Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * This file is provided under a dual BSD/GPLv2 license.  When using or
   3 * redistributing this file, you may do so under either license.
   4 *
   5 * GPL LICENSE SUMMARY
   6 *
   7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  21 * The full GNU General Public License is included in this distribution
  22 * in the file called LICENSE.GPL.
  23 *
  24 * BSD LICENSE
  25 *
  26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
  27 * All rights reserved.
  28 *
  29 * Redistribution and use in source and binary forms, with or without
  30 * modification, are permitted provided that the following conditions
  31 * are met:
  32 *
  33 *   * Redistributions of source code must retain the above copyright
  34 *     notice, this list of conditions and the following disclaimer.
  35 *   * Redistributions in binary form must reproduce the above copyright
  36 *     notice, this list of conditions and the following disclaimer in
  37 *     the documentation and/or other materials provided with the
  38 *     distribution.
  39 *   * Neither the name of Intel Corporation nor the names of its
  40 *     contributors may be used to endorse or promote products derived
  41 *     from this software without specific prior written permission.
  42 *
  43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  54 */
  55
  56#include <scsi/scsi_cmnd.h>
  57#include "isci.h"
  58#include "task.h"
  59#include "request.h"
  60#include "scu_completion_codes.h"
  61#include "scu_event_codes.h"
  62#include "sas.h"
  63
  64#undef C
  65#define C(a) (#a)
  66const char *req_state_name(enum sci_base_request_states state)
  67{
  68	static const char * const strings[] = REQUEST_STATES;
  69
  70	return strings[state];
  71}
  72#undef C
  73
  74static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq,
  75							int idx)
  76{
  77	if (idx == 0)
  78		return &ireq->tc->sgl_pair_ab;
  79	else if (idx == 1)
  80		return &ireq->tc->sgl_pair_cd;
  81	else if (idx < 0)
  82		return NULL;
  83	else
  84		return &ireq->sg_table[idx - 2];
  85}
  86
  87static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost,
  88					  struct isci_request *ireq, u32 idx)
  89{
  90	u32 offset;
  91
  92	if (idx == 0) {
  93		offset = (void *) &ireq->tc->sgl_pair_ab -
  94			 (void *) &ihost->task_context_table[0];
  95		return ihost->tc_dma + offset;
  96	} else if (idx == 1) {
  97		offset = (void *) &ireq->tc->sgl_pair_cd -
  98			 (void *) &ihost->task_context_table[0];
  99		return ihost->tc_dma + offset;
 100	}
 101
 102	return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]);
 103}
 104
 105static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg)
 106{
 107	e->length = sg_dma_len(sg);
 108	e->address_upper = upper_32_bits(sg_dma_address(sg));
 109	e->address_lower = lower_32_bits(sg_dma_address(sg));
 110	e->address_modifier = 0;
 111}
 112
 113static void sci_request_build_sgl(struct isci_request *ireq)
 114{
 115	struct isci_host *ihost = ireq->isci_host;
 116	struct sas_task *task = isci_request_access_task(ireq);
 117	struct scatterlist *sg = NULL;
 118	dma_addr_t dma_addr;
 119	u32 sg_idx = 0;
 120	struct scu_sgl_element_pair *scu_sg   = NULL;
 121	struct scu_sgl_element_pair *prev_sg  = NULL;
 122
 123	if (task->num_scatter > 0) {
 124		sg = task->scatter;
 125
 126		while (sg) {
 127			scu_sg = to_sgl_element_pair(ireq, sg_idx);
 128			init_sgl_element(&scu_sg->A, sg);
 129			sg = sg_next(sg);
 130			if (sg) {
 131				init_sgl_element(&scu_sg->B, sg);
 132				sg = sg_next(sg);
 133			} else
 134				memset(&scu_sg->B, 0, sizeof(scu_sg->B));
 135
 136			if (prev_sg) {
 137				dma_addr = to_sgl_element_pair_dma(ihost,
 138								   ireq,
 139								   sg_idx);
 140
 141				prev_sg->next_pair_upper =
 142					upper_32_bits(dma_addr);
 143				prev_sg->next_pair_lower =
 144					lower_32_bits(dma_addr);
 145			}
 146
 147			prev_sg = scu_sg;
 148			sg_idx++;
 149		}
 150	} else {	/* handle when no sg */
 151		scu_sg = to_sgl_element_pair(ireq, sg_idx);
 152
 153		dma_addr = dma_map_single(&ihost->pdev->dev,
 154					  task->scatter,
 155					  task->total_xfer_len,
 156					  task->data_dir);
 157
 158		ireq->zero_scatter_daddr = dma_addr;
 159
 160		scu_sg->A.length = task->total_xfer_len;
 161		scu_sg->A.address_upper = upper_32_bits(dma_addr);
 162		scu_sg->A.address_lower = lower_32_bits(dma_addr);
 163	}
 164
 165	if (scu_sg) {
 166		scu_sg->next_pair_upper = 0;
 167		scu_sg->next_pair_lower = 0;
 168	}
 169}
 170
 171static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq)
 172{
 173	struct ssp_cmd_iu *cmd_iu;
 174	struct sas_task *task = isci_request_access_task(ireq);
 175
 176	cmd_iu = &ireq->ssp.cmd;
 177
 178	memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
 179	cmd_iu->add_cdb_len = 0;
 180	cmd_iu->_r_a = 0;
 181	cmd_iu->_r_b = 0;
 182	cmd_iu->en_fburst = 0; /* unsupported */
 183	cmd_iu->task_prio = task->ssp_task.task_prio;
 184	cmd_iu->task_attr = task->ssp_task.task_attr;
 185	cmd_iu->_r_c = 0;
 186
 187	sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cmd->cmnd,
 188		       (task->ssp_task.cmd->cmd_len+3) / sizeof(u32));
 189}
 190
 191static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq)
 192{
 193	struct ssp_task_iu *task_iu;
 194	struct sas_task *task = isci_request_access_task(ireq);
 195	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
 196
 197	task_iu = &ireq->ssp.tmf;
 198
 199	memset(task_iu, 0, sizeof(struct ssp_task_iu));
 200
 201	memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
 202
 203	task_iu->task_func = isci_tmf->tmf_code;
 204	task_iu->task_tag =
 205		(test_bit(IREQ_TMF, &ireq->flags)) ?
 206		isci_tmf->io_tag :
 207		SCI_CONTROLLER_INVALID_IO_TAG;
 208}
 209
 210/**
 211 * This method is will fill in the SCU Task Context for any type of SSP request.
 212 * @sci_req:
 213 * @task_context:
 214 *
 215 */
 216static void scu_ssp_request_construct_task_context(
 217	struct isci_request *ireq,
 218	struct scu_task_context *task_context)
 219{
 220	dma_addr_t dma_addr;
 221	struct isci_remote_device *idev;
 222	struct isci_port *iport;
 223
 224	idev = ireq->target_device;
 225	iport = idev->owning_port;
 226
 227	/* Fill in the TC with the its required data */
 228	task_context->abort = 0;
 229	task_context->priority = 0;
 230	task_context->initiator_request = 1;
 231	task_context->connection_rate = idev->connection_rate;
 232	task_context->protocol_engine_index = ISCI_PEG;
 233	task_context->logical_port_index = iport->physical_port_index;
 234	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
 235	task_context->valid = SCU_TASK_CONTEXT_VALID;
 236	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
 237
 238	task_context->remote_node_index = idev->rnc.remote_node_index;
 239	task_context->command_code = 0;
 240
 241	task_context->link_layer_control = 0;
 242	task_context->do_not_dma_ssp_good_response = 1;
 243	task_context->strict_ordering = 0;
 244	task_context->control_frame = 0;
 245	task_context->timeout_enable = 0;
 246	task_context->block_guard_enable = 0;
 247
 248	task_context->address_modifier = 0;
 249
 250	/* task_context->type.ssp.tag = ireq->io_tag; */
 251	task_context->task_phase = 0x01;
 252
 253	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
 254			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
 255			      (iport->physical_port_index <<
 256			       SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
 257			      ISCI_TAG_TCI(ireq->io_tag));
 258
 259	/*
 260	 * Copy the physical address for the command buffer to the
 261	 * SCU Task Context
 262	 */
 263	dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd);
 264
 265	task_context->command_iu_upper = upper_32_bits(dma_addr);
 266	task_context->command_iu_lower = lower_32_bits(dma_addr);
 267
 268	/*
 269	 * Copy the physical address for the response buffer to the
 270	 * SCU Task Context
 271	 */
 272	dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp);
 273
 274	task_context->response_iu_upper = upper_32_bits(dma_addr);
 275	task_context->response_iu_lower = lower_32_bits(dma_addr);
 276}
 277
 278static u8 scu_bg_blk_size(struct scsi_device *sdp)
 279{
 280	switch (sdp->sector_size) {
 281	case 512:
 282		return 0;
 283	case 1024:
 284		return 1;
 285	case 4096:
 286		return 3;
 287	default:
 288		return 0xff;
 289	}
 290}
 291
 292static u32 scu_dif_bytes(u32 len, u32 sector_size)
 293{
 294	return (len >> ilog2(sector_size)) * 8;
 295}
 296
 297static void scu_ssp_ireq_dif_insert(struct isci_request *ireq, u8 type, u8 op)
 298{
 299	struct scu_task_context *tc = ireq->tc;
 300	struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
 301	u8 blk_sz = scu_bg_blk_size(scmd->device);
 302
 303	tc->block_guard_enable = 1;
 304	tc->blk_prot_en = 1;
 305	tc->blk_sz = blk_sz;
 306	/* DIF write insert */
 307	tc->blk_prot_func = 0x2;
 308
 309	tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
 310						   scmd->device->sector_size);
 311
 312	/* always init to 0, used by hw */
 313	tc->interm_crc_val = 0;
 314
 315	tc->init_crc_seed = 0;
 316	tc->app_tag_verify = 0;
 317	tc->app_tag_gen = 0;
 318	tc->ref_tag_seed_verify = 0;
 319
 320	/* always init to same as bg_blk_sz */
 321	tc->UD_bytes_immed_val = scmd->device->sector_size;
 322
 323	tc->reserved_DC_0 = 0;
 324
 325	/* always init to 8 */
 326	tc->DIF_bytes_immed_val = 8;
 327
 328	tc->reserved_DC_1 = 0;
 329	tc->bgc_blk_sz = scmd->device->sector_size;
 330	tc->reserved_E0_0 = 0;
 331	tc->app_tag_gen_mask = 0;
 332
 333	/** setup block guard control **/
 334	tc->bgctl = 0;
 335
 336	/* DIF write insert */
 337	tc->bgctl_f.op = 0x2;
 338
 339	tc->app_tag_verify_mask = 0;
 340
 341	/* must init to 0 for hw */
 342	tc->blk_guard_err = 0;
 343
 344	tc->reserved_E8_0 = 0;
 345
 346	if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
 347		tc->ref_tag_seed_gen = scsi_get_lba(scmd) & 0xffffffff;
 348	else if (type & SCSI_PROT_DIF_TYPE3)
 349		tc->ref_tag_seed_gen = 0;
 350}
 351
 352static void scu_ssp_ireq_dif_strip(struct isci_request *ireq, u8 type, u8 op)
 353{
 354	struct scu_task_context *tc = ireq->tc;
 355	struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
 356	u8 blk_sz = scu_bg_blk_size(scmd->device);
 357
 358	tc->block_guard_enable = 1;
 359	tc->blk_prot_en = 1;
 360	tc->blk_sz = blk_sz;
 361	/* DIF read strip */
 362	tc->blk_prot_func = 0x1;
 363
 364	tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
 365						   scmd->device->sector_size);
 366
 367	/* always init to 0, used by hw */
 368	tc->interm_crc_val = 0;
 369
 370	tc->init_crc_seed = 0;
 371	tc->app_tag_verify = 0;
 372	tc->app_tag_gen = 0;
 373
 374	if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
 375		tc->ref_tag_seed_verify = scsi_get_lba(scmd) & 0xffffffff;
 376	else if (type & SCSI_PROT_DIF_TYPE3)
 377		tc->ref_tag_seed_verify = 0;
 378
 379	/* always init to same as bg_blk_sz */
 380	tc->UD_bytes_immed_val = scmd->device->sector_size;
 381
 382	tc->reserved_DC_0 = 0;
 383
 384	/* always init to 8 */
 385	tc->DIF_bytes_immed_val = 8;
 386
 387	tc->reserved_DC_1 = 0;
 388	tc->bgc_blk_sz = scmd->device->sector_size;
 389	tc->reserved_E0_0 = 0;
 390	tc->app_tag_gen_mask = 0;
 391
 392	/** setup block guard control **/
 393	tc->bgctl = 0;
 394
 395	/* DIF read strip */
 396	tc->bgctl_f.crc_verify = 1;
 397	tc->bgctl_f.op = 0x1;
 398	if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2)) {
 399		tc->bgctl_f.ref_tag_chk = 1;
 400		tc->bgctl_f.app_f_detect = 1;
 401	} else if (type & SCSI_PROT_DIF_TYPE3)
 402		tc->bgctl_f.app_ref_f_detect = 1;
 403
 404	tc->app_tag_verify_mask = 0;
 405
 406	/* must init to 0 for hw */
 407	tc->blk_guard_err = 0;
 408
 409	tc->reserved_E8_0 = 0;
 410	tc->ref_tag_seed_gen = 0;
 411}
 412
 413/**
 414 * This method is will fill in the SCU Task Context for a SSP IO request.
 415 * @sci_req:
 416 *
 417 */
 418static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq,
 419						      enum dma_data_direction dir,
 420						      u32 len)
 421{
 422	struct scu_task_context *task_context = ireq->tc;
 423	struct sas_task *sas_task = ireq->ttype_ptr.io_task_ptr;
 424	struct scsi_cmnd *scmd = sas_task->uldd_task;
 425	u8 prot_type = scsi_get_prot_type(scmd);
 426	u8 prot_op = scsi_get_prot_op(scmd);
 427
 428	scu_ssp_request_construct_task_context(ireq, task_context);
 429
 430	task_context->ssp_command_iu_length =
 431		sizeof(struct ssp_cmd_iu) / sizeof(u32);
 432	task_context->type.ssp.frame_type = SSP_COMMAND;
 433
 434	switch (dir) {
 435	case DMA_FROM_DEVICE:
 436	case DMA_NONE:
 437	default:
 438		task_context->task_type = SCU_TASK_TYPE_IOREAD;
 439		break;
 440	case DMA_TO_DEVICE:
 441		task_context->task_type = SCU_TASK_TYPE_IOWRITE;
 442		break;
 443	}
 444
 445	task_context->transfer_length_bytes = len;
 446
 447	if (task_context->transfer_length_bytes > 0)
 448		sci_request_build_sgl(ireq);
 449
 450	if (prot_type != SCSI_PROT_DIF_TYPE0) {
 451		if (prot_op == SCSI_PROT_READ_STRIP)
 452			scu_ssp_ireq_dif_strip(ireq, prot_type, prot_op);
 453		else if (prot_op == SCSI_PROT_WRITE_INSERT)
 454			scu_ssp_ireq_dif_insert(ireq, prot_type, prot_op);
 455	}
 456}
 457
 458/**
 459 * This method will fill in the SCU Task Context for a SSP Task request.  The
 460 *    following important settings are utilized: -# priority ==
 461 *    SCU_TASK_PRIORITY_HIGH.  This ensures that the task request is issued
 462 *    ahead of other task destined for the same Remote Node. -# task_type ==
 463 *    SCU_TASK_TYPE_IOREAD.  This simply indicates that a normal request type
 464 *    (i.e. non-raw frame) is being utilized to perform task management. -#
 465 *    control_frame == 1.  This ensures that the proper endianess is set so
 466 *    that the bytes are transmitted in the right order for a task frame.
 467 * @sci_req: This parameter specifies the task request object being
 468 *    constructed.
 469 *
 470 */
 471static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq)
 472{
 473	struct scu_task_context *task_context = ireq->tc;
 474
 475	scu_ssp_request_construct_task_context(ireq, task_context);
 476
 477	task_context->control_frame                = 1;
 478	task_context->priority                     = SCU_TASK_PRIORITY_HIGH;
 479	task_context->task_type                    = SCU_TASK_TYPE_RAW_FRAME;
 480	task_context->transfer_length_bytes        = 0;
 481	task_context->type.ssp.frame_type          = SSP_TASK;
 482	task_context->ssp_command_iu_length =
 483		sizeof(struct ssp_task_iu) / sizeof(u32);
 484}
 485
 486/**
 
 487 * This method is will fill in the SCU Task Context for any type of SATA
 488 *    request.  This is called from the various SATA constructors.
 489 * @sci_req: The general IO request object which is to be used in
 490 *    constructing the SCU task context.
 491 * @task_context: The buffer pointer for the SCU task context which is being
 492 *    constructed.
 493 *
 494 * The general io request construction is complete. The buffer assignment for
 495 * the command buffer is complete. none Revisit task context construction to
 496 * determine what is common for SSP/SMP/STP task context structures.
 497 */
 498static void scu_sata_request_construct_task_context(
 499	struct isci_request *ireq,
 500	struct scu_task_context *task_context)
 501{
 502	dma_addr_t dma_addr;
 503	struct isci_remote_device *idev;
 504	struct isci_port *iport;
 505
 506	idev = ireq->target_device;
 507	iport = idev->owning_port;
 508
 509	/* Fill in the TC with the its required data */
 510	task_context->abort = 0;
 511	task_context->priority = SCU_TASK_PRIORITY_NORMAL;
 512	task_context->initiator_request = 1;
 513	task_context->connection_rate = idev->connection_rate;
 514	task_context->protocol_engine_index = ISCI_PEG;
 515	task_context->logical_port_index = iport->physical_port_index;
 516	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
 517	task_context->valid = SCU_TASK_CONTEXT_VALID;
 518	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
 519
 520	task_context->remote_node_index = idev->rnc.remote_node_index;
 521	task_context->command_code = 0;
 522
 523	task_context->link_layer_control = 0;
 524	task_context->do_not_dma_ssp_good_response = 1;
 525	task_context->strict_ordering = 0;
 526	task_context->control_frame = 0;
 527	task_context->timeout_enable = 0;
 528	task_context->block_guard_enable = 0;
 529
 530	task_context->address_modifier = 0;
 531	task_context->task_phase = 0x01;
 532
 533	task_context->ssp_command_iu_length =
 534		(sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
 535
 536	/* Set the first word of the H2D REG FIS */
 537	task_context->type.words[0] = *(u32 *)&ireq->stp.cmd;
 538
 539	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
 540			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
 541			      (iport->physical_port_index <<
 542			       SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
 543			      ISCI_TAG_TCI(ireq->io_tag));
 544	/*
 545	 * Copy the physical address for the command buffer to the SCU Task
 546	 * Context. We must offset the command buffer by 4 bytes because the
 547	 * first 4 bytes are transfered in the body of the TC.
 548	 */
 549	dma_addr = sci_io_request_get_dma_addr(ireq,
 550						((char *) &ireq->stp.cmd) +
 551						sizeof(u32));
 552
 553	task_context->command_iu_upper = upper_32_bits(dma_addr);
 554	task_context->command_iu_lower = lower_32_bits(dma_addr);
 555
 556	/* SATA Requests do not have a response buffer */
 557	task_context->response_iu_upper = 0;
 558	task_context->response_iu_lower = 0;
 559}
 560
 561static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq)
 562{
 563	struct scu_task_context *task_context = ireq->tc;
 564
 565	scu_sata_request_construct_task_context(ireq, task_context);
 566
 567	task_context->control_frame         = 0;
 568	task_context->priority              = SCU_TASK_PRIORITY_NORMAL;
 569	task_context->task_type             = SCU_TASK_TYPE_SATA_RAW_FRAME;
 570	task_context->type.stp.fis_type     = FIS_REGH2D;
 571	task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
 572}
 573
 574static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq,
 575							  bool copy_rx_frame)
 576{
 577	struct isci_stp_request *stp_req = &ireq->stp.req;
 578
 579	scu_stp_raw_request_construct_task_context(ireq);
 580
 581	stp_req->status = 0;
 582	stp_req->sgl.offset = 0;
 583	stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A;
 584
 585	if (copy_rx_frame) {
 586		sci_request_build_sgl(ireq);
 587		stp_req->sgl.index = 0;
 588	} else {
 589		/* The user does not want the data copied to the SGL buffer location */
 590		stp_req->sgl.index = -1;
 591	}
 592
 593	return SCI_SUCCESS;
 594}
 595
 596/**
 597 *
 598 * @sci_req: This parameter specifies the request to be constructed as an
 599 *    optimized request.
 600 * @optimized_task_type: This parameter specifies whether the request is to be
 601 *    an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
 602 *    value of 1 indicates NCQ.
 603 *
 604 * This method will perform request construction common to all types of STP
 605 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
 606 * returns an indication as to whether the construction was successful.
 607 */
 608static void sci_stp_optimized_request_construct(struct isci_request *ireq,
 609						     u8 optimized_task_type,
 610						     u32 len,
 611						     enum dma_data_direction dir)
 612{
 613	struct scu_task_context *task_context = ireq->tc;
 614
 615	/* Build the STP task context structure */
 616	scu_sata_request_construct_task_context(ireq, task_context);
 617
 618	/* Copy over the SGL elements */
 619	sci_request_build_sgl(ireq);
 620
 621	/* Copy over the number of bytes to be transfered */
 622	task_context->transfer_length_bytes = len;
 623
 624	if (dir == DMA_TO_DEVICE) {
 625		/*
 626		 * The difference between the DMA IN and DMA OUT request task type
 627		 * values are consistent with the difference between FPDMA READ
 628		 * and FPDMA WRITE values.  Add the supplied task type parameter
 629		 * to this difference to set the task type properly for this
 630		 * DATA OUT (WRITE) case. */
 631		task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
 632								 - SCU_TASK_TYPE_DMA_IN);
 633	} else {
 634		/*
 635		 * For the DATA IN (READ) case, simply save the supplied
 636		 * optimized task type. */
 637		task_context->task_type = optimized_task_type;
 638	}
 639}
 640
 641static void sci_atapi_construct(struct isci_request *ireq)
 642{
 643	struct host_to_dev_fis *h2d_fis = &ireq->stp.cmd;
 644	struct sas_task *task;
 645
 646	/* To simplify the implementation we take advantage of the
 647	 * silicon's partial acceleration of atapi protocol (dma data
 648	 * transfers), so we promote all commands to dma protocol.  This
 649	 * breaks compatibility with ATA_HORKAGE_ATAPI_MOD16_DMA drives.
 650	 */
 651	h2d_fis->features |= ATAPI_PKT_DMA;
 652
 653	scu_stp_raw_request_construct_task_context(ireq);
 654
 655	task = isci_request_access_task(ireq);
 656	if (task->data_dir == DMA_NONE)
 657		task->total_xfer_len = 0;
 658
 659	/* clear the response so we can detect arrivial of an
 660	 * unsolicited h2d fis
 661	 */
 662	ireq->stp.rsp.fis_type = 0;
 663}
 664
 665static enum sci_status
 666sci_io_request_construct_sata(struct isci_request *ireq,
 667			       u32 len,
 668			       enum dma_data_direction dir,
 669			       bool copy)
 670{
 671	enum sci_status status = SCI_SUCCESS;
 672	struct sas_task *task = isci_request_access_task(ireq);
 673	struct domain_device *dev = ireq->target_device->domain_dev;
 674
 675	/* check for management protocols */
 676	if (test_bit(IREQ_TMF, &ireq->flags)) {
 677		struct isci_tmf *tmf = isci_request_access_tmf(ireq);
 678
 679		dev_err(&ireq->owning_controller->pdev->dev,
 680			"%s: Request 0x%p received un-handled SAT "
 681			"management protocol 0x%x.\n",
 682			__func__, ireq, tmf->tmf_code);
 683
 684		return SCI_FAILURE;
 685	}
 686
 687	if (!sas_protocol_ata(task->task_proto)) {
 688		dev_err(&ireq->owning_controller->pdev->dev,
 689			"%s: Non-ATA protocol in SATA path: 0x%x\n",
 690			__func__,
 691			task->task_proto);
 692		return SCI_FAILURE;
 693
 694	}
 695
 696	/* ATAPI */
 697	if (dev->sata_dev.class == ATA_DEV_ATAPI &&
 698	    task->ata_task.fis.command == ATA_CMD_PACKET) {
 699		sci_atapi_construct(ireq);
 700		return SCI_SUCCESS;
 701	}
 702
 703	/* non data */
 704	if (task->data_dir == DMA_NONE) {
 705		scu_stp_raw_request_construct_task_context(ireq);
 706		return SCI_SUCCESS;
 707	}
 708
 709	/* NCQ */
 710	if (task->ata_task.use_ncq) {
 711		sci_stp_optimized_request_construct(ireq,
 712							 SCU_TASK_TYPE_FPDMAQ_READ,
 713							 len, dir);
 714		return SCI_SUCCESS;
 715	}
 716
 717	/* DMA */
 718	if (task->ata_task.dma_xfer) {
 719		sci_stp_optimized_request_construct(ireq,
 720							 SCU_TASK_TYPE_DMA_IN,
 721							 len, dir);
 722		return SCI_SUCCESS;
 723	} else /* PIO */
 724		return sci_stp_pio_request_construct(ireq, copy);
 725
 726	return status;
 727}
 728
 729static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq)
 730{
 731	struct sas_task *task = isci_request_access_task(ireq);
 732
 733	ireq->protocol = SAS_PROTOCOL_SSP;
 734
 735	scu_ssp_io_request_construct_task_context(ireq,
 736						  task->data_dir,
 737						  task->total_xfer_len);
 738
 739	sci_io_request_build_ssp_command_iu(ireq);
 740
 741	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
 742
 743	return SCI_SUCCESS;
 744}
 745
 746enum sci_status sci_task_request_construct_ssp(
 747	struct isci_request *ireq)
 748{
 749	/* Construct the SSP Task SCU Task Context */
 750	scu_ssp_task_request_construct_task_context(ireq);
 751
 752	/* Fill in the SSP Task IU */
 753	sci_task_request_build_ssp_task_iu(ireq);
 754
 755	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
 756
 757	return SCI_SUCCESS;
 758}
 759
 760static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq)
 761{
 762	enum sci_status status;
 763	bool copy = false;
 764	struct sas_task *task = isci_request_access_task(ireq);
 765
 766	ireq->protocol = SAS_PROTOCOL_STP;
 767
 768	copy = (task->data_dir == DMA_NONE) ? false : true;
 769
 770	status = sci_io_request_construct_sata(ireq,
 771						task->total_xfer_len,
 772						task->data_dir,
 773						copy);
 774
 775	if (status == SCI_SUCCESS)
 776		sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
 777
 778	return status;
 779}
 780
 
 781/**
 782 * sci_req_tx_bytes - bytes transferred when reply underruns request
 783 * @ireq: request that was terminated early
 784 */
 785#define SCU_TASK_CONTEXT_SRAM 0x200000
 786static u32 sci_req_tx_bytes(struct isci_request *ireq)
 787{
 788	struct isci_host *ihost = ireq->owning_controller;
 789	u32 ret_val = 0;
 790
 791	if (readl(&ihost->smu_registers->address_modifier) == 0) {
 792		void __iomem *scu_reg_base = ihost->scu_registers;
 793
 794		/* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
 795		 *   BAR1 is the scu_registers
 796		 *   0x20002C = 0x200000 + 0x2c
 797		 *            = start of task context SRAM + offset of (type.ssp.data_offset)
 798		 *   TCi is the io_tag of struct sci_request
 799		 */
 800		ret_val = readl(scu_reg_base +
 801				(SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
 802				((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag)));
 803	}
 804
 805	return ret_val;
 806}
 807
 808enum sci_status sci_request_start(struct isci_request *ireq)
 809{
 810	enum sci_base_request_states state;
 811	struct scu_task_context *tc = ireq->tc;
 812	struct isci_host *ihost = ireq->owning_controller;
 813
 814	state = ireq->sm.current_state_id;
 815	if (state != SCI_REQ_CONSTRUCTED) {
 816		dev_warn(&ihost->pdev->dev,
 817			"%s: SCIC IO Request requested to start while in wrong "
 818			 "state %d\n", __func__, state);
 819		return SCI_FAILURE_INVALID_STATE;
 820	}
 821
 822	tc->task_index = ISCI_TAG_TCI(ireq->io_tag);
 823
 824	switch (tc->protocol_type) {
 825	case SCU_TASK_CONTEXT_PROTOCOL_SMP:
 826	case SCU_TASK_CONTEXT_PROTOCOL_SSP:
 827		/* SSP/SMP Frame */
 828		tc->type.ssp.tag = ireq->io_tag;
 829		tc->type.ssp.target_port_transfer_tag = 0xFFFF;
 830		break;
 831
 832	case SCU_TASK_CONTEXT_PROTOCOL_STP:
 833		/* STP/SATA Frame
 834		 * tc->type.stp.ncq_tag = ireq->ncq_tag;
 835		 */
 836		break;
 837
 838	case SCU_TASK_CONTEXT_PROTOCOL_NONE:
 839		/* / @todo When do we set no protocol type? */
 840		break;
 841
 842	default:
 843		/* This should never happen since we build the IO
 844		 * requests */
 845		break;
 846	}
 847
 848	/* Add to the post_context the io tag value */
 849	ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag);
 850
 851	/* Everything is good go ahead and change state */
 852	sci_change_state(&ireq->sm, SCI_REQ_STARTED);
 853
 854	return SCI_SUCCESS;
 855}
 856
 857enum sci_status
 858sci_io_request_terminate(struct isci_request *ireq)
 859{
 860	enum sci_base_request_states state;
 861
 862	state = ireq->sm.current_state_id;
 863
 864	switch (state) {
 865	case SCI_REQ_CONSTRUCTED:
 866		/* Set to make sure no HW terminate posting is done: */
 867		set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags);
 868		ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
 869		ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
 870		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
 871		return SCI_SUCCESS;
 872	case SCI_REQ_STARTED:
 873	case SCI_REQ_TASK_WAIT_TC_COMP:
 874	case SCI_REQ_SMP_WAIT_RESP:
 875	case SCI_REQ_SMP_WAIT_TC_COMP:
 876	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
 877	case SCI_REQ_STP_UDMA_WAIT_D2H:
 878	case SCI_REQ_STP_NON_DATA_WAIT_H2D:
 879	case SCI_REQ_STP_NON_DATA_WAIT_D2H:
 880	case SCI_REQ_STP_PIO_WAIT_H2D:
 881	case SCI_REQ_STP_PIO_WAIT_FRAME:
 882	case SCI_REQ_STP_PIO_DATA_IN:
 883	case SCI_REQ_STP_PIO_DATA_OUT:
 884	case SCI_REQ_ATAPI_WAIT_H2D:
 885	case SCI_REQ_ATAPI_WAIT_PIO_SETUP:
 886	case SCI_REQ_ATAPI_WAIT_D2H:
 887	case SCI_REQ_ATAPI_WAIT_TC_COMP:
 888		/* Fall through and change state to ABORTING... */
 889	case SCI_REQ_TASK_WAIT_TC_RESP:
 890		/* The task frame was already confirmed to have been
 891		 * sent by the SCU HW.  Since the state machine is
 892		 * now only waiting for the task response itself,
 893		 * abort the request and complete it immediately
 894		 * and don't wait for the task response.
