Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Generic socket support routines. Memory allocators, socket lock/release
   7 *		handler for protocols to use and generic option handler.
   8 *
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 *
  85 *
  86 *		This program is free software; you can redistribute it and/or
  87 *		modify it under the terms of the GNU General Public License
  88 *		as published by the Free Software Foundation; either version
  89 *		2 of the License, or (at your option) any later version.
  90 */
  91
  92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  93
 
  94#include <linux/capability.h>
  95#include <linux/errno.h>
  96#include <linux/errqueue.h>
  97#include <linux/types.h>
  98#include <linux/socket.h>
  99#include <linux/in.h>
 100#include <linux/kernel.h>
 101#include <linux/module.h>
 102#include <linux/proc_fs.h>
 103#include <linux/seq_file.h>
 104#include <linux/sched.h>
 105#include <linux/sched/mm.h>
 106#include <linux/timer.h>
 107#include <linux/string.h>
 108#include <linux/sockios.h>
 109#include <linux/net.h>
 110#include <linux/mm.h>
 111#include <linux/slab.h>
 112#include <linux/interrupt.h>
 113#include <linux/poll.h>
 114#include <linux/tcp.h>
 115#include <linux/init.h>
 116#include <linux/highmem.h>
 117#include <linux/user_namespace.h>
 118#include <linux/static_key.h>
 119#include <linux/memcontrol.h>
 120#include <linux/prefetch.h>
 121
 122#include <linux/uaccess.h>
 123
 124#include <linux/netdevice.h>
 125#include <net/protocol.h>
 126#include <linux/skbuff.h>
 127#include <net/net_namespace.h>
 128#include <net/request_sock.h>
 129#include <net/sock.h>
 130#include <linux/net_tstamp.h>
 131#include <net/xfrm.h>
 132#include <linux/ipsec.h>
 133#include <net/cls_cgroup.h>
 134#include <net/netprio_cgroup.h>
 135#include <linux/sock_diag.h>
 136
 137#include <linux/filter.h>
 138#include <net/sock_reuseport.h>
 
 139
 140#include <trace/events/sock.h>
 141
 142#include <net/tcp.h>
 143#include <net/busy_poll.h>
 144
 145static DEFINE_MUTEX(proto_list_mutex);
 146static LIST_HEAD(proto_list);
 147
 148static void sock_inuse_add(struct net *net, int val);
 149
 150/**
 151 * sk_ns_capable - General socket capability test
 152 * @sk: Socket to use a capability on or through
 153 * @user_ns: The user namespace of the capability to use
 154 * @cap: The capability to use
 155 *
 156 * Test to see if the opener of the socket had when the socket was
 157 * created and the current process has the capability @cap in the user
 158 * namespace @user_ns.
 159 */
 160bool sk_ns_capable(const struct sock *sk,
 161		   struct user_namespace *user_ns, int cap)
 162{
 163	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 164		ns_capable(user_ns, cap);
 165}
 166EXPORT_SYMBOL(sk_ns_capable);
 167
 168/**
 169 * sk_capable - Socket global capability test
 170 * @sk: Socket to use a capability on or through
 171 * @cap: The global capability to use
 172 *
 173 * Test to see if the opener of the socket had when the socket was
 174 * created and the current process has the capability @cap in all user
 175 * namespaces.
 176 */
 177bool sk_capable(const struct sock *sk, int cap)
 178{
 179	return sk_ns_capable(sk, &init_user_ns, cap);
 180}
 181EXPORT_SYMBOL(sk_capable);
 182
 183/**
 184 * sk_net_capable - Network namespace socket capability test
 185 * @sk: Socket to use a capability on or through
 186 * @cap: The capability to use
 187 *
 188 * Test to see if the opener of the socket had when the socket was created
 189 * and the current process has the capability @cap over the network namespace
 190 * the socket is a member of.
 191 */
 192bool sk_net_capable(const struct sock *sk, int cap)
 193{
 194	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 195}
 196EXPORT_SYMBOL(sk_net_capable);
 197
 198/*
 199 * Each address family might have different locking rules, so we have
 200 * one slock key per address family and separate keys for internal and
 201 * userspace sockets.
 202 */
 203static struct lock_class_key af_family_keys[AF_MAX];
 204static struct lock_class_key af_family_kern_keys[AF_MAX];
 205static struct lock_class_key af_family_slock_keys[AF_MAX];
 206static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 207
 208/*
 209 * Make lock validator output more readable. (we pre-construct these
 210 * strings build-time, so that runtime initialization of socket
 211 * locks is fast):
 212 */
 213
 214#define _sock_locks(x)						  \
 215  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 216  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 217  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 218  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 219  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 220  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 221  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 222  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 223  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 224  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 225  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 226  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 227  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 228  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 229  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_MAX"
 
 230
 231static const char *const af_family_key_strings[AF_MAX+1] = {
 232	_sock_locks("sk_lock-")
 233};
 234static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 235	_sock_locks("slock-")
 236};
 237static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 238	_sock_locks("clock-")
 239};
 240
 241static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 242	_sock_locks("k-sk_lock-")
 243};
 244static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 245	_sock_locks("k-slock-")
 246};
 247static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 248	_sock_locks("k-clock-")
 249};
 250static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 251  "rlock-AF_UNSPEC", "rlock-AF_UNIX"     , "rlock-AF_INET"     ,
 252  "rlock-AF_AX25"  , "rlock-AF_IPX"      , "rlock-AF_APPLETALK",
 253  "rlock-AF_NETROM", "rlock-AF_BRIDGE"   , "rlock-AF_ATMPVC"   ,
 254  "rlock-AF_X25"   , "rlock-AF_INET6"    , "rlock-AF_ROSE"     ,
 255  "rlock-AF_DECnet", "rlock-AF_NETBEUI"  , "rlock-AF_SECURITY" ,
 256  "rlock-AF_KEY"   , "rlock-AF_NETLINK"  , "rlock-AF_PACKET"   ,
 257  "rlock-AF_ASH"   , "rlock-AF_ECONET"   , "rlock-AF_ATMSVC"   ,
 258  "rlock-AF_RDS"   , "rlock-AF_SNA"      , "rlock-AF_IRDA"     ,
 259  "rlock-AF_PPPOX" , "rlock-AF_WANPIPE"  , "rlock-AF_LLC"      ,
 260  "rlock-27"       , "rlock-28"          , "rlock-AF_CAN"      ,
 261  "rlock-AF_TIPC"  , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV"     ,
 262  "rlock-AF_RXRPC" , "rlock-AF_ISDN"     , "rlock-AF_PHONET"   ,
 263  "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG"      ,
 264  "rlock-AF_NFC"   , "rlock-AF_VSOCK"    , "rlock-AF_KCM"      ,
 265  "rlock-AF_QIPCRTR", "rlock-AF_SMC"     , "rlock-AF_MAX"
 266};
 267static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 268  "wlock-AF_UNSPEC", "wlock-AF_UNIX"     , "wlock-AF_INET"     ,
 269  "wlock-AF_AX25"  , "wlock-AF_IPX"      , "wlock-AF_APPLETALK",
 270  "wlock-AF_NETROM", "wlock-AF_BRIDGE"   , "wlock-AF_ATMPVC"   ,
 271  "wlock-AF_X25"   , "wlock-AF_INET6"    , "wlock-AF_ROSE"     ,
 272  "wlock-AF_DECnet", "wlock-AF_NETBEUI"  , "wlock-AF_SECURITY" ,
 273  "wlock-AF_KEY"   , "wlock-AF_NETLINK"  , "wlock-AF_PACKET"   ,
 274  "wlock-AF_ASH"   , "wlock-AF_ECONET"   , "wlock-AF_ATMSVC"   ,
 275  "wlock-AF_RDS"   , "wlock-AF_SNA"      , "wlock-AF_IRDA"     ,
 276  "wlock-AF_PPPOX" , "wlock-AF_WANPIPE"  , "wlock-AF_LLC"      ,
 277  "wlock-27"       , "wlock-28"          , "wlock-AF_CAN"      ,
 278  "wlock-AF_TIPC"  , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV"     ,
 279  "wlock-AF_RXRPC" , "wlock-AF_ISDN"     , "wlock-AF_PHONET"   ,
 280  "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG"      ,
 281  "wlock-AF_NFC"   , "wlock-AF_VSOCK"    , "wlock-AF_KCM"      ,
 282  "wlock-AF_QIPCRTR", "wlock-AF_SMC"     , "wlock-AF_MAX"
 283};
 284static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 285  "elock-AF_UNSPEC", "elock-AF_UNIX"     , "elock-AF_INET"     ,
 286  "elock-AF_AX25"  , "elock-AF_IPX"      , "elock-AF_APPLETALK",
 287  "elock-AF_NETROM", "elock-AF_BRIDGE"   , "elock-AF_ATMPVC"   ,
 288  "elock-AF_X25"   , "elock-AF_INET6"    , "elock-AF_ROSE"     ,
 289  "elock-AF_DECnet", "elock-AF_NETBEUI"  , "elock-AF_SECURITY" ,
 290  "elock-AF_KEY"   , "elock-AF_NETLINK"  , "elock-AF_PACKET"   ,
 291  "elock-AF_ASH"   , "elock-AF_ECONET"   , "elock-AF_ATMSVC"   ,
 292  "elock-AF_RDS"   , "elock-AF_SNA"      , "elock-AF_IRDA"     ,
 293  "elock-AF_PPPOX" , "elock-AF_WANPIPE"  , "elock-AF_LLC"      ,
 294  "elock-27"       , "elock-28"          , "elock-AF_CAN"      ,
 295  "elock-AF_TIPC"  , "elock-AF_BLUETOOTH", "elock-AF_IUCV"     ,
 296  "elock-AF_RXRPC" , "elock-AF_ISDN"     , "elock-AF_PHONET"   ,
 297  "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG"      ,
 298  "elock-AF_NFC"   , "elock-AF_VSOCK"    , "elock-AF_KCM"      ,
 299  "elock-AF_QIPCRTR", "elock-AF_SMC"     , "elock-AF_MAX"
 300};
 301
 302/*
 303 * sk_callback_lock and sk queues locking rules are per-address-family,
 304 * so split the lock classes by using a per-AF key:
 305 */
 306static struct lock_class_key af_callback_keys[AF_MAX];
 307static struct lock_class_key af_rlock_keys[AF_MAX];
 308static struct lock_class_key af_wlock_keys[AF_MAX];
 309static struct lock_class_key af_elock_keys[AF_MAX];
 310static struct lock_class_key af_kern_callback_keys[AF_MAX];
 311
 312/* Run time adjustable parameters. */
 313__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 314EXPORT_SYMBOL(sysctl_wmem_max);
 315__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 316EXPORT_SYMBOL(sysctl_rmem_max);
 317__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 318__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 319
 320/* Maximal space eaten by iovec or ancillary data plus some space */
 321int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 322EXPORT_SYMBOL(sysctl_optmem_max);
 323
 324int sysctl_tstamp_allow_data __read_mostly = 1;
 325
 326struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
 327EXPORT_SYMBOL_GPL(memalloc_socks);
 328
 329/**
 330 * sk_set_memalloc - sets %SOCK_MEMALLOC
 331 * @sk: socket to set it on
 332 *
 333 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 334 * It's the responsibility of the admin to adjust min_free_kbytes
 335 * to meet the requirements
 336 */
 337void sk_set_memalloc(struct sock *sk)
 338{
 339	sock_set_flag(sk, SOCK_MEMALLOC);
 340	sk->sk_allocation |= __GFP_MEMALLOC;
 341	static_key_slow_inc(&memalloc_socks);
 342}
 343EXPORT_SYMBOL_GPL(sk_set_memalloc);
 344
 345void sk_clear_memalloc(struct sock *sk)
 346{
 347	sock_reset_flag(sk, SOCK_MEMALLOC);
 348	sk->sk_allocation &= ~__GFP_MEMALLOC;
 349	static_key_slow_dec(&memalloc_socks);
 350
 351	/*
 352	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 353	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 354	 * it has rmem allocations due to the last swapfile being deactivated
 355	 * but there is a risk that the socket is unusable due to exceeding
 356	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 357	 */
 358	sk_mem_reclaim(sk);
 359}
 360EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 361
 362int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 363{
 364	int ret;
 365	unsigned int noreclaim_flag;
 366
 367	/* these should have been dropped before queueing */
 368	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 369
 370	noreclaim_flag = memalloc_noreclaim_save();
 371	ret = sk->sk_backlog_rcv(sk, skb);
 372	memalloc_noreclaim_restore(noreclaim_flag);
 373
 374	return ret;
 375}
 376EXPORT_SYMBOL(__sk_backlog_rcv);
 377
 378static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
 379{
 380	struct timeval tv;
 
 381
 382	if (optlen < sizeof(tv))
 383		return -EINVAL;
 384	if (copy_from_user(&tv, optval, sizeof(tv)))
 385		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 386	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 387		return -EDOM;
 388
 389	if (tv.tv_sec < 0) {
 390		static int warned __read_mostly;
 391
 392		*timeo_p = 0;
 393		if (warned < 10 && net_ratelimit()) {
 394			warned++;
 395			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 396				__func__, current->comm, task_pid_nr(current));
 397		}
 398		return 0;
 399	}
 400	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 401	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 402		return 0;
 403	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
 404		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
 405	return 0;
 406}
 407
 408static void sock_warn_obsolete_bsdism(const char *name)
 409{
 410	static int warned;
 411	static char warncomm[TASK_COMM_LEN];
 412	if (strcmp(warncomm, current->comm) && warned < 5) {
 413		strcpy(warncomm,  current->comm);
 414		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
 415			warncomm, name);
 416		warned++;
 417	}
 418}
 419
 420static bool sock_needs_netstamp(const struct sock *sk)
 421{
 422	switch (sk->sk_family) {
 423	case AF_UNSPEC:
 424	case AF_UNIX:
 425		return false;
 426	default:
 427		return true;
 428	}
 429}
 430
 431static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 432{
 433	if (sk->sk_flags & flags) {
 434		sk->sk_flags &= ~flags;
 435		if (sock_needs_netstamp(sk) &&
 436		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 437			net_disable_timestamp();
 438	}
 439}
 440
 441
 442int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 443{
 444	unsigned long flags;
 445	struct sk_buff_head *list = &sk->sk_receive_queue;
 446
 447	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 448		atomic_inc(&sk->sk_drops);
 449		trace_sock_rcvqueue_full(sk, skb);
 450		return -ENOMEM;
 451	}
 452
 453	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 454		atomic_inc(&sk->sk_drops);
 455		return -ENOBUFS;
 456	}
 457
 458	skb->dev = NULL;
 459	skb_set_owner_r(skb, sk);
 460
 461	/* we escape from rcu protected region, make sure we dont leak
 462	 * a norefcounted dst
 463	 */
 464	skb_dst_force(skb);
 465
 466	spin_lock_irqsave(&list->lock, flags);
 467	sock_skb_set_dropcount(sk, skb);
 468	__skb_queue_tail(list, skb);
 469	spin_unlock_irqrestore(&list->lock, flags);
 470
 471	if (!sock_flag(sk, SOCK_DEAD))
 472		sk->sk_data_ready(sk);
 473	return 0;
 474}
 475EXPORT_SYMBOL(__sock_queue_rcv_skb);
 476
 477int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 478{
 479	int err;
 480
 481	err = sk_filter(sk, skb);
 482	if (err)
 483		return err;
 484
 485	return __sock_queue_rcv_skb(sk, skb);
 486}
 487EXPORT_SYMBOL(sock_queue_rcv_skb);
 488
 489int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 490		     const int nested, unsigned int trim_cap, bool refcounted)
 491{
 492	int rc = NET_RX_SUCCESS;
 493
 494	if (sk_filter_trim_cap(sk, skb, trim_cap))
 495		goto discard_and_relse;
 496
 497	skb->dev = NULL;
 498
 499	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 500		atomic_inc(&sk->sk_drops);
 501		goto discard_and_relse;
 502	}
 503	if (nested)
 504		bh_lock_sock_nested(sk);
 505	else
 506		bh_lock_sock(sk);
 507	if (!sock_owned_by_user(sk)) {
 508		/*
 509		 * trylock + unlock semantics:
 510		 */
 511		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 512
 513		rc = sk_backlog_rcv(sk, skb);
 514
 515		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
 516	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
 517		bh_unlock_sock(sk);
 518		atomic_inc(&sk->sk_drops);
 519		goto discard_and_relse;
 520	}
 521
 522	bh_unlock_sock(sk);
 523out:
 524	if (refcounted)
 525		sock_put(sk);
 526	return rc;
 527discard_and_relse:
 528	kfree_skb(skb);
 529	goto out;
 530}
 531EXPORT_SYMBOL(__sk_receive_skb);
 532
 533struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 534{
 535	struct dst_entry *dst = __sk_dst_get(sk);
 536
 537	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 538		sk_tx_queue_clear(sk);
 539		sk->sk_dst_pending_confirm = 0;
 540		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 541		dst_release(dst);
 542		return NULL;
 543	}
 544
 545	return dst;
 546}
 547EXPORT_SYMBOL(__sk_dst_check);
 548
 549struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 550{
 551	struct dst_entry *dst = sk_dst_get(sk);
 552
 553	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 554		sk_dst_reset(sk);
 555		dst_release(dst);
 556		return NULL;
 557	}
 558
 559	return dst;
 560}
 561EXPORT_SYMBOL(sk_dst_check);
 562
 563static int sock_setbindtodevice(struct sock *sk, char __user *optval,
 564				int optlen)
 565{
 566	int ret = -ENOPROTOOPT;
 567#ifdef CONFIG_NETDEVICES
 568	struct net *net = sock_net(sk);
 569	char devname[IFNAMSIZ];
 570	int index;
 571
 572	/* Sorry... */
 573	ret = -EPERM;
 574	if (!ns_capable(net->user_ns, CAP_NET_RAW))
 575		goto out;
 576
 577	ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578	if (optlen < 0)
 579		goto out;
 580
 581	/* Bind this socket to a particular device like "eth0",
 582	 * as specified in the passed interface name. If the
 583	 * name is "" or the option length is zero the socket
 584	 * is not bound.
 585	 */
 586	if (optlen > IFNAMSIZ - 1)
 587		optlen = IFNAMSIZ - 1;
 588	memset(devname, 0, sizeof(devname));
 589
 590	ret = -EFAULT;
 591	if (copy_from_user(devname, optval, optlen))
 592		goto out;
 593
 594	index = 0;
 595	if (devname[0] != '\0') {
 596		struct net_device *dev;
 597
 598		rcu_read_lock();
 599		dev = dev_get_by_name_rcu(net, devname);
 600		if (dev)
 601			index = dev->ifindex;
 602		rcu_read_unlock();
 603		ret = -ENODEV;
 604		if (!dev)
 605			goto out;
 606	}
 607
 608	lock_sock(sk);
 609	sk->sk_bound_dev_if = index;
 610	sk_dst_reset(sk);
 611	release_sock(sk);
 612
 613	ret = 0;
 614
 615out:
 616#endif
 617
 618	return ret;
 619}
 620
 621static int sock_getbindtodevice(struct sock *sk, char __user *optval,
 622				int __user *optlen, int len)
 623{
 624	int ret = -ENOPROTOOPT;
 625#ifdef CONFIG_NETDEVICES
 626	struct net *net = sock_net(sk);
 627	char devname[IFNAMSIZ];
 628
 629	if (sk->sk_bound_dev_if == 0) {
 630		len = 0;
 631		goto zero;
 632	}
 633
 634	ret = -EINVAL;
 635	if (len < IFNAMSIZ)
 636		goto out;
 637
 638	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
 639	if (ret)
 640		goto out;
 641
 642	len = strlen(devname) + 1;
 643
 644	ret = -EFAULT;
 645	if (copy_to_user(optval, devname, len))
 646		goto out;
 647
 648zero:
 649	ret = -EFAULT;
 650	if (put_user(len, optlen))
 651		goto out;
 652
 653	ret = 0;
 654
 655out:
 656#endif
 657
 658	return ret;
 659}
 660
 661static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
 662{
 663	if (valbool)
 664		sock_set_flag(sk, bit);
 665	else
 666		sock_reset_flag(sk, bit);
 667}
 668
 669bool sk_mc_loop(struct sock *sk)
 670{
 671	if (dev_recursion_level())
 672		return false;
 673	if (!sk)
 674		return true;
 675	switch (sk->sk_family) {
 676	case AF_INET:
 677		return inet_sk(sk)->mc_loop;
 678#if IS_ENABLED(CONFIG_IPV6)
 679	case AF_INET6:
 680		return inet6_sk(sk)->mc_loop;
 681#endif
 682	}
 683	WARN_ON(1);
 684	return true;
 685}
 686EXPORT_SYMBOL(sk_mc_loop);
 687
 688/*
 689 *	This is meant for all protocols to use and covers goings on
 690 *	at the socket level. Everything here is generic.
 691 */
 692
 693int sock_setsockopt(struct socket *sock, int level, int optname,
 694		    char __user *optval, unsigned int optlen)
 695{
 
 696	struct sock *sk = sock->sk;
 697	int val;
 698	int valbool;
 699	struct linger ling;
 700	int ret = 0;
 701
 702	/*
 703	 *	Options without arguments
 704	 */
 705
 706	if (optname == SO_BINDTODEVICE)
 707		return sock_setbindtodevice(sk, optval, optlen);
 708
 709	if (optlen < sizeof(int))
 710		return -EINVAL;
 711
 712	if (get_user(val, (int __user *)optval))
 713		return -EFAULT;
 714
 715	valbool = val ? 1 : 0;
 716
 717	lock_sock(sk);
 718
 719	switch (optname) {
 720	case SO_DEBUG:
 721		if (val && !capable(CAP_NET_ADMIN))
 722			ret = -EACCES;
 723		else
 724			sock_valbool_flag(sk, SOCK_DBG, valbool);
 725		break;
 726	case SO_REUSEADDR:
 727		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
 728		break;
 729	case SO_REUSEPORT:
 730		sk->sk_reuseport = valbool;
 731		break;
 732	case SO_TYPE:
 733	case SO_PROTOCOL:
 734	case SO_DOMAIN:
 735	case SO_ERROR:
 736		ret = -ENOPROTOOPT;
 737		break;
 738	case SO_DONTROUTE:
 739		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
 
 740		break;
 741	case SO_BROADCAST:
 742		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
 743		break;
 744	case SO_SNDBUF:
 745		/* Don't error on this BSD doesn't and if you think
 746		 * about it this is right. Otherwise apps have to
 747		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 748		 * are treated in BSD as hints
 749		 */
 750		val = min_t(u32, val, sysctl_wmem_max);
 751set_sndbuf:
 
 
 
 
 752		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
 753		sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
 
 754		/* Wake up sending tasks if we upped the value. */
 755		sk->sk_write_space(sk);
 756		break;
 757
 758	case SO_SNDBUFFORCE:
 759		if (!capable(CAP_NET_ADMIN)) {
 760			ret = -EPERM;
 761			break;
 762		}
 
 
 
 
 
 
 763		goto set_sndbuf;
 764
 765	case SO_RCVBUF:
 766		/* Don't error on this BSD doesn't and if you think
 767		 * about it this is right. Otherwise apps have to
 768		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 769		 * are treated in BSD as hints
 770		 */
 771		val = min_t(u32, val, sysctl_rmem_max);
 772set_rcvbuf:
 
 
 
 
 773		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 774		/*
 775		 * We double it on the way in to account for
 776		 * "struct sk_buff" etc. overhead.   Applications
 777		 * assume that the SO_RCVBUF setting they make will
 778		 * allow that much actual data to be received on that
 779		 * socket.
 780		 *
 781		 * Applications are unaware that "struct sk_buff" and
 782		 * other overheads allocate from the receive buffer
 783		 * during socket buffer allocation.
 784		 *
 785		 * And after considering the possible alternatives,
 786		 * returning the value we actually used in getsockopt
 787		 * is the most desirable behavior.
 788		 */
 789		sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
 
 790		break;
 791
 792	case SO_RCVBUFFORCE:
 793		if (!capable(CAP_NET_ADMIN)) {
 794			ret = -EPERM;
 795			break;
 796		}
 
 
 
 
 
 
 797		goto set_rcvbuf;
 798
 799	case SO_KEEPALIVE:
 800		if (sk->sk_prot->keepalive)
 801			sk->sk_prot->keepalive(sk, valbool);
 802		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
 803		break;
 804
 805	case SO_OOBINLINE:
 806		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
 807		break;
 808
 809	case SO_NO_CHECK:
 810		sk->sk_no_check_tx = valbool;
 811		break;
 812
 813	case SO_PRIORITY:
 814		if ((val >= 0 && val <= 6) ||
 815		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 816			sk->sk_priority = val;
 817		else
 818			ret = -EPERM;
 819		break;
 820
 821	case SO_LINGER:
 822		if (optlen < sizeof(ling)) {
 823			ret = -EINVAL;	/* 1003.1g */
 824			break;
 825		}
 826		if (copy_from_user(&ling, optval, sizeof(ling))) {
 827			ret = -EFAULT;
 828			break;
 829		}
 830		if (!ling.l_onoff)
 831			sock_reset_flag(sk, SOCK_LINGER);
 832		else {
 833#if (BITS_PER_LONG == 32)
 834			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
 835				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 836			else
 837#endif
 838				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
 839			sock_set_flag(sk, SOCK_LINGER);
 840		}
 841		break;
 842
 843	case SO_BSDCOMPAT:
 844		sock_warn_obsolete_bsdism("setsockopt");
 845		break;
 846
 847	case SO_PASSCRED:
 848		if (valbool)
 849			set_bit(SOCK_PASSCRED, &sock->flags);
 850		else
 851			clear_bit(SOCK_PASSCRED, &sock->flags);
 852		break;
 853
 854	case SO_TIMESTAMP:
 855	case SO_TIMESTAMPNS:
 
 
 856		if (valbool)  {
 857			if (optname == SO_TIMESTAMP)
 
 
 
 
 
