg = {.msg_flags = flags};
2638	struct kvec iov;
2639	char *kaddr = kmap(page);
2640	iov.iov_base = kaddr + offset;
2641	iov.iov_len = size;
2642	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2643	kunmap(page);
2644	return res;
2645}
2646EXPORT_SYMBOL(sock_no_sendpage);
2647
2648ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2649				int offset, size_t size, int flags)
2650{
2651	ssize_t res;
2652	struct msghdr msg = {.msg_flags = flags};
2653	struct kvec iov;
2654	char *kaddr = kmap(page);
2655
2656	iov.iov_base = kaddr + offset;
2657	iov.iov_len = size;
2658	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2659	kunmap(page);
2660	return res;
2661}
2662EXPORT_SYMBOL(sock_no_sendpage_locked);
2663
2664/*
2665 *	Default Socket Callbacks
2666 */
2667
2668static void sock_def_wakeup(struct sock *sk)
2669{
2670	struct socket_wq *wq;
2671
2672	rcu_read_lock();
2673	wq = rcu_dereference(sk->sk_wq);
2674	if (skwq_has_sleeper(wq))
2675		wake_up_interruptible_all(&wq->wait);
2676	rcu_read_unlock();
2677}
2678
2679static void sock_def_error_report(struct sock *sk)
2680{
2681	struct socket_wq *wq;
2682
2683	rcu_read_lock();
2684	wq = rcu_dereference(sk->sk_wq);
2685	if (skwq_has_sleeper(wq))
2686		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2687	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2688	rcu_read_unlock();
2689}
2690
2691static void sock_def_readable(struct sock *sk)
2692{
2693	struct socket_wq *wq;
2694
2695	rcu_read_lock();
2696	wq = rcu_dereference(sk->sk_wq);
2697	if (skwq_has_sleeper(wq))
2698		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2699						EPOLLRDNORM | EPOLLRDBAND);
2700	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2701	rcu_read_unlock();
2702}
2703
2704static void sock_def_write_space(struct sock *sk)
2705{
2706	struct socket_wq *wq;
2707
2708	rcu_read_lock();
2709
2710	/* Do not wake up a writer until he can make "significant"
2711	 * progress.  --DaveM
2712	 */
2713	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2714		wq = rcu_dereference(sk->sk_wq);
2715		if (skwq_has_sleeper(wq))
2716			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2717						EPOLLWRNORM | EPOLLWRBAND);
2718
2719		/* Should agree with poll, otherwise some programs break */
2720		if (sock_writeable(sk))
2721			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2722	}
2723
2724	rcu_read_unlock();
2725}
2726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2727static void sock_def_destruct(struct sock *sk)
2728{
2729}
2730
2731void sk_send_sigurg(struct sock *sk)
2732{
2733	if (sk->sk_socket && sk->sk_socket->file)
2734		if (send_sigurg(&sk->sk_socket->file->f_owner))
2735			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2736}
2737EXPORT_SYMBOL(sk_send_sigurg);
2738
2739void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2740		    unsigned long expires)
2741{
2742	if (!mod_timer(timer, expires))
2743		sock_hold(sk);
2744}
2745EXPORT_SYMBOL(sk_reset_timer);
2746
2747void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2748{
2749	if (del_timer(timer))
2750		__sock_put(sk);
2751}
2752EXPORT_SYMBOL(sk_stop_timer);
2753
 
 
 
 
 
 
 
2754void sock_init_data(struct socket *sock, struct sock *sk)
2755{
2756	sk_init_common(sk);
2757	sk->sk_send_head	=	NULL;
2758
2759	timer_setup(&sk->sk_timer, NULL, 0);
2760
2761	sk->sk_allocation	=	GFP_KERNEL;
2762	sk->sk_rcvbuf		=	sysctl_rmem_default;
2763	sk->sk_sndbuf		=	sysctl_wmem_default;
2764	sk->sk_state		=	TCP_CLOSE;
 
2765	sk_set_socket(sk, sock);
2766
2767	sock_set_flag(sk, SOCK_ZAPPED);
2768
2769	if (sock) {
2770		sk->sk_type	=	sock->type;
2771		sk->sk_wq	=	sock->wq;
2772		sock->sk	=	sk;
2773		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2774	} else {
2775		sk->sk_wq	=	NULL;
2776		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2777	}
2778
2779	rwlock_init(&sk->sk_callback_lock);
2780	if (sk->sk_kern_sock)
2781		lockdep_set_class_and_name(
2782			&sk->sk_callback_lock,
2783			af_kern_callback_keys + sk->sk_family,
2784			af_family_kern_clock_key_strings[sk->sk_family]);
2785	else
2786		lockdep_set_class_and_name(
2787			&sk->sk_callback_lock,
2788			af_callback_keys + sk->sk_family,
2789			af_family_clock_key_strings[sk->sk_family]);
2790
2791	sk->sk_state_change	=	sock_def_wakeup;
2792	sk->sk_data_ready	=	sock_def_readable;
2793	sk->sk_write_space	=	sock_def_write_space;
2794	sk->sk_error_report	=	sock_def_error_report;
2795	sk->sk_destruct		=	sock_def_destruct;
2796
2797	sk->sk_frag.page	=	NULL;
2798	sk->sk_frag.offset	=	0;
2799	sk->sk_peek_off		=	-1;
2800
2801	sk->sk_peer_pid 	=	NULL;
2802	sk->sk_peer_cred	=	NULL;
 
 
2803	sk->sk_write_pending	=	0;
2804	sk->sk_rcvlowat		=	1;
2805	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2806	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2807
2808	sk->sk_stamp = SK_DEFAULT_STAMP;
 
 
 
2809	atomic_set(&sk->sk_zckey, 0);
2810
2811#ifdef CONFIG_NET_RX_BUSY_POLL
2812	sk->sk_napi_id		=	0;
2813	sk->sk_ll_usec		=	sysctl_net_busy_read;
2814#endif
2815
2816	sk->sk_max_pacing_rate = ~0U;
2817	sk->sk_pacing_rate = ~0U;
2818	sk->sk_pacing_shift = 10;
2819	sk->sk_incoming_cpu = -1;
 
 
2820	/*
2821	 * Before updating sk_refcnt, we must commit prior changes to memory
2822	 * (Documentation/RCU/rculist_nulls.txt for details)
2823	 */
2824	smp_wmb();
2825	refcount_set(&sk->sk_refcnt, 1);
2826	atomic_set(&sk->sk_drops, 0);
2827}
2828EXPORT_SYMBOL(sock_init_data);
2829
2830void lock_sock_nested(struct sock *sk, int subclass)
2831{
 
 
 
2832	might_sleep();
2833	spin_lock_bh(&sk->sk_lock.slock);
2834	if (sk->sk_lock.owned)
2835		__lock_sock(sk);
2836	sk->sk_lock.owned = 1;
2837	spin_unlock(&sk->sk_lock.slock);
2838	/*
2839	 * The sk_lock has mutex_lock() semantics here:
2840	 */
2841	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2842	local_bh_enable();
2843}
2844EXPORT_SYMBOL(lock_sock_nested);
2845
2846void release_sock(struct sock *sk)
2847{
2848	spin_lock_bh(&sk->sk_lock.slock);
2849	if (sk->sk_backlog.tail)
2850		__release_sock(sk);
2851
2852	/* Warning : release_cb() might need to release sk ownership,
2853	 * ie call sock_release_ownership(sk) before us.
2854	 */
2855	if (sk->sk_prot->release_cb)
2856		sk->sk_prot->release_cb(sk);
2857
2858	sock_release_ownership(sk);
2859	if (waitqueue_active(&sk->sk_lock.wq))
2860		wake_up(&sk->sk_lock.wq);
2861	spin_unlock_bh(&sk->sk_lock.slock);
2862}
2863EXPORT_SYMBOL(release_sock);
2864
2865/**
2866 * lock_sock_fast - fast version of lock_sock
2867 * @sk: socket
2868 *
2869 * This version should be used for very small section, where process wont block
2870 * return false if fast path is taken:
2871 *
2872 *   sk_lock.slock locked, owned = 0, BH disabled
2873 *
2874 * return true if slow path is taken:
2875 *
2876 *   sk_lock.slock unlocked, owned = 1, BH enabled
2877 */
2878bool lock_sock_fast(struct sock *sk)
2879{
2880	might_sleep();
2881	spin_lock_bh(&sk->sk_lock.slock);
2882
2883	if (!sk->sk_lock.owned)
2884		/*
2885		 * Note : We must disable BH
 
 
 
 
 
 
 
 
 
 
 
 
2886		 */
2887		return false;
 
2888
2889	__lock_sock(sk);
2890	sk->sk_lock.owned = 1;
2891	spin_unlock(&sk->sk_lock.slock);
2892	/*
2893	 * The sk_lock has mutex_lock() semantics here:
2894	 */
2895	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2896	local_bh_enable();
2897	return true;
2898}
2899EXPORT_SYMBOL(lock_sock_fast);
2900
2901int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
 
2902{
2903	struct timeval tv;
2904	if (!sock_flag(sk, SOCK_TIMESTAMP))
2905		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2906	tv = ktime_to_timeval(sk->sk_stamp);
2907	if (tv.tv_sec == -1)
2908		return -ENOENT;
2909	if (tv.tv_sec == 0) {
2910		sk->sk_stamp = ktime_get_real();
2911		tv = ktime_to_timeval(sk->sk_stamp);
2912	}
2913	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2914}
2915EXPORT_SYMBOL(sock_get_timestamp);
2916
2917int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2918{
2919	struct timespec ts;
2920	if (!sock_flag(sk, SOCK_TIMESTAMP))
2921		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2922	ts = ktime_to_timespec(sk->sk_stamp);
2923	if (ts.tv_sec == -1)
2924		return -ENOENT;
2925	if (ts.tv_sec == 0) {
2926		sk->sk_stamp = ktime_get_real();
2927		ts = ktime_to_timespec(sk->sk_stamp);
 
2928	}
2929	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2930}
2931EXPORT_SYMBOL(sock_get_timestampns);
2932
2933void sock_enable_timestamp(struct sock *sk, int flag)
2934{
2935	if (!sock_flag(sk, flag)) {
2936		unsigned long previous_flags = sk->sk_flags;
2937
2938		sock_set_flag(sk, flag);
2939		/*
2940		 * we just set one of the two flags which require net
2941		 * time stamping, but time stamping might have been on
2942		 * already because of the other one
2943		 */
2944		if (sock_needs_netstamp(sk) &&
2945		    !(previous_flags & SK_FLAGS_TIMESTAMP))
2946			net_enable_timestamp();
2947	}
2948}
2949
2950int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2951		       int level, int type)
2952{
2953	struct sock_exterr_skb *serr;
2954	struct sk_buff *skb;
2955	int copied, err;
2956
2957	err = -EAGAIN;
2958	skb = sock_dequeue_err_skb(sk);
2959	if (skb == NULL)
2960		goto out;
2961
2962	copied = skb->len;
2963	if (copied > len) {
2964		msg->msg_flags |= MSG_TRUNC;
2965		copied = len;
2966	}
2967	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2968	if (err)
2969		goto out_free_skb;
2970
2971	sock_recv_timestamp(msg, sk, skb);
2972
2973	serr = SKB_EXT_ERR(skb);
2974	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2975
2976	msg->msg_flags |= MSG_ERRQUEUE;
2977	err = copied;
2978
2979out_free_skb:
2980	kfree_skb(skb);
2981out:
2982	return err;
2983}
2984EXPORT_SYMBOL(sock_recv_errqueue);
2985
2986/*
2987 *	Get a socket option on an socket.
2988 *
2989 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2990 *	asynchronous errors should be reported by getsockopt. We assume
2991 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2992 */
2993int sock_common_getsockopt(struct socket *sock, int level, int optname,
2994			   char __user *optval, int __user *optlen)
2995{
2996	struct sock *sk = sock->sk;
2997
2998	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
 
2999}
3000EXPORT_SYMBOL(sock_common_getsockopt);
3001
3002#ifdef CONFIG_COMPAT
3003int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3004				  char __user *optval, int __user *optlen)
3005{
3006	struct sock *sk = sock->sk;
3007
3008	if (sk->sk_prot->compat_getsockopt != NULL)
3009		return sk->sk_prot->compat_getsockopt(sk, level, optname,
3010						      optval, optlen);
3011	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3012}
3013EXPORT_SYMBOL(compat_sock_common_getsockopt);
3014#endif
3015
3016int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3017			int flags)
3018{
3019	struct sock *sk = sock->sk;
3020	int addr_len = 0;
3021	int err;
3022
3023	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3024				   flags & ~MSG_DONTWAIT, &addr_len);
3025	if (err >= 0)
3026		msg->msg_namelen = addr_len;
3027	return err;
3028}
3029EXPORT_SYMBOL(sock_common_recvmsg);
3030
3031/*
3032 *	Set socket options on an inet socket.
3033 */
3034int sock_common_setsockopt(struct socket *sock, int level, int optname,
3035			   char __user *optval, unsigned int optlen)
3036{
3037	struct sock *sk = sock->sk;
3038
3039	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
 
3040}
3041EXPORT_SYMBOL(sock_common_setsockopt);
3042
3043#ifdef CONFIG_COMPAT
3044int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3045				  char __user *optval, unsigned int optlen)
3046{
3047	struct sock *sk = sock->sk;
3048
3049	if (sk->sk_prot->compat_setsockopt != NULL)
3050		return sk->sk_prot->compat_setsockopt(sk, level, optname,
3051						      optval, optlen);
3052	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3053}
3054EXPORT_SYMBOL(compat_sock_common_setsockopt);
3055#endif
3056
3057void sk_common_release(struct sock *sk)
3058{
3059	if (sk->sk_prot->destroy)
3060		sk->sk_prot->destroy(sk);
3061
3062	/*
3063	 * Observation: when sock_common_release is called, processes have
3064	 * no access to socket. But net still has.
3065	 * Step one, detach it from networking:
3066	 *
3067	 * A. Remove from hash tables.
3068	 */
3069
3070	sk->sk_prot->unhash(sk);
3071
3072	/*
3073	 * In this point socket cannot receive new packets, but it is possible
3074	 * that some packets are in flight because some CPU runs receiver and
3075	 * did hash table lookup before we unhashed socket. They will achieve
3076	 * receive queue and will be purged by socket destructor.
3077	 *
3078	 * Also we still have packets pending on receive queue and probably,
3079	 * our own packets waiting in device queues. sock_destroy will drain
3080	 * receive queue, but transmitted packets will delay socket destruction
3081	 * until the last reference will be released.
3082	 */
3083
3084	sock_orphan(sk);
3085
3086	xfrm_sk_free_policy(sk);
3087
3088	sk_refcnt_debug_release(sk);
3089
3090	sock_put(sk);
3091}
3092EXPORT_SYMBOL(sk_common_release);
3093
3094void sk_get_meminfo(const struct sock *sk, u32 *mem)
3095{
3096	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3097
3098	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3099	mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3100	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3101	mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3102	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3103	mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3104	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3105	mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3106	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3107}
3108
3109#ifdef CONFIG_PROC_FS
3110#define PROTO_INUSE_NR	64	/* should be enough for the first time */
3111struct prot_inuse {
3112	int val[PROTO_INUSE_NR];
3113};
3114
3115static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3116
3117void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3118{
3119	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3120}
3121EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3122
3123int sock_prot_inuse_get(struct net *net, struct proto *prot)
3124{
3125	int cpu, idx = prot->inuse_idx;
3126	int res = 0;
3127
3128	for_each_possible_cpu(cpu)
3129		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3130
3131	return res >= 0 ? res : 0;
3132}
3133EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3134
3135static void sock_inuse_add(struct net *net, int val)
3136{
3137	this_cpu_add(*net->core.sock_inuse, val);
3138}
3139
3140int sock_inuse_get(struct net *net)
3141{
3142	int cpu, res = 0;
3143
3144	for_each_possible_cpu(cpu)
3145		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3146
3147	return res;
3148}
3149
3150EXPORT_SYMBOL_GPL(sock_inuse_get);
3151
3152static int __net_init sock_inuse_init_net(struct net *net)
3153{
3154	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3155	if (net->core.prot_inuse == NULL)
3156		return -ENOMEM;
3157
3158	net->core.sock_inuse = alloc_percpu(int);
3159	if (net->core.sock_inuse == NULL)
3160		goto out;
3161
3162	return 0;
3163
3164out:
3165	free_percpu(net->core.prot_inuse);
3166	return -ENOMEM;
3167}
3168
3169static void __net_exit sock_inuse_exit_net(struct net *net)
3170{
3171	free_percpu(net->core.prot_inuse);
3172	free_percpu(net->core.sock_inuse);
3173}
3174
3175static struct pernet_operations net_inuse_ops = {
3176	.init = sock_inuse_init_net,
3177	.exit = sock_inuse_exit_net,
3178};
3179
3180static __init int net_inuse_init(void)
3181{
3182	if (register_pernet_subsys(&net_inuse_ops))
3183		panic("Cannot initialize net inuse counters");
3184
3185	return 0;
3186}
3187
3188core_initcall(net_inuse_init);
3189
3190static void assign_proto_idx(struct proto *prot)
3191{
3192	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3193
3194	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3195		pr_err("PROTO_INUSE_NR exhausted\n");
3196		return;
3197	}
3198
3199	set_bit(prot->inuse_idx, proto_inuse_idx);
 
3200}
3201
3202static void release_proto_idx(struct proto *prot)
3203{
3204	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3205		clear_bit(prot->inuse_idx, proto_inuse_idx);
3206}
3207#else
3208static inline void assign_proto_idx(struct proto *prot)
3209{
 
3210}
3211
3212static inline void release_proto_idx(struct proto *prot)
3213{
3214}
3215
3216static void sock_inuse_add(struct net *net, int val)
 
 
 
 
 
 
 
 
 
 
 
 
3217{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3218}
3219#endif
3220
3221static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3222{
3223	if (!rsk_prot)
3224		return;
3225	kfree(rsk_prot->slab_name);
3226	rsk_prot->slab_name = NULL;
3227	kmem_cache_destroy(rsk_prot->slab);
3228	rsk_prot->slab = NULL;
3229}
3230
3231static int req_prot_init(const struct proto *prot)
3232{
3233	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3234
3235	if (!rsk_prot)
3236		return 0;
3237
3238	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3239					prot->name);
3240	if (!rsk_prot->slab_name)
3241		return -ENOMEM;
3242
3243	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3244					   rsk_prot->obj_size, 0,
3245					   prot->slab_flags, NULL);
 
