Linux Audio

Check our new training course

Loading...
   1/*
   2 * This file is provided under a dual BSD/GPLv2 license.  When using or
   3 * redistributing this file, you may do so under either license.
   4 *
   5 * GPL LICENSE SUMMARY
   6 *
   7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  21 * The full GNU General Public License is included in this distribution
  22 * in the file called LICENSE.GPL.
  23 *
  24 * BSD LICENSE
  25 *
  26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
  27 * All rights reserved.
  28 *
  29 * Redistribution and use in source and binary forms, with or without
  30 * modification, are permitted provided that the following conditions
  31 * are met:
  32 *
  33 *   * Redistributions of source code must retain the above copyright
  34 *     notice, this list of conditions and the following disclaimer.
  35 *   * Redistributions in binary form must reproduce the above copyright
  36 *     notice, this list of conditions and the following disclaimer in
  37 *     the documentation and/or other materials provided with the
  38 *     distribution.
  39 *   * Neither the name of Intel Corporation nor the names of its
  40 *     contributors may be used to endorse or promote products derived
  41 *     from this software without specific prior written permission.
  42 *
  43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  54 */
  55
  56#include <scsi/scsi_cmnd.h>
  57#include "isci.h"
  58#include "task.h"
  59#include "request.h"
  60#include "scu_completion_codes.h"
  61#include "scu_event_codes.h"
  62#include "sas.h"
  63
  64#undef C
  65#define C(a) (#a)
  66const char *req_state_name(enum sci_base_request_states state)
  67{
  68	static const char * const strings[] = REQUEST_STATES;
  69
  70	return strings[state];
  71}
  72#undef C
  73
  74static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq,
  75							int idx)
  76{
  77	if (idx == 0)
  78		return &ireq->tc->sgl_pair_ab;
  79	else if (idx == 1)
  80		return &ireq->tc->sgl_pair_cd;
  81	else if (idx < 0)
  82		return NULL;
  83	else
  84		return &ireq->sg_table[idx - 2];
  85}
  86
  87static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost,
  88					  struct isci_request *ireq, u32 idx)
  89{
  90	u32 offset;
  91
  92	if (idx == 0) {
  93		offset = (void *) &ireq->tc->sgl_pair_ab -
  94			 (void *) &ihost->task_context_table[0];
  95		return ihost->tc_dma + offset;
  96	} else if (idx == 1) {
  97		offset = (void *) &ireq->tc->sgl_pair_cd -
  98			 (void *) &ihost->task_context_table[0];
  99		return ihost->tc_dma + offset;
 100	}
 101
 102	return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]);
 103}
 104
 105static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg)
 106{
 107	e->length = sg_dma_len(sg);
 108	e->address_upper = upper_32_bits(sg_dma_address(sg));
 109	e->address_lower = lower_32_bits(sg_dma_address(sg));
 110	e->address_modifier = 0;
 111}
 112
 113static void sci_request_build_sgl(struct isci_request *ireq)
 114{
 115	struct isci_host *ihost = ireq->isci_host;
 116	struct sas_task *task = isci_request_access_task(ireq);
 117	struct scatterlist *sg = NULL;
 118	dma_addr_t dma_addr;
 119	u32 sg_idx = 0;
 120	struct scu_sgl_element_pair *scu_sg   = NULL;
 121	struct scu_sgl_element_pair *prev_sg  = NULL;
 122
 123	if (task->num_scatter > 0) {
 124		sg = task->scatter;
 125
 126		while (sg) {
 127			scu_sg = to_sgl_element_pair(ireq, sg_idx);
 128			init_sgl_element(&scu_sg->A, sg);
 129			sg = sg_next(sg);
 130			if (sg) {
 131				init_sgl_element(&scu_sg->B, sg);
 132				sg = sg_next(sg);
 133			} else
 134				memset(&scu_sg->B, 0, sizeof(scu_sg->B));
 135
 136			if (prev_sg) {
 137				dma_addr = to_sgl_element_pair_dma(ihost,
 138								   ireq,
 139								   sg_idx);
 140
 141				prev_sg->next_pair_upper =
 142					upper_32_bits(dma_addr);
 143				prev_sg->next_pair_lower =
 144					lower_32_bits(dma_addr);
 145			}
 146
 147			prev_sg = scu_sg;
 148			sg_idx++;
 149		}
 150	} else {	/* handle when no sg */
 151		scu_sg = to_sgl_element_pair(ireq, sg_idx);
 152
 153		dma_addr = dma_map_single(&ihost->pdev->dev,
 154					  task->scatter,
 155					  task->total_xfer_len,
 156					  task->data_dir);
 157
 158		ireq->zero_scatter_daddr = dma_addr;
 159
 160		scu_sg->A.length = task->total_xfer_len;
 161		scu_sg->A.address_upper = upper_32_bits(dma_addr);
 162		scu_sg->A.address_lower = lower_32_bits(dma_addr);
 163	}
 164
 165	if (scu_sg) {
 166		scu_sg->next_pair_upper = 0;
 167		scu_sg->next_pair_lower = 0;
 168	}
 169}
 170
 171static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq)
 172{
 173	struct ssp_cmd_iu *cmd_iu;
 174	struct sas_task *task = isci_request_access_task(ireq);
 175
 176	cmd_iu = &ireq->ssp.cmd;
 177
 178	memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
 179	cmd_iu->add_cdb_len = 0;
 180	cmd_iu->_r_a = 0;
 181	cmd_iu->_r_b = 0;
 182	cmd_iu->en_fburst = 0; /* unsupported */
 183	cmd_iu->task_prio = task->ssp_task.task_prio;
 184	cmd_iu->task_attr = task->ssp_task.task_attr;
 185	cmd_iu->_r_c = 0;
 186
 187	sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cdb,
 188		       sizeof(task->ssp_task.cdb) / sizeof(u32));
 189}
 190
 191static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq)
 192{
 193	struct ssp_task_iu *task_iu;
 194	struct sas_task *task = isci_request_access_task(ireq);
 195	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
 196
 197	task_iu = &ireq->ssp.tmf;
 198
 199	memset(task_iu, 0, sizeof(struct ssp_task_iu));
 200
 201	memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
 202
 203	task_iu->task_func = isci_tmf->tmf_code;
 204	task_iu->task_tag =
 205		(test_bit(IREQ_TMF, &ireq->flags)) ?
 206		isci_tmf->io_tag :
 207		SCI_CONTROLLER_INVALID_IO_TAG;
 208}
 209
 210/**
 211 * This method is will fill in the SCU Task Context for any type of SSP request.
 212 * @sci_req:
 213 * @task_context:
 214 *
 215 */
 216static void scu_ssp_reqeust_construct_task_context(
 217	struct isci_request *ireq,
 218	struct scu_task_context *task_context)
 219{
 220	dma_addr_t dma_addr;
 221	struct isci_remote_device *idev;
 222	struct isci_port *iport;
 223
 224	idev = ireq->target_device;
 225	iport = idev->owning_port;
 226
 227	/* Fill in the TC with the its required data */
 228	task_context->abort = 0;
 229	task_context->priority = 0;
 230	task_context->initiator_request = 1;
 231	task_context->connection_rate = idev->connection_rate;
 232	task_context->protocol_engine_index = ISCI_PEG;
 233	task_context->logical_port_index = iport->physical_port_index;
 234	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
 235	task_context->valid = SCU_TASK_CONTEXT_VALID;
 236	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
 237
 238	task_context->remote_node_index = idev->rnc.remote_node_index;
 239	task_context->command_code = 0;
 240
 241	task_context->link_layer_control = 0;
 242	task_context->do_not_dma_ssp_good_response = 1;
 243	task_context->strict_ordering = 0;
 244	task_context->control_frame = 0;
 245	task_context->timeout_enable = 0;
 246	task_context->block_guard_enable = 0;
 247
 248	task_context->address_modifier = 0;
 249
 250	/* task_context->type.ssp.tag = ireq->io_tag; */
 251	task_context->task_phase = 0x01;
 252
 253	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
 254			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
 255			      (iport->physical_port_index <<
 256			       SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
 257			      ISCI_TAG_TCI(ireq->io_tag));
 258
 259	/*
 260	 * Copy the physical address for the command buffer to the
 261	 * SCU Task Context
 262	 */
 263	dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd);
 264
 265	task_context->command_iu_upper = upper_32_bits(dma_addr);
 266	task_context->command_iu_lower = lower_32_bits(dma_addr);
 267
 268	/*
 269	 * Copy the physical address for the response buffer to the
 270	 * SCU Task Context
 271	 */
 272	dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp);
 273
 274	task_context->response_iu_upper = upper_32_bits(dma_addr);
 275	task_context->response_iu_lower = lower_32_bits(dma_addr);
 276}
 277
 278static u8 scu_bg_blk_size(struct scsi_device *sdp)
 279{
 280	switch (sdp->sector_size) {
 281	case 512:
 282		return 0;
 283	case 1024:
 284		return 1;
 285	case 4096:
 286		return 3;
 287	default:
 288		return 0xff;
 289	}
 290}
 291
 292static u32 scu_dif_bytes(u32 len, u32 sector_size)
 293{
 294	return (len >> ilog2(sector_size)) * 8;
 295}
 296
 297static void scu_ssp_ireq_dif_insert(struct isci_request *ireq, u8 type, u8 op)
 298{
 299	struct scu_task_context *tc = ireq->tc;
 300	struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
 301	u8 blk_sz = scu_bg_blk_size(scmd->device);
 302
 303	tc->block_guard_enable = 1;
 304	tc->blk_prot_en = 1;
 305	tc->blk_sz = blk_sz;
 306	/* DIF write insert */
 307	tc->blk_prot_func = 0x2;
 308
 309	tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
 310						   scmd->device->sector_size);
 311
 312	/* always init to 0, used by hw */
 313	tc->interm_crc_val = 0;
 314
 315	tc->init_crc_seed = 0;
 316	tc->app_tag_verify = 0;
 317	tc->app_tag_gen = 0;
 318	tc->ref_tag_seed_verify = 0;
 319
 320	/* always init to same as bg_blk_sz */
 321	tc->UD_bytes_immed_val = scmd->device->sector_size;
 322
 323	tc->reserved_DC_0 = 0;
 324
 325	/* always init to 8 */
 326	tc->DIF_bytes_immed_val = 8;
 327
 328	tc->reserved_DC_1 = 0;
 329	tc->bgc_blk_sz = scmd->device->sector_size;
 330	tc->reserved_E0_0 = 0;
 331	tc->app_tag_gen_mask = 0;
 332
 333	/** setup block guard control **/
 334	tc->bgctl = 0;
 335
 336	/* DIF write insert */
 337	tc->bgctl_f.op = 0x2;
 338
 339	tc->app_tag_verify_mask = 0;
 340
 341	/* must init to 0 for hw */
 342	tc->blk_guard_err = 0;
 343
 344	tc->reserved_E8_0 = 0;
 345
 346	if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
 347		tc->ref_tag_seed_gen = scsi_get_lba(scmd) & 0xffffffff;
 348	else if (type & SCSI_PROT_DIF_TYPE3)
 349		tc->ref_tag_seed_gen = 0;
 350}
 351
 352static void scu_ssp_ireq_dif_strip(struct isci_request *ireq, u8 type, u8 op)
 353{
 354	struct scu_task_context *tc = ireq->tc;
 355	struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
 356	u8 blk_sz = scu_bg_blk_size(scmd->device);
 357
 358	tc->block_guard_enable = 1;
 359	tc->blk_prot_en = 1;
 360	tc->blk_sz = blk_sz;
 361	/* DIF read strip */
 362	tc->blk_prot_func = 0x1;
 363
 364	tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
 365						   scmd->device->sector_size);
 366
 367	/* always init to 0, used by hw */
 368	tc->interm_crc_val = 0;
 369
 370	tc->init_crc_seed = 0;
 371	tc->app_tag_verify = 0;
 372	tc->app_tag_gen = 0;
 373
 374	if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
 375		tc->ref_tag_seed_verify = scsi_get_lba(scmd) & 0xffffffff;
 376	else if (type & SCSI_PROT_DIF_TYPE3)
 377		tc->ref_tag_seed_verify = 0;
 378
 379	/* always init to same as bg_blk_sz */
 380	tc->UD_bytes_immed_val = scmd->device->sector_size;
 381
 382	tc->reserved_DC_0 = 0;
 383
 384	/* always init to 8 */
 385	tc->DIF_bytes_immed_val = 8;
 386
 387	tc->reserved_DC_1 = 0;
 388	tc->bgc_blk_sz = scmd->device->sector_size;
 389	tc->reserved_E0_0 = 0;
 390	tc->app_tag_gen_mask = 0;
 391
 392	/** setup block guard control **/
 393	tc->bgctl = 0;
 394
 395	/* DIF read strip */
 396	tc->bgctl_f.crc_verify = 1;
 397	tc->bgctl_f.op = 0x1;
 398	if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2)) {
 399		tc->bgctl_f.ref_tag_chk = 1;
 400		tc->bgctl_f.app_f_detect = 1;
 401	} else if (type & SCSI_PROT_DIF_TYPE3)
 402		tc->bgctl_f.app_ref_f_detect = 1;
 403
 404	tc->app_tag_verify_mask = 0;
 405
 406	/* must init to 0 for hw */
 407	tc->blk_guard_err = 0;
 408
 409	tc->reserved_E8_0 = 0;
 410	tc->ref_tag_seed_gen = 0;
 411}
 412
 413/**
 414 * This method is will fill in the SCU Task Context for a SSP IO request.
 415 * @sci_req:
 416 *
 417 */
 418static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq,
 419						      enum dma_data_direction dir,
 420						      u32 len)
 421{
 422	struct scu_task_context *task_context = ireq->tc;
 423	struct sas_task *sas_task = ireq->ttype_ptr.io_task_ptr;
 424	struct scsi_cmnd *scmd = sas_task->uldd_task;
 425	u8 prot_type = scsi_get_prot_type(scmd);
 426	u8 prot_op = scsi_get_prot_op(scmd);
 427
 428	scu_ssp_reqeust_construct_task_context(ireq, task_context);
 429
 430	task_context->ssp_command_iu_length =
 431		sizeof(struct ssp_cmd_iu) / sizeof(u32);
 432	task_context->type.ssp.frame_type = SSP_COMMAND;
 433
 434	switch (dir) {
 435	case DMA_FROM_DEVICE:
 436	case DMA_NONE:
 437	default:
 438		task_context->task_type = SCU_TASK_TYPE_IOREAD;
 439		break;
 440	case DMA_TO_DEVICE:
 441		task_context->task_type = SCU_TASK_TYPE_IOWRITE;
 442		break;
 443	}
 444
 445	task_context->transfer_length_bytes = len;
 446
 447	if (task_context->transfer_length_bytes > 0)
 448		sci_request_build_sgl(ireq);
 449
 450	if (prot_type != SCSI_PROT_DIF_TYPE0) {
 451		if (prot_op == SCSI_PROT_READ_STRIP)
 452			scu_ssp_ireq_dif_strip(ireq, prot_type, prot_op);
 453		else if (prot_op == SCSI_PROT_WRITE_INSERT)
 454			scu_ssp_ireq_dif_insert(ireq, prot_type, prot_op);
 455	}
 456}
 457
 458/**
 459 * This method will fill in the SCU Task Context for a SSP Task request.  The
 460 *    following important settings are utilized: -# priority ==
 461 *    SCU_TASK_PRIORITY_HIGH.  This ensures that the task request is issued
 462 *    ahead of other task destined for the same Remote Node. -# task_type ==
 463 *    SCU_TASK_TYPE_IOREAD.  This simply indicates that a normal request type
 464 *    (i.e. non-raw frame) is being utilized to perform task management. -#
 465 *    control_frame == 1.  This ensures that the proper endianess is set so
 466 *    that the bytes are transmitted in the right order for a task frame.