 858				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 859			else
 860				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
 861			sock_set_flag(sk, SOCK_RCVTSTAMP);
 862			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 863		} else {
 864			sock_reset_flag(sk, SOCK_RCVTSTAMP);
 865			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 
 866		}
 867		break;
 868
 869	case SO_TIMESTAMPING:
 
 
 
 870		if (val & ~SOF_TIMESTAMPING_MASK) {
 871			ret = -EINVAL;
 872			break;
 873		}
 874
 875		if (val & SOF_TIMESTAMPING_OPT_ID &&
 876		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 877			if (sk->sk_protocol == IPPROTO_TCP &&
 878			    sk->sk_type == SOCK_STREAM) {
 879				if ((1 << sk->sk_state) &
 880				    (TCPF_CLOSE | TCPF_LISTEN)) {
 881					ret = -EINVAL;
 882					break;
 883				}
 884				sk->sk_tskey = tcp_sk(sk)->snd_una;
 885			} else {
 886				sk->sk_tskey = 0;
 887			}
 888		}
 889
 890		if (val & SOF_TIMESTAMPING_OPT_STATS &&
 891		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
 892			ret = -EINVAL;
 893			break;
 894		}
 895
 896		sk->sk_tsflags = val;
 897		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 898			sock_enable_timestamp(sk,
 899					      SOCK_TIMESTAMPING_RX_SOFTWARE);
 900		else
 
 
 
 901			sock_disable_timestamp(sk,
 902					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 
 903		break;
 904
 905	case SO_RCVLOWAT:
 906		if (val < 0)
 907			val = INT_MAX;
 908		sk->sk_rcvlowat = val ? : 1;
 
 
 
 909		break;
 910
 911	case SO_RCVTIMEO:
 912		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
 
 913		break;
 914
 915	case SO_SNDTIMEO:
 916		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
 
 917		break;
 918
 919	case SO_ATTACH_FILTER:
 920		ret = -EINVAL;
 921		if (optlen == sizeof(struct sock_fprog)) {
 922			struct sock_fprog fprog;
 923
 924			ret = -EFAULT;
 925			if (copy_from_user(&fprog, optval, sizeof(fprog)))
 926				break;
 927
 928			ret = sk_attach_filter(&fprog, sk);
 929		}
 930		break;
 931
 932	case SO_ATTACH_BPF:
 933		ret = -EINVAL;
 934		if (optlen == sizeof(u32)) {
 935			u32 ufd;
 936
 937			ret = -EFAULT;
 938			if (copy_from_user(&ufd, optval, sizeof(ufd)))
 939				break;
 940
 941			ret = sk_attach_bpf(ufd, sk);
 942		}
 943		break;
 944
 945	case SO_ATTACH_REUSEPORT_CBPF:
 946		ret = -EINVAL;
 947		if (optlen == sizeof(struct sock_fprog)) {
 948			struct sock_fprog fprog;
 949
 950			ret = -EFAULT;
 951			if (copy_from_user(&fprog, optval, sizeof(fprog)))
 952				break;
 953
 954			ret = sk_reuseport_attach_filter(&fprog, sk);
 955		}
 956		break;
 957
 958	case SO_ATTACH_REUSEPORT_EBPF:
 959		ret = -EINVAL;
 960		if (optlen == sizeof(u32)) {
 961			u32 ufd;
 962
 963			ret = -EFAULT;
 964			if (copy_from_user(&ufd, optval, sizeof(ufd)))
 965				break;
 966
 967			ret = sk_reuseport_attach_bpf(ufd, sk);
 968		}
 969		break;
 970
 
 
 
 
 971	case SO_DETACH_FILTER:
 972		ret = sk_detach_filter(sk);
 973		break;
 974
 975	case SO_LOCK_FILTER:
 976		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
 977			ret = -EPERM;
 978		else
 979			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
 980		break;
 981
 982	case SO_PASSSEC:
 983		if (valbool)
 984			set_bit(SOCK_PASSSEC, &sock->flags);
 985		else
 986			clear_bit(SOCK_PASSSEC, &sock->flags);
 987		break;
 988	case SO_MARK:
 989		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 990			ret = -EPERM;
 991		else
 992			sk->sk_mark = val;
 
 
 993		break;
 994
 995	case SO_RXQ_OVFL:
 996		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
 997		break;
 998
 999	case SO_WIFI_STATUS:
1000		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1001		break;
1002
1003	case SO_PEEK_OFF:
1004		if (sock->ops->set_peek_off)
1005			ret = sock->ops->set_peek_off(sk, val);
1006		else
1007			ret = -EOPNOTSUPP;
1008		break;
1009
1010	case SO_NOFCS:
1011		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1012		break;
1013
1014	case SO_SELECT_ERR_QUEUE:
1015		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1016		break;
1017
1018#ifdef CONFIG_NET_RX_BUSY_POLL
1019	case SO_BUSY_POLL:
1020		/* allow unprivileged users to decrease the value */
1021		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1022			ret = -EPERM;
1023		else {
1024			if (val < 0)
1025				ret = -EINVAL;
1026			else
1027				sk->sk_ll_usec = val;
1028		}
1029		break;
1030#endif
1031
1032	case SO_MAX_PACING_RATE:
1033		if (val != ~0U)
 
 
 
 
 
 
 
 
 
1034			cmpxchg(&sk->sk_pacing_status,
1035				SK_PACING_NONE,
1036				SK_PACING_NEEDED);
1037		sk->sk_max_pacing_rate = val;
1038		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1039					 sk->sk_max_pacing_rate);
1040		break;
1041
1042	case SO_INCOMING_CPU:
1043		sk->sk_incoming_cpu = val;
1044		break;
1045
1046	case SO_CNX_ADVICE:
1047		if (val == 1)
1048			dst_negative_advice(sk);
1049		break;
1050
1051	case SO_ZEROCOPY:
1052		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1053			if (sk->sk_protocol != IPPROTO_TCP)
 
 
 
1054				ret = -ENOTSUPP;
1055		} else if (sk->sk_family != PF_RDS) {
1056			ret = -ENOTSUPP;
1057		}
1058		if (!ret) {
1059			if (val < 0 || val > 1)
1060				ret = -EINVAL;
1061			else
1062				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1063		}
1064		break;
1065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1066	default:
1067		ret = -ENOPROTOOPT;
1068		break;
1069	}
1070	release_sock(sk);
1071	return ret;
1072}
1073EXPORT_SYMBOL(sock_setsockopt);
1074
1075
1076static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1077			  struct ucred *ucred)
1078{
1079	ucred->pid = pid_vnr(pid);
1080	ucred->uid = ucred->gid = -1;
1081	if (cred) {
1082		struct user_namespace *current_ns = current_user_ns();
1083
1084		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1085		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1086	}
1087}
1088
1089static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1090{
1091	struct user_namespace *user_ns = current_user_ns();
1092	int i;
1093
1094	for (i = 0; i < src->ngroups; i++)
1095		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1096			return -EFAULT;
1097
1098	return 0;
1099}
1100
1101int sock_getsockopt(struct socket *sock, int level, int optname,
1102		    char __user *optval, int __user *optlen)
1103{
1104	struct sock *sk = sock->sk;
1105
1106	union {
1107		int val;
1108		u64 val64;
 
1109		struct linger ling;
1110		struct timeval tm;
 
 
 
1111	} v;
1112
1113	int lv = sizeof(int);
1114	int len;
1115
1116	if (get_user(len, optlen))
1117		return -EFAULT;
1118	if (len < 0)
1119		return -EINVAL;
1120
1121	memset(&v, 0, sizeof(v));
1122
1123	switch (optname) {
1124	case SO_DEBUG:
1125		v.val = sock_flag(sk, SOCK_DBG);
1126		break;
1127
1128	case SO_DONTROUTE:
1129		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1130		break;
1131
1132	case SO_BROADCAST:
1133		v.val = sock_flag(sk, SOCK_BROADCAST);
1134		break;
1135
1136	case SO_SNDBUF:
1137		v.val = sk->sk_sndbuf;
1138		break;
1139
1140	case SO_RCVBUF:
1141		v.val = sk->sk_rcvbuf;
1142		break;
1143
1144	case SO_REUSEADDR:
1145		v.val = sk->sk_reuse;
1146		break;
1147
1148	case SO_REUSEPORT:
1149		v.val = sk->sk_reuseport;
1150		break;
1151
1152	case SO_KEEPALIVE:
1153		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1154		break;
1155
1156	case SO_TYPE:
1157		v.val = sk->sk_type;
1158		break;
1159
1160	case SO_PROTOCOL:
1161		v.val = sk->sk_protocol;
1162		break;
1163
1164	case SO_DOMAIN:
1165		v.val = sk->sk_family;
1166		break;
1167
1168	case SO_ERROR:
1169		v.val = -sock_error(sk);
1170		if (v.val == 0)
1171			v.val = xchg(&sk->sk_err_soft, 0);
1172		break;
1173
1174	case SO_OOBINLINE:
1175		v.val = sock_flag(sk, SOCK_URGINLINE);
1176		break;
1177
1178	case SO_NO_CHECK:
1179		v.val = sk->sk_no_check_tx;
1180		break;
1181
1182	case SO_PRIORITY:
1183		v.val = sk->sk_priority;
1184		break;
1185
1186	case SO_LINGER:
1187		lv		= sizeof(v.ling);
1188		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1189		v.ling.l_linger	= sk->sk_lingertime / HZ;
1190		break;
1191
1192	case SO_BSDCOMPAT:
1193		sock_warn_obsolete_bsdism("getsockopt");
1194		break;
1195
1196	case SO_TIMESTAMP:
1197		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
 
1198				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1199		break;
1200
1201	case SO_TIMESTAMPNS:
1202		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
 
 
 
 
 
 
 
 
1203		break;
1204
1205	case SO_TIMESTAMPING:
1206		v.val = sk->sk_tsflags;
1207		break;
1208
1209	case SO_RCVTIMEO:
1210		lv = sizeof(struct timeval);
1211		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1212			v.tm.tv_sec = 0;
1213			v.tm.tv_usec = 0;
1214		} else {
1215			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1216			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1217		}
1218		break;
1219
1220	case SO_SNDTIMEO:
1221		lv = sizeof(struct timeval);
1222		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1223			v.tm.tv_sec = 0;
1224			v.tm.tv_usec = 0;
1225		} else {
1226			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1227			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1228		}
1229		break;
1230
1231	case SO_RCVLOWAT:
1232		v.val = sk->sk_rcvlowat;
1233		break;
1234
1235	case SO_SNDLOWAT:
1236		v.val = 1;
1237		break;
1238
1239	case SO_PASSCRED:
1240		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1241		break;
1242
1243	case SO_PEERCRED:
1244	{
1245		struct ucred peercred;
1246		if (len > sizeof(peercred))
1247			len = sizeof(peercred);
1248		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1249		if (copy_to_user(optval, &peercred, len))
1250			return -EFAULT;
1251		goto lenout;
1252	}
1253
1254	case SO_PEERGROUPS:
1255	{
1256		int ret, n;
1257
1258		if (!sk->sk_peer_cred)
1259			return -ENODATA;
1260
1261		n = sk->sk_peer_cred->group_info->ngroups;
1262		if (len < n * sizeof(gid_t)) {
1263			len = n * sizeof(gid_t);
1264			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1265		}
1266		len = n * sizeof(gid_t);
1267
1268		ret = groups_to_user((gid_t __user *)optval,
1269				     sk->sk_peer_cred->group_info);
1270		if (ret)
1271			return ret;
1272		goto lenout;
1273	}
1274
1275	case SO_PEERNAME:
1276	{
1277		char address[128];
1278
1279		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1280		if (lv < 0)
1281			return -ENOTCONN;
1282		if (lv < len)
1283			return -EINVAL;
1284		if (copy_to_user(optval, address, len))
1285			return -EFAULT;
1286		goto lenout;
1287	}
1288
1289	/* Dubious BSD thing... Probably nobody even uses it, but
1290	 * the UNIX standard wants it for whatever reason... -DaveM
1291	 */
1292	case SO_ACCEPTCONN:
1293		v.val = sk->sk_state == TCP_LISTEN;
1294		break;
1295
1296	case SO_PASSSEC:
1297		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1298		break;
1299
1300	case SO_PEERSEC:
1301		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1302
1303	case SO_MARK:
1304		v.val = sk->sk_mark;
1305		break;
1306
1307	case SO_RXQ_OVFL:
1308		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1309		break;
1310
1311	case SO_WIFI_STATUS:
1312		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1313		break;
1314
1315	case SO_PEEK_OFF:
1316		if (!sock->ops->set_peek_off)
1317			return -EOPNOTSUPP;
1318
1319		v.val = sk->sk_peek_off;
1320		break;
1321	case SO_NOFCS:
1322		v.val = sock_flag(sk, SOCK_NOFCS);
1323		break;
1324
1325	case SO_BINDTODEVICE:
1326		return sock_getbindtodevice(sk, optval, optlen, len);
1327
1328	case SO_GET_FILTER:
1329		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1330		if (len < 0)
1331			return len;
1332
1333		goto lenout;
1334
1335	case SO_LOCK_FILTER:
1336		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1337		break;
1338
1339	case SO_BPF_EXTENSIONS:
1340		v.val = bpf_tell_extensions();
1341		break;
1342
1343	case SO_SELECT_ERR_QUEUE:
1344		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1345		break;
1346
1347#ifdef CONFIG_NET_RX_BUSY_POLL
1348	case SO_BUSY_POLL:
1349		v.val = sk->sk_ll_usec;
1350		break;
1351#endif
1352
1353	case SO_MAX_PACING_RATE:
1354		v.val = sk->sk_max_pacing_rate;
 
 
 
 
 
 
1355		break;
1356
1357	case SO_INCOMING_CPU:
1358		v.val = sk->sk_incoming_cpu;
1359		break;
1360
1361	case SO_MEMINFO:
1362	{
1363		u32 meminfo[SK_MEMINFO_VARS];
1364
1365		if (get_user(len, optlen))
1366			return -EFAULT;
1367
1368		sk_get_meminfo(sk, meminfo);
1369
1370		len = min_t(unsigned int, len, sizeof(meminfo));
1371		if (copy_to_user(optval, &meminfo, len))
1372			return -EFAULT;
1373
1374		goto lenout;
1375	}
1376
1377#ifdef CONFIG_NET_RX_BUSY_POLL
1378	case SO_INCOMING_NAPI_ID:
1379		v.val = READ_ONCE(sk->sk_napi_id);
1380
1381		/* aggregate non-NAPI IDs down to 0 */
1382		if (v.val < MIN_NAPI_ID)
1383			v.val = 0;
1384
1385		break;
1386#endif
1387
1388	case SO_COOKIE:
1389		lv = sizeof(u64);
1390		if (len < lv)
1391			return -EINVAL;
1392		v.val64 = sock_gen_cookie(sk);
1393		break;
1394
1395	case SO_ZEROCOPY:
1396		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1397		break;
1398
 
 
 
 
 
 
 
 
 
 
 
 
 
1399	default:
1400		/* We implement the SO_SNDLOWAT etc to not be settable
1401		 * (1003.1g 7).
1402		 */
1403		return -ENOPROTOOPT;
1404	}
1405
1406	if (len > lv)
1407		len = lv;
1408	if (copy_to_user(optval, &v, len))
1409		return -EFAULT;
1410lenout:
1411	if (put_user(len, optlen))
1412		return -EFAULT;
1413	return 0;
1414}
1415
1416/*
1417 * Initialize an sk_lock.
1418 *
1419 * (We also register the sk_lock with the lock validator.)
1420 */
1421static inline void sock_lock_init(struct sock *sk)
1422{
1423	if (sk->sk_kern_sock)
1424		sock_lock_init_class_and_name(
1425			sk,
1426			af_family_kern_slock_key_strings[sk->sk_family],
1427			af_family_kern_slock_keys + sk->sk_family,
1428			af_family_kern_key_strings[sk->sk_family],
1429			af_family_kern_keys + sk->sk_family);
1430	else
1431		sock_lock_init_class_and_name(
1432			sk,
1433			af_family_slock_key_strings[sk->sk_family],
1434			af_family_slock_keys + sk->sk_family,
1435			af_family_key_strings[sk->sk_family],
1436			af_family_keys + sk->sk_family);
1437}
1438
1439/*
1440 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1441 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1442 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1443 */
1444static void sock_copy(struct sock *nsk, const struct sock *osk)
1445{
1446#ifdef CONFIG_SECURITY_NETWORK
1447	void *sptr = nsk->sk_security;
1448#endif
1449	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1450
1451	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1452	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1453
1454#ifdef CONFIG_SECURITY_NETWORK
1455	nsk->sk_security = sptr;
1456	security_sk_clone(osk, nsk);
1457#endif
1458}
1459
1460static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1461		int family)
1462{
1463	struct sock *sk;
1464	struct kmem_cache *slab;
1465
1466	slab = prot->slab;
1467	if (slab != NULL) {
1468		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1469		if (!sk)
1470			return sk;
1471		if (priority & __GFP_ZERO)
1472			sk_prot_clear_nulls(sk, prot->obj_size);
1473	} else
1474		sk = kmalloc(prot->obj_size, priority);
1475
1476	if (sk != NULL) {
1477		if (security_sk_alloc(sk, family, priority))
1478			goto out_free;
1479
1480		if (!try_module_get(prot->owner))
1481			goto out_free_sec;
1482		sk_tx_queue_clear(sk);
1483	}
1484
1485	return sk;
1486
1487out_free_sec:
1488	security_sk_free(sk);
1489out_free:
1490	if (slab != NULL)
1491		kmem_cache_free(slab, sk);
1492	else
1493		kfree(sk);
1494	return NULL;
1495}
1496
1497static void sk_prot_free(struct proto *prot, struct sock *sk)
1498{
1499	struct kmem_cache *slab;
1500	struct module *owner;
1501
1502	owner = prot->owner;
1503	slab = prot->slab;
1504
1505	cgroup_sk_free(&sk->sk_cgrp_data);
1506	mem_cgroup_sk_free(sk);
1507	security_sk_free(sk);
1508	if (slab != NULL)
1509		kmem_cache_free(slab, sk);
1510	else
1511		kfree(sk);
1512	module_put(owner);
1513}
1514
1515/**
1516 *	sk_alloc - All socket objects are allocated here
1517 *	@net: the applicable net namespace
1518 *	@family: protocol family
1519 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1520 *	@prot: struct proto associated with this new sock instance
1521 *	@kern: is this to be a kernel socket?
1522 */
1523struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1524		      struct proto *prot, int kern)
1525{
1526	struct sock *sk;
1527
1528	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1529	if (sk) {
1530		sk->sk_family = family;
1531		/*
1532		 * See comment in struct sock definition to understand
1533		 * why we need sk_prot_creator -acme
1534		 */
1535		sk->sk_prot = sk->sk_prot_creator = prot;
1536		sk->sk_kern_sock = kern;
1537		sock_lock_init(sk);
1538		sk->sk_net_refcnt = kern ? 0 : 1;
1539		if (likely(sk->sk_net_refcnt)) {
1540			get_net(net);
1541			sock_inuse_add(net, 1);
1542		}
1543
1544		sock_net_set(sk, net);
1545		refcount_set(&sk->sk_wmem_alloc, 1);
1546
1547		mem_cgroup_sk_alloc(sk);
1548		cgroup_sk_alloc(&sk->sk_cgrp_data);
1549		sock_update_classid(&sk->sk_cgrp_data);
1550		sock_update_netprioidx(&sk->sk_cgrp_data);
1551	}
1552
1553	return sk;
1554}
1555EXPORT_SYMBOL(sk_alloc);
1556
1557/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1558 * grace period. This is the case for UDP sockets and TCP listeners.
1559 */
1560static void __sk_destruct(struct rcu_head *head)
1561{
1562	struct sock *sk = container_of(head, struct sock, sk_rcu);
1563	struct sk_filter *filter;
1564
1565	if (sk->sk_destruct)
1566		sk->sk_destruct(sk);
1567
1568	filter = rcu_dereference_check(sk->sk_filter,
1569				       refcount_read(&sk->sk_wmem_alloc) == 0);
1570	if (filter) {
1571		sk_filter_uncharge(sk, filter);
1572		RCU_INIT_POINTER(sk->sk_filter, NULL);
1573	}
1574	if (rcu_access_pointer(sk->sk_reuseport_cb))
1575		reuseport_detach_sock(sk);
1576
1577	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1578
 
 
 
 
1579	if (atomic_read(&sk->sk_omem_alloc))
1580		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1581			 __func__, atomic_read(&sk->sk_omem_alloc));
1582
1583	if (sk->sk_frag.page) {
1584		put_page(sk->sk_frag.page);
1585		sk->sk_frag.page = NULL;
1586	}
1587
1588	if (sk->sk_peer_cred)
1589		put_cred(sk->sk_peer_cred);
1590	put_pid(sk->sk_peer_pid);
1591	if (likely(sk->sk_net_refcnt))
1592		put_net(sock_net(sk));
1593	sk_prot_free(sk->sk_prot_creator, sk);
1594}
1595
1596void sk_destruct(struct sock *sk)
1597{
1598	if (sock_flag(sk, SOCK_RCU_FREE))
 
 
 
 
 
 
 
1599		call_rcu(&sk->sk_rcu, __sk_destruct);
1600	else
1601		__sk_destruct(&sk->sk_rcu);
1602}
1603
1604static void __sk_free(struct sock *sk)
1605{
1606	if (likely(sk->sk_net_refcnt))
1607		sock_inuse_add(sock_net(sk), -1);
1608
1609	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1610		sock_diag_broadcast_destroy(sk);
1611	else
1612		sk_destruct(sk);
1613}
1614
1615void sk_free(struct sock *sk)
1616{
1617	/*
1618	 * We subtract one from sk_wmem_alloc and can know if
1619	 * some packets are still in some tx queue.
1620	 * If not null, sock_wfree() will call __sk_free(sk) later
1621	 */
1622	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1623		__sk_free(sk);
1624}
1625EXPORT_SYMBOL(sk_free);
1626
1627static void sk_init_common(struct sock *sk)
1628{
1629	skb_queue_head_init(&sk->sk_receive_queue);
1630	skb_queue_head_init(&sk->sk_write_queue);
1631	skb_queue_head_init(&sk->sk_error_queue);
1632
1633	rwlock_init(&sk->sk_callback_lock);
1634	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1635			af_rlock_keys + sk->sk_family,
1636			af_family_rlock_key_strings[sk->sk_family]);
1637	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1638			af_wlock_keys + sk->sk_family,
1639			af_family_wlock_key_strings[sk->sk_family]);
1640	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1641			af_elock_keys + sk->sk_family,
1642			af_family_elock_key_strings[sk->sk_family]);
1643	lockdep_set_class_and_name(&sk->sk_callback_lock,
1644			af_callback_keys + sk->sk_family,
1645			af_family_clock_key_strings[sk->sk_family]);
1646}
1647
1648/**
1649 *	sk_clone_lock - clone a socket, and lock its clone
1650 *	@sk: the socket to clone
1651 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1652 *
1653 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1654 */
1655struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1656{
1657	struct sock *newsk;
1658	bool is_charged = true;
1659
1660	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1661	if (newsk != NULL) {
1662		struct sk_filter *filter;
1663
1664		sock_copy(newsk, sk);
1665
1666		newsk->sk_prot_creator = sk->sk_prot;
1667
1668		/* SANITY */
1669		if (likely(newsk->sk_net_refcnt))
1670			get_net(sock_net(newsk));
1671		sk_node_init(&newsk->sk_node);
1672		sock_lock_init(newsk);
1673		bh_lock_sock(newsk);
1674		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1675		newsk->sk_backlog.len = 0;
1676
1677		atomic_set(&newsk->sk_rmem_alloc, 0);
1678		/*
1679		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1680		 */
1681		refcount_set(&newsk->sk_wmem_alloc, 1);
1682		atomic_set(&newsk->sk_omem_alloc, 0);
1683		sk_init_common(newsk);
1684
1685		newsk->sk_dst_cache	= NULL;
1686		newsk->sk_dst_pending_confirm = 0;
1687		newsk->sk_wmem_queued	= 0;
1688		newsk->sk_forward_alloc = 0;
1689		atomic_set(&newsk->sk_drops, 0);
1690		newsk->sk_send_head	= NULL;
1691		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1692		atomic_set(&newsk->sk_zckey, 0);
1693
1694		sock_reset_flag(newsk, SOCK_DONE);
1695		mem_cgroup_sk_alloc(newsk);
1696		cgroup_sk_alloc(&newsk->sk_cgrp_data);
1697
1698		rcu_read_lock();
1699		filter = rcu_dereference(sk->sk_filter);
1700		if (filter != NULL)
1701			/* though it's an empty new sock, the charging may fail
1702			 * if sysctl_optmem_max was changed between creation of
1703			 * original socket and cloning
1704			 */
1705			is_charged = sk_filter_charge(newsk, filter);
1706		RCU_INIT_POINTER(newsk->sk_filter, filter);
1707		rcu_read_unlock();
1708
1709		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1710			/* We need to make sure that we don't uncharge the new
1711			 * socket if we couldn't charge it in the first place
1712			 * as otherwise we uncharge the parent's filter.
1713			 */
1714			if (!is_charged)
1715				RCU_INIT_POINTER(newsk->sk_filter, NULL);
1716			sk_free_unlock_clone(newsk);
1717			newsk = NULL;
1718			goto out;
1719		}
1720		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1721
 
 
 
 
 
