Loading...
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/errqueue.h>
97#include <linux/types.h>
98#include <linux/socket.h>
99#include <linux/in.h>
100#include <linux/kernel.h>
101#include <linux/module.h>
102#include <linux/proc_fs.h>
103#include <linux/seq_file.h>
104#include <linux/sched.h>
105#include <linux/sched/mm.h>
106#include <linux/timer.h>
107#include <linux/string.h>
108#include <linux/sockios.h>
109#include <linux/net.h>
110#include <linux/mm.h>
111#include <linux/slab.h>
112#include <linux/interrupt.h>
113#include <linux/poll.h>
114#include <linux/tcp.h>
115#include <linux/init.h>
116#include <linux/highmem.h>
117#include <linux/user_namespace.h>
118#include <linux/static_key.h>
119#include <linux/memcontrol.h>
120#include <linux/prefetch.h>
121
122#include <linux/uaccess.h>
123
124#include <linux/netdevice.h>
125#include <net/protocol.h>
126#include <linux/skbuff.h>
127#include <net/net_namespace.h>
128#include <net/request_sock.h>
129#include <net/sock.h>
130#include <linux/net_tstamp.h>
131#include <net/xfrm.h>
132#include <linux/ipsec.h>
133#include <net/cls_cgroup.h>
134#include <net/netprio_cgroup.h>
135#include <linux/sock_diag.h>
136
137#include <linux/filter.h>
138#include <net/sock_reuseport.h>
139
140#include <trace/events/sock.h>
141
142#include <net/tcp.h>
143#include <net/busy_poll.h>
144
145static DEFINE_MUTEX(proto_list_mutex);
146static LIST_HEAD(proto_list);
147
148static void sock_inuse_add(struct net *net, int val);
149
150/**
151 * sk_ns_capable - General socket capability test
152 * @sk: Socket to use a capability on or through
153 * @user_ns: The user namespace of the capability to use
154 * @cap: The capability to use
155 *
156 * Test to see if the opener of the socket had when the socket was
157 * created and the current process has the capability @cap in the user
158 * namespace @user_ns.
159 */
160bool sk_ns_capable(const struct sock *sk,
161 struct user_namespace *user_ns, int cap)
162{
163 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164 ns_capable(user_ns, cap);
165}
166EXPORT_SYMBOL(sk_ns_capable);
167
168/**
169 * sk_capable - Socket global capability test
170 * @sk: Socket to use a capability on or through
171 * @cap: The global capability to use
172 *
173 * Test to see if the opener of the socket had when the socket was
174 * created and the current process has the capability @cap in all user
175 * namespaces.
176 */
177bool sk_capable(const struct sock *sk, int cap)
178{
179 return sk_ns_capable(sk, &init_user_ns, cap);
180}
181EXPORT_SYMBOL(sk_capable);
182
183/**
184 * sk_net_capable - Network namespace socket capability test
185 * @sk: Socket to use a capability on or through
186 * @cap: The capability to use
187 *
188 * Test to see if the opener of the socket had when the socket was created
189 * and the current process has the capability @cap over the network namespace
190 * the socket is a member of.
191 */
192bool sk_net_capable(const struct sock *sk, int cap)
193{
194 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195}
196EXPORT_SYMBOL(sk_net_capable);
197
198/*
199 * Each address family might have different locking rules, so we have
200 * one slock key per address family and separate keys for internal and
201 * userspace sockets.
202 */
203static struct lock_class_key af_family_keys[AF_MAX];
204static struct lock_class_key af_family_kern_keys[AF_MAX];
205static struct lock_class_key af_family_slock_keys[AF_MAX];
206static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
207
208/*
209 * Make lock validator output more readable. (we pre-construct these
210 * strings build-time, so that runtime initialization of socket
211 * locks is fast):
212 */
213
214#define _sock_locks(x) \
215 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
216 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
217 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
218 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
219 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
220 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
221 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
222 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
223 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
224 x "27" , x "28" , x "AF_CAN" , \
225 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
226 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
227 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
228 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
229 x "AF_QIPCRTR", x "AF_SMC" , x "AF_MAX"
230
231static const char *const af_family_key_strings[AF_MAX+1] = {
232 _sock_locks("sk_lock-")
233};
234static const char *const af_family_slock_key_strings[AF_MAX+1] = {
235 _sock_locks("slock-")
236};
237static const char *const af_family_clock_key_strings[AF_MAX+1] = {
238 _sock_locks("clock-")
239};
240
241static const char *const af_family_kern_key_strings[AF_MAX+1] = {
242 _sock_locks("k-sk_lock-")
243};
244static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
245 _sock_locks("k-slock-")
246};
247static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
248 _sock_locks("k-clock-")
249};
250static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
251 "rlock-AF_UNSPEC", "rlock-AF_UNIX" , "rlock-AF_INET" ,
252 "rlock-AF_AX25" , "rlock-AF_IPX" , "rlock-AF_APPLETALK",
253 "rlock-AF_NETROM", "rlock-AF_BRIDGE" , "rlock-AF_ATMPVC" ,
254 "rlock-AF_X25" , "rlock-AF_INET6" , "rlock-AF_ROSE" ,
255 "rlock-AF_DECnet", "rlock-AF_NETBEUI" , "rlock-AF_SECURITY" ,
256 "rlock-AF_KEY" , "rlock-AF_NETLINK" , "rlock-AF_PACKET" ,
257 "rlock-AF_ASH" , "rlock-AF_ECONET" , "rlock-AF_ATMSVC" ,
258 "rlock-AF_RDS" , "rlock-AF_SNA" , "rlock-AF_IRDA" ,
259 "rlock-AF_PPPOX" , "rlock-AF_WANPIPE" , "rlock-AF_LLC" ,
260 "rlock-27" , "rlock-28" , "rlock-AF_CAN" ,
261 "rlock-AF_TIPC" , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV" ,
262 "rlock-AF_RXRPC" , "rlock-AF_ISDN" , "rlock-AF_PHONET" ,
263 "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG" ,
264 "rlock-AF_NFC" , "rlock-AF_VSOCK" , "rlock-AF_KCM" ,
265 "rlock-AF_QIPCRTR", "rlock-AF_SMC" , "rlock-AF_MAX"
266};
267static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
268 "wlock-AF_UNSPEC", "wlock-AF_UNIX" , "wlock-AF_INET" ,
269 "wlock-AF_AX25" , "wlock-AF_IPX" , "wlock-AF_APPLETALK",
270 "wlock-AF_NETROM", "wlock-AF_BRIDGE" , "wlock-AF_ATMPVC" ,
271 "wlock-AF_X25" , "wlock-AF_INET6" , "wlock-AF_ROSE" ,
272 "wlock-AF_DECnet", "wlock-AF_NETBEUI" , "wlock-AF_SECURITY" ,
273 "wlock-AF_KEY" , "wlock-AF_NETLINK" , "wlock-AF_PACKET" ,
274 "wlock-AF_ASH" , "wlock-AF_ECONET" , "wlock-AF_ATMSVC" ,
275 "wlock-AF_RDS" , "wlock-AF_SNA" , "wlock-AF_IRDA" ,
276 "wlock-AF_PPPOX" , "wlock-AF_WANPIPE" , "wlock-AF_LLC" ,
277 "wlock-27" , "wlock-28" , "wlock-AF_CAN" ,
278 "wlock-AF_TIPC" , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV" ,
279 "wlock-AF_RXRPC" , "wlock-AF_ISDN" , "wlock-AF_PHONET" ,
280 "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG" ,
281 "wlock-AF_NFC" , "wlock-AF_VSOCK" , "wlock-AF_KCM" ,
282 "wlock-AF_QIPCRTR", "wlock-AF_SMC" , "wlock-AF_MAX"
283};
284static const char *const af_family_elock_key_strings[AF_MAX+1] = {
285 "elock-AF_UNSPEC", "elock-AF_UNIX" , "elock-AF_INET" ,
286 "elock-AF_AX25" , "elock-AF_IPX" , "elock-AF_APPLETALK",
287 "elock-AF_NETROM", "elock-AF_BRIDGE" , "elock-AF_ATMPVC" ,
288 "elock-AF_X25" , "elock-AF_INET6" , "elock-AF_ROSE" ,
289 "elock-AF_DECnet", "elock-AF_NETBEUI" , "elock-AF_SECURITY" ,
290 "elock-AF_KEY" , "elock-AF_NETLINK" , "elock-AF_PACKET" ,
291 "elock-AF_ASH" , "elock-AF_ECONET" , "elock-AF_ATMSVC" ,
292 "elock-AF_RDS" , "elock-AF_SNA" , "elock-AF_IRDA" ,
293 "elock-AF_PPPOX" , "elock-AF_WANPIPE" , "elock-AF_LLC" ,
294 "elock-27" , "elock-28" , "elock-AF_CAN" ,
295 "elock-AF_TIPC" , "elock-AF_BLUETOOTH", "elock-AF_IUCV" ,
296 "elock-AF_RXRPC" , "elock-AF_ISDN" , "elock-AF_PHONET" ,
297 "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG" ,
298 "elock-AF_NFC" , "elock-AF_VSOCK" , "elock-AF_KCM" ,
299 "elock-AF_QIPCRTR", "elock-AF_SMC" , "elock-AF_MAX"
300};
301
302/*
303 * sk_callback_lock and sk queues locking rules are per-address-family,
304 * so split the lock classes by using a per-AF key:
305 */
306static struct lock_class_key af_callback_keys[AF_MAX];
307static struct lock_class_key af_rlock_keys[AF_MAX];
308static struct lock_class_key af_wlock_keys[AF_MAX];
309static struct lock_class_key af_elock_keys[AF_MAX];
310static struct lock_class_key af_kern_callback_keys[AF_MAX];
311
312/* Run time adjustable parameters. */
313__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
314EXPORT_SYMBOL(sysctl_wmem_max);
315__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
316EXPORT_SYMBOL(sysctl_rmem_max);
317__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
318__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
319
320/* Maximal space eaten by iovec or ancillary data plus some space */
321int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
322EXPORT_SYMBOL(sysctl_optmem_max);
323
324int sysctl_tstamp_allow_data __read_mostly = 1;
325
326struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
327EXPORT_SYMBOL_GPL(memalloc_socks);
328
329/**
330 * sk_set_memalloc - sets %SOCK_MEMALLOC
331 * @sk: socket to set it on
332 *
333 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
334 * It's the responsibility of the admin to adjust min_free_kbytes
335 * to meet the requirements
336 */
337void sk_set_memalloc(struct sock *sk)
338{
339 sock_set_flag(sk, SOCK_MEMALLOC);
340 sk->sk_allocation |= __GFP_MEMALLOC;
341 static_key_slow_inc(&memalloc_socks);
342}
343EXPORT_SYMBOL_GPL(sk_set_memalloc);
344
345void sk_clear_memalloc(struct sock *sk)
346{
347 sock_reset_flag(sk, SOCK_MEMALLOC);
348 sk->sk_allocation &= ~__GFP_MEMALLOC;
349 static_key_slow_dec(&memalloc_socks);
350
351 /*
352 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
353 * progress of swapping. SOCK_MEMALLOC may be cleared while
354 * it has rmem allocations due to the last swapfile being deactivated
355 * but there is a risk that the socket is unusable due to exceeding
356 * the rmem limits. Reclaim the reserves and obey rmem limits again.
357 */
358 sk_mem_reclaim(sk);
359}
360EXPORT_SYMBOL_GPL(sk_clear_memalloc);
361
362int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
363{
364 int ret;
365 unsigned int noreclaim_flag;
366
367 /* these should have been dropped before queueing */
368 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
369
370 noreclaim_flag = memalloc_noreclaim_save();
371 ret = sk->sk_backlog_rcv(sk, skb);
372 memalloc_noreclaim_restore(noreclaim_flag);
373
374 return ret;
375}
376EXPORT_SYMBOL(__sk_backlog_rcv);
377
378static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
379{
380 struct timeval tv;
381
382 if (optlen < sizeof(tv))
383 return -EINVAL;
384 if (copy_from_user(&tv, optval, sizeof(tv)))
385 return -EFAULT;
386 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
387 return -EDOM;
388
389 if (tv.tv_sec < 0) {
390 static int warned __read_mostly;
391
392 *timeo_p = 0;
393 if (warned < 10 && net_ratelimit()) {
394 warned++;
395 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
396 __func__, current->comm, task_pid_nr(current));
397 }
398 return 0;
399 }
400 *timeo_p = MAX_SCHEDULE_TIMEOUT;
401 if (tv.tv_sec == 0 && tv.tv_usec == 0)
402 return 0;
403 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
404 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
405 return 0;
406}
407
408static void sock_warn_obsolete_bsdism(const char *name)
409{
410 static int warned;
411 static char warncomm[TASK_COMM_LEN];
412 if (strcmp(warncomm, current->comm) && warned < 5) {
413 strcpy(warncomm, current->comm);
414 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
415 warncomm, name);
416 warned++;
417 }
418}
419
420static bool sock_needs_netstamp(const struct sock *sk)
421{
422 switch (sk->sk_family) {
423 case AF_UNSPEC:
424 case AF_UNIX:
425 return false;
426 default:
427 return true;
428 }
429}
430
431static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
432{
433 if (sk->sk_flags & flags) {
434 sk->sk_flags &= ~flags;
435 if (sock_needs_netstamp(sk) &&
436 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
437 net_disable_timestamp();
438 }
439}
440
441
442int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
443{
444 unsigned long flags;
445 struct sk_buff_head *list = &sk->sk_receive_queue;
446
447 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
448 atomic_inc(&sk->sk_drops);
449 trace_sock_rcvqueue_full(sk, skb);
450 return -ENOMEM;
451 }
452
453 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
454 atomic_inc(&sk->sk_drops);
455 return -ENOBUFS;
456 }
457
458 skb->dev = NULL;
459 skb_set_owner_r(skb, sk);
460
461 /* we escape from rcu protected region, make sure we dont leak
462 * a norefcounted dst
463 */
464 skb_dst_force(skb);
465
466 spin_lock_irqsave(&list->lock, flags);
467 sock_skb_set_dropcount(sk, skb);
468 __skb_queue_tail(list, skb);
469 spin_unlock_irqrestore(&list->lock, flags);
470
471 if (!sock_flag(sk, SOCK_DEAD))
472 sk->sk_data_ready(sk);
473 return 0;
474}
475EXPORT_SYMBOL(__sock_queue_rcv_skb);
476
477int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
478{
479 int err;
480
481 err = sk_filter(sk, skb);
482 if (err)
483 return err;
484
485 return __sock_queue_rcv_skb(sk, skb);
486}
487EXPORT_SYMBOL(sock_queue_rcv_skb);
488
489int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
490 const int nested, unsigned int trim_cap, bool refcounted)
491{
492 int rc = NET_RX_SUCCESS;
493
494 if (sk_filter_trim_cap(sk, skb, trim_cap))
495 goto discard_and_relse;
496
497 skb->dev = NULL;
498
499 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
500 atomic_inc(&sk->sk_drops);
501 goto discard_and_relse;
502 }
503 if (nested)
504 bh_lock_sock_nested(sk);
505 else
506 bh_lock_sock(sk);
507 if (!sock_owned_by_user(sk)) {
508 /*
509 * trylock + unlock semantics:
510 */
511 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
512
513 rc = sk_backlog_rcv(sk, skb);
514
515 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
516 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
517 bh_unlock_sock(sk);
518 atomic_inc(&sk->sk_drops);
519 goto discard_and_relse;
520 }
521
522 bh_unlock_sock(sk);
523out:
524 if (refcounted)
525 sock_put(sk);
526 return rc;
527discard_and_relse:
528 kfree_skb(skb);
529 goto out;
530}
531EXPORT_SYMBOL(__sk_receive_skb);
532
533struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
534{
535 struct dst_entry *dst = __sk_dst_get(sk);
536
537 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
538 sk_tx_queue_clear(sk);
539 sk->sk_dst_pending_confirm = 0;
540 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
541 dst_release(dst);
542 return NULL;
543 }
544
545 return dst;
546}
547EXPORT_SYMBOL(__sk_dst_check);
548
549struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
550{
551 struct dst_entry *dst = sk_dst_get(sk);
552
553 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
554 sk_dst_reset(sk);
555 dst_release(dst);
556 return NULL;
557 }
558
559 return dst;
560}
561EXPORT_SYMBOL(sk_dst_check);
562
563static int sock_setbindtodevice(struct sock *sk, char __user *optval,
564 int optlen)
565{
566 int ret = -ENOPROTOOPT;
567#ifdef CONFIG_NETDEVICES
568 struct net *net = sock_net(sk);
569 char devname[IFNAMSIZ];
570 int index;
571
572 /* Sorry... */
573 ret = -EPERM;
574 if (!ns_capable(net->user_ns, CAP_NET_RAW))
575 goto out;
576
577 ret = -EINVAL;
578 if (optlen < 0)
579 goto out;
580
581 /* Bind this socket to a particular device like "eth0",
582 * as specified in the passed interface name. If the
583 * name is "" or the option length is zero the socket
584 * is not bound.
585 */
586 if (optlen > IFNAMSIZ - 1)
587 optlen = IFNAMSIZ - 1;
588 memset(devname, 0, sizeof(devname));
589
590 ret = -EFAULT;
591 if (copy_from_user(devname, optval, optlen))
592 goto out;
593
594 index = 0;
595 if (devname[0] != '\0') {
596 struct net_device *dev;
597
598 rcu_read_lock();
599 dev = dev_get_by_name_rcu(net, devname);
600 if (dev)
601 index = dev->ifindex;
602 rcu_read_unlock();
603 ret = -ENODEV;
604 if (!dev)
605 goto out;
606 }
607
608 lock_sock(sk);
609 sk->sk_bound_dev_if = index;
610 sk_dst_reset(sk);
611 release_sock(sk);
612
613 ret = 0;
614
615out:
616#endif
617
618 return ret;
619}
620
621static int sock_getbindtodevice(struct sock *sk, char __user *optval,
622 int __user *optlen, int len)
623{
624 int ret = -ENOPROTOOPT;
625#ifdef CONFIG_NETDEVICES
626 struct net *net = sock_net(sk);
627 char devname[IFNAMSIZ];
628
629 if (sk->sk_bound_dev_if == 0) {
630 len = 0;
631 goto zero;
632 }
633
634 ret = -EINVAL;
635 if (len < IFNAMSIZ)
636 goto out;
637
638 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
639 if (ret)
640 goto out;
641
642 len = strlen(devname) + 1;
643
644 ret = -EFAULT;
645 if (copy_to_user(optval, devname, len))
646 goto out;
647
648zero:
649 ret = -EFAULT;
650 if (put_user(len, optlen))
651 goto out;
652
653 ret = 0;
654
655out:
656#endif
657
658 return ret;
659}
660
661static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
662{
663 if (valbool)
664 sock_set_flag(sk, bit);
665 else
666 sock_reset_flag(sk, bit);
667}
668
669bool sk_mc_loop(struct sock *sk)
670{
671 if (dev_recursion_level())
672 return false;
673 if (!sk)
674 return true;
675 switch (sk->sk_family) {
676 case AF_INET:
677 return inet_sk(sk)->mc_loop;
678#if IS_ENABLED(CONFIG_IPV6)
679 case AF_INET6:
680 return inet6_sk(sk)->mc_loop;
681#endif
682 }
683 WARN_ON(1);
684 return true;
685}
686EXPORT_SYMBOL(sk_mc_loop);
687
688/*
689 * This is meant for all protocols to use and covers goings on
690 * at the socket level. Everything here is generic.
691 */
692
693int sock_setsockopt(struct socket *sock, int level, int optname,
694 char __user *optval, unsigned int optlen)
695{
696 struct sock *sk = sock->sk;
697 int val;
698 int valbool;
699 struct linger ling;
700 int ret = 0;
701
702 /*
703 * Options without arguments
704 */
705
706 if (optname == SO_BINDTODEVICE)
707 return sock_setbindtodevice(sk, optval, optlen);
708
709 if (optlen < sizeof(int))
710 return -EINVAL;
711
712 if (get_user(val, (int __user *)optval))
713 return -EFAULT;
714
715 valbool = val ? 1 : 0;
716
717 lock_sock(sk);
718
719 switch (optname) {
720 case SO_DEBUG:
721 if (val && !capable(CAP_NET_ADMIN))
722 ret = -EACCES;
723 else
724 sock_valbool_flag(sk, SOCK_DBG, valbool);
725 break;
726 case SO_REUSEADDR:
727 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
728 break;
729 case SO_REUSEPORT:
730 sk->sk_reuseport = valbool;
731 break;
732 case SO_TYPE:
733 case SO_PROTOCOL:
734 case SO_DOMAIN:
735 case SO_ERROR:
736 ret = -ENOPROTOOPT;
737 break;
738 case SO_DONTROUTE:
739 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
740 break;
741 case SO_BROADCAST:
742 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
743 break;
744 case SO_SNDBUF:
745 /* Don't error on this BSD doesn't and if you think
746 * about it this is right. Otherwise apps have to
747 * play 'guess the biggest size' games. RCVBUF/SNDBUF
748 * are treated in BSD as hints
749 */
750 val = min_t(u32, val, sysctl_wmem_max);
751set_sndbuf:
752 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
753 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
754 /* Wake up sending tasks if we upped the value. */
755 sk->sk_write_space(sk);
756 break;
757
758 case SO_SNDBUFFORCE:
759 if (!capable(CAP_NET_ADMIN)) {
760 ret = -EPERM;
761 break;
762 }
763 goto set_sndbuf;
764
765 case SO_RCVBUF:
766 /* Don't error on this BSD doesn't and if you think
767 * about it this is right. Otherwise apps have to
768 * play 'guess the biggest size' games. RCVBUF/SNDBUF
769 * are treated in BSD as hints
770 */
771 val = min_t(u32, val, sysctl_rmem_max);
772set_rcvbuf:
773 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
774 /*
775 * We double it on the way in to account for
776 * "struct sk_buff" etc. overhead. Applications
777 * assume that the SO_RCVBUF setting they make will
778 * allow that much actual data to be received on that
779 * socket.
780 *
781 * Applications are unaware that "struct sk_buff" and
782 * other overheads allocate from the receive buffer
783 * during socket buffer allocation.
784 *
785 * And after considering the possible alternatives,
786 * returning the value we actually used in getsockopt
787 * is the most desirable behavior.
