Loading...
1/*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/export.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/sysctl.h>
46#include <linux/kdebug.h>
47#include <linux/memory.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/jump_label.h>
51
52#include <asm/sections.h>
53#include <asm/cacheflush.h>
54#include <asm/errno.h>
55#include <linux/uaccess.h>
56
57#define KPROBE_HASH_BITS 6
58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61static int kprobes_initialized;
62static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65/* NOTE: change this value only with kprobe_mutex held */
66static bool kprobes_all_disarmed;
67
68/* This protects kprobe_table and optimizing_list */
69static DEFINE_MUTEX(kprobe_mutex);
70static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71static struct {
72 raw_spinlock_t lock ____cacheline_aligned_in_smp;
73} kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 unsigned int __unused)
77{
78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79}
80
81static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82{
83 return &(kretprobe_table_locks[hash].lock);
84}
85
86/* Blacklist -- list of struct kprobe_blacklist_entry */
87static LIST_HEAD(kprobe_blacklist);
88
89#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90/*
91 * kprobe->ainsn.insn points to the copy of the instruction to be
92 * single-stepped. x86_64, POWER4 and above have no-exec support and
93 * stepping on the instruction on a vmalloced/kmalloced/data page
94 * is a recipe for disaster
95 */
96struct kprobe_insn_page {
97 struct list_head list;
98 kprobe_opcode_t *insns; /* Page of instruction slots */
99 struct kprobe_insn_cache *cache;
100 int nused;
101 int ngarbage;
102 char slot_used[];
103};
104
105#define KPROBE_INSN_PAGE_SIZE(slots) \
106 (offsetof(struct kprobe_insn_page, slot_used) + \
107 (sizeof(char) * (slots)))
108
109static int slots_per_page(struct kprobe_insn_cache *c)
110{
111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112}
113
114enum kprobe_slot_state {
115 SLOT_CLEAN = 0,
116 SLOT_DIRTY = 1,
117 SLOT_USED = 2,
118};
119
120void __weak *alloc_insn_page(void)
121{
122 return module_alloc(PAGE_SIZE);
123}
124
125void __weak free_insn_page(void *page)
126{
127 module_memfree(page);
128}
129
130struct kprobe_insn_cache kprobe_insn_slots = {
131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 .alloc = alloc_insn_page,
133 .free = free_insn_page,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
136 .nr_garbage = 0,
137};
138static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140/**
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
143 */
144kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145{
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
148
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
151 retry:
152 rcu_read_lock();
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
155 int i;
156 for (i = 0; i < slots_per_page(c); i++) {
157 if (kip->slot_used[i] == SLOT_CLEAN) {
158 kip->slot_used[i] = SLOT_USED;
159 kip->nused++;
160 slot = kip->insns + (i * c->insn_size);
161 rcu_read_unlock();
162 goto out;
163 }
164 }
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
168 }
169 }
170 rcu_read_unlock();
171
172 /* If there are any garbage slots, collect it and try again. */
173 if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 goto retry;
175
176 /* All out of space. Need to allocate a new page. */
177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 if (!kip)
179 goto out;
180
181 /*
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
185 */
186 kip->insns = c->alloc();
187 if (!kip->insns) {
188 kfree(kip);
189 goto out;
190 }
191 INIT_LIST_HEAD(&kip->list);
192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 kip->slot_used[0] = SLOT_USED;
194 kip->nused = 1;
195 kip->ngarbage = 0;
196 kip->cache = c;
197 list_add_rcu(&kip->list, &c->pages);
198 slot = kip->insns;
199out:
200 mutex_unlock(&c->mutex);
201 return slot;
202}
203
204/* Return 1 if all garbages are collected, otherwise 0. */
205static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206{
207 kip->slot_used[idx] = SLOT_CLEAN;
208 kip->nused--;
209 if (kip->nused == 0) {
210 /*
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
215 */
216 if (!list_is_singular(&kip->list)) {
217 list_del_rcu(&kip->list);
218 synchronize_rcu();
219 kip->cache->free(kip->insns);
220 kfree(kip);
221 }
222 return 1;
223 }
224 return 0;
225}
226
227static int collect_garbage_slots(struct kprobe_insn_cache *c)
228{
229 struct kprobe_insn_page *kip, *next;
230
231 /* Ensure no-one is interrupted on the garbages */
232 synchronize_sched();
233
234 list_for_each_entry_safe(kip, next, &c->pages, list) {
235 int i;
236 if (kip->ngarbage == 0)
237 continue;
238 kip->ngarbage = 0; /* we will collect all garbages */
239 for (i = 0; i < slots_per_page(c); i++) {
240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 break;
242 }
243 }
244 c->nr_garbage = 0;
245 return 0;
246}
247
248void __free_insn_slot(struct kprobe_insn_cache *c,
249 kprobe_opcode_t *slot, int dirty)
250{
251 struct kprobe_insn_page *kip;
252 long idx;
253
254 mutex_lock(&c->mutex);
255 rcu_read_lock();
256 list_for_each_entry_rcu(kip, &c->pages, list) {
257 idx = ((long)slot - (long)kip->insns) /
258 (c->insn_size * sizeof(kprobe_opcode_t));
259 if (idx >= 0 && idx < slots_per_page(c))
260 goto out;
261 }
262 /* Could not find this slot. */
263 WARN_ON(1);
264 kip = NULL;
265out:
266 rcu_read_unlock();
267 /* Mark and sweep: this may sleep */
268 if (kip) {
269 /* Check double free */
270 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 if (dirty) {
272 kip->slot_used[idx] = SLOT_DIRTY;
273 kip->ngarbage++;
274 if (++c->nr_garbage > slots_per_page(c))
275 collect_garbage_slots(c);
276 } else {
277 collect_one_slot(kip, idx);
278 }
279 }
280 mutex_unlock(&c->mutex);
281}
282
283/*
284 * Check given address is on the page of kprobe instruction slots.
285 * This will be used for checking whether the address on a stack
286 * is on a text area or not.
287 */
288bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289{
290 struct kprobe_insn_page *kip;
291 bool ret = false;
292
293 rcu_read_lock();
294 list_for_each_entry_rcu(kip, &c->pages, list) {
295 if (addr >= (unsigned long)kip->insns &&
296 addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 ret = true;
298 break;
299 }
300 }
301 rcu_read_unlock();
302
303 return ret;
304}
305
306#ifdef CONFIG_OPTPROBES
307/* For optimized_kprobe buffer */
308struct kprobe_insn_cache kprobe_optinsn_slots = {
309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 .alloc = alloc_insn_page,
311 .free = free_insn_page,
312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 /* .insn_size is initialized later */
314 .nr_garbage = 0,
315};
316#endif
317#endif
318
319/* We have preemption disabled.. so it is safe to use __ versions */
320static inline void set_kprobe_instance(struct kprobe *kp)
321{
322 __this_cpu_write(kprobe_instance, kp);
323}
324
325static inline void reset_kprobe_instance(void)
326{
327 __this_cpu_write(kprobe_instance, NULL);
328}
329
330/*
331 * This routine is called either:
332 * - under the kprobe_mutex - during kprobe_[un]register()
333 * OR
334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
335 */
336struct kprobe *get_kprobe(void *addr)
337{
338 struct hlist_head *head;
339 struct kprobe *p;
340
341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 hlist_for_each_entry_rcu(p, head, hlist) {
343 if (p->addr == addr)
344 return p;
345 }
346
347 return NULL;
348}
349NOKPROBE_SYMBOL(get_kprobe);
350
351static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353/* Return true if the kprobe is an aggregator */
354static inline int kprobe_aggrprobe(struct kprobe *p)
355{
356 return p->pre_handler == aggr_pre_handler;
357}
358
359/* Return true(!0) if the kprobe is unused */
360static inline int kprobe_unused(struct kprobe *p)
361{
362 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 list_empty(&p->list);
364}
365
366/*
367 * Keep all fields in the kprobe consistent
368 */
369static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370{
371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373}
374
375#ifdef CONFIG_OPTPROBES
376/* NOTE: change this value only with kprobe_mutex held */
377static bool kprobes_allow_optimization;
378
379/*
380 * Call all pre_handler on the list, but ignores its return value.
381 * This must be called from arch-dep optimized caller.
382 */
383void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384{
385 struct kprobe *kp;
386
387 list_for_each_entry_rcu(kp, &p->list, list) {
388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 set_kprobe_instance(kp);
390 kp->pre_handler(kp, regs);
391 }
392 reset_kprobe_instance();
393 }
394}
395NOKPROBE_SYMBOL(opt_pre_handler);
396
397/* Free optimized instructions and optimized_kprobe */
398static void free_aggr_kprobe(struct kprobe *p)
399{
400 struct optimized_kprobe *op;
401
402 op = container_of(p, struct optimized_kprobe, kp);
403 arch_remove_optimized_kprobe(op);
404 arch_remove_kprobe(p);
405 kfree(op);
406}
407
408/* Return true(!0) if the kprobe is ready for optimization. */
409static inline int kprobe_optready(struct kprobe *p)
410{
411 struct optimized_kprobe *op;
412
413 if (kprobe_aggrprobe(p)) {
414 op = container_of(p, struct optimized_kprobe, kp);
415 return arch_prepared_optinsn(&op->optinsn);
416 }
417
418 return 0;
419}
420
421/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422static inline int kprobe_disarmed(struct kprobe *p)
423{
424 struct optimized_kprobe *op;
425
426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 if (!kprobe_aggrprobe(p))
428 return kprobe_disabled(p);
429
430 op = container_of(p, struct optimized_kprobe, kp);
431
432 return kprobe_disabled(p) && list_empty(&op->list);
433}
434
435/* Return true(!0) if the probe is queued on (un)optimizing lists */
436static int kprobe_queued(struct kprobe *p)
437{
438 struct optimized_kprobe *op;
439
440 if (kprobe_aggrprobe(p)) {
441 op = container_of(p, struct optimized_kprobe, kp);
442 if (!list_empty(&op->list))
443 return 1;
444 }
445 return 0;
446}
447
448/*
449 * Return an optimized kprobe whose optimizing code replaces
450 * instructions including addr (exclude breakpoint).
451 */
452static struct kprobe *get_optimized_kprobe(unsigned long addr)
453{
454 int i;
455 struct kprobe *p = NULL;
456 struct optimized_kprobe *op;
457
458 /* Don't check i == 0, since that is a breakpoint case. */
459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 p = get_kprobe((void *)(addr - i));
461
462 if (p && kprobe_optready(p)) {
463 op = container_of(p, struct optimized_kprobe, kp);
464 if (arch_within_optimized_kprobe(op, addr))
465 return p;
466 }
467
468 return NULL;
469}
470
471/* Optimization staging list, protected by kprobe_mutex */
472static LIST_HEAD(optimizing_list);
473static LIST_HEAD(unoptimizing_list);
474static LIST_HEAD(freeing_list);
475
476static void kprobe_optimizer(struct work_struct *work);
477static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478#define OPTIMIZE_DELAY 5
479
480/*
481 * Optimize (replace a breakpoint with a jump) kprobes listed on
482 * optimizing_list.
483 */
484static void do_optimize_kprobes(void)
485{
486 /*
487 * The optimization/unoptimization refers online_cpus via
488 * stop_machine() and cpu-hotplug modifies online_cpus.
489 * And same time, text_mutex will be held in cpu-hotplug and here.
490 * This combination can cause a deadlock (cpu-hotplug try to lock
491 * text_mutex but stop_machine can not be done because online_cpus
492 * has been changed)
493 * To avoid this deadlock, caller must have locked cpu hotplug
494 * for preventing cpu-hotplug outside of text_mutex locking.
495 */
496 lockdep_assert_cpus_held();
497
498 /* Optimization never be done when disarmed */
499 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500 list_empty(&optimizing_list))
501 return;
502
503 mutex_lock(&text_mutex);
504 arch_optimize_kprobes(&optimizing_list);
505 mutex_unlock(&text_mutex);
506}
507
508/*
509 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510 * if need) kprobes listed on unoptimizing_list.
511 */
512static void do_unoptimize_kprobes(void)
513{
514 struct optimized_kprobe *op, *tmp;
515
516 /* See comment in do_optimize_kprobes() */
517 lockdep_assert_cpus_held();
518
519 /* Unoptimization must be done anytime */
520 if (list_empty(&unoptimizing_list))
521 return;
522
523 mutex_lock(&text_mutex);
524 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525 /* Loop free_list for disarming */
526 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527 /* Disarm probes if marked disabled */
528 if (kprobe_disabled(&op->kp))
529 arch_disarm_kprobe(&op->kp);
530 if (kprobe_unused(&op->kp)) {
531 /*
532 * Remove unused probes from hash list. After waiting
533 * for synchronization, these probes are reclaimed.
534 * (reclaiming is done by do_free_cleaned_kprobes.)
535 */
536 hlist_del_rcu(&op->kp.hlist);
537 } else
538 list_del_init(&op->list);
539 }
540 mutex_unlock(&text_mutex);
541}
542
543/* Reclaim all kprobes on the free_list */
544static void do_free_cleaned_kprobes(void)
545{
546 struct optimized_kprobe *op, *tmp;
547
548 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 BUG_ON(!kprobe_unused(&op->kp));
550 list_del_init(&op->list);
551 free_aggr_kprobe(&op->kp);
552 }
553}
554
555/* Start optimizer after OPTIMIZE_DELAY passed */
556static void kick_kprobe_optimizer(void)
557{
558 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
559}
560
561/* Kprobe jump optimizer */
562static void kprobe_optimizer(struct work_struct *work)
563{
564 mutex_lock(&kprobe_mutex);
565 cpus_read_lock();
566 /* Lock modules while optimizing kprobes */
567 mutex_lock(&module_mutex);
568
569 /*
570 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
571 * kprobes before waiting for quiesence period.
572 */
573 do_unoptimize_kprobes();
574
575 /*
576 * Step 2: Wait for quiesence period to ensure all potentially
577 * preempted tasks to have normally scheduled. Because optprobe
578 * may modify multiple instructions, there is a chance that Nth
579 * instruction is preempted. In that case, such tasks can return
580 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
581 * Note that on non-preemptive kernel, this is transparently converted
582 * to synchronoze_sched() to wait for all interrupts to have completed.