 
1722		newsk->sk_err	   = 0;
1723		newsk->sk_err_soft = 0;
1724		newsk->sk_priority = 0;
1725		newsk->sk_incoming_cpu = raw_smp_processor_id();
1726		atomic64_set(&newsk->sk_cookie, 0);
1727		if (likely(newsk->sk_net_refcnt))
1728			sock_inuse_add(sock_net(newsk), 1);
1729
1730		/*
1731		 * Before updating sk_refcnt, we must commit prior changes to memory
1732		 * (Documentation/RCU/rculist_nulls.txt for details)
1733		 */
1734		smp_wmb();
1735		refcount_set(&newsk->sk_refcnt, 2);
1736
1737		/*
1738		 * Increment the counter in the same struct proto as the master
1739		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1740		 * is the same as sk->sk_prot->socks, as this field was copied
1741		 * with memcpy).
1742		 *
1743		 * This _changes_ the previous behaviour, where
1744		 * tcp_create_openreq_child always was incrementing the
1745		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1746		 * to be taken into account in all callers. -acme
1747		 */
1748		sk_refcnt_debug_inc(newsk);
1749		sk_set_socket(newsk, NULL);
1750		newsk->sk_wq = NULL;
1751
1752		if (newsk->sk_prot->sockets_allocated)
1753			sk_sockets_allocated_inc(newsk);
1754
1755		if (sock_needs_netstamp(sk) &&
1756		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1757			net_enable_timestamp();
1758	}
1759out:
1760	return newsk;
1761}
1762EXPORT_SYMBOL_GPL(sk_clone_lock);
1763
1764void sk_free_unlock_clone(struct sock *sk)
1765{
1766	/* It is still raw copy of parent, so invalidate
1767	 * destructor and make plain sk_free() */
1768	sk->sk_destruct = NULL;
1769	bh_unlock_sock(sk);
1770	sk_free(sk);
1771}
1772EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1773
1774void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1775{
1776	u32 max_segs = 1;
1777
1778	sk_dst_set(sk, dst);
1779	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1780	if (sk->sk_route_caps & NETIF_F_GSO)
1781		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1782	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1783	if (sk_can_gso(sk)) {
1784		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1785			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1786		} else {
1787			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1788			sk->sk_gso_max_size = dst->dev->gso_max_size;
1789			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1790		}
1791	}
1792	sk->sk_gso_max_segs = max_segs;
1793}
1794EXPORT_SYMBOL_GPL(sk_setup_caps);
1795
1796/*
1797 *	Simple resource managers for sockets.
1798 */
1799
1800
1801/*
1802 * Write buffer destructor automatically called from kfree_skb.
1803 */
1804void sock_wfree(struct sk_buff *skb)
1805{
1806	struct sock *sk = skb->sk;
1807	unsigned int len = skb->truesize;
1808
1809	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1810		/*
1811		 * Keep a reference on sk_wmem_alloc, this will be released
1812		 * after sk_write_space() call
1813		 */
1814		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1815		sk->sk_write_space(sk);
1816		len = 1;
1817	}
1818	/*
1819	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1820	 * could not do because of in-flight packets
1821	 */
1822	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1823		__sk_free(sk);
1824}
1825EXPORT_SYMBOL(sock_wfree);
1826
1827/* This variant of sock_wfree() is used by TCP,
1828 * since it sets SOCK_USE_WRITE_QUEUE.
1829 */
1830void __sock_wfree(struct sk_buff *skb)
1831{
1832	struct sock *sk = skb->sk;
1833
1834	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1835		__sk_free(sk);
1836}
1837
1838void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1839{
1840	skb_orphan(skb);
1841	skb->sk = sk;
1842#ifdef CONFIG_INET
1843	if (unlikely(!sk_fullsock(sk))) {
1844		skb->destructor = sock_edemux;
1845		sock_hold(sk);
1846		return;
1847	}
1848#endif
1849	skb->destructor = sock_wfree;
1850	skb_set_hash_from_sk(skb, sk);
1851	/*
1852	 * We used to take a refcount on sk, but following operation
1853	 * is enough to guarantee sk_free() wont free this sock until
1854	 * all in-flight packets are completed
1855	 */
1856	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1857}
1858EXPORT_SYMBOL(skb_set_owner_w);
1859
 
 
 
 
 
 
 
 
 
 
 
 
 
1860/* This helper is used by netem, as it can hold packets in its
1861 * delay queue. We want to allow the owner socket to send more
1862 * packets, as if they were already TX completed by a typical driver.
1863 * But we also want to keep skb->sk set because some packet schedulers
1864 * rely on it (sch_fq for example).
1865 */
1866void skb_orphan_partial(struct sk_buff *skb)
1867{
1868	if (skb_is_tcp_pure_ack(skb))
1869		return;
1870
1871	if (skb->destructor == sock_wfree
1872#ifdef CONFIG_INET
1873	    || skb->destructor == tcp_wfree
1874#endif
1875		) {
1876		struct sock *sk = skb->sk;
1877
1878		if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1879			WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
1880			skb->destructor = sock_efree;
1881		}
1882	} else {
1883		skb_orphan(skb);
1884	}
1885}
1886EXPORT_SYMBOL(skb_orphan_partial);
1887
1888/*
1889 * Read buffer destructor automatically called from kfree_skb.
1890 */
1891void sock_rfree(struct sk_buff *skb)
1892{
1893	struct sock *sk = skb->sk;
1894	unsigned int len = skb->truesize;
1895
1896	atomic_sub(len, &sk->sk_rmem_alloc);
1897	sk_mem_uncharge(sk, len);
1898}
1899EXPORT_SYMBOL(sock_rfree);
1900
1901/*
1902 * Buffer destructor for skbs that are not used directly in read or write
1903 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1904 */
1905void sock_efree(struct sk_buff *skb)
1906{
1907	sock_put(skb->sk);
1908}
1909EXPORT_SYMBOL(sock_efree);
1910
1911kuid_t sock_i_uid(struct sock *sk)
1912{
1913	kuid_t uid;
1914
1915	read_lock_bh(&sk->sk_callback_lock);
1916	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1917	read_unlock_bh(&sk->sk_callback_lock);
1918	return uid;
1919}
1920EXPORT_SYMBOL(sock_i_uid);
1921
1922unsigned long sock_i_ino(struct sock *sk)
1923{
1924	unsigned long ino;
1925
1926	read_lock_bh(&sk->sk_callback_lock);
1927	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1928	read_unlock_bh(&sk->sk_callback_lock);
1929	return ino;
1930}
1931EXPORT_SYMBOL(sock_i_ino);
1932
1933/*
1934 * Allocate a skb from the socket's send buffer.
1935 */
1936struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1937			     gfp_t priority)
1938{
1939	if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
 
1940		struct sk_buff *skb = alloc_skb(size, priority);
 
1941		if (skb) {
1942			skb_set_owner_w(skb, sk);
1943			return skb;
1944		}
1945	}
1946	return NULL;
1947}
1948EXPORT_SYMBOL(sock_wmalloc);
1949
1950static void sock_ofree(struct sk_buff *skb)
1951{
1952	struct sock *sk = skb->sk;
1953
1954	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
1955}
1956
1957struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1958			     gfp_t priority)
1959{
1960	struct sk_buff *skb;
1961
1962	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1963	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
1964	    sysctl_optmem_max)
1965		return NULL;
1966
1967	skb = alloc_skb(size, priority);
1968	if (!skb)
1969		return NULL;
1970
1971	atomic_add(skb->truesize, &sk->sk_omem_alloc);
1972	skb->sk = sk;
1973	skb->destructor = sock_ofree;
1974	return skb;
1975}
1976
1977/*
1978 * Allocate a memory block from the socket's option memory buffer.
1979 */
1980void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1981{
1982	if ((unsigned int)size <= sysctl_optmem_max &&
1983	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1984		void *mem;
1985		/* First do the add, to avoid the race if kmalloc
1986		 * might sleep.
1987		 */
1988		atomic_add(size, &sk->sk_omem_alloc);
1989		mem = kmalloc(size, priority);
1990		if (mem)
1991			return mem;
1992		atomic_sub(size, &sk->sk_omem_alloc);
1993	}
1994	return NULL;
1995}
1996EXPORT_SYMBOL(sock_kmalloc);
1997
1998/* Free an option memory block. Note, we actually want the inline
1999 * here as this allows gcc to detect the nullify and fold away the
2000 * condition entirely.
2001 */
2002static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2003				  const bool nullify)
2004{
2005	if (WARN_ON_ONCE(!mem))
2006		return;
2007	if (nullify)
2008		kzfree(mem);
2009	else
2010		kfree(mem);
2011	atomic_sub(size, &sk->sk_omem_alloc);
2012}
2013
2014void sock_kfree_s(struct sock *sk, void *mem, int size)
2015{
2016	__sock_kfree_s(sk, mem, size, false);
2017}
2018EXPORT_SYMBOL(sock_kfree_s);
2019
2020void sock_kzfree_s(struct sock *sk, void *mem, int size)
2021{
2022	__sock_kfree_s(sk, mem, size, true);
2023}
2024EXPORT_SYMBOL(sock_kzfree_s);
2025
2026/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2027   I think, these locks should be removed for datagram sockets.
2028 */
2029static long sock_wait_for_wmem(struct sock *sk, long timeo)
2030{
2031	DEFINE_WAIT(wait);
2032
2033	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2034	for (;;) {
2035		if (!timeo)
2036			break;
2037		if (signal_pending(current))
2038			break;
2039		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2040		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2041		if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2042			break;
2043		if (sk->sk_shutdown & SEND_SHUTDOWN)
2044			break;
2045		if (sk->sk_err)
2046			break;
2047		timeo = schedule_timeout(timeo);
2048	}
2049	finish_wait(sk_sleep(sk), &wait);
2050	return timeo;
2051}
2052
2053
2054/*
2055 *	Generic send/receive buffer handlers
2056 */
2057
2058struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2059				     unsigned long data_len, int noblock,
2060				     int *errcode, int max_page_order)
2061{
2062	struct sk_buff *skb;
2063	long timeo;
2064	int err;
2065
2066	timeo = sock_sndtimeo(sk, noblock);
2067	for (;;) {
2068		err = sock_error(sk);
2069		if (err != 0)
2070			goto failure;
2071
2072		err = -EPIPE;
2073		if (sk->sk_shutdown & SEND_SHUTDOWN)
2074			goto failure;
2075
2076		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2077			break;
2078
2079		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2080		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2081		err = -EAGAIN;
2082		if (!timeo)
2083			goto failure;
2084		if (signal_pending(current))
2085			goto interrupted;
2086		timeo = sock_wait_for_wmem(sk, timeo);
2087	}
2088	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2089				   errcode, sk->sk_allocation);
2090	if (skb)
2091		skb_set_owner_w(skb, sk);
2092	return skb;
2093
2094interrupted:
2095	err = sock_intr_errno(timeo);
2096failure:
2097	*errcode = err;
2098	return NULL;
2099}
2100EXPORT_SYMBOL(sock_alloc_send_pskb);
2101
2102struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2103				    int noblock, int *errcode)
2104{
2105	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2106}
2107EXPORT_SYMBOL(sock_alloc_send_skb);
2108
2109int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2110		     struct sockcm_cookie *sockc)
2111{
2112	u32 tsflags;
2113
2114	switch (cmsg->cmsg_type) {
2115	case SO_MARK:
2116		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2117			return -EPERM;
2118		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2119			return -EINVAL;
2120		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2121		break;
2122	case SO_TIMESTAMPING:
2123		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2124			return -EINVAL;
2125
2126		tsflags = *(u32 *)CMSG_DATA(cmsg);
2127		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2128			return -EINVAL;
2129
2130		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2131		sockc->tsflags |= tsflags;
2132		break;
 
 
 
 
 
 
 
2133	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2134	case SCM_RIGHTS:
2135	case SCM_CREDENTIALS:
2136		break;
2137	default:
2138		return -EINVAL;
2139	}
2140	return 0;
2141}
2142EXPORT_SYMBOL(__sock_cmsg_send);
2143
2144int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2145		   struct sockcm_cookie *sockc)
2146{
2147	struct cmsghdr *cmsg;
2148	int ret;
2149
2150	for_each_cmsghdr(cmsg, msg) {
2151		if (!CMSG_OK(msg, cmsg))
2152			return -EINVAL;
2153		if (cmsg->cmsg_level != SOL_SOCKET)
2154			continue;
2155		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2156		if (ret)
2157			return ret;
2158	}
2159	return 0;
2160}
2161EXPORT_SYMBOL(sock_cmsg_send);
2162
2163static void sk_enter_memory_pressure(struct sock *sk)
2164{
2165	if (!sk->sk_prot->enter_memory_pressure)
2166		return;
2167
2168	sk->sk_prot->enter_memory_pressure(sk);
2169}
2170
2171static void sk_leave_memory_pressure(struct sock *sk)
2172{
2173	if (sk->sk_prot->leave_memory_pressure) {
2174		sk->sk_prot->leave_memory_pressure(sk);
2175	} else {
2176		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2177
2178		if (memory_pressure && *memory_pressure)
2179			*memory_pressure = 0;
2180	}
2181}
2182
2183/* On 32bit arches, an skb frag is limited to 2^15 */
2184#define SKB_FRAG_PAGE_ORDER	get_order(32768)
 
2185
2186/**
2187 * skb_page_frag_refill - check that a page_frag contains enough room
2188 * @sz: minimum size of the fragment we want to get
2189 * @pfrag: pointer to page_frag
2190 * @gfp: priority for memory allocation
2191 *
2192 * Note: While this allocator tries to use high order pages, there is
2193 * no guarantee that allocations succeed. Therefore, @sz MUST be
2194 * less or equal than PAGE_SIZE.
2195 */
2196bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2197{
2198	if (pfrag->page) {
2199		if (page_ref_count(pfrag->page) == 1) {
2200			pfrag->offset = 0;
2201			return true;
2202		}
2203		if (pfrag->offset + sz <= pfrag->size)
2204			return true;
2205		put_page(pfrag->page);
2206	}
2207
2208	pfrag->offset = 0;
2209	if (SKB_FRAG_PAGE_ORDER) {
 
2210		/* Avoid direct reclaim but allow kswapd to wake */
2211		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2212					  __GFP_COMP | __GFP_NOWARN |
2213					  __GFP_NORETRY,
2214					  SKB_FRAG_PAGE_ORDER);
2215		if (likely(pfrag->page)) {
2216			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2217			return true;
2218		}
2219	}
2220	pfrag->page = alloc_page(gfp);
2221	if (likely(pfrag->page)) {
2222		pfrag->size = PAGE_SIZE;
2223		return true;
2224	}
2225	return false;
2226}
2227EXPORT_SYMBOL(skb_page_frag_refill);
2228
2229bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2230{
2231	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2232		return true;
2233
2234	sk_enter_memory_pressure(sk);
2235	sk_stream_moderate_sndbuf(sk);
2236	return false;
2237}
2238EXPORT_SYMBOL(sk_page_frag_refill);
2239
2240int sk_alloc_sg(struct sock *sk, int len, struct scatterlist *sg,
2241		int sg_start, int *sg_curr_index, unsigned int *sg_curr_size,
2242		int first_coalesce)
2243{
2244	int sg_curr = *sg_curr_index, use = 0, rc = 0;
2245	unsigned int size = *sg_curr_size;
2246	struct page_frag *pfrag;
2247	struct scatterlist *sge;
2248
2249	len -= size;
2250	pfrag = sk_page_frag(sk);
2251
2252	while (len > 0) {
2253		unsigned int orig_offset;
2254
2255		if (!sk_page_frag_refill(sk, pfrag)) {
2256			rc = -ENOMEM;
2257			goto out;
2258		}
2259
2260		use = min_t(int, len, pfrag->size - pfrag->offset);
2261
2262		if (!sk_wmem_schedule(sk, use)) {
2263			rc = -ENOMEM;
2264			goto out;
2265		}
2266
2267		sk_mem_charge(sk, use);
2268		size += use;
2269		orig_offset = pfrag->offset;
2270		pfrag->offset += use;
2271
2272		sge = sg + sg_curr - 1;
2273		if (sg_curr > first_coalesce && sg_page(sg) == pfrag->page &&
2274		    sg->offset + sg->length == orig_offset) {
2275			sg->length += use;
2276		} else {
2277			sge = sg + sg_curr;
2278			sg_unmark_end(sge);
2279			sg_set_page(sge, pfrag->page, use, orig_offset);
2280			get_page(pfrag->page);
2281			sg_curr++;
2282
2283			if (sg_curr == MAX_SKB_FRAGS)
2284				sg_curr = 0;
2285
2286			if (sg_curr == sg_start) {
2287				rc = -ENOSPC;
2288				break;
2289			}
2290		}
2291
2292		len -= use;
2293	}
2294out:
2295	*sg_curr_size = size;
2296	*sg_curr_index = sg_curr;
2297	return rc;
2298}
2299EXPORT_SYMBOL(sk_alloc_sg);
2300
2301static void __lock_sock(struct sock *sk)
2302	__releases(&sk->sk_lock.slock)
2303	__acquires(&sk->sk_lock.slock)
2304{
2305	DEFINE_WAIT(wait);
2306
2307	for (;;) {
2308		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2309					TASK_UNINTERRUPTIBLE);
2310		spin_unlock_bh(&sk->sk_lock.slock);
2311		schedule();
2312		spin_lock_bh(&sk->sk_lock.slock);
2313		if (!sock_owned_by_user(sk))
2314			break;
2315	}
2316	finish_wait(&sk->sk_lock.wq, &wait);
2317}
2318
2319static void __release_sock(struct sock *sk)
2320	__releases(&sk->sk_lock.slock)
2321	__acquires(&sk->sk_lock.slock)
2322{
2323	struct sk_buff *skb, *next;
2324
2325	while ((skb = sk->sk_backlog.head) != NULL) {
2326		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2327
2328		spin_unlock_bh(&sk->sk_lock.slock);
2329
2330		do {
2331			next = skb->next;
2332			prefetch(next);
2333			WARN_ON_ONCE(skb_dst_is_noref(skb));
2334			skb->next = NULL;
2335			sk_backlog_rcv(sk, skb);
2336
2337			cond_resched();
2338
2339			skb = next;
2340		} while (skb != NULL);
2341
2342		spin_lock_bh(&sk->sk_lock.slock);
2343	}
2344
2345	/*
2346	 * Doing the zeroing here guarantee we can not loop forever
2347	 * while a wild producer attempts to flood us.
2348	 */
2349	sk->sk_backlog.len = 0;
2350}
2351
2352void __sk_flush_backlog(struct sock *sk)
2353{
2354	spin_lock_bh(&sk->sk_lock.slock);
2355	__release_sock(sk);
2356	spin_unlock_bh(&sk->sk_lock.slock);
2357}
2358
2359/**
2360 * sk_wait_data - wait for data to arrive at sk_receive_queue
2361 * @sk:    sock to wait on
2362 * @timeo: for how long
2363 * @skb:   last skb seen on sk_receive_queue
2364 *
2365 * Now socket state including sk->sk_err is changed only under lock,
2366 * hence we may omit checks after joining wait queue.
2367 * We check receive queue before schedule() only as optimization;
2368 * it is very likely that release_sock() added new data.
2369 */
2370int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2371{
2372	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2373	int rc;
2374
2375	add_wait_queue(sk_sleep(sk), &wait);
2376	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2377	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2378	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2379	remove_wait_queue(sk_sleep(sk), &wait);
2380	return rc;
2381}
2382EXPORT_SYMBOL(sk_wait_data);
2383
2384/**
2385 *	__sk_mem_raise_allocated - increase memory_allocated
2386 *	@sk: socket
2387 *	@size: memory size to allocate
2388 *	@amt: pages to allocate
2389 *	@kind: allocation type
2390 *
2391 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2392 */
2393int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2394{
2395	struct proto *prot = sk->sk_prot;
2396	long allocated = sk_memory_allocated_add(sk, amt);
 
2397
2398	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2399	    !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2400		goto suppress_allocation;
2401
2402	/* Under limit. */
2403	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2404		sk_leave_memory_pressure(sk);
2405		return 1;
2406	}
2407
2408	/* Under pressure. */
2409	if (allocated > sk_prot_mem_limits(sk, 1))
2410		sk_enter_memory_pressure(sk);
2411
2412	/* Over hard limit. */
2413	if (allocated > sk_prot_mem_limits(sk, 2))
2414		goto suppress_allocation;
2415
2416	/* guarantee minimum buffer size under pressure */
2417	if (kind == SK_MEM_RECV) {
2418		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2419			return 1;
2420
2421	} else { /* SK_MEM_SEND */
2422		int wmem0 = sk_get_wmem0(sk, prot);
2423
2424		if (sk->sk_type == SOCK_STREAM) {
2425			if (sk->sk_wmem_queued < wmem0)
2426				return 1;
2427		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2428				return 1;
2429		}
2430	}
2431
2432	if (sk_has_memory_pressure(sk)) {
2433		int alloc;
2434
2435		if (!sk_under_memory_pressure(sk))
2436			return 1;
2437		alloc = sk_sockets_allocated_read_positive(sk);
2438		if (sk_prot_mem_limits(sk, 2) > alloc *
2439		    sk_mem_pages(sk->sk_wmem_queued +
2440				 atomic_read(&sk->sk_rmem_alloc) +
2441				 sk->sk_forward_alloc))
2442			return 1;
2443	}
2444
2445suppress_allocation:
2446
2447	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2448		sk_stream_moderate_sndbuf(sk);
2449
2450		/* Fail only if socket is _under_ its sndbuf.
2451		 * In this case we cannot block, so that we have to fail.
2452		 */
2453		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2454			return 1;
2455	}
2456
2457	trace_sock_exceed_buf_limit(sk, prot, allocated);
 