 467 * @sci_req: This parameter specifies the task request object being
 468 *    constructed.
 469 *
 470 */
 471static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq)
 472{
 473	struct scu_task_context *task_context = ireq->tc;
 474
 475	scu_ssp_reqeust_construct_task_context(ireq, task_context);
 476
 477	task_context->control_frame                = 1;
 478	task_context->priority                     = SCU_TASK_PRIORITY_HIGH;
 479	task_context->task_type                    = SCU_TASK_TYPE_RAW_FRAME;
 480	task_context->transfer_length_bytes        = 0;
 481	task_context->type.ssp.frame_type          = SSP_TASK;
 482	task_context->ssp_command_iu_length =
 483		sizeof(struct ssp_task_iu) / sizeof(u32);
 484}
 485
 486/**
 487 * This method is will fill in the SCU Task Context for any type of SATA
 488 *    request.  This is called from the various SATA constructors.
 489 * @sci_req: The general IO request object which is to be used in
 490 *    constructing the SCU task context.
 491 * @task_context: The buffer pointer for the SCU task context which is being
 492 *    constructed.
 493 *
 494 * The general io request construction is complete. The buffer assignment for
 495 * the command buffer is complete. none Revisit task context construction to
 496 * determine what is common for SSP/SMP/STP task context structures.
 497 */
 498static void scu_sata_reqeust_construct_task_context(
 499	struct isci_request *ireq,
 500	struct scu_task_context *task_context)
 501{
 502	dma_addr_t dma_addr;
 503	struct isci_remote_device *idev;
 504	struct isci_port *iport;
 505
 506	idev = ireq->target_device;
 507	iport = idev->owning_port;
 508
 509	/* Fill in the TC with the its required data */
 510	task_context->abort = 0;
 511	task_context->priority = SCU_TASK_PRIORITY_NORMAL;
 512	task_context->initiator_request = 1;
 513	task_context->connection_rate = idev->connection_rate;
 514	task_context->protocol_engine_index = ISCI_PEG;
 515	task_context->logical_port_index = iport->physical_port_index;
 516	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
 517	task_context->valid = SCU_TASK_CONTEXT_VALID;
 518	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
 519
 520	task_context->remote_node_index = idev->rnc.remote_node_index;
 521	task_context->command_code = 0;
 522
 523	task_context->link_layer_control = 0;
 524	task_context->do_not_dma_ssp_good_response = 1;
 525	task_context->strict_ordering = 0;
 526	task_context->control_frame = 0;
 527	task_context->timeout_enable = 0;
 528	task_context->block_guard_enable = 0;
 529
 530	task_context->address_modifier = 0;
 531	task_context->task_phase = 0x01;
 532
 533	task_context->ssp_command_iu_length =
 534		(sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
 535
 536	/* Set the first word of the H2D REG FIS */
 537	task_context->type.words[0] = *(u32 *)&ireq->stp.cmd;
 538
 539	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
 540			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
 541			      (iport->physical_port_index <<
 542			       SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
 543			      ISCI_TAG_TCI(ireq->io_tag));
 544	/*
 545	 * Copy the physical address for the command buffer to the SCU Task
 546	 * Context. We must offset the command buffer by 4 bytes because the
 547	 * first 4 bytes are transfered in the body of the TC.
 548	 */
 549	dma_addr = sci_io_request_get_dma_addr(ireq,
 550						((char *) &ireq->stp.cmd) +
 551						sizeof(u32));
 552
 553	task_context->command_iu_upper = upper_32_bits(dma_addr);
 554	task_context->command_iu_lower = lower_32_bits(dma_addr);
 555
 556	/* SATA Requests do not have a response buffer */
 557	task_context->response_iu_upper = 0;
 558	task_context->response_iu_lower = 0;
 559}
 560
 561static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq)
 562{
 563	struct scu_task_context *task_context = ireq->tc;
 564
 565	scu_sata_reqeust_construct_task_context(ireq, task_context);
 566
 567	task_context->control_frame         = 0;
 568	task_context->priority              = SCU_TASK_PRIORITY_NORMAL;
 569	task_context->task_type             = SCU_TASK_TYPE_SATA_RAW_FRAME;
 570	task_context->type.stp.fis_type     = FIS_REGH2D;
 571	task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
 572}
 573
 574static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq,
 575							  bool copy_rx_frame)
 576{
 577	struct isci_stp_request *stp_req = &ireq->stp.req;
 578
 579	scu_stp_raw_request_construct_task_context(ireq);
 580
 581	stp_req->status = 0;
 582	stp_req->sgl.offset = 0;
 583	stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A;
 584
 585	if (copy_rx_frame) {
 586		sci_request_build_sgl(ireq);
 587		stp_req->sgl.index = 0;
 588	} else {
 589		/* The user does not want the data copied to the SGL buffer location */
 590		stp_req->sgl.index = -1;
 591	}
 592
 593	return SCI_SUCCESS;
 594}
 595
 596/**
 597 *
 598 * @sci_req: This parameter specifies the request to be constructed as an
 599 *    optimized request.
 600 * @optimized_task_type: This parameter specifies whether the request is to be
 601 *    an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
 602 *    value of 1 indicates NCQ.
 603 *
 604 * This method will perform request construction common to all types of STP
 605 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
 606 * returns an indication as to whether the construction was successful.
 607 */
 608static void sci_stp_optimized_request_construct(struct isci_request *ireq,
 609						     u8 optimized_task_type,
 610						     u32 len,
 611						     enum dma_data_direction dir)
 612{
 613	struct scu_task_context *task_context = ireq->tc;
 614
 615	/* Build the STP task context structure */
 616	scu_sata_reqeust_construct_task_context(ireq, task_context);
 617
 618	/* Copy over the SGL elements */
 619	sci_request_build_sgl(ireq);
 620
 621	/* Copy over the number of bytes to be transfered */
 622	task_context->transfer_length_bytes = len;
 623
 624	if (dir == DMA_TO_DEVICE) {
 625		/*
 626		 * The difference between the DMA IN and DMA OUT request task type
 627		 * values are consistent with the difference between FPDMA READ
 628		 * and FPDMA WRITE values.  Add the supplied task type parameter
 629		 * to this difference to set the task type properly for this
 630		 * DATA OUT (WRITE) case. */
 631		task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
 632								 - SCU_TASK_TYPE_DMA_IN);
 633	} else {
 634		/*
 635		 * For the DATA IN (READ) case, simply save the supplied
 636		 * optimized task type. */
 637		task_context->task_type = optimized_task_type;
 638	}
 639}
 640
 641static void sci_atapi_construct(struct isci_request *ireq)
 642{
 643	struct host_to_dev_fis *h2d_fis = &ireq->stp.cmd;
 644	struct sas_task *task;
 645
 646	/* To simplify the implementation we take advantage of the
 647	 * silicon's partial acceleration of atapi protocol (dma data
 648	 * transfers), so we promote all commands to dma protocol.  This
 649	 * breaks compatibility with ATA_HORKAGE_ATAPI_MOD16_DMA drives.
 650	 */
 651	h2d_fis->features |= ATAPI_PKT_DMA;
 652
 653	scu_stp_raw_request_construct_task_context(ireq);
 654
 655	task = isci_request_access_task(ireq);
 656	if (task->data_dir == DMA_NONE)
 657		task->total_xfer_len = 0;
 658
 659	/* clear the response so we can detect arrivial of an
 660	 * unsolicited h2d fis
 661	 */
 662	ireq->stp.rsp.fis_type = 0;
 663}
 664
 665static enum sci_status
 666sci_io_request_construct_sata(struct isci_request *ireq,
 667			       u32 len,
 668			       enum dma_data_direction dir,
 669			       bool copy)
 670{
 671	enum sci_status status = SCI_SUCCESS;
 672	struct sas_task *task = isci_request_access_task(ireq);
 673	struct domain_device *dev = ireq->target_device->domain_dev;
 674
 675	/* check for management protocols */
 676	if (test_bit(IREQ_TMF, &ireq->flags)) {
 677		struct isci_tmf *tmf = isci_request_access_tmf(ireq);
 678
 679		dev_err(&ireq->owning_controller->pdev->dev,
 680			"%s: Request 0x%p received un-handled SAT "
 681			"management protocol 0x%x.\n",
 682			__func__, ireq, tmf->tmf_code);
 683
 684		return SCI_FAILURE;
 685	}
 686
 687	if (!sas_protocol_ata(task->task_proto)) {
 688		dev_err(&ireq->owning_controller->pdev->dev,
 689			"%s: Non-ATA protocol in SATA path: 0x%x\n",
 690			__func__,
 691			task->task_proto);
 692		return SCI_FAILURE;
 693
 694	}
 695
 696	/* ATAPI */
 697	if (dev->sata_dev.command_set == ATAPI_COMMAND_SET &&
 698	    task->ata_task.fis.command == ATA_CMD_PACKET) {
 699		sci_atapi_construct(ireq);
 700		return SCI_SUCCESS;
 701	}
 702
 703	/* non data */
 704	if (task->data_dir == DMA_NONE) {
 705		scu_stp_raw_request_construct_task_context(ireq);
 706		return SCI_SUCCESS;
 707	}
 708
 709	/* NCQ */
 710	if (task->ata_task.use_ncq) {
 711		sci_stp_optimized_request_construct(ireq,
 712							 SCU_TASK_TYPE_FPDMAQ_READ,
 713							 len, dir);
 714		return SCI_SUCCESS;
 715	}
 716
 717	/* DMA */
 718	if (task->ata_task.dma_xfer) {
 719		sci_stp_optimized_request_construct(ireq,
 720							 SCU_TASK_TYPE_DMA_IN,
 721							 len, dir);
 722		return SCI_SUCCESS;
 723	} else /* PIO */
 724		return sci_stp_pio_request_construct(ireq, copy);
 725
 726	return status;
 727}
 728
 729static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq)
 730{
 731	struct sas_task *task = isci_request_access_task(ireq);
 732
 733	ireq->protocol = SAS_PROTOCOL_SSP;
 734
 735	scu_ssp_io_request_construct_task_context(ireq,
 736						  task->data_dir,
 737						  task->total_xfer_len);
 738
 739	sci_io_request_build_ssp_command_iu(ireq);
 740
 741	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
 742
 743	return SCI_SUCCESS;
 744}
 745
 746enum sci_status sci_task_request_construct_ssp(
 747	struct isci_request *ireq)
 748{
 749	/* Construct the SSP Task SCU Task Context */
 750	scu_ssp_task_request_construct_task_context(ireq);
 751
 752	/* Fill in the SSP Task IU */
 753	sci_task_request_build_ssp_task_iu(ireq);
 754
 755	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
 756
 757	return SCI_SUCCESS;
 758}
 759
 760static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq)
 761{
 762	enum sci_status status;
 763	bool copy = false;
 764	struct sas_task *task = isci_request_access_task(ireq);
 765
 766	ireq->protocol = SAS_PROTOCOL_STP;
 767
 768	copy = (task->data_dir == DMA_NONE) ? false : true;
 769
 770	status = sci_io_request_construct_sata(ireq,
 771						task->total_xfer_len,
 772						task->data_dir,
 773						copy);
 774
 775	if (status == SCI_SUCCESS)
 776		sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
 777
 778	return status;
 779}
 780
 781/**
 782 * sci_req_tx_bytes - bytes transferred when reply underruns request
 783 * @ireq: request that was terminated early
 784 */
 785#define SCU_TASK_CONTEXT_SRAM 0x200000
 786static u32 sci_req_tx_bytes(struct isci_request *ireq)
 787{
 788	struct isci_host *ihost = ireq->owning_controller;
 789	u32 ret_val = 0;
 790
 791	if (readl(&ihost->smu_registers->address_modifier) == 0) {
 792		void __iomem *scu_reg_base = ihost->scu_registers;
 793
 794		/* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
 795		 *   BAR1 is the scu_registers
 796		 *   0x20002C = 0x200000 + 0x2c
 797		 *            = start of task context SRAM + offset of (type.ssp.data_offset)
 798		 *   TCi is the io_tag of struct sci_request
 799		 */
 800		ret_val = readl(scu_reg_base +
 801				(SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
 802				((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag)));
 803	}
 804
 805	return ret_val;
 806}
 807
 808enum sci_status sci_request_start(struct isci_request *ireq)
 809{
 810	enum sci_base_request_states state;
 811	struct scu_task_context *tc = ireq->tc;
 812	struct isci_host *ihost = ireq->owning_controller;
 813
 814	state = ireq->sm.current_state_id;
 815	if (state != SCI_REQ_CONSTRUCTED) {
 816		dev_warn(&ihost->pdev->dev,
 817			"%s: SCIC IO Request requested to start while in wrong "
 818			 "state %d\n", __func__, state);
 819		return SCI_FAILURE_INVALID_STATE;
 820	}
 821
 822	tc->task_index = ISCI_TAG_TCI(ireq->io_tag);
 823
 824	switch (tc->protocol_type) {
 825	case SCU_TASK_CONTEXT_PROTOCOL_SMP:
 826	case SCU_TASK_CONTEXT_PROTOCOL_SSP:
 827		/* SSP/SMP Frame */
 828		tc->type.ssp.tag = ireq->io_tag;
 829		tc->type.ssp.target_port_transfer_tag = 0xFFFF;
 830		break;
 831
 832	case SCU_TASK_CONTEXT_PROTOCOL_STP:
 833		/* STP/SATA Frame
 834		 * tc->type.stp.ncq_tag = ireq->ncq_tag;
 835		 */
 836		break;
 837
 838	case SCU_TASK_CONTEXT_PROTOCOL_NONE:
 839		/* / @todo When do we set no protocol type? */
 840		break;
 841
 842	default:
 843		/* This should never happen since we build the IO
 844		 * requests */
 845		break;
 846	}
 847
 848	/* Add to the post_context the io tag value */
 849	ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag);
 850
 851	/* Everything is good go ahead and change state */
 852	sci_change_state(&ireq->sm, SCI_REQ_STARTED);
 853
 854	return SCI_SUCCESS;
 855}
 856
 857enum sci_status
 858sci_io_request_terminate(struct isci_request *ireq)
 859{
 860	enum sci_base_request_states state;
 861
 862	state = ireq->sm.current_state_id;
 863
 864	switch (state) {
 865	case SCI_REQ_CONSTRUCTED:
 866		/* Set to make sure no HW terminate posting is done: */
 867		set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags);
 868		ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
 869		ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
 870		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
 871		return SCI_SUCCESS;
 872	case SCI_REQ_STARTED:
 873	case SCI_REQ_TASK_WAIT_TC_COMP:
 874	case SCI_REQ_SMP_WAIT_RESP:
 875	case SCI_REQ_SMP_WAIT_TC_COMP:
 876	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
 877	case SCI_REQ_STP_UDMA_WAIT_D2H:
 878	case SCI_REQ_STP_NON_DATA_WAIT_H2D:
 879	case SCI_REQ_STP_NON_DATA_WAIT_D2H:
 880	case SCI_REQ_STP_PIO_WAIT_H2D:
 881	case SCI_REQ_STP_PIO_WAIT_FRAME:
 882	case SCI_REQ_STP_PIO_DATA_IN:
 883	case SCI_REQ_STP_PIO_DATA_OUT:
 884	case SCI_REQ_ATAPI_WAIT_H2D:
 885	case SCI_REQ_ATAPI_WAIT_PIO_SETUP:
 886	case SCI_REQ_ATAPI_WAIT_D2H:
 887	case SCI_REQ_ATAPI_WAIT_TC_COMP:
 888		/* Fall through and change state to ABORTING... */
 889	case SCI_REQ_TASK_WAIT_TC_RESP:
 890		/* The task frame was already confirmed to have been
 891		 * sent by the SCU HW.  Since the state machine is
 892		 * now only waiting for the task response itself,
 893		 * abort the request and complete it immediately
 894		 * and don't wait for the task response.
