Loading...
1/*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55
56#include <scsi/scsi_cmnd.h>
57#include "isci.h"
58#include "task.h"
59#include "request.h"
60#include "scu_completion_codes.h"
61#include "scu_event_codes.h"
62#include "sas.h"
63
64#undef C
65#define C(a) (#a)
66const char *req_state_name(enum sci_base_request_states state)
67{
68 static const char * const strings[] = REQUEST_STATES;
69
70 return strings[state];
71}
72#undef C
73
74static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq,
75 int idx)
76{
77 if (idx == 0)
78 return &ireq->tc->sgl_pair_ab;
79 else if (idx == 1)
80 return &ireq->tc->sgl_pair_cd;
81 else if (idx < 0)
82 return NULL;
83 else
84 return &ireq->sg_table[idx - 2];
85}
86
87static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost,
88 struct isci_request *ireq, u32 idx)
89{
90 u32 offset;
91
92 if (idx == 0) {
93 offset = (void *) &ireq->tc->sgl_pair_ab -
94 (void *) &ihost->task_context_table[0];
95 return ihost->tc_dma + offset;
96 } else if (idx == 1) {
97 offset = (void *) &ireq->tc->sgl_pair_cd -
98 (void *) &ihost->task_context_table[0];
99 return ihost->tc_dma + offset;
100 }
101
102 return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]);
103}
104
105static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg)
106{
107 e->length = sg_dma_len(sg);
108 e->address_upper = upper_32_bits(sg_dma_address(sg));
109 e->address_lower = lower_32_bits(sg_dma_address(sg));
110 e->address_modifier = 0;
111}
112
113static void sci_request_build_sgl(struct isci_request *ireq)
114{
115 struct isci_host *ihost = ireq->isci_host;
116 struct sas_task *task = isci_request_access_task(ireq);
117 struct scatterlist *sg = NULL;
118 dma_addr_t dma_addr;
119 u32 sg_idx = 0;
120 struct scu_sgl_element_pair *scu_sg = NULL;
121 struct scu_sgl_element_pair *prev_sg = NULL;
122
123 if (task->num_scatter > 0) {
124 sg = task->scatter;
125
126 while (sg) {
127 scu_sg = to_sgl_element_pair(ireq, sg_idx);
128 init_sgl_element(&scu_sg->A, sg);
129 sg = sg_next(sg);
130 if (sg) {
131 init_sgl_element(&scu_sg->B, sg);
132 sg = sg_next(sg);
133 } else
134 memset(&scu_sg->B, 0, sizeof(scu_sg->B));
135
136 if (prev_sg) {
137 dma_addr = to_sgl_element_pair_dma(ihost,
138 ireq,
139 sg_idx);
140
141 prev_sg->next_pair_upper =
142 upper_32_bits(dma_addr);
143 prev_sg->next_pair_lower =
144 lower_32_bits(dma_addr);
145 }
146
147 prev_sg = scu_sg;
148 sg_idx++;
149 }
150 } else { /* handle when no sg */
151 scu_sg = to_sgl_element_pair(ireq, sg_idx);
152
153 dma_addr = dma_map_single(&ihost->pdev->dev,
154 task->scatter,
155 task->total_xfer_len,
156 task->data_dir);
157
158 ireq->zero_scatter_daddr = dma_addr;
159
160 scu_sg->A.length = task->total_xfer_len;
161 scu_sg->A.address_upper = upper_32_bits(dma_addr);
162 scu_sg->A.address_lower = lower_32_bits(dma_addr);
163 }
164
165 if (scu_sg) {
166 scu_sg->next_pair_upper = 0;
167 scu_sg->next_pair_lower = 0;
168 }
169}
170
171static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq)
172{
173 struct ssp_cmd_iu *cmd_iu;
174 struct sas_task *task = isci_request_access_task(ireq);
175
176 cmd_iu = &ireq->ssp.cmd;
177
178 memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
179 cmd_iu->add_cdb_len = 0;
180 cmd_iu->_r_a = 0;
181 cmd_iu->_r_b = 0;
182 cmd_iu->en_fburst = 0; /* unsupported */
183 cmd_iu->task_prio = task->ssp_task.task_prio;
184 cmd_iu->task_attr = task->ssp_task.task_attr;
185 cmd_iu->_r_c = 0;
186
187 sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cmd->cmnd,
188 (task->ssp_task.cmd->cmd_len+3) / sizeof(u32));
189}
190
191static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq)
192{
193 struct ssp_task_iu *task_iu;
194 struct sas_task *task = isci_request_access_task(ireq);
195 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
196
197 task_iu = &ireq->ssp.tmf;
198
199 memset(task_iu, 0, sizeof(struct ssp_task_iu));
200
201 memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
202
203 task_iu->task_func = isci_tmf->tmf_code;
204 task_iu->task_tag =
205 (test_bit(IREQ_TMF, &ireq->flags)) ?
206 isci_tmf->io_tag :
207 SCI_CONTROLLER_INVALID_IO_TAG;
208}
209
210/**
211 * This method is will fill in the SCU Task Context for any type of SSP request.
212 * @sci_req:
213 * @task_context:
214 *
215 */
216static void scu_ssp_request_construct_task_context(
217 struct isci_request *ireq,
218 struct scu_task_context *task_context)
219{
220 dma_addr_t dma_addr;
221 struct isci_remote_device *idev;
222 struct isci_port *iport;
223
224 idev = ireq->target_device;
225 iport = idev->owning_port;
226
227 /* Fill in the TC with the its required data */
228 task_context->abort = 0;
229 task_context->priority = 0;
230 task_context->initiator_request = 1;
231 task_context->connection_rate = idev->connection_rate;
232 task_context->protocol_engine_index = ISCI_PEG;
233 task_context->logical_port_index = iport->physical_port_index;
234 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
235 task_context->valid = SCU_TASK_CONTEXT_VALID;
236 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
237
238 task_context->remote_node_index = idev->rnc.remote_node_index;
239 task_context->command_code = 0;
240
241 task_context->link_layer_control = 0;
242 task_context->do_not_dma_ssp_good_response = 1;
243 task_context->strict_ordering = 0;
244 task_context->control_frame = 0;
245 task_context->timeout_enable = 0;
246 task_context->block_guard_enable = 0;
247
248 task_context->address_modifier = 0;
249
250 /* task_context->type.ssp.tag = ireq->io_tag; */
251 task_context->task_phase = 0x01;
252
253 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
254 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
255 (iport->physical_port_index <<
256 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
257 ISCI_TAG_TCI(ireq->io_tag));
258
259 /*
260 * Copy the physical address for the command buffer to the
261 * SCU Task Context
262 */
263 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd);
264
265 task_context->command_iu_upper = upper_32_bits(dma_addr);
266 task_context->command_iu_lower = lower_32_bits(dma_addr);
267
268 /*
269 * Copy the physical address for the response buffer to the
270 * SCU Task Context
271 */
272 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp);
273
274 task_context->response_iu_upper = upper_32_bits(dma_addr);
275 task_context->response_iu_lower = lower_32_bits(dma_addr);
276}
277
278static u8 scu_bg_blk_size(struct scsi_device *sdp)
279{
280 switch (sdp->sector_size) {
281 case 512:
282 return 0;
283 case 1024:
284 return 1;
285 case 4096:
286 return 3;
287 default:
288 return 0xff;
289 }
290}
291
292static u32 scu_dif_bytes(u32 len, u32 sector_size)
293{
294 return (len >> ilog2(sector_size)) * 8;
295}
296
297static void scu_ssp_ireq_dif_insert(struct isci_request *ireq, u8 type, u8 op)
298{
299 struct scu_task_context *tc = ireq->tc;
300 struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
301 u8 blk_sz = scu_bg_blk_size(scmd->device);
302
303 tc->block_guard_enable = 1;
304 tc->blk_prot_en = 1;
305 tc->blk_sz = blk_sz;
306 /* DIF write insert */
307 tc->blk_prot_func = 0x2;
308
309 tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
310 scmd->device->sector_size);
311
312 /* always init to 0, used by hw */
313 tc->interm_crc_val = 0;
314
315 tc->init_crc_seed = 0;
316 tc->app_tag_verify = 0;
317 tc->app_tag_gen = 0;
318 tc->ref_tag_seed_verify = 0;
319
320 /* always init to same as bg_blk_sz */
321 tc->UD_bytes_immed_val = scmd->device->sector_size;
322
323 tc->reserved_DC_0 = 0;
324
325 /* always init to 8 */
326 tc->DIF_bytes_immed_val = 8;
327
328 tc->reserved_DC_1 = 0;
329 tc->bgc_blk_sz = scmd->device->sector_size;
330 tc->reserved_E0_0 = 0;
331 tc->app_tag_gen_mask = 0;
332
333 /** setup block guard control **/
334 tc->bgctl = 0;
335
336 /* DIF write insert */
337 tc->bgctl_f.op = 0x2;
338
339 tc->app_tag_verify_mask = 0;
340
341 /* must init to 0 for hw */
342 tc->blk_guard_err = 0;
343
344 tc->reserved_E8_0 = 0;
345
346 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
347 tc->ref_tag_seed_gen = scsi_get_lba(scmd) & 0xffffffff;
348 else if (type & SCSI_PROT_DIF_TYPE3)
349 tc->ref_tag_seed_gen = 0;
350}
351
352static void scu_ssp_ireq_dif_strip(struct isci_request *ireq, u8 type, u8 op)
353{
354 struct scu_task_context *tc = ireq->tc;
355 struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
356 u8 blk_sz = scu_bg_blk_size(scmd->device);
357
358 tc->block_guard_enable = 1;
359 tc->blk_prot_en = 1;
360 tc->blk_sz = blk_sz;
361 /* DIF read strip */
362 tc->blk_prot_func = 0x1;
363
364 tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
365 scmd->device->sector_size);
366
367 /* always init to 0, used by hw */
368 tc->interm_crc_val = 0;
369
370 tc->init_crc_seed = 0;
371 tc->app_tag_verify = 0;
372 tc->app_tag_gen = 0;
373
374 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
375 tc->ref_tag_seed_verify = scsi_get_lba(scmd) & 0xffffffff;
376 else if (type & SCSI_PROT_DIF_TYPE3)
377 tc->ref_tag_seed_verify = 0;
378
379 /* always init to same as bg_blk_sz */
380 tc->UD_bytes_immed_val = scmd->device->sector_size;
381
382 tc->reserved_DC_0 = 0;
383
384 /* always init to 8 */
385 tc->DIF_bytes_immed_val = 8;
386
387 tc->reserved_DC_1 = 0;
388 tc->bgc_blk_sz = scmd->device->sector_size;
389 tc->reserved_E0_0 = 0;
390 tc->app_tag_gen_mask = 0;
391
392 /** setup block guard control **/
393 tc->bgctl = 0;
394
395 /* DIF read strip */
396 tc->bgctl_f.crc_verify = 1;
397 tc->bgctl_f.op = 0x1;
398 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2)) {
399 tc->bgctl_f.ref_tag_chk = 1;
400 tc->bgctl_f.app_f_detect = 1;
401 } else if (type & SCSI_PROT_DIF_TYPE3)
402 tc->bgctl_f.app_ref_f_detect = 1;
403
404 tc->app_tag_verify_mask = 0;
405
406 /* must init to 0 for hw */
407 tc->blk_guard_err = 0;
408
409 tc->reserved_E8_0 = 0;
410 tc->ref_tag_seed_gen = 0;
411}
412
413/**
414 * This method is will fill in the SCU Task Context for a SSP IO request.
415 * @sci_req:
416 *
417 */
418static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq,
419 enum dma_data_direction dir,
420 u32 len)
421{
422 struct scu_task_context *task_context = ireq->tc;
423 struct sas_task *sas_task = ireq->ttype_ptr.io_task_ptr;
424 struct scsi_cmnd *scmd = sas_task->uldd_task;
425 u8 prot_type = scsi_get_prot_type(scmd);
426 u8 prot_op = scsi_get_prot_op(scmd);
427
428 scu_ssp_request_construct_task_context(ireq, task_context);
429
430 task_context->ssp_command_iu_length =
431 sizeof(struct ssp_cmd_iu) / sizeof(u32);
432 task_context->type.ssp.frame_type = SSP_COMMAND;
433
434 switch (dir) {
435 case DMA_FROM_DEVICE:
436 case DMA_NONE:
437 default:
438 task_context->task_type = SCU_TASK_TYPE_IOREAD;
439 break;
440 case DMA_TO_DEVICE:
441 task_context->task_type = SCU_TASK_TYPE_IOWRITE;
442 break;
443 }
444
445 task_context->transfer_length_bytes = len;
446
447 if (task_context->transfer_length_bytes > 0)
448 sci_request_build_sgl(ireq);
449
450 if (prot_type != SCSI_PROT_DIF_TYPE0) {
451 if (prot_op == SCSI_PROT_READ_STRIP)
452 scu_ssp_ireq_dif_strip(ireq, prot_type, prot_op);
453 else if (prot_op == SCSI_PROT_WRITE_INSERT)
454 scu_ssp_ireq_dif_insert(ireq, prot_type, prot_op);
455 }
456}
457
458/**
459 * This method will fill in the SCU Task Context for a SSP Task request. The
460 * following important settings are utilized: -# priority ==
461 * SCU_TASK_PRIORITY_HIGH. This ensures that the task request is issued
462 * ahead of other task destined for the same Remote Node. -# task_type ==
463 * SCU_TASK_TYPE_IOREAD. This simply indicates that a normal request type
464 * (i.e. non-raw frame) is being utilized to perform task management. -#
465 * control_frame == 1. This ensures that the proper endianess is set so
466 * that the bytes are transmitted in the right order for a task frame.
467 * @sci_req: This parameter specifies the task request object being
468 * constructed.
469 *
470 */
471static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq)
472{
473 struct scu_task_context *task_context = ireq->tc;
474
475 scu_ssp_request_construct_task_context(ireq, task_context);
476
477 task_context->control_frame = 1;
478 task_context->priority = SCU_TASK_PRIORITY_HIGH;
479 task_context->task_type = SCU_TASK_TYPE_RAW_FRAME;
480 task_context->transfer_length_bytes = 0;
481 task_context->type.ssp.frame_type = SSP_TASK;
482 task_context->ssp_command_iu_length =
483 sizeof(struct ssp_task_iu) / sizeof(u32);
484}
485
486/**
487 * This method is will fill in the SCU Task Context for any type of SATA
488 * request. This is called from the various SATA constructors.
489 * @sci_req: The general IO request object which is to be used in
490 * constructing the SCU task context.
491 * @task_context: The buffer pointer for the SCU task context which is being
492 * constructed.
493 *
494 * The general io request construction is complete. The buffer assignment for
495 * the command buffer is complete. none Revisit task context construction to
496 * determine what is common for SSP/SMP/STP task context structures.
497 */
498static void scu_sata_request_construct_task_context(
499 struct isci_request *ireq,
500 struct scu_task_context *task_context)
501{
502 dma_addr_t dma_addr;
503 struct isci_remote_device *idev;
504 struct isci_port *iport;
505
506 idev = ireq->target_device;
507 iport = idev->owning_port;
508
509 /* Fill in the TC with the its required data */
510 task_context->abort = 0;
511 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
512 task_context->initiator_request = 1;
513 task_context->connection_rate = idev->connection_rate;
514 task_context->protocol_engine_index = ISCI_PEG;
515 task_context->logical_port_index = iport->physical_port_index;
516 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
517 task_context->valid = SCU_TASK_CONTEXT_VALID;
518 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
519
520 task_context->remote_node_index = idev->rnc.remote_node_index;
521 task_context->command_code = 0;
522
523 task_context->link_layer_control = 0;
524 task_context->do_not_dma_ssp_good_response = 1;
525 task_context->strict_ordering = 0;
526 task_context->control_frame = 0;
527 task_context->timeout_enable = 0;
528 task_context->block_guard_enable = 0;
529
530 task_context->address_modifier = 0;
531 task_context->task_phase = 0x01;
532
533 task_context->ssp_command_iu_length =
534 (sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
535
536 /* Set the first word of the H2D REG FIS */
537 task_context->type.words[0] = *(u32 *)&ireq->stp.cmd;
538
539 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
540 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
541 (iport->physical_port_index <<
542 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
543 ISCI_TAG_TCI(ireq->io_tag));
544 /*
545 * Copy the physical address for the command buffer to the SCU Task
546 * Context. We must offset the command buffer by 4 bytes because the
547 * first 4 bytes are transfered in the body of the TC.
548 */
549 dma_addr = sci_io_request_get_dma_addr(ireq,
550 ((char *) &ireq->stp.cmd) +
551 sizeof(u32));
552
553 task_context->command_iu_upper = upper_32_bits(dma_addr);
554 task_context->command_iu_lower = lower_32_bits(dma_addr);
555
556 /* SATA Requests do not have a response buffer */
557 task_context->response_iu_upper = 0;
558 task_context->response_iu_lower = 0;
559}
560
561static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq)
562{
563 struct scu_task_context *task_context = ireq->tc;
564
565 scu_sata_request_construct_task_context(ireq, task_context);
566
567 task_context->control_frame = 0;
568 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
569 task_context->task_type = SCU_TASK_TYPE_SATA_RAW_FRAME;
570 task_context->type.stp.fis_type = FIS_REGH2D;
571 task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
572}
573
574static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq,
575 bool copy_rx_frame)
576{
577 struct isci_stp_request *stp_req = &ireq->stp.req;
578
579 scu_stp_raw_request_construct_task_context(ireq);
580
581 stp_req->status = 0;
582 stp_req->sgl.offset = 0;
583 stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A;
584
585 if (copy_rx_frame) {
586 sci_request_build_sgl(ireq);
587 stp_req->sgl.index = 0;
588 } else {
589 /* The user does not want the data copied to the SGL buffer location */
590 stp_req->sgl.index = -1;
591 }
592
593 return SCI_SUCCESS;
594}
595
596/**
597 *
598 * @sci_req: This parameter specifies the request to be constructed as an
599 * optimized request.
600 * @optimized_task_type: This parameter specifies whether the request is to be
601 * an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
602 * value of 1 indicates NCQ.
603 *
604 * This method will perform request construction common to all types of STP
605 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
606 * returns an indication as to whether the construction was successful.
607 */
608static void sci_stp_optimized_request_construct(struct isci_request *ireq,
609 u8 optimized_task_type,
610 u32 len,
611 enum dma_data_direction dir)
612{
613 struct scu_task_context *task_context = ireq->tc;
614
615 /* Build the STP task context structure */
616 scu_sata_request_construct_task_context(ireq, task_context);
617
618 /* Copy over the SGL elements */
619 sci_request_build_sgl(ireq);
620
621 /* Copy over the number of bytes to be transfered */
622 task_context->transfer_length_bytes = len;
623
624 if (dir == DMA_TO_DEVICE) {
625 /*
626 * The difference between the DMA IN and DMA OUT request task type
627 * values are consistent with the difference between FPDMA READ
628 * and FPDMA WRITE values. Add the supplied task type parameter
629 * to this difference to set the task type properly for this
630 * DATA OUT (WRITE) case. */
631 task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
632 - SCU_TASK_TYPE_DMA_IN);
633 } else {
634 /*
635 * For the DATA IN (READ) case, simply save the supplied
636 * optimized task type. */
637 task_context->task_type = optimized_task_type;
638 }
639}
640
641static void sci_atapi_construct(struct isci_request *ireq)
642{
643 struct host_to_dev_fis *h2d_fis = &ireq->stp.cmd;
644 struct sas_task *task;
645
646 /* To simplify the implementation we take advantage of the
647 * silicon's partial acceleration of atapi protocol (dma data
648 * transfers), so we promote all commands to dma protocol. This
649 * breaks compatibility with ATA_HORKAGE_ATAPI_MOD16_DMA drives.
650 */
651 h2d_fis->features |= ATAPI_PKT_DMA;
652
653 scu_stp_raw_request_construct_task_context(ireq);
654
655 task = isci_request_access_task(ireq);
656 if (task->data_dir == DMA_NONE)
657 task->total_xfer_len = 0;
658
659 /* clear the response so we can detect arrivial of an
660 * unsolicited h2d fis
661 */
662 ireq->stp.rsp.fis_type = 0;
663}
664
665static enum sci_status
666sci_io_request_construct_sata(struct isci_request *ireq,
667 u32 len,
668 enum dma_data_direction dir,
669 bool copy)
670{
671 enum sci_status status = SCI_SUCCESS;
672 struct sas_task *task = isci_request_access_task(ireq);
673 struct domain_device *dev = ireq->target_device->domain_dev;
674
675 /* check for management protocols */
676 if (test_bit(IREQ_TMF, &ireq->flags)) {
677 struct isci_tmf *tmf = isci_request_access_tmf(ireq);
678
679 dev_err(&ireq->owning_controller->pdev->dev,
680 "%s: Request 0x%p received un-handled SAT "
681 "management protocol 0x%x.\n",
682 __func__, ireq, tmf->tmf_code);
683
684 return SCI_FAILURE;
685 }
686
687 if (!sas_protocol_ata(task->task_proto)) {
688 dev_err(&ireq->owning_controller->pdev->dev,
689 "%s: Non-ATA protocol in SATA path: 0x%x\n",
690 __func__,
691 task->task_proto);
692 return SCI_FAILURE;
693
694 }
695
696 /* ATAPI */
697 if (dev->sata_dev.class == ATA_DEV_ATAPI &&
698 task->ata_task.fis.command == ATA_CMD_PACKET) {
699 sci_atapi_construct(ireq);
700 return SCI_SUCCESS;
701 }
702
703 /* non data */
704 if (task->data_dir == DMA_NONE) {
705 scu_stp_raw_request_construct_task_context(ireq);
706 return SCI_SUCCESS;
707 }
708
709 /* NCQ */
710 if (task->ata_task.use_ncq) {
711 sci_stp_optimized_request_construct(ireq,
712 SCU_TASK_TYPE_FPDMAQ_READ,
713 len, dir);
714 return SCI_SUCCESS;
715 }
716
717 /* DMA */
718 if (task->ata_task.dma_xfer) {
719 sci_stp_optimized_request_construct(ireq,
720 SCU_TASK_TYPE_DMA_IN,
721 len, dir);
722 return SCI_SUCCESS;
723 } else /* PIO */
724 return sci_stp_pio_request_construct(ireq, copy);
725
726 return status;
727}
728
729static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq)
730{
731 struct sas_task *task = isci_request_access_task(ireq);
732
733 ireq->protocol = SAS_PROTOCOL_SSP;
734
735 scu_ssp_io_request_construct_task_context(ireq,
736 task->data_dir,
737 task->total_xfer_len);
738
739 sci_io_request_build_ssp_command_iu(ireq);
740
741 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
742
743 return SCI_SUCCESS;
744}
745
746enum sci_status sci_task_request_construct_ssp(
747 struct isci_request *ireq)
748{
749 /* Construct the SSP Task SCU Task Context */
750 scu_ssp_task_request_construct_task_context(ireq);
751
752 /* Fill in the SSP Task IU */
753 sci_task_request_build_ssp_task_iu(ireq);
754
755 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
756
757 return SCI_SUCCESS;
758}
759
760static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq)
761{
762 enum sci_status status;
763 bool copy = false;
764 struct sas_task *task = isci_request_access_task(ireq);
765
766 ireq->protocol = SAS_PROTOCOL_STP;
767
768 copy = (task->data_dir == DMA_NONE) ? false : true;
769
770 status = sci_io_request_construct_sata(ireq,
771 task->total_xfer_len,
772 task->data_dir,
773 copy);
774
775 if (status == SCI_SUCCESS)
776 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
777
778 return status;
779}
780
781/**
782 * sci_req_tx_bytes - bytes transferred when reply underruns request
783 * @ireq: request that was terminated early
784 */
785#define SCU_TASK_CONTEXT_SRAM 0x200000
786static u32 sci_req_tx_bytes(struct isci_request *ireq)
787{
788 struct isci_host *ihost = ireq->owning_controller;
789 u32 ret_val = 0;
790
791 if (readl(&ihost->smu_registers->address_modifier) == 0) {
792 void __iomem *scu_reg_base = ihost->scu_registers;
793
794 /* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
795 * BAR1 is the scu_registers
796 * 0x20002C = 0x200000 + 0x2c
797 * = start of task context SRAM + offset of (type.ssp.data_offset)
798 * TCi is the io_tag of struct sci_request
799 */
800 ret_val = readl(scu_reg_base +
801 (SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
802 ((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag)));
803 }
804
805 return ret_val;
806}
807
808enum sci_status sci_request_start(struct isci_request *ireq)
809{
810 enum sci_base_request_states state;
811 struct scu_task_context *tc = ireq->tc;
812 struct isci_host *ihost = ireq->owning_controller;
813
814 state = ireq->sm.current_state_id;
815 if (state != SCI_REQ_CONSTRUCTED) {
816 dev_warn(&ihost->pdev->dev,
817 "%s: SCIC IO Request requested to start while in wrong "
818 "state %d\n", __func__, state);
819 return SCI_FAILURE_INVALID_STATE;
820 }
821
822 tc->task_index = ISCI_TAG_TCI(ireq->io_tag);
823
824 switch (tc->protocol_type) {
825 case SCU_TASK_CONTEXT_PROTOCOL_SMP:
826 case SCU_TASK_CONTEXT_PROTOCOL_SSP:
827 /* SSP/SMP Frame */
828 tc->type.ssp.tag = ireq->io_tag;
829 tc->type.ssp.target_port_transfer_tag = 0xFFFF;
830 break;
831
832 case SCU_TASK_CONTEXT_PROTOCOL_STP:
833 /* STP/SATA Frame
834 * tc->type.stp.ncq_tag = ireq->ncq_tag;
835 */
836 break;
837
838 case SCU_TASK_CONTEXT_PROTOCOL_NONE:
839 /* / @todo When do we set no protocol type? */
840 break;
841
842 default:
843 /* This should never happen since we build the IO
844 * requests */
845 break;
846 }
847
848 /* Add to the post_context the io tag value */
849 ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag);
850
851 /* Everything is good go ahead and change state */
852 sci_change_state(&ireq->sm, SCI_REQ_STARTED);
853
854 return SCI_SUCCESS;
855}
856
857enum sci_status
858sci_io_request_terminate(struct isci_request *ireq)
859{
860 enum sci_base_request_states state;
861
862 state = ireq->sm.current_state_id;
863
864 switch (state) {
865 case SCI_REQ_CONSTRUCTED:
866 /* Set to make sure no HW terminate posting is done: */
867 set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags);
868 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
869 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
870 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
871 return SCI_SUCCESS;
872 case SCI_REQ_STARTED:
873 case SCI_REQ_TASK_WAIT_TC_COMP:
874 case SCI_REQ_SMP_WAIT_RESP:
875 case SCI_REQ_SMP_WAIT_TC_COMP:
876 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
877 case SCI_REQ_STP_UDMA_WAIT_D2H:
878 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
879 case SCI_REQ_STP_NON_DATA_WAIT_D2H:
880 case SCI_REQ_STP_PIO_WAIT_H2D:
881 case SCI_REQ_STP_PIO_WAIT_FRAME:
882 case SCI_REQ_STP_PIO_DATA_IN:
883 case SCI_REQ_STP_PIO_DATA_OUT:
884 case SCI_REQ_ATAPI_WAIT_H2D:
885 case SCI_REQ_ATAPI_WAIT_PIO_SETUP:
886 case SCI_REQ_ATAPI_WAIT_D2H:
887 case SCI_REQ_ATAPI_WAIT_TC_COMP:
888 /* Fall through and change state to ABORTING... */
889 case SCI_REQ_TASK_WAIT_TC_RESP:
890 /* The task frame was already confirmed to have been
891 * sent by the SCU HW. Since the state machine is
892 * now only waiting for the task response itself,
893 * abort the request and complete it immediately
894 * and don't wait for the task response.