2458
2459	sk_memory_allocated_sub(sk, amt);
2460
2461	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2462		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2463
2464	return 0;
2465}
2466EXPORT_SYMBOL(__sk_mem_raise_allocated);
2467
2468/**
2469 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2470 *	@sk: socket
2471 *	@size: memory size to allocate
2472 *	@kind: allocation type
2473 *
2474 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2475 *	rmem allocation. This function assumes that protocols which have
2476 *	memory_pressure use sk_wmem_queued as write buffer accounting.
2477 */
2478int __sk_mem_schedule(struct sock *sk, int size, int kind)
2479{
2480	int ret, amt = sk_mem_pages(size);
2481
2482	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2483	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2484	if (!ret)
2485		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2486	return ret;
2487}
2488EXPORT_SYMBOL(__sk_mem_schedule);
2489
2490/**
2491 *	__sk_mem_reduce_allocated - reclaim memory_allocated
2492 *	@sk: socket
2493 *	@amount: number of quanta
2494 *
2495 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2496 */
2497void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2498{
2499	sk_memory_allocated_sub(sk, amount);
2500
2501	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2502		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2503
2504	if (sk_under_memory_pressure(sk) &&
2505	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2506		sk_leave_memory_pressure(sk);
2507}
2508EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2509
2510/**
2511 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2512 *	@sk: socket
2513 *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2514 */
2515void __sk_mem_reclaim(struct sock *sk, int amount)
2516{
2517	amount >>= SK_MEM_QUANTUM_SHIFT;
2518	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2519	__sk_mem_reduce_allocated(sk, amount);
2520}
2521EXPORT_SYMBOL(__sk_mem_reclaim);
2522
2523int sk_set_peek_off(struct sock *sk, int val)
2524{
2525	sk->sk_peek_off = val;
2526	return 0;
2527}
2528EXPORT_SYMBOL_GPL(sk_set_peek_off);
2529
2530/*
2531 * Set of default routines for initialising struct proto_ops when
2532 * the protocol does not support a particular function. In certain
2533 * cases where it makes no sense for a protocol to have a "do nothing"
2534 * function, some default processing is provided.
2535 */
2536
2537int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2538{
2539	return -EOPNOTSUPP;
2540}
2541EXPORT_SYMBOL(sock_no_bind);
2542
2543int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2544		    int len, int flags)
2545{
2546	return -EOPNOTSUPP;
2547}
2548EXPORT_SYMBOL(sock_no_connect);
2549
2550int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2551{
2552	return -EOPNOTSUPP;
2553}
2554EXPORT_SYMBOL(sock_no_socketpair);
2555
2556int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2557		   bool kern)
2558{
2559	return -EOPNOTSUPP;
2560}
2561EXPORT_SYMBOL(sock_no_accept);
2562
2563int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2564		    int peer)
2565{
2566	return -EOPNOTSUPP;
2567}
2568EXPORT_SYMBOL(sock_no_getname);
2569
2570__poll_t sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2571{
2572	return 0;
2573}
2574EXPORT_SYMBOL(sock_no_poll);
2575
2576int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2577{
2578	return -EOPNOTSUPP;
2579}
2580EXPORT_SYMBOL(sock_no_ioctl);
2581
2582int sock_no_listen(struct socket *sock, int backlog)
2583{
2584	return -EOPNOTSUPP;
2585}
2586EXPORT_SYMBOL(sock_no_listen);
2587
2588int sock_no_shutdown(struct socket *sock, int how)
2589{
2590	return -EOPNOTSUPP;
2591}
2592EXPORT_SYMBOL(sock_no_shutdown);
2593
2594int sock_no_setsockopt(struct socket *sock, int level, int optname,
2595		    char __user *optval, unsigned int optlen)
2596{
2597	return -EOPNOTSUPP;
2598}
2599EXPORT_SYMBOL(sock_no_setsockopt);
2600
2601int sock_no_getsockopt(struct socket *sock, int level, int optname,
2602		    char __user *optval, int __user *optlen)
2603{
2604	return -EOPNOTSUPP;
2605}
2606EXPORT_SYMBOL(sock_no_getsockopt);
2607
2608int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2609{
2610	return -EOPNOTSUPP;
2611}
2612EXPORT_SYMBOL(sock_no_sendmsg);
2613
2614int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2615{
2616	return -EOPNOTSUPP;
2617}
2618EXPORT_SYMBOL(sock_no_sendmsg_locked);
2619
2620int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2621		    int flags)
2622{
2623	return -EOPNOTSUPP;
2624}
2625EXPORT_SYMBOL(sock_no_recvmsg);
2626
2627int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2628{
2629	/* Mirror missing mmap method error code */
2630	return -ENODEV;
2631}
2632EXPORT_SYMBOL(sock_no_mmap);
2633
2634ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2635{
2636	ssize_t res;
2637	struct msghdr msg = {.msg_flags = flags};
2638	struct kvec iov;
2639	char *kaddr = kmap(page);
2640	iov.iov_base = kaddr + offset;
2641	iov.iov_len = size;
2642	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2643	kunmap(page);
2644	return res;
2645}
2646EXPORT_SYMBOL(sock_no_sendpage);
2647
2648ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2649				int offset, size_t size, int flags)
2650{
2651	ssize_t res;
2652	struct msghdr msg = {.msg_flags = flags};
2653	struct kvec iov;
2654	char *kaddr = kmap(page);
2655
2656	iov.iov_base = kaddr + offset;
2657	iov.iov_len = size;
2658	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2659	kunmap(page);
2660	return res;
2661}
2662EXPORT_SYMBOL(sock_no_sendpage_locked);
2663
2664/*
2665 *	Default Socket Callbacks
2666 */
2667
2668static void sock_def_wakeup(struct sock *sk)
2669{
2670	struct socket_wq *wq;
2671
2672	rcu_read_lock();
2673	wq = rcu_dereference(sk->sk_wq);
2674	if (skwq_has_sleeper(wq))
2675		wake_up_interruptible_all(&wq->wait);
2676	rcu_read_unlock();
2677}
2678
2679static void sock_def_error_report(struct sock *sk)
2680{
2681	struct socket_wq *wq;
2682
2683	rcu_read_lock();
2684	wq = rcu_dereference(sk->sk_wq);
2685	if (skwq_has_sleeper(wq))
2686		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2687	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2688	rcu_read_unlock();
2689}
2690
2691static void sock_def_readable(struct sock *sk)
2692{
2693	struct socket_wq *wq;
2694
2695	rcu_read_lock();
2696	wq = rcu_dereference(sk->sk_wq);
2697	if (skwq_has_sleeper(wq))
2698		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2699						EPOLLRDNORM | EPOLLRDBAND);
2700	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2701	rcu_read_unlock();
2702}
2703
2704static void sock_def_write_space(struct sock *sk)
2705{
2706	struct socket_wq *wq;
2707
2708	rcu_read_lock();
2709
2710	/* Do not wake up a writer until he can make "significant"
2711	 * progress.  --DaveM
2712	 */
2713	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2714		wq = rcu_dereference(sk->sk_wq);
2715		if (skwq_has_sleeper(wq))
2716			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2717						EPOLLWRNORM | EPOLLWRBAND);
2718
2719		/* Should agree with poll, otherwise some programs break */
2720		if (sock_writeable(sk))
2721			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2722	}
2723
2724	rcu_read_unlock();
2725}
2726
2727static void sock_def_destruct(struct sock *sk)
2728{
2729}
2730
2731void sk_send_sigurg(struct sock *sk)
2732{
2733	if (sk->sk_socket && sk->sk_socket->file)
2734		if (send_sigurg(&sk->sk_socket->file->f_owner))
2735			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2736}
2737EXPORT_SYMBOL(sk_send_sigurg);
2738
2739void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2740		    unsigned long expires)
2741{
2742	if (!mod_timer(timer, expires))
2743		sock_hold(sk);
2744}
2745EXPORT_SYMBOL(sk_reset_timer);
2746
2747void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2748{
2749	if (del_timer(timer))
2750		__sock_put(sk);
2751}
2752EXPORT_SYMBOL(sk_stop_timer);
2753
2754void sock_init_data(struct socket *sock, struct sock *sk)
2755{
2756	sk_init_common(sk);
2757	sk->sk_send_head	=	NULL;
2758
2759	timer_setup(&sk->sk_timer, NULL, 0);
2760
2761	sk->sk_allocation	=	GFP_KERNEL;
2762	sk->sk_rcvbuf		=	sysctl_rmem_default;
2763	sk->sk_sndbuf		=	sysctl_wmem_default;
2764	sk->sk_state		=	TCP_CLOSE;
2765	sk_set_socket(sk, sock);
2766
2767	sock_set_flag(sk, SOCK_ZAPPED);
2768
2769	if (sock) {
2770		sk->sk_type	=	sock->type;
2771		sk->sk_wq	=	sock->wq;
2772		sock->sk	=	sk;
2773		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2774	} else {
2775		sk->sk_wq	=	NULL;
2776		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2777	}
2778
2779	rwlock_init(&sk->sk_callback_lock);
2780	if (sk->sk_kern_sock)
2781		lockdep_set_class_and_name(
2782			&sk->sk_callback_lock,
2783			af_kern_callback_keys + sk->sk_family,
2784			af_family_kern_clock_key_strings[sk->sk_family]);
2785	else
2786		lockdep_set_class_and_name(
2787			&sk->sk_callback_lock,
2788			af_callback_keys + sk->sk_family,
2789			af_family_clock_key_strings[sk->sk_family]);
2790
2791	sk->sk_state_change	=	sock_def_wakeup;
2792	sk->sk_data_ready	=	sock_def_readable;
2793	sk->sk_write_space	=	sock_def_write_space;
2794	sk->sk_error_report	=	sock_def_error_report;
2795	sk->sk_destruct		=	sock_def_destruct;
2796
2797	sk->sk_frag.page	=	NULL;
2798	sk->sk_frag.offset	=	0;
2799	sk->sk_peek_off		=	-1;
2800
2801	sk->sk_peer_pid 	=	NULL;
2802	sk->sk_peer_cred	=	NULL;
2803	sk->sk_write_pending	=	0;
2804	sk->sk_rcvlowat		=	1;
2805	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2806	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2807
2808	sk->sk_stamp = SK_DEFAULT_STAMP;
 
 
 
2809	atomic_set(&sk->sk_zckey, 0);
2810
2811#ifdef CONFIG_NET_RX_BUSY_POLL
2812	sk->sk_napi_id		=	0;
2813	sk->sk_ll_usec		=	sysctl_net_busy_read;
2814#endif
2815
2816	sk->sk_max_pacing_rate = ~0U;
2817	sk->sk_pacing_rate = ~0U;
2818	sk->sk_pacing_shift = 10;
2819	sk->sk_incoming_cpu = -1;
 
 
2820	/*
2821	 * Before updating sk_refcnt, we must commit prior changes to memory
2822	 * (Documentation/RCU/rculist_nulls.txt for details)
2823	 */
2824	smp_wmb();
2825	refcount_set(&sk->sk_refcnt, 1);
2826	atomic_set(&sk->sk_drops, 0);
2827}
2828EXPORT_SYMBOL(sock_init_data);
2829
2830void lock_sock_nested(struct sock *sk, int subclass)
2831{
2832	might_sleep();
2833	spin_lock_bh(&sk->sk_lock.slock);
2834	if (sk->sk_lock.owned)
2835		__lock_sock(sk);
2836	sk->sk_lock.owned = 1;
2837	spin_unlock(&sk->sk_lock.slock);
2838	/*
2839	 * The sk_lock has mutex_lock() semantics here:
2840	 */
2841	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2842	local_bh_enable();
2843}
2844EXPORT_SYMBOL(lock_sock_nested);
2845
2846void release_sock(struct sock *sk)
2847{
2848	spin_lock_bh(&sk->sk_lock.slock);
2849	if (sk->sk_backlog.tail)
2850		__release_sock(sk);
2851
2852	/* Warning : release_cb() might need to release sk ownership,
2853	 * ie call sock_release_ownership(sk) before us.
2854	 */
2855	if (sk->sk_prot->release_cb)
2856		sk->sk_prot->release_cb(sk);
2857
2858	sock_release_ownership(sk);
2859	if (waitqueue_active(&sk->sk_lock.wq))
2860		wake_up(&sk->sk_lock.wq);
2861	spin_unlock_bh(&sk->sk_lock.slock);
2862}
2863EXPORT_SYMBOL(release_sock);
2864
2865/**
2866 * lock_sock_fast - fast version of lock_sock
2867 * @sk: socket
2868 *
2869 * This version should be used for very small section, where process wont block
2870 * return false if fast path is taken:
2871 *
2872 *   sk_lock.slock locked, owned = 0, BH disabled
2873 *
2874 * return true if slow path is taken:
2875 *
2876 *   sk_lock.slock unlocked, owned = 1, BH enabled
2877 */
2878bool lock_sock_fast(struct sock *sk)
2879{
2880	might_sleep();
2881	spin_lock_bh(&sk->sk_lock.slock);
2882
2883	if (!sk->sk_lock.owned)
2884		/*
2885		 * Note : We must disable BH
2886		 */
2887		return false;
2888
2889	__lock_sock(sk);
2890	sk->sk_lock.owned = 1;
2891	spin_unlock(&sk->sk_lock.slock);
2892	/*
2893	 * The sk_lock has mutex_lock() semantics here:
2894	 */
2895	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2896	local_bh_enable();
2897	return true;
2898}
2899EXPORT_SYMBOL(lock_sock_fast);
2900
2901int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
 
2902{
2903	struct timeval tv;
2904	if (!sock_flag(sk, SOCK_TIMESTAMP))
2905		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2906	tv = ktime_to_timeval(sk->sk_stamp);
2907	if (tv.tv_sec == -1)
2908		return -ENOENT;
2909	if (tv.tv_sec == 0) {
2910		sk->sk_stamp = ktime_get_real();
2911		tv = ktime_to_timeval(sk->sk_stamp);
2912	}
2913	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2914}
2915EXPORT_SYMBOL(sock_get_timestamp);
2916
2917int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2918{
2919	struct timespec ts;
2920	if (!sock_flag(sk, SOCK_TIMESTAMP))
2921		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2922	ts = ktime_to_timespec(sk->sk_stamp);
2923	if (ts.tv_sec == -1)
2924		return -ENOENT;
2925	if (ts.tv_sec == 0) {
2926		sk->sk_stamp = ktime_get_real();
2927		ts = ktime_to_timespec(sk->sk_stamp);
 
2928	}
2929	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2930}
2931EXPORT_SYMBOL(sock_get_timestampns);
2932
2933void sock_enable_timestamp(struct sock *sk, int flag)
2934{
2935	if (!sock_flag(sk, flag)) {
2936		unsigned long previous_flags = sk->sk_flags;
2937
2938		sock_set_flag(sk, flag);
2939		/*
2940		 * we just set one of the two flags which require net
2941		 * time stamping, but time stamping might have been on
2942		 * already because of the other one
2943		 */
2944		if (sock_needs_netstamp(sk) &&
2945		    !(previous_flags & SK_FLAGS_TIMESTAMP))
2946			net_enable_timestamp();
2947	}
2948}
2949
2950int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2951		       int level, int type)
2952{
2953	struct sock_exterr_skb *serr;
2954	struct sk_buff *skb;
2955	int copied, err;
2956
2957	err = -EAGAIN;
2958	skb = sock_dequeue_err_skb(sk);
2959	if (skb == NULL)
2960		goto out;
2961
2962	copied = skb->len;
2963	if (copied > len) {
2964		msg->msg_flags |= MSG_TRUNC;
2965		copied = len;
2966	}
2967	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2968	if (err)
2969		goto out_free_skb;
2970
2971	sock_recv_timestamp(msg, sk, skb);
2972
2973	serr = SKB_EXT_ERR(skb);
2974	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2975
2976	msg->msg_flags |= MSG_ERRQUEUE;
2977	err = copied;
2978
2979out_free_skb:
2980	kfree_skb(skb);
2981out:
2982	return err;
2983}
2984EXPORT_SYMBOL(sock_recv_errqueue);
2985
2986/*
2987 *	Get a socket option on an socket.
2988 *
2989 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2990 *	asynchronous errors should be reported by getsockopt. We assume
2991 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2992 */
2993int sock_common_getsockopt(struct socket *sock, int level, int optname,
2994			   char __user *optval, int __user *optlen)
2995{
2996	struct sock *sk = sock->sk;
2997
2998	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2999}
3000EXPORT_SYMBOL(sock_common_getsockopt);
3001
3002#ifdef CONFIG_COMPAT
3003int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3004				  char __user *optval, int __user *optlen)
3005{
3006	struct sock *sk = sock->sk;
3007
3008	if (sk->sk_prot->compat_getsockopt != NULL)
3009		return sk->sk_prot->compat_getsockopt(sk, level, optname,
3010						      optval, optlen);
3011	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3012}
3013EXPORT_SYMBOL(compat_sock_common_getsockopt);
3014#endif
3015
3016int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3017			int flags)
3018{
3019	struct sock *sk = sock->sk;
3020	int addr_len = 0;
3021	int err;
3022
3023	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3024				   flags & ~MSG_DONTWAIT, &addr_len);
3025	if (err >= 0)
3026		msg->msg_namelen = addr_len;
3027	return err;
3028}
3029EXPORT_SYMBOL(sock_common_recvmsg);
3030
3031/*
3032 *	Set socket options on an inet socket.
3033 */
3034int sock_common_setsockopt(struct socket *sock, int level, int optname,
3035			   char __user *optval, unsigned int optlen)
3036{
3037	struct sock *sk = sock->sk;
3038
3039	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3040}
3041EXPORT_SYMBOL(sock_common_setsockopt);
3042
3043#ifdef CONFIG_COMPAT
3044int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3045				  char __user *optval, unsigned int optlen)
3046{
3047	struct sock *sk = sock->sk;
3048
3049	if (sk->sk_prot->compat_setsockopt != NULL)
3050		return sk->sk_prot->compat_setsockopt(sk, level, optname,
3051						      optval, optlen);
3052	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3053}
3054EXPORT_SYMBOL(compat_sock_common_setsockopt);
3055#endif
3056
3057void sk_common_release(struct sock *sk)
3058{
3059	if (sk->sk_prot->destroy)
3060		sk->sk_prot->destroy(sk);
3061
3062	/*
3063	 * Observation: when sock_common_release is called, processes have
3064	 * no access to socket. But net still has.
3065	 * Step one, detach it from networking:
3066	 *
3067	 * A. Remove from hash tables.
3068	 */
3069
3070	sk->sk_prot->unhash(sk);
3071
3072	/*
3073	 * In this point socket cannot receive new packets, but it is possible
3074	 * that some packets are in flight because some CPU runs receiver and
3075	 * did hash table lookup before we unhashed socket. They will achieve
3076	 * receive queue and will be purged by socket destructor.
3077	 *
3078	 * Also we still have packets pending on receive queue and probably,
3079	 * our own packets waiting in device queues. sock_destroy will drain
3080	 * receive queue, but transmitted packets will delay socket destruction
3081	 * until the last reference will be released.
3082	 */
3083
3084	sock_orphan(sk);
3085
3086	xfrm_sk_free_policy(sk);
3087
3088	sk_refcnt_debug_release(sk);
3089
3090	sock_put(sk);
3091}
3092EXPORT_SYMBOL(sk_common_release);
3093
3094void sk_get_meminfo(const struct sock *sk, u32 *mem)
3095{
3096	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3097
3098	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3099	mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3100	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3101	mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3102	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3103	mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3104	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3105	mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3106	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3107}
3108
3109#ifdef CONFIG_PROC_FS
3110#define PROTO_INUSE_NR	64	/* should be enough for the first time */
3111struct prot_inuse {
3112	int val[PROTO_INUSE_NR];
3113};
3114
3115static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3116
3117void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3118{
3119	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3120}
3121EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3122
3123int sock_prot_inuse_get(struct net *net, struct proto *prot)
3124{
3125	int cpu, idx = prot->inuse_idx;
3126	int res = 0;
3127
3128	for_each_possible_cpu(cpu)
3129		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3130
3131	return res >= 0 ? res : 0;
3132}
3133EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3134
3135static void sock_inuse_add(struct net *net, int val)
3136{
3137	this_cpu_add(*net->core.sock_inuse, val);
3138}
3139
3140int sock_inuse_get(struct net *net)
3141{
3142	int cpu, res = 0;
3143
3144	for_each_possible_cpu(cpu)
3145		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3146
3147	return res;
3148}
3149
3150EXPORT_SYMBOL_GPL(sock_inuse_get);
3151
3152static int __net_init sock_inuse_init_net(struct net *net)
3153{
3154	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3155	if (net->core.prot_inuse == NULL)
3156		return -ENOMEM;
3157
3158	net->core.sock_inuse = alloc_percpu(int);
3159	if (net->core.sock_inuse == NULL)
3160		goto out;
3161
3162	return 0;
3163
3164out:
3165	free_percpu(net->core.prot_inuse);
3166	return -ENOMEM;
3167}
3168
3169static void __net_exit sock_inuse_exit_net(struct net *net)
3170{
3171	free_percpu(net->core.prot_inuse);
3172	free_percpu(net->core.sock_inuse);
3173}
3174
3175static struct pernet_operations net_inuse_ops = {
3176	.init = sock_inuse_init_net,
3177	.exit = sock_inuse_exit_net,
3178};
3179
3180static __init int net_inuse_init(void)
3181{
3182	if (register_pernet_subsys(&net_inuse_ops))
3183		panic("Cannot initialize net inuse counters");
3184
3185	return 0;
3186}
3187
3188core_initcall(net_inuse_init);
3189
3190static void assign_proto_idx(struct proto *prot)
3191{
3192	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3193
3194	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3195		pr_err("PROTO_INUSE_NR exhausted\n");
3196		return;
3197	}
3198
3199	set_bit(prot->inuse_idx, proto_inuse_idx);
 
3200}
3201
3202static void release_proto_idx(struct proto *prot)
3203{
3204	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3205		clear_bit(prot->inuse_idx, proto_inuse_idx);
3206}
3207#else
3208static inline void assign_proto_idx(struct proto *prot)
3209{
 
3210}
3211
3212static inline void release_proto_idx(struct proto *prot)
3213{
3214}
3215
3216static void sock_inuse_add(struct net *net, int val)
3217{
3218}
3219#endif
3220
3221static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3222{
3223	if (!rsk_prot)
3224		return;
3225	kfree(rsk_prot->slab_name);
3226	rsk_prot->slab_name = NULL;
3227	kmem_cache_destroy(rsk_prot->slab);
3228	rsk_prot->slab = NULL;
3229}
3230
3231static int req_prot_init(const struct proto *prot)
3232{
3233	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3234
3235	if (!rsk_prot)
3236		return 0;
3237
3238	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3239					prot->name);
3240	if (!rsk_prot->slab_name)
3241		return -ENOMEM;
3242
3243	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3244					   rsk_prot->obj_size, 0,
3245					   prot->slab_flags, NULL);
 
3246
3247	if (!rsk_prot->slab) {
3248		pr_crit("%s: Can't create request sock SLAB cache!\n",
3249			prot->name);
3250		return -ENOMEM;
3251	}
3252	return 0;
3253}
3254
3255int proto_register(struct proto *prot, int alloc_slab)
3256{
 
 
3257	if (alloc_slab) {
3258		prot->slab = kmem_cache_create_usercopy(prot->name,
3259					prot->obj_size, 0,
3260					SLAB_HWCACHE_ALIGN | prot->slab_flags,
 
3261					prot->useroffset, prot->usersize,
3262					NULL);
3263
3264		if (prot->slab == NULL) {
3265			pr_crit("%s: Can't create sock SLAB cache!\n",
3266				prot->name);
3267			goto out;
3268		}
3269
3270		if (req_prot_init(prot))
3271			goto out_free_request_sock_slab;
3272
3273		if (prot->twsk_prot != NULL) {
3274			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3275
3276			if (prot->twsk_prot->twsk_slab_name == NULL)
3277				goto out_free_request_sock_slab;
3278
3279			prot->twsk_prot->twsk_slab =
3280				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3281						  prot->twsk_prot->twsk_obj_size,
3282						  0,
 
3283						  prot->slab_flags,
3284						  NULL);
3285			if (prot->twsk_prot->twsk_slab == NULL)
3286				goto out_free_timewait_sock_slab_name;
3287		}
3288	}
3289
3290	mutex_lock(&proto_list_mutex);
 
 
 
 
 
3291	list_add(&prot->node, &proto_list);
3292	assign_proto_idx(prot);
3293	mutex_unlock(&proto_list_mutex);
3294	return 0;
3295
3296out_free_timewait_sock_slab_name:
3297	kfree(prot->twsk_prot->twsk_slab_name);
 
3298out_free_request_sock_slab:
3299	req_prot_cleanup(prot->rsk_prot);
 
3300
3301	kmem_cache_destroy(prot->slab);
3302	prot->slab = NULL;
 
3303out:
3304	return -ENOBUFS;
3305}
3306EXPORT_SYMBOL(proto_register);
3307
3308void proto_unregister(struct proto *prot)
3309{
3310	mutex_lock(&proto_list_mutex);
3311	release_proto_idx(prot);
3312	list_del(&prot->node);
3313	mutex_unlock(&proto_list_mutex);
3314
3315	kmem_cache_destroy(prot->slab);
3316	prot->slab = NULL;
3317
3318	req_prot_cleanup(prot->rsk_prot);
3319
3320	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3321		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3322		kfree(prot->twsk_prot->twsk_slab_name);
3323		prot->twsk_prot->twsk_slab = NULL;
3324	}
3325}
3326EXPORT_SYMBOL(proto_unregister);
3327
3328int sock_load_diag_module(int family, int protocol)
3329{
3330	if (!protocol) {
3331		if (!sock_is_registered(family))
3332			return -ENOENT;
3333
3334		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3335				      NETLINK_SOCK_DIAG, family);
3336	}
3337
3338#ifdef CONFIG_INET
3339	if (family == AF_INET &&
 
3340	    !rcu_access_pointer(inet_protos[protocol]))
3341		return -ENOENT;
3342#endif
3343
3344	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3345			      NETLINK_SOCK_DIAG, family, protocol);
3346}
3347EXPORT_SYMBOL(sock_load_diag_module);
3348
3349#ifdef CONFIG_PROC_FS
3350static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3351	__acquires(proto_list_mutex)
3352{
3353	mutex_lock(&proto_list_mutex);
3354	return seq_list_start_head(&proto_list, *pos);
3355}
3356
3357static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3358{
3359	return seq_list_next(v, &proto_list, pos);
3360}
3361
3362static void proto_seq_stop(struct seq_file *seq, void *v)
3363	__releases(proto_list_mutex)
3364{
3365	mutex_unlock(&proto_list_mutex);
3366}
3367
3368static char proto_method_implemented(const void *method)
3369{
3370	return method == NULL ? 'n' : 'y';
3371}
3372static long sock_prot_memory_allocated(struct proto *proto)
3373{
3374	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3375}
3376
3377static char *sock_prot_memory_pressure(struct proto *proto)
3378{
3379	return proto->memory_pressure != NULL ?
3380	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3381}
3382
3383static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3384{
3385
3386	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3387			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3388		   proto->name,
3389		   proto->obj_size,
3390		   sock_prot_inuse_get(seq_file_net(seq), proto),
3391		   sock_prot_memory_allocated(proto),
3392		   sock_prot_memory_pressure(proto),
3393		   proto->max_header,
3394		   proto->slab == NULL ? "no" : "yes",
3395		   module_name(proto->owner),
3396		   proto_method_implemented(proto->close),
3397		   proto_method_implemented(proto->connect),
3398		   proto_method_implemented(proto->disconnect),
3399		   proto_method_implemented(proto->accept),
3400		   proto_method_implemented(proto->ioctl),
3401		   proto_method_implemented(proto->init),
3402		   proto_method_implemented(proto->destroy),
3403		   proto_method_implemented(proto->shutdown),
3404		   proto_method_implemented(proto->setsockopt),
3405		   proto_method_implemented(proto->getsockopt),
3406		   proto_method_implemented(proto->sendmsg),
3407		   proto_method_implemented(proto->recvmsg),
3408		   proto_method_implemented(proto->sendpage),
3409		   proto_method_implemented(proto->bind),
3410		   proto_method_implemented(proto->backlog_rcv),
3411		   proto_method_implemented(proto->hash),
3412		   proto_method_implemented(proto->unhash),
3413		   proto_method_implemented(proto->get_port),
3414		   proto_method_implemented(proto->enter_memory_pressure));
3415}
3416
3417static int proto_seq_show(struct seq_file *seq, void *v)
3418{
3419	if (v == &proto_list)
3420		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3421			   "protocol",
3422			   "size",
3423			   "sockets",
3424			   "memory",
3425			   "press",
3426			   "maxhdr",
3427			   "slab",
3428			   "module",
3429			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3430	else
3431		proto_seq_printf(seq, list_entry(v, struct proto, node));
3432	return 0;
3433}
3434
3435static const struct seq_operations proto_seq_ops = {
3436	.start  = proto_seq_start,
3437	.next   = proto_seq_next,
3438	.stop   = proto_seq_stop,
3439	.show   = proto_seq_show,
3440};
3441
3442static int proto_seq_open(struct inode *inode, struct file *file)
3443{
3444	return seq_open_net(inode, file, &proto_seq_ops,
3445			    sizeof(struct seq_net_private));
3446}
3447
3448static const struct file_operations proto_seq_fops = {
3449	.open		= proto_seq_open,
3450	.read		= seq_read,
3451	.llseek		= seq_lseek,
3452	.release	= seq_release_net,
3453};
3454
3455static __net_init int proto_init_net(struct net *net)
3456{
3457	if (!proc_create("protocols", 0444, net->proc_net, &proto_seq_fops))
 
3458		return -ENOMEM;
3459
3460	return 0;
3461}
3462
3463static __net_exit void proto_exit_net(struct net *net)
3464{
3465	remove_proc_entry("protocols", net->proc_net);
3466}
3467
3468
3469static __net_initdata struct pernet_operations proto_net_ops = {
3470	.init = proto_init_net,
3471	.exit = proto_exit_net,
3472};
3473
3474static int __init proto_init(void)
3475{
3476	return register_pernet_subsys(&proto_net_ops);
3477}
3478
3479subsys_initcall(proto_init);
3480
3481#endif /* PROC_FS */
3482
3483#ifdef CONFIG_NET_RX_BUSY_POLL
3484bool sk_busy_loop_end(void *p, unsigned long start_time)
3485{
3486	struct sock *sk = p;
3487
3488	return !skb_queue_empty(&sk->sk_receive_queue) ||
3489	       sk_busy_loop_timeout(sk, start_time);
3490}
3491EXPORT_SYMBOL(sk_busy_loop_end);
3492#endif /* CONFIG_NET_RX_BUSY_POLL */
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Generic socket support routines. Memory allocators, socket lock/release
   8 *		handler for protocols to use and generic option handler.
   9 *
 