583 */
584 synchronize_rcu_tasks();
585
586 /* Step 3: Optimize kprobes after quiesence period */
587 do_optimize_kprobes();
588
589 /* Step 4: Free cleaned kprobes after quiesence period */
590 do_free_cleaned_kprobes();
591
592 mutex_unlock(&module_mutex);
593 cpus_read_unlock();
594 mutex_unlock(&kprobe_mutex);
595
596 /* Step 5: Kick optimizer again if needed */
597 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
598 kick_kprobe_optimizer();
599}
600
601/* Wait for completing optimization and unoptimization */
602void wait_for_kprobe_optimizer(void)
603{
604 mutex_lock(&kprobe_mutex);
605
606 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
607 mutex_unlock(&kprobe_mutex);
608
609 /* this will also make optimizing_work execute immmediately */
610 flush_delayed_work(&optimizing_work);
611 /* @optimizing_work might not have been queued yet, relax */
612 cpu_relax();
613
614 mutex_lock(&kprobe_mutex);
615 }
616
617 mutex_unlock(&kprobe_mutex);
618}
619
620/* Optimize kprobe if p is ready to be optimized */
621static void optimize_kprobe(struct kprobe *p)
622{
623 struct optimized_kprobe *op;
624
625 /* Check if the kprobe is disabled or not ready for optimization. */
626 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
627 (kprobe_disabled(p) || kprobes_all_disarmed))
628 return;
629
630 /* Both of break_handler and post_handler are not supported. */
631 if (p->break_handler || p->post_handler)
632 return;
633
634 op = container_of(p, struct optimized_kprobe, kp);
635
636 /* Check there is no other kprobes at the optimized instructions */
637 if (arch_check_optimized_kprobe(op) < 0)
638 return;
639
640 /* Check if it is already optimized. */
641 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
642 return;
643 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
644
645 if (!list_empty(&op->list))
646 /* This is under unoptimizing. Just dequeue the probe */
647 list_del_init(&op->list);
648 else {
649 list_add(&op->list, &optimizing_list);
650 kick_kprobe_optimizer();
651 }
652}
653
654/* Short cut to direct unoptimizing */
655static void force_unoptimize_kprobe(struct optimized_kprobe *op)
656{
657 lockdep_assert_cpus_held();
658 arch_unoptimize_kprobe(op);
659 if (kprobe_disabled(&op->kp))
660 arch_disarm_kprobe(&op->kp);
661}
662
663/* Unoptimize a kprobe if p is optimized */
664static void unoptimize_kprobe(struct kprobe *p, bool force)
665{
666 struct optimized_kprobe *op;
667
668 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
669 return; /* This is not an optprobe nor optimized */
670
671 op = container_of(p, struct optimized_kprobe, kp);
672 if (!kprobe_optimized(p)) {
673 /* Unoptimized or unoptimizing case */
674 if (force && !list_empty(&op->list)) {
675 /*
676 * Only if this is unoptimizing kprobe and forced,
677 * forcibly unoptimize it. (No need to unoptimize
678 * unoptimized kprobe again :)
679 */
680 list_del_init(&op->list);
681 force_unoptimize_kprobe(op);
682 }
683 return;
684 }
685
686 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
687 if (!list_empty(&op->list)) {
688 /* Dequeue from the optimization queue */
689 list_del_init(&op->list);
690 return;
691 }
692 /* Optimized kprobe case */
693 if (force)
694 /* Forcibly update the code: this is a special case */
695 force_unoptimize_kprobe(op);
696 else {
697 list_add(&op->list, &unoptimizing_list);
698 kick_kprobe_optimizer();
699 }
700}
701
702/* Cancel unoptimizing for reusing */
703static void reuse_unused_kprobe(struct kprobe *ap)
704{
705 struct optimized_kprobe *op;
706
707 BUG_ON(!kprobe_unused(ap));
708 /*
709 * Unused kprobe MUST be on the way of delayed unoptimizing (means
710 * there is still a relative jump) and disabled.
711 */
712 op = container_of(ap, struct optimized_kprobe, kp);
713 if (unlikely(list_empty(&op->list)))
714 printk(KERN_WARNING "Warning: found a stray unused "
715 "aggrprobe@%p\n", ap->addr);
716 /* Enable the probe again */
717 ap->flags &= ~KPROBE_FLAG_DISABLED;
718 /* Optimize it again (remove from op->list) */
719 BUG_ON(!kprobe_optready(ap));
720 optimize_kprobe(ap);
721}
722
723/* Remove optimized instructions */
724static void kill_optimized_kprobe(struct kprobe *p)
725{
726 struct optimized_kprobe *op;
727
728 op = container_of(p, struct optimized_kprobe, kp);
729 if (!list_empty(&op->list))
730 /* Dequeue from the (un)optimization queue */
731 list_del_init(&op->list);
732 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
733
734 if (kprobe_unused(p)) {
735 /* Enqueue if it is unused */
736 list_add(&op->list, &freeing_list);
737 /*
738 * Remove unused probes from the hash list. After waiting
739 * for synchronization, this probe is reclaimed.
740 * (reclaiming is done by do_free_cleaned_kprobes().)
741 */
742 hlist_del_rcu(&op->kp.hlist);
743 }
744
745 /* Don't touch the code, because it is already freed. */
746 arch_remove_optimized_kprobe(op);
747}
748
749static inline
750void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
751{
752 if (!kprobe_ftrace(p))
753 arch_prepare_optimized_kprobe(op, p);
754}
755
756/* Try to prepare optimized instructions */
757static void prepare_optimized_kprobe(struct kprobe *p)
758{
759 struct optimized_kprobe *op;
760
761 op = container_of(p, struct optimized_kprobe, kp);
762 __prepare_optimized_kprobe(op, p);
763}
764
765/* Allocate new optimized_kprobe and try to prepare optimized instructions */
766static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
767{
768 struct optimized_kprobe *op;
769
770 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
771 if (!op)
772 return NULL;
773
774 INIT_LIST_HEAD(&op->list);
775 op->kp.addr = p->addr;
776 __prepare_optimized_kprobe(op, p);
777
778 return &op->kp;
779}
780
781static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
782
783/*
784 * Prepare an optimized_kprobe and optimize it
785 * NOTE: p must be a normal registered kprobe
786 */
787static void try_to_optimize_kprobe(struct kprobe *p)
788{
789 struct kprobe *ap;
790 struct optimized_kprobe *op;
791
792 /* Impossible to optimize ftrace-based kprobe */
793 if (kprobe_ftrace(p))
794 return;
795
796 /* For preparing optimization, jump_label_text_reserved() is called */
797 cpus_read_lock();
798 jump_label_lock();
799 mutex_lock(&text_mutex);
800
801 ap = alloc_aggr_kprobe(p);
802 if (!ap)
803 goto out;
804
805 op = container_of(ap, struct optimized_kprobe, kp);
806 if (!arch_prepared_optinsn(&op->optinsn)) {
807 /* If failed to setup optimizing, fallback to kprobe */
808 arch_remove_optimized_kprobe(op);
809 kfree(op);
810 goto out;
811 }
812
813 init_aggr_kprobe(ap, p);
814 optimize_kprobe(ap); /* This just kicks optimizer thread */
815
816out:
817 mutex_unlock(&text_mutex);
818 jump_label_unlock();
819 cpus_read_unlock();
820}
821
822#ifdef CONFIG_SYSCTL
823static void optimize_all_kprobes(void)
824{
825 struct hlist_head *head;
826 struct kprobe *p;
827 unsigned int i;
828
829 mutex_lock(&kprobe_mutex);
830 /* If optimization is already allowed, just return */
831 if (kprobes_allow_optimization)
832 goto out;
833
834 cpus_read_lock();
835 kprobes_allow_optimization = true;
836 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
837 head = &kprobe_table[i];
838 hlist_for_each_entry_rcu(p, head, hlist)
839 if (!kprobe_disabled(p))
840 optimize_kprobe(p);
841 }
842 cpus_read_unlock();
843 printk(KERN_INFO "Kprobes globally optimized\n");
844out:
845 mutex_unlock(&kprobe_mutex);
846}
847
848static void unoptimize_all_kprobes(void)
849{
850 struct hlist_head *head;
851 struct kprobe *p;
852 unsigned int i;
853
854 mutex_lock(&kprobe_mutex);
855 /* If optimization is already prohibited, just return */
856 if (!kprobes_allow_optimization) {
857 mutex_unlock(&kprobe_mutex);
858 return;
859 }
860
861 cpus_read_lock();
862 kprobes_allow_optimization = false;
863 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
864 head = &kprobe_table[i];
865 hlist_for_each_entry_rcu(p, head, hlist) {
866 if (!kprobe_disabled(p))
867 unoptimize_kprobe(p, false);
868 }
869 }
870 cpus_read_unlock();
871 mutex_unlock(&kprobe_mutex);
872
873 /* Wait for unoptimizing completion */
874 wait_for_kprobe_optimizer();
875 printk(KERN_INFO "Kprobes globally unoptimized\n");
876}
877
878static DEFINE_MUTEX(kprobe_sysctl_mutex);
879int sysctl_kprobes_optimization;
880int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
881 void __user *buffer, size_t *length,
882 loff_t *ppos)
883{
884 int ret;
885
886 mutex_lock(&kprobe_sysctl_mutex);
887 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
888 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
889
890 if (sysctl_kprobes_optimization)
891 optimize_all_kprobes();
892 else
893 unoptimize_all_kprobes();
894 mutex_unlock(&kprobe_sysctl_mutex);
895
896 return ret;
897}
898#endif /* CONFIG_SYSCTL */
899
900/* Put a breakpoint for a probe. Must be called with text_mutex locked */
901static void __arm_kprobe(struct kprobe *p)
902{
903 struct kprobe *_p;
904
905 /* Check collision with other optimized kprobes */
906 _p = get_optimized_kprobe((unsigned long)p->addr);
907 if (unlikely(_p))
908 /* Fallback to unoptimized kprobe */
909 unoptimize_kprobe(_p, true);
910
911 arch_arm_kprobe(p);
912 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
913}
914
915/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
916static void __disarm_kprobe(struct kprobe *p, bool reopt)
917{
918 struct kprobe *_p;
919
920 /* Try to unoptimize */
921 unoptimize_kprobe(p, kprobes_all_disarmed);
922
923 if (!kprobe_queued(p)) {
924 arch_disarm_kprobe(p);
925 /* If another kprobe was blocked, optimize it. */
926 _p = get_optimized_kprobe((unsigned long)p->addr);
927 if (unlikely(_p) && reopt)
928 optimize_kprobe(_p);
929 }
930 /* TODO: reoptimize others after unoptimized this probe */
931}
932
933#else /* !CONFIG_OPTPROBES */
934
935#define optimize_kprobe(p) do {} while (0)
936#define unoptimize_kprobe(p, f) do {} while (0)
937#define kill_optimized_kprobe(p) do {} while (0)
938#define prepare_optimized_kprobe(p) do {} while (0)
939#define try_to_optimize_kprobe(p) do {} while (0)
940#define __arm_kprobe(p) arch_arm_kprobe(p)
941#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
942#define kprobe_disarmed(p) kprobe_disabled(p)
943#define wait_for_kprobe_optimizer() do {} while (0)
944
945/* There should be no unused kprobes can be reused without optimization */
946static void reuse_unused_kprobe(struct kprobe *ap)
947{
948 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
949 BUG_ON(kprobe_unused(ap));
950}
951
952static void free_aggr_kprobe(struct kprobe *p)
953{
954 arch_remove_kprobe(p);
955 kfree(p);
956}
957
958static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
959{
960 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
961}
962#endif /* CONFIG_OPTPROBES */
963
964#ifdef CONFIG_KPROBES_ON_FTRACE
965static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
966 .func = kprobe_ftrace_handler,
967 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
968};
969static int kprobe_ftrace_enabled;
970
971/* Must ensure p->addr is really on ftrace */
972static int prepare_kprobe(struct kprobe *p)
973{
974 if (!kprobe_ftrace(p))
975 return arch_prepare_kprobe(p);
976
977 return arch_prepare_kprobe_ftrace(p);
978}
979
980/* Caller must lock kprobe_mutex */
981static int arm_kprobe_ftrace(struct kprobe *p)
982{
983 int ret = 0;
984
985 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
986 (unsigned long)p->addr, 0, 0);
987 if (ret) {
988 pr_debug("Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
989 return ret;
990 }
991
992 if (kprobe_ftrace_enabled == 0) {
993 ret = register_ftrace_function(&kprobe_ftrace_ops);
994 if (ret) {
995 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
996 goto err_ftrace;
997 }
998 }
999
1000 kprobe_ftrace_enabled++;
1001 return ret;
1002
1003err_ftrace:
1004 /*
1005 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1006 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1007 * empty filter_hash which would undesirably trace all functions.
1008 */
1009 ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1010 return ret;
1011}
1012
1013/* Caller must lock kprobe_mutex */
1014static int disarm_kprobe_ftrace(struct kprobe *p)
1015{
1016 int ret = 0;
1017
1018 if (kprobe_ftrace_enabled == 1) {
1019 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1020 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1021 return ret;
1022 }
1023
1024 kprobe_ftrace_enabled--;
1025
1026 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1027 (unsigned long)p->addr, 1, 0);
1028 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
1029 return ret;
1030}
1031#else /* !CONFIG_KPROBES_ON_FTRACE */
1032#define prepare_kprobe(p) arch_prepare_kprobe(p)
1033#define arm_kprobe_ftrace(p) (-ENODEV)
1034#define disarm_kprobe_ftrace(p) (-ENODEV)
1035#endif
1036
1037/* Arm a kprobe with text_mutex */
1038static int arm_kprobe(struct kprobe *kp)
1039{
1040 if (unlikely(kprobe_ftrace(kp)))
1041 return arm_kprobe_ftrace(kp);
1042
1043 cpus_read_lock();
1044 mutex_lock(&text_mutex);
1045 __arm_kprobe(kp);
1046 mutex_unlock(&text_mutex);
1047 cpus_read_unlock();
1048
1049 return 0;
1050}
1051
1052/* Disarm a kprobe with text_mutex */
1053static int disarm_kprobe(struct kprobe *kp, bool reopt)
1054{
1055 if (unlikely(kprobe_ftrace(kp)))
1056 return disarm_kprobe_ftrace(kp);
1057
1058 cpus_read_lock();
1059 mutex_lock(&text_mutex);
1060 __disarm_kprobe(kp, reopt);
1061 mutex_unlock(&text_mutex);
1062 cpus_read_unlock();
1063
1064 return 0;
1065}
1066
1067/*
1068 * Aggregate handlers for multiple kprobes support - these handlers
1069 * take care of invoking the individual kprobe handlers on p->list
1070 */
1071static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1072{
1073 struct kprobe *kp;
1074
1075 list_for_each_entry_rcu(kp, &p->list, list) {
1076 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1077 set_kprobe_instance(kp);
1078 if (kp->pre_handler(kp, regs))
1079 return 1;
1080 }
1081 reset_kprobe_instance();
1082 }
1083 return 0;
1084}
1085NOKPROBE_SYMBOL(aggr_pre_handler);
1086
1087static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1088 unsigned long flags)
1089{
1090 struct kprobe *kp;
1091
1092 list_for_each_entry_rcu(kp, &p->list, list) {
1093 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1094 set_kprobe_instance(kp);
1095 kp->post_handler(kp, regs, flags);
1096 reset_kprobe_instance();
1097 }
1098 }
1099}
1100NOKPROBE_SYMBOL(aggr_post_handler);
1101
1102static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1103 int trapnr)
1104{
1105 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1106
1107 /*
1108 * if we faulted "during" the execution of a user specified
1109 * probe handler, invoke just that probe's fault handler
1110 */
1111 if (cur && cur->fault_handler) {
1112 if (cur->fault_handler(cur, regs, trapnr))
1113 return 1;
1114 }
1115 return 0;
1116}
1117NOKPROBE_SYMBOL(aggr_fault_handler);
1118
1119static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1120{
1121 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1122 int ret = 0;
1123
1124 if (cur && cur->break_handler) {
1125 if (cur->break_handler(cur, regs))
1126 ret = 1;
1127 }
1128 reset_kprobe_instance();
1129 return ret;
1130}
1131NOKPROBE_SYMBOL(aggr_break_handler);
1132
1133/* Walks the list and increments nmissed count for multiprobe case */
1134void kprobes_inc_nmissed_count(struct kprobe *p)
1135{
1136 struct kprobe *kp;
1137 if (!kprobe_aggrprobe(p)) {
1138 p->nmissed++;
1139 } else {
1140 list_for_each_entry_rcu(kp, &p->list, list)
1141 kp->nmissed++;
1142 }
1143 return;
1144}
1145NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1146
1147void recycle_rp_inst(struct kretprobe_instance *ri,
1148 struct hlist_head *head)
1149{
1150 struct kretprobe *rp = ri->rp;
1151
1152 /* remove rp inst off the rprobe_inst_table */
1153 hlist_del(&ri->hlist);
1154 INIT_HLIST_NODE(&ri->hlist);
1155 if (likely(rp)) {
1156 raw_spin_lock(&rp->lock);
1157 hlist_add_head(&ri->hlist, &rp->free_instances);
1158 raw_spin_unlock(&rp->lock);
1159 } else
1160 /* Unregistering */
1161 hlist_add_head(&ri->hlist, head);
1162}
1163NOKPROBE_SYMBOL(recycle_rp_inst);
1164
1165void kretprobe_hash_lock(struct task_struct *tsk,
1166 struct hlist_head **head, unsigned long *flags)
1167__acquires(hlist_lock)
1168{
1169 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1170 raw_spinlock_t *hlist_lock;
1171
1172 *head = &kretprobe_inst_table[hash];
1173 hlist_lock = kretprobe_table_lock_ptr(hash);
1174 raw_spin_lock_irqsave(hlist_lock, *flags);
1175}
1176NOKPROBE_SYMBOL(kretprobe_hash_lock);
1177
1178static void kretprobe_table_lock(unsigned long hash,
1179 unsigned long *flags)
1180__acquires(hlist_lock)
1181{
1182 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1183 raw_spin_lock_irqsave(hlist_lock, *flags);
1184}
1185NOKPROBE_SYMBOL(kretprobe_table_lock);
1186
1187void kretprobe_hash_unlock(struct task_struct *tsk,
1188 unsigned long *flags)
1189__releases(hlist_lock)
1190{
1191 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1192 raw_spinlock_t *hlist_lock;
1193
1194 hlist_lock = kretprobe_table_lock_ptr(hash);
1195 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1196}
1197NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1198
1199static void kretprobe_table_unlock(unsigned long hash,
1200 unsigned long *flags)
1201__releases(hlist_lock)
1202{
1203 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1204 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1205}
1206NOKPROBE_SYMBOL(kretprobe_table_unlock);
1207
1208/*
1209 * This function is called from finish_task_switch when task tk becomes dead,
1210 * so that we can recycle any function-return probe instances associated
1211 * with this task. These left over instances represent probed functions
1212 * that have been called but will never return.