788 */
789 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
790 break;
791
792 case SO_RCVBUFFORCE:
793 if (!capable(CAP_NET_ADMIN)) {
794 ret = -EPERM;
795 break;
796 }
797 goto set_rcvbuf;
798
799 case SO_KEEPALIVE:
800 if (sk->sk_prot->keepalive)
801 sk->sk_prot->keepalive(sk, valbool);
802 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
803 break;
804
805 case SO_OOBINLINE:
806 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
807 break;
808
809 case SO_NO_CHECK:
810 sk->sk_no_check_tx = valbool;
811 break;
812
813 case SO_PRIORITY:
814 if ((val >= 0 && val <= 6) ||
815 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
816 sk->sk_priority = val;
817 else
818 ret = -EPERM;
819 break;
820
821 case SO_LINGER:
822 if (optlen < sizeof(ling)) {
823 ret = -EINVAL; /* 1003.1g */
824 break;
825 }
826 if (copy_from_user(&ling, optval, sizeof(ling))) {
827 ret = -EFAULT;
828 break;
829 }
830 if (!ling.l_onoff)
831 sock_reset_flag(sk, SOCK_LINGER);
832 else {
833#if (BITS_PER_LONG == 32)
834 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
835 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
836 else
837#endif
838 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
839 sock_set_flag(sk, SOCK_LINGER);
840 }
841 break;
842
843 case SO_BSDCOMPAT:
844 sock_warn_obsolete_bsdism("setsockopt");
845 break;
846
847 case SO_PASSCRED:
848 if (valbool)
849 set_bit(SOCK_PASSCRED, &sock->flags);
850 else
851 clear_bit(SOCK_PASSCRED, &sock->flags);
852 break;
853
854 case SO_TIMESTAMP:
855 case SO_TIMESTAMPNS:
856 if (valbool) {
857 if (optname == SO_TIMESTAMP)
858 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
859 else
860 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
861 sock_set_flag(sk, SOCK_RCVTSTAMP);
862 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
863 } else {
864 sock_reset_flag(sk, SOCK_RCVTSTAMP);
865 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
866 }
867 break;
868
869 case SO_TIMESTAMPING:
870 if (val & ~SOF_TIMESTAMPING_MASK) {
871 ret = -EINVAL;
872 break;
873 }
874
875 if (val & SOF_TIMESTAMPING_OPT_ID &&
876 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
877 if (sk->sk_protocol == IPPROTO_TCP &&
878 sk->sk_type == SOCK_STREAM) {
879 if ((1 << sk->sk_state) &
880 (TCPF_CLOSE | TCPF_LISTEN)) {
881 ret = -EINVAL;
882 break;
883 }
884 sk->sk_tskey = tcp_sk(sk)->snd_una;
885 } else {
886 sk->sk_tskey = 0;
887 }
888 }
889
890 if (val & SOF_TIMESTAMPING_OPT_STATS &&
891 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
892 ret = -EINVAL;
893 break;
894 }
895
896 sk->sk_tsflags = val;
897 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
898 sock_enable_timestamp(sk,
899 SOCK_TIMESTAMPING_RX_SOFTWARE);
900 else
901 sock_disable_timestamp(sk,
902 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
903 break;
904
905 case SO_RCVLOWAT:
906 if (val < 0)
907 val = INT_MAX;
908 sk->sk_rcvlowat = val ? : 1;
909 break;
910
911 case SO_RCVTIMEO:
912 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
913 break;
914
915 case SO_SNDTIMEO:
916 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
917 break;
918
919 case SO_ATTACH_FILTER:
920 ret = -EINVAL;
921 if (optlen == sizeof(struct sock_fprog)) {
922 struct sock_fprog fprog;
923
924 ret = -EFAULT;
925 if (copy_from_user(&fprog, optval, sizeof(fprog)))
926 break;
927
928 ret = sk_attach_filter(&fprog, sk);
929 }
930 break;
931
932 case SO_ATTACH_BPF:
933 ret = -EINVAL;
934 if (optlen == sizeof(u32)) {
935 u32 ufd;
936
937 ret = -EFAULT;
938 if (copy_from_user(&ufd, optval, sizeof(ufd)))
939 break;
940
941 ret = sk_attach_bpf(ufd, sk);
942 }
943 break;
944
945 case SO_ATTACH_REUSEPORT_CBPF:
946 ret = -EINVAL;
947 if (optlen == sizeof(struct sock_fprog)) {
948 struct sock_fprog fprog;
949
950 ret = -EFAULT;
951 if (copy_from_user(&fprog, optval, sizeof(fprog)))
952 break;
953
954 ret = sk_reuseport_attach_filter(&fprog, sk);
955 }
956 break;
957
958 case SO_ATTACH_REUSEPORT_EBPF:
959 ret = -EINVAL;
960 if (optlen == sizeof(u32)) {
961 u32 ufd;
962
963 ret = -EFAULT;
964 if (copy_from_user(&ufd, optval, sizeof(ufd)))
965 break;
966
967 ret = sk_reuseport_attach_bpf(ufd, sk);
968 }
969 break;
970
971 case SO_DETACH_FILTER:
972 ret = sk_detach_filter(sk);
973 break;
974
975 case SO_LOCK_FILTER:
976 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
977 ret = -EPERM;
978 else
979 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
980 break;
981
982 case SO_PASSSEC:
983 if (valbool)
984 set_bit(SOCK_PASSSEC, &sock->flags);
985 else
986 clear_bit(SOCK_PASSSEC, &sock->flags);
987 break;
988 case SO_MARK:
989 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
990 ret = -EPERM;
991 else
992 sk->sk_mark = val;
993 break;
994
995 case SO_RXQ_OVFL:
996 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
997 break;
998
999 case SO_WIFI_STATUS:
1000 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1001 break;
1002
1003 case SO_PEEK_OFF:
1004 if (sock->ops->set_peek_off)
1005 ret = sock->ops->set_peek_off(sk, val);
1006 else
1007 ret = -EOPNOTSUPP;
1008 break;
1009
1010 case SO_NOFCS:
1011 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1012 break;
1013
1014 case SO_SELECT_ERR_QUEUE:
1015 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1016 break;
1017
1018#ifdef CONFIG_NET_RX_BUSY_POLL
1019 case SO_BUSY_POLL:
1020 /* allow unprivileged users to decrease the value */
1021 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1022 ret = -EPERM;
1023 else {
1024 if (val < 0)
1025 ret = -EINVAL;
1026 else
1027 sk->sk_ll_usec = val;
1028 }
1029 break;
1030#endif
1031
1032 case SO_MAX_PACING_RATE:
1033 if (val != ~0U)
1034 cmpxchg(&sk->sk_pacing_status,
1035 SK_PACING_NONE,
1036 SK_PACING_NEEDED);
1037 sk->sk_max_pacing_rate = val;
1038 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1039 sk->sk_max_pacing_rate);
1040 break;
1041
1042 case SO_INCOMING_CPU:
1043 sk->sk_incoming_cpu = val;
1044 break;
1045
1046 case SO_CNX_ADVICE:
1047 if (val == 1)
1048 dst_negative_advice(sk);
1049 break;
1050
1051 case SO_ZEROCOPY:
1052 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1053 if (sk->sk_protocol != IPPROTO_TCP)
1054 ret = -ENOTSUPP;
1055 } else if (sk->sk_family != PF_RDS) {
1056 ret = -ENOTSUPP;
1057 }
1058 if (!ret) {
1059 if (val < 0 || val > 1)
1060 ret = -EINVAL;
1061 else
1062 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1063 }
1064 break;
1065
1066 default:
1067 ret = -ENOPROTOOPT;
1068 break;
1069 }
1070 release_sock(sk);
1071 return ret;
1072}
1073EXPORT_SYMBOL(sock_setsockopt);
1074
1075
1076static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1077 struct ucred *ucred)
1078{
1079 ucred->pid = pid_vnr(pid);
1080 ucred->uid = ucred->gid = -1;
1081 if (cred) {
1082 struct user_namespace *current_ns = current_user_ns();
1083
1084 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1085 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1086 }
1087}
1088
1089static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1090{
1091 struct user_namespace *user_ns = current_user_ns();
1092 int i;
1093
1094 for (i = 0; i < src->ngroups; i++)
1095 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1096 return -EFAULT;
1097
1098 return 0;
1099}
1100
1101int sock_getsockopt(struct socket *sock, int level, int optname,
1102 char __user *optval, int __user *optlen)
1103{
1104 struct sock *sk = sock->sk;
1105
1106 union {
1107 int val;
1108 u64 val64;
1109 struct linger ling;
1110 struct timeval tm;
1111 } v;
1112
1113 int lv = sizeof(int);
1114 int len;
1115
1116 if (get_user(len, optlen))
1117 return -EFAULT;
1118 if (len < 0)
1119 return -EINVAL;
1120
1121 memset(&v, 0, sizeof(v));
1122
1123 switch (optname) {
1124 case SO_DEBUG:
1125 v.val = sock_flag(sk, SOCK_DBG);
1126 break;
1127
1128 case SO_DONTROUTE:
1129 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1130 break;
1131
1132 case SO_BROADCAST:
1133 v.val = sock_flag(sk, SOCK_BROADCAST);
1134 break;
1135
1136 case SO_SNDBUF:
1137 v.val = sk->sk_sndbuf;
1138 break;
1139
1140 case SO_RCVBUF:
1141 v.val = sk->sk_rcvbuf;
1142 break;
1143
1144 case SO_REUSEADDR:
1145 v.val = sk->sk_reuse;
1146 break;
1147
1148 case SO_REUSEPORT:
1149 v.val = sk->sk_reuseport;
1150 break;
1151
1152 case SO_KEEPALIVE:
1153 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1154 break;
1155
1156 case SO_TYPE:
1157 v.val = sk->sk_type;
1158 break;
1159
1160 case SO_PROTOCOL:
1161 v.val = sk->sk_protocol;
1162 break;
1163
1164 case SO_DOMAIN:
1165 v.val = sk->sk_family;
1166 break;
1167
1168 case SO_ERROR:
1169 v.val = -sock_error(sk);
1170 if (v.val == 0)
1171 v.val = xchg(&sk->sk_err_soft, 0);
1172 break;
1173
1174 case SO_OOBINLINE:
1175 v.val = sock_flag(sk, SOCK_URGINLINE);
1176 break;
1177
1178 case SO_NO_CHECK:
1179 v.val = sk->sk_no_check_tx;
1180 break;
1181
1182 case SO_PRIORITY:
1183 v.val = sk->sk_priority;
1184 break;
1185
1186 case SO_LINGER:
1187 lv = sizeof(v.ling);
1188 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1189 v.ling.l_linger = sk->sk_lingertime / HZ;
1190 break;
1191
1192 case SO_BSDCOMPAT:
1193 sock_warn_obsolete_bsdism("getsockopt");
1194 break;
1195
1196 case SO_TIMESTAMP:
1197 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1198 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1199 break;
1200
1201 case SO_TIMESTAMPNS:
1202 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1203 break;
1204
1205 case SO_TIMESTAMPING:
1206 v.val = sk->sk_tsflags;
1207 break;
1208
1209 case SO_RCVTIMEO:
1210 lv = sizeof(struct timeval);
1211 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1212 v.tm.tv_sec = 0;
1213 v.tm.tv_usec = 0;
1214 } else {
1215 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1216 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1217 }
1218 break;
1219
1220 case SO_SNDTIMEO:
1221 lv = sizeof(struct timeval);
1222 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1223 v.tm.tv_sec = 0;
1224 v.tm.tv_usec = 0;
1225 } else {
1226 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1227 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1228 }
1229 break;
1230
1231 case SO_RCVLOWAT:
1232 v.val = sk->sk_rcvlowat;
1233 break;
1234
1235 case SO_SNDLOWAT:
1236 v.val = 1;
1237 break;
1238
1239 case SO_PASSCRED:
1240 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1241 break;
1242
1243 case SO_PEERCRED:
1244 {
1245 struct ucred peercred;
1246 if (len > sizeof(peercred))
1247 len = sizeof(peercred);
1248 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1249 if (copy_to_user(optval, &peercred, len))
1250 return -EFAULT;
1251 goto lenout;
1252 }
1253
1254 case SO_PEERGROUPS:
1255 {
1256 int ret, n;
1257
1258 if (!sk->sk_peer_cred)
1259 return -ENODATA;
1260
1261 n = sk->sk_peer_cred->group_info->ngroups;
1262 if (len < n * sizeof(gid_t)) {
1263 len = n * sizeof(gid_t);
1264 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1265 }
1266 len = n * sizeof(gid_t);
1267
1268 ret = groups_to_user((gid_t __user *)optval,
1269 sk->sk_peer_cred->group_info);
1270 if (ret)
1271 return ret;
1272 goto lenout;
1273 }
1274
1275 case SO_PEERNAME:
1276 {
1277 char address[128];
1278
1279 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1280 if (lv < 0)
1281 return -ENOTCONN;
1282 if (lv < len)
1283 return -EINVAL;
1284 if (copy_to_user(optval, address, len))
1285 return -EFAULT;
1286 goto lenout;
1287 }
1288
1289 /* Dubious BSD thing... Probably nobody even uses it, but
1290 * the UNIX standard wants it for whatever reason... -DaveM
1291 */
1292 case SO_ACCEPTCONN:
1293 v.val = sk->sk_state == TCP_LISTEN;
1294 break;
1295
1296 case SO_PASSSEC:
1297 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1298 break;
1299
1300 case SO_PEERSEC:
1301 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1302
1303 case SO_MARK:
1304 v.val = sk->sk_mark;
1305 break;
1306
1307 case SO_RXQ_OVFL:
1308 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1309 break;
1310
1311 case SO_WIFI_STATUS:
1312 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1313 break;
1314
1315 case SO_PEEK_OFF:
1316 if (!sock->ops->set_peek_off)
1317 return -EOPNOTSUPP;
1318
1319 v.val = sk->sk_peek_off;
1320 break;
1321 case SO_NOFCS:
1322 v.val = sock_flag(sk, SOCK_NOFCS);
1323 break;
1324
1325 case SO_BINDTODEVICE:
1326 return sock_getbindtodevice(sk, optval, optlen, len);
1327
1328 case SO_GET_FILTER:
1329 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1330 if (len < 0)
1331 return len;
1332
1333 goto lenout;
1334
1335 case SO_LOCK_FILTER:
1336 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1337 break;
1338
1339 case SO_BPF_EXTENSIONS:
1340 v.val = bpf_tell_extensions();
1341 break;
1342
1343 case SO_SELECT_ERR_QUEUE:
1344 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1345 break;
1346
1347#ifdef CONFIG_NET_RX_BUSY_POLL
1348 case SO_BUSY_POLL:
1349 v.val = sk->sk_ll_usec;
1350 break;
1351#endif
1352
1353 case SO_MAX_PACING_RATE:
1354 v.val = sk->sk_max_pacing_rate;
1355 break;
1356
1357 case SO_INCOMING_CPU:
1358 v.val = sk->sk_incoming_cpu;
1359 break;
1360
1361 case SO_MEMINFO:
1362 {
1363 u32 meminfo[SK_MEMINFO_VARS];
1364
1365 if (get_user(len, optlen))
1366 return -EFAULT;
1367
1368 sk_get_meminfo(sk, meminfo);
1369
1370 len = min_t(unsigned int, len, sizeof(meminfo));
1371 if (copy_to_user(optval, &meminfo, len))
1372 return -EFAULT;
1373
1374 goto lenout;
1375 }
1376
1377#ifdef CONFIG_NET_RX_BUSY_POLL
1378 case SO_INCOMING_NAPI_ID:
1379 v.val = READ_ONCE(sk->sk_napi_id);
1380
1381 /* aggregate non-NAPI IDs down to 0 */
1382 if (v.val < MIN_NAPI_ID)
1383 v.val = 0;
1384
1385 break;
1386#endif
1387
1388 case SO_COOKIE:
1389 lv = sizeof(u64);
1390 if (len < lv)
1391 return -EINVAL;
1392 v.val64 = sock_gen_cookie(sk);
1393 break;
1394
1395 case SO_ZEROCOPY:
1396 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1397 break;
1398
1399 default:
1400 /* We implement the SO_SNDLOWAT etc to not be settable
1401 * (1003.1g 7).
1402 */
1403 return -ENOPROTOOPT;
1404 }
1405
1406 if (len > lv)
1407 len = lv;
1408 if (copy_to_user(optval, &v, len))
1409 return -EFAULT;
1410lenout:
1411 if (put_user(len, optlen))
1412 return -EFAULT;
1413 return 0;
1414}
1415
1416/*
1417 * Initialize an sk_lock.
1418 *
1419 * (We also register the sk_lock with the lock validator.)
1420 */
1421static inline void sock_lock_init(struct sock *sk)
1422{
1423 if (sk->sk_kern_sock)
1424 sock_lock_init_class_and_name(
1425 sk,
1426 af_family_kern_slock_key_strings[sk->sk_family],
1427 af_family_kern_slock_keys + sk->sk_family,
1428 af_family_kern_key_strings[sk->sk_family],
1429 af_family_kern_keys + sk->sk_family);
1430 else
1431 sock_lock_init_class_and_name(
1432 sk,
1433 af_family_slock_key_strings[sk->sk_family],
1434 af_family_slock_keys + sk->sk_family,
1435 af_family_key_strings[sk->sk_family],
1436 af_family_keys + sk->sk_family);
1437}
1438
1439/*
1440 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1441 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1442 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1443 */
1444static void sock_copy(struct sock *nsk, const struct sock *osk)
1445{
1446#ifdef CONFIG_SECURITY_NETWORK
1447 void *sptr = nsk->sk_security;
1448#endif
1449 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1450
1451 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1452 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1453
1454#ifdef CONFIG_SECURITY_NETWORK
1455 nsk->sk_security = sptr;
1456 security_sk_clone(osk, nsk);
1457#endif
1458}
1459
1460static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1461 int family)
1462{
1463 struct sock *sk;
1464 struct kmem_cache *slab;
1465
1466 slab = prot->slab;
1467 if (slab != NULL) {
1468 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1469 if (!sk)
1470 return sk;
1471 if (priority & __GFP_ZERO)
1472 sk_prot_clear_nulls(sk, prot->obj_size);
1473 } else
1474 sk = kmalloc(prot->obj_size, priority);
1475
1476 if (sk != NULL) {
1477 if (security_sk_alloc(sk, family, priority))
1478 goto out_free;
1479
1480 if (!try_module_get(prot->owner))
1481 goto out_free_sec;
1482 sk_tx_queue_clear(sk);
1483 }
1484
1485 return sk;
1486
1487out_free_sec:
1488 security_sk_free(sk);
1489out_free:
1490 if (slab != NULL)
1491 kmem_cache_free(slab, sk);
1492 else
1493 kfree(sk);
1494 return NULL;
1495}
1496
1497static void sk_prot_free(struct proto *prot, struct sock *sk)
1498{
1499 struct kmem_cache *slab;
1500 struct module *owner;
1501
1502 owner = prot->owner;
1503 slab = prot->slab;
1504
1505 cgroup_sk_free(&sk->sk_cgrp_data);
1506 mem_cgroup_sk_free(sk);
1507 security_sk_free(sk);
1508 if (slab != NULL)
1509 kmem_cache_free(slab, sk);
1510 else
1511 kfree(sk);
1512 module_put(owner);
1513}
1514
1515/**
1516 * sk_alloc - All socket objects are allocated here
1517 * @net: the applicable net namespace
1518 * @family: protocol family
1519 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1520 * @prot: struct proto associated with this new sock instance
1521 * @kern: is this to be a kernel socket?
1522 */
1523struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1524 struct proto *prot, int kern)
1525{
1526 struct sock *sk;
1527
1528 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1529 if (sk) {
1530 sk->sk_family = family;
1531 /*
1532 * See comment in struct sock definition to understand
1533 * why we need sk_prot_creator -acme
1534 */
1535 sk->sk_prot = sk->sk_prot_creator = prot;
1536 sk->sk_kern_sock = kern;
1537 sock_lock_init(sk);
1538 sk->sk_net_refcnt = kern ? 0 : 1;
1539 if (likely(sk->sk_net_refcnt)) {
1540 get_net(net);
1541 sock_inuse_add(net, 1);
1542 }
1543
1544 sock_net_set(sk, net);
1545 refcount_set(&sk->sk_wmem_alloc, 1);
1546
1547 mem_cgroup_sk_alloc(sk);
1548 cgroup_sk_alloc(&sk->sk_cgrp_data);
1549 sock_update_classid(&sk->sk_cgrp_data);
1550 sock_update_netprioidx(&sk->sk_cgrp_data);
1551 }
1552
1553 return sk;
1554}
1555EXPORT_SYMBOL(sk_alloc);
1556
1557/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1558 * grace period. This is the case for UDP sockets and TCP listeners.
1559 */
1560static void __sk_destruct(struct rcu_head *head)
1561{
1562 struct sock *sk = container_of(head, struct sock, sk_rcu);
1563 struct sk_filter *filter;
1564
1565 if (sk->sk_destruct)
1566 sk->sk_destruct(sk);
1567
1568 filter = rcu_dereference_check(sk->sk_filter,
1569 refcount_read(&sk->sk_wmem_alloc) == 0);
1570 if (filter) {
1571 sk_filter_uncharge(sk, filter);
1572 RCU_INIT_POINTER(sk->sk_filter, NULL);
1573 }
1574 if (rcu_access_pointer(sk->sk_reuseport_cb))
1575 reuseport_detach_sock(sk);
1576
1577 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1578
1579 if (atomic_read(&sk->sk_omem_alloc))
1580 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1581 __func__, atomic_read(&sk->sk_omem_alloc));
1582
1583 if (sk->sk_frag.page) {
1584 put_page(sk->sk_frag.page);
1585 sk->sk_frag.page = NULL;
1586 }
1587
1588 if (sk->sk_peer_cred)
1589 put_cred(sk->sk_peer_cred);
1590 put_pid(sk->sk_peer_pid);
1591 if (likely(sk->sk_net_refcnt))
1592 put_net(sock_net(sk));
1593 sk_prot_free(sk->sk_prot_creator, sk);
1594}
1595
1596void sk_destruct(struct sock *sk)
1597{
1598 if (sock_flag(sk, SOCK_RCU_FREE))
1599 call_rcu(&sk->sk_rcu, __sk_destruct);
1600 else
1601 __sk_destruct(&sk->sk_rcu);
1602}
1603
1604static void __sk_free(struct sock *sk)
1605{
1606 if (likely(sk->sk_net_refcnt))
1607 sock_inuse_add(sock_net(sk), -1);
1608
1609 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1610 sock_diag_broadcast_destroy(sk);
1611 else
1612 sk_destruct(sk);
1613}
1614
1615void sk_free(struct sock *sk)
1616{
1617 /*
1618 * We subtract one from sk_wmem_alloc and can know if
1619 * some packets are still in some tx queue.
1620 * If not null, sock_wfree() will call __sk_free(sk) later
1621 */
1622 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1623 __sk_free(sk);
1624}
1625EXPORT_SYMBOL(sk_free);
1626
1627static void sk_init_common(struct sock *sk)
1628{
1629 skb_queue_head_init(&sk->sk_receive_queue);
1630 skb_queue_head_init(&sk->sk_write_queue);
1631 skb_queue_head_init(&sk->sk_error_queue);
1632
1633 rwlock_init(&sk->sk_callback_lock);
1634 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1635 af_rlock_keys + sk->sk_family,
1636 af_family_rlock_key_strings[sk->sk_family]);
1637 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1638 af_wlock_keys + sk->sk_family,
1639 af_family_wlock_key_strings[sk->sk_family]);
1640 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1641 af_elock_keys + sk->sk_family,
1642 af_family_elock_key_strings[sk->sk_family]);
1643 lockdep_set_class_and_name(&sk->sk_callback_lock,
1644 af_callback_keys + sk->sk_family,
1645 af_family_clock_key_strings[sk->sk_family]);
1646}
1647
1648/**
1649 * sk_clone_lock - clone a socket, and lock its clone
1650 * @sk: the socket to clone
1651 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1652 *
1653 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1654 */
1655struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1656{
1657 struct sock *newsk;
1658 bool is_charged = true;
1659
1660 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1661 if (newsk != NULL) {
1662 struct sk_filter *filter;
1663
1664 sock_copy(newsk, sk);
1665
1666 newsk->sk_prot_creator = sk->sk_prot;
1667
1668 /* SANITY */
1669 if (likely(newsk->sk_net_refcnt))
1670 get_net(sock_net(newsk));
1671 sk_node_init(&newsk->sk_node);
1672 sock_lock_init(newsk);
1673 bh_lock_sock(newsk);
1674 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1675 newsk->sk_backlog.len = 0;
1676
1677 atomic_set(&newsk->sk_rmem_alloc, 0);
1678 /*
1679 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1680 */
1681 refcount_set(&newsk->sk_wmem_alloc, 1);
1682 atomic_set(&newsk->sk_omem_alloc, 0);
1683 sk_init_common(newsk);
1684
1685 newsk->sk_dst_cache = NULL;
1686 newsk->sk_dst_pending_confirm = 0;
1687 newsk->sk_wmem_queued = 0;
1688 newsk->sk_forward_alloc = 0;
1689 atomic_set(&newsk->sk_drops, 0);
1690 newsk->sk_send_head = NULL;
1691 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1692 atomic_set(&newsk->sk_zckey, 0);
1693
1694 sock_reset_flag(newsk, SOCK_DONE);
1695 mem_cgroup_sk_alloc(newsk);
1696 cgroup_sk_alloc(&newsk->sk_cgrp_data);
1697
1698 rcu_read_lock();
1699 filter = rcu_dereference(sk->sk_filter);
1700 if (filter != NULL)
1701 /* though it's an empty new sock, the charging may fail
1702 * if sysctl_optmem_max was changed between creation of
1703 * original socket and cloning
1704 */
1705 is_charged = sk_filter_charge(newsk, filter);
1706 RCU_INIT_POINTER(newsk->sk_filter, filter);
1707 rcu_read_unlock();
1708
1709 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1710 /* We need to make sure that we don't uncharge the new
1711 * socket if we couldn't charge it in the first place
1712 * as otherwise we uncharge the parent's filter.
1713 */
1714 if (!is_charged)
1715 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1716 sk_free_unlock_clone(newsk);
1717 newsk = NULL;
1718 goto out;
1719 }
1720 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1721
1722 newsk->sk_err = 0;
1723 newsk->sk_err_soft = 0;
1724 newsk->sk_priority = 0;
1725 newsk->sk_incoming_cpu = raw_smp_processor_id();
1726 atomic64_set(&newsk->sk_cookie, 0);
1727 if (likely(newsk->sk_net_refcnt))
1728 sock_inuse_add(sock_net(newsk), 1);
1729
1730 /*
1731 * Before updating sk_refcnt, we must commit prior changes to memory
1732 * (Documentation/RCU/rculist_nulls.txt for details)
1733 */
1734 smp_wmb();
1735 refcount_set(&newsk->sk_refcnt, 2);
1736
1737 /*
1738 * Increment the counter in the same struct proto as the master
1739 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1740 * is the same as sk->sk_prot->socks, as this field was copied
1741 * with memcpy).
1742 *
1743 * This _changes_ the previous behaviour, where
1744 * tcp_create_openreq_child always was incrementing the
1745 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1746 * to be taken into account in all callers. -acme
1747 */
1748 sk_refcnt_debug_inc(newsk);
1749 sk_set_socket(newsk, NULL);
1750 newsk->sk_wq = NULL;
1751
1752 if (newsk->sk_prot->sockets_allocated)
1753 sk_sockets_allocated_inc(newsk);
1754
1755 if (sock_needs_netstamp(sk) &&
1756 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1757 net_enable_timestamp();
1758 }
1759out:
1760 return newsk;
1761}
1762EXPORT_SYMBOL_GPL(sk_clone_lock);
1763
1764void sk_free_unlock_clone(struct sock *sk)
1765{
1766 /* It is still raw copy of parent, so invalidate
1767 * destructor and make plain sk_free() */
1768 sk->sk_destruct = NULL;
1769 bh_unlock_sock(sk);
1770 sk_free(sk);
1771}
1772EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1773
1774void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1775{
1776 u32 max_segs = 1;
1777
1778 sk_dst_set(sk, dst);
1779 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1780 if (sk->sk_route_caps & NETIF_F_GSO)
1781 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1782 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1783 if (sk_can_gso(sk)) {
1784 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1785 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1786 } else {
1787 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1788 sk->sk_gso_max_size = dst->dev->gso_max_size;
1789 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1790 }
1791 }
1792 sk->sk_gso_max_segs = max_segs;
1793}
1794EXPORT_SYMBOL_GPL(sk_setup_caps);
1795
1796/*
1797 * Simple resource managers for sockets.
1798 */
1799
1800
1801/*
1802 * Write buffer destructor automatically called from kfree_skb.
1803 */
1804void sock_wfree(struct sk_buff *skb)
1805{
1806 struct sock *sk = skb->sk;
1807 unsigned int len = skb->truesize;
1808
1809 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1810 /*
1811 * Keep a reference on sk_wmem_alloc, this will be released
1812 * after sk_write_space() call
1813 */
1814 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1815 sk->sk_write_space(sk);
1816 len = 1;
1817 }
1818 /*
1819 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1820 * could not do because of in-flight packets
1821 */
1822 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1823 __sk_free(sk);
1824}
1825EXPORT_SYMBOL(sock_wfree);
1826
1827/* This variant of sock_wfree() is used by TCP,
1828 * since it sets SOCK_USE_WRITE_QUEUE.
1829 */
1830void __sock_wfree(struct sk_buff *skb)
1831{
1832 struct sock *sk = skb->sk;
1833
1834 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1835 __sk_free(sk);
1836}
1837
1838void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1839{
1840 skb_orphan(skb);
1841 skb->sk = sk;
1842#ifdef CONFIG_INET
1843 if (unlikely(!sk_fullsock(sk))) {
1844 skb->destructor = sock_edemux;
1845 sock_hold(sk);
1846 return;
1847 }
1848#endif
1849 skb->destructor = sock_wfree;
1850 skb_set_hash_from_sk(skb, sk);
1851 /*
1852 * We used to take a refcount on sk, but following operation
1853 * is enough to guarantee sk_free() wont free this sock until
1854 * all in-flight packets are completed
1855 */
1856 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1857}
1858EXPORT_SYMBOL(skb_set_owner_w);
1859
1860/* This helper is used by netem, as it can hold packets in its
1861 * delay queue. We want to allow the owner socket to send more
1862 * packets, as if they were already TX completed by a typical driver.
1863 * But we also want to keep skb->sk set because some packet schedulers
1864 * rely on it (sch_fq for example).
1865 */
1866void skb_orphan_partial(struct sk_buff *skb)
1867{
1868 if (skb_is_tcp_pure_ack(skb))
1869 return;
1870
1871 if (skb->destructor == sock_wfree
1872#ifdef CONFIG_INET
1873 || skb->destructor == tcp_wfree
1874#endif
1875 ) {
1876 struct sock *sk = skb->sk;
1877
1878 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1879 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
1880 skb->destructor = sock_efree;
1881 }
1882 } else {
1883 skb_orphan(skb);
1884 }
1885}
1886EXPORT_SYMBOL(skb_orphan_partial);
1887
1888/*
1889 * Read buffer destructor automatically called from kfree_skb.