 895		 */
 896		sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
 897		/* Fall through and handle like ABORTING... */
 898	case SCI_REQ_ABORTING:
 899		if (!isci_remote_device_is_safe_to_abort(ireq->target_device))
 900			set_bit(IREQ_PENDING_ABORT, &ireq->flags);
 901		else
 902			clear_bit(IREQ_PENDING_ABORT, &ireq->flags);
 903		/* If the request is only waiting on the remote device
 904		 * suspension, return SUCCESS so the caller will wait too.
 905		 */
 906		return SCI_SUCCESS;
 907	case SCI_REQ_COMPLETED:
 908	default:
 909		dev_warn(&ireq->owning_controller->pdev->dev,
 910			 "%s: SCIC IO Request requested to abort while in wrong "
 911			 "state %d\n", __func__, ireq->sm.current_state_id);
 912		break;
 913	}
 914
 915	return SCI_FAILURE_INVALID_STATE;
 916}
 917
 918enum sci_status sci_request_complete(struct isci_request *ireq)
 919{
 920	enum sci_base_request_states state;
 921	struct isci_host *ihost = ireq->owning_controller;
 922
 923	state = ireq->sm.current_state_id;
 924	if (WARN_ONCE(state != SCI_REQ_COMPLETED,
 925		      "isci: request completion from wrong state (%s)\n",
 926		      req_state_name(state)))
 927		return SCI_FAILURE_INVALID_STATE;
 928
 929	if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
 930		sci_controller_release_frame(ihost,
 931						  ireq->saved_rx_frame_index);
 932
 933	/* XXX can we just stop the machine and remove the 'final' state? */
 934	sci_change_state(&ireq->sm, SCI_REQ_FINAL);
 935	return SCI_SUCCESS;
 936}
 937
 938enum sci_status sci_io_request_event_handler(struct isci_request *ireq,
 939						  u32 event_code)
 940{
 941	enum sci_base_request_states state;
 942	struct isci_host *ihost = ireq->owning_controller;
 943
 944	state = ireq->sm.current_state_id;
 945
 946	if (state != SCI_REQ_STP_PIO_DATA_IN) {
 947		dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %s\n",
 948			 __func__, event_code, req_state_name(state));
 949
 950		return SCI_FAILURE_INVALID_STATE;
 951	}
 952
 953	switch (scu_get_event_specifier(event_code)) {
 954	case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
 955		/* We are waiting for data and the SCU has R_ERR the data frame.
 956		 * Go back to waiting for the D2H Register FIS
 957		 */
 958		sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
 959		return SCI_SUCCESS;
 960	default:
 961		dev_err(&ihost->pdev->dev,
 962			"%s: pio request unexpected event %#x\n",
 963			__func__, event_code);
 964
 965		/* TODO Should we fail the PIO request when we get an
 966		 * unexpected event?
 967		 */
 968		return SCI_FAILURE;
 969	}
 970}
 971
 972/*
 973 * This function copies response data for requests returning response data
 974 *    instead of sense data.
 975 * @sci_req: This parameter specifies the request object for which to copy
 976 *    the response data.
 977 */
 978static void sci_io_request_copy_response(struct isci_request *ireq)
 979{
 980	void *resp_buf;
 981	u32 len;
 982	struct ssp_response_iu *ssp_response;
 983	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
 984
 985	ssp_response = &ireq->ssp.rsp;
 986
 987	resp_buf = &isci_tmf->resp.resp_iu;
 988
 989	len = min_t(u32,
 990		    SSP_RESP_IU_MAX_SIZE,
 991		    be32_to_cpu(ssp_response->response_data_len));
 992
 993	memcpy(resp_buf, ssp_response->resp_data, len);
 994}
 995
 996static enum sci_status
 997request_started_state_tc_event(struct isci_request *ireq,
 998			       u32 completion_code)
 999{
1000	struct ssp_response_iu *resp_iu;
1001	u8 datapres;
1002
1003	/* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
1004	 * to determine SDMA status
1005	 */
1006	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1007	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1008		ireq->scu_status = SCU_TASK_DONE_GOOD;
1009		ireq->sci_status = SCI_SUCCESS;
1010		break;
1011	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
1012		/* There are times when the SCU hardware will return an early
1013		 * response because the io request specified more data than is
1014		 * returned by the target device (mode pages, inquiry data,
1015		 * etc.).  We must check the response stats to see if this is
1016		 * truly a failed request or a good request that just got
1017		 * completed early.
1018		 */
1019		struct ssp_response_iu *resp = &ireq->ssp.rsp;
1020		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1021
1022		sci_swab32_cpy(&ireq->ssp.rsp,
1023			       &ireq->ssp.rsp,
1024			       word_cnt);
1025
1026		if (resp->status == 0) {
1027			ireq->scu_status = SCU_TASK_DONE_GOOD;
1028			ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
1029		} else {
1030			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1031			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1032		}
1033		break;
1034	}
1035	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
1036		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1037
1038		sci_swab32_cpy(&ireq->ssp.rsp,
1039			       &ireq->ssp.rsp,
1040			       word_cnt);
1041
1042		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1043		ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1044		break;
1045	}
1046
1047	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
1048		/* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
1049		 * guaranteed to be received before this completion status is
1050		 * posted?
1051		 */
1052		resp_iu = &ireq->ssp.rsp;
1053		datapres = resp_iu->datapres;
1054
1055		if (datapres == 1 || datapres == 2) {
1056			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1057			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1058		} else {
1059			ireq->scu_status = SCU_TASK_DONE_GOOD;
1060			ireq->sci_status = SCI_SUCCESS;
1061		}
1062		break;
1063	/* only stp device gets suspended. */
1064	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1065	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
1066	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
1067	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
1068	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
1069	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
1070	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
1071	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
1072	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
1073	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
1074	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
1075		if (ireq->protocol == SAS_PROTOCOL_STP) {
1076			ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1077					   SCU_COMPLETION_TL_STATUS_SHIFT;
1078			ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1079		} else {
1080			ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1081					   SCU_COMPLETION_TL_STATUS_SHIFT;
1082			ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1083		}
1084		break;
1085
1086	/* both stp/ssp device gets suspended */
1087	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
1088	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
1089	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
1090	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
1091	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
1092	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
1093	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
1094	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
1095	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
1096	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
1097		ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1098				   SCU_COMPLETION_TL_STATUS_SHIFT;
1099		ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1100		break;
1101
1102	/* neither ssp nor stp gets suspended. */
1103	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
1104	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
1105	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
1106	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
1107	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
1108	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
1109	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1110	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1111	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1112	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1113	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
1114	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
1115	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
1116	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
1117	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
1118	default:
1119		ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1120				   SCU_COMPLETION_TL_STATUS_SHIFT;
1121		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1122		break;
1123	}
1124
1125	/*
1126	 * TODO: This is probably wrong for ACK/NAK timeout conditions
1127	 */
1128
1129	/* In all cases we will treat this as the completion of the IO req. */
1130	sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1131	return SCI_SUCCESS;
1132}
1133
1134static enum sci_status
1135request_aborting_state_tc_event(struct isci_request *ireq,
1136				u32 completion_code)
1137{
1138	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1139	case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
1140	case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
1141		ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
1142		ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
1143		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1144		break;
1145
1146	default:
1147		/* Unless we get some strange error wait for the task abort to complete
1148		 * TODO: Should there be a state change for this completion?
1149		 */
1150		break;
1151	}
1152
1153	return SCI_SUCCESS;
1154}
1155
1156static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq,
1157						       u32 completion_code)
1158{
1159	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1160	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1161		ireq->scu_status = SCU_TASK_DONE_GOOD;
1162		ireq->sci_status = SCI_SUCCESS;
1163		sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1164		break;
1165	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1166		/* Currently, the decision is to simply allow the task request
1167		 * to timeout if the task IU wasn't received successfully.
1168		 * There is a potential for receiving multiple task responses if
1169		 * we decide to send the task IU again.
1170		 */
1171		dev_warn(&ireq->owning_controller->pdev->dev,
1172			 "%s: TaskRequest:0x%p CompletionCode:%x - "
1173			 "ACK/NAK timeout\n", __func__, ireq,
1174			 completion_code);
1175
1176		sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1177		break;
1178	default:
1179		/*
1180		 * All other completion status cause the IO to be complete.
1181		 * If a NAK was received, then it is up to the user to retry
1182		 * the request.
1183		 */
1184		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1185		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1186		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1187		break;
1188	}
1189
1190	return SCI_SUCCESS;
1191}
1192
1193static enum sci_status
1194smp_request_await_response_tc_event(struct isci_request *ireq,
1195				    u32 completion_code)
1196{
1197	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1198	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1199		/* In the AWAIT RESPONSE state, any TC completion is
1200		 * unexpected.  but if the TC has success status, we
1201		 * complete the IO anyway.
1202		 */
1203		ireq->scu_status = SCU_TASK_DONE_GOOD;
1204		ireq->sci_status = SCI_SUCCESS;
1205		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1206		break;
1207	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1208	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1209	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1210	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1211		/* These status has been seen in a specific LSI
1212		 * expander, which sometimes is not able to send smp
1213		 * response within 2 ms. This causes our hardware break
1214		 * the connection and set TC completion with one of
1215		 * these SMP_XXX_XX_ERR status. For these type of error,
1216		 * we ask ihost user to retry the request.
1217		 */
1218		ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR;
1219		ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED;
1220		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1221		break;
1222	default:
1223		/* All other completion status cause the IO to be complete.  If a NAK
1224		 * was received, then it is up to the user to retry the request
1225		 */
1226		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1227		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1228		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1229		break;
1230	}
1231
1232	return SCI_SUCCESS;
1233}
1234
1235static enum sci_status
1236smp_request_await_tc_event(struct isci_request *ireq,
1237			   u32 completion_code)
1238{
1239	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1240	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1241		ireq->scu_status = SCU_TASK_DONE_GOOD;
1242		ireq->sci_status = SCI_SUCCESS;
1243		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1244		break;
1245	default:
1246		/* All other completion status cause the IO to be
1247		 * complete.  If a NAK was received, then it is up to
1248		 * the user to retry the request.
1249		 */
1250		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1251		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1252		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1253		break;
1254	}
1255
1256	return SCI_SUCCESS;
1257}
1258
1259static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req)
1260{
1261	struct scu_sgl_element *sgl;
1262	struct scu_sgl_element_pair *sgl_pair;
1263	struct isci_request *ireq = to_ireq(stp_req);
1264	struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl;
1265
1266	sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1267	if (!sgl_pair)
1268		sgl = NULL;
1269	else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) {
1270		if (sgl_pair->B.address_lower == 0 &&
1271		    sgl_pair->B.address_upper == 0) {
1272			sgl = NULL;
1273		} else {
1274			pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B;
1275			sgl = &sgl_pair->B;
1276		}
1277	} else {
1278		if (sgl_pair->next_pair_lower == 0 &&
1279		    sgl_pair->next_pair_upper == 0) {
1280			sgl = NULL;
1281		} else {
1282			pio_sgl->index++;
1283			pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A;
1284			sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1285			sgl = &sgl_pair->A;
1286		}
1287	}
1288
1289	return sgl;
1290}
1291
1292static enum sci_status
1293stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq,
1294					u32 completion_code)
1295{
1296	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1297	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1298		ireq->scu_status = SCU_TASK_DONE_GOOD;
1299		ireq->sci_status = SCI_SUCCESS;
1300		sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
1301		break;
1302
1303	default:
1304		/* All other completion status cause the IO to be
1305		 * complete.  If a NAK was received, then it is up to
1306		 * the user to retry the request.
