Loading...
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/errqueue.h>
97#include <linux/types.h>
98#include <linux/socket.h>
99#include <linux/in.h>
100#include <linux/kernel.h>
101#include <linux/module.h>
102#include <linux/proc_fs.h>
103#include <linux/seq_file.h>
104#include <linux/sched.h>
105#include <linux/sched/mm.h>
106#include <linux/timer.h>
107#include <linux/string.h>
108#include <linux/sockios.h>
109#include <linux/net.h>
110#include <linux/mm.h>
111#include <linux/slab.h>
112#include <linux/interrupt.h>
113#include <linux/poll.h>
114#include <linux/tcp.h>
115#include <linux/init.h>
116#include <linux/highmem.h>
117#include <linux/user_namespace.h>
118#include <linux/static_key.h>
119#include <linux/memcontrol.h>
120#include <linux/prefetch.h>
121
122#include <linux/uaccess.h>
123
124#include <linux/netdevice.h>
125#include <net/protocol.h>
126#include <linux/skbuff.h>
127#include <net/net_namespace.h>
128#include <net/request_sock.h>
129#include <net/sock.h>
130#include <linux/net_tstamp.h>
131#include <net/xfrm.h>
132#include <linux/ipsec.h>
133#include <net/cls_cgroup.h>
134#include <net/netprio_cgroup.h>
135#include <linux/sock_diag.h>
136
137#include <linux/filter.h>
138#include <net/sock_reuseport.h>
139
140#include <trace/events/sock.h>
141
142#include <net/tcp.h>
143#include <net/busy_poll.h>
144
145static DEFINE_MUTEX(proto_list_mutex);
146static LIST_HEAD(proto_list);
147
148static void sock_inuse_add(struct net *net, int val);
149
150/**
151 * sk_ns_capable - General socket capability test
152 * @sk: Socket to use a capability on or through
153 * @user_ns: The user namespace of the capability to use
154 * @cap: The capability to use
155 *
156 * Test to see if the opener of the socket had when the socket was
157 * created and the current process has the capability @cap in the user
158 * namespace @user_ns.
159 */
160bool sk_ns_capable(const struct sock *sk,
161 struct user_namespace *user_ns, int cap)
162{
163 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164 ns_capable(user_ns, cap);
165}
166EXPORT_SYMBOL(sk_ns_capable);
167
168/**
169 * sk_capable - Socket global capability test
170 * @sk: Socket to use a capability on or through
171 * @cap: The global capability to use
172 *
173 * Test to see if the opener of the socket had when the socket was
174 * created and the current process has the capability @cap in all user
175 * namespaces.
176 */
177bool sk_capable(const struct sock *sk, int cap)
178{
179 return sk_ns_capable(sk, &init_user_ns, cap);
180}
181EXPORT_SYMBOL(sk_capable);
182
183/**
184 * sk_net_capable - Network namespace socket capability test
185 * @sk: Socket to use a capability on or through
186 * @cap: The capability to use
187 *
188 * Test to see if the opener of the socket had when the socket was created
189 * and the current process has the capability @cap over the network namespace
190 * the socket is a member of.
191 */
192bool sk_net_capable(const struct sock *sk, int cap)
193{
194 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195}
196EXPORT_SYMBOL(sk_net_capable);
197
198/*
199 * Each address family might have different locking rules, so we have
200 * one slock key per address family and separate keys for internal and
201 * userspace sockets.
202 */
203static struct lock_class_key af_family_keys[AF_MAX];
204static struct lock_class_key af_family_kern_keys[AF_MAX];
205static struct lock_class_key af_family_slock_keys[AF_MAX];
206static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
207
208/*
209 * Make lock validator output more readable. (we pre-construct these
210 * strings build-time, so that runtime initialization of socket
211 * locks is fast):
212 */
213
214#define _sock_locks(x) \
215 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
216 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
217 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
218 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
219 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
220 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
221 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
222 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
223 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
224 x "27" , x "28" , x "AF_CAN" , \
225 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
226 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
227 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
228 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
229 x "AF_QIPCRTR", x "AF_SMC" , x "AF_MAX"
230
231static const char *const af_family_key_strings[AF_MAX+1] = {
232 _sock_locks("sk_lock-")
233};
234static const char *const af_family_slock_key_strings[AF_MAX+1] = {
235 _sock_locks("slock-")
236};
237static const char *const af_family_clock_key_strings[AF_MAX+1] = {
238 _sock_locks("clock-")
239};
240
241static const char *const af_family_kern_key_strings[AF_MAX+1] = {
242 _sock_locks("k-sk_lock-")
243};
244static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
245 _sock_locks("k-slock-")
246};
247static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
248 _sock_locks("k-clock-")
249};
250static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
251 "rlock-AF_UNSPEC", "rlock-AF_UNIX" , "rlock-AF_INET" ,
252 "rlock-AF_AX25" , "rlock-AF_IPX" , "rlock-AF_APPLETALK",
253 "rlock-AF_NETROM", "rlock-AF_BRIDGE" , "rlock-AF_ATMPVC" ,
254 "rlock-AF_X25" , "rlock-AF_INET6" , "rlock-AF_ROSE" ,
255 "rlock-AF_DECnet", "rlock-AF_NETBEUI" , "rlock-AF_SECURITY" ,
256 "rlock-AF_KEY" , "rlock-AF_NETLINK" , "rlock-AF_PACKET" ,
257 "rlock-AF_ASH" , "rlock-AF_ECONET" , "rlock-AF_ATMSVC" ,
258 "rlock-AF_RDS" , "rlock-AF_SNA" , "rlock-AF_IRDA" ,
259 "rlock-AF_PPPOX" , "rlock-AF_WANPIPE" , "rlock-AF_LLC" ,
260 "rlock-27" , "rlock-28" , "rlock-AF_CAN" ,
261 "rlock-AF_TIPC" , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV" ,
262 "rlock-AF_RXRPC" , "rlock-AF_ISDN" , "rlock-AF_PHONET" ,
263 "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG" ,
264 "rlock-AF_NFC" , "rlock-AF_VSOCK" , "rlock-AF_KCM" ,
265 "rlock-AF_QIPCRTR", "rlock-AF_SMC" , "rlock-AF_MAX"
266};
267static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
268 "wlock-AF_UNSPEC", "wlock-AF_UNIX" , "wlock-AF_INET" ,
269 "wlock-AF_AX25" , "wlock-AF_IPX" , "wlock-AF_APPLETALK",
270 "wlock-AF_NETROM", "wlock-AF_BRIDGE" , "wlock-AF_ATMPVC" ,
271 "wlock-AF_X25" , "wlock-AF_INET6" , "wlock-AF_ROSE" ,
272 "wlock-AF_DECnet", "wlock-AF_NETBEUI" , "wlock-AF_SECURITY" ,
273 "wlock-AF_KEY" , "wlock-AF_NETLINK" , "wlock-AF_PACKET" ,
274 "wlock-AF_ASH" , "wlock-AF_ECONET" , "wlock-AF_ATMSVC" ,
275 "wlock-AF_RDS" , "wlock-AF_SNA" , "wlock-AF_IRDA" ,
276 "wlock-AF_PPPOX" , "wlock-AF_WANPIPE" , "wlock-AF_LLC" ,
277 "wlock-27" , "wlock-28" , "wlock-AF_CAN" ,
278 "wlock-AF_TIPC" , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV" ,
279 "wlock-AF_RXRPC" , "wlock-AF_ISDN" , "wlock-AF_PHONET" ,
280 "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG" ,
281 "wlock-AF_NFC" , "wlock-AF_VSOCK" , "wlock-AF_KCM" ,
282 "wlock-AF_QIPCRTR", "wlock-AF_SMC" , "wlock-AF_MAX"
283};
284static const char *const af_family_elock_key_strings[AF_MAX+1] = {
285 "elock-AF_UNSPEC", "elock-AF_UNIX" , "elock-AF_INET" ,
286 "elock-AF_AX25" , "elock-AF_IPX" , "elock-AF_APPLETALK",
287 "elock-AF_NETROM", "elock-AF_BRIDGE" , "elock-AF_ATMPVC" ,
288 "elock-AF_X25" , "elock-AF_INET6" , "elock-AF_ROSE" ,
289 "elock-AF_DECnet", "elock-AF_NETBEUI" , "elock-AF_SECURITY" ,
290 "elock-AF_KEY" , "elock-AF_NETLINK" , "elock-AF_PACKET" ,
291 "elock-AF_ASH" , "elock-AF_ECONET" , "elock-AF_ATMSVC" ,
292 "elock-AF_RDS" , "elock-AF_SNA" , "elock-AF_IRDA" ,
293 "elock-AF_PPPOX" , "elock-AF_WANPIPE" , "elock-AF_LLC" ,
294 "elock-27" , "elock-28" , "elock-AF_CAN" ,
295 "elock-AF_TIPC" , "elock-AF_BLUETOOTH", "elock-AF_IUCV" ,
296 "elock-AF_RXRPC" , "elock-AF_ISDN" , "elock-AF_PHONET" ,
297 "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG" ,
298 "elock-AF_NFC" , "elock-AF_VSOCK" , "elock-AF_KCM" ,
299 "elock-AF_QIPCRTR", "elock-AF_SMC" , "elock-AF_MAX"
300};
301
302/*
303 * sk_callback_lock and sk queues locking rules are per-address-family,
304 * so split the lock classes by using a per-AF key:
305 */
306static struct lock_class_key af_callback_keys[AF_MAX];
307static struct lock_class_key af_rlock_keys[AF_MAX];
308static struct lock_class_key af_wlock_keys[AF_MAX];
309static struct lock_class_key af_elock_keys[AF_MAX];
310static struct lock_class_key af_kern_callback_keys[AF_MAX];
311
312/* Run time adjustable parameters. */
313__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
314EXPORT_SYMBOL(sysctl_wmem_max);
315__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
316EXPORT_SYMBOL(sysctl_rmem_max);
317__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
318__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
319
320/* Maximal space eaten by iovec or ancillary data plus some space */
321int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
322EXPORT_SYMBOL(sysctl_optmem_max);
323
324int sysctl_tstamp_allow_data __read_mostly = 1;
325
326struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
327EXPORT_SYMBOL_GPL(memalloc_socks);
328
329/**
330 * sk_set_memalloc - sets %SOCK_MEMALLOC
331 * @sk: socket to set it on
332 *
333 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
334 * It's the responsibility of the admin to adjust min_free_kbytes
335 * to meet the requirements
336 */
337void sk_set_memalloc(struct sock *sk)
338{
339 sock_set_flag(sk, SOCK_MEMALLOC);
340 sk->sk_allocation |= __GFP_MEMALLOC;
341 static_key_slow_inc(&memalloc_socks);
342}
343EXPORT_SYMBOL_GPL(sk_set_memalloc);
344
345void sk_clear_memalloc(struct sock *sk)
346{
347 sock_reset_flag(sk, SOCK_MEMALLOC);
348 sk->sk_allocation &= ~__GFP_MEMALLOC;
349 static_key_slow_dec(&memalloc_socks);
350
351 /*
352 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
353 * progress of swapping. SOCK_MEMALLOC may be cleared while
354 * it has rmem allocations due to the last swapfile being deactivated
355 * but there is a risk that the socket is unusable due to exceeding
356 * the rmem limits. Reclaim the reserves and obey rmem limits again.
357 */
358 sk_mem_reclaim(sk);
359}
360EXPORT_SYMBOL_GPL(sk_clear_memalloc);
361
362int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
363{
364 int ret;
365 unsigned int noreclaim_flag;
366
367 /* these should have been dropped before queueing */
368 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
369
370 noreclaim_flag = memalloc_noreclaim_save();
371 ret = sk->sk_backlog_rcv(sk, skb);
372 memalloc_noreclaim_restore(noreclaim_flag);
373
374 return ret;
375}
376EXPORT_SYMBOL(__sk_backlog_rcv);
377
378static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
379{
380 struct timeval tv;
381
382 if (optlen < sizeof(tv))
383 return -EINVAL;
384 if (copy_from_user(&tv, optval, sizeof(tv)))
385 return -EFAULT;
386 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
387 return -EDOM;
388
389 if (tv.tv_sec < 0) {
390 static int warned __read_mostly;
391
392 *timeo_p = 0;
393 if (warned < 10 && net_ratelimit()) {
394 warned++;
395 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
396 __func__, current->comm, task_pid_nr(current));
397 }
398 return 0;
399 }
400 *timeo_p = MAX_SCHEDULE_TIMEOUT;
401 if (tv.tv_sec == 0 && tv.tv_usec == 0)
402 return 0;
403 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
404 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
405 return 0;
406}
407
408static void sock_warn_obsolete_bsdism(const char *name)
409{
410 static int warned;
411 static char warncomm[TASK_COMM_LEN];
412 if (strcmp(warncomm, current->comm) && warned < 5) {
413 strcpy(warncomm, current->comm);
414 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
415 warncomm, name);
416 warned++;
417 }
418}
419
420static bool sock_needs_netstamp(const struct sock *sk)
421{
422 switch (sk->sk_family) {
423 case AF_UNSPEC:
424 case AF_UNIX:
425 return false;
426 default:
427 return true;
428 }
429}
430
431static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
432{
433 if (sk->sk_flags & flags) {
434 sk->sk_flags &= ~flags;
435 if (sock_needs_netstamp(sk) &&
436 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
437 net_disable_timestamp();
438 }
439}
440
441
442int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
443{
444 unsigned long flags;
445 struct sk_buff_head *list = &sk->sk_receive_queue;
446
447 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
448 atomic_inc(&sk->sk_drops);
449 trace_sock_rcvqueue_full(sk, skb);
450 return -ENOMEM;
451 }
452
453 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
454 atomic_inc(&sk->sk_drops);
455 return -ENOBUFS;
456 }
457
458 skb->dev = NULL;
459 skb_set_owner_r(skb, sk);
460
461 /* we escape from rcu protected region, make sure we dont leak
462 * a norefcounted dst
463 */
464 skb_dst_force(skb);
465
466 spin_lock_irqsave(&list->lock, flags);
467 sock_skb_set_dropcount(sk, skb);
468 __skb_queue_tail(list, skb);
469 spin_unlock_irqrestore(&list->lock, flags);
470
471 if (!sock_flag(sk, SOCK_DEAD))
472 sk->sk_data_ready(sk);
473 return 0;
474}
475EXPORT_SYMBOL(__sock_queue_rcv_skb);
476
477int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
478{
479 int err;
480
481 err = sk_filter(sk, skb);
482 if (err)
483 return err;
484
485 return __sock_queue_rcv_skb(sk, skb);
486}
487EXPORT_SYMBOL(sock_queue_rcv_skb);
488
489int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
490 const int nested, unsigned int trim_cap, bool refcounted)
491{
492 int rc = NET_RX_SUCCESS;
493
494 if (sk_filter_trim_cap(sk, skb, trim_cap))
495 goto discard_and_relse;
496
497 skb->dev = NULL;
498
499 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
500 atomic_inc(&sk->sk_drops);
501 goto discard_and_relse;
502 }
503 if (nested)
504 bh_lock_sock_nested(sk);
505 else
506 bh_lock_sock(sk);
507 if (!sock_owned_by_user(sk)) {
508 /*
509 * trylock + unlock semantics:
510 */
511 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
512
513 rc = sk_backlog_rcv(sk, skb);
514
515 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
516 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
517 bh_unlock_sock(sk);
518 atomic_inc(&sk->sk_drops);
519 goto discard_and_relse;
520 }
521
522 bh_unlock_sock(sk);
523out:
524 if (refcounted)
525 sock_put(sk);
526 return rc;
527discard_and_relse:
528 kfree_skb(skb);
529 goto out;
530}
531EXPORT_SYMBOL(__sk_receive_skb);
532
533struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
534{
535 struct dst_entry *dst = __sk_dst_get(sk);
536
537 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
538 sk_tx_queue_clear(sk);
539 sk->sk_dst_pending_confirm = 0;
540 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
541 dst_release(dst);
542 return NULL;
543 }
544
545 return dst;
546}
547EXPORT_SYMBOL(__sk_dst_check);
548
549struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
550{
551 struct dst_entry *dst = sk_dst_get(sk);
552
553 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
554 sk_dst_reset(sk);
555 dst_release(dst);
556 return NULL;
557 }
558
559 return dst;
560}
561EXPORT_SYMBOL(sk_dst_check);
562
563static int sock_setbindtodevice(struct sock *sk, char __user *optval,
564 int optlen)
565{
566 int ret = -ENOPROTOOPT;
567#ifdef CONFIG_NETDEVICES
568 struct net *net = sock_net(sk);
569 char devname[IFNAMSIZ];
570 int index;
571
572 /* Sorry... */
573 ret = -EPERM;
574 if (!ns_capable(net->user_ns, CAP_NET_RAW))
575 goto out;
576
577 ret = -EINVAL;
578 if (optlen < 0)
579 goto out;
580
581 /* Bind this socket to a particular device like "eth0",
582 * as specified in the passed interface name. If the
583 * name is "" or the option length is zero the socket
584 * is not bound.
585 */
586 if (optlen > IFNAMSIZ - 1)
587 optlen = IFNAMSIZ - 1;
588 memset(devname, 0, sizeof(devname));
589
590 ret = -EFAULT;
591 if (copy_from_user(devname, optval, optlen))
592 goto out;
593
594 index = 0;
595 if (devname[0] != '\0') {
596 struct net_device *dev;
597
598 rcu_read_lock();
599 dev = dev_get_by_name_rcu(net, devname);
600 if (dev)
601 index = dev->ifindex;
602 rcu_read_unlock();
603 ret = -ENODEV;
604 if (!dev)
605 goto out;
606 }
607
608 lock_sock(sk);
609 sk->sk_bound_dev_if = index;
610 sk_dst_reset(sk);
611 release_sock(sk);
612
613 ret = 0;
614
615out:
616#endif
617
618 return ret;
619}
620
621static int sock_getbindtodevice(struct sock *sk, char __user *optval,
622 int __user *optlen, int len)
623{
624 int ret = -ENOPROTOOPT;
625#ifdef CONFIG_NETDEVICES
626 struct net *net = sock_net(sk);
627 char devname[IFNAMSIZ];
628
629 if (sk->sk_bound_dev_if == 0) {
630 len = 0;
631 goto zero;
632 }
633
634 ret = -EINVAL;
635 if (len < IFNAMSIZ)
636 goto out;
637
638 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
639 if (ret)
640 goto out;
641
642 len = strlen(devname) + 1;
643
644 ret = -EFAULT;
645 if (copy_to_user(optval, devname, len))
646 goto out;
647
648zero:
649 ret = -EFAULT;
650 if (put_user(len, optlen))
651 goto out;
652
653 ret = 0;
654
655out:
656#endif
657
658 return ret;
659}
660
661static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
662{
663 if (valbool)
664 sock_set_flag(sk, bit);
665 else
666 sock_reset_flag(sk, bit);
667}
668
669bool sk_mc_loop(struct sock *sk)
670{
671 if (dev_recursion_level())
672 return false;
673 if (!sk)
674 return true;
675 switch (sk->sk_family) {
676 case AF_INET:
677 return inet_sk(sk)->mc_loop;
678#if IS_ENABLED(CONFIG_IPV6)
679 case AF_INET6:
680 return inet6_sk(sk)->mc_loop;
681#endif
682 }
683 WARN_ON(1);
684 return true;
685}
686EXPORT_SYMBOL(sk_mc_loop);
687
688/*
689 * This is meant for all protocols to use and covers goings on
690 * at the socket level. Everything here is generic.
691 */
692
693int sock_setsockopt(struct socket *sock, int level, int optname,
694 char __user *optval, unsigned int optlen)
695{
696 struct sock *sk = sock->sk;
697 int val;
698 int valbool;
699 struct linger ling;
700 int ret = 0;
701
702 /*
703 * Options without arguments
704 */
705
706 if (optname == SO_BINDTODEVICE)
707 return sock_setbindtodevice(sk, optval, optlen);
708
709 if (optlen < sizeof(int))
710 return -EINVAL;
711
712 if (get_user(val, (int __user *)optval))
713 return -EFAULT;
714
715 valbool = val ? 1 : 0;
716
717 lock_sock(sk);
718
719 switch (optname) {
720 case SO_DEBUG:
721 if (val && !capable(CAP_NET_ADMIN))
722 ret = -EACCES;
723 else
724 sock_valbool_flag(sk, SOCK_DBG, valbool);
725 break;
726 case SO_REUSEADDR:
727 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
728 break;
729 case SO_REUSEPORT:
730 sk->sk_reuseport = valbool;
731 break;
732 case SO_TYPE:
733 case SO_PROTOCOL:
734 case SO_DOMAIN:
735 case SO_ERROR:
736 ret = -ENOPROTOOPT;
737 break;
738 case SO_DONTROUTE:
739 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
740 break;
741 case SO_BROADCAST:
742 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
743 break;
744 case SO_SNDBUF:
745 /* Don't error on this BSD doesn't and if you think
746 * about it this is right. Otherwise apps have to
747 * play 'guess the biggest size' games. RCVBUF/SNDBUF
748 * are treated in BSD as hints
749 */
750 val = min_t(u32, val, sysctl_wmem_max);
751set_sndbuf:
752 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
753 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
754 /* Wake up sending tasks if we upped the value. */
755 sk->sk_write_space(sk);
756 break;
757
758 case SO_SNDBUFFORCE:
759 if (!capable(CAP_NET_ADMIN)) {
760 ret = -EPERM;
761 break;
762 }
763 goto set_sndbuf;
764
765 case SO_RCVBUF:
766 /* Don't error on this BSD doesn't and if you think
767 * about it this is right. Otherwise apps have to
768 * play 'guess the biggest size' games. RCVBUF/SNDBUF
769 * are treated in BSD as hints
770 */
771 val = min_t(u32, val, sysctl_rmem_max);
772set_rcvbuf:
773 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
774 /*
775 * We double it on the way in to account for
776 * "struct sk_buff" etc. overhead. Applications
777 * assume that the SO_RCVBUF setting they make will
778 * allow that much actual data to be received on that
779 * socket.
780 *
781 * Applications are unaware that "struct sk_buff" and
782 * other overheads allocate from the receive buffer
783 * during socket buffer allocation.
784 *
785 * And after considering the possible alternatives,
786 * returning the value we actually used in getsockopt
787 * is the most desirable behavior.