1890 */
1891void sock_rfree(struct sk_buff *skb)
1892{
1893 struct sock *sk = skb->sk;
1894 unsigned int len = skb->truesize;
1895
1896 atomic_sub(len, &sk->sk_rmem_alloc);
1897 sk_mem_uncharge(sk, len);
1898}
1899EXPORT_SYMBOL(sock_rfree);
1900
1901/*
1902 * Buffer destructor for skbs that are not used directly in read or write
1903 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1904 */
1905void sock_efree(struct sk_buff *skb)
1906{
1907 sock_put(skb->sk);
1908}
1909EXPORT_SYMBOL(sock_efree);
1910
1911kuid_t sock_i_uid(struct sock *sk)
1912{
1913 kuid_t uid;
1914
1915 read_lock_bh(&sk->sk_callback_lock);
1916 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1917 read_unlock_bh(&sk->sk_callback_lock);
1918 return uid;
1919}
1920EXPORT_SYMBOL(sock_i_uid);
1921
1922unsigned long sock_i_ino(struct sock *sk)
1923{
1924 unsigned long ino;
1925
1926 read_lock_bh(&sk->sk_callback_lock);
1927 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1928 read_unlock_bh(&sk->sk_callback_lock);
1929 return ino;
1930}
1931EXPORT_SYMBOL(sock_i_ino);
1932
1933/*
1934 * Allocate a skb from the socket's send buffer.
1935 */
1936struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1937 gfp_t priority)
1938{
1939 if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1940 struct sk_buff *skb = alloc_skb(size, priority);
1941 if (skb) {
1942 skb_set_owner_w(skb, sk);
1943 return skb;
1944 }
1945 }
1946 return NULL;
1947}
1948EXPORT_SYMBOL(sock_wmalloc);
1949
1950static void sock_ofree(struct sk_buff *skb)
1951{
1952 struct sock *sk = skb->sk;
1953
1954 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
1955}
1956
1957struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1958 gfp_t priority)
1959{
1960 struct sk_buff *skb;
1961
1962 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1963 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
1964 sysctl_optmem_max)
1965 return NULL;
1966
1967 skb = alloc_skb(size, priority);
1968 if (!skb)
1969 return NULL;
1970
1971 atomic_add(skb->truesize, &sk->sk_omem_alloc);
1972 skb->sk = sk;
1973 skb->destructor = sock_ofree;
1974 return skb;
1975}
1976
1977/*
1978 * Allocate a memory block from the socket's option memory buffer.
1979 */
1980void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1981{
1982 if ((unsigned int)size <= sysctl_optmem_max &&
1983 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1984 void *mem;
1985 /* First do the add, to avoid the race if kmalloc
1986 * might sleep.
1987 */
1988 atomic_add(size, &sk->sk_omem_alloc);
1989 mem = kmalloc(size, priority);
1990 if (mem)
1991 return mem;
1992 atomic_sub(size, &sk->sk_omem_alloc);
1993 }
1994 return NULL;
1995}
1996EXPORT_SYMBOL(sock_kmalloc);
1997
1998/* Free an option memory block. Note, we actually want the inline
1999 * here as this allows gcc to detect the nullify and fold away the
2000 * condition entirely.
2001 */
2002static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2003 const bool nullify)
2004{
2005 if (WARN_ON_ONCE(!mem))
2006 return;
2007 if (nullify)
2008 kzfree(mem);
2009 else
2010 kfree(mem);
2011 atomic_sub(size, &sk->sk_omem_alloc);
2012}
2013
2014void sock_kfree_s(struct sock *sk, void *mem, int size)
2015{
2016 __sock_kfree_s(sk, mem, size, false);
2017}
2018EXPORT_SYMBOL(sock_kfree_s);
2019
2020void sock_kzfree_s(struct sock *sk, void *mem, int size)
2021{
2022 __sock_kfree_s(sk, mem, size, true);
2023}
2024EXPORT_SYMBOL(sock_kzfree_s);
2025
2026/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2027 I think, these locks should be removed for datagram sockets.
2028 */
2029static long sock_wait_for_wmem(struct sock *sk, long timeo)
2030{
2031 DEFINE_WAIT(wait);
2032
2033 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2034 for (;;) {
2035 if (!timeo)
2036 break;
2037 if (signal_pending(current))
2038 break;
2039 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2040 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2041 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2042 break;
2043 if (sk->sk_shutdown & SEND_SHUTDOWN)
2044 break;
2045 if (sk->sk_err)
2046 break;
2047 timeo = schedule_timeout(timeo);
2048 }
2049 finish_wait(sk_sleep(sk), &wait);
2050 return timeo;
2051}
2052
2053
2054/*
2055 * Generic send/receive buffer handlers
2056 */
2057
2058struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2059 unsigned long data_len, int noblock,
2060 int *errcode, int max_page_order)
2061{
2062 struct sk_buff *skb;
2063 long timeo;
2064 int err;
2065
2066 timeo = sock_sndtimeo(sk, noblock);
2067 for (;;) {
2068 err = sock_error(sk);
2069 if (err != 0)
2070 goto failure;
2071
2072 err = -EPIPE;
2073 if (sk->sk_shutdown & SEND_SHUTDOWN)
2074 goto failure;
2075
2076 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2077 break;
2078
2079 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2080 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2081 err = -EAGAIN;
2082 if (!timeo)
2083 goto failure;
2084 if (signal_pending(current))
2085 goto interrupted;
2086 timeo = sock_wait_for_wmem(sk, timeo);
2087 }
2088 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2089 errcode, sk->sk_allocation);
2090 if (skb)
2091 skb_set_owner_w(skb, sk);
2092 return skb;
2093
2094interrupted:
2095 err = sock_intr_errno(timeo);
2096failure:
2097 *errcode = err;
2098 return NULL;
2099}
2100EXPORT_SYMBOL(sock_alloc_send_pskb);
2101
2102struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2103 int noblock, int *errcode)
2104{
2105 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2106}
2107EXPORT_SYMBOL(sock_alloc_send_skb);
2108
2109int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2110 struct sockcm_cookie *sockc)
2111{
2112 u32 tsflags;
2113
2114 switch (cmsg->cmsg_type) {
2115 case SO_MARK:
2116 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2117 return -EPERM;
2118 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2119 return -EINVAL;
2120 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2121 break;
2122 case SO_TIMESTAMPING:
2123 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2124 return -EINVAL;
2125
2126 tsflags = *(u32 *)CMSG_DATA(cmsg);
2127 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2128 return -EINVAL;
2129
2130 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2131 sockc->tsflags |= tsflags;
2132 break;
2133 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2134 case SCM_RIGHTS:
2135 case SCM_CREDENTIALS:
2136 break;
2137 default:
2138 return -EINVAL;
2139 }
2140 return 0;
2141}
2142EXPORT_SYMBOL(__sock_cmsg_send);
2143
2144int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2145 struct sockcm_cookie *sockc)
2146{
2147 struct cmsghdr *cmsg;
2148 int ret;
2149
2150 for_each_cmsghdr(cmsg, msg) {
2151 if (!CMSG_OK(msg, cmsg))
2152 return -EINVAL;
2153 if (cmsg->cmsg_level != SOL_SOCKET)
2154 continue;
2155 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2156 if (ret)
2157 return ret;
2158 }
2159 return 0;
2160}
2161EXPORT_SYMBOL(sock_cmsg_send);
2162
2163static void sk_enter_memory_pressure(struct sock *sk)
2164{
2165 if (!sk->sk_prot->enter_memory_pressure)
2166 return;
2167
2168 sk->sk_prot->enter_memory_pressure(sk);
2169}
2170
2171static void sk_leave_memory_pressure(struct sock *sk)
2172{
2173 if (sk->sk_prot->leave_memory_pressure) {
2174 sk->sk_prot->leave_memory_pressure(sk);
2175 } else {
2176 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2177
2178 if (memory_pressure && *memory_pressure)
2179 *memory_pressure = 0;
2180 }
2181}
2182
2183/* On 32bit arches, an skb frag is limited to 2^15 */
2184#define SKB_FRAG_PAGE_ORDER get_order(32768)
2185
2186/**
2187 * skb_page_frag_refill - check that a page_frag contains enough room
2188 * @sz: minimum size of the fragment we want to get
2189 * @pfrag: pointer to page_frag
2190 * @gfp: priority for memory allocation
2191 *
2192 * Note: While this allocator tries to use high order pages, there is
2193 * no guarantee that allocations succeed. Therefore, @sz MUST be
2194 * less or equal than PAGE_SIZE.
2195 */
2196bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2197{
2198 if (pfrag->page) {
2199 if (page_ref_count(pfrag->page) == 1) {
2200 pfrag->offset = 0;
2201 return true;
2202 }
2203 if (pfrag->offset + sz <= pfrag->size)
2204 return true;
2205 put_page(pfrag->page);
2206 }
2207
2208 pfrag->offset = 0;
2209 if (SKB_FRAG_PAGE_ORDER) {
2210 /* Avoid direct reclaim but allow kswapd to wake */
2211 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2212 __GFP_COMP | __GFP_NOWARN |
2213 __GFP_NORETRY,
2214 SKB_FRAG_PAGE_ORDER);
2215 if (likely(pfrag->page)) {
2216 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2217 return true;
2218 }
2219 }
2220 pfrag->page = alloc_page(gfp);
2221 if (likely(pfrag->page)) {
2222 pfrag->size = PAGE_SIZE;
2223 return true;
2224 }
2225 return false;
2226}
2227EXPORT_SYMBOL(skb_page_frag_refill);
2228
2229bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2230{
2231 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2232 return true;
2233
2234 sk_enter_memory_pressure(sk);
2235 sk_stream_moderate_sndbuf(sk);
2236 return false;
2237}
2238EXPORT_SYMBOL(sk_page_frag_refill);
2239
2240int sk_alloc_sg(struct sock *sk, int len, struct scatterlist *sg,
2241 int sg_start, int *sg_curr_index, unsigned int *sg_curr_size,
2242 int first_coalesce)
2243{
2244 int sg_curr = *sg_curr_index, use = 0, rc = 0;
2245 unsigned int size = *sg_curr_size;
2246 struct page_frag *pfrag;
2247 struct scatterlist *sge;
2248
2249 len -= size;
2250 pfrag = sk_page_frag(sk);
2251
2252 while (len > 0) {
2253 unsigned int orig_offset;
2254
2255 if (!sk_page_frag_refill(sk, pfrag)) {
2256 rc = -ENOMEM;
2257 goto out;
2258 }
2259
2260 use = min_t(int, len, pfrag->size - pfrag->offset);
2261
2262 if (!sk_wmem_schedule(sk, use)) {
2263 rc = -ENOMEM;
2264 goto out;
2265 }
2266
2267 sk_mem_charge(sk, use);
2268 size += use;
2269 orig_offset = pfrag->offset;
2270 pfrag->offset += use;
2271
2272 sge = sg + sg_curr - 1;
2273 if (sg_curr > first_coalesce && sg_page(sg) == pfrag->page &&
2274 sg->offset + sg->length == orig_offset) {
2275 sg->length += use;
2276 } else {
2277 sge = sg + sg_curr;
2278 sg_unmark_end(sge);
2279 sg_set_page(sge, pfrag->page, use, orig_offset);
2280 get_page(pfrag->page);
2281 sg_curr++;
2282
2283 if (sg_curr == MAX_SKB_FRAGS)
2284 sg_curr = 0;
2285
2286 if (sg_curr == sg_start) {
2287 rc = -ENOSPC;
2288 break;
2289 }
2290 }
2291
2292 len -= use;
2293 }
2294out:
2295 *sg_curr_size = size;
2296 *sg_curr_index = sg_curr;
2297 return rc;
2298}
2299EXPORT_SYMBOL(sk_alloc_sg);
2300
2301static void __lock_sock(struct sock *sk)
2302 __releases(&sk->sk_lock.slock)
2303 __acquires(&sk->sk_lock.slock)
2304{
2305 DEFINE_WAIT(wait);
2306
2307 for (;;) {
2308 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2309 TASK_UNINTERRUPTIBLE);
2310 spin_unlock_bh(&sk->sk_lock.slock);
2311 schedule();
2312 spin_lock_bh(&sk->sk_lock.slock);
2313 if (!sock_owned_by_user(sk))
2314 break;
2315 }
2316 finish_wait(&sk->sk_lock.wq, &wait);
2317}
2318
2319static void __release_sock(struct sock *sk)
2320 __releases(&sk->sk_lock.slock)
2321 __acquires(&sk->sk_lock.slock)
2322{
2323 struct sk_buff *skb, *next;
2324
2325 while ((skb = sk->sk_backlog.head) != NULL) {
2326 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2327
2328 spin_unlock_bh(&sk->sk_lock.slock);
2329
2330 do {
2331 next = skb->next;
2332 prefetch(next);
2333 WARN_ON_ONCE(skb_dst_is_noref(skb));
2334 skb->next = NULL;
2335 sk_backlog_rcv(sk, skb);
2336
2337 cond_resched();
2338
2339 skb = next;
2340 } while (skb != NULL);
2341
2342 spin_lock_bh(&sk->sk_lock.slock);
2343 }
2344
2345 /*
2346 * Doing the zeroing here guarantee we can not loop forever
2347 * while a wild producer attempts to flood us.
2348 */
2349 sk->sk_backlog.len = 0;
2350}
2351
2352void __sk_flush_backlog(struct sock *sk)
2353{
2354 spin_lock_bh(&sk->sk_lock.slock);
2355 __release_sock(sk);
2356 spin_unlock_bh(&sk->sk_lock.slock);
2357}
2358
2359/**
2360 * sk_wait_data - wait for data to arrive at sk_receive_queue
2361 * @sk: sock to wait on
2362 * @timeo: for how long
2363 * @skb: last skb seen on sk_receive_queue
2364 *
2365 * Now socket state including sk->sk_err is changed only under lock,
2366 * hence we may omit checks after joining wait queue.
2367 * We check receive queue before schedule() only as optimization;
2368 * it is very likely that release_sock() added new data.
2369 */
2370int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2371{
2372 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2373 int rc;
2374
2375 add_wait_queue(sk_sleep(sk), &wait);
2376 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2377 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2378 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2379 remove_wait_queue(sk_sleep(sk), &wait);
2380 return rc;
2381}
2382EXPORT_SYMBOL(sk_wait_data);
2383
2384/**
2385 * __sk_mem_raise_allocated - increase memory_allocated
2386 * @sk: socket
2387 * @size: memory size to allocate
2388 * @amt: pages to allocate
2389 * @kind: allocation type
2390 *
2391 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2392 */
2393int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2394{
2395 struct proto *prot = sk->sk_prot;
2396 long allocated = sk_memory_allocated_add(sk, amt);
2397
2398 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2399 !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2400 goto suppress_allocation;
2401
2402 /* Under limit. */
2403 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2404 sk_leave_memory_pressure(sk);
2405 return 1;
2406 }
2407
2408 /* Under pressure. */
2409 if (allocated > sk_prot_mem_limits(sk, 1))
2410 sk_enter_memory_pressure(sk);
2411
2412 /* Over hard limit. */
2413 if (allocated > sk_prot_mem_limits(sk, 2))
2414 goto suppress_allocation;
2415
2416 /* guarantee minimum buffer size under pressure */
2417 if (kind == SK_MEM_RECV) {
2418 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2419 return 1;
2420
2421 } else { /* SK_MEM_SEND */
2422 int wmem0 = sk_get_wmem0(sk, prot);
2423
2424 if (sk->sk_type == SOCK_STREAM) {
2425 if (sk->sk_wmem_queued < wmem0)
2426 return 1;
2427 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2428 return 1;
2429 }
2430 }
2431
2432 if (sk_has_memory_pressure(sk)) {
2433 int alloc;
2434
2435 if (!sk_under_memory_pressure(sk))
2436 return 1;
2437 alloc = sk_sockets_allocated_read_positive(sk);
2438 if (sk_prot_mem_limits(sk, 2) > alloc *
2439 sk_mem_pages(sk->sk_wmem_queued +
2440 atomic_read(&sk->sk_rmem_alloc) +
2441 sk->sk_forward_alloc))
2442 return 1;
2443 }
2444
2445suppress_allocation:
2446
2447 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2448 sk_stream_moderate_sndbuf(sk);
2449
2450 /* Fail only if socket is _under_ its sndbuf.
2451 * In this case we cannot block, so that we have to fail.
2452 */
2453 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2454 return 1;
2455 }
2456
2457 trace_sock_exceed_buf_limit(sk, prot, allocated);
2458
2459 sk_memory_allocated_sub(sk, amt);
2460
2461 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2462 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2463
2464 return 0;
2465}
2466EXPORT_SYMBOL(__sk_mem_raise_allocated);
2467
2468/**
2469 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2470 * @sk: socket
2471 * @size: memory size to allocate
2472 * @kind: allocation type
2473 *
2474 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2475 * rmem allocation. This function assumes that protocols which have
2476 * memory_pressure use sk_wmem_queued as write buffer accounting.
2477 */
2478int __sk_mem_schedule(struct sock *sk, int size, int kind)
2479{
2480 int ret, amt = sk_mem_pages(size);
2481
2482 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2483 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2484 if (!ret)
2485 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2486 return ret;
2487}
2488EXPORT_SYMBOL(__sk_mem_schedule);
2489
2490/**
2491 * __sk_mem_reduce_allocated - reclaim memory_allocated
2492 * @sk: socket
2493 * @amount: number of quanta
2494 *
2495 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2496 */
2497void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2498{
2499 sk_memory_allocated_sub(sk, amount);
2500
2501 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2502 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2503
2504 if (sk_under_memory_pressure(sk) &&
2505 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2506 sk_leave_memory_pressure(sk);
2507}
2508EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2509
2510/**
2511 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2512 * @sk: socket
2513 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2514 */
2515void __sk_mem_reclaim(struct sock *sk, int amount)
2516{
2517 amount >>= SK_MEM_QUANTUM_SHIFT;
2518 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2519 __sk_mem_reduce_allocated(sk, amount);
2520}
2521EXPORT_SYMBOL(__sk_mem_reclaim);
2522
2523int sk_set_peek_off(struct sock *sk, int val)
2524{
2525 sk->sk_peek_off = val;
2526 return 0;
2527}
2528EXPORT_SYMBOL_GPL(sk_set_peek_off);
2529
2530/*
2531 * Set of default routines for initialising struct proto_ops when
2532 * the protocol does not support a particular function. In certain
2533 * cases where it makes no sense for a protocol to have a "do nothing"
2534 * function, some default processing is provided.
2535 */
2536
2537int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2538{
2539 return -EOPNOTSUPP;
2540}
2541EXPORT_SYMBOL(sock_no_bind);
2542
2543int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2544 int len, int flags)
2545{
2546 return -EOPNOTSUPP;
2547}
2548EXPORT_SYMBOL(sock_no_connect);
2549
2550int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2551{
2552 return -EOPNOTSUPP;
2553}
2554EXPORT_SYMBOL(sock_no_socketpair);
2555
2556int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2557 bool kern)
2558{
2559 return -EOPNOTSUPP;
2560}
2561EXPORT_SYMBOL(sock_no_accept);
2562
2563int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2564 int peer)
2565{
2566 return -EOPNOTSUPP;
2567}
2568EXPORT_SYMBOL(sock_no_getname);
2569
2570__poll_t sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2571{
2572 return 0;
2573}
2574EXPORT_SYMBOL(sock_no_poll);
2575
2576int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2577{
2578 return -EOPNOTSUPP;
2579}
2580EXPORT_SYMBOL(sock_no_ioctl);
2581
2582int sock_no_listen(struct socket *sock, int backlog)
2583{
2584 return -EOPNOTSUPP;
2585}
2586EXPORT_SYMBOL(sock_no_listen);
2587
2588int sock_no_shutdown(struct socket *sock, int how)
2589{
2590 return -EOPNOTSUPP;
2591}
2592EXPORT_SYMBOL(sock_no_shutdown);
2593
2594int sock_no_setsockopt(struct socket *sock, int level, int optname,
2595 char __user *optval, unsigned int optlen)
2596{
2597 return -EOPNOTSUPP;
2598}
2599EXPORT_SYMBOL(sock_no_setsockopt);
2600
2601int sock_no_getsockopt(struct socket *sock, int level, int optname,
2602 char __user *optval, int __user *optlen)
2603{
2604 return -EOPNOTSUPP;
2605}
2606EXPORT_SYMBOL(sock_no_getsockopt);
2607
2608int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2609{
2610 return -EOPNOTSUPP;
2611}
2612EXPORT_SYMBOL(sock_no_sendmsg);
2613
2614int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2615{
2616 return -EOPNOTSUPP;
2617}
2618EXPORT_SYMBOL(sock_no_sendmsg_locked);
2619
2620int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2621 int flags)
2622{
2623 return -EOPNOTSUPP;
2624}
2625EXPORT_SYMBOL(sock_no_recvmsg);
2626
2627int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2628{
2629 /* Mirror missing mmap method error code */
2630 return -ENODEV;
2631}
2632EXPORT_SYMBOL(sock_no_mmap);
2633
2634ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2635{
2636 ssize_t res;
2637 struct msghdr msg = {.msg_flags = flags};
2638 struct kvec iov;
2639 char *kaddr = kmap(page);
2640 iov.iov_base = kaddr + offset;
2641 iov.iov_len = size;
2642 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2643 kunmap(page);
2644 return res;
2645}
2646EXPORT_SYMBOL(sock_no_sendpage);
2647
2648ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2649 int offset, size_t size, int flags)
2650{
2651 ssize_t res;
2652 struct msghdr msg = {.msg_flags = flags};
2653 struct kvec iov;
2654 char *kaddr = kmap(page);
2655
2656 iov.iov_base = kaddr + offset;
2657 iov.iov_len = size;
2658 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2659 kunmap(page);
2660 return res;
2661}
2662EXPORT_SYMBOL(sock_no_sendpage_locked);
2663
2664/*
2665 * Default Socket Callbacks
2666 */
2667
2668static void sock_def_wakeup(struct sock *sk)
2669{
2670 struct socket_wq *wq;
2671
2672 rcu_read_lock();
2673 wq = rcu_dereference(sk->sk_wq);
2674 if (skwq_has_sleeper(wq))
2675 wake_up_interruptible_all(&wq->wait);
2676 rcu_read_unlock();
2677}
2678
2679static void sock_def_error_report(struct sock *sk)
2680{
2681 struct socket_wq *wq;
2682
2683 rcu_read_lock();
2684 wq = rcu_dereference(sk->sk_wq);
2685 if (skwq_has_sleeper(wq))
2686 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2687 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2688 rcu_read_unlock();
2689}
2690
2691static void sock_def_readable(struct sock *sk)
2692{
2693 struct socket_wq *wq;
2694
2695 rcu_read_lock();
2696 wq = rcu_dereference(sk->sk_wq);
2697 if (skwq_has_sleeper(wq))
2698 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2699 EPOLLRDNORM | EPOLLRDBAND);
2700 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2701 rcu_read_unlock();
2702}
2703
2704static void sock_def_write_space(struct sock *sk)
2705{
2706 struct socket_wq *wq;
2707
2708 rcu_read_lock();
2709
2710 /* Do not wake up a writer until he can make "significant"
2711 * progress. --DaveM
2712 */
2713 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2714 wq = rcu_dereference(sk->sk_wq);
2715 if (skwq_has_sleeper(wq))
2716 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2717 EPOLLWRNORM | EPOLLWRBAND);
2718
2719 /* Should agree with poll, otherwise some programs break */
2720 if (sock_writeable(sk))
2721 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2722 }
2723
2724 rcu_read_unlock();
2725}
2726
2727static void sock_def_destruct(struct sock *sk)
2728{
2729}
2730
2731void sk_send_sigurg(struct sock *sk)
2732{
2733 if (sk->sk_socket && sk->sk_socket->file)
2734 if (send_sigurg(&sk->sk_socket->file->f_owner))
2735 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2736}
2737EXPORT_SYMBOL(sk_send_sigurg);
2738
2739void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2740 unsigned long expires)
2741{
2742 if (!mod_timer(timer, expires))
2743 sock_hold(sk);
2744}
2745EXPORT_SYMBOL(sk_reset_timer);
2746
2747void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2748{
2749 if (del_timer(timer))
2750 __sock_put(sk);
2751}
2752EXPORT_SYMBOL(sk_stop_timer);
2753
2754void sock_init_data(struct socket *sock, struct sock *sk)
2755{
2756 sk_init_common(sk);
2757 sk->sk_send_head = NULL;
2758
2759 timer_setup(&sk->sk_timer, NULL, 0);
2760
2761 sk->sk_allocation = GFP_KERNEL;
2762 sk->sk_rcvbuf = sysctl_rmem_default;
2763 sk->sk_sndbuf = sysctl_wmem_default;
2764 sk->sk_state = TCP_CLOSE;
2765 sk_set_socket(sk, sock);
2766
2767 sock_set_flag(sk, SOCK_ZAPPED);
2768
2769 if (sock) {
2770 sk->sk_type = sock->type;
2771 sk->sk_wq = sock->wq;
2772 sock->sk = sk;
2773 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2774 } else {
2775 sk->sk_wq = NULL;
2776 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2777 }
2778
2779 rwlock_init(&sk->sk_callback_lock);
2780 if (sk->sk_kern_sock)
2781 lockdep_set_class_and_name(
2782 &sk->sk_callback_lock,
2783 af_kern_callback_keys + sk->sk_family,
2784 af_family_kern_clock_key_strings[sk->sk_family]);
2785 else
2786 lockdep_set_class_and_name(
2787 &sk->sk_callback_lock,
2788 af_callback_keys + sk->sk_family,
2789 af_family_clock_key_strings[sk->sk_family]);
2790
2791 sk->sk_state_change = sock_def_wakeup;
2792 sk->sk_data_ready = sock_def_readable;
2793 sk->sk_write_space = sock_def_write_space;
2794 sk->sk_error_report = sock_def_error_report;
2795 sk->sk_destruct = sock_def_destruct;
2796
2797 sk->sk_frag.page = NULL;
2798 sk->sk_frag.offset = 0;
2799 sk->sk_peek_off = -1;
2800
2801 sk->sk_peer_pid = NULL;
2802 sk->sk_peer_cred = NULL;
2803 sk->sk_write_pending = 0;
2804 sk->sk_rcvlowat = 1;
2805 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2806 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2807
2808 sk->sk_stamp = SK_DEFAULT_STAMP;
2809 atomic_set(&sk->sk_zckey, 0);
2810
2811#ifdef CONFIG_NET_RX_BUSY_POLL
2812 sk->sk_napi_id = 0;
2813 sk->sk_ll_usec = sysctl_net_busy_read;
2814#endif
2815
2816 sk->sk_max_pacing_rate = ~0U;
2817 sk->sk_pacing_rate = ~0U;
2818 sk->sk_pacing_shift = 10;
2819 sk->sk_incoming_cpu = -1;
2820 /*
2821 * Before updating sk_refcnt, we must commit prior changes to memory
2822 * (Documentation/RCU/rculist_nulls.txt for details)
2823 */
2824 smp_wmb();
2825 refcount_set(&sk->sk_refcnt, 1);
2826 atomic_set(&sk->sk_drops, 0);
2827}
2828EXPORT_SYMBOL(sock_init_data);
2829
2830void lock_sock_nested(struct sock *sk, int subclass)
2831{
2832 might_sleep();
2833 spin_lock_bh(&sk->sk_lock.slock);
2834 if (sk->sk_lock.owned)
2835 __lock_sock(sk);
2836 sk->sk_lock.owned = 1;
2837 spin_unlock(&sk->sk_lock.slock);
2838 /*
2839 * The sk_lock has mutex_lock() semantics here:
2840 */
2841 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2842 local_bh_enable();
2843}
2844EXPORT_SYMBOL(lock_sock_nested);
2845
2846void release_sock(struct sock *sk)
2847{
2848 spin_lock_bh(&sk->sk_lock.slock);
2849 if (sk->sk_backlog.tail)
2850 __release_sock(sk);
2851
2852 /* Warning : release_cb() might need to release sk ownership,
2853 * ie call sock_release_ownership(sk) before us.