1307		 */
1308		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1309		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1310		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1311		break;
1312	}
1313
1314	return SCI_SUCCESS;
1315}
1316
1317#define SCU_MAX_FRAME_BUFFER_SIZE  0x400  /* 1K is the maximum SCU frame data payload */
1318
1319/* transmit DATA_FIS from (current sgl + offset) for input
1320 * parameter length. current sgl and offset is alreay stored in the IO request
1321 */
1322static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame(
1323	struct isci_request *ireq,
1324	u32 length)
1325{
1326	struct isci_stp_request *stp_req = &ireq->stp.req;
1327	struct scu_task_context *task_context = ireq->tc;
1328	struct scu_sgl_element_pair *sgl_pair;
1329	struct scu_sgl_element *current_sgl;
1330
1331	/* Recycle the TC and reconstruct it for sending out DATA FIS containing
1332	 * for the data from current_sgl+offset for the input length
1333	 */
1334	sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1335	if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A)
1336		current_sgl = &sgl_pair->A;
1337	else
1338		current_sgl = &sgl_pair->B;
1339
1340	/* update the TC */
1341	task_context->command_iu_upper = current_sgl->address_upper;
1342	task_context->command_iu_lower = current_sgl->address_lower;
1343	task_context->transfer_length_bytes = length;
1344	task_context->type.stp.fis_type = FIS_DATA;
1345
1346	/* send the new TC out. */
1347	return sci_controller_continue_io(ireq);
1348}
1349
1350static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq)
1351{
1352	struct isci_stp_request *stp_req = &ireq->stp.req;
1353	struct scu_sgl_element_pair *sgl_pair;
1354	enum sci_status status = SCI_SUCCESS;
1355	struct scu_sgl_element *sgl;
1356	u32 offset;
1357	u32 len = 0;
1358
1359	offset = stp_req->sgl.offset;
1360	sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1361	if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__))
1362		return SCI_FAILURE;
1363
1364	if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) {
1365		sgl = &sgl_pair->A;
1366		len = sgl_pair->A.length - offset;
1367	} else {
1368		sgl = &sgl_pair->B;
1369		len = sgl_pair->B.length - offset;
1370	}
1371
1372	if (stp_req->pio_len == 0)
1373		return SCI_SUCCESS;
1374
1375	if (stp_req->pio_len >= len) {
1376		status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len);
1377		if (status != SCI_SUCCESS)
1378			return status;
1379		stp_req->pio_len -= len;
1380
1381		/* update the current sgl, offset and save for future */
1382		sgl = pio_sgl_next(stp_req);
1383		offset = 0;
1384	} else if (stp_req->pio_len < len) {
1385		sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len);
1386
1387		/* Sgl offset will be adjusted and saved for future */
1388		offset += stp_req->pio_len;
1389		sgl->address_lower += stp_req->pio_len;
1390		stp_req->pio_len = 0;
1391	}
1392
1393	stp_req->sgl.offset = offset;
1394
1395	return status;
1396}
1397
1398/**
1399 *
1400 * @stp_request: The request that is used for the SGL processing.
1401 * @data_buffer: The buffer of data to be copied.
1402 * @length: The length of the data transfer.
1403 *
1404 * Copy the data from the buffer for the length specified to the IO reqeust SGL
1405 * specified data region. enum sci_status
1406 */
1407static enum sci_status
1408sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req,
1409					     u8 *data_buf, u32 len)
1410{
1411	struct isci_request *ireq;
1412	u8 *src_addr;
1413	int copy_len;
1414	struct sas_task *task;
1415	struct scatterlist *sg;
1416	void *kaddr;
1417	int total_len = len;
1418
1419	ireq = to_ireq(stp_req);
1420	task = isci_request_access_task(ireq);
1421	src_addr = data_buf;
1422
1423	if (task->num_scatter > 0) {
1424		sg = task->scatter;
1425
1426		while (total_len > 0) {
1427			struct page *page = sg_page(sg);
1428
1429			copy_len = min_t(int, total_len, sg_dma_len(sg));
1430			kaddr = kmap_atomic(page);
1431			memcpy(kaddr + sg->offset, src_addr, copy_len);
1432			kunmap_atomic(kaddr);
1433			total_len -= copy_len;
1434			src_addr += copy_len;
1435			sg = sg_next(sg);
1436		}
1437	} else {
1438		BUG_ON(task->total_xfer_len < total_len);
1439		memcpy(task->scatter, src_addr, total_len);
1440	}
1441
1442	return SCI_SUCCESS;
1443}
1444
1445/**
1446 *
1447 * @sci_req: The PIO DATA IN request that is to receive the data.
1448 * @data_buffer: The buffer to copy from.
1449 *
1450 * Copy the data buffer to the io request data region. enum sci_status
1451 */
1452static enum sci_status sci_stp_request_pio_data_in_copy_data(
1453	struct isci_stp_request *stp_req,
1454	u8 *data_buffer)
1455{
1456	enum sci_status status;
1457
1458	/*
1459	 * If there is less than 1K remaining in the transfer request
1460	 * copy just the data for the transfer */
1461	if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) {
1462		status = sci_stp_request_pio_data_in_copy_data_buffer(
1463			stp_req, data_buffer, stp_req->pio_len);
1464
1465		if (status == SCI_SUCCESS)
1466			stp_req->pio_len = 0;
1467	} else {
1468		/* We are transfering the whole frame so copy */
1469		status = sci_stp_request_pio_data_in_copy_data_buffer(
1470			stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
1471
1472		if (status == SCI_SUCCESS)
1473			stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE;
1474	}
1475
1476	return status;
1477}
1478
1479static enum sci_status
1480stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq,
1481					      u32 completion_code)
1482{
1483	enum sci_status status = SCI_SUCCESS;
1484
1485	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1486	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1487		ireq->scu_status = SCU_TASK_DONE_GOOD;
1488		ireq->sci_status = SCI_SUCCESS;
1489		sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1490		break;
1491
1492	default:
1493		/* All other completion status cause the IO to be
1494		 * complete.  If a NAK was received, then it is up to
1495		 * the user to retry the request.
1496		 */
1497		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1498		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1499		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1500		break;
1501	}
1502
1503	return status;
1504}
1505
1506static enum sci_status
1507pio_data_out_tx_done_tc_event(struct isci_request *ireq,
1508			      u32 completion_code)
1509{
1510	enum sci_status status = SCI_SUCCESS;
1511	bool all_frames_transferred = false;
1512	struct isci_stp_request *stp_req = &ireq->stp.req;
1513
1514	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1515	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1516		/* Transmit data */
1517		if (stp_req->pio_len != 0) {
1518			status = sci_stp_request_pio_data_out_transmit_data(ireq);
1519			if (status == SCI_SUCCESS) {
1520				if (stp_req->pio_len == 0)
1521					all_frames_transferred = true;
1522			}
1523		} else if (stp_req->pio_len == 0) {
1524			/*
1525			 * this will happen if the all data is written at the
1526			 * first time after the pio setup fis is received
1527			 */
1528			all_frames_transferred  = true;
1529		}
1530
1531		/* all data transferred. */
1532		if (all_frames_transferred) {
1533			/*
1534			 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1535			 * and wait for PIO_SETUP fis / or D2H REg fis. */
1536			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1537		}
1538		break;
1539
1540	default:
1541		/*
1542		 * All other completion status cause the IO to be complete.
1543		 * If a NAK was received, then it is up to the user to retry
1544		 * the request.
1545		 */
1546		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1547		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1548		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1549		break;
1550	}
1551
1552	return status;
1553}
1554
1555static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq,
1556								       u32 frame_index)
1557{
1558	struct isci_host *ihost = ireq->owning_controller;
1559	struct dev_to_host_fis *frame_header;
1560	enum sci_status status;
1561	u32 *frame_buffer;
1562
1563	status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1564							       frame_index,
1565							       (void **)&frame_header);
1566
1567	if ((status == SCI_SUCCESS) &&
1568	    (frame_header->fis_type == FIS_REGD2H)) {
1569		sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1570							      frame_index,
1571							      (void **)&frame_buffer);
1572
1573		sci_controller_copy_sata_response(&ireq->stp.rsp,
1574						       frame_header,
1575						       frame_buffer);
1576	}
1577
1578	sci_controller_release_frame(ihost, frame_index);
1579
1580	return status;
1581}
1582
1583static enum sci_status process_unsolicited_fis(struct isci_request *ireq,
1584					       u32 frame_index)
1585{
1586	struct isci_host *ihost = ireq->owning_controller;
1587	enum sci_status status;
1588	struct dev_to_host_fis *frame_header;
1589	u32 *frame_buffer;
1590
1591	status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1592							  frame_index,
1593							  (void **)&frame_header);
1594
1595	if (status != SCI_SUCCESS)
1596		return status;
1597
1598	if (frame_header->fis_type != FIS_REGD2H) {
1599		dev_err(&ireq->isci_host->pdev->dev,
1600			"%s ERROR: invalid fis type 0x%X\n",
1601			__func__, frame_header->fis_type);
1602		return SCI_FAILURE;
1603	}
1604
1605	sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1606						 frame_index,
1607						 (void **)&frame_buffer);
1608
1609	sci_controller_copy_sata_response(&ireq->stp.rsp,
1610					  (u32 *)frame_header,
1611					  frame_buffer);
1612
1613	/* Frame has been decoded return it to the controller */
1614	sci_controller_release_frame(ihost, frame_index);
1615
1616	return status;
1617}
1618
1619static enum sci_status atapi_d2h_reg_frame_handler(struct isci_request *ireq,
1620						   u32 frame_index)
1621{
1622	struct sas_task *task = isci_request_access_task(ireq);
1623	enum sci_status status;
1624
1625	status = process_unsolicited_fis(ireq, frame_index);
1626
1627	if (status == SCI_SUCCESS) {
1628		if (ireq->stp.rsp.status & ATA_ERR)
1629			status = SCI_IO_FAILURE_RESPONSE_VALID;
1630	} else {
1631		status = SCI_IO_FAILURE_RESPONSE_VALID;
1632	}
1633
1634	if (status != SCI_SUCCESS) {
1635		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1636		ireq->sci_status = status;
1637	} else {
1638		ireq->scu_status = SCU_TASK_DONE_GOOD;
1639		ireq->sci_status = SCI_SUCCESS;
1640	}
1641
1642	/* the d2h ufi is the end of non-data commands */
1643	if (task->data_dir == DMA_NONE)
1644		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1645
1646	return status;
1647}
1648
1649static void scu_atapi_reconstruct_raw_frame_task_context(struct isci_request *ireq)
1650{
1651	struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1652	void *atapi_cdb = ireq->ttype_ptr.io_task_ptr->ata_task.atapi_packet;
1653	struct scu_task_context *task_context = ireq->tc;
1654
1655	/* fill in the SCU Task Context for a DATA fis containing CDB in Raw Frame
1656	 * type. The TC for previous Packet fis was already there, we only need to
1657	 * change the H2D fis content.
1658	 */
1659	memset(&ireq->stp.cmd, 0, sizeof(struct host_to_dev_fis));
1660	memcpy(((u8 *)&ireq->stp.cmd + sizeof(u32)), atapi_cdb, ATAPI_CDB_LEN);
1661	memset(&(task_context->type.stp), 0, sizeof(struct stp_task_context));
1662	task_context->type.stp.fis_type = FIS_DATA;
1663	task_context->transfer_length_bytes = dev->cdb_len;
1664}
1665
1666static void scu_atapi_construct_task_context(struct isci_request *ireq)
1667{
1668	struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1669	struct sas_task *task = isci_request_access_task(ireq);
1670	struct scu_task_context *task_context = ireq->tc;
1671	int cdb_len = dev->cdb_len;
1672
1673	/* reference: SSTL 1.13.4.2
1674	 * task_type, sata_direction
1675	 */
1676	if (task->data_dir == DMA_TO_DEVICE) {
1677		task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_OUT;
1678		task_context->sata_direction = 0;
1679	} else {
1680		/* todo: for NO_DATA command, we need to send out raw frame. */
1681		task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_IN;
1682		task_context->sata_direction = 1;
1683	}
1684
1685	memset(&task_context->type.stp, 0, sizeof(task_context->type.stp));
1686	task_context->type.stp.fis_type = FIS_DATA;
1687
1688	memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
1689	memcpy(&ireq->stp.cmd.lbal, task->ata_task.atapi_packet, cdb_len);
1690	task_context->ssp_command_iu_length = cdb_len / sizeof(u32);
1691
1692	/* task phase is set to TX_CMD */
1693	task_context->task_phase = 0x1;
1694
1695	/* retry counter */
1696	task_context->stp_retry_count = 0;
1697
1698	/* data transfer size. */
1699	task_context->transfer_length_bytes = task->total_xfer_len;
1700
1701	/* setup sgl */
1702	sci_request_build_sgl(ireq);
1703}
1704
1705enum sci_status
1706sci_io_request_frame_handler(struct isci_request *ireq,
1707				  u32 frame_index)
1708{
1709	struct isci_host *ihost = ireq->owning_controller;
1710	struct isci_stp_request *stp_req = &ireq->stp.req;
1711	enum sci_base_request_states state;
1712	enum sci_status status;
1713	ssize_t word_cnt;
1714
1715	state = ireq->sm.current_state_id;
1716	switch (state)  {
1717	case SCI_REQ_STARTED: {
1718		struct ssp_frame_hdr ssp_hdr;
1719		void *frame_header;
1720
1721		sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1722							      frame_index,
1723							      &frame_header);
1724
1725		word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1726		sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1727
1728		if (ssp_hdr.frame_type == SSP_RESPONSE) {
1729			struct ssp_response_iu *resp_iu;
1730			ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1731
1732			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1733								      frame_index,
1734								      (void **)&resp_iu);
1735
1736			sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt);
1737
1738			resp_iu = &ireq->ssp.rsp;
1739
1740			if (resp_iu->datapres == 0x01 ||
1741			    resp_iu->datapres == 0x02) {
1742				ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1743				ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1744			} else {
1745				ireq->scu_status = SCU_TASK_DONE_GOOD;
1746				ireq->sci_status = SCI_SUCCESS;
1747			}
1748		} else {
1749			/* not a response frame, why did it get forwarded? */
1750			dev_err(&ihost->pdev->dev,
1751				"%s: SCIC IO Request 0x%p received unexpected "
1752				"frame %d type 0x%02x\n", __func__, ireq,
1753				frame_index, ssp_hdr.frame_type);
1754		}
1755
1756		/*
1757		 * In any case we are done with this frame buffer return it to
1758		 * the controller
1759		 */
1760		sci_controller_release_frame(ihost, frame_index);
1761
1762		return SCI_SUCCESS;
1763	}
1764
1765	case SCI_REQ_TASK_WAIT_TC_RESP:
1766		sci_io_request_copy_response(ireq);
1767		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1768		sci_controller_release_frame(ihost, frame_index);
1769		return SCI_SUCCESS;
1770
1771	case SCI_REQ_SMP_WAIT_RESP: {
1772		struct sas_task *task = isci_request_access_task(ireq);
1773		struct scatterlist *sg = &task->smp_task.smp_resp;
1774		void *frame_header, *kaddr;
1775		u8 *rsp;
1776
1777		sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1778							 frame_index,
1779							 &frame_header);
1780		kaddr = kmap_atomic(sg_page(sg));
1781		rsp = kaddr + sg->offset;
1782		sci_swab32_cpy(rsp, frame_header, 1);
1783
1784		if (rsp[0] == SMP_RESPONSE) {
1785			void *smp_resp;
1786
1787			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1788								 frame_index,
1789								 &smp_resp);
1790
1791			word_cnt = (sg->length/4)-1;
1792			if (word_cnt > 0)
1793				word_cnt = min_t(unsigned int, word_cnt,
1794						 SCU_UNSOLICITED_FRAME_BUFFER_SIZE/4);
1795			sci_swab32_cpy(rsp + 4, smp_resp, word_cnt);
1796
1797			ireq->scu_status = SCU_TASK_DONE_GOOD;
1798			ireq->sci_status = SCI_SUCCESS;
1799			sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP);
1800		} else {
1801			/*
1802			 * This was not a response frame why did it get
1803			 * forwarded?