1213 */
1214void kprobe_flush_task(struct task_struct *tk)
1215{
1216 struct kretprobe_instance *ri;
1217 struct hlist_head *head, empty_rp;
1218 struct hlist_node *tmp;
1219 unsigned long hash, flags = 0;
1220
1221 if (unlikely(!kprobes_initialized))
1222 /* Early boot. kretprobe_table_locks not yet initialized. */
1223 return;
1224
1225 INIT_HLIST_HEAD(&empty_rp);
1226 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1227 head = &kretprobe_inst_table[hash];
1228 kretprobe_table_lock(hash, &flags);
1229 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1230 if (ri->task == tk)
1231 recycle_rp_inst(ri, &empty_rp);
1232 }
1233 kretprobe_table_unlock(hash, &flags);
1234 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1235 hlist_del(&ri->hlist);
1236 kfree(ri);
1237 }
1238}
1239NOKPROBE_SYMBOL(kprobe_flush_task);
1240
1241static inline void free_rp_inst(struct kretprobe *rp)
1242{
1243 struct kretprobe_instance *ri;
1244 struct hlist_node *next;
1245
1246 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1247 hlist_del(&ri->hlist);
1248 kfree(ri);
1249 }
1250}
1251
1252static void cleanup_rp_inst(struct kretprobe *rp)
1253{
1254 unsigned long flags, hash;
1255 struct kretprobe_instance *ri;
1256 struct hlist_node *next;
1257 struct hlist_head *head;
1258
1259 /* No race here */
1260 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1261 kretprobe_table_lock(hash, &flags);
1262 head = &kretprobe_inst_table[hash];
1263 hlist_for_each_entry_safe(ri, next, head, hlist) {
1264 if (ri->rp == rp)
1265 ri->rp = NULL;
1266 }
1267 kretprobe_table_unlock(hash, &flags);
1268 }
1269 free_rp_inst(rp);
1270}
1271NOKPROBE_SYMBOL(cleanup_rp_inst);
1272
1273/*
1274* Add the new probe to ap->list. Fail if this is the
1275* second jprobe at the address - two jprobes can't coexist
1276*/
1277static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1278{
1279 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1280
1281 if (p->break_handler || p->post_handler)
1282 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1283
1284 if (p->break_handler) {
1285 if (ap->break_handler)
1286 return -EEXIST;
1287 list_add_tail_rcu(&p->list, &ap->list);
1288 ap->break_handler = aggr_break_handler;
1289 } else
1290 list_add_rcu(&p->list, &ap->list);
1291 if (p->post_handler && !ap->post_handler)
1292 ap->post_handler = aggr_post_handler;
1293
1294 return 0;
1295}
1296
1297/*
1298 * Fill in the required fields of the "manager kprobe". Replace the
1299 * earlier kprobe in the hlist with the manager kprobe
1300 */
1301static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1302{
1303 /* Copy p's insn slot to ap */
1304 copy_kprobe(p, ap);
1305 flush_insn_slot(ap);
1306 ap->addr = p->addr;
1307 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1308 ap->pre_handler = aggr_pre_handler;
1309 ap->fault_handler = aggr_fault_handler;
1310 /* We don't care the kprobe which has gone. */
1311 if (p->post_handler && !kprobe_gone(p))
1312 ap->post_handler = aggr_post_handler;
1313 if (p->break_handler && !kprobe_gone(p))
1314 ap->break_handler = aggr_break_handler;
1315
1316 INIT_LIST_HEAD(&ap->list);
1317 INIT_HLIST_NODE(&ap->hlist);
1318
1319 list_add_rcu(&p->list, &ap->list);
1320 hlist_replace_rcu(&p->hlist, &ap->hlist);
1321}
1322
1323/*
1324 * This is the second or subsequent kprobe at the address - handle
1325 * the intricacies
1326 */
1327static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1328{
1329 int ret = 0;
1330 struct kprobe *ap = orig_p;
1331
1332 cpus_read_lock();
1333
1334 /* For preparing optimization, jump_label_text_reserved() is called */
1335 jump_label_lock();
1336 mutex_lock(&text_mutex);
1337
1338 if (!kprobe_aggrprobe(orig_p)) {
1339 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1340 ap = alloc_aggr_kprobe(orig_p);
1341 if (!ap) {
1342 ret = -ENOMEM;
1343 goto out;
1344 }
1345 init_aggr_kprobe(ap, orig_p);
1346 } else if (kprobe_unused(ap))
1347 /* This probe is going to die. Rescue it */
1348 reuse_unused_kprobe(ap);
1349
1350 if (kprobe_gone(ap)) {
1351 /*
1352 * Attempting to insert new probe at the same location that
1353 * had a probe in the module vaddr area which already
1354 * freed. So, the instruction slot has already been
1355 * released. We need a new slot for the new probe.
1356 */
1357 ret = arch_prepare_kprobe(ap);
1358 if (ret)
1359 /*
1360 * Even if fail to allocate new slot, don't need to
1361 * free aggr_probe. It will be used next time, or
1362 * freed by unregister_kprobe.
1363 */
1364 goto out;
1365
1366 /* Prepare optimized instructions if possible. */
1367 prepare_optimized_kprobe(ap);
1368
1369 /*
1370 * Clear gone flag to prevent allocating new slot again, and
1371 * set disabled flag because it is not armed yet.
1372 */
1373 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1374 | KPROBE_FLAG_DISABLED;
1375 }
1376
1377 /* Copy ap's insn slot to p */
1378 copy_kprobe(ap, p);
1379 ret = add_new_kprobe(ap, p);
1380
1381out:
1382 mutex_unlock(&text_mutex);
1383 jump_label_unlock();
1384 cpus_read_unlock();
1385
1386 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1387 ap->flags &= ~KPROBE_FLAG_DISABLED;
1388 if (!kprobes_all_disarmed) {
1389 /* Arm the breakpoint again. */
1390 ret = arm_kprobe(ap);
1391 if (ret) {
1392 ap->flags |= KPROBE_FLAG_DISABLED;
1393 list_del_rcu(&p->list);
1394 synchronize_sched();
1395 }
1396 }
1397 }
1398 return ret;
1399}
1400
1401bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1402{
1403 /* The __kprobes marked functions and entry code must not be probed */
1404 return addr >= (unsigned long)__kprobes_text_start &&
1405 addr < (unsigned long)__kprobes_text_end;
1406}
1407
1408bool within_kprobe_blacklist(unsigned long addr)
1409{
1410 struct kprobe_blacklist_entry *ent;
1411
1412 if (arch_within_kprobe_blacklist(addr))
1413 return true;
1414 /*
1415 * If there exists a kprobe_blacklist, verify and
1416 * fail any probe registration in the prohibited area
1417 */
1418 list_for_each_entry(ent, &kprobe_blacklist, list) {
1419 if (addr >= ent->start_addr && addr < ent->end_addr)
1420 return true;
1421 }
1422
1423 return false;
1424}
1425
1426/*
1427 * If we have a symbol_name argument, look it up and add the offset field
1428 * to it. This way, we can specify a relative address to a symbol.
1429 * This returns encoded errors if it fails to look up symbol or invalid
1430 * combination of parameters.
1431 */
1432static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1433 const char *symbol_name, unsigned int offset)
1434{
1435 if ((symbol_name && addr) || (!symbol_name && !addr))
1436 goto invalid;
1437
1438 if (symbol_name) {
1439 addr = kprobe_lookup_name(symbol_name, offset);
1440 if (!addr)
1441 return ERR_PTR(-ENOENT);
1442 }
1443
1444 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1445 if (addr)
1446 return addr;
1447
1448invalid:
1449 return ERR_PTR(-EINVAL);
1450}
1451
1452static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1453{
1454 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1455}
1456
1457/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1458static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1459{
1460 struct kprobe *ap, *list_p;
1461
1462 ap = get_kprobe(p->addr);
1463 if (unlikely(!ap))
1464 return NULL;
1465
1466 if (p != ap) {
1467 list_for_each_entry_rcu(list_p, &ap->list, list)
1468 if (list_p == p)
1469 /* kprobe p is a valid probe */
1470 goto valid;
1471 return NULL;
1472 }
1473valid:
1474 return ap;
1475}
1476
1477/* Return error if the kprobe is being re-registered */
1478static inline int check_kprobe_rereg(struct kprobe *p)
1479{
1480 int ret = 0;
1481
1482 mutex_lock(&kprobe_mutex);
1483 if (__get_valid_kprobe(p))
1484 ret = -EINVAL;
1485 mutex_unlock(&kprobe_mutex);
1486
1487 return ret;
1488}
1489
1490int __weak arch_check_ftrace_location(struct kprobe *p)
1491{
1492 unsigned long ftrace_addr;
1493
1494 ftrace_addr = ftrace_location((unsigned long)p->addr);
1495 if (ftrace_addr) {
1496#ifdef CONFIG_KPROBES_ON_FTRACE
1497 /* Given address is not on the instruction boundary */
1498 if ((unsigned long)p->addr != ftrace_addr)
1499 return -EILSEQ;
1500 p->flags |= KPROBE_FLAG_FTRACE;
1501#else /* !CONFIG_KPROBES_ON_FTRACE */
1502 return -EINVAL;
1503#endif
1504 }
1505 return 0;
1506}
1507
1508static int check_kprobe_address_safe(struct kprobe *p,
1509 struct module **probed_mod)
1510{
1511 int ret;
1512
1513 ret = arch_check_ftrace_location(p);
1514 if (ret)
1515 return ret;
1516 jump_label_lock();
1517 preempt_disable();
1518
1519 /* Ensure it is not in reserved area nor out of text */
1520 if (!kernel_text_address((unsigned long) p->addr) ||
1521 within_kprobe_blacklist((unsigned long) p->addr) ||
1522 jump_label_text_reserved(p->addr, p->addr)) {
1523 ret = -EINVAL;
1524 goto out;
1525 }
1526
1527 /* Check if are we probing a module */
1528 *probed_mod = __module_text_address((unsigned long) p->addr);
1529 if (*probed_mod) {
1530 /*
1531 * We must hold a refcount of the probed module while updating
1532 * its code to prohibit unexpected unloading.
1533 */
1534 if (unlikely(!try_module_get(*probed_mod))) {
1535 ret = -ENOENT;
1536 goto out;
1537 }
1538
1539 /*
1540 * If the module freed .init.text, we couldn't insert
1541 * kprobes in there.
1542 */
1543 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1544 (*probed_mod)->state != MODULE_STATE_COMING) {
1545 module_put(*probed_mod);
1546 *probed_mod = NULL;
1547 ret = -ENOENT;
1548 }
1549 }
1550out:
1551 preempt_enable();
1552 jump_label_unlock();
1553
1554 return ret;
1555}
1556
1557int register_kprobe(struct kprobe *p)
1558{
1559 int ret;
1560 struct kprobe *old_p;
1561 struct module *probed_mod;
1562 kprobe_opcode_t *addr;
1563
1564 /* Adjust probe address from symbol */
1565 addr = kprobe_addr(p);
1566 if (IS_ERR(addr))
1567 return PTR_ERR(addr);
1568 p->addr = addr;
1569
1570 ret = check_kprobe_rereg(p);
1571 if (ret)
1572 return ret;
1573
1574 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1575 p->flags &= KPROBE_FLAG_DISABLED;
1576 p->nmissed = 0;
1577 INIT_LIST_HEAD(&p->list);
1578
1579 ret = check_kprobe_address_safe(p, &probed_mod);
1580 if (ret)
1581 return ret;
1582
1583 mutex_lock(&kprobe_mutex);
1584
1585 old_p = get_kprobe(p->addr);
1586 if (old_p) {
1587 /* Since this may unoptimize old_p, locking text_mutex. */
1588 ret = register_aggr_kprobe(old_p, p);
1589 goto out;
1590 }
1591
1592 cpus_read_lock();
1593 /* Prevent text modification */
1594 mutex_lock(&text_mutex);
1595 ret = prepare_kprobe(p);
1596 mutex_unlock(&text_mutex);
1597 cpus_read_unlock();
1598 if (ret)
1599 goto out;
1600
1601 INIT_HLIST_NODE(&p->hlist);
1602 hlist_add_head_rcu(&p->hlist,
1603 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1604
1605 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1606 ret = arm_kprobe(p);
1607 if (ret) {
1608 hlist_del_rcu(&p->hlist);
1609 synchronize_sched();
1610 goto out;
1611 }
1612 }
1613
1614 /* Try to optimize kprobe */
1615 try_to_optimize_kprobe(p);
1616out:
1617 mutex_unlock(&kprobe_mutex);
1618
1619 if (probed_mod)
1620 module_put(probed_mod);
1621
1622 return ret;
1623}
1624EXPORT_SYMBOL_GPL(register_kprobe);
1625
1626/* Check if all probes on the aggrprobe are disabled */
1627static int aggr_kprobe_disabled(struct kprobe *ap)
1628{
1629 struct kprobe *kp;
1630
1631 list_for_each_entry_rcu(kp, &ap->list, list)
1632 if (!kprobe_disabled(kp))
1633 /*
1634 * There is an active probe on the list.