2854 */
2855 if (sk->sk_prot->release_cb)
2856 sk->sk_prot->release_cb(sk);
2857
2858 sock_release_ownership(sk);
2859 if (waitqueue_active(&sk->sk_lock.wq))
2860 wake_up(&sk->sk_lock.wq);
2861 spin_unlock_bh(&sk->sk_lock.slock);
2862}
2863EXPORT_SYMBOL(release_sock);
2864
2865/**
2866 * lock_sock_fast - fast version of lock_sock
2867 * @sk: socket
2868 *
2869 * This version should be used for very small section, where process wont block
2870 * return false if fast path is taken:
2871 *
2872 * sk_lock.slock locked, owned = 0, BH disabled
2873 *
2874 * return true if slow path is taken:
2875 *
2876 * sk_lock.slock unlocked, owned = 1, BH enabled
2877 */
2878bool lock_sock_fast(struct sock *sk)
2879{
2880 might_sleep();
2881 spin_lock_bh(&sk->sk_lock.slock);
2882
2883 if (!sk->sk_lock.owned)
2884 /*
2885 * Note : We must disable BH
2886 */
2887 return false;
2888
2889 __lock_sock(sk);
2890 sk->sk_lock.owned = 1;
2891 spin_unlock(&sk->sk_lock.slock);
2892 /*
2893 * The sk_lock has mutex_lock() semantics here:
2894 */
2895 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2896 local_bh_enable();
2897 return true;
2898}
2899EXPORT_SYMBOL(lock_sock_fast);
2900
2901int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2902{
2903 struct timeval tv;
2904 if (!sock_flag(sk, SOCK_TIMESTAMP))
2905 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2906 tv = ktime_to_timeval(sk->sk_stamp);
2907 if (tv.tv_sec == -1)
2908 return -ENOENT;
2909 if (tv.tv_sec == 0) {
2910 sk->sk_stamp = ktime_get_real();
2911 tv = ktime_to_timeval(sk->sk_stamp);
2912 }
2913 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2914}
2915EXPORT_SYMBOL(sock_get_timestamp);
2916
2917int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2918{
2919 struct timespec ts;
2920 if (!sock_flag(sk, SOCK_TIMESTAMP))
2921 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2922 ts = ktime_to_timespec(sk->sk_stamp);
2923 if (ts.tv_sec == -1)
2924 return -ENOENT;
2925 if (ts.tv_sec == 0) {
2926 sk->sk_stamp = ktime_get_real();
2927 ts = ktime_to_timespec(sk->sk_stamp);
2928 }
2929 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2930}
2931EXPORT_SYMBOL(sock_get_timestampns);
2932
2933void sock_enable_timestamp(struct sock *sk, int flag)
2934{
2935 if (!sock_flag(sk, flag)) {
2936 unsigned long previous_flags = sk->sk_flags;
2937
2938 sock_set_flag(sk, flag);
2939 /*
2940 * we just set one of the two flags which require net
2941 * time stamping, but time stamping might have been on
2942 * already because of the other one
2943 */
2944 if (sock_needs_netstamp(sk) &&
2945 !(previous_flags & SK_FLAGS_TIMESTAMP))
2946 net_enable_timestamp();
2947 }
2948}
2949
2950int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2951 int level, int type)
2952{
2953 struct sock_exterr_skb *serr;
2954 struct sk_buff *skb;
2955 int copied, err;
2956
2957 err = -EAGAIN;
2958 skb = sock_dequeue_err_skb(sk);
2959 if (skb == NULL)
2960 goto out;
2961
2962 copied = skb->len;
2963 if (copied > len) {
2964 msg->msg_flags |= MSG_TRUNC;
2965 copied = len;
2966 }
2967 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2968 if (err)
2969 goto out_free_skb;
2970
2971 sock_recv_timestamp(msg, sk, skb);
2972
2973 serr = SKB_EXT_ERR(skb);
2974 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2975
2976 msg->msg_flags |= MSG_ERRQUEUE;
2977 err = copied;
2978
2979out_free_skb:
2980 kfree_skb(skb);
2981out:
2982 return err;
2983}
2984EXPORT_SYMBOL(sock_recv_errqueue);
2985
2986/*
2987 * Get a socket option on an socket.
2988 *
2989 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2990 * asynchronous errors should be reported by getsockopt. We assume
2991 * this means if you specify SO_ERROR (otherwise whats the point of it).
2992 */
2993int sock_common_getsockopt(struct socket *sock, int level, int optname,
2994 char __user *optval, int __user *optlen)
2995{
2996 struct sock *sk = sock->sk;
2997
2998 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2999}
3000EXPORT_SYMBOL(sock_common_getsockopt);
3001
3002#ifdef CONFIG_COMPAT
3003int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3004 char __user *optval, int __user *optlen)
3005{
3006 struct sock *sk = sock->sk;
3007
3008 if (sk->sk_prot->compat_getsockopt != NULL)
3009 return sk->sk_prot->compat_getsockopt(sk, level, optname,
3010 optval, optlen);
3011 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3012}
3013EXPORT_SYMBOL(compat_sock_common_getsockopt);
3014#endif
3015
3016int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3017 int flags)
3018{
3019 struct sock *sk = sock->sk;
3020 int addr_len = 0;
3021 int err;
3022
3023 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3024 flags & ~MSG_DONTWAIT, &addr_len);
3025 if (err >= 0)
3026 msg->msg_namelen = addr_len;
3027 return err;
3028}
3029EXPORT_SYMBOL(sock_common_recvmsg);
3030
3031/*
3032 * Set socket options on an inet socket.
3033 */
3034int sock_common_setsockopt(struct socket *sock, int level, int optname,
3035 char __user *optval, unsigned int optlen)
3036{
3037 struct sock *sk = sock->sk;
3038
3039 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3040}
3041EXPORT_SYMBOL(sock_common_setsockopt);
3042
3043#ifdef CONFIG_COMPAT
3044int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3045 char __user *optval, unsigned int optlen)
3046{
3047 struct sock *sk = sock->sk;
3048
3049 if (sk->sk_prot->compat_setsockopt != NULL)
3050 return sk->sk_prot->compat_setsockopt(sk, level, optname,
3051 optval, optlen);
3052 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3053}
3054EXPORT_SYMBOL(compat_sock_common_setsockopt);
3055#endif
3056
3057void sk_common_release(struct sock *sk)
3058{
3059 if (sk->sk_prot->destroy)
3060 sk->sk_prot->destroy(sk);
3061
3062 /*
3063 * Observation: when sock_common_release is called, processes have
3064 * no access to socket. But net still has.
3065 * Step one, detach it from networking:
3066 *
3067 * A. Remove from hash tables.
3068 */
3069
3070 sk->sk_prot->unhash(sk);
3071
3072 /*
3073 * In this point socket cannot receive new packets, but it is possible
3074 * that some packets are in flight because some CPU runs receiver and
3075 * did hash table lookup before we unhashed socket. They will achieve
3076 * receive queue and will be purged by socket destructor.
3077 *
3078 * Also we still have packets pending on receive queue and probably,
3079 * our own packets waiting in device queues. sock_destroy will drain
3080 * receive queue, but transmitted packets will delay socket destruction
3081 * until the last reference will be released.
3082 */
3083
3084 sock_orphan(sk);
3085
3086 xfrm_sk_free_policy(sk);
3087
3088 sk_refcnt_debug_release(sk);
3089
3090 sock_put(sk);
3091}
3092EXPORT_SYMBOL(sk_common_release);
3093
3094void sk_get_meminfo(const struct sock *sk, u32 *mem)
3095{
3096 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3097
3098 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3099 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3100 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3101 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3102 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3103 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3104 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3105 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3106 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3107}
3108
3109#ifdef CONFIG_PROC_FS
3110#define PROTO_INUSE_NR 64 /* should be enough for the first time */
3111struct prot_inuse {
3112 int val[PROTO_INUSE_NR];
3113};
3114
3115static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3116
3117void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3118{
3119 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3120}
3121EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3122
3123int sock_prot_inuse_get(struct net *net, struct proto *prot)
3124{
3125 int cpu, idx = prot->inuse_idx;
3126 int res = 0;
3127
3128 for_each_possible_cpu(cpu)
3129 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3130
3131 return res >= 0 ? res : 0;
3132}
3133EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3134
3135static void sock_inuse_add(struct net *net, int val)
3136{
3137 this_cpu_add(*net->core.sock_inuse, val);
3138}
3139
3140int sock_inuse_get(struct net *net)
3141{
3142 int cpu, res = 0;
3143
3144 for_each_possible_cpu(cpu)
3145 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3146
3147 return res;
3148}
3149
3150EXPORT_SYMBOL_GPL(sock_inuse_get);
3151
3152static int __net_init sock_inuse_init_net(struct net *net)
3153{
3154 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3155 if (net->core.prot_inuse == NULL)
3156 return -ENOMEM;
3157
3158 net->core.sock_inuse = alloc_percpu(int);
3159 if (net->core.sock_inuse == NULL)
3160 goto out;
3161
3162 return 0;
3163
3164out:
3165 free_percpu(net->core.prot_inuse);
3166 return -ENOMEM;
3167}
3168
3169static void __net_exit sock_inuse_exit_net(struct net *net)
3170{
3171 free_percpu(net->core.prot_inuse);
3172 free_percpu(net->core.sock_inuse);
3173}
3174
3175static struct pernet_operations net_inuse_ops = {
3176 .init = sock_inuse_init_net,
3177 .exit = sock_inuse_exit_net,
3178};
3179
3180static __init int net_inuse_init(void)
3181{
3182 if (register_pernet_subsys(&net_inuse_ops))
3183 panic("Cannot initialize net inuse counters");
3184
3185 return 0;
3186}
3187
3188core_initcall(net_inuse_init);
3189
3190static void assign_proto_idx(struct proto *prot)
3191{
3192 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3193
3194 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3195 pr_err("PROTO_INUSE_NR exhausted\n");
3196 return;
3197 }
3198
3199 set_bit(prot->inuse_idx, proto_inuse_idx);
3200}
3201
3202static void release_proto_idx(struct proto *prot)
3203{
3204 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3205 clear_bit(prot->inuse_idx, proto_inuse_idx);
3206}
3207#else
3208static inline void assign_proto_idx(struct proto *prot)
3209{
3210}
3211
3212static inline void release_proto_idx(struct proto *prot)
3213{
3214}
3215
3216static void sock_inuse_add(struct net *net, int val)
3217{
3218}
3219#endif
3220
3221static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3222{
3223 if (!rsk_prot)
3224 return;
3225 kfree(rsk_prot->slab_name);
3226 rsk_prot->slab_name = NULL;
3227 kmem_cache_destroy(rsk_prot->slab);
3228 rsk_prot->slab = NULL;
3229}
3230
3231static int req_prot_init(const struct proto *prot)
3232{
3233 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3234
3235 if (!rsk_prot)
3236 return 0;
3237
3238 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3239 prot->name);
3240 if (!rsk_prot->slab_name)
3241 return -ENOMEM;
3242
3243 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3244 rsk_prot->obj_size, 0,
3245 prot->slab_flags, NULL);
3246
3247 if (!rsk_prot->slab) {
3248 pr_crit("%s: Can't create request sock SLAB cache!\n",
3249 prot->name);
3250 return -ENOMEM;
3251 }
3252 return 0;
3253}
3254
3255int proto_register(struct proto *prot, int alloc_slab)
3256{
3257 if (alloc_slab) {
3258 prot->slab = kmem_cache_create_usercopy(prot->name,
3259 prot->obj_size, 0,
3260 SLAB_HWCACHE_ALIGN | prot->slab_flags,
3261 prot->useroffset, prot->usersize,
3262 NULL);
3263
3264 if (prot->slab == NULL) {
3265 pr_crit("%s: Can't create sock SLAB cache!\n",
3266 prot->name);
3267 goto out;
3268 }
3269
3270 if (req_prot_init(prot))
3271 goto out_free_request_sock_slab;
3272
3273 if (prot->twsk_prot != NULL) {
3274 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3275
3276 if (prot->twsk_prot->twsk_slab_name == NULL)
3277 goto out_free_request_sock_slab;
3278
3279 prot->twsk_prot->twsk_slab =
3280 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3281 prot->twsk_prot->twsk_obj_size,
3282 0,
3283 prot->slab_flags,
3284 NULL);
3285 if (prot->twsk_prot->twsk_slab == NULL)
3286 goto out_free_timewait_sock_slab_name;
3287 }
3288 }
3289
3290 mutex_lock(&proto_list_mutex);
3291 list_add(&prot->node, &proto_list);
3292 assign_proto_idx(prot);
3293 mutex_unlock(&proto_list_mutex);
3294 return 0;
3295
3296out_free_timewait_sock_slab_name:
3297 kfree(prot->twsk_prot->twsk_slab_name);
3298out_free_request_sock_slab:
3299 req_prot_cleanup(prot->rsk_prot);
3300
3301 kmem_cache_destroy(prot->slab);
3302 prot->slab = NULL;
3303out:
3304 return -ENOBUFS;
3305}
3306EXPORT_SYMBOL(proto_register);
3307
3308void proto_unregister(struct proto *prot)
3309{
3310 mutex_lock(&proto_list_mutex);
3311 release_proto_idx(prot);
3312 list_del(&prot->node);
3313 mutex_unlock(&proto_list_mutex);
3314
3315 kmem_cache_destroy(prot->slab);
3316 prot->slab = NULL;
3317
3318 req_prot_cleanup(prot->rsk_prot);
3319
3320 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3321 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3322 kfree(prot->twsk_prot->twsk_slab_name);
3323 prot->twsk_prot->twsk_slab = NULL;
3324 }
3325}
3326EXPORT_SYMBOL(proto_unregister);
3327
3328int sock_load_diag_module(int family, int protocol)
3329{
3330 if (!protocol) {
3331 if (!sock_is_registered(family))
3332 return -ENOENT;
3333
3334 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3335 NETLINK_SOCK_DIAG, family);
3336 }
3337
3338#ifdef CONFIG_INET
3339 if (family == AF_INET &&
3340 !rcu_access_pointer(inet_protos[protocol]))
3341 return -ENOENT;
3342#endif
3343
3344 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3345 NETLINK_SOCK_DIAG, family, protocol);
3346}
3347EXPORT_SYMBOL(sock_load_diag_module);
3348
3349#ifdef CONFIG_PROC_FS
3350static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3351 __acquires(proto_list_mutex)
3352{
3353 mutex_lock(&proto_list_mutex);
3354 return seq_list_start_head(&proto_list, *pos);
3355}
3356
3357static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3358{
3359 return seq_list_next(v, &proto_list, pos);
3360}
3361
3362static void proto_seq_stop(struct seq_file *seq, void *v)
3363 __releases(proto_list_mutex)
3364{
3365 mutex_unlock(&proto_list_mutex);
3366}
3367
3368static char proto_method_implemented(const void *method)
3369{
3370 return method == NULL ? 'n' : 'y';
3371}
3372static long sock_prot_memory_allocated(struct proto *proto)
3373{
3374 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3375}
3376
3377static char *sock_prot_memory_pressure(struct proto *proto)
3378{
3379 return proto->memory_pressure != NULL ?
3380 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3381}
3382
3383static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3384{
3385
3386 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3387 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3388 proto->name,
3389 proto->obj_size,
3390 sock_prot_inuse_get(seq_file_net(seq), proto),
3391 sock_prot_memory_allocated(proto),
3392 sock_prot_memory_pressure(proto),
3393 proto->max_header,
3394 proto->slab == NULL ? "no" : "yes",
3395 module_name(proto->owner),
3396 proto_method_implemented(proto->close),
3397 proto_method_implemented(proto->connect),
3398 proto_method_implemented(proto->disconnect),
3399 proto_method_implemented(proto->accept),
3400 proto_method_implemented(proto->ioctl),
3401 proto_method_implemented(proto->init),
3402 proto_method_implemented(proto->destroy),
3403 proto_method_implemented(proto->shutdown),
3404 proto_method_implemented(proto->setsockopt),
3405 proto_method_implemented(proto->getsockopt),
3406 proto_method_implemented(proto->sendmsg),
3407 proto_method_implemented(proto->recvmsg),
3408 proto_method_implemented(proto->sendpage),
3409 proto_method_implemented(proto->bind),
3410 proto_method_implemented(proto->backlog_rcv),
3411 proto_method_implemented(proto->hash),
3412 proto_method_implemented(proto->unhash),
3413 proto_method_implemented(proto->get_port),
3414 proto_method_implemented(proto->enter_memory_pressure));
3415}
3416
3417static int proto_seq_show(struct seq_file *seq, void *v)
3418{
3419 if (v == &proto_list)
3420 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3421 "protocol",
3422 "size",
3423 "sockets",
3424 "memory",
3425 "press",
3426 "maxhdr",
3427 "slab",
3428 "module",
3429 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3430 else
3431 proto_seq_printf(seq, list_entry(v, struct proto, node));
3432 return 0;
3433}
3434
3435static const struct seq_operations proto_seq_ops = {
3436 .start = proto_seq_start,
3437 .next = proto_seq_next,
3438 .stop = proto_seq_stop,
3439 .show = proto_seq_show,
3440};
3441
3442static int proto_seq_open(struct inode *inode, struct file *file)
3443{
3444 return seq_open_net(inode, file, &proto_seq_ops,
3445 sizeof(struct seq_net_private));
3446}
3447
3448static const struct file_operations proto_seq_fops = {
3449 .open = proto_seq_open,
3450 .read = seq_read,
3451 .llseek = seq_lseek,
3452 .release = seq_release_net,
3453};
3454
3455static __net_init int proto_init_net(struct net *net)
3456{
3457 if (!proc_create("protocols", 0444, net->proc_net, &proto_seq_fops))
3458 return -ENOMEM;
3459
3460 return 0;
3461}
3462
3463static __net_exit void proto_exit_net(struct net *net)
3464{
3465 remove_proc_entry("protocols", net->proc_net);
3466}
3467
3468
3469static __net_initdata struct pernet_operations proto_net_ops = {
3470 .init = proto_init_net,
3471 .exit = proto_exit_net,
3472};
3473
3474static int __init proto_init(void)
3475{
3476 return register_pernet_subsys(&proto_net_ops);
3477}
3478
3479subsys_initcall(proto_init);
3480
3481#endif /* PROC_FS */
3482
3483#ifdef CONFIG_NET_RX_BUSY_POLL
3484bool sk_busy_loop_end(void *p, unsigned long start_time)
3485{
3486 struct sock *sk = p;
3487
3488 return !skb_queue_empty(&sk->sk_receive_queue) ||
3489 sk_busy_loop_timeout(sk, start_time);
3490}
3491EXPORT_SYMBOL(sk_busy_loop_end);
3492#endif /* CONFIG_NET_RX_BUSY_POLL */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88#include <asm/unaligned.h>
89#include <linux/capability.h>
90#include <linux/errno.h>
91#include <linux/errqueue.h>
92#include <linux/types.h>
93#include <linux/socket.h>
94#include <linux/in.h>
95#include <linux/kernel.h>
96#include <linux/module.h>
97#include <linux/proc_fs.h>
98#include <linux/seq_file.h>
99#include <linux/sched.h>
100#include <linux/sched/mm.h>
101#include <linux/timer.h>
102#include <linux/string.h>
103#include <linux/sockios.h>
104#include <linux/net.h>
105#include <linux/mm.h>
106#include <linux/slab.h>
107#include <linux/interrupt.h>
108#include <linux/poll.h>
109#include <linux/tcp.h>
110#include <linux/init.h>
111#include <linux/highmem.h>
112#include <linux/user_namespace.h>
113#include <linux/static_key.h>
114#include <linux/memcontrol.h>
115#include <linux/prefetch.h>
116#include <linux/compat.h>
117
118#include <linux/uaccess.h>
119
120#include <linux/netdevice.h>
121#include <net/protocol.h>
122#include <linux/skbuff.h>
123#include <net/net_namespace.h>
124#include <net/request_sock.h>
125#include <net/sock.h>
126#include <linux/net_tstamp.h>
127#include <net/xfrm.h>
128#include <linux/ipsec.h>
129#include <net/cls_cgroup.h>
130#include <net/netprio_cgroup.h>
131#include <linux/sock_diag.h>
132
133#include <linux/filter.h>
134#include <net/sock_reuseport.h>
135#include <net/bpf_sk_storage.h>
136
137#include <trace/events/sock.h>
138
139#include <net/tcp.h>
140#include <net/busy_poll.h>
141
142#include <linux/ethtool.h>
143
144#include "dev.h"
145
146static DEFINE_MUTEX(proto_list_mutex);
147static LIST_HEAD(proto_list);
148
149static void sock_def_write_space_wfree(struct sock *sk);
150static void sock_def_write_space(struct sock *sk);
151
152/**
153 * sk_ns_capable - General socket capability test
154 * @sk: Socket to use a capability on or through
155 * @user_ns: The user namespace of the capability to use
156 * @cap: The capability to use
157 *
158 * Test to see if the opener of the socket had when the socket was
159 * created and the current process has the capability @cap in the user
160 * namespace @user_ns.
161 */
162bool sk_ns_capable(const struct sock *sk,
163 struct user_namespace *user_ns, int cap)
164{
165 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
166 ns_capable(user_ns, cap);
167}
168EXPORT_SYMBOL(sk_ns_capable);
169
170/**
171 * sk_capable - Socket global capability test
172 * @sk: Socket to use a capability on or through
173 * @cap: The global capability to use
174 *
175 * Test to see if the opener of the socket had when the socket was
176 * created and the current process has the capability @cap in all user
177 * namespaces.
178 */
179bool sk_capable(const struct sock *sk, int cap)
180{
181 return sk_ns_capable(sk, &init_user_ns, cap);
182}
183EXPORT_SYMBOL(sk_capable);
184
185/**
186 * sk_net_capable - Network namespace socket capability test
187 * @sk: Socket to use a capability on or through
188 * @cap: The capability to use
189 *
190 * Test to see if the opener of the socket had when the socket was created
191 * and the current process has the capability @cap over the network namespace
192 * the socket is a member of.
193 */
194bool sk_net_capable(const struct sock *sk, int cap)
195{
196 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
197}
198EXPORT_SYMBOL(sk_net_capable);
199
200/*
201 * Each address family might have different locking rules, so we have
202 * one slock key per address family and separate keys for internal and
203 * userspace sockets.
204 */
205static struct lock_class_key af_family_keys[AF_MAX];
206static struct lock_class_key af_family_kern_keys[AF_MAX];
207static struct lock_class_key af_family_slock_keys[AF_MAX];
208static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
209
210/*
211 * Make lock validator output more readable. (we pre-construct these
212 * strings build-time, so that runtime initialization of socket
213 * locks is fast):
214 */
215
216#define _sock_locks(x) \
217 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
218 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
219 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
220 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
221 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
222 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
223 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
224 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
225 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
226 x "27" , x "28" , x "AF_CAN" , \
227 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
228 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
229 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
230 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
231 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
232 x "AF_MCTP" , \
233 x "AF_MAX"
234
235static const char *const af_family_key_strings[AF_MAX+1] = {
236 _sock_locks("sk_lock-")
237};
238static const char *const af_family_slock_key_strings[AF_MAX+1] = {
239 _sock_locks("slock-")
240};
241static const char *const af_family_clock_key_strings[AF_MAX+1] = {
242 _sock_locks("clock-")
243};
244
245static const char *const af_family_kern_key_strings[AF_MAX+1] = {
246 _sock_locks("k-sk_lock-")
247};
248static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
249 _sock_locks("k-slock-")
250};
251static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
252 _sock_locks("k-clock-")
253};
254static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
255 _sock_locks("rlock-")
256};
257static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
258 _sock_locks("wlock-")
259};
260static const char *const af_family_elock_key_strings[AF_MAX+1] = {
261 _sock_locks("elock-")
262};
263
264/*
265 * sk_callback_lock and sk queues locking rules are per-address-family,
266 * so split the lock classes by using a per-AF key:
267 */
268static struct lock_class_key af_callback_keys[AF_MAX];
269static struct lock_class_key af_rlock_keys[AF_MAX];
270static struct lock_class_key af_wlock_keys[AF_MAX];
271static struct lock_class_key af_elock_keys[AF_MAX];
272static struct lock_class_key af_kern_callback_keys[AF_MAX];
273
274/* Run time adjustable parameters. */
275__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
276EXPORT_SYMBOL(sysctl_wmem_max);
277__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
278EXPORT_SYMBOL(sysctl_rmem_max);
279__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
280__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
281
282/* Maximal space eaten by iovec or ancillary data plus some space */
283int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
284EXPORT_SYMBOL(sysctl_optmem_max);
285
286int sysctl_tstamp_allow_data __read_mostly = 1;
287
288DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
289EXPORT_SYMBOL_GPL(memalloc_socks_key);
290
291/**
292 * sk_set_memalloc - sets %SOCK_MEMALLOC
293 * @sk: socket to set it on
294 *
295 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
296 * It's the responsibility of the admin to adjust min_free_kbytes
297 * to meet the requirements
298 */
299void sk_set_memalloc(struct sock *sk)
300{
301 sock_set_flag(sk, SOCK_MEMALLOC);
302 sk->sk_allocation |= __GFP_MEMALLOC;
303 static_branch_inc(&memalloc_socks_key);
304}
305EXPORT_SYMBOL_GPL(sk_set_memalloc);
306
307void sk_clear_memalloc(struct sock *sk)
308{
309 sock_reset_flag(sk, SOCK_MEMALLOC);
310 sk->sk_allocation &= ~__GFP_MEMALLOC;
311 static_branch_dec(&memalloc_socks_key);
312
313 /*
314 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
315 * progress of swapping. SOCK_MEMALLOC may be cleared while
316 * it has rmem allocations due to the last swapfile being deactivated
317 * but there is a risk that the socket is unusable due to exceeding
318 * the rmem limits. Reclaim the reserves and obey rmem limits again.