1804			 */
1805			dev_err(&ihost->pdev->dev,
1806				"%s: SCIC SMP Request 0x%p received unexpected "
1807				"frame %d type 0x%02x\n",
1808				__func__,
1809				ireq,
1810				frame_index,
1811				rsp[0]);
1812
1813			ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR;
1814			ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1815			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1816		}
1817		kunmap_atomic(kaddr);
1818
1819		sci_controller_release_frame(ihost, frame_index);
1820
1821		return SCI_SUCCESS;
1822	}
1823
1824	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1825		return sci_stp_request_udma_general_frame_handler(ireq,
1826								       frame_index);
1827
1828	case SCI_REQ_STP_UDMA_WAIT_D2H:
1829		/* Use the general frame handler to copy the resposne data */
1830		status = sci_stp_request_udma_general_frame_handler(ireq, frame_index);
1831
1832		if (status != SCI_SUCCESS)
1833			return status;
1834
1835		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1836		ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1837		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1838		return SCI_SUCCESS;
1839
1840	case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
1841		struct dev_to_host_fis *frame_header;
1842		u32 *frame_buffer;
1843
1844		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1845								       frame_index,
1846								       (void **)&frame_header);
1847
1848		if (status != SCI_SUCCESS) {
1849			dev_err(&ihost->pdev->dev,
1850				"%s: SCIC IO Request 0x%p could not get frame "
1851				"header for frame index %d, status %x\n",
1852				__func__,
1853				stp_req,
1854				frame_index,
1855				status);
1856
1857			return status;
1858		}
1859
1860		switch (frame_header->fis_type) {
1861		case FIS_REGD2H:
1862			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1863								      frame_index,
1864								      (void **)&frame_buffer);
1865
1866			sci_controller_copy_sata_response(&ireq->stp.rsp,
1867							       frame_header,
1868							       frame_buffer);
1869
1870			/* The command has completed with error */
1871			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1872			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1873			break;
1874
1875		default:
1876			dev_warn(&ihost->pdev->dev,
1877				 "%s: IO Request:0x%p Frame Id:%d protocol "
1878				  "violation occurred\n", __func__, stp_req,
1879				  frame_index);
1880
1881			ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1882			ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1883			break;
1884		}
1885
1886		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1887
1888		/* Frame has been decoded return it to the controller */
1889		sci_controller_release_frame(ihost, frame_index);
1890
1891		return status;
1892	}
1893
1894	case SCI_REQ_STP_PIO_WAIT_FRAME: {
1895		struct sas_task *task = isci_request_access_task(ireq);
1896		struct dev_to_host_fis *frame_header;
1897		u32 *frame_buffer;
1898
1899		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1900								       frame_index,
1901								       (void **)&frame_header);
1902
1903		if (status != SCI_SUCCESS) {
1904			dev_err(&ihost->pdev->dev,
1905				"%s: SCIC IO Request 0x%p could not get frame "
1906				"header for frame index %d, status %x\n",
1907				__func__, stp_req, frame_index, status);
1908			return status;
1909		}
1910
1911		switch (frame_header->fis_type) {
1912		case FIS_PIO_SETUP:
1913			/* Get from the frame buffer the PIO Setup Data */
1914			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1915								      frame_index,
1916								      (void **)&frame_buffer);
1917
1918			/* Get the data from the PIO Setup The SCU Hardware
1919			 * returns first word in the frame_header and the rest
1920			 * of the data is in the frame buffer so we need to
1921			 * back up one dword
1922			 */
1923
1924			/* transfer_count: first 16bits in the 4th dword */
1925			stp_req->pio_len = frame_buffer[3] & 0xffff;
1926
1927			/* status: 4th byte in the 3rd dword */
1928			stp_req->status = (frame_buffer[2] >> 24) & 0xff;
1929
1930			sci_controller_copy_sata_response(&ireq->stp.rsp,
1931							       frame_header,
1932							       frame_buffer);
1933
1934			ireq->stp.rsp.status = stp_req->status;
1935
1936			/* The next state is dependent on whether the
1937			 * request was PIO Data-in or Data out
1938			 */
1939			if (task->data_dir == DMA_FROM_DEVICE) {
1940				sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN);
1941			} else if (task->data_dir == DMA_TO_DEVICE) {
1942				/* Transmit data */
1943				status = sci_stp_request_pio_data_out_transmit_data(ireq);
1944				if (status != SCI_SUCCESS)
1945					break;
1946				sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT);
1947			}
1948			break;
1949
1950		case FIS_SETDEVBITS:
1951			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1952			break;
1953
1954		case FIS_REGD2H:
1955			if (frame_header->status & ATA_BUSY) {
1956				/*
1957				 * Now why is the drive sending a D2H Register
1958				 * FIS when it is still busy?  Do nothing since
1959				 * we are still in the right state.
1960				 */
1961				dev_dbg(&ihost->pdev->dev,
1962					"%s: SCIC PIO Request 0x%p received "
1963					"D2H Register FIS with BSY status "
1964					"0x%x\n",
1965					__func__,
1966					stp_req,
1967					frame_header->status);
1968				break;
1969			}
1970
1971			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1972								      frame_index,
1973								      (void **)&frame_buffer);
1974
1975			sci_controller_copy_sata_response(&ireq->stp.req,
1976							       frame_header,
1977							       frame_buffer);
1978
1979			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1980			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1981			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1982			break;
1983
1984		default:
1985			/* FIXME: what do we do here? */
1986			break;
1987		}
1988
1989		/* Frame is decoded return it to the controller */
1990		sci_controller_release_frame(ihost, frame_index);
1991
1992		return status;
1993	}
1994
1995	case SCI_REQ_STP_PIO_DATA_IN: {
1996		struct dev_to_host_fis *frame_header;
1997		struct sata_fis_data *frame_buffer;
1998
1999		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
2000								       frame_index,
2001								       (void **)&frame_header);
2002
2003		if (status != SCI_SUCCESS) {
2004			dev_err(&ihost->pdev->dev,
2005				"%s: SCIC IO Request 0x%p could not get frame "
2006				"header for frame index %d, status %x\n",
2007				__func__,
2008				stp_req,
2009				frame_index,
2010				status);
2011			return status;
2012		}
2013
2014		if (frame_header->fis_type != FIS_DATA) {
2015			dev_err(&ihost->pdev->dev,
2016				"%s: SCIC PIO Request 0x%p received frame %d "
2017				"with fis type 0x%02x when expecting a data "
2018				"fis.\n",
2019				__func__,
2020				stp_req,
2021				frame_index,
2022				frame_header->fis_type);
2023
2024			ireq->scu_status = SCU_TASK_DONE_GOOD;
2025			ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT;
2026			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2027
2028			/* Frame is decoded return it to the controller */
2029			sci_controller_release_frame(ihost, frame_index);
2030			return status;
2031		}
2032
2033		if (stp_req->sgl.index < 0) {
2034			ireq->saved_rx_frame_index = frame_index;
2035			stp_req->pio_len = 0;
2036		} else {
2037			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
2038								      frame_index,
2039								      (void **)&frame_buffer);
2040
2041			status = sci_stp_request_pio_data_in_copy_data(stp_req,
2042									    (u8 *)frame_buffer);
2043
2044			/* Frame is decoded return it to the controller */
2045			sci_controller_release_frame(ihost, frame_index);
2046		}
2047
2048		/* Check for the end of the transfer, are there more
2049		 * bytes remaining for this data transfer
2050		 */
2051		if (status != SCI_SUCCESS || stp_req->pio_len != 0)
2052			return status;
2053
2054		if ((stp_req->status & ATA_BUSY) == 0) {
2055			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2056			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2057			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2058		} else {
2059			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
2060		}
2061		return status;
2062	}
2063
2064	case SCI_REQ_ATAPI_WAIT_PIO_SETUP: {
2065		struct sas_task *task = isci_request_access_task(ireq);
2066
2067		sci_controller_release_frame(ihost, frame_index);
2068		ireq->target_device->working_request = ireq;
2069		if (task->data_dir == DMA_NONE) {
2070			sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_TC_COMP);
2071			scu_atapi_reconstruct_raw_frame_task_context(ireq);
2072		} else {
2073			sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2074			scu_atapi_construct_task_context(ireq);
2075		}
2076
2077		sci_controller_continue_io(ireq);
2078		return SCI_SUCCESS;
2079	}
2080	case SCI_REQ_ATAPI_WAIT_D2H:
2081		return atapi_d2h_reg_frame_handler(ireq, frame_index);
2082	case SCI_REQ_ABORTING:
2083		/*
2084		 * TODO: Is it even possible to get an unsolicited frame in the
2085		 * aborting state?
2086		 */
2087		sci_controller_release_frame(ihost, frame_index);
2088		return SCI_SUCCESS;
2089
2090	default:
2091		dev_warn(&ihost->pdev->dev,
2092			 "%s: SCIC IO Request given unexpected frame %x while "
2093			 "in state %d\n",
2094			 __func__,
2095			 frame_index,
2096			 state);
2097
2098		sci_controller_release_frame(ihost, frame_index);
2099		return SCI_FAILURE_INVALID_STATE;
2100	}
2101}
2102
2103static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq,
2104						       u32 completion_code)
2105{
2106	enum sci_status status = SCI_SUCCESS;
2107
2108	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2109	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2110		ireq->scu_status = SCU_TASK_DONE_GOOD;
2111		ireq->sci_status = SCI_SUCCESS;
2112		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2113		break;
2114	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
2115	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
2116		/* We must check ther response buffer to see if the D2H
2117		 * Register FIS was received before we got the TC
2118		 * completion.
2119		 */
2120		if (ireq->stp.rsp.fis_type == FIS_REGD2H) {
2121			sci_remote_device_suspend(ireq->target_device,
2122						  SCI_SW_SUSPEND_NORMAL);
2123
2124			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2125			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2126			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2127		} else {
2128			/* If we have an error completion status for the
2129			 * TC then we can expect a D2H register FIS from
2130			 * the device so we must change state to wait
2131			 * for it
2132			 */
2133			sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
2134		}
2135		break;
2136
2137	/* TODO Check to see if any of these completion status need to
2138	 * wait for the device to host register fis.
2139	 */
2140	/* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
2141	 * - this comes only for B0
2142	 */
2143	default:
2144		/* All other completion status cause the IO to be complete. */
2145		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2146		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2147		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2148		break;
2149	}
2150
2151	return status;
2152}
2153
2154static enum sci_status atapi_raw_completion(struct isci_request *ireq, u32 completion_code,
2155						  enum sci_base_request_states next)
2156{
2157	enum sci_status status = SCI_SUCCESS;
2158
2159	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2160	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2161		ireq->scu_status = SCU_TASK_DONE_GOOD;
2162		ireq->sci_status = SCI_SUCCESS;
2163		sci_change_state(&ireq->sm, next);
2164		break;
2165	default:
2166		/* All other completion status cause the IO to be complete.
2167		 * If a NAK was received, then it is up to the user to retry
2168		 * the request.
2169		 */
2170		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2171		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2172
2173		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2174		break;
2175	}
2176
2177	return status;
2178}
2179
2180static enum sci_status atapi_data_tc_completion_handler(struct isci_request *ireq,
2181							u32 completion_code)
2182{
2183	struct isci_remote_device *idev = ireq->target_device;
2184	struct dev_to_host_fis *d2h = &ireq->stp.rsp;
2185	enum sci_status status = SCI_SUCCESS;
2186
2187	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2188	case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
2189		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2190		break;
2191
2192	case (SCU_TASK_DONE_UNEXP_FIS << SCU_COMPLETION_TL_STATUS_SHIFT): {
2193		u16 len = sci_req_tx_bytes(ireq);
2194
2195		/* likely non-error data underrrun, workaround missing
2196		 * d2h frame from the controller
2197		 */
2198		if (d2h->fis_type != FIS_REGD2H) {
2199			d2h->fis_type = FIS_REGD2H;
2200			d2h->flags = (1 << 6);
2201			d2h->status = 0x50;
2202			d2h->error = 0;
2203			d2h->lbal = 0;
2204			d2h->byte_count_low = len & 0xff;
2205			d2h->byte_count_high = len >> 8;
2206			d2h->device = 0xa0;
2207			d2h->lbal_exp = 0;
2208			d2h->lbam_exp = 0;
2209			d2h->lbah_exp = 0;
2210			d2h->_r_a = 0;
2211			d2h->sector_count = 0x3;
2212			d2h->sector_count_exp = 0;
2213			d2h->_r_b = 0;
2214			d2h->_r_c = 0;
2215			d2h->_r_d = 0;
2216		}
2217
2218		ireq->scu_status = SCU_TASK_DONE_GOOD;
2219		ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
2220		status = ireq->sci_status;
2221
2222		/* the hw will have suspended the rnc, so complete the
2223		 * request upon pending resume
2224		 */
2225		sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2226		break;
2227	}
2228	case (SCU_TASK_DONE_EXCESS_DATA << SCU_COMPLETION_TL_STATUS_SHIFT):
2229		/* In this case, there is no UF coming after.
2230		 * compelte the IO now.