 895		 */
 896		sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
 897		/* Fall through and handle like ABORTING... */
 898	case SCI_REQ_ABORTING:
 899		if (!isci_remote_device_is_safe_to_abort(ireq->target_device))
 900			set_bit(IREQ_PENDING_ABORT, &ireq->flags);
 901		else
 902			clear_bit(IREQ_PENDING_ABORT, &ireq->flags);
 903		/* If the request is only waiting on the remote device
 904		 * suspension, return SUCCESS so the caller will wait too.
 905		 */
 906		return SCI_SUCCESS;
 907	case SCI_REQ_COMPLETED:
 908	default:
 909		dev_warn(&ireq->owning_controller->pdev->dev,
 910			 "%s: SCIC IO Request requested to abort while in wrong "
 911			 "state %d\n", __func__, ireq->sm.current_state_id);
 912		break;
 913	}
 914
 915	return SCI_FAILURE_INVALID_STATE;
 916}
 917
 918enum sci_status sci_request_complete(struct isci_request *ireq)
 919{
 920	enum sci_base_request_states state;
 921	struct isci_host *ihost = ireq->owning_controller;
 922
 923	state = ireq->sm.current_state_id;
 924	if (WARN_ONCE(state != SCI_REQ_COMPLETED,
 925		      "isci: request completion from wrong state (%s)\n",
 926		      req_state_name(state)))
 927		return SCI_FAILURE_INVALID_STATE;
 928
 929	if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
 930		sci_controller_release_frame(ihost,
 931						  ireq->saved_rx_frame_index);
 932
 933	/* XXX can we just stop the machine and remove the 'final' state? */
 934	sci_change_state(&ireq->sm, SCI_REQ_FINAL);
 935	return SCI_SUCCESS;
 936}
 937
 938enum sci_status sci_io_request_event_handler(struct isci_request *ireq,
 939						  u32 event_code)
 940{
 941	enum sci_base_request_states state;
 942	struct isci_host *ihost = ireq->owning_controller;
 943
 944	state = ireq->sm.current_state_id;
 945
 946	if (state != SCI_REQ_STP_PIO_DATA_IN) {
 947		dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %s\n",
 948			 __func__, event_code, req_state_name(state));
 949
 950		return SCI_FAILURE_INVALID_STATE;
 951	}
 952
 953	switch (scu_get_event_specifier(event_code)) {
 954	case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
 955		/* We are waiting for data and the SCU has R_ERR the data frame.
 956		 * Go back to waiting for the D2H Register FIS
 957		 */
 958		sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
 959		return SCI_SUCCESS;
 960	default:
 961		dev_err(&ihost->pdev->dev,
 962			"%s: pio request unexpected event %#x\n",
 963			__func__, event_code);
 964
 965		/* TODO Should we fail the PIO request when we get an
 966		 * unexpected event?
 967		 */
 968		return SCI_FAILURE;
 969	}
 970}
 971
 972/*
 973 * This function copies response data for requests returning response data
 974 *    instead of sense data.
 975 * @sci_req: This parameter specifies the request object for which to copy
 976 *    the response data.
 977 */
 978static void sci_io_request_copy_response(struct isci_request *ireq)
 979{
 980	void *resp_buf;
 981	u32 len;
 982	struct ssp_response_iu *ssp_response;
 983	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
 984
 985	ssp_response = &ireq->ssp.rsp;
 986
 987	resp_buf = &isci_tmf->resp.resp_iu;
 988
 989	len = min_t(u32,
 990		    SSP_RESP_IU_MAX_SIZE,
 991		    be32_to_cpu(ssp_response->response_data_len));
 992
 993	memcpy(resp_buf, ssp_response->resp_data, len);
 994}
 995
 996static enum sci_status
 997request_started_state_tc_event(struct isci_request *ireq,
 998			       u32 completion_code)
 999{
1000	struct ssp_response_iu *resp_iu;
1001	u8 datapres;
1002
1003	/* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
1004	 * to determine SDMA status
1005	 */
1006	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1007	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1008		ireq->scu_status = SCU_TASK_DONE_GOOD;
1009		ireq->sci_status = SCI_SUCCESS;
1010		break;
1011	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
1012		/* There are times when the SCU hardware will return an early
1013		 * response because the io request specified more data than is
1014		 * returned by the target device (mode pages, inquiry data,
1015		 * etc.).  We must check the response stats to see if this is
1016		 * truly a failed request or a good request that just got
1017		 * completed early.
1018		 */
1019		struct ssp_response_iu *resp = &ireq->ssp.rsp;
1020		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1021
1022		sci_swab32_cpy(&ireq->ssp.rsp,
1023			       &ireq->ssp.rsp,
1024			       word_cnt);
1025
1026		if (resp->status == 0) {
1027			ireq->scu_status = SCU_TASK_DONE_GOOD;
1028			ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
1029		} else {
1030			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1031			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1032		}
1033		break;
1034	}
1035	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
1036		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1037
1038		sci_swab32_cpy(&ireq->ssp.rsp,
1039			       &ireq->ssp.rsp,
1040			       word_cnt);
1041
1042		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1043		ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1044		break;
1045	}
1046
1047	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
1048		/* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
1049		 * guaranteed to be received before this completion status is
1050		 * posted?
1051		 */
1052		resp_iu = &ireq->ssp.rsp;
1053		datapres = resp_iu->datapres;
1054
1055		if (datapres == 1 || datapres == 2) {
1056			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1057			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1058		} else {
1059			ireq->scu_status = SCU_TASK_DONE_GOOD;
1060			ireq->sci_status = SCI_SUCCESS;
1061		}
1062		break;
1063	/* only stp device gets suspended. */
1064	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1065	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
1066	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
1067	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
1068	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
1069	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
1070	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
1071	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
1072	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
1073	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
1074	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
1075		if (ireq->protocol == SAS_PROTOCOL_STP) {
1076			ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1077					   SCU_COMPLETION_TL_STATUS_SHIFT;
1078			ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1079		} else {
1080			ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1081					   SCU_COMPLETION_TL_STATUS_SHIFT;
1082			ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1083		}
1084		break;
1085
1086	/* both stp/ssp device gets suspended */
1087	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
1088	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
1089	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
1090	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
1091	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
1092	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
1093	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
1094	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
1095	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
1096	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
1097		ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1098				   SCU_COMPLETION_TL_STATUS_SHIFT;
1099		ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1100		break;
1101
1102	/* neither ssp nor stp gets suspended. */
1103	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
1104	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
1105	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
1106	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
1107	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
1108	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
1109	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1110	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1111	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1112	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1113	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
1114	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
1115	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
1116	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
1117	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
1118	default:
1119		ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1120				   SCU_COMPLETION_TL_STATUS_SHIFT;
1121		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1122		break;
1123	}
1124
1125	/*
1126	 * TODO: This is probably wrong for ACK/NAK timeout conditions
1127	 */
1128
1129	/* In all cases we will treat this as the completion of the IO req. */
1130	sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1131	return SCI_SUCCESS;
1132}
1133
1134static enum sci_status
1135request_aborting_state_tc_event(struct isci_request *ireq,
1136				u32 completion_code)
1137{
1138	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1139	case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
1140	case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
1141		ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
1142		ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
1143		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1144		break;
1145
1146	default:
1147		/* Unless we get some strange error wait for the task abort to complete
1148		 * TODO: Should there be a state change for this completion?
1149		 */
1150		break;
1151	}
1152
1153	return SCI_SUCCESS;
1154}
1155
1156static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq,
1157						       u32 completion_code)
1158{
1159	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1160	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1161		ireq->scu_status = SCU_TASK_DONE_GOOD;
1162		ireq->sci_status = SCI_SUCCESS;
1163		sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1164		break;
1165	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1166		/* Currently, the decision is to simply allow the task request
1167		 * to timeout if the task IU wasn't received successfully.
1168		 * There is a potential for receiving multiple task responses if
1169		 * we decide to send the task IU again.
1170		 */
1171		dev_warn(&ireq->owning_controller->pdev->dev,
1172			 "%s: TaskRequest:0x%p CompletionCode:%x - "
1173			 "ACK/NAK timeout\n", __func__, ireq,
1174			 completion_code);
1175
1176		sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1177		break;
1178	default:
1179		/*
1180		 * All other completion status cause the IO to be complete.
1181		 * If a NAK was received, then it is up to the user to retry
1182		 * the request.
1183		 */
1184		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1185		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1186		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1187		break;
1188	}
1189
1190	return SCI_SUCCESS;
1191}
1192
1193static enum sci_status
1194smp_request_await_response_tc_event(struct isci_request *ireq,
1195				    u32 completion_code)
1196{
1197	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1198	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1199		/* In the AWAIT RESPONSE state, any TC completion is
1200		 * unexpected.  but if the TC has success status, we
1201		 * complete the IO anyway.
1202		 */
1203		ireq->scu_status = SCU_TASK_DONE_GOOD;
1204		ireq->sci_status = SCI_SUCCESS;
1205		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1206		break;
1207	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1208	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1209	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1210	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1211		/* These status has been seen in a specific LSI
1212		 * expander, which sometimes is not able to send smp
1213		 * response within 2 ms. This causes our hardware break
1214		 * the connection and set TC completion with one of
1215		 * these SMP_XXX_XX_ERR status. For these type of error,
1216		 * we ask ihost user to retry the request.
1217		 */
1218		ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR;
1219		ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED;
1220		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1221		break;
1222	default:
1223		/* All other completion status cause the IO to be complete.  If a NAK
1224		 * was received, then it is up to the user to retry the request
1225		 */
1226		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1227		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1228		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1229		break;
1230	}
1231
1232	return SCI_SUCCESS;
1233}
1234
1235static enum sci_status
1236smp_request_await_tc_event(struct isci_request *ireq,
1237			   u32 completion_code)
1238{
1239	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1240	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1241		ireq->scu_status = SCU_TASK_DONE_GOOD;
1242		ireq->sci_status = SCI_SUCCESS;
1243		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1244		break;
1245	default:
1246		/* All other completion status cause the IO to be
1247		 * complete.  If a NAK was received, then it is up to
1248		 * the user to retry the request.
1249		 */
1250		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1251		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1252		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1253		break;
1254	}
1255
1256	return SCI_SUCCESS;
1257}
1258
1259static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req)
1260{
1261	struct scu_sgl_element *sgl;
1262	struct scu_sgl_element_pair *sgl_pair;
1263	struct isci_request *ireq = to_ireq(stp_req);
1264	struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl;
1265
1266	sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1267	if (!sgl_pair)
1268		sgl = NULL;
1269	else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) {
1270		if (sgl_pair->B.address_lower == 0 &&
1271		    sgl_pair->B.address_upper == 0) {
1272			sgl = NULL;
1273		} else {
1274			pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B;
1275			sgl = &sgl_pair->B;
1276		}
1277	} else {
1278		if (sgl_pair->next_pair_lower == 0 &&
1279		    sgl_pair->next_pair_upper == 0) {
1280			sgl = NULL;
1281		} else {
1282			pio_sgl->index++;
1283			pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A;
1284			sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1285			sgl = &sgl_pair->A;
1286		}
1287	}
1288
1289	return sgl;
1290}
1291
1292static enum sci_status
1293stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq,
1294					u32 completion_code)
1295{
1296	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1297	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1298		ireq->scu_status = SCU_TASK_DONE_GOOD;
1299		ireq->sci_status = SCI_SUCCESS;
1300		sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
1301		break;
1302
1303	default:
1304		/* All other completion status cause the IO to be
1305		 * complete.  If a NAK was received, then it is up to
1306		 * the user to retry the request.
1307		 */
1308		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1309		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1310		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1311		break;
1312	}
1313
1314	return SCI_SUCCESS;
1315}
1316
1317#define SCU_MAX_FRAME_BUFFER_SIZE  0x400  /* 1K is the maximum SCU frame data payload */
1318
1319/* transmit DATA_FIS from (current sgl + offset) for input
1320 * parameter length. current sgl and offset is alreay stored in the IO request
1321 */
1322static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame(
1323	struct isci_request *ireq,
1324	u32 length)
1325{
1326	struct isci_stp_request *stp_req = &ireq->stp.req;
1327	struct scu_task_context *task_context = ireq->tc;
1328	struct scu_sgl_element_pair *sgl_pair;
1329	struct scu_sgl_element *current_sgl;
1330
1331	/* Recycle the TC and reconstruct it for sending out DATA FIS containing
1332	 * for the data from current_sgl+offset for the input length
1333	 */
1334	sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1335	if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A)
1336		current_sgl = &sgl_pair->A;
1337	else
1338		current_sgl = &sgl_pair->B;
1339
1340	/* update the TC */
1341	task_context->command_iu_upper = current_sgl->address_upper;
1342	task_context->command_iu_lower = current_sgl->address_lower;
1343	task_context->transfer_length_bytes = length;
1344	task_context->type.stp.fis_type = FIS_DATA;
1345
1346	/* send the new TC out. */
1347	return sci_controller_continue_io(ireq);
1348}
1349
1350static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq)
1351{
1352	struct isci_stp_request *stp_req = &ireq->stp.req;
1353	struct scu_sgl_element_pair *sgl_pair;
1354	enum sci_status status = SCI_SUCCESS;
1355	struct scu_sgl_element *sgl;
1356	u32 offset;
1357	u32 len = 0;
1358
1359	offset = stp_req->sgl.offset;
1360	sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1361	if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__))
1362		return SCI_FAILURE;
1363
1364	if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) {
1365		sgl = &sgl_pair->A;
1366		len = sgl_pair->A.length - offset;
1367	} else {
1368		sgl = &sgl_pair->B;
1369		len = sgl_pair->B.length - offset;
1370	}
1371
1372	if (stp_req->pio_len == 0)
1373		return SCI_SUCCESS;
1374
1375	if (stp_req->pio_len >= len) {
1376		status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len);
1377		if (status != SCI_SUCCESS)
1378			return status;
1379		stp_req->pio_len -= len;
1380
1381		/* update the current sgl, offset and save for future */
1382		sgl = pio_sgl_next(stp_req);
1383		offset = 0;
1384	} else if (stp_req->pio_len < len) {
1385		sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len);
1386
1387		/* Sgl offset will be adjusted and saved for future */
1388		offset += stp_req->pio_len;
1389		sgl->address_lower += stp_req->pio_len;
1390		stp_req->pio_len = 0;
1391	}
1392
1393	stp_req->sgl.offset = offset;
1394
1395	return status;
1396}
1397
1398/**
1399 *
1400 * @stp_request: The request that is used for the SGL processing.
1401 * @data_buffer: The buffer of data to be copied.
1402 * @length: The length of the data transfer.
1403 *
1404 * Copy the data from the buffer for the length specified to the IO request SGL
1405 * specified data region. enum sci_status
1406 */
1407static enum sci_status
1408sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req,
1409					     u8 *data_buf, u32 len)
1410{
1411	struct isci_request *ireq;
1412	u8 *src_addr;
1413	int copy_len;
1414	struct sas_task *task;
1415	struct scatterlist *sg;
1416	void *kaddr;
1417	int total_len = len;
1418
1419	ireq = to_ireq(stp_req);
1420	task = isci_request_access_task(ireq);
1421	src_addr = data_buf;
1422
1423	if (task->num_scatter > 0) {
1424		sg = task->scatter;
1425
1426		while (total_len > 0) {
1427			struct page *page = sg_page(sg);
1428
1429			copy_len = min_t(int, total_len, sg_dma_len(sg));
1430			kaddr = kmap_atomic(page);
1431			memcpy(kaddr + sg->offset, src_addr, copy_len);
1432			kunmap_atomic(kaddr);
1433			total_len -= copy_len;
1434			src_addr += copy_len;
1435			sg = sg_next(sg);
1436		}
1437	} else {
1438		BUG_ON(task->total_xfer_len < total_len);
1439		memcpy(task->scatter, src_addr, total_len);
1440	}
1441
1442	return SCI_SUCCESS;
1443}
1444
1445/**
1446 *
1447 * @sci_req: The PIO DATA IN request that is to receive the data.
1448 * @data_buffer: The buffer to copy from.
1449 *
1450 * Copy the data buffer to the io request data region. enum sci_status
1451 */
1452static enum sci_status sci_stp_request_pio_data_in_copy_data(
1453	struct isci_stp_request *stp_req,
1454	u8 *data_buffer)
1455{
1456	enum sci_status status;
1457
1458	/*
1459	 * If there is less than 1K remaining in the transfer request
1460	 * copy just the data for the transfer */
1461	if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) {
1462		status = sci_stp_request_pio_data_in_copy_data_buffer(
1463			stp_req, data_buffer, stp_req->pio_len);
1464
1465		if (status == SCI_SUCCESS)
1466			stp_req->pio_len = 0;
1467	} else {
1468		/* We are transfering the whole frame so copy */
1469		status = sci_stp_request_pio_data_in_copy_data_buffer(
1470			stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
1471
1472		if (status == SCI_SUCCESS)
1473			stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE;
1474	}
1475
1476	return status;
1477}
1478
1479static enum sci_status
1480stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq,
1481					      u32 completion_code)
1482{
1483	enum sci_status status = SCI_SUCCESS;
1484
1485	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1486	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1487		ireq->scu_status = SCU_TASK_DONE_GOOD;
1488		ireq->sci_status = SCI_SUCCESS;
1489		sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1490		break;
1491
1492	default:
1493		/* All other completion status cause the IO to be
1494		 * complete.  If a NAK was received, then it is up to
1495		 * the user to retry the request.
1496		 */
1497		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1498		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1499		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1500		break;
1501	}
1502
1503	return status;
1504}
1505
1506static enum sci_status
1507pio_data_out_tx_done_tc_event(struct isci_request *ireq,
1508			      u32 completion_code)
1509{
1510	enum sci_status status = SCI_SUCCESS;
1511	bool all_frames_transferred = false;
1512	struct isci_stp_request *stp_req = &ireq->stp.req;
1513
1514	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1515	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1516		/* Transmit data */
1517		if (stp_req->pio_len != 0) {
1518			status = sci_stp_request_pio_data_out_transmit_data(ireq);
1519			if (status == SCI_SUCCESS) {
1520				if (stp_req->pio_len == 0)
1521					all_frames_transferred = true;
1522			}
1523		} else if (stp_req->pio_len == 0) {
1524			/*
1525			 * this will happen if the all data is written at the
1526			 * first time after the pio setup fis is received
1527			 */
1528			all_frames_transferred  = true;
1529		}
1530
1531		/* all data transferred. */
1532		if (all_frames_transferred) {
1533			/*
1534			 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1535			 * and wait for PIO_SETUP fis / or D2H REg fis. */
1536			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1537		}
1538		break;
1539
1540	default:
1541		/*
1542		 * All other completion status cause the IO to be complete.
1543		 * If a NAK was received, then it is up to the user to retry
1544		 * the request.
1545		 */
1546		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1547		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1548		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1549		break;
1550	}
1551
1552	return status;
1553}
1554
1555static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq,
1556								       u32 frame_index)
1557{
1558	struct isci_host *ihost = ireq->owning_controller;
1559	struct dev_to_host_fis *frame_header;
1560	enum sci_status status;
1561	u32 *frame_buffer;
1562
1563	status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1564							       frame_index,
1565							       (void **)&frame_header);
1566
1567	if ((status == SCI_SUCCESS) &&
1568	    (frame_header->fis_type == FIS_REGD2H)) {
1569		sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1570							      frame_index,
1571							      (void **)&frame_buffer);
1572
1573		sci_controller_copy_sata_response(&ireq->stp.rsp,
1574						       frame_header,
1575						       frame_buffer);
1576	}
1577
1578	sci_controller_release_frame(ihost, frame_index);
1579
1580	return status;
1581}
1582
1583static enum sci_status process_unsolicited_fis(struct isci_request *ireq,
1584					       u32 frame_index)
1585{
1586	struct isci_host *ihost = ireq->owning_controller;
1587	enum sci_status status;
1588	struct dev_to_host_fis *frame_header;
1589	u32 *frame_buffer;
1590
1591	status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1592							  frame_index,
1593							  (void **)&frame_header);
1594
1595	if (status != SCI_SUCCESS)
1596		return status;
1597
1598	if (frame_header->fis_type != FIS_REGD2H) {
1599		dev_err(&ireq->isci_host->pdev->dev,
1600			"%s ERROR: invalid fis type 0x%X\n",
1601			__func__, frame_header->fis_type);
1602		return SCI_FAILURE;
1603	}
1604
1605	sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1606						 frame_index,
1607						 (void **)&frame_buffer);
1608
1609	sci_controller_copy_sata_response(&ireq->stp.rsp,
1610					  (u32 *)frame_header,
1611					  frame_buffer);
1612
1613	/* Frame has been decoded return it to the controller */
1614	sci_controller_release_frame(ihost, frame_index);
1615
1616	return status;
1617}
1618
1619static enum sci_status atapi_d2h_reg_frame_handler(struct isci_request *ireq,
1620						   u32 frame_index)
1621{
1622	struct sas_task *task = isci_request_access_task(ireq);
1623	enum sci_status status;
1624
1625	status = process_unsolicited_fis(ireq, frame_index);
1626
1627	if (status == SCI_SUCCESS) {
1628		if (ireq->stp.rsp.status & ATA_ERR)
1629			status = SCI_IO_FAILURE_RESPONSE_VALID;
1630	} else {
1631		status = SCI_IO_FAILURE_RESPONSE_VALID;
1632	}
1633
1634	if (status != SCI_SUCCESS) {
1635		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1636		ireq->sci_status = status;
1637	} else {
1638		ireq->scu_status = SCU_TASK_DONE_GOOD;
1639		ireq->sci_status = SCI_SUCCESS;
1640	}
1641
1642	/* the d2h ufi is the end of non-data commands */
1643	if (task->data_dir == DMA_NONE)
1644		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1645
1646	return status;
1647}
1648
1649static void scu_atapi_reconstruct_raw_frame_task_context(struct isci_request *ireq)
1650{
1651	struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1652	void *atapi_cdb = ireq->ttype_ptr.io_task_ptr->ata_task.atapi_packet;
1653	struct scu_task_context *task_context = ireq->tc;
1654
1655	/* fill in the SCU Task Context for a DATA fis containing CDB in Raw Frame
1656	 * type. The TC for previous Packet fis was already there, we only need to
1657	 * change the H2D fis content.
1658	 */
1659	memset(&ireq->stp.cmd, 0, sizeof(struct host_to_dev_fis));
1660	memcpy(((u8 *)&ireq->stp.cmd + sizeof(u32)), atapi_cdb, ATAPI_CDB_LEN);
1661	memset(&(task_context->type.stp), 0, sizeof(struct stp_task_context));
1662	task_context->type.stp.fis_type = FIS_DATA;
1663	task_context->transfer_length_bytes = dev->cdb_len;
1664}
1665
1666static void scu_atapi_construct_task_context(struct isci_request *ireq)
1667{
1668	struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1669	struct sas_task *task = isci_request_access_task(ireq);
1670	struct scu_task_context *task_context = ireq->tc;
1671	int cdb_len = dev->cdb_len;
1672
1673	/* reference: SSTL 1.13.4.2
1674	 * task_type, sata_direction
1675	 */
1676	if (task->data_dir == DMA_TO_DEVICE) {
1677		task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_OUT;
1678		task_context->sata_direction = 0;
1679	} else {
1680		/* todo: for NO_DATA command, we need to send out raw frame. */
1681		task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_IN;
1682		task_context->sata_direction = 1;
1683	}
1684
1685	memset(&task_context->type.stp, 0, sizeof(task_context->type.stp));
1686	task_context->type.stp.fis_type = FIS_DATA;
1687
1688	memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
1689	memcpy(&ireq->stp.cmd.lbal, task->ata_task.atapi_packet, cdb_len);
1690	task_context->ssp_command_iu_length = cdb_len / sizeof(u32);
1691
1692	/* task phase is set to TX_CMD */
1693	task_context->task_phase = 0x1;
1694
1695	/* retry counter */
1696	task_context->stp_retry_count = 0;
1697
1698	/* data transfer size. */
1699	task_context->transfer_length_bytes = task->total_xfer_len;
1700
1701	/* setup sgl */
1702	sci_request_build_sgl(ireq);
1703}
1704
1705enum sci_status
1706sci_io_request_frame_handler(struct isci_request *ireq,
1707				  u32 frame_index)
1708{
1709	struct isci_host *ihost = ireq->owning_controller;
1710	struct isci_stp_request *stp_req = &ireq->stp.req;
1711	enum sci_base_request_states state;
1712	enum sci_status status;
1713	ssize_t word_cnt;
1714
1715	state = ireq->sm.current_state_id;
1716	switch (state)  {
1717	case SCI_REQ_STARTED: {
1718		struct ssp_frame_hdr ssp_hdr;
1719		void *frame_header;
1720
1721		sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1722							      frame_index,
1723							      &frame_header);
1724
1725		word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1726		sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1727
1728		if (ssp_hdr.frame_type == SSP_RESPONSE) {
1729			struct ssp_response_iu *resp_iu;
1730			ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1731
1732			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1733								      frame_index,
1734								      (void **)&resp_iu);
1735
1736			sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt);
1737
1738			resp_iu = &ireq->ssp.rsp;
1739
1740			if (resp_iu->datapres == 0x01 ||
1741			    resp_iu->datapres == 0x02) {
1742				ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1743				ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1744			} else {
1745				ireq->scu_status = SCU_TASK_DONE_GOOD;
1746				ireq->sci_status = SCI_SUCCESS;
1747			}
1748		} else {
1749			/* not a response frame, why did it get forwarded? */
1750			dev_err(&ihost->pdev->dev,
1751				"%s: SCIC IO Request 0x%p received unexpected "
1752				"frame %d type 0x%02x\n", __func__, ireq,
1753				frame_index, ssp_hdr.frame_type);
1754		}
1755
1756		/*
1757		 * In any case we are done with this frame buffer return it to
1758		 * the controller
1759		 */
1760		sci_controller_release_frame(ihost, frame_index);
1761
1762		return SCI_SUCCESS;
1763	}
1764
1765	case SCI_REQ_TASK_WAIT_TC_RESP:
1766		sci_io_request_copy_response(ireq);
1767		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1768		sci_controller_release_frame(ihost, frame_index);
1769		return SCI_SUCCESS;
1770
1771	case SCI_REQ_SMP_WAIT_RESP: {
1772		struct sas_task *task = isci_request_access_task(ireq);
1773		struct scatterlist *sg = &task->smp_task.smp_resp;
1774		void *frame_header, *kaddr;
1775		u8 *rsp;
1776
1777		sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1778							 frame_index,
1779							 &frame_header);
1780		kaddr = kmap_atomic(sg_page(sg));
1781		rsp = kaddr + sg->offset;
1782		sci_swab32_cpy(rsp, frame_header, 1);
1783
1784		if (rsp[0] == SMP_RESPONSE) {
1785			void *smp_resp;
1786
1787			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1788								 frame_index,
1789								 &smp_resp);
1790
1791			word_cnt = (sg->length/4)-1;
1792			if (word_cnt > 0)
1793				word_cnt = min_t(unsigned int, word_cnt,
1794						 SCU_UNSOLICITED_FRAME_BUFFER_SIZE/4);
1795			sci_swab32_cpy(rsp + 4, smp_resp, word_cnt);
1796
1797			ireq->scu_status = SCU_TASK_DONE_GOOD;
1798			ireq->sci_status = SCI_SUCCESS;
1799			sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP);
1800		} else {
1801			/*
1802			 * This was not a response frame why did it get
1803			 * forwarded?