895 */
896 sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
897 /* Fall through and handle like ABORTING... */
898 case SCI_REQ_ABORTING:
899 if (!isci_remote_device_is_safe_to_abort(ireq->target_device))
900 set_bit(IREQ_PENDING_ABORT, &ireq->flags);
901 else
902 clear_bit(IREQ_PENDING_ABORT, &ireq->flags);
903 /* If the request is only waiting on the remote device
904 * suspension, return SUCCESS so the caller will wait too.
905 */
906 return SCI_SUCCESS;
907 case SCI_REQ_COMPLETED:
908 default:
909 dev_warn(&ireq->owning_controller->pdev->dev,
910 "%s: SCIC IO Request requested to abort while in wrong "
911 "state %d\n", __func__, ireq->sm.current_state_id);
912 break;
913 }
914
915 return SCI_FAILURE_INVALID_STATE;
916}
917
918enum sci_status sci_request_complete(struct isci_request *ireq)
919{
920 enum sci_base_request_states state;
921 struct isci_host *ihost = ireq->owning_controller;
922
923 state = ireq->sm.current_state_id;
924 if (WARN_ONCE(state != SCI_REQ_COMPLETED,
925 "isci: request completion from wrong state (%s)\n",
926 req_state_name(state)))
927 return SCI_FAILURE_INVALID_STATE;
928
929 if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
930 sci_controller_release_frame(ihost,
931 ireq->saved_rx_frame_index);
932
933 /* XXX can we just stop the machine and remove the 'final' state? */
934 sci_change_state(&ireq->sm, SCI_REQ_FINAL);
935 return SCI_SUCCESS;
936}
937
938enum sci_status sci_io_request_event_handler(struct isci_request *ireq,
939 u32 event_code)
940{
941 enum sci_base_request_states state;
942 struct isci_host *ihost = ireq->owning_controller;
943
944 state = ireq->sm.current_state_id;
945
946 if (state != SCI_REQ_STP_PIO_DATA_IN) {
947 dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %s\n",
948 __func__, event_code, req_state_name(state));
949
950 return SCI_FAILURE_INVALID_STATE;
951 }
952
953 switch (scu_get_event_specifier(event_code)) {
954 case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
955 /* We are waiting for data and the SCU has R_ERR the data frame.
956 * Go back to waiting for the D2H Register FIS
957 */
958 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
959 return SCI_SUCCESS;
960 default:
961 dev_err(&ihost->pdev->dev,
962 "%s: pio request unexpected event %#x\n",
963 __func__, event_code);
964
965 /* TODO Should we fail the PIO request when we get an
966 * unexpected event?
967 */
968 return SCI_FAILURE;
969 }
970}
971
972/*
973 * This function copies response data for requests returning response data
974 * instead of sense data.
975 * @sci_req: This parameter specifies the request object for which to copy
976 * the response data.
977 */
978static void sci_io_request_copy_response(struct isci_request *ireq)
979{
980 void *resp_buf;
981 u32 len;
982 struct ssp_response_iu *ssp_response;
983 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
984
985 ssp_response = &ireq->ssp.rsp;
986
987 resp_buf = &isci_tmf->resp.resp_iu;
988
989 len = min_t(u32,
990 SSP_RESP_IU_MAX_SIZE,
991 be32_to_cpu(ssp_response->response_data_len));
992
993 memcpy(resp_buf, ssp_response->resp_data, len);
994}
995
996static enum sci_status
997request_started_state_tc_event(struct isci_request *ireq,
998 u32 completion_code)
999{
1000 struct ssp_response_iu *resp_iu;
1001 u8 datapres;
1002
1003 /* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
1004 * to determine SDMA status
1005 */
1006 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1007 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1008 ireq->scu_status = SCU_TASK_DONE_GOOD;
1009 ireq->sci_status = SCI_SUCCESS;
1010 break;
1011 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
1012 /* There are times when the SCU hardware will return an early
1013 * response because the io request specified more data than is
1014 * returned by the target device (mode pages, inquiry data,
1015 * etc.). We must check the response stats to see if this is
1016 * truly a failed request or a good request that just got
1017 * completed early.
1018 */
1019 struct ssp_response_iu *resp = &ireq->ssp.rsp;
1020 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1021
1022 sci_swab32_cpy(&ireq->ssp.rsp,
1023 &ireq->ssp.rsp,
1024 word_cnt);
1025
1026 if (resp->status == 0) {
1027 ireq->scu_status = SCU_TASK_DONE_GOOD;
1028 ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
1029 } else {
1030 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1031 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1032 }
1033 break;
1034 }
1035 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
1036 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1037
1038 sci_swab32_cpy(&ireq->ssp.rsp,
1039 &ireq->ssp.rsp,
1040 word_cnt);
1041
1042 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1043 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1044 break;
1045 }
1046
1047 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
1048 /* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
1049 * guaranteed to be received before this completion status is
1050 * posted?
1051 */
1052 resp_iu = &ireq->ssp.rsp;
1053 datapres = resp_iu->datapres;
1054
1055 if (datapres == 1 || datapres == 2) {
1056 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1057 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1058 } else {
1059 ireq->scu_status = SCU_TASK_DONE_GOOD;
1060 ireq->sci_status = SCI_SUCCESS;
1061 }
1062 break;
1063 /* only stp device gets suspended. */
1064 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1065 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
1066 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
1067 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
1068 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
1069 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
1070 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
1071 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
1072 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
1073 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
1074 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
1075 if (ireq->protocol == SAS_PROTOCOL_STP) {
1076 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1077 SCU_COMPLETION_TL_STATUS_SHIFT;
1078 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1079 } else {
1080 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1081 SCU_COMPLETION_TL_STATUS_SHIFT;
1082 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1083 }
1084 break;
1085
1086 /* both stp/ssp device gets suspended */
1087 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
1088 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
1089 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
1090 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
1091 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
1092 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
1093 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
1094 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
1095 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
1096 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
1097 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1098 SCU_COMPLETION_TL_STATUS_SHIFT;
1099 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1100 break;
1101
1102 /* neither ssp nor stp gets suspended. */
1103 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
1104 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
1105 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
1106 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
1107 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
1108 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
1109 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1110 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1111 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1112 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1113 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
1114 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
1115 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
1116 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
1117 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
1118 default:
1119 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1120 SCU_COMPLETION_TL_STATUS_SHIFT;
1121 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1122 break;
1123 }
1124
1125 /*
1126 * TODO: This is probably wrong for ACK/NAK timeout conditions
1127 */
1128
1129 /* In all cases we will treat this as the completion of the IO req. */
1130 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1131 return SCI_SUCCESS;
1132}
1133
1134static enum sci_status
1135request_aborting_state_tc_event(struct isci_request *ireq,
1136 u32 completion_code)
1137{
1138 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1139 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
1140 case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
1141 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
1142 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
1143 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1144 break;
1145
1146 default:
1147 /* Unless we get some strange error wait for the task abort to complete
1148 * TODO: Should there be a state change for this completion?
1149 */
1150 break;
1151 }
1152
1153 return SCI_SUCCESS;
1154}
1155
1156static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq,
1157 u32 completion_code)
1158{
1159 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1160 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1161 ireq->scu_status = SCU_TASK_DONE_GOOD;
1162 ireq->sci_status = SCI_SUCCESS;
1163 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1164 break;
1165 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1166 /* Currently, the decision is to simply allow the task request
1167 * to timeout if the task IU wasn't received successfully.
1168 * There is a potential for receiving multiple task responses if
1169 * we decide to send the task IU again.
1170 */
1171 dev_warn(&ireq->owning_controller->pdev->dev,
1172 "%s: TaskRequest:0x%p CompletionCode:%x - "
1173 "ACK/NAK timeout\n", __func__, ireq,
1174 completion_code);
1175
1176 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1177 break;
1178 default:
1179 /*
1180 * All other completion status cause the IO to be complete.
1181 * If a NAK was received, then it is up to the user to retry
1182 * the request.
1183 */
1184 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1185 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1186 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1187 break;
1188 }
1189
1190 return SCI_SUCCESS;
1191}
1192
1193static enum sci_status
1194smp_request_await_response_tc_event(struct isci_request *ireq,
1195 u32 completion_code)
1196{
1197 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1198 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1199 /* In the AWAIT RESPONSE state, any TC completion is
1200 * unexpected. but if the TC has success status, we
1201 * complete the IO anyway.
1202 */
1203 ireq->scu_status = SCU_TASK_DONE_GOOD;
1204 ireq->sci_status = SCI_SUCCESS;
1205 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1206 break;
1207 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1208 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1209 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1210 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1211 /* These status has been seen in a specific LSI
1212 * expander, which sometimes is not able to send smp
1213 * response within 2 ms. This causes our hardware break
1214 * the connection and set TC completion with one of
1215 * these SMP_XXX_XX_ERR status. For these type of error,
1216 * we ask ihost user to retry the request.
1217 */
1218 ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR;
1219 ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED;
1220 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1221 break;
1222 default:
1223 /* All other completion status cause the IO to be complete. If a NAK
1224 * was received, then it is up to the user to retry the request
1225 */
1226 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1227 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1228 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1229 break;
1230 }
1231
1232 return SCI_SUCCESS;
1233}
1234
1235static enum sci_status
1236smp_request_await_tc_event(struct isci_request *ireq,
1237 u32 completion_code)
1238{
1239 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1240 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1241 ireq->scu_status = SCU_TASK_DONE_GOOD;
1242 ireq->sci_status = SCI_SUCCESS;
1243 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1244 break;
1245 default:
1246 /* All other completion status cause the IO to be
1247 * complete. If a NAK was received, then it is up to
1248 * the user to retry the request.
1249 */
1250 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1251 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1252 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1253 break;
1254 }
1255
1256 return SCI_SUCCESS;
1257}
1258
1259static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req)
1260{
1261 struct scu_sgl_element *sgl;
1262 struct scu_sgl_element_pair *sgl_pair;
1263 struct isci_request *ireq = to_ireq(stp_req);
1264 struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl;
1265
1266 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1267 if (!sgl_pair)
1268 sgl = NULL;
1269 else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) {
1270 if (sgl_pair->B.address_lower == 0 &&
1271 sgl_pair->B.address_upper == 0) {
1272 sgl = NULL;
1273 } else {
1274 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B;
1275 sgl = &sgl_pair->B;
1276 }
1277 } else {
1278 if (sgl_pair->next_pair_lower == 0 &&
1279 sgl_pair->next_pair_upper == 0) {
1280 sgl = NULL;
1281 } else {
1282 pio_sgl->index++;
1283 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A;
1284 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1285 sgl = &sgl_pair->A;
1286 }
1287 }
1288
1289 return sgl;
1290}
1291
1292static enum sci_status
1293stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq,
1294 u32 completion_code)
1295{
1296 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1297 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1298 ireq->scu_status = SCU_TASK_DONE_GOOD;
1299 ireq->sci_status = SCI_SUCCESS;
1300 sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
1301 break;
1302
1303 default:
1304 /* All other completion status cause the IO to be
1305 * complete. If a NAK was received, then it is up to
1306 * the user to retry the request.
1307 */
1308 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1309 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1310 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1311 break;
1312 }
1313
1314 return SCI_SUCCESS;
1315}
1316
1317#define SCU_MAX_FRAME_BUFFER_SIZE 0x400 /* 1K is the maximum SCU frame data payload */
1318
1319/* transmit DATA_FIS from (current sgl + offset) for input
1320 * parameter length. current sgl and offset is alreay stored in the IO request
1321 */
1322static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame(
1323 struct isci_request *ireq,
1324 u32 length)
1325{
1326 struct isci_stp_request *stp_req = &ireq->stp.req;
1327 struct scu_task_context *task_context = ireq->tc;
1328 struct scu_sgl_element_pair *sgl_pair;
1329 struct scu_sgl_element *current_sgl;
1330
1331 /* Recycle the TC and reconstruct it for sending out DATA FIS containing
1332 * for the data from current_sgl+offset for the input length
1333 */
1334 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1335 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A)
1336 current_sgl = &sgl_pair->A;
1337 else
1338 current_sgl = &sgl_pair->B;
1339
1340 /* update the TC */
1341 task_context->command_iu_upper = current_sgl->address_upper;
1342 task_context->command_iu_lower = current_sgl->address_lower;
1343 task_context->transfer_length_bytes = length;
1344 task_context->type.stp.fis_type = FIS_DATA;
1345
1346 /* send the new TC out. */
1347 return sci_controller_continue_io(ireq);
1348}
1349
1350static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq)
1351{
1352 struct isci_stp_request *stp_req = &ireq->stp.req;
1353 struct scu_sgl_element_pair *sgl_pair;
1354 enum sci_status status = SCI_SUCCESS;
1355 struct scu_sgl_element *sgl;
1356 u32 offset;
1357 u32 len = 0;
1358
1359 offset = stp_req->sgl.offset;
1360 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1361 if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__))
1362 return SCI_FAILURE;
1363
1364 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) {
1365 sgl = &sgl_pair->A;
1366 len = sgl_pair->A.length - offset;
1367 } else {
1368 sgl = &sgl_pair->B;
1369 len = sgl_pair->B.length - offset;
1370 }
1371
1372 if (stp_req->pio_len == 0)
1373 return SCI_SUCCESS;
1374
1375 if (stp_req->pio_len >= len) {
1376 status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len);
1377 if (status != SCI_SUCCESS)
1378 return status;
1379 stp_req->pio_len -= len;
1380
1381 /* update the current sgl, offset and save for future */
1382 sgl = pio_sgl_next(stp_req);
1383 offset = 0;
1384 } else if (stp_req->pio_len < len) {
1385 sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len);
1386
1387 /* Sgl offset will be adjusted and saved for future */
1388 offset += stp_req->pio_len;
1389 sgl->address_lower += stp_req->pio_len;
1390 stp_req->pio_len = 0;
1391 }
1392
1393 stp_req->sgl.offset = offset;
1394
1395 return status;
1396}
1397
1398/**
1399 *
1400 * @stp_request: The request that is used for the SGL processing.
1401 * @data_buffer: The buffer of data to be copied.
1402 * @length: The length of the data transfer.
1403 *
1404 * Copy the data from the buffer for the length specified to the IO request SGL
1405 * specified data region. enum sci_status
1406 */
1407static enum sci_status
1408sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req,
1409 u8 *data_buf, u32 len)
1410{
1411 struct isci_request *ireq;
1412 u8 *src_addr;
1413 int copy_len;
1414 struct sas_task *task;
1415 struct scatterlist *sg;
1416 void *kaddr;
1417 int total_len = len;
1418
1419 ireq = to_ireq(stp_req);
1420 task = isci_request_access_task(ireq);
1421 src_addr = data_buf;
1422
1423 if (task->num_scatter > 0) {
1424 sg = task->scatter;
1425
1426 while (total_len > 0) {
1427 struct page *page = sg_page(sg);
1428
1429 copy_len = min_t(int, total_len, sg_dma_len(sg));
1430 kaddr = kmap_atomic(page);
1431 memcpy(kaddr + sg->offset, src_addr, copy_len);
1432 kunmap_atomic(kaddr);
1433 total_len -= copy_len;
1434 src_addr += copy_len;
1435 sg = sg_next(sg);
1436 }
1437 } else {
1438 BUG_ON(task->total_xfer_len < total_len);
1439 memcpy(task->scatter, src_addr, total_len);
1440 }
1441
1442 return SCI_SUCCESS;
1443}
1444
1445/**
1446 *
1447 * @sci_req: The PIO DATA IN request that is to receive the data.
1448 * @data_buffer: The buffer to copy from.
1449 *
1450 * Copy the data buffer to the io request data region. enum sci_status
1451 */
1452static enum sci_status sci_stp_request_pio_data_in_copy_data(
1453 struct isci_stp_request *stp_req,
1454 u8 *data_buffer)
1455{
1456 enum sci_status status;
1457
1458 /*
1459 * If there is less than 1K remaining in the transfer request
1460 * copy just the data for the transfer */
1461 if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) {
1462 status = sci_stp_request_pio_data_in_copy_data_buffer(
1463 stp_req, data_buffer, stp_req->pio_len);
1464
1465 if (status == SCI_SUCCESS)
1466 stp_req->pio_len = 0;
1467 } else {
1468 /* We are transfering the whole frame so copy */
1469 status = sci_stp_request_pio_data_in_copy_data_buffer(
1470 stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
1471
1472 if (status == SCI_SUCCESS)
1473 stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE;
1474 }
1475
1476 return status;
1477}
1478
1479static enum sci_status
1480stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq,
1481 u32 completion_code)
1482{
1483 enum sci_status status = SCI_SUCCESS;
1484
1485 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1486 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1487 ireq->scu_status = SCU_TASK_DONE_GOOD;
1488 ireq->sci_status = SCI_SUCCESS;
1489 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1490 break;
1491
1492 default:
1493 /* All other completion status cause the IO to be
1494 * complete. If a NAK was received, then it is up to
1495 * the user to retry the request.
1496 */
1497 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1498 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1499 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1500 break;
1501 }
1502
1503 return status;
1504}
1505
1506static enum sci_status
1507pio_data_out_tx_done_tc_event(struct isci_request *ireq,
1508 u32 completion_code)
1509{
1510 enum sci_status status = SCI_SUCCESS;
1511 bool all_frames_transferred = false;
1512 struct isci_stp_request *stp_req = &ireq->stp.req;
1513
1514 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1515 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1516 /* Transmit data */
1517 if (stp_req->pio_len != 0) {
1518 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1519 if (status == SCI_SUCCESS) {
1520 if (stp_req->pio_len == 0)
1521 all_frames_transferred = true;
1522 }
1523 } else if (stp_req->pio_len == 0) {
1524 /*
1525 * this will happen if the all data is written at the
1526 * first time after the pio setup fis is received
1527 */
1528 all_frames_transferred = true;
1529 }
1530
1531 /* all data transferred. */
1532 if (all_frames_transferred) {
1533 /*
1534 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1535 * and wait for PIO_SETUP fis / or D2H REg fis. */
1536 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1537 }
1538 break;
1539
1540 default:
1541 /*
1542 * All other completion status cause the IO to be complete.
1543 * If a NAK was received, then it is up to the user to retry
1544 * the request.
1545 */
1546 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1547 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1548 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1549 break;
1550 }
1551
1552 return status;
1553}
1554
1555static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq,
1556 u32 frame_index)
1557{
1558 struct isci_host *ihost = ireq->owning_controller;
1559 struct dev_to_host_fis *frame_header;
1560 enum sci_status status;
1561 u32 *frame_buffer;
1562
1563 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1564 frame_index,
1565 (void **)&frame_header);
1566
1567 if ((status == SCI_SUCCESS) &&
1568 (frame_header->fis_type == FIS_REGD2H)) {
1569 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1570 frame_index,
1571 (void **)&frame_buffer);
1572
1573 sci_controller_copy_sata_response(&ireq->stp.rsp,
1574 frame_header,
1575 frame_buffer);
1576 }
1577
1578 sci_controller_release_frame(ihost, frame_index);
1579
1580 return status;
1581}
1582
1583static enum sci_status process_unsolicited_fis(struct isci_request *ireq,
1584 u32 frame_index)
1585{
1586 struct isci_host *ihost = ireq->owning_controller;
1587 enum sci_status status;
1588 struct dev_to_host_fis *frame_header;
1589 u32 *frame_buffer;
1590
1591 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1592 frame_index,
1593 (void **)&frame_header);
1594
1595 if (status != SCI_SUCCESS)
1596 return status;
1597
1598 if (frame_header->fis_type != FIS_REGD2H) {
1599 dev_err(&ireq->isci_host->pdev->dev,
1600 "%s ERROR: invalid fis type 0x%X\n",
1601 __func__, frame_header->fis_type);
1602 return SCI_FAILURE;
1603 }
1604
1605 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1606 frame_index,
1607 (void **)&frame_buffer);
1608
1609 sci_controller_copy_sata_response(&ireq->stp.rsp,
1610 (u32 *)frame_header,
1611 frame_buffer);
1612
1613 /* Frame has been decoded return it to the controller */
1614 sci_controller_release_frame(ihost, frame_index);
1615
1616 return status;
1617}
1618
1619static enum sci_status atapi_d2h_reg_frame_handler(struct isci_request *ireq,
1620 u32 frame_index)
1621{
1622 struct sas_task *task = isci_request_access_task(ireq);
1623 enum sci_status status;
1624
1625 status = process_unsolicited_fis(ireq, frame_index);
1626
1627 if (status == SCI_SUCCESS) {
1628 if (ireq->stp.rsp.status & ATA_ERR)
1629 status = SCI_IO_FAILURE_RESPONSE_VALID;
1630 } else {
1631 status = SCI_IO_FAILURE_RESPONSE_VALID;
1632 }
1633
1634 if (status != SCI_SUCCESS) {
1635 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1636 ireq->sci_status = status;
1637 } else {
1638 ireq->scu_status = SCU_TASK_DONE_GOOD;
1639 ireq->sci_status = SCI_SUCCESS;
1640 }
1641
1642 /* the d2h ufi is the end of non-data commands */
1643 if (task->data_dir == DMA_NONE)
1644 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1645
1646 return status;
1647}
1648
1649static void scu_atapi_reconstruct_raw_frame_task_context(struct isci_request *ireq)
1650{
1651 struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1652 void *atapi_cdb = ireq->ttype_ptr.io_task_ptr->ata_task.atapi_packet;
1653 struct scu_task_context *task_context = ireq->tc;
1654
1655 /* fill in the SCU Task Context for a DATA fis containing CDB in Raw Frame
1656 * type. The TC for previous Packet fis was already there, we only need to
1657 * change the H2D fis content.
1658 */
1659 memset(&ireq->stp.cmd, 0, sizeof(struct host_to_dev_fis));
1660 memcpy(((u8 *)&ireq->stp.cmd + sizeof(u32)), atapi_cdb, ATAPI_CDB_LEN);
1661 memset(&(task_context->type.stp), 0, sizeof(struct stp_task_context));
1662 task_context->type.stp.fis_type = FIS_DATA;
1663 task_context->transfer_length_bytes = dev->cdb_len;
1664}
1665
1666static void scu_atapi_construct_task_context(struct isci_request *ireq)
1667{
1668 struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1669 struct sas_task *task = isci_request_access_task(ireq);
1670 struct scu_task_context *task_context = ireq->tc;
1671 int cdb_len = dev->cdb_len;
1672
1673 /* reference: SSTL 1.13.4.2
1674 * task_type, sata_direction
1675 */
1676 if (task->data_dir == DMA_TO_DEVICE) {
1677 task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_OUT;
1678 task_context->sata_direction = 0;
1679 } else {
1680 /* todo: for NO_DATA command, we need to send out raw frame. */
1681 task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_IN;
1682 task_context->sata_direction = 1;
1683 }
1684
1685 memset(&task_context->type.stp, 0, sizeof(task_context->type.stp));
1686 task_context->type.stp.fis_type = FIS_DATA;
1687
1688 memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
1689 memcpy(&ireq->stp.cmd.lbal, task->ata_task.atapi_packet, cdb_len);
1690 task_context->ssp_command_iu_length = cdb_len / sizeof(u32);
1691
1692 /* task phase is set to TX_CMD */
1693 task_context->task_phase = 0x1;
1694
1695 /* retry counter */
1696 task_context->stp_retry_count = 0;
1697
1698 /* data transfer size. */
1699 task_context->transfer_length_bytes = task->total_xfer_len;
1700
1701 /* setup sgl */
1702 sci_request_build_sgl(ireq);
1703}
1704
1705enum sci_status
1706sci_io_request_frame_handler(struct isci_request *ireq,
1707 u32 frame_index)
1708{
1709 struct isci_host *ihost = ireq->owning_controller;
1710 struct isci_stp_request *stp_req = &ireq->stp.req;
1711 enum sci_base_request_states state;
1712 enum sci_status status;
1713 ssize_t word_cnt;
1714
1715 state = ireq->sm.current_state_id;
1716 switch (state) {
1717 case SCI_REQ_STARTED: {
1718 struct ssp_frame_hdr ssp_hdr;
1719 void *frame_header;
1720
1721 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1722 frame_index,
1723 &frame_header);
1724
1725 word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1726 sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1727
1728 if (ssp_hdr.frame_type == SSP_RESPONSE) {
1729 struct ssp_response_iu *resp_iu;
1730 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1731
1732 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1733 frame_index,
1734 (void **)&resp_iu);
1735
1736 sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt);
1737
1738 resp_iu = &ireq->ssp.rsp;
1739
1740 if (resp_iu->datapres == 0x01 ||
1741 resp_iu->datapres == 0x02) {
1742 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1743 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1744 } else {
1745 ireq->scu_status = SCU_TASK_DONE_GOOD;
1746 ireq->sci_status = SCI_SUCCESS;
1747 }
1748 } else {
1749 /* not a response frame, why did it get forwarded? */
1750 dev_err(&ihost->pdev->dev,
1751 "%s: SCIC IO Request 0x%p received unexpected "
1752 "frame %d type 0x%02x\n", __func__, ireq,
1753 frame_index, ssp_hdr.frame_type);
1754 }
1755
1756 /*
1757 * In any case we are done with this frame buffer return it to
1758 * the controller
1759 */
1760 sci_controller_release_frame(ihost, frame_index);
1761
1762 return SCI_SUCCESS;
1763 }
1764
1765 case SCI_REQ_TASK_WAIT_TC_RESP:
1766 sci_io_request_copy_response(ireq);
1767 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1768 sci_controller_release_frame(ihost, frame_index);
1769 return SCI_SUCCESS;
1770
1771 case SCI_REQ_SMP_WAIT_RESP: {
1772 struct sas_task *task = isci_request_access_task(ireq);
1773 struct scatterlist *sg = &task->smp_task.smp_resp;
1774 void *frame_header, *kaddr;
1775 u8 *rsp;
1776
1777 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1778 frame_index,
1779 &frame_header);
1780 kaddr = kmap_atomic(sg_page(sg));
1781 rsp = kaddr + sg->offset;
1782 sci_swab32_cpy(rsp, frame_header, 1);
1783
1784 if (rsp[0] == SMP_RESPONSE) {
1785 void *smp_resp;
1786
1787 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1788 frame_index,
1789 &smp_resp);
1790
1791 word_cnt = (sg->length/4)-1;
1792 if (word_cnt > 0)
1793 word_cnt = min_t(unsigned int, word_cnt,
1794 SCU_UNSOLICITED_FRAME_BUFFER_SIZE/4);
1795 sci_swab32_cpy(rsp + 4, smp_resp, word_cnt);
1796
1797 ireq->scu_status = SCU_TASK_DONE_GOOD;
1798 ireq->sci_status = SCI_SUCCESS;
1799 sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP);
1800 } else {
1801 /*
1802 * This was not a response frame why did it get
1803 * forwarded?