2231		 */
2232		ireq->scu_status = SCU_TASK_DONE_GOOD;
2233		ireq->sci_status = SCI_SUCCESS;
2234		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2235		break;
2236
2237	default:
2238		if (d2h->fis_type == FIS_REGD2H) {
2239			/* UF received change the device state to ATAPI_ERROR */
2240			status = ireq->sci_status;
2241			sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2242		} else {
2243			/* If receiving any non-sucess TC status, no UF
2244			 * received yet, then an UF for the status fis
2245			 * is coming after (XXX: suspect this is
2246			 * actually a protocol error or a bug like the
2247			 * DONE_UNEXP_FIS case)
2248			 */
2249			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2250			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2251
2252			sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2253		}
2254		break;
2255	}
2256
2257	return status;
2258}
2259
2260static int sci_request_smp_completion_status_is_tx_suspend(
2261	unsigned int completion_status)
2262{
2263	switch (completion_status) {
2264	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2265	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2266	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2267	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2268	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2269	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2270		return 1;
2271	}
2272	return 0;
2273}
2274
2275static int sci_request_smp_completion_status_is_tx_rx_suspend(
2276	unsigned int completion_status)
2277{
2278	return 0; /* There are no Tx/Rx SMP suspend conditions. */
2279}
2280
2281static int sci_request_ssp_completion_status_is_tx_suspend(
2282	unsigned int completion_status)
2283{
2284	switch (completion_status) {
2285	case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2286	case SCU_TASK_DONE_LF_ERR:
2287	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2288	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2289	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2290	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2291	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2292	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2293	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2294	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2295	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2296		return 1;
2297	}
2298	return 0;
2299}
2300
2301static int sci_request_ssp_completion_status_is_tx_rx_suspend(
2302	unsigned int completion_status)
2303{
2304	return 0; /* There are no Tx/Rx SSP suspend conditions. */
2305}
2306
2307static int sci_request_stpsata_completion_status_is_tx_suspend(
2308	unsigned int completion_status)
2309{
2310	switch (completion_status) {
2311	case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2312	case SCU_TASK_DONE_LL_R_ERR:
2313	case SCU_TASK_DONE_LL_PERR:
2314	case SCU_TASK_DONE_REG_ERR:
2315	case SCU_TASK_DONE_SDB_ERR:
2316	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2317	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2318	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2319	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2320	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2321	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2322	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2323	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2324	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2325		return 1;
2326	}
2327	return 0;
2328}
2329
2330
2331static int sci_request_stpsata_completion_status_is_tx_rx_suspend(
2332	unsigned int completion_status)
2333{
2334	switch (completion_status) {
2335	case SCU_TASK_DONE_LF_ERR:
2336	case SCU_TASK_DONE_LL_SY_TERM:
2337	case SCU_TASK_DONE_LL_LF_TERM:
2338	case SCU_TASK_DONE_BREAK_RCVD:
2339	case SCU_TASK_DONE_INV_FIS_LEN:
2340	case SCU_TASK_DONE_UNEXP_FIS:
2341	case SCU_TASK_DONE_UNEXP_SDBFIS:
2342	case SCU_TASK_DONE_MAX_PLD_ERR:
2343		return 1;
2344	}
2345	return 0;
2346}
2347
2348static void sci_request_handle_suspending_completions(
2349	struct isci_request *ireq,
2350	u32 completion_code)
2351{
2352	int is_tx = 0;
2353	int is_tx_rx = 0;
2354
2355	switch (ireq->protocol) {
2356	case SAS_PROTOCOL_SMP:
2357		is_tx = sci_request_smp_completion_status_is_tx_suspend(
2358			completion_code);
2359		is_tx_rx = sci_request_smp_completion_status_is_tx_rx_suspend(
2360			completion_code);
2361		break;
2362	case SAS_PROTOCOL_SSP:
2363		is_tx = sci_request_ssp_completion_status_is_tx_suspend(
2364			completion_code);
2365		is_tx_rx = sci_request_ssp_completion_status_is_tx_rx_suspend(
2366			completion_code);
2367		break;
2368	case SAS_PROTOCOL_STP:
2369		is_tx = sci_request_stpsata_completion_status_is_tx_suspend(
2370			completion_code);
2371		is_tx_rx =
2372			sci_request_stpsata_completion_status_is_tx_rx_suspend(
2373				completion_code);
2374		break;
2375	default:
2376		dev_warn(&ireq->isci_host->pdev->dev,
2377			 "%s: request %p has no valid protocol\n",
2378			 __func__, ireq);
2379		break;
2380	}
2381	if (is_tx || is_tx_rx) {
2382		BUG_ON(is_tx && is_tx_rx);
2383
2384		sci_remote_node_context_suspend(
2385			&ireq->target_device->rnc,
2386			SCI_HW_SUSPEND,
2387			(is_tx_rx) ? SCU_EVENT_TL_RNC_SUSPEND_TX_RX
2388				   : SCU_EVENT_TL_RNC_SUSPEND_TX);
2389	}
2390}
2391
2392enum sci_status
2393sci_io_request_tc_completion(struct isci_request *ireq,
2394			     u32 completion_code)
2395{
2396	enum sci_base_request_states state;
2397	struct isci_host *ihost = ireq->owning_controller;
2398
2399	state = ireq->sm.current_state_id;
2400
2401	/* Decode those completions that signal upcoming suspension events. */
2402	sci_request_handle_suspending_completions(
2403		ireq, SCU_GET_COMPLETION_TL_STATUS(completion_code));
2404
2405	switch (state) {
2406	case SCI_REQ_STARTED:
2407		return request_started_state_tc_event(ireq, completion_code);
2408
2409	case SCI_REQ_TASK_WAIT_TC_COMP:
2410		return ssp_task_request_await_tc_event(ireq,
2411						       completion_code);
2412
2413	case SCI_REQ_SMP_WAIT_RESP:
2414		return smp_request_await_response_tc_event(ireq,
2415							   completion_code);
2416
2417	case SCI_REQ_SMP_WAIT_TC_COMP:
2418		return smp_request_await_tc_event(ireq, completion_code);
2419
2420	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
2421		return stp_request_udma_await_tc_event(ireq,
2422						       completion_code);
2423
2424	case SCI_REQ_STP_NON_DATA_WAIT_H2D:
2425		return stp_request_non_data_await_h2d_tc_event(ireq,
2426							       completion_code);
2427
2428	case SCI_REQ_STP_PIO_WAIT_H2D:
2429		return stp_request_pio_await_h2d_completion_tc_event(ireq,
2430								     completion_code);
2431
2432	case SCI_REQ_STP_PIO_DATA_OUT:
2433		return pio_data_out_tx_done_tc_event(ireq, completion_code);
2434
2435	case SCI_REQ_ABORTING:
2436		return request_aborting_state_tc_event(ireq,
2437						       completion_code);
2438
2439	case SCI_REQ_ATAPI_WAIT_H2D:
2440		return atapi_raw_completion(ireq, completion_code,
2441					    SCI_REQ_ATAPI_WAIT_PIO_SETUP);
2442
2443	case SCI_REQ_ATAPI_WAIT_TC_COMP:
2444		return atapi_raw_completion(ireq, completion_code,
2445					    SCI_REQ_ATAPI_WAIT_D2H);
2446
2447	case SCI_REQ_ATAPI_WAIT_D2H:
2448		return atapi_data_tc_completion_handler(ireq, completion_code);
2449
2450	default:
2451		dev_warn(&ihost->pdev->dev, "%s: %x in wrong state %s\n",
2452			 __func__, completion_code, req_state_name(state));
2453		return SCI_FAILURE_INVALID_STATE;
2454	}
2455}
2456
2457/**
2458 * isci_request_process_response_iu() - This function sets the status and
2459 *    response iu, in the task struct, from the request object for the upper
2460 *    layer driver.
2461 * @sas_task: This parameter is the task struct from the upper layer driver.
2462 * @resp_iu: This parameter points to the response iu of the completed request.
2463 * @dev: This parameter specifies the linux device struct.
2464 *
2465 * none.
2466 */
2467static void isci_request_process_response_iu(
2468	struct sas_task *task,
2469	struct ssp_response_iu *resp_iu,
2470	struct device *dev)
2471{
2472	dev_dbg(dev,
2473		"%s: resp_iu = %p "
2474		"resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2475		"resp_iu->response_data_len = %x, "
2476		"resp_iu->sense_data_len = %x\nrepsonse data: ",
2477		__func__,
2478		resp_iu,
2479		resp_iu->status,
2480		resp_iu->datapres,
2481		resp_iu->response_data_len,
2482		resp_iu->sense_data_len);
2483
2484	task->task_status.stat = resp_iu->status;
2485
2486	/* libsas updates the task status fields based on the response iu. */
2487	sas_ssp_task_response(dev, task, resp_iu);
2488}
2489
2490/**
2491 * isci_request_set_open_reject_status() - This function prepares the I/O
2492 *    completion for OPEN_REJECT conditions.
2493 * @request: This parameter is the completed isci_request object.
2494 * @response_ptr: This parameter specifies the service response for the I/O.
2495 * @status_ptr: This parameter specifies the exec status for the I/O.
2496 * @open_rej_reason: This parameter specifies the encoded reason for the
2497 *    abandon-class reject.
2498 *
2499 * none.
2500 */
2501static void isci_request_set_open_reject_status(
2502	struct isci_request *request,
2503	struct sas_task *task,
2504	enum service_response *response_ptr,
2505	enum exec_status *status_ptr,
2506	enum sas_open_rej_reason open_rej_reason)
2507{
2508	/* Task in the target is done. */
2509	set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2510	*response_ptr                     = SAS_TASK_UNDELIVERED;
2511	*status_ptr                       = SAS_OPEN_REJECT;
2512	task->task_status.open_rej_reason = open_rej_reason;
2513}
2514
2515/**
2516 * isci_request_handle_controller_specific_errors() - This function decodes
2517 *    controller-specific I/O completion error conditions.
2518 * @request: This parameter is the completed isci_request object.
2519 * @response_ptr: This parameter specifies the service response for the I/O.
2520 * @status_ptr: This parameter specifies the exec status for the I/O.
2521 *
2522 * none.
2523 */
2524static void isci_request_handle_controller_specific_errors(
2525	struct isci_remote_device *idev,
2526	struct isci_request *request,
2527	struct sas_task *task,
2528	enum service_response *response_ptr,
2529	enum exec_status *status_ptr)
2530{
2531	unsigned int cstatus;
2532
2533	cstatus = request->scu_status;
2534
2535	dev_dbg(&request->isci_host->pdev->dev,
2536		"%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2537		"- controller status = 0x%x\n",
2538		__func__, request, cstatus);
2539
2540	/* Decode the controller-specific errors; most
2541	 * important is to recognize those conditions in which
2542	 * the target may still have a task outstanding that
2543	 * must be aborted.
2544	 *
2545	 * Note that there are SCU completion codes being
2546	 * named in the decode below for which SCIC has already
2547	 * done work to handle them in a way other than as
2548	 * a controller-specific completion code; these are left
2549	 * in the decode below for completeness sake.
2550	 */
2551	switch (cstatus) {
2552	case SCU_TASK_DONE_DMASETUP_DIRERR:
2553	/* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2554	case SCU_TASK_DONE_XFERCNT_ERR:
2555		/* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2556		if (task->task_proto == SAS_PROTOCOL_SMP) {
2557			/* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2558			*response_ptr = SAS_TASK_COMPLETE;
2559
2560			/* See if the device has been/is being stopped. Note
2561			 * that we ignore the quiesce state, since we are
2562			 * concerned about the actual device state.
2563			 */
2564			if (!idev)
2565				*status_ptr = SAS_DEVICE_UNKNOWN;
2566			else
2567				*status_ptr = SAS_ABORTED_TASK;
2568
2569			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2570		} else {
2571			/* Task in the target is not done. */
2572			*response_ptr = SAS_TASK_UNDELIVERED;
2573
2574			if (!idev)
2575				*status_ptr = SAS_DEVICE_UNKNOWN;
2576			else
2577				*status_ptr = SAM_STAT_TASK_ABORTED;
2578
2579			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2580		}
2581
2582		break;
2583
2584	case SCU_TASK_DONE_CRC_ERR:
2585	case SCU_TASK_DONE_NAK_CMD_ERR:
2586	case SCU_TASK_DONE_EXCESS_DATA:
2587	case SCU_TASK_DONE_UNEXP_FIS:
2588	/* Also SCU_TASK_DONE_UNEXP_RESP: */
2589	case SCU_TASK_DONE_VIIT_ENTRY_NV:       /* TODO - conditions? */
2590	case SCU_TASK_DONE_IIT_ENTRY_NV:        /* TODO - conditions? */
2591	case SCU_TASK_DONE_RNCNV_OUTBOUND:      /* TODO - conditions? */
2592		/* These are conditions in which the target
2593		 * has completed the task, so that no cleanup
2594		 * is necessary.
2595		 */
2596		*response_ptr = SAS_TASK_COMPLETE;
2597
2598		/* See if the device has been/is being stopped. Note
2599		 * that we ignore the quiesce state, since we are
2600		 * concerned about the actual device state.
2601		 */
2602		if (!idev)
2603			*status_ptr = SAS_DEVICE_UNKNOWN;
2604		else
2605			*status_ptr = SAS_ABORTED_TASK;
2606
2607		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2608		break;
2609
2610
2611	/* Note that the only open reject completion codes seen here will be
2612	 * abandon-class codes; all others are automatically retried in the SCU.
2613	 */
2614	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2615
2616		isci_request_set_open_reject_status(
2617			request, task, response_ptr, status_ptr,
2618			SAS_OREJ_WRONG_DEST);
2619		break;
2620
2621	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2622
2623		/* Note - the return of AB0 will change when
2624		 * libsas implements detection of zone violations.
2625		 */
2626		isci_request_set_open_reject_status(
2627			request, task, response_ptr, status_ptr,
2628			SAS_OREJ_RESV_AB0);
2629		break;
2630
2631	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2632
2633		isci_request_set_open_reject_status(
2634			request, task, response_ptr, status_ptr,
2635			SAS_OREJ_RESV_AB1);
2636		break;
2637
2638	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2639
2640		isci_request_set_open_reject_status(
2641			request, task, response_ptr, status_ptr,
2642			SAS_OREJ_RESV_AB2);
2643		break;
2644
2645	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2646
2647		isci_request_set_open_reject_status(
2648			request, task, response_ptr, status_ptr,
2649			SAS_OREJ_RESV_AB3);
2650		break;
2651
2652	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2653
2654		isci_request_set_open_reject_status(
2655			request, task, response_ptr, status_ptr,
2656			SAS_OREJ_BAD_DEST);
2657		break;
2658
2659	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2660
2661		isci_request_set_open_reject_status(
2662			request, task, response_ptr, status_ptr,
2663			SAS_OREJ_STP_NORES);
2664		break;
2665
2666	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2667
2668		isci_request_set_open_reject_status(
2669			request, task, response_ptr, status_ptr,
2670			SAS_OREJ_EPROTO);
2671		break;
2672
2673	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2674
2675		isci_request_set_open_reject_status(
2676			request, task, response_ptr, status_ptr,
2677			SAS_OREJ_CONN_RATE);
2678		break;
2679
2680	case SCU_TASK_DONE_LL_R_ERR:
2681	/* Also SCU_TASK_DONE_ACK_NAK_TO: */
2682	case SCU_TASK_DONE_LL_PERR:
2683	case SCU_TASK_DONE_LL_SY_TERM:
2684	/* Also SCU_TASK_DONE_NAK_ERR:*/
2685	case SCU_TASK_DONE_LL_LF_TERM:
2686	/* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2687	case SCU_TASK_DONE_LL_ABORT_ERR:
2688	case SCU_TASK_DONE_SEQ_INV_TYPE:
2689	/* Also SCU_TASK_DONE_UNEXP_XR: */
2690	case SCU_TASK_DONE_XR_IU_LEN_ERR:
2691	case SCU_TASK_DONE_INV_FIS_LEN:
2692	/* Also SCU_TASK_DONE_XR_WD_LEN: */
2693	case SCU_TASK_DONE_SDMA_ERR:
2694	case SCU_TASK_DONE_OFFSET_ERR:
2695	case SCU_TASK_DONE_MAX_PLD_ERR:
2696	case SCU_TASK_DONE_LF_ERR:
2697	case SCU_TASK_DONE_SMP_RESP_TO_ERR:  /* Escalate to dev reset? */
2698	case SCU_TASK_DONE_SMP_LL_RX_ERR:
2699	case SCU_TASK_DONE_UNEXP_DATA:
2700	case SCU_TASK_DONE_UNEXP_SDBFIS:
2701	case SCU_TASK_DONE_REG_ERR:
2702	case SCU_TASK_DONE_SDB_ERR:
2703	case SCU_TASK_DONE_TASK_ABORT:
2704	default:
2705		/* Task in the target is not done. */
2706		*response_ptr = SAS_TASK_UNDELIVERED;
2707		*status_ptr = SAM_STAT_TASK_ABORTED;
2708
2709		if (task->task_proto == SAS_PROTOCOL_SMP)
2710			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2711		else
2712			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2713		break;
2714	}
2715}
2716
2717static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis)
2718{
2719	struct task_status_struct *ts = &task->task_status;
2720	struct ata_task_resp *resp = (void *)&ts->buf[0];
2721
2722	resp->frame_len = sizeof(*fis);
2723	memcpy(resp->ending_fis, fis, sizeof(*fis));
2724	ts->buf_valid_size = sizeof(*resp);
2725
2726	/* If the device fault bit is set in the status register, then
2727	 * set the sense data and return.