1635 * We can't disable this ap.
1636 */
1637 return 0;
1638
1639 return 1;
1640}
1641
1642/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1643static struct kprobe *__disable_kprobe(struct kprobe *p)
1644{
1645 struct kprobe *orig_p;
1646 int ret;
1647
1648 /* Get an original kprobe for return */
1649 orig_p = __get_valid_kprobe(p);
1650 if (unlikely(orig_p == NULL))
1651 return ERR_PTR(-EINVAL);
1652
1653 if (!kprobe_disabled(p)) {
1654 /* Disable probe if it is a child probe */
1655 if (p != orig_p)
1656 p->flags |= KPROBE_FLAG_DISABLED;
1657
1658 /* Try to disarm and disable this/parent probe */
1659 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1660 /*
1661 * If kprobes_all_disarmed is set, orig_p
1662 * should have already been disarmed, so
1663 * skip unneed disarming process.
1664 */
1665 if (!kprobes_all_disarmed) {
1666 ret = disarm_kprobe(orig_p, true);
1667 if (ret) {
1668 p->flags &= ~KPROBE_FLAG_DISABLED;
1669 return ERR_PTR(ret);
1670 }
1671 }
1672 orig_p->flags |= KPROBE_FLAG_DISABLED;
1673 }
1674 }
1675
1676 return orig_p;
1677}
1678
1679/*
1680 * Unregister a kprobe without a scheduler synchronization.
1681 */
1682static int __unregister_kprobe_top(struct kprobe *p)
1683{
1684 struct kprobe *ap, *list_p;
1685
1686 /* Disable kprobe. This will disarm it if needed. */
1687 ap = __disable_kprobe(p);
1688 if (IS_ERR(ap))
1689 return PTR_ERR(ap);
1690
1691 if (ap == p)
1692 /*
1693 * This probe is an independent(and non-optimized) kprobe
1694 * (not an aggrprobe). Remove from the hash list.
1695 */
1696 goto disarmed;
1697
1698 /* Following process expects this probe is an aggrprobe */
1699 WARN_ON(!kprobe_aggrprobe(ap));
1700
1701 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1702 /*
1703 * !disarmed could be happen if the probe is under delayed
1704 * unoptimizing.
1705 */
1706 goto disarmed;
1707 else {
1708 /* If disabling probe has special handlers, update aggrprobe */
1709 if (p->break_handler && !kprobe_gone(p))
1710 ap->break_handler = NULL;
1711 if (p->post_handler && !kprobe_gone(p)) {
1712 list_for_each_entry_rcu(list_p, &ap->list, list) {
1713 if ((list_p != p) && (list_p->post_handler))
1714 goto noclean;
1715 }
1716 ap->post_handler = NULL;
1717 }
1718noclean:
1719 /*
1720 * Remove from the aggrprobe: this path will do nothing in
1721 * __unregister_kprobe_bottom().
1722 */
1723 list_del_rcu(&p->list);
1724 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1725 /*
1726 * Try to optimize this probe again, because post
1727 * handler may have been changed.
1728 */
1729 optimize_kprobe(ap);
1730 }
1731 return 0;
1732
1733disarmed:
1734 BUG_ON(!kprobe_disarmed(ap));
1735 hlist_del_rcu(&ap->hlist);
1736 return 0;
1737}
1738
1739static void __unregister_kprobe_bottom(struct kprobe *p)
1740{
1741 struct kprobe *ap;
1742
1743 if (list_empty(&p->list))
1744 /* This is an independent kprobe */
1745 arch_remove_kprobe(p);
1746 else if (list_is_singular(&p->list)) {
1747 /* This is the last child of an aggrprobe */
1748 ap = list_entry(p->list.next, struct kprobe, list);
1749 list_del(&p->list);
1750 free_aggr_kprobe(ap);
1751 }
1752 /* Otherwise, do nothing. */
1753}
1754
1755int register_kprobes(struct kprobe **kps, int num)
1756{
1757 int i, ret = 0;
1758
1759 if (num <= 0)
1760 return -EINVAL;
1761 for (i = 0; i < num; i++) {
1762 ret = register_kprobe(kps[i]);
1763 if (ret < 0) {
1764 if (i > 0)
1765 unregister_kprobes(kps, i);
1766 break;
1767 }
1768 }
1769 return ret;
1770}
1771EXPORT_SYMBOL_GPL(register_kprobes);
1772
1773void unregister_kprobe(struct kprobe *p)
1774{
1775 unregister_kprobes(&p, 1);
1776}
1777EXPORT_SYMBOL_GPL(unregister_kprobe);
1778
1779void unregister_kprobes(struct kprobe **kps, int num)
1780{
1781 int i;
1782
1783 if (num <= 0)
1784 return;
1785 mutex_lock(&kprobe_mutex);
1786 for (i = 0; i < num; i++)
1787 if (__unregister_kprobe_top(kps[i]) < 0)
1788 kps[i]->addr = NULL;
1789 mutex_unlock(&kprobe_mutex);
1790
1791 synchronize_sched();
1792 for (i = 0; i < num; i++)
1793 if (kps[i]->addr)
1794 __unregister_kprobe_bottom(kps[i]);
1795}
1796EXPORT_SYMBOL_GPL(unregister_kprobes);
1797
1798int __weak kprobe_exceptions_notify(struct notifier_block *self,
1799 unsigned long val, void *data)
1800{
1801 return NOTIFY_DONE;
1802}
1803NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1804
1805static struct notifier_block kprobe_exceptions_nb = {
1806 .notifier_call = kprobe_exceptions_notify,
1807 .priority = 0x7fffffff /* we need to be notified first */
1808};
1809
1810unsigned long __weak arch_deref_entry_point(void *entry)
1811{
1812 return (unsigned long)entry;
1813}
1814
1815#if 0
1816int register_jprobes(struct jprobe **jps, int num)
1817{
1818 int ret = 0, i;
1819
1820 if (num <= 0)
1821 return -EINVAL;
1822
1823 for (i = 0; i < num; i++) {
1824 ret = register_jprobe(jps[i]);
1825
1826 if (ret < 0) {
1827 if (i > 0)
1828 unregister_jprobes(jps, i);
1829 break;
1830 }
1831 }
1832
1833 return ret;
1834}
1835EXPORT_SYMBOL_GPL(register_jprobes);
1836
1837int register_jprobe(struct jprobe *jp)
1838{
1839 unsigned long addr, offset;
1840 struct kprobe *kp = &jp->kp;
1841
1842 /*
1843 * Verify probepoint as well as the jprobe handler are
1844 * valid function entry points.
1845 */
1846 addr = arch_deref_entry_point(jp->entry);
1847
1848 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 &&
1849 kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) {
1850 kp->pre_handler = setjmp_pre_handler;
1851 kp->break_handler = longjmp_break_handler;
1852 return register_kprobe(kp);
1853 }
1854
1855 return -EINVAL;
1856}
1857EXPORT_SYMBOL_GPL(register_jprobe);
1858
1859void unregister_jprobe(struct jprobe *jp)
1860{
1861 unregister_jprobes(&jp, 1);
1862}
1863EXPORT_SYMBOL_GPL(unregister_jprobe);
1864
1865void unregister_jprobes(struct jprobe **jps, int num)
1866{
1867 int i;
1868
1869 if (num <= 0)
1870 return;
1871 mutex_lock(&kprobe_mutex);
1872 for (i = 0; i < num; i++)
1873 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1874 jps[i]->kp.addr = NULL;
1875 mutex_unlock(&kprobe_mutex);
1876
1877 synchronize_sched();
1878 for (i = 0; i < num; i++) {
1879 if (jps[i]->kp.addr)
1880 __unregister_kprobe_bottom(&jps[i]->kp);
1881 }
1882}
1883EXPORT_SYMBOL_GPL(unregister_jprobes);
1884#endif
1885
1886#ifdef CONFIG_KRETPROBES
1887/*
1888 * This kprobe pre_handler is registered with every kretprobe. When probe
1889 * hits it will set up the return probe.
1890 */
1891static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1892{
1893 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1894 unsigned long hash, flags = 0;
1895 struct kretprobe_instance *ri;
1896
1897 /*
1898 * To avoid deadlocks, prohibit return probing in NMI contexts,
1899 * just skip the probe and increase the (inexact) 'nmissed'
1900 * statistical counter, so that the user is informed that
1901 * something happened:
1902 */
1903 if (unlikely(in_nmi())) {
1904 rp->nmissed++;
1905 return 0;
1906 }
1907
1908 /* TODO: consider to only swap the RA after the last pre_handler fired */
1909 hash = hash_ptr(current, KPROBE_HASH_BITS);
1910 raw_spin_lock_irqsave(&rp->lock, flags);
1911 if (!hlist_empty(&rp->free_instances)) {
1912 ri = hlist_entry(rp->free_instances.first,
1913 struct kretprobe_instance, hlist);
1914 hlist_del(&ri->hlist);
1915 raw_spin_unlock_irqrestore(&rp->lock, flags);
1916
1917 ri->rp = rp;
1918 ri->task = current;
1919
1920 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1921 raw_spin_lock_irqsave(&rp->lock, flags);
1922 hlist_add_head(&ri->hlist, &rp->free_instances);
1923 raw_spin_unlock_irqrestore(&rp->lock, flags);
1924 return 0;
1925 }
1926
1927 arch_prepare_kretprobe(ri, regs);
1928
1929 /* XXX(hch): why is there no hlist_move_head? */
1930 INIT_HLIST_NODE(&ri->hlist);
1931 kretprobe_table_lock(hash, &flags);
1932 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1933 kretprobe_table_unlock(hash, &flags);
1934 } else {
1935 rp->nmissed++;
1936 raw_spin_unlock_irqrestore(&rp->lock, flags);
1937 }
1938 return 0;
1939}
1940NOKPROBE_SYMBOL(pre_handler_kretprobe);
1941
1942bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1943{
1944 return !offset;
1945}
1946
1947bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1948{
1949 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1950
1951 if (IS_ERR(kp_addr))
1952 return false;
1953
1954 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1955 !arch_kprobe_on_func_entry(offset))
1956 return false;
1957
1958 return true;
1959}
1960
1961int register_kretprobe(struct kretprobe *rp)
1962{
1963 int ret = 0;
1964 struct kretprobe_instance *inst;
1965 int i;
1966 void *addr;
1967
1968 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1969 return -EINVAL;
1970
1971 if (kretprobe_blacklist_size) {
1972 addr = kprobe_addr(&rp->kp);
1973 if (IS_ERR(addr))
1974 return PTR_ERR(addr);
1975
1976 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1977 if (kretprobe_blacklist[i].addr == addr)
1978 return -EINVAL;
1979 }
1980 }
1981
1982 rp->kp.pre_handler = pre_handler_kretprobe;
1983 rp->kp.post_handler = NULL;
1984 rp->kp.fault_handler = NULL;
1985 rp->kp.break_handler = NULL;
1986
1987 /* Pre-allocate memory for max kretprobe instances */
1988 if (rp->maxactive <= 0) {
1989#ifdef CONFIG_PREEMPT
1990 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1991#else
1992 rp->maxactive = num_possible_cpus();
1993#endif
1994 }
1995 raw_spin_lock_init(&rp->lock);
1996 INIT_HLIST_HEAD(&rp->free_instances);
1997 for (i = 0; i < rp->maxactive; i++) {
1998 inst = kmalloc(sizeof(struct kretprobe_instance) +
1999 rp->data_size, GFP_KERNEL);
2000 if (inst == NULL) {
2001 free_rp_inst(rp);
2002 return -ENOMEM;
2003 }
2004 INIT_HLIST_NODE(&inst->hlist);
2005 hlist_add_head(&inst->hlist, &rp->free_instances);
2006 }
2007
2008 rp->nmissed = 0;
2009 /* Establish function entry probe point */
2010 ret = register_kprobe(&rp->kp);
2011 if (ret != 0)
2012 free_rp_inst(rp);
2013 return ret;
2014}
2015EXPORT_SYMBOL_GPL(register_kretprobe);
2016
2017int register_kretprobes(struct kretprobe **rps, int num)
2018{
2019 int ret = 0, i;
2020
2021 if (num <= 0)
2022 return -EINVAL;
2023 for (i = 0; i < num; i++) {
2024 ret = register_kretprobe(rps[i]);
2025 if (ret < 0) {
2026 if (i > 0)
2027 unregister_kretprobes(rps, i);
2028 break;
2029 }
2030 }
2031 return ret;
2032}
2033EXPORT_SYMBOL_GPL(register_kretprobes);
2034
2035void unregister_kretprobe(struct kretprobe *rp)
2036{
2037 unregister_kretprobes(&rp, 1);
2038}
2039EXPORT_SYMBOL_GPL(unregister_kretprobe);
2040
2041void unregister_kretprobes(struct kretprobe **rps, int num)
2042{
2043 int i;
2044
2045 if (num <= 0)
2046 return;
2047 mutex_lock(&kprobe_mutex);
2048 for (i = 0; i < num; i++)
2049 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2050 rps[i]->kp.addr = NULL;
2051 mutex_unlock(&kprobe_mutex);
2052
2053 synchronize_sched();
2054 for (i = 0; i < num; i++) {
2055 if (rps[i]->kp.addr) {
2056 __unregister_kprobe_bottom(&rps[i]->kp);
2057 cleanup_rp_inst(rps[i]);
2058 }
2059 }
2060}
2061EXPORT_SYMBOL_GPL(unregister_kretprobes);
2062
2063#else /* CONFIG_KRETPROBES */
2064int register_kretprobe(struct kretprobe *rp)
2065{
2066 return -ENOSYS;
2067}
2068EXPORT_SYMBOL_GPL(register_kretprobe);
2069
2070int register_kretprobes(struct kretprobe **rps, int num)
2071{
2072 return -ENOSYS;
2073}
2074EXPORT_SYMBOL_GPL(register_kretprobes);
2075
2076void unregister_kretprobe(struct kretprobe *rp)
2077{
2078}
2079EXPORT_SYMBOL_GPL(unregister_kretprobe);
2080
2081void unregister_kretprobes(struct kretprobe **rps, int num)
2082{
2083}
2084EXPORT_SYMBOL_GPL(unregister_kretprobes);
2085
2086static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2087{
2088 return 0;
2089}
2090NOKPROBE_SYMBOL(pre_handler_kretprobe);
2091
2092#endif /* CONFIG_KRETPROBES */
2093
2094/* Set the kprobe gone and remove its instruction buffer. */
2095static void kill_kprobe(struct kprobe *p)
2096{
2097 struct kprobe *kp;
2098
2099 p->flags |= KPROBE_FLAG_GONE;
2100 if (kprobe_aggrprobe(p)) {
2101 /*
2102 * If this is an aggr_kprobe, we have to list all the
2103 * chained probes and mark them GONE.