1804 */
1805 dev_err(&ihost->pdev->dev,
1806 "%s: SCIC SMP Request 0x%p received unexpected "
1807 "frame %d type 0x%02x\n",
1808 __func__,
1809 ireq,
1810 frame_index,
1811 rsp[0]);
1812
1813 ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR;
1814 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1815 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1816 }
1817 kunmap_atomic(kaddr);
1818
1819 sci_controller_release_frame(ihost, frame_index);
1820
1821 return SCI_SUCCESS;
1822 }
1823
1824 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1825 return sci_stp_request_udma_general_frame_handler(ireq,
1826 frame_index);
1827
1828 case SCI_REQ_STP_UDMA_WAIT_D2H:
1829 /* Use the general frame handler to copy the resposne data */
1830 status = sci_stp_request_udma_general_frame_handler(ireq, frame_index);
1831
1832 if (status != SCI_SUCCESS)
1833 return status;
1834
1835 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1836 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1837 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1838 return SCI_SUCCESS;
1839
1840 case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
1841 struct dev_to_host_fis *frame_header;
1842 u32 *frame_buffer;
1843
1844 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1845 frame_index,
1846 (void **)&frame_header);
1847
1848 if (status != SCI_SUCCESS) {
1849 dev_err(&ihost->pdev->dev,
1850 "%s: SCIC IO Request 0x%p could not get frame "
1851 "header for frame index %d, status %x\n",
1852 __func__,
1853 stp_req,
1854 frame_index,
1855 status);
1856
1857 return status;
1858 }
1859
1860 switch (frame_header->fis_type) {
1861 case FIS_REGD2H:
1862 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1863 frame_index,
1864 (void **)&frame_buffer);
1865
1866 sci_controller_copy_sata_response(&ireq->stp.rsp,
1867 frame_header,
1868 frame_buffer);
1869
1870 /* The command has completed with error */
1871 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1872 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1873 break;
1874
1875 default:
1876 dev_warn(&ihost->pdev->dev,
1877 "%s: IO Request:0x%p Frame Id:%d protocol "
1878 "violation occurred\n", __func__, stp_req,
1879 frame_index);
1880
1881 ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1882 ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1883 break;
1884 }
1885
1886 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1887
1888 /* Frame has been decoded return it to the controller */
1889 sci_controller_release_frame(ihost, frame_index);
1890
1891 return status;
1892 }
1893
1894 case SCI_REQ_STP_PIO_WAIT_FRAME: {
1895 struct sas_task *task = isci_request_access_task(ireq);
1896 struct dev_to_host_fis *frame_header;
1897 u32 *frame_buffer;
1898
1899 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1900 frame_index,
1901 (void **)&frame_header);
1902
1903 if (status != SCI_SUCCESS) {
1904 dev_err(&ihost->pdev->dev,
1905 "%s: SCIC IO Request 0x%p could not get frame "
1906 "header for frame index %d, status %x\n",
1907 __func__, stp_req, frame_index, status);
1908 return status;
1909 }
1910
1911 switch (frame_header->fis_type) {
1912 case FIS_PIO_SETUP:
1913 /* Get from the frame buffer the PIO Setup Data */
1914 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1915 frame_index,
1916 (void **)&frame_buffer);
1917
1918 /* Get the data from the PIO Setup The SCU Hardware
1919 * returns first word in the frame_header and the rest
1920 * of the data is in the frame buffer so we need to
1921 * back up one dword
1922 */
1923
1924 /* transfer_count: first 16bits in the 4th dword */
1925 stp_req->pio_len = frame_buffer[3] & 0xffff;
1926
1927 /* status: 4th byte in the 3rd dword */
1928 stp_req->status = (frame_buffer[2] >> 24) & 0xff;
1929
1930 sci_controller_copy_sata_response(&ireq->stp.rsp,
1931 frame_header,
1932 frame_buffer);
1933
1934 ireq->stp.rsp.status = stp_req->status;
1935
1936 /* The next state is dependent on whether the
1937 * request was PIO Data-in or Data out
1938 */
1939 if (task->data_dir == DMA_FROM_DEVICE) {
1940 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN);
1941 } else if (task->data_dir == DMA_TO_DEVICE) {
1942 /* Transmit data */
1943 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1944 if (status != SCI_SUCCESS)
1945 break;
1946 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT);
1947 }
1948 break;
1949
1950 case FIS_SETDEVBITS:
1951 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1952 break;
1953
1954 case FIS_REGD2H:
1955 if (frame_header->status & ATA_BUSY) {
1956 /*
1957 * Now why is the drive sending a D2H Register
1958 * FIS when it is still busy? Do nothing since
1959 * we are still in the right state.
1960 */
1961 dev_dbg(&ihost->pdev->dev,
1962 "%s: SCIC PIO Request 0x%p received "
1963 "D2H Register FIS with BSY status "
1964 "0x%x\n",
1965 __func__,
1966 stp_req,
1967 frame_header->status);
1968 break;
1969 }
1970
1971 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1972 frame_index,
1973 (void **)&frame_buffer);
1974
1975 sci_controller_copy_sata_response(&ireq->stp.rsp,
1976 frame_header,
1977 frame_buffer);
1978
1979 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1980 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1981 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1982 break;
1983
1984 default:
1985 /* FIXME: what do we do here? */
1986 break;
1987 }
1988
1989 /* Frame is decoded return it to the controller */
1990 sci_controller_release_frame(ihost, frame_index);
1991
1992 return status;
1993 }
1994
1995 case SCI_REQ_STP_PIO_DATA_IN: {
1996 struct dev_to_host_fis *frame_header;
1997 struct sata_fis_data *frame_buffer;
1998
1999 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
2000 frame_index,
2001 (void **)&frame_header);
2002
2003 if (status != SCI_SUCCESS) {
2004 dev_err(&ihost->pdev->dev,
2005 "%s: SCIC IO Request 0x%p could not get frame "
2006 "header for frame index %d, status %x\n",
2007 __func__,
2008 stp_req,
2009 frame_index,
2010 status);
2011 return status;
2012 }
2013
2014 if (frame_header->fis_type != FIS_DATA) {
2015 dev_err(&ihost->pdev->dev,
2016 "%s: SCIC PIO Request 0x%p received frame %d "
2017 "with fis type 0x%02x when expecting a data "
2018 "fis.\n",
2019 __func__,
2020 stp_req,
2021 frame_index,
2022 frame_header->fis_type);
2023
2024 ireq->scu_status = SCU_TASK_DONE_GOOD;
2025 ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT;
2026 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2027
2028 /* Frame is decoded return it to the controller */
2029 sci_controller_release_frame(ihost, frame_index);
2030 return status;
2031 }
2032
2033 if (stp_req->sgl.index < 0) {
2034 ireq->saved_rx_frame_index = frame_index;
2035 stp_req->pio_len = 0;
2036 } else {
2037 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
2038 frame_index,
2039 (void **)&frame_buffer);
2040
2041 status = sci_stp_request_pio_data_in_copy_data(stp_req,
2042 (u8 *)frame_buffer);
2043
2044 /* Frame is decoded return it to the controller */
2045 sci_controller_release_frame(ihost, frame_index);
2046 }
2047
2048 /* Check for the end of the transfer, are there more
2049 * bytes remaining for this data transfer
2050 */
2051 if (status != SCI_SUCCESS || stp_req->pio_len != 0)
2052 return status;
2053
2054 if ((stp_req->status & ATA_BUSY) == 0) {
2055 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2056 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2057 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2058 } else {
2059 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
2060 }
2061 return status;
2062 }
2063
2064 case SCI_REQ_ATAPI_WAIT_PIO_SETUP: {
2065 struct sas_task *task = isci_request_access_task(ireq);
2066
2067 sci_controller_release_frame(ihost, frame_index);
2068 ireq->target_device->working_request = ireq;
2069 if (task->data_dir == DMA_NONE) {
2070 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_TC_COMP);
2071 scu_atapi_reconstruct_raw_frame_task_context(ireq);
2072 } else {
2073 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2074 scu_atapi_construct_task_context(ireq);
2075 }
2076
2077 sci_controller_continue_io(ireq);
2078 return SCI_SUCCESS;
2079 }
2080 case SCI_REQ_ATAPI_WAIT_D2H:
2081 return atapi_d2h_reg_frame_handler(ireq, frame_index);
2082 case SCI_REQ_ABORTING:
2083 /*
2084 * TODO: Is it even possible to get an unsolicited frame in the
2085 * aborting state?
2086 */
2087 sci_controller_release_frame(ihost, frame_index);
2088 return SCI_SUCCESS;
2089
2090 default:
2091 dev_warn(&ihost->pdev->dev,
2092 "%s: SCIC IO Request given unexpected frame %x while "
2093 "in state %d\n",
2094 __func__,
2095 frame_index,
2096 state);
2097
2098 sci_controller_release_frame(ihost, frame_index);
2099 return SCI_FAILURE_INVALID_STATE;
2100 }
2101}
2102
2103static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq,
2104 u32 completion_code)
2105{
2106 enum sci_status status = SCI_SUCCESS;
2107
2108 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2109 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2110 ireq->scu_status = SCU_TASK_DONE_GOOD;
2111 ireq->sci_status = SCI_SUCCESS;
2112 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2113 break;
2114 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
2115 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
2116 /* We must check ther response buffer to see if the D2H
2117 * Register FIS was received before we got the TC
2118 * completion.
2119 */
2120 if (ireq->stp.rsp.fis_type == FIS_REGD2H) {
2121 sci_remote_device_suspend(ireq->target_device,
2122 SCI_SW_SUSPEND_NORMAL);
2123
2124 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2125 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2126 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2127 } else {
2128 /* If we have an error completion status for the
2129 * TC then we can expect a D2H register FIS from
2130 * the device so we must change state to wait
2131 * for it
2132 */
2133 sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
2134 }
2135 break;
2136
2137 /* TODO Check to see if any of these completion status need to
2138 * wait for the device to host register fis.
2139 */
2140 /* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
2141 * - this comes only for B0
2142 */
2143 default:
2144 /* All other completion status cause the IO to be complete. */
2145 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2146 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2147 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2148 break;
2149 }
2150
2151 return status;
2152}
2153
2154static enum sci_status atapi_raw_completion(struct isci_request *ireq, u32 completion_code,
2155 enum sci_base_request_states next)
2156{
2157 enum sci_status status = SCI_SUCCESS;
2158
2159 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2160 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2161 ireq->scu_status = SCU_TASK_DONE_GOOD;
2162 ireq->sci_status = SCI_SUCCESS;
2163 sci_change_state(&ireq->sm, next);
2164 break;
2165 default:
2166 /* All other completion status cause the IO to be complete.
2167 * If a NAK was received, then it is up to the user to retry
2168 * the request.
2169 */
2170 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2171 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2172
2173 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2174 break;
2175 }
2176
2177 return status;
2178}
2179
2180static enum sci_status atapi_data_tc_completion_handler(struct isci_request *ireq,
2181 u32 completion_code)
2182{
2183 struct isci_remote_device *idev = ireq->target_device;
2184 struct dev_to_host_fis *d2h = &ireq->stp.rsp;
2185 enum sci_status status = SCI_SUCCESS;
2186
2187 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2188 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
2189 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2190 break;
2191
2192 case (SCU_TASK_DONE_UNEXP_FIS << SCU_COMPLETION_TL_STATUS_SHIFT): {
2193 u16 len = sci_req_tx_bytes(ireq);
2194
2195 /* likely non-error data underrrun, workaround missing
2196 * d2h frame from the controller
2197 */
2198 if (d2h->fis_type != FIS_REGD2H) {
2199 d2h->fis_type = FIS_REGD2H;
2200 d2h->flags = (1 << 6);
2201 d2h->status = 0x50;
2202 d2h->error = 0;
2203 d2h->lbal = 0;
2204 d2h->byte_count_low = len & 0xff;
2205 d2h->byte_count_high = len >> 8;
2206 d2h->device = 0xa0;
2207 d2h->lbal_exp = 0;
2208 d2h->lbam_exp = 0;
2209 d2h->lbah_exp = 0;
2210 d2h->_r_a = 0;
2211 d2h->sector_count = 0x3;
2212 d2h->sector_count_exp = 0;
2213 d2h->_r_b = 0;
2214 d2h->_r_c = 0;
2215 d2h->_r_d = 0;
2216 }
2217
2218 ireq->scu_status = SCU_TASK_DONE_GOOD;
2219 ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
2220 status = ireq->sci_status;
2221
2222 /* the hw will have suspended the rnc, so complete the
2223 * request upon pending resume
2224 */
2225 sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2226 break;
2227 }
2228 case (SCU_TASK_DONE_EXCESS_DATA << SCU_COMPLETION_TL_STATUS_SHIFT):
2229 /* In this case, there is no UF coming after.
2230 * compelte the IO now.
2231 */
2232 ireq->scu_status = SCU_TASK_DONE_GOOD;
2233 ireq->sci_status = SCI_SUCCESS;
2234 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2235 break;
2236
2237 default:
2238 if (d2h->fis_type == FIS_REGD2H) {
2239 /* UF received change the device state to ATAPI_ERROR */
2240 status = ireq->sci_status;
2241 sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2242 } else {
2243 /* If receiving any non-success TC status, no UF
2244 * received yet, then an UF for the status fis
2245 * is coming after (XXX: suspect this is
2246 * actually a protocol error or a bug like the
2247 * DONE_UNEXP_FIS case)
2248 */
2249 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2250 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2251
2252 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2253 }
2254 break;
2255 }
2256
2257 return status;
2258}
2259
2260static int sci_request_smp_completion_status_is_tx_suspend(
2261 unsigned int completion_status)
2262{
2263 switch (completion_status) {
2264 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2265 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2266 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2267 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2268 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2269 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2270 return 1;
2271 }
2272 return 0;
2273}
2274
2275static int sci_request_smp_completion_status_is_tx_rx_suspend(
2276 unsigned int completion_status)
2277{
2278 return 0; /* There are no Tx/Rx SMP suspend conditions. */
2279}
2280
2281static int sci_request_ssp_completion_status_is_tx_suspend(
2282 unsigned int completion_status)
2283{
2284 switch (completion_status) {
2285 case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2286 case SCU_TASK_DONE_LF_ERR:
2287 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2288 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2289 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2290 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2291 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2292 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2293 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2294 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2295 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2296 return 1;
2297 }
2298 return 0;
2299}
2300
2301static int sci_request_ssp_completion_status_is_tx_rx_suspend(
2302 unsigned int completion_status)
2303{
2304 return 0; /* There are no Tx/Rx SSP suspend conditions. */
2305}
2306
2307static int sci_request_stpsata_completion_status_is_tx_suspend(
2308 unsigned int completion_status)
2309{
2310 switch (completion_status) {
2311 case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2312 case SCU_TASK_DONE_LL_R_ERR:
2313 case SCU_TASK_DONE_LL_PERR:
2314 case SCU_TASK_DONE_REG_ERR:
2315 case SCU_TASK_DONE_SDB_ERR:
2316 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2317 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2318 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2319 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2320 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2321 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2322 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2323 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2324 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2325 return 1;
2326 }
2327 return 0;
2328}
2329
2330
2331static int sci_request_stpsata_completion_status_is_tx_rx_suspend(
2332 unsigned int completion_status)
2333{
2334 switch (completion_status) {
2335 case SCU_TASK_DONE_LF_ERR:
2336 case SCU_TASK_DONE_LL_SY_TERM:
2337 case SCU_TASK_DONE_LL_LF_TERM:
2338 case SCU_TASK_DONE_BREAK_RCVD:
2339 case SCU_TASK_DONE_INV_FIS_LEN:
2340 case SCU_TASK_DONE_UNEXP_FIS:
2341 case SCU_TASK_DONE_UNEXP_SDBFIS:
2342 case SCU_TASK_DONE_MAX_PLD_ERR:
2343 return 1;
2344 }
2345 return 0;
2346}
2347
2348static void sci_request_handle_suspending_completions(
2349 struct isci_request *ireq,
2350 u32 completion_code)
2351{
2352 int is_tx = 0;
2353 int is_tx_rx = 0;
2354
2355 switch (ireq->protocol) {
2356 case SAS_PROTOCOL_SMP:
2357 is_tx = sci_request_smp_completion_status_is_tx_suspend(
2358 completion_code);
2359 is_tx_rx = sci_request_smp_completion_status_is_tx_rx_suspend(
2360 completion_code);
2361 break;
2362 case SAS_PROTOCOL_SSP:
2363 is_tx = sci_request_ssp_completion_status_is_tx_suspend(
2364 completion_code);
2365 is_tx_rx = sci_request_ssp_completion_status_is_tx_rx_suspend(
2366 completion_code);
2367 break;
2368 case SAS_PROTOCOL_STP:
2369 is_tx = sci_request_stpsata_completion_status_is_tx_suspend(
2370 completion_code);
2371 is_tx_rx =
2372 sci_request_stpsata_completion_status_is_tx_rx_suspend(
2373 completion_code);
2374 break;
2375 default:
2376 dev_warn(&ireq->isci_host->pdev->dev,
2377 "%s: request %p has no valid protocol\n",
2378 __func__, ireq);
2379 break;
2380 }
2381 if (is_tx || is_tx_rx) {
2382 BUG_ON(is_tx && is_tx_rx);
2383
2384 sci_remote_node_context_suspend(
2385 &ireq->target_device->rnc,
2386 SCI_HW_SUSPEND,
2387 (is_tx_rx) ? SCU_EVENT_TL_RNC_SUSPEND_TX_RX
2388 : SCU_EVENT_TL_RNC_SUSPEND_TX);
2389 }
2390}
2391
2392enum sci_status
2393sci_io_request_tc_completion(struct isci_request *ireq,
2394 u32 completion_code)
2395{
2396 enum sci_base_request_states state;
2397 struct isci_host *ihost = ireq->owning_controller;
2398
2399 state = ireq->sm.current_state_id;
2400
2401 /* Decode those completions that signal upcoming suspension events. */
2402 sci_request_handle_suspending_completions(
2403 ireq, SCU_GET_COMPLETION_TL_STATUS(completion_code));
2404
2405 switch (state) {
2406 case SCI_REQ_STARTED:
2407 return request_started_state_tc_event(ireq, completion_code);
2408
2409 case SCI_REQ_TASK_WAIT_TC_COMP:
2410 return ssp_task_request_await_tc_event(ireq,
2411 completion_code);
2412
2413 case SCI_REQ_SMP_WAIT_RESP:
2414 return smp_request_await_response_tc_event(ireq,
2415 completion_code);
2416
2417 case SCI_REQ_SMP_WAIT_TC_COMP:
2418 return smp_request_await_tc_event(ireq, completion_code);
2419
2420 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
2421 return stp_request_udma_await_tc_event(ireq,
2422 completion_code);
2423
2424 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
2425 return stp_request_non_data_await_h2d_tc_event(ireq,
2426 completion_code);
2427
2428 case SCI_REQ_STP_PIO_WAIT_H2D:
2429 return stp_request_pio_await_h2d_completion_tc_event(ireq,
2430 completion_code);
2431
2432 case SCI_REQ_STP_PIO_DATA_OUT:
2433 return pio_data_out_tx_done_tc_event(ireq, completion_code);
2434
2435 case SCI_REQ_ABORTING:
2436 return request_aborting_state_tc_event(ireq,
2437 completion_code);
2438
2439 case SCI_REQ_ATAPI_WAIT_H2D:
2440 return atapi_raw_completion(ireq, completion_code,
2441 SCI_REQ_ATAPI_WAIT_PIO_SETUP);
2442
2443 case SCI_REQ_ATAPI_WAIT_TC_COMP:
2444 return atapi_raw_completion(ireq, completion_code,
2445 SCI_REQ_ATAPI_WAIT_D2H);
2446
2447 case SCI_REQ_ATAPI_WAIT_D2H:
2448 return atapi_data_tc_completion_handler(ireq, completion_code);
2449
2450 default:
2451 dev_warn(&ihost->pdev->dev, "%s: %x in wrong state %s\n",
2452 __func__, completion_code, req_state_name(state));
2453 return SCI_FAILURE_INVALID_STATE;
2454 }
2455}
2456
2457/**
2458 * isci_request_process_response_iu() - This function sets the status and
2459 * response iu, in the task struct, from the request object for the upper
2460 * layer driver.
2461 * @sas_task: This parameter is the task struct from the upper layer driver.
2462 * @resp_iu: This parameter points to the response iu of the completed request.
2463 * @dev: This parameter specifies the linux device struct.
2464 *
2465 * none.
2466 */
2467static void isci_request_process_response_iu(
2468 struct sas_task *task,
2469 struct ssp_response_iu *resp_iu,
2470 struct device *dev)
2471{
2472 dev_dbg(dev,
2473 "%s: resp_iu = %p "
2474 "resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2475 "resp_iu->response_data_len = %x, "
2476 "resp_iu->sense_data_len = %x\nresponse data: ",
2477 __func__,
2478 resp_iu,
2479 resp_iu->status,
2480 resp_iu->datapres,
2481 resp_iu->response_data_len,
2482 resp_iu->sense_data_len);
2483
2484 task->task_status.stat = resp_iu->status;
2485
2486 /* libsas updates the task status fields based on the response iu. */
2487 sas_ssp_task_response(dev, task, resp_iu);
2488}
2489
2490/**
2491 * isci_request_set_open_reject_status() - This function prepares the I/O
2492 * completion for OPEN_REJECT conditions.
2493 * @request: This parameter is the completed isci_request object.
2494 * @response_ptr: This parameter specifies the service response for the I/O.
2495 * @status_ptr: This parameter specifies the exec status for the I/O.
2496 * @open_rej_reason: This parameter specifies the encoded reason for the
2497 * abandon-class reject.
2498 *
2499 * none.
2500 */
2501static void isci_request_set_open_reject_status(
2502 struct isci_request *request,
2503 struct sas_task *task,
2504 enum service_response *response_ptr,
2505 enum exec_status *status_ptr,
2506 enum sas_open_rej_reason open_rej_reason)
2507{
2508 /* Task in the target is done. */
2509 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2510 *response_ptr = SAS_TASK_UNDELIVERED;
2511 *status_ptr = SAS_OPEN_REJECT;
2512 task->task_status.open_rej_reason = open_rej_reason;
2513}
2514
2515/**
2516 * isci_request_handle_controller_specific_errors() - This function decodes
2517 * controller-specific I/O completion error conditions.
2518 * @request: This parameter is the completed isci_request object.
2519 * @response_ptr: This parameter specifies the service response for the I/O.
2520 * @status_ptr: This parameter specifies the exec status for the I/O.
2521 *
2522 * none.
2523 */
2524static void isci_request_handle_controller_specific_errors(
2525 struct isci_remote_device *idev,
2526 struct isci_request *request,
2527 struct sas_task *task,
2528 enum service_response *response_ptr,
2529 enum exec_status *status_ptr)
2530{
2531 unsigned int cstatus;
2532
2533 cstatus = request->scu_status;
2534
2535 dev_dbg(&request->isci_host->pdev->dev,
2536 "%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2537 "- controller status = 0x%x\n",
2538 __func__, request, cstatus);
2539
2540 /* Decode the controller-specific errors; most
2541 * important is to recognize those conditions in which
2542 * the target may still have a task outstanding that
2543 * must be aborted.
2544 *
2545 * Note that there are SCU completion codes being
2546 * named in the decode below for which SCIC has already
2547 * done work to handle them in a way other than as
2548 * a controller-specific completion code; these are left
2549 * in the decode below for completeness sake.
2550 */
2551 switch (cstatus) {
2552 case SCU_TASK_DONE_DMASETUP_DIRERR:
2553 /* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2554 case SCU_TASK_DONE_XFERCNT_ERR:
2555 /* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2556 if (task->task_proto == SAS_PROTOCOL_SMP) {
2557 /* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2558 *response_ptr = SAS_TASK_COMPLETE;
2559
2560 /* See if the device has been/is being stopped. Note
2561 * that we ignore the quiesce state, since we are
2562 * concerned about the actual device state.
2563 */
2564 if (!idev)
2565 *status_ptr = SAS_DEVICE_UNKNOWN;
2566 else
2567 *status_ptr = SAS_ABORTED_TASK;
2568
2569 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2570 } else {
2571 /* Task in the target is not done. */
2572 *response_ptr = SAS_TASK_UNDELIVERED;
2573
2574 if (!idev)
2575 *status_ptr = SAS_DEVICE_UNKNOWN;
2576 else
2577 *status_ptr = SAM_STAT_TASK_ABORTED;
2578
2579 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2580 }
2581
2582 break;
2583
2584 case SCU_TASK_DONE_CRC_ERR:
2585 case SCU_TASK_DONE_NAK_CMD_ERR:
2586 case SCU_TASK_DONE_EXCESS_DATA:
2587 case SCU_TASK_DONE_UNEXP_FIS:
2588 /* Also SCU_TASK_DONE_UNEXP_RESP: */
2589 case SCU_TASK_DONE_VIIT_ENTRY_NV: /* TODO - conditions? */
2590 case SCU_TASK_DONE_IIT_ENTRY_NV: /* TODO - conditions? */
2591 case SCU_TASK_DONE_RNCNV_OUTBOUND: /* TODO - conditions? */
2592 /* These are conditions in which the target
2593 * has completed the task, so that no cleanup
2594 * is necessary.
2595 */
2596 *response_ptr = SAS_TASK_COMPLETE;
2597
2598 /* See if the device has been/is being stopped. Note
2599 * that we ignore the quiesce state, since we are
2600 * concerned about the actual device state.
2601 */
2602 if (!idev)
2603 *status_ptr = SAS_DEVICE_UNKNOWN;
2604 else
2605 *status_ptr = SAS_ABORTED_TASK;
2606
2607 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2608 break;
2609
2610
2611 /* Note that the only open reject completion codes seen here will be
2612 * abandon-class codes; all others are automatically retried in the SCU.
2613 */
2614 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2615
2616 isci_request_set_open_reject_status(
2617 request, task, response_ptr, status_ptr,
2618 SAS_OREJ_WRONG_DEST);
2619 break;
2620
2621 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2622
2623 /* Note - the return of AB0 will change when
2624 * libsas implements detection of zone violations.