788 */
789 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
790 break;
791
792 case SO_RCVBUFFORCE:
793 if (!capable(CAP_NET_ADMIN)) {
794 ret = -EPERM;
795 break;
796 }
797 goto set_rcvbuf;
798
799 case SO_KEEPALIVE:
800 if (sk->sk_prot->keepalive)
801 sk->sk_prot->keepalive(sk, valbool);
802 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
803 break;
804
805 case SO_OOBINLINE:
806 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
807 break;
808
809 case SO_NO_CHECK:
810 sk->sk_no_check_tx = valbool;
811 break;
812
813 case SO_PRIORITY:
814 if ((val >= 0 && val <= 6) ||
815 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
816 sk->sk_priority = val;
817 else
818 ret = -EPERM;
819 break;
820
821 case SO_LINGER:
822 if (optlen < sizeof(ling)) {
823 ret = -EINVAL; /* 1003.1g */
824 break;
825 }
826 if (copy_from_user(&ling, optval, sizeof(ling))) {
827 ret = -EFAULT;
828 break;
829 }
830 if (!ling.l_onoff)
831 sock_reset_flag(sk, SOCK_LINGER);
832 else {
833#if (BITS_PER_LONG == 32)
834 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
835 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
836 else
837#endif
838 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
839 sock_set_flag(sk, SOCK_LINGER);
840 }
841 break;
842
843 case SO_BSDCOMPAT:
844 sock_warn_obsolete_bsdism("setsockopt");
845 break;
846
847 case SO_PASSCRED:
848 if (valbool)
849 set_bit(SOCK_PASSCRED, &sock->flags);
850 else
851 clear_bit(SOCK_PASSCRED, &sock->flags);
852 break;
853
854 case SO_TIMESTAMP:
855 case SO_TIMESTAMPNS:
856 if (valbool) {
857 if (optname == SO_TIMESTAMP)
858 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
859 else
860 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
861 sock_set_flag(sk, SOCK_RCVTSTAMP);
862 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
863 } else {
864 sock_reset_flag(sk, SOCK_RCVTSTAMP);
865 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
866 }
867 break;
868
869 case SO_TIMESTAMPING:
870 if (val & ~SOF_TIMESTAMPING_MASK) {
871 ret = -EINVAL;
872 break;
873 }
874
875 if (val & SOF_TIMESTAMPING_OPT_ID &&
876 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
877 if (sk->sk_protocol == IPPROTO_TCP &&
878 sk->sk_type == SOCK_STREAM) {
879 if ((1 << sk->sk_state) &
880 (TCPF_CLOSE | TCPF_LISTEN)) {
881 ret = -EINVAL;
882 break;
883 }
884 sk->sk_tskey = tcp_sk(sk)->snd_una;
885 } else {
886 sk->sk_tskey = 0;
887 }
888 }
889
890 if (val & SOF_TIMESTAMPING_OPT_STATS &&
891 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
892 ret = -EINVAL;
893 break;
894 }
895
896 sk->sk_tsflags = val;
897 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
898 sock_enable_timestamp(sk,
899 SOCK_TIMESTAMPING_RX_SOFTWARE);
900 else
901 sock_disable_timestamp(sk,
902 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
903 break;
904
905 case SO_RCVLOWAT:
906 if (val < 0)
907 val = INT_MAX;
908 sk->sk_rcvlowat = val ? : 1;
909 break;
910
911 case SO_RCVTIMEO:
912 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
913 break;
914
915 case SO_SNDTIMEO:
916 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
917 break;
918
919 case SO_ATTACH_FILTER:
920 ret = -EINVAL;
921 if (optlen == sizeof(struct sock_fprog)) {
922 struct sock_fprog fprog;
923
924 ret = -EFAULT;
925 if (copy_from_user(&fprog, optval, sizeof(fprog)))
926 break;
927
928 ret = sk_attach_filter(&fprog, sk);
929 }
930 break;
931
932 case SO_ATTACH_BPF:
933 ret = -EINVAL;
934 if (optlen == sizeof(u32)) {
935 u32 ufd;
936
937 ret = -EFAULT;
938 if (copy_from_user(&ufd, optval, sizeof(ufd)))
939 break;
940
941 ret = sk_attach_bpf(ufd, sk);
942 }
943 break;
944
945 case SO_ATTACH_REUSEPORT_CBPF:
946 ret = -EINVAL;
947 if (optlen == sizeof(struct sock_fprog)) {
948 struct sock_fprog fprog;
949
950 ret = -EFAULT;
951 if (copy_from_user(&fprog, optval, sizeof(fprog)))
952 break;
953
954 ret = sk_reuseport_attach_filter(&fprog, sk);
955 }
956 break;
957
958 case SO_ATTACH_REUSEPORT_EBPF:
959 ret = -EINVAL;
960 if (optlen == sizeof(u32)) {
961 u32 ufd;
962
963 ret = -EFAULT;
964 if (copy_from_user(&ufd, optval, sizeof(ufd)))
965 break;
966
967 ret = sk_reuseport_attach_bpf(ufd, sk);
968 }
969 break;
970
971 case SO_DETACH_FILTER:
972 ret = sk_detach_filter(sk);
973 break;
974
975 case SO_LOCK_FILTER:
976 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
977 ret = -EPERM;
978 else
979 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
980 break;
981
982 case SO_PASSSEC:
983 if (valbool)
984 set_bit(SOCK_PASSSEC, &sock->flags);
985 else
986 clear_bit(SOCK_PASSSEC, &sock->flags);
987 break;
988 case SO_MARK:
989 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
990 ret = -EPERM;
991 else
992 sk->sk_mark = val;
993 break;
994
995 case SO_RXQ_OVFL:
996 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
997 break;
998
999 case SO_WIFI_STATUS:
1000 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1001 break;
1002
1003 case SO_PEEK_OFF:
1004 if (sock->ops->set_peek_off)
1005 ret = sock->ops->set_peek_off(sk, val);
1006 else
1007 ret = -EOPNOTSUPP;
1008 break;
1009
1010 case SO_NOFCS:
1011 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1012 break;
1013
1014 case SO_SELECT_ERR_QUEUE:
1015 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1016 break;
1017
1018#ifdef CONFIG_NET_RX_BUSY_POLL
1019 case SO_BUSY_POLL:
1020 /* allow unprivileged users to decrease the value */
1021 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1022 ret = -EPERM;
1023 else {
1024 if (val < 0)
1025 ret = -EINVAL;
1026 else
1027 sk->sk_ll_usec = val;
1028 }
1029 break;
1030#endif
1031
1032 case SO_MAX_PACING_RATE:
1033 if (val != ~0U)
1034 cmpxchg(&sk->sk_pacing_status,
1035 SK_PACING_NONE,
1036 SK_PACING_NEEDED);
1037 sk->sk_max_pacing_rate = val;
1038 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1039 sk->sk_max_pacing_rate);
1040 break;
1041
1042 case SO_INCOMING_CPU:
1043 sk->sk_incoming_cpu = val;
1044 break;
1045
1046 case SO_CNX_ADVICE:
1047 if (val == 1)
1048 dst_negative_advice(sk);
1049 break;
1050
1051 case SO_ZEROCOPY:
1052 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1053 if (sk->sk_protocol != IPPROTO_TCP)
1054 ret = -ENOTSUPP;
1055 } else if (sk->sk_family != PF_RDS) {
1056 ret = -ENOTSUPP;
1057 }
1058 if (!ret) {
1059 if (val < 0 || val > 1)
1060 ret = -EINVAL;
1061 else
1062 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1063 }
1064 break;
1065
1066 default:
1067 ret = -ENOPROTOOPT;
1068 break;
1069 }
1070 release_sock(sk);
1071 return ret;
1072}
1073EXPORT_SYMBOL(sock_setsockopt);
1074
1075
1076static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1077 struct ucred *ucred)
1078{
1079 ucred->pid = pid_vnr(pid);
1080 ucred->uid = ucred->gid = -1;
1081 if (cred) {
1082 struct user_namespace *current_ns = current_user_ns();
1083
1084 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1085 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1086 }
1087}
1088
1089static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1090{
1091 struct user_namespace *user_ns = current_user_ns();
1092 int i;
1093
1094 for (i = 0; i < src->ngroups; i++)
1095 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1096 return -EFAULT;
1097
1098 return 0;
1099}
1100
1101int sock_getsockopt(struct socket *sock, int level, int optname,
1102 char __user *optval, int __user *optlen)
1103{
1104 struct sock *sk = sock->sk;
1105
1106 union {
1107 int val;
1108 u64 val64;
1109 struct linger ling;
1110 struct timeval tm;
1111 } v;
1112
1113 int lv = sizeof(int);
1114 int len;
1115
1116 if (get_user(len, optlen))
1117 return -EFAULT;
1118 if (len < 0)
1119 return -EINVAL;
1120
1121 memset(&v, 0, sizeof(v));
1122
1123 switch (optname) {
1124 case SO_DEBUG:
1125 v.val = sock_flag(sk, SOCK_DBG);
1126 break;
1127
1128 case SO_DONTROUTE:
1129 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1130 break;
1131
1132 case SO_BROADCAST:
1133 v.val = sock_flag(sk, SOCK_BROADCAST);
1134 break;
1135
1136 case SO_SNDBUF:
1137 v.val = sk->sk_sndbuf;
1138 break;
1139
1140 case SO_RCVBUF:
1141 v.val = sk->sk_rcvbuf;
1142 break;
1143
1144 case SO_REUSEADDR:
1145 v.val = sk->sk_reuse;
1146 break;
1147
1148 case SO_REUSEPORT:
1149 v.val = sk->sk_reuseport;
1150 break;
1151
1152 case SO_KEEPALIVE:
1153 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1154 break;
1155
1156 case SO_TYPE:
1157 v.val = sk->sk_type;
1158 break;
1159
1160 case SO_PROTOCOL:
1161 v.val = sk->sk_protocol;
1162 break;
1163
1164 case SO_DOMAIN:
1165 v.val = sk->sk_family;
1166 break;
1167
1168 case SO_ERROR:
1169 v.val = -sock_error(sk);
1170 if (v.val == 0)
1171 v.val = xchg(&sk->sk_err_soft, 0);
1172 break;
1173
1174 case SO_OOBINLINE:
1175 v.val = sock_flag(sk, SOCK_URGINLINE);
1176 break;
1177
1178 case SO_NO_CHECK:
1179 v.val = sk->sk_no_check_tx;
1180 break;
1181
1182 case SO_PRIORITY:
1183 v.val = sk->sk_priority;
1184 break;
1185
1186 case SO_LINGER:
1187 lv = sizeof(v.ling);
1188 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1189 v.ling.l_linger = sk->sk_lingertime / HZ;
1190 break;
1191
1192 case SO_BSDCOMPAT:
1193 sock_warn_obsolete_bsdism("getsockopt");
1194 break;
1195
1196 case SO_TIMESTAMP:
1197 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1198 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1199 break;
1200
1201 case SO_TIMESTAMPNS:
1202 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1203 break;
1204
1205 case SO_TIMESTAMPING:
1206 v.val = sk->sk_tsflags;
1207 break;
1208
1209 case SO_RCVTIMEO:
1210 lv = sizeof(struct timeval);
1211 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1212 v.tm.tv_sec = 0;
1213 v.tm.tv_usec = 0;
1214 } else {
1215 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1216 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1217 }
1218 break;
1219
1220 case SO_SNDTIMEO:
1221 lv = sizeof(struct timeval);
1222 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1223 v.tm.tv_sec = 0;
1224 v.tm.tv_usec = 0;
1225 } else {
1226 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1227 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1228 }
1229 break;
1230
1231 case SO_RCVLOWAT:
1232 v.val = sk->sk_rcvlowat;
1233 break;
1234
1235 case SO_SNDLOWAT:
1236 v.val = 1;
1237 break;
1238
1239 case SO_PASSCRED:
1240 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1241 break;
1242
1243 case SO_PEERCRED:
1244 {
1245 struct ucred peercred;
1246 if (len > sizeof(peercred))
1247 len = sizeof(peercred);
1248 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1249 if (copy_to_user(optval, &peercred, len))
1250 return -EFAULT;
1251 goto lenout;
1252 }
1253
1254 case SO_PEERGROUPS:
1255 {
1256 int ret, n;
1257
1258 if (!sk->sk_peer_cred)
1259 return -ENODATA;
1260
1261 n = sk->sk_peer_cred->group_info->ngroups;
1262 if (len < n * sizeof(gid_t)) {
1263 len = n * sizeof(gid_t);
1264 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1265 }
1266 len = n * sizeof(gid_t);
1267
1268 ret = groups_to_user((gid_t __user *)optval,
1269 sk->sk_peer_cred->group_info);
1270 if (ret)
1271 return ret;
1272 goto lenout;
1273 }
1274
1275 case SO_PEERNAME:
1276 {
1277 char address[128];
1278
1279 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1280 if (lv < 0)
1281 return -ENOTCONN;
1282 if (lv < len)
1283 return -EINVAL;
1284 if (copy_to_user(optval, address, len))
1285 return -EFAULT;
1286 goto lenout;
1287 }
1288
1289 /* Dubious BSD thing... Probably nobody even uses it, but
1290 * the UNIX standard wants it for whatever reason... -DaveM
1291 */
1292 case SO_ACCEPTCONN:
1293 v.val = sk->sk_state == TCP_LISTEN;
1294 break;
1295
1296 case SO_PASSSEC:
1297 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1298 break;
1299
1300 case SO_PEERSEC:
1301 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1302
1303 case SO_MARK:
1304 v.val = sk->sk_mark;
1305 break;
1306
1307 case SO_RXQ_OVFL:
1308 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1309 break;
1310
1311 case SO_WIFI_STATUS:
1312 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1313 break;
1314
1315 case SO_PEEK_OFF:
1316 if (!sock->ops->set_peek_off)
1317 return -EOPNOTSUPP;
1318
1319 v.val = sk->sk_peek_off;
1320 break;
1321 case SO_NOFCS:
1322 v.val = sock_flag(sk, SOCK_NOFCS);
1323 break;
1324
1325 case SO_BINDTODEVICE:
1326 return sock_getbindtodevice(sk, optval, optlen, len);
1327
1328 case SO_GET_FILTER:
1329 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1330 if (len < 0)
1331 return len;
1332
1333 goto lenout;
1334
1335 case SO_LOCK_FILTER:
1336 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1337 break;
1338
1339 case SO_BPF_EXTENSIONS:
1340 v.val = bpf_tell_extensions();
1341 break;
1342
1343 case SO_SELECT_ERR_QUEUE:
1344 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1345 break;
1346
1347#ifdef CONFIG_NET_RX_BUSY_POLL
1348 case SO_BUSY_POLL:
1349 v.val = sk->sk_ll_usec;
1350 break;
1351#endif
1352
1353 case SO_MAX_PACING_RATE:
1354 v.val = sk->sk_max_pacing_rate;
1355 break;
1356
1357 case SO_INCOMING_CPU:
1358 v.val = sk->sk_incoming_cpu;
1359 break;
1360
1361 case SO_MEMINFO:
1362 {
1363 u32 meminfo[SK_MEMINFO_VARS];
1364
1365 if (get_user(len, optlen))
1366 return -EFAULT;
1367
1368 sk_get_meminfo(sk, meminfo);
1369
1370 len = min_t(unsigned int, len, sizeof(meminfo));
1371 if (copy_to_user(optval, &meminfo, len))
1372 return -EFAULT;
1373
1374 goto lenout;
1375 }
1376
1377#ifdef CONFIG_NET_RX_BUSY_POLL
1378 case SO_INCOMING_NAPI_ID:
1379 v.val = READ_ONCE(sk->sk_napi_id);
1380
1381 /* aggregate non-NAPI IDs down to 0 */
1382 if (v.val < MIN_NAPI_ID)
1383 v.val = 0;
1384
1385 break;
1386#endif
1387
1388 case SO_COOKIE:
1389 lv = sizeof(u64);
1390 if (len < lv)
1391 return -EINVAL;
1392 v.val64 = sock_gen_cookie(sk);
1393 break;
1394
1395 case SO_ZEROCOPY:
1396 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1397 break;
1398
1399 default:
1400 /* We implement the SO_SNDLOWAT etc to not be settable
1401 * (1003.1g 7).
1402 */
1403 return -ENOPROTOOPT;
1404 }
1405
1406 if (len > lv)
1407 len = lv;
1408 if (copy_to_user(optval, &v, len))
1409 return -EFAULT;
1410lenout:
1411 if (put_user(len, optlen))
1412 return -EFAULT;
1413 return 0;
1414}
1415
1416/*
1417 * Initialize an sk_lock.
1418 *
1419 * (We also register the sk_lock with the lock validator.)
1420 */
1421static inline void sock_lock_init(struct sock *sk)
1422{
1423 if (sk->sk_kern_sock)
1424 sock_lock_init_class_and_name(
1425 sk,
1426 af_family_kern_slock_key_strings[sk->sk_family],
1427 af_family_kern_slock_keys + sk->sk_family,
1428 af_family_kern_key_strings[sk->sk_family],
1429 af_family_kern_keys + sk->sk_family);
1430 else
1431 sock_lock_init_class_and_name(
1432 sk,
1433 af_family_slock_key_strings[sk->sk_family],
1434 af_family_slock_keys + sk->sk_family,
1435 af_family_key_strings[sk->sk_family],
1436 af_family_keys + sk->sk_family);
1437}
1438
1439/*
1440 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1441 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1442 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1443 */
1444static void sock_copy(struct sock *nsk, const struct sock *osk)
1445{
1446#ifdef CONFIG_SECURITY_NETWORK
1447 void *sptr = nsk->sk_security;
1448#endif
1449 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1450
1451 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1452 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1453
1454#ifdef CONFIG_SECURITY_NETWORK
1455 nsk->sk_security = sptr;
1456 security_sk_clone(osk, nsk);
1457#endif
1458}
1459
1460static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1461 int family)
1462{
1463 struct sock *sk;
1464 struct kmem_cache *slab;
1465
1466 slab = prot->slab;
1467 if (slab != NULL) {
1468 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1469 if (!sk)
1470 return sk;
1471 if (priority & __GFP_ZERO)
1472 sk_prot_clear_nulls(sk, prot->obj_size);
1473 } else
1474 sk = kmalloc(prot->obj_size, priority);
1475
1476 if (sk != NULL) {
1477 if (security_sk_alloc(sk, family, priority))
1478 goto out_free;
1479
1480 if (!try_module_get(prot->owner))
1481 goto out_free_sec;
1482 sk_tx_queue_clear(sk);
1483 }
1484
1485 return sk;
1486
1487out_free_sec:
1488 security_sk_free(sk);
1489out_free:
1490 if (slab != NULL)
1491 kmem_cache_free(slab, sk);
1492 else
1493 kfree(sk);
1494 return NULL;
1495}
1496
1497static void sk_prot_free(struct proto *prot, struct sock *sk)
1498{
1499 struct kmem_cache *slab;
1500 struct module *owner;
1501
1502 owner = prot->owner;
1503 slab = prot->slab;
1504
1505 cgroup_sk_free(&sk->sk_cgrp_data);
1506 mem_cgroup_sk_free(sk);
1507 security_sk_free(sk);
1508 if (slab != NULL)
1509 kmem_cache_free(slab, sk);
1510 else
1511 kfree(sk);
1512 module_put(owner);
1513}
1514
1515/**
1516 * sk_alloc - All socket objects are allocated here
1517 * @net: the applicable net namespace
1518 * @family: protocol family
1519 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1520 * @prot: struct proto associated with this new sock instance
1521 * @kern: is this to be a kernel socket?
1522 */
1523struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1524 struct proto *prot, int kern)
1525{
1526 struct sock *sk;
1527
1528 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1529 if (sk) {
1530 sk->sk_family = family;
1531 /*
1532 * See comment in struct sock definition to understand
1533 * why we need sk_prot_creator -acme
1534 */
1535 sk->sk_prot = sk->sk_prot_creator = prot;
1536 sk->sk_kern_sock = kern;
1537 sock_lock_init(sk);
1538 sk->sk_net_refcnt = kern ? 0 : 1;
1539 if (likely(sk->sk_net_refcnt)) {
1540 get_net(net);
1541 sock_inuse_add(net, 1);
1542 }
1543
1544 sock_net_set(sk, net);
1545 refcount_set(&sk->sk_wmem_alloc, 1);
1546
1547 mem_cgroup_sk_alloc(sk);
1548 cgroup_sk_alloc(&sk->sk_cgrp_data);
1549 sock_update_classid(&sk->sk_cgrp_data);
1550 sock_update_netprioidx(&sk->sk_cgrp_data);
1551 }
1552
1553 return sk;
1554}
1555EXPORT_SYMBOL(sk_alloc);
1556
1557/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1558 * grace period. This is the case for UDP sockets and TCP listeners.
1559 */
1560static void __sk_destruct(struct rcu_head *head)
1561{
1562 struct sock *sk = container_of(head, struct sock, sk_rcu);
1563 struct sk_filter *filter;
1564
1565 if (sk->sk_destruct)
1566 sk->sk_destruct(sk);
1567
1568 filter = rcu_dereference_check(sk->sk_filter,
1569 refcount_read(&sk->sk_wmem_alloc) == 0);
1570 if (filter) {
1571 sk_filter_uncharge(sk, filter);
1572 RCU_INIT_POINTER(sk->sk_filter, NULL);
1573 }
1574 if (rcu_access_pointer(sk->sk_reuseport_cb))
1575 reuseport_detach_sock(sk);
1576
1577 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1578
1579 if (atomic_read(&sk->sk_omem_alloc))
1580 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1581 __func__, atomic_read(&sk->sk_omem_alloc));
1582
1583 if (sk->sk_frag.page) {
1584 put_page(sk->sk_frag.page);
1585 sk->sk_frag.page = NULL;
1586 }
1587
1588 if (sk->sk_peer_cred)
1589 put_cred(sk->sk_peer_cred);
1590 put_pid(sk->sk_peer_pid);
1591 if (likely(sk->sk_net_refcnt))
1592 put_net(sock_net(sk));
1593 sk_prot_free(sk->sk_prot_creator, sk);
1594}
1595
1596void sk_destruct(struct sock *sk)
1597{
1598 if (sock_flag(sk, SOCK_RCU_FREE))
1599 call_rcu(&sk->sk_rcu, __sk_destruct);
1600 else
1601 __sk_destruct(&sk->sk_rcu);
1602}
1603
1604static void __sk_free(struct sock *sk)
1605{
1606 if (likely(sk->sk_net_refcnt))
1607 sock_inuse_add(sock_net(sk), -1);
1608
1609 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1610 sock_diag_broadcast_destroy(sk);
1611 else
1612 sk_destruct(sk);
1613}
1614
1615void sk_free(struct sock *sk)
1616{
1617 /*
1618 * We subtract one from sk_wmem_alloc and can know if
1619 * some packets are still in some tx queue.
1620 * If not null, sock_wfree() will call __sk_free(sk) later
1621 */
1622 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1623 __sk_free(sk);
1624}
1625EXPORT_SYMBOL(sk_free);
1626
1627static void sk_init_common(struct sock *sk)
1628{
1629 skb_queue_head_init(&sk->sk_receive_queue);
1630 skb_queue_head_init(&sk->sk_write_queue);
1631 skb_queue_head_init(&sk->sk_error_queue);
1632
1633 rwlock_init(&sk->sk_callback_lock);
1634 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1635 af_rlock_keys + sk->sk_family,
1636 af_family_rlock_key_strings[sk->sk_family]);
1637 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1638 af_wlock_keys + sk->sk_family,
1639 af_family_wlock_key_strings[sk->sk_family]);
1640 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1641 af_elock_keys + sk->sk_family,
1642 af_family_elock_key_strings[sk->sk_family]);
1643 lockdep_set_class_and_name(&sk->sk_callback_lock,
1644 af_callback_keys + sk->sk_family,
1645 af_family_clock_key_strings[sk->sk_family]);
1646}
1647
1648/**
1649 * sk_clone_lock - clone a socket, and lock its clone
1650 * @sk: the socket to clone
1651 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1652 *
1653 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1654 */
1655struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1656{
1657 struct sock *newsk;
1658 bool is_charged = true;
1659
1660 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1661 if (newsk != NULL) {
1662 struct sk_filter *filter;
1663
1664 sock_copy(newsk, sk);
1665
1666 newsk->sk_prot_creator = sk->sk_prot;
1667
1668 /* SANITY */
1669 if (likely(newsk->sk_net_refcnt))
1670 get_net(sock_net(newsk));
1671 sk_node_init(&newsk->sk_node);
1672 sock_lock_init(newsk);
1673 bh_lock_sock(newsk);
1674 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1675 newsk->sk_backlog.len = 0;
1676
1677 atomic_set(&newsk->sk_rmem_alloc, 0);
1678 /*
1679 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1680 */
1681 refcount_set(&newsk->sk_wmem_alloc, 1);
1682 atomic_set(&newsk->sk_omem_alloc, 0);
1683 sk_init_common(newsk);
1684
1685 newsk->sk_dst_cache = NULL;
1686 newsk->sk_dst_pending_confirm = 0;
1687 newsk->sk_wmem_queued = 0;
1688 newsk->sk_forward_alloc = 0;
1689 atomic_set(&newsk->sk_drops, 0);
1690 newsk->sk_send_head = NULL;
1691 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1692 atomic_set(&newsk->sk_zckey, 0);
1693
1694 sock_reset_flag(newsk, SOCK_DONE);
1695 mem_cgroup_sk_alloc(newsk);
1696 cgroup_sk_alloc(&newsk->sk_cgrp_data);
1697
1698 rcu_read_lock();
1699 filter = rcu_dereference(sk->sk_filter);
1700 if (filter != NULL)
1701 /* though it's an empty new sock, the charging may fail
1702 * if sysctl_optmem_max was changed between creation of
1703 * original socket and cloning
1704 */
1705 is_charged = sk_filter_charge(newsk, filter);
1706 RCU_INIT_POINTER(newsk->sk_filter, filter);
1707 rcu_read_unlock();
1708
1709 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1710 /* We need to make sure that we don't uncharge the new
1711 * socket if we couldn't charge it in the first place
1712 * as otherwise we uncharge the parent's filter.
1713 */
1714 if (!is_charged)
1715 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1716 sk_free_unlock_clone(newsk);
1717 newsk = NULL;
1718 goto out;
1719 }
1720 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1721
1722 newsk->sk_err = 0;
1723 newsk->sk_err_soft = 0;
1724 newsk->sk_priority = 0;
1725 newsk->sk_incoming_cpu = raw_smp_processor_id();
1726 atomic64_set(&newsk->sk_cookie, 0);
1727 if (likely(newsk->sk_net_refcnt))
1728 sock_inuse_add(sock_net(newsk), 1);
1729
1730 /*
1731 * Before updating sk_refcnt, we must commit prior changes to memory
1732 * (Documentation/RCU/rculist_nulls.txt for details)
1733 */
1734 smp_wmb();
1735 refcount_set(&newsk->sk_refcnt, 2);
1736
1737 /*
1738 * Increment the counter in the same struct proto as the master
1739 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1740 * is the same as sk->sk_prot->socks, as this field was copied
1741 * with memcpy).
1742 *
1743 * This _changes_ the previous behaviour, where
1744 * tcp_create_openreq_child always was incrementing the
1745 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1746 * to be taken into account in all callers. -acme
1747 */
1748 sk_refcnt_debug_inc(newsk);
1749 sk_set_socket(newsk, NULL);
1750 newsk->sk_wq = NULL;
1751
1752 if (newsk->sk_prot->sockets_allocated)
1753 sk_sockets_allocated_inc(newsk);
1754
1755 if (sock_needs_netstamp(sk) &&
1756 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1757 net_enable_timestamp();
1758 }
1759out:
1760 return newsk;
1761}
1762EXPORT_SYMBOL_GPL(sk_clone_lock);
1763
1764void sk_free_unlock_clone(struct sock *sk)
1765{
1766 /* It is still raw copy of parent, so invalidate
1767 * destructor and make plain sk_free() */
1768 sk->sk_destruct = NULL;
1769 bh_unlock_sock(sk);
1770 sk_free(sk);
1771}
1772EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1773
1774void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1775{
1776 u32 max_segs = 1;
1777
1778 sk_dst_set(sk, dst);
1779 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1780 if (sk->sk_route_caps & NETIF_F_GSO)
1781 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1782 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1783 if (sk_can_gso(sk)) {
1784 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1785 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1786 } else {
1787 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1788 sk->sk_gso_max_size = dst->dev->gso_max_size;
1789 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1790 }
1791 }
1792 sk->sk_gso_max_segs = max_segs;
1793}
1794EXPORT_SYMBOL_GPL(sk_setup_caps);
1795
1796/*
1797 * Simple resource managers for sockets.