2104 */
2105 list_for_each_entry_rcu(kp, &p->list, list)
2106 kp->flags |= KPROBE_FLAG_GONE;
2107 p->post_handler = NULL;
2108 p->break_handler = NULL;
2109 kill_optimized_kprobe(p);
2110 }
2111 /*
2112 * Here, we can remove insn_slot safely, because no thread calls
2113 * the original probed function (which will be freed soon) any more.
2114 */
2115 arch_remove_kprobe(p);
2116}
2117
2118/* Disable one kprobe */
2119int disable_kprobe(struct kprobe *kp)
2120{
2121 int ret = 0;
2122 struct kprobe *p;
2123
2124 mutex_lock(&kprobe_mutex);
2125
2126 /* Disable this kprobe */
2127 p = __disable_kprobe(kp);
2128 if (IS_ERR(p))
2129 ret = PTR_ERR(p);
2130
2131 mutex_unlock(&kprobe_mutex);
2132 return ret;
2133}
2134EXPORT_SYMBOL_GPL(disable_kprobe);
2135
2136/* Enable one kprobe */
2137int enable_kprobe(struct kprobe *kp)
2138{
2139 int ret = 0;
2140 struct kprobe *p;
2141
2142 mutex_lock(&kprobe_mutex);
2143
2144 /* Check whether specified probe is valid. */
2145 p = __get_valid_kprobe(kp);
2146 if (unlikely(p == NULL)) {
2147 ret = -EINVAL;
2148 goto out;
2149 }
2150
2151 if (kprobe_gone(kp)) {
2152 /* This kprobe has gone, we couldn't enable it. */
2153 ret = -EINVAL;
2154 goto out;
2155 }
2156
2157 if (p != kp)
2158 kp->flags &= ~KPROBE_FLAG_DISABLED;
2159
2160 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2161 p->flags &= ~KPROBE_FLAG_DISABLED;
2162 ret = arm_kprobe(p);
2163 if (ret)
2164 p->flags |= KPROBE_FLAG_DISABLED;
2165 }
2166out:
2167 mutex_unlock(&kprobe_mutex);
2168 return ret;
2169}
2170EXPORT_SYMBOL_GPL(enable_kprobe);
2171
2172void dump_kprobe(struct kprobe *kp)
2173{
2174 printk(KERN_WARNING "Dumping kprobe:\n");
2175 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2176 kp->symbol_name, kp->addr, kp->offset);
2177}
2178NOKPROBE_SYMBOL(dump_kprobe);
2179
2180/*
2181 * Lookup and populate the kprobe_blacklist.
2182 *
2183 * Unlike the kretprobe blacklist, we'll need to determine
2184 * the range of addresses that belong to the said functions,
2185 * since a kprobe need not necessarily be at the beginning
2186 * of a function.
2187 */
2188static int __init populate_kprobe_blacklist(unsigned long *start,
2189 unsigned long *end)
2190{
2191 unsigned long *iter;
2192 struct kprobe_blacklist_entry *ent;
2193 unsigned long entry, offset = 0, size = 0;
2194
2195 for (iter = start; iter < end; iter++) {
2196 entry = arch_deref_entry_point((void *)*iter);
2197
2198 if (!kernel_text_address(entry) ||
2199 !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2200 pr_err("Failed to find blacklist at %p\n",
2201 (void *)entry);
2202 continue;
2203 }
2204
2205 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2206 if (!ent)
2207 return -ENOMEM;
2208 ent->start_addr = entry;
2209 ent->end_addr = entry + size;
2210 INIT_LIST_HEAD(&ent->list);
2211 list_add_tail(&ent->list, &kprobe_blacklist);
2212 }
2213 return 0;
2214}
2215
2216/* Module notifier call back, checking kprobes on the module */
2217static int kprobes_module_callback(struct notifier_block *nb,
2218 unsigned long val, void *data)
2219{
2220 struct module *mod = data;
2221 struct hlist_head *head;
2222 struct kprobe *p;
2223 unsigned int i;
2224 int checkcore = (val == MODULE_STATE_GOING);
2225
2226 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2227 return NOTIFY_DONE;
2228
2229 /*
2230 * When MODULE_STATE_GOING was notified, both of module .text and
2231 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2232 * notified, only .init.text section would be freed. We need to
2233 * disable kprobes which have been inserted in the sections.
2234 */
2235 mutex_lock(&kprobe_mutex);
2236 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2237 head = &kprobe_table[i];
2238 hlist_for_each_entry_rcu(p, head, hlist)
2239 if (within_module_init((unsigned long)p->addr, mod) ||
2240 (checkcore &&
2241 within_module_core((unsigned long)p->addr, mod))) {
2242 /*
2243 * The vaddr this probe is installed will soon
2244 * be vfreed buy not synced to disk. Hence,
2245 * disarming the breakpoint isn't needed.
2246 *
2247 * Note, this will also move any optimized probes
2248 * that are pending to be removed from their
2249 * corresponding lists to the freeing_list and
2250 * will not be touched by the delayed
2251 * kprobe_optimizer work handler.
2252 */
2253 kill_kprobe(p);
2254 }
2255 }
2256 mutex_unlock(&kprobe_mutex);
2257 return NOTIFY_DONE;
2258}
2259
2260static struct notifier_block kprobe_module_nb = {
2261 .notifier_call = kprobes_module_callback,
2262 .priority = 0
2263};
2264
2265/* Markers of _kprobe_blacklist section */
2266extern unsigned long __start_kprobe_blacklist[];
2267extern unsigned long __stop_kprobe_blacklist[];
2268
2269static int __init init_kprobes(void)
2270{
2271 int i, err = 0;
2272
2273 /* FIXME allocate the probe table, currently defined statically */
2274 /* initialize all list heads */
2275 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2276 INIT_HLIST_HEAD(&kprobe_table[i]);
2277 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2278 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2279 }
2280
2281 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2282 __stop_kprobe_blacklist);
2283 if (err) {
2284 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2285 pr_err("Please take care of using kprobes.\n");
2286 }
2287
2288 if (kretprobe_blacklist_size) {
2289 /* lookup the function address from its name */
2290 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2291 kretprobe_blacklist[i].addr =
2292 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2293 if (!kretprobe_blacklist[i].addr)
2294 printk("kretprobe: lookup failed: %s\n",
2295 kretprobe_blacklist[i].name);
2296 }
2297 }
2298
2299#if defined(CONFIG_OPTPROBES)
2300#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2301 /* Init kprobe_optinsn_slots */
2302 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2303#endif
2304 /* By default, kprobes can be optimized */
2305 kprobes_allow_optimization = true;
2306#endif
2307
2308 /* By default, kprobes are armed */
2309 kprobes_all_disarmed = false;
2310
2311 err = arch_init_kprobes();
2312 if (!err)
2313 err = register_die_notifier(&kprobe_exceptions_nb);
2314 if (!err)
2315 err = register_module_notifier(&kprobe_module_nb);
2316
2317 kprobes_initialized = (err == 0);
2318
2319 if (!err)
2320 init_test_probes();
2321 return err;
2322}
2323
2324#ifdef CONFIG_DEBUG_FS
2325static void report_probe(struct seq_file *pi, struct kprobe *p,
2326 const char *sym, int offset, char *modname, struct kprobe *pp)
2327{
2328 char *kprobe_type;
2329
2330 if (p->pre_handler == pre_handler_kretprobe)
2331 kprobe_type = "r";
2332 else if (p->pre_handler == setjmp_pre_handler)
2333 kprobe_type = "j";
2334 else
2335 kprobe_type = "k";
2336
2337 if (sym)
2338 seq_printf(pi, "%p %s %s+0x%x %s ",
2339 p->addr, kprobe_type, sym, offset,
2340 (modname ? modname : " "));
2341 else
2342 seq_printf(pi, "%p %s %p ",
2343 p->addr, kprobe_type, p->addr);
2344
2345 if (!pp)
2346 pp = p;
2347 seq_printf(pi, "%s%s%s%s\n",
2348 (kprobe_gone(p) ? "[GONE]" : ""),
2349 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2350 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2351 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2352}
2353
2354static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2355{
2356 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2357}
2358
2359static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2360{
2361 (*pos)++;
2362 if (*pos >= KPROBE_TABLE_SIZE)
2363 return NULL;
2364 return pos;
2365}
2366
2367static void kprobe_seq_stop(struct seq_file *f, void *v)
2368{
2369 /* Nothing to do */
2370}
2371
2372static int show_kprobe_addr(struct seq_file *pi, void *v)
2373{
2374 struct hlist_head *head;
2375 struct kprobe *p, *kp;
2376 const char *sym = NULL;
2377 unsigned int i = *(loff_t *) v;
2378 unsigned long offset = 0;
2379 char *modname, namebuf[KSYM_NAME_LEN];
2380
2381 head = &kprobe_table[i];
2382 preempt_disable();
2383 hlist_for_each_entry_rcu(p, head, hlist) {
2384 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2385 &offset, &modname, namebuf);
2386 if (kprobe_aggrprobe(p)) {
2387 list_for_each_entry_rcu(kp, &p->list, list)
2388 report_probe(pi, kp, sym, offset, modname, p);
2389 } else
2390 report_probe(pi, p, sym, offset, modname, NULL);
2391 }
2392 preempt_enable();
2393 return 0;
2394}
2395
2396static const struct seq_operations kprobes_seq_ops = {
2397 .start = kprobe_seq_start,
2398 .next = kprobe_seq_next,
2399 .stop = kprobe_seq_stop,
2400 .show = show_kprobe_addr
2401};
2402
2403static int kprobes_open(struct inode *inode, struct file *filp)
2404{
2405 return seq_open(filp, &kprobes_seq_ops);
2406}
2407
2408static const struct file_operations debugfs_kprobes_operations = {
2409 .open = kprobes_open,
2410 .read = seq_read,
2411 .llseek = seq_lseek,
2412 .release = seq_release,
2413};
2414
2415/* kprobes/blacklist -- shows which functions can not be probed */
2416static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2417{
2418 return seq_list_start(&kprobe_blacklist, *pos);
2419}
2420
2421static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2422{
2423 return seq_list_next(v, &kprobe_blacklist, pos);
2424}
2425
2426static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2427{
2428 struct kprobe_blacklist_entry *ent =
2429 list_entry(v, struct kprobe_blacklist_entry, list);
2430
2431 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2432 (void *)ent->end_addr, (void *)ent->start_addr);
2433 return 0;
2434}
2435
2436static const struct seq_operations kprobe_blacklist_seq_ops = {
2437 .start = kprobe_blacklist_seq_start,
2438 .next = kprobe_blacklist_seq_next,
2439 .stop = kprobe_seq_stop, /* Reuse void function */
2440 .show = kprobe_blacklist_seq_show,
2441};
2442
2443static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2444{
2445 return seq_open(filp, &kprobe_blacklist_seq_ops);
2446}
2447
2448static const struct file_operations debugfs_kprobe_blacklist_ops = {
2449 .open = kprobe_blacklist_open,
2450 .read = seq_read,
2451 .llseek = seq_lseek,
2452 .release = seq_release,
2453};
2454
2455static int arm_all_kprobes(void)
2456{
2457 struct hlist_head *head;
2458 struct kprobe *p;
2459 unsigned int i, total = 0, errors = 0;
2460 int err, ret = 0;
2461
2462 mutex_lock(&kprobe_mutex);
2463
2464 /* If kprobes are armed, just return */
2465 if (!kprobes_all_disarmed)
2466 goto already_enabled;
2467
2468 /*
2469 * optimize_kprobe() called by arm_kprobe() checks
2470 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2471 * arm_kprobe.
2472 */
2473 kprobes_all_disarmed = false;
2474 /* Arming kprobes doesn't optimize kprobe itself */
2475 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2476 head = &kprobe_table[i];
2477 /* Arm all kprobes on a best-effort basis */
2478 hlist_for_each_entry_rcu(p, head, hlist) {
2479 if (!kprobe_disabled(p)) {
2480 err = arm_kprobe(p);
2481 if (err) {
2482 errors++;
2483 ret = err;
2484 }
2485 total++;
2486 }
2487 }
2488 }
2489
2490 if (errors)
2491 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2492 errors, total);
2493 else
2494 pr_info("Kprobes globally enabled\n");
2495
2496already_enabled:
2497 mutex_unlock(&kprobe_mutex);
2498 return ret;
2499}
2500
2501static int disarm_all_kprobes(void)
2502{
2503 struct hlist_head *head;
2504 struct kprobe *p;
2505 unsigned int i, total = 0, errors = 0;
2506 int err, ret = 0;
2507
2508 mutex_lock(&kprobe_mutex);
2509
2510 /* If kprobes are already disarmed, just return */
2511 if (kprobes_all_disarmed) {
2512 mutex_unlock(&kprobe_mutex);
2513 return 0;
2514 }
2515
2516 kprobes_all_disarmed = true;
2517
2518 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2519 head = &kprobe_table[i];
2520 /* Disarm all kprobes on a best-effort basis */
2521 hlist_for_each_entry_rcu(p, head, hlist) {
2522 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2523 err = disarm_kprobe(p, false);
2524 if (err) {
2525 errors++;
2526 ret = err;
2527 }
2528 total++;
2529 }
2530 }
2531 }
2532
2533 if (errors)
2534 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2535 errors, total);
2536 else
2537 pr_info("Kprobes globally disabled\n");
2538
2539 mutex_unlock(&kprobe_mutex);
2540
2541 /* Wait for disarming all kprobes by optimizer */
2542 wait_for_kprobe_optimizer();
2543
2544 return ret;
2545}
2546
2547/*
2548 * XXX: The debugfs bool file interface doesn't allow for callbacks
2549 * when the bool state is switched. We can reuse that facility when
2550 * available
2551 */
2552static ssize_t read_enabled_file_bool(struct file *file,
2553 char __user *user_buf, size_t count, loff_t *ppos)
2554{
2555 char buf[3];
2556
2557 if (!kprobes_all_disarmed)
2558 buf[0] = '1';
2559 else
2560 buf[0] = '0';
2561 buf[1] = '\n';
2562 buf[2] = 0x00;
2563 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2564}
2565
2566static ssize_t write_enabled_file_bool(struct file *file,
2567 const char __user *user_buf, size_t count, loff_t *ppos)
2568{
2569 char buf[32];
2570 size_t buf_size;
2571 int ret = 0;
2572
2573 buf_size = min(count, (sizeof(buf)-1));
2574 if (copy_from_user(buf, user_buf, buf_size))
2575 return -EFAULT;
2576
2577 buf[buf_size] = '\0';
2578 switch (buf[0]) {
2579 case 'y':
2580 case 'Y':
2581 case '1':
2582 ret = arm_all_kprobes();
2583 break;
2584 case 'n':
2585 case 'N':
2586 case '0':
2587 ret = disarm_all_kprobes();
2588 break;
2589 default:
2590 return -EINVAL;
2591 }
2592
2593 if (ret)
2594 return ret;
2595
2596 return count;
2597}
2598
2599static const struct file_operations fops_kp = {
2600 .read = read_enabled_file_bool,
2601 .write = write_enabled_file_bool,
2602 .llseek = default_llseek,
2603};
2604
2605static int __init debugfs_kprobe_init(void)
2606{
2607 struct dentry *dir, *file;
2608 unsigned int value = 1;
2609
2610 dir = debugfs_create_dir("kprobes", NULL);
2611 if (!dir)
2612 return -ENOMEM;
2613
2614 file = debugfs_create_file("list", 0444, dir, NULL,
2615 &debugfs_kprobes_operations);
2616 if (!file)
2617 goto error;
2618
2619 file = debugfs_create_file("enabled", 0600, dir,
2620 &value, &fops_kp);
2621 if (!file)
2622 goto error;
2623
2624 file = debugfs_create_file("blacklist", 0444, dir, NULL,
2625 &debugfs_kprobe_blacklist_ops);
2626 if (!file)
2627 goto error;
2628
2629 return 0;
2630
2631error:
2632 debugfs_remove(dir);
2633 return -ENOMEM;
2634}
2635
2636late_initcall(debugfs_kprobe_init);
2637#endif /* CONFIG_DEBUG_FS */
2638
2639module_init(init_kprobes);
2640
2641/* defined in arch/.../kernel/kprobes.c */
2642EXPORT_SYMBOL_GPL(jprobe_return);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Kernel Probes (KProbes)
4 *
5 * Copyright (C) IBM Corporation, 2002, 2004
6 *
7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8 * Probes initial implementation (includes suggestions from
9 * Rusty Russell).