2625 */
2626 isci_request_set_open_reject_status(
2627 request, task, response_ptr, status_ptr,
2628 SAS_OREJ_RESV_AB0);
2629 break;
2630
2631 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2632
2633 isci_request_set_open_reject_status(
2634 request, task, response_ptr, status_ptr,
2635 SAS_OREJ_RESV_AB1);
2636 break;
2637
2638 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2639
2640 isci_request_set_open_reject_status(
2641 request, task, response_ptr, status_ptr,
2642 SAS_OREJ_RESV_AB2);
2643 break;
2644
2645 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2646
2647 isci_request_set_open_reject_status(
2648 request, task, response_ptr, status_ptr,
2649 SAS_OREJ_RESV_AB3);
2650 break;
2651
2652 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2653
2654 isci_request_set_open_reject_status(
2655 request, task, response_ptr, status_ptr,
2656 SAS_OREJ_BAD_DEST);
2657 break;
2658
2659 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2660
2661 isci_request_set_open_reject_status(
2662 request, task, response_ptr, status_ptr,
2663 SAS_OREJ_STP_NORES);
2664 break;
2665
2666 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2667
2668 isci_request_set_open_reject_status(
2669 request, task, response_ptr, status_ptr,
2670 SAS_OREJ_EPROTO);
2671 break;
2672
2673 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2674
2675 isci_request_set_open_reject_status(
2676 request, task, response_ptr, status_ptr,
2677 SAS_OREJ_CONN_RATE);
2678 break;
2679
2680 case SCU_TASK_DONE_LL_R_ERR:
2681 /* Also SCU_TASK_DONE_ACK_NAK_TO: */
2682 case SCU_TASK_DONE_LL_PERR:
2683 case SCU_TASK_DONE_LL_SY_TERM:
2684 /* Also SCU_TASK_DONE_NAK_ERR:*/
2685 case SCU_TASK_DONE_LL_LF_TERM:
2686 /* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2687 case SCU_TASK_DONE_LL_ABORT_ERR:
2688 case SCU_TASK_DONE_SEQ_INV_TYPE:
2689 /* Also SCU_TASK_DONE_UNEXP_XR: */
2690 case SCU_TASK_DONE_XR_IU_LEN_ERR:
2691 case SCU_TASK_DONE_INV_FIS_LEN:
2692 /* Also SCU_TASK_DONE_XR_WD_LEN: */
2693 case SCU_TASK_DONE_SDMA_ERR:
2694 case SCU_TASK_DONE_OFFSET_ERR:
2695 case SCU_TASK_DONE_MAX_PLD_ERR:
2696 case SCU_TASK_DONE_LF_ERR:
2697 case SCU_TASK_DONE_SMP_RESP_TO_ERR: /* Escalate to dev reset? */
2698 case SCU_TASK_DONE_SMP_LL_RX_ERR:
2699 case SCU_TASK_DONE_UNEXP_DATA:
2700 case SCU_TASK_DONE_UNEXP_SDBFIS:
2701 case SCU_TASK_DONE_REG_ERR:
2702 case SCU_TASK_DONE_SDB_ERR:
2703 case SCU_TASK_DONE_TASK_ABORT:
2704 default:
2705 /* Task in the target is not done. */
2706 *response_ptr = SAS_TASK_UNDELIVERED;
2707 *status_ptr = SAM_STAT_TASK_ABORTED;
2708
2709 if (task->task_proto == SAS_PROTOCOL_SMP)
2710 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2711 else
2712 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2713 break;
2714 }
2715}
2716
2717static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis)
2718{
2719 struct task_status_struct *ts = &task->task_status;
2720 struct ata_task_resp *resp = (void *)&ts->buf[0];
2721
2722 resp->frame_len = sizeof(*fis);
2723 memcpy(resp->ending_fis, fis, sizeof(*fis));
2724 ts->buf_valid_size = sizeof(*resp);
2725
2726 /* If an error is flagged let libata decode the fis */
2727 if (ac_err_mask(fis->status))
2728 ts->stat = SAS_PROTO_RESPONSE;
2729 else
2730 ts->stat = SAM_STAT_GOOD;
2731
2732 ts->resp = SAS_TASK_COMPLETE;
2733}
2734
2735static void isci_request_io_request_complete(struct isci_host *ihost,
2736 struct isci_request *request,
2737 enum sci_io_status completion_status)
2738{
2739 struct sas_task *task = isci_request_access_task(request);
2740 struct ssp_response_iu *resp_iu;
2741 unsigned long task_flags;
2742 struct isci_remote_device *idev = request->target_device;
2743 enum service_response response = SAS_TASK_UNDELIVERED;
2744 enum exec_status status = SAS_ABORTED_TASK;
2745
2746 dev_dbg(&ihost->pdev->dev,
2747 "%s: request = %p, task = %p, "
2748 "task->data_dir = %d completion_status = 0x%x\n",
2749 __func__, request, task, task->data_dir, completion_status);
2750
2751 /* The request is done from an SCU HW perspective. */
2752
2753 /* This is an active request being completed from the core. */
2754 switch (completion_status) {
2755
2756 case SCI_IO_FAILURE_RESPONSE_VALID:
2757 dev_dbg(&ihost->pdev->dev,
2758 "%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2759 __func__, request, task);
2760
2761 if (sas_protocol_ata(task->task_proto)) {
2762 isci_process_stp_response(task, &request->stp.rsp);
2763 } else if (SAS_PROTOCOL_SSP == task->task_proto) {
2764
2765 /* crack the iu response buffer. */
2766 resp_iu = &request->ssp.rsp;
2767 isci_request_process_response_iu(task, resp_iu,
2768 &ihost->pdev->dev);
2769
2770 } else if (SAS_PROTOCOL_SMP == task->task_proto) {
2771
2772 dev_err(&ihost->pdev->dev,
2773 "%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2774 "SAS_PROTOCOL_SMP protocol\n",
2775 __func__);
2776
2777 } else
2778 dev_err(&ihost->pdev->dev,
2779 "%s: unknown protocol\n", __func__);
2780
2781 /* use the task status set in the task struct by the
2782 * isci_request_process_response_iu call.
2783 */
2784 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2785 response = task->task_status.resp;
2786 status = task->task_status.stat;
2787 break;
2788
2789 case SCI_IO_SUCCESS:
2790 case SCI_IO_SUCCESS_IO_DONE_EARLY:
2791
2792 response = SAS_TASK_COMPLETE;
2793 status = SAM_STAT_GOOD;
2794 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2795
2796 if (completion_status == SCI_IO_SUCCESS_IO_DONE_EARLY) {
2797
2798 /* This was an SSP / STP / SATA transfer.
2799 * There is a possibility that less data than
2800 * the maximum was transferred.
2801 */
2802 u32 transferred_length = sci_req_tx_bytes(request);
2803
2804 task->task_status.residual
2805 = task->total_xfer_len - transferred_length;
2806
2807 /* If there were residual bytes, call this an
2808 * underrun.
2809 */
2810 if (task->task_status.residual != 0)
2811 status = SAS_DATA_UNDERRUN;
2812
2813 dev_dbg(&ihost->pdev->dev,
2814 "%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2815 __func__, status);
2816
2817 } else
2818 dev_dbg(&ihost->pdev->dev, "%s: SCI_IO_SUCCESS\n",
2819 __func__);
2820 break;
2821
2822 case SCI_IO_FAILURE_TERMINATED:
2823
2824 dev_dbg(&ihost->pdev->dev,
2825 "%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2826 __func__, request, task);
2827
2828 /* The request was terminated explicitly. */
2829 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2830 response = SAS_TASK_UNDELIVERED;
2831
2832 /* See if the device has been/is being stopped. Note
2833 * that we ignore the quiesce state, since we are
2834 * concerned about the actual device state.
2835 */
2836 if (!idev)
2837 status = SAS_DEVICE_UNKNOWN;
2838 else
2839 status = SAS_ABORTED_TASK;
2840 break;
2841
2842 case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
2843
2844 isci_request_handle_controller_specific_errors(idev, request,
2845 task, &response,
2846 &status);
2847 break;
2848
2849 case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
2850 /* This is a special case, in that the I/O completion
2851 * is telling us that the device needs a reset.
2852 * In order for the device reset condition to be
2853 * noticed, the I/O has to be handled in the error
2854 * handler. Set the reset flag and cause the
2855 * SCSI error thread to be scheduled.
2856 */
2857 spin_lock_irqsave(&task->task_state_lock, task_flags);
2858 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2859 spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2860
2861 /* Fail the I/O. */
2862 response = SAS_TASK_UNDELIVERED;
2863 status = SAM_STAT_TASK_ABORTED;
2864
2865 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2866 break;
2867
2868 case SCI_FAILURE_RETRY_REQUIRED:
2869
2870 /* Fail the I/O so it can be retried. */
2871 response = SAS_TASK_UNDELIVERED;
2872 if (!idev)
2873 status = SAS_DEVICE_UNKNOWN;
2874 else
2875 status = SAS_ABORTED_TASK;
2876
2877 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2878 break;
2879
2880
2881 default:
2882 /* Catch any otherwise unhandled error codes here. */
2883 dev_dbg(&ihost->pdev->dev,
2884 "%s: invalid completion code: 0x%x - "
2885 "isci_request = %p\n",
2886 __func__, completion_status, request);
2887
2888 response = SAS_TASK_UNDELIVERED;
2889
2890 /* See if the device has been/is being stopped. Note
2891 * that we ignore the quiesce state, since we are
2892 * concerned about the actual device state.
2893 */
2894 if (!idev)
2895 status = SAS_DEVICE_UNKNOWN;
2896 else
2897 status = SAS_ABORTED_TASK;
2898
2899 if (SAS_PROTOCOL_SMP == task->task_proto)
2900 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2901 else
2902 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2903 break;
2904 }
2905
2906 switch (task->task_proto) {
2907 case SAS_PROTOCOL_SSP:
2908 if (task->data_dir == DMA_NONE)
2909 break;
2910 if (task->num_scatter == 0)
2911 /* 0 indicates a single dma address */
2912 dma_unmap_single(&ihost->pdev->dev,
2913 request->zero_scatter_daddr,
2914 task->total_xfer_len, task->data_dir);
2915 else /* unmap the sgl dma addresses */
2916 dma_unmap_sg(&ihost->pdev->dev, task->scatter,
2917 request->num_sg_entries, task->data_dir);
2918 break;
2919 case SAS_PROTOCOL_SMP: {
2920 struct scatterlist *sg = &task->smp_task.smp_req;
2921 struct smp_req *smp_req;
2922 void *kaddr;
2923
2924 dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE);
2925
2926 /* need to swab it back in case the command buffer is re-used */
2927 kaddr = kmap_atomic(sg_page(sg));
2928 smp_req = kaddr + sg->offset;
2929 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
2930 kunmap_atomic(kaddr);
2931 break;
2932 }
2933 default:
2934 break;
2935 }
2936
2937 spin_lock_irqsave(&task->task_state_lock, task_flags);
2938
2939 task->task_status.resp = response;
2940 task->task_status.stat = status;
2941
2942 if (test_bit(IREQ_COMPLETE_IN_TARGET, &request->flags)) {
2943 /* Normal notification (task_done) */
2944 task->task_state_flags |= SAS_TASK_STATE_DONE;
2945 task->task_state_flags &= ~(SAS_TASK_AT_INITIATOR |
2946 SAS_TASK_STATE_PENDING);
2947 }
2948 spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2949
2950 /* complete the io request to the core. */
2951 sci_controller_complete_io(ihost, request->target_device, request);
2952
2953 /* set terminated handle so it cannot be completed or
2954 * terminated again, and to cause any calls into abort
2955 * task to recognize the already completed case.
2956 */
2957 set_bit(IREQ_TERMINATED, &request->flags);
2958
2959 ireq_done(ihost, request, task);
2960}
2961
2962static void sci_request_started_state_enter(struct sci_base_state_machine *sm)
2963{
2964 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2965 struct domain_device *dev = ireq->target_device->domain_dev;
2966 enum sci_base_request_states state;
2967 struct sas_task *task;
2968
2969 /* XXX as hch said always creating an internal sas_task for tmf
2970 * requests would simplify the driver
2971 */
2972 task = (test_bit(IREQ_TMF, &ireq->flags)) ? NULL : isci_request_access_task(ireq);
2973
2974 /* all unaccelerated request types (non ssp or ncq) handled with
2975 * substates
2976 */
2977 if (!task && dev->dev_type == SAS_END_DEVICE) {
2978 state = SCI_REQ_TASK_WAIT_TC_COMP;
2979 } else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
2980 state = SCI_REQ_SMP_WAIT_RESP;
2981 } else if (task && sas_protocol_ata(task->task_proto) &&
2982 !task->ata_task.use_ncq) {
2983 if (dev->sata_dev.class == ATA_DEV_ATAPI &&
2984 task->ata_task.fis.command == ATA_CMD_PACKET) {
2985 state = SCI_REQ_ATAPI_WAIT_H2D;
2986 } else if (task->data_dir == DMA_NONE) {
2987 state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
2988 } else if (task->ata_task.dma_xfer) {
2989 state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
2990 } else /* PIO */ {
2991 state = SCI_REQ_STP_PIO_WAIT_H2D;
2992 }
2993 } else {
2994 /* SSP or NCQ are fully accelerated, no substates */
2995 return;
2996 }
2997 sci_change_state(sm, state);
2998}
2999
3000static void sci_request_completed_state_enter(struct sci_base_state_machine *sm)
3001{
3002 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3003 struct isci_host *ihost = ireq->owning_controller;
3004
3005 /* Tell the SCI_USER that the IO request is complete */
3006 if (!test_bit(IREQ_TMF, &ireq->flags))
3007 isci_request_io_request_complete(ihost, ireq,
3008 ireq->sci_status);
3009 else
3010 isci_task_request_complete(ihost, ireq, ireq->sci_status);
3011}
3012
3013static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm)
3014{
3015 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3016
3017 /* Setting the abort bit in the Task Context is required by the silicon. */
3018 ireq->tc->abort = 1;
3019}
3020
3021static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3022{
3023 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3024
3025 ireq->target_device->working_request = ireq;
3026}
3027
3028static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3029{
3030 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3031
3032 ireq->target_device->working_request = ireq;
3033}
3034
3035static const struct sci_base_state sci_request_state_table[] = {
3036 [SCI_REQ_INIT] = { },
3037 [SCI_REQ_CONSTRUCTED] = { },
3038 [SCI_REQ_STARTED] = {
3039 .enter_state = sci_request_started_state_enter,
3040 },
3041 [SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
3042 .enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter,
3043 },
3044 [SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
3045 [SCI_REQ_STP_PIO_WAIT_H2D] = {
3046 .enter_state = sci_stp_request_started_pio_await_h2d_completion_enter,
3047 },
3048 [SCI_REQ_STP_PIO_WAIT_FRAME] = { },
3049 [SCI_REQ_STP_PIO_DATA_IN] = { },
3050 [SCI_REQ_STP_PIO_DATA_OUT] = { },
3051 [SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
3052 [SCI_REQ_STP_UDMA_WAIT_D2H] = { },
3053 [SCI_REQ_TASK_WAIT_TC_COMP] = { },
3054 [SCI_REQ_TASK_WAIT_TC_RESP] = { },
3055 [SCI_REQ_SMP_WAIT_RESP] = { },
3056 [SCI_REQ_SMP_WAIT_TC_COMP] = { },
3057 [SCI_REQ_ATAPI_WAIT_H2D] = { },
3058 [SCI_REQ_ATAPI_WAIT_PIO_SETUP] = { },
3059 [SCI_REQ_ATAPI_WAIT_D2H] = { },
3060 [SCI_REQ_ATAPI_WAIT_TC_COMP] = { },
3061 [SCI_REQ_COMPLETED] = {
3062 .enter_state = sci_request_completed_state_enter,
3063 },
3064 [SCI_REQ_ABORTING] = {
3065 .enter_state = sci_request_aborting_state_enter,
3066 },
3067 [SCI_REQ_FINAL] = { },
3068};
3069
3070static void
3071sci_general_request_construct(struct isci_host *ihost,
3072 struct isci_remote_device *idev,
3073 struct isci_request *ireq)
3074{
3075 sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT);
3076
3077 ireq->target_device = idev;
3078 ireq->protocol = SAS_PROTOCOL_NONE;
3079 ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
3080
3081 ireq->sci_status = SCI_SUCCESS;
3082 ireq->scu_status = 0;
3083 ireq->post_context = 0xFFFFFFFF;
3084}
3085
3086static enum sci_status
3087sci_io_request_construct(struct isci_host *ihost,
3088 struct isci_remote_device *idev,
3089 struct isci_request *ireq)
3090{
3091 struct domain_device *dev = idev->domain_dev;
3092 enum sci_status status = SCI_SUCCESS;
3093
3094 /* Build the common part of the request */
3095 sci_general_request_construct(ihost, idev, ireq);
3096
3097 if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
3098 return SCI_FAILURE_INVALID_REMOTE_DEVICE;
3099
3100 if (dev->dev_type == SAS_END_DEVICE)
3101 /* pass */;
3102 else if (dev_is_sata(dev))
3103 memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
3104 else if (dev_is_expander(dev))
3105 /* pass */;
3106 else
3107 return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3108
3109 memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab));
3110
3111 return status;
3112}
3113
3114enum sci_status sci_task_request_construct(struct isci_host *ihost,
3115 struct isci_remote_device *idev,
3116 u16 io_tag, struct isci_request *ireq)
3117{
3118 struct domain_device *dev = idev->domain_dev;
3119 enum sci_status status = SCI_SUCCESS;
3120
3121 /* Build the common part of the request */
3122 sci_general_request_construct(ihost, idev, ireq);
3123
3124 if (dev->dev_type == SAS_END_DEVICE || dev_is_sata(dev)) {
3125 set_bit(IREQ_TMF, &ireq->flags);
3126 memset(ireq->tc, 0, sizeof(struct scu_task_context));
3127
3128 /* Set the protocol indicator. */
3129 if (dev_is_sata(dev))
3130 ireq->protocol = SAS_PROTOCOL_STP;
3131 else
3132 ireq->protocol = SAS_PROTOCOL_SSP;
3133 } else
3134 status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3135
3136 return status;
3137}
3138
3139static enum sci_status isci_request_ssp_request_construct(
3140 struct isci_request *request)
3141{
3142 enum sci_status status;
3143
3144 dev_dbg(&request->isci_host->pdev->dev,
3145 "%s: request = %p\n",
3146 __func__,
3147 request);
3148 status = sci_io_request_construct_basic_ssp(request);
3149 return status;
3150}
3151
3152static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq)
3153{
3154 struct sas_task *task = isci_request_access_task(ireq);
3155 struct host_to_dev_fis *fis = &ireq->stp.cmd;
3156 struct ata_queued_cmd *qc = task->uldd_task;
3157 enum sci_status status;
3158
3159 dev_dbg(&ireq->isci_host->pdev->dev,
3160 "%s: ireq = %p\n",
3161 __func__,
3162 ireq);
3163
3164 memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
3165 if (!task->ata_task.device_control_reg_update)
3166 fis->flags |= 0x80;
3167 fis->flags &= 0xF0;
3168
3169 status = sci_io_request_construct_basic_sata(ireq);
3170
3171 if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
3172 qc->tf.command == ATA_CMD_FPDMA_READ ||
3173 qc->tf.command == ATA_CMD_FPDMA_RECV ||
3174 qc->tf.command == ATA_CMD_FPDMA_SEND ||
3175 qc->tf.command == ATA_CMD_NCQ_NON_DATA)) {
3176 fis->sector_count = qc->tag << 3;
3177 ireq->tc->type.stp.ncq_tag = qc->tag;
3178 }
3179
3180 return status;
3181}
3182
3183static enum sci_status
3184sci_io_request_construct_smp(struct device *dev,
3185 struct isci_request *ireq,
3186 struct sas_task *task)
3187{
3188 struct scatterlist *sg = &task->smp_task.smp_req;
3189 struct isci_remote_device *idev;
3190 struct scu_task_context *task_context;
3191 struct isci_port *iport;
3192 struct smp_req *smp_req;
3193 void *kaddr;
3194 u8 req_len;
3195 u32 cmd;
3196
3197 kaddr = kmap_atomic(sg_page(sg));
3198 smp_req = kaddr + sg->offset;
3199 /*
3200 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3201 * functions under SAS 2.0, a zero request length really indicates
3202 * a non-zero default length.
3203 */
3204 if (smp_req->req_len == 0) {
3205 switch (smp_req->func) {
3206 case SMP_DISCOVER:
3207 case SMP_REPORT_PHY_ERR_LOG:
3208 case SMP_REPORT_PHY_SATA:
3209 case SMP_REPORT_ROUTE_INFO:
3210 smp_req->req_len = 2;
3211 break;
3212 case SMP_CONF_ROUTE_INFO:
3213 case SMP_PHY_CONTROL:
3214 case SMP_PHY_TEST_FUNCTION:
3215 smp_req->req_len = 9;
3216 break;
3217 /* Default - zero is a valid default for 2.0. */
3218 }
3219 }
3220 req_len = smp_req->req_len;
3221 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3222 cmd = *(u32 *) smp_req;
3223 kunmap_atomic(kaddr);
3224
3225 if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
3226 return SCI_FAILURE;
3227
3228 ireq->protocol = SAS_PROTOCOL_SMP;
3229
3230 /* byte swap the smp request. */
3231
3232 task_context = ireq->tc;
3233
3234 idev = ireq->target_device;
3235 iport = idev->owning_port;
3236
3237 /*
3238 * Fill in the TC with the its required data
3239 * 00h
3240 */
3241 task_context->priority = 0;
3242 task_context->initiator_request = 1;
3243 task_context->connection_rate = idev->connection_rate;
3244 task_context->protocol_engine_index = ISCI_PEG;
3245 task_context->logical_port_index = iport->physical_port_index;
3246 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
3247 task_context->abort = 0;
3248 task_context->valid = SCU_TASK_CONTEXT_VALID;
3249 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
3250
3251 /* 04h */
3252 task_context->remote_node_index = idev->rnc.remote_node_index;
3253 task_context->command_code = 0;
3254 task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
3255
3256 /* 08h */
3257 task_context->link_layer_control = 0;
3258 task_context->do_not_dma_ssp_good_response = 1;
3259 task_context->strict_ordering = 0;
3260 task_context->control_frame = 1;
3261 task_context->timeout_enable = 0;
3262 task_context->block_guard_enable = 0;
3263
3264 /* 0ch */
3265 task_context->address_modifier = 0;
3266
3267 /* 10h */
3268 task_context->ssp_command_iu_length = req_len;
3269
3270 /* 14h */
3271 task_context->transfer_length_bytes = 0;
3272
3273 /*
3274 * 18h ~ 30h, protocol specific
3275 * since commandIU has been build by framework at this point, we just
3276 * copy the frist DWord from command IU to this location. */
3277 memcpy(&task_context->type.smp, &cmd, sizeof(u32));
3278
3279 /*
3280 * 40h
3281 * "For SMP you could program it to zero. We would prefer that way
3282 * so that done code will be consistent." - Venki
3283 */
3284 task_context->task_phase = 0;
3285
3286 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
3287 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
3288 (iport->physical_port_index <<
3289 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
3290 ISCI_TAG_TCI(ireq->io_tag));
3291 /*
3292 * Copy the physical address for the command buffer to the SCU Task
3293 * Context command buffer should not contain command header.
3294 */
3295 task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
3296 task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
3297
3298 /* SMP response comes as UF, so no need to set response IU address. */
3299 task_context->response_iu_upper = 0;
3300 task_context->response_iu_lower = 0;
3301
3302 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
3303
3304 return SCI_SUCCESS;
3305}
3306
3307/*
3308 * isci_smp_request_build() - This function builds the smp request.
3309 * @ireq: This parameter points to the isci_request allocated in the
3310 * request construct function.
3311 *
3312 * SCI_SUCCESS on successfull completion, or specific failure code.
3313 */
3314static enum sci_status isci_smp_request_build(struct isci_request *ireq)
3315{
3316 struct sas_task *task = isci_request_access_task(ireq);
3317 struct device *dev = &ireq->isci_host->pdev->dev;
3318 enum sci_status status = SCI_FAILURE;
3319
3320 status = sci_io_request_construct_smp(dev, ireq, task);
3321 if (status != SCI_SUCCESS)
3322 dev_dbg(&ireq->isci_host->pdev->dev,
3323 "%s: failed with status = %d\n",
3324 __func__,
3325 status);
3326
3327 return status;
3328}
3329
3330/**
3331 * isci_io_request_build() - This function builds the io request object.
3332 * @ihost: This parameter specifies the ISCI host object
3333 * @request: This parameter points to the isci_request object allocated in the
3334 * request construct function.
3335 * @sci_device: This parameter is the handle for the sci core's remote device
3336 * object that is the destination for this request.
3337 *
3338 * SCI_SUCCESS on successfull completion, or specific failure code.
3339 */
3340static enum sci_status isci_io_request_build(struct isci_host *ihost,
3341 struct isci_request *request,
3342 struct isci_remote_device *idev)
3343{
3344 enum sci_status status = SCI_SUCCESS;
3345 struct sas_task *task = isci_request_access_task(request);
3346
3347 dev_dbg(&ihost->pdev->dev,
3348 "%s: idev = 0x%p; request = %p, "
3349 "num_scatter = %d\n",
3350 __func__,
3351 idev,
3352 request,
3353 task->num_scatter);
3354
3355 /* map the sgl addresses, if present.
3356 * libata does the mapping for sata devices
3357 * before we get the request.
3358 */
3359 if (task->num_scatter &&
3360 !sas_protocol_ata(task->task_proto) &&
3361 !(SAS_PROTOCOL_SMP & task->task_proto)) {
3362
3363 request->num_sg_entries = dma_map_sg(
3364 &ihost->pdev->dev,
3365 task->scatter,
3366 task->num_scatter,
3367 task->data_dir
3368 );
3369
3370 if (request->num_sg_entries == 0)
3371 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
3372 }
3373
3374 status = sci_io_request_construct(ihost, idev, request);
3375
3376 if (status != SCI_SUCCESS) {
3377 dev_dbg(&ihost->pdev->dev,
3378 "%s: failed request construct\n",
3379 __func__);
3380 return SCI_FAILURE;
3381 }
3382
3383 switch (task->task_proto) {
3384 case SAS_PROTOCOL_SMP:
3385 status = isci_smp_request_build(request);
3386 break;
3387 case SAS_PROTOCOL_SSP:
3388 status = isci_request_ssp_request_construct(request);
3389 break;
3390 case SAS_PROTOCOL_SATA:
3391 case SAS_PROTOCOL_STP:
3392 case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
3393 status = isci_request_stp_request_construct(request);
3394 break;
3395 default:
3396 dev_dbg(&ihost->pdev->dev,
3397 "%s: unknown protocol\n", __func__);
3398 return SCI_FAILURE;
3399 }
3400
3401 return SCI_SUCCESS;
3402}
3403
3404static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag)
3405{
3406 struct isci_request *ireq;
3407
3408 ireq = ihost->reqs[ISCI_TAG_TCI(tag)];
3409 ireq->io_tag = tag;
3410 ireq->io_request_completion = NULL;
3411 ireq->flags = 0;
3412 ireq->num_sg_entries = 0;
3413
3414 return ireq;
3415}
3416
3417static struct isci_request *isci_io_request_from_tag(struct isci_host *ihost,
3418 struct sas_task *task,
3419 u16 tag)
3420{
3421 struct isci_request *ireq;
3422
3423 ireq = isci_request_from_tag(ihost, tag);
3424 ireq->ttype_ptr.io_task_ptr = task;
3425 clear_bit(IREQ_TMF, &ireq->flags);
3426 task->lldd_task = ireq;
3427
3428 return ireq;
3429}
3430
3431struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost,
3432 struct isci_tmf *isci_tmf,
3433 u16 tag)
3434{
3435 struct isci_request *ireq;
3436
3437 ireq = isci_request_from_tag(ihost, tag);
3438 ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
3439 set_bit(IREQ_TMF, &ireq->flags);
3440
3441 return ireq;
3442}
3443
3444int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
3445 struct sas_task *task, u16 tag)
3446{
3447 enum sci_status status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3448 struct isci_request *ireq;
3449 unsigned long flags;
3450 int ret = 0;
3451
3452 /* do common allocation and init of request object. */
3453 ireq = isci_io_request_from_tag(ihost, task, tag);
3454
3455 status = isci_io_request_build(ihost, ireq, idev);
3456 if (status != SCI_SUCCESS) {
3457 dev_dbg(&ihost->pdev->dev,
3458 "%s: request_construct failed - status = 0x%x\n",
3459 __func__,
3460 status);
3461 return status;
3462 }
3463
3464 spin_lock_irqsave(&ihost->scic_lock, flags);
3465
3466 if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) {
3467
3468 if (isci_task_is_ncq_recovery(task)) {
3469
3470 /* The device is in an NCQ recovery state. Issue the
3471 * request on the task side. Note that it will
3472 * complete on the I/O request side because the
3473 * request was built that way (ie.
3474 * ireq->is_task_management_request is false).
3475 */
3476 status = sci_controller_start_task(ihost,
3477 idev,
3478 ireq);
3479 } else {
3480 status = SCI_FAILURE;
3481 }
3482 } else {
3483 /* send the request, let the core assign the IO TAG. */
3484 status = sci_controller_start_io(ihost, idev,
3485 ireq);
3486 }
3487
3488 if (status != SCI_SUCCESS &&
3489 status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3490 dev_dbg(&ihost->pdev->dev,
3491 "%s: failed request start (0x%x)\n",
3492 __func__, status);
3493 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3494 return status;
3495 }
3496 /* Either I/O started OK, or the core has signaled that
3497 * the device needs a target reset.
3498 */
3499 if (status != SCI_SUCCESS) {
3500 /* The request did not really start in the
3501 * hardware, so clear the request handle
3502 * here so no terminations will be done.
3503 */
3504 set_bit(IREQ_TERMINATED, &ireq->flags);
3505 }
3506 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3507
3508 if (status ==
3509 SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3510 /* Signal libsas that we need the SCSI error
3511 * handler thread to work on this I/O and that
3512 * we want a device reset.
3513 */
3514 spin_lock_irqsave(&task->task_state_lock, flags);
3515 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
3516 spin_unlock_irqrestore(&task->task_state_lock, flags);
3517
3518 /* Cause this task to be scheduled in the SCSI error
3519 * handler thread.
3520 */
3521 sas_task_abort(task);
3522
3523 /* Change the status, since we are holding
3524 * the I/O until it is managed by the SCSI
3525 * error handler.