1798 */
1799
1800
1801/*
1802 * Write buffer destructor automatically called from kfree_skb.
1803 */
1804void sock_wfree(struct sk_buff *skb)
1805{
1806 struct sock *sk = skb->sk;
1807 unsigned int len = skb->truesize;
1808
1809 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1810 /*
1811 * Keep a reference on sk_wmem_alloc, this will be released
1812 * after sk_write_space() call
1813 */
1814 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1815 sk->sk_write_space(sk);
1816 len = 1;
1817 }
1818 /*
1819 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1820 * could not do because of in-flight packets
1821 */
1822 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1823 __sk_free(sk);
1824}
1825EXPORT_SYMBOL(sock_wfree);
1826
1827/* This variant of sock_wfree() is used by TCP,
1828 * since it sets SOCK_USE_WRITE_QUEUE.
1829 */
1830void __sock_wfree(struct sk_buff *skb)
1831{
1832 struct sock *sk = skb->sk;
1833
1834 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1835 __sk_free(sk);
1836}
1837
1838void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1839{
1840 skb_orphan(skb);
1841 skb->sk = sk;
1842#ifdef CONFIG_INET
1843 if (unlikely(!sk_fullsock(sk))) {
1844 skb->destructor = sock_edemux;
1845 sock_hold(sk);
1846 return;
1847 }
1848#endif
1849 skb->destructor = sock_wfree;
1850 skb_set_hash_from_sk(skb, sk);
1851 /*
1852 * We used to take a refcount on sk, but following operation
1853 * is enough to guarantee sk_free() wont free this sock until
1854 * all in-flight packets are completed
1855 */
1856 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1857}
1858EXPORT_SYMBOL(skb_set_owner_w);
1859
1860/* This helper is used by netem, as it can hold packets in its
1861 * delay queue. We want to allow the owner socket to send more
1862 * packets, as if they were already TX completed by a typical driver.
1863 * But we also want to keep skb->sk set because some packet schedulers
1864 * rely on it (sch_fq for example).
1865 */
1866void skb_orphan_partial(struct sk_buff *skb)
1867{
1868 if (skb_is_tcp_pure_ack(skb))
1869 return;
1870
1871 if (skb->destructor == sock_wfree
1872#ifdef CONFIG_INET
1873 || skb->destructor == tcp_wfree
1874#endif
1875 ) {
1876 struct sock *sk = skb->sk;
1877
1878 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1879 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
1880 skb->destructor = sock_efree;
1881 }
1882 } else {
1883 skb_orphan(skb);
1884 }
1885}
1886EXPORT_SYMBOL(skb_orphan_partial);
1887
1888/*
1889 * Read buffer destructor automatically called from kfree_skb.
1890 */
1891void sock_rfree(struct sk_buff *skb)
1892{
1893 struct sock *sk = skb->sk;
1894 unsigned int len = skb->truesize;
1895
1896 atomic_sub(len, &sk->sk_rmem_alloc);
1897 sk_mem_uncharge(sk, len);
1898}
1899EXPORT_SYMBOL(sock_rfree);
1900
1901/*
1902 * Buffer destructor for skbs that are not used directly in read or write
1903 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1904 */
1905void sock_efree(struct sk_buff *skb)
1906{
1907 sock_put(skb->sk);
1908}
1909EXPORT_SYMBOL(sock_efree);
1910
1911kuid_t sock_i_uid(struct sock *sk)
1912{
1913 kuid_t uid;
1914
1915 read_lock_bh(&sk->sk_callback_lock);
1916 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1917 read_unlock_bh(&sk->sk_callback_lock);
1918 return uid;
1919}
1920EXPORT_SYMBOL(sock_i_uid);
1921
1922unsigned long sock_i_ino(struct sock *sk)
1923{
1924 unsigned long ino;
1925
1926 read_lock_bh(&sk->sk_callback_lock);
1927 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1928 read_unlock_bh(&sk->sk_callback_lock);
1929 return ino;
1930}
1931EXPORT_SYMBOL(sock_i_ino);
1932
1933/*
1934 * Allocate a skb from the socket's send buffer.
1935 */
1936struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1937 gfp_t priority)
1938{
1939 if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1940 struct sk_buff *skb = alloc_skb(size, priority);
1941 if (skb) {
1942 skb_set_owner_w(skb, sk);
1943 return skb;
1944 }
1945 }
1946 return NULL;
1947}
1948EXPORT_SYMBOL(sock_wmalloc);
1949
1950static void sock_ofree(struct sk_buff *skb)
1951{
1952 struct sock *sk = skb->sk;
1953
1954 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
1955}
1956
1957struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1958 gfp_t priority)
1959{
1960 struct sk_buff *skb;
1961
1962 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1963 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
1964 sysctl_optmem_max)
1965 return NULL;
1966
1967 skb = alloc_skb(size, priority);
1968 if (!skb)
1969 return NULL;
1970
1971 atomic_add(skb->truesize, &sk->sk_omem_alloc);
1972 skb->sk = sk;
1973 skb->destructor = sock_ofree;
1974 return skb;
1975}
1976
1977/*
1978 * Allocate a memory block from the socket's option memory buffer.
1979 */
1980void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1981{
1982 if ((unsigned int)size <= sysctl_optmem_max &&
1983 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1984 void *mem;
1985 /* First do the add, to avoid the race if kmalloc
1986 * might sleep.
1987 */
1988 atomic_add(size, &sk->sk_omem_alloc);
1989 mem = kmalloc(size, priority);
1990 if (mem)
1991 return mem;
1992 atomic_sub(size, &sk->sk_omem_alloc);
1993 }
1994 return NULL;
1995}
1996EXPORT_SYMBOL(sock_kmalloc);
1997
1998/* Free an option memory block. Note, we actually want the inline
1999 * here as this allows gcc to detect the nullify and fold away the
2000 * condition entirely.
2001 */
2002static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2003 const bool nullify)
2004{
2005 if (WARN_ON_ONCE(!mem))
2006 return;
2007 if (nullify)
2008 kzfree(mem);
2009 else
2010 kfree(mem);
2011 atomic_sub(size, &sk->sk_omem_alloc);
2012}
2013
2014void sock_kfree_s(struct sock *sk, void *mem, int size)
2015{
2016 __sock_kfree_s(sk, mem, size, false);
2017}
2018EXPORT_SYMBOL(sock_kfree_s);
2019
2020void sock_kzfree_s(struct sock *sk, void *mem, int size)
2021{
2022 __sock_kfree_s(sk, mem, size, true);
2023}
2024EXPORT_SYMBOL(sock_kzfree_s);
2025
2026/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2027 I think, these locks should be removed for datagram sockets.
2028 */
2029static long sock_wait_for_wmem(struct sock *sk, long timeo)
2030{
2031 DEFINE_WAIT(wait);
2032
2033 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2034 for (;;) {
2035 if (!timeo)
2036 break;
2037 if (signal_pending(current))
2038 break;
2039 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2040 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2041 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2042 break;
2043 if (sk->sk_shutdown & SEND_SHUTDOWN)
2044 break;
2045 if (sk->sk_err)
2046 break;
2047 timeo = schedule_timeout(timeo);
2048 }
2049 finish_wait(sk_sleep(sk), &wait);
2050 return timeo;
2051}
2052
2053
2054/*
2055 * Generic send/receive buffer handlers
2056 */
2057
2058struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2059 unsigned long data_len, int noblock,
2060 int *errcode, int max_page_order)
2061{
2062 struct sk_buff *skb;
2063 long timeo;
2064 int err;
2065
2066 timeo = sock_sndtimeo(sk, noblock);
2067 for (;;) {
2068 err = sock_error(sk);
2069 if (err != 0)
2070 goto failure;
2071
2072 err = -EPIPE;
2073 if (sk->sk_shutdown & SEND_SHUTDOWN)
2074 goto failure;
2075
2076 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2077 break;
2078
2079 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2080 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2081 err = -EAGAIN;
2082 if (!timeo)
2083 goto failure;
2084 if (signal_pending(current))
2085 goto interrupted;
2086 timeo = sock_wait_for_wmem(sk, timeo);
2087 }
2088 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2089 errcode, sk->sk_allocation);
2090 if (skb)
2091 skb_set_owner_w(skb, sk);
2092 return skb;
2093
2094interrupted:
2095 err = sock_intr_errno(timeo);
2096failure:
2097 *errcode = err;
2098 return NULL;
2099}
2100EXPORT_SYMBOL(sock_alloc_send_pskb);
2101
2102struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2103 int noblock, int *errcode)
2104{
2105 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2106}
2107EXPORT_SYMBOL(sock_alloc_send_skb);
2108
2109int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2110 struct sockcm_cookie *sockc)
2111{
2112 u32 tsflags;
2113
2114 switch (cmsg->cmsg_type) {
2115 case SO_MARK:
2116 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2117 return -EPERM;
2118 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2119 return -EINVAL;
2120 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2121 break;
2122 case SO_TIMESTAMPING:
2123 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2124 return -EINVAL;
2125
2126 tsflags = *(u32 *)CMSG_DATA(cmsg);
2127 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2128 return -EINVAL;
2129
2130 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2131 sockc->tsflags |= tsflags;
2132 break;
2133 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2134 case SCM_RIGHTS:
2135 case SCM_CREDENTIALS:
2136 break;
2137 default:
2138 return -EINVAL;
2139 }
2140 return 0;
2141}
2142EXPORT_SYMBOL(__sock_cmsg_send);
2143
2144int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2145 struct sockcm_cookie *sockc)
2146{
2147 struct cmsghdr *cmsg;
2148 int ret;
2149
2150 for_each_cmsghdr(cmsg, msg) {
2151 if (!CMSG_OK(msg, cmsg))
2152 return -EINVAL;
2153 if (cmsg->cmsg_level != SOL_SOCKET)
2154 continue;
2155 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2156 if (ret)
2157 return ret;
2158 }
2159 return 0;
2160}
2161EXPORT_SYMBOL(sock_cmsg_send);
2162
2163static void sk_enter_memory_pressure(struct sock *sk)
2164{
2165 if (!sk->sk_prot->enter_memory_pressure)
2166 return;
2167
2168 sk->sk_prot->enter_memory_pressure(sk);
2169}
2170
2171static void sk_leave_memory_pressure(struct sock *sk)
2172{
2173 if (sk->sk_prot->leave_memory_pressure) {
2174 sk->sk_prot->leave_memory_pressure(sk);
2175 } else {
2176 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2177
2178 if (memory_pressure && *memory_pressure)
2179 *memory_pressure = 0;
2180 }
2181}
2182
2183/* On 32bit arches, an skb frag is limited to 2^15 */
2184#define SKB_FRAG_PAGE_ORDER get_order(32768)
2185
2186/**
2187 * skb_page_frag_refill - check that a page_frag contains enough room
2188 * @sz: minimum size of the fragment we want to get
2189 * @pfrag: pointer to page_frag
2190 * @gfp: priority for memory allocation
2191 *
2192 * Note: While this allocator tries to use high order pages, there is
2193 * no guarantee that allocations succeed. Therefore, @sz MUST be
2194 * less or equal than PAGE_SIZE.
2195 */
2196bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2197{
2198 if (pfrag->page) {
2199 if (page_ref_count(pfrag->page) == 1) {
2200 pfrag->offset = 0;
2201 return true;
2202 }
2203 if (pfrag->offset + sz <= pfrag->size)
2204 return true;
2205 put_page(pfrag->page);
2206 }
2207
2208 pfrag->offset = 0;
2209 if (SKB_FRAG_PAGE_ORDER) {
2210 /* Avoid direct reclaim but allow kswapd to wake */
2211 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2212 __GFP_COMP | __GFP_NOWARN |
2213 __GFP_NORETRY,
2214 SKB_FRAG_PAGE_ORDER);
2215 if (likely(pfrag->page)) {
2216 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2217 return true;
2218 }
2219 }
2220 pfrag->page = alloc_page(gfp);
2221 if (likely(pfrag->page)) {
2222 pfrag->size = PAGE_SIZE;
2223 return true;
2224 }
2225 return false;
2226}
2227EXPORT_SYMBOL(skb_page_frag_refill);
2228
2229bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2230{
2231 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2232 return true;
2233
2234 sk_enter_memory_pressure(sk);
2235 sk_stream_moderate_sndbuf(sk);
2236 return false;
2237}
2238EXPORT_SYMBOL(sk_page_frag_refill);
2239
2240int sk_alloc_sg(struct sock *sk, int len, struct scatterlist *sg,
2241 int sg_start, int *sg_curr_index, unsigned int *sg_curr_size,
2242 int first_coalesce)
2243{
2244 int sg_curr = *sg_curr_index, use = 0, rc = 0;
2245 unsigned int size = *sg_curr_size;
2246 struct page_frag *pfrag;
2247 struct scatterlist *sge;
2248
2249 len -= size;
2250 pfrag = sk_page_frag(sk);
2251
2252 while (len > 0) {
2253 unsigned int orig_offset;
2254
2255 if (!sk_page_frag_refill(sk, pfrag)) {
2256 rc = -ENOMEM;
2257 goto out;
2258 }
2259
2260 use = min_t(int, len, pfrag->size - pfrag->offset);
2261
2262 if (!sk_wmem_schedule(sk, use)) {
2263 rc = -ENOMEM;
2264 goto out;
2265 }
2266
2267 sk_mem_charge(sk, use);
2268 size += use;
2269 orig_offset = pfrag->offset;
2270 pfrag->offset += use;
2271
2272 sge = sg + sg_curr - 1;
2273 if (sg_curr > first_coalesce && sg_page(sg) == pfrag->page &&
2274 sg->offset + sg->length == orig_offset) {
2275 sg->length += use;
2276 } else {
2277 sge = sg + sg_curr;
2278 sg_unmark_end(sge);
2279 sg_set_page(sge, pfrag->page, use, orig_offset);
2280 get_page(pfrag->page);
2281 sg_curr++;
2282
2283 if (sg_curr == MAX_SKB_FRAGS)
2284 sg_curr = 0;
2285
2286 if (sg_curr == sg_start) {
2287 rc = -ENOSPC;
2288 break;
2289 }
2290 }
2291
2292 len -= use;
2293 }
2294out:
2295 *sg_curr_size = size;
2296 *sg_curr_index = sg_curr;
2297 return rc;
2298}
2299EXPORT_SYMBOL(sk_alloc_sg);
2300
2301static void __lock_sock(struct sock *sk)
2302 __releases(&sk->sk_lock.slock)
2303 __acquires(&sk->sk_lock.slock)
2304{
2305 DEFINE_WAIT(wait);
2306
2307 for (;;) {
2308 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2309 TASK_UNINTERRUPTIBLE);
2310 spin_unlock_bh(&sk->sk_lock.slock);
2311 schedule();
2312 spin_lock_bh(&sk->sk_lock.slock);
2313 if (!sock_owned_by_user(sk))
2314 break;
2315 }
2316 finish_wait(&sk->sk_lock.wq, &wait);
2317}
2318
2319static void __release_sock(struct sock *sk)
2320 __releases(&sk->sk_lock.slock)
2321 __acquires(&sk->sk_lock.slock)
2322{
2323 struct sk_buff *skb, *next;
2324
2325 while ((skb = sk->sk_backlog.head) != NULL) {
2326 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2327
2328 spin_unlock_bh(&sk->sk_lock.slock);
2329
2330 do {
2331 next = skb->next;
2332 prefetch(next);
2333 WARN_ON_ONCE(skb_dst_is_noref(skb));
2334 skb->next = NULL;
2335 sk_backlog_rcv(sk, skb);
2336
2337 cond_resched();
2338
2339 skb = next;
2340 } while (skb != NULL);
2341
2342 spin_lock_bh(&sk->sk_lock.slock);
2343 }
2344
2345 /*
2346 * Doing the zeroing here guarantee we can not loop forever
2347 * while a wild producer attempts to flood us.
2348 */
2349 sk->sk_backlog.len = 0;
2350}
2351
2352void __sk_flush_backlog(struct sock *sk)
2353{
2354 spin_lock_bh(&sk->sk_lock.slock);
2355 __release_sock(sk);
2356 spin_unlock_bh(&sk->sk_lock.slock);
2357}
2358
2359/**
2360 * sk_wait_data - wait for data to arrive at sk_receive_queue
2361 * @sk: sock to wait on
2362 * @timeo: for how long
2363 * @skb: last skb seen on sk_receive_queue
2364 *
2365 * Now socket state including sk->sk_err is changed only under lock,
2366 * hence we may omit checks after joining wait queue.
2367 * We check receive queue before schedule() only as optimization;
2368 * it is very likely that release_sock() added new data.
2369 */
2370int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2371{
2372 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2373 int rc;
2374
2375 add_wait_queue(sk_sleep(sk), &wait);
2376 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2377 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2378 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2379 remove_wait_queue(sk_sleep(sk), &wait);
2380 return rc;
2381}
2382EXPORT_SYMBOL(sk_wait_data);
2383
2384/**
2385 * __sk_mem_raise_allocated - increase memory_allocated
2386 * @sk: socket
2387 * @size: memory size to allocate
2388 * @amt: pages to allocate
2389 * @kind: allocation type
2390 *
2391 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2392 */
2393int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2394{
2395 struct proto *prot = sk->sk_prot;
2396 long allocated = sk_memory_allocated_add(sk, amt);
2397
2398 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2399 !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2400 goto suppress_allocation;
2401
2402 /* Under limit. */
2403 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2404 sk_leave_memory_pressure(sk);
2405 return 1;
2406 }
2407
2408 /* Under pressure. */
2409 if (allocated > sk_prot_mem_limits(sk, 1))
2410 sk_enter_memory_pressure(sk);
2411
2412 /* Over hard limit. */
2413 if (allocated > sk_prot_mem_limits(sk, 2))
2414 goto suppress_allocation;
2415
2416 /* guarantee minimum buffer size under pressure */
2417 if (kind == SK_MEM_RECV) {
2418 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2419 return 1;
2420
2421 } else { /* SK_MEM_SEND */
2422 int wmem0 = sk_get_wmem0(sk, prot);
2423
2424 if (sk->sk_type == SOCK_STREAM) {
2425 if (sk->sk_wmem_queued < wmem0)
2426 return 1;
2427 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2428 return 1;
2429 }
2430 }
2431
2432 if (sk_has_memory_pressure(sk)) {
2433 int alloc;
2434
2435 if (!sk_under_memory_pressure(sk))
2436 return 1;
2437 alloc = sk_sockets_allocated_read_positive(sk);
2438 if (sk_prot_mem_limits(sk, 2) > alloc *
2439 sk_mem_pages(sk->sk_wmem_queued +
2440 atomic_read(&sk->sk_rmem_alloc) +
2441 sk->sk_forward_alloc))
2442 return 1;
2443 }
2444
2445suppress_allocation:
2446
2447 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2448 sk_stream_moderate_sndbuf(sk);
2449
2450 /* Fail only if socket is _under_ its sndbuf.
2451 * In this case we cannot block, so that we have to fail.
2452 */
2453 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2454 return 1;
2455 }
2456
2457 trace_sock_exceed_buf_limit(sk, prot, allocated);
2458
2459 sk_memory_allocated_sub(sk, amt);
2460
2461 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2462 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2463
2464 return 0;
2465}
2466EXPORT_SYMBOL(__sk_mem_raise_allocated);
2467
2468/**
2469 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2470 * @sk: socket
2471 * @size: memory size to allocate
2472 * @kind: allocation type
2473 *
2474 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2475 * rmem allocation. This function assumes that protocols which have
2476 * memory_pressure use sk_wmem_queued as write buffer accounting.
2477 */
2478int __sk_mem_schedule(struct sock *sk, int size, int kind)
2479{
2480 int ret, amt = sk_mem_pages(size);
2481
2482 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2483 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2484 if (!ret)
2485 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2486 return ret;
2487}
2488EXPORT_SYMBOL(__sk_mem_schedule);
2489
2490/**
2491 * __sk_mem_reduce_allocated - reclaim memory_allocated
2492 * @sk: socket
2493 * @amount: number of quanta
2494 *
2495 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2496 */
2497void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2498{
2499 sk_memory_allocated_sub(sk, amount);
2500
2501 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2502 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2503
2504 if (sk_under_memory_pressure(sk) &&
2505 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2506 sk_leave_memory_pressure(sk);
2507}
2508EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2509
2510/**
2511 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2512 * @sk: socket
2513 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2514 */
2515void __sk_mem_reclaim(struct sock *sk, int amount)
2516{
2517 amount >>= SK_MEM_QUANTUM_SHIFT;
2518 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2519 __sk_mem_reduce_allocated(sk, amount);
2520}
2521EXPORT_SYMBOL(__sk_mem_reclaim);
2522
2523int sk_set_peek_off(struct sock *sk, int val)
2524{
2525 sk->sk_peek_off = val;
2526 return 0;
2527}
2528EXPORT_SYMBOL_GPL(sk_set_peek_off);
2529
2530/*
2531 * Set of default routines for initialising struct proto_ops when
2532 * the protocol does not support a particular function. In certain
2533 * cases where it makes no sense for a protocol to have a "do nothing"
2534 * function, some default processing is provided.