1804			 */
1805			dev_err(&ihost->pdev->dev,
1806				"%s: SCIC SMP Request 0x%p received unexpected "
1807				"frame %d type 0x%02x\n",
1808				__func__,
1809				ireq,
1810				frame_index,
1811				rsp[0]);
1812
1813			ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR;
1814			ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1815			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1816		}
1817		kunmap_atomic(kaddr);
1818
1819		sci_controller_release_frame(ihost, frame_index);
1820
1821		return SCI_SUCCESS;
1822	}
1823
1824	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1825		return sci_stp_request_udma_general_frame_handler(ireq,
1826								       frame_index);
1827
1828	case SCI_REQ_STP_UDMA_WAIT_D2H:
1829		/* Use the general frame handler to copy the resposne data */
1830		status = sci_stp_request_udma_general_frame_handler(ireq, frame_index);
1831
1832		if (status != SCI_SUCCESS)
1833			return status;
1834
1835		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1836		ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1837		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1838		return SCI_SUCCESS;
1839
1840	case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
1841		struct dev_to_host_fis *frame_header;
1842		u32 *frame_buffer;
1843
1844		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1845								       frame_index,
1846								       (void **)&frame_header);
1847
1848		if (status != SCI_SUCCESS) {
1849			dev_err(&ihost->pdev->dev,
1850				"%s: SCIC IO Request 0x%p could not get frame "
1851				"header for frame index %d, status %x\n",
1852				__func__,
1853				stp_req,
1854				frame_index,
1855				status);
1856
1857			return status;
1858		}
1859
1860		switch (frame_header->fis_type) {
1861		case FIS_REGD2H:
1862			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1863								      frame_index,
1864								      (void **)&frame_buffer);
1865
1866			sci_controller_copy_sata_response(&ireq->stp.rsp,
1867							       frame_header,
1868							       frame_buffer);
1869
1870			/* The command has completed with error */
1871			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1872			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1873			break;
1874
1875		default:
1876			dev_warn(&ihost->pdev->dev,
1877				 "%s: IO Request:0x%p Frame Id:%d protocol "
1878				  "violation occurred\n", __func__, stp_req,
1879				  frame_index);
1880
1881			ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1882			ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1883			break;
1884		}
1885
1886		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1887
1888		/* Frame has been decoded return it to the controller */
1889		sci_controller_release_frame(ihost, frame_index);
1890
1891		return status;
1892	}
1893
1894	case SCI_REQ_STP_PIO_WAIT_FRAME: {
1895		struct sas_task *task = isci_request_access_task(ireq);
1896		struct dev_to_host_fis *frame_header;
1897		u32 *frame_buffer;
1898
1899		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1900								       frame_index,
1901								       (void **)&frame_header);
1902
1903		if (status != SCI_SUCCESS) {
1904			dev_err(&ihost->pdev->dev,
1905				"%s: SCIC IO Request 0x%p could not get frame "
1906				"header for frame index %d, status %x\n",
1907				__func__, stp_req, frame_index, status);
1908			return status;
1909		}
1910
1911		switch (frame_header->fis_type) {
1912		case FIS_PIO_SETUP:
1913			/* Get from the frame buffer the PIO Setup Data */
1914			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1915								      frame_index,
1916								      (void **)&frame_buffer);
1917
1918			/* Get the data from the PIO Setup The SCU Hardware
1919			 * returns first word in the frame_header and the rest
1920			 * of the data is in the frame buffer so we need to
1921			 * back up one dword
1922			 */
1923
1924			/* transfer_count: first 16bits in the 4th dword */
1925			stp_req->pio_len = frame_buffer[3] & 0xffff;
1926
1927			/* status: 4th byte in the 3rd dword */
1928			stp_req->status = (frame_buffer[2] >> 24) & 0xff;
1929
1930			sci_controller_copy_sata_response(&ireq->stp.rsp,
1931							       frame_header,
1932							       frame_buffer);
1933
1934			ireq->stp.rsp.status = stp_req->status;
1935
1936			/* The next state is dependent on whether the
1937			 * request was PIO Data-in or Data out
1938			 */
1939			if (task->data_dir == DMA_FROM_DEVICE) {
1940				sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN);
1941			} else if (task->data_dir == DMA_TO_DEVICE) {
1942				/* Transmit data */
1943				status = sci_stp_request_pio_data_out_transmit_data(ireq);
1944				if (status != SCI_SUCCESS)
1945					break;
1946				sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT);
1947			}
1948			break;
1949
1950		case FIS_SETDEVBITS:
1951			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1952			break;
1953
1954		case FIS_REGD2H:
1955			if (frame_header->status & ATA_BUSY) {
1956				/*
1957				 * Now why is the drive sending a D2H Register
1958				 * FIS when it is still busy?  Do nothing since
1959				 * we are still in the right state.
1960				 */
1961				dev_dbg(&ihost->pdev->dev,
1962					"%s: SCIC PIO Request 0x%p received "
1963					"D2H Register FIS with BSY status "
1964					"0x%x\n",
1965					__func__,
1966					stp_req,
1967					frame_header->status);
1968				break;
1969			}
1970
1971			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1972								      frame_index,
1973								      (void **)&frame_buffer);
1974
1975			sci_controller_copy_sata_response(&ireq->stp.rsp,
1976							       frame_header,
1977							       frame_buffer);
1978
1979			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1980			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1981			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1982			break;
1983
1984		default:
1985			/* FIXME: what do we do here? */
1986			break;
1987		}
1988
1989		/* Frame is decoded return it to the controller */
1990		sci_controller_release_frame(ihost, frame_index);
1991
1992		return status;
1993	}
1994
1995	case SCI_REQ_STP_PIO_DATA_IN: {
1996		struct dev_to_host_fis *frame_header;
1997		struct sata_fis_data *frame_buffer;
1998
1999		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
2000								       frame_index,
2001								       (void **)&frame_header);
2002
2003		if (status != SCI_SUCCESS) {
2004			dev_err(&ihost->pdev->dev,
2005				"%s: SCIC IO Request 0x%p could not get frame "
2006				"header for frame index %d, status %x\n",
2007				__func__,
2008				stp_req,
2009				frame_index,
2010				status);
2011			return status;
2012		}
2013
2014		if (frame_header->fis_type != FIS_DATA) {
2015			dev_err(&ihost->pdev->dev,
2016				"%s: SCIC PIO Request 0x%p received frame %d "
2017				"with fis type 0x%02x when expecting a data "
2018				"fis.\n",
2019				__func__,
2020				stp_req,
2021				frame_index,
2022				frame_header->fis_type);
2023
2024			ireq->scu_status = SCU_TASK_DONE_GOOD;
2025			ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT;
2026			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2027
2028			/* Frame is decoded return it to the controller */
2029			sci_controller_release_frame(ihost, frame_index);
2030			return status;
2031		}
2032
2033		if (stp_req->sgl.index < 0) {
2034			ireq->saved_rx_frame_index = frame_index;
2035			stp_req->pio_len = 0;
2036		} else {
2037			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
2038								      frame_index,
2039								      (void **)&frame_buffer);
2040
2041			status = sci_stp_request_pio_data_in_copy_data(stp_req,
2042									    (u8 *)frame_buffer);
2043
2044			/* Frame is decoded return it to the controller */
2045			sci_controller_release_frame(ihost, frame_index);
2046		}
2047
2048		/* Check for the end of the transfer, are there more
2049		 * bytes remaining for this data transfer
2050		 */
2051		if (status != SCI_SUCCESS || stp_req->pio_len != 0)
2052			return status;
2053
2054		if ((stp_req->status & ATA_BUSY) == 0) {
2055			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2056			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2057			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2058		} else {
2059			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
2060		}
2061		return status;
2062	}
2063
2064	case SCI_REQ_ATAPI_WAIT_PIO_SETUP: {
2065		struct sas_task *task = isci_request_access_task(ireq);
2066
2067		sci_controller_release_frame(ihost, frame_index);
2068		ireq->target_device->working_request = ireq;
2069		if (task->data_dir == DMA_NONE) {
2070			sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_TC_COMP);
2071			scu_atapi_reconstruct_raw_frame_task_context(ireq);
2072		} else {
2073			sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2074			scu_atapi_construct_task_context(ireq);
2075		}
2076
2077		sci_controller_continue_io(ireq);
2078		return SCI_SUCCESS;
2079	}
2080	case SCI_REQ_ATAPI_WAIT_D2H:
2081		return atapi_d2h_reg_frame_handler(ireq, frame_index);
2082	case SCI_REQ_ABORTING:
2083		/*
2084		 * TODO: Is it even possible to get an unsolicited frame in the
2085		 * aborting state?
2086		 */
2087		sci_controller_release_frame(ihost, frame_index);
2088		return SCI_SUCCESS;
2089
2090	default:
2091		dev_warn(&ihost->pdev->dev,
2092			 "%s: SCIC IO Request given unexpected frame %x while "
2093			 "in state %d\n",
2094			 __func__,
2095			 frame_index,
2096			 state);
2097
2098		sci_controller_release_frame(ihost, frame_index);
2099		return SCI_FAILURE_INVALID_STATE;
2100	}
2101}
2102
2103static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq,
2104						       u32 completion_code)
2105{
2106	enum sci_status status = SCI_SUCCESS;
2107
2108	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2109	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2110		ireq->scu_status = SCU_TASK_DONE_GOOD;
2111		ireq->sci_status = SCI_SUCCESS;
2112		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2113		break;
2114	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
2115	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
2116		/* We must check ther response buffer to see if the D2H
2117		 * Register FIS was received before we got the TC
2118		 * completion.
2119		 */
2120		if (ireq->stp.rsp.fis_type == FIS_REGD2H) {
2121			sci_remote_device_suspend(ireq->target_device,
2122						  SCI_SW_SUSPEND_NORMAL);
2123
2124			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2125			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2126			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2127		} else {
2128			/* If we have an error completion status for the
2129			 * TC then we can expect a D2H register FIS from
2130			 * the device so we must change state to wait
2131			 * for it
2132			 */
2133			sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
2134		}
2135		break;
2136
2137	/* TODO Check to see if any of these completion status need to
2138	 * wait for the device to host register fis.
2139	 */
2140	/* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
2141	 * - this comes only for B0
2142	 */
2143	default:
2144		/* All other completion status cause the IO to be complete. */
2145		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2146		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2147		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2148		break;
2149	}
2150
2151	return status;
2152}
2153
2154static enum sci_status atapi_raw_completion(struct isci_request *ireq, u32 completion_code,
2155						  enum sci_base_request_states next)
2156{
2157	enum sci_status status = SCI_SUCCESS;
2158
2159	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2160	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2161		ireq->scu_status = SCU_TASK_DONE_GOOD;
2162		ireq->sci_status = SCI_SUCCESS;
2163		sci_change_state(&ireq->sm, next);
2164		break;
2165	default:
2166		/* All other completion status cause the IO to be complete.
2167		 * If a NAK was received, then it is up to the user to retry
2168		 * the request.
2169		 */
2170		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2171		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2172
2173		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2174		break;
2175	}
2176
2177	return status;
2178}
2179
2180static enum sci_status atapi_data_tc_completion_handler(struct isci_request *ireq,
2181							u32 completion_code)
2182{
2183	struct isci_remote_device *idev = ireq->target_device;
2184	struct dev_to_host_fis *d2h = &ireq->stp.rsp;
2185	enum sci_status status = SCI_SUCCESS;
2186
2187	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2188	case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
2189		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2190		break;
2191
2192	case (SCU_TASK_DONE_UNEXP_FIS << SCU_COMPLETION_TL_STATUS_SHIFT): {
2193		u16 len = sci_req_tx_bytes(ireq);
2194
2195		/* likely non-error data underrrun, workaround missing
2196		 * d2h frame from the controller
2197		 */
2198		if (d2h->fis_type != FIS_REGD2H) {
2199			d2h->fis_type = FIS_REGD2H;
2200			d2h->flags = (1 << 6);
2201			d2h->status = 0x50;
2202			d2h->error = 0;
2203			d2h->lbal = 0;
2204			d2h->byte_count_low = len & 0xff;
2205			d2h->byte_count_high = len >> 8;
2206			d2h->device = 0xa0;
2207			d2h->lbal_exp = 0;
2208			d2h->lbam_exp = 0;
2209			d2h->lbah_exp = 0;
2210			d2h->_r_a = 0;
2211			d2h->sector_count = 0x3;
2212			d2h->sector_count_exp = 0;
2213			d2h->_r_b = 0;
2214			d2h->_r_c = 0;
2215			d2h->_r_d = 0;
2216		}
2217
2218		ireq->scu_status = SCU_TASK_DONE_GOOD;
2219		ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
2220		status = ireq->sci_status;
2221
2222		/* the hw will have suspended the rnc, so complete the
2223		 * request upon pending resume
2224		 */
2225		sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2226		break;
2227	}
2228	case (SCU_TASK_DONE_EXCESS_DATA << SCU_COMPLETION_TL_STATUS_SHIFT):
2229		/* In this case, there is no UF coming after.
2230		 * compelte the IO now.
2231		 */
2232		ireq->scu_status = SCU_TASK_DONE_GOOD;
2233		ireq->sci_status = SCI_SUCCESS;
2234		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2235		break;
2236
2237	default:
2238		if (d2h->fis_type == FIS_REGD2H) {
2239			/* UF received change the device state to ATAPI_ERROR */
2240			status = ireq->sci_status;
2241			sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2242		} else {
2243			/* If receiving any non-success TC status, no UF
2244			 * received yet, then an UF for the status fis
2245			 * is coming after (XXX: suspect this is
2246			 * actually a protocol error or a bug like the
2247			 * DONE_UNEXP_FIS case)
2248			 */
2249			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2250			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2251
2252			sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2253		}
2254		break;
2255	}
2256
2257	return status;
2258}
2259
2260static int sci_request_smp_completion_status_is_tx_suspend(
2261	unsigned int completion_status)
2262{
2263	switch (completion_status) {
2264	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2265	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2266	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2267	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2268	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2269	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2270		return 1;
2271	}
2272	return 0;
2273}
2274
2275static int sci_request_smp_completion_status_is_tx_rx_suspend(
2276	unsigned int completion_status)
2277{
2278	return 0; /* There are no Tx/Rx SMP suspend conditions. */
2279}
2280
2281static int sci_request_ssp_completion_status_is_tx_suspend(
2282	unsigned int completion_status)
2283{
2284	switch (completion_status) {
2285	case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2286	case SCU_TASK_DONE_LF_ERR:
2287	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2288	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2289	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2290	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2291	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2292	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2293	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2294	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2295	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2296		return 1;
2297	}
2298	return 0;
2299}
2300
2301static int sci_request_ssp_completion_status_is_tx_rx_suspend(
2302	unsigned int completion_status)
2303{
2304	return 0; /* There are no Tx/Rx SSP suspend conditions. */
2305}
2306
2307static int sci_request_stpsata_completion_status_is_tx_suspend(
2308	unsigned int completion_status)
2309{
2310	switch (completion_status) {
2311	case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2312	case SCU_TASK_DONE_LL_R_ERR:
2313	case SCU_TASK_DONE_LL_PERR:
2314	case SCU_TASK_DONE_REG_ERR:
2315	case SCU_TASK_DONE_SDB_ERR:
2316	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2317	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2318	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2319	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2320	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2321	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2322	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2323	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2324	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2325		return 1;
2326	}
2327	return 0;
2328}
2329
2330
2331static int sci_request_stpsata_completion_status_is_tx_rx_suspend(
2332	unsigned int completion_status)
2333{
2334	switch (completion_status) {
2335	case SCU_TASK_DONE_LF_ERR:
2336	case SCU_TASK_DONE_LL_SY_TERM:
2337	case SCU_TASK_DONE_LL_LF_TERM:
2338	case SCU_TASK_DONE_BREAK_RCVD:
2339	case SCU_TASK_DONE_INV_FIS_LEN:
2340	case SCU_TASK_DONE_UNEXP_FIS:
2341	case SCU_TASK_DONE_UNEXP_SDBFIS:
2342	case SCU_TASK_DONE_MAX_PLD_ERR:
2343		return 1;
2344	}
2345	return 0;
2346}
2347
2348static void sci_request_handle_suspending_completions(
2349	struct isci_request *ireq,
2350	u32 completion_code)
2351{
2352	int is_tx = 0;
2353	int is_tx_rx = 0;
2354
2355	switch (ireq->protocol) {
2356	case SAS_PROTOCOL_SMP:
2357		is_tx = sci_request_smp_completion_status_is_tx_suspend(
2358			completion_code);
2359		is_tx_rx = sci_request_smp_completion_status_is_tx_rx_suspend(
2360			completion_code);
2361		break;
2362	case SAS_PROTOCOL_SSP:
2363		is_tx = sci_request_ssp_completion_status_is_tx_suspend(
2364			completion_code);
2365		is_tx_rx = sci_request_ssp_completion_status_is_tx_rx_suspend(
2366			completion_code);
2367		break;
2368	case SAS_PROTOCOL_STP:
2369		is_tx = sci_request_stpsata_completion_status_is_tx_suspend(
2370			completion_code);
2371		is_tx_rx =
2372			sci_request_stpsata_completion_status_is_tx_rx_suspend(
2373				completion_code);
2374		break;
2375	default:
2376		dev_warn(&ireq->isci_host->pdev->dev,
2377			 "%s: request %p has no valid protocol\n",
2378			 __func__, ireq);
2379		break;
2380	}
2381	if (is_tx || is_tx_rx) {
2382		BUG_ON(is_tx && is_tx_rx);
2383
2384		sci_remote_node_context_suspend(
2385			&ireq->target_device->rnc,
2386			SCI_HW_SUSPEND,
2387			(is_tx_rx) ? SCU_EVENT_TL_RNC_SUSPEND_TX_RX
2388				   : SCU_EVENT_TL_RNC_SUSPEND_TX);
2389	}
2390}
2391
2392enum sci_status
2393sci_io_request_tc_completion(struct isci_request *ireq,
2394			     u32 completion_code)
2395{
2396	enum sci_base_request_states state;
2397	struct isci_host *ihost = ireq->owning_controller;
2398
2399	state = ireq->sm.current_state_id;
2400
2401	/* Decode those completions that signal upcoming suspension events. */
2402	sci_request_handle_suspending_completions(
2403		ireq, SCU_GET_COMPLETION_TL_STATUS(completion_code));
2404
2405	switch (state) {
2406	case SCI_REQ_STARTED:
2407		return request_started_state_tc_event(ireq, completion_code);
2408
2409	case SCI_REQ_TASK_WAIT_TC_COMP:
2410		return ssp_task_request_await_tc_event(ireq,
2411						       completion_code);
2412
2413	case SCI_REQ_SMP_WAIT_RESP:
2414		return smp_request_await_response_tc_event(ireq,
2415							   completion_code);
2416
2417	case SCI_REQ_SMP_WAIT_TC_COMP:
2418		return smp_request_await_tc_event(ireq, completion_code);
2419
2420	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
2421		return stp_request_udma_await_tc_event(ireq,
2422						       completion_code);
2423
2424	case SCI_REQ_STP_NON_DATA_WAIT_H2D:
2425		return stp_request_non_data_await_h2d_tc_event(ireq,
2426							       completion_code);
2427
2428	case SCI_REQ_STP_PIO_WAIT_H2D:
2429		return stp_request_pio_await_h2d_completion_tc_event(ireq,
2430								     completion_code);
2431
2432	case SCI_REQ_STP_PIO_DATA_OUT:
2433		return pio_data_out_tx_done_tc_event(ireq, completion_code);
2434
2435	case SCI_REQ_ABORTING:
2436		return request_aborting_state_tc_event(ireq,
2437						       completion_code);
2438
2439	case SCI_REQ_ATAPI_WAIT_H2D:
2440		return atapi_raw_completion(ireq, completion_code,
2441					    SCI_REQ_ATAPI_WAIT_PIO_SETUP);
2442
2443	case SCI_REQ_ATAPI_WAIT_TC_COMP:
2444		return atapi_raw_completion(ireq, completion_code,
2445					    SCI_REQ_ATAPI_WAIT_D2H);
2446
2447	case SCI_REQ_ATAPI_WAIT_D2H:
2448		return atapi_data_tc_completion_handler(ireq, completion_code);
2449
2450	default:
2451		dev_warn(&ihost->pdev->dev, "%s: %x in wrong state %s\n",
2452			 __func__, completion_code, req_state_name(state));
2453		return SCI_FAILURE_INVALID_STATE;
2454	}
2455}
2456
2457/**
2458 * isci_request_process_response_iu() - This function sets the status and
2459 *    response iu, in the task struct, from the request object for the upper
2460 *    layer driver.
2461 * @sas_task: This parameter is the task struct from the upper layer driver.
2462 * @resp_iu: This parameter points to the response iu of the completed request.
2463 * @dev: This parameter specifies the linux device struct.
2464 *
2465 * none.
2466 */
2467static void isci_request_process_response_iu(
2468	struct sas_task *task,
2469	struct ssp_response_iu *resp_iu,
2470	struct device *dev)
2471{
2472	dev_dbg(dev,
2473		"%s: resp_iu = %p "
2474		"resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2475		"resp_iu->response_data_len = %x, "
2476		"resp_iu->sense_data_len = %x\nresponse data: ",
2477		__func__,
2478		resp_iu,
2479		resp_iu->status,
2480		resp_iu->datapres,
2481		resp_iu->response_data_len,
2482		resp_iu->sense_data_len);
2483
2484	task->task_status.stat = resp_iu->status;
2485
2486	/* libsas updates the task status fields based on the response iu. */
2487	sas_ssp_task_response(dev, task, resp_iu);
2488}
2489
2490/**
2491 * isci_request_set_open_reject_status() - This function prepares the I/O
2492 *    completion for OPEN_REJECT conditions.
2493 * @request: This parameter is the completed isci_request object.
 
2494 * @response_ptr: This parameter specifies the service response for the I/O.
2495 * @status_ptr: This parameter specifies the exec status for the I/O.
2496 * @open_rej_reason: This parameter specifies the encoded reason for the
2497 *    abandon-class reject.
2498 *
2499 * none.
2500 */
2501static void isci_request_set_open_reject_status(
2502	struct isci_request *request,
2503	struct sas_task *task,
2504	enum service_response *response_ptr,
2505	enum exec_status *status_ptr,
2506	enum sas_open_rej_reason open_rej_reason)
2507{
2508	/* Task in the target is done. */
2509	set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2510	*response_ptr                     = SAS_TASK_UNDELIVERED;
2511	*status_ptr                       = SAS_OPEN_REJECT;
2512	task->task_status.open_rej_reason = open_rej_reason;
2513}
2514
2515/**
2516 * isci_request_handle_controller_specific_errors() - This function decodes
2517 *    controller-specific I/O completion error conditions.
 
2518 * @request: This parameter is the completed isci_request object.
 
2519 * @response_ptr: This parameter specifies the service response for the I/O.
2520 * @status_ptr: This parameter specifies the exec status for the I/O.
2521 *
2522 * none.
2523 */
2524static void isci_request_handle_controller_specific_errors(
2525	struct isci_remote_device *idev,
2526	struct isci_request *request,
2527	struct sas_task *task,
2528	enum service_response *response_ptr,
2529	enum exec_status *status_ptr)
2530{
2531	unsigned int cstatus;
2532
2533	cstatus = request->scu_status;
2534
2535	dev_dbg(&request->isci_host->pdev->dev,
2536		"%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2537		"- controller status = 0x%x\n",
2538		__func__, request, cstatus);
2539
2540	/* Decode the controller-specific errors; most
2541	 * important is to recognize those conditions in which
2542	 * the target may still have a task outstanding that
2543	 * must be aborted.
2544	 *
2545	 * Note that there are SCU completion codes being
2546	 * named in the decode below for which SCIC has already
2547	 * done work to handle them in a way other than as
2548	 * a controller-specific completion code; these are left
2549	 * in the decode below for completeness sake.
2550	 */
2551	switch (cstatus) {
2552	case SCU_TASK_DONE_DMASETUP_DIRERR:
2553	/* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2554	case SCU_TASK_DONE_XFERCNT_ERR:
2555		/* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2556		if (task->task_proto == SAS_PROTOCOL_SMP) {
2557			/* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2558			*response_ptr = SAS_TASK_COMPLETE;
2559
2560			/* See if the device has been/is being stopped. Note
2561			 * that we ignore the quiesce state, since we are
2562			 * concerned about the actual device state.
2563			 */
2564			if (!idev)
2565				*status_ptr = SAS_DEVICE_UNKNOWN;
2566			else
2567				*status_ptr = SAS_ABORTED_TASK;
2568
2569			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2570		} else {
2571			/* Task in the target is not done. */
2572			*response_ptr = SAS_TASK_UNDELIVERED;
2573
2574			if (!idev)
2575				*status_ptr = SAS_DEVICE_UNKNOWN;
2576			else
2577				*status_ptr = SAM_STAT_TASK_ABORTED;
2578
2579			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2580		}
2581
2582		break;
2583
2584	case SCU_TASK_DONE_CRC_ERR:
2585	case SCU_TASK_DONE_NAK_CMD_ERR:
2586	case SCU_TASK_DONE_EXCESS_DATA:
2587	case SCU_TASK_DONE_UNEXP_FIS:
2588	/* Also SCU_TASK_DONE_UNEXP_RESP: */
2589	case SCU_TASK_DONE_VIIT_ENTRY_NV:       /* TODO - conditions? */
2590	case SCU_TASK_DONE_IIT_ENTRY_NV:        /* TODO - conditions? */
2591	case SCU_TASK_DONE_RNCNV_OUTBOUND:      /* TODO - conditions? */
2592		/* These are conditions in which the target
2593		 * has completed the task, so that no cleanup
2594		 * is necessary.
2595		 */
2596		*response_ptr = SAS_TASK_COMPLETE;
2597
2598		/* See if the device has been/is being stopped. Note
2599		 * that we ignore the quiesce state, since we are
2600		 * concerned about the actual device state.
2601		 */
2602		if (!idev)
2603			*status_ptr = SAS_DEVICE_UNKNOWN;
2604		else
2605			*status_ptr = SAS_ABORTED_TASK;
2606
2607		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2608		break;
2609
2610
2611	/* Note that the only open reject completion codes seen here will be
2612	 * abandon-class codes; all others are automatically retried in the SCU.
2613	 */
2614	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2615
2616		isci_request_set_open_reject_status(
2617			request, task, response_ptr, status_ptr,
2618			SAS_OREJ_WRONG_DEST);
2619		break;
2620
2621	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2622
2623		/* Note - the return of AB0 will change when
2624		 * libsas implements detection of zone violations.