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
 
 
 
 
 
 
  84 */
  85
  86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  87
  88#include <asm/unaligned.h>
  89#include <linux/capability.h>
  90#include <linux/errno.h>
  91#include <linux/errqueue.h>
  92#include <linux/types.h>
  93#include <linux/socket.h>
  94#include <linux/in.h>
  95#include <linux/kernel.h>
  96#include <linux/module.h>
  97#include <linux/proc_fs.h>
  98#include <linux/seq_file.h>
  99#include <linux/sched.h>
 100#include <linux/sched/mm.h>
 101#include <linux/timer.h>
 102#include <linux/string.h>
 103#include <linux/sockios.h>
 104#include <linux/net.h>
 105#include <linux/mm.h>
 106#include <linux/slab.h>
 107#include <linux/interrupt.h>
 108#include <linux/poll.h>
 109#include <linux/tcp.h>
 110#include <linux/init.h>
 111#include <linux/highmem.h>
 112#include <linux/user_namespace.h>
 113#include <linux/static_key.h>
 114#include <linux/memcontrol.h>
 115#include <linux/prefetch.h>
 116
 117#include <linux/uaccess.h>
 118
 119#include <linux/netdevice.h>
 120#include <net/protocol.h>
 121#include <linux/skbuff.h>
 122#include <net/net_namespace.h>
 123#include <net/request_sock.h>
 124#include <net/sock.h>
 125#include <linux/net_tstamp.h>
 126#include <net/xfrm.h>
 127#include <linux/ipsec.h>
 128#include <net/cls_cgroup.h>
 129#include <net/netprio_cgroup.h>
 130#include <linux/sock_diag.h>
 131
 132#include <linux/filter.h>
 133#include <net/sock_reuseport.h>
 134#include <net/bpf_sk_storage.h>
 135
 136#include <trace/events/sock.h>
 137
 138#include <net/tcp.h>
 139#include <net/busy_poll.h>
 140
 141static DEFINE_MUTEX(proto_list_mutex);
 142static LIST_HEAD(proto_list);
 143
 144static void sock_inuse_add(struct net *net, int val);
 145
 146/**
 147 * sk_ns_capable - General socket capability test
 148 * @sk: Socket to use a capability on or through
 149 * @user_ns: The user namespace of the capability to use
 150 * @cap: The capability to use
 151 *
 152 * Test to see if the opener of the socket had when the socket was
 153 * created and the current process has the capability @cap in the user
 154 * namespace @user_ns.
 155 */
 156bool sk_ns_capable(const struct sock *sk,
 157		   struct user_namespace *user_ns, int cap)
 158{
 159	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 160		ns_capable(user_ns, cap);
 161}
 162EXPORT_SYMBOL(sk_ns_capable);
 163
 164/**
 165 * sk_capable - Socket global capability test
 166 * @sk: Socket to use a capability on or through
 167 * @cap: The global capability to use
 168 *
 169 * Test to see if the opener of the socket had when the socket was
 170 * created and the current process has the capability @cap in all user
 171 * namespaces.
 172 */
 173bool sk_capable(const struct sock *sk, int cap)
 174{
 175	return sk_ns_capable(sk, &init_user_ns, cap);
 176}
 177EXPORT_SYMBOL(sk_capable);
 178
 179/**
 180 * sk_net_capable - Network namespace socket capability test
 181 * @sk: Socket to use a capability on or through
 182 * @cap: The capability to use
 183 *
 184 * Test to see if the opener of the socket had when the socket was created
 185 * and the current process has the capability @cap over the network namespace
 186 * the socket is a member of.
 187 */
 188bool sk_net_capable(const struct sock *sk, int cap)
 189{
 190	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 191}
 192EXPORT_SYMBOL(sk_net_capable);
 193
 194/*
 195 * Each address family might have different locking rules, so we have
 196 * one slock key per address family and separate keys for internal and
 197 * userspace sockets.
 198 */
 199static struct lock_class_key af_family_keys[AF_MAX];
 200static struct lock_class_key af_family_kern_keys[AF_MAX];
 201static struct lock_class_key af_family_slock_keys[AF_MAX];
 202static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 203
 204/*
 205 * Make lock validator output more readable. (we pre-construct these
 206 * strings build-time, so that runtime initialization of socket
 207 * locks is fast):
 208 */
 209
 210#define _sock_locks(x)						  \
 211  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 212  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 213  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 214  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 215  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 216  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 217  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 218  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 219  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 220  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 221  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 222  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 223  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 224  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 225  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
 226  x "AF_MAX"
 227
 228static const char *const af_family_key_strings[AF_MAX+1] = {
 229	_sock_locks("sk_lock-")
 230};
 231static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 232	_sock_locks("slock-")
 233};
 234static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 235	_sock_locks("clock-")
 236};
 237
 238static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 239	_sock_locks("k-sk_lock-")
 240};
 241static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 242	_sock_locks("k-slock-")
 243};
 244static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 245	_sock_locks("k-clock-")
 246};
 247static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 248	_sock_locks("rlock-")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 249};
 250static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 251	_sock_locks("wlock-")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 252};
 253static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 254	_sock_locks("elock-")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 255};
 256
 257/*
 258 * sk_callback_lock and sk queues locking rules are per-address-family,
 259 * so split the lock classes by using a per-AF key:
 260 */
 261static struct lock_class_key af_callback_keys[AF_MAX];
 262static struct lock_class_key af_rlock_keys[AF_MAX];
 263static struct lock_class_key af_wlock_keys[AF_MAX];
 264static struct lock_class_key af_elock_keys[AF_MAX];
 265static struct lock_class_key af_kern_callback_keys[AF_MAX];
 266
 267/* Run time adjustable parameters. */
 268__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 269EXPORT_SYMBOL(sysctl_wmem_max);
 270__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 271EXPORT_SYMBOL(sysctl_rmem_max);
 272__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 273__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 274
 275/* Maximal space eaten by iovec or ancillary data plus some space */
 276int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 277EXPORT_SYMBOL(sysctl_optmem_max);
 278
 279int sysctl_tstamp_allow_data __read_mostly = 1;
 280
 281DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
 282EXPORT_SYMBOL_GPL(memalloc_socks_key);
 283
 284/**
 285 * sk_set_memalloc - sets %SOCK_MEMALLOC
 286 * @sk: socket to set it on
 287 *
 288 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 289 * It's the responsibility of the admin to adjust min_free_kbytes
 290 * to meet the requirements
 291 */
 292void sk_set_memalloc(struct sock *sk)
 293{
 294	sock_set_flag(sk, SOCK_MEMALLOC);
 295	sk->sk_allocation |= __GFP_MEMALLOC;
 296	static_branch_inc(&memalloc_socks_key);
 297}
 298EXPORT_SYMBOL_GPL(sk_set_memalloc);
 299
 300void sk_clear_memalloc(struct sock *sk)
 301{
 302	sock_reset_flag(sk, SOCK_MEMALLOC);
 303	sk->sk_allocation &= ~__GFP_MEMALLOC;
 304	static_branch_dec(&memalloc_socks_key);
 305
 306	/*
 307	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 308	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 309	 * it has rmem allocations due to the last swapfile being deactivated
 310	 * but there is a risk that the socket is unusable due to exceeding
 311	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 312	 */
 313	sk_mem_reclaim(sk);
 314}
 315EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 316
 317int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 318{
 319	int ret;
 320	unsigned int noreclaim_flag;
 321
 322	/* these should have been dropped before queueing */
 323	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 324
 325	noreclaim_flag = memalloc_noreclaim_save();
 326	ret = sk->sk_backlog_rcv(sk, skb);
 327	memalloc_noreclaim_restore(noreclaim_flag);
 328
 329	return ret;
 330}
 331EXPORT_SYMBOL(__sk_backlog_rcv);
 332
 333static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
 334{
 335	struct __kernel_sock_timeval tv;
 336	int size;
 337
 338	if (timeo == MAX_SCHEDULE_TIMEOUT) {
 339		tv.tv_sec = 0;
 340		tv.tv_usec = 0;
 341	} else {
 342		tv.tv_sec = timeo / HZ;
 343		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
 344	}
 345
 346	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 347		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
 348		*(struct old_timeval32 *)optval = tv32;
 349		return sizeof(tv32);
 350	}
 351
 352	if (old_timeval) {
 353		struct __kernel_old_timeval old_tv;
 354		old_tv.tv_sec = tv.tv_sec;
 355		old_tv.tv_usec = tv.tv_usec;
 356		*(struct __kernel_old_timeval *)optval = old_tv;
 357		size = sizeof(old_tv);
 358	} else {
 359		*(struct __kernel_sock_timeval *)optval = tv;
 360		size = sizeof(tv);
 361	}
 362
 363	return size;
 364}
 365
 366static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval)
 367{
 368	struct __kernel_sock_timeval tv;
 369
 370	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 371		struct old_timeval32 tv32;
 372
 373		if (optlen < sizeof(tv32))
 374			return -EINVAL;
 375
 376		if (copy_from_user(&tv32, optval, sizeof(tv32)))
 377			return -EFAULT;
 378		tv.tv_sec = tv32.tv_sec;
 379		tv.tv_usec = tv32.tv_usec;
 380	} else if (old_timeval) {
 381		struct __kernel_old_timeval old_tv;
 382
 383		if (optlen < sizeof(old_tv))
 384			return -EINVAL;
 385		if (copy_from_user(&old_tv, optval, sizeof(old_tv)))
 386			return -EFAULT;
 387		tv.tv_sec = old_tv.tv_sec;
 388		tv.tv_usec = old_tv.tv_usec;
 389	} else {
 390		if (optlen < sizeof(tv))
 391			return -EINVAL;
 392		if (copy_from_user(&tv, optval, sizeof(tv)))
 393			return -EFAULT;
 394	}
 395	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 396		return -EDOM;
 397
 398	if (tv.tv_sec < 0) {
 399		static int warned __read_mostly;
 400
 401		*timeo_p = 0;
 402		if (warned < 10 && net_ratelimit()) {
 403			warned++;
 404			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 405				__func__, current->comm, task_pid_nr(current));
 406		}
 407		return 0;
 408	}
 409	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 410	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 411		return 0;
 412	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
 413		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
 414	return 0;
 415}
 416
 417static void sock_warn_obsolete_bsdism(const char *name)
 418{
 419	static int warned;
 420	static char warncomm[TASK_COMM_LEN];
 421	if (strcmp(warncomm, current->comm) && warned < 5) {
 422		strcpy(warncomm,  current->comm);
 423		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
 424			warncomm, name);
 425		warned++;
 426	}
 427}
 428
 429static bool sock_needs_netstamp(const struct sock *sk)
 430{
 431	switch (sk->sk_family) {
 432	case AF_UNSPEC:
 433	case AF_UNIX:
 434		return false;
 435	default:
 436		return true;
 437	}
 438}
 439
 440static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 441{
 442	if (sk->sk_flags & flags) {
 443		sk->sk_flags &= ~flags;
 444		if (sock_needs_netstamp(sk) &&
 445		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 446			net_disable_timestamp();
 447	}
 448}
 449
 450
 451int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 452{
 453	unsigned long flags;
 454	struct sk_buff_head *list = &sk->sk_receive_queue;
 455
 456	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 457		atomic_inc(&sk->sk_drops);
 458		trace_sock_rcvqueue_full(sk, skb);
 459		return -ENOMEM;
 460	}
 461
 462	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 463		atomic_inc(&sk->sk_drops);
 464		return -ENOBUFS;
 465	}
 466
 467	skb->dev = NULL;
 468	skb_set_owner_r(skb, sk);
 469
 470	/* we escape from rcu protected region, make sure we dont leak
 471	 * a norefcounted dst
 472	 */
 473	skb_dst_force(skb);
 474
 475	spin_lock_irqsave(&list->lock, flags);
 476	sock_skb_set_dropcount(sk, skb);
 477	__skb_queue_tail(list, skb);
 478	spin_unlock_irqrestore(&list->lock, flags);
 479
 480	if (!sock_flag(sk, SOCK_DEAD))
 481		sk->sk_data_ready(sk);
 482	return 0;
 483}
 484EXPORT_SYMBOL(__sock_queue_rcv_skb);
 485
 486int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 487{
 488	int err;
 489
 490	err = sk_filter(sk, skb);
 491	if (err)
 492		return err;
 493
 494	return __sock_queue_rcv_skb(sk, skb);
 495}
 496EXPORT_SYMBOL(sock_queue_rcv_skb);
 497
 498int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 499		     const int nested, unsigned int trim_cap, bool refcounted)
 500{
 501	int rc = NET_RX_SUCCESS;
 502
 503	if (sk_filter_trim_cap(sk, skb, trim_cap))
 504		goto discard_and_relse;
 505
 506	skb->dev = NULL;
 507
 508	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 509		atomic_inc(&sk->sk_drops);
 510		goto discard_and_relse;
 511	}
 512	if (nested)
 513		bh_lock_sock_nested(sk);
 514	else
 515		bh_lock_sock(sk);
 516	if (!sock_owned_by_user(sk)) {
 517		/*
 518		 * trylock + unlock semantics:
 519		 */
 520		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 521
 522		rc = sk_backlog_rcv(sk, skb);
 523
 524		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
 525	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
 526		bh_unlock_sock(sk);
 527		atomic_inc(&sk->sk_drops);
 528		goto discard_and_relse;
 529	}
 530
 531	bh_unlock_sock(sk);
 532out:
 533	if (refcounted)
 534		sock_put(sk);
 535	return rc;
 536discard_and_relse:
 537	kfree_skb(skb);
 538	goto out;
 539}
 540EXPORT_SYMBOL(__sk_receive_skb);
 541
 542struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 543{
 544	struct dst_entry *dst = __sk_dst_get(sk);
 545
 546	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 547		sk_tx_queue_clear(sk);
 548		sk->sk_dst_pending_confirm = 0;
 549		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 550		dst_release(dst);
 551		return NULL;
 552	}
 553
 554	return dst;
 555}
 556EXPORT_SYMBOL(__sk_dst_check);
 557
 558struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 559{
 560	struct dst_entry *dst = sk_dst_get(sk);
 561
 562	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 563		sk_dst_reset(sk);
 564		dst_release(dst);
 565		return NULL;
 566	}
 567
 568	return dst;
 569}
 570EXPORT_SYMBOL(sk_dst_check);
 571
 572static int sock_setbindtodevice_locked(struct sock *sk, int ifindex)
 
 573{
 574	int ret = -ENOPROTOOPT;
 575#ifdef CONFIG_NETDEVICES
 576	struct net *net = sock_net(sk);
 
 
 577
 578	/* Sorry... */
 579	ret = -EPERM;
 580	if (!ns_capable(net->user_ns, CAP_NET_RAW))
 581		goto out;
 582
 583	ret = -EINVAL;
 584	if (ifindex < 0)
 585		goto out;
 586
 587	sk->sk_bound_dev_if = ifindex;
 588	if (sk->sk_prot->rehash)
 589		sk->sk_prot->rehash(sk);
 590	sk_dst_reset(sk);
 591
 592	ret = 0;
 593
 594out:
 595#endif
 596
 597	return ret;
 598}
 599
 600static int sock_setbindtodevice(struct sock *sk, char __user *optval,
 601				int optlen)
 602{
 603	int ret = -ENOPROTOOPT;
 604#ifdef CONFIG_NETDEVICES
 605	struct net *net = sock_net(sk);
 606	char devname[IFNAMSIZ];
 607	int index;
 608
 609	ret = -EINVAL;
 610	if (optlen < 0)
 611		goto out;
 612
 613	/* Bind this socket to a particular device like "eth0",
 614	 * as specified in the passed interface name. If the
 615	 * name is "" or the option length is zero the socket
 616	 * is not bound.
 617	 */
 618	if (optlen > IFNAMSIZ - 1)
 619		optlen = IFNAMSIZ - 1;
 620	memset(devname, 0, sizeof(devname));
 621
 622	ret = -EFAULT;
 623	if (copy_from_user(devname, optval, optlen))
 624		goto out;
 625
 626	index = 0;
 627	if (devname[0] != '\0') {
 628		struct net_device *dev;
 629
 630		rcu_read_lock();
 631		dev = dev_get_by_name_rcu(net, devname);
 632		if (dev)
 633			index = dev->ifindex;
 634		rcu_read_unlock();
 635		ret = -ENODEV;
 636		if (!dev)
 637			goto out;
 638	}
 639
 640	lock_sock(sk);
 641	ret = sock_setbindtodevice_locked(sk, index);
 
 642	release_sock(sk);
 643
 
 
 644out:
 645#endif
 646
 647	return ret;
 648}
 649
 650static int sock_getbindtodevice(struct sock *sk, char __user *optval,
 651				int __user *optlen, int len)
 652{
 653	int ret = -ENOPROTOOPT;
 654#ifdef CONFIG_NETDEVICES
 655	struct net *net = sock_net(sk);
 656	char devname[IFNAMSIZ];
 657
 658	if (sk->sk_bound_dev_if == 0) {
 659		len = 0;
 660		goto zero;
 661	}
 662
 663	ret = -EINVAL;
 664	if (len < IFNAMSIZ)
 665		goto out;
 666
 667	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
 668	if (ret)
 669		goto out;
 670
 671	len = strlen(devname) + 1;
 672
 673	ret = -EFAULT;
 674	if (copy_to_user(optval, devname, len))
 675		goto out;
 676
 677zero:
 678	ret = -EFAULT;
 679	if (put_user(len, optlen))
 680		goto out;
 681
 682	ret = 0;
 683
 684out:
 685#endif
 686
 687	return ret;
 688}
 689
 690static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
 691{
 692	if (valbool)
 693		sock_set_flag(sk, bit);
 694	else
 695		sock_reset_flag(sk, bit);
 696}
 697
 698bool sk_mc_loop(struct sock *sk)
 699{
 700	if (dev_recursion_level())
 701		return false;
 702	if (!sk)
 703		return true;
 704	switch (sk->sk_family) {
 705	case AF_INET:
 706		return inet_sk(sk)->mc_loop;
 707#if IS_ENABLED(CONFIG_IPV6)
 708	case AF_INET6:
 709		return inet6_sk(sk)->mc_loop;
 710#endif
 711	}
 712	WARN_ON(1);
 713	return true;
 714}
 715EXPORT_SYMBOL(sk_mc_loop);
 716
 717/*
 718 *	This is meant for all protocols to use and covers goings on
 719 *	at the socket level. Everything here is generic.
 720 */
 721
 722int sock_setsockopt(struct socket *sock, int level, int optname,
 723		    char __user *optval, unsigned int optlen)
 724{
 725	struct sock_txtime sk_txtime;
 726	struct sock *sk = sock->sk;
 727	int val;
 728	int valbool;
 729	struct linger ling;
 730	int ret = 0;
 731
 732	/*
 733	 *	Options without arguments
 734	 */
 735
 736	if (optname == SO_BINDTODEVICE)
 737		return sock_setbindtodevice(sk, optval, optlen);
 738
 739	if (optlen < sizeof(int))
 740		return -EINVAL;
 741
 742	if (get_user(val, (int __user *)optval))
 743		return -EFAULT;
 744
 745	valbool = val ? 1 : 0;
 746
 747	lock_sock(sk);
 748
 749	switch (optname) {
 750	case SO_DEBUG:
 751		if (val && !capable(CAP_NET_ADMIN))
 752			ret = -EACCES;
 753		else
 754			sock_valbool_flag(sk, SOCK_DBG, valbool);
 755		break;
 756	case SO_REUSEADDR:
 757		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
 758		break;
 759	case SO_REUSEPORT:
 760		sk->sk_reuseport = valbool;
 761		break;
 762	case SO_TYPE:
 763	case SO_PROTOCOL:
 764	case SO_DOMAIN:
 765	case SO_ERROR:
 766		ret = -ENOPROTOOPT;
 767		break;
 768	case SO_DONTROUTE:
 769		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
 770		sk_dst_reset(sk);
 771		break;
 772	case SO_BROADCAST:
 773		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
 774		break;
 775	case SO_SNDBUF:
 776		/* Don't error on this BSD doesn't and if you think
 777		 * about it this is right. Otherwise apps have to
 778		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 779		 * are treated in BSD as hints
 780		 */
 781		val = min_t(u32, val, sysctl_wmem_max);
 782set_sndbuf:
 783		/* Ensure val * 2 fits into an int, to prevent max_t()
 784		 * from treating it as a negative value.
 785		 */
 786		val = min_t(int, val, INT_MAX / 2);
 787		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
 788		WRITE_ONCE(sk->sk_sndbuf,
 789			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
 790		/* Wake up sending tasks if we upped the value. */
 791		sk->sk_write_space(sk);
 792		break;
 793
 794	case SO_SNDBUFFORCE:
 795		if (!capable(CAP_NET_ADMIN)) {
 796			ret = -EPERM;
 797			break;
 798		}
 799
 800		/* No negative values (to prevent underflow, as val will be
 801		 * multiplied by 2).
 802		 */
 803		if (val < 0)
 804			val = 0;
 805		goto set_sndbuf;
 806
 807	case SO_RCVBUF:
 808		/* Don't error on this BSD doesn't and if you think
 809		 * about it this is right. Otherwise apps have to
 810		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 811		 * are treated in BSD as hints
 812		 */
 813		val = min_t(u32, val, sysctl_rmem_max);
 814set_rcvbuf:
 815		/* Ensure val * 2 fits into an int, to prevent max_t()
 816		 * from treating it as a negative value.
 817		 */
 818		val = min_t(int, val, INT_MAX / 2);
 819		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 820		/*
 821		 * We double it on the way in to account for
 822		 * "struct sk_buff" etc. overhead.   Applications
 823		 * assume that the SO_RCVBUF setting they make will
 824		 * allow that much actual data to be received on that
 825		 * socket.
 826		 *
 827		 * Applications are unaware that "struct sk_buff" and
 828		 * other overheads allocate from the receive buffer
 829		 * during socket buffer allocation.
 830		 *
 831		 * And after considering the possible alternatives,
 832		 * returning the value we actually used in getsockopt
 833		 * is the most desirable behavior.
 834		 */
 835		WRITE_ONCE(sk->sk_rcvbuf,
 836			   max_t(int, val * 2, SOCK_MIN_RCVBUF));
 837		break;
 838
 839	case SO_RCVBUFFORCE:
 840		if (!capable(CAP_NET_ADMIN)) {
 841			ret = -EPERM;
 842			break;
 843		}
 844
 845		/* No negative values (to prevent underflow, as val will be
 846		 * multiplied by 2).
 847		 */
 848		if (val < 0)
 849			val = 0;
 850		goto set_rcvbuf;
 851
 852	case SO_KEEPALIVE:
 853		if (sk->sk_prot->keepalive)
 854			sk->sk_prot->keepalive(sk, valbool);
 855		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
 856		break;
 857
 858	case SO_OOBINLINE:
 859		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
 860		break;
 861
 862	case SO_NO_CHECK:
 863		sk->sk_no_check_tx = valbool;
 864		break;
 865
 866	case SO_PRIORITY:
 867		if ((val >= 0 && val <= 6) ||
 868		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 869			sk->sk_priority = val;
 870		else
 871			ret = -EPERM;
 872		break;
 873
 874	case SO_LINGER:
 875		if (optlen < sizeof(ling)) {
 876			ret = -EINVAL;	/* 1003.1g */
 877			break;
 878		}
 879		if (copy_from_user(&ling, optval, sizeof(ling))) {
 880			ret = -EFAULT;
 881			break;
 882		}
 883		if (!ling.l_onoff)
 884			sock_reset_flag(sk, SOCK_LINGER);
 885		else {
 886#if (BITS_PER_LONG == 32)
 887			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
 888				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 889			else
 890#endif
 891				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
 892			sock_set_flag(sk, SOCK_LINGER);
 893		}
 894		break;
 895
 896	case SO_BSDCOMPAT:
 897		sock_warn_obsolete_bsdism("setsockopt");
 898		break;
 899
 900	case SO_PASSCRED:
 901		if (valbool)
 902			set_bit(SOCK_PASSCRED, &sock->flags);
 903		else
 904			clear_bit(SOCK_PASSCRED, &sock->flags);
 905		break;
 906
 907	case SO_TIMESTAMP_OLD:
 908	case SO_TIMESTAMP_NEW:
 909	case SO_TIMESTAMPNS_OLD:
 910	case SO_TIMESTAMPNS_NEW:
 911		if (valbool)  {
 912			if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW)
 913				sock_set_flag(sk, SOCK_TSTAMP_NEW);
 914			else
 915				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
 916
 917			if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW)
 918				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 919			else
 920				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
 921			sock_set_flag(sk, SOCK_RCVTSTAMP);
 922			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 923		} else {
 924			sock_reset_flag(sk, SOCK_RCVTSTAMP);
 925			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 926			sock_reset_flag(sk, SOCK_TSTAMP_NEW);
 927		}
 928		break;
 929
 930	case SO_TIMESTAMPING_NEW:
 931		sock_set_flag(sk, SOCK_TSTAMP_NEW);
 932		/* fall through */
 933	case SO_TIMESTAMPING_OLD:
 934		if (val & ~SOF_TIMESTAMPING_MASK) {
 935			ret = -EINVAL;
 936			break;
 937		}
 938
 939		if (val & SOF_TIMESTAMPING_OPT_ID &&
 940		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 941			if (sk->sk_protocol == IPPROTO_TCP &&
 942			    sk->sk_type == SOCK_STREAM) {
 943				if ((1 << sk->sk_state) &
 944				    (TCPF_CLOSE | TCPF_LISTEN)) {
 945					ret = -EINVAL;
 946					break;
 947				}
 948				sk->sk_tskey = tcp_sk(sk)->snd_una;
 949			} else {
 950				sk->sk_tskey = 0;
 951			}
 952		}
 953
 954		if (val & SOF_TIMESTAMPING_OPT_STATS &&
 955		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
 956			ret = -EINVAL;
 957			break;
 958		}
 959
 960		sk->sk_tsflags = val;
 961		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 962			sock_enable_timestamp(sk,
 963					      SOCK_TIMESTAMPING_RX_SOFTWARE);
 964		else {
 965			if (optname == SO_TIMESTAMPING_NEW)
 966				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
 967
 968			sock_disable_timestamp(sk,
 969					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 970		}
 971		break;
 972
 973	case SO_RCVLOWAT:
 974		if (val < 0)
 975			val = INT_MAX;
 976		if (sock->ops->set_rcvlowat)
 977			ret = sock->ops->set_rcvlowat(sk, val);
 978		else
 979			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
 980		break;
 981
 982	case SO_RCVTIMEO_OLD:
 983	case SO_RCVTIMEO_NEW:
 984		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD);
 985		break;
 986
 987	case SO_SNDTIMEO_OLD:
 988	case SO_SNDTIMEO_NEW:
 989		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD);
 990		break;
 991
 992	case SO_ATTACH_FILTER:
 993		ret = -EINVAL;
 994		if (optlen == sizeof(struct sock_fprog)) {
 995			struct sock_fprog fprog;
 996
 997			ret = -EFAULT;
 998			if (copy_from_user(&fprog, optval, sizeof(fprog)))
 999				break;
1000
1001			ret = sk_attach_filter(&fprog, sk);
1002		}
1003		break;
1004
1005	case SO_ATTACH_BPF:
1006		ret = -EINVAL;
1007		if (optlen == sizeof(u32)) {
1008			u32 ufd;
1009
1010			ret = -EFAULT;
1011			if (copy_from_user(&ufd, optval, sizeof(ufd)))
1012				break;
1013
1014			ret = sk_attach_bpf(ufd, sk);
1015		}
1016		break;
1017
1018	case SO_ATTACH_REUSEPORT_CBPF:
1019		ret = -EINVAL;
1020		if (optlen == sizeof(struct sock_fprog)) {
1021			struct sock_fprog fprog;
1022
1023			ret = -EFAULT;
1024			if (copy_from_user(&fprog, optval, sizeof(fprog)))
1025				break;
1026
1027			ret = sk_reuseport_attach_filter(&fprog, sk);
1028		}
1029		break;
1030
1031	case SO_ATTACH_REUSEPORT_EBPF:
1032		ret = -EINVAL;
1033		if (optlen == sizeof(u32)) {
1034			u32 ufd;
1035
1036			ret = -EFAULT;
1037			if (copy_from_user(&ufd, optval, sizeof(ufd)))
1038				break;
1039
1040			ret = sk_reuseport_attach_bpf(ufd, sk);
1041		}
1042		break;
1043
1044	case SO_DETACH_REUSEPORT_BPF:
1045		ret = reuseport_detach_prog(sk);
1046		break;
1047
1048	case SO_DETACH_FILTER:
1049		ret = sk_detach_filter(sk);
1050		break;
1051
1052	case SO_LOCK_FILTER:
1053		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1054			ret = -EPERM;
1055		else
1056			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1057		break;
1058
1059	case SO_PASSSEC:
1060		if (valbool)
1061			set_bit(SOCK_PASSSEC, &sock->flags);
1062		else
1063			clear_bit(SOCK_PASSSEC, &sock->flags);
1064		break;
1065	case SO_MARK:
1066		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1067			ret = -EPERM;
1068		} else if (val != sk->sk_mark) {
1069			sk->sk_mark = val;
1070			sk_dst_reset(sk);
1071		}
1072		break;
1073
1074	case SO_RXQ_OVFL:
1075		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1076		break;
1077
1078	case SO_WIFI_STATUS:
1079		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1080		break;
1081
1082	case SO_PEEK_OFF:
1083		if (sock->ops->set_peek_off)
1084			ret = sock->ops->set_peek_off(sk, val);
1085		else
1086			ret = -EOPNOTSUPP;
1087		break;
1088
1089	case SO_NOFCS:
1090		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1091		break;
1092
1093	case SO_SELECT_ERR_QUEUE:
1094		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1095		break;
1096
1097#ifdef CONFIG_NET_RX_BUSY_POLL
1098	case SO_BUSY_POLL:
1099		/* allow unprivileged users to decrease the value */
1100		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1101			ret = -EPERM;
1102		else {
1103			if (val < 0)
1104				ret = -EINVAL;
1105			else
1106				sk->sk_ll_usec = val;
1107		}
1108		break;
1109#endif
1110
1111	case SO_MAX_PACING_RATE:
1112		{
1113		unsigned long ulval = (val == ~0U) ? ~0UL : val;
1114
1115		if (sizeof(ulval) != sizeof(val) &&
1116		    optlen >= sizeof(ulval) &&
1117		    get_user(ulval, (unsigned long __user *)optval)) {
1118			ret = -EFAULT;
1119			break;
1120		}
1121		if (ulval != ~0UL)
1122			cmpxchg(&sk->sk_pacing_status,
1123				SK_PACING_NONE,
1124				SK_PACING_NEEDED);
1125		sk->sk_max_pacing_rate = ulval;
1126		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
 