2535 */
2536
2537int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2538{
2539 return -EOPNOTSUPP;
2540}
2541EXPORT_SYMBOL(sock_no_bind);
2542
2543int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2544 int len, int flags)
2545{
2546 return -EOPNOTSUPP;
2547}
2548EXPORT_SYMBOL(sock_no_connect);
2549
2550int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2551{
2552 return -EOPNOTSUPP;
2553}
2554EXPORT_SYMBOL(sock_no_socketpair);
2555
2556int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2557 bool kern)
2558{
2559 return -EOPNOTSUPP;
2560}
2561EXPORT_SYMBOL(sock_no_accept);
2562
2563int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2564 int peer)
2565{
2566 return -EOPNOTSUPP;
2567}
2568EXPORT_SYMBOL(sock_no_getname);
2569
2570__poll_t sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2571{
2572 return 0;
2573}
2574EXPORT_SYMBOL(sock_no_poll);
2575
2576int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2577{
2578 return -EOPNOTSUPP;
2579}
2580EXPORT_SYMBOL(sock_no_ioctl);
2581
2582int sock_no_listen(struct socket *sock, int backlog)
2583{
2584 return -EOPNOTSUPP;
2585}
2586EXPORT_SYMBOL(sock_no_listen);
2587
2588int sock_no_shutdown(struct socket *sock, int how)
2589{
2590 return -EOPNOTSUPP;
2591}
2592EXPORT_SYMBOL(sock_no_shutdown);
2593
2594int sock_no_setsockopt(struct socket *sock, int level, int optname,
2595 char __user *optval, unsigned int optlen)
2596{
2597 return -EOPNOTSUPP;
2598}
2599EXPORT_SYMBOL(sock_no_setsockopt);
2600
2601int sock_no_getsockopt(struct socket *sock, int level, int optname,
2602 char __user *optval, int __user *optlen)
2603{
2604 return -EOPNOTSUPP;
2605}
2606EXPORT_SYMBOL(sock_no_getsockopt);
2607
2608int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2609{
2610 return -EOPNOTSUPP;
2611}
2612EXPORT_SYMBOL(sock_no_sendmsg);
2613
2614int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2615{
2616 return -EOPNOTSUPP;
2617}
2618EXPORT_SYMBOL(sock_no_sendmsg_locked);
2619
2620int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2621 int flags)
2622{
2623 return -EOPNOTSUPP;
2624}
2625EXPORT_SYMBOL(sock_no_recvmsg);
2626
2627int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2628{
2629 /* Mirror missing mmap method error code */
2630 return -ENODEV;
2631}
2632EXPORT_SYMBOL(sock_no_mmap);
2633
2634ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2635{
2636 ssize_t res;
2637 struct msghdr msg = {.msg_flags = flags};
2638 struct kvec iov;
2639 char *kaddr = kmap(page);
2640 iov.iov_base = kaddr + offset;
2641 iov.iov_len = size;
2642 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2643 kunmap(page);
2644 return res;
2645}
2646EXPORT_SYMBOL(sock_no_sendpage);
2647
2648ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2649 int offset, size_t size, int flags)
2650{
2651 ssize_t res;
2652 struct msghdr msg = {.msg_flags = flags};
2653 struct kvec iov;
2654 char *kaddr = kmap(page);
2655
2656 iov.iov_base = kaddr + offset;
2657 iov.iov_len = size;
2658 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2659 kunmap(page);
2660 return res;
2661}
2662EXPORT_SYMBOL(sock_no_sendpage_locked);
2663
2664/*
2665 * Default Socket Callbacks
2666 */
2667
2668static void sock_def_wakeup(struct sock *sk)
2669{
2670 struct socket_wq *wq;
2671
2672 rcu_read_lock();
2673 wq = rcu_dereference(sk->sk_wq);
2674 if (skwq_has_sleeper(wq))
2675 wake_up_interruptible_all(&wq->wait);
2676 rcu_read_unlock();
2677}
2678
2679static void sock_def_error_report(struct sock *sk)
2680{
2681 struct socket_wq *wq;
2682
2683 rcu_read_lock();
2684 wq = rcu_dereference(sk->sk_wq);
2685 if (skwq_has_sleeper(wq))
2686 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2687 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2688 rcu_read_unlock();
2689}
2690
2691static void sock_def_readable(struct sock *sk)
2692{
2693 struct socket_wq *wq;
2694
2695 rcu_read_lock();
2696 wq = rcu_dereference(sk->sk_wq);
2697 if (skwq_has_sleeper(wq))
2698 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2699 EPOLLRDNORM | EPOLLRDBAND);
2700 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2701 rcu_read_unlock();
2702}
2703
2704static void sock_def_write_space(struct sock *sk)
2705{
2706 struct socket_wq *wq;
2707
2708 rcu_read_lock();
2709
2710 /* Do not wake up a writer until he can make "significant"
2711 * progress. --DaveM
2712 */
2713 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2714 wq = rcu_dereference(sk->sk_wq);
2715 if (skwq_has_sleeper(wq))
2716 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2717 EPOLLWRNORM | EPOLLWRBAND);
2718
2719 /* Should agree with poll, otherwise some programs break */
2720 if (sock_writeable(sk))
2721 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2722 }
2723
2724 rcu_read_unlock();
2725}
2726
2727static void sock_def_destruct(struct sock *sk)
2728{
2729}
2730
2731void sk_send_sigurg(struct sock *sk)
2732{
2733 if (sk->sk_socket && sk->sk_socket->file)
2734 if (send_sigurg(&sk->sk_socket->file->f_owner))
2735 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2736}
2737EXPORT_SYMBOL(sk_send_sigurg);
2738
2739void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2740 unsigned long expires)
2741{
2742 if (!mod_timer(timer, expires))
2743 sock_hold(sk);
2744}
2745EXPORT_SYMBOL(sk_reset_timer);
2746
2747void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2748{
2749 if (del_timer(timer))
2750 __sock_put(sk);
2751}
2752EXPORT_SYMBOL(sk_stop_timer);
2753
2754void sock_init_data(struct socket *sock, struct sock *sk)
2755{
2756 sk_init_common(sk);
2757 sk->sk_send_head = NULL;
2758
2759 timer_setup(&sk->sk_timer, NULL, 0);
2760
2761 sk->sk_allocation = GFP_KERNEL;
2762 sk->sk_rcvbuf = sysctl_rmem_default;
2763 sk->sk_sndbuf = sysctl_wmem_default;
2764 sk->sk_state = TCP_CLOSE;
2765 sk_set_socket(sk, sock);
2766
2767 sock_set_flag(sk, SOCK_ZAPPED);
2768
2769 if (sock) {
2770 sk->sk_type = sock->type;
2771 sk->sk_wq = sock->wq;
2772 sock->sk = sk;
2773 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2774 } else {
2775 sk->sk_wq = NULL;
2776 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2777 }
2778
2779 rwlock_init(&sk->sk_callback_lock);
2780 if (sk->sk_kern_sock)
2781 lockdep_set_class_and_name(
2782 &sk->sk_callback_lock,
2783 af_kern_callback_keys + sk->sk_family,
2784 af_family_kern_clock_key_strings[sk->sk_family]);
2785 else
2786 lockdep_set_class_and_name(
2787 &sk->sk_callback_lock,
2788 af_callback_keys + sk->sk_family,
2789 af_family_clock_key_strings[sk->sk_family]);
2790
2791 sk->sk_state_change = sock_def_wakeup;
2792 sk->sk_data_ready = sock_def_readable;
2793 sk->sk_write_space = sock_def_write_space;
2794 sk->sk_error_report = sock_def_error_report;
2795 sk->sk_destruct = sock_def_destruct;
2796
2797 sk->sk_frag.page = NULL;
2798 sk->sk_frag.offset = 0;
2799 sk->sk_peek_off = -1;
2800
2801 sk->sk_peer_pid = NULL;
2802 sk->sk_peer_cred = NULL;
2803 sk->sk_write_pending = 0;
2804 sk->sk_rcvlowat = 1;
2805 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2806 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2807
2808 sk->sk_stamp = SK_DEFAULT_STAMP;
2809 atomic_set(&sk->sk_zckey, 0);
2810
2811#ifdef CONFIG_NET_RX_BUSY_POLL
2812 sk->sk_napi_id = 0;
2813 sk->sk_ll_usec = sysctl_net_busy_read;
2814#endif
2815
2816 sk->sk_max_pacing_rate = ~0U;
2817 sk->sk_pacing_rate = ~0U;
2818 sk->sk_pacing_shift = 10;
2819 sk->sk_incoming_cpu = -1;
2820 /*
2821 * Before updating sk_refcnt, we must commit prior changes to memory
2822 * (Documentation/RCU/rculist_nulls.txt for details)
2823 */
2824 smp_wmb();
2825 refcount_set(&sk->sk_refcnt, 1);
2826 atomic_set(&sk->sk_drops, 0);
2827}
2828EXPORT_SYMBOL(sock_init_data);
2829
2830void lock_sock_nested(struct sock *sk, int subclass)
2831{
2832 might_sleep();
2833 spin_lock_bh(&sk->sk_lock.slock);
2834 if (sk->sk_lock.owned)
2835 __lock_sock(sk);
2836 sk->sk_lock.owned = 1;
2837 spin_unlock(&sk->sk_lock.slock);
2838 /*
2839 * The sk_lock has mutex_lock() semantics here:
2840 */
2841 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2842 local_bh_enable();
2843}
2844EXPORT_SYMBOL(lock_sock_nested);
2845
2846void release_sock(struct sock *sk)
2847{
2848 spin_lock_bh(&sk->sk_lock.slock);
2849 if (sk->sk_backlog.tail)
2850 __release_sock(sk);
2851
2852 /* Warning : release_cb() might need to release sk ownership,
2853 * ie call sock_release_ownership(sk) before us.
2854 */
2855 if (sk->sk_prot->release_cb)
2856 sk->sk_prot->release_cb(sk);
2857
2858 sock_release_ownership(sk);
2859 if (waitqueue_active(&sk->sk_lock.wq))
2860 wake_up(&sk->sk_lock.wq);
2861 spin_unlock_bh(&sk->sk_lock.slock);
2862}
2863EXPORT_SYMBOL(release_sock);
2864
2865/**
2866 * lock_sock_fast - fast version of lock_sock
2867 * @sk: socket
2868 *
2869 * This version should be used for very small section, where process wont block
2870 * return false if fast path is taken:
2871 *
2872 * sk_lock.slock locked, owned = 0, BH disabled
2873 *
2874 * return true if slow path is taken:
2875 *
2876 * sk_lock.slock unlocked, owned = 1, BH enabled
2877 */
2878bool lock_sock_fast(struct sock *sk)
2879{
2880 might_sleep();
2881 spin_lock_bh(&sk->sk_lock.slock);
2882
2883 if (!sk->sk_lock.owned)
2884 /*
2885 * Note : We must disable BH
2886 */
2887 return false;
2888
2889 __lock_sock(sk);
2890 sk->sk_lock.owned = 1;
2891 spin_unlock(&sk->sk_lock.slock);
2892 /*
2893 * The sk_lock has mutex_lock() semantics here:
2894 */
2895 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2896 local_bh_enable();
2897 return true;
2898}
2899EXPORT_SYMBOL(lock_sock_fast);
2900
2901int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2902{
2903 struct timeval tv;
2904 if (!sock_flag(sk, SOCK_TIMESTAMP))
2905 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2906 tv = ktime_to_timeval(sk->sk_stamp);
2907 if (tv.tv_sec == -1)
2908 return -ENOENT;
2909 if (tv.tv_sec == 0) {
2910 sk->sk_stamp = ktime_get_real();
2911 tv = ktime_to_timeval(sk->sk_stamp);
2912 }
2913 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2914}
2915EXPORT_SYMBOL(sock_get_timestamp);
2916
2917int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2918{
2919 struct timespec ts;
2920 if (!sock_flag(sk, SOCK_TIMESTAMP))
2921 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2922 ts = ktime_to_timespec(sk->sk_stamp);
2923 if (ts.tv_sec == -1)
2924 return -ENOENT;
2925 if (ts.tv_sec == 0) {
2926 sk->sk_stamp = ktime_get_real();
2927 ts = ktime_to_timespec(sk->sk_stamp);
2928 }
2929 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2930}
2931EXPORT_SYMBOL(sock_get_timestampns);
2932
2933void sock_enable_timestamp(struct sock *sk, int flag)
2934{
2935 if (!sock_flag(sk, flag)) {
2936 unsigned long previous_flags = sk->sk_flags;
2937
2938 sock_set_flag(sk, flag);
2939 /*
2940 * we just set one of the two flags which require net
2941 * time stamping, but time stamping might have been on
2942 * already because of the other one
2943 */
2944 if (sock_needs_netstamp(sk) &&
2945 !(previous_flags & SK_FLAGS_TIMESTAMP))
2946 net_enable_timestamp();
2947 }
2948}
2949
2950int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2951 int level, int type)
2952{
2953 struct sock_exterr_skb *serr;
2954 struct sk_buff *skb;
2955 int copied, err;
2956
2957 err = -EAGAIN;
2958 skb = sock_dequeue_err_skb(sk);
2959 if (skb == NULL)
2960 goto out;
2961
2962 copied = skb->len;
2963 if (copied > len) {
2964 msg->msg_flags |= MSG_TRUNC;
2965 copied = len;
2966 }
2967 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2968 if (err)
2969 goto out_free_skb;
2970
2971 sock_recv_timestamp(msg, sk, skb);
2972
2973 serr = SKB_EXT_ERR(skb);
2974 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2975
2976 msg->msg_flags |= MSG_ERRQUEUE;
2977 err = copied;
2978
2979out_free_skb:
2980 kfree_skb(skb);
2981out:
2982 return err;
2983}
2984EXPORT_SYMBOL(sock_recv_errqueue);
2985
2986/*
2987 * Get a socket option on an socket.
2988 *
2989 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2990 * asynchronous errors should be reported by getsockopt. We assume
2991 * this means if you specify SO_ERROR (otherwise whats the point of it).
2992 */
2993int sock_common_getsockopt(struct socket *sock, int level, int optname,
2994 char __user *optval, int __user *optlen)
2995{
2996 struct sock *sk = sock->sk;
2997
2998 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2999}
3000EXPORT_SYMBOL(sock_common_getsockopt);
3001
3002#ifdef CONFIG_COMPAT
3003int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3004 char __user *optval, int __user *optlen)
3005{
3006 struct sock *sk = sock->sk;
3007
3008 if (sk->sk_prot->compat_getsockopt != NULL)
3009 return sk->sk_prot->compat_getsockopt(sk, level, optname,
3010 optval, optlen);
3011 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3012}
3013EXPORT_SYMBOL(compat_sock_common_getsockopt);
3014#endif
3015
3016int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3017 int flags)
3018{
3019 struct sock *sk = sock->sk;
3020 int addr_len = 0;
3021 int err;
3022
3023 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3024 flags & ~MSG_DONTWAIT, &addr_len);
3025 if (err >= 0)
3026 msg->msg_namelen = addr_len;
3027 return err;
3028}
3029EXPORT_SYMBOL(sock_common_recvmsg);
3030
3031/*
3032 * Set socket options on an inet socket.
3033 */
3034int sock_common_setsockopt(struct socket *sock, int level, int optname,
3035 char __user *optval, unsigned int optlen)
3036{
3037 struct sock *sk = sock->sk;
3038
3039 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3040}
3041EXPORT_SYMBOL(sock_common_setsockopt);
3042
3043#ifdef CONFIG_COMPAT
3044int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3045 char __user *optval, unsigned int optlen)
3046{
3047 struct sock *sk = sock->sk;
3048
3049 if (sk->sk_prot->compat_setsockopt != NULL)
3050 return sk->sk_prot->compat_setsockopt(sk, level, optname,
3051 optval, optlen);
3052 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3053}
3054EXPORT_SYMBOL(compat_sock_common_setsockopt);
3055#endif
3056
3057void sk_common_release(struct sock *sk)
3058{
3059 if (sk->sk_prot->destroy)
3060 sk->sk_prot->destroy(sk);
3061
3062 /*
3063 * Observation: when sock_common_release is called, processes have
3064 * no access to socket. But net still has.
3065 * Step one, detach it from networking:
3066 *
3067 * A. Remove from hash tables.
3068 */
3069
3070 sk->sk_prot->unhash(sk);
3071
3072 /*
3073 * In this point socket cannot receive new packets, but it is possible
3074 * that some packets are in flight because some CPU runs receiver and
3075 * did hash table lookup before we unhashed socket. They will achieve
3076 * receive queue and will be purged by socket destructor.
3077 *
3078 * Also we still have packets pending on receive queue and probably,
3079 * our own packets waiting in device queues. sock_destroy will drain
3080 * receive queue, but transmitted packets will delay socket destruction
3081 * until the last reference will be released.
3082 */
3083
3084 sock_orphan(sk);
3085
3086 xfrm_sk_free_policy(sk);
3087
3088 sk_refcnt_debug_release(sk);
3089
3090 sock_put(sk);
3091}
3092EXPORT_SYMBOL(sk_common_release);
3093
3094void sk_get_meminfo(const struct sock *sk, u32 *mem)
3095{
3096 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3097
3098 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3099 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3100 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3101 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3102 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3103 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3104 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3105 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3106 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3107}
3108
3109#ifdef CONFIG_PROC_FS
3110#define PROTO_INUSE_NR 64 /* should be enough for the first time */
3111struct prot_inuse {
3112 int val[PROTO_INUSE_NR];
3113};
3114
3115static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3116
3117void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3118{
3119 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3120}
3121EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3122
3123int sock_prot_inuse_get(struct net *net, struct proto *prot)
3124{
3125 int cpu, idx = prot->inuse_idx;
3126 int res = 0;
3127
3128 for_each_possible_cpu(cpu)
3129 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3130
3131 return res >= 0 ? res : 0;
3132}
3133EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3134
3135static void sock_inuse_add(struct net *net, int val)
3136{
3137 this_cpu_add(*net->core.sock_inuse, val);
3138}
3139
3140int sock_inuse_get(struct net *net)
3141{
3142 int cpu, res = 0;
3143
3144 for_each_possible_cpu(cpu)
3145 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3146
3147 return res;
3148}
3149
3150EXPORT_SYMBOL_GPL(sock_inuse_get);
3151
3152static int __net_init sock_inuse_init_net(struct net *net)
3153{
3154 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3155 if (net->core.prot_inuse == NULL)
3156 return -ENOMEM;
3157
3158 net->core.sock_inuse = alloc_percpu(int);
3159 if (net->core.sock_inuse == NULL)
3160 goto out;
3161
3162 return 0;
3163
3164out:
3165 free_percpu(net->core.prot_inuse);
3166 return -ENOMEM;
3167}
3168
3169static void __net_exit sock_inuse_exit_net(struct net *net)
3170{
3171 free_percpu(net->core.prot_inuse);
3172 free_percpu(net->core.sock_inuse);
3173}
3174
3175static struct pernet_operations net_inuse_ops = {
3176 .init = sock_inuse_init_net,
3177 .exit = sock_inuse_exit_net,
3178};
3179
3180static __init int net_inuse_init(void)
3181{
3182 if (register_pernet_subsys(&net_inuse_ops))
3183 panic("Cannot initialize net inuse counters");
3184
3185 return 0;
3186}
3187
3188core_initcall(net_inuse_init);
3189
3190static void assign_proto_idx(struct proto *prot)
3191{
3192 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3193
3194 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3195 pr_err("PROTO_INUSE_NR exhausted\n");
3196 return;
3197 }
3198
3199 set_bit(prot->inuse_idx, proto_inuse_idx);
3200}
3201
3202static void release_proto_idx(struct proto *prot)
3203{
3204 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3205 clear_bit(prot->inuse_idx, proto_inuse_idx);
3206}
3207#else
3208static inline void assign_proto_idx(struct proto *prot)
3209{
3210}
3211
3212static inline void release_proto_idx(struct proto *prot)
3213{
3214}
3215
3216static void sock_inuse_add(struct net *net, int val)
3217{
3218}
3219#endif
3220
3221static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3222{
3223 if (!rsk_prot)
3224 return;
3225 kfree(rsk_prot->slab_name);
3226 rsk_prot->slab_name = NULL;
3227 kmem_cache_destroy(rsk_prot->slab);
3228 rsk_prot->slab = NULL;
3229}
3230
3231static int req_prot_init(const struct proto *prot)
3232{
3233 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3234
3235 if (!rsk_prot)
3236 return 0;
3237
3238 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3239 prot->name);
3240 if (!rsk_prot->slab_name)
3241 return -ENOMEM;
3242
3243 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3244 rsk_prot->obj_size, 0,
3245 prot->slab_flags, NULL);
3246
3247 if (!rsk_prot->slab) {
3248 pr_crit("%s: Can't create request sock SLAB cache!\n",
3249 prot->name);
3250 return -ENOMEM;
3251 }
3252 return 0;
3253}
3254
3255int proto_register(struct proto *prot, int alloc_slab)
3256{
3257 if (alloc_slab) {
3258 prot->slab = kmem_cache_create_usercopy(prot->name,
3259 prot->obj_size, 0,
3260 SLAB_HWCACHE_ALIGN | prot->slab_flags,
3261 prot->useroffset, prot->usersize,
3262 NULL);
3263
3264 if (prot->slab == NULL) {
3265 pr_crit("%s: Can't create sock SLAB cache!\n",
3266 prot->name);
3267 goto out;
3268 }
3269
3270 if (req_prot_init(prot))
3271 goto out_free_request_sock_slab;
3272
3273 if (prot->twsk_prot != NULL) {
3274 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3275
3276 if (prot->twsk_prot->twsk_slab_name == NULL)
3277 goto out_free_request_sock_slab;
3278
3279 prot->twsk_prot->twsk_slab =
3280 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3281 prot->twsk_prot->twsk_obj_size,
3282 0,
3283 prot->slab_flags,
3284 NULL);
3285 if (prot->twsk_prot->twsk_slab == NULL)
3286 goto out_free_timewait_sock_slab_name;
3287 }
3288 }
3289
3290 mutex_lock(&proto_list_mutex);
3291 list_add(&prot->node, &proto_list);
3292 assign_proto_idx(prot);
3293 mutex_unlock(&proto_list_mutex);
3294 return 0;
3295
3296out_free_timewait_sock_slab_name:
3297 kfree(prot->twsk_prot->twsk_slab_name);
3298out_free_request_sock_slab:
3299 req_prot_cleanup(prot->rsk_prot);
3300
3301 kmem_cache_destroy(prot->slab);
3302 prot->slab = NULL;
3303out:
3304 return -ENOBUFS;
3305}
3306EXPORT_SYMBOL(proto_register);
3307
3308void proto_unregister(struct proto *prot)
3309{
3310 mutex_lock(&proto_list_mutex);
3311 release_proto_idx(prot);
3312 list_del(&prot->node);
3313 mutex_unlock(&proto_list_mutex);
3314
3315 kmem_cache_destroy(prot->slab);
3316 prot->slab = NULL;
3317
3318 req_prot_cleanup(prot->rsk_prot);
3319
3320 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3321 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3322 kfree(prot->twsk_prot->twsk_slab_name);
3323 prot->twsk_prot->twsk_slab = NULL;
3324 }
3325}
3326EXPORT_SYMBOL(proto_unregister);
3327
3328int sock_load_diag_module(int family, int protocol)
3329{
3330 if (!protocol) {
3331 if (!sock_is_registered(family))
3332 return -ENOENT;
3333
3334 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3335 NETLINK_SOCK_DIAG, family);
3336 }
3337
3338#ifdef CONFIG_INET
3339 if (family == AF_INET &&
3340 !rcu_access_pointer(inet_protos[protocol]))
3341 return -ENOENT;
3342#endif
3343
3344 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3345 NETLINK_SOCK_DIAG, family, protocol);
3346}
3347EXPORT_SYMBOL(sock_load_diag_module);
3348
3349#ifdef CONFIG_PROC_FS
3350static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3351 __acquires(proto_list_mutex)
3352{
3353 mutex_lock(&proto_list_mutex);
3354 return seq_list_start_head(&proto_list, *pos);
3355}
3356
3357static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3358{
3359 return seq_list_next(v, &proto_list, pos);
3360}
3361
3362static void proto_seq_stop(struct seq_file *seq, void *v)
3363 __releases(proto_list_mutex)
3364{
3365 mutex_unlock(&proto_list_mutex);
3366}
3367
3368static char proto_method_implemented(const void *method)
3369{
3370 return method == NULL ? 'n' : 'y';
3371}
3372static long sock_prot_memory_allocated(struct proto *proto)
3373{
3374 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3375}
3376
3377static char *sock_prot_memory_pressure(struct proto *proto)
3378{
3379 return proto->memory_pressure != NULL ?
3380 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3381}
3382
3383static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3384{
3385
3386 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3387 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3388 proto->name,
3389 proto->obj_size,
3390 sock_prot_inuse_get(seq_file_net(seq), proto),
3391 sock_prot_memory_allocated(proto),
3392 sock_prot_memory_pressure(proto),
3393 proto->max_header,
3394 proto->slab == NULL ? "no" : "yes",
3395 module_name(proto->owner),
3396 proto_method_implemented(proto->close),
3397 proto_method_implemented(proto->connect),
3398 proto_method_implemented(proto->disconnect),
3399 proto_method_implemented(proto->accept),
3400 proto_method_implemented(proto->ioctl),
3401 proto_method_implemented(proto->init),
3402 proto_method_implemented(proto->destroy),
3403 proto_method_implemented(proto->shutdown),
3404 proto_method_implemented(proto->setsockopt),
3405 proto_method_implemented(proto->getsockopt),
3406 proto_method_implemented(proto->sendmsg),
3407 proto_method_implemented(proto->recvmsg),
3408 proto_method_implemented(proto->sendpage),
3409 proto_method_implemented(proto->bind),
3410 proto_method_implemented(proto->backlog_rcv),
3411 proto_method_implemented(proto->hash),
3412 proto_method_implemented(proto->unhash),
3413 proto_method_implemented(proto->get_port),
3414 proto_method_implemented(proto->enter_memory_pressure));
3415}
3416
3417static int proto_seq_show(struct seq_file *seq, void *v)
3418{
3419 if (v == &proto_list)
3420 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3421 "protocol",
3422 "size",
3423 "sockets",
3424 "memory",
3425 "press",
3426 "maxhdr",
3427 "slab",
3428 "module",
3429 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3430 else
3431 proto_seq_printf(seq, list_entry(v, struct proto, node));
3432 return 0;
3433}
3434
3435static const struct seq_operations proto_seq_ops = {
3436 .start = proto_seq_start,
3437 .next = proto_seq_next,
3438 .stop = proto_seq_stop,
3439 .show = proto_seq_show,
3440};
3441
3442static int proto_seq_open(struct inode *inode, struct file *file)
3443{
3444 return seq_open_net(inode, file, &proto_seq_ops,
3445 sizeof(struct seq_net_private));
3446}
3447
3448static const struct file_operations proto_seq_fops = {
3449 .open = proto_seq_open,
3450 .read = seq_read,
3451 .llseek = seq_lseek,
3452 .release = seq_release_net,
3453};
3454
3455static __net_init int proto_init_net(struct net *net)
3456{
3457 if (!proc_create("protocols", 0444, net->proc_net, &proto_seq_fops))
3458 return -ENOMEM;
3459
3460 return 0;
3461}
3462
3463static __net_exit void proto_exit_net(struct net *net)
3464{
3465 remove_proc_entry("protocols", net->proc_net);
3466}
3467
3468
3469static __net_initdata struct pernet_operations proto_net_ops = {
3470 .init = proto_init_net,
3471 .exit = proto_exit_net,
3472};
3473
3474static int __init proto_init(void)
3475{
3476 return register_pernet_subsys(&proto_net_ops);
3477}
3478
3479subsys_initcall(proto_init);
3480
3481#endif /* PROC_FS */
3482
3483#ifdef CONFIG_NET_RX_BUSY_POLL
3484bool sk_busy_loop_end(void *p, unsigned long start_time)
3485{
3486 struct sock *sk = p;
3487
3488 return !skb_queue_empty(&sk->sk_receive_queue) ||
3489 sk_busy_loop_timeout(sk, start_time);
3490}
3491EXPORT_SYMBOL(sk_busy_loop_end);
3492#endif /* CONFIG_NET_RX_BUSY_POLL */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88#include <asm/unaligned.h>
89#include <linux/capability.h>
90#include <linux/errno.h>
91#include <linux/errqueue.h>
92#include <linux/types.h>
93#include <linux/socket.h>
94#include <linux/in.h>
95#include <linux/kernel.h>
96#include <linux/module.h>
97#include <linux/proc_fs.h>
98#include <linux/seq_file.h>
99#include <linux/sched.h>
100#include <linux/sched/mm.h>
101#include <linux/timer.h>
102#include <linux/string.h>
103#include <linux/sockios.h>
104#include <linux/net.h>
105#include <linux/mm.h>
106#include <linux/slab.h>
107#include <linux/interrupt.h>
108#include <linux/poll.h>
109#include <linux/tcp.h>
110#include <linux/init.h>
111#include <linux/highmem.h>
112#include <linux/user_namespace.h>
113#include <linux/static_key.h>
114#include <linux/memcontrol.h>
115#include <linux/prefetch.h>
116#include <linux/compat.h>
117
118#include <linux/uaccess.h>
119
120#include <linux/netdevice.h>
121#include <net/protocol.h>
122#include <linux/skbuff.h>
123#include <net/net_namespace.h>
124#include <net/request_sock.h>
125#include <net/sock.h>
126#include <linux/net_tstamp.h>
127#include <net/xfrm.h>
128#include <linux/ipsec.h>
129#include <net/cls_cgroup.h>
130#include <net/netprio_cgroup.h>
131#include <linux/sock_diag.h>
132
133#include <linux/filter.h>
134#include <net/sock_reuseport.h>
135#include <net/bpf_sk_storage.h>
136
137#include <trace/events/sock.h>
138
139#include <net/tcp.h>
140#include <net/busy_poll.h>
141
142static DEFINE_MUTEX(proto_list_mutex);
143static LIST_HEAD(proto_list);
144
145static void sock_inuse_add(struct net *net, int val);
146
147/**
148 * sk_ns_capable - General socket capability test
149 * @sk: Socket to use a capability on or through
150 * @user_ns: The user namespace of the capability to use
151 * @cap: The capability to use
152 *
153 * Test to see if the opener of the socket had when the socket was
154 * created and the current process has the capability @cap in the user
155 * namespace @user_ns.