3246
3247	if (!rsk_prot->slab) {
3248		pr_crit("%s: Can't create request sock SLAB cache!\n",
3249			prot->name);
3250		return -ENOMEM;
3251	}
3252	return 0;
3253}
3254
3255int proto_register(struct proto *prot, int alloc_slab)
3256{
 
 
 
 
 
 
 
 
 
 
3257	if (alloc_slab) {
3258		prot->slab = kmem_cache_create_usercopy(prot->name,
3259					prot->obj_size, 0,
3260					SLAB_HWCACHE_ALIGN | prot->slab_flags,
 
3261					prot->useroffset, prot->usersize,
3262					NULL);
3263
3264		if (prot->slab == NULL) {
3265			pr_crit("%s: Can't create sock SLAB cache!\n",
3266				prot->name);
3267			goto out;
3268		}
3269
3270		if (req_prot_init(prot))
3271			goto out_free_request_sock_slab;
3272
3273		if (prot->twsk_prot != NULL) {
3274			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3275
3276			if (prot->twsk_prot->twsk_slab_name == NULL)
3277				goto out_free_request_sock_slab;
3278
3279			prot->twsk_prot->twsk_slab =
3280				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3281						  prot->twsk_prot->twsk_obj_size,
3282						  0,
3283						  prot->slab_flags,
3284						  NULL);
3285			if (prot->twsk_prot->twsk_slab == NULL)
3286				goto out_free_timewait_sock_slab_name;
3287		}
3288	}
3289
3290	mutex_lock(&proto_list_mutex);
 
 
 
 
 
3291	list_add(&prot->node, &proto_list);
3292	assign_proto_idx(prot);
3293	mutex_unlock(&proto_list_mutex);
3294	return 0;
3295
3296out_free_timewait_sock_slab_name:
3297	kfree(prot->twsk_prot->twsk_slab_name);
 
3298out_free_request_sock_slab:
3299	req_prot_cleanup(prot->rsk_prot);
 
3300
3301	kmem_cache_destroy(prot->slab);
3302	prot->slab = NULL;
 
3303out:
3304	return -ENOBUFS;
3305}
3306EXPORT_SYMBOL(proto_register);
3307
3308void proto_unregister(struct proto *prot)
3309{
3310	mutex_lock(&proto_list_mutex);
3311	release_proto_idx(prot);
3312	list_del(&prot->node);
3313	mutex_unlock(&proto_list_mutex);
3314
3315	kmem_cache_destroy(prot->slab);
3316	prot->slab = NULL;
3317
3318	req_prot_cleanup(prot->rsk_prot);
3319
3320	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3321		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3322		kfree(prot->twsk_prot->twsk_slab_name);
3323		prot->twsk_prot->twsk_slab = NULL;
3324	}
3325}
3326EXPORT_SYMBOL(proto_unregister);
3327
3328int sock_load_diag_module(int family, int protocol)
3329{
3330	if (!protocol) {
3331		if (!sock_is_registered(family))
3332			return -ENOENT;
3333
3334		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3335				      NETLINK_SOCK_DIAG, family);
3336	}
3337
3338#ifdef CONFIG_INET
3339	if (family == AF_INET &&
 
 
3340	    !rcu_access_pointer(inet_protos[protocol]))
3341		return -ENOENT;
3342#endif
3343
3344	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3345			      NETLINK_SOCK_DIAG, family, protocol);
3346}
3347EXPORT_SYMBOL(sock_load_diag_module);
3348
3349#ifdef CONFIG_PROC_FS
3350static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3351	__acquires(proto_list_mutex)
3352{
3353	mutex_lock(&proto_list_mutex);
3354	return seq_list_start_head(&proto_list, *pos);
3355}
3356
3357static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3358{
3359	return seq_list_next(v, &proto_list, pos);
3360}
3361
3362static void proto_seq_stop(struct seq_file *seq, void *v)
3363	__releases(proto_list_mutex)
3364{
3365	mutex_unlock(&proto_list_mutex);
3366}
3367
3368static char proto_method_implemented(const void *method)
3369{
3370	return method == NULL ? 'n' : 'y';
3371}
3372static long sock_prot_memory_allocated(struct proto *proto)
3373{
3374	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3375}
3376
3377static char *sock_prot_memory_pressure(struct proto *proto)
3378{
3379	return proto->memory_pressure != NULL ?
3380	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3381}
3382
3383static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3384{
3385
3386	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3387			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3388		   proto->name,
3389		   proto->obj_size,
3390		   sock_prot_inuse_get(seq_file_net(seq), proto),
3391		   sock_prot_memory_allocated(proto),
3392		   sock_prot_memory_pressure(proto),
3393		   proto->max_header,
3394		   proto->slab == NULL ? "no" : "yes",
3395		   module_name(proto->owner),
3396		   proto_method_implemented(proto->close),
3397		   proto_method_implemented(proto->connect),
3398		   proto_method_implemented(proto->disconnect),
3399		   proto_method_implemented(proto->accept),
3400		   proto_method_implemented(proto->ioctl),
3401		   proto_method_implemented(proto->init),
3402		   proto_method_implemented(proto->destroy),
3403		   proto_method_implemented(proto->shutdown),
3404		   proto_method_implemented(proto->setsockopt),
3405		   proto_method_implemented(proto->getsockopt),
3406		   proto_method_implemented(proto->sendmsg),
3407		   proto_method_implemented(proto->recvmsg),
3408		   proto_method_implemented(proto->sendpage),
3409		   proto_method_implemented(proto->bind),
3410		   proto_method_implemented(proto->backlog_rcv),
3411		   proto_method_implemented(proto->hash),
3412		   proto_method_implemented(proto->unhash),
3413		   proto_method_implemented(proto->get_port),
3414		   proto_method_implemented(proto->enter_memory_pressure));
3415}
3416
3417static int proto_seq_show(struct seq_file *seq, void *v)
3418{
3419	if (v == &proto_list)
3420		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3421			   "protocol",
3422			   "size",
3423			   "sockets",
3424			   "memory",
3425			   "press",
3426			   "maxhdr",
3427			   "slab",
3428			   "module",
3429			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3430	else
3431		proto_seq_printf(seq, list_entry(v, struct proto, node));
3432	return 0;
3433}
3434
3435static const struct seq_operations proto_seq_ops = {
3436	.start  = proto_seq_start,
3437	.next   = proto_seq_next,
3438	.stop   = proto_seq_stop,
3439	.show   = proto_seq_show,
3440};
3441
3442static int proto_seq_open(struct inode *inode, struct file *file)
3443{
3444	return seq_open_net(inode, file, &proto_seq_ops,
3445			    sizeof(struct seq_net_private));
3446}
3447
3448static const struct file_operations proto_seq_fops = {
3449	.open		= proto_seq_open,
3450	.read		= seq_read,
3451	.llseek		= seq_lseek,
3452	.release	= seq_release_net,
3453};
3454
3455static __net_init int proto_init_net(struct net *net)
3456{
3457	if (!proc_create("protocols", 0444, net->proc_net, &proto_seq_fops))
 
3458		return -ENOMEM;
3459
3460	return 0;
3461}
3462
3463static __net_exit void proto_exit_net(struct net *net)
3464{
3465	remove_proc_entry("protocols", net->proc_net);
3466}
3467
3468
3469static __net_initdata struct pernet_operations proto_net_ops = {
3470	.init = proto_init_net,
3471	.exit = proto_exit_net,
3472};
3473
3474static int __init proto_init(void)
3475{
3476	return register_pernet_subsys(&proto_net_ops);
3477}
3478
3479subsys_initcall(proto_init);
3480
3481#endif /* PROC_FS */
3482
3483#ifdef CONFIG_NET_RX_BUSY_POLL
3484bool sk_busy_loop_end(void *p, unsigned long start_time)
3485{
3486	struct sock *sk = p;
3487
3488	return !skb_queue_empty(&sk->sk_receive_queue) ||
3489	       sk_busy_loop_timeout(sk, start_time);
3490}
3491EXPORT_SYMBOL(sk_busy_loop_end);
3492#endif /* CONFIG_NET_RX_BUSY_POLL */
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Generic socket support routines. Memory allocators, socket lock/release
   8 *		handler for protocols to use and generic option handler.
   9 *
 
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
 
 
 
 
 
 
  84 */
  85
  86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  87
  88#include <asm/unaligned.h>
  89#include <linux/capability.h>
  90#include <linux/errno.h>
  91#include <linux/errqueue.h>
  92#include <linux/types.h>
  93#include <linux/socket.h>
  94#include <linux/in.h>
  95#include <linux/kernel.h>
  96#include <linux/module.h>
  97#include <linux/proc_fs.h>
  98#include <linux/seq_file.h>
  99#include <linux/sched.h>
 100#include <linux/sched/mm.h>
 101#include <linux/timer.h>
 102#include <linux/string.h>
 103#include <linux/sockios.h>
 104#include <linux/net.h>
 105#include <linux/mm.h>
 106#include <linux/slab.h>
 107#include <linux/interrupt.h>
 108#include <linux/poll.h>
 109#include <linux/tcp.h>
 110#include <linux/init.h>
 111#include <linux/highmem.h>
 112#include <linux/user_namespace.h>
 113#include <linux/static_key.h>
 114#include <linux/memcontrol.h>
 115#include <linux/prefetch.h>
 116#include <linux/compat.h>
 117
 118#include <linux/uaccess.h>
 119
 120#include <linux/netdevice.h>
 121#include <net/protocol.h>
 122#include <linux/skbuff.h>
 123#include <net/net_namespace.h>
 124#include <net/request_sock.h>
 125#include <net/sock.h>
 126#include <linux/net_tstamp.h>
 127#include <net/xfrm.h>
 128#include <linux/ipsec.h>
 129#include <net/cls_cgroup.h>
 130#include <net/netprio_cgroup.h>
 131#include <linux/sock_diag.h>
 132
 133#include <linux/filter.h>
 134#include <net/sock_reuseport.h>
 135#include <net/bpf_sk_storage.h>
 136
 137#include <trace/events/sock.h>
 138
 139#include <net/tcp.h>
 140#include <net/busy_poll.h>
 141
 142#include <linux/ethtool.h>
 143
 144#include "dev.h"
 145
 146static DEFINE_MUTEX(proto_list_mutex);
 147static LIST_HEAD(proto_list);
 148
 149static void sock_def_write_space_wfree(struct sock *sk);
 150static void sock_def_write_space(struct sock *sk);
 151
 152/**
 153 * sk_ns_capable - General socket capability test
 154 * @sk: Socket to use a capability on or through
 155 * @user_ns: The user namespace of the capability to use
 156 * @cap: The capability to use
 157 *
 158 * Test to see if the opener of the socket had when the socket was
 159 * created and the current process has the capability @cap in the user
 160 * namespace @user_ns.
 161 */
 162bool sk_ns_capable(const struct sock *sk,
 163		   struct user_namespace *user_ns, int cap)
 164{
 165	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 166		ns_capable(user_ns, cap);
 167}
 168EXPORT_SYMBOL(sk_ns_capable);
 169
 170/**
 171 * sk_capable - Socket global capability test
 172 * @sk: Socket to use a capability on or through
 173 * @cap: The global capability to use
 174 *
 175 * Test to see if the opener of the socket had when the socket was
 176 * created and the current process has the capability @cap in all user
 177 * namespaces.
 178 */
 179bool sk_capable(const struct sock *sk, int cap)
 180{
 181	return sk_ns_capable(sk, &init_user_ns, cap);
 182}
 183EXPORT_SYMBOL(sk_capable);
 184
 185/**
 186 * sk_net_capable - Network namespace socket capability test
 187 * @sk: Socket to use a capability on or through
 188 * @cap: The capability to use
 189 *
 190 * Test to see if the opener of the socket had when the socket was created
 191 * and the current process has the capability @cap over the network namespace
 192 * the socket is a member of.
 193 */
 194bool sk_net_capable(const struct sock *sk, int cap)
 195{
 196	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 197}
 198EXPORT_SYMBOL(sk_net_capable);
 199
 200/*
 201 * Each address family might have different locking rules, so we have
 202 * one slock key per address family and separate keys for internal and
 203 * userspace sockets.
 204 */
 205static struct lock_class_key af_family_keys[AF_MAX];
 206static struct lock_class_key af_family_kern_keys[AF_MAX];
 207static struct lock_class_key af_family_slock_keys[AF_MAX];
 208static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 209
 210/*
 211 * Make lock validator output more readable. (we pre-construct these
 212 * strings build-time, so that runtime initialization of socket
 213 * locks is fast):
 214 */
 215
 216#define _sock_locks(x)						  \
 217  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 218  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 219  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 220  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 221  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 222  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 223  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 224  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 225  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 226  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 227  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 228  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 229  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 230  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 231  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
 232  x "AF_MCTP"  , \
 233  x "AF_MAX"
 234
 235static const char *const af_family_key_strings[AF_MAX+1] = {
 236	_sock_locks("sk_lock-")
 237};
 238static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 239	_sock_locks("slock-")
 240};
 241static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 242	_sock_locks("clock-")
 243};
 244
 245static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 246	_sock_locks("k-sk_lock-")
 247};
 248static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 249	_sock_locks("k-slock-")
 250};
 251static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 252	_sock_locks("k-clock-")
 253};
 254static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 255	_sock_locks("rlock-")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 256};
 257static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 258	_sock_locks("wlock-")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 259};
 260static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 261	_sock_locks("elock-")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262};
 263
 264/*
 265 * sk_callback_lock and sk queues locking rules are per-address-family,
 266 * so split the lock classes by using a per-AF key:
 267 */
 268static struct lock_class_key af_callback_keys[AF_MAX];
 269static struct lock_class_key af_rlock_keys[AF_MAX];
 270static struct lock_class_key af_wlock_keys[AF_MAX];
 271static struct lock_class_key af_elock_keys[AF_MAX];
 272static struct lock_class_key af_kern_callback_keys[AF_MAX];
 273
 274/* Run time adjustable parameters. */
 275__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 276EXPORT_SYMBOL(sysctl_wmem_max);
 277__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 278EXPORT_SYMBOL(sysctl_rmem_max);
 279__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 280__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 281
 282/* Maximal space eaten by iovec or ancillary data plus some space */
 283int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 284EXPORT_SYMBOL(sysctl_optmem_max);
 285
 286int sysctl_tstamp_allow_data __read_mostly = 1;
 287
 288DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
 289EXPORT_SYMBOL_GPL(memalloc_socks_key);
 290
 291/**
 292 * sk_set_memalloc - sets %SOCK_MEMALLOC
 293 * @sk: socket to set it on
 294 *
 295 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 296 * It's the responsibility of the admin to adjust min_free_kbytes
 297 * to meet the requirements
 298 */
 299void sk_set_memalloc(struct sock *sk)
 300{
 301	sock_set_flag(sk, SOCK_MEMALLOC);
 302	sk->sk_allocation |= __GFP_MEMALLOC;
 303	static_branch_inc(&memalloc_socks_key);
 304}
 305EXPORT_SYMBOL_GPL(sk_set_memalloc);
 306
 307void sk_clear_memalloc(struct sock *sk)
 308{
 309	sock_reset_flag(sk, SOCK_MEMALLOC);
 310	sk->sk_allocation &= ~__GFP_MEMALLOC;
 311	static_branch_dec(&memalloc_socks_key);
 312
 313	/*
 314	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 315	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 316	 * it has rmem allocations due to the last swapfile being deactivated
 317	 * but there is a risk that the socket is unusable due to exceeding
 318	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 319	 */
 320	sk_mem_reclaim(sk);
 321}
 322EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 323
 324int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 325{
 326	int ret;
 327	unsigned int noreclaim_flag;
 328
 329	/* these should have been dropped before queueing */
 330	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 331
 332	noreclaim_flag = memalloc_noreclaim_save();
 333	ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
 334				 tcp_v6_do_rcv,
 335				 tcp_v4_do_rcv,
 336				 sk, skb);
 337	memalloc_noreclaim_restore(noreclaim_flag);
 338
 339	return ret;
 340}
 341EXPORT_SYMBOL(__sk_backlog_rcv);
 342
 343void sk_error_report(struct sock *sk)
 344{
 345	sk->sk_error_report(sk);
 346
 347	switch (sk->sk_family) {
 348	case AF_INET:
 349		fallthrough;
 350	case AF_INET6:
 351		trace_inet_sk_error_report(sk);
 352		break;
 353	default:
 354		break;
 355	}
 356}
 357EXPORT_SYMBOL(sk_error_report);
 358
 359int sock_get_timeout(long timeo, void *optval, bool old_timeval)
 360{
 361	struct __kernel_sock_timeval tv;
 362
 363	if (timeo == MAX_SCHEDULE_TIMEOUT) {
 364		tv.tv_sec = 0;
 365		tv.tv_usec = 0;
 366	} else {
 367		tv.tv_sec = timeo / HZ;
 368		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
 369	}
 370
 371	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 372		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
 373		*(struct old_timeval32 *)optval = tv32;
 374		return sizeof(tv32);
 375	}
 376
 377	if (old_timeval) {
 378		struct __kernel_old_timeval old_tv;
 379		old_tv.tv_sec = tv.tv_sec;
 380		old_tv.tv_usec = tv.tv_usec;
 381		*(struct __kernel_old_timeval *)optval = old_tv;
 382		return sizeof(old_tv);
 383	}
 384
 385	*(struct __kernel_sock_timeval *)optval = tv;
 386	return sizeof(tv);
 387}
 388EXPORT_SYMBOL(sock_get_timeout);
 389
 390int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
 391			   sockptr_t optval, int optlen, bool old_timeval)
 392{
 393	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 394		struct old_timeval32 tv32;
 395
 396		if (optlen < sizeof(tv32))
 397			return -EINVAL;
 398
 399		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
 400			return -EFAULT;
 401		tv->tv_sec = tv32.tv_sec;
 402		tv->tv_usec = tv32.tv_usec;
 403	} else if (old_timeval) {
 404		struct __kernel_old_timeval old_tv;
 405
 406		if (optlen < sizeof(old_tv))
 407			return -EINVAL;
 408		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
 409			return -EFAULT;
 410		tv->tv_sec = old_tv.tv_sec;
 411		tv->tv_usec = old_tv.tv_usec;
 412	} else {
 413		if (optlen < sizeof(*tv))
 414			return -EINVAL;
 415		if (copy_from_sockptr(tv, optval, sizeof(*tv)))
 416			return -EFAULT;
 417	}
 418
 419	return 0;
 420}
 421EXPORT_SYMBOL(sock_copy_user_timeval);
 422
 423static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
 424			    bool old_timeval)
 425{
 426	struct __kernel_sock_timeval tv;
 427	int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
 428
 429	if (err)
 430		return err;
 431
 