10 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
11 * hlists and exceptions notifier as suggested by Andi Kleen.
12 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
13 * interface to access function arguments.
14 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
15 * exceptions notifier to be first on the priority list.
16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18 * <prasanna@in.ibm.com> added function-return probes.
19 */
20
21#define pr_fmt(fmt) "kprobes: " fmt
22
23#include <linux/kprobes.h>
24#include <linux/hash.h>
25#include <linux/init.h>
26#include <linux/slab.h>
27#include <linux/stddef.h>
28#include <linux/export.h>
29#include <linux/kallsyms.h>
30#include <linux/freezer.h>
31#include <linux/seq_file.h>
32#include <linux/debugfs.h>
33#include <linux/sysctl.h>
34#include <linux/kdebug.h>
35#include <linux/memory.h>
36#include <linux/ftrace.h>
37#include <linux/cpu.h>
38#include <linux/jump_label.h>
39#include <linux/static_call.h>
40#include <linux/perf_event.h>
41#include <linux/execmem.h>
42
43#include <asm/sections.h>
44#include <asm/cacheflush.h>
45#include <asm/errno.h>
46#include <linux/uaccess.h>
47
48#define KPROBE_HASH_BITS 6
49#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
50
51#if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
52#define kprobe_sysctls_init() do { } while (0)
53#endif
54
55static int kprobes_initialized;
56/* kprobe_table can be accessed by
57 * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
58 * Or
59 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
60 */
61static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
62
63/* NOTE: change this value only with 'kprobe_mutex' held */
64static bool kprobes_all_disarmed;
65
66/* This protects 'kprobe_table' and 'optimizing_list' */
67static DEFINE_MUTEX(kprobe_mutex);
68static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
69
70kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
71 unsigned int __unused)
72{
73 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
74}
75
76/*
77 * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
78 * kprobes can not probe.
79 */
80static LIST_HEAD(kprobe_blacklist);
81
82#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
83/*
84 * 'kprobe::ainsn.insn' points to the copy of the instruction to be
85 * single-stepped. x86_64, POWER4 and above have no-exec support and
86 * stepping on the instruction on a vmalloced/kmalloced/data page
87 * is a recipe for disaster
88 */
89struct kprobe_insn_page {
90 struct list_head list;
91 kprobe_opcode_t *insns; /* Page of instruction slots */
92 struct kprobe_insn_cache *cache;
93 int nused;
94 int ngarbage;
95 char slot_used[];
96};
97
98static int slots_per_page(struct kprobe_insn_cache *c)
99{
100 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
101}
102
103enum kprobe_slot_state {
104 SLOT_CLEAN = 0,
105 SLOT_DIRTY = 1,
106 SLOT_USED = 2,
107};
108
109void __weak *alloc_insn_page(void)
110{
111 /*
112 * Use execmem_alloc() so this page is within +/- 2GB of where the
113 * kernel image and loaded module images reside. This is required
114 * for most of the architectures.
115 * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
116 */
117 return execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE);
118}
119
120static void free_insn_page(void *page)
121{
122 execmem_free(page);
123}
124
125struct kprobe_insn_cache kprobe_insn_slots = {
126 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
127 .alloc = alloc_insn_page,
128 .free = free_insn_page,
129 .sym = KPROBE_INSN_PAGE_SYM,
130 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
131 .insn_size = MAX_INSN_SIZE,
132 .nr_garbage = 0,
133};
134static int collect_garbage_slots(struct kprobe_insn_cache *c);
135
136/**
137 * __get_insn_slot() - Find a slot on an executable page for an instruction.
138 * We allocate an executable page if there's no room on existing ones.
139 */
140kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
141{
142 struct kprobe_insn_page *kip;
143 kprobe_opcode_t *slot = NULL;
144
145 /* Since the slot array is not protected by rcu, we need a mutex */
146 mutex_lock(&c->mutex);
147 retry:
148 rcu_read_lock();
149 list_for_each_entry_rcu(kip, &c->pages, list) {
150 if (kip->nused < slots_per_page(c)) {
151 int i;
152
153 for (i = 0; i < slots_per_page(c); i++) {
154 if (kip->slot_used[i] == SLOT_CLEAN) {
155 kip->slot_used[i] = SLOT_USED;
156 kip->nused++;
157 slot = kip->insns + (i * c->insn_size);
158 rcu_read_unlock();
159 goto out;
160 }
161 }
162 /* kip->nused is broken. Fix it. */
163 kip->nused = slots_per_page(c);
164 WARN_ON(1);
165 }
166 }
167 rcu_read_unlock();
168
169 /* If there are any garbage slots, collect it and try again. */
170 if (c->nr_garbage && collect_garbage_slots(c) == 0)
171 goto retry;
172
173 /* All out of space. Need to allocate a new page. */
174 kip = kmalloc(struct_size(kip, slot_used, slots_per_page(c)), GFP_KERNEL);
175 if (!kip)
176 goto out;
177
178 kip->insns = c->alloc();
179 if (!kip->insns) {
180 kfree(kip);
181 goto out;
182 }
183 INIT_LIST_HEAD(&kip->list);
184 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
185 kip->slot_used[0] = SLOT_USED;
186 kip->nused = 1;
187 kip->ngarbage = 0;
188 kip->cache = c;
189 list_add_rcu(&kip->list, &c->pages);
190 slot = kip->insns;
191
192 /* Record the perf ksymbol register event after adding the page */
193 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
194 PAGE_SIZE, false, c->sym);
195out:
196 mutex_unlock(&c->mutex);
197 return slot;
198}
199
200/* Return true if all garbages are collected, otherwise false. */
201static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
202{
203 kip->slot_used[idx] = SLOT_CLEAN;
204 kip->nused--;
205 if (kip->nused != 0)
206 return false;
207
208 /*
209 * Page is no longer in use. Free it unless
210 * it's the last one. We keep the last one
211 * so as not to have to set it up again the
212 * next time somebody inserts a probe.
213 */
214 if (!list_is_singular(&kip->list)) {
215 /*
216 * Record perf ksymbol unregister event before removing
217 * the page.
218 */
219 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
220 (unsigned long)kip->insns, PAGE_SIZE, true,
221 kip->cache->sym);
222 list_del_rcu(&kip->list);
223 synchronize_rcu();
224 kip->cache->free(kip->insns);
225 kfree(kip);
226 }
227 return true;
228}
229
230static int collect_garbage_slots(struct kprobe_insn_cache *c)
231{
232 struct kprobe_insn_page *kip, *next;
233
234 /* Ensure no-one is interrupted on the garbages */
235 synchronize_rcu();
236
237 list_for_each_entry_safe(kip, next, &c->pages, list) {
238 int i;
239
240 if (kip->ngarbage == 0)
241 continue;
242 kip->ngarbage = 0; /* we will collect all garbages */
243 for (i = 0; i < slots_per_page(c); i++) {
244 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
245 break;
246 }
247 }
248 c->nr_garbage = 0;
249 return 0;
250}
251
252void __free_insn_slot(struct kprobe_insn_cache *c,
253 kprobe_opcode_t *slot, int dirty)
254{
255 struct kprobe_insn_page *kip;
256 long idx;
257
258 mutex_lock(&c->mutex);
259 rcu_read_lock();
260 list_for_each_entry_rcu(kip, &c->pages, list) {
261 idx = ((long)slot - (long)kip->insns) /
262 (c->insn_size * sizeof(kprobe_opcode_t));
263 if (idx >= 0 && idx < slots_per_page(c))
264 goto out;
265 }
266 /* Could not find this slot. */
267 WARN_ON(1);
268 kip = NULL;
269out:
270 rcu_read_unlock();
271 /* Mark and sweep: this may sleep */
272 if (kip) {
273 /* Check double free */
274 WARN_ON(kip->slot_used[idx] != SLOT_USED);
275 if (dirty) {
276 kip->slot_used[idx] = SLOT_DIRTY;
277 kip->ngarbage++;
278 if (++c->nr_garbage > slots_per_page(c))
279 collect_garbage_slots(c);
280 } else {
281 collect_one_slot(kip, idx);
282 }
283 }
284 mutex_unlock(&c->mutex);
285}
286
287/*
288 * Check given address is on the page of kprobe instruction slots.
289 * This will be used for checking whether the address on a stack
290 * is on a text area or not.
291 */
292bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
293{
294 struct kprobe_insn_page *kip;
295 bool ret = false;
296
297 rcu_read_lock();
298 list_for_each_entry_rcu(kip, &c->pages, list) {
299 if (addr >= (unsigned long)kip->insns &&
300 addr < (unsigned long)kip->insns + PAGE_SIZE) {
301 ret = true;
302 break;
303 }
304 }
305 rcu_read_unlock();
306
307 return ret;
308}
309
310int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
311 unsigned long *value, char *type, char *sym)
312{
313 struct kprobe_insn_page *kip;
314 int ret = -ERANGE;
315
316 rcu_read_lock();
317 list_for_each_entry_rcu(kip, &c->pages, list) {
318 if ((*symnum)--)
319 continue;
320 strscpy(sym, c->sym, KSYM_NAME_LEN);
321 *type = 't';
322 *value = (unsigned long)kip->insns;
323 ret = 0;
324 break;
325 }
326 rcu_read_unlock();
327
328 return ret;
329}
330
331#ifdef CONFIG_OPTPROBES
332void __weak *alloc_optinsn_page(void)
333{
334 return alloc_insn_page();
335}
336
337void __weak free_optinsn_page(void *page)
338{
339 free_insn_page(page);
340}
341
342/* For optimized_kprobe buffer */
343struct kprobe_insn_cache kprobe_optinsn_slots = {
344 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
345 .alloc = alloc_optinsn_page,
346 .free = free_optinsn_page,
347 .sym = KPROBE_OPTINSN_PAGE_SYM,
348 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
349 /* .insn_size is initialized later */
350 .nr_garbage = 0,
351};
352#endif /* CONFIG_OPTPROBES */
353#endif /* __ARCH_WANT_KPROBES_INSN_SLOT */
354
355/* We have preemption disabled.. so it is safe to use __ versions */
356static inline void set_kprobe_instance(struct kprobe *kp)
357{
358 __this_cpu_write(kprobe_instance, kp);
359}
360
361static inline void reset_kprobe_instance(void)
362{
363 __this_cpu_write(kprobe_instance, NULL);
364}
365
366/*
367 * This routine is called either:
368 * - under the 'kprobe_mutex' - during kprobe_[un]register().
369 * OR
370 * - with preemption disabled - from architecture specific code.
371 */
372struct kprobe *get_kprobe(void *addr)
373{
374 struct hlist_head *head;
375 struct kprobe *p;
376
377 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
378 hlist_for_each_entry_rcu(p, head, hlist,
379 lockdep_is_held(&kprobe_mutex)) {
380 if (p->addr == addr)
381 return p;
382 }
383
384 return NULL;
385}
386NOKPROBE_SYMBOL(get_kprobe);
387
388static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
389
390/* Return true if 'p' is an aggregator */
391static inline bool kprobe_aggrprobe(struct kprobe *p)
392{
393 return p->pre_handler == aggr_pre_handler;
394}
395
396/* Return true if 'p' is unused */
397static inline bool kprobe_unused(struct kprobe *p)
398{
399 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
400 list_empty(&p->list);
401}
402
403/* Keep all fields in the kprobe consistent. */
404static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
405{
406 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
407 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
408}
409
410#ifdef CONFIG_OPTPROBES
411/* NOTE: This is protected by 'kprobe_mutex'. */
412static bool kprobes_allow_optimization;
413
414/*
415 * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
416 * This must be called from arch-dep optimized caller.
417 */
418void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
419{
420 struct kprobe *kp;
421
422 list_for_each_entry_rcu(kp, &p->list, list) {
423 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
424 set_kprobe_instance(kp);
425 kp->pre_handler(kp, regs);
426 }
427 reset_kprobe_instance();
428 }
429}
430NOKPROBE_SYMBOL(opt_pre_handler);
431
432/* Free optimized instructions and optimized_kprobe */
433static void free_aggr_kprobe(struct kprobe *p)
434{
435 struct optimized_kprobe *op;
436
437 op = container_of(p, struct optimized_kprobe, kp);
438 arch_remove_optimized_kprobe(op);
439 arch_remove_kprobe(p);
440 kfree(op);
441}
442
443/* Return true if the kprobe is ready for optimization. */
444static inline int kprobe_optready(struct kprobe *p)
445{
446 struct optimized_kprobe *op;
447
448 if (kprobe_aggrprobe(p)) {
449 op = container_of(p, struct optimized_kprobe, kp);
450 return arch_prepared_optinsn(&op->optinsn);
451 }
452
453 return 0;
454}
455
456/* Return true if the kprobe is disarmed. Note: p must be on hash list */
457bool kprobe_disarmed(struct kprobe *p)
458{
459 struct optimized_kprobe *op;
460
461 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
462 if (!kprobe_aggrprobe(p))
463 return kprobe_disabled(p);
464
465 op = container_of(p, struct optimized_kprobe, kp);
466
467 return kprobe_disabled(p) && list_empty(&op->list);
468}
469
470/* Return true if the probe is queued on (un)optimizing lists */
471static bool kprobe_queued(struct kprobe *p)
472{
473 struct optimized_kprobe *op;
474
475 if (kprobe_aggrprobe(p)) {
476 op = container_of(p, struct optimized_kprobe, kp);
477 if (!list_empty(&op->list))
478 return true;
479 }
480 return false;
481}
482
483/*
484 * Return an optimized kprobe whose optimizing code replaces
485 * instructions including 'addr' (exclude breakpoint).