2625		 */
2626		isci_request_set_open_reject_status(
2627			request, task, response_ptr, status_ptr,
2628			SAS_OREJ_RESV_AB0);
2629		break;
2630
2631	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2632
2633		isci_request_set_open_reject_status(
2634			request, task, response_ptr, status_ptr,
2635			SAS_OREJ_RESV_AB1);
2636		break;
2637
2638	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2639
2640		isci_request_set_open_reject_status(
2641			request, task, response_ptr, status_ptr,
2642			SAS_OREJ_RESV_AB2);
2643		break;
2644
2645	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2646
2647		isci_request_set_open_reject_status(
2648			request, task, response_ptr, status_ptr,
2649			SAS_OREJ_RESV_AB3);
2650		break;
2651
2652	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2653
2654		isci_request_set_open_reject_status(
2655			request, task, response_ptr, status_ptr,
2656			SAS_OREJ_BAD_DEST);
2657		break;
2658
2659	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2660
2661		isci_request_set_open_reject_status(
2662			request, task, response_ptr, status_ptr,
2663			SAS_OREJ_STP_NORES);
2664		break;
2665
2666	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2667
2668		isci_request_set_open_reject_status(
2669			request, task, response_ptr, status_ptr,
2670			SAS_OREJ_EPROTO);
2671		break;
2672
2673	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2674
2675		isci_request_set_open_reject_status(
2676			request, task, response_ptr, status_ptr,
2677			SAS_OREJ_CONN_RATE);
2678		break;
2679
2680	case SCU_TASK_DONE_LL_R_ERR:
2681	/* Also SCU_TASK_DONE_ACK_NAK_TO: */
2682	case SCU_TASK_DONE_LL_PERR:
2683	case SCU_TASK_DONE_LL_SY_TERM:
2684	/* Also SCU_TASK_DONE_NAK_ERR:*/
2685	case SCU_TASK_DONE_LL_LF_TERM:
2686	/* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2687	case SCU_TASK_DONE_LL_ABORT_ERR:
2688	case SCU_TASK_DONE_SEQ_INV_TYPE:
2689	/* Also SCU_TASK_DONE_UNEXP_XR: */
2690	case SCU_TASK_DONE_XR_IU_LEN_ERR:
2691	case SCU_TASK_DONE_INV_FIS_LEN:
2692	/* Also SCU_TASK_DONE_XR_WD_LEN: */
2693	case SCU_TASK_DONE_SDMA_ERR:
2694	case SCU_TASK_DONE_OFFSET_ERR:
2695	case SCU_TASK_DONE_MAX_PLD_ERR:
2696	case SCU_TASK_DONE_LF_ERR:
2697	case SCU_TASK_DONE_SMP_RESP_TO_ERR:  /* Escalate to dev reset? */
2698	case SCU_TASK_DONE_SMP_LL_RX_ERR:
2699	case SCU_TASK_DONE_UNEXP_DATA:
2700	case SCU_TASK_DONE_UNEXP_SDBFIS:
2701	case SCU_TASK_DONE_REG_ERR:
2702	case SCU_TASK_DONE_SDB_ERR:
2703	case SCU_TASK_DONE_TASK_ABORT:
2704	default:
2705		/* Task in the target is not done. */
2706		*response_ptr = SAS_TASK_UNDELIVERED;
2707		*status_ptr = SAM_STAT_TASK_ABORTED;
2708
2709		if (task->task_proto == SAS_PROTOCOL_SMP)
2710			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2711		else
2712			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2713		break;
2714	}
2715}
2716
2717static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis)
2718{
2719	struct task_status_struct *ts = &task->task_status;
2720	struct ata_task_resp *resp = (void *)&ts->buf[0];
2721
2722	resp->frame_len = sizeof(*fis);
2723	memcpy(resp->ending_fis, fis, sizeof(*fis));
2724	ts->buf_valid_size = sizeof(*resp);
2725
2726	/* If an error is flagged let libata decode the fis */
2727	if (ac_err_mask(fis->status))
2728		ts->stat = SAS_PROTO_RESPONSE;
2729	else
2730		ts->stat = SAM_STAT_GOOD;
2731
2732	ts->resp = SAS_TASK_COMPLETE;
2733}
2734
2735static void isci_request_io_request_complete(struct isci_host *ihost,
2736					     struct isci_request *request,
2737					     enum sci_io_status completion_status)
2738{
2739	struct sas_task *task = isci_request_access_task(request);
2740	struct ssp_response_iu *resp_iu;
2741	unsigned long task_flags;
2742	struct isci_remote_device *idev = request->target_device;
2743	enum service_response response = SAS_TASK_UNDELIVERED;
2744	enum exec_status status = SAS_ABORTED_TASK;
2745
2746	dev_dbg(&ihost->pdev->dev,
2747		"%s: request = %p, task = %p, "
2748		"task->data_dir = %d completion_status = 0x%x\n",
2749		__func__, request, task, task->data_dir, completion_status);
2750
2751	/* The request is done from an SCU HW perspective. */
2752
2753	/* This is an active request being completed from the core. */
2754	switch (completion_status) {
2755
2756	case SCI_IO_FAILURE_RESPONSE_VALID:
2757		dev_dbg(&ihost->pdev->dev,
2758			"%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2759			__func__, request, task);
2760
2761		if (sas_protocol_ata(task->task_proto)) {
2762			isci_process_stp_response(task, &request->stp.rsp);
2763		} else if (SAS_PROTOCOL_SSP == task->task_proto) {
2764
2765			/* crack the iu response buffer. */
2766			resp_iu = &request->ssp.rsp;
2767			isci_request_process_response_iu(task, resp_iu,
2768							 &ihost->pdev->dev);
2769
2770		} else if (SAS_PROTOCOL_SMP == task->task_proto) {
2771
2772			dev_err(&ihost->pdev->dev,
2773				"%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2774					"SAS_PROTOCOL_SMP protocol\n",
2775				__func__);
2776
2777		} else
2778			dev_err(&ihost->pdev->dev,
2779				"%s: unknown protocol\n", __func__);
2780
2781		/* use the task status set in the task struct by the
2782		* isci_request_process_response_iu call.
2783		*/
2784		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2785		response = task->task_status.resp;
2786		status = task->task_status.stat;
2787		break;
2788
2789	case SCI_IO_SUCCESS:
2790	case SCI_IO_SUCCESS_IO_DONE_EARLY:
2791
2792		response = SAS_TASK_COMPLETE;
2793		status   = SAM_STAT_GOOD;
2794		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2795
2796		if (completion_status == SCI_IO_SUCCESS_IO_DONE_EARLY) {
2797
2798			/* This was an SSP / STP / SATA transfer.
2799			* There is a possibility that less data than
2800			* the maximum was transferred.
2801			*/
2802			u32 transferred_length = sci_req_tx_bytes(request);
2803
2804			task->task_status.residual
2805				= task->total_xfer_len - transferred_length;
2806
2807			/* If there were residual bytes, call this an
2808			* underrun.
2809			*/
2810			if (task->task_status.residual != 0)
2811				status = SAS_DATA_UNDERRUN;
2812
2813			dev_dbg(&ihost->pdev->dev,
2814				"%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2815				__func__, status);
2816
2817		} else
2818			dev_dbg(&ihost->pdev->dev, "%s: SCI_IO_SUCCESS\n",
2819				__func__);
2820		break;
2821
2822	case SCI_IO_FAILURE_TERMINATED:
2823
2824		dev_dbg(&ihost->pdev->dev,
2825			"%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2826			__func__, request, task);
2827
2828		/* The request was terminated explicitly. */
2829		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2830		response = SAS_TASK_UNDELIVERED;
2831
2832		/* See if the device has been/is being stopped. Note
2833		* that we ignore the quiesce state, since we are
2834		* concerned about the actual device state.
2835		*/
2836		if (!idev)
2837			status = SAS_DEVICE_UNKNOWN;
2838		else
2839			status = SAS_ABORTED_TASK;
2840		break;
2841
2842	case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
2843
2844		isci_request_handle_controller_specific_errors(idev, request,
2845							       task, &response,
2846							       &status);
2847		break;
2848
2849	case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
2850		/* This is a special case, in that the I/O completion
2851		* is telling us that the device needs a reset.
2852		* In order for the device reset condition to be
2853		* noticed, the I/O has to be handled in the error
2854		* handler.  Set the reset flag and cause the
2855		* SCSI error thread to be scheduled.
2856		*/
2857		spin_lock_irqsave(&task->task_state_lock, task_flags);
2858		task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2859		spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2860
2861		/* Fail the I/O. */
2862		response = SAS_TASK_UNDELIVERED;
2863		status = SAM_STAT_TASK_ABORTED;
2864
2865		clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2866		break;
2867
2868	case SCI_FAILURE_RETRY_REQUIRED:
2869
2870		/* Fail the I/O so it can be retried. */
2871		response = SAS_TASK_UNDELIVERED;
2872		if (!idev)
2873			status = SAS_DEVICE_UNKNOWN;
2874		else
2875			status = SAS_ABORTED_TASK;
2876
2877		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2878		break;
2879
2880
2881	default:
2882		/* Catch any otherwise unhandled error codes here. */
2883		dev_dbg(&ihost->pdev->dev,
2884			"%s: invalid completion code: 0x%x - "
2885				"isci_request = %p\n",
2886			__func__, completion_status, request);
2887
2888		response = SAS_TASK_UNDELIVERED;
2889
2890		/* See if the device has been/is being stopped. Note
2891		* that we ignore the quiesce state, since we are
2892		* concerned about the actual device state.
2893		*/
2894		if (!idev)
2895			status = SAS_DEVICE_UNKNOWN;
2896		else
2897			status = SAS_ABORTED_TASK;
2898
2899		if (SAS_PROTOCOL_SMP == task->task_proto)
2900			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2901		else
2902			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2903		break;
2904	}
2905
2906	switch (task->task_proto) {
2907	case SAS_PROTOCOL_SSP:
2908		if (task->data_dir == DMA_NONE)
2909			break;
2910		if (task->num_scatter == 0)
2911			/* 0 indicates a single dma address */
2912			dma_unmap_single(&ihost->pdev->dev,
2913					 request->zero_scatter_daddr,
2914					 task->total_xfer_len, task->data_dir);
2915		else  /* unmap the sgl dma addresses */
2916			dma_unmap_sg(&ihost->pdev->dev, task->scatter,
2917				     request->num_sg_entries, task->data_dir);
2918		break;
2919	case SAS_PROTOCOL_SMP: {
2920		struct scatterlist *sg = &task->smp_task.smp_req;
2921		struct smp_req *smp_req;
2922		void *kaddr;
2923
2924		dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE);
2925
2926		/* need to swab it back in case the command buffer is re-used */
2927		kaddr = kmap_atomic(sg_page(sg));
2928		smp_req = kaddr + sg->offset;
2929		sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
2930		kunmap_atomic(kaddr);
2931		break;
2932	}
2933	default:
2934		break;
2935	}
2936
2937	spin_lock_irqsave(&task->task_state_lock, task_flags);
2938
2939	task->task_status.resp = response;
2940	task->task_status.stat = status;
2941
2942	if (test_bit(IREQ_COMPLETE_IN_TARGET, &request->flags)) {
2943		/* Normal notification (task_done) */
2944		task->task_state_flags |= SAS_TASK_STATE_DONE;
2945		task->task_state_flags &= ~(SAS_TASK_AT_INITIATOR |
2946					    SAS_TASK_STATE_PENDING);
2947	}
2948	spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2949
2950	/* complete the io request to the core. */
2951	sci_controller_complete_io(ihost, request->target_device, request);
2952
2953	/* set terminated handle so it cannot be completed or
2954	 * terminated again, and to cause any calls into abort
2955	 * task to recognize the already completed case.
2956	 */
2957	set_bit(IREQ_TERMINATED, &request->flags);
2958
2959	ireq_done(ihost, request, task);
2960}
2961
2962static void sci_request_started_state_enter(struct sci_base_state_machine *sm)
2963{
2964	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2965	struct domain_device *dev = ireq->target_device->domain_dev;
2966	enum sci_base_request_states state;
2967	struct sas_task *task;
2968
2969	/* XXX as hch said always creating an internal sas_task for tmf
2970	 * requests would simplify the driver
2971	 */
2972	task = (test_bit(IREQ_TMF, &ireq->flags)) ? NULL : isci_request_access_task(ireq);
2973
2974	/* all unaccelerated request types (non ssp or ncq) handled with
2975	 * substates
2976	 */
2977	if (!task && dev->dev_type == SAS_END_DEVICE) {
2978		state = SCI_REQ_TASK_WAIT_TC_COMP;
2979	} else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
2980		state = SCI_REQ_SMP_WAIT_RESP;
2981	} else if (task && sas_protocol_ata(task->task_proto) &&
2982		   !task->ata_task.use_ncq) {
2983		if (dev->sata_dev.class == ATA_DEV_ATAPI &&
2984			task->ata_task.fis.command == ATA_CMD_PACKET) {
2985			state = SCI_REQ_ATAPI_WAIT_H2D;
2986		} else if (task->data_dir == DMA_NONE) {
2987			state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
2988		} else if (task->ata_task.dma_xfer) {
2989			state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
2990		} else /* PIO */ {
2991			state = SCI_REQ_STP_PIO_WAIT_H2D;
2992		}
2993	} else {
2994		/* SSP or NCQ are fully accelerated, no substates */
2995		return;
2996	}
2997	sci_change_state(sm, state);
2998}
2999
3000static void sci_request_completed_state_enter(struct sci_base_state_machine *sm)
3001{
3002	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3003	struct isci_host *ihost = ireq->owning_controller;
3004
3005	/* Tell the SCI_USER that the IO request is complete */
3006	if (!test_bit(IREQ_TMF, &ireq->flags))
3007		isci_request_io_request_complete(ihost, ireq,
3008						 ireq->sci_status);
3009	else
3010		isci_task_request_complete(ihost, ireq, ireq->sci_status);
3011}
3012
3013static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm)
3014{
3015	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3016
3017	/* Setting the abort bit in the Task Context is required by the silicon. */
3018	ireq->tc->abort = 1;
3019}
3020
3021static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3022{
3023	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3024
3025	ireq->target_device->working_request = ireq;
3026}
3027
3028static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3029{
3030	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3031
3032	ireq->target_device->working_request = ireq;
3033}
3034
3035static const struct sci_base_state sci_request_state_table[] = {
3036	[SCI_REQ_INIT] = { },
3037	[SCI_REQ_CONSTRUCTED] = { },
3038	[SCI_REQ_STARTED] = {
3039		.enter_state = sci_request_started_state_enter,
3040	},
3041	[SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
3042		.enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter,
3043	},
3044	[SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
3045	[SCI_REQ_STP_PIO_WAIT_H2D] = {
3046		.enter_state = sci_stp_request_started_pio_await_h2d_completion_enter,
3047	},
3048	[SCI_REQ_STP_PIO_WAIT_FRAME] = { },
3049	[SCI_REQ_STP_PIO_DATA_IN] = { },
3050	[SCI_REQ_STP_PIO_DATA_OUT] = { },
3051	[SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
3052	[SCI_REQ_STP_UDMA_WAIT_D2H] = { },
3053	[SCI_REQ_TASK_WAIT_TC_COMP] = { },
3054	[SCI_REQ_TASK_WAIT_TC_RESP] = { },
3055	[SCI_REQ_SMP_WAIT_RESP] = { },
3056	[SCI_REQ_SMP_WAIT_TC_COMP] = { },
3057	[SCI_REQ_ATAPI_WAIT_H2D] = { },
3058	[SCI_REQ_ATAPI_WAIT_PIO_SETUP] = { },
3059	[SCI_REQ_ATAPI_WAIT_D2H] = { },
3060	[SCI_REQ_ATAPI_WAIT_TC_COMP] = { },
3061	[SCI_REQ_COMPLETED] = {
3062		.enter_state = sci_request_completed_state_enter,
3063	},
3064	[SCI_REQ_ABORTING] = {
3065		.enter_state = sci_request_aborting_state_enter,
3066	},
3067	[SCI_REQ_FINAL] = { },
3068};
3069
3070static void
3071sci_general_request_construct(struct isci_host *ihost,
3072				   struct isci_remote_device *idev,
3073				   struct isci_request *ireq)
3074{
3075	sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT);
3076
3077	ireq->target_device = idev;
3078	ireq->protocol = SAS_PROTOCOL_NONE;
3079	ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
3080
3081	ireq->sci_status   = SCI_SUCCESS;
3082	ireq->scu_status   = 0;
3083	ireq->post_context = 0xFFFFFFFF;
3084}
3085
3086static enum sci_status
3087sci_io_request_construct(struct isci_host *ihost,
3088			  struct isci_remote_device *idev,
3089			  struct isci_request *ireq)
3090{
3091	struct domain_device *dev = idev->domain_dev;
3092	enum sci_status status = SCI_SUCCESS;
3093
3094	/* Build the common part of the request */
3095	sci_general_request_construct(ihost, idev, ireq);
3096
3097	if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
3098		return SCI_FAILURE_INVALID_REMOTE_DEVICE;
3099
3100	if (dev->dev_type == SAS_END_DEVICE)
3101		/* pass */;
3102	else if (dev_is_sata(dev))
3103		memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
3104	else if (dev_is_expander(dev))
3105		/* pass */;
3106	else
3107		return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3108
3109	memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab));
3110
3111	return status;
3112}
3113
3114enum sci_status sci_task_request_construct(struct isci_host *ihost,
3115					    struct isci_remote_device *idev,
3116					    u16 io_tag, struct isci_request *ireq)
3117{
3118	struct domain_device *dev = idev->domain_dev;
3119	enum sci_status status = SCI_SUCCESS;
3120
3121	/* Build the common part of the request */
3122	sci_general_request_construct(ihost, idev, ireq);
3123
3124	if (dev->dev_type == SAS_END_DEVICE || dev_is_sata(dev)) {
3125		set_bit(IREQ_TMF, &ireq->flags);
3126		memset(ireq->tc, 0, sizeof(struct scu_task_context));
3127
3128		/* Set the protocol indicator. */
3129		if (dev_is_sata(dev))
3130			ireq->protocol = SAS_PROTOCOL_STP;
3131		else
3132			ireq->protocol = SAS_PROTOCOL_SSP;
3133	} else
3134		status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3135
3136	return status;
3137}
3138
3139static enum sci_status isci_request_ssp_request_construct(
3140	struct isci_request *request)
3141{
3142	enum sci_status status;
3143
3144	dev_dbg(&request->isci_host->pdev->dev,
3145		"%s: request = %p\n",
3146		__func__,
3147		request);
3148	status = sci_io_request_construct_basic_ssp(request);
3149	return status;
3150}
3151
3152static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq)
3153{
3154	struct sas_task *task = isci_request_access_task(ireq);
3155	struct host_to_dev_fis *fis = &ireq->stp.cmd;
3156	struct ata_queued_cmd *qc = task->uldd_task;
3157	enum sci_status status;
3158
3159	dev_dbg(&ireq->isci_host->pdev->dev,
3160		"%s: ireq = %p\n",
3161		__func__,
3162		ireq);
3163
3164	memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
3165	if (!task->ata_task.device_control_reg_update)
3166		fis->flags |= 0x80;
3167	fis->flags &= 0xF0;
3168
3169	status = sci_io_request_construct_basic_sata(ireq);
3170
3171	if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
3172		   qc->tf.command == ATA_CMD_FPDMA_READ ||
3173		   qc->tf.command == ATA_CMD_FPDMA_RECV ||
3174		   qc->tf.command == ATA_CMD_FPDMA_SEND ||
3175		   qc->tf.command == ATA_CMD_NCQ_NON_DATA)) {
3176		fis->sector_count = qc->tag << 3;
3177		ireq->tc->type.stp.ncq_tag = qc->tag;
3178	}
3179
3180	return status;
3181}
3182
3183static enum sci_status
3184sci_io_request_construct_smp(struct device *dev,
3185			      struct isci_request *ireq,
3186			      struct sas_task *task)
3187{
3188	struct scatterlist *sg = &task->smp_task.smp_req;
3189	struct isci_remote_device *idev;
3190	struct scu_task_context *task_context;
3191	struct isci_port *iport;
3192	struct smp_req *smp_req;
3193	void *kaddr;
3194	u8 req_len;
3195	u32 cmd;
3196
3197	kaddr = kmap_atomic(sg_page(sg));
3198	smp_req = kaddr + sg->offset;
3199	/*
3200	 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3201	 * functions under SAS 2.0, a zero request length really indicates
3202	 * a non-zero default length.
3203	 */
3204	if (smp_req->req_len == 0) {
3205		switch (smp_req->func) {
3206		case SMP_DISCOVER:
3207		case SMP_REPORT_PHY_ERR_LOG:
3208		case SMP_REPORT_PHY_SATA:
3209		case SMP_REPORT_ROUTE_INFO:
3210			smp_req->req_len = 2;
3211			break;
3212		case SMP_CONF_ROUTE_INFO:
3213		case SMP_PHY_CONTROL:
3214		case SMP_PHY_TEST_FUNCTION:
3215			smp_req->req_len = 9;
3216			break;
3217			/* Default - zero is a valid default for 2.0. */
3218		}
3219	}
3220	req_len = smp_req->req_len;
3221	sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3222	cmd = *(u32 *) smp_req;
3223	kunmap_atomic(kaddr);
3224
3225	if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
3226		return SCI_FAILURE;
3227
3228	ireq->protocol = SAS_PROTOCOL_SMP;
3229
3230	/* byte swap the smp request. */
3231
3232	task_context = ireq->tc;
3233
3234	idev = ireq->target_device;
3235	iport = idev->owning_port;
3236
3237	/*
3238	 * Fill in the TC with the its required data
3239	 * 00h
3240	 */
3241	task_context->priority = 0;
3242	task_context->initiator_request = 1;
3243	task_context->connection_rate = idev->connection_rate;
3244	task_context->protocol_engine_index = ISCI_PEG;
3245	task_context->logical_port_index = iport->physical_port_index;
3246	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
3247	task_context->abort = 0;
3248	task_context->valid = SCU_TASK_CONTEXT_VALID;
3249	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
3250
3251	/* 04h */
3252	task_context->remote_node_index = idev->rnc.remote_node_index;
3253	task_context->command_code = 0;
3254	task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
3255
3256	/* 08h */
3257	task_context->link_layer_control = 0;
3258	task_context->do_not_dma_ssp_good_response = 1;
3259	task_context->strict_ordering = 0;
3260	task_context->control_frame = 1;
3261	task_context->timeout_enable = 0;
3262	task_context->block_guard_enable = 0;
3263
3264	/* 0ch */
3265	task_context->address_modifier = 0;
3266
3267	/* 10h */
3268	task_context->ssp_command_iu_length = req_len;
3269
3270	/* 14h */
3271	task_context->transfer_length_bytes = 0;
3272
3273	/*
3274	 * 18h ~ 30h, protocol specific
3275	 * since commandIU has been build by framework at this point, we just
3276	 * copy the frist DWord from command IU to this location. */
3277	memcpy(&task_context->type.smp, &cmd, sizeof(u32));
3278
3279	/*
3280	 * 40h
3281	 * "For SMP you could program it to zero. We would prefer that way
3282	 * so that done code will be consistent." - Venki
3283	 */
3284	task_context->task_phase = 0;
3285
3286	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
3287			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
3288			       (iport->physical_port_index <<
3289				SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
3290			      ISCI_TAG_TCI(ireq->io_tag));
3291	/*
3292	 * Copy the physical address for the command buffer to the SCU Task
3293	 * Context command buffer should not contain command header.
3294	 */
3295	task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
3296	task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
3297
3298	/* SMP response comes as UF, so no need to set response IU address. */
3299	task_context->response_iu_upper = 0;
3300	task_context->response_iu_lower = 0;
3301
3302	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
3303
3304	return SCI_SUCCESS;
3305}
3306
3307/*
3308 * isci_smp_request_build() - This function builds the smp request.
3309 * @ireq: This parameter points to the isci_request allocated in the
3310 *    request construct function.
3311 *
3312 * SCI_SUCCESS on successfull completion, or specific failure code.
3313 */
3314static enum sci_status isci_smp_request_build(struct isci_request *ireq)
3315{
3316	struct sas_task *task = isci_request_access_task(ireq);
3317	struct device *dev = &ireq->isci_host->pdev->dev;
3318	enum sci_status status = SCI_FAILURE;
3319
3320	status = sci_io_request_construct_smp(dev, ireq, task);
3321	if (status != SCI_SUCCESS)
3322		dev_dbg(&ireq->isci_host->pdev->dev,
3323			 "%s: failed with status = %d\n",
3324			 __func__,
3325			 status);
3326
3327	return status;
3328}
3329
3330/**
3331 * isci_io_request_build() - This function builds the io request object.
3332 * @ihost: This parameter specifies the ISCI host object
3333 * @request: This parameter points to the isci_request object allocated in the
3334 *    request construct function.
3335 * @sci_device: This parameter is the handle for the sci core's remote device
3336 *    object that is the destination for this request.
3337 *
3338 * SCI_SUCCESS on successfull completion, or specific failure code.
3339 */
3340static enum sci_status isci_io_request_build(struct isci_host *ihost,
3341					     struct isci_request *request,
3342					     struct isci_remote_device *idev)
3343{
3344	enum sci_status status = SCI_SUCCESS;
3345	struct sas_task *task = isci_request_access_task(request);
3346
3347	dev_dbg(&ihost->pdev->dev,
3348		"%s: idev = 0x%p; request = %p, "
3349		"num_scatter = %d\n",
3350		__func__,
3351		idev,
3352		request,
3353		task->num_scatter);
3354
3355	/* map the sgl addresses, if present.
3356	 * libata does the mapping for sata devices
3357	 * before we get the request.
3358	 */
3359	if (task->num_scatter &&
3360	    !sas_protocol_ata(task->task_proto) &&
3361	    !(SAS_PROTOCOL_SMP & task->task_proto)) {
3362
3363		request->num_sg_entries = dma_map_sg(
3364			&ihost->pdev->dev,
3365			task->scatter,
3366			task->num_scatter,
3367			task->data_dir
3368			);
3369
3370		if (request->num_sg_entries == 0)
3371			return SCI_FAILURE_INSUFFICIENT_RESOURCES;
3372	}
3373
3374	status = sci_io_request_construct(ihost, idev, request);
3375
3376	if (status != SCI_SUCCESS) {
3377		dev_dbg(&ihost->pdev->dev,
3378			 "%s: failed request construct\n",
3379			 __func__);
3380		return SCI_FAILURE;
3381	}
3382
3383	switch (task->task_proto) {
3384	case SAS_PROTOCOL_SMP:
3385		status = isci_smp_request_build(request);
3386		break;
3387	case SAS_PROTOCOL_SSP:
3388		status = isci_request_ssp_request_construct(request);
3389		break;
3390	case SAS_PROTOCOL_SATA:
3391	case SAS_PROTOCOL_STP:
3392	case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
3393		status = isci_request_stp_request_construct(request);
3394		break;
3395	default:
3396		dev_dbg(&ihost->pdev->dev,
3397			 "%s: unknown protocol\n", __func__);
3398		return SCI_FAILURE;
3399	}
3400
3401	return SCI_SUCCESS;
3402}
3403
3404static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag)
3405{
3406	struct isci_request *ireq;
3407
3408	ireq = ihost->reqs[ISCI_TAG_TCI(tag)];
3409	ireq->io_tag = tag;
3410	ireq->io_request_completion = NULL;
3411	ireq->flags = 0;
3412	ireq->num_sg_entries = 0;
3413
3414	return ireq;
3415}
3416
3417static struct isci_request *isci_io_request_from_tag(struct isci_host *ihost,
3418						     struct sas_task *task,
3419						     u16 tag)
3420{
3421	struct isci_request *ireq;
3422
3423	ireq = isci_request_from_tag(ihost, tag);
3424	ireq->ttype_ptr.io_task_ptr = task;
3425	clear_bit(IREQ_TMF, &ireq->flags);
3426	task->lldd_task = ireq;
3427
3428	return ireq;
3429}
3430
3431struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost,
3432					       struct isci_tmf *isci_tmf,
3433					       u16 tag)
3434{
3435	struct isci_request *ireq;
3436
3437	ireq = isci_request_from_tag(ihost, tag);
3438	ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
3439	set_bit(IREQ_TMF, &ireq->flags);
3440
3441	return ireq;
3442}
3443
3444int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
3445			 struct sas_task *task, u16 tag)
3446{
3447	enum sci_status status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3448	struct isci_request *ireq;
3449	unsigned long flags;
3450	int ret = 0;
3451
3452	/* do common allocation and init of request object. */
3453	ireq = isci_io_request_from_tag(ihost, task, tag);
3454
3455	status = isci_io_request_build(ihost, ireq, idev);
3456	if (status != SCI_SUCCESS) {
3457		dev_dbg(&ihost->pdev->dev,
3458			 "%s: request_construct failed - status = 0x%x\n",
3459			 __func__,
3460			 status);
3461		return status;
3462	}
3463
3464	spin_lock_irqsave(&ihost->scic_lock, flags);
3465
3466	if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) {
3467
3468		if (isci_task_is_ncq_recovery(task)) {
3469
3470			/* The device is in an NCQ recovery state.  Issue the
3471			 * request on the task side.  Note that it will
3472			 * complete on the I/O request side because the
3473			 * request was built that way (ie.
3474			 * ireq->is_task_management_request is false).
3475			 */
3476			status = sci_controller_start_task(ihost,
3477							    idev,
3478							    ireq);
3479		} else {
3480			status = SCI_FAILURE;
3481		}
3482	} else {
3483		/* send the request, let the core assign the IO TAG.	*/
3484		status = sci_controller_start_io(ihost, idev,
3485						  ireq);
3486	}
3487
3488	if (status != SCI_SUCCESS &&
3489	    status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3490		dev_dbg(&ihost->pdev->dev,
3491			 "%s: failed request start (0x%x)\n",
3492			 __func__, status);
3493		spin_unlock_irqrestore(&ihost->scic_lock, flags);
3494		return status;
3495	}
3496	/* Either I/O started OK, or the core has signaled that
3497	 * the device needs a target reset.
3498	 */
3499	if (status != SCI_SUCCESS) {
3500		/* The request did not really start in the
3501		 * hardware, so clear the request handle
3502		 * here so no terminations will be done.
3503		 */
3504		set_bit(IREQ_TERMINATED, &ireq->flags);
3505	}
3506	spin_unlock_irqrestore(&ihost->scic_lock, flags);
3507
3508	if (status ==
3509	    SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3510		/* Signal libsas that we need the SCSI error
3511		 * handler thread to work on this I/O and that
3512		 * we want a device reset.
3513		 */
3514		spin_lock_irqsave(&task->task_state_lock, flags);
3515		task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
3516		spin_unlock_irqrestore(&task->task_state_lock, flags);
3517
3518		/* Cause this task to be scheduled in the SCSI error
3519		 * handler thread.
3520		 */
3521		sas_task_abort(task);
3522
3523		/* Change the status, since we are holding
3524		 * the I/O until it is managed by the SCSI
3525		 * error handler.
3526		 */
3527		status = SCI_SUCCESS;
3528	}
3529
3530	return ret;
3531}
v5.14.15
   1/*
   2 * This file is provided under a dual BSD/GPLv2 license.  When using or
   3 * redistributing this file, you may do so under either license.