 
 
 
 432	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 433		return -EDOM;
 434
 435	if (tv.tv_sec < 0) {
 436		static int warned __read_mostly;
 437
 438		*timeo_p = 0;
 439		if (warned < 10 && net_ratelimit()) {
 440			warned++;
 441			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 442				__func__, current->comm, task_pid_nr(current));
 443		}
 444		return 0;
 445	}
 446	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 447	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 448		return 0;
 449	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
 450		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
 451	return 0;
 452}
 453
 
 
 
 
 
 
 
 
 
 
 
 
 454static bool sock_needs_netstamp(const struct sock *sk)
 455{
 456	switch (sk->sk_family) {
 457	case AF_UNSPEC:
 458	case AF_UNIX:
 459		return false;
 460	default:
 461		return true;
 462	}
 463}
 464
 465static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 466{
 467	if (sk->sk_flags & flags) {
 468		sk->sk_flags &= ~flags;
 469		if (sock_needs_netstamp(sk) &&
 470		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 471			net_disable_timestamp();
 472	}
 473}
 474
 475
 476int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 477{
 478	unsigned long flags;
 479	struct sk_buff_head *list = &sk->sk_receive_queue;
 480
 481	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 482		atomic_inc(&sk->sk_drops);
 483		trace_sock_rcvqueue_full(sk, skb);
 484		return -ENOMEM;
 485	}
 486
 487	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 488		atomic_inc(&sk->sk_drops);
 489		return -ENOBUFS;
 490	}
 491
 492	skb->dev = NULL;
 493	skb_set_owner_r(skb, sk);
 494
 495	/* we escape from rcu protected region, make sure we dont leak
 496	 * a norefcounted dst
 497	 */
 498	skb_dst_force(skb);
 499
 500	spin_lock_irqsave(&list->lock, flags);
 501	sock_skb_set_dropcount(sk, skb);
 502	__skb_queue_tail(list, skb);
 503	spin_unlock_irqrestore(&list->lock, flags);
 504
 505	if (!sock_flag(sk, SOCK_DEAD))
 506		sk->sk_data_ready(sk);
 507	return 0;
 508}
 509EXPORT_SYMBOL(__sock_queue_rcv_skb);
 510
 511int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
 512			      enum skb_drop_reason *reason)
 513{
 514	enum skb_drop_reason drop_reason;
 515	int err;
 516
 517	err = sk_filter(sk, skb);
 518	if (err) {
 519		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
 520		goto out;
 521	}
 522	err = __sock_queue_rcv_skb(sk, skb);
 523	switch (err) {
 524	case -ENOMEM:
 525		drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
 526		break;
 527	case -ENOBUFS:
 528		drop_reason = SKB_DROP_REASON_PROTO_MEM;
 529		break;
 530	default:
 531		drop_reason = SKB_NOT_DROPPED_YET;
 532		break;
 533	}
 534out:
 535	if (reason)
 536		*reason = drop_reason;
 537	return err;
 538}
 539EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
 540
 541int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 542		     const int nested, unsigned int trim_cap, bool refcounted)
 543{
 544	int rc = NET_RX_SUCCESS;
 545
 546	if (sk_filter_trim_cap(sk, skb, trim_cap))
 547		goto discard_and_relse;
 548
 549	skb->dev = NULL;
 550
 551	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 552		atomic_inc(&sk->sk_drops);
 553		goto discard_and_relse;
 554	}
 555	if (nested)
 556		bh_lock_sock_nested(sk);
 557	else
 558		bh_lock_sock(sk);
 559	if (!sock_owned_by_user(sk)) {
 560		/*
 561		 * trylock + unlock semantics:
 562		 */
 563		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 564
 565		rc = sk_backlog_rcv(sk, skb);
 566
 567		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
 568	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
 569		bh_unlock_sock(sk);
 570		atomic_inc(&sk->sk_drops);
 571		goto discard_and_relse;
 572	}
 573
 574	bh_unlock_sock(sk);
 575out:
 576	if (refcounted)
 577		sock_put(sk);
 578	return rc;
 579discard_and_relse:
 580	kfree_skb(skb);
 581	goto out;
 582}
 583EXPORT_SYMBOL(__sk_receive_skb);
 584
 585INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
 586							  u32));
 587INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
 588							   u32));
 589struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 590{
 591	struct dst_entry *dst = __sk_dst_get(sk);
 592
 593	if (dst && dst->obsolete &&
 594	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 595			       dst, cookie) == NULL) {
 596		sk_tx_queue_clear(sk);
 597		sk->sk_dst_pending_confirm = 0;
 598		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 599		dst_release(dst);
 600		return NULL;
 601	}
 602
 603	return dst;
 604}
 605EXPORT_SYMBOL(__sk_dst_check);
 606
 607struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 608{
 609	struct dst_entry *dst = sk_dst_get(sk);
 610
 611	if (dst && dst->obsolete &&
 612	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 613			       dst, cookie) == NULL) {
 614		sk_dst_reset(sk);
 615		dst_release(dst);
 616		return NULL;
 617	}
 618
 619	return dst;
 620}
 621EXPORT_SYMBOL(sk_dst_check);
 622
 623static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
 
 624{
 625	int ret = -ENOPROTOOPT;
 626#ifdef CONFIG_NETDEVICES
 627	struct net *net = sock_net(sk);
 
 
 628
 629	/* Sorry... */
 630	ret = -EPERM;
 631	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
 632		goto out;
 633
 634	ret = -EINVAL;
 635	if (ifindex < 0)
 636		goto out;
 637
 638	/* Paired with all READ_ONCE() done locklessly. */
 639	WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
 640
 641	if (sk->sk_prot->rehash)
 642		sk->sk_prot->rehash(sk);
 643	sk_dst_reset(sk);
 644
 645	ret = 0;
 646
 647out:
 648#endif
 649
 650	return ret;
 651}
 652
 653int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
 654{
 655	int ret;
 656
 657	if (lock_sk)
 658		lock_sock(sk);
 659	ret = sock_bindtoindex_locked(sk, ifindex);
 660	if (lock_sk)
 661		release_sock(sk);
 662
 663	return ret;
 664}
 665EXPORT_SYMBOL(sock_bindtoindex);
 666
 667static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
 668{
 669	int ret = -ENOPROTOOPT;
 670#ifdef CONFIG_NETDEVICES
 671	struct net *net = sock_net(sk);
 672	char devname[IFNAMSIZ];
 673	int index;
 674
 675	ret = -EINVAL;
 676	if (optlen < 0)
 677		goto out;
 678
 679	/* Bind this socket to a particular device like "eth0",
 680	 * as specified in the passed interface name. If the
 681	 * name is "" or the option length is zero the socket
 682	 * is not bound.
 683	 */
 684	if (optlen > IFNAMSIZ - 1)
 685		optlen = IFNAMSIZ - 1;
 686	memset(devname, 0, sizeof(devname));
 687
 688	ret = -EFAULT;
 689	if (copy_from_sockptr(devname, optval, optlen))
 690		goto out;
 691
 692	index = 0;
 693	if (devname[0] != '\0') {
 694		struct net_device *dev;
 695
 696		rcu_read_lock();
 697		dev = dev_get_by_name_rcu(net, devname);
 698		if (dev)
 699			index = dev->ifindex;
 700		rcu_read_unlock();
 701		ret = -ENODEV;
 702		if (!dev)
 703			goto out;
 704	}
 705
 706	sockopt_lock_sock(sk);
 707	ret = sock_bindtoindex_locked(sk, index);
 708	sockopt_release_sock(sk);
 
 
 
 
 709out:
 710#endif
 711
 712	return ret;
 713}
 714
 715static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
 716				sockptr_t optlen, int len)
 717{
 718	int ret = -ENOPROTOOPT;
 719#ifdef CONFIG_NETDEVICES
 720	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
 721	struct net *net = sock_net(sk);
 722	char devname[IFNAMSIZ];
 723
 724	if (bound_dev_if == 0) {
 725		len = 0;
 726		goto zero;
 727	}
 728
 729	ret = -EINVAL;
 730	if (len < IFNAMSIZ)
 731		goto out;
 732
 733	ret = netdev_get_name(net, devname, bound_dev_if);
 734	if (ret)
 735		goto out;
 736
 737	len = strlen(devname) + 1;
 738
 739	ret = -EFAULT;
 740	if (copy_to_sockptr(optval, devname, len))
 741		goto out;
 742
 743zero:
 744	ret = -EFAULT;
 745	if (copy_to_sockptr(optlen, &len, sizeof(int)))
 746		goto out;
 747
 748	ret = 0;
 749
 750out:
 751#endif
 752
 753	return ret;
 754}
 755
 
 
 
 
 
 
 
 
 756bool sk_mc_loop(struct sock *sk)
 757{
 758	if (dev_recursion_level())
 759		return false;
 760	if (!sk)
 761		return true;
 762	switch (sk->sk_family) {
 763	case AF_INET:
 764		return inet_sk(sk)->mc_loop;
 765#if IS_ENABLED(CONFIG_IPV6)
 766	case AF_INET6:
 767		return inet6_sk(sk)->mc_loop;
 768#endif
 769	}
 770	WARN_ON_ONCE(1);
 771	return true;
 772}
 773EXPORT_SYMBOL(sk_mc_loop);
 774
 775void sock_set_reuseaddr(struct sock *sk)
 776{
 777	lock_sock(sk);
 778	sk->sk_reuse = SK_CAN_REUSE;
 779	release_sock(sk);
 780}
 781EXPORT_SYMBOL(sock_set_reuseaddr);
 782
 783void sock_set_reuseport(struct sock *sk)
 784{
 785	lock_sock(sk);
 786	sk->sk_reuseport = true;
 787	release_sock(sk);
 788}
 789EXPORT_SYMBOL(sock_set_reuseport);
 790
 791void sock_no_linger(struct sock *sk)
 792{
 793	lock_sock(sk);
 794	sk->sk_lingertime = 0;
 795	sock_set_flag(sk, SOCK_LINGER);
 796	release_sock(sk);
 797}
 798EXPORT_SYMBOL(sock_no_linger);
 799
 800void sock_set_priority(struct sock *sk, u32 priority)
 801{
 802	lock_sock(sk);
 803	sk->sk_priority = priority;
 804	release_sock(sk);
 805}
 806EXPORT_SYMBOL(sock_set_priority);
 807
 808void sock_set_sndtimeo(struct sock *sk, s64 secs)
 809{
 810	lock_sock(sk);
 811	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
 812		sk->sk_sndtimeo = secs * HZ;
 813	else
 814		sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
 815	release_sock(sk);
 816}
 817EXPORT_SYMBOL(sock_set_sndtimeo);
 818
 819static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
 820{
 821	if (val)  {
 822		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
 823		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
 824		sock_set_flag(sk, SOCK_RCVTSTAMP);
 825		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 826	} else {
 827		sock_reset_flag(sk, SOCK_RCVTSTAMP);
 828		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 829	}
 830}
 831
 832void sock_enable_timestamps(struct sock *sk)
 833{
 834	lock_sock(sk);
 835	__sock_set_timestamps(sk, true, false, true);
 836	release_sock(sk);
 837}
 838EXPORT_SYMBOL(sock_enable_timestamps);
 839
 840void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
 841{
 842	switch (optname) {
 843	case SO_TIMESTAMP_OLD:
 844		__sock_set_timestamps(sk, valbool, false, false);
 845		break;
 846	case SO_TIMESTAMP_NEW:
 847		__sock_set_timestamps(sk, valbool, true, false);
 848		break;
 849	case SO_TIMESTAMPNS_OLD:
 850		__sock_set_timestamps(sk, valbool, false, true);
 851		break;
 852	case SO_TIMESTAMPNS_NEW:
 853		__sock_set_timestamps(sk, valbool, true, true);
 854		break;
 855	}
 856}
 857
 858static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
 859{
 860	struct net *net = sock_net(sk);
 861	struct net_device *dev = NULL;
 862	bool match = false;
 863	int *vclock_index;
 864	int i, num;
 865
 866	if (sk->sk_bound_dev_if)
 867		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
 868
 869	if (!dev) {
 870		pr_err("%s: sock not bind to device\n", __func__);
 871		return -EOPNOTSUPP;
 872	}
 873
 874	num = ethtool_get_phc_vclocks(dev, &vclock_index);
 875	dev_put(dev);
 876
 877	for (i = 0; i < num; i++) {
 878		if (*(vclock_index + i) == phc_index) {
 879			match = true;
 880			break;
 881		}
 882	}
 883
 884	if (num > 0)
 885		kfree(vclock_index);
 886
 887	if (!match)
 888		return -EINVAL;
 889
 890	sk->sk_bind_phc = phc_index;
 891
 892	return 0;
 893}
 894
 895int sock_set_timestamping(struct sock *sk, int optname,
 896			  struct so_timestamping timestamping)
 897{
 898	int val = timestamping.flags;
 899	int ret;
 900
 901	if (val & ~SOF_TIMESTAMPING_MASK)
 902		return -EINVAL;
 903
 904	if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
 905	    !(val & SOF_TIMESTAMPING_OPT_ID))
 906		return -EINVAL;
 907
 908	if (val & SOF_TIMESTAMPING_OPT_ID &&
 909	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 910		if (sk_is_tcp(sk)) {
 911			if ((1 << sk->sk_state) &
 912			    (TCPF_CLOSE | TCPF_LISTEN))
 913				return -EINVAL;
 914			if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
 915				atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
 916			else
 917				atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
 918		} else {
 919			atomic_set(&sk->sk_tskey, 0);
 920		}
 921	}
 922
 923	if (val & SOF_TIMESTAMPING_OPT_STATS &&
 924	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
 925		return -EINVAL;
 926
 927	if (val & SOF_TIMESTAMPING_BIND_PHC) {
 928		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
 929		if (ret)
 930			return ret;
 931	}
 932
 933	sk->sk_tsflags = val;
 934	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
 935
 936	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 937		sock_enable_timestamp(sk,
 938				      SOCK_TIMESTAMPING_RX_SOFTWARE);
 939	else
 940		sock_disable_timestamp(sk,
 941				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 942	return 0;
 943}
 944
 945void sock_set_keepalive(struct sock *sk)
 946{
 947	lock_sock(sk);
 948	if (sk->sk_prot->keepalive)
 949		sk->sk_prot->keepalive(sk, true);
 950	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
 951	release_sock(sk);
 952}
 953EXPORT_SYMBOL(sock_set_keepalive);
 954
 955static void __sock_set_rcvbuf(struct sock *sk, int val)
 956{
 957	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
 958	 * as a negative value.
 959	 */
 960	val = min_t(int, val, INT_MAX / 2);
 961	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 962
 963	/* We double it on the way in to account for "struct sk_buff" etc.
 964	 * overhead.   Applications assume that the SO_RCVBUF setting they make
 965	 * will allow that much actual data to be received on that socket.
 966	 *
 967	 * Applications are unaware that "struct sk_buff" and other overheads
 968	 * allocate from the receive buffer during socket buffer allocation.
 969	 *
 970	 * And after considering the possible alternatives, returning the value
 971	 * we actually used in getsockopt is the most desirable behavior.
 972	 */
 973	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
 974}
 975
 976void sock_set_rcvbuf(struct sock *sk, int val)
 977{
 978	lock_sock(sk);
 979	__sock_set_rcvbuf(sk, val);
 980	release_sock(sk);
 981}
 982EXPORT_SYMBOL(sock_set_rcvbuf);
 983
 984static void __sock_set_mark(struct sock *sk, u32 val)
 985{
 986	if (val != sk->sk_mark) {
 987		sk->sk_mark = val;
 988		sk_dst_reset(sk);
 989	}
 990}
 991
 992void sock_set_mark(struct sock *sk, u32 val)
 993{
 994	lock_sock(sk);
 995	__sock_set_mark(sk, val);
 996	release_sock(sk);
 997}
 998EXPORT_SYMBOL(sock_set_mark);
 999
1000static void sock_release_reserved_memory(struct sock *sk, int bytes)
1001{
1002	/* Round down bytes to multiple of pages */
1003	bytes = round_down(bytes, PAGE_SIZE);
1004
1005	WARN_ON(bytes > sk->sk_reserved_mem);
1006	sk->sk_reserved_mem -= bytes;
1007	sk_mem_reclaim(sk);
1008}
1009
1010static int sock_reserve_memory(struct sock *sk, int bytes)
1011{
1012	long allocated;
1013	bool charged;
1014	int pages;
1015
1016	if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1017		return -EOPNOTSUPP;
1018
1019	if (!bytes)
1020		return 0;
1021
1022	pages = sk_mem_pages(bytes);
1023
1024	/* pre-charge to memcg */
1025	charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1026					  GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1027	if (!charged)
1028		return -ENOMEM;
1029
1030	/* pre-charge to forward_alloc */
1031	sk_memory_allocated_add(sk, pages);
1032	allocated = sk_memory_allocated(sk);
1033	/* If the system goes into memory pressure with this
1034	 * precharge, give up and return error.
1035	 */
1036	if (allocated > sk_prot_mem_limits(sk, 1)) {
1037		sk_memory_allocated_sub(sk, pages);
1038		mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1039		return -ENOMEM;
1040	}
1041	sk->sk_forward_alloc += pages << PAGE_SHIFT;
1042
1043	sk->sk_reserved_mem += pages << PAGE_SHIFT;
1044
1045	return 0;
1046}
1047
1048void sockopt_lock_sock(struct sock *sk)
1049{
1050	/* When current->bpf_ctx is set, the setsockopt is called from
1051	 * a bpf prog.  bpf has ensured the sk lock has been
1052	 * acquired before calling setsockopt().
1053	 */
1054	if (has_current_bpf_ctx())
1055		return;
1056
1057	lock_sock(sk);
1058}
1059EXPORT_SYMBOL(sockopt_lock_sock);
1060
1061void sockopt_release_sock(struct sock *sk)
1062{
1063	if (has_current_bpf_ctx())
1064		return;
1065
1066	release_sock(sk);
1067}
1068EXPORT_SYMBOL(sockopt_release_sock);
1069
1070bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1071{
1072	return has_current_bpf_ctx() || ns_capable(ns, cap);
1073}
1074EXPORT_SYMBOL(sockopt_ns_capable);
1075
1076bool sockopt_capable(int cap)
1077{
1078	return has_current_bpf_ctx() || capable(cap);
1079}
1080EXPORT_SYMBOL(sockopt_capable);
1081
1082/*
1083 *	This is meant for all protocols to use and covers goings on
1084 *	at the socket level. Everything here is generic.
1085 */
1086
1087int sk_setsockopt(struct sock *sk, int level, int optname,
1088		  sockptr_t optval, unsigned int optlen)
1089{
1090	struct so_timestamping timestamping;
1091	struct socket *sock = sk->sk_socket;
1092	struct sock_txtime sk_txtime;
1093	int val;
1094	int valbool;
1095	struct linger ling;
1096	int ret = 0;
1097
1098	/*
1099	 *	Options without arguments
1100	 */
1101
1102	if (optname == SO_BINDTODEVICE)
1103		return sock_setbindtodevice(sk, optval, optlen);
1104
1105	if (optlen < sizeof(int))
1106		return -EINVAL;
1107
1108	if (copy_from_sockptr(&val, optval, sizeof(val)))
1109		return -EFAULT;
1110
1111	valbool = val ? 1 : 0;
1112
1113	sockopt_lock_sock(sk);
1114
1115	switch (optname) {
1116	case SO_DEBUG:
1117		if (val && !sockopt_capable(CAP_NET_ADMIN))
1118			ret = -EACCES;
1119		else
1120			sock_valbool_flag(sk, SOCK_DBG, valbool);
1121		break;
1122	case SO_REUSEADDR:
1123		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1124		break;
1125	case SO_REUSEPORT:
1126		sk->sk_reuseport = valbool;
1127		break;
1128	case SO_TYPE:
1129	case SO_PROTOCOL:
1130	case SO_DOMAIN:
1131	case SO_ERROR:
1132		ret = -ENOPROTOOPT;
1133		break;
1134	case SO_DONTROUTE:
1135		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1136		sk_dst_reset(sk);
1137		break;
1138	case SO_BROADCAST:
1139		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1140		break;
1141	case SO_SNDBUF:
1142		/* Don't error on this BSD doesn't and if you think
1143		 * about it this is right. Otherwise apps have to
1144		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1145		 * are treated in BSD as hints
1146		 */
1147		val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1148set_sndbuf:
1149		/* Ensure val * 2 fits into an int, to prevent max_t()
1150		 * from treating it as a negative value.
1151		 */
1152		val = min_t(int, val, INT_MAX / 2);
1153		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1154		WRITE_ONCE(sk->sk_sndbuf,
1155			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1156		/* Wake up sending tasks if we upped the value. */
1157		sk->sk_write_space(sk);
1158		break;
1159
1160	case SO_SNDBUFFORCE:
1161		if (!sockopt_capable(CAP_NET_ADMIN)) {
1162			ret = -EPERM;
1163			break;
1164		}
1165
1166		/* No negative values (to prevent underflow, as val will be
1167		 * multiplied by 2).
1168		 */
1169		if (val < 0)
1170			val = 0;
1171		goto set_sndbuf;
1172
1173	case SO_RCVBUF:
1174		/* Don't error on this BSD doesn't and if you think
1175		 * about it this is right. Otherwise apps have to
1176		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1177		 * are treated in BSD as hints
1178		 */
1179		__sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180		break;
1181
1182	case SO_RCVBUFFORCE:
1183		if (!sockopt_capable(CAP_NET_ADMIN)) {
1184			ret = -EPERM;
1185			break;
1186		}
1187
1188		/* No negative values (to prevent underflow, as val will be
1189		 * multiplied by 2).
1190		 */
1191		__sock_set_rcvbuf(sk, max(val, 0));
1192		break;
1193
1194	case SO_KEEPALIVE:
1195		if (sk->sk_prot->keepalive)
1196			sk->sk_prot->keepalive(sk, valbool);
1197		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1198		break;
1199
1200	case SO_OOBINLINE:
1201		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1202		break;
1203
1204	case SO_NO_CHECK:
1205		sk->sk_no_check_tx = valbool;
1206		break;
1207
1208	case SO_PRIORITY:
1209		if ((val >= 0 && val <= 6) ||
1210		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1211		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1212			sk->sk_priority = val;
1213		else
1214			ret = -EPERM;
1215		break;
1216
1217	case SO_LINGER:
1218		if (optlen < sizeof(ling)) {
1219			ret = -EINVAL;	/* 1003.1g */
1220			break;
1221		}
1222		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1223			ret = -EFAULT;
1224			break;
1225		}
1226		if (!ling.l_onoff)
1227			sock_reset_flag(sk, SOCK_LINGER);
1228		else {
1229#if (BITS_PER_LONG == 32)
1230			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1231				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1232			else
1233#endif
1234				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1235			sock_set_flag(sk, SOCK_LINGER);
1236		}
1237		break;
1238
1239	case SO_BSDCOMPAT:
 