486 */
487static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
488{
489 int i;
490 struct kprobe *p = NULL;
491 struct optimized_kprobe *op;
492
493 /* Don't check i == 0, since that is a breakpoint case. */
494 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
495 p = get_kprobe(addr - i);
496
497 if (p && kprobe_optready(p)) {
498 op = container_of(p, struct optimized_kprobe, kp);
499 if (arch_within_optimized_kprobe(op, addr))
500 return p;
501 }
502
503 return NULL;
504}
505
506/* Optimization staging list, protected by 'kprobe_mutex' */
507static LIST_HEAD(optimizing_list);
508static LIST_HEAD(unoptimizing_list);
509static LIST_HEAD(freeing_list);
510
511static void kprobe_optimizer(struct work_struct *work);
512static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
513#define OPTIMIZE_DELAY 5
514
515/*
516 * Optimize (replace a breakpoint with a jump) kprobes listed on
517 * 'optimizing_list'.
518 */
519static void do_optimize_kprobes(void)
520{
521 lockdep_assert_held(&text_mutex);
522 /*
523 * The optimization/unoptimization refers 'online_cpus' via
524 * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
525 * And same time, 'text_mutex' will be held in cpu-hotplug and here.
526 * This combination can cause a deadlock (cpu-hotplug tries to lock
527 * 'text_mutex' but stop_machine() can not be done because
528 * the 'online_cpus' has been changed)
529 * To avoid this deadlock, caller must have locked cpu-hotplug
530 * for preventing cpu-hotplug outside of 'text_mutex' locking.
531 */
532 lockdep_assert_cpus_held();
533
534 /* Optimization never be done when disarmed */
535 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
536 list_empty(&optimizing_list))
537 return;
538
539 arch_optimize_kprobes(&optimizing_list);
540}
541
542/*
543 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
544 * if need) kprobes listed on 'unoptimizing_list'.
545 */
546static void do_unoptimize_kprobes(void)
547{
548 struct optimized_kprobe *op, *tmp;
549
550 lockdep_assert_held(&text_mutex);
551 /* See comment in do_optimize_kprobes() */
552 lockdep_assert_cpus_held();
553
554 if (!list_empty(&unoptimizing_list))
555 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
556
557 /* Loop on 'freeing_list' for disarming and removing from kprobe hash list */
558 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
559 /* Switching from detour code to origin */
560 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
561 /* Disarm probes if marked disabled and not gone */
562 if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp))
563 arch_disarm_kprobe(&op->kp);
564 if (kprobe_unused(&op->kp)) {
565 /*
566 * Remove unused probes from hash list. After waiting
567 * for synchronization, these probes are reclaimed.
568 * (reclaiming is done by do_free_cleaned_kprobes().)
569 */
570 hlist_del_rcu(&op->kp.hlist);
571 } else
572 list_del_init(&op->list);
573 }
574}
575
576/* Reclaim all kprobes on the 'freeing_list' */
577static void do_free_cleaned_kprobes(void)
578{
579 struct optimized_kprobe *op, *tmp;
580
581 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
582 list_del_init(&op->list);
583 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
584 /*
585 * This must not happen, but if there is a kprobe
586 * still in use, keep it on kprobes hash list.
587 */
588 continue;
589 }
590 free_aggr_kprobe(&op->kp);
591 }
592}
593
594/* Start optimizer after OPTIMIZE_DELAY passed */
595static void kick_kprobe_optimizer(void)
596{
597 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
598}
599
600/* Kprobe jump optimizer */
601static void kprobe_optimizer(struct work_struct *work)
602{
603 mutex_lock(&kprobe_mutex);
604 cpus_read_lock();
605 mutex_lock(&text_mutex);
606
607 /*
608 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
609 * kprobes before waiting for quiesence period.
610 */
611 do_unoptimize_kprobes();
612
613 /*
614 * Step 2: Wait for quiesence period to ensure all potentially
615 * preempted tasks to have normally scheduled. Because optprobe
616 * may modify multiple instructions, there is a chance that Nth
617 * instruction is preempted. In that case, such tasks can return
618 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
619 * Note that on non-preemptive kernel, this is transparently converted
620 * to synchronoze_sched() to wait for all interrupts to have completed.
621 */
622 synchronize_rcu_tasks();
623
624 /* Step 3: Optimize kprobes after quiesence period */
625 do_optimize_kprobes();
626
627 /* Step 4: Free cleaned kprobes after quiesence period */
628 do_free_cleaned_kprobes();
629
630 mutex_unlock(&text_mutex);
631 cpus_read_unlock();
632
633 /* Step 5: Kick optimizer again if needed */
634 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
635 kick_kprobe_optimizer();
636
637 mutex_unlock(&kprobe_mutex);
638}
639
640/* Wait for completing optimization and unoptimization */
641void wait_for_kprobe_optimizer(void)
642{
643 mutex_lock(&kprobe_mutex);
644
645 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
646 mutex_unlock(&kprobe_mutex);
647
648 /* This will also make 'optimizing_work' execute immmediately */
649 flush_delayed_work(&optimizing_work);
650 /* 'optimizing_work' might not have been queued yet, relax */
651 cpu_relax();
652
653 mutex_lock(&kprobe_mutex);
654 }
655
656 mutex_unlock(&kprobe_mutex);
657}
658
659bool optprobe_queued_unopt(struct optimized_kprobe *op)
660{
661 struct optimized_kprobe *_op;
662
663 list_for_each_entry(_op, &unoptimizing_list, list) {
664 if (op == _op)
665 return true;
666 }
667
668 return false;
669}
670
671/* Optimize kprobe if p is ready to be optimized */
672static void optimize_kprobe(struct kprobe *p)
673{
674 struct optimized_kprobe *op;
675
676 /* Check if the kprobe is disabled or not ready for optimization. */
677 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
678 (kprobe_disabled(p) || kprobes_all_disarmed))
679 return;
680
681 /* kprobes with 'post_handler' can not be optimized */
682 if (p->post_handler)
683 return;
684
685 op = container_of(p, struct optimized_kprobe, kp);
686
687 /* Check there is no other kprobes at the optimized instructions */
688 if (arch_check_optimized_kprobe(op) < 0)
689 return;
690
691 /* Check if it is already optimized. */
692 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
693 if (optprobe_queued_unopt(op)) {
694 /* This is under unoptimizing. Just dequeue the probe */
695 list_del_init(&op->list);
696 }
697 return;
698 }
699 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
700
701 /*
702 * On the 'unoptimizing_list' and 'optimizing_list',
703 * 'op' must have OPTIMIZED flag
704 */
705 if (WARN_ON_ONCE(!list_empty(&op->list)))
706 return;
707
708 list_add(&op->list, &optimizing_list);
709 kick_kprobe_optimizer();
710}
711
712/* Short cut to direct unoptimizing */
713static void force_unoptimize_kprobe(struct optimized_kprobe *op)
714{
715 lockdep_assert_cpus_held();
716 arch_unoptimize_kprobe(op);
717 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
718}
719
720/* Unoptimize a kprobe if p is optimized */
721static void unoptimize_kprobe(struct kprobe *p, bool force)
722{
723 struct optimized_kprobe *op;
724
725 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
726 return; /* This is not an optprobe nor optimized */
727
728 op = container_of(p, struct optimized_kprobe, kp);
729 if (!kprobe_optimized(p))
730 return;
731
732 if (!list_empty(&op->list)) {
733 if (optprobe_queued_unopt(op)) {
734 /* Queued in unoptimizing queue */
735 if (force) {
736 /*
737 * Forcibly unoptimize the kprobe here, and queue it
738 * in the freeing list for release afterwards.
739 */
740 force_unoptimize_kprobe(op);
741 list_move(&op->list, &freeing_list);
742 }
743 } else {
744 /* Dequeue from the optimizing queue */
745 list_del_init(&op->list);
746 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
747 }
748 return;
749 }
750
751 /* Optimized kprobe case */
752 if (force) {
753 /* Forcibly update the code: this is a special case */
754 force_unoptimize_kprobe(op);
755 } else {
756 list_add(&op->list, &unoptimizing_list);
757 kick_kprobe_optimizer();
758 }
759}
760
761/* Cancel unoptimizing for reusing */
762static int reuse_unused_kprobe(struct kprobe *ap)
763{
764 struct optimized_kprobe *op;
765
766 /*
767 * Unused kprobe MUST be on the way of delayed unoptimizing (means
768 * there is still a relative jump) and disabled.
769 */
770 op = container_of(ap, struct optimized_kprobe, kp);
771 WARN_ON_ONCE(list_empty(&op->list));
772 /* Enable the probe again */
773 ap->flags &= ~KPROBE_FLAG_DISABLED;
774 /* Optimize it again. (remove from 'op->list') */
775 if (!kprobe_optready(ap))
776 return -EINVAL;
777
778 optimize_kprobe(ap);
779 return 0;
780}
781
782/* Remove optimized instructions */
783static void kill_optimized_kprobe(struct kprobe *p)
784{
785 struct optimized_kprobe *op;
786
787 op = container_of(p, struct optimized_kprobe, kp);
788 if (!list_empty(&op->list))
789 /* Dequeue from the (un)optimization queue */
790 list_del_init(&op->list);
791 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
792
793 if (kprobe_unused(p)) {
794 /*
795 * Unused kprobe is on unoptimizing or freeing list. We move it
796 * to freeing_list and let the kprobe_optimizer() remove it from
797 * the kprobe hash list and free it.
798 */
799 if (optprobe_queued_unopt(op))
800 list_move(&op->list, &freeing_list);
801 }
802
803 /* Don't touch the code, because it is already freed. */
804 arch_remove_optimized_kprobe(op);
805}
806
807static inline
808void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
809{
810 if (!kprobe_ftrace(p))
811 arch_prepare_optimized_kprobe(op, p);
812}
813
814/* Try to prepare optimized instructions */
815static void prepare_optimized_kprobe(struct kprobe *p)
816{
817 struct optimized_kprobe *op;
818
819 op = container_of(p, struct optimized_kprobe, kp);
820 __prepare_optimized_kprobe(op, p);
821}
822
823/* Allocate new optimized_kprobe and try to prepare optimized instructions. */
824static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
825{
826 struct optimized_kprobe *op;
827
828 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
829 if (!op)
830 return NULL;
831
832 INIT_LIST_HEAD(&op->list);
833 op->kp.addr = p->addr;
834 __prepare_optimized_kprobe(op, p);
835
836 return &op->kp;
837}
838
839static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
840
841/*
842 * Prepare an optimized_kprobe and optimize it.
843 * NOTE: 'p' must be a normal registered kprobe.
844 */
845static void try_to_optimize_kprobe(struct kprobe *p)
846{
847 struct kprobe *ap;
848 struct optimized_kprobe *op;
849
850 /* Impossible to optimize ftrace-based kprobe. */
851 if (kprobe_ftrace(p))
852 return;
853
854 /* For preparing optimization, jump_label_text_reserved() is called. */
855 cpus_read_lock();
856 jump_label_lock();
857 mutex_lock(&text_mutex);
858
859 ap = alloc_aggr_kprobe(p);
860 if (!ap)
861 goto out;
862
863 op = container_of(ap, struct optimized_kprobe, kp);
864 if (!arch_prepared_optinsn(&op->optinsn)) {
865 /* If failed to setup optimizing, fallback to kprobe. */
866 arch_remove_optimized_kprobe(op);
867 kfree(op);
868 goto out;
869 }
870
871 init_aggr_kprobe(ap, p);
872 optimize_kprobe(ap); /* This just kicks optimizer thread. */
873
874out:
875 mutex_unlock(&text_mutex);
876 jump_label_unlock();
877 cpus_read_unlock();
878}
879
880static void optimize_all_kprobes(void)
881{
882 struct hlist_head *head;
883 struct kprobe *p;
884 unsigned int i;
885
886 mutex_lock(&kprobe_mutex);
887 /* If optimization is already allowed, just return. */
888 if (kprobes_allow_optimization)
889 goto out;
890
891 cpus_read_lock();
892 kprobes_allow_optimization = true;
893 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
894 head = &kprobe_table[i];
895 hlist_for_each_entry(p, head, hlist)
896 if (!kprobe_disabled(p))
897 optimize_kprobe(p);
898 }
899 cpus_read_unlock();
900 pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
901out:
902 mutex_unlock(&kprobe_mutex);
903}
904
905#ifdef CONFIG_SYSCTL
906static void unoptimize_all_kprobes(void)
907{
908 struct hlist_head *head;
909 struct kprobe *p;
910 unsigned int i;
911
912 mutex_lock(&kprobe_mutex);
913 /* If optimization is already prohibited, just return. */
914 if (!kprobes_allow_optimization) {
915 mutex_unlock(&kprobe_mutex);
916 return;
917 }
918
919 cpus_read_lock();
920 kprobes_allow_optimization = false;
921 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
922 head = &kprobe_table[i];
923 hlist_for_each_entry(p, head, hlist) {
924 if (!kprobe_disabled(p))
925 unoptimize_kprobe(p, false);
926 }
927 }
928 cpus_read_unlock();
929 mutex_unlock(&kprobe_mutex);
930
931 /* Wait for unoptimizing completion. */
932 wait_for_kprobe_optimizer();
933 pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
934}
935
936static DEFINE_MUTEX(kprobe_sysctl_mutex);
937static int sysctl_kprobes_optimization;
938static int proc_kprobes_optimization_handler(const struct ctl_table *table,
939 int write, void *buffer,
940 size_t *length, loff_t *ppos)
941{
942 int ret;
943
944 mutex_lock(&kprobe_sysctl_mutex);
945 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
946 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
947
948 if (sysctl_kprobes_optimization)
949 optimize_all_kprobes();
950 else
951 unoptimize_all_kprobes();
952 mutex_unlock(&kprobe_sysctl_mutex);
953
954 return ret;
955}
956
957static struct ctl_table kprobe_sysctls[] = {
958 {
959 .procname = "kprobes-optimization",
960 .data = &sysctl_kprobes_optimization,
961 .maxlen = sizeof(int),
962 .mode = 0644,
963 .proc_handler = proc_kprobes_optimization_handler,
964 .extra1 = SYSCTL_ZERO,
965 .extra2 = SYSCTL_ONE,
966 },
967};
968
969static void __init kprobe_sysctls_init(void)
970{
971 register_sysctl_init("debug", kprobe_sysctls);
972}
973#endif /* CONFIG_SYSCTL */
974
975/* Put a breakpoint for a probe. */
976static void __arm_kprobe(struct kprobe *p)
977{
978 struct kprobe *_p;
979
980 lockdep_assert_held(&text_mutex);
981
982 /* Find the overlapping optimized kprobes. */
983 _p = get_optimized_kprobe(p->addr);
984 if (unlikely(_p))
985 /* Fallback to unoptimized kprobe */
986 unoptimize_kprobe(_p, true);
987
988 arch_arm_kprobe(p);
989 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
990}
991
992/* Remove the breakpoint of a probe. */
993static void __disarm_kprobe(struct kprobe *p, bool reopt)
994{
995 struct kprobe *_p;
996
997 lockdep_assert_held(&text_mutex);
998
999 /* Try to unoptimize */
1000 unoptimize_kprobe(p, kprobes_all_disarmed);
1001
1002 if (!kprobe_queued(p)) {
1003 arch_disarm_kprobe(p);
1004 /* If another kprobe was blocked, re-optimize it. */
1005 _p = get_optimized_kprobe(p->addr);
1006 if (unlikely(_p) && reopt)
1007 optimize_kprobe(_p);
1008 }
1009 /*
1010 * TODO: Since unoptimization and real disarming will be done by
1011 * the worker thread, we can not check whether another probe are
1012 * unoptimized because of this probe here. It should be re-optimized
1013 * by the worker thread.