156 */
157bool sk_ns_capable(const struct sock *sk,
158 struct user_namespace *user_ns, int cap)
159{
160 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
161 ns_capable(user_ns, cap);
162}
163EXPORT_SYMBOL(sk_ns_capable);
164
165/**
166 * sk_capable - Socket global capability test
167 * @sk: Socket to use a capability on or through
168 * @cap: The global capability to use
169 *
170 * Test to see if the opener of the socket had when the socket was
171 * created and the current process has the capability @cap in all user
172 * namespaces.
173 */
174bool sk_capable(const struct sock *sk, int cap)
175{
176 return sk_ns_capable(sk, &init_user_ns, cap);
177}
178EXPORT_SYMBOL(sk_capable);
179
180/**
181 * sk_net_capable - Network namespace socket capability test
182 * @sk: Socket to use a capability on or through
183 * @cap: The capability to use
184 *
185 * Test to see if the opener of the socket had when the socket was created
186 * and the current process has the capability @cap over the network namespace
187 * the socket is a member of.
188 */
189bool sk_net_capable(const struct sock *sk, int cap)
190{
191 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
192}
193EXPORT_SYMBOL(sk_net_capable);
194
195/*
196 * Each address family might have different locking rules, so we have
197 * one slock key per address family and separate keys for internal and
198 * userspace sockets.
199 */
200static struct lock_class_key af_family_keys[AF_MAX];
201static struct lock_class_key af_family_kern_keys[AF_MAX];
202static struct lock_class_key af_family_slock_keys[AF_MAX];
203static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
204
205/*
206 * Make lock validator output more readable. (we pre-construct these
207 * strings build-time, so that runtime initialization of socket
208 * locks is fast):
209 */
210
211#define _sock_locks(x) \
212 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
213 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
214 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
215 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
216 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
217 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
218 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
219 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
220 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
221 x "27" , x "28" , x "AF_CAN" , \
222 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
223 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
224 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
225 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
226 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
227 x "AF_MAX"
228
229static const char *const af_family_key_strings[AF_MAX+1] = {
230 _sock_locks("sk_lock-")
231};
232static const char *const af_family_slock_key_strings[AF_MAX+1] = {
233 _sock_locks("slock-")
234};
235static const char *const af_family_clock_key_strings[AF_MAX+1] = {
236 _sock_locks("clock-")
237};
238
239static const char *const af_family_kern_key_strings[AF_MAX+1] = {
240 _sock_locks("k-sk_lock-")
241};
242static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
243 _sock_locks("k-slock-")
244};
245static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
246 _sock_locks("k-clock-")
247};
248static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
249 _sock_locks("rlock-")
250};
251static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
252 _sock_locks("wlock-")
253};
254static const char *const af_family_elock_key_strings[AF_MAX+1] = {
255 _sock_locks("elock-")
256};
257
258/*
259 * sk_callback_lock and sk queues locking rules are per-address-family,
260 * so split the lock classes by using a per-AF key:
261 */
262static struct lock_class_key af_callback_keys[AF_MAX];
263static struct lock_class_key af_rlock_keys[AF_MAX];
264static struct lock_class_key af_wlock_keys[AF_MAX];
265static struct lock_class_key af_elock_keys[AF_MAX];
266static struct lock_class_key af_kern_callback_keys[AF_MAX];
267
268/* Run time adjustable parameters. */
269__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
270EXPORT_SYMBOL(sysctl_wmem_max);
271__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
272EXPORT_SYMBOL(sysctl_rmem_max);
273__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
274__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
275
276/* Maximal space eaten by iovec or ancillary data plus some space */
277int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
278EXPORT_SYMBOL(sysctl_optmem_max);
279
280int sysctl_tstamp_allow_data __read_mostly = 1;
281
282DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
283EXPORT_SYMBOL_GPL(memalloc_socks_key);
284
285/**
286 * sk_set_memalloc - sets %SOCK_MEMALLOC
287 * @sk: socket to set it on
288 *
289 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
290 * It's the responsibility of the admin to adjust min_free_kbytes
291 * to meet the requirements
292 */
293void sk_set_memalloc(struct sock *sk)
294{
295 sock_set_flag(sk, SOCK_MEMALLOC);
296 sk->sk_allocation |= __GFP_MEMALLOC;
297 static_branch_inc(&memalloc_socks_key);
298}
299EXPORT_SYMBOL_GPL(sk_set_memalloc);
300
301void sk_clear_memalloc(struct sock *sk)
302{
303 sock_reset_flag(sk, SOCK_MEMALLOC);
304 sk->sk_allocation &= ~__GFP_MEMALLOC;
305 static_branch_dec(&memalloc_socks_key);
306
307 /*
308 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
309 * progress of swapping. SOCK_MEMALLOC may be cleared while
310 * it has rmem allocations due to the last swapfile being deactivated
311 * but there is a risk that the socket is unusable due to exceeding
312 * the rmem limits. Reclaim the reserves and obey rmem limits again.
313 */
314 sk_mem_reclaim(sk);
315}
316EXPORT_SYMBOL_GPL(sk_clear_memalloc);
317
318int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
319{
320 int ret;
321 unsigned int noreclaim_flag;
322
323 /* these should have been dropped before queueing */
324 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
325
326 noreclaim_flag = memalloc_noreclaim_save();
327 ret = sk->sk_backlog_rcv(sk, skb);
328 memalloc_noreclaim_restore(noreclaim_flag);
329
330 return ret;
331}
332EXPORT_SYMBOL(__sk_backlog_rcv);
333
334static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
335{
336 struct __kernel_sock_timeval tv;
337
338 if (timeo == MAX_SCHEDULE_TIMEOUT) {
339 tv.tv_sec = 0;
340 tv.tv_usec = 0;
341 } else {
342 tv.tv_sec = timeo / HZ;
343 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
344 }
345
346 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
347 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
348 *(struct old_timeval32 *)optval = tv32;
349 return sizeof(tv32);
350 }
351
352 if (old_timeval) {
353 struct __kernel_old_timeval old_tv;
354 old_tv.tv_sec = tv.tv_sec;
355 old_tv.tv_usec = tv.tv_usec;
356 *(struct __kernel_old_timeval *)optval = old_tv;
357 return sizeof(old_tv);
358 }
359
360 *(struct __kernel_sock_timeval *)optval = tv;
361 return sizeof(tv);
362}
363
364static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
365 bool old_timeval)
366{
367 struct __kernel_sock_timeval tv;
368
369 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
370 struct old_timeval32 tv32;
371
372 if (optlen < sizeof(tv32))
373 return -EINVAL;
374
375 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
376 return -EFAULT;
377 tv.tv_sec = tv32.tv_sec;
378 tv.tv_usec = tv32.tv_usec;
379 } else if (old_timeval) {
380 struct __kernel_old_timeval old_tv;
381
382 if (optlen < sizeof(old_tv))
383 return -EINVAL;
384 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
385 return -EFAULT;
386 tv.tv_sec = old_tv.tv_sec;
387 tv.tv_usec = old_tv.tv_usec;
388 } else {
389 if (optlen < sizeof(tv))
390 return -EINVAL;
391 if (copy_from_sockptr(&tv, optval, sizeof(tv)))
392 return -EFAULT;
393 }
394 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
395 return -EDOM;
396
397 if (tv.tv_sec < 0) {
398 static int warned __read_mostly;
399
400 *timeo_p = 0;
401 if (warned < 10 && net_ratelimit()) {
402 warned++;
403 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
404 __func__, current->comm, task_pid_nr(current));
405 }
406 return 0;
407 }
408 *timeo_p = MAX_SCHEDULE_TIMEOUT;
409 if (tv.tv_sec == 0 && tv.tv_usec == 0)
410 return 0;
411 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
412 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
413 return 0;
414}
415
416static void sock_warn_obsolete_bsdism(const char *name)
417{
418 static int warned;
419 static char warncomm[TASK_COMM_LEN];
420 if (strcmp(warncomm, current->comm) && warned < 5) {
421 strcpy(warncomm, current->comm);
422 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
423 warncomm, name);
424 warned++;
425 }
426}
427
428static bool sock_needs_netstamp(const struct sock *sk)
429{
430 switch (sk->sk_family) {
431 case AF_UNSPEC:
432 case AF_UNIX:
433 return false;
434 default:
435 return true;
436 }
437}
438
439static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
440{
441 if (sk->sk_flags & flags) {
442 sk->sk_flags &= ~flags;
443 if (sock_needs_netstamp(sk) &&
444 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
445 net_disable_timestamp();
446 }
447}
448
449
450int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
451{
452 unsigned long flags;
453 struct sk_buff_head *list = &sk->sk_receive_queue;
454
455 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
456 atomic_inc(&sk->sk_drops);
457 trace_sock_rcvqueue_full(sk, skb);
458 return -ENOMEM;
459 }
460
461 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
462 atomic_inc(&sk->sk_drops);
463 return -ENOBUFS;
464 }
465
466 skb->dev = NULL;
467 skb_set_owner_r(skb, sk);
468
469 /* we escape from rcu protected region, make sure we dont leak
470 * a norefcounted dst
471 */
472 skb_dst_force(skb);
473
474 spin_lock_irqsave(&list->lock, flags);
475 sock_skb_set_dropcount(sk, skb);
476 __skb_queue_tail(list, skb);
477 spin_unlock_irqrestore(&list->lock, flags);
478
479 if (!sock_flag(sk, SOCK_DEAD))
480 sk->sk_data_ready(sk);
481 return 0;
482}
483EXPORT_SYMBOL(__sock_queue_rcv_skb);
484
485int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
486{
487 int err;
488
489 err = sk_filter(sk, skb);
490 if (err)
491 return err;
492
493 return __sock_queue_rcv_skb(sk, skb);
494}
495EXPORT_SYMBOL(sock_queue_rcv_skb);
496
497int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
498 const int nested, unsigned int trim_cap, bool refcounted)
499{
500 int rc = NET_RX_SUCCESS;
501
502 if (sk_filter_trim_cap(sk, skb, trim_cap))
503 goto discard_and_relse;
504
505 skb->dev = NULL;
506
507 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
508 atomic_inc(&sk->sk_drops);
509 goto discard_and_relse;
510 }
511 if (nested)
512 bh_lock_sock_nested(sk);
513 else
514 bh_lock_sock(sk);
515 if (!sock_owned_by_user(sk)) {
516 /*
517 * trylock + unlock semantics:
518 */
519 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
520
521 rc = sk_backlog_rcv(sk, skb);
522
523 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
524 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
525 bh_unlock_sock(sk);
526 atomic_inc(&sk->sk_drops);
527 goto discard_and_relse;
528 }
529
530 bh_unlock_sock(sk);
531out:
532 if (refcounted)
533 sock_put(sk);
534 return rc;
535discard_and_relse:
536 kfree_skb(skb);
537 goto out;
538}
539EXPORT_SYMBOL(__sk_receive_skb);
540
541struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
542{
543 struct dst_entry *dst = __sk_dst_get(sk);
544
545 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
546 sk_tx_queue_clear(sk);
547 sk->sk_dst_pending_confirm = 0;
548 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
549 dst_release(dst);
550 return NULL;
551 }
552
553 return dst;
554}
555EXPORT_SYMBOL(__sk_dst_check);
556
557struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
558{
559 struct dst_entry *dst = sk_dst_get(sk);
560
561 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
562 sk_dst_reset(sk);
563 dst_release(dst);
564 return NULL;
565 }
566
567 return dst;
568}
569EXPORT_SYMBOL(sk_dst_check);
570
571static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
572{
573 int ret = -ENOPROTOOPT;
574#ifdef CONFIG_NETDEVICES
575 struct net *net = sock_net(sk);
576
577 /* Sorry... */
578 ret = -EPERM;
579 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
580 goto out;
581
582 ret = -EINVAL;
583 if (ifindex < 0)
584 goto out;
585
586 sk->sk_bound_dev_if = ifindex;
587 if (sk->sk_prot->rehash)
588 sk->sk_prot->rehash(sk);
589 sk_dst_reset(sk);
590
591 ret = 0;
592
593out:
594#endif
595
596 return ret;
597}
598
599int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
600{
601 int ret;
602
603 if (lock_sk)
604 lock_sock(sk);
605 ret = sock_bindtoindex_locked(sk, ifindex);
606 if (lock_sk)
607 release_sock(sk);
608
609 return ret;
610}
611EXPORT_SYMBOL(sock_bindtoindex);
612
613static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
614{
615 int ret = -ENOPROTOOPT;
616#ifdef CONFIG_NETDEVICES
617 struct net *net = sock_net(sk);
618 char devname[IFNAMSIZ];
619 int index;
620
621 ret = -EINVAL;
622 if (optlen < 0)
623 goto out;
624
625 /* Bind this socket to a particular device like "eth0",
626 * as specified in the passed interface name. If the
627 * name is "" or the option length is zero the socket
628 * is not bound.
629 */
630 if (optlen > IFNAMSIZ - 1)
631 optlen = IFNAMSIZ - 1;
632 memset(devname, 0, sizeof(devname));
633
634 ret = -EFAULT;
635 if (copy_from_sockptr(devname, optval, optlen))
636 goto out;
637
638 index = 0;
639 if (devname[0] != '\0') {
640 struct net_device *dev;
641
642 rcu_read_lock();
643 dev = dev_get_by_name_rcu(net, devname);
644 if (dev)
645 index = dev->ifindex;
646 rcu_read_unlock();
647 ret = -ENODEV;
648 if (!dev)
649 goto out;
650 }
651
652 return sock_bindtoindex(sk, index, true);
653out:
654#endif
655
656 return ret;
657}
658
659static int sock_getbindtodevice(struct sock *sk, char __user *optval,
660 int __user *optlen, int len)
661{
662 int ret = -ENOPROTOOPT;
663#ifdef CONFIG_NETDEVICES
664 struct net *net = sock_net(sk);
665 char devname[IFNAMSIZ];
666
667 if (sk->sk_bound_dev_if == 0) {
668 len = 0;
669 goto zero;
670 }
671
672 ret = -EINVAL;
673 if (len < IFNAMSIZ)
674 goto out;
675
676 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
677 if (ret)
678 goto out;
679
680 len = strlen(devname) + 1;
681
682 ret = -EFAULT;
683 if (copy_to_user(optval, devname, len))
684 goto out;
685
686zero:
687 ret = -EFAULT;
688 if (put_user(len, optlen))
689 goto out;
690
691 ret = 0;
692
693out:
694#endif
695
696 return ret;
697}
698
699bool sk_mc_loop(struct sock *sk)
700{
701 if (dev_recursion_level())
702 return false;
703 if (!sk)
704 return true;
705 switch (sk->sk_family) {
706 case AF_INET:
707 return inet_sk(sk)->mc_loop;
708#if IS_ENABLED(CONFIG_IPV6)
709 case AF_INET6:
710 return inet6_sk(sk)->mc_loop;
711#endif
712 }
713 WARN_ON_ONCE(1);
714 return true;
715}
716EXPORT_SYMBOL(sk_mc_loop);
717
718void sock_set_reuseaddr(struct sock *sk)
719{
720 lock_sock(sk);
721 sk->sk_reuse = SK_CAN_REUSE;
722 release_sock(sk);
723}
724EXPORT_SYMBOL(sock_set_reuseaddr);
725
726void sock_set_reuseport(struct sock *sk)
727{
728 lock_sock(sk);
729 sk->sk_reuseport = true;
730 release_sock(sk);
731}
732EXPORT_SYMBOL(sock_set_reuseport);
733
734void sock_no_linger(struct sock *sk)
735{
736 lock_sock(sk);
737 sk->sk_lingertime = 0;
738 sock_set_flag(sk, SOCK_LINGER);
739 release_sock(sk);
740}
741EXPORT_SYMBOL(sock_no_linger);
742
743void sock_set_priority(struct sock *sk, u32 priority)
744{
745 lock_sock(sk);
746 sk->sk_priority = priority;
747 release_sock(sk);
748}
749EXPORT_SYMBOL(sock_set_priority);
750
751void sock_set_sndtimeo(struct sock *sk, s64 secs)
752{
753 lock_sock(sk);
754 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
755 sk->sk_sndtimeo = secs * HZ;
756 else
757 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
758 release_sock(sk);
759}
760EXPORT_SYMBOL(sock_set_sndtimeo);
761
762static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
763{
764 if (val) {
765 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
766 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
767 sock_set_flag(sk, SOCK_RCVTSTAMP);
768 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
769 } else {
770 sock_reset_flag(sk, SOCK_RCVTSTAMP);
771 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
772 sock_reset_flag(sk, SOCK_TSTAMP_NEW);
773 }
774}
775
776void sock_enable_timestamps(struct sock *sk)
777{
778 lock_sock(sk);
779 __sock_set_timestamps(sk, true, false, true);
780 release_sock(sk);
781}
782EXPORT_SYMBOL(sock_enable_timestamps);
783
784void sock_set_keepalive(struct sock *sk)
785{
786 lock_sock(sk);
787 if (sk->sk_prot->keepalive)
788 sk->sk_prot->keepalive(sk, true);
789 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
790 release_sock(sk);
791}
792EXPORT_SYMBOL(sock_set_keepalive);
793
794static void __sock_set_rcvbuf(struct sock *sk, int val)
795{
796 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
797 * as a negative value.
798 */
799 val = min_t(int, val, INT_MAX / 2);
800 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
801
802 /* We double it on the way in to account for "struct sk_buff" etc.
803 * overhead. Applications assume that the SO_RCVBUF setting they make
804 * will allow that much actual data to be received on that socket.
805 *
806 * Applications are unaware that "struct sk_buff" and other overheads
807 * allocate from the receive buffer during socket buffer allocation.
808 *
809 * And after considering the possible alternatives, returning the value
810 * we actually used in getsockopt is the most desirable behavior.
811 */
812 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
813}
814
815void sock_set_rcvbuf(struct sock *sk, int val)
816{
817 lock_sock(sk);
818 __sock_set_rcvbuf(sk, val);
819 release_sock(sk);
820}
821EXPORT_SYMBOL(sock_set_rcvbuf);
822
823void sock_set_mark(struct sock *sk, u32 val)
824{
825 lock_sock(sk);
826 sk->sk_mark = val;
827 release_sock(sk);
828}
829EXPORT_SYMBOL(sock_set_mark);
830
831/*
832 * This is meant for all protocols to use and covers goings on
833 * at the socket level. Everything here is generic.
834 */
835
836int sock_setsockopt(struct socket *sock, int level, int optname,
837 sockptr_t optval, unsigned int optlen)
838{
839 struct sock_txtime sk_txtime;
840 struct sock *sk = sock->sk;
841 int val;
842 int valbool;
843 struct linger ling;
844 int ret = 0;
845
846 /*
847 * Options without arguments
848 */
849
850 if (optname == SO_BINDTODEVICE)
851 return sock_setbindtodevice(sk, optval, optlen);
852
853 if (optlen < sizeof(int))
854 return -EINVAL;
855
856 if (copy_from_sockptr(&val, optval, sizeof(val)))
857 return -EFAULT;
858
859 valbool = val ? 1 : 0;
860
861 lock_sock(sk);
862
863 switch (optname) {
864 case SO_DEBUG:
865 if (val && !capable(CAP_NET_ADMIN))
866 ret = -EACCES;
867 else
868 sock_valbool_flag(sk, SOCK_DBG, valbool);
869 break;
870 case SO_REUSEADDR:
871 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
872 break;
873 case SO_REUSEPORT:
874 sk->sk_reuseport = valbool;
875 break;
876 case SO_TYPE:
877 case SO_PROTOCOL:
878 case SO_DOMAIN:
879 case SO_ERROR:
880 ret = -ENOPROTOOPT;
881 break;
882 case SO_DONTROUTE:
883 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
884 sk_dst_reset(sk);
885 break;
886 case SO_BROADCAST:
887 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
888 break;
889 case SO_SNDBUF:
890 /* Don't error on this BSD doesn't and if you think
891 * about it this is right. Otherwise apps have to
892 * play 'guess the biggest size' games. RCVBUF/SNDBUF
893 * are treated in BSD as hints
894 */
895 val = min_t(u32, val, sysctl_wmem_max);
896set_sndbuf:
897 /* Ensure val * 2 fits into an int, to prevent max_t()
898 * from treating it as a negative value.
899 */
900 val = min_t(int, val, INT_MAX / 2);
901 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
902 WRITE_ONCE(sk->sk_sndbuf,
903 max_t(int, val * 2, SOCK_MIN_SNDBUF));
904 /* Wake up sending tasks if we upped the value. */
905 sk->sk_write_space(sk);
906 break;
907
908 case SO_SNDBUFFORCE:
909 if (!capable(CAP_NET_ADMIN)) {
910 ret = -EPERM;
911 break;
912 }
913
914 /* No negative values (to prevent underflow, as val will be
915 * multiplied by 2).
916 */
917 if (val < 0)
918 val = 0;
919 goto set_sndbuf;
920
921 case SO_RCVBUF:
922 /* Don't error on this BSD doesn't and if you think
923 * about it this is right. Otherwise apps have to
924 * play 'guess the biggest size' games. RCVBUF/SNDBUF
925 * are treated in BSD as hints
926 */
927 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
928 break;
929
930 case SO_RCVBUFFORCE:
931 if (!capable(CAP_NET_ADMIN)) {
932 ret = -EPERM;
933 break;
934 }
935
936 /* No negative values (to prevent underflow, as val will be
937 * multiplied by 2).