1240		break;
1241
1242	case SO_PASSCRED:
1243		if (valbool)
1244			set_bit(SOCK_PASSCRED, &sock->flags);
1245		else
1246			clear_bit(SOCK_PASSCRED, &sock->flags);
1247		break;
1248
1249	case SO_TIMESTAMP_OLD:
1250	case SO_TIMESTAMP_NEW:
1251	case SO_TIMESTAMPNS_OLD:
1252	case SO_TIMESTAMPNS_NEW:
1253		sock_set_timestamp(sk, optname, valbool);
 
 
 
 
 
 
 
 
1254		break;
1255
1256	case SO_TIMESTAMPING_NEW:
1257	case SO_TIMESTAMPING_OLD:
1258		if (optlen == sizeof(timestamping)) {
1259			if (copy_from_sockptr(&timestamping, optval,
1260					      sizeof(timestamping))) {
1261				ret = -EFAULT;
1262				break;
 
 
 
 
 
 
 
 
 
 
 
1263			}
1264		} else {
1265			memset(&timestamping, 0, sizeof(timestamping));
1266			timestamping.flags = val;
1267		}
1268		ret = sock_set_timestamping(sk, optname, timestamping);
 
 
 
 
 
 
 
 
 
 
 
 
 
1269		break;
1270
1271	case SO_RCVLOWAT:
1272		if (val < 0)
1273			val = INT_MAX;
1274		if (sock && sock->ops->set_rcvlowat)
1275			ret = sock->ops->set_rcvlowat(sk, val);
1276		else
1277			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1278		break;
1279
1280	case SO_RCVTIMEO_OLD:
1281	case SO_RCVTIMEO_NEW:
1282		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1283				       optlen, optname == SO_RCVTIMEO_OLD);
1284		break;
1285
1286	case SO_SNDTIMEO_OLD:
1287	case SO_SNDTIMEO_NEW:
1288		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1289				       optlen, optname == SO_SNDTIMEO_OLD);
1290		break;
1291
1292	case SO_ATTACH_FILTER: {
1293		struct sock_fprog fprog;
 
 
 
 
 
 
1294
1295		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1296		if (!ret)
1297			ret = sk_attach_filter(&fprog, sk);
 
1298		break;
1299	}
1300	case SO_ATTACH_BPF:
1301		ret = -EINVAL;
1302		if (optlen == sizeof(u32)) {
1303			u32 ufd;
1304
1305			ret = -EFAULT;
1306			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1307				break;
1308
1309			ret = sk_attach_bpf(ufd, sk);
1310		}
1311		break;
1312
1313	case SO_ATTACH_REUSEPORT_CBPF: {
1314		struct sock_fprog fprog;
 
 
 
 
 
 
1315
1316		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1317		if (!ret)
1318			ret = sk_reuseport_attach_filter(&fprog, sk);
 
1319		break;
1320	}
1321	case SO_ATTACH_REUSEPORT_EBPF:
1322		ret = -EINVAL;
1323		if (optlen == sizeof(u32)) {
1324			u32 ufd;
1325
1326			ret = -EFAULT;
1327			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1328				break;
1329
1330			ret = sk_reuseport_attach_bpf(ufd, sk);
1331		}
1332		break;
1333
1334	case SO_DETACH_REUSEPORT_BPF:
1335		ret = reuseport_detach_prog(sk);
1336		break;
1337
1338	case SO_DETACH_FILTER:
1339		ret = sk_detach_filter(sk);
1340		break;
1341
1342	case SO_LOCK_FILTER:
1343		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1344			ret = -EPERM;
1345		else
1346			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1347		break;
1348
1349	case SO_PASSSEC:
1350		if (valbool)
1351			set_bit(SOCK_PASSSEC, &sock->flags);
1352		else
1353			clear_bit(SOCK_PASSSEC, &sock->flags);
1354		break;
1355	case SO_MARK:
1356		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1357		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1358			ret = -EPERM;
1359			break;
1360		}
1361
1362		__sock_set_mark(sk, val);
1363		break;
1364	case SO_RCVMARK:
1365		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1366		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1367			ret = -EPERM;
1368			break;
1369		}
1370
1371		sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1372		break;
1373
1374	case SO_RXQ_OVFL:
1375		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1376		break;
1377
1378	case SO_WIFI_STATUS:
1379		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1380		break;
1381
1382	case SO_PEEK_OFF:
1383		if (sock->ops->set_peek_off)
1384			ret = sock->ops->set_peek_off(sk, val);
1385		else
1386			ret = -EOPNOTSUPP;
1387		break;
1388
1389	case SO_NOFCS:
1390		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1391		break;
1392
1393	case SO_SELECT_ERR_QUEUE:
1394		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1395		break;
1396
1397#ifdef CONFIG_NET_RX_BUSY_POLL
1398	case SO_BUSY_POLL:
1399		/* allow unprivileged users to decrease the value */
1400		if ((val > sk->sk_ll_usec) && !sockopt_capable(CAP_NET_ADMIN))
1401			ret = -EPERM;
1402		else {
1403			if (val < 0)
1404				ret = -EINVAL;
1405			else
1406				WRITE_ONCE(sk->sk_ll_usec, val);
1407		}
1408		break;
1409	case SO_PREFER_BUSY_POLL:
1410		if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1411			ret = -EPERM;
1412		else
1413			WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1414		break;
1415	case SO_BUSY_POLL_BUDGET:
1416		if (val > READ_ONCE(sk->sk_busy_poll_budget) && !sockopt_capable(CAP_NET_ADMIN)) {
1417			ret = -EPERM;
1418		} else {
1419			if (val < 0 || val > U16_MAX)
1420				ret = -EINVAL;
1421			else
1422				WRITE_ONCE(sk->sk_busy_poll_budget, val);
1423		}
1424		break;
1425#endif
1426
1427	case SO_MAX_PACING_RATE:
1428		{
1429		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1430
1431		if (sizeof(ulval) != sizeof(val) &&
1432		    optlen >= sizeof(ulval) &&
1433		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1434			ret = -EFAULT;
1435			break;
1436		}
1437		if (ulval != ~0UL)
1438			cmpxchg(&sk->sk_pacing_status,
1439				SK_PACING_NONE,
1440				SK_PACING_NEEDED);
1441		sk->sk_max_pacing_rate = ulval;
1442		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
 
1443		break;
1444		}
1445	case SO_INCOMING_CPU:
1446		reuseport_update_incoming_cpu(sk, val);
1447		break;
1448
1449	case SO_CNX_ADVICE:
1450		if (val == 1)
1451			dst_negative_advice(sk);
1452		break;
1453
1454	case SO_ZEROCOPY:
1455		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1456			if (!(sk_is_tcp(sk) ||
1457			      (sk->sk_type == SOCK_DGRAM &&
1458			       sk->sk_protocol == IPPROTO_UDP)))
1459				ret = -EOPNOTSUPP;
1460		} else if (sk->sk_family != PF_RDS) {
1461			ret = -EOPNOTSUPP;
1462		}
1463		if (!ret) {
1464			if (val < 0 || val > 1)
1465				ret = -EINVAL;
1466			else
1467				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1468		}
1469		break;
1470
1471	case SO_TXTIME:
1472		if (optlen != sizeof(struct sock_txtime)) {
1473			ret = -EINVAL;
1474			break;
1475		} else if (copy_from_sockptr(&sk_txtime, optval,
1476			   sizeof(struct sock_txtime))) {
1477			ret = -EFAULT;
1478			break;
1479		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1480			ret = -EINVAL;
1481			break;
1482		}
1483		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1484		 * scheduler has enough safe guards.
1485		 */
1486		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1487		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1488			ret = -EPERM;
1489			break;
1490		}
1491		sock_valbool_flag(sk, SOCK_TXTIME, true);
1492		sk->sk_clockid = sk_txtime.clockid;
1493		sk->sk_txtime_deadline_mode =
1494			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1495		sk->sk_txtime_report_errors =
1496			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1497		break;
1498
1499	case SO_BINDTOIFINDEX:
1500		ret = sock_bindtoindex_locked(sk, val);
1501		break;
1502
1503	case SO_BUF_LOCK:
1504		if (val & ~SOCK_BUF_LOCK_MASK) {
1505			ret = -EINVAL;
1506			break;
1507		}
1508		sk->sk_userlocks = val | (sk->sk_userlocks &
1509					  ~SOCK_BUF_LOCK_MASK);
1510		break;
1511
1512	case SO_RESERVE_MEM:
1513	{
1514		int delta;
1515
1516		if (val < 0) {
1517			ret = -EINVAL;
1518			break;
1519		}
1520
1521		delta = val - sk->sk_reserved_mem;
1522		if (delta < 0)
1523			sock_release_reserved_memory(sk, -delta);
1524		else
1525			ret = sock_reserve_memory(sk, delta);
1526		break;
1527	}
1528
1529	case SO_TXREHASH:
1530		if (val < -1 || val > 1) {
1531			ret = -EINVAL;
1532			break;
1533		}
1534		if ((u8)val == SOCK_TXREHASH_DEFAULT)
1535			val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1536		/* Paired with READ_ONCE() in tcp_rtx_synack() */
1537		WRITE_ONCE(sk->sk_txrehash, (u8)val);
1538		break;
1539
1540	default:
1541		ret = -ENOPROTOOPT;
1542		break;
1543	}
1544	sockopt_release_sock(sk);
1545	return ret;
1546}
1547
1548int sock_setsockopt(struct socket *sock, int level, int optname,
1549		    sockptr_t optval, unsigned int optlen)
1550{
1551	return sk_setsockopt(sock->sk, level, optname,
1552			     optval, optlen);
1553}
1554EXPORT_SYMBOL(sock_setsockopt);
1555
1556static const struct cred *sk_get_peer_cred(struct sock *sk)
1557{
1558	const struct cred *cred;
1559
1560	spin_lock(&sk->sk_peer_lock);
1561	cred = get_cred(sk->sk_peer_cred);
1562	spin_unlock(&sk->sk_peer_lock);
1563
1564	return cred;
1565}
1566
1567static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1568			  struct ucred *ucred)
1569{
1570	ucred->pid = pid_vnr(pid);
1571	ucred->uid = ucred->gid = -1;
1572	if (cred) {
1573		struct user_namespace *current_ns = current_user_ns();
1574
1575		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1576		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1577	}
1578}
1579
1580static int groups_to_user(sockptr_t dst, const struct group_info *src)
1581{
1582	struct user_namespace *user_ns = current_user_ns();
1583	int i;
1584
1585	for (i = 0; i < src->ngroups; i++) {
1586		gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1587
1588		if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1589			return -EFAULT;
1590	}
1591
1592	return 0;
1593}
1594
1595int sk_getsockopt(struct sock *sk, int level, int optname,
1596		  sockptr_t optval, sockptr_t optlen)
1597{
1598	struct socket *sock = sk->sk_socket;
1599
1600	union {
1601		int val;
1602		u64 val64;
1603		unsigned long ulval;
1604		struct linger ling;
1605		struct old_timeval32 tm32;
1606		struct __kernel_old_timeval tm;
1607		struct  __kernel_sock_timeval stm;
1608		struct sock_txtime txtime;
1609		struct so_timestamping timestamping;
1610	} v;
1611
1612	int lv = sizeof(int);
1613	int len;
1614
1615	if (copy_from_sockptr(&len, optlen, sizeof(int)))
1616		return -EFAULT;
1617	if (len < 0)
1618		return -EINVAL;
1619
1620	memset(&v, 0, sizeof(v));
1621
1622	switch (optname) {
1623	case SO_DEBUG:
1624		v.val = sock_flag(sk, SOCK_DBG);
1625		break;
1626
1627	case SO_DONTROUTE:
1628		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1629		break;
1630
1631	case SO_BROADCAST:
1632		v.val = sock_flag(sk, SOCK_BROADCAST);
1633		break;
1634
1635	case SO_SNDBUF:
1636		v.val = sk->sk_sndbuf;
1637		break;
1638
1639	case SO_RCVBUF:
1640		v.val = sk->sk_rcvbuf;
1641		break;
1642
1643	case SO_REUSEADDR:
1644		v.val = sk->sk_reuse;
1645		break;
1646
1647	case SO_REUSEPORT:
1648		v.val = sk->sk_reuseport;
1649		break;
1650
1651	case SO_KEEPALIVE:
1652		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1653		break;
1654
1655	case SO_TYPE:
1656		v.val = sk->sk_type;
1657		break;
1658
1659	case SO_PROTOCOL:
1660		v.val = sk->sk_protocol;
1661		break;
1662
1663	case SO_DOMAIN:
1664		v.val = sk->sk_family;
1665		break;
1666
1667	case SO_ERROR:
1668		v.val = -sock_error(sk);
1669		if (v.val == 0)
1670			v.val = xchg(&sk->sk_err_soft, 0);
1671		break;
1672
1673	case SO_OOBINLINE:
1674		v.val = sock_flag(sk, SOCK_URGINLINE);
1675		break;
1676
1677	case SO_NO_CHECK:
1678		v.val = sk->sk_no_check_tx;
1679		break;
1680
1681	case SO_PRIORITY:
1682		v.val = sk->sk_priority;
1683		break;
1684
1685	case SO_LINGER:
1686		lv		= sizeof(v.ling);
1687		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1688		v.ling.l_linger	= sk->sk_lingertime / HZ;
1689		break;
1690
1691	case SO_BSDCOMPAT:
 
1692		break;
1693
1694	case SO_TIMESTAMP_OLD:
1695		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1696				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1697				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1698		break;
1699
1700	case SO_TIMESTAMPNS_OLD:
1701		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1702		break;
1703
1704	case SO_TIMESTAMP_NEW:
1705		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1706		break;
1707
1708	case SO_TIMESTAMPNS_NEW:
1709		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
 