319 */
320 sk_mem_reclaim(sk);
321}
322EXPORT_SYMBOL_GPL(sk_clear_memalloc);
323
324int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
325{
326 int ret;
327 unsigned int noreclaim_flag;
328
329 /* these should have been dropped before queueing */
330 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
331
332 noreclaim_flag = memalloc_noreclaim_save();
333 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
334 tcp_v6_do_rcv,
335 tcp_v4_do_rcv,
336 sk, skb);
337 memalloc_noreclaim_restore(noreclaim_flag);
338
339 return ret;
340}
341EXPORT_SYMBOL(__sk_backlog_rcv);
342
343void sk_error_report(struct sock *sk)
344{
345 sk->sk_error_report(sk);
346
347 switch (sk->sk_family) {
348 case AF_INET:
349 fallthrough;
350 case AF_INET6:
351 trace_inet_sk_error_report(sk);
352 break;
353 default:
354 break;
355 }
356}
357EXPORT_SYMBOL(sk_error_report);
358
359int sock_get_timeout(long timeo, void *optval, bool old_timeval)
360{
361 struct __kernel_sock_timeval tv;
362
363 if (timeo == MAX_SCHEDULE_TIMEOUT) {
364 tv.tv_sec = 0;
365 tv.tv_usec = 0;
366 } else {
367 tv.tv_sec = timeo / HZ;
368 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
369 }
370
371 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
372 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
373 *(struct old_timeval32 *)optval = tv32;
374 return sizeof(tv32);
375 }
376
377 if (old_timeval) {
378 struct __kernel_old_timeval old_tv;
379 old_tv.tv_sec = tv.tv_sec;
380 old_tv.tv_usec = tv.tv_usec;
381 *(struct __kernel_old_timeval *)optval = old_tv;
382 return sizeof(old_tv);
383 }
384
385 *(struct __kernel_sock_timeval *)optval = tv;
386 return sizeof(tv);
387}
388EXPORT_SYMBOL(sock_get_timeout);
389
390int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
391 sockptr_t optval, int optlen, bool old_timeval)
392{
393 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
394 struct old_timeval32 tv32;
395
396 if (optlen < sizeof(tv32))
397 return -EINVAL;
398
399 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
400 return -EFAULT;
401 tv->tv_sec = tv32.tv_sec;
402 tv->tv_usec = tv32.tv_usec;
403 } else if (old_timeval) {
404 struct __kernel_old_timeval old_tv;
405
406 if (optlen < sizeof(old_tv))
407 return -EINVAL;
408 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
409 return -EFAULT;
410 tv->tv_sec = old_tv.tv_sec;
411 tv->tv_usec = old_tv.tv_usec;
412 } else {
413 if (optlen < sizeof(*tv))
414 return -EINVAL;
415 if (copy_from_sockptr(tv, optval, sizeof(*tv)))
416 return -EFAULT;
417 }
418
419 return 0;
420}
421EXPORT_SYMBOL(sock_copy_user_timeval);
422
423static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
424 bool old_timeval)
425{
426 struct __kernel_sock_timeval tv;
427 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
428
429 if (err)
430 return err;
431
432 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
433 return -EDOM;
434
435 if (tv.tv_sec < 0) {
436 static int warned __read_mostly;
437
438 *timeo_p = 0;
439 if (warned < 10 && net_ratelimit()) {
440 warned++;
441 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
442 __func__, current->comm, task_pid_nr(current));
443 }
444 return 0;
445 }
446 *timeo_p = MAX_SCHEDULE_TIMEOUT;
447 if (tv.tv_sec == 0 && tv.tv_usec == 0)
448 return 0;
449 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
450 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
451 return 0;
452}
453
454static bool sock_needs_netstamp(const struct sock *sk)
455{
456 switch (sk->sk_family) {
457 case AF_UNSPEC:
458 case AF_UNIX:
459 return false;
460 default:
461 return true;
462 }
463}
464
465static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
466{
467 if (sk->sk_flags & flags) {
468 sk->sk_flags &= ~flags;
469 if (sock_needs_netstamp(sk) &&
470 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
471 net_disable_timestamp();
472 }
473}
474
475
476int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
477{
478 unsigned long flags;
479 struct sk_buff_head *list = &sk->sk_receive_queue;
480
481 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
482 atomic_inc(&sk->sk_drops);
483 trace_sock_rcvqueue_full(sk, skb);
484 return -ENOMEM;
485 }
486
487 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
488 atomic_inc(&sk->sk_drops);
489 return -ENOBUFS;
490 }
491
492 skb->dev = NULL;
493 skb_set_owner_r(skb, sk);
494
495 /* we escape from rcu protected region, make sure we dont leak
496 * a norefcounted dst
497 */
498 skb_dst_force(skb);
499
500 spin_lock_irqsave(&list->lock, flags);
501 sock_skb_set_dropcount(sk, skb);
502 __skb_queue_tail(list, skb);
503 spin_unlock_irqrestore(&list->lock, flags);
504
505 if (!sock_flag(sk, SOCK_DEAD))
506 sk->sk_data_ready(sk);
507 return 0;
508}
509EXPORT_SYMBOL(__sock_queue_rcv_skb);
510
511int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
512 enum skb_drop_reason *reason)
513{
514 enum skb_drop_reason drop_reason;
515 int err;
516
517 err = sk_filter(sk, skb);
518 if (err) {
519 drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
520 goto out;
521 }
522 err = __sock_queue_rcv_skb(sk, skb);
523 switch (err) {
524 case -ENOMEM:
525 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
526 break;
527 case -ENOBUFS:
528 drop_reason = SKB_DROP_REASON_PROTO_MEM;
529 break;
530 default:
531 drop_reason = SKB_NOT_DROPPED_YET;
532 break;
533 }
534out:
535 if (reason)
536 *reason = drop_reason;
537 return err;
538}
539EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
540
541int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
542 const int nested, unsigned int trim_cap, bool refcounted)
543{
544 int rc = NET_RX_SUCCESS;
545
546 if (sk_filter_trim_cap(sk, skb, trim_cap))
547 goto discard_and_relse;
548
549 skb->dev = NULL;
550
551 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
552 atomic_inc(&sk->sk_drops);
553 goto discard_and_relse;
554 }
555 if (nested)
556 bh_lock_sock_nested(sk);
557 else
558 bh_lock_sock(sk);
559 if (!sock_owned_by_user(sk)) {
560 /*
561 * trylock + unlock semantics:
562 */
563 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
564
565 rc = sk_backlog_rcv(sk, skb);
566
567 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
568 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
569 bh_unlock_sock(sk);
570 atomic_inc(&sk->sk_drops);
571 goto discard_and_relse;
572 }
573
574 bh_unlock_sock(sk);
575out:
576 if (refcounted)
577 sock_put(sk);
578 return rc;
579discard_and_relse:
580 kfree_skb(skb);
581 goto out;
582}
583EXPORT_SYMBOL(__sk_receive_skb);
584
585INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
586 u32));
587INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
588 u32));
589struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
590{
591 struct dst_entry *dst = __sk_dst_get(sk);
592
593 if (dst && dst->obsolete &&
594 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
595 dst, cookie) == NULL) {
596 sk_tx_queue_clear(sk);
597 sk->sk_dst_pending_confirm = 0;
598 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
599 dst_release(dst);
600 return NULL;
601 }
602
603 return dst;
604}
605EXPORT_SYMBOL(__sk_dst_check);
606
607struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
608{
609 struct dst_entry *dst = sk_dst_get(sk);
610
611 if (dst && dst->obsolete &&
612 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
613 dst, cookie) == NULL) {
614 sk_dst_reset(sk);
615 dst_release(dst);
616 return NULL;
617 }
618
619 return dst;
620}
621EXPORT_SYMBOL(sk_dst_check);
622
623static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
624{
625 int ret = -ENOPROTOOPT;
626#ifdef CONFIG_NETDEVICES
627 struct net *net = sock_net(sk);
628
629 /* Sorry... */
630 ret = -EPERM;
631 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
632 goto out;
633
634 ret = -EINVAL;
635 if (ifindex < 0)
636 goto out;
637
638 /* Paired with all READ_ONCE() done locklessly. */
639 WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
640
641 if (sk->sk_prot->rehash)
642 sk->sk_prot->rehash(sk);
643 sk_dst_reset(sk);
644
645 ret = 0;
646
647out:
648#endif
649
650 return ret;
651}
652
653int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
654{
655 int ret;
656
657 if (lock_sk)
658 lock_sock(sk);
659 ret = sock_bindtoindex_locked(sk, ifindex);
660 if (lock_sk)
661 release_sock(sk);
662
663 return ret;
664}
665EXPORT_SYMBOL(sock_bindtoindex);
666
667static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
668{
669 int ret = -ENOPROTOOPT;
670#ifdef CONFIG_NETDEVICES
671 struct net *net = sock_net(sk);
672 char devname[IFNAMSIZ];
673 int index;
674
675 ret = -EINVAL;
676 if (optlen < 0)
677 goto out;
678
679 /* Bind this socket to a particular device like "eth0",
680 * as specified in the passed interface name. If the
681 * name is "" or the option length is zero the socket
682 * is not bound.
683 */
684 if (optlen > IFNAMSIZ - 1)
685 optlen = IFNAMSIZ - 1;
686 memset(devname, 0, sizeof(devname));
687
688 ret = -EFAULT;
689 if (copy_from_sockptr(devname, optval, optlen))
690 goto out;
691
692 index = 0;
693 if (devname[0] != '\0') {
694 struct net_device *dev;
695
696 rcu_read_lock();
697 dev = dev_get_by_name_rcu(net, devname);
698 if (dev)
699 index = dev->ifindex;
700 rcu_read_unlock();
701 ret = -ENODEV;
702 if (!dev)
703 goto out;
704 }
705
706 sockopt_lock_sock(sk);
707 ret = sock_bindtoindex_locked(sk, index);
708 sockopt_release_sock(sk);
709out:
710#endif
711
712 return ret;
713}
714
715static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
716 sockptr_t optlen, int len)
717{
718 int ret = -ENOPROTOOPT;
719#ifdef CONFIG_NETDEVICES
720 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
721 struct net *net = sock_net(sk);
722 char devname[IFNAMSIZ];
723
724 if (bound_dev_if == 0) {
725 len = 0;
726 goto zero;
727 }
728
729 ret = -EINVAL;
730 if (len < IFNAMSIZ)
731 goto out;
732
733 ret = netdev_get_name(net, devname, bound_dev_if);
734 if (ret)
735 goto out;
736
737 len = strlen(devname) + 1;
738
739 ret = -EFAULT;
740 if (copy_to_sockptr(optval, devname, len))
741 goto out;
742
743zero:
744 ret = -EFAULT;
745 if (copy_to_sockptr(optlen, &len, sizeof(int)))
746 goto out;
747
748 ret = 0;
749
750out:
751#endif
752
753 return ret;
754}
755
756bool sk_mc_loop(struct sock *sk)
757{
758 if (dev_recursion_level())
759 return false;
760 if (!sk)
761 return true;
762 switch (sk->sk_family) {
763 case AF_INET:
764 return inet_sk(sk)->mc_loop;
765#if IS_ENABLED(CONFIG_IPV6)
766 case AF_INET6:
767 return inet6_sk(sk)->mc_loop;
768#endif
769 }
770 WARN_ON_ONCE(1);
771 return true;
772}
773EXPORT_SYMBOL(sk_mc_loop);
774
775void sock_set_reuseaddr(struct sock *sk)
776{
777 lock_sock(sk);
778 sk->sk_reuse = SK_CAN_REUSE;
779 release_sock(sk);
780}
781EXPORT_SYMBOL(sock_set_reuseaddr);
782
783void sock_set_reuseport(struct sock *sk)
784{
785 lock_sock(sk);
786 sk->sk_reuseport = true;
787 release_sock(sk);
788}
789EXPORT_SYMBOL(sock_set_reuseport);
790
791void sock_no_linger(struct sock *sk)
792{
793 lock_sock(sk);
794 sk->sk_lingertime = 0;
795 sock_set_flag(sk, SOCK_LINGER);
796 release_sock(sk);
797}
798EXPORT_SYMBOL(sock_no_linger);
799
800void sock_set_priority(struct sock *sk, u32 priority)
801{
802 lock_sock(sk);
803 sk->sk_priority = priority;
804 release_sock(sk);
805}
806EXPORT_SYMBOL(sock_set_priority);
807
808void sock_set_sndtimeo(struct sock *sk, s64 secs)
809{
810 lock_sock(sk);
811 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
812 sk->sk_sndtimeo = secs * HZ;
813 else
814 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
815 release_sock(sk);
816}
817EXPORT_SYMBOL(sock_set_sndtimeo);
818
819static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
820{
821 if (val) {
822 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
823 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
824 sock_set_flag(sk, SOCK_RCVTSTAMP);
825 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
826 } else {
827 sock_reset_flag(sk, SOCK_RCVTSTAMP);
828 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
829 }
830}
831
832void sock_enable_timestamps(struct sock *sk)
833{
834 lock_sock(sk);
835 __sock_set_timestamps(sk, true, false, true);
836 release_sock(sk);
837}
838EXPORT_SYMBOL(sock_enable_timestamps);
839
840void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
841{
842 switch (optname) {
843 case SO_TIMESTAMP_OLD:
844 __sock_set_timestamps(sk, valbool, false, false);
845 break;
846 case SO_TIMESTAMP_NEW:
847 __sock_set_timestamps(sk, valbool, true, false);
848 break;
849 case SO_TIMESTAMPNS_OLD:
850 __sock_set_timestamps(sk, valbool, false, true);
851 break;
852 case SO_TIMESTAMPNS_NEW:
853 __sock_set_timestamps(sk, valbool, true, true);
854 break;
855 }
856}
857
858static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
859{
860 struct net *net = sock_net(sk);
861 struct net_device *dev = NULL;
862 bool match = false;
863 int *vclock_index;
864 int i, num;
865
866 if (sk->sk_bound_dev_if)
867 dev = dev_get_by_index(net, sk->sk_bound_dev_if);
868
869 if (!dev) {
870 pr_err("%s: sock not bind to device\n", __func__);
871 return -EOPNOTSUPP;
872 }
873
874 num = ethtool_get_phc_vclocks(dev, &vclock_index);
875 dev_put(dev);
876
877 for (i = 0; i < num; i++) {
878 if (*(vclock_index + i) == phc_index) {
879 match = true;
880 break;
881 }
882 }
883
884 if (num > 0)
885 kfree(vclock_index);
886
887 if (!match)
888 return -EINVAL;
889
890 sk->sk_bind_phc = phc_index;
891
892 return 0;
893}
894
895int sock_set_timestamping(struct sock *sk, int optname,
896 struct so_timestamping timestamping)
897{
898 int val = timestamping.flags;
899 int ret;
900
901 if (val & ~SOF_TIMESTAMPING_MASK)
902 return -EINVAL;
903
904 if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
905 !(val & SOF_TIMESTAMPING_OPT_ID))
906 return -EINVAL;
907
908 if (val & SOF_TIMESTAMPING_OPT_ID &&
909 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
910 if (sk_is_tcp(sk)) {
911 if ((1 << sk->sk_state) &
912 (TCPF_CLOSE | TCPF_LISTEN))
913 return -EINVAL;
914 if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
915 atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
916 else
917 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
918 } else {
919 atomic_set(&sk->sk_tskey, 0);
920 }
921 }
922
923 if (val & SOF_TIMESTAMPING_OPT_STATS &&
924 !(val & SOF_TIMESTAMPING_OPT_TSONLY))
925 return -EINVAL;
926
927 if (val & SOF_TIMESTAMPING_BIND_PHC) {
928 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
929 if (ret)
930 return ret;
931 }
932
933 sk->sk_tsflags = val;
934 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
935
936 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
937 sock_enable_timestamp(sk,
938 SOCK_TIMESTAMPING_RX_SOFTWARE);
939 else
940 sock_disable_timestamp(sk,
941 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
942 return 0;
943}
944
945void sock_set_keepalive(struct sock *sk)
946{
947 lock_sock(sk);
948 if (sk->sk_prot->keepalive)
949 sk->sk_prot->keepalive(sk, true);
950 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
951 release_sock(sk);
952}
953EXPORT_SYMBOL(sock_set_keepalive);
954
955static void __sock_set_rcvbuf(struct sock *sk, int val)
956{
957 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
958 * as a negative value.
959 */
960 val = min_t(int, val, INT_MAX / 2);
961 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
962
963 /* We double it on the way in to account for "struct sk_buff" etc.
964 * overhead. Applications assume that the SO_RCVBUF setting they make
965 * will allow that much actual data to be received on that socket.
966 *
967 * Applications are unaware that "struct sk_buff" and other overheads
968 * allocate from the receive buffer during socket buffer allocation.
969 *
970 * And after considering the possible alternatives, returning the value
971 * we actually used in getsockopt is the most desirable behavior.
972 */
973 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
974}
975
976void sock_set_rcvbuf(struct sock *sk, int val)
977{
978 lock_sock(sk);
979 __sock_set_rcvbuf(sk, val);
980 release_sock(sk);
981}
982EXPORT_SYMBOL(sock_set_rcvbuf);
983
984static void __sock_set_mark(struct sock *sk, u32 val)
985{
986 if (val != sk->sk_mark) {
987 sk->sk_mark = val;
988 sk_dst_reset(sk);
989 }
990}
991
992void sock_set_mark(struct sock *sk, u32 val)
993{
994 lock_sock(sk);
995 __sock_set_mark(sk, val);
996 release_sock(sk);
997}
998EXPORT_SYMBOL(sock_set_mark);
999
1000static void sock_release_reserved_memory(struct sock *sk, int bytes)
1001{
1002 /* Round down bytes to multiple of pages */
1003 bytes = round_down(bytes, PAGE_SIZE);
1004
1005 WARN_ON(bytes > sk->sk_reserved_mem);
1006 sk->sk_reserved_mem -= bytes;
1007 sk_mem_reclaim(sk);
1008}
1009
1010static int sock_reserve_memory(struct sock *sk, int bytes)
1011{
1012 long allocated;
1013 bool charged;
1014 int pages;
1015
1016 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1017 return -EOPNOTSUPP;
1018
1019 if (!bytes)
1020 return 0;
1021
1022 pages = sk_mem_pages(bytes);
1023
1024 /* pre-charge to memcg */
1025 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1026 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1027 if (!charged)
1028 return -ENOMEM;
1029
1030 /* pre-charge to forward_alloc */
1031 sk_memory_allocated_add(sk, pages);
1032 allocated = sk_memory_allocated(sk);
1033 /* If the system goes into memory pressure with this
1034 * precharge, give up and return error.
1035 */
1036 if (allocated > sk_prot_mem_limits(sk, 1)) {
1037 sk_memory_allocated_sub(sk, pages);
1038 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1039 return -ENOMEM;
1040 }
1041 sk->sk_forward_alloc += pages << PAGE_SHIFT;
1042
1043 sk->sk_reserved_mem += pages << PAGE_SHIFT;
1044
1045 return 0;
1046}
1047
1048void sockopt_lock_sock(struct sock *sk)
1049{
1050 /* When current->bpf_ctx is set, the setsockopt is called from
1051 * a bpf prog. bpf has ensured the sk lock has been
1052 * acquired before calling setsockopt().
1053 */
1054 if (has_current_bpf_ctx())
1055 return;
1056
1057 lock_sock(sk);
1058}
1059EXPORT_SYMBOL(sockopt_lock_sock);
1060
1061void sockopt_release_sock(struct sock *sk)
1062{
1063 if (has_current_bpf_ctx())
1064 return;
1065
1066 release_sock(sk);
1067}
1068EXPORT_SYMBOL(sockopt_release_sock);
1069
1070bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1071{
1072 return has_current_bpf_ctx() || ns_capable(ns, cap);
1073}
1074EXPORT_SYMBOL(sockopt_ns_capable);
1075
1076bool sockopt_capable(int cap)
1077{
1078 return has_current_bpf_ctx() || capable(cap);
1079}
1080EXPORT_SYMBOL(sockopt_capable);
1081
1082/*
1083 * This is meant for all protocols to use and covers goings on
1084 * at the socket level. Everything here is generic.
1085 */
1086
1087int sk_setsockopt(struct sock *sk, int level, int optname,
1088 sockptr_t optval, unsigned int optlen)
1089{
1090 struct so_timestamping timestamping;
1091 struct socket *sock = sk->sk_socket;
1092 struct sock_txtime sk_txtime;
1093 int val;
1094 int valbool;
1095 struct linger ling;
1096 int ret = 0;
1097
1098 /*
1099 * Options without arguments
1100 */
1101
1102 if (optname == SO_BINDTODEVICE)
1103 return sock_setbindtodevice(sk, optval, optlen);
1104
1105 if (optlen < sizeof(int))
1106 return -EINVAL;
1107
1108 if (copy_from_sockptr(&val, optval, sizeof(val)))
1109 return -EFAULT;
1110
1111 valbool = val ? 1 : 0;
1112
1113 sockopt_lock_sock(sk);
1114
1115 switch (optname) {
1116 case SO_DEBUG:
1117 if (val && !sockopt_capable(CAP_NET_ADMIN))
1118 ret = -EACCES;
1119 else
1120 sock_valbool_flag(sk, SOCK_DBG, valbool);
1121 break;
1122 case SO_REUSEADDR:
1123 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1124 break;
1125 case SO_REUSEPORT:
1126 sk->sk_reuseport = valbool;
1127 break;
1128 case SO_TYPE:
1129 case SO_PROTOCOL:
1130 case SO_DOMAIN:
1131 case SO_ERROR:
1132 ret = -ENOPROTOOPT;
1133 break;
1134 case SO_DONTROUTE:
1135 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1136 sk_dst_reset(sk);
1137 break;
1138 case SO_BROADCAST:
1139 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1140 break;
1141 case SO_SNDBUF:
1142 /* Don't error on this BSD doesn't and if you think
1143 * about it this is right. Otherwise apps have to
1144 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1145 * are treated in BSD as hints
1146 */
1147 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1148set_sndbuf:
1149 /* Ensure val * 2 fits into an int, to prevent max_t()
1150 * from treating it as a negative value.
1151 */
1152 val = min_t(int, val, INT_MAX / 2);
1153 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1154 WRITE_ONCE(sk->sk_sndbuf,
1155 max_t(int, val * 2, SOCK_MIN_SNDBUF));
1156 /* Wake up sending tasks if we upped the value. */
1157 sk->sk_write_space(sk);
1158 break;
1159
1160 case SO_SNDBUFFORCE:
1161 if (!sockopt_capable(CAP_NET_ADMIN)) {
1162 ret = -EPERM;
1163 break;
1164 }
1165
1166 /* No negative values (to prevent underflow, as val will be
1167 * multiplied by 2).
1168 */
1169 if (val < 0)
1170 val = 0;
1171 goto set_sndbuf;
1172
1173 case SO_RCVBUF:
1174 /* Don't error on this BSD doesn't and if you think
1175 * about it this is right. Otherwise apps have to
1176 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1177 * are treated in BSD as hints
1178 */
1179 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1180 break;
1181
1182 case SO_RCVBUFFORCE:
1183 if (!sockopt_capable(CAP_NET_ADMIN)) {
1184 ret = -EPERM;
1185 break;
1186 }
1187
1188 /* No negative values (to prevent underflow, as val will be
1189 * multiplied by 2).
1190 */
1191 __sock_set_rcvbuf(sk, max(val, 0));
1192 break;
1193
1194 case SO_KEEPALIVE:
1195 if (sk->sk_prot->keepalive)
1196 sk->sk_prot->keepalive(sk, valbool);
1197 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1198 break;
1199
1200 case SO_OOBINLINE:
1201 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1202 break;
1203
1204 case SO_NO_CHECK:
1205 sk->sk_no_check_tx = valbool;
1206 break;
1207
1208 case SO_PRIORITY:
1209 if ((val >= 0 && val <= 6) ||
1210 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1211 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1212 sk->sk_priority = val;
1213 else
1214 ret = -EPERM;
1215 break;
1216
1217 case SO_LINGER:
1218 if (optlen < sizeof(ling)) {
1219 ret = -EINVAL; /* 1003.1g */
1220 break;
1221 }
1222 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1223 ret = -EFAULT;
1224 break;
1225 }
1226 if (!ling.l_onoff)
1227 sock_reset_flag(sk, SOCK_LINGER);
1228 else {
1229#if (BITS_PER_LONG == 32)
1230 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1231 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1232 else
1233#endif
1234 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1235 sock_set_flag(sk, SOCK_LINGER);
1236 }
1237 break;
1238
1239 case SO_BSDCOMPAT:
1240 break;
1241
1242 case SO_PASSCRED:
1243 if (valbool)
1244 set_bit(SOCK_PASSCRED, &sock->flags);
1245 else
1246 clear_bit(SOCK_PASSCRED, &sock->flags);
1247 break;
1248
1249 case SO_TIMESTAMP_OLD:
1250 case SO_TIMESTAMP_NEW:
1251 case SO_TIMESTAMPNS_OLD:
1252 case SO_TIMESTAMPNS_NEW:
1253 sock_set_timestamp(sk, optname, valbool);
1254 break;
1255
1256 case SO_TIMESTAMPING_NEW:
1257 case SO_TIMESTAMPING_OLD:
1258 if (optlen == sizeof(timestamping)) {
1259 if (copy_from_sockptr(×tamping, optval,
1260 sizeof(timestamping))) {
1261 ret = -EFAULT;
1262 break;
1263 }
1264 } else {
1265 memset(×tamping, 0, sizeof(timestamping));
1266 timestamping.flags = val;
1267 }
1268 ret = sock_set_timestamping(sk, optname, timestamping);
1269 break;
1270
1271 case SO_RCVLOWAT:
1272 if (val < 0)
1273 val = INT_MAX;
1274 if (sock && sock->ops->set_rcvlowat)
1275 ret = sock->ops->set_rcvlowat(sk, val);
1276 else
1277 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1278 break;
1279
1280 case SO_RCVTIMEO_OLD:
1281 case SO_RCVTIMEO_NEW:
1282 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1283 optlen, optname == SO_RCVTIMEO_OLD);
1284 break;
1285
1286 case SO_SNDTIMEO_OLD:
1287 case SO_SNDTIMEO_NEW:
1288 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1289 optlen, optname == SO_SNDTIMEO_OLD);
1290 break;
1291
1292 case SO_ATTACH_FILTER: {
1293 struct sock_fprog fprog;
1294
1295 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1296 if (!ret)
1297 ret = sk_attach_filter(&fprog, sk);
1298 break;
1299 }
1300 case SO_ATTACH_BPF:
1301 ret = -EINVAL;
1302 if (optlen == sizeof(u32)) {
1303 u32 ufd;
1304
1305 ret = -EFAULT;
1306 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1307 break;
1308
1309 ret = sk_attach_bpf(ufd, sk);
1310 }
1311 break;
1312
1313 case SO_ATTACH_REUSEPORT_CBPF: {
1314 struct sock_fprog fprog;
1315
1316 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1317 if (!ret)
1318 ret = sk_reuseport_attach_filter(&fprog, sk);
1319 break;
1320 }
1321 case SO_ATTACH_REUSEPORT_EBPF:
1322 ret = -EINVAL;
1323 if (optlen == sizeof(u32)) {
1324 u32 ufd;
1325
1326 ret = -EFAULT;
1327 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1328 break;
1329
1330 ret = sk_reuseport_attach_bpf(ufd, sk);
1331 }
1332 break;
1333
1334 case SO_DETACH_REUSEPORT_BPF:
1335 ret = reuseport_detach_prog(sk);
1336 break;
1337
1338 case SO_DETACH_FILTER:
1339 ret = sk_detach_filter(sk);
1340 break;
1341
1342 case SO_LOCK_FILTER:
1343 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1344 ret = -EPERM;
1345 else
1346 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1347 break;
1348
1349 case SO_PASSSEC:
1350 if (valbool)
1351 set_bit(SOCK_PASSSEC, &sock->flags);
1352 else
1353 clear_bit(SOCK_PASSSEC, &sock->flags);
1354 break;
1355 case SO_MARK:
1356 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1357 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1358 ret = -EPERM;
1359 break;
1360 }
1361
1362 __sock_set_mark(sk, val);
1363 break;
1364 case SO_RCVMARK:
1365 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1366 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1367 ret = -EPERM;
1368 break;
1369 }
1370
1371 sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1372 break;
1373
1374 case SO_RXQ_OVFL:
1375 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1376 break;
1377
1378 case SO_WIFI_STATUS:
1379 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1380 break;
1381
1382 case SO_PEEK_OFF:
1383 if (sock->ops->set_peek_off)
1384 ret = sock->ops->set_peek_off(sk, val);
1385 else
1386 ret = -EOPNOTSUPP;
1387 break;
1388
1389 case SO_NOFCS:
1390 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1391 break;
1392
1393 case SO_SELECT_ERR_QUEUE:
1394 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1395 break;
1396
1397#ifdef CONFIG_NET_RX_BUSY_POLL
1398 case SO_BUSY_POLL:
1399 /* allow unprivileged users to decrease the value */
1400 if ((val > sk->sk_ll_usec) && !sockopt_capable(CAP_NET_ADMIN))
1401 ret = -EPERM;
1402 else {
1403 if (val < 0)
1404 ret = -EINVAL;
1405 else
1406 WRITE_ONCE(sk->sk_ll_usec, val);
1407 }
1408 break;
1409 case SO_PREFER_BUSY_POLL:
1410 if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1411 ret = -EPERM;
1412 else
1413 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1414 break;
1415 case SO_BUSY_POLL_BUDGET:
1416 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !sockopt_capable(CAP_NET_ADMIN)) {
1417 ret = -EPERM;
1418 } else {
1419 if (val < 0 || val > U16_MAX)
1420 ret = -EINVAL;
1421 else
1422 WRITE_ONCE(sk->sk_busy_poll_budget, val);
1423 }
1424 break;
1425#endif
1426
1427 case SO_MAX_PACING_RATE:
1428 {
1429 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1430
1431 if (sizeof(ulval) != sizeof(val) &&
1432 optlen >= sizeof(ulval) &&
1433 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1434 ret = -EFAULT;
1435 break;
1436 }
1437 if (ulval != ~0UL)
1438 cmpxchg(&sk->sk_pacing_status,
1439 SK_PACING_NONE,
1440 SK_PACING_NEEDED);
1441 sk->sk_max_pacing_rate = ulval;
1442 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1443 break;
1444 }
1445 case SO_INCOMING_CPU:
1446 reuseport_update_incoming_cpu(sk, val);
1447 break;
1448
1449 case SO_CNX_ADVICE:
1450 if (val == 1)
1451 dst_negative_advice(sk);
1452 break;
1453
1454 case SO_ZEROCOPY:
1455 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1456 if (!(sk_is_tcp(sk) ||
1457 (sk->sk_type == SOCK_DGRAM &&
1458 sk->sk_protocol == IPPROTO_UDP)))
1459 ret = -EOPNOTSUPP;
1460 } else if (sk->sk_family != PF_RDS) {
1461 ret = -EOPNOTSUPP;
1462 }
1463 if (!ret) {
1464 if (val < 0 || val > 1)
1465 ret = -EINVAL;
1466 else
1467 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1468 }
1469 break;
1470
1471 case SO_TXTIME:
1472 if (optlen != sizeof(struct sock_txtime)) {
1473 ret = -EINVAL;
1474 break;
1475 } else if (copy_from_sockptr(&sk_txtime, optval,
1476 sizeof(struct sock_txtime))) {
1477 ret = -EFAULT;
1478 break;
1479 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1480 ret = -EINVAL;
1481 break;
1482 }
1483 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1484 * scheduler has enough safe guards.