1127		break;
1128		}
1129	case SO_INCOMING_CPU:
1130		WRITE_ONCE(sk->sk_incoming_cpu, val);
1131		break;
1132
1133	case SO_CNX_ADVICE:
1134		if (val == 1)
1135			dst_negative_advice(sk);
1136		break;
1137
1138	case SO_ZEROCOPY:
1139		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1140			if (!((sk->sk_type == SOCK_STREAM &&
1141			       sk->sk_protocol == IPPROTO_TCP) ||
1142			      (sk->sk_type == SOCK_DGRAM &&
1143			       sk->sk_protocol == IPPROTO_UDP)))
1144				ret = -ENOTSUPP;
1145		} else if (sk->sk_family != PF_RDS) {
1146			ret = -ENOTSUPP;
1147		}
1148		if (!ret) {
1149			if (val < 0 || val > 1)
1150				ret = -EINVAL;
1151			else
1152				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1153		}
1154		break;
1155
1156	case SO_TXTIME:
1157		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1158			ret = -EPERM;
1159		} else if (optlen != sizeof(struct sock_txtime)) {
1160			ret = -EINVAL;
1161		} else if (copy_from_user(&sk_txtime, optval,
1162			   sizeof(struct sock_txtime))) {
1163			ret = -EFAULT;
1164		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1165			ret = -EINVAL;
1166		} else {
1167			sock_valbool_flag(sk, SOCK_TXTIME, true);
1168			sk->sk_clockid = sk_txtime.clockid;
1169			sk->sk_txtime_deadline_mode =
1170				!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1171			sk->sk_txtime_report_errors =
1172				!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1173		}
1174		break;
1175
1176	case SO_BINDTOIFINDEX:
1177		ret = sock_setbindtodevice_locked(sk, val);
1178		break;
1179
1180	default:
1181		ret = -ENOPROTOOPT;
1182		break;
1183	}
1184	release_sock(sk);
1185	return ret;
1186}
1187EXPORT_SYMBOL(sock_setsockopt);
1188
1189
1190static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1191			  struct ucred *ucred)
1192{
1193	ucred->pid = pid_vnr(pid);
1194	ucred->uid = ucred->gid = -1;
1195	if (cred) {
1196		struct user_namespace *current_ns = current_user_ns();
1197
1198		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1199		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1200	}
1201}
1202
1203static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1204{
1205	struct user_namespace *user_ns = current_user_ns();
1206	int i;
1207
1208	for (i = 0; i < src->ngroups; i++)
1209		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1210			return -EFAULT;
1211
1212	return 0;
1213}
1214
1215int sock_getsockopt(struct socket *sock, int level, int optname,
1216		    char __user *optval, int __user *optlen)
1217{
1218	struct sock *sk = sock->sk;
1219
1220	union {
1221		int val;
1222		u64 val64;
1223		unsigned long ulval;
1224		struct linger ling;
1225		struct old_timeval32 tm32;
1226		struct __kernel_old_timeval tm;
1227		struct  __kernel_sock_timeval stm;
1228		struct sock_txtime txtime;
1229	} v;
1230
1231	int lv = sizeof(int);
1232	int len;
1233
1234	if (get_user(len, optlen))
1235		return -EFAULT;
1236	if (len < 0)
1237		return -EINVAL;
1238
1239	memset(&v, 0, sizeof(v));
1240
1241	switch (optname) {
1242	case SO_DEBUG:
1243		v.val = sock_flag(sk, SOCK_DBG);
1244		break;
1245
1246	case SO_DONTROUTE:
1247		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1248		break;
1249
1250	case SO_BROADCAST:
1251		v.val = sock_flag(sk, SOCK_BROADCAST);
1252		break;
1253
1254	case SO_SNDBUF:
1255		v.val = sk->sk_sndbuf;
1256		break;
1257
1258	case SO_RCVBUF:
1259		v.val = sk->sk_rcvbuf;
1260		break;
1261
1262	case SO_REUSEADDR:
1263		v.val = sk->sk_reuse;
1264		break;
1265
1266	case SO_REUSEPORT:
1267		v.val = sk->sk_reuseport;
1268		break;
1269
1270	case SO_KEEPALIVE:
1271		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1272		break;
1273
1274	case SO_TYPE:
1275		v.val = sk->sk_type;
1276		break;
1277
1278	case SO_PROTOCOL:
1279		v.val = sk->sk_protocol;
1280		break;
1281
1282	case SO_DOMAIN:
1283		v.val = sk->sk_family;
1284		break;
1285
1286	case SO_ERROR:
1287		v.val = -sock_error(sk);
1288		if (v.val == 0)
1289			v.val = xchg(&sk->sk_err_soft, 0);
1290		break;
1291
1292	case SO_OOBINLINE:
1293		v.val = sock_flag(sk, SOCK_URGINLINE);
1294		break;
1295
1296	case SO_NO_CHECK:
1297		v.val = sk->sk_no_check_tx;
1298		break;
1299
1300	case SO_PRIORITY:
1301		v.val = sk->sk_priority;
1302		break;
1303
1304	case SO_LINGER:
1305		lv		= sizeof(v.ling);
1306		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1307		v.ling.l_linger	= sk->sk_lingertime / HZ;
1308		break;
1309
1310	case SO_BSDCOMPAT:
1311		sock_warn_obsolete_bsdism("getsockopt");
1312		break;
1313
1314	case SO_TIMESTAMP_OLD:
1315		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1316				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1317				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1318		break;
1319
1320	case SO_TIMESTAMPNS_OLD:
1321		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1322		break;
1323
1324	case SO_TIMESTAMP_NEW:
1325		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1326		break;
1327
1328	case SO_TIMESTAMPNS_NEW:
1329		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1330		break;
1331
1332	case SO_TIMESTAMPING_OLD:
1333		v.val = sk->sk_tsflags;
1334		break;
1335
1336	case SO_RCVTIMEO_OLD:
1337	case SO_RCVTIMEO_NEW:
1338		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
 
 
 
 
 
 
1339		break;
1340
1341	case SO_SNDTIMEO_OLD:
1342	case SO_SNDTIMEO_NEW:
1343		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
 
 
 
 
 
 
1344		break;
1345
1346	case SO_RCVLOWAT:
1347		v.val = sk->sk_rcvlowat;
1348		break;
1349
1350	case SO_SNDLOWAT:
1351		v.val = 1;
1352		break;
1353
1354	case SO_PASSCRED:
1355		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1356		break;
1357
1358	case SO_PEERCRED:
1359	{
1360		struct ucred peercred;
1361		if (len > sizeof(peercred))
1362			len = sizeof(peercred);
1363		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1364		if (copy_to_user(optval, &peercred, len))
1365			return -EFAULT;
1366		goto lenout;
1367	}
1368
1369	case SO_PEERGROUPS:
1370	{
1371		int ret, n;
1372
1373		if (!sk->sk_peer_cred)
1374			return -ENODATA;
1375
1376		n = sk->sk_peer_cred->group_info->ngroups;
1377		if (len < n * sizeof(gid_t)) {
1378			len = n * sizeof(gid_t);
1379			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1380		}
1381		len = n * sizeof(gid_t);
1382
1383		ret = groups_to_user((gid_t __user *)optval,
1384				     sk->sk_peer_cred->group_info);
1385		if (ret)
1386			return ret;
1387		goto lenout;
1388	}
1389
1390	case SO_PEERNAME:
1391	{
1392		char address[128];
1393
1394		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1395		if (lv < 0)
1396			return -ENOTCONN;
1397		if (lv < len)
1398			return -EINVAL;
1399		if (copy_to_user(optval, address, len))
1400			return -EFAULT;
1401		goto lenout;
1402	}
1403
1404	/* Dubious BSD thing... Probably nobody even uses it, but
1405	 * the UNIX standard wants it for whatever reason... -DaveM
1406	 */
1407	case SO_ACCEPTCONN:
1408		v.val = sk->sk_state == TCP_LISTEN;
1409		break;
1410
1411	case SO_PASSSEC:
1412		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1413		break;
1414
1415	case SO_PEERSEC:
1416		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1417
1418	case SO_MARK:
1419		v.val = sk->sk_mark;
1420		break;
1421
1422	case SO_RXQ_OVFL:
1423		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1424		break;
1425
1426	case SO_WIFI_STATUS:
1427		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1428		break;
1429
1430	case SO_PEEK_OFF:
1431		if (!sock->ops->set_peek_off)
1432			return -EOPNOTSUPP;
1433
1434		v.val = sk->sk_peek_off;
1435		break;
1436	case SO_NOFCS:
1437		v.val = sock_flag(sk, SOCK_NOFCS);
1438		break;
1439
1440	case SO_BINDTODEVICE:
1441		return sock_getbindtodevice(sk, optval, optlen, len);
1442
1443	case SO_GET_FILTER:
1444		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1445		if (len < 0)
1446			return len;
1447
1448		goto lenout;
1449
1450	case SO_LOCK_FILTER:
1451		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1452		break;
1453
1454	case SO_BPF_EXTENSIONS:
1455		v.val = bpf_tell_extensions();
1456		break;
1457
1458	case SO_SELECT_ERR_QUEUE:
1459		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1460		break;
1461
1462#ifdef CONFIG_NET_RX_BUSY_POLL
1463	case SO_BUSY_POLL:
1464		v.val = sk->sk_ll_usec;
1465		break;
1466#endif
1467
1468	case SO_MAX_PACING_RATE:
1469		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1470			lv = sizeof(v.ulval);
1471			v.ulval = sk->sk_max_pacing_rate;
1472		} else {
1473			/* 32bit version */
1474			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1475		}
1476		break;
1477
1478	case SO_INCOMING_CPU:
1479		v.val = READ_ONCE(sk->sk_incoming_cpu);
1480		break;
1481
1482	case SO_MEMINFO:
1483	{
1484		u32 meminfo[SK_MEMINFO_VARS];
1485
 
 
 
1486		sk_get_meminfo(sk, meminfo);
1487
1488		len = min_t(unsigned int, len, sizeof(meminfo));
1489		if (copy_to_user(optval, &meminfo, len))
1490			return -EFAULT;
1491
1492		goto lenout;
1493	}
1494
1495#ifdef CONFIG_NET_RX_BUSY_POLL
1496	case SO_INCOMING_NAPI_ID:
1497		v.val = READ_ONCE(sk->sk_napi_id);
1498
1499		/* aggregate non-NAPI IDs down to 0 */
1500		if (v.val < MIN_NAPI_ID)
1501			v.val = 0;
1502
1503		break;
1504#endif
1505
1506	case SO_COOKIE:
1507		lv = sizeof(u64);
1508		if (len < lv)
1509			return -EINVAL;
1510		v.val64 = sock_gen_cookie(sk);
1511		break;
1512
1513	case SO_ZEROCOPY:
1514		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1515		break;
1516
1517	case SO_TXTIME:
1518		lv = sizeof(v.txtime);
1519		v.txtime.clockid = sk->sk_clockid;
1520		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1521				  SOF_TXTIME_DEADLINE_MODE : 0;
1522		v.txtime.flags |= sk->sk_txtime_report_errors ?
1523				  SOF_TXTIME_REPORT_ERRORS : 0;
1524		break;
1525
1526	case SO_BINDTOIFINDEX:
1527		v.val = sk->sk_bound_dev_if;
1528		break;
1529
1530	default:
1531		/* We implement the SO_SNDLOWAT etc to not be settable
1532		 * (1003.1g 7).
1533		 */
1534		return -ENOPROTOOPT;
1535	}
1536
1537	if (len > lv)
1538		len = lv;
1539	if (copy_to_user(optval, &v, len))
1540		return -EFAULT;
1541lenout:
1542	if (put_user(len, optlen))
1543		return -EFAULT;
1544	return 0;
1545}
1546
1547/*
1548 * Initialize an sk_lock.
1549 *
1550 * (We also register the sk_lock with the lock validator.)
1551 */
1552static inline void sock_lock_init(struct sock *sk)
1553{
1554	if (sk->sk_kern_sock)
1555		sock_lock_init_class_and_name(
1556			sk,
1557			af_family_kern_slock_key_strings[sk->sk_family],
1558			af_family_kern_slock_keys + sk->sk_family,
1559			af_family_kern_key_strings[sk->sk_family],
1560			af_family_kern_keys + sk->sk_family);
1561	else
1562		sock_lock_init_class_and_name(
1563			sk,
1564			af_family_slock_key_strings[sk->sk_family],
1565			af_family_slock_keys + sk->sk_family,
1566			af_family_key_strings[sk->sk_family],
1567			af_family_keys + sk->sk_family);
1568}
1569
1570/*
1571 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1572 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1573 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1574 */
1575static void sock_copy(struct sock *nsk, const struct sock *osk)
1576{
1577#ifdef CONFIG_SECURITY_NETWORK
1578	void *sptr = nsk->sk_security;
1579#endif
1580	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1581
1582	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1583	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1584
1585#ifdef CONFIG_SECURITY_NETWORK
1586	nsk->sk_security = sptr;
1587	security_sk_clone(osk, nsk);
1588#endif
1589}
1590
1591static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1592		int family)
1593{
1594	struct sock *sk;
1595	struct kmem_cache *slab;
1596
1597	slab = prot->slab;
1598	if (slab != NULL) {
1599		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1600		if (!sk)
1601			return sk;
1602		if (want_init_on_alloc(priority))
1603			sk_prot_clear_nulls(sk, prot->obj_size);
1604	} else
1605		sk = kmalloc(prot->obj_size, priority);
1606
1607	if (sk != NULL) {
1608		if (security_sk_alloc(sk, family, priority))
1609			goto out_free;
1610
1611		if (!try_module_get(prot->owner))
1612			goto out_free_sec;
1613		sk_tx_queue_clear(sk);
1614	}
1615
1616	return sk;
1617
1618out_free_sec:
1619	security_sk_free(sk);
1620out_free:
1621	if (slab != NULL)
1622		kmem_cache_free(slab, sk);
1623	else
1624		kfree(sk);
1625	return NULL;
1626}
1627
1628static void sk_prot_free(struct proto *prot, struct sock *sk)
1629{
1630	struct kmem_cache *slab;
1631	struct module *owner;
1632
1633	owner = prot->owner;
1634	slab = prot->slab;
1635
1636	cgroup_sk_free(&sk->sk_cgrp_data);
1637	mem_cgroup_sk_free(sk);
1638	security_sk_free(sk);
1639	if (slab != NULL)
1640		kmem_cache_free(slab, sk);
1641	else
1642		kfree(sk);
1643	module_put(owner);
1644}
1645
1646/**
1647 *	sk_alloc - All socket objects are allocated here
1648 *	@net: the applicable net namespace
1649 *	@family: protocol family
1650 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1651 *	@prot: struct proto associated with this new sock instance
1652 *	@kern: is this to be a kernel socket?
1653 */
1654struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1655		      struct proto *prot, int kern)
1656{
1657	struct sock *sk;
1658
1659	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1660	if (sk) {
1661		sk->sk_family = family;
1662		/*
1663		 * See comment in struct sock definition to understand
1664		 * why we need sk_prot_creator -acme
1665		 */
1666		sk->sk_prot = sk->sk_prot_creator = prot;
1667		sk->sk_kern_sock = kern;
1668		sock_lock_init(sk);
1669		sk->sk_net_refcnt = kern ? 0 : 1;
1670		if (likely(sk->sk_net_refcnt)) {
1671			get_net(net);
1672			sock_inuse_add(net, 1);
1673		}
1674
1675		sock_net_set(sk, net);
1676		refcount_set(&sk->sk_wmem_alloc, 1);
1677
1678		mem_cgroup_sk_alloc(sk);
1679		cgroup_sk_alloc(&sk->sk_cgrp_data);
1680		sock_update_classid(&sk->sk_cgrp_data);
1681		sock_update_netprioidx(&sk->sk_cgrp_data);
1682	}
1683
1684	return sk;
1685}
1686EXPORT_SYMBOL(sk_alloc);
1687
1688/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1689 * grace period. This is the case for UDP sockets and TCP listeners.
1690 */
1691static void __sk_destruct(struct rcu_head *head)
1692{
1693	struct sock *sk = container_of(head, struct sock, sk_rcu);
1694	struct sk_filter *filter;
1695
1696	if (sk->sk_destruct)
1697		sk->sk_destruct(sk);
1698
1699	filter = rcu_dereference_check(sk->sk_filter,
1700				       refcount_read(&sk->sk_wmem_alloc) == 0);
1701	if (filter) {
1702		sk_filter_uncharge(sk, filter);
1703		RCU_INIT_POINTER(sk->sk_filter, NULL);
1704	}
 
 
1705
1706	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1707
1708#ifdef CONFIG_BPF_SYSCALL
1709	bpf_sk_storage_free(sk);
1710#endif
1711
1712	if (atomic_read(&sk->sk_omem_alloc))
1713		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1714			 __func__, atomic_read(&sk->sk_omem_alloc));
1715
1716	if (sk->sk_frag.page) {
1717		put_page(sk->sk_frag.page);
1718		sk->sk_frag.page = NULL;
1719	}
1720
1721	if (sk->sk_peer_cred)
1722		put_cred(sk->sk_peer_cred);
1723	put_pid(sk->sk_peer_pid);
1724	if (likely(sk->sk_net_refcnt))
1725		put_net(sock_net(sk));
1726	sk_prot_free(sk->sk_prot_creator, sk);
1727}
1728
1729void sk_destruct(struct sock *sk)
1730{
1731	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1732
1733	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1734		reuseport_detach_sock(sk);
1735		use_call_rcu = true;
1736	}
1737
1738	if (use_call_rcu)
1739		call_rcu(&sk->sk_rcu, __sk_destruct);
1740	else
1741		__sk_destruct(&sk->sk_rcu);
1742}
1743
1744static void __sk_free(struct sock *sk)
1745{
1746	if (likely(sk->sk_net_refcnt))
1747		sock_inuse_add(sock_net(sk), -1);
1748
1749	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1750		sock_diag_broadcast_destroy(sk);
1751	else
1752		sk_destruct(sk);
1753}
1754
1755void sk_free(struct sock *sk)
1756{
1757	/*
1758	 * We subtract one from sk_wmem_alloc and can know if
1759	 * some packets are still in some tx queue.
1760	 * If not null, sock_wfree() will call __sk_free(sk) later
1761	 */
1762	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1763		__sk_free(sk);
1764}
1765EXPORT_SYMBOL(sk_free);
1766
1767static void sk_init_common(struct sock *sk)
1768{
1769	skb_queue_head_init(&sk->sk_receive_queue);
1770	skb_queue_head_init(&sk->sk_write_queue);
1771	skb_queue_head_init(&sk->sk_error_queue);
1772
1773	rwlock_init(&sk->sk_callback_lock);
1774	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1775			af_rlock_keys + sk->sk_family,
1776			af_family_rlock_key_strings[sk->sk_family]);
1777	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1778			af_wlock_keys + sk->sk_family,
1779			af_family_wlock_key_strings[sk->sk_family]);
1780	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1781			af_elock_keys + sk->sk_family,
1782			af_family_elock_key_strings[sk->sk_family]);
1783	lockdep_set_class_and_name(&sk->sk_callback_lock,
1784			af_callback_keys + sk->sk_family,
1785			af_family_clock_key_strings[sk->sk_family]);
1786}
1787
1788/**
1789 *	sk_clone_lock - clone a socket, and lock its clone
1790 *	@sk: the socket to clone
1791 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1792 *
1793 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1794 */
1795struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1796{
1797	struct sock *newsk;
1798	bool is_charged = true;
1799
1800	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1801	if (newsk != NULL) {
1802		struct sk_filter *filter;
1803
1804		sock_copy(newsk, sk);
1805
1806		newsk->sk_prot_creator = sk->sk_prot;
1807
1808		/* SANITY */
1809		if (likely(newsk->sk_net_refcnt))
1810			get_net(sock_net(newsk));
1811		sk_node_init(&newsk->sk_node);
1812		sock_lock_init(newsk);
1813		bh_lock_sock(newsk);
1814		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1815		newsk->sk_backlog.len = 0;
1816
1817		atomic_set(&newsk->sk_rmem_alloc, 0);
1818		/*
1819		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1820		 */
1821		refcount_set(&newsk->sk_wmem_alloc, 1);
1822		atomic_set(&newsk->sk_omem_alloc, 0);
1823		sk_init_common(newsk);
1824
1825		newsk->sk_dst_cache	= NULL;
1826		newsk->sk_dst_pending_confirm = 0;
1827		newsk->sk_wmem_queued	= 0;
1828		newsk->sk_forward_alloc = 0;
1829		atomic_set(&newsk->sk_drops, 0);
1830		newsk->sk_send_head	= NULL;
1831		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1832		atomic_set(&newsk->sk_zckey, 0);
1833
1834		sock_reset_flag(newsk, SOCK_DONE);
1835		mem_cgroup_sk_alloc(newsk);
1836		cgroup_sk_alloc(&newsk->sk_cgrp_data);
1837
1838		rcu_read_lock();
1839		filter = rcu_dereference(sk->sk_filter);
1840		if (filter != NULL)
1841			/* though it's an empty new sock, the charging may fail
1842			 * if sysctl_optmem_max was changed between creation of
1843			 * original socket and cloning
1844			 */
1845			is_charged = sk_filter_charge(newsk, filter);
1846		RCU_INIT_POINTER(newsk->sk_filter, filter);
1847		rcu_read_unlock();
1848
1849		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1850			/* We need to make sure that we don't uncharge the new
1851			 * socket if we couldn't charge it in the first place
1852			 * as otherwise we uncharge the parent's filter.
1853			 */
1854			if (!is_charged)
1855				RCU_INIT_POINTER(newsk->sk_filter, NULL);
1856			sk_free_unlock_clone(newsk);
1857			newsk = NULL;
1858			goto out;
1859		}
1860		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1861
1862		if (bpf_sk_storage_clone(sk, newsk)) {
1863			sk_free_unlock_clone(newsk);
1864			newsk = NULL;
1865			goto out;
1866		}
1867
1868		newsk->sk_err	   = 0;
1869		newsk->sk_err_soft = 0;
1870		newsk->sk_priority = 0;
1871		newsk->sk_incoming_cpu = raw_smp_processor_id();
 