   4 *
   5 * GPL LICENSE SUMMARY
   6 *
   7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  21 * The full GNU General Public License is included in this distribution
  22 * in the file called LICENSE.GPL.
  23 *
  24 * BSD LICENSE
  25 *
  26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
  27 * All rights reserved.
  28 *
  29 * Redistribution and use in source and binary forms, with or without
  30 * modification, are permitted provided that the following conditions
  31 * are met:
  32 *
  33 *   * Redistributions of source code must retain the above copyright
  34 *     notice, this list of conditions and the following disclaimer.
  35 *   * Redistributions in binary form must reproduce the above copyright
  36 *     notice, this list of conditions and the following disclaimer in
  37 *     the documentation and/or other materials provided with the
  38 *     distribution.
  39 *   * Neither the name of Intel Corporation nor the names of its
  40 *     contributors may be used to endorse or promote products derived
  41 *     from this software without specific prior written permission.
  42 *
  43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  54 */
  55
  56#include <scsi/scsi_cmnd.h>
  57#include "isci.h"
  58#include "task.h"
  59#include "request.h"
  60#include "scu_completion_codes.h"
  61#include "scu_event_codes.h"
  62#include "sas.h"
  63
  64#undef C
  65#define C(a) (#a)
  66const char *req_state_name(enum sci_base_request_states state)
  67{
  68	static const char * const strings[] = REQUEST_STATES;
  69
  70	return strings[state];
  71}
  72#undef C
  73
  74static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq,
  75							int idx)
  76{
  77	if (idx == 0)
  78		return &ireq->tc->sgl_pair_ab;
  79	else if (idx == 1)
  80		return &ireq->tc->sgl_pair_cd;
  81	else if (idx < 0)
  82		return NULL;
  83	else
  84		return &ireq->sg_table[idx - 2];
  85}
  86
  87static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost,
  88					  struct isci_request *ireq, u32 idx)
  89{
  90	u32 offset;
  91
  92	if (idx == 0) {
  93		offset = (void *) &ireq->tc->sgl_pair_ab -
  94			 (void *) &ihost->task_context_table[0];
  95		return ihost->tc_dma + offset;
  96	} else if (idx == 1) {
  97		offset = (void *) &ireq->tc->sgl_pair_cd -
  98			 (void *) &ihost->task_context_table[0];
  99		return ihost->tc_dma + offset;
 100	}
 101
 102	return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]);
 103}
 104
 105static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg)
 106{
 107	e->length = sg_dma_len(sg);
 108	e->address_upper = upper_32_bits(sg_dma_address(sg));
 109	e->address_lower = lower_32_bits(sg_dma_address(sg));
 110	e->address_modifier = 0;
 111}
 112
 113static void sci_request_build_sgl(struct isci_request *ireq)
 114{
 115	struct isci_host *ihost = ireq->isci_host;
 116	struct sas_task *task = isci_request_access_task(ireq);
 117	struct scatterlist *sg = NULL;
 118	dma_addr_t dma_addr;
 119	u32 sg_idx = 0;
 120	struct scu_sgl_element_pair *scu_sg   = NULL;
 121	struct scu_sgl_element_pair *prev_sg  = NULL;
 122
 123	if (task->num_scatter > 0) {
 124		sg = task->scatter;
 125
 126		while (sg) {
 127			scu_sg = to_sgl_element_pair(ireq, sg_idx);
 128			init_sgl_element(&scu_sg->A, sg);
 129			sg = sg_next(sg);
 130			if (sg) {
 131				init_sgl_element(&scu_sg->B, sg);
 132				sg = sg_next(sg);
 133			} else
 134				memset(&scu_sg->B, 0, sizeof(scu_sg->B));
 135
 136			if (prev_sg) {
 137				dma_addr = to_sgl_element_pair_dma(ihost,
 138								   ireq,
 139								   sg_idx);
 140
 141				prev_sg->next_pair_upper =
 142					upper_32_bits(dma_addr);
 143				prev_sg->next_pair_lower =
 144					lower_32_bits(dma_addr);
 145			}
 146
 147			prev_sg = scu_sg;
 148			sg_idx++;
 149		}
 150	} else {	/* handle when no sg */
 151		scu_sg = to_sgl_element_pair(ireq, sg_idx);
 152
 153		dma_addr = dma_map_single(&ihost->pdev->dev,
 154					  task->scatter,
 155					  task->total_xfer_len,
 156					  task->data_dir);
 157
 158		ireq->zero_scatter_daddr = dma_addr;
 159
 160		scu_sg->A.length = task->total_xfer_len;
 161		scu_sg->A.address_upper = upper_32_bits(dma_addr);
 162		scu_sg->A.address_lower = lower_32_bits(dma_addr);
 163	}
 164
 165	if (scu_sg) {
 166		scu_sg->next_pair_upper = 0;
 167		scu_sg->next_pair_lower = 0;
 168	}
 169}
 170
 171static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq)
 172{
 173	struct ssp_cmd_iu *cmd_iu;
 174	struct sas_task *task = isci_request_access_task(ireq);
 175
 176	cmd_iu = &ireq->ssp.cmd;
 177
 178	memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
 179	cmd_iu->add_cdb_len = 0;
 180	cmd_iu->_r_a = 0;
 181	cmd_iu->_r_b = 0;
 182	cmd_iu->en_fburst = 0; /* unsupported */
 183	cmd_iu->task_prio = task->ssp_task.task_prio;
 184	cmd_iu->task_attr = task->ssp_task.task_attr;
 185	cmd_iu->_r_c = 0;
 186
 187	sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cmd->cmnd,
 188		       (task->ssp_task.cmd->cmd_len+3) / sizeof(u32));
 189}
 190
 191static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq)
 192{
 193	struct ssp_task_iu *task_iu;
 194	struct sas_task *task = isci_request_access_task(ireq);
 195	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
 196
 197	task_iu = &ireq->ssp.tmf;
 198
 199	memset(task_iu, 0, sizeof(struct ssp_task_iu));
 200
 201	memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
 202
 203	task_iu->task_func = isci_tmf->tmf_code;
 204	task_iu->task_tag =
 205		(test_bit(IREQ_TMF, &ireq->flags)) ?
 206		isci_tmf->io_tag :
 207		SCI_CONTROLLER_INVALID_IO_TAG;
 208}
 209
 210/*
 211 * This method is will fill in the SCU Task Context for any type of SSP request.
 
 
 
 212 */
 213static void scu_ssp_request_construct_task_context(
 214	struct isci_request *ireq,
 215	struct scu_task_context *task_context)
 216{
 217	dma_addr_t dma_addr;
 218	struct isci_remote_device *idev;
 219	struct isci_port *iport;
 220
 221	idev = ireq->target_device;
 222	iport = idev->owning_port;
 223
 224	/* Fill in the TC with its required data */
 225	task_context->abort = 0;
 226	task_context->priority = 0;
 227	task_context->initiator_request = 1;
 228	task_context->connection_rate = idev->connection_rate;
 229	task_context->protocol_engine_index = ISCI_PEG;
 230	task_context->logical_port_index = iport->physical_port_index;
 231	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
 232	task_context->valid = SCU_TASK_CONTEXT_VALID;
 233	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
 234
 235	task_context->remote_node_index = idev->rnc.remote_node_index;
 236	task_context->command_code = 0;
 237
 238	task_context->link_layer_control = 0;
 239	task_context->do_not_dma_ssp_good_response = 1;
 240	task_context->strict_ordering = 0;
 241	task_context->control_frame = 0;
 242	task_context->timeout_enable = 0;
 243	task_context->block_guard_enable = 0;
 244
 245	task_context->address_modifier = 0;
 246
 247	/* task_context->type.ssp.tag = ireq->io_tag; */
 248	task_context->task_phase = 0x01;
 249
 250	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
 251			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
 252			      (iport->physical_port_index <<
 253			       SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
 254			      ISCI_TAG_TCI(ireq->io_tag));
 255
 256	/*
 257	 * Copy the physical address for the command buffer to the
 258	 * SCU Task Context
 259	 */
 260	dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd);
 261
 262	task_context->command_iu_upper = upper_32_bits(dma_addr);
 263	task_context->command_iu_lower = lower_32_bits(dma_addr);
 264
 265	/*
 266	 * Copy the physical address for the response buffer to the
 267	 * SCU Task Context
 268	 */
 269	dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp);
 270
 271	task_context->response_iu_upper = upper_32_bits(dma_addr);
 272	task_context->response_iu_lower = lower_32_bits(dma_addr);
 273}
 274
 275static u8 scu_bg_blk_size(struct scsi_device *sdp)
 276{
 277	switch (sdp->sector_size) {
 278	case 512:
 279		return 0;
 280	case 1024:
 281		return 1;
 282	case 4096:
 283		return 3;
 284	default:
 285		return 0xff;
 286	}
 287}
 288
 289static u32 scu_dif_bytes(u32 len, u32 sector_size)
 290{
 291	return (len >> ilog2(sector_size)) * 8;
 292}
 293
 294static void scu_ssp_ireq_dif_insert(struct isci_request *ireq, u8 type, u8 op)
 295{
 296	struct scu_task_context *tc = ireq->tc;
 297	struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
 298	u8 blk_sz = scu_bg_blk_size(scmd->device);
 299
 300	tc->block_guard_enable = 1;
 301	tc->blk_prot_en = 1;
 302	tc->blk_sz = blk_sz;
 303	/* DIF write insert */
 304	tc->blk_prot_func = 0x2;
 305
 306	tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
 307						   scmd->device->sector_size);
 308
 309	/* always init to 0, used by hw */
 310	tc->interm_crc_val = 0;
 311
 312	tc->init_crc_seed = 0;
 313	tc->app_tag_verify = 0;
 314	tc->app_tag_gen = 0;
 315	tc->ref_tag_seed_verify = 0;
 316
 317	/* always init to same as bg_blk_sz */
 318	tc->UD_bytes_immed_val = scmd->device->sector_size;
 319
 320	tc->reserved_DC_0 = 0;
 321
 322	/* always init to 8 */
 323	tc->DIF_bytes_immed_val = 8;
 324
 325	tc->reserved_DC_1 = 0;
 326	tc->bgc_blk_sz = scmd->device->sector_size;
 327	tc->reserved_E0_0 = 0;
 328	tc->app_tag_gen_mask = 0;
 329
 330	/** setup block guard control **/
 331	tc->bgctl = 0;
 332
 333	/* DIF write insert */
 334	tc->bgctl_f.op = 0x2;
 335
 336	tc->app_tag_verify_mask = 0;
 337
 338	/* must init to 0 for hw */
 339	tc->blk_guard_err = 0;
 340
 341	tc->reserved_E8_0 = 0;
 342
 343	if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
 344		tc->ref_tag_seed_gen = scsi_get_lba(scmd) & 0xffffffff;
 345	else if (type & SCSI_PROT_DIF_TYPE3)
 346		tc->ref_tag_seed_gen = 0;
 347}
 348
 349static void scu_ssp_ireq_dif_strip(struct isci_request *ireq, u8 type, u8 op)
 350{
 351	struct scu_task_context *tc = ireq->tc;
 352	struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
 353	u8 blk_sz = scu_bg_blk_size(scmd->device);
 354
 355	tc->block_guard_enable = 1;
 356	tc->blk_prot_en = 1;
 357	tc->blk_sz = blk_sz;
 358	/* DIF read strip */
 359	tc->blk_prot_func = 0x1;
 360
 361	tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
 362						   scmd->device->sector_size);
 363
 364	/* always init to 0, used by hw */
 365	tc->interm_crc_val = 0;
 366
 367	tc->init_crc_seed = 0;
 368	tc->app_tag_verify = 0;
 369	tc->app_tag_gen = 0;
 370
 371	if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
 372		tc->ref_tag_seed_verify = scsi_get_lba(scmd) & 0xffffffff;
 373	else if (type & SCSI_PROT_DIF_TYPE3)
 374		tc->ref_tag_seed_verify = 0;
 375
 376	/* always init to same as bg_blk_sz */
 377	tc->UD_bytes_immed_val = scmd->device->sector_size;
 378
 379	tc->reserved_DC_0 = 0;
 380
 381	/* always init to 8 */
 382	tc->DIF_bytes_immed_val = 8;
 383
 384	tc->reserved_DC_1 = 0;
 385	tc->bgc_blk_sz = scmd->device->sector_size;
 386	tc->reserved_E0_0 = 0;
 387	tc->app_tag_gen_mask = 0;
 388
 389	/** setup block guard control **/
 390	tc->bgctl = 0;
 391
 392	/* DIF read strip */
 393	tc->bgctl_f.crc_verify = 1;
 394	tc->bgctl_f.op = 0x1;
 395	if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2)) {
 396		tc->bgctl_f.ref_tag_chk = 1;
 397		tc->bgctl_f.app_f_detect = 1;
 398	} else if (type & SCSI_PROT_DIF_TYPE3)
 399		tc->bgctl_f.app_ref_f_detect = 1;
 400
 401	tc->app_tag_verify_mask = 0;
 402
 403	/* must init to 0 for hw */
 404	tc->blk_guard_err = 0;
 405
 406	tc->reserved_E8_0 = 0;
 407	tc->ref_tag_seed_gen = 0;
 408}
 409
 410/*
 411 * This method is will fill in the SCU Task Context for a SSP IO request.
 
 
 412 */
 413static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq,
 414						      enum dma_data_direction dir,
 415						      u32 len)
 416{
 417	struct scu_task_context *task_context = ireq->tc;
 418	struct sas_task *sas_task = ireq->ttype_ptr.io_task_ptr;
 419	struct scsi_cmnd *scmd = sas_task->uldd_task;
 420	u8 prot_type = scsi_get_prot_type(scmd);
 421	u8 prot_op = scsi_get_prot_op(scmd);
 422
 423	scu_ssp_request_construct_task_context(ireq, task_context);
 424
 425	task_context->ssp_command_iu_length =
 426		sizeof(struct ssp_cmd_iu) / sizeof(u32);
 427	task_context->type.ssp.frame_type = SSP_COMMAND;
 428
 429	switch (dir) {
 430	case DMA_FROM_DEVICE:
 431	case DMA_NONE:
 432	default:
 433		task_context->task_type = SCU_TASK_TYPE_IOREAD;
 434		break;
 435	case DMA_TO_DEVICE:
 436		task_context->task_type = SCU_TASK_TYPE_IOWRITE;
 437		break;
 438	}
 439
 440	task_context->transfer_length_bytes = len;
 441
 442	if (task_context->transfer_length_bytes > 0)
 443		sci_request_build_sgl(ireq);
 444
 445	if (prot_type != SCSI_PROT_DIF_TYPE0) {
 446		if (prot_op == SCSI_PROT_READ_STRIP)
 447			scu_ssp_ireq_dif_strip(ireq, prot_type, prot_op);
 448		else if (prot_op == SCSI_PROT_WRITE_INSERT)
 449			scu_ssp_ireq_dif_insert(ireq, prot_type, prot_op);
 450	}
 451}
 452
 453/**
 454 * scu_ssp_task_request_construct_task_context() - This method will fill in
 455 *    the SCU Task Context for a SSP Task request.  The following important
 456 *    settings are utilized: -# priority == SCU_TASK_PRIORITY_HIGH.  This
 457 *    ensures that the task request is issued ahead of other task destined
 458 *    for the same Remote Node. -# task_type == SCU_TASK_TYPE_IOREAD.  This
 459 *    simply indicates that a normal request type (i.e. non-raw frame) is
 460 *    being utilized to perform task management. -#control_frame == 1.  This
 461 *    ensures that the proper endianness is set so that the bytes are
 462 *    transmitted in the right order for a task frame.
 463 * @ireq: This parameter specifies the task request object being constructed.
 
 464 */
 465static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq)
 466{
 467	struct scu_task_context *task_context = ireq->tc;
 468
 469	scu_ssp_request_construct_task_context(ireq, task_context);
 470
 471	task_context->control_frame                = 1;
 472	task_context->priority                     = SCU_TASK_PRIORITY_HIGH;
 473	task_context->task_type                    = SCU_TASK_TYPE_RAW_FRAME;
 474	task_context->transfer_length_bytes        = 0;
 475	task_context->type.ssp.frame_type          = SSP_TASK;
 476	task_context->ssp_command_iu_length =
 477		sizeof(struct ssp_task_iu) / sizeof(u32);
 478}
 479
 480/**
 481 * scu_sata_request_construct_task_context()
 482 * This method is will fill in the SCU Task Context for any type of SATA
 483 *    request.  This is called from the various SATA constructors.
 484 * @ireq: The general IO request object which is to be used in
 485 *    constructing the SCU task context.
 486 * @task_context: The buffer pointer for the SCU task context which is being
 487 *    constructed.
 488 *
 489 * The general io request construction is complete. The buffer assignment for
 490 * the command buffer is complete. none Revisit task context construction to
 491 * determine what is common for SSP/SMP/STP task context structures.
 492 */
 493static void scu_sata_request_construct_task_context(
 494	struct isci_request *ireq,
 495	struct scu_task_context *task_context)
 496{
 497	dma_addr_t dma_addr;
 498	struct isci_remote_device *idev;
 499	struct isci_port *iport;
 500
 501	idev = ireq->target_device;
 502	iport = idev->owning_port;
 503
 504	/* Fill in the TC with its required data */
 505	task_context->abort = 0;
 506	task_context->priority = SCU_TASK_PRIORITY_NORMAL;
 507	task_context->initiator_request = 1;
 508	task_context->connection_rate = idev->connection_rate;
 509	task_context->protocol_engine_index = ISCI_PEG;
 510	task_context->logical_port_index = iport->physical_port_index;
 511	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
 512	task_context->valid = SCU_TASK_CONTEXT_VALID;
 513	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
 514
 515	task_context->remote_node_index = idev->rnc.remote_node_index;
 516	task_context->command_code = 0;
 517
 518	task_context->link_layer_control = 0;
 519	task_context->do_not_dma_ssp_good_response = 1;
 520	task_context->strict_ordering = 0;
 521	task_context->control_frame = 0;
 522	task_context->timeout_enable = 0;
 523	task_context->block_guard_enable = 0;
 524
 525	task_context->address_modifier = 0;
 526	task_context->task_phase = 0x01;
 527
 528	task_context->ssp_command_iu_length =
 529		(sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
 530
 531	/* Set the first word of the H2D REG FIS */
 532	task_context->type.words[0] = *(u32 *)&ireq->stp.cmd;
 533
 534	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
 535			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
 536			      (iport->physical_port_index <<
 537			       SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
 538			      ISCI_TAG_TCI(ireq->io_tag));
 539	/*
 540	 * Copy the physical address for the command buffer to the SCU Task
 541	 * Context. We must offset the command buffer by 4 bytes because the
 542	 * first 4 bytes are transfered in the body of the TC.
 543	 */
 544	dma_addr = sci_io_request_get_dma_addr(ireq,
 545						((char *) &ireq->stp.cmd) +
 546						sizeof(u32));
 547
 548	task_context->command_iu_upper = upper_32_bits(dma_addr);
 549	task_context->command_iu_lower = lower_32_bits(dma_addr);
 550
 551	/* SATA Requests do not have a response buffer */
 552	task_context->response_iu_upper = 0;
 553	task_context->response_iu_lower = 0;
 554}
 555
 556static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq)
 557{
 558	struct scu_task_context *task_context = ireq->tc;
 559
 560	scu_sata_request_construct_task_context(ireq, task_context);
 561
 562	task_context->control_frame         = 0;
 563	task_context->priority              = SCU_TASK_PRIORITY_NORMAL;
 564	task_context->task_type             = SCU_TASK_TYPE_SATA_RAW_FRAME;
 565	task_context->type.stp.fis_type     = FIS_REGH2D;
 566	task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
 567}
 568
 569static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq,
 570							  bool copy_rx_frame)
 571{
 572	struct isci_stp_request *stp_req = &ireq->stp.req;
 573
 574	scu_stp_raw_request_construct_task_context(ireq);
 575
 576	stp_req->status = 0;
 577	stp_req->sgl.offset = 0;
 578	stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A;
 579
 580	if (copy_rx_frame) {
 581		sci_request_build_sgl(ireq);
 582		stp_req->sgl.index = 0;
 583	} else {
 584		/* The user does not want the data copied to the SGL buffer location */
 585		stp_req->sgl.index = -1;
 586	}
 587
 588	return SCI_SUCCESS;
 589}
 590
 591/*
 592 * sci_stp_optimized_request_construct()
 593 * @ireq: This parameter specifies the request to be constructed as an
 594 *    optimized request.
 595 * @optimized_task_type: This parameter specifies whether the request is to be
 596 *    an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
 597 *    value of 1 indicates NCQ.
 598 *
 599 * This method will perform request construction common to all types of STP
 600 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
 601 * returns an indication as to whether the construction was successful.
 602 */
 603static void sci_stp_optimized_request_construct(struct isci_request *ireq,
 604						     u8 optimized_task_type,
 605						     u32 len,
 606						     enum dma_data_direction dir)
 607{
 608	struct scu_task_context *task_context = ireq->tc;
 609
 610	/* Build the STP task context structure */
 611	scu_sata_request_construct_task_context(ireq, task_context);
 612
 613	/* Copy over the SGL elements */
 614	sci_request_build_sgl(ireq);
 615
 616	/* Copy over the number of bytes to be transfered */
 617	task_context->transfer_length_bytes = len;
 618
 619	if (dir == DMA_TO_DEVICE) {
 620		/*
 621		 * The difference between the DMA IN and DMA OUT request task type
 622		 * values are consistent with the difference between FPDMA READ
 623		 * and FPDMA WRITE values.  Add the supplied task type parameter
 624		 * to this difference to set the task type properly for this
 625		 * DATA OUT (WRITE) case. */
 626		task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
 627								 - SCU_TASK_TYPE_DMA_IN);
 628	} else {
 629		/*
 630		 * For the DATA IN (READ) case, simply save the supplied
 631		 * optimized task type. */
 632		task_context->task_type = optimized_task_type;
 633	}
 634}
 635
 636static void sci_atapi_construct(struct isci_request *ireq)
 637{
 638	struct host_to_dev_fis *h2d_fis = &ireq->stp.cmd;
 639	struct sas_task *task;
 640
 641	/* To simplify the implementation we take advantage of the
 642	 * silicon's partial acceleration of atapi protocol (dma data
 643	 * transfers), so we promote all commands to dma protocol.  This
 644	 * breaks compatibility with ATA_HORKAGE_ATAPI_MOD16_DMA drives.
 645	 */
 646	h2d_fis->features |= ATAPI_PKT_DMA;
 647
 648	scu_stp_raw_request_construct_task_context(ireq);
 649
 650	task = isci_request_access_task(ireq);
 651	if (task->data_dir == DMA_NONE)
 652		task->total_xfer_len = 0;
 653
 654	/* clear the response so we can detect arrivial of an
 655	 * unsolicited h2d fis
 656	 */
 657	ireq->stp.rsp.fis_type = 0;
 658}
 659
 660static enum sci_status
 661sci_io_request_construct_sata(struct isci_request *ireq,
 662			       u32 len,
 663			       enum dma_data_direction dir,
 664			       bool copy)
 665{
 666	enum sci_status status = SCI_SUCCESS;
 667	struct sas_task *task = isci_request_access_task(ireq);
 668	struct domain_device *dev = ireq->target_device->domain_dev;
 669
 670	/* check for management protocols */
 671	if (test_bit(IREQ_TMF, &ireq->flags)) {
 672		struct isci_tmf *tmf = isci_request_access_tmf(ireq);
 673
 674		dev_err(&ireq->owning_controller->pdev->dev,
 675			"%s: Request 0x%p received un-handled SAT "
 676			"management protocol 0x%x.\n",
 677			__func__, ireq, tmf->tmf_code);
 678
 679		return SCI_FAILURE;
 680	}
 681
 682	if (!sas_protocol_ata(task->task_proto)) {
 683		dev_err(&ireq->owning_controller->pdev->dev,
 684			"%s: Non-ATA protocol in SATA path: 0x%x\n",
 685			__func__,
 686			task->task_proto);
 687		return SCI_FAILURE;
 688
 689	}
 690
 691	/* ATAPI */
 692	if (dev->sata_dev.class == ATA_DEV_ATAPI &&
 693	    task->ata_task.fis.command == ATA_CMD_PACKET) {
 694		sci_atapi_construct(ireq);
 695		return SCI_SUCCESS;
 696	}
 697
 698	/* non data */
 699	if (task->data_dir == DMA_NONE) {
 700		scu_stp_raw_request_construct_task_context(ireq);
 701		return SCI_SUCCESS;
 702	}
 703
 704	/* NCQ */
 705	if (task->ata_task.use_ncq) {
 706		sci_stp_optimized_request_construct(ireq,
 707							 SCU_TASK_TYPE_FPDMAQ_READ,
 708							 len, dir);
 709		return SCI_SUCCESS;
 710	}
 711
 712	/* DMA */
 713	if (task->ata_task.dma_xfer) {
 714		sci_stp_optimized_request_construct(ireq,
 715							 SCU_TASK_TYPE_DMA_IN,
 716							 len, dir);
 717		return SCI_SUCCESS;
 718	} else /* PIO */
 719		return sci_stp_pio_request_construct(ireq, copy);
 720
 721	return status;
 722}
 723
 724static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq)
 725{
 726	struct sas_task *task = isci_request_access_task(ireq);
 727
 728	ireq->protocol = SAS_PROTOCOL_SSP;
 729
 730	scu_ssp_io_request_construct_task_context(ireq,
 731						  task->data_dir,
 732						  task->total_xfer_len);
 733
 734	sci_io_request_build_ssp_command_iu(ireq);
 735
 736	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
 737
 738	return SCI_SUCCESS;
 739}
 740
 741enum sci_status sci_task_request_construct_ssp(
 742	struct isci_request *ireq)
 743{
 744	/* Construct the SSP Task SCU Task Context */
 745	scu_ssp_task_request_construct_task_context(ireq);
 746
 747	/* Fill in the SSP Task IU */
 748	sci_task_request_build_ssp_task_iu(ireq);
 749
 750	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
 751
 752	return SCI_SUCCESS;
 753}
 754
 755static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq)
 756{
 757	enum sci_status status;
 758	bool copy = false;
 759	struct sas_task *task = isci_request_access_task(ireq);
 760
 761	ireq->protocol = SAS_PROTOCOL_STP;
 762
 763	copy = (task->data_dir == DMA_NONE) ? false : true;
 764
 765	status = sci_io_request_construct_sata(ireq,
 766						task->total_xfer_len,
 767						task->data_dir,
 768						copy);
 769
 770	if (status == SCI_SUCCESS)
 771		sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
 772
 773	return status;
 774}
 775
 776#define SCU_TASK_CONTEXT_SRAM 0x200000
 777/**
 778 * sci_req_tx_bytes - bytes transferred when reply underruns request
 779 * @ireq: request that was terminated early
 780 */
 
 781static u32 sci_req_tx_bytes(struct isci_request *ireq)
 782{
 783	struct isci_host *ihost = ireq->owning_controller;
 784	u32 ret_val = 0;
 785
 786	if (readl(&ihost->smu_registers->address_modifier) == 0) {
 787		void __iomem *scu_reg_base = ihost->scu_registers;
 788
 789		/* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
 790		 *   BAR1 is the scu_registers
 791		 *   0x20002C = 0x200000 + 0x2c
 792		 *            = start of task context SRAM + offset of (type.ssp.data_offset)
 793		 *   TCi is the io_tag of struct sci_request
 794		 */
 795		ret_val = readl(scu_reg_base +
 796				(SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
 797				((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag)));
 798	}
 799
 800	return ret_val;
 801}
 802
 803enum sci_status sci_request_start(struct isci_request *ireq)
 804{
 805	enum sci_base_request_states state;
 806	struct scu_task_context *tc = ireq->tc;
 807	struct isci_host *ihost = ireq->owning_controller;
 808
 809	state = ireq->sm.current_state_id;
 810	if (state != SCI_REQ_CONSTRUCTED) {
 811		dev_warn(&ihost->pdev->dev,
 812			"%s: SCIC IO Request requested to start while in wrong "
 813			 "state %d\n", __func__, state);
 814		return SCI_FAILURE_INVALID_STATE;
 815	}
 816
 817	tc->task_index = ISCI_TAG_TCI(ireq->io_tag);
 818
 819	switch (tc->protocol_type) {
 820	case SCU_TASK_CONTEXT_PROTOCOL_SMP:
 821	case SCU_TASK_CONTEXT_PROTOCOL_SSP:
 822		/* SSP/SMP Frame */
 823		tc->type.ssp.tag = ireq->io_tag;
 824		tc->type.ssp.target_port_transfer_tag = 0xFFFF;
 825		break;
 826
 827	case SCU_TASK_CONTEXT_PROTOCOL_STP:
 828		/* STP/SATA Frame
 829		 * tc->type.stp.ncq_tag = ireq->ncq_tag;
 830		 */
 831		break;
 832
 833	case SCU_TASK_CONTEXT_PROTOCOL_NONE:
 834		/* / @todo When do we set no protocol type? */
 835		break;
 836
 837	default:
 838		/* This should never happen since we build the IO
 839		 * requests */
 840		break;
 841	}
 842
 843	/* Add to the post_context the io tag value */
 844	ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag);
 845
 846	/* Everything is good go ahead and change state */
 847	sci_change_state(&ireq->sm, SCI_REQ_STARTED);
 848
 849	return SCI_SUCCESS;
 850}
 851
 852enum sci_status
 853sci_io_request_terminate(struct isci_request *ireq)
 854{
 855	enum sci_base_request_states state;
 856
 857	state = ireq->sm.current_state_id;
 858
 859	switch (state) {
 860	case SCI_REQ_CONSTRUCTED:
 861		/* Set to make sure no HW terminate posting is done: */
 862		set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags);
 863		ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
 864		ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
 865		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
 866		return SCI_SUCCESS;
 867	case SCI_REQ_STARTED:
 868	case SCI_REQ_TASK_WAIT_TC_COMP:
 869	case SCI_REQ_SMP_WAIT_RESP:
 870	case SCI_REQ_SMP_WAIT_TC_COMP:
 871	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
 872	case SCI_REQ_STP_UDMA_WAIT_D2H:
 873	case SCI_REQ_STP_NON_DATA_WAIT_H2D:
 874	case SCI_REQ_STP_NON_DATA_WAIT_D2H:
 875	case SCI_REQ_STP_PIO_WAIT_H2D:
 876	case SCI_REQ_STP_PIO_WAIT_FRAME:
 877	case SCI_REQ_STP_PIO_DATA_IN:
 878	case SCI_REQ_STP_PIO_DATA_OUT:
 879	case SCI_REQ_ATAPI_WAIT_H2D:
 880	case SCI_REQ_ATAPI_WAIT_PIO_SETUP:
 881	case SCI_REQ_ATAPI_WAIT_D2H:
 882	case SCI_REQ_ATAPI_WAIT_TC_COMP:
 883		/* Fall through and change state to ABORTING... */
 884	case SCI_REQ_TASK_WAIT_TC_RESP:
 885		/* The task frame was already confirmed to have been
 886		 * sent by the SCU HW.  Since the state machine is
 887		 * now only waiting for the task response itself,
 888		 * abort the request and complete it immediately
 889		 * and don't wait for the task response.