1485 */
1486 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1487 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1488 ret = -EPERM;
1489 break;
1490 }
1491 sock_valbool_flag(sk, SOCK_TXTIME, true);
1492 sk->sk_clockid = sk_txtime.clockid;
1493 sk->sk_txtime_deadline_mode =
1494 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1495 sk->sk_txtime_report_errors =
1496 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1497 break;
1498
1499 case SO_BINDTOIFINDEX:
1500 ret = sock_bindtoindex_locked(sk, val);
1501 break;
1502
1503 case SO_BUF_LOCK:
1504 if (val & ~SOCK_BUF_LOCK_MASK) {
1505 ret = -EINVAL;
1506 break;
1507 }
1508 sk->sk_userlocks = val | (sk->sk_userlocks &
1509 ~SOCK_BUF_LOCK_MASK);
1510 break;
1511
1512 case SO_RESERVE_MEM:
1513 {
1514 int delta;
1515
1516 if (val < 0) {
1517 ret = -EINVAL;
1518 break;
1519 }
1520
1521 delta = val - sk->sk_reserved_mem;
1522 if (delta < 0)
1523 sock_release_reserved_memory(sk, -delta);
1524 else
1525 ret = sock_reserve_memory(sk, delta);
1526 break;
1527 }
1528
1529 case SO_TXREHASH:
1530 if (val < -1 || val > 1) {
1531 ret = -EINVAL;
1532 break;
1533 }
1534 if ((u8)val == SOCK_TXREHASH_DEFAULT)
1535 val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1536 /* Paired with READ_ONCE() in tcp_rtx_synack() */
1537 WRITE_ONCE(sk->sk_txrehash, (u8)val);
1538 break;
1539
1540 default:
1541 ret = -ENOPROTOOPT;
1542 break;
1543 }
1544 sockopt_release_sock(sk);
1545 return ret;
1546}
1547
1548int sock_setsockopt(struct socket *sock, int level, int optname,
1549 sockptr_t optval, unsigned int optlen)
1550{
1551 return sk_setsockopt(sock->sk, level, optname,
1552 optval, optlen);
1553}
1554EXPORT_SYMBOL(sock_setsockopt);
1555
1556static const struct cred *sk_get_peer_cred(struct sock *sk)
1557{
1558 const struct cred *cred;
1559
1560 spin_lock(&sk->sk_peer_lock);
1561 cred = get_cred(sk->sk_peer_cred);
1562 spin_unlock(&sk->sk_peer_lock);
1563
1564 return cred;
1565}
1566
1567static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1568 struct ucred *ucred)
1569{
1570 ucred->pid = pid_vnr(pid);
1571 ucred->uid = ucred->gid = -1;
1572 if (cred) {
1573 struct user_namespace *current_ns = current_user_ns();
1574
1575 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1576 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1577 }
1578}
1579
1580static int groups_to_user(sockptr_t dst, const struct group_info *src)
1581{
1582 struct user_namespace *user_ns = current_user_ns();
1583 int i;
1584
1585 for (i = 0; i < src->ngroups; i++) {
1586 gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1587
1588 if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1589 return -EFAULT;
1590 }
1591
1592 return 0;
1593}
1594
1595int sk_getsockopt(struct sock *sk, int level, int optname,
1596 sockptr_t optval, sockptr_t optlen)
1597{
1598 struct socket *sock = sk->sk_socket;
1599
1600 union {
1601 int val;
1602 u64 val64;
1603 unsigned long ulval;
1604 struct linger ling;
1605 struct old_timeval32 tm32;
1606 struct __kernel_old_timeval tm;
1607 struct __kernel_sock_timeval stm;
1608 struct sock_txtime txtime;
1609 struct so_timestamping timestamping;
1610 } v;
1611
1612 int lv = sizeof(int);
1613 int len;
1614
1615 if (copy_from_sockptr(&len, optlen, sizeof(int)))
1616 return -EFAULT;
1617 if (len < 0)
1618 return -EINVAL;
1619
1620 memset(&v, 0, sizeof(v));
1621
1622 switch (optname) {
1623 case SO_DEBUG:
1624 v.val = sock_flag(sk, SOCK_DBG);
1625 break;
1626
1627 case SO_DONTROUTE:
1628 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1629 break;
1630
1631 case SO_BROADCAST:
1632 v.val = sock_flag(sk, SOCK_BROADCAST);
1633 break;
1634
1635 case SO_SNDBUF:
1636 v.val = sk->sk_sndbuf;
1637 break;
1638
1639 case SO_RCVBUF:
1640 v.val = sk->sk_rcvbuf;
1641 break;
1642
1643 case SO_REUSEADDR:
1644 v.val = sk->sk_reuse;
1645 break;
1646
1647 case SO_REUSEPORT:
1648 v.val = sk->sk_reuseport;
1649 break;
1650
1651 case SO_KEEPALIVE:
1652 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1653 break;
1654
1655 case SO_TYPE:
1656 v.val = sk->sk_type;
1657 break;
1658
1659 case SO_PROTOCOL:
1660 v.val = sk->sk_protocol;
1661 break;
1662
1663 case SO_DOMAIN:
1664 v.val = sk->sk_family;
1665 break;
1666
1667 case SO_ERROR:
1668 v.val = -sock_error(sk);
1669 if (v.val == 0)
1670 v.val = xchg(&sk->sk_err_soft, 0);
1671 break;
1672
1673 case SO_OOBINLINE:
1674 v.val = sock_flag(sk, SOCK_URGINLINE);
1675 break;
1676
1677 case SO_NO_CHECK:
1678 v.val = sk->sk_no_check_tx;
1679 break;
1680
1681 case SO_PRIORITY:
1682 v.val = sk->sk_priority;
1683 break;
1684
1685 case SO_LINGER:
1686 lv = sizeof(v.ling);
1687 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1688 v.ling.l_linger = sk->sk_lingertime / HZ;
1689 break;
1690
1691 case SO_BSDCOMPAT:
1692 break;
1693
1694 case SO_TIMESTAMP_OLD:
1695 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1696 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1697 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1698 break;
1699
1700 case SO_TIMESTAMPNS_OLD:
1701 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1702 break;
1703
1704 case SO_TIMESTAMP_NEW:
1705 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1706 break;
1707
1708 case SO_TIMESTAMPNS_NEW:
1709 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1710 break;
1711
1712 case SO_TIMESTAMPING_OLD:
1713 lv = sizeof(v.timestamping);
1714 v.timestamping.flags = sk->sk_tsflags;
1715 v.timestamping.bind_phc = sk->sk_bind_phc;
1716 break;
1717
1718 case SO_RCVTIMEO_OLD:
1719 case SO_RCVTIMEO_NEW:
1720 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1721 break;
1722
1723 case SO_SNDTIMEO_OLD:
1724 case SO_SNDTIMEO_NEW:
1725 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1726 break;
1727
1728 case SO_RCVLOWAT:
1729 v.val = sk->sk_rcvlowat;
1730 break;
1731
1732 case SO_SNDLOWAT:
1733 v.val = 1;
1734 break;
1735
1736 case SO_PASSCRED:
1737 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1738 break;
1739
1740 case SO_PEERCRED:
1741 {
1742 struct ucred peercred;
1743 if (len > sizeof(peercred))
1744 len = sizeof(peercred);
1745
1746 spin_lock(&sk->sk_peer_lock);
1747 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1748 spin_unlock(&sk->sk_peer_lock);
1749
1750 if (copy_to_sockptr(optval, &peercred, len))
1751 return -EFAULT;
1752 goto lenout;
1753 }
1754
1755 case SO_PEERGROUPS:
1756 {
1757 const struct cred *cred;
1758 int ret, n;
1759
1760 cred = sk_get_peer_cred(sk);
1761 if (!cred)
1762 return -ENODATA;
1763
1764 n = cred->group_info->ngroups;
1765 if (len < n * sizeof(gid_t)) {
1766 len = n * sizeof(gid_t);
1767 put_cred(cred);
1768 return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1769 }
1770 len = n * sizeof(gid_t);
1771
1772 ret = groups_to_user(optval, cred->group_info);
1773 put_cred(cred);
1774 if (ret)
1775 return ret;
1776 goto lenout;
1777 }
1778
1779 case SO_PEERNAME:
1780 {
1781 char address[128];
1782
1783 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1784 if (lv < 0)
1785 return -ENOTCONN;
1786 if (lv < len)
1787 return -EINVAL;
1788 if (copy_to_sockptr(optval, address, len))
1789 return -EFAULT;
1790 goto lenout;
1791 }
1792
1793 /* Dubious BSD thing... Probably nobody even uses it, but
1794 * the UNIX standard wants it for whatever reason... -DaveM
1795 */
1796 case SO_ACCEPTCONN:
1797 v.val = sk->sk_state == TCP_LISTEN;
1798 break;
1799
1800 case SO_PASSSEC:
1801 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1802 break;
1803
1804 case SO_PEERSEC:
1805 return security_socket_getpeersec_stream(sock,
1806 optval, optlen, len);
1807
1808 case SO_MARK:
1809 v.val = sk->sk_mark;
1810 break;
1811
1812 case SO_RCVMARK:
1813 v.val = sock_flag(sk, SOCK_RCVMARK);
1814 break;
1815
1816 case SO_RXQ_OVFL:
1817 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1818 break;
1819
1820 case SO_WIFI_STATUS:
1821 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1822 break;
1823
1824 case SO_PEEK_OFF:
1825 if (!sock->ops->set_peek_off)
1826 return -EOPNOTSUPP;
1827
1828 v.val = sk->sk_peek_off;
1829 break;
1830 case SO_NOFCS:
1831 v.val = sock_flag(sk, SOCK_NOFCS);
1832 break;
1833
1834 case SO_BINDTODEVICE:
1835 return sock_getbindtodevice(sk, optval, optlen, len);
1836
1837 case SO_GET_FILTER:
1838 len = sk_get_filter(sk, optval, len);
1839 if (len < 0)
1840 return len;
1841
1842 goto lenout;
1843
1844 case SO_LOCK_FILTER:
1845 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1846 break;
1847
1848 case SO_BPF_EXTENSIONS:
1849 v.val = bpf_tell_extensions();
1850 break;
1851
1852 case SO_SELECT_ERR_QUEUE:
1853 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1854 break;
1855
1856#ifdef CONFIG_NET_RX_BUSY_POLL
1857 case SO_BUSY_POLL:
1858 v.val = sk->sk_ll_usec;
1859 break;
1860 case SO_PREFER_BUSY_POLL:
1861 v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1862 break;
1863#endif
1864
1865 case SO_MAX_PACING_RATE:
1866 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1867 lv = sizeof(v.ulval);
1868 v.ulval = sk->sk_max_pacing_rate;
1869 } else {
1870 /* 32bit version */
1871 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1872 }
1873 break;
1874
1875 case SO_INCOMING_CPU:
1876 v.val = READ_ONCE(sk->sk_incoming_cpu);
1877 break;
1878
1879 case SO_MEMINFO:
1880 {
1881 u32 meminfo[SK_MEMINFO_VARS];
1882
1883 sk_get_meminfo(sk, meminfo);
1884
1885 len = min_t(unsigned int, len, sizeof(meminfo));
1886 if (copy_to_sockptr(optval, &meminfo, len))
1887 return -EFAULT;
1888
1889 goto lenout;
1890 }
1891
1892#ifdef CONFIG_NET_RX_BUSY_POLL
1893 case SO_INCOMING_NAPI_ID:
1894 v.val = READ_ONCE(sk->sk_napi_id);
1895
1896 /* aggregate non-NAPI IDs down to 0 */
1897 if (v.val < MIN_NAPI_ID)
1898 v.val = 0;
1899
1900 break;
1901#endif
1902
1903 case SO_COOKIE:
1904 lv = sizeof(u64);
1905 if (len < lv)
1906 return -EINVAL;
1907 v.val64 = sock_gen_cookie(sk);
1908 break;
1909
1910 case SO_ZEROCOPY:
1911 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1912 break;
1913
1914 case SO_TXTIME:
1915 lv = sizeof(v.txtime);
1916 v.txtime.clockid = sk->sk_clockid;
1917 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1918 SOF_TXTIME_DEADLINE_MODE : 0;
1919 v.txtime.flags |= sk->sk_txtime_report_errors ?
1920 SOF_TXTIME_REPORT_ERRORS : 0;
1921 break;
1922
1923 case SO_BINDTOIFINDEX:
1924 v.val = READ_ONCE(sk->sk_bound_dev_if);
1925 break;
1926
1927 case SO_NETNS_COOKIE:
1928 lv = sizeof(u64);
1929 if (len != lv)
1930 return -EINVAL;
1931 v.val64 = sock_net(sk)->net_cookie;
1932 break;
1933
1934 case SO_BUF_LOCK:
1935 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1936 break;
1937
1938 case SO_RESERVE_MEM:
1939 v.val = sk->sk_reserved_mem;
1940 break;
1941
1942 case SO_TXREHASH:
1943 v.val = sk->sk_txrehash;
1944 break;
1945
1946 default:
1947 /* We implement the SO_SNDLOWAT etc to not be settable
1948 * (1003.1g 7).
1949 */
1950 return -ENOPROTOOPT;
1951 }
1952
1953 if (len > lv)
1954 len = lv;
1955 if (copy_to_sockptr(optval, &v, len))
1956 return -EFAULT;
1957lenout:
1958 if (copy_to_sockptr(optlen, &len, sizeof(int)))
1959 return -EFAULT;
1960 return 0;
1961}
1962
1963int sock_getsockopt(struct socket *sock, int level, int optname,
1964 char __user *optval, int __user *optlen)
1965{
1966 return sk_getsockopt(sock->sk, level, optname,
1967 USER_SOCKPTR(optval),
1968 USER_SOCKPTR(optlen));
1969}
1970
1971/*
1972 * Initialize an sk_lock.
1973 *
1974 * (We also register the sk_lock with the lock validator.)
1975 */
1976static inline void sock_lock_init(struct sock *sk)
1977{
1978 if (sk->sk_kern_sock)
1979 sock_lock_init_class_and_name(
1980 sk,
1981 af_family_kern_slock_key_strings[sk->sk_family],
1982 af_family_kern_slock_keys + sk->sk_family,
1983 af_family_kern_key_strings[sk->sk_family],
1984 af_family_kern_keys + sk->sk_family);
1985 else
1986 sock_lock_init_class_and_name(
1987 sk,
1988 af_family_slock_key_strings[sk->sk_family],
1989 af_family_slock_keys + sk->sk_family,
1990 af_family_key_strings[sk->sk_family],
1991 af_family_keys + sk->sk_family);
1992}
1993
1994/*
1995 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1996 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1997 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1998 */
1999static void sock_copy(struct sock *nsk, const struct sock *osk)
2000{
2001 const struct proto *prot = READ_ONCE(osk->sk_prot);
2002#ifdef CONFIG_SECURITY_NETWORK
2003 void *sptr = nsk->sk_security;
2004#endif
2005
2006 /* If we move sk_tx_queue_mapping out of the private section,
2007 * we must check if sk_tx_queue_clear() is called after
2008 * sock_copy() in sk_clone_lock().
2009 */
2010 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2011 offsetof(struct sock, sk_dontcopy_begin) ||
2012 offsetof(struct sock, sk_tx_queue_mapping) >=
2013 offsetof(struct sock, sk_dontcopy_end));
2014
2015 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2016
2017 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2018 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
2019
2020#ifdef CONFIG_SECURITY_NETWORK
2021 nsk->sk_security = sptr;
2022 security_sk_clone(osk, nsk);
2023#endif
2024}
2025
2026static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2027 int family)
2028{
2029 struct sock *sk;
2030 struct kmem_cache *slab;
2031
2032 slab = prot->slab;
2033 if (slab != NULL) {
2034 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2035 if (!sk)
2036 return sk;
2037 if (want_init_on_alloc(priority))
2038 sk_prot_clear_nulls(sk, prot->obj_size);
2039 } else
2040 sk = kmalloc(prot->obj_size, priority);
2041
2042 if (sk != NULL) {
2043 if (security_sk_alloc(sk, family, priority))
2044 goto out_free;
2045
2046 if (!try_module_get(prot->owner))
2047 goto out_free_sec;
2048 }
2049
2050 return sk;
2051
2052out_free_sec:
2053 security_sk_free(sk);
2054out_free:
2055 if (slab != NULL)
2056 kmem_cache_free(slab, sk);
2057 else
2058 kfree(sk);
2059 return NULL;
2060}
2061
2062static void sk_prot_free(struct proto *prot, struct sock *sk)
2063{
2064 struct kmem_cache *slab;
2065 struct module *owner;
2066
2067 owner = prot->owner;
2068 slab = prot->slab;
2069
2070 cgroup_sk_free(&sk->sk_cgrp_data);
2071 mem_cgroup_sk_free(sk);
2072 security_sk_free(sk);
2073 if (slab != NULL)
2074 kmem_cache_free(slab, sk);
2075 else
2076 kfree(sk);
2077 module_put(owner);
2078}
2079
2080/**
2081 * sk_alloc - All socket objects are allocated here
2082 * @net: the applicable net namespace
2083 * @family: protocol family
2084 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2085 * @prot: struct proto associated with this new sock instance
2086 * @kern: is this to be a kernel socket?
2087 */
2088struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2089 struct proto *prot, int kern)
2090{
2091 struct sock *sk;
2092
2093 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2094 if (sk) {
2095 sk->sk_family = family;
2096 /*
2097 * See comment in struct sock definition to understand
2098 * why we need sk_prot_creator -acme
2099 */
2100 sk->sk_prot = sk->sk_prot_creator = prot;
2101 sk->sk_kern_sock = kern;
2102 sock_lock_init(sk);
2103 sk->sk_net_refcnt = kern ? 0 : 1;
2104 if (likely(sk->sk_net_refcnt)) {
2105 get_net_track(net, &sk->ns_tracker, priority);
2106 sock_inuse_add(net, 1);
2107 } else {
2108 __netns_tracker_alloc(net, &sk->ns_tracker,
2109 false, priority);
2110 }
2111
2112 sock_net_set(sk, net);
2113 refcount_set(&sk->sk_wmem_alloc, 1);
2114
2115 mem_cgroup_sk_alloc(sk);
2116 cgroup_sk_alloc(&sk->sk_cgrp_data);
2117 sock_update_classid(&sk->sk_cgrp_data);
2118 sock_update_netprioidx(&sk->sk_cgrp_data);
2119 sk_tx_queue_clear(sk);
2120 }
2121
2122 return sk;
2123}
2124EXPORT_SYMBOL(sk_alloc);
2125
2126/* Sockets having SOCK_RCU_FREE will call this function after one RCU
2127 * grace period. This is the case for UDP sockets and TCP listeners.
2128 */
2129static void __sk_destruct(struct rcu_head *head)
2130{
2131 struct sock *sk = container_of(head, struct sock, sk_rcu);
2132 struct sk_filter *filter;
2133
2134 if (sk->sk_destruct)
2135 sk->sk_destruct(sk);
2136
2137 filter = rcu_dereference_check(sk->sk_filter,
2138 refcount_read(&sk->sk_wmem_alloc) == 0);
2139 if (filter) {
2140 sk_filter_uncharge(sk, filter);
2141 RCU_INIT_POINTER(sk->sk_filter, NULL);
2142 }
2143
2144 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2145
2146#ifdef CONFIG_BPF_SYSCALL
2147 bpf_sk_storage_free(sk);
2148#endif
2149
2150 if (atomic_read(&sk->sk_omem_alloc))
2151 pr_debug("%s: optmem leakage (%d bytes) detected\n",
2152 __func__, atomic_read(&sk->sk_omem_alloc));
2153
2154 if (sk->sk_frag.page) {
2155 put_page(sk->sk_frag.page);
2156 sk->sk_frag.page = NULL;
2157 }
2158
2159 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2160 put_cred(sk->sk_peer_cred);
2161 put_pid(sk->sk_peer_pid);
2162
2163 if (likely(sk->sk_net_refcnt))
2164 put_net_track(sock_net(sk), &sk->ns_tracker);
2165 else
2166 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false);
2167
2168 sk_prot_free(sk->sk_prot_creator, sk);
2169}
2170
2171void sk_destruct(struct sock *sk)
2172{
2173 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2174
2175 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2176 reuseport_detach_sock(sk);
2177 use_call_rcu = true;
2178 }
2179
2180 if (use_call_rcu)
2181 call_rcu(&sk->sk_rcu, __sk_destruct);
2182 else
2183 __sk_destruct(&sk->sk_rcu);
2184}
2185
2186static void __sk_free(struct sock *sk)
2187{
2188 if (likely(sk->sk_net_refcnt))
2189 sock_inuse_add(sock_net(sk), -1);
2190
2191 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2192 sock_diag_broadcast_destroy(sk);
2193 else
2194 sk_destruct(sk);
2195}
2196
2197void sk_free(struct sock *sk)
2198{
2199 /*
2200 * We subtract one from sk_wmem_alloc and can know if
2201 * some packets are still in some tx queue.
2202 * If not null, sock_wfree() will call __sk_free(sk) later
2203 */
2204 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2205 __sk_free(sk);
2206}
2207EXPORT_SYMBOL(sk_free);
2208
2209static void sk_init_common(struct sock *sk)
2210{
2211 skb_queue_head_init(&sk->sk_receive_queue);
2212 skb_queue_head_init(&sk->sk_write_queue);
2213 skb_queue_head_init(&sk->sk_error_queue);
2214
2215 rwlock_init(&sk->sk_callback_lock);
2216 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2217 af_rlock_keys + sk->sk_family,
2218 af_family_rlock_key_strings[sk->sk_family]);
2219 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2220 af_wlock_keys + sk->sk_family,
2221 af_family_wlock_key_strings[sk->sk_family]);
2222 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2223 af_elock_keys + sk->sk_family,
2224 af_family_elock_key_strings[sk->sk_family]);
2225 lockdep_set_class_and_name(&sk->sk_callback_lock,
2226 af_callback_keys + sk->sk_family,
2227 af_family_clock_key_strings[sk->sk_family]);
2228}
2229
2230/**
2231 * sk_clone_lock - clone a socket, and lock its clone
2232 * @sk: the socket to clone
2233 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2234 *
2235 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2236 */
2237struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2238{
2239 struct proto *prot = READ_ONCE(sk->sk_prot);
2240 struct sk_filter *filter;
2241 bool is_charged = true;
2242 struct sock *newsk;
2243
2244 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2245 if (!newsk)
2246 goto out;
2247
2248 sock_copy(newsk, sk);
2249
2250 newsk->sk_prot_creator = prot;
2251
2252 /* SANITY */
2253 if (likely(newsk->sk_net_refcnt)) {
2254 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2255 sock_inuse_add(sock_net(newsk), 1);
2256 } else {
2257 /* Kernel sockets are not elevating the struct net refcount.
2258 * Instead, use a tracker to more easily detect if a layer
2259 * is not properly dismantling its kernel sockets at netns
2260 * destroy time.