1872		if (likely(newsk->sk_net_refcnt))
1873			sock_inuse_add(sock_net(newsk), 1);
1874
1875		/*
1876		 * Before updating sk_refcnt, we must commit prior changes to memory
1877		 * (Documentation/RCU/rculist_nulls.txt for details)
1878		 */
1879		smp_wmb();
1880		refcount_set(&newsk->sk_refcnt, 2);
1881
1882		/*
1883		 * Increment the counter in the same struct proto as the master
1884		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1885		 * is the same as sk->sk_prot->socks, as this field was copied
1886		 * with memcpy).
1887		 *
1888		 * This _changes_ the previous behaviour, where
1889		 * tcp_create_openreq_child always was incrementing the
1890		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1891		 * to be taken into account in all callers. -acme
1892		 */
1893		sk_refcnt_debug_inc(newsk);
1894		sk_set_socket(newsk, NULL);
1895		RCU_INIT_POINTER(newsk->sk_wq, NULL);
1896
1897		if (newsk->sk_prot->sockets_allocated)
1898			sk_sockets_allocated_inc(newsk);
1899
1900		if (sock_needs_netstamp(sk) &&
1901		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1902			net_enable_timestamp();
1903	}
1904out:
1905	return newsk;
1906}
1907EXPORT_SYMBOL_GPL(sk_clone_lock);
1908
1909void sk_free_unlock_clone(struct sock *sk)
1910{
1911	/* It is still raw copy of parent, so invalidate
1912	 * destructor and make plain sk_free() */
1913	sk->sk_destruct = NULL;
1914	bh_unlock_sock(sk);
1915	sk_free(sk);
1916}
1917EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1918
1919void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1920{
1921	u32 max_segs = 1;
1922
1923	sk_dst_set(sk, dst);
1924	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1925	if (sk->sk_route_caps & NETIF_F_GSO)
1926		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1927	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1928	if (sk_can_gso(sk)) {
1929		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1930			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1931		} else {
1932			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1933			sk->sk_gso_max_size = dst->dev->gso_max_size;
1934			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1935		}
1936	}
1937	sk->sk_gso_max_segs = max_segs;
1938}
1939EXPORT_SYMBOL_GPL(sk_setup_caps);
1940
1941/*
1942 *	Simple resource managers for sockets.
1943 */
1944
1945
1946/*
1947 * Write buffer destructor automatically called from kfree_skb.
1948 */
1949void sock_wfree(struct sk_buff *skb)
1950{
1951	struct sock *sk = skb->sk;
1952	unsigned int len = skb->truesize;
1953
1954	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1955		/*
1956		 * Keep a reference on sk_wmem_alloc, this will be released
1957		 * after sk_write_space() call
1958		 */
1959		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1960		sk->sk_write_space(sk);
1961		len = 1;
1962	}
1963	/*
1964	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1965	 * could not do because of in-flight packets
1966	 */
1967	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1968		__sk_free(sk);
1969}
1970EXPORT_SYMBOL(sock_wfree);
1971
1972/* This variant of sock_wfree() is used by TCP,
1973 * since it sets SOCK_USE_WRITE_QUEUE.
1974 */
1975void __sock_wfree(struct sk_buff *skb)
1976{
1977	struct sock *sk = skb->sk;
1978
1979	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1980		__sk_free(sk);
1981}
1982
1983void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1984{
1985	skb_orphan(skb);
1986	skb->sk = sk;
1987#ifdef CONFIG_INET
1988	if (unlikely(!sk_fullsock(sk))) {
1989		skb->destructor = sock_edemux;
1990		sock_hold(sk);
1991		return;
1992	}
1993#endif
1994	skb->destructor = sock_wfree;
1995	skb_set_hash_from_sk(skb, sk);
1996	/*
1997	 * We used to take a refcount on sk, but following operation
1998	 * is enough to guarantee sk_free() wont free this sock until
1999	 * all in-flight packets are completed
2000	 */
2001	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2002}
2003EXPORT_SYMBOL(skb_set_owner_w);
2004
2005static bool can_skb_orphan_partial(const struct sk_buff *skb)
2006{
2007#ifdef CONFIG_TLS_DEVICE
2008	/* Drivers depend on in-order delivery for crypto offload,
2009	 * partial orphan breaks out-of-order-OK logic.
2010	 */
2011	if (skb->decrypted)
2012		return false;
2013#endif
2014	return (skb->destructor == sock_wfree ||
2015		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2016}
2017
2018/* This helper is used by netem, as it can hold packets in its
2019 * delay queue. We want to allow the owner socket to send more
2020 * packets, as if they were already TX completed by a typical driver.
2021 * But we also want to keep skb->sk set because some packet schedulers
2022 * rely on it (sch_fq for example).
2023 */
2024void skb_orphan_partial(struct sk_buff *skb)
2025{
2026	if (skb_is_tcp_pure_ack(skb))
2027		return;
2028
2029	if (can_skb_orphan_partial(skb)) {
 
 
 
 
2030		struct sock *sk = skb->sk;
2031
2032		if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2033			WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2034			skb->destructor = sock_efree;
2035		}
2036	} else {
2037		skb_orphan(skb);
2038	}
2039}
2040EXPORT_SYMBOL(skb_orphan_partial);
2041
2042/*
2043 * Read buffer destructor automatically called from kfree_skb.
2044 */
2045void sock_rfree(struct sk_buff *skb)
2046{
2047	struct sock *sk = skb->sk;
2048	unsigned int len = skb->truesize;
2049
2050	atomic_sub(len, &sk->sk_rmem_alloc);
2051	sk_mem_uncharge(sk, len);
2052}
2053EXPORT_SYMBOL(sock_rfree);
2054
2055/*
2056 * Buffer destructor for skbs that are not used directly in read or write
2057 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2058 */
2059void sock_efree(struct sk_buff *skb)
2060{
2061	sock_put(skb->sk);
2062}
2063EXPORT_SYMBOL(sock_efree);
2064
2065kuid_t sock_i_uid(struct sock *sk)
2066{
2067	kuid_t uid;
2068
2069	read_lock_bh(&sk->sk_callback_lock);
2070	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2071	read_unlock_bh(&sk->sk_callback_lock);
2072	return uid;
2073}
2074EXPORT_SYMBOL(sock_i_uid);
2075
2076unsigned long sock_i_ino(struct sock *sk)
2077{
2078	unsigned long ino;
2079
2080	read_lock_bh(&sk->sk_callback_lock);
2081	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2082	read_unlock_bh(&sk->sk_callback_lock);
2083	return ino;
2084}
2085EXPORT_SYMBOL(sock_i_ino);
2086
2087/*
2088 * Allocate a skb from the socket's send buffer.
2089 */
2090struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2091			     gfp_t priority)
2092{
2093	if (force ||
2094	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2095		struct sk_buff *skb = alloc_skb(size, priority);
2096
2097		if (skb) {
2098			skb_set_owner_w(skb, sk);
2099			return skb;
2100		}
2101	}
2102	return NULL;
2103}
2104EXPORT_SYMBOL(sock_wmalloc);
2105
2106static void sock_ofree(struct sk_buff *skb)
2107{
2108	struct sock *sk = skb->sk;
2109
2110	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2111}
2112
2113struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2114			     gfp_t priority)
2115{
2116	struct sk_buff *skb;
2117
2118	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2119	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2120	    sysctl_optmem_max)
2121		return NULL;
2122
2123	skb = alloc_skb(size, priority);
2124	if (!skb)
2125		return NULL;
2126
2127	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2128	skb->sk = sk;
2129	skb->destructor = sock_ofree;
2130	return skb;
2131}
2132
2133/*
2134 * Allocate a memory block from the socket's option memory buffer.
2135 */
2136void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2137{
2138	if ((unsigned int)size <= sysctl_optmem_max &&
2139	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2140		void *mem;
2141		/* First do the add, to avoid the race if kmalloc
2142		 * might sleep.
2143		 */
2144		atomic_add(size, &sk->sk_omem_alloc);
2145		mem = kmalloc(size, priority);
2146		if (mem)
2147			return mem;
2148		atomic_sub(size, &sk->sk_omem_alloc);
2149	}
2150	return NULL;
2151}
2152EXPORT_SYMBOL(sock_kmalloc);
2153
2154/* Free an option memory block. Note, we actually want the inline
2155 * here as this allows gcc to detect the nullify and fold away the
2156 * condition entirely.
2157 */
2158static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2159				  const bool nullify)
2160{
2161	if (WARN_ON_ONCE(!mem))
2162		return;
2163	if (nullify)
2164		kzfree(mem);
2165	else
2166		kfree(mem);
2167	atomic_sub(size, &sk->sk_omem_alloc);
2168}
2169
2170void sock_kfree_s(struct sock *sk, void *mem, int size)
2171{
2172	__sock_kfree_s(sk, mem, size, false);
2173}
2174EXPORT_SYMBOL(sock_kfree_s);
2175
2176void sock_kzfree_s(struct sock *sk, void *mem, int size)
2177{
2178	__sock_kfree_s(sk, mem, size, true);
2179}
2180EXPORT_SYMBOL(sock_kzfree_s);
2181
2182/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2183   I think, these locks should be removed for datagram sockets.
2184 */
2185static long sock_wait_for_wmem(struct sock *sk, long timeo)
2186{
2187	DEFINE_WAIT(wait);
2188
2189	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2190	for (;;) {
2191		if (!timeo)
2192			break;
2193		if (signal_pending(current))
2194			break;
2195		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2196		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2197		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2198			break;
2199		if (sk->sk_shutdown & SEND_SHUTDOWN)
2200			break;
2201		if (sk->sk_err)
2202			break;
2203		timeo = schedule_timeout(timeo);
2204	}
2205	finish_wait(sk_sleep(sk), &wait);
2206	return timeo;
2207}
2208
2209
2210/*
2211 *	Generic send/receive buffer handlers
2212 */
2213
2214struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2215				     unsigned long data_len, int noblock,
2216				     int *errcode, int max_page_order)
2217{
2218	struct sk_buff *skb;
2219	long timeo;
2220	int err;
2221
2222	timeo = sock_sndtimeo(sk, noblock);
2223	for (;;) {
2224		err = sock_error(sk);
2225		if (err != 0)
2226			goto failure;
2227
2228		err = -EPIPE;
2229		if (sk->sk_shutdown & SEND_SHUTDOWN)
2230			goto failure;
2231
2232		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2233			break;
2234
2235		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2236		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2237		err = -EAGAIN;
2238		if (!timeo)
2239			goto failure;
2240		if (signal_pending(current))
2241			goto interrupted;
2242		timeo = sock_wait_for_wmem(sk, timeo);
2243	}
2244	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2245				   errcode, sk->sk_allocation);
2246	if (skb)
2247		skb_set_owner_w(skb, sk);
2248	return skb;
2249
2250interrupted:
2251	err = sock_intr_errno(timeo);
2252failure:
2253	*errcode = err;
2254	return NULL;
2255}
2256EXPORT_SYMBOL(sock_alloc_send_pskb);
2257
2258struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2259				    int noblock, int *errcode)
2260{
2261	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2262}
2263EXPORT_SYMBOL(sock_alloc_send_skb);
2264
2265int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2266		     struct sockcm_cookie *sockc)
2267{
2268	u32 tsflags;
2269
2270	switch (cmsg->cmsg_type) {
2271	case SO_MARK:
2272		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2273			return -EPERM;
2274		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2275			return -EINVAL;
2276		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2277		break;
2278	case SO_TIMESTAMPING_OLD:
2279		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2280			return -EINVAL;
2281
2282		tsflags = *(u32 *)CMSG_DATA(cmsg);
2283		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2284			return -EINVAL;
2285
2286		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2287		sockc->tsflags |= tsflags;
2288		break;
2289	case SCM_TXTIME:
2290		if (!sock_flag(sk, SOCK_TXTIME))
2291			return -EINVAL;
2292		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2293			return -EINVAL;
2294		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2295		break;
2296	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2297	case SCM_RIGHTS:
2298	case SCM_CREDENTIALS:
2299		break;
2300	default:
2301		return -EINVAL;
2302	}
2303	return 0;
2304}
2305EXPORT_SYMBOL(__sock_cmsg_send);
2306
2307int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2308		   struct sockcm_cookie *sockc)
2309{
2310	struct cmsghdr *cmsg;
2311	int ret;
2312
2313	for_each_cmsghdr(cmsg, msg) {
2314		if (!CMSG_OK(msg, cmsg))
2315			return -EINVAL;
2316		if (cmsg->cmsg_level != SOL_SOCKET)
2317			continue;
2318		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2319		if (ret)
2320			return ret;
2321	}
2322	return 0;
2323}
2324EXPORT_SYMBOL(sock_cmsg_send);
2325
2326static void sk_enter_memory_pressure(struct sock *sk)
2327{
2328	if (!sk->sk_prot->enter_memory_pressure)
2329		return;
2330
2331	sk->sk_prot->enter_memory_pressure(sk);
2332}
2333
2334static void sk_leave_memory_pressure(struct sock *sk)
2335{
2336	if (sk->sk_prot->leave_memory_pressure) {
2337		sk->sk_prot->leave_memory_pressure(sk);
2338	} else {
2339		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2340
2341		if (memory_pressure && READ_ONCE(*memory_pressure))
2342			WRITE_ONCE(*memory_pressure, 0);
2343	}
2344}
2345
2346/* On 32bit arches, an skb frag is limited to 2^15 */
2347#define SKB_FRAG_PAGE_ORDER	get_order(32768)
2348DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2349
2350/**
2351 * skb_page_frag_refill - check that a page_frag contains enough room
2352 * @sz: minimum size of the fragment we want to get
2353 * @pfrag: pointer to page_frag
2354 * @gfp: priority for memory allocation
2355 *
2356 * Note: While this allocator tries to use high order pages, there is
2357 * no guarantee that allocations succeed. Therefore, @sz MUST be
2358 * less or equal than PAGE_SIZE.
2359 */
2360bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2361{
2362	if (pfrag->page) {
2363		if (page_ref_count(pfrag->page) == 1) {
2364			pfrag->offset = 0;
2365			return true;
2366		}
2367		if (pfrag->offset + sz <= pfrag->size)
2368			return true;
2369		put_page(pfrag->page);
2370	}
2371
2372	pfrag->offset = 0;
2373	if (SKB_FRAG_PAGE_ORDER &&
2374	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2375		/* Avoid direct reclaim but allow kswapd to wake */
2376		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2377					  __GFP_COMP | __GFP_NOWARN |
2378					  __GFP_NORETRY,
2379					  SKB_FRAG_PAGE_ORDER);
2380		if (likely(pfrag->page)) {
2381			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2382			return true;
2383		}
2384	}
2385	pfrag->page = alloc_page(gfp);
2386	if (likely(pfrag->page)) {
2387		pfrag->size = PAGE_SIZE;
2388		return true;
2389	}
2390	return false;
2391}
2392EXPORT_SYMBOL(skb_page_frag_refill);
2393
2394bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2395{
2396	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2397		return true;
2398
2399	sk_enter_memory_pressure(sk);
2400	sk_stream_moderate_sndbuf(sk);
2401	return false;
2402}
2403EXPORT_SYMBOL(sk_page_frag_refill);
2404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2405static void __lock_sock(struct sock *sk)
2406	__releases(&sk->sk_lock.slock)
2407	__acquires(&sk->sk_lock.slock)
2408{
2409	DEFINE_WAIT(wait);
2410
2411	for (;;) {
2412		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2413					TASK_UNINTERRUPTIBLE);
2414		spin_unlock_bh(&sk->sk_lock.slock);
2415		schedule();
2416		spin_lock_bh(&sk->sk_lock.slock);
2417		if (!sock_owned_by_user(sk))
2418			break;
2419	}
2420	finish_wait(&sk->sk_lock.wq, &wait);
2421}
2422
2423void __release_sock(struct sock *sk)
2424	__releases(&sk->sk_lock.slock)
2425	__acquires(&sk->sk_lock.slock)
2426{
2427	struct sk_buff *skb, *next;
2428
2429	while ((skb = sk->sk_backlog.head) != NULL) {
2430		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2431
2432		spin_unlock_bh(&sk->sk_lock.slock);
2433
2434		do {
2435			next = skb->next;
2436			prefetch(next);
2437			WARN_ON_ONCE(skb_dst_is_noref(skb));
2438			skb_mark_not_on_list(skb);
2439			sk_backlog_rcv(sk, skb);
2440
2441			cond_resched();
2442
2443			skb = next;
2444		} while (skb != NULL);
2445
2446		spin_lock_bh(&sk->sk_lock.slock);
2447	}
2448
2449	/*
2450	 * Doing the zeroing here guarantee we can not loop forever
2451	 * while a wild producer attempts to flood us.
2452	 */
2453	sk->sk_backlog.len = 0;
2454}
2455
2456void __sk_flush_backlog(struct sock *sk)
2457{
2458	spin_lock_bh(&sk->sk_lock.slock);
2459	__release_sock(sk);
2460	spin_unlock_bh(&sk->sk_lock.slock);
2461}
2462
2463/**
2464 * sk_wait_data - wait for data to arrive at sk_receive_queue
2465 * @sk:    sock to wait on
2466 * @timeo: for how long
2467 * @skb:   last skb seen on sk_receive_queue
2468 *
2469 * Now socket state including sk->sk_err is changed only under lock,
2470 * hence we may omit checks after joining wait queue.
2471 * We check receive queue before schedule() only as optimization;
2472 * it is very likely that release_sock() added new data.
2473 */
2474int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2475{
2476	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2477	int rc;
2478
2479	add_wait_queue(sk_sleep(sk), &wait);
2480	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2481	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2482	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2483	remove_wait_queue(sk_sleep(sk), &wait);
2484	return rc;
2485}
2486EXPORT_SYMBOL(sk_wait_data);
2487
2488/**
2489 *	__sk_mem_raise_allocated - increase memory_allocated
2490 *	@sk: socket
2491 *	@size: memory size to allocate
2492 *	@amt: pages to allocate
2493 *	@kind: allocation type
2494 *
2495 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2496 */
2497int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2498{
2499	struct proto *prot = sk->sk_prot;
2500	long allocated = sk_memory_allocated_add(sk, amt);
2501	bool charged = true;
2502
2503	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2504	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2505		goto suppress_allocation;
2506
2507	/* Under limit. */
2508	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2509		sk_leave_memory_pressure(sk);
2510		return 1;
2511	}
2512
2513	/* Under pressure. */
2514	if (allocated > sk_prot_mem_limits(sk, 1))
2515		sk_enter_memory_pressure(sk);
2516
2517	/* Over hard limit. */
2518	if (allocated > sk_prot_mem_limits(sk, 2))
2519		goto suppress_allocation;
2520
2521	/* guarantee minimum buffer size under pressure */
2522	if (kind == SK_MEM_RECV) {
2523		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2524			return 1;
2525
2526	} else { /* SK_MEM_SEND */
2527		int wmem0 = sk_get_wmem0(sk, prot);
2528
2529		if (sk->sk_type == SOCK_STREAM) {
2530			if (sk->sk_wmem_queued < wmem0)
2531				return 1;
2532		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2533				return 1;
2534		}
2535	}
2536
2537	if (sk_has_memory_pressure(sk)) {
2538		u64 alloc;
2539
2540		if (!sk_under_memory_pressure(sk))
2541			return 1;
2542		alloc = sk_sockets_allocated_read_positive(sk);
2543		if (sk_prot_mem_limits(sk, 2) > alloc *
2544		    sk_mem_pages(sk->sk_wmem_queued +
2545				 atomic_read(&sk->sk_rmem_alloc) +
2546				 sk->sk_forward_alloc))
2547			return 1;
2548	}
2549
2550suppress_allocation:
2551
2552	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2553		sk_stream_moderate_sndbuf(sk);
2554
2555		/* Fail only if socket is _under_ its sndbuf.
2556		 * In this case we cannot block, so that we have to fail.
2557		 */
2558		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2559			return 1;
2560	}
2561
2562	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2563		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2564
2565	sk_memory_allocated_sub(sk, amt);
2566
2567	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2568		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2569
2570	return 0;
2571}
2572EXPORT_SYMBOL(__sk_mem_raise_allocated);
2573
2574/**
2575 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2576 *	@sk: socket
2577 *	@size: memory size to allocate
2578 *	@kind: allocation type
2579 *
2580 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2581 *	rmem allocation. This function assumes that protocols which have
2582 *	memory_pressure use sk_wmem_queued as write buffer accounting.
2583 */
2584int __sk_mem_schedule(struct sock *sk, int size, int kind)
2585{
2586	int ret, amt = sk_mem_pages(size);
2587
2588	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2589	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2590	if (!ret)
2591		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2592	return ret;
2593}
2594EXPORT_SYMBOL(__sk_mem_schedule);
2595
2596/**
2597 *	__sk_mem_reduce_allocated - reclaim memory_allocated
2598 *	@sk: socket
2599 *	@amount: number of quanta
2600 *
2601 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2602 */
2603void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2604{
2605	sk_memory_allocated_sub(sk, amount);
2606
2607	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2608		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2609
2610	if (sk_under_memory_pressure(sk) &&
2611	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2612		sk_leave_memory_pressure(sk);
2613}
2614EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2615
2616/**
2617 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2618 *	@sk: socket
2619 *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2620 */
2621void __sk_mem_reclaim(struct sock *sk, int amount)
2622{
2623	amount >>= SK_MEM_QUANTUM_SHIFT;
2624	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2625	__sk_mem_reduce_allocated(sk, amount);
2626}
2627EXPORT_SYMBOL(__sk_mem_reclaim);
2628
2629int sk_set_peek_off(struct sock *sk, int val)
2630{
2631	sk->sk_peek_off = val;
2632	return 0;
2633}
2634EXPORT_SYMBOL_GPL(sk_set_peek_off);
2635
2636/*
2637 * Set of default routines for initialising struct proto_ops when
2638 * the protocol does not support a particular function. In certain
2639 * cases where it makes no sense for a protocol to have a "do nothing"
2640 * function, some default processing is provided.
2641 */
2642
2643int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2644{
2645	return -EOPNOTSUPP;
2646}
2647EXPORT_SYMBOL(sock_no_bind);
2648
2649int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2650		    int len, int flags)
2651{
2652	return -EOPNOTSUPP;
2653}
2654EXPORT_SYMBOL(sock_no_connect);
2655
2656int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2657{
2658	return -EOPNOTSUPP;
2659}
2660EXPORT_SYMBOL(sock_no_socketpair);
2661
2662int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2663		   bool kern)
2664{
2665	return -EOPNOTSUPP;
2666}
2667EXPORT_SYMBOL(sock_no_accept);
2668
2669int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2670		    int peer)
2671{
2672	return -EOPNOTSUPP;
2673}
2674EXPORT_SYMBOL(sock_no_getname);
2675
 
 
 
 
 