2728	 */
2729	if (fis->status & ATA_DF)
2730		ts->stat = SAS_PROTO_RESPONSE;
2731	else if (fis->status & ATA_ERR)
2732		ts->stat = SAM_STAT_CHECK_CONDITION;
2733	else
2734		ts->stat = SAM_STAT_GOOD;
2735
2736	ts->resp = SAS_TASK_COMPLETE;
2737}
2738
2739static void isci_request_io_request_complete(struct isci_host *ihost,
2740					     struct isci_request *request,
2741					     enum sci_io_status completion_status)
2742{
2743	struct sas_task *task = isci_request_access_task(request);
2744	struct ssp_response_iu *resp_iu;
2745	unsigned long task_flags;
2746	struct isci_remote_device *idev = request->target_device;
2747	enum service_response response = SAS_TASK_UNDELIVERED;
2748	enum exec_status status = SAS_ABORTED_TASK;
2749
2750	dev_dbg(&ihost->pdev->dev,
2751		"%s: request = %p, task = %p, "
2752		"task->data_dir = %d completion_status = 0x%x\n",
2753		__func__, request, task, task->data_dir, completion_status);
2754
2755	/* The request is done from an SCU HW perspective. */
2756
2757	/* This is an active request being completed from the core. */
2758	switch (completion_status) {
2759
2760	case SCI_IO_FAILURE_RESPONSE_VALID:
2761		dev_dbg(&ihost->pdev->dev,
2762			"%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2763			__func__, request, task);
2764
2765		if (sas_protocol_ata(task->task_proto)) {
2766			isci_process_stp_response(task, &request->stp.rsp);
2767		} else if (SAS_PROTOCOL_SSP == task->task_proto) {
2768
2769			/* crack the iu response buffer. */
2770			resp_iu = &request->ssp.rsp;
2771			isci_request_process_response_iu(task, resp_iu,
2772							 &ihost->pdev->dev);
2773
2774		} else if (SAS_PROTOCOL_SMP == task->task_proto) {
2775
2776			dev_err(&ihost->pdev->dev,
2777				"%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2778					"SAS_PROTOCOL_SMP protocol\n",
2779				__func__);
2780
2781		} else
2782			dev_err(&ihost->pdev->dev,
2783				"%s: unknown protocol\n", __func__);
2784
2785		/* use the task status set in the task struct by the
2786		* isci_request_process_response_iu call.
2787		*/
2788		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2789		response = task->task_status.resp;
2790		status = task->task_status.stat;
2791		break;
2792
2793	case SCI_IO_SUCCESS:
2794	case SCI_IO_SUCCESS_IO_DONE_EARLY:
2795
2796		response = SAS_TASK_COMPLETE;
2797		status   = SAM_STAT_GOOD;
2798		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2799
2800		if (completion_status == SCI_IO_SUCCESS_IO_DONE_EARLY) {
2801
2802			/* This was an SSP / STP / SATA transfer.
2803			* There is a possibility that less data than
2804			* the maximum was transferred.
2805			*/
2806			u32 transferred_length = sci_req_tx_bytes(request);
2807
2808			task->task_status.residual
2809				= task->total_xfer_len - transferred_length;
2810
2811			/* If there were residual bytes, call this an
2812			* underrun.
2813			*/
2814			if (task->task_status.residual != 0)
2815				status = SAS_DATA_UNDERRUN;
2816
2817			dev_dbg(&ihost->pdev->dev,
2818				"%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2819				__func__, status);
2820
2821		} else
2822			dev_dbg(&ihost->pdev->dev, "%s: SCI_IO_SUCCESS\n",
2823				__func__);
2824		break;
2825
2826	case SCI_IO_FAILURE_TERMINATED:
2827
2828		dev_dbg(&ihost->pdev->dev,
2829			"%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2830			__func__, request, task);
2831
2832		/* The request was terminated explicitly. */
2833		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2834		response = SAS_TASK_UNDELIVERED;
2835
2836		/* See if the device has been/is being stopped. Note
2837		* that we ignore the quiesce state, since we are
2838		* concerned about the actual device state.
2839		*/
2840		if (!idev)
2841			status = SAS_DEVICE_UNKNOWN;
2842		else
2843			status = SAS_ABORTED_TASK;
2844		break;
2845
2846	case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
2847
2848		isci_request_handle_controller_specific_errors(idev, request,
2849							       task, &response,
2850							       &status);
2851		break;
2852
2853	case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
2854		/* This is a special case, in that the I/O completion
2855		* is telling us that the device needs a reset.
2856		* In order for the device reset condition to be
2857		* noticed, the I/O has to be handled in the error
2858		* handler.  Set the reset flag and cause the
2859		* SCSI error thread to be scheduled.
2860		*/
2861		spin_lock_irqsave(&task->task_state_lock, task_flags);
2862		task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2863		spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2864
2865		/* Fail the I/O. */
2866		response = SAS_TASK_UNDELIVERED;
2867		status = SAM_STAT_TASK_ABORTED;
2868
2869		clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2870		break;
2871
2872	case SCI_FAILURE_RETRY_REQUIRED:
2873
2874		/* Fail the I/O so it can be retried. */
2875		response = SAS_TASK_UNDELIVERED;
2876		if (!idev)
2877			status = SAS_DEVICE_UNKNOWN;
2878		else
2879			status = SAS_ABORTED_TASK;
2880
2881		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2882		break;
2883
2884
2885	default:
2886		/* Catch any otherwise unhandled error codes here. */
2887		dev_dbg(&ihost->pdev->dev,
2888			"%s: invalid completion code: 0x%x - "
2889				"isci_request = %p\n",
2890			__func__, completion_status, request);
2891
2892		response = SAS_TASK_UNDELIVERED;
2893
2894		/* See if the device has been/is being stopped. Note
2895		* that we ignore the quiesce state, since we are
2896		* concerned about the actual device state.
2897		*/
2898		if (!idev)
2899			status = SAS_DEVICE_UNKNOWN;
2900		else
2901			status = SAS_ABORTED_TASK;
2902
2903		if (SAS_PROTOCOL_SMP == task->task_proto)
2904			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2905		else
2906			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2907		break;
2908	}
2909
2910	switch (task->task_proto) {
2911	case SAS_PROTOCOL_SSP:
2912		if (task->data_dir == DMA_NONE)
2913			break;
2914		if (task->num_scatter == 0)
2915			/* 0 indicates a single dma address */
2916			dma_unmap_single(&ihost->pdev->dev,
2917					 request->zero_scatter_daddr,
2918					 task->total_xfer_len, task->data_dir);
2919		else  /* unmap the sgl dma addresses */
2920			dma_unmap_sg(&ihost->pdev->dev, task->scatter,
2921				     request->num_sg_entries, task->data_dir);
2922		break;
2923	case SAS_PROTOCOL_SMP: {
2924		struct scatterlist *sg = &task->smp_task.smp_req;
2925		struct smp_req *smp_req;
2926		void *kaddr;
2927
2928		dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE);
2929
2930		/* need to swab it back in case the command buffer is re-used */
2931		kaddr = kmap_atomic(sg_page(sg));
2932		smp_req = kaddr + sg->offset;
2933		sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
2934		kunmap_atomic(kaddr);
2935		break;
2936	}
2937	default:
2938		break;
2939	}
2940
2941	spin_lock_irqsave(&task->task_state_lock, task_flags);
2942
2943	task->task_status.resp = response;
2944	task->task_status.stat = status;
2945
2946	if (test_bit(IREQ_COMPLETE_IN_TARGET, &request->flags)) {
2947		/* Normal notification (task_done) */
2948		task->task_state_flags |= SAS_TASK_STATE_DONE;
2949		task->task_state_flags &= ~(SAS_TASK_AT_INITIATOR |
2950					    SAS_TASK_STATE_PENDING);
2951	}
2952	spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2953
2954	/* complete the io request to the core. */
2955	sci_controller_complete_io(ihost, request->target_device, request);
2956
2957	/* set terminated handle so it cannot be completed or
2958	 * terminated again, and to cause any calls into abort
2959	 * task to recognize the already completed case.
2960	 */
2961	set_bit(IREQ_TERMINATED, &request->flags);
2962
2963	ireq_done(ihost, request, task);
2964}
2965
2966static void sci_request_started_state_enter(struct sci_base_state_machine *sm)
2967{
2968	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2969	struct domain_device *dev = ireq->target_device->domain_dev;
2970	enum sci_base_request_states state;
2971	struct sas_task *task;
2972
2973	/* XXX as hch said always creating an internal sas_task for tmf
2974	 * requests would simplify the driver
2975	 */
2976	task = (test_bit(IREQ_TMF, &ireq->flags)) ? NULL : isci_request_access_task(ireq);
2977
2978	/* all unaccelerated request types (non ssp or ncq) handled with
2979	 * substates
2980	 */
2981	if (!task && dev->dev_type == SAS_END_DEV) {
2982		state = SCI_REQ_TASK_WAIT_TC_COMP;
2983	} else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
2984		state = SCI_REQ_SMP_WAIT_RESP;
2985	} else if (task && sas_protocol_ata(task->task_proto) &&
2986		   !task->ata_task.use_ncq) {
2987		if (dev->sata_dev.command_set == ATAPI_COMMAND_SET &&
2988			task->ata_task.fis.command == ATA_CMD_PACKET) {
2989			state = SCI_REQ_ATAPI_WAIT_H2D;
2990		} else if (task->data_dir == DMA_NONE) {
2991			state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
2992		} else if (task->ata_task.dma_xfer) {
2993			state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
2994		} else /* PIO */ {
2995			state = SCI_REQ_STP_PIO_WAIT_H2D;
2996		}
2997	} else {
2998		/* SSP or NCQ are fully accelerated, no substates */
2999		return;
3000	}
3001	sci_change_state(sm, state);
3002}
3003
3004static void sci_request_completed_state_enter(struct sci_base_state_machine *sm)
3005{
3006	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3007	struct isci_host *ihost = ireq->owning_controller;
3008
3009	/* Tell the SCI_USER that the IO request is complete */
3010	if (!test_bit(IREQ_TMF, &ireq->flags))
3011		isci_request_io_request_complete(ihost, ireq,
3012						 ireq->sci_status);
3013	else
3014		isci_task_request_complete(ihost, ireq, ireq->sci_status);
3015}
3016
3017static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm)
3018{
3019	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3020
3021	/* Setting the abort bit in the Task Context is required by the silicon. */
3022	ireq->tc->abort = 1;
3023}
3024
3025static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3026{
3027	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3028
3029	ireq->target_device->working_request = ireq;
3030}
3031
3032static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3033{
3034	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3035
3036	ireq->target_device->working_request = ireq;
3037}
3038
3039static const struct sci_base_state sci_request_state_table[] = {
3040	[SCI_REQ_INIT] = { },
3041	[SCI_REQ_CONSTRUCTED] = { },
3042	[SCI_REQ_STARTED] = {
3043		.enter_state = sci_request_started_state_enter,
3044	},
3045	[SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
3046		.enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter,
3047	},
3048	[SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
3049	[SCI_REQ_STP_PIO_WAIT_H2D] = {
3050		.enter_state = sci_stp_request_started_pio_await_h2d_completion_enter,
3051	},
3052	[SCI_REQ_STP_PIO_WAIT_FRAME] = { },
3053	[SCI_REQ_STP_PIO_DATA_IN] = { },
3054	[SCI_REQ_STP_PIO_DATA_OUT] = { },
3055	[SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
3056	[SCI_REQ_STP_UDMA_WAIT_D2H] = { },
3057	[SCI_REQ_TASK_WAIT_TC_COMP] = { },
3058	[SCI_REQ_TASK_WAIT_TC_RESP] = { },
3059	[SCI_REQ_SMP_WAIT_RESP] = { },
3060	[SCI_REQ_SMP_WAIT_TC_COMP] = { },
3061	[SCI_REQ_ATAPI_WAIT_H2D] = { },
3062	[SCI_REQ_ATAPI_WAIT_PIO_SETUP] = { },
3063	[SCI_REQ_ATAPI_WAIT_D2H] = { },
3064	[SCI_REQ_ATAPI_WAIT_TC_COMP] = { },
3065	[SCI_REQ_COMPLETED] = {
3066		.enter_state = sci_request_completed_state_enter,
3067	},
3068	[SCI_REQ_ABORTING] = {
3069		.enter_state = sci_request_aborting_state_enter,
3070	},
3071	[SCI_REQ_FINAL] = { },
3072};
3073
3074static void
3075sci_general_request_construct(struct isci_host *ihost,
3076				   struct isci_remote_device *idev,
3077				   struct isci_request *ireq)
3078{
3079	sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT);
3080
3081	ireq->target_device = idev;
3082	ireq->protocol = SAS_PROTOCOL_NONE;
3083	ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
3084
3085	ireq->sci_status   = SCI_SUCCESS;
3086	ireq->scu_status   = 0;
3087	ireq->post_context = 0xFFFFFFFF;
3088}
3089
3090static enum sci_status
3091sci_io_request_construct(struct isci_host *ihost,
3092			  struct isci_remote_device *idev,
3093			  struct isci_request *ireq)
3094{
3095	struct domain_device *dev = idev->domain_dev;
3096	enum sci_status status = SCI_SUCCESS;
3097
3098	/* Build the common part of the request */
3099	sci_general_request_construct(ihost, idev, ireq);
3100
3101	if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
3102		return SCI_FAILURE_INVALID_REMOTE_DEVICE;
3103
3104	if (dev->dev_type == SAS_END_DEV)
3105		/* pass */;
3106	else if (dev_is_sata(dev))
3107		memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
3108	else if (dev_is_expander(dev))
3109		/* pass */;
3110	else
3111		return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3112
3113	memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab));
3114
3115	return status;
3116}
3117
3118enum sci_status sci_task_request_construct(struct isci_host *ihost,
3119					    struct isci_remote_device *idev,
3120					    u16 io_tag, struct isci_request *ireq)
3121{
3122	struct domain_device *dev = idev->domain_dev;
3123	enum sci_status status = SCI_SUCCESS;
3124
3125	/* Build the common part of the request */
3126	sci_general_request_construct(ihost, idev, ireq);
3127
3128	if (dev->dev_type == SAS_END_DEV || dev_is_sata(dev)) {
3129		set_bit(IREQ_TMF, &ireq->flags);
3130		memset(ireq->tc, 0, sizeof(struct scu_task_context));
3131
3132		/* Set the protocol indicator. */
3133		if (dev_is_sata(dev))
3134			ireq->protocol = SAS_PROTOCOL_STP;
3135		else
3136			ireq->protocol = SAS_PROTOCOL_SSP;
3137	} else
3138		status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3139
3140	return status;
3141}
3142
3143static enum sci_status isci_request_ssp_request_construct(
3144	struct isci_request *request)
3145{
3146	enum sci_status status;
3147
3148	dev_dbg(&request->isci_host->pdev->dev,
3149		"%s: request = %p\n",
3150		__func__,
3151		request);
3152	status = sci_io_request_construct_basic_ssp(request);
3153	return status;
3154}
3155
3156static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq)
3157{
3158	struct sas_task *task = isci_request_access_task(ireq);
3159	struct host_to_dev_fis *fis = &ireq->stp.cmd;
3160	struct ata_queued_cmd *qc = task->uldd_task;
3161	enum sci_status status;
3162
3163	dev_dbg(&ireq->isci_host->pdev->dev,
3164		"%s: ireq = %p\n",
3165		__func__,
3166		ireq);
3167
3168	memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
3169	if (!task->ata_task.device_control_reg_update)
3170		fis->flags |= 0x80;
3171	fis->flags &= 0xF0;
3172
3173	status = sci_io_request_construct_basic_sata(ireq);
3174
3175	if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
3176		   qc->tf.command == ATA_CMD_FPDMA_READ)) {
3177		fis->sector_count = qc->tag << 3;
3178		ireq->tc->type.stp.ncq_tag = qc->tag;
3179	}
3180
3181	return status;
3182}
3183
3184static enum sci_status
3185sci_io_request_construct_smp(struct device *dev,
3186			      struct isci_request *ireq,
3187			      struct sas_task *task)
3188{
3189	struct scatterlist *sg = &task->smp_task.smp_req;
3190	struct isci_remote_device *idev;
3191	struct scu_task_context *task_context;
3192	struct isci_port *iport;
3193	struct smp_req *smp_req;
3194	void *kaddr;
3195	u8 req_len;
3196	u32 cmd;
3197
3198	kaddr = kmap_atomic(sg_page(sg));
3199	smp_req = kaddr + sg->offset;
3200	/*
3201	 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3202	 * functions under SAS 2.0, a zero request length really indicates
3203	 * a non-zero default length.