 
 
 
 
 
 
1710		break;
1711
1712	case SO_TIMESTAMPING_OLD:
1713		lv = sizeof(v.timestamping);
1714		v.timestamping.flags = sk->sk_tsflags;
1715		v.timestamping.bind_phc = sk->sk_bind_phc;
1716		break;
1717
1718	case SO_RCVTIMEO_OLD:
1719	case SO_RCVTIMEO_NEW:
1720		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1721		break;
1722
1723	case SO_SNDTIMEO_OLD:
1724	case SO_SNDTIMEO_NEW:
1725		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1726		break;
1727
1728	case SO_RCVLOWAT:
1729		v.val = sk->sk_rcvlowat;
1730		break;
1731
1732	case SO_SNDLOWAT:
1733		v.val = 1;
1734		break;
1735
1736	case SO_PASSCRED:
1737		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1738		break;
1739
1740	case SO_PEERCRED:
1741	{
1742		struct ucred peercred;
1743		if (len > sizeof(peercred))
1744			len = sizeof(peercred);
1745
1746		spin_lock(&sk->sk_peer_lock);
1747		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1748		spin_unlock(&sk->sk_peer_lock);
1749
1750		if (copy_to_sockptr(optval, &peercred, len))
1751			return -EFAULT;
1752		goto lenout;
1753	}
1754
1755	case SO_PEERGROUPS:
1756	{
1757		const struct cred *cred;
1758		int ret, n;
1759
1760		cred = sk_get_peer_cred(sk);
1761		if (!cred)
1762			return -ENODATA;
1763
1764		n = cred->group_info->ngroups;
1765		if (len < n * sizeof(gid_t)) {
1766			len = n * sizeof(gid_t);
1767			put_cred(cred);
1768			return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1769		}
1770		len = n * sizeof(gid_t);
1771
1772		ret = groups_to_user(optval, cred->group_info);
1773		put_cred(cred);
1774		if (ret)
1775			return ret;
1776		goto lenout;
1777	}
1778
1779	case SO_PEERNAME:
1780	{
1781		char address[128];
1782
1783		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1784		if (lv < 0)
1785			return -ENOTCONN;
1786		if (lv < len)
1787			return -EINVAL;
1788		if (copy_to_sockptr(optval, address, len))
1789			return -EFAULT;
1790		goto lenout;
1791	}
1792
1793	/* Dubious BSD thing... Probably nobody even uses it, but
1794	 * the UNIX standard wants it for whatever reason... -DaveM
1795	 */
1796	case SO_ACCEPTCONN:
1797		v.val = sk->sk_state == TCP_LISTEN;
1798		break;
1799
1800	case SO_PASSSEC:
1801		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1802		break;
1803
1804	case SO_PEERSEC:
1805		return security_socket_getpeersec_stream(sock,
1806							 optval, optlen, len);
1807
1808	case SO_MARK:
1809		v.val = sk->sk_mark;
1810		break;
1811
1812	case SO_RCVMARK:
1813		v.val = sock_flag(sk, SOCK_RCVMARK);
1814		break;
1815
1816	case SO_RXQ_OVFL:
1817		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1818		break;
1819
1820	case SO_WIFI_STATUS:
1821		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1822		break;
1823
1824	case SO_PEEK_OFF:
1825		if (!sock->ops->set_peek_off)
1826			return -EOPNOTSUPP;
1827
1828		v.val = sk->sk_peek_off;
1829		break;
1830	case SO_NOFCS:
1831		v.val = sock_flag(sk, SOCK_NOFCS);
1832		break;
1833
1834	case SO_BINDTODEVICE:
1835		return sock_getbindtodevice(sk, optval, optlen, len);
1836
1837	case SO_GET_FILTER:
1838		len = sk_get_filter(sk, optval, len);
1839		if (len < 0)
1840			return len;
1841
1842		goto lenout;
1843
1844	case SO_LOCK_FILTER:
1845		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1846		break;
1847
1848	case SO_BPF_EXTENSIONS:
1849		v.val = bpf_tell_extensions();
1850		break;
1851
1852	case SO_SELECT_ERR_QUEUE:
1853		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1854		break;
1855
1856#ifdef CONFIG_NET_RX_BUSY_POLL
1857	case SO_BUSY_POLL:
1858		v.val = sk->sk_ll_usec;
1859		break;
1860	case SO_PREFER_BUSY_POLL:
1861		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1862		break;
1863#endif
1864
1865	case SO_MAX_PACING_RATE:
1866		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1867			lv = sizeof(v.ulval);
1868			v.ulval = sk->sk_max_pacing_rate;
1869		} else {
1870			/* 32bit version */
1871			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1872		}
1873		break;
1874
1875	case SO_INCOMING_CPU:
1876		v.val = READ_ONCE(sk->sk_incoming_cpu);
1877		break;
1878
1879	case SO_MEMINFO:
1880	{
1881		u32 meminfo[SK_MEMINFO_VARS];
1882
 
 
 
1883		sk_get_meminfo(sk, meminfo);
1884
1885		len = min_t(unsigned int, len, sizeof(meminfo));
1886		if (copy_to_sockptr(optval, &meminfo, len))
1887			return -EFAULT;
1888
1889		goto lenout;
1890	}
1891
1892#ifdef CONFIG_NET_RX_BUSY_POLL
1893	case SO_INCOMING_NAPI_ID:
1894		v.val = READ_ONCE(sk->sk_napi_id);
1895
1896		/* aggregate non-NAPI IDs down to 0 */
1897		if (v.val < MIN_NAPI_ID)
1898			v.val = 0;
1899
1900		break;
1901#endif
1902
1903	case SO_COOKIE:
1904		lv = sizeof(u64);
1905		if (len < lv)
1906			return -EINVAL;
1907		v.val64 = sock_gen_cookie(sk);
1908		break;
1909
1910	case SO_ZEROCOPY:
1911		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1912		break;
1913
1914	case SO_TXTIME:
1915		lv = sizeof(v.txtime);
1916		v.txtime.clockid = sk->sk_clockid;
1917		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1918				  SOF_TXTIME_DEADLINE_MODE : 0;
1919		v.txtime.flags |= sk->sk_txtime_report_errors ?
1920				  SOF_TXTIME_REPORT_ERRORS : 0;
1921		break;
1922
1923	case SO_BINDTOIFINDEX:
1924		v.val = READ_ONCE(sk->sk_bound_dev_if);
1925		break;
1926
1927	case SO_NETNS_COOKIE:
1928		lv = sizeof(u64);
1929		if (len != lv)
1930			return -EINVAL;
1931		v.val64 = sock_net(sk)->net_cookie;
1932		break;
1933
1934	case SO_BUF_LOCK:
1935		v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1936		break;
1937
1938	case SO_RESERVE_MEM:
1939		v.val = sk->sk_reserved_mem;
1940		break;
1941
1942	case SO_TXREHASH:
1943		v.val = sk->sk_txrehash;
1944		break;
1945
1946	default:
1947		/* We implement the SO_SNDLOWAT etc to not be settable
1948		 * (1003.1g 7).
1949		 */
1950		return -ENOPROTOOPT;
1951	}
1952
1953	if (len > lv)
1954		len = lv;
1955	if (copy_to_sockptr(optval, &v, len))
1956		return -EFAULT;
1957lenout:
1958	if (copy_to_sockptr(optlen, &len, sizeof(int)))
1959		return -EFAULT;
1960	return 0;
1961}
1962
1963int sock_getsockopt(struct socket *sock, int level, int optname,
1964		    char __user *optval, int __user *optlen)
1965{
1966	return sk_getsockopt(sock->sk, level, optname,
1967			     USER_SOCKPTR(optval),
1968			     USER_SOCKPTR(optlen));
1969}
1970
1971/*
1972 * Initialize an sk_lock.
1973 *
1974 * (We also register the sk_lock with the lock validator.)
1975 */
1976static inline void sock_lock_init(struct sock *sk)
1977{
1978	if (sk->sk_kern_sock)
1979		sock_lock_init_class_and_name(
1980			sk,
1981			af_family_kern_slock_key_strings[sk->sk_family],
1982			af_family_kern_slock_keys + sk->sk_family,
1983			af_family_kern_key_strings[sk->sk_family],
1984			af_family_kern_keys + sk->sk_family);
1985	else
1986		sock_lock_init_class_and_name(
1987			sk,
1988			af_family_slock_key_strings[sk->sk_family],
1989			af_family_slock_keys + sk->sk_family,
1990			af_family_key_strings[sk->sk_family],
1991			af_family_keys + sk->sk_family);
1992}
1993
1994/*
1995 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1996 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1997 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1998 */
1999static void sock_copy(struct sock *nsk, const struct sock *osk)
2000{
2001	const struct proto *prot = READ_ONCE(osk->sk_prot);
2002#ifdef CONFIG_SECURITY_NETWORK
2003	void *sptr = nsk->sk_security;
2004#endif
2005
2006	/* If we move sk_tx_queue_mapping out of the private section,
2007	 * we must check if sk_tx_queue_clear() is called after
2008	 * sock_copy() in sk_clone_lock().
2009	 */
2010	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2011		     offsetof(struct sock, sk_dontcopy_begin) ||
2012		     offsetof(struct sock, sk_tx_queue_mapping) >=
2013		     offsetof(struct sock, sk_dontcopy_end));
2014
2015	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2016
2017	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2018	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
2019
2020#ifdef CONFIG_SECURITY_NETWORK
2021	nsk->sk_security = sptr;
2022	security_sk_clone(osk, nsk);
2023#endif
2024}
2025
2026static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2027		int family)
2028{
2029	struct sock *sk;
2030	struct kmem_cache *slab;
2031
2032	slab = prot->slab;
2033	if (slab != NULL) {
2034		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2035		if (!sk)
2036			return sk;
2037		if (want_init_on_alloc(priority))
2038			sk_prot_clear_nulls(sk, prot->obj_size);
2039	} else
2040		sk = kmalloc(prot->obj_size, priority);
2041
2042	if (sk != NULL) {
2043		if (security_sk_alloc(sk, family, priority))
2044			goto out_free;
2045
2046		if (!try_module_get(prot->owner))
2047			goto out_free_sec;
 
2048	}
2049
2050	return sk;
2051
2052out_free_sec:
2053	security_sk_free(sk);
2054out_free:
2055	if (slab != NULL)
2056		kmem_cache_free(slab, sk);
2057	else
2058		kfree(sk);
2059	return NULL;
2060}
2061
2062static void sk_prot_free(struct proto *prot, struct sock *sk)
2063{
2064	struct kmem_cache *slab;
2065	struct module *owner;
2066
2067	owner = prot->owner;
2068	slab = prot->slab;
2069
2070	cgroup_sk_free(&sk->sk_cgrp_data);
2071	mem_cgroup_sk_free(sk);
2072	security_sk_free(sk);
2073	if (slab != NULL)
2074		kmem_cache_free(slab, sk);
2075	else
2076		kfree(sk);
2077	module_put(owner);
2078}
2079
2080/**
2081 *	sk_alloc - All socket objects are allocated here
2082 *	@net: the applicable net namespace
2083 *	@family: protocol family
2084 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2085 *	@prot: struct proto associated with this new sock instance
2086 *	@kern: is this to be a kernel socket?
2087 */
2088struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2089		      struct proto *prot, int kern)
2090{
2091	struct sock *sk;
2092
2093	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2094	if (sk) {
2095		sk->sk_family = family;
2096		/*
2097		 * See comment in struct sock definition to understand
2098		 * why we need sk_prot_creator -acme
2099		 */
2100		sk->sk_prot = sk->sk_prot_creator = prot;
2101		sk->sk_kern_sock = kern;
2102		sock_lock_init(sk);
2103		sk->sk_net_refcnt = kern ? 0 : 1;
2104		if (likely(sk->sk_net_refcnt)) {
2105			get_net_track(net, &sk->ns_tracker, priority);
2106			sock_inuse_add(net, 1);
2107		} else {
2108			__netns_tracker_alloc(net, &sk->ns_tracker,
2109					      false, priority);
2110		}
2111
2112		sock_net_set(sk, net);
2113		refcount_set(&sk->sk_wmem_alloc, 1);
2114
2115		mem_cgroup_sk_alloc(sk);
2116		cgroup_sk_alloc(&sk->sk_cgrp_data);
2117		sock_update_classid(&sk->sk_cgrp_data);
2118		sock_update_netprioidx(&sk->sk_cgrp_data);
2119		sk_tx_queue_clear(sk);
2120	}
2121
2122	return sk;
2123}
2124EXPORT_SYMBOL(sk_alloc);
2125
2126/* Sockets having SOCK_RCU_FREE will call this function after one RCU
2127 * grace period. This is the case for UDP sockets and TCP listeners.
2128 */
2129static void __sk_destruct(struct rcu_head *head)
2130{
2131	struct sock *sk = container_of(head, struct sock, sk_rcu);
2132	struct sk_filter *filter;
2133
2134	if (sk->sk_destruct)
2135		sk->sk_destruct(sk);
2136
2137	filter = rcu_dereference_check(sk->sk_filter,
2138				       refcount_read(&sk->sk_wmem_alloc) == 0);
2139	if (filter) {
2140		sk_filter_uncharge(sk, filter);
2141		RCU_INIT_POINTER(sk->sk_filter, NULL);
2142	}
 
 
2143
2144	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2145
2146#ifdef CONFIG_BPF_SYSCALL
2147	bpf_sk_storage_free(sk);
2148#endif
2149
2150	if (atomic_read(&sk->sk_omem_alloc))
2151		pr_debug("%s: optmem leakage (%d bytes) detected\n",
2152			 __func__, atomic_read(&sk->sk_omem_alloc));
2153
2154	if (sk->sk_frag.page) {
2155		put_page(sk->sk_frag.page);
2156		sk->sk_frag.page = NULL;
2157	}
2158
2159	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2160	put_cred(sk->sk_peer_cred);
2161	put_pid(sk->sk_peer_pid);
2162
2163	if (likely(sk->sk_net_refcnt))
2164		put_net_track(sock_net(sk), &sk->ns_tracker);
2165	else
2166		__netns_tracker_free(sock_net(sk), &sk->ns_tracker, false);
2167
2168	sk_prot_free(sk->sk_prot_creator, sk);
2169}
2170
2171void sk_destruct(struct sock *sk)
2172{
2173	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2174
2175	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2176		reuseport_detach_sock(sk);
2177		use_call_rcu = true;
2178	}
2179
2180	if (use_call_rcu)
2181		call_rcu(&sk->sk_rcu, __sk_destruct);
2182	else
2183		__sk_destruct(&sk->sk_rcu);
2184}
2185
2186static void __sk_free(struct sock *sk)
2187{
2188	if (likely(sk->sk_net_refcnt))
2189		sock_inuse_add(sock_net(sk), -1);
2190
2191	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2192		sock_diag_broadcast_destroy(sk);
2193	else
2194		sk_destruct(sk);
2195}
2196
2197void sk_free(struct sock *sk)
2198{
2199	/*
2200	 * We subtract one from sk_wmem_alloc and can know if
2201	 * some packets are still in some tx queue.
2202	 * If not null, sock_wfree() will call __sk_free(sk) later
2203	 */
2204	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2205		__sk_free(sk);
2206}
2207EXPORT_SYMBOL(sk_free);
2208
2209static void sk_init_common(struct sock *sk)
2210{
2211	skb_queue_head_init(&sk->sk_receive_queue);
2212	skb_queue_head_init(&sk->sk_write_queue);
2213	skb_queue_head_init(&sk->sk_error_queue);
2214
2215	rwlock_init(&sk->sk_callback_lock);
2216	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2217			af_rlock_keys + sk->sk_family,
2218			af_family_rlock_key_strings[sk->sk_family]);
2219	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2220			af_wlock_keys + sk->sk_family,
2221			af_family_wlock_key_strings[sk->sk_family]);
2222	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2223			af_elock_keys + sk->sk_family,
2224			af_family_elock_key_strings[sk->sk_family]);
2225	lockdep_set_class_and_name(&sk->sk_callback_lock,
2226			af_callback_keys + sk->sk_family,
2227			af_family_clock_key_strings[sk->sk_family]);
2228}
2229
2230/**
2231 *	sk_clone_lock - clone a socket, and lock its clone
2232 *	@sk: the socket to clone
2233 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2234 *
2235 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2236 */
2237struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2238{
2239	struct proto *prot = READ_ONCE(sk->sk_prot);
2240	struct sk_filter *filter;
2241	bool is_charged = true;
2242	struct sock *newsk;
2243
2244	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2245	if (!newsk)
2246		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
2247
2248	sock_copy(newsk, sk);
2249
2250	newsk->sk_prot_creator = prot;
2251
2252	/* SANITY */
2253	if (likely(newsk->sk_net_refcnt)) {
2254		get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2255		sock_inuse_add(sock_net(newsk), 1);
2256	} else {
2257		/* Kernel sockets are not elevating the struct net refcount.
2258		 * Instead, use a tracker to more easily detect if a layer
2259		 * is not properly dismantling its kernel sockets at netns
2260		 * destroy time.
2261		 */
2262		__netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2263				      false, priority);
2264	}
2265	sk_node_init(&newsk->sk_node);
2266	sock_lock_init(newsk);
2267	bh_lock_sock(newsk);
2268	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2269	newsk->sk_backlog.len = 0;
2270
2271	atomic_set(&newsk->sk_rmem_alloc, 0);
2272
2273	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2274	refcount_set(&newsk->sk_wmem_alloc, 1);
2275
2276	atomic_set(&newsk->sk_omem_alloc, 0);
2277	sk_init_common(newsk);
2278
2279	newsk->sk_dst_cache	= NULL;
2280	newsk->sk_dst_pending_confirm = 0;
2281	newsk->sk_wmem_queued	= 0;
2282	newsk->sk_forward_alloc = 0;
2283	newsk->sk_reserved_mem  = 0;
2284	atomic_set(&newsk->sk_drops, 0);
2285	newsk->sk_send_head	= NULL;
2286	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2287	atomic_set(&newsk->sk_zckey, 0);
2288
2289	sock_reset_flag(newsk, SOCK_DONE);
 
 
 
 
 
 
 
 
 
2290
2291	/* sk->sk_memcg will be populated at accept() time */
2292	newsk->sk_memcg = NULL;
 
 
 
 
 
 
 
 
 
 
2293
2294	cgroup_sk_clone(&newsk->sk_cgrp_data);
 
 
 
 
 
 
2295
2296	rcu_read_lock();
2297	filter = rcu_dereference(sk->sk_filter);
2298	if (filter != NULL)
2299		/* though it's an empty new sock, the charging may fail
2300		 * if sysctl_optmem_max was changed between creation of
2301		 * original socket and cloning
2302		 */
2303		is_charged = sk_filter_charge(newsk, filter);
2304	RCU_INIT_POINTER(newsk->sk_filter, filter);
2305	rcu_read_unlock();
2306
2307	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2308		/* We need to make sure that we don't uncharge the new
2309		 * socket if we couldn't charge it in the first place
2310		 * as otherwise we uncharge the parent's filter.
 