 890		 */
 891		sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
 892		fallthrough;	/* and handle like ABORTING */
 893	case SCI_REQ_ABORTING:
 894		if (!isci_remote_device_is_safe_to_abort(ireq->target_device))
 895			set_bit(IREQ_PENDING_ABORT, &ireq->flags);
 896		else
 897			clear_bit(IREQ_PENDING_ABORT, &ireq->flags);
 898		/* If the request is only waiting on the remote device
 899		 * suspension, return SUCCESS so the caller will wait too.
 900		 */
 901		return SCI_SUCCESS;
 902	case SCI_REQ_COMPLETED:
 903	default:
 904		dev_warn(&ireq->owning_controller->pdev->dev,
 905			 "%s: SCIC IO Request requested to abort while in wrong "
 906			 "state %d\n", __func__, ireq->sm.current_state_id);
 907		break;
 908	}
 909
 910	return SCI_FAILURE_INVALID_STATE;
 911}
 912
 913enum sci_status sci_request_complete(struct isci_request *ireq)
 914{
 915	enum sci_base_request_states state;
 916	struct isci_host *ihost = ireq->owning_controller;
 917
 918	state = ireq->sm.current_state_id;
 919	if (WARN_ONCE(state != SCI_REQ_COMPLETED,
 920		      "isci: request completion from wrong state (%s)\n",
 921		      req_state_name(state)))
 922		return SCI_FAILURE_INVALID_STATE;
 923
 924	if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
 925		sci_controller_release_frame(ihost,
 926						  ireq->saved_rx_frame_index);
 927
 928	/* XXX can we just stop the machine and remove the 'final' state? */
 929	sci_change_state(&ireq->sm, SCI_REQ_FINAL);
 930	return SCI_SUCCESS;
 931}
 932
 933enum sci_status sci_io_request_event_handler(struct isci_request *ireq,
 934						  u32 event_code)
 935{
 936	enum sci_base_request_states state;
 937	struct isci_host *ihost = ireq->owning_controller;
 938
 939	state = ireq->sm.current_state_id;
 940
 941	if (state != SCI_REQ_STP_PIO_DATA_IN) {
 942		dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %s\n",
 943			 __func__, event_code, req_state_name(state));
 944
 945		return SCI_FAILURE_INVALID_STATE;
 946	}
 947
 948	switch (scu_get_event_specifier(event_code)) {
 949	case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
 950		/* We are waiting for data and the SCU has R_ERR the data frame.
 951		 * Go back to waiting for the D2H Register FIS
 952		 */
 953		sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
 954		return SCI_SUCCESS;
 955	default:
 956		dev_err(&ihost->pdev->dev,
 957			"%s: pio request unexpected event %#x\n",
 958			__func__, event_code);
 959
 960		/* TODO Should we fail the PIO request when we get an
 961		 * unexpected event?
 962		 */
 963		return SCI_FAILURE;
 964	}
 965}
 966
 967/*
 968 * This function copies response data for requests returning response data
 969 *    instead of sense data.
 970 * @sci_req: This parameter specifies the request object for which to copy
 971 *    the response data.
 972 */
 973static void sci_io_request_copy_response(struct isci_request *ireq)
 974{
 975	void *resp_buf;
 976	u32 len;
 977	struct ssp_response_iu *ssp_response;
 978	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
 979
 980	ssp_response = &ireq->ssp.rsp;
 981
 982	resp_buf = &isci_tmf->resp.resp_iu;
 983
 984	len = min_t(u32,
 985		    SSP_RESP_IU_MAX_SIZE,
 986		    be32_to_cpu(ssp_response->response_data_len));
 987
 988	memcpy(resp_buf, ssp_response->resp_data, len);
 989}
 990
 991static enum sci_status
 992request_started_state_tc_event(struct isci_request *ireq,
 993			       u32 completion_code)
 994{
 995	struct ssp_response_iu *resp_iu;
 996	u8 datapres;
 997
 998	/* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
 999	 * to determine SDMA status
1000	 */
1001	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1002	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1003		ireq->scu_status = SCU_TASK_DONE_GOOD;
1004		ireq->sci_status = SCI_SUCCESS;
1005		break;
1006	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
1007		/* There are times when the SCU hardware will return an early
1008		 * response because the io request specified more data than is
1009		 * returned by the target device (mode pages, inquiry data,
1010		 * etc.).  We must check the response stats to see if this is
1011		 * truly a failed request or a good request that just got
1012		 * completed early.
1013		 */
1014		struct ssp_response_iu *resp = &ireq->ssp.rsp;
1015		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1016
1017		sci_swab32_cpy(&ireq->ssp.rsp,
1018			       &ireq->ssp.rsp,
1019			       word_cnt);
1020
1021		if (resp->status == 0) {
1022			ireq->scu_status = SCU_TASK_DONE_GOOD;
1023			ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
1024		} else {
1025			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1026			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1027		}
1028		break;
1029	}
1030	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
1031		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1032
1033		sci_swab32_cpy(&ireq->ssp.rsp,
1034			       &ireq->ssp.rsp,
1035			       word_cnt);
1036
1037		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1038		ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1039		break;
1040	}
1041
1042	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
1043		/* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
1044		 * guaranteed to be received before this completion status is
1045		 * posted?
1046		 */
1047		resp_iu = &ireq->ssp.rsp;
1048		datapres = resp_iu->datapres;
1049
1050		if (datapres == 1 || datapres == 2) {
1051			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1052			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1053		} else {
1054			ireq->scu_status = SCU_TASK_DONE_GOOD;
1055			ireq->sci_status = SCI_SUCCESS;
1056		}
1057		break;
1058	/* only stp device gets suspended. */
1059	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1060	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
1061	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
1062	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
1063	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
1064	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
1065	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
1066	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
1067	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
1068	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
1069	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
1070		if (ireq->protocol == SAS_PROTOCOL_STP) {
1071			ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1072					   SCU_COMPLETION_TL_STATUS_SHIFT;
1073			ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1074		} else {
1075			ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1076					   SCU_COMPLETION_TL_STATUS_SHIFT;
1077			ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1078		}
1079		break;
1080
1081	/* both stp/ssp device gets suspended */
1082	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
1083	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
1084	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
1085	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
1086	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
1087	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
1088	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
1089	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
1090	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
1091	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
1092		ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1093				   SCU_COMPLETION_TL_STATUS_SHIFT;
1094		ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1095		break;
1096
1097	/* neither ssp nor stp gets suspended. */
1098	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
1099	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
1100	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
1101	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
1102	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
1103	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
1104	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1105	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1106	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1107	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1108	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
1109	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
1110	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
1111	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
1112	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
1113	default:
1114		ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1115				   SCU_COMPLETION_TL_STATUS_SHIFT;
1116		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1117		break;
1118	}
1119
1120	/*
1121	 * TODO: This is probably wrong for ACK/NAK timeout conditions
1122	 */
1123
1124	/* In all cases we will treat this as the completion of the IO req. */
1125	sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1126	return SCI_SUCCESS;
1127}
1128
1129static enum sci_status
1130request_aborting_state_tc_event(struct isci_request *ireq,
1131				u32 completion_code)
1132{
1133	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1134	case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
1135	case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
1136		ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
1137		ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
1138		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1139		break;
1140
1141	default:
1142		/* Unless we get some strange error wait for the task abort to complete
1143		 * TODO: Should there be a state change for this completion?
1144		 */
1145		break;
1146	}
1147
1148	return SCI_SUCCESS;
1149}
1150
1151static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq,
1152						       u32 completion_code)
1153{
1154	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1155	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1156		ireq->scu_status = SCU_TASK_DONE_GOOD;
1157		ireq->sci_status = SCI_SUCCESS;
1158		sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1159		break;
1160	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1161		/* Currently, the decision is to simply allow the task request
1162		 * to timeout if the task IU wasn't received successfully.
1163		 * There is a potential for receiving multiple task responses if
1164		 * we decide to send the task IU again.
1165		 */
1166		dev_warn(&ireq->owning_controller->pdev->dev,
1167			 "%s: TaskRequest:0x%p CompletionCode:%x - "
1168			 "ACK/NAK timeout\n", __func__, ireq,
1169			 completion_code);
1170
1171		sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1172		break;
1173	default:
1174		/*
1175		 * All other completion status cause the IO to be complete.
1176		 * If a NAK was received, then it is up to the user to retry
1177		 * the request.
1178		 */
1179		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1180		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1181		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1182		break;
1183	}
1184
1185	return SCI_SUCCESS;
1186}
1187
1188static enum sci_status
1189smp_request_await_response_tc_event(struct isci_request *ireq,
1190				    u32 completion_code)
1191{
1192	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1193	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1194		/* In the AWAIT RESPONSE state, any TC completion is
1195		 * unexpected.  but if the TC has success status, we
1196		 * complete the IO anyway.
1197		 */
1198		ireq->scu_status = SCU_TASK_DONE_GOOD;
1199		ireq->sci_status = SCI_SUCCESS;
1200		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1201		break;
1202	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1203	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1204	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1205	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1206		/* These status has been seen in a specific LSI
1207		 * expander, which sometimes is not able to send smp
1208		 * response within 2 ms. This causes our hardware break
1209		 * the connection and set TC completion with one of
1210		 * these SMP_XXX_XX_ERR status. For these type of error,
1211		 * we ask ihost user to retry the request.
1212		 */
1213		ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR;
1214		ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED;
1215		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1216		break;
1217	default:
1218		/* All other completion status cause the IO to be complete.  If a NAK
1219		 * was received, then it is up to the user to retry the request
1220		 */
1221		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1222		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1223		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1224		break;
1225	}
1226
1227	return SCI_SUCCESS;
1228}
1229
1230static enum sci_status
1231smp_request_await_tc_event(struct isci_request *ireq,
1232			   u32 completion_code)
1233{
1234	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1235	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1236		ireq->scu_status = SCU_TASK_DONE_GOOD;
1237		ireq->sci_status = SCI_SUCCESS;
1238		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1239		break;
1240	default:
1241		/* All other completion status cause the IO to be
1242		 * complete.  If a NAK was received, then it is up to
1243		 * the user to retry the request.
1244		 */
1245		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1246		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1247		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1248		break;
1249	}
1250
1251	return SCI_SUCCESS;
1252}
1253
1254static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req)
1255{
1256	struct scu_sgl_element *sgl;
1257	struct scu_sgl_element_pair *sgl_pair;
1258	struct isci_request *ireq = to_ireq(stp_req);
1259	struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl;
1260
1261	sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1262	if (!sgl_pair)
1263		sgl = NULL;
1264	else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) {
1265		if (sgl_pair->B.address_lower == 0 &&
1266		    sgl_pair->B.address_upper == 0) {
1267			sgl = NULL;
1268		} else {
1269			pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B;
1270			sgl = &sgl_pair->B;
1271		}
1272	} else {
1273		if (sgl_pair->next_pair_lower == 0 &&
1274		    sgl_pair->next_pair_upper == 0) {
1275			sgl = NULL;
1276		} else {
1277			pio_sgl->index++;
1278			pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A;
1279			sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1280			sgl = &sgl_pair->A;
1281		}
1282	}
1283
1284	return sgl;
1285}
1286
1287static enum sci_status
1288stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq,
1289					u32 completion_code)
1290{
1291	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1292	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1293		ireq->scu_status = SCU_TASK_DONE_GOOD;
1294		ireq->sci_status = SCI_SUCCESS;
1295		sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
1296		break;
1297
1298	default:
1299		/* All other completion status cause the IO to be
1300		 * complete.  If a NAK was received, then it is up to
1301		 * the user to retry the request.
1302		 */
1303		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1304		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1305		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1306		break;
1307	}
1308
1309	return SCI_SUCCESS;
1310}
1311
1312#define SCU_MAX_FRAME_BUFFER_SIZE  0x400  /* 1K is the maximum SCU frame data payload */
1313
1314/* transmit DATA_FIS from (current sgl + offset) for input
1315 * parameter length. current sgl and offset is alreay stored in the IO request
1316 */
1317static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame(
1318	struct isci_request *ireq,
1319	u32 length)
1320{
1321	struct isci_stp_request *stp_req = &ireq->stp.req;
1322	struct scu_task_context *task_context = ireq->tc;
1323	struct scu_sgl_element_pair *sgl_pair;
1324	struct scu_sgl_element *current_sgl;
1325
1326	/* Recycle the TC and reconstruct it for sending out DATA FIS containing
1327	 * for the data from current_sgl+offset for the input length
1328	 */
1329	sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1330	if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A)
1331		current_sgl = &sgl_pair->A;
1332	else
1333		current_sgl = &sgl_pair->B;
1334
1335	/* update the TC */
1336	task_context->command_iu_upper = current_sgl->address_upper;
1337	task_context->command_iu_lower = current_sgl->address_lower;
1338	task_context->transfer_length_bytes = length;
1339	task_context->type.stp.fis_type = FIS_DATA;
1340
1341	/* send the new TC out. */
1342	return sci_controller_continue_io(ireq);
1343}
1344
1345static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq)
1346{
1347	struct isci_stp_request *stp_req = &ireq->stp.req;
1348	struct scu_sgl_element_pair *sgl_pair;
1349	enum sci_status status = SCI_SUCCESS;
1350	struct scu_sgl_element *sgl;
1351	u32 offset;
1352	u32 len = 0;
1353
1354	offset = stp_req->sgl.offset;
1355	sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1356	if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__))
1357		return SCI_FAILURE;
1358
1359	if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) {
1360		sgl = &sgl_pair->A;
1361		len = sgl_pair->A.length - offset;
1362	} else {
1363		sgl = &sgl_pair->B;
1364		len = sgl_pair->B.length - offset;
1365	}
1366
1367	if (stp_req->pio_len == 0)
1368		return SCI_SUCCESS;
1369
1370	if (stp_req->pio_len >= len) {
1371		status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len);
1372		if (status != SCI_SUCCESS)
1373			return status;
1374		stp_req->pio_len -= len;
1375
1376		/* update the current sgl, offset and save for future */
1377		sgl = pio_sgl_next(stp_req);
1378		offset = 0;
1379	} else if (stp_req->pio_len < len) {
1380		sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len);
1381
1382		/* Sgl offset will be adjusted and saved for future */
1383		offset += stp_req->pio_len;
1384		sgl->address_lower += stp_req->pio_len;
1385		stp_req->pio_len = 0;
1386	}
1387
1388	stp_req->sgl.offset = offset;
1389
1390	return status;
1391}
1392
1393/**
1394 * sci_stp_request_pio_data_in_copy_data_buffer()
1395 * @stp_req: The request that is used for the SGL processing.
1396 * @data_buf: The buffer of data to be copied.
1397 * @len: The length of the data transfer.
1398 *
1399 * Copy the data from the buffer for the length specified to the IO request SGL
1400 * specified data region. enum sci_status
1401 */
1402static enum sci_status
1403sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req,
1404					     u8 *data_buf, u32 len)
1405{
1406	struct isci_request *ireq;
1407	u8 *src_addr;
1408	int copy_len;
1409	struct sas_task *task;
1410	struct scatterlist *sg;
1411	void *kaddr;
1412	int total_len = len;
1413
1414	ireq = to_ireq(stp_req);
1415	task = isci_request_access_task(ireq);
1416	src_addr = data_buf;
1417
1418	if (task->num_scatter > 0) {
1419		sg = task->scatter;
1420
1421		while (total_len > 0) {
1422			struct page *page = sg_page(sg);
1423
1424			copy_len = min_t(int, total_len, sg_dma_len(sg));
1425			kaddr = kmap_atomic(page);
1426			memcpy(kaddr + sg->offset, src_addr, copy_len);
1427			kunmap_atomic(kaddr);
1428			total_len -= copy_len;
1429			src_addr += copy_len;
1430			sg = sg_next(sg);
1431		}
1432	} else {
1433		BUG_ON(task->total_xfer_len < total_len);
1434		memcpy(task->scatter, src_addr, total_len);
1435	}
1436
1437	return SCI_SUCCESS;
1438}
1439
1440/**
1441 * sci_stp_request_pio_data_in_copy_data()
1442 * @stp_req: The PIO DATA IN request that is to receive the data.
1443 * @data_buffer: The buffer to copy from.
1444 *
1445 * Copy the data buffer to the io request data region. enum sci_status
1446 */
1447static enum sci_status sci_stp_request_pio_data_in_copy_data(
1448	struct isci_stp_request *stp_req,
1449	u8 *data_buffer)
1450{
1451	enum sci_status status;
1452
1453	/*
1454	 * If there is less than 1K remaining in the transfer request
1455	 * copy just the data for the transfer */
1456	if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) {
1457		status = sci_stp_request_pio_data_in_copy_data_buffer(
1458			stp_req, data_buffer, stp_req->pio_len);
1459
1460		if (status == SCI_SUCCESS)
1461			stp_req->pio_len = 0;
1462	} else {
1463		/* We are transfering the whole frame so copy */
1464		status = sci_stp_request_pio_data_in_copy_data_buffer(
1465			stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
1466
1467		if (status == SCI_SUCCESS)
1468			stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE;
1469	}
1470
1471	return status;
1472}
1473
1474static enum sci_status
1475stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq,
1476					      u32 completion_code)
1477{
 
 
1478	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1479	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1480		ireq->scu_status = SCU_TASK_DONE_GOOD;
1481		ireq->sci_status = SCI_SUCCESS;
1482		sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1483		break;
1484
1485	default:
1486		/* All other completion status cause the IO to be
1487		 * complete.  If a NAK was received, then it is up to
1488		 * the user to retry the request.
1489		 */
1490		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1491		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1492		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1493		break;
1494	}
1495
1496	return SCI_SUCCESS;
1497}
1498
1499static enum sci_status
1500pio_data_out_tx_done_tc_event(struct isci_request *ireq,
1501			      u32 completion_code)
1502{
1503	enum sci_status status = SCI_SUCCESS;
1504	bool all_frames_transferred = false;
1505	struct isci_stp_request *stp_req = &ireq->stp.req;
1506
1507	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1508	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1509		/* Transmit data */
1510		if (stp_req->pio_len != 0) {
1511			status = sci_stp_request_pio_data_out_transmit_data(ireq);
1512			if (status == SCI_SUCCESS) {
1513				if (stp_req->pio_len == 0)
1514					all_frames_transferred = true;
1515			}
1516		} else if (stp_req->pio_len == 0) {
1517			/*
1518			 * this will happen if the all data is written at the
1519			 * first time after the pio setup fis is received
1520			 */
1521			all_frames_transferred  = true;
1522		}
1523
1524		/* all data transferred. */
1525		if (all_frames_transferred) {
1526			/*
1527			 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1528			 * and wait for PIO_SETUP fis / or D2H REg fis. */
1529			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1530		}
1531		break;
1532
1533	default:
1534		/*
1535		 * All other completion status cause the IO to be complete.
1536		 * If a NAK was received, then it is up to the user to retry
1537		 * the request.
1538		 */
1539		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1540		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1541		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1542		break;
1543	}
1544
1545	return status;
1546}
1547
1548static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq,
1549								       u32 frame_index)
1550{
1551	struct isci_host *ihost = ireq->owning_controller;
1552	struct dev_to_host_fis *frame_header;
1553	enum sci_status status;
1554	u32 *frame_buffer;
1555
1556	status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1557							       frame_index,
1558							       (void **)&frame_header);
1559
1560	if ((status == SCI_SUCCESS) &&
1561	    (frame_header->fis_type == FIS_REGD2H)) {
1562		sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1563							      frame_index,
1564							      (void **)&frame_buffer);
1565
1566		sci_controller_copy_sata_response(&ireq->stp.rsp,
1567						       frame_header,
1568						       frame_buffer);
1569	}
1570
1571	sci_controller_release_frame(ihost, frame_index);
1572
1573	return status;
1574}
1575
1576static enum sci_status process_unsolicited_fis(struct isci_request *ireq,
1577					       u32 frame_index)
1578{
1579	struct isci_host *ihost = ireq->owning_controller;
1580	enum sci_status status;
1581	struct dev_to_host_fis *frame_header;
1582	u32 *frame_buffer;
1583
1584	status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1585							  frame_index,
1586							  (void **)&frame_header);
1587
1588	if (status != SCI_SUCCESS)
1589		return status;
1590
1591	if (frame_header->fis_type != FIS_REGD2H) {
1592		dev_err(&ireq->isci_host->pdev->dev,
1593			"%s ERROR: invalid fis type 0x%X\n",
1594			__func__, frame_header->fis_type);
1595		return SCI_FAILURE;
1596	}
1597
1598	sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1599						 frame_index,
1600						 (void **)&frame_buffer);
1601
1602	sci_controller_copy_sata_response(&ireq->stp.rsp,
1603					  (u32 *)frame_header,
1604					  frame_buffer);
1605
1606	/* Frame has been decoded return it to the controller */
1607	sci_controller_release_frame(ihost, frame_index);
1608
1609	return status;
1610}
1611
1612static enum sci_status atapi_d2h_reg_frame_handler(struct isci_request *ireq,
1613						   u32 frame_index)
1614{
1615	struct sas_task *task = isci_request_access_task(ireq);
1616	enum sci_status status;
1617
1618	status = process_unsolicited_fis(ireq, frame_index);
1619
1620	if (status == SCI_SUCCESS) {
1621		if (ireq->stp.rsp.status & ATA_ERR)
1622			status = SCI_FAILURE_IO_RESPONSE_VALID;
1623	} else {
1624		status = SCI_FAILURE_IO_RESPONSE_VALID;
1625	}
1626
1627	if (status != SCI_SUCCESS) {
1628		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1629		ireq->sci_status = status;
1630	} else {
1631		ireq->scu_status = SCU_TASK_DONE_GOOD;
1632		ireq->sci_status = SCI_SUCCESS;
1633	}
1634
1635	/* the d2h ufi is the end of non-data commands */
1636	if (task->data_dir == DMA_NONE)
1637		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1638
1639	return status;
1640}
1641
1642static void scu_atapi_reconstruct_raw_frame_task_context(struct isci_request *ireq)
1643{
1644	struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1645	void *atapi_cdb = ireq->ttype_ptr.io_task_ptr->ata_task.atapi_packet;
1646	struct scu_task_context *task_context = ireq->tc;
1647
1648	/* fill in the SCU Task Context for a DATA fis containing CDB in Raw Frame
1649	 * type. The TC for previous Packet fis was already there, we only need to
1650	 * change the H2D fis content.
1651	 */
1652	memset(&ireq->stp.cmd, 0, sizeof(struct host_to_dev_fis));
1653	memcpy(((u8 *)&ireq->stp.cmd + sizeof(u32)), atapi_cdb, ATAPI_CDB_LEN);
1654	memset(&(task_context->type.stp), 0, sizeof(struct stp_task_context));
1655	task_context->type.stp.fis_type = FIS_DATA;
1656	task_context->transfer_length_bytes = dev->cdb_len;
1657}
1658
1659static void scu_atapi_construct_task_context(struct isci_request *ireq)
1660{
1661	struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1662	struct sas_task *task = isci_request_access_task(ireq);
1663	struct scu_task_context *task_context = ireq->tc;
1664	int cdb_len = dev->cdb_len;
1665
1666	/* reference: SSTL 1.13.4.2
1667	 * task_type, sata_direction
1668	 */
1669	if (task->data_dir == DMA_TO_DEVICE) {
1670		task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_OUT;
1671		task_context->sata_direction = 0;
1672	} else {
1673		/* todo: for NO_DATA command, we need to send out raw frame. */
1674		task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_IN;
1675		task_context->sata_direction = 1;
1676	}
1677
1678	memset(&task_context->type.stp, 0, sizeof(task_context->type.stp));
1679	task_context->type.stp.fis_type = FIS_DATA;
1680
1681	memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
1682	memcpy(&ireq->stp.cmd.lbal, task->ata_task.atapi_packet, cdb_len);
1683	task_context->ssp_command_iu_length = cdb_len / sizeof(u32);
1684
1685	/* task phase is set to TX_CMD */
1686	task_context->task_phase = 0x1;
1687
1688	/* retry counter */
1689	task_context->stp_retry_count = 0;
1690
1691	/* data transfer size. */
1692	task_context->transfer_length_bytes = task->total_xfer_len;
1693
1694	/* setup sgl */
1695	sci_request_build_sgl(ireq);
1696}
1697
1698enum sci_status
1699sci_io_request_frame_handler(struct isci_request *ireq,
1700				  u32 frame_index)
1701{
1702	struct isci_host *ihost = ireq->owning_controller;
1703	struct isci_stp_request *stp_req = &ireq->stp.req;
1704	enum sci_base_request_states state;
1705	enum sci_status status;
1706	ssize_t word_cnt;
1707
1708	state = ireq->sm.current_state_id;
1709	switch (state)  {
1710	case SCI_REQ_STARTED: {
1711		struct ssp_frame_hdr ssp_hdr;
1712		void *frame_header;
1713
1714		sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1715							      frame_index,
1716							      &frame_header);
1717
1718		word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1719		sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1720
1721		if (ssp_hdr.frame_type == SSP_RESPONSE) {
1722			struct ssp_response_iu *resp_iu;
1723			ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1724
1725			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1726								      frame_index,
1727								      (void **)&resp_iu);
1728
1729			sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt);
1730
1731			resp_iu = &ireq->ssp.rsp;
1732
1733			if (resp_iu->datapres == 0x01 ||
1734			    resp_iu->datapres == 0x02) {
1735				ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1736				ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1737			} else {
1738				ireq->scu_status = SCU_TASK_DONE_GOOD;
1739				ireq->sci_status = SCI_SUCCESS;
1740			}
1741		} else {
1742			/* not a response frame, why did it get forwarded? */
1743			dev_err(&ihost->pdev->dev,
1744				"%s: SCIC IO Request 0x%p received unexpected "
1745				"frame %d type 0x%02x\n", __func__, ireq,
1746				frame_index, ssp_hdr.frame_type);
1747		}
1748
1749		/*
1750		 * In any case we are done with this frame buffer return it to
1751		 * the controller
1752		 */
1753		sci_controller_release_frame(ihost, frame_index);
1754
1755		return SCI_SUCCESS;
1756	}
1757
1758	case SCI_REQ_TASK_WAIT_TC_RESP:
1759		sci_io_request_copy_response(ireq);
1760		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1761		sci_controller_release_frame(ihost, frame_index);
1762		return SCI_SUCCESS;
1763
1764	case SCI_REQ_SMP_WAIT_RESP: {
1765		struct sas_task *task = isci_request_access_task(ireq);
1766		struct scatterlist *sg = &task->smp_task.smp_resp;
1767		void *frame_header, *kaddr;
1768		u8 *rsp;
1769
1770		sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1771							 frame_index,
1772							 &frame_header);
1773		kaddr = kmap_atomic(sg_page(sg));
1774		rsp = kaddr + sg->offset;
1775		sci_swab32_cpy(rsp, frame_header, 1);
1776
1777		if (rsp[0] == SMP_RESPONSE) {
1778			void *smp_resp;
1779
1780			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1781								 frame_index,
1782								 &smp_resp);
1783
1784			word_cnt = (sg->length/4)-1;
1785			if (word_cnt > 0)
1786				word_cnt = min_t(unsigned int, word_cnt,
1787						 SCU_UNSOLICITED_FRAME_BUFFER_SIZE/4);
1788			sci_swab32_cpy(rsp + 4, smp_resp, word_cnt);
1789
1790			ireq->scu_status = SCU_TASK_DONE_GOOD;
1791			ireq->sci_status = SCI_SUCCESS;
1792			sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP);
1793		} else {
1794			/*
1795			 * This was not a response frame why did it get
1796			 * forwarded?