3526 */
3527 status = SCI_SUCCESS;
3528 }
3529
3530 return ret;
3531}
1/*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55
56#include <scsi/scsi_cmnd.h>
57#include "isci.h"
58#include "task.h"
59#include "request.h"
60#include "scu_completion_codes.h"
61#include "scu_event_codes.h"
62#include "sas.h"
63
64#undef C
65#define C(a) (#a)
66const char *req_state_name(enum sci_base_request_states state)
67{
68 static const char * const strings[] = REQUEST_STATES;
69
70 return strings[state];
71}
72#undef C
73
74static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq,
75 int idx)
76{
77 if (idx == 0)
78 return &ireq->tc->sgl_pair_ab;
79 else if (idx == 1)
80 return &ireq->tc->sgl_pair_cd;
81 else if (idx < 0)
82 return NULL;
83 else
84 return &ireq->sg_table[idx - 2];
85}
86
87static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost,
88 struct isci_request *ireq, u32 idx)
89{
90 u32 offset;
91
92 if (idx == 0) {
93 offset = (void *) &ireq->tc->sgl_pair_ab -
94 (void *) &ihost->task_context_table[0];
95 return ihost->tc_dma + offset;
96 } else if (idx == 1) {
97 offset = (void *) &ireq->tc->sgl_pair_cd -
98 (void *) &ihost->task_context_table[0];
99 return ihost->tc_dma + offset;
100 }
101
102 return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]);
103}
104
105static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg)
106{
107 e->length = sg_dma_len(sg);
108 e->address_upper = upper_32_bits(sg_dma_address(sg));
109 e->address_lower = lower_32_bits(sg_dma_address(sg));
110 e->address_modifier = 0;
111}
112
113static void sci_request_build_sgl(struct isci_request *ireq)
114{
115 struct isci_host *ihost = ireq->isci_host;
116 struct sas_task *task = isci_request_access_task(ireq);
117 struct scatterlist *sg = NULL;
118 dma_addr_t dma_addr;
119 u32 sg_idx = 0;
120 struct scu_sgl_element_pair *scu_sg = NULL;
121 struct scu_sgl_element_pair *prev_sg = NULL;
122
123 if (task->num_scatter > 0) {
124 sg = task->scatter;
125
126 while (sg) {
127 scu_sg = to_sgl_element_pair(ireq, sg_idx);
128 init_sgl_element(&scu_sg->A, sg);
129 sg = sg_next(sg);
130 if (sg) {
131 init_sgl_element(&scu_sg->B, sg);
132 sg = sg_next(sg);
133 } else
134 memset(&scu_sg->B, 0, sizeof(scu_sg->B));
135
136 if (prev_sg) {
137 dma_addr = to_sgl_element_pair_dma(ihost,
138 ireq,
139 sg_idx);
140
141 prev_sg->next_pair_upper =
142 upper_32_bits(dma_addr);
143 prev_sg->next_pair_lower =
144 lower_32_bits(dma_addr);
145 }
146
147 prev_sg = scu_sg;
148 sg_idx++;
149 }
150 } else { /* handle when no sg */
151 scu_sg = to_sgl_element_pair(ireq, sg_idx);
152
153 dma_addr = dma_map_single(&ihost->pdev->dev,
154 task->scatter,
155 task->total_xfer_len,
156 task->data_dir);
157
158 ireq->zero_scatter_daddr = dma_addr;
159
160 scu_sg->A.length = task->total_xfer_len;
161 scu_sg->A.address_upper = upper_32_bits(dma_addr);
162 scu_sg->A.address_lower = lower_32_bits(dma_addr);
163 }
164
165 if (scu_sg) {
166 scu_sg->next_pair_upper = 0;
167 scu_sg->next_pair_lower = 0;
168 }
169}
170
171static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq)
172{
173 struct ssp_cmd_iu *cmd_iu;
174 struct sas_task *task = isci_request_access_task(ireq);
175
176 cmd_iu = &ireq->ssp.cmd;
177
178 memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
179 cmd_iu->add_cdb_len = 0;
180 cmd_iu->_r_a = 0;
181 cmd_iu->_r_b = 0;
182 cmd_iu->en_fburst = 0; /* unsupported */
183 cmd_iu->task_prio = task->ssp_task.task_prio;
184 cmd_iu->task_attr = task->ssp_task.task_attr;
185 cmd_iu->_r_c = 0;
186
187 sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cmd->cmnd,
188 (task->ssp_task.cmd->cmd_len+3) / sizeof(u32));
189}
190
191static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq)
192{
193 struct ssp_task_iu *task_iu;
194 struct sas_task *task = isci_request_access_task(ireq);
195 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
196
197 task_iu = &ireq->ssp.tmf;
198
199 memset(task_iu, 0, sizeof(struct ssp_task_iu));
200
201 memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
202
203 task_iu->task_func = isci_tmf->tmf_code;
204 task_iu->task_tag =
205 (test_bit(IREQ_TMF, &ireq->flags)) ?
206 isci_tmf->io_tag :
207 SCI_CONTROLLER_INVALID_IO_TAG;
208}
209
210/*
211 * This method is will fill in the SCU Task Context for any type of SSP request.
212 */
213static void scu_ssp_request_construct_task_context(
214 struct isci_request *ireq,
215 struct scu_task_context *task_context)
216{
217 dma_addr_t dma_addr;
218 struct isci_remote_device *idev;
219 struct isci_port *iport;
220
221 idev = ireq->target_device;
222 iport = idev->owning_port;
223
224 /* Fill in the TC with its required data */
225 task_context->abort = 0;
226 task_context->priority = 0;
227 task_context->initiator_request = 1;
228 task_context->connection_rate = idev->connection_rate;
229 task_context->protocol_engine_index = ISCI_PEG;
230 task_context->logical_port_index = iport->physical_port_index;
231 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
232 task_context->valid = SCU_TASK_CONTEXT_VALID;
233 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
234
235 task_context->remote_node_index = idev->rnc.remote_node_index;
236 task_context->command_code = 0;
237
238 task_context->link_layer_control = 0;
239 task_context->do_not_dma_ssp_good_response = 1;
240 task_context->strict_ordering = 0;
241 task_context->control_frame = 0;
242 task_context->timeout_enable = 0;
243 task_context->block_guard_enable = 0;
244
245 task_context->address_modifier = 0;
246
247 /* task_context->type.ssp.tag = ireq->io_tag; */
248 task_context->task_phase = 0x01;
249
250 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
251 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
252 (iport->physical_port_index <<
253 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
254 ISCI_TAG_TCI(ireq->io_tag));
255
256 /*
257 * Copy the physical address for the command buffer to the
258 * SCU Task Context
259 */
260 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd);
261
262 task_context->command_iu_upper = upper_32_bits(dma_addr);
263 task_context->command_iu_lower = lower_32_bits(dma_addr);
264
265 /*
266 * Copy the physical address for the response buffer to the
267 * SCU Task Context
268 */
269 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp);
270
271 task_context->response_iu_upper = upper_32_bits(dma_addr);
272 task_context->response_iu_lower = lower_32_bits(dma_addr);
273}
274
275static u8 scu_bg_blk_size(struct scsi_device *sdp)
276{
277 switch (sdp->sector_size) {
278 case 512:
279 return 0;
280 case 1024:
281 return 1;
282 case 4096:
283 return 3;
284 default:
285 return 0xff;
286 }
287}
288
289static u32 scu_dif_bytes(u32 len, u32 sector_size)
290{
291 return (len >> ilog2(sector_size)) * 8;
292}
293
294static void scu_ssp_ireq_dif_insert(struct isci_request *ireq, u8 type, u8 op)
295{
296 struct scu_task_context *tc = ireq->tc;
297 struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
298 u8 blk_sz = scu_bg_blk_size(scmd->device);
299
300 tc->block_guard_enable = 1;
301 tc->blk_prot_en = 1;
302 tc->blk_sz = blk_sz;
303 /* DIF write insert */
304 tc->blk_prot_func = 0x2;
305
306 tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
307 scmd->device->sector_size);
308
309 /* always init to 0, used by hw */
310 tc->interm_crc_val = 0;
311
312 tc->init_crc_seed = 0;
313 tc->app_tag_verify = 0;
314 tc->app_tag_gen = 0;
315 tc->ref_tag_seed_verify = 0;
316
317 /* always init to same as bg_blk_sz */
318 tc->UD_bytes_immed_val = scmd->device->sector_size;
319
320 tc->reserved_DC_0 = 0;
321
322 /* always init to 8 */
323 tc->DIF_bytes_immed_val = 8;
324
325 tc->reserved_DC_1 = 0;
326 tc->bgc_blk_sz = scmd->device->sector_size;
327 tc->reserved_E0_0 = 0;
328 tc->app_tag_gen_mask = 0;
329
330 /** setup block guard control **/
331 tc->bgctl = 0;
332
333 /* DIF write insert */
334 tc->bgctl_f.op = 0x2;
335
336 tc->app_tag_verify_mask = 0;
337
338 /* must init to 0 for hw */
339 tc->blk_guard_err = 0;
340
341 tc->reserved_E8_0 = 0;
342
343 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
344 tc->ref_tag_seed_gen = scsi_prot_ref_tag(scmd);
345 else if (type & SCSI_PROT_DIF_TYPE3)
346 tc->ref_tag_seed_gen = 0;
347}
348
349static void scu_ssp_ireq_dif_strip(struct isci_request *ireq, u8 type, u8 op)
350{
351 struct scu_task_context *tc = ireq->tc;
352 struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
353 u8 blk_sz = scu_bg_blk_size(scmd->device);
354
355 tc->block_guard_enable = 1;
356 tc->blk_prot_en = 1;
357 tc->blk_sz = blk_sz;
358 /* DIF read strip */
359 tc->blk_prot_func = 0x1;
360
361 tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
362 scmd->device->sector_size);
363
364 /* always init to 0, used by hw */
365 tc->interm_crc_val = 0;
366
367 tc->init_crc_seed = 0;
368 tc->app_tag_verify = 0;
369 tc->app_tag_gen = 0;
370
371 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
372 tc->ref_tag_seed_verify = scsi_prot_ref_tag(scmd);
373 else if (type & SCSI_PROT_DIF_TYPE3)
374 tc->ref_tag_seed_verify = 0;
375
376 /* always init to same as bg_blk_sz */
377 tc->UD_bytes_immed_val = scmd->device->sector_size;
378
379 tc->reserved_DC_0 = 0;
380
381 /* always init to 8 */
382 tc->DIF_bytes_immed_val = 8;
383
384 tc->reserved_DC_1 = 0;
385 tc->bgc_blk_sz = scmd->device->sector_size;
386 tc->reserved_E0_0 = 0;
387 tc->app_tag_gen_mask = 0;
388
389 /** setup block guard control **/
390 tc->bgctl = 0;
391
392 /* DIF read strip */
393 tc->bgctl_f.crc_verify = 1;
394 tc->bgctl_f.op = 0x1;
395 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2)) {
396 tc->bgctl_f.ref_tag_chk = 1;
397 tc->bgctl_f.app_f_detect = 1;
398 } else if (type & SCSI_PROT_DIF_TYPE3)
399 tc->bgctl_f.app_ref_f_detect = 1;
400
401 tc->app_tag_verify_mask = 0;
402
403 /* must init to 0 for hw */
404 tc->blk_guard_err = 0;
405
406 tc->reserved_E8_0 = 0;
407 tc->ref_tag_seed_gen = 0;
408}
409
410/*
411 * This method is will fill in the SCU Task Context for a SSP IO request.
412 */
413static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq,
414 enum dma_data_direction dir,
415 u32 len)
416{
417 struct scu_task_context *task_context = ireq->tc;
418 struct sas_task *sas_task = ireq->ttype_ptr.io_task_ptr;
419 struct scsi_cmnd *scmd = sas_task->uldd_task;
420 u8 prot_type = scsi_get_prot_type(scmd);
421 u8 prot_op = scsi_get_prot_op(scmd);
422
423 scu_ssp_request_construct_task_context(ireq, task_context);
424
425 task_context->ssp_command_iu_length =
426 sizeof(struct ssp_cmd_iu) / sizeof(u32);
427 task_context->type.ssp.frame_type = SSP_COMMAND;
428
429 switch (dir) {
430 case DMA_FROM_DEVICE:
431 case DMA_NONE:
432 default:
433 task_context->task_type = SCU_TASK_TYPE_IOREAD;
434 break;
435 case DMA_TO_DEVICE:
436 task_context->task_type = SCU_TASK_TYPE_IOWRITE;
437 break;
438 }
439
440 task_context->transfer_length_bytes = len;
441
442 if (task_context->transfer_length_bytes > 0)
443 sci_request_build_sgl(ireq);
444
445 if (prot_type != SCSI_PROT_DIF_TYPE0) {
446 if (prot_op == SCSI_PROT_READ_STRIP)
447 scu_ssp_ireq_dif_strip(ireq, prot_type, prot_op);
448 else if (prot_op == SCSI_PROT_WRITE_INSERT)
449 scu_ssp_ireq_dif_insert(ireq, prot_type, prot_op);
450 }
451}
452
453/**
454 * scu_ssp_task_request_construct_task_context() - This method will fill in
455 * the SCU Task Context for a SSP Task request. The following important
456 * settings are utilized: -# priority == SCU_TASK_PRIORITY_HIGH. This
457 * ensures that the task request is issued ahead of other task destined
458 * for the same Remote Node. -# task_type == SCU_TASK_TYPE_IOREAD. This
459 * simply indicates that a normal request type (i.e. non-raw frame) is
460 * being utilized to perform task management. -#control_frame == 1. This
461 * ensures that the proper endianness is set so that the bytes are
462 * transmitted in the right order for a task frame.
463 * @ireq: This parameter specifies the task request object being constructed.
464 */
465static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq)
466{
467 struct scu_task_context *task_context = ireq->tc;
468
469 scu_ssp_request_construct_task_context(ireq, task_context);
470
471 task_context->control_frame = 1;
472 task_context->priority = SCU_TASK_PRIORITY_HIGH;
473 task_context->task_type = SCU_TASK_TYPE_RAW_FRAME;
474 task_context->transfer_length_bytes = 0;
475 task_context->type.ssp.frame_type = SSP_TASK;
476 task_context->ssp_command_iu_length =
477 sizeof(struct ssp_task_iu) / sizeof(u32);
478}
479
480/**
481 * scu_sata_request_construct_task_context()
482 * This method is will fill in the SCU Task Context for any type of SATA
483 * request. This is called from the various SATA constructors.
484 * @ireq: The general IO request object which is to be used in
485 * constructing the SCU task context.
486 * @task_context: The buffer pointer for the SCU task context which is being
487 * constructed.
488 *
489 * The general io request construction is complete. The buffer assignment for
490 * the command buffer is complete. none Revisit task context construction to
491 * determine what is common for SSP/SMP/STP task context structures.
492 */
493static void scu_sata_request_construct_task_context(
494 struct isci_request *ireq,
495 struct scu_task_context *task_context)
496{
497 dma_addr_t dma_addr;
498 struct isci_remote_device *idev;
499 struct isci_port *iport;
500
501 idev = ireq->target_device;
502 iport = idev->owning_port;
503
504 /* Fill in the TC with its required data */
505 task_context->abort = 0;
506 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
507 task_context->initiator_request = 1;
508 task_context->connection_rate = idev->connection_rate;
509 task_context->protocol_engine_index = ISCI_PEG;
510 task_context->logical_port_index = iport->physical_port_index;
511 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
512 task_context->valid = SCU_TASK_CONTEXT_VALID;
513 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
514
515 task_context->remote_node_index = idev->rnc.remote_node_index;
516 task_context->command_code = 0;
517
518 task_context->link_layer_control = 0;
519 task_context->do_not_dma_ssp_good_response = 1;
520 task_context->strict_ordering = 0;
521 task_context->control_frame = 0;
522 task_context->timeout_enable = 0;
523 task_context->block_guard_enable = 0;
524
525 task_context->address_modifier = 0;
526 task_context->task_phase = 0x01;
527
528 task_context->ssp_command_iu_length =
529 (sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
530
531 /* Set the first word of the H2D REG FIS */
532 task_context->type.words[0] = *(u32 *)&ireq->stp.cmd;
533
534 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
535 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
536 (iport->physical_port_index <<
537 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
538 ISCI_TAG_TCI(ireq->io_tag));
539 /*
540 * Copy the physical address for the command buffer to the SCU Task
541 * Context. We must offset the command buffer by 4 bytes because the
542 * first 4 bytes are transfered in the body of the TC.
543 */
544 dma_addr = sci_io_request_get_dma_addr(ireq,
545 ((char *) &ireq->stp.cmd) +
546 sizeof(u32));
547
548 task_context->command_iu_upper = upper_32_bits(dma_addr);
549 task_context->command_iu_lower = lower_32_bits(dma_addr);
550
551 /* SATA Requests do not have a response buffer */
552 task_context->response_iu_upper = 0;
553 task_context->response_iu_lower = 0;
554}
555
556static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq)
557{
558 struct scu_task_context *task_context = ireq->tc;
559
560 scu_sata_request_construct_task_context(ireq, task_context);
561
562 task_context->control_frame = 0;
563 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
564 task_context->task_type = SCU_TASK_TYPE_SATA_RAW_FRAME;
565 task_context->type.stp.fis_type = FIS_REGH2D;
566 task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
567}
568
569static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq,
570 bool copy_rx_frame)
571{
572 struct isci_stp_request *stp_req = &ireq->stp.req;
573
574 scu_stp_raw_request_construct_task_context(ireq);
575
576 stp_req->status = 0;
577 stp_req->sgl.offset = 0;
578 stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A;
579
580 if (copy_rx_frame) {
581 sci_request_build_sgl(ireq);
582 stp_req->sgl.index = 0;
583 } else {
584 /* The user does not want the data copied to the SGL buffer location */
585 stp_req->sgl.index = -1;
586 }
587
588 return SCI_SUCCESS;
589}
590
591/*
592 * sci_stp_optimized_request_construct()
593 * @ireq: This parameter specifies the request to be constructed as an
594 * optimized request.
595 * @optimized_task_type: This parameter specifies whether the request is to be
596 * an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
597 * value of 1 indicates NCQ.
598 *
599 * This method will perform request construction common to all types of STP
600 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
601 * returns an indication as to whether the construction was successful.
602 */
603static void sci_stp_optimized_request_construct(struct isci_request *ireq,
604 u8 optimized_task_type,
605 u32 len,
606 enum dma_data_direction dir)
607{
608 struct scu_task_context *task_context = ireq->tc;
609
610 /* Build the STP task context structure */
611 scu_sata_request_construct_task_context(ireq, task_context);
612
613 /* Copy over the SGL elements */
614 sci_request_build_sgl(ireq);
615
616 /* Copy over the number of bytes to be transfered */
617 task_context->transfer_length_bytes = len;
618
619 if (dir == DMA_TO_DEVICE) {
620 /*
621 * The difference between the DMA IN and DMA OUT request task type
622 * values are consistent with the difference between FPDMA READ
623 * and FPDMA WRITE values. Add the supplied task type parameter
624 * to this difference to set the task type properly for this
625 * DATA OUT (WRITE) case. */
626 task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
627 - SCU_TASK_TYPE_DMA_IN);
628 } else {
629 /*
630 * For the DATA IN (READ) case, simply save the supplied
631 * optimized task type. */
632 task_context->task_type = optimized_task_type;
633 }
634}
635
636static void sci_atapi_construct(struct isci_request *ireq)
637{
638 struct host_to_dev_fis *h2d_fis = &ireq->stp.cmd;
639 struct sas_task *task;
640
641 /* To simplify the implementation we take advantage of the
642 * silicon's partial acceleration of atapi protocol (dma data
643 * transfers), so we promote all commands to dma protocol. This
644 * breaks compatibility with ATA_HORKAGE_ATAPI_MOD16_DMA drives.
645 */
646 h2d_fis->features |= ATAPI_PKT_DMA;
647
648 scu_stp_raw_request_construct_task_context(ireq);
649
650 task = isci_request_access_task(ireq);
651 if (task->data_dir == DMA_NONE)
652 task->total_xfer_len = 0;
653
654 /* clear the response so we can detect arrivial of an
655 * unsolicited h2d fis
656 */
657 ireq->stp.rsp.fis_type = 0;
658}
659
660static enum sci_status
661sci_io_request_construct_sata(struct isci_request *ireq,
662 u32 len,
663 enum dma_data_direction dir,
664 bool copy)
665{
666 enum sci_status status = SCI_SUCCESS;
667 struct sas_task *task = isci_request_access_task(ireq);
668 struct domain_device *dev = ireq->target_device->domain_dev;
669
670 /* check for management protocols */
671 if (test_bit(IREQ_TMF, &ireq->flags)) {
672 struct isci_tmf *tmf = isci_request_access_tmf(ireq);
673
674 dev_err(&ireq->owning_controller->pdev->dev,
675 "%s: Request 0x%p received un-handled SAT "
676 "management protocol 0x%x.\n",
677 __func__, ireq, tmf->tmf_code);
678
679 return SCI_FAILURE;
680 }
681
682 if (!sas_protocol_ata(task->task_proto)) {
683 dev_err(&ireq->owning_controller->pdev->dev,
684 "%s: Non-ATA protocol in SATA path: 0x%x\n",
685 __func__,
686 task->task_proto);
687 return SCI_FAILURE;
688
689 }
690
691 /* ATAPI */
692 if (dev->sata_dev.class == ATA_DEV_ATAPI &&
693 task->ata_task.fis.command == ATA_CMD_PACKET) {
694 sci_atapi_construct(ireq);
695 return SCI_SUCCESS;
696 }
697
698 /* non data */
699 if (task->data_dir == DMA_NONE) {
700 scu_stp_raw_request_construct_task_context(ireq);
701 return SCI_SUCCESS;
702 }
703
704 /* NCQ */
705 if (task->ata_task.use_ncq) {
706 sci_stp_optimized_request_construct(ireq,
707 SCU_TASK_TYPE_FPDMAQ_READ,
708 len, dir);
709 return SCI_SUCCESS;
710 }
711
712 /* DMA */
713 if (task->ata_task.dma_xfer) {
714 sci_stp_optimized_request_construct(ireq,
715 SCU_TASK_TYPE_DMA_IN,
716 len, dir);
717 return SCI_SUCCESS;
718 } else /* PIO */
719 return sci_stp_pio_request_construct(ireq, copy);
720
721 return status;
722}
723
724static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq)
725{
726 struct sas_task *task = isci_request_access_task(ireq);
727
728 ireq->protocol = SAS_PROTOCOL_SSP;
729
730 scu_ssp_io_request_construct_task_context(ireq,
731 task->data_dir,
732 task->total_xfer_len);
733
734 sci_io_request_build_ssp_command_iu(ireq);
735
736 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
737
738 return SCI_SUCCESS;
739}
740
741enum sci_status sci_task_request_construct_ssp(
742 struct isci_request *ireq)
743{
744 /* Construct the SSP Task SCU Task Context */
745 scu_ssp_task_request_construct_task_context(ireq);
746
747 /* Fill in the SSP Task IU */
748 sci_task_request_build_ssp_task_iu(ireq);
749
750 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
751
752 return SCI_SUCCESS;
753}
754
755static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq)
756{
757 enum sci_status status;
758 bool copy = false;
759 struct sas_task *task = isci_request_access_task(ireq);
760
761 ireq->protocol = SAS_PROTOCOL_STP;
762
763 copy = (task->data_dir == DMA_NONE) ? false : true;
764
765 status = sci_io_request_construct_sata(ireq,
766 task->total_xfer_len,
767 task->data_dir,
768 copy);
769
770 if (status == SCI_SUCCESS)
771 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
772
773 return status;
774}
775
776#define SCU_TASK_CONTEXT_SRAM 0x200000
777/**
778 * sci_req_tx_bytes - bytes transferred when reply underruns request
779 * @ireq: request that was terminated early
780 */
781static u32 sci_req_tx_bytes(struct isci_request *ireq)
782{
783 struct isci_host *ihost = ireq->owning_controller;
784 u32 ret_val = 0;
785
786 if (readl(&ihost->smu_registers->address_modifier) == 0) {
787 void __iomem *scu_reg_base = ihost->scu_registers;
788
789 /* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
790 * BAR1 is the scu_registers
791 * 0x20002C = 0x200000 + 0x2c
792 * = start of task context SRAM + offset of (type.ssp.data_offset)
793 * TCi is the io_tag of struct sci_request
794 */
795 ret_val = readl(scu_reg_base +
796 (SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
797 ((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag)));
798 }
799
800 return ret_val;
801}
802
803enum sci_status sci_request_start(struct isci_request *ireq)
804{
805 enum sci_base_request_states state;
806 struct scu_task_context *tc = ireq->tc;
807 struct isci_host *ihost = ireq->owning_controller;
808
809 state = ireq->sm.current_state_id;
810 if (state != SCI_REQ_CONSTRUCTED) {
811 dev_warn(&ihost->pdev->dev,
812 "%s: SCIC IO Request requested to start while in wrong "
813 "state %d\n", __func__, state);
814 return SCI_FAILURE_INVALID_STATE;
815 }
816
817 tc->task_index = ISCI_TAG_TCI(ireq->io_tag);
818
819 switch (tc->protocol_type) {
820 case SCU_TASK_CONTEXT_PROTOCOL_SMP:
821 case SCU_TASK_CONTEXT_PROTOCOL_SSP:
822 /* SSP/SMP Frame */
823 tc->type.ssp.tag = ireq->io_tag;
824 tc->type.ssp.target_port_transfer_tag = 0xFFFF;
825 break;
826
827 case SCU_TASK_CONTEXT_PROTOCOL_STP:
828 /* STP/SATA Frame
829 * tc->type.stp.ncq_tag = ireq->ncq_tag;
830 */
831 break;
832
833 case SCU_TASK_CONTEXT_PROTOCOL_NONE:
834 /* / @todo When do we set no protocol type? */
835 break;
836
837 default:
838 /* This should never happen since we build the IO
839 * requests */
840 break;
841 }
842
843 /* Add to the post_context the io tag value */
844 ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag);
845
846 /* Everything is good go ahead and change state */
847 sci_change_state(&ireq->sm, SCI_REQ_STARTED);
848
849 return SCI_SUCCESS;
850}
851
852enum sci_status
853sci_io_request_terminate(struct isci_request *ireq)
854{
855 enum sci_base_request_states state;
856
857 state = ireq->sm.current_state_id;
858
859 switch (state) {
860 case SCI_REQ_CONSTRUCTED:
861 /* Set to make sure no HW terminate posting is done: */
862 set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags);
863 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
864 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
865 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
866 return SCI_SUCCESS;
867 case SCI_REQ_STARTED:
868 case SCI_REQ_TASK_WAIT_TC_COMP:
869 case SCI_REQ_SMP_WAIT_RESP:
870 case SCI_REQ_SMP_WAIT_TC_COMP:
871 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
872 case SCI_REQ_STP_UDMA_WAIT_D2H:
873 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
874 case SCI_REQ_STP_NON_DATA_WAIT_D2H:
875 case SCI_REQ_STP_PIO_WAIT_H2D:
876 case SCI_REQ_STP_PIO_WAIT_FRAME:
877 case SCI_REQ_STP_PIO_DATA_IN:
878 case SCI_REQ_STP_PIO_DATA_OUT:
879 case SCI_REQ_ATAPI_WAIT_H2D:
880 case SCI_REQ_ATAPI_WAIT_PIO_SETUP:
881 case SCI_REQ_ATAPI_WAIT_D2H:
882 case SCI_REQ_ATAPI_WAIT_TC_COMP:
883 /* Fall through and change state to ABORTING... */
884 case SCI_REQ_TASK_WAIT_TC_RESP:
885 /* The task frame was already confirmed to have been
886 * sent by the SCU HW. Since the state machine is
887 * now only waiting for the task response itself,
888 * abort the request and complete it immediately
889 * and don't wait for the task response.