 
 
 
 
 
2311		 */
2312		if (!is_charged)
2313			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2314		sk_free_unlock_clone(newsk);
2315		newsk = NULL;
2316		goto out;
2317	}
2318	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2319
2320	if (bpf_sk_storage_clone(sk, newsk)) {
2321		sk_free_unlock_clone(newsk);
2322		newsk = NULL;
2323		goto out;
2324	}
2325
2326	/* Clear sk_user_data if parent had the pointer tagged
2327	 * as not suitable for copying when cloning.
2328	 */
2329	if (sk_user_data_is_nocopy(newsk))
2330		newsk->sk_user_data = NULL;
2331
2332	newsk->sk_err	   = 0;
2333	newsk->sk_err_soft = 0;
2334	newsk->sk_priority = 0;
2335	newsk->sk_incoming_cpu = raw_smp_processor_id();
2336
2337	/* Before updating sk_refcnt, we must commit prior changes to memory
2338	 * (Documentation/RCU/rculist_nulls.rst for details)
2339	 */
2340	smp_wmb();
2341	refcount_set(&newsk->sk_refcnt, 2);
2342
2343	/* Increment the counter in the same struct proto as the master
2344	 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2345	 * is the same as sk->sk_prot->socks, as this field was copied
2346	 * with memcpy).
2347	 *
2348	 * This _changes_ the previous behaviour, where
2349	 * tcp_create_openreq_child always was incrementing the
2350	 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2351	 * to be taken into account in all callers. -acme
2352	 */
2353	sk_refcnt_debug_inc(newsk);
2354	sk_set_socket(newsk, NULL);
2355	sk_tx_queue_clear(newsk);
2356	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2357
2358	if (newsk->sk_prot->sockets_allocated)
2359		sk_sockets_allocated_inc(newsk);
2360
2361	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2362		net_enable_timestamp();
2363out:
2364	return newsk;
2365}
2366EXPORT_SYMBOL_GPL(sk_clone_lock);
2367
2368void sk_free_unlock_clone(struct sock *sk)
2369{
2370	/* It is still raw copy of parent, so invalidate
2371	 * destructor and make plain sk_free() */
2372	sk->sk_destruct = NULL;
2373	bh_unlock_sock(sk);
2374	sk_free(sk);
2375}
2376EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2377
2378static void sk_trim_gso_size(struct sock *sk)
2379{
2380	if (sk->sk_gso_max_size <= GSO_LEGACY_MAX_SIZE)
2381		return;
2382#if IS_ENABLED(CONFIG_IPV6)
2383	if (sk->sk_family == AF_INET6 &&
2384	    sk_is_tcp(sk) &&
2385	    !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
2386		return;
2387#endif
2388	sk->sk_gso_max_size = GSO_LEGACY_MAX_SIZE;
2389}
2390
2391void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2392{
2393	u32 max_segs = 1;
2394
2395	sk_dst_set(sk, dst);
2396	sk->sk_route_caps = dst->dev->features;
2397	if (sk_is_tcp(sk))
2398		sk->sk_route_caps |= NETIF_F_GSO;
2399	if (sk->sk_route_caps & NETIF_F_GSO)
2400		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2401	if (unlikely(sk->sk_gso_disabled))
2402		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2403	if (sk_can_gso(sk)) {
2404		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2405			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2406		} else {
2407			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2408			/* pairs with the WRITE_ONCE() in netif_set_gso_max_size() */
2409			sk->sk_gso_max_size = READ_ONCE(dst->dev->gso_max_size);
2410			sk_trim_gso_size(sk);
2411			sk->sk_gso_max_size -= (MAX_TCP_HEADER + 1);
2412			/* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2413			max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2414		}
2415	}
2416	sk->sk_gso_max_segs = max_segs;
2417}
2418EXPORT_SYMBOL_GPL(sk_setup_caps);
2419
2420/*
2421 *	Simple resource managers for sockets.
2422 */
2423
2424
2425/*
2426 * Write buffer destructor automatically called from kfree_skb.
2427 */
2428void sock_wfree(struct sk_buff *skb)
2429{
2430	struct sock *sk = skb->sk;
2431	unsigned int len = skb->truesize;
2432	bool free;
2433
2434	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2435		if (sock_flag(sk, SOCK_RCU_FREE) &&
2436		    sk->sk_write_space == sock_def_write_space) {
2437			rcu_read_lock();
2438			free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2439			sock_def_write_space_wfree(sk);
2440			rcu_read_unlock();
2441			if (unlikely(free))
2442				__sk_free(sk);
2443			return;
2444		}
2445
2446		/*
2447		 * Keep a reference on sk_wmem_alloc, this will be released
2448		 * after sk_write_space() call
2449		 */
2450		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2451		sk->sk_write_space(sk);
2452		len = 1;
2453	}
2454	/*
2455	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2456	 * could not do because of in-flight packets
2457	 */
2458	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2459		__sk_free(sk);
2460}
2461EXPORT_SYMBOL(sock_wfree);
2462
2463/* This variant of sock_wfree() is used by TCP,
2464 * since it sets SOCK_USE_WRITE_QUEUE.
2465 */
2466void __sock_wfree(struct sk_buff *skb)
2467{
2468	struct sock *sk = skb->sk;
2469
2470	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2471		__sk_free(sk);
2472}
2473
2474void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2475{
2476	skb_orphan(skb);
2477	skb->sk = sk;
2478#ifdef CONFIG_INET
2479	if (unlikely(!sk_fullsock(sk))) {
2480		skb->destructor = sock_edemux;
2481		sock_hold(sk);
2482		return;
2483	}
2484#endif
2485	skb->destructor = sock_wfree;
2486	skb_set_hash_from_sk(skb, sk);
2487	/*
2488	 * We used to take a refcount on sk, but following operation
2489	 * is enough to guarantee sk_free() wont free this sock until
2490	 * all in-flight packets are completed
2491	 */
2492	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2493}
2494EXPORT_SYMBOL(skb_set_owner_w);
2495
2496static bool can_skb_orphan_partial(const struct sk_buff *skb)
2497{
2498#ifdef CONFIG_TLS_DEVICE
2499	/* Drivers depend on in-order delivery for crypto offload,
2500	 * partial orphan breaks out-of-order-OK logic.
2501	 */
2502	if (skb->decrypted)
2503		return false;
2504#endif
2505	return (skb->destructor == sock_wfree ||
2506		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2507}
2508
2509/* This helper is used by netem, as it can hold packets in its
2510 * delay queue. We want to allow the owner socket to send more
2511 * packets, as if they were already TX completed by a typical driver.
2512 * But we also want to keep skb->sk set because some packet schedulers
2513 * rely on it (sch_fq for example).
2514 */
2515void skb_orphan_partial(struct sk_buff *skb)
2516{
2517	if (skb_is_tcp_pure_ack(skb))
2518		return;
2519
2520	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2521		return;
 
 
 
 
2522
2523	skb_orphan(skb);
 
 
 
 
 
 
2524}
2525EXPORT_SYMBOL(skb_orphan_partial);
2526
2527/*
2528 * Read buffer destructor automatically called from kfree_skb.
2529 */
2530void sock_rfree(struct sk_buff *skb)
2531{
2532	struct sock *sk = skb->sk;
2533	unsigned int len = skb->truesize;
2534
2535	atomic_sub(len, &sk->sk_rmem_alloc);
2536	sk_mem_uncharge(sk, len);
2537}
2538EXPORT_SYMBOL(sock_rfree);
2539
2540/*
2541 * Buffer destructor for skbs that are not used directly in read or write
2542 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2543 */
2544void sock_efree(struct sk_buff *skb)
2545{
2546	sock_put(skb->sk);
2547}
2548EXPORT_SYMBOL(sock_efree);
2549
2550/* Buffer destructor for prefetch/receive path where reference count may
2551 * not be held, e.g. for listen sockets.
2552 */
2553#ifdef CONFIG_INET
2554void sock_pfree(struct sk_buff *skb)
2555{
2556	if (sk_is_refcounted(skb->sk))
2557		sock_gen_put(skb->sk);
2558}
2559EXPORT_SYMBOL(sock_pfree);
2560#endif /* CONFIG_INET */
2561
2562kuid_t sock_i_uid(struct sock *sk)
2563{
2564	kuid_t uid;
2565
2566	read_lock_bh(&sk->sk_callback_lock);
2567	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2568	read_unlock_bh(&sk->sk_callback_lock);
2569	return uid;
2570}
2571EXPORT_SYMBOL(sock_i_uid);
2572
2573unsigned long sock_i_ino(struct sock *sk)
2574{
2575	unsigned long ino;
2576
2577	read_lock_bh(&sk->sk_callback_lock);
2578	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2579	read_unlock_bh(&sk->sk_callback_lock);
2580	return ino;
2581}
2582EXPORT_SYMBOL(sock_i_ino);
2583
2584/*
2585 * Allocate a skb from the socket's send buffer.
2586 */
2587struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2588			     gfp_t priority)
2589{
2590	if (force ||
2591	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2592		struct sk_buff *skb = alloc_skb(size, priority);
2593
2594		if (skb) {
2595			skb_set_owner_w(skb, sk);
2596			return skb;
2597		}
2598	}
2599	return NULL;
2600}
2601EXPORT_SYMBOL(sock_wmalloc);
2602
2603static void sock_ofree(struct sk_buff *skb)
2604{
2605	struct sock *sk = skb->sk;
2606
2607	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2608}
2609
2610struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2611			     gfp_t priority)
2612{
2613	struct sk_buff *skb;
2614
2615	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2616	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2617	    READ_ONCE(sysctl_optmem_max))
2618		return NULL;
2619
2620	skb = alloc_skb(size, priority);
2621	if (!skb)
2622		return NULL;
2623
2624	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2625	skb->sk = sk;
2626	skb->destructor = sock_ofree;
2627	return skb;
2628}
2629
2630/*
2631 * Allocate a memory block from the socket's option memory buffer.
2632 */
2633void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2634{
2635	int optmem_max = READ_ONCE(sysctl_optmem_max);
2636
2637	if ((unsigned int)size <= optmem_max &&
2638	    atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2639		void *mem;
2640		/* First do the add, to avoid the race if kmalloc
2641		 * might sleep.
2642		 */
2643		atomic_add(size, &sk->sk_omem_alloc);
2644		mem = kmalloc(size, priority);
2645		if (mem)
2646			return mem;
2647		atomic_sub(size, &sk->sk_omem_alloc);
2648	}
2649	return NULL;
2650}
2651EXPORT_SYMBOL(sock_kmalloc);
2652
2653/* Free an option memory block. Note, we actually want the inline
2654 * here as this allows gcc to detect the nullify and fold away the
2655 * condition entirely.
2656 */
2657static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2658				  const bool nullify)
2659{
2660	if (WARN_ON_ONCE(!mem))
2661		return;
2662	if (nullify)
2663		kfree_sensitive(mem);
2664	else
2665		kfree(mem);
2666	atomic_sub(size, &sk->sk_omem_alloc);
2667}
2668
2669void sock_kfree_s(struct sock *sk, void *mem, int size)
2670{
2671	__sock_kfree_s(sk, mem, size, false);
2672}
2673EXPORT_SYMBOL(sock_kfree_s);
2674
2675void sock_kzfree_s(struct sock *sk, void *mem, int size)
2676{
2677	__sock_kfree_s(sk, mem, size, true);
2678}
2679EXPORT_SYMBOL(sock_kzfree_s);
2680
2681/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2682   I think, these locks should be removed for datagram sockets.
2683 */
2684static long sock_wait_for_wmem(struct sock *sk, long timeo)
2685{
2686	DEFINE_WAIT(wait);
2687
2688	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2689	for (;;) {
2690		if (!timeo)
2691			break;
2692		if (signal_pending(current))
2693			break;
2694		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2695		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2696		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2697			break;
2698		if (sk->sk_shutdown & SEND_SHUTDOWN)
2699			break;
2700		if (sk->sk_err)
2701			break;
2702		timeo = schedule_timeout(timeo);
2703	}
2704	finish_wait(sk_sleep(sk), &wait);
2705	return timeo;
2706}
2707
2708
2709/*
2710 *	Generic send/receive buffer handlers
2711 */
2712
2713struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2714				     unsigned long data_len, int noblock,
2715				     int *errcode, int max_page_order)
2716{
2717	struct sk_buff *skb;
2718	long timeo;
2719	int err;
2720
2721	timeo = sock_sndtimeo(sk, noblock);
2722	for (;;) {
2723		err = sock_error(sk);
2724		if (err != 0)
2725			goto failure;
2726
2727		err = -EPIPE;
2728		if (sk->sk_shutdown & SEND_SHUTDOWN)
2729			goto failure;
2730
2731		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2732			break;
2733
2734		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2735		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2736		err = -EAGAIN;
2737		if (!timeo)
2738			goto failure;
2739		if (signal_pending(current))
2740			goto interrupted;
2741		timeo = sock_wait_for_wmem(sk, timeo);
2742	}
2743	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2744				   errcode, sk->sk_allocation);
2745	if (skb)
2746		skb_set_owner_w(skb, sk);
2747	return skb;
2748
2749interrupted:
2750	err = sock_intr_errno(timeo);
2751failure:
2752	*errcode = err;
2753	return NULL;
2754}
2755EXPORT_SYMBOL(sock_alloc_send_pskb);
2756
2757int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
 
 
 
 
 
 
 
2758		     struct sockcm_cookie *sockc)
2759{
2760	u32 tsflags;
2761
2762	switch (cmsg->cmsg_type) {
2763	case SO_MARK:
2764		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2765		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2766			return -EPERM;
2767		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2768			return -EINVAL;
2769		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2770		break;
2771	case SO_TIMESTAMPING_OLD:
2772		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2773			return -EINVAL;
2774
2775		tsflags = *(u32 *)CMSG_DATA(cmsg);
2776		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2777			return -EINVAL;
2778
2779		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2780		sockc->tsflags |= tsflags;
2781		break;
2782	case SCM_TXTIME:
2783		if (!sock_flag(sk, SOCK_TXTIME))
2784			return -EINVAL;
2785		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2786			return -EINVAL;
2787		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2788		break;
2789	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2790	case SCM_RIGHTS:
2791	case SCM_CREDENTIALS:
2792		break;
2793	default:
2794		return -EINVAL;
2795	}
2796	return 0;
2797}
2798EXPORT_SYMBOL(__sock_cmsg_send);
2799
2800int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2801		   struct sockcm_cookie *sockc)
2802{
2803	struct cmsghdr *cmsg;
2804	int ret;
2805
2806	for_each_cmsghdr(cmsg, msg) {
2807		if (!CMSG_OK(msg, cmsg))
2808			return -EINVAL;
2809		if (cmsg->cmsg_level != SOL_SOCKET)
2810			continue;
2811		ret = __sock_cmsg_send(sk, cmsg, sockc);
2812		if (ret)
2813			return ret;
2814	}
2815	return 0;
2816}
2817EXPORT_SYMBOL(sock_cmsg_send);
2818
2819static void sk_enter_memory_pressure(struct sock *sk)
2820{
2821	if (!sk->sk_prot->enter_memory_pressure)
2822		return;
2823
2824	sk->sk_prot->enter_memory_pressure(sk);
2825}
2826
2827static void sk_leave_memory_pressure(struct sock *sk)
2828{
2829	if (sk->sk_prot->leave_memory_pressure) {
2830		sk->sk_prot->leave_memory_pressure(sk);
2831	} else {
2832		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2833
2834		if (memory_pressure && READ_ONCE(*memory_pressure))
2835			WRITE_ONCE(*memory_pressure, 0);
2836	}
2837}
2838
2839DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
 