1797			 */
1798			dev_err(&ihost->pdev->dev,
1799				"%s: SCIC SMP Request 0x%p received unexpected "
1800				"frame %d type 0x%02x\n",
1801				__func__,
1802				ireq,
1803				frame_index,
1804				rsp[0]);
1805
1806			ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR;
1807			ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1808			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1809		}
1810		kunmap_atomic(kaddr);
1811
1812		sci_controller_release_frame(ihost, frame_index);
1813
1814		return SCI_SUCCESS;
1815	}
1816
1817	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1818		return sci_stp_request_udma_general_frame_handler(ireq,
1819								       frame_index);
1820
1821	case SCI_REQ_STP_UDMA_WAIT_D2H:
1822		/* Use the general frame handler to copy the resposne data */
1823		status = sci_stp_request_udma_general_frame_handler(ireq, frame_index);
1824
1825		if (status != SCI_SUCCESS)
1826			return status;
1827
1828		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1829		ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1830		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1831		return SCI_SUCCESS;
1832
1833	case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
1834		struct dev_to_host_fis *frame_header;
1835		u32 *frame_buffer;
1836
1837		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1838								       frame_index,
1839								       (void **)&frame_header);
1840
1841		if (status != SCI_SUCCESS) {
1842			dev_err(&ihost->pdev->dev,
1843				"%s: SCIC IO Request 0x%p could not get frame "
1844				"header for frame index %d, status %x\n",
1845				__func__,
1846				stp_req,
1847				frame_index,
1848				status);
1849
1850			return status;
1851		}
1852
1853		switch (frame_header->fis_type) {
1854		case FIS_REGD2H:
1855			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1856								      frame_index,
1857								      (void **)&frame_buffer);
1858
1859			sci_controller_copy_sata_response(&ireq->stp.rsp,
1860							       frame_header,
1861							       frame_buffer);
1862
1863			/* The command has completed with error */
1864			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1865			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1866			break;
1867
1868		default:
1869			dev_warn(&ihost->pdev->dev,
1870				 "%s: IO Request:0x%p Frame Id:%d protocol "
1871				  "violation occurred\n", __func__, stp_req,
1872				  frame_index);
1873
1874			ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1875			ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1876			break;
1877		}
1878
1879		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1880
1881		/* Frame has been decoded return it to the controller */
1882		sci_controller_release_frame(ihost, frame_index);
1883
1884		return status;
1885	}
1886
1887	case SCI_REQ_STP_PIO_WAIT_FRAME: {
1888		struct sas_task *task = isci_request_access_task(ireq);
1889		struct dev_to_host_fis *frame_header;
1890		u32 *frame_buffer;
1891
1892		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1893								       frame_index,
1894								       (void **)&frame_header);
1895
1896		if (status != SCI_SUCCESS) {
1897			dev_err(&ihost->pdev->dev,
1898				"%s: SCIC IO Request 0x%p could not get frame "
1899				"header for frame index %d, status %x\n",
1900				__func__, stp_req, frame_index, status);
1901			return status;
1902		}
1903
1904		switch (frame_header->fis_type) {
1905		case FIS_PIO_SETUP:
1906			/* Get from the frame buffer the PIO Setup Data */
1907			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1908								      frame_index,
1909								      (void **)&frame_buffer);
1910
1911			/* Get the data from the PIO Setup The SCU Hardware
1912			 * returns first word in the frame_header and the rest
1913			 * of the data is in the frame buffer so we need to
1914			 * back up one dword
1915			 */
1916
1917			/* transfer_count: first 16bits in the 4th dword */
1918			stp_req->pio_len = frame_buffer[3] & 0xffff;
1919
1920			/* status: 4th byte in the 3rd dword */
1921			stp_req->status = (frame_buffer[2] >> 24) & 0xff;
1922
1923			sci_controller_copy_sata_response(&ireq->stp.rsp,
1924							       frame_header,
1925							       frame_buffer);
1926
1927			ireq->stp.rsp.status = stp_req->status;
1928
1929			/* The next state is dependent on whether the
1930			 * request was PIO Data-in or Data out
1931			 */
1932			if (task->data_dir == DMA_FROM_DEVICE) {
1933				sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN);
1934			} else if (task->data_dir == DMA_TO_DEVICE) {
1935				/* Transmit data */
1936				status = sci_stp_request_pio_data_out_transmit_data(ireq);
1937				if (status != SCI_SUCCESS)
1938					break;
1939				sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT);
1940			}
1941			break;
1942
1943		case FIS_SETDEVBITS:
1944			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1945			break;
1946
1947		case FIS_REGD2H:
1948			if (frame_header->status & ATA_BUSY) {
1949				/*
1950				 * Now why is the drive sending a D2H Register
1951				 * FIS when it is still busy?  Do nothing since
1952				 * we are still in the right state.
1953				 */
1954				dev_dbg(&ihost->pdev->dev,
1955					"%s: SCIC PIO Request 0x%p received "
1956					"D2H Register FIS with BSY status "
1957					"0x%x\n",
1958					__func__,
1959					stp_req,
1960					frame_header->status);
1961				break;
1962			}
1963
1964			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1965								      frame_index,
1966								      (void **)&frame_buffer);
1967
1968			sci_controller_copy_sata_response(&ireq->stp.rsp,
1969							       frame_header,
1970							       frame_buffer);
1971
1972			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1973			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1974			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1975			break;
1976
1977		default:
1978			/* FIXME: what do we do here? */
1979			break;
1980		}
1981
1982		/* Frame is decoded return it to the controller */
1983		sci_controller_release_frame(ihost, frame_index);
1984
1985		return status;
1986	}
1987
1988	case SCI_REQ_STP_PIO_DATA_IN: {
1989		struct dev_to_host_fis *frame_header;
1990		struct sata_fis_data *frame_buffer;
1991
1992		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1993								       frame_index,
1994								       (void **)&frame_header);
1995
1996		if (status != SCI_SUCCESS) {
1997			dev_err(&ihost->pdev->dev,
1998				"%s: SCIC IO Request 0x%p could not get frame "
1999				"header for frame index %d, status %x\n",
2000				__func__,
2001				stp_req,
2002				frame_index,
2003				status);
2004			return status;
2005		}
2006
2007		if (frame_header->fis_type != FIS_DATA) {
2008			dev_err(&ihost->pdev->dev,
2009				"%s: SCIC PIO Request 0x%p received frame %d "
2010				"with fis type 0x%02x when expecting a data "
2011				"fis.\n",
2012				__func__,
2013				stp_req,
2014				frame_index,
2015				frame_header->fis_type);
2016
2017			ireq->scu_status = SCU_TASK_DONE_GOOD;
2018			ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT;
2019			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2020
2021			/* Frame is decoded return it to the controller */
2022			sci_controller_release_frame(ihost, frame_index);
2023			return status;
2024		}
2025
2026		if (stp_req->sgl.index < 0) {
2027			ireq->saved_rx_frame_index = frame_index;
2028			stp_req->pio_len = 0;
2029		} else {
2030			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
2031								      frame_index,
2032								      (void **)&frame_buffer);
2033
2034			status = sci_stp_request_pio_data_in_copy_data(stp_req,
2035									    (u8 *)frame_buffer);
2036
2037			/* Frame is decoded return it to the controller */
2038			sci_controller_release_frame(ihost, frame_index);
2039		}
2040
2041		/* Check for the end of the transfer, are there more
2042		 * bytes remaining for this data transfer
2043		 */
2044		if (status != SCI_SUCCESS || stp_req->pio_len != 0)
2045			return status;
2046
2047		if ((stp_req->status & ATA_BUSY) == 0) {
2048			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2049			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2050			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2051		} else {
2052			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
2053		}
2054		return status;
2055	}
2056
2057	case SCI_REQ_ATAPI_WAIT_PIO_SETUP: {
2058		struct sas_task *task = isci_request_access_task(ireq);
2059
2060		sci_controller_release_frame(ihost, frame_index);
2061		ireq->target_device->working_request = ireq;
2062		if (task->data_dir == DMA_NONE) {
2063			sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_TC_COMP);
2064			scu_atapi_reconstruct_raw_frame_task_context(ireq);
2065		} else {
2066			sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2067			scu_atapi_construct_task_context(ireq);
2068		}
2069
2070		sci_controller_continue_io(ireq);
2071		return SCI_SUCCESS;
2072	}
2073	case SCI_REQ_ATAPI_WAIT_D2H:
2074		return atapi_d2h_reg_frame_handler(ireq, frame_index);
2075	case SCI_REQ_ABORTING:
2076		/*
2077		 * TODO: Is it even possible to get an unsolicited frame in the
2078		 * aborting state?
2079		 */
2080		sci_controller_release_frame(ihost, frame_index);
2081		return SCI_SUCCESS;
2082
2083	default:
2084		dev_warn(&ihost->pdev->dev,
2085			 "%s: SCIC IO Request given unexpected frame %x while "
2086			 "in state %d\n",
2087			 __func__,
2088			 frame_index,
2089			 state);
2090
2091		sci_controller_release_frame(ihost, frame_index);
2092		return SCI_FAILURE_INVALID_STATE;
2093	}
2094}
2095
2096static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq,
2097						       u32 completion_code)
2098{
 
 
2099	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2100	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2101		ireq->scu_status = SCU_TASK_DONE_GOOD;
2102		ireq->sci_status = SCI_SUCCESS;
2103		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2104		break;
2105	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
2106	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
2107		/* We must check ther response buffer to see if the D2H
2108		 * Register FIS was received before we got the TC
2109		 * completion.
2110		 */
2111		if (ireq->stp.rsp.fis_type == FIS_REGD2H) {
2112			sci_remote_device_suspend(ireq->target_device,
2113						  SCI_SW_SUSPEND_NORMAL);
2114
2115			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2116			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2117			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2118		} else {
2119			/* If we have an error completion status for the
2120			 * TC then we can expect a D2H register FIS from
2121			 * the device so we must change state to wait
2122			 * for it
2123			 */
2124			sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
2125		}
2126		break;
2127
2128	/* TODO Check to see if any of these completion status need to
2129	 * wait for the device to host register fis.
2130	 */
2131	/* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
2132	 * - this comes only for B0
2133	 */
2134	default:
2135		/* All other completion status cause the IO to be complete. */
2136		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2137		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2138		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2139		break;
2140	}
2141
2142	return SCI_SUCCESS;
2143}
2144
2145static enum sci_status atapi_raw_completion(struct isci_request *ireq, u32 completion_code,
2146						  enum sci_base_request_states next)
2147{
 
 
2148	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2149	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2150		ireq->scu_status = SCU_TASK_DONE_GOOD;
2151		ireq->sci_status = SCI_SUCCESS;
2152		sci_change_state(&ireq->sm, next);
2153		break;
2154	default:
2155		/* All other completion status cause the IO to be complete.
2156		 * If a NAK was received, then it is up to the user to retry
2157		 * the request.
2158		 */
2159		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2160		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2161
2162		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2163		break;
2164	}
2165
2166	return SCI_SUCCESS;
2167}
2168
2169static enum sci_status atapi_data_tc_completion_handler(struct isci_request *ireq,
2170							u32 completion_code)
2171{
2172	struct isci_remote_device *idev = ireq->target_device;
2173	struct dev_to_host_fis *d2h = &ireq->stp.rsp;
2174	enum sci_status status = SCI_SUCCESS;
2175
2176	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2177	case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
2178		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2179		break;
2180
2181	case (SCU_TASK_DONE_UNEXP_FIS << SCU_COMPLETION_TL_STATUS_SHIFT): {
2182		u16 len = sci_req_tx_bytes(ireq);
2183
2184		/* likely non-error data underrrun, workaround missing
2185		 * d2h frame from the controller
2186		 */
2187		if (d2h->fis_type != FIS_REGD2H) {
2188			d2h->fis_type = FIS_REGD2H;
2189			d2h->flags = (1 << 6);
2190			d2h->status = 0x50;
2191			d2h->error = 0;
2192			d2h->lbal = 0;
2193			d2h->byte_count_low = len & 0xff;
2194			d2h->byte_count_high = len >> 8;
2195			d2h->device = 0xa0;
2196			d2h->lbal_exp = 0;
2197			d2h->lbam_exp = 0;
2198			d2h->lbah_exp = 0;
2199			d2h->_r_a = 0;
2200			d2h->sector_count = 0x3;
2201			d2h->sector_count_exp = 0;
2202			d2h->_r_b = 0;
2203			d2h->_r_c = 0;
2204			d2h->_r_d = 0;
2205		}
2206
2207		ireq->scu_status = SCU_TASK_DONE_GOOD;
2208		ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
2209		status = ireq->sci_status;
2210
2211		/* the hw will have suspended the rnc, so complete the
2212		 * request upon pending resume
2213		 */
2214		sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2215		break;
2216	}
2217	case (SCU_TASK_DONE_EXCESS_DATA << SCU_COMPLETION_TL_STATUS_SHIFT):
2218		/* In this case, there is no UF coming after.
2219		 * compelte the IO now.
2220		 */
2221		ireq->scu_status = SCU_TASK_DONE_GOOD;
2222		ireq->sci_status = SCI_SUCCESS;
2223		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2224		break;
2225
2226	default:
2227		if (d2h->fis_type == FIS_REGD2H) {
2228			/* UF received change the device state to ATAPI_ERROR */
2229			status = ireq->sci_status;
2230			sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2231		} else {
2232			/* If receiving any non-success TC status, no UF
2233			 * received yet, then an UF for the status fis
2234			 * is coming after (XXX: suspect this is
2235			 * actually a protocol error or a bug like the
2236			 * DONE_UNEXP_FIS case)
2237			 */
2238			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2239			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2240
2241			sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2242		}
2243		break;
2244	}
2245
2246	return status;
2247}
2248
2249static int sci_request_smp_completion_status_is_tx_suspend(
2250	unsigned int completion_status)
2251{
2252	switch (completion_status) {
2253	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2254	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2255	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2256	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2257	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2258	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2259		return 1;
2260	}
2261	return 0;
2262}
2263
2264static int sci_request_smp_completion_status_is_tx_rx_suspend(
2265	unsigned int completion_status)
2266{
2267	return 0; /* There are no Tx/Rx SMP suspend conditions. */
2268}
2269
2270static int sci_request_ssp_completion_status_is_tx_suspend(
2271	unsigned int completion_status)
2272{
2273	switch (completion_status) {
2274	case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2275	case SCU_TASK_DONE_LF_ERR:
2276	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2277	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2278	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2279	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2280	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2281	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2282	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2283	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2284	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2285		return 1;
2286	}
2287	return 0;
2288}
2289
2290static int sci_request_ssp_completion_status_is_tx_rx_suspend(
2291	unsigned int completion_status)
2292{
2293	return 0; /* There are no Tx/Rx SSP suspend conditions. */
2294}
2295
2296static int sci_request_stpsata_completion_status_is_tx_suspend(
2297	unsigned int completion_status)
2298{
2299	switch (completion_status) {
2300	case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2301	case SCU_TASK_DONE_LL_R_ERR:
2302	case SCU_TASK_DONE_LL_PERR:
2303	case SCU_TASK_DONE_REG_ERR:
2304	case SCU_TASK_DONE_SDB_ERR:
2305	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2306	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2307	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2308	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2309	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2310	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2311	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2312	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2313	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2314		return 1;
2315	}
2316	return 0;
2317}
2318
2319
2320static int sci_request_stpsata_completion_status_is_tx_rx_suspend(
2321	unsigned int completion_status)
2322{
2323	switch (completion_status) {
2324	case SCU_TASK_DONE_LF_ERR:
2325	case SCU_TASK_DONE_LL_SY_TERM:
2326	case SCU_TASK_DONE_LL_LF_TERM:
2327	case SCU_TASK_DONE_BREAK_RCVD:
2328	case SCU_TASK_DONE_INV_FIS_LEN:
2329	case SCU_TASK_DONE_UNEXP_FIS:
2330	case SCU_TASK_DONE_UNEXP_SDBFIS:
2331	case SCU_TASK_DONE_MAX_PLD_ERR:
2332		return 1;
2333	}
2334	return 0;
2335}
2336
2337static void sci_request_handle_suspending_completions(
2338	struct isci_request *ireq,
2339	u32 completion_code)
2340{
2341	int is_tx = 0;
2342	int is_tx_rx = 0;
2343
2344	switch (ireq->protocol) {
2345	case SAS_PROTOCOL_SMP:
2346		is_tx = sci_request_smp_completion_status_is_tx_suspend(
2347			completion_code);
2348		is_tx_rx = sci_request_smp_completion_status_is_tx_rx_suspend(
2349			completion_code);
2350		break;
2351	case SAS_PROTOCOL_SSP:
2352		is_tx = sci_request_ssp_completion_status_is_tx_suspend(
2353			completion_code);
2354		is_tx_rx = sci_request_ssp_completion_status_is_tx_rx_suspend(
2355			completion_code);
2356		break;
2357	case SAS_PROTOCOL_STP:
2358		is_tx = sci_request_stpsata_completion_status_is_tx_suspend(
2359			completion_code);
2360		is_tx_rx =
2361			sci_request_stpsata_completion_status_is_tx_rx_suspend(
2362				completion_code);
2363		break;
2364	default:
2365		dev_warn(&ireq->isci_host->pdev->dev,
2366			 "%s: request %p has no valid protocol\n",
2367			 __func__, ireq);
2368		break;
2369	}
2370	if (is_tx || is_tx_rx) {
2371		BUG_ON(is_tx && is_tx_rx);
2372
2373		sci_remote_node_context_suspend(
2374			&ireq->target_device->rnc,
2375			SCI_HW_SUSPEND,
2376			(is_tx_rx) ? SCU_EVENT_TL_RNC_SUSPEND_TX_RX
2377				   : SCU_EVENT_TL_RNC_SUSPEND_TX);
2378	}
2379}
2380
2381enum sci_status
2382sci_io_request_tc_completion(struct isci_request *ireq,
2383			     u32 completion_code)
2384{
2385	enum sci_base_request_states state;
2386	struct isci_host *ihost = ireq->owning_controller;
2387
2388	state = ireq->sm.current_state_id;
2389
2390	/* Decode those completions that signal upcoming suspension events. */
2391	sci_request_handle_suspending_completions(
2392		ireq, SCU_GET_COMPLETION_TL_STATUS(completion_code));
2393
2394	switch (state) {
2395	case SCI_REQ_STARTED:
2396		return request_started_state_tc_event(ireq, completion_code);
2397
2398	case SCI_REQ_TASK_WAIT_TC_COMP:
2399		return ssp_task_request_await_tc_event(ireq,
2400						       completion_code);
2401
2402	case SCI_REQ_SMP_WAIT_RESP:
2403		return smp_request_await_response_tc_event(ireq,
2404							   completion_code);
2405
2406	case SCI_REQ_SMP_WAIT_TC_COMP:
2407		return smp_request_await_tc_event(ireq, completion_code);
2408
2409	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
2410		return stp_request_udma_await_tc_event(ireq,
2411						       completion_code);
2412
2413	case SCI_REQ_STP_NON_DATA_WAIT_H2D:
2414		return stp_request_non_data_await_h2d_tc_event(ireq,
2415							       completion_code);
2416
2417	case SCI_REQ_STP_PIO_WAIT_H2D:
2418		return stp_request_pio_await_h2d_completion_tc_event(ireq,
2419								     completion_code);
2420
2421	case SCI_REQ_STP_PIO_DATA_OUT:
2422		return pio_data_out_tx_done_tc_event(ireq, completion_code);
2423
2424	case SCI_REQ_ABORTING:
2425		return request_aborting_state_tc_event(ireq,
2426						       completion_code);
2427
2428	case SCI_REQ_ATAPI_WAIT_H2D:
2429		return atapi_raw_completion(ireq, completion_code,
2430					    SCI_REQ_ATAPI_WAIT_PIO_SETUP);
2431
2432	case SCI_REQ_ATAPI_WAIT_TC_COMP:
2433		return atapi_raw_completion(ireq, completion_code,
2434					    SCI_REQ_ATAPI_WAIT_D2H);
2435
2436	case SCI_REQ_ATAPI_WAIT_D2H:
2437		return atapi_data_tc_completion_handler(ireq, completion_code);
2438
2439	default:
2440		dev_warn(&ihost->pdev->dev, "%s: %x in wrong state %s\n",
2441			 __func__, completion_code, req_state_name(state));
2442		return SCI_FAILURE_INVALID_STATE;
2443	}
2444}
2445
2446/**
2447 * isci_request_process_response_iu() - This function sets the status and
2448 *    response iu, in the task struct, from the request object for the upper
2449 *    layer driver.
2450 * @task: This parameter is the task struct from the upper layer driver.
2451 * @resp_iu: This parameter points to the response iu of the completed request.
2452 * @dev: This parameter specifies the linux device struct.
2453 *
2454 * none.
2455 */
2456static void isci_request_process_response_iu(
2457	struct sas_task *task,
2458	struct ssp_response_iu *resp_iu,
2459	struct device *dev)
2460{
2461	dev_dbg(dev,
2462		"%s: resp_iu = %p "
2463		"resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2464		"resp_iu->response_data_len = %x, "
2465		"resp_iu->sense_data_len = %x\nresponse data: ",
2466		__func__,
2467		resp_iu,
2468		resp_iu->status,
2469		resp_iu->datapres,
2470		resp_iu->response_data_len,
2471		resp_iu->sense_data_len);
2472
2473	task->task_status.stat = resp_iu->status;
2474
2475	/* libsas updates the task status fields based on the response iu. */
2476	sas_ssp_task_response(dev, task, resp_iu);
2477}
2478
2479/**
2480 * isci_request_set_open_reject_status() - This function prepares the I/O
2481 *    completion for OPEN_REJECT conditions.
2482 * @request: This parameter is the completed isci_request object.
2483 * @task: This parameter is the task struct from the upper layer driver.
2484 * @response_ptr: This parameter specifies the service response for the I/O.
2485 * @status_ptr: This parameter specifies the exec status for the I/O.
2486 * @open_rej_reason: This parameter specifies the encoded reason for the
2487 *    abandon-class reject.
2488 *
2489 * none.
2490 */
2491static void isci_request_set_open_reject_status(
2492	struct isci_request *request,
2493	struct sas_task *task,
2494	enum service_response *response_ptr,
2495	enum exec_status *status_ptr,
2496	enum sas_open_rej_reason open_rej_reason)
2497{
2498	/* Task in the target is done. */
2499	set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2500	*response_ptr                     = SAS_TASK_UNDELIVERED;
2501	*status_ptr                       = SAS_OPEN_REJECT;
2502	task->task_status.open_rej_reason = open_rej_reason;
2503}
2504
2505/**
2506 * isci_request_handle_controller_specific_errors() - This function decodes
2507 *    controller-specific I/O completion error conditions.
2508 * @idev: Remote device
2509 * @request: This parameter is the completed isci_request object.
2510 * @task: This parameter is the task struct from the upper layer driver.
2511 * @response_ptr: This parameter specifies the service response for the I/O.
2512 * @status_ptr: This parameter specifies the exec status for the I/O.
2513 *
2514 * none.
2515 */
2516static void isci_request_handle_controller_specific_errors(
2517	struct isci_remote_device *idev,
2518	struct isci_request *request,
2519	struct sas_task *task,
2520	enum service_response *response_ptr,
2521	enum exec_status *status_ptr)
2522{
2523	unsigned int cstatus;
2524
2525	cstatus = request->scu_status;
2526
2527	dev_dbg(&request->isci_host->pdev->dev,
2528		"%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2529		"- controller status = 0x%x\n",
2530		__func__, request, cstatus);
2531
2532	/* Decode the controller-specific errors; most
2533	 * important is to recognize those conditions in which
2534	 * the target may still have a task outstanding that
2535	 * must be aborted.
2536	 *
2537	 * Note that there are SCU completion codes being
2538	 * named in the decode below for which SCIC has already
2539	 * done work to handle them in a way other than as
2540	 * a controller-specific completion code; these are left
2541	 * in the decode below for completeness sake.
2542	 */
2543	switch (cstatus) {
2544	case SCU_TASK_DONE_DMASETUP_DIRERR:
2545	/* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2546	case SCU_TASK_DONE_XFERCNT_ERR:
2547		/* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2548		if (task->task_proto == SAS_PROTOCOL_SMP) {
2549			/* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2550			*response_ptr = SAS_TASK_COMPLETE;
2551
2552			/* See if the device has been/is being stopped. Note
2553			 * that we ignore the quiesce state, since we are
2554			 * concerned about the actual device state.
2555			 */
2556			if (!idev)
2557				*status_ptr = SAS_DEVICE_UNKNOWN;
2558			else
2559				*status_ptr = SAS_ABORTED_TASK;
2560
2561			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2562		} else {
2563			/* Task in the target is not done. */
2564			*response_ptr = SAS_TASK_UNDELIVERED;
2565
2566			if (!idev)
2567				*status_ptr = SAS_DEVICE_UNKNOWN;
2568			else
2569				*status_ptr = SAS_SAM_STAT_TASK_ABORTED;
2570
2571			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2572		}
2573
2574		break;
2575
2576	case SCU_TASK_DONE_CRC_ERR:
2577	case SCU_TASK_DONE_NAK_CMD_ERR:
2578	case SCU_TASK_DONE_EXCESS_DATA:
2579	case SCU_TASK_DONE_UNEXP_FIS:
2580	/* Also SCU_TASK_DONE_UNEXP_RESP: */
2581	case SCU_TASK_DONE_VIIT_ENTRY_NV:       /* TODO - conditions? */
2582	case SCU_TASK_DONE_IIT_ENTRY_NV:        /* TODO - conditions? */
2583	case SCU_TASK_DONE_RNCNV_OUTBOUND:      /* TODO - conditions? */
2584		/* These are conditions in which the target
2585		 * has completed the task, so that no cleanup
2586		 * is necessary.
2587		 */
2588		*response_ptr = SAS_TASK_COMPLETE;
2589
2590		/* See if the device has been/is being stopped. Note
2591		 * that we ignore the quiesce state, since we are
2592		 * concerned about the actual device state.
2593		 */
2594		if (!idev)
2595			*status_ptr = SAS_DEVICE_UNKNOWN;
2596		else
2597			*status_ptr = SAS_ABORTED_TASK;
2598
2599		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2600		break;
2601
2602
2603	/* Note that the only open reject completion codes seen here will be
2604	 * abandon-class codes; all others are automatically retried in the SCU.
2605	 */
2606	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2607
2608		isci_request_set_open_reject_status(
2609			request, task, response_ptr, status_ptr,
2610			SAS_OREJ_WRONG_DEST);
2611		break;
2612
2613	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2614
2615		/* Note - the return of AB0 will change when
2616		 * libsas implements detection of zone violations.