938 */
939 __sock_set_rcvbuf(sk, max(val, 0));
940 break;
941
942 case SO_KEEPALIVE:
943 if (sk->sk_prot->keepalive)
944 sk->sk_prot->keepalive(sk, valbool);
945 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
946 break;
947
948 case SO_OOBINLINE:
949 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
950 break;
951
952 case SO_NO_CHECK:
953 sk->sk_no_check_tx = valbool;
954 break;
955
956 case SO_PRIORITY:
957 if ((val >= 0 && val <= 6) ||
958 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
959 sk->sk_priority = val;
960 else
961 ret = -EPERM;
962 break;
963
964 case SO_LINGER:
965 if (optlen < sizeof(ling)) {
966 ret = -EINVAL; /* 1003.1g */
967 break;
968 }
969 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
970 ret = -EFAULT;
971 break;
972 }
973 if (!ling.l_onoff)
974 sock_reset_flag(sk, SOCK_LINGER);
975 else {
976#if (BITS_PER_LONG == 32)
977 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
978 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
979 else
980#endif
981 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
982 sock_set_flag(sk, SOCK_LINGER);
983 }
984 break;
985
986 case SO_BSDCOMPAT:
987 sock_warn_obsolete_bsdism("setsockopt");
988 break;
989
990 case SO_PASSCRED:
991 if (valbool)
992 set_bit(SOCK_PASSCRED, &sock->flags);
993 else
994 clear_bit(SOCK_PASSCRED, &sock->flags);
995 break;
996
997 case SO_TIMESTAMP_OLD:
998 __sock_set_timestamps(sk, valbool, false, false);
999 break;
1000 case SO_TIMESTAMP_NEW:
1001 __sock_set_timestamps(sk, valbool, true, false);
1002 break;
1003 case SO_TIMESTAMPNS_OLD:
1004 __sock_set_timestamps(sk, valbool, false, true);
1005 break;
1006 case SO_TIMESTAMPNS_NEW:
1007 __sock_set_timestamps(sk, valbool, true, true);
1008 break;
1009 case SO_TIMESTAMPING_NEW:
1010 sock_set_flag(sk, SOCK_TSTAMP_NEW);
1011 fallthrough;
1012 case SO_TIMESTAMPING_OLD:
1013 if (val & ~SOF_TIMESTAMPING_MASK) {
1014 ret = -EINVAL;
1015 break;
1016 }
1017
1018 if (val & SOF_TIMESTAMPING_OPT_ID &&
1019 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
1020 if (sk->sk_protocol == IPPROTO_TCP &&
1021 sk->sk_type == SOCK_STREAM) {
1022 if ((1 << sk->sk_state) &
1023 (TCPF_CLOSE | TCPF_LISTEN)) {
1024 ret = -EINVAL;
1025 break;
1026 }
1027 sk->sk_tskey = tcp_sk(sk)->snd_una;
1028 } else {
1029 sk->sk_tskey = 0;
1030 }
1031 }
1032
1033 if (val & SOF_TIMESTAMPING_OPT_STATS &&
1034 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
1035 ret = -EINVAL;
1036 break;
1037 }
1038
1039 sk->sk_tsflags = val;
1040 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
1041 sock_enable_timestamp(sk,
1042 SOCK_TIMESTAMPING_RX_SOFTWARE);
1043 else {
1044 if (optname == SO_TIMESTAMPING_NEW)
1045 sock_reset_flag(sk, SOCK_TSTAMP_NEW);
1046
1047 sock_disable_timestamp(sk,
1048 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
1049 }
1050 break;
1051
1052 case SO_RCVLOWAT:
1053 if (val < 0)
1054 val = INT_MAX;
1055 if (sock->ops->set_rcvlowat)
1056 ret = sock->ops->set_rcvlowat(sk, val);
1057 else
1058 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1059 break;
1060
1061 case SO_RCVTIMEO_OLD:
1062 case SO_RCVTIMEO_NEW:
1063 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1064 optlen, optname == SO_RCVTIMEO_OLD);
1065 break;
1066
1067 case SO_SNDTIMEO_OLD:
1068 case SO_SNDTIMEO_NEW:
1069 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1070 optlen, optname == SO_SNDTIMEO_OLD);
1071 break;
1072
1073 case SO_ATTACH_FILTER: {
1074 struct sock_fprog fprog;
1075
1076 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1077 if (!ret)
1078 ret = sk_attach_filter(&fprog, sk);
1079 break;
1080 }
1081 case SO_ATTACH_BPF:
1082 ret = -EINVAL;
1083 if (optlen == sizeof(u32)) {
1084 u32 ufd;
1085
1086 ret = -EFAULT;
1087 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1088 break;
1089
1090 ret = sk_attach_bpf(ufd, sk);
1091 }
1092 break;
1093
1094 case SO_ATTACH_REUSEPORT_CBPF: {
1095 struct sock_fprog fprog;
1096
1097 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1098 if (!ret)
1099 ret = sk_reuseport_attach_filter(&fprog, sk);
1100 break;
1101 }
1102 case SO_ATTACH_REUSEPORT_EBPF:
1103 ret = -EINVAL;
1104 if (optlen == sizeof(u32)) {
1105 u32 ufd;
1106
1107 ret = -EFAULT;
1108 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1109 break;
1110
1111 ret = sk_reuseport_attach_bpf(ufd, sk);
1112 }
1113 break;
1114
1115 case SO_DETACH_REUSEPORT_BPF:
1116 ret = reuseport_detach_prog(sk);
1117 break;
1118
1119 case SO_DETACH_FILTER:
1120 ret = sk_detach_filter(sk);
1121 break;
1122
1123 case SO_LOCK_FILTER:
1124 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1125 ret = -EPERM;
1126 else
1127 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1128 break;
1129
1130 case SO_PASSSEC:
1131 if (valbool)
1132 set_bit(SOCK_PASSSEC, &sock->flags);
1133 else
1134 clear_bit(SOCK_PASSSEC, &sock->flags);
1135 break;
1136 case SO_MARK:
1137 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1138 ret = -EPERM;
1139 } else if (val != sk->sk_mark) {
1140 sk->sk_mark = val;
1141 sk_dst_reset(sk);
1142 }
1143 break;
1144
1145 case SO_RXQ_OVFL:
1146 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1147 break;
1148
1149 case SO_WIFI_STATUS:
1150 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1151 break;
1152
1153 case SO_PEEK_OFF:
1154 if (sock->ops->set_peek_off)
1155 ret = sock->ops->set_peek_off(sk, val);
1156 else
1157 ret = -EOPNOTSUPP;
1158 break;
1159
1160 case SO_NOFCS:
1161 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1162 break;
1163
1164 case SO_SELECT_ERR_QUEUE:
1165 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1166 break;
1167
1168#ifdef CONFIG_NET_RX_BUSY_POLL
1169 case SO_BUSY_POLL:
1170 /* allow unprivileged users to decrease the value */
1171 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1172 ret = -EPERM;
1173 else {
1174 if (val < 0)
1175 ret = -EINVAL;
1176 else
1177 sk->sk_ll_usec = val;
1178 }
1179 break;
1180#endif
1181
1182 case SO_MAX_PACING_RATE:
1183 {
1184 unsigned long ulval = (val == ~0U) ? ~0UL : val;
1185
1186 if (sizeof(ulval) != sizeof(val) &&
1187 optlen >= sizeof(ulval) &&
1188 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1189 ret = -EFAULT;
1190 break;
1191 }
1192 if (ulval != ~0UL)
1193 cmpxchg(&sk->sk_pacing_status,
1194 SK_PACING_NONE,
1195 SK_PACING_NEEDED);
1196 sk->sk_max_pacing_rate = ulval;
1197 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1198 break;
1199 }
1200 case SO_INCOMING_CPU:
1201 WRITE_ONCE(sk->sk_incoming_cpu, val);
1202 break;
1203
1204 case SO_CNX_ADVICE:
1205 if (val == 1)
1206 dst_negative_advice(sk);
1207 break;
1208
1209 case SO_ZEROCOPY:
1210 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1211 if (!((sk->sk_type == SOCK_STREAM &&
1212 sk->sk_protocol == IPPROTO_TCP) ||
1213 (sk->sk_type == SOCK_DGRAM &&
1214 sk->sk_protocol == IPPROTO_UDP)))
1215 ret = -ENOTSUPP;
1216 } else if (sk->sk_family != PF_RDS) {
1217 ret = -ENOTSUPP;
1218 }
1219 if (!ret) {
1220 if (val < 0 || val > 1)
1221 ret = -EINVAL;
1222 else
1223 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1224 }
1225 break;
1226
1227 case SO_TXTIME:
1228 if (optlen != sizeof(struct sock_txtime)) {
1229 ret = -EINVAL;
1230 break;
1231 } else if (copy_from_sockptr(&sk_txtime, optval,
1232 sizeof(struct sock_txtime))) {
1233 ret = -EFAULT;
1234 break;
1235 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1236 ret = -EINVAL;
1237 break;
1238 }
1239 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1240 * scheduler has enough safe guards.
1241 */
1242 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1243 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1244 ret = -EPERM;
1245 break;
1246 }
1247 sock_valbool_flag(sk, SOCK_TXTIME, true);
1248 sk->sk_clockid = sk_txtime.clockid;
1249 sk->sk_txtime_deadline_mode =
1250 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1251 sk->sk_txtime_report_errors =
1252 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1253 break;
1254
1255 case SO_BINDTOIFINDEX:
1256 ret = sock_bindtoindex_locked(sk, val);
1257 break;
1258
1259 default:
1260 ret = -ENOPROTOOPT;
1261 break;
1262 }
1263 release_sock(sk);
1264 return ret;
1265}
1266EXPORT_SYMBOL(sock_setsockopt);
1267
1268
1269static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1270 struct ucred *ucred)
1271{
1272 ucred->pid = pid_vnr(pid);
1273 ucred->uid = ucred->gid = -1;
1274 if (cred) {
1275 struct user_namespace *current_ns = current_user_ns();
1276
1277 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1278 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1279 }
1280}
1281
1282static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1283{
1284 struct user_namespace *user_ns = current_user_ns();
1285 int i;
1286
1287 for (i = 0; i < src->ngroups; i++)
1288 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1289 return -EFAULT;
1290
1291 return 0;
1292}
1293
1294int sock_getsockopt(struct socket *sock, int level, int optname,
1295 char __user *optval, int __user *optlen)
1296{
1297 struct sock *sk = sock->sk;
1298
1299 union {
1300 int val;
1301 u64 val64;
1302 unsigned long ulval;
1303 struct linger ling;
1304 struct old_timeval32 tm32;
1305 struct __kernel_old_timeval tm;
1306 struct __kernel_sock_timeval stm;
1307 struct sock_txtime txtime;
1308 } v;
1309
1310 int lv = sizeof(int);
1311 int len;
1312
1313 if (get_user(len, optlen))
1314 return -EFAULT;
1315 if (len < 0)
1316 return -EINVAL;
1317
1318 memset(&v, 0, sizeof(v));
1319
1320 switch (optname) {
1321 case SO_DEBUG:
1322 v.val = sock_flag(sk, SOCK_DBG);
1323 break;
1324
1325 case SO_DONTROUTE:
1326 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1327 break;
1328
1329 case SO_BROADCAST:
1330 v.val = sock_flag(sk, SOCK_BROADCAST);
1331 break;
1332
1333 case SO_SNDBUF:
1334 v.val = sk->sk_sndbuf;
1335 break;
1336
1337 case SO_RCVBUF:
1338 v.val = sk->sk_rcvbuf;
1339 break;
1340
1341 case SO_REUSEADDR:
1342 v.val = sk->sk_reuse;
1343 break;
1344
1345 case SO_REUSEPORT:
1346 v.val = sk->sk_reuseport;
1347 break;
1348
1349 case SO_KEEPALIVE:
1350 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1351 break;
1352
1353 case SO_TYPE:
1354 v.val = sk->sk_type;
1355 break;
1356
1357 case SO_PROTOCOL:
1358 v.val = sk->sk_protocol;
1359 break;
1360
1361 case SO_DOMAIN:
1362 v.val = sk->sk_family;
1363 break;
1364
1365 case SO_ERROR:
1366 v.val = -sock_error(sk);
1367 if (v.val == 0)
1368 v.val = xchg(&sk->sk_err_soft, 0);
1369 break;
1370
1371 case SO_OOBINLINE:
1372 v.val = sock_flag(sk, SOCK_URGINLINE);
1373 break;
1374
1375 case SO_NO_CHECK:
1376 v.val = sk->sk_no_check_tx;
1377 break;
1378
1379 case SO_PRIORITY:
1380 v.val = sk->sk_priority;
1381 break;
1382
1383 case SO_LINGER:
1384 lv = sizeof(v.ling);
1385 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1386 v.ling.l_linger = sk->sk_lingertime / HZ;
1387 break;
1388
1389 case SO_BSDCOMPAT:
1390 sock_warn_obsolete_bsdism("getsockopt");
1391 break;
1392
1393 case SO_TIMESTAMP_OLD:
1394 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1395 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1396 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1397 break;
1398
1399 case SO_TIMESTAMPNS_OLD:
1400 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1401 break;
1402
1403 case SO_TIMESTAMP_NEW:
1404 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1405 break;
1406
1407 case SO_TIMESTAMPNS_NEW:
1408 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1409 break;
1410
1411 case SO_TIMESTAMPING_OLD:
1412 v.val = sk->sk_tsflags;
1413 break;
1414
1415 case SO_RCVTIMEO_OLD:
1416 case SO_RCVTIMEO_NEW:
1417 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1418 break;
1419
1420 case SO_SNDTIMEO_OLD:
1421 case SO_SNDTIMEO_NEW:
1422 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1423 break;
1424
1425 case SO_RCVLOWAT:
1426 v.val = sk->sk_rcvlowat;
1427 break;
1428
1429 case SO_SNDLOWAT:
1430 v.val = 1;
1431 break;
1432
1433 case SO_PASSCRED:
1434 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1435 break;
1436
1437 case SO_PEERCRED:
1438 {
1439 struct ucred peercred;
1440 if (len > sizeof(peercred))
1441 len = sizeof(peercred);
1442 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1443 if (copy_to_user(optval, &peercred, len))
1444 return -EFAULT;
1445 goto lenout;
1446 }
1447
1448 case SO_PEERGROUPS:
1449 {
1450 int ret, n;
1451
1452 if (!sk->sk_peer_cred)
1453 return -ENODATA;
1454
1455 n = sk->sk_peer_cred->group_info->ngroups;
1456 if (len < n * sizeof(gid_t)) {
1457 len = n * sizeof(gid_t);
1458 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1459 }
1460 len = n * sizeof(gid_t);
1461
1462 ret = groups_to_user((gid_t __user *)optval,
1463 sk->sk_peer_cred->group_info);
1464 if (ret)
1465 return ret;
1466 goto lenout;
1467 }
1468
1469 case SO_PEERNAME:
1470 {
1471 char address[128];
1472
1473 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1474 if (lv < 0)
1475 return -ENOTCONN;
1476 if (lv < len)
1477 return -EINVAL;
1478 if (copy_to_user(optval, address, len))
1479 return -EFAULT;
1480 goto lenout;
1481 }
1482
1483 /* Dubious BSD thing... Probably nobody even uses it, but
1484 * the UNIX standard wants it for whatever reason... -DaveM
1485 */
1486 case SO_ACCEPTCONN:
1487 v.val = sk->sk_state == TCP_LISTEN;
1488 break;
1489
1490 case SO_PASSSEC:
1491 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1492 break;
1493
1494 case SO_PEERSEC:
1495 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1496
1497 case SO_MARK:
1498 v.val = sk->sk_mark;
1499 break;
1500
1501 case SO_RXQ_OVFL:
1502 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1503 break;
1504
1505 case SO_WIFI_STATUS:
1506 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1507 break;
1508
1509 case SO_PEEK_OFF:
1510 if (!sock->ops->set_peek_off)
1511 return -EOPNOTSUPP;
1512
1513 v.val = sk->sk_peek_off;
1514 break;
1515 case SO_NOFCS:
1516 v.val = sock_flag(sk, SOCK_NOFCS);
1517 break;
1518
1519 case SO_BINDTODEVICE:
1520 return sock_getbindtodevice(sk, optval, optlen, len);
1521
1522 case SO_GET_FILTER:
1523 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1524 if (len < 0)
1525 return len;
1526
1527 goto lenout;
1528
1529 case SO_LOCK_FILTER:
1530 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1531 break;
1532
1533 case SO_BPF_EXTENSIONS:
1534 v.val = bpf_tell_extensions();
1535 break;
1536
1537 case SO_SELECT_ERR_QUEUE:
1538 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1539 break;
1540
1541#ifdef CONFIG_NET_RX_BUSY_POLL
1542 case SO_BUSY_POLL:
1543 v.val = sk->sk_ll_usec;
1544 break;
1545#endif
1546
1547 case SO_MAX_PACING_RATE:
1548 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1549 lv = sizeof(v.ulval);
1550 v.ulval = sk->sk_max_pacing_rate;
1551 } else {
1552 /* 32bit version */
1553 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1554 }
1555 break;
1556
1557 case SO_INCOMING_CPU:
1558 v.val = READ_ONCE(sk->sk_incoming_cpu);
1559 break;
1560
1561 case SO_MEMINFO:
1562 {
1563 u32 meminfo[SK_MEMINFO_VARS];
1564
1565 sk_get_meminfo(sk, meminfo);
1566
1567 len = min_t(unsigned int, len, sizeof(meminfo));
1568 if (copy_to_user(optval, &meminfo, len))
1569 return -EFAULT;
1570
1571 goto lenout;
1572 }
1573
1574#ifdef CONFIG_NET_RX_BUSY_POLL
1575 case SO_INCOMING_NAPI_ID:
1576 v.val = READ_ONCE(sk->sk_napi_id);
1577
1578 /* aggregate non-NAPI IDs down to 0 */
1579 if (v.val < MIN_NAPI_ID)
1580 v.val = 0;
1581
1582 break;
1583#endif
1584
1585 case SO_COOKIE:
1586 lv = sizeof(u64);
1587 if (len < lv)
1588 return -EINVAL;
1589 v.val64 = sock_gen_cookie(sk);
1590 break;
1591
1592 case SO_ZEROCOPY:
1593 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1594 break;
1595
1596 case SO_TXTIME:
1597 lv = sizeof(v.txtime);
1598 v.txtime.clockid = sk->sk_clockid;
1599 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1600 SOF_TXTIME_DEADLINE_MODE : 0;
1601 v.txtime.flags |= sk->sk_txtime_report_errors ?
1602 SOF_TXTIME_REPORT_ERRORS : 0;
1603 break;
1604
1605 case SO_BINDTOIFINDEX:
1606 v.val = sk->sk_bound_dev_if;
1607 break;
1608
1609 default:
1610 /* We implement the SO_SNDLOWAT etc to not be settable
1611 * (1003.1g 7).
1612 */
1613 return -ENOPROTOOPT;
1614 }
1615
1616 if (len > lv)
1617 len = lv;
1618 if (copy_to_user(optval, &v, len))
1619 return -EFAULT;
1620lenout:
1621 if (put_user(len, optlen))
1622 return -EFAULT;
1623 return 0;
1624}
1625
1626/*
1627 * Initialize an sk_lock.
1628 *
1629 * (We also register the sk_lock with the lock validator.)
1630 */
1631static inline void sock_lock_init(struct sock *sk)
1632{
1633 if (sk->sk_kern_sock)
1634 sock_lock_init_class_and_name(
1635 sk,
1636 af_family_kern_slock_key_strings[sk->sk_family],
1637 af_family_kern_slock_keys + sk->sk_family,
1638 af_family_kern_key_strings[sk->sk_family],
1639 af_family_kern_keys + sk->sk_family);
1640 else
1641 sock_lock_init_class_and_name(
1642 sk,
1643 af_family_slock_key_strings[sk->sk_family],
1644 af_family_slock_keys + sk->sk_family,
1645 af_family_key_strings[sk->sk_family],
1646 af_family_keys + sk->sk_family);
1647}
1648
1649/*
1650 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1651 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1652 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1653 */
1654static void sock_copy(struct sock *nsk, const struct sock *osk)
1655{
1656 const struct proto *prot = READ_ONCE(osk->sk_prot);
1657#ifdef CONFIG_SECURITY_NETWORK
1658 void *sptr = nsk->sk_security;
1659#endif
1660 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1661
1662 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1663 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1664
1665#ifdef CONFIG_SECURITY_NETWORK
1666 nsk->sk_security = sptr;
1667 security_sk_clone(osk, nsk);
1668#endif
1669}
1670
1671static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1672 int family)
1673{
1674 struct sock *sk;
1675 struct kmem_cache *slab;
1676
1677 slab = prot->slab;
1678 if (slab != NULL) {
1679 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1680 if (!sk)
1681 return sk;
1682 if (want_init_on_alloc(priority))
1683 sk_prot_clear_nulls(sk, prot->obj_size);
1684 } else
1685 sk = kmalloc(prot->obj_size, priority);
1686
1687 if (sk != NULL) {
1688 if (security_sk_alloc(sk, family, priority))
1689 goto out_free;
1690
1691 if (!try_module_get(prot->owner))
1692 goto out_free_sec;
1693 sk_tx_queue_clear(sk);
1694 }
1695
1696 return sk;
1697
1698out_free_sec:
1699 security_sk_free(sk);
1700out_free:
1701 if (slab != NULL)
1702 kmem_cache_free(slab, sk);
1703 else
1704 kfree(sk);
1705 return NULL;
1706}
1707
1708static void sk_prot_free(struct proto *prot, struct sock *sk)
1709{
1710 struct kmem_cache *slab;
1711 struct module *owner;
1712
1713 owner = prot->owner;
1714 slab = prot->slab;
1715
1716 cgroup_sk_free(&sk->sk_cgrp_data);
1717 mem_cgroup_sk_free(sk);
1718 security_sk_free(sk);
1719 if (slab != NULL)
1720 kmem_cache_free(slab, sk);
1721 else
1722 kfree(sk);
1723 module_put(owner);
1724}
1725
1726/**
1727 * sk_alloc - All socket objects are allocated here
1728 * @net: the applicable net namespace
1729 * @family: protocol family
1730 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1731 * @prot: struct proto associated with this new sock instance
1732 * @kern: is this to be a kernel socket?
1733 */
1734struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1735 struct proto *prot, int kern)
1736{
1737 struct sock *sk;
1738
1739 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1740 if (sk) {
1741 sk->sk_family = family;
1742 /*
1743 * See comment in struct sock definition to understand
1744 * why we need sk_prot_creator -acme
1745 */
1746 sk->sk_prot = sk->sk_prot_creator = prot;
1747 sk->sk_kern_sock = kern;
1748 sock_lock_init(sk);
1749 sk->sk_net_refcnt = kern ? 0 : 1;
1750 if (likely(sk->sk_net_refcnt)) {
1751 get_net(net);
1752 sock_inuse_add(net, 1);
1753 }
1754
1755 sock_net_set(sk, net);
1756 refcount_set(&sk->sk_wmem_alloc, 1);
1757
1758 mem_cgroup_sk_alloc(sk);
1759 cgroup_sk_alloc(&sk->sk_cgrp_data);
1760 sock_update_classid(&sk->sk_cgrp_data);
1761 sock_update_netprioidx(&sk->sk_cgrp_data);
1762 sk_tx_queue_clear(sk);
1763 }
1764
1765 return sk;
1766}
1767EXPORT_SYMBOL(sk_alloc);
1768
1769/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1770 * grace period. This is the case for UDP sockets and TCP listeners.
1771 */
1772static void __sk_destruct(struct rcu_head *head)
1773{
1774 struct sock *sk = container_of(head, struct sock, sk_rcu);
1775 struct sk_filter *filter;
1776
1777 if (sk->sk_destruct)
1778 sk->sk_destruct(sk);
1779
1780 filter = rcu_dereference_check(sk->sk_filter,
1781 refcount_read(&sk->sk_wmem_alloc) == 0);
1782 if (filter) {
1783 sk_filter_uncharge(sk, filter);
1784 RCU_INIT_POINTER(sk->sk_filter, NULL);
1785 }
1786
1787 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1788
1789#ifdef CONFIG_BPF_SYSCALL
1790 bpf_sk_storage_free(sk);
1791#endif
1792
1793 if (atomic_read(&sk->sk_omem_alloc))
1794 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1795 __func__, atomic_read(&sk->sk_omem_alloc));
1796
1797 if (sk->sk_frag.page) {
1798 put_page(sk->sk_frag.page);
1799 sk->sk_frag.page = NULL;
1800 }
1801
1802 if (sk->sk_peer_cred)
1803 put_cred(sk->sk_peer_cred);
1804 put_pid(sk->sk_peer_pid);
1805 if (likely(sk->sk_net_refcnt))
1806 put_net(sock_net(sk));
1807 sk_prot_free(sk->sk_prot_creator, sk);
1808}
1809
1810void sk_destruct(struct sock *sk)
1811{
1812 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1813
1814 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1815 reuseport_detach_sock(sk);
1816 use_call_rcu = true;
1817 }
1818
1819 if (use_call_rcu)
1820 call_rcu(&sk->sk_rcu, __sk_destruct);
1821 else
1822 __sk_destruct(&sk->sk_rcu);
1823}
1824
1825static void __sk_free(struct sock *sk)
1826{
1827 if (likely(sk->sk_net_refcnt))
1828 sock_inuse_add(sock_net(sk), -1);
1829
1830 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1831 sock_diag_broadcast_destroy(sk);
1832 else
1833 sk_destruct(sk);
1834}
1835
1836void sk_free(struct sock *sk)
1837{
1838 /*
1839 * We subtract one from sk_wmem_alloc and can know if
1840 * some packets are still in some tx queue.
1841 * If not null, sock_wfree() will call __sk_free(sk) later
1842 */
1843 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1844 __sk_free(sk);
1845}
1846EXPORT_SYMBOL(sk_free);
1847
1848static void sk_init_common(struct sock *sk)
1849{
1850 skb_queue_head_init(&sk->sk_receive_queue);
1851 skb_queue_head_init(&sk->sk_write_queue);
1852 skb_queue_head_init(&sk->sk_error_queue);
1853
1854 rwlock_init(&sk->sk_callback_lock);
1855 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1856 af_rlock_keys + sk->sk_family,
1857 af_family_rlock_key_strings[sk->sk_family]);
1858 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1859 af_wlock_keys + sk->sk_family,
1860 af_family_wlock_key_strings[sk->sk_family]);
1861 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1862 af_elock_keys + sk->sk_family,
1863 af_family_elock_key_strings[sk->sk_family]);
1864 lockdep_set_class_and_name(&sk->sk_callback_lock,
1865 af_callback_keys + sk->sk_family,
1866 af_family_clock_key_strings[sk->sk_family]);
1867}
1868
1869/**
1870 * sk_clone_lock - clone a socket, and lock its clone
1871 * @sk: the socket to clone
1872 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1873 *
1874 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1875 */
1876struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1877{
1878 struct proto *prot = READ_ONCE(sk->sk_prot);
1879 struct sock *newsk;
1880 bool is_charged = true;
1881
1882 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
1883 if (newsk != NULL) {
1884 struct sk_filter *filter;
1885
1886 sock_copy(newsk, sk);
1887
1888 newsk->sk_prot_creator = prot;
1889
1890 /* SANITY */
1891 if (likely(newsk->sk_net_refcnt))
1892 get_net(sock_net(newsk));
1893 sk_node_init(&newsk->sk_node);
1894 sock_lock_init(newsk);
1895 bh_lock_sock(newsk);
1896 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1897 newsk->sk_backlog.len = 0;
1898
1899 atomic_set(&newsk->sk_rmem_alloc, 0);
1900 /*
1901 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1902 */
1903 refcount_set(&newsk->sk_wmem_alloc, 1);
1904 atomic_set(&newsk->sk_omem_alloc, 0);
1905 sk_init_common(newsk);
1906
1907 newsk->sk_dst_cache = NULL;
1908 newsk->sk_dst_pending_confirm = 0;
1909 newsk->sk_wmem_queued = 0;
1910 newsk->sk_forward_alloc = 0;
1911 atomic_set(&newsk->sk_drops, 0);
1912 newsk->sk_send_head = NULL;
1913 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1914 atomic_set(&newsk->sk_zckey, 0);
1915
1916 sock_reset_flag(newsk, SOCK_DONE);
1917
1918 /* sk->sk_memcg will be populated at accept() time */
1919 newsk->sk_memcg = NULL;
1920
1921 cgroup_sk_clone(&newsk->sk_cgrp_data);
1922
1923 rcu_read_lock();
1924 filter = rcu_dereference(sk->sk_filter);
1925 if (filter != NULL)
1926 /* though it's an empty new sock, the charging may fail
1927 * if sysctl_optmem_max was changed between creation of
1928 * original socket and cloning
1929 */
1930 is_charged = sk_filter_charge(newsk, filter);
1931 RCU_INIT_POINTER(newsk->sk_filter, filter);
1932 rcu_read_unlock();
1933
1934 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1935 /* We need to make sure that we don't uncharge the new
1936 * socket if we couldn't charge it in the first place
1937 * as otherwise we uncharge the parent's filter.