890 */
891 sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
892 fallthrough; /* and handle like ABORTING */
893 case SCI_REQ_ABORTING:
894 if (!isci_remote_device_is_safe_to_abort(ireq->target_device))
895 set_bit(IREQ_PENDING_ABORT, &ireq->flags);
896 else
897 clear_bit(IREQ_PENDING_ABORT, &ireq->flags);
898 /* If the request is only waiting on the remote device
899 * suspension, return SUCCESS so the caller will wait too.
900 */
901 return SCI_SUCCESS;
902 case SCI_REQ_COMPLETED:
903 default:
904 dev_warn(&ireq->owning_controller->pdev->dev,
905 "%s: SCIC IO Request requested to abort while in wrong "
906 "state %d\n", __func__, ireq->sm.current_state_id);
907 break;
908 }
909
910 return SCI_FAILURE_INVALID_STATE;
911}
912
913enum sci_status sci_request_complete(struct isci_request *ireq)
914{
915 enum sci_base_request_states state;
916 struct isci_host *ihost = ireq->owning_controller;
917
918 state = ireq->sm.current_state_id;
919 if (WARN_ONCE(state != SCI_REQ_COMPLETED,
920 "isci: request completion from wrong state (%s)\n",
921 req_state_name(state)))
922 return SCI_FAILURE_INVALID_STATE;
923
924 if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
925 sci_controller_release_frame(ihost,
926 ireq->saved_rx_frame_index);
927
928 /* XXX can we just stop the machine and remove the 'final' state? */
929 sci_change_state(&ireq->sm, SCI_REQ_FINAL);
930 return SCI_SUCCESS;
931}
932
933enum sci_status sci_io_request_event_handler(struct isci_request *ireq,
934 u32 event_code)
935{
936 enum sci_base_request_states state;
937 struct isci_host *ihost = ireq->owning_controller;
938
939 state = ireq->sm.current_state_id;
940
941 if (state != SCI_REQ_STP_PIO_DATA_IN) {
942 dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %s\n",
943 __func__, event_code, req_state_name(state));
944
945 return SCI_FAILURE_INVALID_STATE;
946 }
947
948 switch (scu_get_event_specifier(event_code)) {
949 case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
950 /* We are waiting for data and the SCU has R_ERR the data frame.
951 * Go back to waiting for the D2H Register FIS
952 */
953 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
954 return SCI_SUCCESS;
955 default:
956 dev_err(&ihost->pdev->dev,
957 "%s: pio request unexpected event %#x\n",
958 __func__, event_code);
959
960 /* TODO Should we fail the PIO request when we get an
961 * unexpected event?
962 */
963 return SCI_FAILURE;
964 }
965}
966
967/*
968 * This function copies response data for requests returning response data
969 * instead of sense data.
970 * @sci_req: This parameter specifies the request object for which to copy
971 * the response data.
972 */
973static void sci_io_request_copy_response(struct isci_request *ireq)
974{
975 void *resp_buf;
976 u32 len;
977 struct ssp_response_iu *ssp_response;
978 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
979
980 ssp_response = &ireq->ssp.rsp;
981
982 resp_buf = &isci_tmf->resp.resp_iu;
983
984 len = min_t(u32,
985 SSP_RESP_IU_MAX_SIZE,
986 be32_to_cpu(ssp_response->response_data_len));
987
988 memcpy(resp_buf, ssp_response->resp_data, len);
989}
990
991static enum sci_status
992request_started_state_tc_event(struct isci_request *ireq,
993 u32 completion_code)
994{
995 struct ssp_response_iu *resp_iu;
996 u8 datapres;
997
998 /* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
999 * to determine SDMA status
1000 */
1001 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1002 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1003 ireq->scu_status = SCU_TASK_DONE_GOOD;
1004 ireq->sci_status = SCI_SUCCESS;
1005 break;
1006 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
1007 /* There are times when the SCU hardware will return an early
1008 * response because the io request specified more data than is
1009 * returned by the target device (mode pages, inquiry data,
1010 * etc.). We must check the response stats to see if this is
1011 * truly a failed request or a good request that just got
1012 * completed early.
1013 */
1014 struct ssp_response_iu *resp = &ireq->ssp.rsp;
1015 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1016
1017 sci_swab32_cpy(&ireq->ssp.rsp,
1018 &ireq->ssp.rsp,
1019 word_cnt);
1020
1021 if (resp->status == 0) {
1022 ireq->scu_status = SCU_TASK_DONE_GOOD;
1023 ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
1024 } else {
1025 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1026 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1027 }
1028 break;
1029 }
1030 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
1031 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1032
1033 sci_swab32_cpy(&ireq->ssp.rsp,
1034 &ireq->ssp.rsp,
1035 word_cnt);
1036
1037 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1038 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1039 break;
1040 }
1041
1042 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
1043 /* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
1044 * guaranteed to be received before this completion status is
1045 * posted?
1046 */
1047 resp_iu = &ireq->ssp.rsp;
1048 datapres = resp_iu->datapres;
1049
1050 if (datapres == SAS_DATAPRES_RESPONSE_DATA ||
1051 datapres == SAS_DATAPRES_SENSE_DATA) {
1052 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1053 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1054 } else {
1055 ireq->scu_status = SCU_TASK_DONE_GOOD;
1056 ireq->sci_status = SCI_SUCCESS;
1057 }
1058 break;
1059 /* only stp device gets suspended. */
1060 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1061 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
1062 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
1063 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
1064 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
1065 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
1066 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
1067 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
1068 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
1069 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
1070 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
1071 if (ireq->protocol == SAS_PROTOCOL_STP) {
1072 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1073 SCU_COMPLETION_TL_STATUS_SHIFT;
1074 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1075 } else {
1076 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1077 SCU_COMPLETION_TL_STATUS_SHIFT;
1078 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1079 }
1080 break;
1081
1082 /* both stp/ssp device gets suspended */
1083 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
1084 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
1085 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
1086 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
1087 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
1088 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
1089 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
1090 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
1091 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
1092 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
1093 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1094 SCU_COMPLETION_TL_STATUS_SHIFT;
1095 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1096 break;
1097
1098 /* neither ssp nor stp gets suspended. */
1099 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
1100 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
1101 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
1102 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
1103 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
1104 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
1105 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1106 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1107 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1108 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1109 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
1110 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
1111 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
1112 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
1113 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
1114 default:
1115 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1116 SCU_COMPLETION_TL_STATUS_SHIFT;
1117 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1118 break;
1119 }
1120
1121 /*
1122 * TODO: This is probably wrong for ACK/NAK timeout conditions
1123 */
1124
1125 /* In all cases we will treat this as the completion of the IO req. */
1126 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1127 return SCI_SUCCESS;
1128}
1129
1130static enum sci_status
1131request_aborting_state_tc_event(struct isci_request *ireq,
1132 u32 completion_code)
1133{
1134 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1135 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
1136 case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
1137 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
1138 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
1139 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1140 break;
1141
1142 default:
1143 /* Unless we get some strange error wait for the task abort to complete
1144 * TODO: Should there be a state change for this completion?
1145 */
1146 break;
1147 }
1148
1149 return SCI_SUCCESS;
1150}
1151
1152static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq,
1153 u32 completion_code)
1154{
1155 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1156 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1157 ireq->scu_status = SCU_TASK_DONE_GOOD;
1158 ireq->sci_status = SCI_SUCCESS;
1159 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1160 break;
1161 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1162 /* Currently, the decision is to simply allow the task request
1163 * to timeout if the task IU wasn't received successfully.
1164 * There is a potential for receiving multiple task responses if
1165 * we decide to send the task IU again.
1166 */
1167 dev_warn(&ireq->owning_controller->pdev->dev,
1168 "%s: TaskRequest:0x%p CompletionCode:%x - "
1169 "ACK/NAK timeout\n", __func__, ireq,
1170 completion_code);
1171
1172 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1173 break;
1174 default:
1175 /*
1176 * All other completion status cause the IO to be complete.
1177 * If a NAK was received, then it is up to the user to retry
1178 * the request.
1179 */
1180 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1181 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1182 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1183 break;
1184 }
1185
1186 return SCI_SUCCESS;
1187}
1188
1189static enum sci_status
1190smp_request_await_response_tc_event(struct isci_request *ireq,
1191 u32 completion_code)
1192{
1193 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1194 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1195 /* In the AWAIT RESPONSE state, any TC completion is
1196 * unexpected. but if the TC has success status, we
1197 * complete the IO anyway.
1198 */
1199 ireq->scu_status = SCU_TASK_DONE_GOOD;
1200 ireq->sci_status = SCI_SUCCESS;
1201 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1202 break;
1203 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1204 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1205 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1206 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1207 /* These status has been seen in a specific LSI
1208 * expander, which sometimes is not able to send smp
1209 * response within 2 ms. This causes our hardware break
1210 * the connection and set TC completion with one of
1211 * these SMP_XXX_XX_ERR status. For these type of error,
1212 * we ask ihost user to retry the request.
1213 */
1214 ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR;
1215 ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED;
1216 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1217 break;
1218 default:
1219 /* All other completion status cause the IO to be complete. If a NAK
1220 * was received, then it is up to the user to retry the request
1221 */
1222 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1223 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1224 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1225 break;
1226 }
1227
1228 return SCI_SUCCESS;
1229}
1230
1231static enum sci_status
1232smp_request_await_tc_event(struct isci_request *ireq,
1233 u32 completion_code)
1234{
1235 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1236 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1237 ireq->scu_status = SCU_TASK_DONE_GOOD;
1238 ireq->sci_status = SCI_SUCCESS;
1239 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1240 break;
1241 default:
1242 /* All other completion status cause the IO to be
1243 * complete. If a NAK was received, then it is up to
1244 * the user to retry the request.
1245 */
1246 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1247 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1248 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1249 break;
1250 }
1251
1252 return SCI_SUCCESS;
1253}
1254
1255static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req)
1256{
1257 struct scu_sgl_element *sgl;
1258 struct scu_sgl_element_pair *sgl_pair;
1259 struct isci_request *ireq = to_ireq(stp_req);
1260 struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl;
1261
1262 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1263 if (!sgl_pair)
1264 sgl = NULL;
1265 else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) {
1266 if (sgl_pair->B.address_lower == 0 &&
1267 sgl_pair->B.address_upper == 0) {
1268 sgl = NULL;
1269 } else {
1270 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B;
1271 sgl = &sgl_pair->B;
1272 }
1273 } else {
1274 if (sgl_pair->next_pair_lower == 0 &&
1275 sgl_pair->next_pair_upper == 0) {
1276 sgl = NULL;
1277 } else {
1278 pio_sgl->index++;
1279 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A;
1280 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1281 sgl = &sgl_pair->A;
1282 }
1283 }
1284
1285 return sgl;
1286}
1287
1288static enum sci_status
1289stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq,
1290 u32 completion_code)
1291{
1292 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1293 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1294 ireq->scu_status = SCU_TASK_DONE_GOOD;
1295 ireq->sci_status = SCI_SUCCESS;
1296 sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
1297 break;
1298
1299 default:
1300 /* All other completion status cause the IO to be
1301 * complete. If a NAK was received, then it is up to
1302 * the user to retry the request.
1303 */
1304 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1305 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1306 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1307 break;
1308 }
1309
1310 return SCI_SUCCESS;
1311}
1312
1313#define SCU_MAX_FRAME_BUFFER_SIZE 0x400 /* 1K is the maximum SCU frame data payload */
1314
1315/* transmit DATA_FIS from (current sgl + offset) for input
1316 * parameter length. current sgl and offset is alreay stored in the IO request
1317 */
1318static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame(
1319 struct isci_request *ireq,
1320 u32 length)
1321{
1322 struct isci_stp_request *stp_req = &ireq->stp.req;
1323 struct scu_task_context *task_context = ireq->tc;
1324 struct scu_sgl_element_pair *sgl_pair;
1325 struct scu_sgl_element *current_sgl;
1326
1327 /* Recycle the TC and reconstruct it for sending out DATA FIS containing
1328 * for the data from current_sgl+offset for the input length
1329 */
1330 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1331 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A)
1332 current_sgl = &sgl_pair->A;
1333 else
1334 current_sgl = &sgl_pair->B;
1335
1336 /* update the TC */
1337 task_context->command_iu_upper = current_sgl->address_upper;
1338 task_context->command_iu_lower = current_sgl->address_lower;
1339 task_context->transfer_length_bytes = length;
1340 task_context->type.stp.fis_type = FIS_DATA;
1341
1342 /* send the new TC out. */
1343 return sci_controller_continue_io(ireq);
1344}
1345
1346static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq)
1347{
1348 struct isci_stp_request *stp_req = &ireq->stp.req;
1349 struct scu_sgl_element_pair *sgl_pair;
1350 enum sci_status status = SCI_SUCCESS;
1351 struct scu_sgl_element *sgl;
1352 u32 offset;
1353 u32 len = 0;
1354
1355 offset = stp_req->sgl.offset;
1356 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1357 if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__))
1358 return SCI_FAILURE;
1359
1360 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) {
1361 sgl = &sgl_pair->A;
1362 len = sgl_pair->A.length - offset;
1363 } else {
1364 sgl = &sgl_pair->B;
1365 len = sgl_pair->B.length - offset;
1366 }
1367
1368 if (stp_req->pio_len == 0)
1369 return SCI_SUCCESS;
1370
1371 if (stp_req->pio_len >= len) {
1372 status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len);
1373 if (status != SCI_SUCCESS)
1374 return status;
1375 stp_req->pio_len -= len;
1376
1377 /* update the current sgl, offset and save for future */
1378 sgl = pio_sgl_next(stp_req);
1379 offset = 0;
1380 } else if (stp_req->pio_len < len) {
1381 sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len);
1382
1383 /* Sgl offset will be adjusted and saved for future */
1384 offset += stp_req->pio_len;
1385 sgl->address_lower += stp_req->pio_len;
1386 stp_req->pio_len = 0;
1387 }
1388
1389 stp_req->sgl.offset = offset;
1390
1391 return status;
1392}
1393
1394/**
1395 * sci_stp_request_pio_data_in_copy_data_buffer()
1396 * @stp_req: The request that is used for the SGL processing.
1397 * @data_buf: The buffer of data to be copied.
1398 * @len: The length of the data transfer.
1399 *
1400 * Copy the data from the buffer for the length specified to the IO request SGL
1401 * specified data region. enum sci_status
1402 */
1403static enum sci_status
1404sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req,
1405 u8 *data_buf, u32 len)
1406{
1407 struct isci_request *ireq;
1408 u8 *src_addr;
1409 int copy_len;
1410 struct sas_task *task;
1411 struct scatterlist *sg;
1412 void *kaddr;
1413 int total_len = len;
1414
1415 ireq = to_ireq(stp_req);
1416 task = isci_request_access_task(ireq);
1417 src_addr = data_buf;
1418
1419 if (task->num_scatter > 0) {
1420 sg = task->scatter;
1421
1422 while (total_len > 0) {
1423 struct page *page = sg_page(sg);
1424
1425 copy_len = min_t(int, total_len, sg_dma_len(sg));
1426 kaddr = kmap_atomic(page);
1427 memcpy(kaddr + sg->offset, src_addr, copy_len);
1428 kunmap_atomic(kaddr);
1429 total_len -= copy_len;
1430 src_addr += copy_len;
1431 sg = sg_next(sg);
1432 }
1433 } else {
1434 BUG_ON(task->total_xfer_len < total_len);
1435 memcpy(task->scatter, src_addr, total_len);
1436 }
1437
1438 return SCI_SUCCESS;
1439}
1440
1441/**
1442 * sci_stp_request_pio_data_in_copy_data()
1443 * @stp_req: The PIO DATA IN request that is to receive the data.
1444 * @data_buffer: The buffer to copy from.
1445 *
1446 * Copy the data buffer to the io request data region. enum sci_status
1447 */
1448static enum sci_status sci_stp_request_pio_data_in_copy_data(
1449 struct isci_stp_request *stp_req,
1450 u8 *data_buffer)
1451{
1452 enum sci_status status;
1453
1454 /*
1455 * If there is less than 1K remaining in the transfer request
1456 * copy just the data for the transfer */
1457 if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) {
1458 status = sci_stp_request_pio_data_in_copy_data_buffer(
1459 stp_req, data_buffer, stp_req->pio_len);
1460
1461 if (status == SCI_SUCCESS)
1462 stp_req->pio_len = 0;
1463 } else {
1464 /* We are transfering the whole frame so copy */
1465 status = sci_stp_request_pio_data_in_copy_data_buffer(
1466 stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
1467
1468 if (status == SCI_SUCCESS)
1469 stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE;
1470 }
1471
1472 return status;
1473}
1474
1475static enum sci_status
1476stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq,
1477 u32 completion_code)
1478{
1479 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1480 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1481 ireq->scu_status = SCU_TASK_DONE_GOOD;
1482 ireq->sci_status = SCI_SUCCESS;
1483 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1484 break;
1485
1486 default:
1487 /* All other completion status cause the IO to be
1488 * complete. If a NAK was received, then it is up to
1489 * the user to retry the request.
1490 */
1491 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1492 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1493 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1494 break;
1495 }
1496
1497 return SCI_SUCCESS;
1498}
1499
1500static enum sci_status
1501pio_data_out_tx_done_tc_event(struct isci_request *ireq,
1502 u32 completion_code)
1503{
1504 enum sci_status status = SCI_SUCCESS;
1505 bool all_frames_transferred = false;
1506 struct isci_stp_request *stp_req = &ireq->stp.req;
1507
1508 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1509 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1510 /* Transmit data */
1511 if (stp_req->pio_len != 0) {
1512 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1513 if (status == SCI_SUCCESS) {
1514 if (stp_req->pio_len == 0)
1515 all_frames_transferred = true;
1516 }
1517 } else if (stp_req->pio_len == 0) {
1518 /*
1519 * this will happen if the all data is written at the
1520 * first time after the pio setup fis is received
1521 */
1522 all_frames_transferred = true;
1523 }
1524
1525 /* all data transferred. */
1526 if (all_frames_transferred) {
1527 /*
1528 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1529 * and wait for PIO_SETUP fis / or D2H REg fis. */
1530 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1531 }
1532 break;
1533
1534 default:
1535 /*
1536 * All other completion status cause the IO to be complete.
1537 * If a NAK was received, then it is up to the user to retry
1538 * the request.
1539 */
1540 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1541 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1542 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1543 break;
1544 }
1545
1546 return status;
1547}
1548
1549static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq,
1550 u32 frame_index)
1551{
1552 struct isci_host *ihost = ireq->owning_controller;
1553 struct dev_to_host_fis *frame_header;
1554 enum sci_status status;
1555 u32 *frame_buffer;
1556
1557 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1558 frame_index,
1559 (void **)&frame_header);
1560
1561 if ((status == SCI_SUCCESS) &&
1562 (frame_header->fis_type == FIS_REGD2H)) {
1563 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1564 frame_index,
1565 (void **)&frame_buffer);
1566
1567 sci_controller_copy_sata_response(&ireq->stp.rsp,
1568 frame_header,
1569 frame_buffer);
1570 }
1571
1572 sci_controller_release_frame(ihost, frame_index);
1573
1574 return status;
1575}
1576
1577static enum sci_status process_unsolicited_fis(struct isci_request *ireq,
1578 u32 frame_index)
1579{
1580 struct isci_host *ihost = ireq->owning_controller;
1581 enum sci_status status;
1582 struct dev_to_host_fis *frame_header;
1583 u32 *frame_buffer;
1584
1585 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1586 frame_index,
1587 (void **)&frame_header);
1588
1589 if (status != SCI_SUCCESS)
1590 return status;
1591
1592 if (frame_header->fis_type != FIS_REGD2H) {
1593 dev_err(&ireq->isci_host->pdev->dev,
1594 "%s ERROR: invalid fis type 0x%X\n",
1595 __func__, frame_header->fis_type);
1596 return SCI_FAILURE;
1597 }
1598
1599 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1600 frame_index,
1601 (void **)&frame_buffer);
1602
1603 sci_controller_copy_sata_response(&ireq->stp.rsp,
1604 (u32 *)frame_header,
1605 frame_buffer);
1606
1607 /* Frame has been decoded return it to the controller */
1608 sci_controller_release_frame(ihost, frame_index);
1609
1610 return status;
1611}
1612
1613static enum sci_status atapi_d2h_reg_frame_handler(struct isci_request *ireq,
1614 u32 frame_index)
1615{
1616 struct sas_task *task = isci_request_access_task(ireq);
1617 enum sci_status status;
1618
1619 status = process_unsolicited_fis(ireq, frame_index);
1620
1621 if (status == SCI_SUCCESS) {
1622 if (ireq->stp.rsp.status & ATA_ERR)
1623 status = SCI_FAILURE_IO_RESPONSE_VALID;
1624 } else {
1625 status = SCI_FAILURE_IO_RESPONSE_VALID;
1626 }
1627
1628 if (status != SCI_SUCCESS) {
1629 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1630 ireq->sci_status = status;
1631 } else {
1632 ireq->scu_status = SCU_TASK_DONE_GOOD;
1633 ireq->sci_status = SCI_SUCCESS;
1634 }
1635
1636 /* the d2h ufi is the end of non-data commands */
1637 if (task->data_dir == DMA_NONE)
1638 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1639
1640 return status;
1641}
1642
1643static void scu_atapi_reconstruct_raw_frame_task_context(struct isci_request *ireq)
1644{
1645 struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1646 void *atapi_cdb = ireq->ttype_ptr.io_task_ptr->ata_task.atapi_packet;
1647 struct scu_task_context *task_context = ireq->tc;
1648
1649 /* fill in the SCU Task Context for a DATA fis containing CDB in Raw Frame
1650 * type. The TC for previous Packet fis was already there, we only need to
1651 * change the H2D fis content.
1652 */
1653 memset(&ireq->stp.cmd, 0, sizeof(struct host_to_dev_fis));
1654 memcpy(((u8 *)&ireq->stp.cmd + sizeof(u32)), atapi_cdb, ATAPI_CDB_LEN);
1655 memset(&(task_context->type.stp), 0, sizeof(struct stp_task_context));
1656 task_context->type.stp.fis_type = FIS_DATA;
1657 task_context->transfer_length_bytes = dev->cdb_len;
1658}
1659
1660static void scu_atapi_construct_task_context(struct isci_request *ireq)
1661{
1662 struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1663 struct sas_task *task = isci_request_access_task(ireq);
1664 struct scu_task_context *task_context = ireq->tc;
1665 int cdb_len = dev->cdb_len;
1666
1667 /* reference: SSTL 1.13.4.2
1668 * task_type, sata_direction
1669 */
1670 if (task->data_dir == DMA_TO_DEVICE) {
1671 task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_OUT;
1672 task_context->sata_direction = 0;
1673 } else {
1674 /* todo: for NO_DATA command, we need to send out raw frame. */
1675 task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_IN;
1676 task_context->sata_direction = 1;
1677 }
1678
1679 memset(&task_context->type.stp, 0, sizeof(task_context->type.stp));
1680 task_context->type.stp.fis_type = FIS_DATA;
1681
1682 memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
1683 memcpy(&ireq->stp.cmd.lbal, task->ata_task.atapi_packet, cdb_len);
1684 task_context->ssp_command_iu_length = cdb_len / sizeof(u32);
1685
1686 /* task phase is set to TX_CMD */
1687 task_context->task_phase = 0x1;
1688
1689 /* retry counter */
1690 task_context->stp_retry_count = 0;
1691
1692 /* data transfer size. */
1693 task_context->transfer_length_bytes = task->total_xfer_len;
1694
1695 /* setup sgl */
1696 sci_request_build_sgl(ireq);
1697}
1698
1699enum sci_status
1700sci_io_request_frame_handler(struct isci_request *ireq,
1701 u32 frame_index)
1702{
1703 struct isci_host *ihost = ireq->owning_controller;
1704 struct isci_stp_request *stp_req = &ireq->stp.req;
1705 enum sci_base_request_states state;
1706 enum sci_status status;
1707 ssize_t word_cnt;
1708
1709 state = ireq->sm.current_state_id;
1710 switch (state) {
1711 case SCI_REQ_STARTED: {
1712 struct ssp_frame_hdr ssp_hdr;
1713 void *frame_header;
1714
1715 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1716 frame_index,
1717 &frame_header);
1718
1719 word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1720 sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1721
1722 if (ssp_hdr.frame_type == SSP_RESPONSE) {
1723 struct ssp_response_iu *resp_iu;
1724 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1725
1726 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1727 frame_index,
1728 (void **)&resp_iu);
1729
1730 sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt);
1731
1732 resp_iu = &ireq->ssp.rsp;
1733
1734 if (resp_iu->datapres == SAS_DATAPRES_RESPONSE_DATA ||
1735 resp_iu->datapres == SAS_DATAPRES_SENSE_DATA) {
1736 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1737 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1738 } else {
1739 ireq->scu_status = SCU_TASK_DONE_GOOD;
1740 ireq->sci_status = SCI_SUCCESS;
1741 }
1742 } else {
1743 /* not a response frame, why did it get forwarded? */
1744 dev_err(&ihost->pdev->dev,
1745 "%s: SCIC IO Request 0x%p received unexpected "
1746 "frame %d type 0x%02x\n", __func__, ireq,
1747 frame_index, ssp_hdr.frame_type);
1748 }
1749
1750 /*
1751 * In any case we are done with this frame buffer return it to
1752 * the controller
1753 */
1754 sci_controller_release_frame(ihost, frame_index);
1755
1756 return SCI_SUCCESS;
1757 }
1758
1759 case SCI_REQ_TASK_WAIT_TC_RESP:
1760 sci_io_request_copy_response(ireq);
1761 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1762 sci_controller_release_frame(ihost, frame_index);
1763 return SCI_SUCCESS;
1764
1765 case SCI_REQ_SMP_WAIT_RESP: {
1766 struct sas_task *task = isci_request_access_task(ireq);
1767 struct scatterlist *sg = &task->smp_task.smp_resp;
1768 void *frame_header, *kaddr;
1769 u8 *rsp;
1770
1771 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1772 frame_index,
1773 &frame_header);
1774 kaddr = kmap_atomic(sg_page(sg));
1775 rsp = kaddr + sg->offset;
1776 sci_swab32_cpy(rsp, frame_header, 1);
1777
1778 if (rsp[0] == SMP_RESPONSE) {
1779 void *smp_resp;
1780
1781 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1782 frame_index,
1783 &smp_resp);
1784
1785 word_cnt = (sg->length/4)-1;
1786 if (word_cnt > 0)
1787 word_cnt = min_t(unsigned int, word_cnt,
1788 SCU_UNSOLICITED_FRAME_BUFFER_SIZE/4);
1789 sci_swab32_cpy(rsp + 4, smp_resp, word_cnt);
1790
1791 ireq->scu_status = SCU_TASK_DONE_GOOD;
1792 ireq->sci_status = SCI_SUCCESS;
1793 sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP);
1794 } else {
1795 /*
1796 * This was not a response frame why did it get
1797 * forwarded?