2840
2841/**
2842 * skb_page_frag_refill - check that a page_frag contains enough room
2843 * @sz: minimum size of the fragment we want to get
2844 * @pfrag: pointer to page_frag
2845 * @gfp: priority for memory allocation
2846 *
2847 * Note: While this allocator tries to use high order pages, there is
2848 * no guarantee that allocations succeed. Therefore, @sz MUST be
2849 * less or equal than PAGE_SIZE.
2850 */
2851bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2852{
2853	if (pfrag->page) {
2854		if (page_ref_count(pfrag->page) == 1) {
2855			pfrag->offset = 0;
2856			return true;
2857		}
2858		if (pfrag->offset + sz <= pfrag->size)
2859			return true;
2860		put_page(pfrag->page);
2861	}
2862
2863	pfrag->offset = 0;
2864	if (SKB_FRAG_PAGE_ORDER &&
2865	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2866		/* Avoid direct reclaim but allow kswapd to wake */
2867		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2868					  __GFP_COMP | __GFP_NOWARN |
2869					  __GFP_NORETRY,
2870					  SKB_FRAG_PAGE_ORDER);
2871		if (likely(pfrag->page)) {
2872			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2873			return true;
2874		}
2875	}
2876	pfrag->page = alloc_page(gfp);
2877	if (likely(pfrag->page)) {
2878		pfrag->size = PAGE_SIZE;
2879		return true;
2880	}
2881	return false;
2882}
2883EXPORT_SYMBOL(skb_page_frag_refill);
2884
2885bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2886{
2887	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2888		return true;
2889
2890	sk_enter_memory_pressure(sk);
2891	sk_stream_moderate_sndbuf(sk);
2892	return false;
2893}
2894EXPORT_SYMBOL(sk_page_frag_refill);
2895
2896void __lock_sock(struct sock *sk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2897	__releases(&sk->sk_lock.slock)
2898	__acquires(&sk->sk_lock.slock)
2899{
2900	DEFINE_WAIT(wait);
2901
2902	for (;;) {
2903		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2904					TASK_UNINTERRUPTIBLE);
2905		spin_unlock_bh(&sk->sk_lock.slock);
2906		schedule();
2907		spin_lock_bh(&sk->sk_lock.slock);
2908		if (!sock_owned_by_user(sk))
2909			break;
2910	}
2911	finish_wait(&sk->sk_lock.wq, &wait);
2912}
2913
2914void __release_sock(struct sock *sk)
2915	__releases(&sk->sk_lock.slock)
2916	__acquires(&sk->sk_lock.slock)
2917{
2918	struct sk_buff *skb, *next;
2919
2920	while ((skb = sk->sk_backlog.head) != NULL) {
2921		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2922
2923		spin_unlock_bh(&sk->sk_lock.slock);
2924
2925		do {
2926			next = skb->next;
2927			prefetch(next);
2928			DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
2929			skb_mark_not_on_list(skb);
2930			sk_backlog_rcv(sk, skb);
2931
2932			cond_resched();
2933
2934			skb = next;
2935		} while (skb != NULL);
2936
2937		spin_lock_bh(&sk->sk_lock.slock);
2938	}
2939
2940	/*
2941	 * Doing the zeroing here guarantee we can not loop forever
2942	 * while a wild producer attempts to flood us.
2943	 */
2944	sk->sk_backlog.len = 0;
2945}
2946
2947void __sk_flush_backlog(struct sock *sk)
2948{
2949	spin_lock_bh(&sk->sk_lock.slock);
2950	__release_sock(sk);
2951	spin_unlock_bh(&sk->sk_lock.slock);
2952}
2953EXPORT_SYMBOL_GPL(__sk_flush_backlog);
2954
2955/**
2956 * sk_wait_data - wait for data to arrive at sk_receive_queue
2957 * @sk:    sock to wait on
2958 * @timeo: for how long
2959 * @skb:   last skb seen on sk_receive_queue
2960 *
2961 * Now socket state including sk->sk_err is changed only under lock,
2962 * hence we may omit checks after joining wait queue.
2963 * We check receive queue before schedule() only as optimization;
2964 * it is very likely that release_sock() added new data.
2965 */
2966int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2967{
2968	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2969	int rc;
2970
2971	add_wait_queue(sk_sleep(sk), &wait);
2972	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2973	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2974	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2975	remove_wait_queue(sk_sleep(sk), &wait);
2976	return rc;
2977}
2978EXPORT_SYMBOL(sk_wait_data);
2979
2980/**
2981 *	__sk_mem_raise_allocated - increase memory_allocated
2982 *	@sk: socket
2983 *	@size: memory size to allocate
2984 *	@amt: pages to allocate
2985 *	@kind: allocation type
2986 *
2987 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2988 */
2989int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2990{
2991	bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg;
2992	struct proto *prot = sk->sk_prot;
2993	bool charged = true;
2994	long allocated;
2995
2996	sk_memory_allocated_add(sk, amt);
2997	allocated = sk_memory_allocated(sk);
2998	if (memcg_charge &&
2999	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3000						gfp_memcg_charge())))
3001		goto suppress_allocation;
3002
3003	/* Under limit. */
3004	if (allocated <= sk_prot_mem_limits(sk, 0)) {
3005		sk_leave_memory_pressure(sk);
3006		return 1;
3007	}
3008
3009	/* Under pressure. */
3010	if (allocated > sk_prot_mem_limits(sk, 1))
3011		sk_enter_memory_pressure(sk);
3012
3013	/* Over hard limit. */
3014	if (allocated > sk_prot_mem_limits(sk, 2))
3015		goto suppress_allocation;
3016
3017	/* guarantee minimum buffer size under pressure */
3018	if (kind == SK_MEM_RECV) {
3019		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3020			return 1;
3021
3022	} else { /* SK_MEM_SEND */
3023		int wmem0 = sk_get_wmem0(sk, prot);
3024
3025		if (sk->sk_type == SOCK_STREAM) {
3026			if (sk->sk_wmem_queued < wmem0)
3027				return 1;
3028		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3029				return 1;
3030		}
3031	}
3032
3033	if (sk_has_memory_pressure(sk)) {
3034		u64 alloc;
3035
3036		if (!sk_under_memory_pressure(sk))
3037			return 1;
3038		alloc = sk_sockets_allocated_read_positive(sk);
3039		if (sk_prot_mem_limits(sk, 2) > alloc *
3040		    sk_mem_pages(sk->sk_wmem_queued +
3041				 atomic_read(&sk->sk_rmem_alloc) +
3042				 sk->sk_forward_alloc))
3043			return 1;
3044	}
3045
3046suppress_allocation:
3047
3048	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3049		sk_stream_moderate_sndbuf(sk);
3050
3051		/* Fail only if socket is _under_ its sndbuf.
3052		 * In this case we cannot block, so that we have to fail.
3053		 */
3054		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3055			/* Force charge with __GFP_NOFAIL */
3056			if (memcg_charge && !charged) {
3057				mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3058					gfp_memcg_charge() | __GFP_NOFAIL);
3059			}
3060			return 1;
3061		}
3062	}
3063
3064	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3065		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3066
3067	sk_memory_allocated_sub(sk, amt);
3068
3069	if (memcg_charge && charged)
3070		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
3071
3072	return 0;
3073}
 
3074
3075/**
3076 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3077 *	@sk: socket
3078 *	@size: memory size to allocate
3079 *	@kind: allocation type
3080 *
3081 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3082 *	rmem allocation. This function assumes that protocols which have
3083 *	memory_pressure use sk_wmem_queued as write buffer accounting.
3084 */
3085int __sk_mem_schedule(struct sock *sk, int size, int kind)
3086{
3087	int ret, amt = sk_mem_pages(size);
3088
3089	sk->sk_forward_alloc += amt << PAGE_SHIFT;
3090	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3091	if (!ret)
3092		sk->sk_forward_alloc -= amt << PAGE_SHIFT;
3093	return ret;
3094}
3095EXPORT_SYMBOL(__sk_mem_schedule);
3096
3097/**
3098 *	__sk_mem_reduce_allocated - reclaim memory_allocated
3099 *	@sk: socket
3100 *	@amount: number of quanta
3101 *
3102 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3103 */
3104void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3105{
3106	sk_memory_allocated_sub(sk, amount);
3107
3108	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3109		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3110
3111	if (sk_under_memory_pressure(sk) &&
3112	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3113		sk_leave_memory_pressure(sk);
3114}
 
3115
3116/**
3117 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3118 *	@sk: socket
3119 *	@amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3120 */
3121void __sk_mem_reclaim(struct sock *sk, int amount)
3122{
3123	amount >>= PAGE_SHIFT;
3124	sk->sk_forward_alloc -= amount << PAGE_SHIFT;
3125	__sk_mem_reduce_allocated(sk, amount);
3126}
3127EXPORT_SYMBOL(__sk_mem_reclaim);
3128
3129int sk_set_peek_off(struct sock *sk, int val)
3130{
3131	sk->sk_peek_off = val;
3132	return 0;
3133}
3134EXPORT_SYMBOL_GPL(sk_set_peek_off);
3135
3136/*
3137 * Set of default routines for initialising struct proto_ops when
3138 * the protocol does not support a particular function. In certain
3139 * cases where it makes no sense for a protocol to have a "do nothing"
3140 * function, some default processing is provided.
3141 */
3142
3143int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3144{
3145	return -EOPNOTSUPP;
3146}
3147EXPORT_SYMBOL(sock_no_bind);
3148
3149int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3150		    int len, int flags)
3151{
3152	return -EOPNOTSUPP;
3153}
3154EXPORT_SYMBOL(sock_no_connect);
3155
3156int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3157{
3158	return -EOPNOTSUPP;
3159}
3160EXPORT_SYMBOL(sock_no_socketpair);
3161
3162int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3163		   bool kern)
3164{
3165	return -EOPNOTSUPP;
3166}
3167EXPORT_SYMBOL(sock_no_accept);
3168
3169int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3170		    int peer)
3171{
3172	return -EOPNOTSUPP;
3173}
3174EXPORT_SYMBOL(sock_no_getname);
3175
 
 
 
 
 
 
3176int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3177{
3178	return -EOPNOTSUPP;
3179}
3180EXPORT_SYMBOL(sock_no_ioctl);
3181
3182int sock_no_listen(struct socket *sock, int backlog)
3183{
3184	return -EOPNOTSUPP;
3185}
3186EXPORT_SYMBOL(sock_no_listen);
3187
3188int sock_no_shutdown(struct socket *sock, int how)
3189{
3190	return -EOPNOTSUPP;
3191}
3192EXPORT_SYMBOL(sock_no_shutdown);
3193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3194int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3195{
3196	return -EOPNOTSUPP;
3197}
3198EXPORT_SYMBOL(sock_no_sendmsg);
3199
3200int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3201{
3202	return -EOPNOTSUPP;
3203}
3204EXPORT_SYMBOL(sock_no_sendmsg_locked);
3205
3206int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3207		    int flags)
3208{
3209	return -EOPNOTSUPP;
3210}
3211EXPORT_SYMBOL(sock_no_recvmsg);
3212
3213int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3214{
3215	/* Mirror missing mmap method error code */
3216	return -ENODEV;
3217}
3218EXPORT_SYMBOL(sock_no_mmap);
3219
3220/*
3221 * When a file is received (via SCM_RIGHTS, etc), we must bump the
3222 * various sock-based usage counts.
3223 */
3224void __receive_sock(struct file *file)
3225{
3226	struct socket *sock;
3227
3228	sock = sock_from_file(file);
3229	if (sock) {
3230		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3231		sock_update_classid(&sock->sk->sk_cgrp_data);
3232	}
3233}
3234
3235ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
3236{
3237	ssize_t res;
3238	struct msghdr msg = {.msg_flags = flags};
3239	struct kvec iov;
3240	char *kaddr = kmap(page);
3241	iov.iov_base = kaddr + offset;
3242	iov.iov_len = size;
3243	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
3244	kunmap(page);
3245	return res;
3246}
3247EXPORT_SYMBOL(sock_no_sendpage);
3248
3249ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
3250				int offset, size_t size, int flags)
3251{
3252	ssize_t res;
3253	struct msghdr msg = {.msg_flags = flags};
3254	struct kvec iov;
3255	char *kaddr = kmap(page);
3256
3257	iov.iov_base = kaddr + offset;
3258	iov.iov_len = size;
3259	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
3260	kunmap(page);
3261	return res;
3262}
3263EXPORT_SYMBOL(sock_no_sendpage_locked);
3264
3265/*
3266 *	Default Socket Callbacks
3267 */
3268
3269static void sock_def_wakeup(struct sock *sk)
3270{
3271	struct socket_wq *wq;
3272
3273	rcu_read_lock();
3274	wq = rcu_dereference(sk->sk_wq);
3275	if (skwq_has_sleeper(wq))
3276		wake_up_interruptible_all(&wq->wait);
3277	rcu_read_unlock();
3278}
3279
3280static void sock_def_error_report(struct sock *sk)
3281{
3282	struct socket_wq *wq;
3283
3284	rcu_read_lock();
3285	wq = rcu_dereference(sk->sk_wq);
3286	if (skwq_has_sleeper(wq))
3287		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3288	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3289	rcu_read_unlock();
3290}
3291
3292void sock_def_readable(struct sock *sk)
3293{
3294	struct socket_wq *wq;
3295
3296	rcu_read_lock();
3297	wq = rcu_dereference(sk->sk_wq);
3298	if (skwq_has_sleeper(wq))
3299		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3300						EPOLLRDNORM | EPOLLRDBAND);
3301	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3302	rcu_read_unlock();
3303}
3304
3305static void sock_def_write_space(struct sock *sk)
3306{
3307	struct socket_wq *wq;
3308
3309	rcu_read_lock();
3310
3311	/* Do not wake up a writer until he can make "significant"
3312	 * progress.  --DaveM
3313	 */
3314	if (sock_writeable(sk)) {
3315		wq = rcu_dereference(sk->sk_wq);
3316		if (skwq_has_sleeper(wq))
3317			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3318						EPOLLWRNORM | EPOLLWRBAND);
3319
3320		/* Should agree with poll, otherwise some programs break */
3321		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
 
3322	}
3323
3324	rcu_read_unlock();
3325}
3326
3327/* An optimised version of sock_def_write_space(), should only be called
3328 * for SOCK_RCU_FREE sockets under RCU read section and after putting
3329 * ->sk_wmem_alloc.
3330 */
3331static void sock_def_write_space_wfree(struct sock *sk)
3332{
3333	/* Do not wake up a writer until he can make "significant"
3334	 * progress.  --DaveM
3335	 */
3336	if (sock_writeable(sk)) {
3337		struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3338
3339		/* rely on refcount_sub from sock_wfree() */
3340		smp_mb__after_atomic();
3341		if (wq && waitqueue_active(&wq->wait))
3342			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3343						EPOLLWRNORM | EPOLLWRBAND);
3344
3345		/* Should agree with poll, otherwise some programs break */
3346		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3347	}
3348}
3349
3350static void sock_def_destruct(struct sock *sk)
3351{
3352}
3353
3354void sk_send_sigurg(struct sock *sk)
3355{
3356	if (sk->sk_socket && sk->sk_socket->file)
3357		if (send_sigurg(&sk->sk_socket->file->f_owner))
3358			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3359}
3360EXPORT_SYMBOL(sk_send_sigurg);
3361
3362void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3363		    unsigned long expires)
3364{
3365	if (!mod_timer(timer, expires))
3366		sock_hold(sk);
3367}
3368EXPORT_SYMBOL(sk_reset_timer);
3369
3370void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3371{
3372	if (del_timer(timer))
3373		__sock_put(sk);
3374}
3375EXPORT_SYMBOL(sk_stop_timer);
3376
3377void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3378{
3379	if (del_timer_sync(timer))
3380		__sock_put(sk);
3381}
3382EXPORT_SYMBOL(sk_stop_timer_sync);
3383
3384void sock_init_data(struct socket *sock, struct sock *sk)
3385{
3386	sk_init_common(sk);
3387	sk->sk_send_head	=	NULL;
3388
3389	timer_setup(&sk->sk_timer, NULL, 0);
3390
3391	sk->sk_allocation	=	GFP_KERNEL;
3392	sk->sk_rcvbuf		=	READ_ONCE(sysctl_rmem_default);
3393	sk->sk_sndbuf		=	READ_ONCE(sysctl_wmem_default);
3394	sk->sk_state		=	TCP_CLOSE;
3395	sk->sk_use_task_frag	=	true;
3396	sk_set_socket(sk, sock);
3397
3398	sock_set_flag(sk, SOCK_ZAPPED);
3399
3400	if (sock) {
3401		sk->sk_type	=	sock->type;
3402		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3403		sock->sk	=	sk;
3404		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
3405	} else {
3406		RCU_INIT_POINTER(sk->sk_wq, NULL);
3407		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
3408	}
3409
3410	rwlock_init(&sk->sk_callback_lock);
3411	if (sk->sk_kern_sock)
3412		lockdep_set_class_and_name(
3413			&sk->sk_callback_lock,
3414			af_kern_callback_keys + sk->sk_family,
3415			af_family_kern_clock_key_strings[sk->sk_family]);
3416	else
3417		lockdep_set_class_and_name(
3418			&sk->sk_callback_lock,
3419			af_callback_keys + sk->sk_family,
3420			af_family_clock_key_strings[sk->sk_family]);
3421
3422	sk->sk_state_change	=	sock_def_wakeup;
3423	sk->sk_data_ready	=	sock_def_readable;
3424	sk->sk_write_space	=	sock_def_write_space;
3425	sk->sk_error_report	=	sock_def_error_report;
3426	sk->sk_destruct		=	sock_def_destruct;
3427
3428	sk->sk_frag.page	=	NULL;
3429	sk->sk_frag.offset	=	0;
3430	sk->sk_peek_off		=	-1;
3431
3432	sk->sk_peer_pid 	=	NULL;
3433	sk->sk_peer_cred	=	NULL;
3434	spin_lock_init(&sk->sk_peer_lock);
3435
3436	sk->sk_write_pending	=	0;
3437	sk->sk_rcvlowat		=	1;
3438	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3439	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3440
3441	sk->sk_stamp = SK_DEFAULT_STAMP;
3442#if BITS_PER_LONG==32
3443	seqlock_init(&sk->sk_stamp_seq);
3444#endif
3445	atomic_set(&sk->sk_zckey, 0);
3446
3447#ifdef CONFIG_NET_RX_BUSY_POLL
3448	sk->sk_napi_id		=	0;
3449	sk->sk_ll_usec		=	READ_ONCE(sysctl_net_busy_read);
3450#endif
3451
3452	sk->sk_max_pacing_rate = ~0UL;
3453	sk->sk_pacing_rate = ~0UL;
3454	WRITE_ONCE(sk->sk_pacing_shift, 10);
3455	sk->sk_incoming_cpu = -1;
3456
3457	sk_rx_queue_clear(sk);
3458	/*
3459	 * Before updating sk_refcnt, we must commit prior changes to memory
3460	 * (Documentation/RCU/rculist_nulls.rst for details)
3461	 */
3462	smp_wmb();
3463	refcount_set(&sk->sk_refcnt, 1);
3464	atomic_set(&sk->sk_drops, 0);
3465}
3466EXPORT_SYMBOL(sock_init_data);
3467
3468void lock_sock_nested(struct sock *sk, int subclass)
3469{
3470	/* The sk_lock has mutex_lock() semantics here. */
3471	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3472
3473	might_sleep();
3474	spin_lock_bh(&sk->sk_lock.slock);
3475	if (sock_owned_by_user_nocheck(sk))
3476		__lock_sock(sk);
3477	sk->sk_lock.owned = 1;
3478	spin_unlock_bh(&sk->sk_lock.slock);
 
 
 
 
 
3479}
3480EXPORT_SYMBOL(lock_sock_nested);
3481
3482void release_sock(struct sock *sk)
3483{
3484	spin_lock_bh(&sk->sk_lock.slock);
3485	if (sk->sk_backlog.tail)
3486		__release_sock(sk);
3487
3488	/* Warning : release_cb() might need to release sk ownership,
3489	 * ie call sock_release_ownership(sk) before us.
3490	 */
3491	if (sk->sk_prot->release_cb)
3492		sk->sk_prot->release_cb(sk);
3493
3494	sock_release_ownership(sk);
3495	if (waitqueue_active(&sk->sk_lock.wq))
3496		wake_up(&sk->sk_lock.wq);
3497	spin_unlock_bh(&sk->sk_lock.slock);
3498}
3499EXPORT_SYMBOL(release_sock);
3500
3501bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
 
 
 
 
 
 
 