1938 */
1939 if (!is_charged)
1940 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1941 sk_free_unlock_clone(newsk);
1942 newsk = NULL;
1943 goto out;
1944 }
1945 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1946
1947 if (bpf_sk_storage_clone(sk, newsk)) {
1948 sk_free_unlock_clone(newsk);
1949 newsk = NULL;
1950 goto out;
1951 }
1952
1953 /* Clear sk_user_data if parent had the pointer tagged
1954 * as not suitable for copying when cloning.
1955 */
1956 if (sk_user_data_is_nocopy(newsk))
1957 newsk->sk_user_data = NULL;
1958
1959 newsk->sk_err = 0;
1960 newsk->sk_err_soft = 0;
1961 newsk->sk_priority = 0;
1962 newsk->sk_incoming_cpu = raw_smp_processor_id();
1963 if (likely(newsk->sk_net_refcnt))
1964 sock_inuse_add(sock_net(newsk), 1);
1965
1966 /*
1967 * Before updating sk_refcnt, we must commit prior changes to memory
1968 * (Documentation/RCU/rculist_nulls.rst for details)
1969 */
1970 smp_wmb();
1971 refcount_set(&newsk->sk_refcnt, 2);
1972
1973 /*
1974 * Increment the counter in the same struct proto as the master
1975 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1976 * is the same as sk->sk_prot->socks, as this field was copied
1977 * with memcpy).
1978 *
1979 * This _changes_ the previous behaviour, where
1980 * tcp_create_openreq_child always was incrementing the
1981 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1982 * to be taken into account in all callers. -acme
1983 */
1984 sk_refcnt_debug_inc(newsk);
1985 sk_set_socket(newsk, NULL);
1986 sk_tx_queue_clear(newsk);
1987 RCU_INIT_POINTER(newsk->sk_wq, NULL);
1988
1989 if (newsk->sk_prot->sockets_allocated)
1990 sk_sockets_allocated_inc(newsk);
1991
1992 if (sock_needs_netstamp(sk) &&
1993 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1994 net_enable_timestamp();
1995 }
1996out:
1997 return newsk;
1998}
1999EXPORT_SYMBOL_GPL(sk_clone_lock);
2000
2001void sk_free_unlock_clone(struct sock *sk)
2002{
2003 /* It is still raw copy of parent, so invalidate
2004 * destructor and make plain sk_free() */
2005 sk->sk_destruct = NULL;
2006 bh_unlock_sock(sk);
2007 sk_free(sk);
2008}
2009EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2010
2011void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2012{
2013 u32 max_segs = 1;
2014
2015 sk_dst_set(sk, dst);
2016 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2017 if (sk->sk_route_caps & NETIF_F_GSO)
2018 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2019 sk->sk_route_caps &= ~sk->sk_route_nocaps;
2020 if (sk_can_gso(sk)) {
2021 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2022 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2023 } else {
2024 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2025 sk->sk_gso_max_size = dst->dev->gso_max_size;
2026 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2027 }
2028 }
2029 sk->sk_gso_max_segs = max_segs;
2030}
2031EXPORT_SYMBOL_GPL(sk_setup_caps);
2032
2033/*
2034 * Simple resource managers for sockets.
2035 */
2036
2037
2038/*
2039 * Write buffer destructor automatically called from kfree_skb.
2040 */
2041void sock_wfree(struct sk_buff *skb)
2042{
2043 struct sock *sk = skb->sk;
2044 unsigned int len = skb->truesize;
2045
2046 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2047 /*
2048 * Keep a reference on sk_wmem_alloc, this will be released
2049 * after sk_write_space() call
2050 */
2051 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2052 sk->sk_write_space(sk);
2053 len = 1;
2054 }
2055 /*
2056 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2057 * could not do because of in-flight packets
2058 */
2059 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2060 __sk_free(sk);
2061}
2062EXPORT_SYMBOL(sock_wfree);
2063
2064/* This variant of sock_wfree() is used by TCP,
2065 * since it sets SOCK_USE_WRITE_QUEUE.
2066 */
2067void __sock_wfree(struct sk_buff *skb)
2068{
2069 struct sock *sk = skb->sk;
2070
2071 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2072 __sk_free(sk);
2073}
2074
2075void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2076{
2077 skb_orphan(skb);
2078 skb->sk = sk;
2079#ifdef CONFIG_INET
2080 if (unlikely(!sk_fullsock(sk))) {
2081 skb->destructor = sock_edemux;
2082 sock_hold(sk);
2083 return;
2084 }
2085#endif
2086 skb->destructor = sock_wfree;
2087 skb_set_hash_from_sk(skb, sk);
2088 /*
2089 * We used to take a refcount on sk, but following operation
2090 * is enough to guarantee sk_free() wont free this sock until
2091 * all in-flight packets are completed
2092 */
2093 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2094}
2095EXPORT_SYMBOL(skb_set_owner_w);
2096
2097static bool can_skb_orphan_partial(const struct sk_buff *skb)
2098{
2099#ifdef CONFIG_TLS_DEVICE
2100 /* Drivers depend on in-order delivery for crypto offload,
2101 * partial orphan breaks out-of-order-OK logic.
2102 */
2103 if (skb->decrypted)
2104 return false;
2105#endif
2106 return (skb->destructor == sock_wfree ||
2107 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2108}
2109
2110/* This helper is used by netem, as it can hold packets in its
2111 * delay queue. We want to allow the owner socket to send more
2112 * packets, as if they were already TX completed by a typical driver.
2113 * But we also want to keep skb->sk set because some packet schedulers
2114 * rely on it (sch_fq for example).
2115 */
2116void skb_orphan_partial(struct sk_buff *skb)
2117{
2118 if (skb_is_tcp_pure_ack(skb))
2119 return;
2120
2121 if (can_skb_orphan_partial(skb)) {
2122 struct sock *sk = skb->sk;
2123
2124 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2125 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2126 skb->destructor = sock_efree;
2127 }
2128 } else {
2129 skb_orphan(skb);
2130 }
2131}
2132EXPORT_SYMBOL(skb_orphan_partial);
2133
2134/*
2135 * Read buffer destructor automatically called from kfree_skb.
2136 */
2137void sock_rfree(struct sk_buff *skb)
2138{
2139 struct sock *sk = skb->sk;
2140 unsigned int len = skb->truesize;
2141
2142 atomic_sub(len, &sk->sk_rmem_alloc);
2143 sk_mem_uncharge(sk, len);
2144}
2145EXPORT_SYMBOL(sock_rfree);
2146
2147/*
2148 * Buffer destructor for skbs that are not used directly in read or write
2149 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2150 */
2151void sock_efree(struct sk_buff *skb)
2152{
2153 sock_put(skb->sk);
2154}
2155EXPORT_SYMBOL(sock_efree);
2156
2157/* Buffer destructor for prefetch/receive path where reference count may
2158 * not be held, e.g. for listen sockets.
2159 */
2160#ifdef CONFIG_INET
2161void sock_pfree(struct sk_buff *skb)
2162{
2163 if (sk_is_refcounted(skb->sk))
2164 sock_gen_put(skb->sk);
2165}
2166EXPORT_SYMBOL(sock_pfree);
2167#endif /* CONFIG_INET */
2168
2169kuid_t sock_i_uid(struct sock *sk)
2170{
2171 kuid_t uid;
2172
2173 read_lock_bh(&sk->sk_callback_lock);
2174 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2175 read_unlock_bh(&sk->sk_callback_lock);
2176 return uid;
2177}
2178EXPORT_SYMBOL(sock_i_uid);
2179
2180unsigned long sock_i_ino(struct sock *sk)
2181{
2182 unsigned long ino;
2183
2184 read_lock_bh(&sk->sk_callback_lock);
2185 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2186 read_unlock_bh(&sk->sk_callback_lock);
2187 return ino;
2188}
2189EXPORT_SYMBOL(sock_i_ino);
2190
2191/*
2192 * Allocate a skb from the socket's send buffer.
2193 */
2194struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2195 gfp_t priority)
2196{
2197 if (force ||
2198 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2199 struct sk_buff *skb = alloc_skb(size, priority);
2200
2201 if (skb) {
2202 skb_set_owner_w(skb, sk);
2203 return skb;
2204 }
2205 }
2206 return NULL;
2207}
2208EXPORT_SYMBOL(sock_wmalloc);
2209
2210static void sock_ofree(struct sk_buff *skb)
2211{
2212 struct sock *sk = skb->sk;
2213
2214 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2215}
2216
2217struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2218 gfp_t priority)
2219{
2220 struct sk_buff *skb;
2221
2222 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2223 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2224 sysctl_optmem_max)
2225 return NULL;
2226
2227 skb = alloc_skb(size, priority);
2228 if (!skb)
2229 return NULL;
2230
2231 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2232 skb->sk = sk;
2233 skb->destructor = sock_ofree;
2234 return skb;
2235}
2236
2237/*
2238 * Allocate a memory block from the socket's option memory buffer.
2239 */
2240void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2241{
2242 if ((unsigned int)size <= sysctl_optmem_max &&
2243 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2244 void *mem;
2245 /* First do the add, to avoid the race if kmalloc
2246 * might sleep.
2247 */
2248 atomic_add(size, &sk->sk_omem_alloc);
2249 mem = kmalloc(size, priority);
2250 if (mem)
2251 return mem;
2252 atomic_sub(size, &sk->sk_omem_alloc);
2253 }
2254 return NULL;
2255}
2256EXPORT_SYMBOL(sock_kmalloc);
2257
2258/* Free an option memory block. Note, we actually want the inline
2259 * here as this allows gcc to detect the nullify and fold away the
2260 * condition entirely.
2261 */
2262static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2263 const bool nullify)
2264{
2265 if (WARN_ON_ONCE(!mem))
2266 return;
2267 if (nullify)
2268 kfree_sensitive(mem);
2269 else
2270 kfree(mem);
2271 atomic_sub(size, &sk->sk_omem_alloc);
2272}
2273
2274void sock_kfree_s(struct sock *sk, void *mem, int size)
2275{
2276 __sock_kfree_s(sk, mem, size, false);
2277}
2278EXPORT_SYMBOL(sock_kfree_s);
2279
2280void sock_kzfree_s(struct sock *sk, void *mem, int size)
2281{
2282 __sock_kfree_s(sk, mem, size, true);
2283}
2284EXPORT_SYMBOL(sock_kzfree_s);
2285
2286/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2287 I think, these locks should be removed for datagram sockets.
2288 */
2289static long sock_wait_for_wmem(struct sock *sk, long timeo)
2290{
2291 DEFINE_WAIT(wait);
2292
2293 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2294 for (;;) {
2295 if (!timeo)
2296 break;
2297 if (signal_pending(current))
2298 break;
2299 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2300 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2301 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2302 break;
2303 if (sk->sk_shutdown & SEND_SHUTDOWN)
2304 break;
2305 if (sk->sk_err)
2306 break;
2307 timeo = schedule_timeout(timeo);
2308 }
2309 finish_wait(sk_sleep(sk), &wait);
2310 return timeo;
2311}
2312
2313
2314/*
2315 * Generic send/receive buffer handlers
2316 */
2317
2318struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2319 unsigned long data_len, int noblock,
2320 int *errcode, int max_page_order)
2321{
2322 struct sk_buff *skb;
2323 long timeo;
2324 int err;
2325
2326 timeo = sock_sndtimeo(sk, noblock);
2327 for (;;) {
2328 err = sock_error(sk);
2329 if (err != 0)
2330 goto failure;
2331
2332 err = -EPIPE;
2333 if (sk->sk_shutdown & SEND_SHUTDOWN)
2334 goto failure;
2335
2336 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2337 break;
2338
2339 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2340 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2341 err = -EAGAIN;
2342 if (!timeo)
2343 goto failure;
2344 if (signal_pending(current))
2345 goto interrupted;
2346 timeo = sock_wait_for_wmem(sk, timeo);
2347 }
2348 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2349 errcode, sk->sk_allocation);
2350 if (skb)
2351 skb_set_owner_w(skb, sk);
2352 return skb;
2353
2354interrupted:
2355 err = sock_intr_errno(timeo);
2356failure:
2357 *errcode = err;
2358 return NULL;
2359}
2360EXPORT_SYMBOL(sock_alloc_send_pskb);
2361
2362struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2363 int noblock, int *errcode)
2364{
2365 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2366}
2367EXPORT_SYMBOL(sock_alloc_send_skb);
2368
2369int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2370 struct sockcm_cookie *sockc)
2371{
2372 u32 tsflags;
2373
2374 switch (cmsg->cmsg_type) {
2375 case SO_MARK:
2376 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2377 return -EPERM;
2378 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2379 return -EINVAL;
2380 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2381 break;
2382 case SO_TIMESTAMPING_OLD:
2383 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2384 return -EINVAL;
2385
2386 tsflags = *(u32 *)CMSG_DATA(cmsg);
2387 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2388 return -EINVAL;
2389
2390 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2391 sockc->tsflags |= tsflags;
2392 break;
2393 case SCM_TXTIME:
2394 if (!sock_flag(sk, SOCK_TXTIME))
2395 return -EINVAL;
2396 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2397 return -EINVAL;
2398 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2399 break;
2400 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2401 case SCM_RIGHTS:
2402 case SCM_CREDENTIALS:
2403 break;
2404 default:
2405 return -EINVAL;
2406 }
2407 return 0;
2408}
2409EXPORT_SYMBOL(__sock_cmsg_send);
2410
2411int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2412 struct sockcm_cookie *sockc)
2413{
2414 struct cmsghdr *cmsg;
2415 int ret;
2416
2417 for_each_cmsghdr(cmsg, msg) {
2418 if (!CMSG_OK(msg, cmsg))
2419 return -EINVAL;
2420 if (cmsg->cmsg_level != SOL_SOCKET)
2421 continue;
2422 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2423 if (ret)
2424 return ret;
2425 }
2426 return 0;
2427}
2428EXPORT_SYMBOL(sock_cmsg_send);
2429
2430static void sk_enter_memory_pressure(struct sock *sk)
2431{
2432 if (!sk->sk_prot->enter_memory_pressure)
2433 return;
2434
2435 sk->sk_prot->enter_memory_pressure(sk);
2436}
2437
2438static void sk_leave_memory_pressure(struct sock *sk)
2439{
2440 if (sk->sk_prot->leave_memory_pressure) {
2441 sk->sk_prot->leave_memory_pressure(sk);
2442 } else {
2443 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2444
2445 if (memory_pressure && READ_ONCE(*memory_pressure))
2446 WRITE_ONCE(*memory_pressure, 0);
2447 }
2448}
2449
2450#define SKB_FRAG_PAGE_ORDER get_order(32768)
2451DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2452
2453/**
2454 * skb_page_frag_refill - check that a page_frag contains enough room
2455 * @sz: minimum size of the fragment we want to get
2456 * @pfrag: pointer to page_frag
2457 * @gfp: priority for memory allocation
2458 *
2459 * Note: While this allocator tries to use high order pages, there is
2460 * no guarantee that allocations succeed. Therefore, @sz MUST be
2461 * less or equal than PAGE_SIZE.
2462 */
2463bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2464{
2465 if (pfrag->page) {
2466 if (page_ref_count(pfrag->page) == 1) {
2467 pfrag->offset = 0;
2468 return true;
2469 }
2470 if (pfrag->offset + sz <= pfrag->size)
2471 return true;
2472 put_page(pfrag->page);
2473 }
2474
2475 pfrag->offset = 0;
2476 if (SKB_FRAG_PAGE_ORDER &&
2477 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2478 /* Avoid direct reclaim but allow kswapd to wake */
2479 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2480 __GFP_COMP | __GFP_NOWARN |
2481 __GFP_NORETRY,
2482 SKB_FRAG_PAGE_ORDER);
2483 if (likely(pfrag->page)) {
2484 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2485 return true;
2486 }
2487 }
2488 pfrag->page = alloc_page(gfp);
2489 if (likely(pfrag->page)) {
2490 pfrag->size = PAGE_SIZE;
2491 return true;
2492 }
2493 return false;
2494}
2495EXPORT_SYMBOL(skb_page_frag_refill);
2496
2497bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2498{
2499 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2500 return true;
2501
2502 sk_enter_memory_pressure(sk);
2503 sk_stream_moderate_sndbuf(sk);
2504 return false;
2505}
2506EXPORT_SYMBOL(sk_page_frag_refill);
2507
2508static void __lock_sock(struct sock *sk)
2509 __releases(&sk->sk_lock.slock)
2510 __acquires(&sk->sk_lock.slock)
2511{
2512 DEFINE_WAIT(wait);
2513
2514 for (;;) {
2515 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2516 TASK_UNINTERRUPTIBLE);
2517 spin_unlock_bh(&sk->sk_lock.slock);
2518 schedule();
2519 spin_lock_bh(&sk->sk_lock.slock);
2520 if (!sock_owned_by_user(sk))
2521 break;
2522 }
2523 finish_wait(&sk->sk_lock.wq, &wait);
2524}
2525
2526void __release_sock(struct sock *sk)
2527 __releases(&sk->sk_lock.slock)
2528 __acquires(&sk->sk_lock.slock)
2529{
2530 struct sk_buff *skb, *next;
2531
2532 while ((skb = sk->sk_backlog.head) != NULL) {
2533 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2534
2535 spin_unlock_bh(&sk->sk_lock.slock);
2536
2537 do {
2538 next = skb->next;
2539 prefetch(next);
2540 WARN_ON_ONCE(skb_dst_is_noref(skb));
2541 skb_mark_not_on_list(skb);
2542 sk_backlog_rcv(sk, skb);
2543
2544 cond_resched();
2545
2546 skb = next;
2547 } while (skb != NULL);
2548
2549 spin_lock_bh(&sk->sk_lock.slock);
2550 }
2551
2552 /*
2553 * Doing the zeroing here guarantee we can not loop forever
2554 * while a wild producer attempts to flood us.
2555 */
2556 sk->sk_backlog.len = 0;
2557}
2558
2559void __sk_flush_backlog(struct sock *sk)
2560{
2561 spin_lock_bh(&sk->sk_lock.slock);
2562 __release_sock(sk);
2563 spin_unlock_bh(&sk->sk_lock.slock);
2564}
2565
2566/**
2567 * sk_wait_data - wait for data to arrive at sk_receive_queue
2568 * @sk: sock to wait on
2569 * @timeo: for how long
2570 * @skb: last skb seen on sk_receive_queue
2571 *
2572 * Now socket state including sk->sk_err is changed only under lock,
2573 * hence we may omit checks after joining wait queue.
2574 * We check receive queue before schedule() only as optimization;
2575 * it is very likely that release_sock() added new data.
2576 */
2577int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2578{
2579 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2580 int rc;
2581
2582 add_wait_queue(sk_sleep(sk), &wait);
2583 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2584 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2585 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2586 remove_wait_queue(sk_sleep(sk), &wait);
2587 return rc;
2588}
2589EXPORT_SYMBOL(sk_wait_data);
2590
2591/**
2592 * __sk_mem_raise_allocated - increase memory_allocated
2593 * @sk: socket
2594 * @size: memory size to allocate
2595 * @amt: pages to allocate
2596 * @kind: allocation type
2597 *
2598 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2599 */
2600int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2601{
2602 struct proto *prot = sk->sk_prot;
2603 long allocated = sk_memory_allocated_add(sk, amt);
2604 bool charged = true;
2605
2606 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2607 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2608 goto suppress_allocation;
2609
2610 /* Under limit. */
2611 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2612 sk_leave_memory_pressure(sk);
2613 return 1;
2614 }
2615
2616 /* Under pressure. */
2617 if (allocated > sk_prot_mem_limits(sk, 1))
2618 sk_enter_memory_pressure(sk);
2619
2620 /* Over hard limit. */
2621 if (allocated > sk_prot_mem_limits(sk, 2))
2622 goto suppress_allocation;
2623
2624 /* guarantee minimum buffer size under pressure */
2625 if (kind == SK_MEM_RECV) {
2626 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2627 return 1;
2628
2629 } else { /* SK_MEM_SEND */
2630 int wmem0 = sk_get_wmem0(sk, prot);
2631
2632 if (sk->sk_type == SOCK_STREAM) {
2633 if (sk->sk_wmem_queued < wmem0)
2634 return 1;
2635 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2636 return 1;
2637 }
2638 }
2639
2640 if (sk_has_memory_pressure(sk)) {
2641 u64 alloc;
2642
2643 if (!sk_under_memory_pressure(sk))
2644 return 1;
2645 alloc = sk_sockets_allocated_read_positive(sk);
2646 if (sk_prot_mem_limits(sk, 2) > alloc *
2647 sk_mem_pages(sk->sk_wmem_queued +
2648 atomic_read(&sk->sk_rmem_alloc) +
2649 sk->sk_forward_alloc))
2650 return 1;
2651 }
2652
2653suppress_allocation:
2654
2655 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2656 sk_stream_moderate_sndbuf(sk);
2657
2658 /* Fail only if socket is _under_ its sndbuf.
2659 * In this case we cannot block, so that we have to fail.
2660 */
2661 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2662 return 1;
2663 }
2664
2665 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2666 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2667
2668 sk_memory_allocated_sub(sk, amt);
2669
2670 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2671 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2672
2673 return 0;
2674}
2675EXPORT_SYMBOL(__sk_mem_raise_allocated);
2676
2677/**
2678 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2679 * @sk: socket
2680 * @size: memory size to allocate
2681 * @kind: allocation type
2682 *
2683 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2684 * rmem allocation. This function assumes that protocols which have
2685 * memory_pressure use sk_wmem_queued as write buffer accounting.
2686 */
2687int __sk_mem_schedule(struct sock *sk, int size, int kind)
2688{
2689 int ret, amt = sk_mem_pages(size);
2690
2691 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2692 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2693 if (!ret)
2694 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2695 return ret;
2696}
2697EXPORT_SYMBOL(__sk_mem_schedule);
2698
2699/**
2700 * __sk_mem_reduce_allocated - reclaim memory_allocated
2701 * @sk: socket
2702 * @amount: number of quanta
2703 *
2704 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2705 */
2706void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2707{
2708 sk_memory_allocated_sub(sk, amount);
2709
2710 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2711 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2712
2713 if (sk_under_memory_pressure(sk) &&
2714 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2715 sk_leave_memory_pressure(sk);
2716}
2717EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2718
2719/**
2720 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2721 * @sk: socket
2722 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2723 */
2724void __sk_mem_reclaim(struct sock *sk, int amount)
2725{
2726 amount >>= SK_MEM_QUANTUM_SHIFT;
2727 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2728 __sk_mem_reduce_allocated(sk, amount);
2729}
2730EXPORT_SYMBOL(__sk_mem_reclaim);
2731
2732int sk_set_peek_off(struct sock *sk, int val)
2733{
2734 sk->sk_peek_off = val;
2735 return 0;
2736}
2737EXPORT_SYMBOL_GPL(sk_set_peek_off);
2738
2739/*
2740 * Set of default routines for initialising struct proto_ops when
2741 * the protocol does not support a particular function. In certain
2742 * cases where it makes no sense for a protocol to have a "do nothing"
2743 * function, some default processing is provided.
2744 */
2745
2746int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2747{
2748 return -EOPNOTSUPP;
2749}
2750EXPORT_SYMBOL(sock_no_bind);
2751
2752int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2753 int len, int flags)
2754{
2755 return -EOPNOTSUPP;
2756}
2757EXPORT_SYMBOL(sock_no_connect);
2758
2759int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2760{
2761 return -EOPNOTSUPP;
2762}
2763EXPORT_SYMBOL(sock_no_socketpair);
2764
2765int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2766 bool kern)
2767{
2768 return -EOPNOTSUPP;
2769}
2770EXPORT_SYMBOL(sock_no_accept);
2771
2772int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2773 int peer)
2774{
2775 return -EOPNOTSUPP;
2776}
2777EXPORT_SYMBOL(sock_no_getname);
2778
2779int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2780{
2781 return -EOPNOTSUPP;
2782}
2783EXPORT_SYMBOL(sock_no_ioctl);
2784
2785int sock_no_listen(struct socket *sock, int backlog)
2786{
2787 return -EOPNOTSUPP;
2788}
2789EXPORT_SYMBOL(sock_no_listen);
2790
2791int sock_no_shutdown(struct socket *sock, int how)
2792{
2793 return -EOPNOTSUPP;
2794}
2795EXPORT_SYMBOL(sock_no_shutdown);
2796
2797int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2798{
2799 return -EOPNOTSUPP;
2800}
2801EXPORT_SYMBOL(sock_no_sendmsg);
2802
2803int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2804{
2805 return -EOPNOTSUPP;
2806}
2807EXPORT_SYMBOL(sock_no_sendmsg_locked);
2808
2809int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2810 int flags)
2811{
2812 return -EOPNOTSUPP;
2813}
2814EXPORT_SYMBOL(sock_no_recvmsg);
2815
2816int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2817{
2818 /* Mirror missing mmap method error code */
2819 return -ENODEV;
2820}
2821EXPORT_SYMBOL(sock_no_mmap);
2822
2823/*
2824 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2825 * various sock-based usage counts.
2826 */
2827void __receive_sock(struct file *file)
2828{
2829 struct socket *sock;
2830 int error;
2831
2832 /*
2833 * The resulting value of "error" is ignored here since we only
2834 * need to take action when the file is a socket and testing
2835 * "sock" for NULL is sufficient.