2261 */
2262 __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2263 false, priority);
2264 }
2265 sk_node_init(&newsk->sk_node);
2266 sock_lock_init(newsk);
2267 bh_lock_sock(newsk);
2268 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
2269 newsk->sk_backlog.len = 0;
2270
2271 atomic_set(&newsk->sk_rmem_alloc, 0);
2272
2273 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2274 refcount_set(&newsk->sk_wmem_alloc, 1);
2275
2276 atomic_set(&newsk->sk_omem_alloc, 0);
2277 sk_init_common(newsk);
2278
2279 newsk->sk_dst_cache = NULL;
2280 newsk->sk_dst_pending_confirm = 0;
2281 newsk->sk_wmem_queued = 0;
2282 newsk->sk_forward_alloc = 0;
2283 newsk->sk_reserved_mem = 0;
2284 atomic_set(&newsk->sk_drops, 0);
2285 newsk->sk_send_head = NULL;
2286 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2287 atomic_set(&newsk->sk_zckey, 0);
2288
2289 sock_reset_flag(newsk, SOCK_DONE);
2290
2291 /* sk->sk_memcg will be populated at accept() time */
2292 newsk->sk_memcg = NULL;
2293
2294 cgroup_sk_clone(&newsk->sk_cgrp_data);
2295
2296 rcu_read_lock();
2297 filter = rcu_dereference(sk->sk_filter);
2298 if (filter != NULL)
2299 /* though it's an empty new sock, the charging may fail
2300 * if sysctl_optmem_max was changed between creation of
2301 * original socket and cloning
2302 */
2303 is_charged = sk_filter_charge(newsk, filter);
2304 RCU_INIT_POINTER(newsk->sk_filter, filter);
2305 rcu_read_unlock();
2306
2307 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2308 /* We need to make sure that we don't uncharge the new
2309 * socket if we couldn't charge it in the first place
2310 * as otherwise we uncharge the parent's filter.
2311 */
2312 if (!is_charged)
2313 RCU_INIT_POINTER(newsk->sk_filter, NULL);
2314 sk_free_unlock_clone(newsk);
2315 newsk = NULL;
2316 goto out;
2317 }
2318 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2319
2320 if (bpf_sk_storage_clone(sk, newsk)) {
2321 sk_free_unlock_clone(newsk);
2322 newsk = NULL;
2323 goto out;
2324 }
2325
2326 /* Clear sk_user_data if parent had the pointer tagged
2327 * as not suitable for copying when cloning.
2328 */
2329 if (sk_user_data_is_nocopy(newsk))
2330 newsk->sk_user_data = NULL;
2331
2332 newsk->sk_err = 0;
2333 newsk->sk_err_soft = 0;
2334 newsk->sk_priority = 0;
2335 newsk->sk_incoming_cpu = raw_smp_processor_id();
2336
2337 /* Before updating sk_refcnt, we must commit prior changes to memory
2338 * (Documentation/RCU/rculist_nulls.rst for details)
2339 */
2340 smp_wmb();
2341 refcount_set(&newsk->sk_refcnt, 2);
2342
2343 /* Increment the counter in the same struct proto as the master
2344 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2345 * is the same as sk->sk_prot->socks, as this field was copied
2346 * with memcpy).
2347 *
2348 * This _changes_ the previous behaviour, where
2349 * tcp_create_openreq_child always was incrementing the
2350 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2351 * to be taken into account in all callers. -acme
2352 */
2353 sk_refcnt_debug_inc(newsk);
2354 sk_set_socket(newsk, NULL);
2355 sk_tx_queue_clear(newsk);
2356 RCU_INIT_POINTER(newsk->sk_wq, NULL);
2357
2358 if (newsk->sk_prot->sockets_allocated)
2359 sk_sockets_allocated_inc(newsk);
2360
2361 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2362 net_enable_timestamp();
2363out:
2364 return newsk;
2365}
2366EXPORT_SYMBOL_GPL(sk_clone_lock);
2367
2368void sk_free_unlock_clone(struct sock *sk)
2369{
2370 /* It is still raw copy of parent, so invalidate
2371 * destructor and make plain sk_free() */
2372 sk->sk_destruct = NULL;
2373 bh_unlock_sock(sk);
2374 sk_free(sk);
2375}
2376EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2377
2378static void sk_trim_gso_size(struct sock *sk)
2379{
2380 if (sk->sk_gso_max_size <= GSO_LEGACY_MAX_SIZE)
2381 return;
2382#if IS_ENABLED(CONFIG_IPV6)
2383 if (sk->sk_family == AF_INET6 &&
2384 sk_is_tcp(sk) &&
2385 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
2386 return;
2387#endif
2388 sk->sk_gso_max_size = GSO_LEGACY_MAX_SIZE;
2389}
2390
2391void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2392{
2393 u32 max_segs = 1;
2394
2395 sk_dst_set(sk, dst);
2396 sk->sk_route_caps = dst->dev->features;
2397 if (sk_is_tcp(sk))
2398 sk->sk_route_caps |= NETIF_F_GSO;
2399 if (sk->sk_route_caps & NETIF_F_GSO)
2400 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2401 if (unlikely(sk->sk_gso_disabled))
2402 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2403 if (sk_can_gso(sk)) {
2404 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2405 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2406 } else {
2407 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2408 /* pairs with the WRITE_ONCE() in netif_set_gso_max_size() */
2409 sk->sk_gso_max_size = READ_ONCE(dst->dev->gso_max_size);
2410 sk_trim_gso_size(sk);
2411 sk->sk_gso_max_size -= (MAX_TCP_HEADER + 1);
2412 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2413 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2414 }
2415 }
2416 sk->sk_gso_max_segs = max_segs;
2417}
2418EXPORT_SYMBOL_GPL(sk_setup_caps);
2419
2420/*
2421 * Simple resource managers for sockets.
2422 */
2423
2424
2425/*
2426 * Write buffer destructor automatically called from kfree_skb.
2427 */
2428void sock_wfree(struct sk_buff *skb)
2429{
2430 struct sock *sk = skb->sk;
2431 unsigned int len = skb->truesize;
2432 bool free;
2433
2434 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2435 if (sock_flag(sk, SOCK_RCU_FREE) &&
2436 sk->sk_write_space == sock_def_write_space) {
2437 rcu_read_lock();
2438 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2439 sock_def_write_space_wfree(sk);
2440 rcu_read_unlock();
2441 if (unlikely(free))
2442 __sk_free(sk);
2443 return;
2444 }
2445
2446 /*
2447 * Keep a reference on sk_wmem_alloc, this will be released
2448 * after sk_write_space() call
2449 */
2450 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2451 sk->sk_write_space(sk);
2452 len = 1;
2453 }
2454 /*
2455 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2456 * could not do because of in-flight packets
2457 */
2458 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2459 __sk_free(sk);
2460}
2461EXPORT_SYMBOL(sock_wfree);
2462
2463/* This variant of sock_wfree() is used by TCP,
2464 * since it sets SOCK_USE_WRITE_QUEUE.
2465 */
2466void __sock_wfree(struct sk_buff *skb)
2467{
2468 struct sock *sk = skb->sk;
2469
2470 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2471 __sk_free(sk);
2472}
2473
2474void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2475{
2476 skb_orphan(skb);
2477 skb->sk = sk;
2478#ifdef CONFIG_INET
2479 if (unlikely(!sk_fullsock(sk))) {
2480 skb->destructor = sock_edemux;
2481 sock_hold(sk);
2482 return;
2483 }
2484#endif
2485 skb->destructor = sock_wfree;
2486 skb_set_hash_from_sk(skb, sk);
2487 /*
2488 * We used to take a refcount on sk, but following operation
2489 * is enough to guarantee sk_free() wont free this sock until
2490 * all in-flight packets are completed
2491 */
2492 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2493}
2494EXPORT_SYMBOL(skb_set_owner_w);
2495
2496static bool can_skb_orphan_partial(const struct sk_buff *skb)
2497{
2498#ifdef CONFIG_TLS_DEVICE
2499 /* Drivers depend on in-order delivery for crypto offload,
2500 * partial orphan breaks out-of-order-OK logic.
2501 */
2502 if (skb->decrypted)
2503 return false;
2504#endif
2505 return (skb->destructor == sock_wfree ||
2506 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2507}
2508
2509/* This helper is used by netem, as it can hold packets in its
2510 * delay queue. We want to allow the owner socket to send more
2511 * packets, as if they were already TX completed by a typical driver.
2512 * But we also want to keep skb->sk set because some packet schedulers
2513 * rely on it (sch_fq for example).
2514 */
2515void skb_orphan_partial(struct sk_buff *skb)
2516{
2517 if (skb_is_tcp_pure_ack(skb))
2518 return;
2519
2520 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2521 return;
2522
2523 skb_orphan(skb);
2524}
2525EXPORT_SYMBOL(skb_orphan_partial);
2526
2527/*
2528 * Read buffer destructor automatically called from kfree_skb.
2529 */
2530void sock_rfree(struct sk_buff *skb)
2531{
2532 struct sock *sk = skb->sk;
2533 unsigned int len = skb->truesize;
2534
2535 atomic_sub(len, &sk->sk_rmem_alloc);
2536 sk_mem_uncharge(sk, len);
2537}
2538EXPORT_SYMBOL(sock_rfree);
2539
2540/*
2541 * Buffer destructor for skbs that are not used directly in read or write
2542 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2543 */
2544void sock_efree(struct sk_buff *skb)
2545{
2546 sock_put(skb->sk);
2547}
2548EXPORT_SYMBOL(sock_efree);
2549
2550/* Buffer destructor for prefetch/receive path where reference count may
2551 * not be held, e.g. for listen sockets.
2552 */
2553#ifdef CONFIG_INET
2554void sock_pfree(struct sk_buff *skb)
2555{
2556 if (sk_is_refcounted(skb->sk))
2557 sock_gen_put(skb->sk);
2558}
2559EXPORT_SYMBOL(sock_pfree);
2560#endif /* CONFIG_INET */
2561
2562kuid_t sock_i_uid(struct sock *sk)
2563{
2564 kuid_t uid;
2565
2566 read_lock_bh(&sk->sk_callback_lock);
2567 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2568 read_unlock_bh(&sk->sk_callback_lock);
2569 return uid;
2570}
2571EXPORT_SYMBOL(sock_i_uid);
2572
2573unsigned long sock_i_ino(struct sock *sk)
2574{
2575 unsigned long ino;
2576
2577 read_lock_bh(&sk->sk_callback_lock);
2578 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2579 read_unlock_bh(&sk->sk_callback_lock);
2580 return ino;
2581}
2582EXPORT_SYMBOL(sock_i_ino);
2583
2584/*
2585 * Allocate a skb from the socket's send buffer.
2586 */
2587struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2588 gfp_t priority)
2589{
2590 if (force ||
2591 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2592 struct sk_buff *skb = alloc_skb(size, priority);
2593
2594 if (skb) {
2595 skb_set_owner_w(skb, sk);
2596 return skb;
2597 }
2598 }
2599 return NULL;
2600}
2601EXPORT_SYMBOL(sock_wmalloc);
2602
2603static void sock_ofree(struct sk_buff *skb)
2604{
2605 struct sock *sk = skb->sk;
2606
2607 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2608}
2609
2610struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2611 gfp_t priority)
2612{
2613 struct sk_buff *skb;
2614
2615 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2616 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2617 READ_ONCE(sysctl_optmem_max))
2618 return NULL;
2619
2620 skb = alloc_skb(size, priority);
2621 if (!skb)
2622 return NULL;
2623
2624 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2625 skb->sk = sk;
2626 skb->destructor = sock_ofree;
2627 return skb;
2628}
2629
2630/*
2631 * Allocate a memory block from the socket's option memory buffer.
2632 */
2633void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2634{
2635 int optmem_max = READ_ONCE(sysctl_optmem_max);
2636
2637 if ((unsigned int)size <= optmem_max &&
2638 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2639 void *mem;
2640 /* First do the add, to avoid the race if kmalloc
2641 * might sleep.
2642 */
2643 atomic_add(size, &sk->sk_omem_alloc);
2644 mem = kmalloc(size, priority);
2645 if (mem)
2646 return mem;
2647 atomic_sub(size, &sk->sk_omem_alloc);
2648 }
2649 return NULL;
2650}
2651EXPORT_SYMBOL(sock_kmalloc);
2652
2653/* Free an option memory block. Note, we actually want the inline
2654 * here as this allows gcc to detect the nullify and fold away the
2655 * condition entirely.
2656 */
2657static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2658 const bool nullify)
2659{
2660 if (WARN_ON_ONCE(!mem))
2661 return;
2662 if (nullify)
2663 kfree_sensitive(mem);
2664 else
2665 kfree(mem);
2666 atomic_sub(size, &sk->sk_omem_alloc);
2667}
2668
2669void sock_kfree_s(struct sock *sk, void *mem, int size)
2670{
2671 __sock_kfree_s(sk, mem, size, false);
2672}
2673EXPORT_SYMBOL(sock_kfree_s);
2674
2675void sock_kzfree_s(struct sock *sk, void *mem, int size)
2676{
2677 __sock_kfree_s(sk, mem, size, true);
2678}
2679EXPORT_SYMBOL(sock_kzfree_s);
2680
2681/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2682 I think, these locks should be removed for datagram sockets.
2683 */
2684static long sock_wait_for_wmem(struct sock *sk, long timeo)
2685{
2686 DEFINE_WAIT(wait);
2687
2688 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2689 for (;;) {
2690 if (!timeo)
2691 break;
2692 if (signal_pending(current))
2693 break;
2694 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2695 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2696 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2697 break;
2698 if (sk->sk_shutdown & SEND_SHUTDOWN)
2699 break;
2700 if (sk->sk_err)
2701 break;
2702 timeo = schedule_timeout(timeo);
2703 }
2704 finish_wait(sk_sleep(sk), &wait);
2705 return timeo;
2706}
2707
2708
2709/*
2710 * Generic send/receive buffer handlers
2711 */
2712
2713struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2714 unsigned long data_len, int noblock,
2715 int *errcode, int max_page_order)
2716{
2717 struct sk_buff *skb;
2718 long timeo;
2719 int err;
2720
2721 timeo = sock_sndtimeo(sk, noblock);
2722 for (;;) {
2723 err = sock_error(sk);
2724 if (err != 0)
2725 goto failure;
2726
2727 err = -EPIPE;
2728 if (sk->sk_shutdown & SEND_SHUTDOWN)
2729 goto failure;
2730
2731 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2732 break;
2733
2734 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2735 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2736 err = -EAGAIN;
2737 if (!timeo)
2738 goto failure;
2739 if (signal_pending(current))
2740 goto interrupted;
2741 timeo = sock_wait_for_wmem(sk, timeo);
2742 }
2743 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2744 errcode, sk->sk_allocation);
2745 if (skb)
2746 skb_set_owner_w(skb, sk);
2747 return skb;
2748
2749interrupted:
2750 err = sock_intr_errno(timeo);
2751failure:
2752 *errcode = err;
2753 return NULL;
2754}
2755EXPORT_SYMBOL(sock_alloc_send_pskb);
2756
2757int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
2758 struct sockcm_cookie *sockc)
2759{
2760 u32 tsflags;
2761
2762 switch (cmsg->cmsg_type) {
2763 case SO_MARK:
2764 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2765 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2766 return -EPERM;
2767 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2768 return -EINVAL;
2769 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2770 break;
2771 case SO_TIMESTAMPING_OLD:
2772 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2773 return -EINVAL;
2774
2775 tsflags = *(u32 *)CMSG_DATA(cmsg);
2776 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2777 return -EINVAL;
2778
2779 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2780 sockc->tsflags |= tsflags;
2781 break;
2782 case SCM_TXTIME:
2783 if (!sock_flag(sk, SOCK_TXTIME))
2784 return -EINVAL;
2785 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2786 return -EINVAL;
2787 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2788 break;
2789 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2790 case SCM_RIGHTS:
2791 case SCM_CREDENTIALS:
2792 break;
2793 default:
2794 return -EINVAL;
2795 }
2796 return 0;
2797}
2798EXPORT_SYMBOL(__sock_cmsg_send);
2799
2800int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2801 struct sockcm_cookie *sockc)
2802{
2803 struct cmsghdr *cmsg;
2804 int ret;
2805
2806 for_each_cmsghdr(cmsg, msg) {
2807 if (!CMSG_OK(msg, cmsg))
2808 return -EINVAL;
2809 if (cmsg->cmsg_level != SOL_SOCKET)
2810 continue;
2811 ret = __sock_cmsg_send(sk, cmsg, sockc);
2812 if (ret)
2813 return ret;
2814 }
2815 return 0;
2816}
2817EXPORT_SYMBOL(sock_cmsg_send);
2818
2819static void sk_enter_memory_pressure(struct sock *sk)
2820{
2821 if (!sk->sk_prot->enter_memory_pressure)
2822 return;
2823
2824 sk->sk_prot->enter_memory_pressure(sk);
2825}
2826
2827static void sk_leave_memory_pressure(struct sock *sk)
2828{
2829 if (sk->sk_prot->leave_memory_pressure) {
2830 sk->sk_prot->leave_memory_pressure(sk);
2831 } else {
2832 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2833
2834 if (memory_pressure && READ_ONCE(*memory_pressure))
2835 WRITE_ONCE(*memory_pressure, 0);
2836 }
2837}
2838
2839DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2840
2841/**
2842 * skb_page_frag_refill - check that a page_frag contains enough room
2843 * @sz: minimum size of the fragment we want to get
2844 * @pfrag: pointer to page_frag
2845 * @gfp: priority for memory allocation
2846 *
2847 * Note: While this allocator tries to use high order pages, there is
2848 * no guarantee that allocations succeed. Therefore, @sz MUST be
2849 * less or equal than PAGE_SIZE.
2850 */
2851bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2852{
2853 if (pfrag->page) {
2854 if (page_ref_count(pfrag->page) == 1) {
2855 pfrag->offset = 0;
2856 return true;
2857 }
2858 if (pfrag->offset + sz <= pfrag->size)
2859 return true;
2860 put_page(pfrag->page);
2861 }
2862
2863 pfrag->offset = 0;
2864 if (SKB_FRAG_PAGE_ORDER &&
2865 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2866 /* Avoid direct reclaim but allow kswapd to wake */
2867 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2868 __GFP_COMP | __GFP_NOWARN |
2869 __GFP_NORETRY,
2870 SKB_FRAG_PAGE_ORDER);
2871 if (likely(pfrag->page)) {
2872 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2873 return true;
2874 }
2875 }
2876 pfrag->page = alloc_page(gfp);
2877 if (likely(pfrag->page)) {
2878 pfrag->size = PAGE_SIZE;
2879 return true;
2880 }
2881 return false;
2882}
2883EXPORT_SYMBOL(skb_page_frag_refill);
2884
2885bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2886{
2887 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2888 return true;
2889
2890 sk_enter_memory_pressure(sk);
2891 sk_stream_moderate_sndbuf(sk);
2892 return false;
2893}
2894EXPORT_SYMBOL(sk_page_frag_refill);
2895
2896void __lock_sock(struct sock *sk)
2897 __releases(&sk->sk_lock.slock)
2898 __acquires(&sk->sk_lock.slock)
2899{
2900 DEFINE_WAIT(wait);
2901
2902 for (;;) {
2903 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2904 TASK_UNINTERRUPTIBLE);
2905 spin_unlock_bh(&sk->sk_lock.slock);
2906 schedule();
2907 spin_lock_bh(&sk->sk_lock.slock);
2908 if (!sock_owned_by_user(sk))
2909 break;
2910 }
2911 finish_wait(&sk->sk_lock.wq, &wait);
2912}
2913
2914void __release_sock(struct sock *sk)
2915 __releases(&sk->sk_lock.slock)
2916 __acquires(&sk->sk_lock.slock)
2917{
2918 struct sk_buff *skb, *next;
2919
2920 while ((skb = sk->sk_backlog.head) != NULL) {
2921 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2922
2923 spin_unlock_bh(&sk->sk_lock.slock);
2924
2925 do {
2926 next = skb->next;
2927 prefetch(next);
2928 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
2929 skb_mark_not_on_list(skb);
2930 sk_backlog_rcv(sk, skb);
2931
2932 cond_resched();
2933
2934 skb = next;
2935 } while (skb != NULL);
2936
2937 spin_lock_bh(&sk->sk_lock.slock);
2938 }
2939
2940 /*
2941 * Doing the zeroing here guarantee we can not loop forever
2942 * while a wild producer attempts to flood us.
2943 */
2944 sk->sk_backlog.len = 0;
2945}
2946
2947void __sk_flush_backlog(struct sock *sk)
2948{
2949 spin_lock_bh(&sk->sk_lock.slock);
2950 __release_sock(sk);
2951 spin_unlock_bh(&sk->sk_lock.slock);
2952}
2953EXPORT_SYMBOL_GPL(__sk_flush_backlog);
2954
2955/**
2956 * sk_wait_data - wait for data to arrive at sk_receive_queue
2957 * @sk: sock to wait on
2958 * @timeo: for how long
2959 * @skb: last skb seen on sk_receive_queue
2960 *
2961 * Now socket state including sk->sk_err is changed only under lock,
2962 * hence we may omit checks after joining wait queue.
2963 * We check receive queue before schedule() only as optimization;
2964 * it is very likely that release_sock() added new data.
2965 */
2966int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2967{
2968 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2969 int rc;
2970
2971 add_wait_queue(sk_sleep(sk), &wait);
2972 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2973 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2974 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2975 remove_wait_queue(sk_sleep(sk), &wait);
2976 return rc;
2977}
2978EXPORT_SYMBOL(sk_wait_data);
2979
2980/**
2981 * __sk_mem_raise_allocated - increase memory_allocated
2982 * @sk: socket
2983 * @size: memory size to allocate
2984 * @amt: pages to allocate
2985 * @kind: allocation type
2986 *
2987 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2988 */
2989int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2990{
2991 bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg;
2992 struct proto *prot = sk->sk_prot;
2993 bool charged = true;
2994 long allocated;
2995
2996 sk_memory_allocated_add(sk, amt);
2997 allocated = sk_memory_allocated(sk);
2998 if (memcg_charge &&
2999 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3000 gfp_memcg_charge())))
3001 goto suppress_allocation;
3002
3003 /* Under limit. */
3004 if (allocated <= sk_prot_mem_limits(sk, 0)) {
3005 sk_leave_memory_pressure(sk);
3006 return 1;
3007 }
3008
3009 /* Under pressure. */
3010 if (allocated > sk_prot_mem_limits(sk, 1))
3011 sk_enter_memory_pressure(sk);
3012
3013 /* Over hard limit. */
3014 if (allocated > sk_prot_mem_limits(sk, 2))
3015 goto suppress_allocation;
3016
3017 /* guarantee minimum buffer size under pressure */
3018 if (kind == SK_MEM_RECV) {
3019 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3020 return 1;
3021
3022 } else { /* SK_MEM_SEND */
3023 int wmem0 = sk_get_wmem0(sk, prot);
3024
3025 if (sk->sk_type == SOCK_STREAM) {
3026 if (sk->sk_wmem_queued < wmem0)
3027 return 1;
3028 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3029 return 1;
3030 }
3031 }
3032
3033 if (sk_has_memory_pressure(sk)) {
3034 u64 alloc;
3035
3036 if (!sk_under_memory_pressure(sk))
3037 return 1;
3038 alloc = sk_sockets_allocated_read_positive(sk);
3039 if (sk_prot_mem_limits(sk, 2) > alloc *
3040 sk_mem_pages(sk->sk_wmem_queued +
3041 atomic_read(&sk->sk_rmem_alloc) +
3042 sk->sk_forward_alloc))
3043 return 1;
3044 }
3045
3046suppress_allocation:
3047
3048 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3049 sk_stream_moderate_sndbuf(sk);
3050
3051 /* Fail only if socket is _under_ its sndbuf.
3052 * In this case we cannot block, so that we have to fail.
3053 */
3054 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3055 /* Force charge with __GFP_NOFAIL */
3056 if (memcg_charge && !charged) {
3057 mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3058 gfp_memcg_charge() | __GFP_NOFAIL);
3059 }
3060 return 1;
3061 }
3062 }
3063
3064 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3065 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3066
3067 sk_memory_allocated_sub(sk, amt);
3068
3069 if (memcg_charge && charged)
3070 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
3071
3072 return 0;
3073}
3074
3075/**
3076 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3077 * @sk: socket
3078 * @size: memory size to allocate
3079 * @kind: allocation type
3080 *
3081 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3082 * rmem allocation. This function assumes that protocols which have
3083 * memory_pressure use sk_wmem_queued as write buffer accounting.
3084 */
3085int __sk_mem_schedule(struct sock *sk, int size, int kind)
3086{
3087 int ret, amt = sk_mem_pages(size);
3088
3089 sk->sk_forward_alloc += amt << PAGE_SHIFT;
3090 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3091 if (!ret)
3092 sk->sk_forward_alloc -= amt << PAGE_SHIFT;
3093 return ret;
3094}
3095EXPORT_SYMBOL(__sk_mem_schedule);
3096
3097/**
3098 * __sk_mem_reduce_allocated - reclaim memory_allocated
3099 * @sk: socket
3100 * @amount: number of quanta
3101 *
3102 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3103 */
3104void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3105{
3106 sk_memory_allocated_sub(sk, amount);
3107
3108 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3109 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3110
3111 if (sk_under_memory_pressure(sk) &&
3112 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3113 sk_leave_memory_pressure(sk);
3114}
3115
3116/**
3117 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3118 * @sk: socket
3119 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3120 */
3121void __sk_mem_reclaim(struct sock *sk, int amount)
3122{
3123 amount >>= PAGE_SHIFT;
3124 sk->sk_forward_alloc -= amount << PAGE_SHIFT;
3125 __sk_mem_reduce_allocated(sk, amount);
3126}
3127EXPORT_SYMBOL(__sk_mem_reclaim);
3128
3129int sk_set_peek_off(struct sock *sk, int val)
3130{
3131 sk->sk_peek_off = val;
3132 return 0;
3133}
3134EXPORT_SYMBOL_GPL(sk_set_peek_off);
3135
3136/*
3137 * Set of default routines for initialising struct proto_ops when
3138 * the protocol does not support a particular function. In certain
3139 * cases where it makes no sense for a protocol to have a "do nothing"
3140 * function, some default processing is provided.
3141 */
3142
3143int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3144{
3145 return -EOPNOTSUPP;
3146}
3147EXPORT_SYMBOL(sock_no_bind);
3148
3149int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3150 int len, int flags)
3151{
3152 return -EOPNOTSUPP;
3153}
3154EXPORT_SYMBOL(sock_no_connect);
3155
3156int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3157{
3158 return -EOPNOTSUPP;
3159}
3160EXPORT_SYMBOL(sock_no_socketpair);
3161
3162int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3163 bool kern)
3164{
3165 return -EOPNOTSUPP;
3166}
3167EXPORT_SYMBOL(sock_no_accept);
3168
3169int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3170 int peer)
3171{
3172 return -EOPNOTSUPP;
3173}
3174EXPORT_SYMBOL(sock_no_getname);
3175
3176int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3177{
3178 return -EOPNOTSUPP;
3179}
3180EXPORT_SYMBOL(sock_no_ioctl);
3181
3182int sock_no_listen(struct socket *sock, int backlog)
3183{
3184 return -EOPNOTSUPP;
3185}
3186EXPORT_SYMBOL(sock_no_listen);
3187
3188int sock_no_shutdown(struct socket *sock, int how)
3189{
3190 return -EOPNOTSUPP;
3191}
3192EXPORT_SYMBOL(sock_no_shutdown);
3193
3194int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3195{
3196 return -EOPNOTSUPP;
3197}
3198EXPORT_SYMBOL(sock_no_sendmsg);
3199
3200int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3201{
3202 return -EOPNOTSUPP;
3203}
3204EXPORT_SYMBOL(sock_no_sendmsg_locked);
3205
3206int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3207 int flags)
3208{
3209 return -EOPNOTSUPP;
3210}
3211EXPORT_SYMBOL(sock_no_recvmsg);
3212
3213int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3214{
3215 /* Mirror missing mmap method error code */
3216 return -ENODEV;
3217}
3218EXPORT_SYMBOL(sock_no_mmap);
3219
3220/*
3221 * When a file is received (via SCM_RIGHTS, etc), we must bump the
3222 * various sock-based usage counts.