 
 
 
 
 
 
3502{
3503	might_sleep();
3504	spin_lock_bh(&sk->sk_lock.slock);
3505
3506	if (!sock_owned_by_user_nocheck(sk)) {
3507		/*
3508		 * Fast path return with bottom halves disabled and
3509		 * sock::sk_lock.slock held.
3510		 *
3511		 * The 'mutex' is not contended and holding
3512		 * sock::sk_lock.slock prevents all other lockers to
3513		 * proceed so the corresponding unlock_sock_fast() can
3514		 * avoid the slow path of release_sock() completely and
3515		 * just release slock.
3516		 *
3517		 * From a semantical POV this is equivalent to 'acquiring'
3518		 * the 'mutex', hence the corresponding lockdep
3519		 * mutex_release() has to happen in the fast path of
3520		 * unlock_sock_fast().
3521		 */
3522		return false;
3523	}
3524
3525	__lock_sock(sk);
3526	sk->sk_lock.owned = 1;
3527	__acquire(&sk->sk_lock.slock);
3528	spin_unlock_bh(&sk->sk_lock.slock);
 
 
 
 
3529	return true;
3530}
3531EXPORT_SYMBOL(__lock_sock_fast);
3532
3533int sock_gettstamp(struct socket *sock, void __user *userstamp,
3534		   bool timeval, bool time32)
3535{
3536	struct sock *sk = sock->sk;
3537	struct timespec64 ts;
 
 
 
 
 
 
 
 
 
 
 
3538
3539	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3540	ts = ktime_to_timespec64(sock_read_timestamp(sk));
 
 
 
 
3541	if (ts.tv_sec == -1)
3542		return -ENOENT;
3543	if (ts.tv_sec == 0) {
3544		ktime_t kt = ktime_get_real();
3545		sock_write_timestamp(sk, kt);
3546		ts = ktime_to_timespec64(kt);
3547	}
3548
3549	if (timeval)
3550		ts.tv_nsec /= 1000;
3551
3552#ifdef CONFIG_COMPAT_32BIT_TIME
3553	if (time32)
3554		return put_old_timespec32(&ts, userstamp);
3555#endif
3556#ifdef CONFIG_SPARC64
3557	/* beware of padding in sparc64 timeval */
3558	if (timeval && !in_compat_syscall()) {
3559		struct __kernel_old_timeval __user tv = {
3560			.tv_sec = ts.tv_sec,
3561			.tv_usec = ts.tv_nsec,
3562		};
3563		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3564			return -EFAULT;
3565		return 0;
3566	}
3567#endif
3568	return put_timespec64(&ts, userstamp);
3569}
3570EXPORT_SYMBOL(sock_gettstamp);
3571
3572void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3573{
3574	if (!sock_flag(sk, flag)) {
3575		unsigned long previous_flags = sk->sk_flags;
3576
3577		sock_set_flag(sk, flag);
3578		/*
3579		 * we just set one of the two flags which require net
3580		 * time stamping, but time stamping might have been on
3581		 * already because of the other one
3582		 */
3583		if (sock_needs_netstamp(sk) &&
3584		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3585			net_enable_timestamp();
3586	}
3587}
3588
3589int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3590		       int level, int type)
3591{
3592	struct sock_exterr_skb *serr;
3593	struct sk_buff *skb;
3594	int copied, err;
3595
3596	err = -EAGAIN;
3597	skb = sock_dequeue_err_skb(sk);
3598	if (skb == NULL)
3599		goto out;
3600
3601	copied = skb->len;
3602	if (copied > len) {
3603		msg->msg_flags |= MSG_TRUNC;
3604		copied = len;
3605	}
3606	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3607	if (err)
3608		goto out_free_skb;
3609
3610	sock_recv_timestamp(msg, sk, skb);
3611
3612	serr = SKB_EXT_ERR(skb);
3613	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3614
3615	msg->msg_flags |= MSG_ERRQUEUE;
3616	err = copied;
3617
3618out_free_skb:
3619	kfree_skb(skb);
3620out:
3621	return err;
3622}
3623EXPORT_SYMBOL(sock_recv_errqueue);
3624
3625/*
3626 *	Get a socket option on an socket.
3627 *
3628 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3629 *	asynchronous errors should be reported by getsockopt. We assume
3630 *	this means if you specify SO_ERROR (otherwise whats the point of it).
3631 */
3632int sock_common_getsockopt(struct socket *sock, int level, int optname,
3633			   char __user *optval, int __user *optlen)
3634{
3635	struct sock *sk = sock->sk;
3636
3637	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3638	return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3639}
3640EXPORT_SYMBOL(sock_common_getsockopt);
3641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3642int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3643			int flags)
3644{
3645	struct sock *sk = sock->sk;
3646	int addr_len = 0;
3647	int err;
3648
3649	err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
 
3650	if (err >= 0)
3651		msg->msg_namelen = addr_len;
3652	return err;
3653}
3654EXPORT_SYMBOL(sock_common_recvmsg);
3655
3656/*
3657 *	Set socket options on an inet socket.
3658 */
3659int sock_common_setsockopt(struct socket *sock, int level, int optname,
3660			   sockptr_t optval, unsigned int optlen)
3661{
3662	struct sock *sk = sock->sk;
3663
3664	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3665	return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3666}
3667EXPORT_SYMBOL(sock_common_setsockopt);
3668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3669void sk_common_release(struct sock *sk)
3670{
3671	if (sk->sk_prot->destroy)
3672		sk->sk_prot->destroy(sk);
3673
3674	/*
3675	 * Observation: when sk_common_release is called, processes have
3676	 * no access to socket. But net still has.
3677	 * Step one, detach it from networking:
3678	 *
3679	 * A. Remove from hash tables.
3680	 */
3681
3682	sk->sk_prot->unhash(sk);
3683
3684	/*
3685	 * In this point socket cannot receive new packets, but it is possible
3686	 * that some packets are in flight because some CPU runs receiver and
3687	 * did hash table lookup before we unhashed socket. They will achieve
3688	 * receive queue and will be purged by socket destructor.
3689	 *
3690	 * Also we still have packets pending on receive queue and probably,
3691	 * our own packets waiting in device queues. sock_destroy will drain
3692	 * receive queue, but transmitted packets will delay socket destruction
3693	 * until the last reference will be released.
3694	 */
3695
3696	sock_orphan(sk);
3697
3698	xfrm_sk_free_policy(sk);
3699
3700	sk_refcnt_debug_release(sk);
3701
3702	sock_put(sk);
3703}
3704EXPORT_SYMBOL(sk_common_release);
3705
3706void sk_get_meminfo(const struct sock *sk, u32 *mem)
3707{
3708	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3709
3710	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3711	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3712	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3713	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3714	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3715	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3716	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3717	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3718	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3719}
3720
3721#ifdef CONFIG_PROC_FS
 
 
 
 
 
3722static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3723
 
 
 
 
 
 
3724int sock_prot_inuse_get(struct net *net, struct proto *prot)
3725{
3726	int cpu, idx = prot->inuse_idx;
3727	int res = 0;
3728
3729	for_each_possible_cpu(cpu)
3730		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3731
3732	return res >= 0 ? res : 0;
3733}
3734EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3735
 
 
 
 
 
3736int sock_inuse_get(struct net *net)
3737{
3738	int cpu, res = 0;
3739
3740	for_each_possible_cpu(cpu)
3741		res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3742
3743	return res;
3744}
3745
3746EXPORT_SYMBOL_GPL(sock_inuse_get);
3747
3748static int __net_init sock_inuse_init_net(struct net *net)
3749{
3750	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3751	if (net->core.prot_inuse == NULL)
3752		return -ENOMEM;
 
 
 
 
 
3753	return 0;
 
 
 
 
3754}
3755
3756static void __net_exit sock_inuse_exit_net(struct net *net)
3757{
3758	free_percpu(net->core.prot_inuse);
 
3759}
3760
3761static struct pernet_operations net_inuse_ops = {
3762	.init = sock_inuse_init_net,
3763	.exit = sock_inuse_exit_net,
3764};
3765
3766static __init int net_inuse_init(void)
3767{
3768	if (register_pernet_subsys(&net_inuse_ops))
3769		panic("Cannot initialize net inuse counters");
3770
3771	return 0;
3772}
3773
3774core_initcall(net_inuse_init);
3775
3776static int assign_proto_idx(struct proto *prot)
3777{
3778	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3779
3780	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3781		pr_err("PROTO_INUSE_NR exhausted\n");
3782		return -ENOSPC;
3783	}
3784
3785	set_bit(prot->inuse_idx, proto_inuse_idx);
3786	return 0;
3787}
3788
3789static void release_proto_idx(struct proto *prot)
3790{
3791	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3792		clear_bit(prot->inuse_idx, proto_inuse_idx);
3793}
3794#else
3795static inline int assign_proto_idx(struct proto *prot)
3796{
3797	return 0;
3798}
3799
3800static inline void release_proto_idx(struct proto *prot)
3801{
3802}
3803
3804#endif
3805
3806static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3807{
3808	if (!twsk_prot)
3809		return;
3810	kfree(twsk_prot->twsk_slab_name);
3811	twsk_prot->twsk_slab_name = NULL;
3812	kmem_cache_destroy(twsk_prot->twsk_slab);
3813	twsk_prot->twsk_slab = NULL;
3814}
3815
3816static int tw_prot_init(const struct proto *prot)
3817{
3818	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3819
3820	if (!twsk_prot)
3821		return 0;
3822
3823	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3824					      prot->name);
3825	if (!twsk_prot->twsk_slab_name)
3826		return -ENOMEM;
3827
3828	twsk_prot->twsk_slab =
3829		kmem_cache_create(twsk_prot->twsk_slab_name,
3830				  twsk_prot->twsk_obj_size, 0,
3831				  SLAB_ACCOUNT | prot->slab_flags,
3832				  NULL);
3833	if (!twsk_prot->twsk_slab) {
3834		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3835			prot->name);
3836		return -ENOMEM;
3837	}
3838
3839	return 0;
3840}
 
3841
3842static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3843{
3844	if (!rsk_prot)
3845		return;
3846	kfree(rsk_prot->slab_name);
3847	rsk_prot->slab_name = NULL;
3848	kmem_cache_destroy(rsk_prot->slab);
3849	rsk_prot->slab = NULL;
3850}
3851
3852static int req_prot_init(const struct proto *prot)
3853{
3854	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3855
3856	if (!rsk_prot)
3857		return 0;
3858
3859	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3860					prot->name);
3861	if (!rsk_prot->slab_name)
3862		return -ENOMEM;
3863
3864	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3865					   rsk_prot->obj_size, 0,
3866					   SLAB_ACCOUNT | prot->slab_flags,
3867					   NULL);
3868
3869	if (!rsk_prot->slab) {
3870		pr_crit("%s: Can't create request sock SLAB cache!\n",
3871			prot->name);
3872		return -ENOMEM;
3873	}
3874	return 0;
3875}
3876
3877int proto_register(struct proto *prot, int alloc_slab)
3878{
3879	int ret = -ENOBUFS;
3880
3881	if (prot->memory_allocated && !prot->sysctl_mem) {
3882		pr_err("%s: missing sysctl_mem\n", prot->name);
3883		return -EINVAL;
3884	}
3885	if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
3886		pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
3887		return -EINVAL;
3888	}
3889	if (alloc_slab) {
3890		prot->slab = kmem_cache_create_usercopy(prot->name,
3891					prot->obj_size, 0,
3892					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3893					prot->slab_flags,
3894					prot->useroffset, prot->usersize,
3895					NULL);
3896
3897		if (prot->slab == NULL) {
3898			pr_crit("%s: Can't create sock SLAB cache!\n",
3899				prot->name);
3900			goto out;
3901		}
3902
3903		if (req_prot_init(prot))
3904			goto out_free_request_sock_slab;
3905
3906		if (tw_prot_init(prot))
3907			goto out_free_timewait_sock_slab;
 
 
 
 
 
 
 
 
 
 
 
 
 
3908	}
3909
3910	mutex_lock(&proto_list_mutex);
3911	ret = assign_proto_idx(prot);
3912	if (ret) {
3913		mutex_unlock(&proto_list_mutex);
3914		goto out_free_timewait_sock_slab;
3915	}
3916	list_add(&prot->node, &proto_list);
 
3917	mutex_unlock(&proto_list_mutex);
3918	return ret;
3919
3920out_free_timewait_sock_slab:
3921	if (alloc_slab)
3922		tw_prot_cleanup(prot->twsk_prot);
3923out_free_request_sock_slab:
3924	if (alloc_slab) {
3925		req_prot_cleanup(prot->rsk_prot);
3926
3927		kmem_cache_destroy(prot->slab);
3928		prot->slab = NULL;
3929	}
3930out:
3931	return ret;
3932}
3933EXPORT_SYMBOL(proto_register);
3934
3935void proto_unregister(struct proto *prot)
3936{
3937	mutex_lock(&proto_list_mutex);
3938	release_proto_idx(prot);
3939	list_del(&prot->node);
3940	mutex_unlock(&proto_list_mutex);
3941
3942	kmem_cache_destroy(prot->slab);
3943	prot->slab = NULL;
3944
3945	req_prot_cleanup(prot->rsk_prot);
3946	tw_prot_cleanup(prot->twsk_prot);
 
 
 
 
 
3947}
3948EXPORT_SYMBOL(proto_unregister);
3949
3950int sock_load_diag_module(int family, int protocol)
3951{
3952	if (!protocol) {
3953		if (!sock_is_registered(family))
3954			return -ENOENT;
3955
3956		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3957				      NETLINK_SOCK_DIAG, family);
3958	}
3959
3960#ifdef CONFIG_INET
3961	if (family == AF_INET &&
3962	    protocol != IPPROTO_RAW &&
3963	    protocol < MAX_INET_PROTOS &&
3964	    !rcu_access_pointer(inet_protos[protocol]))
3965		return -ENOENT;
3966#endif
3967
3968	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3969			      NETLINK_SOCK_DIAG, family, protocol);
3970}
3971EXPORT_SYMBOL(sock_load_diag_module);
3972
3973#ifdef CONFIG_PROC_FS
3974static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3975	__acquires(proto_list_mutex)
3976{
3977	mutex_lock(&proto_list_mutex);
3978	return seq_list_start_head(&proto_list, *pos);
3979}
3980
3981static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3982{
3983	return seq_list_next(v, &proto_list, pos);
3984}
3985
3986static void proto_seq_stop(struct seq_file *seq, void *v)
3987	__releases(proto_list_mutex)
3988{
3989	mutex_unlock(&proto_list_mutex);
3990}
3991
3992static char proto_method_implemented(const void *method)
3993{
3994	return method == NULL ? 'n' : 'y';
3995}
3996static long sock_prot_memory_allocated(struct proto *proto)
3997{
3998	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3999}
4000
4001static const char *sock_prot_memory_pressure(struct proto *proto)
4002{
4003	return proto->memory_pressure != NULL ?
4004	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4005}
4006
4007static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4008{
4009
4010	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
4011			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4012		   proto->name,
4013		   proto->obj_size,
4014		   sock_prot_inuse_get(seq_file_net(seq), proto),
4015		   sock_prot_memory_allocated(proto),
4016		   sock_prot_memory_pressure(proto),
4017		   proto->max_header,
4018		   proto->slab == NULL ? "no" : "yes",
4019		   module_name(proto->owner),
4020		   proto_method_implemented(proto->close),
4021		   proto_method_implemented(proto->connect),
4022		   proto_method_implemented(proto->disconnect),
4023		   proto_method_implemented(proto->accept),
4024		   proto_method_implemented(proto->ioctl),
4025		   proto_method_implemented(proto->init),
4026		   proto_method_implemented(proto->destroy),
4027		   proto_method_implemented(proto->shutdown),
4028		   proto_method_implemented(proto->setsockopt),
4029		   proto_method_implemented(proto->getsockopt),
4030		   proto_method_implemented(proto->sendmsg),
4031		   proto_method_implemented(proto->recvmsg),
4032		   proto_method_implemented(proto->sendpage),
4033		   proto_method_implemented(proto->bind),
4034		   proto_method_implemented(proto->backlog_rcv),
4035		   proto_method_implemented(proto->hash),
4036		   proto_method_implemented(proto->unhash),
4037		   proto_method_implemented(proto->get_port),
4038		   proto_method_implemented(proto->enter_memory_pressure));
4039}
4040
4041static int proto_seq_show(struct seq_file *seq, void *v)
4042{
4043	if (v == &proto_list)
4044		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4045			   "protocol",
4046			   "size",
4047			   "sockets",
4048			   "memory",
4049			   "press",
4050			   "maxhdr",
4051			   "slab",
4052			   "module",
4053			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
4054	else
4055		proto_seq_printf(seq, list_entry(v, struct proto, node));
4056	return 0;
4057}
4058
4059static const struct seq_operations proto_seq_ops = {
4060	.start  = proto_seq_start,
4061	.next   = proto_seq_next,
4062	.stop   = proto_seq_stop,
4063	.show   = proto_seq_show,
4064};
4065
 
 
 
 
 
 
 
 
 
 
 
 
 
4066static __net_init int proto_init_net(struct net *net)
4067{
4068	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4069			sizeof(struct seq_net_private)))
4070		return -ENOMEM;
4071
4072	return 0;
4073}
4074
4075static __net_exit void proto_exit_net(struct net *net)
4076{
4077	remove_proc_entry("protocols", net->proc_net);
4078}
4079
4080
4081static __net_initdata struct pernet_operations proto_net_ops = {
4082	.init = proto_init_net,
4083	.exit = proto_exit_net,
4084};
4085
4086static int __init proto_init(void)
4087{
4088	return register_pernet_subsys(&proto_net_ops);
4089}
4090
4091subsys_initcall(proto_init);
4092
4093#endif /* PROC_FS */
4094
4095#ifdef CONFIG_NET_RX_BUSY_POLL
4096bool sk_busy_loop_end(void *p, unsigned long start_time)
4097{
4098	struct sock *sk = p;
4099
4100	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
4101	       sk_busy_loop_timeout(sk, start_time);
4102}
4103EXPORT_SYMBOL(sk_busy_loop_end);
4104#endif /* CONFIG_NET_RX_BUSY_POLL */
4105
4106int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4107{
4108	if (!sk->sk_prot->bind_add)
4109		return -EOPNOTSUPP;
4110	return sk->sk_prot->bind_add(sk, addr, addr_len);
4111}
4112EXPORT_SYMBOL(sock_bind_add);