 
2676int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2677{
2678	return -EOPNOTSUPP;
2679}
2680EXPORT_SYMBOL(sock_no_ioctl);
2681
2682int sock_no_listen(struct socket *sock, int backlog)
2683{
2684	return -EOPNOTSUPP;
2685}
2686EXPORT_SYMBOL(sock_no_listen);
2687
2688int sock_no_shutdown(struct socket *sock, int how)
2689{
2690	return -EOPNOTSUPP;
2691}
2692EXPORT_SYMBOL(sock_no_shutdown);
2693
2694int sock_no_setsockopt(struct socket *sock, int level, int optname,
2695		    char __user *optval, unsigned int optlen)
2696{
2697	return -EOPNOTSUPP;
2698}
2699EXPORT_SYMBOL(sock_no_setsockopt);
2700
2701int sock_no_getsockopt(struct socket *sock, int level, int optname,
2702		    char __user *optval, int __user *optlen)
2703{
2704	return -EOPNOTSUPP;
2705}
2706EXPORT_SYMBOL(sock_no_getsockopt);
2707
2708int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2709{
2710	return -EOPNOTSUPP;
2711}
2712EXPORT_SYMBOL(sock_no_sendmsg);
2713
2714int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2715{
2716	return -EOPNOTSUPP;
2717}
2718EXPORT_SYMBOL(sock_no_sendmsg_locked);
2719
2720int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2721		    int flags)
2722{
2723	return -EOPNOTSUPP;
2724}
2725EXPORT_SYMBOL(sock_no_recvmsg);
2726
2727int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2728{
2729	/* Mirror missing mmap method error code */
2730	return -ENODEV;
2731}
2732EXPORT_SYMBOL(sock_no_mmap);
2733
2734ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2735{
2736	ssize_t res;
2737	struct msghdr msg = {.msg_flags = flags};
2738	struct kvec iov;
2739	char *kaddr = kmap(page);
2740	iov.iov_base = kaddr + offset;
2741	iov.iov_len = size;
2742	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2743	kunmap(page);
2744	return res;
2745}
2746EXPORT_SYMBOL(sock_no_sendpage);
2747
2748ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2749				int offset, size_t size, int flags)
2750{
2751	ssize_t res;
2752	struct msghdr msg = {.msg_flags = flags};
2753	struct kvec iov;
2754	char *kaddr = kmap(page);
2755
2756	iov.iov_base = kaddr + offset;
2757	iov.iov_len = size;
2758	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2759	kunmap(page);
2760	return res;
2761}
2762EXPORT_SYMBOL(sock_no_sendpage_locked);
2763
2764/*
2765 *	Default Socket Callbacks
2766 */
2767
2768static void sock_def_wakeup(struct sock *sk)
2769{
2770	struct socket_wq *wq;
2771
2772	rcu_read_lock();
2773	wq = rcu_dereference(sk->sk_wq);
2774	if (skwq_has_sleeper(wq))
2775		wake_up_interruptible_all(&wq->wait);
2776	rcu_read_unlock();
2777}
2778
2779static void sock_def_error_report(struct sock *sk)
2780{
2781	struct socket_wq *wq;
2782
2783	rcu_read_lock();
2784	wq = rcu_dereference(sk->sk_wq);
2785	if (skwq_has_sleeper(wq))
2786		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2787	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2788	rcu_read_unlock();
2789}
2790
2791static void sock_def_readable(struct sock *sk)
2792{
2793	struct socket_wq *wq;
2794
2795	rcu_read_lock();
2796	wq = rcu_dereference(sk->sk_wq);
2797	if (skwq_has_sleeper(wq))
2798		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2799						EPOLLRDNORM | EPOLLRDBAND);
2800	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2801	rcu_read_unlock();
2802}
2803
2804static void sock_def_write_space(struct sock *sk)
2805{
2806	struct socket_wq *wq;
2807
2808	rcu_read_lock();
2809
2810	/* Do not wake up a writer until he can make "significant"
2811	 * progress.  --DaveM
2812	 */
2813	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2814		wq = rcu_dereference(sk->sk_wq);
2815		if (skwq_has_sleeper(wq))
2816			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2817						EPOLLWRNORM | EPOLLWRBAND);
2818
2819		/* Should agree with poll, otherwise some programs break */
2820		if (sock_writeable(sk))
2821			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2822	}
2823
2824	rcu_read_unlock();
2825}
2826
2827static void sock_def_destruct(struct sock *sk)
2828{
2829}
2830
2831void sk_send_sigurg(struct sock *sk)
2832{
2833	if (sk->sk_socket && sk->sk_socket->file)
2834		if (send_sigurg(&sk->sk_socket->file->f_owner))
2835			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2836}
2837EXPORT_SYMBOL(sk_send_sigurg);
2838
2839void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2840		    unsigned long expires)
2841{
2842	if (!mod_timer(timer, expires))
2843		sock_hold(sk);
2844}
2845EXPORT_SYMBOL(sk_reset_timer);
2846
2847void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2848{
2849	if (del_timer(timer))
2850		__sock_put(sk);
2851}
2852EXPORT_SYMBOL(sk_stop_timer);
2853
2854void sock_init_data(struct socket *sock, struct sock *sk)
2855{
2856	sk_init_common(sk);
2857	sk->sk_send_head	=	NULL;
2858
2859	timer_setup(&sk->sk_timer, NULL, 0);
2860
2861	sk->sk_allocation	=	GFP_KERNEL;
2862	sk->sk_rcvbuf		=	sysctl_rmem_default;
2863	sk->sk_sndbuf		=	sysctl_wmem_default;
2864	sk->sk_state		=	TCP_CLOSE;
2865	sk_set_socket(sk, sock);
2866
2867	sock_set_flag(sk, SOCK_ZAPPED);
2868
2869	if (sock) {
2870		sk->sk_type	=	sock->type;
2871		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2872		sock->sk	=	sk;
2873		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2874	} else {
2875		RCU_INIT_POINTER(sk->sk_wq, NULL);
2876		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2877	}
2878
2879	rwlock_init(&sk->sk_callback_lock);
2880	if (sk->sk_kern_sock)
2881		lockdep_set_class_and_name(
2882			&sk->sk_callback_lock,
2883			af_kern_callback_keys + sk->sk_family,
2884			af_family_kern_clock_key_strings[sk->sk_family]);
2885	else
2886		lockdep_set_class_and_name(
2887			&sk->sk_callback_lock,
2888			af_callback_keys + sk->sk_family,
2889			af_family_clock_key_strings[sk->sk_family]);
2890
2891	sk->sk_state_change	=	sock_def_wakeup;
2892	sk->sk_data_ready	=	sock_def_readable;
2893	sk->sk_write_space	=	sock_def_write_space;
2894	sk->sk_error_report	=	sock_def_error_report;
2895	sk->sk_destruct		=	sock_def_destruct;
2896
2897	sk->sk_frag.page	=	NULL;
2898	sk->sk_frag.offset	=	0;
2899	sk->sk_peek_off		=	-1;
2900
2901	sk->sk_peer_pid 	=	NULL;
2902	sk->sk_peer_cred	=	NULL;
2903	sk->sk_write_pending	=	0;
2904	sk->sk_rcvlowat		=	1;
2905	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2906	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2907
2908	sk->sk_stamp = SK_DEFAULT_STAMP;
2909#if BITS_PER_LONG==32
2910	seqlock_init(&sk->sk_stamp_seq);
2911#endif
2912	atomic_set(&sk->sk_zckey, 0);
2913
2914#ifdef CONFIG_NET_RX_BUSY_POLL
2915	sk->sk_napi_id		=	0;
2916	sk->sk_ll_usec		=	sysctl_net_busy_read;
2917#endif
2918
2919	sk->sk_max_pacing_rate = ~0UL;
2920	sk->sk_pacing_rate = ~0UL;
2921	sk->sk_pacing_shift = 10;
2922	sk->sk_incoming_cpu = -1;
2923
2924	sk_rx_queue_clear(sk);
2925	/*
2926	 * Before updating sk_refcnt, we must commit prior changes to memory
2927	 * (Documentation/RCU/rculist_nulls.txt for details)
2928	 */
2929	smp_wmb();
2930	refcount_set(&sk->sk_refcnt, 1);
2931	atomic_set(&sk->sk_drops, 0);
2932}
2933EXPORT_SYMBOL(sock_init_data);
2934
2935void lock_sock_nested(struct sock *sk, int subclass)
2936{
2937	might_sleep();
2938	spin_lock_bh(&sk->sk_lock.slock);
2939	if (sk->sk_lock.owned)
2940		__lock_sock(sk);
2941	sk->sk_lock.owned = 1;
2942	spin_unlock(&sk->sk_lock.slock);
2943	/*
2944	 * The sk_lock has mutex_lock() semantics here:
2945	 */
2946	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2947	local_bh_enable();
2948}
2949EXPORT_SYMBOL(lock_sock_nested);
2950
2951void release_sock(struct sock *sk)
2952{
2953	spin_lock_bh(&sk->sk_lock.slock);
2954	if (sk->sk_backlog.tail)
2955		__release_sock(sk);
2956
2957	/* Warning : release_cb() might need to release sk ownership,
2958	 * ie call sock_release_ownership(sk) before us.
2959	 */
2960	if (sk->sk_prot->release_cb)
2961		sk->sk_prot->release_cb(sk);
2962
2963	sock_release_ownership(sk);
2964	if (waitqueue_active(&sk->sk_lock.wq))
2965		wake_up(&sk->sk_lock.wq);
2966	spin_unlock_bh(&sk->sk_lock.slock);
2967}
2968EXPORT_SYMBOL(release_sock);
2969
2970/**
2971 * lock_sock_fast - fast version of lock_sock
2972 * @sk: socket
2973 *
2974 * This version should be used for very small section, where process wont block
2975 * return false if fast path is taken:
2976 *
2977 *   sk_lock.slock locked, owned = 0, BH disabled
2978 *
2979 * return true if slow path is taken:
2980 *
2981 *   sk_lock.slock unlocked, owned = 1, BH enabled
2982 */
2983bool lock_sock_fast(struct sock *sk)
2984{
2985	might_sleep();
2986	spin_lock_bh(&sk->sk_lock.slock);
2987
2988	if (!sk->sk_lock.owned)
2989		/*
2990		 * Note : We must disable BH
2991		 */
2992		return false;
2993
2994	__lock_sock(sk);
2995	sk->sk_lock.owned = 1;
2996	spin_unlock(&sk->sk_lock.slock);
2997	/*
2998	 * The sk_lock has mutex_lock() semantics here:
2999	 */
3000	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3001	local_bh_enable();
3002	return true;
3003}
3004EXPORT_SYMBOL(lock_sock_fast);
3005
3006int sock_gettstamp(struct socket *sock, void __user *userstamp,
3007		   bool timeval, bool time32)
3008{
3009	struct sock *sk = sock->sk;
3010	struct timespec64 ts;
 
 
 
 
 
 
 
 
 
 
 
3011
3012	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3013	ts = ktime_to_timespec64(sock_read_timestamp(sk));
 
 
 
 
3014	if (ts.tv_sec == -1)
3015		return -ENOENT;
3016	if (ts.tv_sec == 0) {
3017		ktime_t kt = ktime_get_real();
3018		sock_write_timestamp(sk, kt);;
3019		ts = ktime_to_timespec64(kt);
3020	}
3021
3022	if (timeval)
3023		ts.tv_nsec /= 1000;
3024
3025#ifdef CONFIG_COMPAT_32BIT_TIME
3026	if (time32)
3027		return put_old_timespec32(&ts, userstamp);
3028#endif
3029#ifdef CONFIG_SPARC64
3030	/* beware of padding in sparc64 timeval */
3031	if (timeval && !in_compat_syscall()) {
3032		struct __kernel_old_timeval __user tv = {
3033			.tv_sec = ts.tv_sec,
3034			.tv_usec = ts.tv_nsec,
3035		};
3036		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3037			return -EFAULT;
3038		return 0;
3039	}
3040#endif
3041	return put_timespec64(&ts, userstamp);
3042}
3043EXPORT_SYMBOL(sock_gettstamp);
3044
3045void sock_enable_timestamp(struct sock *sk, int flag)
3046{
3047	if (!sock_flag(sk, flag)) {
3048		unsigned long previous_flags = sk->sk_flags;
3049
3050		sock_set_flag(sk, flag);
3051		/*
3052		 * we just set one of the two flags which require net
3053		 * time stamping, but time stamping might have been on
3054		 * already because of the other one
3055		 */
3056		if (sock_needs_netstamp(sk) &&
3057		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3058			net_enable_timestamp();
3059	}
3060}
3061
3062int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3063		       int level, int type)
3064{
3065	struct sock_exterr_skb *serr;
3066	struct sk_buff *skb;
3067	int copied, err;
3068
3069	err = -EAGAIN;
3070	skb = sock_dequeue_err_skb(sk);
3071	if (skb == NULL)
3072		goto out;
3073
3074	copied = skb->len;
3075	if (copied > len) {
3076		msg->msg_flags |= MSG_TRUNC;
3077		copied = len;
3078	}
3079	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3080	if (err)
3081		goto out_free_skb;
3082
3083	sock_recv_timestamp(msg, sk, skb);
3084
3085	serr = SKB_EXT_ERR(skb);
3086	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3087
3088	msg->msg_flags |= MSG_ERRQUEUE;
3089	err = copied;
3090
3091out_free_skb:
3092	kfree_skb(skb);
3093out:
3094	return err;
3095}
3096EXPORT_SYMBOL(sock_recv_errqueue);
3097
3098/*
3099 *	Get a socket option on an socket.
3100 *
3101 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3102 *	asynchronous errors should be reported by getsockopt. We assume
3103 *	this means if you specify SO_ERROR (otherwise whats the point of it).
3104 */
3105int sock_common_getsockopt(struct socket *sock, int level, int optname,
3106			   char __user *optval, int __user *optlen)
3107{
3108	struct sock *sk = sock->sk;
3109
3110	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3111}
3112EXPORT_SYMBOL(sock_common_getsockopt);
3113
3114#ifdef CONFIG_COMPAT
3115int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3116				  char __user *optval, int __user *optlen)
3117{
3118	struct sock *sk = sock->sk;
3119
3120	if (sk->sk_prot->compat_getsockopt != NULL)
3121		return sk->sk_prot->compat_getsockopt(sk, level, optname,
3122						      optval, optlen);
3123	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3124}
3125EXPORT_SYMBOL(compat_sock_common_getsockopt);
3126#endif
3127
3128int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3129			int flags)
3130{
3131	struct sock *sk = sock->sk;
3132	int addr_len = 0;
3133	int err;
3134
3135	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3136				   flags & ~MSG_DONTWAIT, &addr_len);
3137	if (err >= 0)
3138		msg->msg_namelen = addr_len;
3139	return err;
3140}
3141EXPORT_SYMBOL(sock_common_recvmsg);
3142
3143/*
3144 *	Set socket options on an inet socket.
3145 */
3146int sock_common_setsockopt(struct socket *sock, int level, int optname,
3147			   char __user *optval, unsigned int optlen)
3148{
3149	struct sock *sk = sock->sk;
3150
3151	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3152}
3153EXPORT_SYMBOL(sock_common_setsockopt);
3154
3155#ifdef CONFIG_COMPAT
3156int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3157				  char __user *optval, unsigned int optlen)
3158{
3159	struct sock *sk = sock->sk;
3160
3161	if (sk->sk_prot->compat_setsockopt != NULL)
3162		return sk->sk_prot->compat_setsockopt(sk, level, optname,
3163						      optval, optlen);
3164	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3165}
3166EXPORT_SYMBOL(compat_sock_common_setsockopt);
3167#endif
3168
3169void sk_common_release(struct sock *sk)
3170{
3171	if (sk->sk_prot->destroy)
3172		sk->sk_prot->destroy(sk);
3173
3174	/*
3175	 * Observation: when sock_common_release is called, processes have
3176	 * no access to socket. But net still has.
3177	 * Step one, detach it from networking:
3178	 *
3179	 * A. Remove from hash tables.
3180	 */
3181
3182	sk->sk_prot->unhash(sk);
3183
3184	/*
3185	 * In this point socket cannot receive new packets, but it is possible
3186	 * that some packets are in flight because some CPU runs receiver and
3187	 * did hash table lookup before we unhashed socket. They will achieve
3188	 * receive queue and will be purged by socket destructor.
3189	 *
3190	 * Also we still have packets pending on receive queue and probably,
3191	 * our own packets waiting in device queues. sock_destroy will drain
3192	 * receive queue, but transmitted packets will delay socket destruction
3193	 * until the last reference will be released.
3194	 */
3195
3196	sock_orphan(sk);
3197
3198	xfrm_sk_free_policy(sk);
3199
3200	sk_refcnt_debug_release(sk);
3201
3202	sock_put(sk);
3203}
3204EXPORT_SYMBOL(sk_common_release);
3205
3206void sk_get_meminfo(const struct sock *sk, u32 *mem)
3207{
3208	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3209
3210	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3211	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3212	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3213	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3214	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3215	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3216	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3217	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3218	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3219}
3220
3221#ifdef CONFIG_PROC_FS
3222#define PROTO_INUSE_NR	64	/* should be enough for the first time */
3223struct prot_inuse {
3224	int val[PROTO_INUSE_NR];
3225};
3226
3227static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3228
3229void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3230{
3231	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3232}
3233EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3234
3235int sock_prot_inuse_get(struct net *net, struct proto *prot)
3236{
3237	int cpu, idx = prot->inuse_idx;
3238	int res = 0;
3239
3240	for_each_possible_cpu(cpu)
3241		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3242
3243	return res >= 0 ? res : 0;
3244}
3245EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3246
3247static void sock_inuse_add(struct net *net, int val)
3248{
3249	this_cpu_add(*net->core.sock_inuse, val);
3250}
3251
3252int sock_inuse_get(struct net *net)
3253{
3254	int cpu, res = 0;
3255
3256	for_each_possible_cpu(cpu)
3257		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3258
3259	return res;
3260}
3261
3262EXPORT_SYMBOL_GPL(sock_inuse_get);
3263
3264static int __net_init sock_inuse_init_net(struct net *net)
3265{
3266	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3267	if (net->core.prot_inuse == NULL)
3268		return -ENOMEM;
3269
3270	net->core.sock_inuse = alloc_percpu(int);
3271	if (net->core.sock_inuse == NULL)
3272		goto out;
3273
3274	return 0;
3275
3276out:
3277	free_percpu(net->core.prot_inuse);
3278	return -ENOMEM;
3279}
3280
3281static void __net_exit sock_inuse_exit_net(struct net *net)
3282{
3283	free_percpu(net->core.prot_inuse);
3284	free_percpu(net->core.sock_inuse);
3285}
3286
3287static struct pernet_operations net_inuse_ops = {
3288	.init = sock_inuse_init_net,
3289	.exit = sock_inuse_exit_net,
3290};
3291
3292static __init int net_inuse_init(void)
3293{
3294	if (register_pernet_subsys(&net_inuse_ops))
3295		panic("Cannot initialize net inuse counters");
3296
3297	return 0;
3298}
3299
3300core_initcall(net_inuse_init);
3301
3302static int assign_proto_idx(struct proto *prot)
3303{
3304	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3305
3306	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3307		pr_err("PROTO_INUSE_NR exhausted\n");
3308		return -ENOSPC;
3309	}
3310
3311	set_bit(prot->inuse_idx, proto_inuse_idx);
3312	return 0;
3313}
3314
3315static void release_proto_idx(struct proto *prot)
3316{
3317	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3318		clear_bit(prot->inuse_idx, proto_inuse_idx);
3319}
3320#else
3321static inline int assign_proto_idx(struct proto *prot)
3322{
3323	return 0;
3324}
3325
3326static inline void release_proto_idx(struct proto *prot)
3327{
3328}
3329
3330static void sock_inuse_add(struct net *net, int val)
3331{
3332}
3333#endif
3334
3335static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3336{
3337	if (!rsk_prot)
3338		return;
3339	kfree(rsk_prot->slab_name);
3340	rsk_prot->slab_name = NULL;
3341	kmem_cache_destroy(rsk_prot->slab);
3342	rsk_prot->slab = NULL;
3343}
3344
3345static int req_prot_init(const struct proto *prot)
3346{
3347	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3348
3349	if (!rsk_prot)
3350		return 0;
3351
3352	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3353					prot->name);
3354	if (!rsk_prot->slab_name)
3355		return -ENOMEM;
3356
3357	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3358					   rsk_prot->obj_size, 0,
3359					   SLAB_ACCOUNT | prot->slab_flags,
3360					   NULL);
3361
3362	if (!rsk_prot->slab) {
3363		pr_crit("%s: Can't create request sock SLAB cache!\n",
3364			prot->name);
3365		return -ENOMEM;
3366	}
3367	return 0;
3368}
3369
3370int proto_register(struct proto *prot, int alloc_slab)
3371{
3372	int ret = -ENOBUFS;
3373
3374	if (alloc_slab) {
3375		prot->slab = kmem_cache_create_usercopy(prot->name,
3376					prot->obj_size, 0,
3377					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3378					prot->slab_flags,
3379					prot->useroffset, prot->usersize,
3380					NULL);
3381
3382		if (prot->slab == NULL) {
3383			pr_crit("%s: Can't create sock SLAB cache!\n",
3384				prot->name);
3385			goto out;
3386		}
3387
3388		if (req_prot_init(prot))
3389			goto out_free_request_sock_slab;
3390
3391		if (prot->twsk_prot != NULL) {
3392			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3393
3394			if (prot->twsk_prot->twsk_slab_name == NULL)
3395				goto out_free_request_sock_slab;
3396
3397			prot->twsk_prot->twsk_slab =
3398				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3399						  prot->twsk_prot->twsk_obj_size,
3400						  0,
3401						  SLAB_ACCOUNT |
3402						  prot->slab_flags,
3403						  NULL);
3404			if (prot->twsk_prot->twsk_slab == NULL)
3405				goto out_free_timewait_sock_slab_name;
3406		}
3407	}
3408
3409	mutex_lock(&proto_list_mutex);
3410	ret = assign_proto_idx(prot);
3411	if (ret) {
3412		mutex_unlock(&proto_list_mutex);
3413		goto out_free_timewait_sock_slab_name;
3414	}
3415	list_add(&prot->node, &proto_list);
 
3416	mutex_unlock(&proto_list_mutex);
3417	return ret;
3418
3419out_free_timewait_sock_slab_name:
3420	if (alloc_slab && prot->twsk_prot)
3421		kfree(prot->twsk_prot->twsk_slab_name);
3422out_free_request_sock_slab:
3423	if (alloc_slab) {
3424		req_prot_cleanup(prot->rsk_prot);
3425
3426		kmem_cache_destroy(prot->slab);
3427		prot->slab = NULL;
3428	}
3429out:
3430	return ret;
3431}
3432EXPORT_SYMBOL(proto_register);
3433
3434void proto_unregister(struct proto *prot)
3435{
3436	mutex_lock(&proto_list_mutex);
3437	release_proto_idx(prot);
3438	list_del(&prot->node);
3439	mutex_unlock(&proto_list_mutex);
3440
3441	kmem_cache_destroy(prot->slab);
3442	prot->slab = NULL;
3443
3444	req_prot_cleanup(prot->rsk_prot);
3445
3446	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3447		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3448		kfree(prot->twsk_prot->twsk_slab_name);
3449		prot->twsk_prot->twsk_slab = NULL;
3450	}
3451}
3452EXPORT_SYMBOL(proto_unregister);
3453
3454int sock_load_diag_module(int family, int protocol)
3455{
3456	if (!protocol) {
3457		if (!sock_is_registered(family))
3458			return -ENOENT;
3459
3460		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3461				      NETLINK_SOCK_DIAG, family);
3462	}
3463
3464#ifdef CONFIG_INET
3465	if (family == AF_INET &&
3466	    protocol != IPPROTO_RAW &&
3467	    !rcu_access_pointer(inet_protos[protocol]))
3468		return -ENOENT;
3469#endif
3470
3471	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3472			      NETLINK_SOCK_DIAG, family, protocol);
3473}
3474EXPORT_SYMBOL(sock_load_diag_module);
3475
3476#ifdef CONFIG_PROC_FS
3477static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3478	__acquires(proto_list_mutex)
3479{
3480	mutex_lock(&proto_list_mutex);
3481	return seq_list_start_head(&proto_list, *pos);
3482}
3483
3484static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3485{
3486	return seq_list_next(v, &proto_list, pos);
3487}
3488
3489static void proto_seq_stop(struct seq_file *seq, void *v)
3490	__releases(proto_list_mutex)
3491{
3492	mutex_unlock(&proto_list_mutex);
3493}
3494
3495static char proto_method_implemented(const void *method)
3496{
3497	return method == NULL ? 'n' : 'y';
3498}
3499static long sock_prot_memory_allocated(struct proto *proto)
3500{
3501	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3502}
3503
3504static const char *sock_prot_memory_pressure(struct proto *proto)
3505{
3506	return proto->memory_pressure != NULL ?
3507	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3508}
3509
3510static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3511{
3512
3513	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3514			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3515		   proto->name,
3516		   proto->obj_size,
3517		   sock_prot_inuse_get(seq_file_net(seq), proto),
3518		   sock_prot_memory_allocated(proto),
3519		   sock_prot_memory_pressure(proto),
3520		   proto->max_header,
3521		   proto->slab == NULL ? "no" : "yes",
3522		   module_name(proto->owner),
3523		   proto_method_implemented(proto->close),
3524		   proto_method_implemented(proto->connect),
3525		   proto_method_implemented(proto->disconnect),
3526		   proto_method_implemented(proto->accept),
3527		   proto_method_implemented(proto->ioctl),
3528		   proto_method_implemented(proto->init),
3529		   proto_method_implemented(proto->destroy),
3530		   proto_method_implemented(proto->shutdown),
3531		   proto_method_implemented(proto->setsockopt),
3532		   proto_method_implemented(proto->getsockopt),
3533		   proto_method_implemented(proto->sendmsg),
3534		   proto_method_implemented(proto->recvmsg),
3535		   proto_method_implemented(proto->sendpage),
3536		   proto_method_implemented(proto->bind),
3537		   proto_method_implemented(proto->backlog_rcv),
3538		   proto_method_implemented(proto->hash),
3539		   proto_method_implemented(proto->unhash),
3540		   proto_method_implemented(proto->get_port),
3541		   proto_method_implemented(proto->enter_memory_pressure));
3542}
3543
3544static int proto_seq_show(struct seq_file *seq, void *v)
3545{
3546	if (v == &proto_list)
3547		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3548			   "protocol",
3549			   "size",
3550			   "sockets",
3551			   "memory",
3552			   "press",
3553			   "maxhdr",
3554			   "slab",
3555			   "module",
3556			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3557	else
3558		proto_seq_printf(seq, list_entry(v, struct proto, node));
3559	return 0;
3560}
3561
3562static const struct seq_operations proto_seq_ops = {
3563	.start  = proto_seq_start,
3564	.next   = proto_seq_next,
3565	.stop   = proto_seq_stop,
3566	.show   = proto_seq_show,
3567};
3568
 
 
 
 
 
 
 
 
 
 
 
 
 
3569static __net_init int proto_init_net(struct net *net)
3570{
3571	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3572			sizeof(struct seq_net_private)))
3573		return -ENOMEM;
3574
3575	return 0;
3576}
3577
3578static __net_exit void proto_exit_net(struct net *net)
3579{
3580	remove_proc_entry("protocols", net->proc_net);
3581}
3582
3583
3584static __net_initdata struct pernet_operations proto_net_ops = {
3585	.init = proto_init_net,
3586	.exit = proto_exit_net,
3587};
3588
3589static int __init proto_init(void)
3590{
3591	return register_pernet_subsys(&proto_net_ops);
3592}
3593
3594subsys_initcall(proto_init);
3595
3596#endif /* PROC_FS */
3597
3598#ifdef CONFIG_NET_RX_BUSY_POLL
3599bool sk_busy_loop_end(void *p, unsigned long start_time)
3600{
3601	struct sock *sk = p;
3602
3603	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3604	       sk_busy_loop_timeout(sk, start_time);
3605}
3606EXPORT_SYMBOL(sk_busy_loop_end);
3607#endif /* CONFIG_NET_RX_BUSY_POLL */