3223 */
3224void __receive_sock(struct file *file)
3225{
3226 struct socket *sock;
3227
3228 sock = sock_from_file(file);
3229 if (sock) {
3230 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3231 sock_update_classid(&sock->sk->sk_cgrp_data);
3232 }
3233}
3234
3235ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
3236{
3237 ssize_t res;
3238 struct msghdr msg = {.msg_flags = flags};
3239 struct kvec iov;
3240 char *kaddr = kmap(page);
3241 iov.iov_base = kaddr + offset;
3242 iov.iov_len = size;
3243 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
3244 kunmap(page);
3245 return res;
3246}
3247EXPORT_SYMBOL(sock_no_sendpage);
3248
3249ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
3250 int offset, size_t size, int flags)
3251{
3252 ssize_t res;
3253 struct msghdr msg = {.msg_flags = flags};
3254 struct kvec iov;
3255 char *kaddr = kmap(page);
3256
3257 iov.iov_base = kaddr + offset;
3258 iov.iov_len = size;
3259 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
3260 kunmap(page);
3261 return res;
3262}
3263EXPORT_SYMBOL(sock_no_sendpage_locked);
3264
3265/*
3266 * Default Socket Callbacks
3267 */
3268
3269static void sock_def_wakeup(struct sock *sk)
3270{
3271 struct socket_wq *wq;
3272
3273 rcu_read_lock();
3274 wq = rcu_dereference(sk->sk_wq);
3275 if (skwq_has_sleeper(wq))
3276 wake_up_interruptible_all(&wq->wait);
3277 rcu_read_unlock();
3278}
3279
3280static void sock_def_error_report(struct sock *sk)
3281{
3282 struct socket_wq *wq;
3283
3284 rcu_read_lock();
3285 wq = rcu_dereference(sk->sk_wq);
3286 if (skwq_has_sleeper(wq))
3287 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3288 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3289 rcu_read_unlock();
3290}
3291
3292void sock_def_readable(struct sock *sk)
3293{
3294 struct socket_wq *wq;
3295
3296 rcu_read_lock();
3297 wq = rcu_dereference(sk->sk_wq);
3298 if (skwq_has_sleeper(wq))
3299 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3300 EPOLLRDNORM | EPOLLRDBAND);
3301 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3302 rcu_read_unlock();
3303}
3304
3305static void sock_def_write_space(struct sock *sk)
3306{
3307 struct socket_wq *wq;
3308
3309 rcu_read_lock();
3310
3311 /* Do not wake up a writer until he can make "significant"
3312 * progress. --DaveM
3313 */
3314 if (sock_writeable(sk)) {
3315 wq = rcu_dereference(sk->sk_wq);
3316 if (skwq_has_sleeper(wq))
3317 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3318 EPOLLWRNORM | EPOLLWRBAND);
3319
3320 /* Should agree with poll, otherwise some programs break */
3321 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3322 }
3323
3324 rcu_read_unlock();
3325}
3326
3327/* An optimised version of sock_def_write_space(), should only be called
3328 * for SOCK_RCU_FREE sockets under RCU read section and after putting
3329 * ->sk_wmem_alloc.
3330 */
3331static void sock_def_write_space_wfree(struct sock *sk)
3332{
3333 /* Do not wake up a writer until he can make "significant"
3334 * progress. --DaveM
3335 */
3336 if (sock_writeable(sk)) {
3337 struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3338
3339 /* rely on refcount_sub from sock_wfree() */
3340 smp_mb__after_atomic();
3341 if (wq && waitqueue_active(&wq->wait))
3342 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3343 EPOLLWRNORM | EPOLLWRBAND);
3344
3345 /* Should agree with poll, otherwise some programs break */
3346 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3347 }
3348}
3349
3350static void sock_def_destruct(struct sock *sk)
3351{
3352}
3353
3354void sk_send_sigurg(struct sock *sk)
3355{
3356 if (sk->sk_socket && sk->sk_socket->file)
3357 if (send_sigurg(&sk->sk_socket->file->f_owner))
3358 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3359}
3360EXPORT_SYMBOL(sk_send_sigurg);
3361
3362void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3363 unsigned long expires)
3364{
3365 if (!mod_timer(timer, expires))
3366 sock_hold(sk);
3367}
3368EXPORT_SYMBOL(sk_reset_timer);
3369
3370void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3371{
3372 if (del_timer(timer))
3373 __sock_put(sk);
3374}
3375EXPORT_SYMBOL(sk_stop_timer);
3376
3377void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3378{
3379 if (del_timer_sync(timer))
3380 __sock_put(sk);
3381}
3382EXPORT_SYMBOL(sk_stop_timer_sync);
3383
3384void sock_init_data(struct socket *sock, struct sock *sk)
3385{
3386 sk_init_common(sk);
3387 sk->sk_send_head = NULL;
3388
3389 timer_setup(&sk->sk_timer, NULL, 0);
3390
3391 sk->sk_allocation = GFP_KERNEL;
3392 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default);
3393 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default);
3394 sk->sk_state = TCP_CLOSE;
3395 sk->sk_use_task_frag = true;
3396 sk_set_socket(sk, sock);
3397
3398 sock_set_flag(sk, SOCK_ZAPPED);
3399
3400 if (sock) {
3401 sk->sk_type = sock->type;
3402 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3403 sock->sk = sk;
3404 sk->sk_uid = SOCK_INODE(sock)->i_uid;
3405 } else {
3406 RCU_INIT_POINTER(sk->sk_wq, NULL);
3407 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
3408 }
3409
3410 rwlock_init(&sk->sk_callback_lock);
3411 if (sk->sk_kern_sock)
3412 lockdep_set_class_and_name(
3413 &sk->sk_callback_lock,
3414 af_kern_callback_keys + sk->sk_family,
3415 af_family_kern_clock_key_strings[sk->sk_family]);
3416 else
3417 lockdep_set_class_and_name(
3418 &sk->sk_callback_lock,
3419 af_callback_keys + sk->sk_family,
3420 af_family_clock_key_strings[sk->sk_family]);
3421
3422 sk->sk_state_change = sock_def_wakeup;
3423 sk->sk_data_ready = sock_def_readable;
3424 sk->sk_write_space = sock_def_write_space;
3425 sk->sk_error_report = sock_def_error_report;
3426 sk->sk_destruct = sock_def_destruct;
3427
3428 sk->sk_frag.page = NULL;
3429 sk->sk_frag.offset = 0;
3430 sk->sk_peek_off = -1;
3431
3432 sk->sk_peer_pid = NULL;
3433 sk->sk_peer_cred = NULL;
3434 spin_lock_init(&sk->sk_peer_lock);
3435
3436 sk->sk_write_pending = 0;
3437 sk->sk_rcvlowat = 1;
3438 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3439 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3440
3441 sk->sk_stamp = SK_DEFAULT_STAMP;
3442#if BITS_PER_LONG==32
3443 seqlock_init(&sk->sk_stamp_seq);
3444#endif
3445 atomic_set(&sk->sk_zckey, 0);
3446
3447#ifdef CONFIG_NET_RX_BUSY_POLL
3448 sk->sk_napi_id = 0;
3449 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read);
3450#endif
3451
3452 sk->sk_max_pacing_rate = ~0UL;
3453 sk->sk_pacing_rate = ~0UL;
3454 WRITE_ONCE(sk->sk_pacing_shift, 10);
3455 sk->sk_incoming_cpu = -1;
3456
3457 sk_rx_queue_clear(sk);
3458 /*
3459 * Before updating sk_refcnt, we must commit prior changes to memory
3460 * (Documentation/RCU/rculist_nulls.rst for details)
3461 */
3462 smp_wmb();
3463 refcount_set(&sk->sk_refcnt, 1);
3464 atomic_set(&sk->sk_drops, 0);
3465}
3466EXPORT_SYMBOL(sock_init_data);
3467
3468void lock_sock_nested(struct sock *sk, int subclass)
3469{
3470 /* The sk_lock has mutex_lock() semantics here. */
3471 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3472
3473 might_sleep();
3474 spin_lock_bh(&sk->sk_lock.slock);
3475 if (sock_owned_by_user_nocheck(sk))
3476 __lock_sock(sk);
3477 sk->sk_lock.owned = 1;
3478 spin_unlock_bh(&sk->sk_lock.slock);
3479}
3480EXPORT_SYMBOL(lock_sock_nested);
3481
3482void release_sock(struct sock *sk)
3483{
3484 spin_lock_bh(&sk->sk_lock.slock);
3485 if (sk->sk_backlog.tail)
3486 __release_sock(sk);
3487
3488 /* Warning : release_cb() might need to release sk ownership,
3489 * ie call sock_release_ownership(sk) before us.
3490 */
3491 if (sk->sk_prot->release_cb)
3492 sk->sk_prot->release_cb(sk);
3493
3494 sock_release_ownership(sk);
3495 if (waitqueue_active(&sk->sk_lock.wq))
3496 wake_up(&sk->sk_lock.wq);
3497 spin_unlock_bh(&sk->sk_lock.slock);
3498}
3499EXPORT_SYMBOL(release_sock);
3500
3501bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3502{
3503 might_sleep();
3504 spin_lock_bh(&sk->sk_lock.slock);
3505
3506 if (!sock_owned_by_user_nocheck(sk)) {
3507 /*
3508 * Fast path return with bottom halves disabled and
3509 * sock::sk_lock.slock held.
3510 *
3511 * The 'mutex' is not contended and holding
3512 * sock::sk_lock.slock prevents all other lockers to
3513 * proceed so the corresponding unlock_sock_fast() can
3514 * avoid the slow path of release_sock() completely and
3515 * just release slock.
3516 *
3517 * From a semantical POV this is equivalent to 'acquiring'
3518 * the 'mutex', hence the corresponding lockdep
3519 * mutex_release() has to happen in the fast path of
3520 * unlock_sock_fast().
3521 */
3522 return false;
3523 }
3524
3525 __lock_sock(sk);
3526 sk->sk_lock.owned = 1;
3527 __acquire(&sk->sk_lock.slock);
3528 spin_unlock_bh(&sk->sk_lock.slock);
3529 return true;
3530}
3531EXPORT_SYMBOL(__lock_sock_fast);
3532
3533int sock_gettstamp(struct socket *sock, void __user *userstamp,
3534 bool timeval, bool time32)
3535{
3536 struct sock *sk = sock->sk;
3537 struct timespec64 ts;
3538
3539 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3540 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3541 if (ts.tv_sec == -1)
3542 return -ENOENT;
3543 if (ts.tv_sec == 0) {
3544 ktime_t kt = ktime_get_real();
3545 sock_write_timestamp(sk, kt);
3546 ts = ktime_to_timespec64(kt);
3547 }
3548
3549 if (timeval)
3550 ts.tv_nsec /= 1000;
3551
3552#ifdef CONFIG_COMPAT_32BIT_TIME
3553 if (time32)
3554 return put_old_timespec32(&ts, userstamp);
3555#endif
3556#ifdef CONFIG_SPARC64
3557 /* beware of padding in sparc64 timeval */
3558 if (timeval && !in_compat_syscall()) {
3559 struct __kernel_old_timeval __user tv = {
3560 .tv_sec = ts.tv_sec,
3561 .tv_usec = ts.tv_nsec,
3562 };
3563 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3564 return -EFAULT;
3565 return 0;
3566 }
3567#endif
3568 return put_timespec64(&ts, userstamp);
3569}
3570EXPORT_SYMBOL(sock_gettstamp);
3571
3572void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3573{
3574 if (!sock_flag(sk, flag)) {
3575 unsigned long previous_flags = sk->sk_flags;
3576
3577 sock_set_flag(sk, flag);
3578 /*
3579 * we just set one of the two flags which require net
3580 * time stamping, but time stamping might have been on
3581 * already because of the other one
3582 */
3583 if (sock_needs_netstamp(sk) &&
3584 !(previous_flags & SK_FLAGS_TIMESTAMP))
3585 net_enable_timestamp();
3586 }
3587}
3588
3589int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3590 int level, int type)
3591{
3592 struct sock_exterr_skb *serr;
3593 struct sk_buff *skb;
3594 int copied, err;
3595
3596 err = -EAGAIN;
3597 skb = sock_dequeue_err_skb(sk);
3598 if (skb == NULL)
3599 goto out;
3600
3601 copied = skb->len;
3602 if (copied > len) {
3603 msg->msg_flags |= MSG_TRUNC;
3604 copied = len;
3605 }
3606 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3607 if (err)
3608 goto out_free_skb;
3609
3610 sock_recv_timestamp(msg, sk, skb);
3611
3612 serr = SKB_EXT_ERR(skb);
3613 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3614
3615 msg->msg_flags |= MSG_ERRQUEUE;
3616 err = copied;
3617
3618out_free_skb:
3619 kfree_skb(skb);
3620out:
3621 return err;
3622}
3623EXPORT_SYMBOL(sock_recv_errqueue);
3624
3625/*
3626 * Get a socket option on an socket.
3627 *
3628 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3629 * asynchronous errors should be reported by getsockopt. We assume
3630 * this means if you specify SO_ERROR (otherwise whats the point of it).
3631 */
3632int sock_common_getsockopt(struct socket *sock, int level, int optname,
3633 char __user *optval, int __user *optlen)
3634{
3635 struct sock *sk = sock->sk;
3636
3637 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3638 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3639}
3640EXPORT_SYMBOL(sock_common_getsockopt);
3641
3642int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3643 int flags)
3644{
3645 struct sock *sk = sock->sk;
3646 int addr_len = 0;
3647 int err;
3648
3649 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
3650 if (err >= 0)
3651 msg->msg_namelen = addr_len;
3652 return err;
3653}
3654EXPORT_SYMBOL(sock_common_recvmsg);
3655
3656/*
3657 * Set socket options on an inet socket.
3658 */
3659int sock_common_setsockopt(struct socket *sock, int level, int optname,
3660 sockptr_t optval, unsigned int optlen)
3661{
3662 struct sock *sk = sock->sk;
3663
3664 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3665 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3666}
3667EXPORT_SYMBOL(sock_common_setsockopt);
3668
3669void sk_common_release(struct sock *sk)
3670{
3671 if (sk->sk_prot->destroy)
3672 sk->sk_prot->destroy(sk);
3673
3674 /*
3675 * Observation: when sk_common_release is called, processes have
3676 * no access to socket. But net still has.
3677 * Step one, detach it from networking:
3678 *
3679 * A. Remove from hash tables.
3680 */
3681
3682 sk->sk_prot->unhash(sk);
3683
3684 /*
3685 * In this point socket cannot receive new packets, but it is possible
3686 * that some packets are in flight because some CPU runs receiver and
3687 * did hash table lookup before we unhashed socket. They will achieve
3688 * receive queue and will be purged by socket destructor.
3689 *
3690 * Also we still have packets pending on receive queue and probably,
3691 * our own packets waiting in device queues. sock_destroy will drain
3692 * receive queue, but transmitted packets will delay socket destruction
3693 * until the last reference will be released.
3694 */
3695
3696 sock_orphan(sk);
3697
3698 xfrm_sk_free_policy(sk);
3699
3700 sk_refcnt_debug_release(sk);
3701
3702 sock_put(sk);
3703}
3704EXPORT_SYMBOL(sk_common_release);
3705
3706void sk_get_meminfo(const struct sock *sk, u32 *mem)
3707{
3708 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3709
3710 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3711 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3712 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3713 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3714 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3715 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3716 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3717 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3718 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3719}
3720
3721#ifdef CONFIG_PROC_FS
3722static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3723
3724int sock_prot_inuse_get(struct net *net, struct proto *prot)
3725{
3726 int cpu, idx = prot->inuse_idx;
3727 int res = 0;
3728
3729 for_each_possible_cpu(cpu)
3730 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3731
3732 return res >= 0 ? res : 0;
3733}
3734EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3735
3736int sock_inuse_get(struct net *net)
3737{
3738 int cpu, res = 0;
3739
3740 for_each_possible_cpu(cpu)
3741 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3742
3743 return res;
3744}
3745
3746EXPORT_SYMBOL_GPL(sock_inuse_get);
3747
3748static int __net_init sock_inuse_init_net(struct net *net)
3749{
3750 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3751 if (net->core.prot_inuse == NULL)
3752 return -ENOMEM;
3753 return 0;
3754}
3755
3756static void __net_exit sock_inuse_exit_net(struct net *net)
3757{
3758 free_percpu(net->core.prot_inuse);
3759}
3760
3761static struct pernet_operations net_inuse_ops = {
3762 .init = sock_inuse_init_net,
3763 .exit = sock_inuse_exit_net,
3764};
3765
3766static __init int net_inuse_init(void)
3767{
3768 if (register_pernet_subsys(&net_inuse_ops))
3769 panic("Cannot initialize net inuse counters");
3770
3771 return 0;
3772}
3773
3774core_initcall(net_inuse_init);
3775
3776static int assign_proto_idx(struct proto *prot)
3777{
3778 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3779
3780 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3781 pr_err("PROTO_INUSE_NR exhausted\n");
3782 return -ENOSPC;
3783 }
3784
3785 set_bit(prot->inuse_idx, proto_inuse_idx);
3786 return 0;
3787}
3788
3789static void release_proto_idx(struct proto *prot)
3790{
3791 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3792 clear_bit(prot->inuse_idx, proto_inuse_idx);
3793}
3794#else
3795static inline int assign_proto_idx(struct proto *prot)
3796{
3797 return 0;
3798}
3799
3800static inline void release_proto_idx(struct proto *prot)
3801{
3802}
3803
3804#endif
3805
3806static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3807{
3808 if (!twsk_prot)
3809 return;
3810 kfree(twsk_prot->twsk_slab_name);
3811 twsk_prot->twsk_slab_name = NULL;
3812 kmem_cache_destroy(twsk_prot->twsk_slab);
3813 twsk_prot->twsk_slab = NULL;
3814}
3815
3816static int tw_prot_init(const struct proto *prot)
3817{
3818 struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3819
3820 if (!twsk_prot)
3821 return 0;
3822
3823 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3824 prot->name);
3825 if (!twsk_prot->twsk_slab_name)
3826 return -ENOMEM;
3827
3828 twsk_prot->twsk_slab =
3829 kmem_cache_create(twsk_prot->twsk_slab_name,
3830 twsk_prot->twsk_obj_size, 0,
3831 SLAB_ACCOUNT | prot->slab_flags,
3832 NULL);
3833 if (!twsk_prot->twsk_slab) {
3834 pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3835 prot->name);
3836 return -ENOMEM;
3837 }
3838
3839 return 0;
3840}
3841
3842static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3843{
3844 if (!rsk_prot)
3845 return;
3846 kfree(rsk_prot->slab_name);
3847 rsk_prot->slab_name = NULL;
3848 kmem_cache_destroy(rsk_prot->slab);
3849 rsk_prot->slab = NULL;
3850}
3851
3852static int req_prot_init(const struct proto *prot)
3853{
3854 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3855
3856 if (!rsk_prot)
3857 return 0;
3858
3859 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3860 prot->name);
3861 if (!rsk_prot->slab_name)
3862 return -ENOMEM;
3863
3864 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3865 rsk_prot->obj_size, 0,
3866 SLAB_ACCOUNT | prot->slab_flags,
3867 NULL);
3868
3869 if (!rsk_prot->slab) {
3870 pr_crit("%s: Can't create request sock SLAB cache!\n",
3871 prot->name);
3872 return -ENOMEM;
3873 }
3874 return 0;
3875}
3876
3877int proto_register(struct proto *prot, int alloc_slab)
3878{
3879 int ret = -ENOBUFS;
3880
3881 if (prot->memory_allocated && !prot->sysctl_mem) {
3882 pr_err("%s: missing sysctl_mem\n", prot->name);
3883 return -EINVAL;
3884 }
3885 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
3886 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
3887 return -EINVAL;
3888 }
3889 if (alloc_slab) {
3890 prot->slab = kmem_cache_create_usercopy(prot->name,
3891 prot->obj_size, 0,
3892 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3893 prot->slab_flags,
3894 prot->useroffset, prot->usersize,
3895 NULL);
3896
3897 if (prot->slab == NULL) {
3898 pr_crit("%s: Can't create sock SLAB cache!\n",
3899 prot->name);
3900 goto out;
3901 }
3902
3903 if (req_prot_init(prot))
3904 goto out_free_request_sock_slab;
3905
3906 if (tw_prot_init(prot))
3907 goto out_free_timewait_sock_slab;
3908 }
3909
3910 mutex_lock(&proto_list_mutex);
3911 ret = assign_proto_idx(prot);
3912 if (ret) {
3913 mutex_unlock(&proto_list_mutex);
3914 goto out_free_timewait_sock_slab;
3915 }
3916 list_add(&prot->node, &proto_list);
3917 mutex_unlock(&proto_list_mutex);
3918 return ret;
3919
3920out_free_timewait_sock_slab:
3921 if (alloc_slab)
3922 tw_prot_cleanup(prot->twsk_prot);
3923out_free_request_sock_slab:
3924 if (alloc_slab) {
3925 req_prot_cleanup(prot->rsk_prot);
3926
3927 kmem_cache_destroy(prot->slab);
3928 prot->slab = NULL;
3929 }
3930out:
3931 return ret;
3932}
3933EXPORT_SYMBOL(proto_register);
3934
3935void proto_unregister(struct proto *prot)
3936{
3937 mutex_lock(&proto_list_mutex);
3938 release_proto_idx(prot);
3939 list_del(&prot->node);
3940 mutex_unlock(&proto_list_mutex);
3941
3942 kmem_cache_destroy(prot->slab);
3943 prot->slab = NULL;
3944
3945 req_prot_cleanup(prot->rsk_prot);
3946 tw_prot_cleanup(prot->twsk_prot);
3947}
3948EXPORT_SYMBOL(proto_unregister);
3949
3950int sock_load_diag_module(int family, int protocol)
3951{
3952 if (!protocol) {
3953 if (!sock_is_registered(family))
3954 return -ENOENT;
3955
3956 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3957 NETLINK_SOCK_DIAG, family);
3958 }
3959
3960#ifdef CONFIG_INET
3961 if (family == AF_INET &&
3962 protocol != IPPROTO_RAW &&
3963 protocol < MAX_INET_PROTOS &&
3964 !rcu_access_pointer(inet_protos[protocol]))
3965 return -ENOENT;
3966#endif
3967
3968 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3969 NETLINK_SOCK_DIAG, family, protocol);
3970}
3971EXPORT_SYMBOL(sock_load_diag_module);
3972
3973#ifdef CONFIG_PROC_FS
3974static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3975 __acquires(proto_list_mutex)
3976{
3977 mutex_lock(&proto_list_mutex);
3978 return seq_list_start_head(&proto_list, *pos);
3979}
3980
3981static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3982{
3983 return seq_list_next(v, &proto_list, pos);
3984}
3985
3986static void proto_seq_stop(struct seq_file *seq, void *v)
3987 __releases(proto_list_mutex)
3988{
3989 mutex_unlock(&proto_list_mutex);
3990}
3991
3992static char proto_method_implemented(const void *method)
3993{
3994 return method == NULL ? 'n' : 'y';
3995}
3996static long sock_prot_memory_allocated(struct proto *proto)
3997{
3998 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3999}
4000
4001static const char *sock_prot_memory_pressure(struct proto *proto)
4002{
4003 return proto->memory_pressure != NULL ?
4004 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4005}
4006
4007static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4008{
4009
4010 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
4011 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4012 proto->name,
4013 proto->obj_size,
4014 sock_prot_inuse_get(seq_file_net(seq), proto),
4015 sock_prot_memory_allocated(proto),
4016 sock_prot_memory_pressure(proto),
4017 proto->max_header,
4018 proto->slab == NULL ? "no" : "yes",
4019 module_name(proto->owner),
4020 proto_method_implemented(proto->close),
4021 proto_method_implemented(proto->connect),
4022 proto_method_implemented(proto->disconnect),
4023 proto_method_implemented(proto->accept),
4024 proto_method_implemented(proto->ioctl),
4025 proto_method_implemented(proto->init),
4026 proto_method_implemented(proto->destroy),
4027 proto_method_implemented(proto->shutdown),
4028 proto_method_implemented(proto->setsockopt),
4029 proto_method_implemented(proto->getsockopt),
4030 proto_method_implemented(proto->sendmsg),
4031 proto_method_implemented(proto->recvmsg),
4032 proto_method_implemented(proto->sendpage),
4033 proto_method_implemented(proto->bind),
4034 proto_method_implemented(proto->backlog_rcv),
4035 proto_method_implemented(proto->hash),
4036 proto_method_implemented(proto->unhash),
4037 proto_method_implemented(proto->get_port),
4038 proto_method_implemented(proto->enter_memory_pressure));
4039}
4040
4041static int proto_seq_show(struct seq_file *seq, void *v)
4042{
4043 if (v == &proto_list)
4044 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4045 "protocol",
4046 "size",
4047 "sockets",
4048 "memory",
4049 "press",
4050 "maxhdr",
4051 "slab",
4052 "module",
4053 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
4054 else
4055 proto_seq_printf(seq, list_entry(v, struct proto, node));
4056 return 0;
4057}
4058
4059static const struct seq_operations proto_seq_ops = {
4060 .start = proto_seq_start,
4061 .next = proto_seq_next,
4062 .stop = proto_seq_stop,
4063 .show = proto_seq_show,
4064};
4065
4066static __net_init int proto_init_net(struct net *net)
4067{
4068 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4069 sizeof(struct seq_net_private)))
4070 return -ENOMEM;
4071
4072 return 0;
4073}
4074
4075static __net_exit void proto_exit_net(struct net *net)
4076{
4077 remove_proc_entry("protocols", net->proc_net);
4078}
4079
4080
4081static __net_initdata struct pernet_operations proto_net_ops = {
4082 .init = proto_init_net,
4083 .exit = proto_exit_net,
4084};
4085
4086static int __init proto_init(void)
4087{
4088 return register_pernet_subsys(&proto_net_ops);
4089}
4090
4091subsys_initcall(proto_init);
4092
4093#endif /* PROC_FS */
4094
4095#ifdef CONFIG_NET_RX_BUSY_POLL
4096bool sk_busy_loop_end(void *p, unsigned long start_time)
4097{
4098 struct sock *sk = p;
4099
4100 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
4101 sk_busy_loop_timeout(sk, start_time);
4102}
4103EXPORT_SYMBOL(sk_busy_loop_end);
4104#endif /* CONFIG_NET_RX_BUSY_POLL */
4105
4106int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4107{
4108 if (!sk->sk_prot->bind_add)
4109 return -EOPNOTSUPP;
4110 return sk->sk_prot->bind_add(sk, addr, addr_len);
4111}
4112EXPORT_SYMBOL(sock_bind_add);