2836 */
2837 sock = sock_from_file(file, &error);
2838 if (sock) {
2839 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2840 sock_update_classid(&sock->sk->sk_cgrp_data);
2841 }
2842}
2843
2844ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2845{
2846 ssize_t res;
2847 struct msghdr msg = {.msg_flags = flags};
2848 struct kvec iov;
2849 char *kaddr = kmap(page);
2850 iov.iov_base = kaddr + offset;
2851 iov.iov_len = size;
2852 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2853 kunmap(page);
2854 return res;
2855}
2856EXPORT_SYMBOL(sock_no_sendpage);
2857
2858ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2859 int offset, size_t size, int flags)
2860{
2861 ssize_t res;
2862 struct msghdr msg = {.msg_flags = flags};
2863 struct kvec iov;
2864 char *kaddr = kmap(page);
2865
2866 iov.iov_base = kaddr + offset;
2867 iov.iov_len = size;
2868 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2869 kunmap(page);
2870 return res;
2871}
2872EXPORT_SYMBOL(sock_no_sendpage_locked);
2873
2874/*
2875 * Default Socket Callbacks
2876 */
2877
2878static void sock_def_wakeup(struct sock *sk)
2879{
2880 struct socket_wq *wq;
2881
2882 rcu_read_lock();
2883 wq = rcu_dereference(sk->sk_wq);
2884 if (skwq_has_sleeper(wq))
2885 wake_up_interruptible_all(&wq->wait);
2886 rcu_read_unlock();
2887}
2888
2889static void sock_def_error_report(struct sock *sk)
2890{
2891 struct socket_wq *wq;
2892
2893 rcu_read_lock();
2894 wq = rcu_dereference(sk->sk_wq);
2895 if (skwq_has_sleeper(wq))
2896 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2897 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2898 rcu_read_unlock();
2899}
2900
2901void sock_def_readable(struct sock *sk)
2902{
2903 struct socket_wq *wq;
2904
2905 rcu_read_lock();
2906 wq = rcu_dereference(sk->sk_wq);
2907 if (skwq_has_sleeper(wq))
2908 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2909 EPOLLRDNORM | EPOLLRDBAND);
2910 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2911 rcu_read_unlock();
2912}
2913
2914static void sock_def_write_space(struct sock *sk)
2915{
2916 struct socket_wq *wq;
2917
2918 rcu_read_lock();
2919
2920 /* Do not wake up a writer until he can make "significant"
2921 * progress. --DaveM
2922 */
2923 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2924 wq = rcu_dereference(sk->sk_wq);
2925 if (skwq_has_sleeper(wq))
2926 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2927 EPOLLWRNORM | EPOLLWRBAND);
2928
2929 /* Should agree with poll, otherwise some programs break */
2930 if (sock_writeable(sk))
2931 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2932 }
2933
2934 rcu_read_unlock();
2935}
2936
2937static void sock_def_destruct(struct sock *sk)
2938{
2939}
2940
2941void sk_send_sigurg(struct sock *sk)
2942{
2943 if (sk->sk_socket && sk->sk_socket->file)
2944 if (send_sigurg(&sk->sk_socket->file->f_owner))
2945 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2946}
2947EXPORT_SYMBOL(sk_send_sigurg);
2948
2949void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2950 unsigned long expires)
2951{
2952 if (!mod_timer(timer, expires))
2953 sock_hold(sk);
2954}
2955EXPORT_SYMBOL(sk_reset_timer);
2956
2957void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2958{
2959 if (del_timer(timer))
2960 __sock_put(sk);
2961}
2962EXPORT_SYMBOL(sk_stop_timer);
2963
2964void sock_init_data(struct socket *sock, struct sock *sk)
2965{
2966 sk_init_common(sk);
2967 sk->sk_send_head = NULL;
2968
2969 timer_setup(&sk->sk_timer, NULL, 0);
2970
2971 sk->sk_allocation = GFP_KERNEL;
2972 sk->sk_rcvbuf = sysctl_rmem_default;
2973 sk->sk_sndbuf = sysctl_wmem_default;
2974 sk->sk_state = TCP_CLOSE;
2975 sk_set_socket(sk, sock);
2976
2977 sock_set_flag(sk, SOCK_ZAPPED);
2978
2979 if (sock) {
2980 sk->sk_type = sock->type;
2981 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2982 sock->sk = sk;
2983 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2984 } else {
2985 RCU_INIT_POINTER(sk->sk_wq, NULL);
2986 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2987 }
2988
2989 rwlock_init(&sk->sk_callback_lock);
2990 if (sk->sk_kern_sock)
2991 lockdep_set_class_and_name(
2992 &sk->sk_callback_lock,
2993 af_kern_callback_keys + sk->sk_family,
2994 af_family_kern_clock_key_strings[sk->sk_family]);
2995 else
2996 lockdep_set_class_and_name(
2997 &sk->sk_callback_lock,
2998 af_callback_keys + sk->sk_family,
2999 af_family_clock_key_strings[sk->sk_family]);
3000
3001 sk->sk_state_change = sock_def_wakeup;
3002 sk->sk_data_ready = sock_def_readable;
3003 sk->sk_write_space = sock_def_write_space;
3004 sk->sk_error_report = sock_def_error_report;
3005 sk->sk_destruct = sock_def_destruct;
3006
3007 sk->sk_frag.page = NULL;
3008 sk->sk_frag.offset = 0;
3009 sk->sk_peek_off = -1;
3010
3011 sk->sk_peer_pid = NULL;
3012 sk->sk_peer_cred = NULL;
3013 sk->sk_write_pending = 0;
3014 sk->sk_rcvlowat = 1;
3015 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3016 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3017
3018 sk->sk_stamp = SK_DEFAULT_STAMP;
3019#if BITS_PER_LONG==32
3020 seqlock_init(&sk->sk_stamp_seq);
3021#endif
3022 atomic_set(&sk->sk_zckey, 0);
3023
3024#ifdef CONFIG_NET_RX_BUSY_POLL
3025 sk->sk_napi_id = 0;
3026 sk->sk_ll_usec = sysctl_net_busy_read;
3027#endif
3028
3029 sk->sk_max_pacing_rate = ~0UL;
3030 sk->sk_pacing_rate = ~0UL;
3031 WRITE_ONCE(sk->sk_pacing_shift, 10);
3032 sk->sk_incoming_cpu = -1;
3033
3034 sk_rx_queue_clear(sk);
3035 /*
3036 * Before updating sk_refcnt, we must commit prior changes to memory
3037 * (Documentation/RCU/rculist_nulls.rst for details)
3038 */
3039 smp_wmb();
3040 refcount_set(&sk->sk_refcnt, 1);
3041 atomic_set(&sk->sk_drops, 0);
3042}
3043EXPORT_SYMBOL(sock_init_data);
3044
3045void lock_sock_nested(struct sock *sk, int subclass)
3046{
3047 might_sleep();
3048 spin_lock_bh(&sk->sk_lock.slock);
3049 if (sk->sk_lock.owned)
3050 __lock_sock(sk);
3051 sk->sk_lock.owned = 1;
3052 spin_unlock(&sk->sk_lock.slock);
3053 /*
3054 * The sk_lock has mutex_lock() semantics here:
3055 */
3056 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3057 local_bh_enable();
3058}
3059EXPORT_SYMBOL(lock_sock_nested);
3060
3061void release_sock(struct sock *sk)
3062{
3063 spin_lock_bh(&sk->sk_lock.slock);
3064 if (sk->sk_backlog.tail)
3065 __release_sock(sk);
3066
3067 /* Warning : release_cb() might need to release sk ownership,
3068 * ie call sock_release_ownership(sk) before us.
3069 */
3070 if (sk->sk_prot->release_cb)
3071 sk->sk_prot->release_cb(sk);
3072
3073 sock_release_ownership(sk);
3074 if (waitqueue_active(&sk->sk_lock.wq))
3075 wake_up(&sk->sk_lock.wq);
3076 spin_unlock_bh(&sk->sk_lock.slock);
3077}
3078EXPORT_SYMBOL(release_sock);
3079
3080/**
3081 * lock_sock_fast - fast version of lock_sock
3082 * @sk: socket
3083 *
3084 * This version should be used for very small section, where process wont block
3085 * return false if fast path is taken:
3086 *
3087 * sk_lock.slock locked, owned = 0, BH disabled
3088 *
3089 * return true if slow path is taken:
3090 *
3091 * sk_lock.slock unlocked, owned = 1, BH enabled
3092 */
3093bool lock_sock_fast(struct sock *sk)
3094{
3095 might_sleep();
3096 spin_lock_bh(&sk->sk_lock.slock);
3097
3098 if (!sk->sk_lock.owned)
3099 /*
3100 * Note : We must disable BH
3101 */
3102 return false;
3103
3104 __lock_sock(sk);
3105 sk->sk_lock.owned = 1;
3106 spin_unlock(&sk->sk_lock.slock);
3107 /*
3108 * The sk_lock has mutex_lock() semantics here:
3109 */
3110 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3111 local_bh_enable();
3112 return true;
3113}
3114EXPORT_SYMBOL(lock_sock_fast);
3115
3116int sock_gettstamp(struct socket *sock, void __user *userstamp,
3117 bool timeval, bool time32)
3118{
3119 struct sock *sk = sock->sk;
3120 struct timespec64 ts;
3121
3122 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3123 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3124 if (ts.tv_sec == -1)
3125 return -ENOENT;
3126 if (ts.tv_sec == 0) {
3127 ktime_t kt = ktime_get_real();
3128 sock_write_timestamp(sk, kt);
3129 ts = ktime_to_timespec64(kt);
3130 }
3131
3132 if (timeval)
3133 ts.tv_nsec /= 1000;
3134
3135#ifdef CONFIG_COMPAT_32BIT_TIME
3136 if (time32)
3137 return put_old_timespec32(&ts, userstamp);
3138#endif
3139#ifdef CONFIG_SPARC64
3140 /* beware of padding in sparc64 timeval */
3141 if (timeval && !in_compat_syscall()) {
3142 struct __kernel_old_timeval __user tv = {
3143 .tv_sec = ts.tv_sec,
3144 .tv_usec = ts.tv_nsec,
3145 };
3146 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3147 return -EFAULT;
3148 return 0;
3149 }
3150#endif
3151 return put_timespec64(&ts, userstamp);
3152}
3153EXPORT_SYMBOL(sock_gettstamp);
3154
3155void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3156{
3157 if (!sock_flag(sk, flag)) {
3158 unsigned long previous_flags = sk->sk_flags;
3159
3160 sock_set_flag(sk, flag);
3161 /*
3162 * we just set one of the two flags which require net
3163 * time stamping, but time stamping might have been on
3164 * already because of the other one
3165 */
3166 if (sock_needs_netstamp(sk) &&
3167 !(previous_flags & SK_FLAGS_TIMESTAMP))
3168 net_enable_timestamp();
3169 }
3170}
3171
3172int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3173 int level, int type)
3174{
3175 struct sock_exterr_skb *serr;
3176 struct sk_buff *skb;
3177 int copied, err;
3178
3179 err = -EAGAIN;
3180 skb = sock_dequeue_err_skb(sk);
3181 if (skb == NULL)
3182 goto out;
3183
3184 copied = skb->len;
3185 if (copied > len) {
3186 msg->msg_flags |= MSG_TRUNC;
3187 copied = len;
3188 }
3189 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3190 if (err)
3191 goto out_free_skb;
3192
3193 sock_recv_timestamp(msg, sk, skb);
3194
3195 serr = SKB_EXT_ERR(skb);
3196 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3197
3198 msg->msg_flags |= MSG_ERRQUEUE;
3199 err = copied;
3200
3201out_free_skb:
3202 kfree_skb(skb);
3203out:
3204 return err;
3205}
3206EXPORT_SYMBOL(sock_recv_errqueue);
3207
3208/*
3209 * Get a socket option on an socket.
3210 *
3211 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3212 * asynchronous errors should be reported by getsockopt. We assume
3213 * this means if you specify SO_ERROR (otherwise whats the point of it).
3214 */
3215int sock_common_getsockopt(struct socket *sock, int level, int optname,
3216 char __user *optval, int __user *optlen)
3217{
3218 struct sock *sk = sock->sk;
3219
3220 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3221}
3222EXPORT_SYMBOL(sock_common_getsockopt);
3223
3224int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3225 int flags)
3226{
3227 struct sock *sk = sock->sk;
3228 int addr_len = 0;
3229 int err;
3230
3231 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3232 flags & ~MSG_DONTWAIT, &addr_len);
3233 if (err >= 0)
3234 msg->msg_namelen = addr_len;
3235 return err;
3236}
3237EXPORT_SYMBOL(sock_common_recvmsg);
3238
3239/*
3240 * Set socket options on an inet socket.
3241 */
3242int sock_common_setsockopt(struct socket *sock, int level, int optname,
3243 sockptr_t optval, unsigned int optlen)
3244{
3245 struct sock *sk = sock->sk;
3246
3247 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3248}
3249EXPORT_SYMBOL(sock_common_setsockopt);
3250
3251void sk_common_release(struct sock *sk)
3252{
3253 if (sk->sk_prot->destroy)
3254 sk->sk_prot->destroy(sk);
3255
3256 /*
3257 * Observation: when sk_common_release is called, processes have
3258 * no access to socket. But net still has.
3259 * Step one, detach it from networking:
3260 *
3261 * A. Remove from hash tables.
3262 */
3263
3264 sk->sk_prot->unhash(sk);
3265
3266 /*
3267 * In this point socket cannot receive new packets, but it is possible
3268 * that some packets are in flight because some CPU runs receiver and
3269 * did hash table lookup before we unhashed socket. They will achieve
3270 * receive queue and will be purged by socket destructor.
3271 *
3272 * Also we still have packets pending on receive queue and probably,
3273 * our own packets waiting in device queues. sock_destroy will drain
3274 * receive queue, but transmitted packets will delay socket destruction
3275 * until the last reference will be released.
3276 */
3277
3278 sock_orphan(sk);
3279
3280 xfrm_sk_free_policy(sk);
3281
3282 sk_refcnt_debug_release(sk);
3283
3284 sock_put(sk);
3285}
3286EXPORT_SYMBOL(sk_common_release);
3287
3288void sk_get_meminfo(const struct sock *sk, u32 *mem)
3289{
3290 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3291
3292 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3293 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3294 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3295 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3296 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3297 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3298 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3299 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3300 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3301}
3302
3303#ifdef CONFIG_PROC_FS
3304#define PROTO_INUSE_NR 64 /* should be enough for the first time */
3305struct prot_inuse {
3306 int val[PROTO_INUSE_NR];
3307};
3308
3309static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3310
3311void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3312{
3313 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3314}
3315EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3316
3317int sock_prot_inuse_get(struct net *net, struct proto *prot)
3318{
3319 int cpu, idx = prot->inuse_idx;
3320 int res = 0;
3321
3322 for_each_possible_cpu(cpu)
3323 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3324
3325 return res >= 0 ? res : 0;
3326}
3327EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3328
3329static void sock_inuse_add(struct net *net, int val)
3330{
3331 this_cpu_add(*net->core.sock_inuse, val);
3332}
3333
3334int sock_inuse_get(struct net *net)
3335{
3336 int cpu, res = 0;
3337
3338 for_each_possible_cpu(cpu)
3339 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3340
3341 return res;
3342}
3343
3344EXPORT_SYMBOL_GPL(sock_inuse_get);
3345
3346static int __net_init sock_inuse_init_net(struct net *net)
3347{
3348 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3349 if (net->core.prot_inuse == NULL)
3350 return -ENOMEM;
3351
3352 net->core.sock_inuse = alloc_percpu(int);
3353 if (net->core.sock_inuse == NULL)
3354 goto out;
3355
3356 return 0;
3357
3358out:
3359 free_percpu(net->core.prot_inuse);
3360 return -ENOMEM;
3361}
3362
3363static void __net_exit sock_inuse_exit_net(struct net *net)
3364{
3365 free_percpu(net->core.prot_inuse);
3366 free_percpu(net->core.sock_inuse);
3367}
3368
3369static struct pernet_operations net_inuse_ops = {
3370 .init = sock_inuse_init_net,
3371 .exit = sock_inuse_exit_net,
3372};
3373
3374static __init int net_inuse_init(void)
3375{
3376 if (register_pernet_subsys(&net_inuse_ops))
3377 panic("Cannot initialize net inuse counters");
3378
3379 return 0;
3380}
3381
3382core_initcall(net_inuse_init);
3383
3384static int assign_proto_idx(struct proto *prot)
3385{
3386 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3387
3388 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3389 pr_err("PROTO_INUSE_NR exhausted\n");
3390 return -ENOSPC;
3391 }
3392
3393 set_bit(prot->inuse_idx, proto_inuse_idx);
3394 return 0;
3395}
3396
3397static void release_proto_idx(struct proto *prot)
3398{
3399 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3400 clear_bit(prot->inuse_idx, proto_inuse_idx);
3401}
3402#else
3403static inline int assign_proto_idx(struct proto *prot)
3404{
3405 return 0;
3406}
3407
3408static inline void release_proto_idx(struct proto *prot)
3409{
3410}
3411
3412static void sock_inuse_add(struct net *net, int val)
3413{
3414}
3415#endif
3416
3417static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3418{
3419 if (!twsk_prot)
3420 return;
3421 kfree(twsk_prot->twsk_slab_name);
3422 twsk_prot->twsk_slab_name = NULL;
3423 kmem_cache_destroy(twsk_prot->twsk_slab);
3424 twsk_prot->twsk_slab = NULL;
3425}
3426
3427static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3428{
3429 if (!rsk_prot)
3430 return;
3431 kfree(rsk_prot->slab_name);
3432 rsk_prot->slab_name = NULL;
3433 kmem_cache_destroy(rsk_prot->slab);
3434 rsk_prot->slab = NULL;
3435}
3436
3437static int req_prot_init(const struct proto *prot)
3438{
3439 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3440
3441 if (!rsk_prot)
3442 return 0;
3443
3444 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3445 prot->name);
3446 if (!rsk_prot->slab_name)
3447 return -ENOMEM;
3448
3449 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3450 rsk_prot->obj_size, 0,
3451 SLAB_ACCOUNT | prot->slab_flags,
3452 NULL);
3453
3454 if (!rsk_prot->slab) {
3455 pr_crit("%s: Can't create request sock SLAB cache!\n",
3456 prot->name);
3457 return -ENOMEM;
3458 }
3459 return 0;
3460}
3461
3462int proto_register(struct proto *prot, int alloc_slab)
3463{
3464 int ret = -ENOBUFS;
3465
3466 if (alloc_slab) {
3467 prot->slab = kmem_cache_create_usercopy(prot->name,
3468 prot->obj_size, 0,
3469 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3470 prot->slab_flags,
3471 prot->useroffset, prot->usersize,
3472 NULL);
3473
3474 if (prot->slab == NULL) {
3475 pr_crit("%s: Can't create sock SLAB cache!\n",
3476 prot->name);
3477 goto out;
3478 }
3479
3480 if (req_prot_init(prot))
3481 goto out_free_request_sock_slab;
3482
3483 if (prot->twsk_prot != NULL) {
3484 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3485
3486 if (prot->twsk_prot->twsk_slab_name == NULL)
3487 goto out_free_request_sock_slab;
3488
3489 prot->twsk_prot->twsk_slab =
3490 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3491 prot->twsk_prot->twsk_obj_size,
3492 0,
3493 SLAB_ACCOUNT |
3494 prot->slab_flags,
3495 NULL);
3496 if (prot->twsk_prot->twsk_slab == NULL)
3497 goto out_free_timewait_sock_slab;
3498 }
3499 }
3500
3501 mutex_lock(&proto_list_mutex);
3502 ret = assign_proto_idx(prot);
3503 if (ret) {
3504 mutex_unlock(&proto_list_mutex);
3505 goto out_free_timewait_sock_slab;
3506 }
3507 list_add(&prot->node, &proto_list);
3508 mutex_unlock(&proto_list_mutex);
3509 return ret;
3510
3511out_free_timewait_sock_slab:
3512 if (alloc_slab && prot->twsk_prot)
3513 tw_prot_cleanup(prot->twsk_prot);
3514out_free_request_sock_slab:
3515 if (alloc_slab) {
3516 req_prot_cleanup(prot->rsk_prot);
3517
3518 kmem_cache_destroy(prot->slab);
3519 prot->slab = NULL;
3520 }
3521out:
3522 return ret;
3523}
3524EXPORT_SYMBOL(proto_register);
3525
3526void proto_unregister(struct proto *prot)
3527{
3528 mutex_lock(&proto_list_mutex);
3529 release_proto_idx(prot);
3530 list_del(&prot->node);
3531 mutex_unlock(&proto_list_mutex);
3532
3533 kmem_cache_destroy(prot->slab);
3534 prot->slab = NULL;
3535
3536 req_prot_cleanup(prot->rsk_prot);
3537 tw_prot_cleanup(prot->twsk_prot);
3538}
3539EXPORT_SYMBOL(proto_unregister);
3540
3541int sock_load_diag_module(int family, int protocol)
3542{
3543 if (!protocol) {
3544 if (!sock_is_registered(family))
3545 return -ENOENT;
3546
3547 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3548 NETLINK_SOCK_DIAG, family);
3549 }
3550
3551#ifdef CONFIG_INET
3552 if (family == AF_INET &&
3553 protocol != IPPROTO_RAW &&
3554 protocol < MAX_INET_PROTOS &&
3555 !rcu_access_pointer(inet_protos[protocol]))
3556 return -ENOENT;
3557#endif
3558
3559 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3560 NETLINK_SOCK_DIAG, family, protocol);
3561}
3562EXPORT_SYMBOL(sock_load_diag_module);
3563
3564#ifdef CONFIG_PROC_FS
3565static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3566 __acquires(proto_list_mutex)
3567{
3568 mutex_lock(&proto_list_mutex);
3569 return seq_list_start_head(&proto_list, *pos);
3570}
3571
3572static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3573{
3574 return seq_list_next(v, &proto_list, pos);
3575}
3576
3577static void proto_seq_stop(struct seq_file *seq, void *v)
3578 __releases(proto_list_mutex)
3579{
3580 mutex_unlock(&proto_list_mutex);
3581}
3582
3583static char proto_method_implemented(const void *method)
3584{
3585 return method == NULL ? 'n' : 'y';
3586}
3587static long sock_prot_memory_allocated(struct proto *proto)
3588{
3589 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3590}
3591
3592static const char *sock_prot_memory_pressure(struct proto *proto)
3593{
3594 return proto->memory_pressure != NULL ?
3595 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3596}
3597
3598static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3599{
3600
3601 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3602 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3603 proto->name,
3604 proto->obj_size,
3605 sock_prot_inuse_get(seq_file_net(seq), proto),
3606 sock_prot_memory_allocated(proto),
3607 sock_prot_memory_pressure(proto),
3608 proto->max_header,
3609 proto->slab == NULL ? "no" : "yes",
3610 module_name(proto->owner),
3611 proto_method_implemented(proto->close),
3612 proto_method_implemented(proto->connect),
3613 proto_method_implemented(proto->disconnect),
3614 proto_method_implemented(proto->accept),
3615 proto_method_implemented(proto->ioctl),
3616 proto_method_implemented(proto->init),
3617 proto_method_implemented(proto->destroy),
3618 proto_method_implemented(proto->shutdown),
3619 proto_method_implemented(proto->setsockopt),
3620 proto_method_implemented(proto->getsockopt),
3621 proto_method_implemented(proto->sendmsg),
3622 proto_method_implemented(proto->recvmsg),
3623 proto_method_implemented(proto->sendpage),
3624 proto_method_implemented(proto->bind),
3625 proto_method_implemented(proto->backlog_rcv),
3626 proto_method_implemented(proto->hash),
3627 proto_method_implemented(proto->unhash),
3628 proto_method_implemented(proto->get_port),
3629 proto_method_implemented(proto->enter_memory_pressure));
3630}
3631
3632static int proto_seq_show(struct seq_file *seq, void *v)
3633{
3634 if (v == &proto_list)
3635 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3636 "protocol",
3637 "size",
3638 "sockets",
3639 "memory",
3640 "press",
3641 "maxhdr",
3642 "slab",
3643 "module",
3644 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3645 else
3646 proto_seq_printf(seq, list_entry(v, struct proto, node));
3647 return 0;
3648}
3649
3650static const struct seq_operations proto_seq_ops = {
3651 .start = proto_seq_start,
3652 .next = proto_seq_next,
3653 .stop = proto_seq_stop,
3654 .show = proto_seq_show,
3655};
3656
3657static __net_init int proto_init_net(struct net *net)
3658{
3659 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3660 sizeof(struct seq_net_private)))
3661 return -ENOMEM;
3662
3663 return 0;
3664}
3665
3666static __net_exit void proto_exit_net(struct net *net)
3667{
3668 remove_proc_entry("protocols", net->proc_net);
3669}
3670
3671
3672static __net_initdata struct pernet_operations proto_net_ops = {
3673 .init = proto_init_net,
3674 .exit = proto_exit_net,
3675};
3676
3677static int __init proto_init(void)
3678{
3679 return register_pernet_subsys(&proto_net_ops);
3680}
3681
3682subsys_initcall(proto_init);
3683
3684#endif /* PROC_FS */
3685
3686#ifdef CONFIG_NET_RX_BUSY_POLL
3687bool sk_busy_loop_end(void *p, unsigned long start_time)
3688{
3689 struct sock *sk = p;
3690
3691 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3692 sk_busy_loop_timeout(sk, start_time);
3693}
3694EXPORT_SYMBOL(sk_busy_loop_end);
3695#endif /* CONFIG_NET_RX_BUSY_POLL */
3696
3697int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3698{
3699 if (!sk->sk_prot->bind_add)
3700 return -EOPNOTSUPP;
3701 return sk->sk_prot->bind_add(sk, addr, addr_len);
3702}
3703EXPORT_SYMBOL(sock_bind_add);