3204	 */
3205	if (smp_req->req_len == 0) {
3206		switch (smp_req->func) {
3207		case SMP_DISCOVER:
3208		case SMP_REPORT_PHY_ERR_LOG:
3209		case SMP_REPORT_PHY_SATA:
3210		case SMP_REPORT_ROUTE_INFO:
3211			smp_req->req_len = 2;
3212			break;
3213		case SMP_CONF_ROUTE_INFO:
3214		case SMP_PHY_CONTROL:
3215		case SMP_PHY_TEST_FUNCTION:
3216			smp_req->req_len = 9;
3217			break;
3218			/* Default - zero is a valid default for 2.0. */
3219		}
3220	}
3221	req_len = smp_req->req_len;
3222	sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3223	cmd = *(u32 *) smp_req;
3224	kunmap_atomic(kaddr);
3225
3226	if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
3227		return SCI_FAILURE;
3228
3229	ireq->protocol = SAS_PROTOCOL_SMP;
3230
3231	/* byte swap the smp request. */
3232
3233	task_context = ireq->tc;
3234
3235	idev = ireq->target_device;
3236	iport = idev->owning_port;
3237
3238	/*
3239	 * Fill in the TC with the its required data
3240	 * 00h
3241	 */
3242	task_context->priority = 0;
3243	task_context->initiator_request = 1;
3244	task_context->connection_rate = idev->connection_rate;
3245	task_context->protocol_engine_index = ISCI_PEG;
3246	task_context->logical_port_index = iport->physical_port_index;
3247	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
3248	task_context->abort = 0;
3249	task_context->valid = SCU_TASK_CONTEXT_VALID;
3250	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
3251
3252	/* 04h */
3253	task_context->remote_node_index = idev->rnc.remote_node_index;
3254	task_context->command_code = 0;
3255	task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
3256
3257	/* 08h */
3258	task_context->link_layer_control = 0;
3259	task_context->do_not_dma_ssp_good_response = 1;
3260	task_context->strict_ordering = 0;
3261	task_context->control_frame = 1;
3262	task_context->timeout_enable = 0;
3263	task_context->block_guard_enable = 0;
3264
3265	/* 0ch */
3266	task_context->address_modifier = 0;
3267
3268	/* 10h */
3269	task_context->ssp_command_iu_length = req_len;
3270
3271	/* 14h */
3272	task_context->transfer_length_bytes = 0;
3273
3274	/*
3275	 * 18h ~ 30h, protocol specific
3276	 * since commandIU has been build by framework at this point, we just
3277	 * copy the frist DWord from command IU to this location. */
3278	memcpy(&task_context->type.smp, &cmd, sizeof(u32));
3279
3280	/*
3281	 * 40h
3282	 * "For SMP you could program it to zero. We would prefer that way
3283	 * so that done code will be consistent." - Venki
3284	 */
3285	task_context->task_phase = 0;
3286
3287	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
3288			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
3289			       (iport->physical_port_index <<
3290				SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
3291			      ISCI_TAG_TCI(ireq->io_tag));
3292	/*
3293	 * Copy the physical address for the command buffer to the SCU Task
3294	 * Context command buffer should not contain command header.
3295	 */
3296	task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
3297	task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
3298
3299	/* SMP response comes as UF, so no need to set response IU address. */
3300	task_context->response_iu_upper = 0;
3301	task_context->response_iu_lower = 0;
3302
3303	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
3304
3305	return SCI_SUCCESS;
3306}
3307
3308/*
3309 * isci_smp_request_build() - This function builds the smp request.
3310 * @ireq: This parameter points to the isci_request allocated in the
3311 *    request construct function.
3312 *
3313 * SCI_SUCCESS on successfull completion, or specific failure code.
3314 */
3315static enum sci_status isci_smp_request_build(struct isci_request *ireq)
3316{
3317	struct sas_task *task = isci_request_access_task(ireq);
3318	struct device *dev = &ireq->isci_host->pdev->dev;
3319	enum sci_status status = SCI_FAILURE;
3320
3321	status = sci_io_request_construct_smp(dev, ireq, task);
3322	if (status != SCI_SUCCESS)
3323		dev_dbg(&ireq->isci_host->pdev->dev,
3324			 "%s: failed with status = %d\n",
3325			 __func__,
3326			 status);
3327
3328	return status;
3329}
3330
3331/**
3332 * isci_io_request_build() - This function builds the io request object.
3333 * @ihost: This parameter specifies the ISCI host object
3334 * @request: This parameter points to the isci_request object allocated in the
3335 *    request construct function.
3336 * @sci_device: This parameter is the handle for the sci core's remote device
3337 *    object that is the destination for this request.
3338 *
3339 * SCI_SUCCESS on successfull completion, or specific failure code.
3340 */
3341static enum sci_status isci_io_request_build(struct isci_host *ihost,
3342					     struct isci_request *request,
3343					     struct isci_remote_device *idev)
3344{
3345	enum sci_status status = SCI_SUCCESS;
3346	struct sas_task *task = isci_request_access_task(request);
3347
3348	dev_dbg(&ihost->pdev->dev,
3349		"%s: idev = 0x%p; request = %p, "
3350		"num_scatter = %d\n",
3351		__func__,
3352		idev,
3353		request,
3354		task->num_scatter);
3355
3356	/* map the sgl addresses, if present.
3357	 * libata does the mapping for sata devices
3358	 * before we get the request.
3359	 */
3360	if (task->num_scatter &&
3361	    !sas_protocol_ata(task->task_proto) &&
3362	    !(SAS_PROTOCOL_SMP & task->task_proto)) {
3363
3364		request->num_sg_entries = dma_map_sg(
3365			&ihost->pdev->dev,
3366			task->scatter,
3367			task->num_scatter,
3368			task->data_dir
3369			);
3370
3371		if (request->num_sg_entries == 0)
3372			return SCI_FAILURE_INSUFFICIENT_RESOURCES;
3373	}
3374
3375	status = sci_io_request_construct(ihost, idev, request);
3376
3377	if (status != SCI_SUCCESS) {
3378		dev_dbg(&ihost->pdev->dev,
3379			 "%s: failed request construct\n",
3380			 __func__);
3381		return SCI_FAILURE;
3382	}
3383
3384	switch (task->task_proto) {
3385	case SAS_PROTOCOL_SMP:
3386		status = isci_smp_request_build(request);
3387		break;
3388	case SAS_PROTOCOL_SSP:
3389		status = isci_request_ssp_request_construct(request);
3390		break;
3391	case SAS_PROTOCOL_SATA:
3392	case SAS_PROTOCOL_STP:
3393	case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
3394		status = isci_request_stp_request_construct(request);
3395		break;
3396	default:
3397		dev_dbg(&ihost->pdev->dev,
3398			 "%s: unknown protocol\n", __func__);
3399		return SCI_FAILURE;
3400	}
3401
3402	return SCI_SUCCESS;
3403}
3404
3405static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag)
3406{
3407	struct isci_request *ireq;
3408
3409	ireq = ihost->reqs[ISCI_TAG_TCI(tag)];
3410	ireq->io_tag = tag;
3411	ireq->io_request_completion = NULL;
3412	ireq->flags = 0;
3413	ireq->num_sg_entries = 0;
3414
3415	return ireq;
3416}
3417
3418static struct isci_request *isci_io_request_from_tag(struct isci_host *ihost,
3419						     struct sas_task *task,
3420						     u16 tag)
3421{
3422	struct isci_request *ireq;
3423
3424	ireq = isci_request_from_tag(ihost, tag);
3425	ireq->ttype_ptr.io_task_ptr = task;
3426	clear_bit(IREQ_TMF, &ireq->flags);
3427	task->lldd_task = ireq;
3428
3429	return ireq;
3430}
3431
3432struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost,
3433					       struct isci_tmf *isci_tmf,
3434					       u16 tag)
3435{
3436	struct isci_request *ireq;
3437
3438	ireq = isci_request_from_tag(ihost, tag);
3439	ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
3440	set_bit(IREQ_TMF, &ireq->flags);
3441
3442	return ireq;
3443}
3444
3445int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
3446			 struct sas_task *task, u16 tag)
3447{
3448	enum sci_status status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3449	struct isci_request *ireq;
3450	unsigned long flags;
3451	int ret = 0;
3452
3453	/* do common allocation and init of request object. */
3454	ireq = isci_io_request_from_tag(ihost, task, tag);
3455
3456	status = isci_io_request_build(ihost, ireq, idev);
3457	if (status != SCI_SUCCESS) {
3458		dev_dbg(&ihost->pdev->dev,
3459			 "%s: request_construct failed - status = 0x%x\n",
3460			 __func__,
3461			 status);
3462		return status;
3463	}
3464
3465	spin_lock_irqsave(&ihost->scic_lock, flags);
3466
3467	if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) {
3468
3469		if (isci_task_is_ncq_recovery(task)) {
3470
3471			/* The device is in an NCQ recovery state.  Issue the
3472			 * request on the task side.  Note that it will
3473			 * complete on the I/O request side because the
3474			 * request was built that way (ie.
3475			 * ireq->is_task_management_request is false).
3476			 */
3477			status = sci_controller_start_task(ihost,
3478							    idev,
3479							    ireq);
3480		} else {
3481			status = SCI_FAILURE;
3482		}
3483	} else {
3484		/* send the request, let the core assign the IO TAG.	*/
3485		status = sci_controller_start_io(ihost, idev,
3486						  ireq);
3487	}
3488
3489	if (status != SCI_SUCCESS &&
3490	    status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3491		dev_dbg(&ihost->pdev->dev,
3492			 "%s: failed request start (0x%x)\n",
3493			 __func__, status);
3494		spin_unlock_irqrestore(&ihost->scic_lock, flags);
3495		return status;
3496	}
3497	/* Either I/O started OK, or the core has signaled that
3498	 * the device needs a target reset.
3499	 */
3500	if (status != SCI_SUCCESS) {
3501		/* The request did not really start in the
3502		 * hardware, so clear the request handle
3503		 * here so no terminations will be done.
3504		 */
3505		set_bit(IREQ_TERMINATED, &ireq->flags);
3506	}
3507	spin_unlock_irqrestore(&ihost->scic_lock, flags);
3508
3509	if (status ==
3510	    SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3511		/* Signal libsas that we need the SCSI error
3512		 * handler thread to work on this I/O and that
3513		 * we want a device reset.
3514		 */
3515		spin_lock_irqsave(&task->task_state_lock, flags);
3516		task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
3517		spin_unlock_irqrestore(&task->task_state_lock, flags);
3518
3519		/* Cause this task to be scheduled in the SCSI error
3520		 * handler thread.
3521		 */
3522		sas_task_abort(task);
3523
3524		/* Change the status, since we are holding
3525		 * the I/O until it is managed by the SCSI
3526		 * error handler.
3527		 */
3528		status = SCI_SUCCESS;
3529	}
3530
3531	return ret;
3532}