1798 */
1799 dev_err(&ihost->pdev->dev,
1800 "%s: SCIC SMP Request 0x%p received unexpected "
1801 "frame %d type 0x%02x\n",
1802 __func__,
1803 ireq,
1804 frame_index,
1805 rsp[0]);
1806
1807 ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR;
1808 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1809 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1810 }
1811 kunmap_atomic(kaddr);
1812
1813 sci_controller_release_frame(ihost, frame_index);
1814
1815 return SCI_SUCCESS;
1816 }
1817
1818 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1819 return sci_stp_request_udma_general_frame_handler(ireq,
1820 frame_index);
1821
1822 case SCI_REQ_STP_UDMA_WAIT_D2H:
1823 /* Use the general frame handler to copy the resposne data */
1824 status = sci_stp_request_udma_general_frame_handler(ireq, frame_index);
1825
1826 if (status != SCI_SUCCESS)
1827 return status;
1828
1829 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1830 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1831 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1832 return SCI_SUCCESS;
1833
1834 case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
1835 struct dev_to_host_fis *frame_header;
1836 u32 *frame_buffer;
1837
1838 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1839 frame_index,
1840 (void **)&frame_header);
1841
1842 if (status != SCI_SUCCESS) {
1843 dev_err(&ihost->pdev->dev,
1844 "%s: SCIC IO Request 0x%p could not get frame "
1845 "header for frame index %d, status %x\n",
1846 __func__,
1847 stp_req,
1848 frame_index,
1849 status);
1850
1851 return status;
1852 }
1853
1854 switch (frame_header->fis_type) {
1855 case FIS_REGD2H:
1856 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1857 frame_index,
1858 (void **)&frame_buffer);
1859
1860 sci_controller_copy_sata_response(&ireq->stp.rsp,
1861 frame_header,
1862 frame_buffer);
1863
1864 /* The command has completed with error */
1865 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1866 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1867 break;
1868
1869 default:
1870 dev_warn(&ihost->pdev->dev,
1871 "%s: IO Request:0x%p Frame Id:%d protocol "
1872 "violation occurred\n", __func__, stp_req,
1873 frame_index);
1874
1875 ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1876 ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1877 break;
1878 }
1879
1880 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1881
1882 /* Frame has been decoded return it to the controller */
1883 sci_controller_release_frame(ihost, frame_index);
1884
1885 return status;
1886 }
1887
1888 case SCI_REQ_STP_PIO_WAIT_FRAME: {
1889 struct sas_task *task = isci_request_access_task(ireq);
1890 struct dev_to_host_fis *frame_header;
1891 u32 *frame_buffer;
1892
1893 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1894 frame_index,
1895 (void **)&frame_header);
1896
1897 if (status != SCI_SUCCESS) {
1898 dev_err(&ihost->pdev->dev,
1899 "%s: SCIC IO Request 0x%p could not get frame "
1900 "header for frame index %d, status %x\n",
1901 __func__, stp_req, frame_index, status);
1902 return status;
1903 }
1904
1905 switch (frame_header->fis_type) {
1906 case FIS_PIO_SETUP:
1907 /* Get from the frame buffer the PIO Setup Data */
1908 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1909 frame_index,
1910 (void **)&frame_buffer);
1911
1912 /* Get the data from the PIO Setup The SCU Hardware
1913 * returns first word in the frame_header and the rest
1914 * of the data is in the frame buffer so we need to
1915 * back up one dword
1916 */
1917
1918 /* transfer_count: first 16bits in the 4th dword */
1919 stp_req->pio_len = frame_buffer[3] & 0xffff;
1920
1921 /* status: 4th byte in the 3rd dword */
1922 stp_req->status = (frame_buffer[2] >> 24) & 0xff;
1923
1924 sci_controller_copy_sata_response(&ireq->stp.rsp,
1925 frame_header,
1926 frame_buffer);
1927
1928 ireq->stp.rsp.status = stp_req->status;
1929
1930 /* The next state is dependent on whether the
1931 * request was PIO Data-in or Data out
1932 */
1933 if (task->data_dir == DMA_FROM_DEVICE) {
1934 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN);
1935 } else if (task->data_dir == DMA_TO_DEVICE) {
1936 /* Transmit data */
1937 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1938 if (status != SCI_SUCCESS)
1939 break;
1940 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT);
1941 }
1942 break;
1943
1944 case FIS_SETDEVBITS:
1945 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1946 break;
1947
1948 case FIS_REGD2H:
1949 if (frame_header->status & ATA_BUSY) {
1950 /*
1951 * Now why is the drive sending a D2H Register
1952 * FIS when it is still busy? Do nothing since
1953 * we are still in the right state.
1954 */
1955 dev_dbg(&ihost->pdev->dev,
1956 "%s: SCIC PIO Request 0x%p received "
1957 "D2H Register FIS with BSY status "
1958 "0x%x\n",
1959 __func__,
1960 stp_req,
1961 frame_header->status);
1962 break;
1963 }
1964
1965 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1966 frame_index,
1967 (void **)&frame_buffer);
1968
1969 sci_controller_copy_sata_response(&ireq->stp.rsp,
1970 frame_header,
1971 frame_buffer);
1972
1973 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1974 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1975 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1976 break;
1977
1978 default:
1979 /* FIXME: what do we do here? */
1980 break;
1981 }
1982
1983 /* Frame is decoded return it to the controller */
1984 sci_controller_release_frame(ihost, frame_index);
1985
1986 return status;
1987 }
1988
1989 case SCI_REQ_STP_PIO_DATA_IN: {
1990 struct dev_to_host_fis *frame_header;
1991 struct sata_fis_data *frame_buffer;
1992
1993 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1994 frame_index,
1995 (void **)&frame_header);
1996
1997 if (status != SCI_SUCCESS) {
1998 dev_err(&ihost->pdev->dev,
1999 "%s: SCIC IO Request 0x%p could not get frame "
2000 "header for frame index %d, status %x\n",
2001 __func__,
2002 stp_req,
2003 frame_index,
2004 status);
2005 return status;
2006 }
2007
2008 if (frame_header->fis_type != FIS_DATA) {
2009 dev_err(&ihost->pdev->dev,
2010 "%s: SCIC PIO Request 0x%p received frame %d "
2011 "with fis type 0x%02x when expecting a data "
2012 "fis.\n",
2013 __func__,
2014 stp_req,
2015 frame_index,
2016 frame_header->fis_type);
2017
2018 ireq->scu_status = SCU_TASK_DONE_GOOD;
2019 ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT;
2020 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2021
2022 /* Frame is decoded return it to the controller */
2023 sci_controller_release_frame(ihost, frame_index);
2024 return status;
2025 }
2026
2027 if (stp_req->sgl.index < 0) {
2028 ireq->saved_rx_frame_index = frame_index;
2029 stp_req->pio_len = 0;
2030 } else {
2031 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
2032 frame_index,
2033 (void **)&frame_buffer);
2034
2035 status = sci_stp_request_pio_data_in_copy_data(stp_req,
2036 (u8 *)frame_buffer);
2037
2038 /* Frame is decoded return it to the controller */
2039 sci_controller_release_frame(ihost, frame_index);
2040 }
2041
2042 /* Check for the end of the transfer, are there more
2043 * bytes remaining for this data transfer
2044 */
2045 if (status != SCI_SUCCESS || stp_req->pio_len != 0)
2046 return status;
2047
2048 if ((stp_req->status & ATA_BUSY) == 0) {
2049 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2050 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2051 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2052 } else {
2053 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
2054 }
2055 return status;
2056 }
2057
2058 case SCI_REQ_ATAPI_WAIT_PIO_SETUP: {
2059 struct sas_task *task = isci_request_access_task(ireq);
2060
2061 sci_controller_release_frame(ihost, frame_index);
2062 ireq->target_device->working_request = ireq;
2063 if (task->data_dir == DMA_NONE) {
2064 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_TC_COMP);
2065 scu_atapi_reconstruct_raw_frame_task_context(ireq);
2066 } else {
2067 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2068 scu_atapi_construct_task_context(ireq);
2069 }
2070
2071 sci_controller_continue_io(ireq);
2072 return SCI_SUCCESS;
2073 }
2074 case SCI_REQ_ATAPI_WAIT_D2H:
2075 return atapi_d2h_reg_frame_handler(ireq, frame_index);
2076 case SCI_REQ_ABORTING:
2077 /*
2078 * TODO: Is it even possible to get an unsolicited frame in the
2079 * aborting state?
2080 */
2081 sci_controller_release_frame(ihost, frame_index);
2082 return SCI_SUCCESS;
2083
2084 default:
2085 dev_warn(&ihost->pdev->dev,
2086 "%s: SCIC IO Request given unexpected frame %x while "
2087 "in state %d\n",
2088 __func__,
2089 frame_index,
2090 state);
2091
2092 sci_controller_release_frame(ihost, frame_index);
2093 return SCI_FAILURE_INVALID_STATE;
2094 }
2095}
2096
2097static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq,
2098 u32 completion_code)
2099{
2100 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2101 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2102 ireq->scu_status = SCU_TASK_DONE_GOOD;
2103 ireq->sci_status = SCI_SUCCESS;
2104 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2105 break;
2106 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
2107 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
2108 /* We must check ther response buffer to see if the D2H
2109 * Register FIS was received before we got the TC
2110 * completion.
2111 */
2112 if (ireq->stp.rsp.fis_type == FIS_REGD2H) {
2113 sci_remote_device_suspend(ireq->target_device,
2114 SCI_SW_SUSPEND_NORMAL);
2115
2116 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2117 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2118 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2119 } else {
2120 /* If we have an error completion status for the
2121 * TC then we can expect a D2H register FIS from
2122 * the device so we must change state to wait
2123 * for it
2124 */
2125 sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
2126 }
2127 break;
2128
2129 /* TODO Check to see if any of these completion status need to
2130 * wait for the device to host register fis.
2131 */
2132 /* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
2133 * - this comes only for B0
2134 */
2135 default:
2136 /* All other completion status cause the IO to be complete. */
2137 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2138 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2139 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2140 break;
2141 }
2142
2143 return SCI_SUCCESS;
2144}
2145
2146static enum sci_status atapi_raw_completion(struct isci_request *ireq, u32 completion_code,
2147 enum sci_base_request_states next)
2148{
2149 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2150 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2151 ireq->scu_status = SCU_TASK_DONE_GOOD;
2152 ireq->sci_status = SCI_SUCCESS;
2153 sci_change_state(&ireq->sm, next);
2154 break;
2155 default:
2156 /* All other completion status cause the IO to be complete.
2157 * If a NAK was received, then it is up to the user to retry
2158 * the request.
2159 */
2160 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2161 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2162
2163 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2164 break;
2165 }
2166
2167 return SCI_SUCCESS;
2168}
2169
2170static enum sci_status atapi_data_tc_completion_handler(struct isci_request *ireq,
2171 u32 completion_code)
2172{
2173 struct isci_remote_device *idev = ireq->target_device;
2174 struct dev_to_host_fis *d2h = &ireq->stp.rsp;
2175 enum sci_status status = SCI_SUCCESS;
2176
2177 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2178 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
2179 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2180 break;
2181
2182 case (SCU_TASK_DONE_UNEXP_FIS << SCU_COMPLETION_TL_STATUS_SHIFT): {
2183 u16 len = sci_req_tx_bytes(ireq);
2184
2185 /* likely non-error data underrun, workaround missing
2186 * d2h frame from the controller
2187 */
2188 if (d2h->fis_type != FIS_REGD2H) {
2189 d2h->fis_type = FIS_REGD2H;
2190 d2h->flags = (1 << 6);
2191 d2h->status = 0x50;
2192 d2h->error = 0;
2193 d2h->lbal = 0;
2194 d2h->byte_count_low = len & 0xff;
2195 d2h->byte_count_high = len >> 8;
2196 d2h->device = 0xa0;
2197 d2h->lbal_exp = 0;
2198 d2h->lbam_exp = 0;
2199 d2h->lbah_exp = 0;
2200 d2h->_r_a = 0;
2201 d2h->sector_count = 0x3;
2202 d2h->sector_count_exp = 0;
2203 d2h->_r_b = 0;
2204 d2h->_r_c = 0;
2205 d2h->_r_d = 0;
2206 }
2207
2208 ireq->scu_status = SCU_TASK_DONE_GOOD;
2209 ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
2210 status = ireq->sci_status;
2211
2212 /* the hw will have suspended the rnc, so complete the
2213 * request upon pending resume
2214 */
2215 sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2216 break;
2217 }
2218 case (SCU_TASK_DONE_EXCESS_DATA << SCU_COMPLETION_TL_STATUS_SHIFT):
2219 /* In this case, there is no UF coming after.
2220 * compelte the IO now.
2221 */
2222 ireq->scu_status = SCU_TASK_DONE_GOOD;
2223 ireq->sci_status = SCI_SUCCESS;
2224 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2225 break;
2226
2227 default:
2228 if (d2h->fis_type == FIS_REGD2H) {
2229 /* UF received change the device state to ATAPI_ERROR */
2230 status = ireq->sci_status;
2231 sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2232 } else {
2233 /* If receiving any non-success TC status, no UF
2234 * received yet, then an UF for the status fis
2235 * is coming after (XXX: suspect this is
2236 * actually a protocol error or a bug like the
2237 * DONE_UNEXP_FIS case)
2238 */
2239 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2240 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2241
2242 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2243 }
2244 break;
2245 }
2246
2247 return status;
2248}
2249
2250static int sci_request_smp_completion_status_is_tx_suspend(
2251 unsigned int completion_status)
2252{
2253 switch (completion_status) {
2254 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2255 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2256 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2257 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2258 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2259 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2260 return 1;
2261 }
2262 return 0;
2263}
2264
2265static int sci_request_smp_completion_status_is_tx_rx_suspend(
2266 unsigned int completion_status)
2267{
2268 return 0; /* There are no Tx/Rx SMP suspend conditions. */
2269}
2270
2271static int sci_request_ssp_completion_status_is_tx_suspend(
2272 unsigned int completion_status)
2273{
2274 switch (completion_status) {
2275 case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2276 case SCU_TASK_DONE_LF_ERR:
2277 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2278 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2279 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2280 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2281 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2282 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2283 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2284 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2285 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2286 return 1;
2287 }
2288 return 0;
2289}
2290
2291static int sci_request_ssp_completion_status_is_tx_rx_suspend(
2292 unsigned int completion_status)
2293{
2294 return 0; /* There are no Tx/Rx SSP suspend conditions. */
2295}
2296
2297static int sci_request_stpsata_completion_status_is_tx_suspend(
2298 unsigned int completion_status)
2299{
2300 switch (completion_status) {
2301 case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2302 case SCU_TASK_DONE_LL_R_ERR:
2303 case SCU_TASK_DONE_LL_PERR:
2304 case SCU_TASK_DONE_REG_ERR:
2305 case SCU_TASK_DONE_SDB_ERR:
2306 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2307 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2308 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2309 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2310 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2311 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2312 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2313 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2314 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2315 return 1;
2316 }
2317 return 0;
2318}
2319
2320
2321static int sci_request_stpsata_completion_status_is_tx_rx_suspend(
2322 unsigned int completion_status)
2323{
2324 switch (completion_status) {
2325 case SCU_TASK_DONE_LF_ERR:
2326 case SCU_TASK_DONE_LL_SY_TERM:
2327 case SCU_TASK_DONE_LL_LF_TERM:
2328 case SCU_TASK_DONE_BREAK_RCVD:
2329 case SCU_TASK_DONE_INV_FIS_LEN:
2330 case SCU_TASK_DONE_UNEXP_FIS:
2331 case SCU_TASK_DONE_UNEXP_SDBFIS:
2332 case SCU_TASK_DONE_MAX_PLD_ERR:
2333 return 1;
2334 }
2335 return 0;
2336}
2337
2338static void sci_request_handle_suspending_completions(
2339 struct isci_request *ireq,
2340 u32 completion_code)
2341{
2342 int is_tx = 0;
2343 int is_tx_rx = 0;
2344
2345 switch (ireq->protocol) {
2346 case SAS_PROTOCOL_SMP:
2347 is_tx = sci_request_smp_completion_status_is_tx_suspend(
2348 completion_code);
2349 is_tx_rx = sci_request_smp_completion_status_is_tx_rx_suspend(
2350 completion_code);
2351 break;
2352 case SAS_PROTOCOL_SSP:
2353 is_tx = sci_request_ssp_completion_status_is_tx_suspend(
2354 completion_code);
2355 is_tx_rx = sci_request_ssp_completion_status_is_tx_rx_suspend(
2356 completion_code);
2357 break;
2358 case SAS_PROTOCOL_STP:
2359 is_tx = sci_request_stpsata_completion_status_is_tx_suspend(
2360 completion_code);
2361 is_tx_rx =
2362 sci_request_stpsata_completion_status_is_tx_rx_suspend(
2363 completion_code);
2364 break;
2365 default:
2366 dev_warn(&ireq->isci_host->pdev->dev,
2367 "%s: request %p has no valid protocol\n",
2368 __func__, ireq);
2369 break;
2370 }
2371 if (is_tx || is_tx_rx) {
2372 BUG_ON(is_tx && is_tx_rx);
2373
2374 sci_remote_node_context_suspend(
2375 &ireq->target_device->rnc,
2376 SCI_HW_SUSPEND,
2377 (is_tx_rx) ? SCU_EVENT_TL_RNC_SUSPEND_TX_RX
2378 : SCU_EVENT_TL_RNC_SUSPEND_TX);
2379 }
2380}
2381
2382enum sci_status
2383sci_io_request_tc_completion(struct isci_request *ireq,
2384 u32 completion_code)
2385{
2386 enum sci_base_request_states state;
2387 struct isci_host *ihost = ireq->owning_controller;
2388
2389 state = ireq->sm.current_state_id;
2390
2391 /* Decode those completions that signal upcoming suspension events. */
2392 sci_request_handle_suspending_completions(
2393 ireq, SCU_GET_COMPLETION_TL_STATUS(completion_code));
2394
2395 switch (state) {
2396 case SCI_REQ_STARTED:
2397 return request_started_state_tc_event(ireq, completion_code);
2398
2399 case SCI_REQ_TASK_WAIT_TC_COMP:
2400 return ssp_task_request_await_tc_event(ireq,
2401 completion_code);
2402
2403 case SCI_REQ_SMP_WAIT_RESP:
2404 return smp_request_await_response_tc_event(ireq,
2405 completion_code);
2406
2407 case SCI_REQ_SMP_WAIT_TC_COMP:
2408 return smp_request_await_tc_event(ireq, completion_code);
2409
2410 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
2411 return stp_request_udma_await_tc_event(ireq,
2412 completion_code);
2413
2414 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
2415 return stp_request_non_data_await_h2d_tc_event(ireq,
2416 completion_code);
2417
2418 case SCI_REQ_STP_PIO_WAIT_H2D:
2419 return stp_request_pio_await_h2d_completion_tc_event(ireq,
2420 completion_code);
2421
2422 case SCI_REQ_STP_PIO_DATA_OUT:
2423 return pio_data_out_tx_done_tc_event(ireq, completion_code);
2424
2425 case SCI_REQ_ABORTING:
2426 return request_aborting_state_tc_event(ireq,
2427 completion_code);
2428
2429 case SCI_REQ_ATAPI_WAIT_H2D:
2430 return atapi_raw_completion(ireq, completion_code,
2431 SCI_REQ_ATAPI_WAIT_PIO_SETUP);
2432
2433 case SCI_REQ_ATAPI_WAIT_TC_COMP:
2434 return atapi_raw_completion(ireq, completion_code,
2435 SCI_REQ_ATAPI_WAIT_D2H);
2436
2437 case SCI_REQ_ATAPI_WAIT_D2H:
2438 return atapi_data_tc_completion_handler(ireq, completion_code);
2439
2440 default:
2441 dev_warn(&ihost->pdev->dev, "%s: %x in wrong state %s\n",
2442 __func__, completion_code, req_state_name(state));
2443 return SCI_FAILURE_INVALID_STATE;
2444 }
2445}
2446
2447/**
2448 * isci_request_process_response_iu() - This function sets the status and
2449 * response iu, in the task struct, from the request object for the upper
2450 * layer driver.
2451 * @task: This parameter is the task struct from the upper layer driver.
2452 * @resp_iu: This parameter points to the response iu of the completed request.
2453 * @dev: This parameter specifies the linux device struct.
2454 *
2455 * none.
2456 */
2457static void isci_request_process_response_iu(
2458 struct sas_task *task,
2459 struct ssp_response_iu *resp_iu,
2460 struct device *dev)
2461{
2462 dev_dbg(dev,
2463 "%s: resp_iu = %p "
2464 "resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2465 "resp_iu->response_data_len = %x, "
2466 "resp_iu->sense_data_len = %x\nresponse data: ",
2467 __func__,
2468 resp_iu,
2469 resp_iu->status,
2470 resp_iu->datapres,
2471 resp_iu->response_data_len,
2472 resp_iu->sense_data_len);
2473
2474 task->task_status.stat = resp_iu->status;
2475
2476 /* libsas updates the task status fields based on the response iu. */
2477 sas_ssp_task_response(dev, task, resp_iu);
2478}
2479
2480/**
2481 * isci_request_set_open_reject_status() - This function prepares the I/O
2482 * completion for OPEN_REJECT conditions.
2483 * @request: This parameter is the completed isci_request object.
2484 * @task: This parameter is the task struct from the upper layer driver.
2485 * @response_ptr: This parameter specifies the service response for the I/O.
2486 * @status_ptr: This parameter specifies the exec status for the I/O.
2487 * @open_rej_reason: This parameter specifies the encoded reason for the
2488 * abandon-class reject.
2489 *
2490 * none.
2491 */
2492static void isci_request_set_open_reject_status(
2493 struct isci_request *request,
2494 struct sas_task *task,
2495 enum service_response *response_ptr,
2496 enum exec_status *status_ptr,
2497 enum sas_open_rej_reason open_rej_reason)
2498{
2499 /* Task in the target is done. */
2500 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2501 *response_ptr = SAS_TASK_UNDELIVERED;
2502 *status_ptr = SAS_OPEN_REJECT;
2503 task->task_status.open_rej_reason = open_rej_reason;
2504}
2505
2506/**
2507 * isci_request_handle_controller_specific_errors() - This function decodes
2508 * controller-specific I/O completion error conditions.
2509 * @idev: Remote device
2510 * @request: This parameter is the completed isci_request object.
2511 * @task: This parameter is the task struct from the upper layer driver.
2512 * @response_ptr: This parameter specifies the service response for the I/O.
2513 * @status_ptr: This parameter specifies the exec status for the I/O.
2514 *
2515 * none.
2516 */
2517static void isci_request_handle_controller_specific_errors(
2518 struct isci_remote_device *idev,
2519 struct isci_request *request,
2520 struct sas_task *task,
2521 enum service_response *response_ptr,
2522 enum exec_status *status_ptr)
2523{
2524 unsigned int cstatus;
2525
2526 cstatus = request->scu_status;
2527
2528 dev_dbg(&request->isci_host->pdev->dev,
2529 "%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2530 "- controller status = 0x%x\n",
2531 __func__, request, cstatus);
2532
2533 /* Decode the controller-specific errors; most
2534 * important is to recognize those conditions in which
2535 * the target may still have a task outstanding that
2536 * must be aborted.
2537 *
2538 * Note that there are SCU completion codes being
2539 * named in the decode below for which SCIC has already
2540 * done work to handle them in a way other than as
2541 * a controller-specific completion code; these are left
2542 * in the decode below for completeness sake.
2543 */
2544 switch (cstatus) {
2545 case SCU_TASK_DONE_DMASETUP_DIRERR:
2546 /* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2547 case SCU_TASK_DONE_XFERCNT_ERR:
2548 /* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2549 if (task->task_proto == SAS_PROTOCOL_SMP) {
2550 /* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2551 *response_ptr = SAS_TASK_COMPLETE;
2552
2553 /* See if the device has been/is being stopped. Note
2554 * that we ignore the quiesce state, since we are
2555 * concerned about the actual device state.
2556 */
2557 if (!idev)
2558 *status_ptr = SAS_DEVICE_UNKNOWN;
2559 else
2560 *status_ptr = SAS_ABORTED_TASK;
2561
2562 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2563 } else {
2564 /* Task in the target is not done. */
2565 *response_ptr = SAS_TASK_UNDELIVERED;
2566
2567 if (!idev)
2568 *status_ptr = SAS_DEVICE_UNKNOWN;
2569 else
2570 *status_ptr = SAS_SAM_STAT_TASK_ABORTED;
2571
2572 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2573 }
2574
2575 break;
2576
2577 case SCU_TASK_DONE_CRC_ERR:
2578 case SCU_TASK_DONE_NAK_CMD_ERR:
2579 case SCU_TASK_DONE_EXCESS_DATA:
2580 case SCU_TASK_DONE_UNEXP_FIS:
2581 /* Also SCU_TASK_DONE_UNEXP_RESP: */
2582 case SCU_TASK_DONE_VIIT_ENTRY_NV: /* TODO - conditions? */
2583 case SCU_TASK_DONE_IIT_ENTRY_NV: /* TODO - conditions? */
2584 case SCU_TASK_DONE_RNCNV_OUTBOUND: /* TODO - conditions? */
2585 /* These are conditions in which the target
2586 * has completed the task, so that no cleanup
2587 * is necessary.
2588 */
2589 *response_ptr = SAS_TASK_COMPLETE;
2590
2591 /* See if the device has been/is being stopped. Note
2592 * that we ignore the quiesce state, since we are
2593 * concerned about the actual device state.
2594 */
2595 if (!idev)
2596 *status_ptr = SAS_DEVICE_UNKNOWN;
2597 else
2598 *status_ptr = SAS_ABORTED_TASK;
2599
2600 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2601 break;
2602
2603
2604 /* Note that the only open reject completion codes seen here will be
2605 * abandon-class codes; all others are automatically retried in the SCU.
2606 */
2607 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2608
2609 isci_request_set_open_reject_status(
2610 request, task, response_ptr, status_ptr,
2611 SAS_OREJ_WRONG_DEST);
2612 break;
2613
2614 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2615
2616 /* Note - the return of AB0 will change when
2617 * libsas implements detection of zone violations.