2617		 */
2618		isci_request_set_open_reject_status(
2619			request, task, response_ptr, status_ptr,
2620			SAS_OREJ_RESV_AB0);
2621		break;
2622
2623	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2624
2625		isci_request_set_open_reject_status(
2626			request, task, response_ptr, status_ptr,
2627			SAS_OREJ_RESV_AB1);
2628		break;
2629
2630	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2631
2632		isci_request_set_open_reject_status(
2633			request, task, response_ptr, status_ptr,
2634			SAS_OREJ_RESV_AB2);
2635		break;
2636
2637	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2638
2639		isci_request_set_open_reject_status(
2640			request, task, response_ptr, status_ptr,
2641			SAS_OREJ_RESV_AB3);
2642		break;
2643
2644	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2645
2646		isci_request_set_open_reject_status(
2647			request, task, response_ptr, status_ptr,
2648			SAS_OREJ_BAD_DEST);
2649		break;
2650
2651	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2652
2653		isci_request_set_open_reject_status(
2654			request, task, response_ptr, status_ptr,
2655			SAS_OREJ_STP_NORES);
2656		break;
2657
2658	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2659
2660		isci_request_set_open_reject_status(
2661			request, task, response_ptr, status_ptr,
2662			SAS_OREJ_EPROTO);
2663		break;
2664
2665	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2666
2667		isci_request_set_open_reject_status(
2668			request, task, response_ptr, status_ptr,
2669			SAS_OREJ_CONN_RATE);
2670		break;
2671
2672	case SCU_TASK_DONE_LL_R_ERR:
2673	/* Also SCU_TASK_DONE_ACK_NAK_TO: */
2674	case SCU_TASK_DONE_LL_PERR:
2675	case SCU_TASK_DONE_LL_SY_TERM:
2676	/* Also SCU_TASK_DONE_NAK_ERR:*/
2677	case SCU_TASK_DONE_LL_LF_TERM:
2678	/* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2679	case SCU_TASK_DONE_LL_ABORT_ERR:
2680	case SCU_TASK_DONE_SEQ_INV_TYPE:
2681	/* Also SCU_TASK_DONE_UNEXP_XR: */
2682	case SCU_TASK_DONE_XR_IU_LEN_ERR:
2683	case SCU_TASK_DONE_INV_FIS_LEN:
2684	/* Also SCU_TASK_DONE_XR_WD_LEN: */
2685	case SCU_TASK_DONE_SDMA_ERR:
2686	case SCU_TASK_DONE_OFFSET_ERR:
2687	case SCU_TASK_DONE_MAX_PLD_ERR:
2688	case SCU_TASK_DONE_LF_ERR:
2689	case SCU_TASK_DONE_SMP_RESP_TO_ERR:  /* Escalate to dev reset? */
2690	case SCU_TASK_DONE_SMP_LL_RX_ERR:
2691	case SCU_TASK_DONE_UNEXP_DATA:
2692	case SCU_TASK_DONE_UNEXP_SDBFIS:
2693	case SCU_TASK_DONE_REG_ERR:
2694	case SCU_TASK_DONE_SDB_ERR:
2695	case SCU_TASK_DONE_TASK_ABORT:
2696	default:
2697		/* Task in the target is not done. */
2698		*response_ptr = SAS_TASK_UNDELIVERED;
2699		*status_ptr = SAS_SAM_STAT_TASK_ABORTED;
2700
2701		if (task->task_proto == SAS_PROTOCOL_SMP)
2702			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2703		else
2704			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2705		break;
2706	}
2707}
2708
2709static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis)
2710{
2711	struct task_status_struct *ts = &task->task_status;
2712	struct ata_task_resp *resp = (void *)&ts->buf[0];
2713
2714	resp->frame_len = sizeof(*fis);
2715	memcpy(resp->ending_fis, fis, sizeof(*fis));
2716	ts->buf_valid_size = sizeof(*resp);
2717
2718	/* If an error is flagged let libata decode the fis */
2719	if (ac_err_mask(fis->status))
2720		ts->stat = SAS_PROTO_RESPONSE;
2721	else
2722		ts->stat = SAS_SAM_STAT_GOOD;
2723
2724	ts->resp = SAS_TASK_COMPLETE;
2725}
2726
2727static void isci_request_io_request_complete(struct isci_host *ihost,
2728					     struct isci_request *request,
2729					     enum sci_io_status completion_status)
2730{
2731	struct sas_task *task = isci_request_access_task(request);
2732	struct ssp_response_iu *resp_iu;
2733	unsigned long task_flags;
2734	struct isci_remote_device *idev = request->target_device;
2735	enum service_response response = SAS_TASK_UNDELIVERED;
2736	enum exec_status status = SAS_ABORTED_TASK;
2737
2738	dev_dbg(&ihost->pdev->dev,
2739		"%s: request = %p, task = %p, "
2740		"task->data_dir = %d completion_status = 0x%x\n",
2741		__func__, request, task, task->data_dir, completion_status);
2742
2743	/* The request is done from an SCU HW perspective. */
2744
2745	/* This is an active request being completed from the core. */
2746	switch (completion_status) {
2747
2748	case SCI_IO_FAILURE_RESPONSE_VALID:
2749		dev_dbg(&ihost->pdev->dev,
2750			"%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2751			__func__, request, task);
2752
2753		if (sas_protocol_ata(task->task_proto)) {
2754			isci_process_stp_response(task, &request->stp.rsp);
2755		} else if (SAS_PROTOCOL_SSP == task->task_proto) {
2756
2757			/* crack the iu response buffer. */
2758			resp_iu = &request->ssp.rsp;
2759			isci_request_process_response_iu(task, resp_iu,
2760							 &ihost->pdev->dev);
2761
2762		} else if (SAS_PROTOCOL_SMP == task->task_proto) {
2763
2764			dev_err(&ihost->pdev->dev,
2765				"%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2766					"SAS_PROTOCOL_SMP protocol\n",
2767				__func__);
2768
2769		} else
2770			dev_err(&ihost->pdev->dev,
2771				"%s: unknown protocol\n", __func__);
2772
2773		/* use the task status set in the task struct by the
2774		* isci_request_process_response_iu call.
2775		*/
2776		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2777		response = task->task_status.resp;
2778		status = task->task_status.stat;
2779		break;
2780
2781	case SCI_IO_SUCCESS:
2782	case SCI_IO_SUCCESS_IO_DONE_EARLY:
2783
2784		response = SAS_TASK_COMPLETE;
2785		status   = SAS_SAM_STAT_GOOD;
2786		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2787
2788		if (completion_status == SCI_IO_SUCCESS_IO_DONE_EARLY) {
2789
2790			/* This was an SSP / STP / SATA transfer.
2791			* There is a possibility that less data than
2792			* the maximum was transferred.
2793			*/
2794			u32 transferred_length = sci_req_tx_bytes(request);
2795
2796			task->task_status.residual
2797				= task->total_xfer_len - transferred_length;
2798
2799			/* If there were residual bytes, call this an
2800			* underrun.
2801			*/
2802			if (task->task_status.residual != 0)
2803				status = SAS_DATA_UNDERRUN;
2804
2805			dev_dbg(&ihost->pdev->dev,
2806				"%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2807				__func__, status);
2808
2809		} else
2810			dev_dbg(&ihost->pdev->dev, "%s: SCI_IO_SUCCESS\n",
2811				__func__);
2812		break;
2813
2814	case SCI_IO_FAILURE_TERMINATED:
2815
2816		dev_dbg(&ihost->pdev->dev,
2817			"%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2818			__func__, request, task);
2819
2820		/* The request was terminated explicitly. */
2821		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2822		response = SAS_TASK_UNDELIVERED;
2823
2824		/* See if the device has been/is being stopped. Note
2825		* that we ignore the quiesce state, since we are
2826		* concerned about the actual device state.
2827		*/
2828		if (!idev)
2829			status = SAS_DEVICE_UNKNOWN;
2830		else
2831			status = SAS_ABORTED_TASK;
2832		break;
2833
2834	case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
2835
2836		isci_request_handle_controller_specific_errors(idev, request,
2837							       task, &response,
2838							       &status);
2839		break;
2840
2841	case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
2842		/* This is a special case, in that the I/O completion
2843		* is telling us that the device needs a reset.
2844		* In order for the device reset condition to be
2845		* noticed, the I/O has to be handled in the error
2846		* handler.  Set the reset flag and cause the
2847		* SCSI error thread to be scheduled.
2848		*/
2849		spin_lock_irqsave(&task->task_state_lock, task_flags);
2850		task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2851		spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2852
2853		/* Fail the I/O. */
2854		response = SAS_TASK_UNDELIVERED;
2855		status = SAS_SAM_STAT_TASK_ABORTED;
2856
2857		clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2858		break;
2859
2860	case SCI_FAILURE_RETRY_REQUIRED:
2861
2862		/* Fail the I/O so it can be retried. */
2863		response = SAS_TASK_UNDELIVERED;
2864		if (!idev)
2865			status = SAS_DEVICE_UNKNOWN;
2866		else
2867			status = SAS_ABORTED_TASK;
2868
2869		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2870		break;
2871
2872
2873	default:
2874		/* Catch any otherwise unhandled error codes here. */
2875		dev_dbg(&ihost->pdev->dev,
2876			"%s: invalid completion code: 0x%x - "
2877				"isci_request = %p\n",
2878			__func__, completion_status, request);
2879
2880		response = SAS_TASK_UNDELIVERED;
2881
2882		/* See if the device has been/is being stopped. Note
2883		* that we ignore the quiesce state, since we are
2884		* concerned about the actual device state.
2885		*/
2886		if (!idev)
2887			status = SAS_DEVICE_UNKNOWN;
2888		else
2889			status = SAS_ABORTED_TASK;
2890
2891		if (SAS_PROTOCOL_SMP == task->task_proto)
2892			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2893		else
2894			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2895		break;
2896	}
2897
2898	switch (task->task_proto) {
2899	case SAS_PROTOCOL_SSP:
2900		if (task->data_dir == DMA_NONE)
2901			break;
2902		if (task->num_scatter == 0)
2903			/* 0 indicates a single dma address */
2904			dma_unmap_single(&ihost->pdev->dev,
2905					 request->zero_scatter_daddr,
2906					 task->total_xfer_len, task->data_dir);
2907		else  /* unmap the sgl dma addresses */
2908			dma_unmap_sg(&ihost->pdev->dev, task->scatter,
2909				     request->num_sg_entries, task->data_dir);
2910		break;
2911	case SAS_PROTOCOL_SMP: {
2912		struct scatterlist *sg = &task->smp_task.smp_req;
2913		struct smp_req *smp_req;
2914		void *kaddr;
2915
2916		dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE);
2917
2918		/* need to swab it back in case the command buffer is re-used */
2919		kaddr = kmap_atomic(sg_page(sg));
2920		smp_req = kaddr + sg->offset;
2921		sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
2922		kunmap_atomic(kaddr);
2923		break;
2924	}
2925	default:
2926		break;
2927	}
2928
2929	spin_lock_irqsave(&task->task_state_lock, task_flags);
2930
2931	task->task_status.resp = response;
2932	task->task_status.stat = status;
2933
2934	if (test_bit(IREQ_COMPLETE_IN_TARGET, &request->flags)) {
2935		/* Normal notification (task_done) */
2936		task->task_state_flags |= SAS_TASK_STATE_DONE;
2937		task->task_state_flags &= ~(SAS_TASK_AT_INITIATOR |
2938					    SAS_TASK_STATE_PENDING);
2939	}
2940	spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2941
2942	/* complete the io request to the core. */
2943	sci_controller_complete_io(ihost, request->target_device, request);
2944
2945	/* set terminated handle so it cannot be completed or
2946	 * terminated again, and to cause any calls into abort
2947	 * task to recognize the already completed case.
2948	 */
2949	set_bit(IREQ_TERMINATED, &request->flags);
2950
2951	ireq_done(ihost, request, task);
2952}
2953
2954static void sci_request_started_state_enter(struct sci_base_state_machine *sm)
2955{
2956	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2957	struct domain_device *dev = ireq->target_device->domain_dev;
2958	enum sci_base_request_states state;
2959	struct sas_task *task;
2960
2961	/* XXX as hch said always creating an internal sas_task for tmf
2962	 * requests would simplify the driver
2963	 */
2964	task = (test_bit(IREQ_TMF, &ireq->flags)) ? NULL : isci_request_access_task(ireq);
2965
2966	/* all unaccelerated request types (non ssp or ncq) handled with
2967	 * substates
2968	 */
2969	if (!task && dev->dev_type == SAS_END_DEVICE) {
2970		state = SCI_REQ_TASK_WAIT_TC_COMP;
2971	} else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
2972		state = SCI_REQ_SMP_WAIT_RESP;
2973	} else if (task && sas_protocol_ata(task->task_proto) &&
2974		   !task->ata_task.use_ncq) {
2975		if (dev->sata_dev.class == ATA_DEV_ATAPI &&
2976			task->ata_task.fis.command == ATA_CMD_PACKET) {
2977			state = SCI_REQ_ATAPI_WAIT_H2D;
2978		} else if (task->data_dir == DMA_NONE) {
2979			state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
2980		} else if (task->ata_task.dma_xfer) {
2981			state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
2982		} else /* PIO */ {
2983			state = SCI_REQ_STP_PIO_WAIT_H2D;
2984		}
2985	} else {
2986		/* SSP or NCQ are fully accelerated, no substates */
2987		return;
2988	}
2989	sci_change_state(sm, state);
2990}
2991
2992static void sci_request_completed_state_enter(struct sci_base_state_machine *sm)
2993{
2994	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2995	struct isci_host *ihost = ireq->owning_controller;
2996
2997	/* Tell the SCI_USER that the IO request is complete */
2998	if (!test_bit(IREQ_TMF, &ireq->flags))
2999		isci_request_io_request_complete(ihost, ireq,
3000						 ireq->sci_status);
3001	else
3002		isci_task_request_complete(ihost, ireq, ireq->sci_status);
3003}
3004
3005static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm)
3006{
3007	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3008
3009	/* Setting the abort bit in the Task Context is required by the silicon. */
3010	ireq->tc->abort = 1;
3011}
3012
3013static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3014{
3015	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3016
3017	ireq->target_device->working_request = ireq;
3018}
3019
3020static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3021{
3022	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3023
3024	ireq->target_device->working_request = ireq;
3025}
3026
3027static const struct sci_base_state sci_request_state_table[] = {
3028	[SCI_REQ_INIT] = { },
3029	[SCI_REQ_CONSTRUCTED] = { },
3030	[SCI_REQ_STARTED] = {
3031		.enter_state = sci_request_started_state_enter,
3032	},
3033	[SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
3034		.enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter,
3035	},
3036	[SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
3037	[SCI_REQ_STP_PIO_WAIT_H2D] = {
3038		.enter_state = sci_stp_request_started_pio_await_h2d_completion_enter,
3039	},
3040	[SCI_REQ_STP_PIO_WAIT_FRAME] = { },
3041	[SCI_REQ_STP_PIO_DATA_IN] = { },
3042	[SCI_REQ_STP_PIO_DATA_OUT] = { },
3043	[SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
3044	[SCI_REQ_STP_UDMA_WAIT_D2H] = { },
3045	[SCI_REQ_TASK_WAIT_TC_COMP] = { },
3046	[SCI_REQ_TASK_WAIT_TC_RESP] = { },
3047	[SCI_REQ_SMP_WAIT_RESP] = { },
3048	[SCI_REQ_SMP_WAIT_TC_COMP] = { },
3049	[SCI_REQ_ATAPI_WAIT_H2D] = { },
3050	[SCI_REQ_ATAPI_WAIT_PIO_SETUP] = { },
3051	[SCI_REQ_ATAPI_WAIT_D2H] = { },
3052	[SCI_REQ_ATAPI_WAIT_TC_COMP] = { },
3053	[SCI_REQ_COMPLETED] = {
3054		.enter_state = sci_request_completed_state_enter,
3055	},
3056	[SCI_REQ_ABORTING] = {
3057		.enter_state = sci_request_aborting_state_enter,
3058	},
3059	[SCI_REQ_FINAL] = { },
3060};
3061
3062static void
3063sci_general_request_construct(struct isci_host *ihost,
3064				   struct isci_remote_device *idev,
3065				   struct isci_request *ireq)
3066{
3067	sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT);
3068
3069	ireq->target_device = idev;
3070	ireq->protocol = SAS_PROTOCOL_NONE;
3071	ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
3072
3073	ireq->sci_status   = SCI_SUCCESS;
3074	ireq->scu_status   = 0;
3075	ireq->post_context = 0xFFFFFFFF;
3076}
3077
3078static enum sci_status
3079sci_io_request_construct(struct isci_host *ihost,
3080			  struct isci_remote_device *idev,
3081			  struct isci_request *ireq)
3082{
3083	struct domain_device *dev = idev->domain_dev;
3084	enum sci_status status = SCI_SUCCESS;
3085
3086	/* Build the common part of the request */
3087	sci_general_request_construct(ihost, idev, ireq);
3088
3089	if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
3090		return SCI_FAILURE_INVALID_REMOTE_DEVICE;
3091
3092	if (dev->dev_type == SAS_END_DEVICE)
3093		/* pass */;
3094	else if (dev_is_sata(dev))
3095		memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
3096	else if (dev_is_expander(dev->dev_type))
3097		/* pass */;
3098	else
3099		return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3100
3101	memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab));
3102
3103	return status;
3104}
3105
3106enum sci_status sci_task_request_construct(struct isci_host *ihost,
3107					    struct isci_remote_device *idev,
3108					    u16 io_tag, struct isci_request *ireq)
3109{
3110	struct domain_device *dev = idev->domain_dev;
3111	enum sci_status status = SCI_SUCCESS;
3112
3113	/* Build the common part of the request */
3114	sci_general_request_construct(ihost, idev, ireq);
3115
3116	if (dev->dev_type == SAS_END_DEVICE || dev_is_sata(dev)) {
3117		set_bit(IREQ_TMF, &ireq->flags);
3118		memset(ireq->tc, 0, sizeof(struct scu_task_context));
3119
3120		/* Set the protocol indicator. */
3121		if (dev_is_sata(dev))
3122			ireq->protocol = SAS_PROTOCOL_STP;
3123		else
3124			ireq->protocol = SAS_PROTOCOL_SSP;
3125	} else
3126		status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3127
3128	return status;
3129}
3130
3131static enum sci_status isci_request_ssp_request_construct(
3132	struct isci_request *request)
3133{
3134	enum sci_status status;
3135
3136	dev_dbg(&request->isci_host->pdev->dev,
3137		"%s: request = %p\n",
3138		__func__,
3139		request);
3140	status = sci_io_request_construct_basic_ssp(request);
3141	return status;
3142}
3143
3144static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq)
3145{
3146	struct sas_task *task = isci_request_access_task(ireq);
3147	struct host_to_dev_fis *fis = &ireq->stp.cmd;
3148	struct ata_queued_cmd *qc = task->uldd_task;
3149	enum sci_status status;
3150
3151	dev_dbg(&ireq->isci_host->pdev->dev,
3152		"%s: ireq = %p\n",
3153		__func__,
3154		ireq);
3155
3156	memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
3157	if (!task->ata_task.device_control_reg_update)
3158		fis->flags |= 0x80;
3159	fis->flags &= 0xF0;
3160
3161	status = sci_io_request_construct_basic_sata(ireq);
3162
3163	if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
3164		   qc->tf.command == ATA_CMD_FPDMA_READ ||
3165		   qc->tf.command == ATA_CMD_FPDMA_RECV ||
3166		   qc->tf.command == ATA_CMD_FPDMA_SEND ||
3167		   qc->tf.command == ATA_CMD_NCQ_NON_DATA)) {
3168		fis->sector_count = qc->tag << 3;
3169		ireq->tc->type.stp.ncq_tag = qc->tag;
3170	}
3171
3172	return status;
3173}
3174
3175static enum sci_status
3176sci_io_request_construct_smp(struct device *dev,
3177			      struct isci_request *ireq,
3178			      struct sas_task *task)
3179{
3180	struct scatterlist *sg = &task->smp_task.smp_req;
3181	struct isci_remote_device *idev;
3182	struct scu_task_context *task_context;
3183	struct isci_port *iport;
3184	struct smp_req *smp_req;
3185	void *kaddr;
3186	u8 req_len;
3187	u32 cmd;
3188
3189	kaddr = kmap_atomic(sg_page(sg));
3190	smp_req = kaddr + sg->offset;
3191	/*
3192	 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3193	 * functions under SAS 2.0, a zero request length really indicates
3194	 * a non-zero default length.
3195	 */
3196	if (smp_req->req_len == 0) {
3197		switch (smp_req->func) {
3198		case SMP_DISCOVER:
3199		case SMP_REPORT_PHY_ERR_LOG:
3200		case SMP_REPORT_PHY_SATA:
3201		case SMP_REPORT_ROUTE_INFO:
3202			smp_req->req_len = 2;
3203			break;
3204		case SMP_CONF_ROUTE_INFO:
3205		case SMP_PHY_CONTROL:
3206		case SMP_PHY_TEST_FUNCTION:
3207			smp_req->req_len = 9;
3208			break;
3209			/* Default - zero is a valid default for 2.0. */
3210		}
3211	}
3212	req_len = smp_req->req_len;
3213	sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3214	cmd = *(u32 *) smp_req;
3215	kunmap_atomic(kaddr);
3216
3217	if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
3218		return SCI_FAILURE;
3219
3220	ireq->protocol = SAS_PROTOCOL_SMP;
3221
3222	/* byte swap the smp request. */
3223
3224	task_context = ireq->tc;
3225
3226	idev = ireq->target_device;
3227	iport = idev->owning_port;
3228
3229	/*
3230	 * Fill in the TC with its required data
3231	 * 00h
3232	 */
3233	task_context->priority = 0;
3234	task_context->initiator_request = 1;
3235	task_context->connection_rate = idev->connection_rate;
3236	task_context->protocol_engine_index = ISCI_PEG;
3237	task_context->logical_port_index = iport->physical_port_index;
3238	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
3239	task_context->abort = 0;
3240	task_context->valid = SCU_TASK_CONTEXT_VALID;
3241	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
3242
3243	/* 04h */
3244	task_context->remote_node_index = idev->rnc.remote_node_index;
3245	task_context->command_code = 0;
3246	task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
3247
3248	/* 08h */
3249	task_context->link_layer_control = 0;
3250	task_context->do_not_dma_ssp_good_response = 1;
3251	task_context->strict_ordering = 0;
3252	task_context->control_frame = 1;
3253	task_context->timeout_enable = 0;
3254	task_context->block_guard_enable = 0;
3255
3256	/* 0ch */
3257	task_context->address_modifier = 0;
3258
3259	/* 10h */
3260	task_context->ssp_command_iu_length = req_len;
3261
3262	/* 14h */
3263	task_context->transfer_length_bytes = 0;
3264
3265	/*
3266	 * 18h ~ 30h, protocol specific
3267	 * since commandIU has been build by framework at this point, we just
3268	 * copy the frist DWord from command IU to this location. */
3269	memcpy(&task_context->type.smp, &cmd, sizeof(u32));
3270
3271	/*
3272	 * 40h
3273	 * "For SMP you could program it to zero. We would prefer that way
3274	 * so that done code will be consistent." - Venki
3275	 */
3276	task_context->task_phase = 0;
3277
3278	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
3279			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
3280			       (iport->physical_port_index <<
3281				SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
3282			      ISCI_TAG_TCI(ireq->io_tag));
3283	/*
3284	 * Copy the physical address for the command buffer to the SCU Task
3285	 * Context command buffer should not contain command header.
3286	 */
3287	task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
3288	task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
3289
3290	/* SMP response comes as UF, so no need to set response IU address. */
3291	task_context->response_iu_upper = 0;
3292	task_context->response_iu_lower = 0;
3293
3294	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
3295
3296	return SCI_SUCCESS;
3297}
3298
3299/*
3300 * isci_smp_request_build() - This function builds the smp request.
3301 * @ireq: This parameter points to the isci_request allocated in the
3302 *    request construct function.
3303 *
3304 * SCI_SUCCESS on successfull completion, or specific failure code.
3305 */
3306static enum sci_status isci_smp_request_build(struct isci_request *ireq)
3307{
3308	struct sas_task *task = isci_request_access_task(ireq);
3309	struct device *dev = &ireq->isci_host->pdev->dev;
3310	enum sci_status status = SCI_FAILURE;
3311
3312	status = sci_io_request_construct_smp(dev, ireq, task);
3313	if (status != SCI_SUCCESS)
3314		dev_dbg(&ireq->isci_host->pdev->dev,
3315			 "%s: failed with status = %d\n",
3316			 __func__,
3317			 status);
3318
3319	return status;
3320}
3321
3322/**
3323 * isci_io_request_build() - This function builds the io request object.
3324 * @ihost: This parameter specifies the ISCI host object
3325 * @request: This parameter points to the isci_request object allocated in the
3326 *    request construct function.
3327 * @idev: This parameter is the handle for the sci core's remote device
3328 *    object that is the destination for this request.
3329 *
3330 * SCI_SUCCESS on successfull completion, or specific failure code.
3331 */
3332static enum sci_status isci_io_request_build(struct isci_host *ihost,
3333					     struct isci_request *request,
3334					     struct isci_remote_device *idev)
3335{
3336	enum sci_status status = SCI_SUCCESS;
3337	struct sas_task *task = isci_request_access_task(request);
3338
3339	dev_dbg(&ihost->pdev->dev,
3340		"%s: idev = 0x%p; request = %p, "
3341		"num_scatter = %d\n",
3342		__func__,
3343		idev,
3344		request,
3345		task->num_scatter);
3346
3347	/* map the sgl addresses, if present.
3348	 * libata does the mapping for sata devices
3349	 * before we get the request.
3350	 */
3351	if (task->num_scatter &&
3352	    !sas_protocol_ata(task->task_proto) &&
3353	    !(SAS_PROTOCOL_SMP & task->task_proto)) {
3354
3355		request->num_sg_entries = dma_map_sg(
3356			&ihost->pdev->dev,
3357			task->scatter,
3358			task->num_scatter,
3359			task->data_dir
3360			);
3361
3362		if (request->num_sg_entries == 0)
3363			return SCI_FAILURE_INSUFFICIENT_RESOURCES;
3364	}
3365
3366	status = sci_io_request_construct(ihost, idev, request);
3367
3368	if (status != SCI_SUCCESS) {
3369		dev_dbg(&ihost->pdev->dev,
3370			 "%s: failed request construct\n",
3371			 __func__);
3372		return SCI_FAILURE;
3373	}
3374
3375	switch (task->task_proto) {
3376	case SAS_PROTOCOL_SMP:
3377		status = isci_smp_request_build(request);
3378		break;
3379	case SAS_PROTOCOL_SSP:
3380		status = isci_request_ssp_request_construct(request);
3381		break;
3382	case SAS_PROTOCOL_SATA:
3383	case SAS_PROTOCOL_STP:
3384	case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
3385		status = isci_request_stp_request_construct(request);
3386		break;
3387	default:
3388		dev_dbg(&ihost->pdev->dev,
3389			 "%s: unknown protocol\n", __func__);
3390		return SCI_FAILURE;
3391	}
3392
3393	return SCI_SUCCESS;
3394}
3395
3396static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag)
3397{
3398	struct isci_request *ireq;
3399
3400	ireq = ihost->reqs[ISCI_TAG_TCI(tag)];
3401	ireq->io_tag = tag;
3402	ireq->io_request_completion = NULL;
3403	ireq->flags = 0;
3404	ireq->num_sg_entries = 0;
3405
3406	return ireq;
3407}
3408
3409static struct isci_request *isci_io_request_from_tag(struct isci_host *ihost,
3410						     struct sas_task *task,
3411						     u16 tag)
3412{
3413	struct isci_request *ireq;
3414
3415	ireq = isci_request_from_tag(ihost, tag);
3416	ireq->ttype_ptr.io_task_ptr = task;
3417	clear_bit(IREQ_TMF, &ireq->flags);
3418	task->lldd_task = ireq;
3419
3420	return ireq;
3421}
3422
3423struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost,
3424					       struct isci_tmf *isci_tmf,
3425					       u16 tag)
3426{
3427	struct isci_request *ireq;
3428
3429	ireq = isci_request_from_tag(ihost, tag);
3430	ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
3431	set_bit(IREQ_TMF, &ireq->flags);
3432
3433	return ireq;
3434}
3435
3436int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
3437			 struct sas_task *task, u16 tag)
3438{
3439	enum sci_status status;
3440	struct isci_request *ireq;
3441	unsigned long flags;
3442	int ret = 0;
3443
3444	/* do common allocation and init of request object. */
3445	ireq = isci_io_request_from_tag(ihost, task, tag);
3446
3447	status = isci_io_request_build(ihost, ireq, idev);
3448	if (status != SCI_SUCCESS) {
3449		dev_dbg(&ihost->pdev->dev,
3450			 "%s: request_construct failed - status = 0x%x\n",
3451			 __func__,
3452			 status);
3453		return status;
3454	}
3455
3456	spin_lock_irqsave(&ihost->scic_lock, flags);
3457
3458	if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) {
3459
3460		if (isci_task_is_ncq_recovery(task)) {
3461
3462			/* The device is in an NCQ recovery state.  Issue the
3463			 * request on the task side.  Note that it will
3464			 * complete on the I/O request side because the
3465			 * request was built that way (ie.
3466			 * ireq->is_task_management_request is false).
3467			 */
3468			status = sci_controller_start_task(ihost,
3469							    idev,
3470							    ireq);
3471		} else {
3472			status = SCI_FAILURE;
3473		}
3474	} else {
3475		/* send the request, let the core assign the IO TAG.	*/
3476		status = sci_controller_start_io(ihost, idev,
3477						  ireq);
3478	}
3479
3480	if (status != SCI_SUCCESS &&
3481	    status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3482		dev_dbg(&ihost->pdev->dev,
3483			 "%s: failed request start (0x%x)\n",
3484			 __func__, status);
3485		spin_unlock_irqrestore(&ihost->scic_lock, flags);
3486		return status;
3487	}
3488	/* Either I/O started OK, or the core has signaled that
3489	 * the device needs a target reset.
3490	 */
3491	if (status != SCI_SUCCESS) {
3492		/* The request did not really start in the
3493		 * hardware, so clear the request handle
3494		 * here so no terminations will be done.
3495		 */
3496		set_bit(IREQ_TERMINATED, &ireq->flags);
3497	}
3498	spin_unlock_irqrestore(&ihost->scic_lock, flags);
3499
3500	if (status ==
3501	    SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3502		/* Signal libsas that we need the SCSI error
3503		 * handler thread to work on this I/O and that
3504		 * we want a device reset.
3505		 */
3506		spin_lock_irqsave(&task->task_state_lock, flags);
3507		task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
3508		spin_unlock_irqrestore(&task->task_state_lock, flags);
3509
3510		/* Cause this task to be scheduled in the SCSI error
3511		 * handler thread.
3512		 */
3513		sas_task_abort(task);
3514
3515		/* Change the status, since we are holding
3516		 * the I/O until it is managed by the SCSI
3517		 * error handler.
3518		 */
3519		status = SCI_SUCCESS;
3520	}
3521
3522	return ret;
3523}