2618 */
2619 isci_request_set_open_reject_status(
2620 request, task, response_ptr, status_ptr,
2621 SAS_OREJ_RESV_AB0);
2622 break;
2623
2624 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2625
2626 isci_request_set_open_reject_status(
2627 request, task, response_ptr, status_ptr,
2628 SAS_OREJ_RESV_AB1);
2629 break;
2630
2631 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2632
2633 isci_request_set_open_reject_status(
2634 request, task, response_ptr, status_ptr,
2635 SAS_OREJ_RESV_AB2);
2636 break;
2637
2638 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2639
2640 isci_request_set_open_reject_status(
2641 request, task, response_ptr, status_ptr,
2642 SAS_OREJ_RESV_AB3);
2643 break;
2644
2645 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2646
2647 isci_request_set_open_reject_status(
2648 request, task, response_ptr, status_ptr,
2649 SAS_OREJ_BAD_DEST);
2650 break;
2651
2652 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2653
2654 isci_request_set_open_reject_status(
2655 request, task, response_ptr, status_ptr,
2656 SAS_OREJ_STP_NORES);
2657 break;
2658
2659 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2660
2661 isci_request_set_open_reject_status(
2662 request, task, response_ptr, status_ptr,
2663 SAS_OREJ_EPROTO);
2664 break;
2665
2666 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2667
2668 isci_request_set_open_reject_status(
2669 request, task, response_ptr, status_ptr,
2670 SAS_OREJ_CONN_RATE);
2671 break;
2672
2673 case SCU_TASK_DONE_LL_R_ERR:
2674 /* Also SCU_TASK_DONE_ACK_NAK_TO: */
2675 case SCU_TASK_DONE_LL_PERR:
2676 case SCU_TASK_DONE_LL_SY_TERM:
2677 /* Also SCU_TASK_DONE_NAK_ERR:*/
2678 case SCU_TASK_DONE_LL_LF_TERM:
2679 /* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2680 case SCU_TASK_DONE_LL_ABORT_ERR:
2681 case SCU_TASK_DONE_SEQ_INV_TYPE:
2682 /* Also SCU_TASK_DONE_UNEXP_XR: */
2683 case SCU_TASK_DONE_XR_IU_LEN_ERR:
2684 case SCU_TASK_DONE_INV_FIS_LEN:
2685 /* Also SCU_TASK_DONE_XR_WD_LEN: */
2686 case SCU_TASK_DONE_SDMA_ERR:
2687 case SCU_TASK_DONE_OFFSET_ERR:
2688 case SCU_TASK_DONE_MAX_PLD_ERR:
2689 case SCU_TASK_DONE_LF_ERR:
2690 case SCU_TASK_DONE_SMP_RESP_TO_ERR: /* Escalate to dev reset? */
2691 case SCU_TASK_DONE_SMP_LL_RX_ERR:
2692 case SCU_TASK_DONE_UNEXP_DATA:
2693 case SCU_TASK_DONE_UNEXP_SDBFIS:
2694 case SCU_TASK_DONE_REG_ERR:
2695 case SCU_TASK_DONE_SDB_ERR:
2696 case SCU_TASK_DONE_TASK_ABORT:
2697 default:
2698 /* Task in the target is not done. */
2699 *response_ptr = SAS_TASK_UNDELIVERED;
2700 *status_ptr = SAS_SAM_STAT_TASK_ABORTED;
2701
2702 if (task->task_proto == SAS_PROTOCOL_SMP)
2703 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2704 else
2705 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2706 break;
2707 }
2708}
2709
2710static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis)
2711{
2712 struct task_status_struct *ts = &task->task_status;
2713 struct ata_task_resp *resp = (void *)&ts->buf[0];
2714
2715 resp->frame_len = sizeof(*fis);
2716 memcpy(resp->ending_fis, fis, sizeof(*fis));
2717 ts->buf_valid_size = sizeof(*resp);
2718
2719 /* If an error is flagged let libata decode the fis */
2720 if (ac_err_mask(fis->status))
2721 ts->stat = SAS_PROTO_RESPONSE;
2722 else
2723 ts->stat = SAS_SAM_STAT_GOOD;
2724
2725 ts->resp = SAS_TASK_COMPLETE;
2726}
2727
2728static void isci_request_io_request_complete(struct isci_host *ihost,
2729 struct isci_request *request,
2730 enum sci_io_status completion_status)
2731{
2732 struct sas_task *task = isci_request_access_task(request);
2733 struct ssp_response_iu *resp_iu;
2734 unsigned long task_flags;
2735 struct isci_remote_device *idev = request->target_device;
2736 enum service_response response = SAS_TASK_UNDELIVERED;
2737 enum exec_status status = SAS_ABORTED_TASK;
2738
2739 dev_dbg(&ihost->pdev->dev,
2740 "%s: request = %p, task = %p, "
2741 "task->data_dir = %d completion_status = 0x%x\n",
2742 __func__, request, task, task->data_dir, completion_status);
2743
2744 /* The request is done from an SCU HW perspective. */
2745
2746 /* This is an active request being completed from the core. */
2747 switch (completion_status) {
2748
2749 case SCI_IO_FAILURE_RESPONSE_VALID:
2750 dev_dbg(&ihost->pdev->dev,
2751 "%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2752 __func__, request, task);
2753
2754 if (sas_protocol_ata(task->task_proto)) {
2755 isci_process_stp_response(task, &request->stp.rsp);
2756 } else if (SAS_PROTOCOL_SSP == task->task_proto) {
2757
2758 /* crack the iu response buffer. */
2759 resp_iu = &request->ssp.rsp;
2760 isci_request_process_response_iu(task, resp_iu,
2761 &ihost->pdev->dev);
2762
2763 } else if (SAS_PROTOCOL_SMP == task->task_proto) {
2764
2765 dev_err(&ihost->pdev->dev,
2766 "%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2767 "SAS_PROTOCOL_SMP protocol\n",
2768 __func__);
2769
2770 } else
2771 dev_err(&ihost->pdev->dev,
2772 "%s: unknown protocol\n", __func__);
2773
2774 /* use the task status set in the task struct by the
2775 * isci_request_process_response_iu call.
2776 */
2777 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2778 response = task->task_status.resp;
2779 status = task->task_status.stat;
2780 break;
2781
2782 case SCI_IO_SUCCESS:
2783 case SCI_IO_SUCCESS_IO_DONE_EARLY:
2784
2785 response = SAS_TASK_COMPLETE;
2786 status = SAS_SAM_STAT_GOOD;
2787 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2788
2789 if (completion_status == SCI_IO_SUCCESS_IO_DONE_EARLY) {
2790
2791 /* This was an SSP / STP / SATA transfer.
2792 * There is a possibility that less data than
2793 * the maximum was transferred.
2794 */
2795 u32 transferred_length = sci_req_tx_bytes(request);
2796
2797 task->task_status.residual
2798 = task->total_xfer_len - transferred_length;
2799
2800 /* If there were residual bytes, call this an
2801 * underrun.
2802 */
2803 if (task->task_status.residual != 0)
2804 status = SAS_DATA_UNDERRUN;
2805
2806 dev_dbg(&ihost->pdev->dev,
2807 "%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2808 __func__, status);
2809
2810 } else
2811 dev_dbg(&ihost->pdev->dev, "%s: SCI_IO_SUCCESS\n",
2812 __func__);
2813 break;
2814
2815 case SCI_IO_FAILURE_TERMINATED:
2816
2817 dev_dbg(&ihost->pdev->dev,
2818 "%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2819 __func__, request, task);
2820
2821 /* The request was terminated explicitly. */
2822 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2823 response = SAS_TASK_UNDELIVERED;
2824
2825 /* See if the device has been/is being stopped. Note
2826 * that we ignore the quiesce state, since we are
2827 * concerned about the actual device state.
2828 */
2829 if (!idev)
2830 status = SAS_DEVICE_UNKNOWN;
2831 else
2832 status = SAS_ABORTED_TASK;
2833 break;
2834
2835 case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
2836
2837 isci_request_handle_controller_specific_errors(idev, request,
2838 task, &response,
2839 &status);
2840 break;
2841
2842 case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
2843 /* This is a special case, in that the I/O completion
2844 * is telling us that the device needs a reset.
2845 * In order for the device reset condition to be
2846 * noticed, the I/O has to be handled in the error
2847 * handler. Set the reset flag and cause the
2848 * SCSI error thread to be scheduled.
2849 */
2850 spin_lock_irqsave(&task->task_state_lock, task_flags);
2851 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2852 spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2853
2854 /* Fail the I/O. */
2855 response = SAS_TASK_UNDELIVERED;
2856 status = SAS_SAM_STAT_TASK_ABORTED;
2857
2858 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2859 break;
2860
2861 case SCI_FAILURE_RETRY_REQUIRED:
2862
2863 /* Fail the I/O so it can be retried. */
2864 response = SAS_TASK_UNDELIVERED;
2865 if (!idev)
2866 status = SAS_DEVICE_UNKNOWN;
2867 else
2868 status = SAS_ABORTED_TASK;
2869
2870 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2871 break;
2872
2873
2874 default:
2875 /* Catch any otherwise unhandled error codes here. */
2876 dev_dbg(&ihost->pdev->dev,
2877 "%s: invalid completion code: 0x%x - "
2878 "isci_request = %p\n",
2879 __func__, completion_status, request);
2880
2881 response = SAS_TASK_UNDELIVERED;
2882
2883 /* See if the device has been/is being stopped. Note
2884 * that we ignore the quiesce state, since we are
2885 * concerned about the actual device state.
2886 */
2887 if (!idev)
2888 status = SAS_DEVICE_UNKNOWN;
2889 else
2890 status = SAS_ABORTED_TASK;
2891
2892 if (SAS_PROTOCOL_SMP == task->task_proto)
2893 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2894 else
2895 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2896 break;
2897 }
2898
2899 switch (task->task_proto) {
2900 case SAS_PROTOCOL_SSP:
2901 if (task->data_dir == DMA_NONE)
2902 break;
2903 if (task->num_scatter == 0)
2904 /* 0 indicates a single dma address */
2905 dma_unmap_single(&ihost->pdev->dev,
2906 request->zero_scatter_daddr,
2907 task->total_xfer_len, task->data_dir);
2908 else /* unmap the sgl dma addresses */
2909 dma_unmap_sg(&ihost->pdev->dev, task->scatter,
2910 request->num_sg_entries, task->data_dir);
2911 break;
2912 case SAS_PROTOCOL_SMP: {
2913 struct scatterlist *sg = &task->smp_task.smp_req;
2914 struct smp_req *smp_req;
2915 void *kaddr;
2916
2917 dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE);
2918
2919 /* need to swab it back in case the command buffer is re-used */
2920 kaddr = kmap_atomic(sg_page(sg));
2921 smp_req = kaddr + sg->offset;
2922 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
2923 kunmap_atomic(kaddr);
2924 break;
2925 }
2926 default:
2927 break;
2928 }
2929
2930 spin_lock_irqsave(&task->task_state_lock, task_flags);
2931
2932 task->task_status.resp = response;
2933 task->task_status.stat = status;
2934
2935 if (test_bit(IREQ_COMPLETE_IN_TARGET, &request->flags)) {
2936 /* Normal notification (task_done) */
2937 task->task_state_flags |= SAS_TASK_STATE_DONE;
2938 task->task_state_flags &= ~SAS_TASK_STATE_PENDING;
2939 }
2940 spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2941
2942 /* complete the io request to the core. */
2943 sci_controller_complete_io(ihost, request->target_device, request);
2944
2945 /* set terminated handle so it cannot be completed or
2946 * terminated again, and to cause any calls into abort
2947 * task to recognize the already completed case.
2948 */
2949 set_bit(IREQ_TERMINATED, &request->flags);
2950
2951 ireq_done(ihost, request, task);
2952}
2953
2954static void sci_request_started_state_enter(struct sci_base_state_machine *sm)
2955{
2956 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2957 struct domain_device *dev = ireq->target_device->domain_dev;
2958 enum sci_base_request_states state;
2959 struct sas_task *task;
2960
2961 /* XXX as hch said always creating an internal sas_task for tmf
2962 * requests would simplify the driver
2963 */
2964 task = (test_bit(IREQ_TMF, &ireq->flags)) ? NULL : isci_request_access_task(ireq);
2965
2966 /* all unaccelerated request types (non ssp or ncq) handled with
2967 * substates
2968 */
2969 if (!task && dev->dev_type == SAS_END_DEVICE) {
2970 state = SCI_REQ_TASK_WAIT_TC_COMP;
2971 } else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
2972 state = SCI_REQ_SMP_WAIT_RESP;
2973 } else if (task && sas_protocol_ata(task->task_proto) &&
2974 !task->ata_task.use_ncq) {
2975 if (dev->sata_dev.class == ATA_DEV_ATAPI &&
2976 task->ata_task.fis.command == ATA_CMD_PACKET) {
2977 state = SCI_REQ_ATAPI_WAIT_H2D;
2978 } else if (task->data_dir == DMA_NONE) {
2979 state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
2980 } else if (task->ata_task.dma_xfer) {
2981 state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
2982 } else /* PIO */ {
2983 state = SCI_REQ_STP_PIO_WAIT_H2D;
2984 }
2985 } else {
2986 /* SSP or NCQ are fully accelerated, no substates */
2987 return;
2988 }
2989 sci_change_state(sm, state);
2990}
2991
2992static void sci_request_completed_state_enter(struct sci_base_state_machine *sm)
2993{
2994 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2995 struct isci_host *ihost = ireq->owning_controller;
2996
2997 /* Tell the SCI_USER that the IO request is complete */
2998 if (!test_bit(IREQ_TMF, &ireq->flags))
2999 isci_request_io_request_complete(ihost, ireq,
3000 ireq->sci_status);
3001 else
3002 isci_task_request_complete(ihost, ireq, ireq->sci_status);
3003}
3004
3005static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm)
3006{
3007 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3008
3009 /* Setting the abort bit in the Task Context is required by the silicon. */
3010 ireq->tc->abort = 1;
3011}
3012
3013static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3014{
3015 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3016
3017 ireq->target_device->working_request = ireq;
3018}
3019
3020static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3021{
3022 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3023
3024 ireq->target_device->working_request = ireq;
3025}
3026
3027static const struct sci_base_state sci_request_state_table[] = {
3028 [SCI_REQ_INIT] = { },
3029 [SCI_REQ_CONSTRUCTED] = { },
3030 [SCI_REQ_STARTED] = {
3031 .enter_state = sci_request_started_state_enter,
3032 },
3033 [SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
3034 .enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter,
3035 },
3036 [SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
3037 [SCI_REQ_STP_PIO_WAIT_H2D] = {
3038 .enter_state = sci_stp_request_started_pio_await_h2d_completion_enter,
3039 },
3040 [SCI_REQ_STP_PIO_WAIT_FRAME] = { },
3041 [SCI_REQ_STP_PIO_DATA_IN] = { },
3042 [SCI_REQ_STP_PIO_DATA_OUT] = { },
3043 [SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
3044 [SCI_REQ_STP_UDMA_WAIT_D2H] = { },
3045 [SCI_REQ_TASK_WAIT_TC_COMP] = { },
3046 [SCI_REQ_TASK_WAIT_TC_RESP] = { },
3047 [SCI_REQ_SMP_WAIT_RESP] = { },
3048 [SCI_REQ_SMP_WAIT_TC_COMP] = { },
3049 [SCI_REQ_ATAPI_WAIT_H2D] = { },
3050 [SCI_REQ_ATAPI_WAIT_PIO_SETUP] = { },
3051 [SCI_REQ_ATAPI_WAIT_D2H] = { },
3052 [SCI_REQ_ATAPI_WAIT_TC_COMP] = { },
3053 [SCI_REQ_COMPLETED] = {
3054 .enter_state = sci_request_completed_state_enter,
3055 },
3056 [SCI_REQ_ABORTING] = {
3057 .enter_state = sci_request_aborting_state_enter,
3058 },
3059 [SCI_REQ_FINAL] = { },
3060};
3061
3062static void
3063sci_general_request_construct(struct isci_host *ihost,
3064 struct isci_remote_device *idev,
3065 struct isci_request *ireq)
3066{
3067 sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT);
3068
3069 ireq->target_device = idev;
3070 ireq->protocol = SAS_PROTOCOL_NONE;
3071 ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
3072
3073 ireq->sci_status = SCI_SUCCESS;
3074 ireq->scu_status = 0;
3075 ireq->post_context = 0xFFFFFFFF;
3076}
3077
3078static enum sci_status
3079sci_io_request_construct(struct isci_host *ihost,
3080 struct isci_remote_device *idev,
3081 struct isci_request *ireq)
3082{
3083 struct domain_device *dev = idev->domain_dev;
3084 enum sci_status status = SCI_SUCCESS;
3085
3086 /* Build the common part of the request */
3087 sci_general_request_construct(ihost, idev, ireq);
3088
3089 if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
3090 return SCI_FAILURE_INVALID_REMOTE_DEVICE;
3091
3092 if (dev->dev_type == SAS_END_DEVICE)
3093 /* pass */;
3094 else if (dev_is_sata(dev))
3095 memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
3096 else if (dev_is_expander(dev->dev_type))
3097 /* pass */;
3098 else
3099 return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3100
3101 memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab));
3102
3103 return status;
3104}
3105
3106enum sci_status sci_task_request_construct(struct isci_host *ihost,
3107 struct isci_remote_device *idev,
3108 u16 io_tag, struct isci_request *ireq)
3109{
3110 struct domain_device *dev = idev->domain_dev;
3111 enum sci_status status = SCI_SUCCESS;
3112
3113 /* Build the common part of the request */
3114 sci_general_request_construct(ihost, idev, ireq);
3115
3116 if (dev->dev_type == SAS_END_DEVICE || dev_is_sata(dev)) {
3117 set_bit(IREQ_TMF, &ireq->flags);
3118 memset(ireq->tc, 0, sizeof(struct scu_task_context));
3119
3120 /* Set the protocol indicator. */
3121 if (dev_is_sata(dev))
3122 ireq->protocol = SAS_PROTOCOL_STP;
3123 else
3124 ireq->protocol = SAS_PROTOCOL_SSP;
3125 } else
3126 status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3127
3128 return status;
3129}
3130
3131static enum sci_status isci_request_ssp_request_construct(
3132 struct isci_request *request)
3133{
3134 enum sci_status status;
3135
3136 dev_dbg(&request->isci_host->pdev->dev,
3137 "%s: request = %p\n",
3138 __func__,
3139 request);
3140 status = sci_io_request_construct_basic_ssp(request);
3141 return status;
3142}
3143
3144static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq)
3145{
3146 struct sas_task *task = isci_request_access_task(ireq);
3147 struct host_to_dev_fis *fis = &ireq->stp.cmd;
3148 struct ata_queued_cmd *qc = task->uldd_task;
3149 enum sci_status status;
3150
3151 dev_dbg(&ireq->isci_host->pdev->dev,
3152 "%s: ireq = %p\n",
3153 __func__,
3154 ireq);
3155
3156 memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
3157 if (!task->ata_task.device_control_reg_update)
3158 fis->flags |= 0x80;
3159 fis->flags &= 0xF0;
3160
3161 status = sci_io_request_construct_basic_sata(ireq);
3162
3163 if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
3164 qc->tf.command == ATA_CMD_FPDMA_READ ||
3165 qc->tf.command == ATA_CMD_FPDMA_RECV ||
3166 qc->tf.command == ATA_CMD_FPDMA_SEND ||
3167 qc->tf.command == ATA_CMD_NCQ_NON_DATA)) {
3168 fis->sector_count = qc->tag << 3;
3169 ireq->tc->type.stp.ncq_tag = qc->tag;
3170 }
3171
3172 return status;
3173}
3174
3175static enum sci_status
3176sci_io_request_construct_smp(struct device *dev,
3177 struct isci_request *ireq,
3178 struct sas_task *task)
3179{
3180 struct scatterlist *sg = &task->smp_task.smp_req;
3181 struct isci_remote_device *idev;
3182 struct scu_task_context *task_context;
3183 struct isci_port *iport;
3184 struct smp_req *smp_req;
3185 void *kaddr;
3186 u8 req_len;
3187 u32 cmd;
3188
3189 kaddr = kmap_atomic(sg_page(sg));
3190 smp_req = kaddr + sg->offset;
3191 /*
3192 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3193 * functions under SAS 2.0, a zero request length really indicates
3194 * a non-zero default length.
3195 */
3196 if (smp_req->req_len == 0) {
3197 switch (smp_req->func) {
3198 case SMP_DISCOVER:
3199 case SMP_REPORT_PHY_ERR_LOG:
3200 case SMP_REPORT_PHY_SATA:
3201 case SMP_REPORT_ROUTE_INFO:
3202 smp_req->req_len = 2;
3203 break;
3204 case SMP_CONF_ROUTE_INFO:
3205 case SMP_PHY_CONTROL:
3206 case SMP_PHY_TEST_FUNCTION:
3207 smp_req->req_len = 9;
3208 break;
3209 /* Default - zero is a valid default for 2.0. */
3210 }
3211 }
3212 req_len = smp_req->req_len;
3213 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3214 cmd = *(u32 *) smp_req;
3215 kunmap_atomic(kaddr);
3216
3217 if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
3218 return SCI_FAILURE;
3219
3220 ireq->protocol = SAS_PROTOCOL_SMP;
3221
3222 /* byte swap the smp request. */
3223
3224 task_context = ireq->tc;
3225
3226 idev = ireq->target_device;
3227 iport = idev->owning_port;
3228
3229 /*
3230 * Fill in the TC with its required data
3231 * 00h
3232 */
3233 task_context->priority = 0;
3234 task_context->initiator_request = 1;
3235 task_context->connection_rate = idev->connection_rate;
3236 task_context->protocol_engine_index = ISCI_PEG;
3237 task_context->logical_port_index = iport->physical_port_index;
3238 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
3239 task_context->abort = 0;
3240 task_context->valid = SCU_TASK_CONTEXT_VALID;
3241 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
3242
3243 /* 04h */
3244 task_context->remote_node_index = idev->rnc.remote_node_index;
3245 task_context->command_code = 0;
3246 task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
3247
3248 /* 08h */
3249 task_context->link_layer_control = 0;
3250 task_context->do_not_dma_ssp_good_response = 1;
3251 task_context->strict_ordering = 0;
3252 task_context->control_frame = 1;
3253 task_context->timeout_enable = 0;
3254 task_context->block_guard_enable = 0;
3255
3256 /* 0ch */
3257 task_context->address_modifier = 0;
3258
3259 /* 10h */
3260 task_context->ssp_command_iu_length = req_len;
3261
3262 /* 14h */
3263 task_context->transfer_length_bytes = 0;
3264
3265 /*
3266 * 18h ~ 30h, protocol specific
3267 * since commandIU has been build by framework at this point, we just
3268 * copy the frist DWord from command IU to this location. */
3269 memcpy(&task_context->type.smp, &cmd, sizeof(u32));
3270
3271 /*
3272 * 40h
3273 * "For SMP you could program it to zero. We would prefer that way
3274 * so that done code will be consistent." - Venki
3275 */
3276 task_context->task_phase = 0;
3277
3278 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
3279 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
3280 (iport->physical_port_index <<
3281 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
3282 ISCI_TAG_TCI(ireq->io_tag));
3283 /*
3284 * Copy the physical address for the command buffer to the SCU Task
3285 * Context command buffer should not contain command header.
3286 */
3287 task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
3288 task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
3289
3290 /* SMP response comes as UF, so no need to set response IU address. */
3291 task_context->response_iu_upper = 0;
3292 task_context->response_iu_lower = 0;
3293
3294 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
3295
3296 return SCI_SUCCESS;
3297}
3298
3299/*
3300 * isci_smp_request_build() - This function builds the smp request.
3301 * @ireq: This parameter points to the isci_request allocated in the
3302 * request construct function.
3303 *
3304 * SCI_SUCCESS on successfull completion, or specific failure code.
3305 */
3306static enum sci_status isci_smp_request_build(struct isci_request *ireq)
3307{
3308 struct sas_task *task = isci_request_access_task(ireq);
3309 struct device *dev = &ireq->isci_host->pdev->dev;
3310 enum sci_status status = SCI_FAILURE;
3311
3312 status = sci_io_request_construct_smp(dev, ireq, task);
3313 if (status != SCI_SUCCESS)
3314 dev_dbg(&ireq->isci_host->pdev->dev,
3315 "%s: failed with status = %d\n",
3316 __func__,
3317 status);
3318
3319 return status;
3320}
3321
3322/**
3323 * isci_io_request_build() - This function builds the io request object.
3324 * @ihost: This parameter specifies the ISCI host object
3325 * @request: This parameter points to the isci_request object allocated in the
3326 * request construct function.
3327 * @idev: This parameter is the handle for the sci core's remote device
3328 * object that is the destination for this request.
3329 *
3330 * SCI_SUCCESS on successfull completion, or specific failure code.
3331 */
3332static enum sci_status isci_io_request_build(struct isci_host *ihost,
3333 struct isci_request *request,
3334 struct isci_remote_device *idev)
3335{
3336 enum sci_status status = SCI_SUCCESS;
3337 struct sas_task *task = isci_request_access_task(request);
3338
3339 dev_dbg(&ihost->pdev->dev,
3340 "%s: idev = 0x%p; request = %p, "
3341 "num_scatter = %d\n",
3342 __func__,
3343 idev,
3344 request,
3345 task->num_scatter);
3346
3347 /* map the sgl addresses, if present.
3348 * libata does the mapping for sata devices
3349 * before we get the request.
3350 */
3351 if (task->num_scatter &&
3352 !sas_protocol_ata(task->task_proto) &&
3353 !(SAS_PROTOCOL_SMP & task->task_proto)) {
3354
3355 request->num_sg_entries = dma_map_sg(
3356 &ihost->pdev->dev,
3357 task->scatter,
3358 task->num_scatter,
3359 task->data_dir
3360 );
3361
3362 if (request->num_sg_entries == 0)
3363 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
3364 }
3365
3366 status = sci_io_request_construct(ihost, idev, request);
3367
3368 if (status != SCI_SUCCESS) {
3369 dev_dbg(&ihost->pdev->dev,
3370 "%s: failed request construct\n",
3371 __func__);
3372 return SCI_FAILURE;
3373 }
3374
3375 switch (task->task_proto) {
3376 case SAS_PROTOCOL_SMP:
3377 status = isci_smp_request_build(request);
3378 break;
3379 case SAS_PROTOCOL_SSP:
3380 status = isci_request_ssp_request_construct(request);
3381 break;
3382 case SAS_PROTOCOL_SATA:
3383 case SAS_PROTOCOL_STP:
3384 case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
3385 status = isci_request_stp_request_construct(request);
3386 break;
3387 default:
3388 dev_dbg(&ihost->pdev->dev,
3389 "%s: unknown protocol\n", __func__);
3390 return SCI_FAILURE;
3391 }
3392
3393 return SCI_SUCCESS;
3394}
3395
3396static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag)
3397{
3398 struct isci_request *ireq;
3399
3400 ireq = ihost->reqs[ISCI_TAG_TCI(tag)];
3401 ireq->io_tag = tag;
3402 ireq->io_request_completion = NULL;
3403 ireq->flags = 0;
3404 ireq->num_sg_entries = 0;
3405
3406 return ireq;
3407}
3408
3409struct isci_request *isci_io_request_from_tag(struct isci_host *ihost,
3410 struct sas_task *task,
3411 u16 tag)
3412{
3413 struct isci_request *ireq;
3414
3415 ireq = isci_request_from_tag(ihost, tag);
3416 ireq->ttype_ptr.io_task_ptr = task;
3417 clear_bit(IREQ_TMF, &ireq->flags);
3418 task->lldd_task = ireq;
3419
3420 return ireq;
3421}
3422
3423struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost,
3424 struct isci_tmf *isci_tmf,
3425 u16 tag)
3426{
3427 struct isci_request *ireq;
3428
3429 ireq = isci_request_from_tag(ihost, tag);
3430 ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
3431 set_bit(IREQ_TMF, &ireq->flags);
3432
3433 return ireq;
3434}
3435
3436int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
3437 struct sas_task *task, struct isci_request *ireq)
3438{
3439 enum sci_status status;
3440 unsigned long flags;
3441 int ret = 0;
3442
3443 status = isci_io_request_build(ihost, ireq, idev);
3444 if (status != SCI_SUCCESS) {
3445 dev_dbg(&ihost->pdev->dev,
3446 "%s: request_construct failed - status = 0x%x\n",
3447 __func__,
3448 status);
3449 return status;
3450 }
3451
3452 spin_lock_irqsave(&ihost->scic_lock, flags);
3453
3454 if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) {
3455
3456 if (isci_task_is_ncq_recovery(task)) {
3457
3458 /* The device is in an NCQ recovery state. Issue the
3459 * request on the task side. Note that it will
3460 * complete on the I/O request side because the
3461 * request was built that way (ie.
3462 * ireq->is_task_management_request is false).
3463 */
3464 status = sci_controller_start_task(ihost,
3465 idev,
3466 ireq);
3467 } else {
3468 status = SCI_FAILURE;
3469 }
3470 } else {
3471 /* send the request, let the core assign the IO TAG. */
3472 status = sci_controller_start_io(ihost, idev,
3473 ireq);
3474 }
3475
3476 if (status != SCI_SUCCESS &&
3477 status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3478 dev_dbg(&ihost->pdev->dev,
3479 "%s: failed request start (0x%x)\n",
3480 __func__, status);
3481 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3482 return status;
3483 }
3484 /* Either I/O started OK, or the core has signaled that
3485 * the device needs a target reset.
3486 */
3487 if (status != SCI_SUCCESS) {
3488 /* The request did not really start in the
3489 * hardware, so clear the request handle
3490 * here so no terminations will be done.
3491 */
3492 set_bit(IREQ_TERMINATED, &ireq->flags);
3493 }
3494 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3495
3496 if (status ==
3497 SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3498 /* Signal libsas that we need the SCSI error
3499 * handler thread to work on this I/O and that
3500 * we want a device reset.
3501 */
3502 spin_lock_irqsave(&task->task_state_lock, flags);
3503 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
3504 spin_unlock_irqrestore(&task->task_state_lock, flags);
3505
3506 /* Cause this task to be scheduled in the SCSI error
3507 * handler thread.
3508 */
3509 sas_task_abort(task);
3510
3511 /* Change the status, since we are holding
3512 * the I/O until it is managed by the SCSI
3513 * error handler.
3514 */
3515 status = SCI_SUCCESS;
3516 }
3517
3518 return ret;
3519}