1014 */
1015}
1016
1017#else /* !CONFIG_OPTPROBES */
1018
1019#define optimize_kprobe(p) do {} while (0)
1020#define unoptimize_kprobe(p, f) do {} while (0)
1021#define kill_optimized_kprobe(p) do {} while (0)
1022#define prepare_optimized_kprobe(p) do {} while (0)
1023#define try_to_optimize_kprobe(p) do {} while (0)
1024#define __arm_kprobe(p) arch_arm_kprobe(p)
1025#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
1026#define kprobe_disarmed(p) kprobe_disabled(p)
1027#define wait_for_kprobe_optimizer() do {} while (0)
1028
1029static int reuse_unused_kprobe(struct kprobe *ap)
1030{
1031 /*
1032 * If the optimized kprobe is NOT supported, the aggr kprobe is
1033 * released at the same time that the last aggregated kprobe is
1034 * unregistered.
1035 * Thus there should be no chance to reuse unused kprobe.
1036 */
1037 WARN_ON_ONCE(1);
1038 return -EINVAL;
1039}
1040
1041static void free_aggr_kprobe(struct kprobe *p)
1042{
1043 arch_remove_kprobe(p);
1044 kfree(p);
1045}
1046
1047static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1048{
1049 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1050}
1051#endif /* CONFIG_OPTPROBES */
1052
1053#ifdef CONFIG_KPROBES_ON_FTRACE
1054static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1055 .func = kprobe_ftrace_handler,
1056 .flags = FTRACE_OPS_FL_SAVE_REGS,
1057};
1058
1059static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1060 .func = kprobe_ftrace_handler,
1061 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1062};
1063
1064static int kprobe_ipmodify_enabled;
1065static int kprobe_ftrace_enabled;
1066bool kprobe_ftrace_disabled;
1067
1068static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1069 int *cnt)
1070{
1071 int ret;
1072
1073 lockdep_assert_held(&kprobe_mutex);
1074
1075 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1076 if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1077 return ret;
1078
1079 if (*cnt == 0) {
1080 ret = register_ftrace_function(ops);
1081 if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1082 goto err_ftrace;
1083 }
1084
1085 (*cnt)++;
1086 return ret;
1087
1088err_ftrace:
1089 /*
1090 * At this point, sinec ops is not registered, we should be sefe from
1091 * registering empty filter.
1092 */
1093 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1094 return ret;
1095}
1096
1097static int arm_kprobe_ftrace(struct kprobe *p)
1098{
1099 bool ipmodify = (p->post_handler != NULL);
1100
1101 return __arm_kprobe_ftrace(p,
1102 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1103 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1104}
1105
1106static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1107 int *cnt)
1108{
1109 int ret;
1110
1111 lockdep_assert_held(&kprobe_mutex);
1112
1113 if (*cnt == 1) {
1114 ret = unregister_ftrace_function(ops);
1115 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1116 return ret;
1117 }
1118
1119 (*cnt)--;
1120
1121 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1122 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1123 p->addr, ret);
1124 return ret;
1125}
1126
1127static int disarm_kprobe_ftrace(struct kprobe *p)
1128{
1129 bool ipmodify = (p->post_handler != NULL);
1130
1131 return __disarm_kprobe_ftrace(p,
1132 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1133 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1134}
1135
1136void kprobe_ftrace_kill(void)
1137{
1138 kprobe_ftrace_disabled = true;
1139}
1140#else /* !CONFIG_KPROBES_ON_FTRACE */
1141static inline int arm_kprobe_ftrace(struct kprobe *p)
1142{
1143 return -ENODEV;
1144}
1145
1146static inline int disarm_kprobe_ftrace(struct kprobe *p)
1147{
1148 return -ENODEV;
1149}
1150#endif
1151
1152static int prepare_kprobe(struct kprobe *p)
1153{
1154 /* Must ensure p->addr is really on ftrace */
1155 if (kprobe_ftrace(p))
1156 return arch_prepare_kprobe_ftrace(p);
1157
1158 return arch_prepare_kprobe(p);
1159}
1160
1161static int arm_kprobe(struct kprobe *kp)
1162{
1163 if (unlikely(kprobe_ftrace(kp)))
1164 return arm_kprobe_ftrace(kp);
1165
1166 cpus_read_lock();
1167 mutex_lock(&text_mutex);
1168 __arm_kprobe(kp);
1169 mutex_unlock(&text_mutex);
1170 cpus_read_unlock();
1171
1172 return 0;
1173}
1174
1175static int disarm_kprobe(struct kprobe *kp, bool reopt)
1176{
1177 if (unlikely(kprobe_ftrace(kp)))
1178 return disarm_kprobe_ftrace(kp);
1179
1180 cpus_read_lock();
1181 mutex_lock(&text_mutex);
1182 __disarm_kprobe(kp, reopt);
1183 mutex_unlock(&text_mutex);
1184 cpus_read_unlock();
1185
1186 return 0;
1187}
1188
1189/*
1190 * Aggregate handlers for multiple kprobes support - these handlers
1191 * take care of invoking the individual kprobe handlers on p->list
1192 */
1193static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1194{
1195 struct kprobe *kp;
1196
1197 list_for_each_entry_rcu(kp, &p->list, list) {
1198 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1199 set_kprobe_instance(kp);
1200 if (kp->pre_handler(kp, regs))
1201 return 1;
1202 }
1203 reset_kprobe_instance();
1204 }
1205 return 0;
1206}
1207NOKPROBE_SYMBOL(aggr_pre_handler);
1208
1209static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1210 unsigned long flags)
1211{
1212 struct kprobe *kp;
1213
1214 list_for_each_entry_rcu(kp, &p->list, list) {
1215 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1216 set_kprobe_instance(kp);
1217 kp->post_handler(kp, regs, flags);
1218 reset_kprobe_instance();
1219 }
1220 }
1221}
1222NOKPROBE_SYMBOL(aggr_post_handler);
1223
1224/* Walks the list and increments 'nmissed' if 'p' has child probes. */
1225void kprobes_inc_nmissed_count(struct kprobe *p)
1226{
1227 struct kprobe *kp;
1228
1229 if (!kprobe_aggrprobe(p)) {
1230 p->nmissed++;
1231 } else {
1232 list_for_each_entry_rcu(kp, &p->list, list)
1233 kp->nmissed++;
1234 }
1235}
1236NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1237
1238static struct kprobe kprobe_busy = {
1239 .addr = (void *) get_kprobe,
1240};
1241
1242void kprobe_busy_begin(void)
1243{
1244 struct kprobe_ctlblk *kcb;
1245
1246 preempt_disable();
1247 __this_cpu_write(current_kprobe, &kprobe_busy);
1248 kcb = get_kprobe_ctlblk();
1249 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1250}
1251
1252void kprobe_busy_end(void)
1253{
1254 __this_cpu_write(current_kprobe, NULL);
1255 preempt_enable();
1256}
1257
1258/* Add the new probe to 'ap->list'. */
1259static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1260{
1261 if (p->post_handler)
1262 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1263
1264 list_add_rcu(&p->list, &ap->list);
1265 if (p->post_handler && !ap->post_handler)
1266 ap->post_handler = aggr_post_handler;
1267
1268 return 0;
1269}
1270
1271/*
1272 * Fill in the required fields of the aggregator kprobe. Replace the
1273 * earlier kprobe in the hlist with the aggregator kprobe.
1274 */
1275static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1276{
1277 /* Copy the insn slot of 'p' to 'ap'. */
1278 copy_kprobe(p, ap);
1279 flush_insn_slot(ap);
1280 ap->addr = p->addr;
1281 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1282 ap->pre_handler = aggr_pre_handler;
1283 /* We don't care the kprobe which has gone. */
1284 if (p->post_handler && !kprobe_gone(p))
1285 ap->post_handler = aggr_post_handler;
1286
1287 INIT_LIST_HEAD(&ap->list);
1288 INIT_HLIST_NODE(&ap->hlist);
1289
1290 list_add_rcu(&p->list, &ap->list);
1291 hlist_replace_rcu(&p->hlist, &ap->hlist);
1292}
1293
1294/*
1295 * This registers the second or subsequent kprobe at the same address.
1296 */
1297static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1298{
1299 int ret = 0;
1300 struct kprobe *ap = orig_p;
1301
1302 cpus_read_lock();
1303
1304 /* For preparing optimization, jump_label_text_reserved() is called */
1305 jump_label_lock();
1306 mutex_lock(&text_mutex);
1307
1308 if (!kprobe_aggrprobe(orig_p)) {
1309 /* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1310 ap = alloc_aggr_kprobe(orig_p);
1311 if (!ap) {
1312 ret = -ENOMEM;
1313 goto out;
1314 }
1315 init_aggr_kprobe(ap, orig_p);
1316 } else if (kprobe_unused(ap)) {
1317 /* This probe is going to die. Rescue it */
1318 ret = reuse_unused_kprobe(ap);
1319 if (ret)
1320 goto out;
1321 }
1322
1323 if (kprobe_gone(ap)) {
1324 /*
1325 * Attempting to insert new probe at the same location that
1326 * had a probe in the module vaddr area which already
1327 * freed. So, the instruction slot has already been
1328 * released. We need a new slot for the new probe.
1329 */
1330 ret = arch_prepare_kprobe(ap);
1331 if (ret)
1332 /*
1333 * Even if fail to allocate new slot, don't need to
1334 * free the 'ap'. It will be used next time, or
1335 * freed by unregister_kprobe().
1336 */
1337 goto out;
1338
1339 /* Prepare optimized instructions if possible. */
1340 prepare_optimized_kprobe(ap);
1341
1342 /*
1343 * Clear gone flag to prevent allocating new slot again, and
1344 * set disabled flag because it is not armed yet.
1345 */
1346 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1347 | KPROBE_FLAG_DISABLED;
1348 }
1349
1350 /* Copy the insn slot of 'p' to 'ap'. */
1351 copy_kprobe(ap, p);
1352 ret = add_new_kprobe(ap, p);
1353
1354out:
1355 mutex_unlock(&text_mutex);
1356 jump_label_unlock();
1357 cpus_read_unlock();
1358
1359 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1360 ap->flags &= ~KPROBE_FLAG_DISABLED;
1361 if (!kprobes_all_disarmed) {
1362 /* Arm the breakpoint again. */
1363 ret = arm_kprobe(ap);
1364 if (ret) {
1365 ap->flags |= KPROBE_FLAG_DISABLED;
1366 list_del_rcu(&p->list);
1367 synchronize_rcu();
1368 }
1369 }
1370 }
1371 return ret;
1372}
1373
1374bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1375{
1376 /* The '__kprobes' functions and entry code must not be probed. */
1377 return addr >= (unsigned long)__kprobes_text_start &&
1378 addr < (unsigned long)__kprobes_text_end;
1379}
1380
1381static bool __within_kprobe_blacklist(unsigned long addr)
1382{
1383 struct kprobe_blacklist_entry *ent;
1384
1385 if (arch_within_kprobe_blacklist(addr))
1386 return true;
1387 /*
1388 * If 'kprobe_blacklist' is defined, check the address and
1389 * reject any probe registration in the prohibited area.
1390 */
1391 list_for_each_entry(ent, &kprobe_blacklist, list) {
1392 if (addr >= ent->start_addr && addr < ent->end_addr)
1393 return true;
1394 }
1395 return false;
1396}
1397
1398bool within_kprobe_blacklist(unsigned long addr)
1399{
1400 char symname[KSYM_NAME_LEN], *p;
1401
1402 if (__within_kprobe_blacklist(addr))
1403 return true;
1404
1405 /* Check if the address is on a suffixed-symbol */
1406 if (!lookup_symbol_name(addr, symname)) {
1407 p = strchr(symname, '.');
1408 if (!p)
1409 return false;
1410 *p = '\0';
1411 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1412 if (addr)
1413 return __within_kprobe_blacklist(addr);
1414 }
1415 return false;
1416}
1417
1418/*
1419 * arch_adjust_kprobe_addr - adjust the address
1420 * @addr: symbol base address
1421 * @offset: offset within the symbol
1422 * @on_func_entry: was this @addr+@offset on the function entry
1423 *
1424 * Typically returns @addr + @offset, except for special cases where the
1425 * function might be prefixed by a CFI landing pad, in that case any offset
1426 * inside the landing pad is mapped to the first 'real' instruction of the
1427 * symbol.
1428 *
1429 * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1430 * instruction at +0.
1431 */
1432kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1433 unsigned long offset,
1434 bool *on_func_entry)
1435{
1436 *on_func_entry = !offset;
1437 return (kprobe_opcode_t *)(addr + offset);
1438}
1439
1440/*
1441 * If 'symbol_name' is specified, look it up and add the 'offset'
1442 * to it. This way, we can specify a relative address to a symbol.
1443 * This returns encoded errors if it fails to look up symbol or invalid
1444 * combination of parameters.
1445 */
1446static kprobe_opcode_t *
1447_kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1448 unsigned long offset, bool *on_func_entry)
1449{
1450 if ((symbol_name && addr) || (!symbol_name && !addr))
1451 goto invalid;
1452
1453 if (symbol_name) {
1454 /*
1455 * Input: @sym + @offset
1456 * Output: @addr + @offset
1457 *
1458 * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1459 * argument into it's output!
1460 */
1461 addr = kprobe_lookup_name(symbol_name, offset);
1462 if (!addr)
1463 return ERR_PTR(-ENOENT);
1464 }
1465
1466 /*
1467 * So here we have @addr + @offset, displace it into a new
1468 * @addr' + @offset' where @addr' is the symbol start address.
1469 */
1470 addr = (void *)addr + offset;
1471 if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1472 return ERR_PTR(-ENOENT);
1473 addr = (void *)addr - offset;
1474
1475 /*
1476 * Then ask the architecture to re-combine them, taking care of
1477 * magical function entry details while telling us if this was indeed
1478 * at the start of the function.
1479 */
1480 addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1481 if (addr)
1482 return addr;
1483
1484invalid:
1485 return ERR_PTR(-EINVAL);
1486}
1487
1488static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1489{
1490 bool on_func_entry;
1491 return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1492}
1493
1494/*
1495 * Check the 'p' is valid and return the aggregator kprobe
1496 * at the same address.
1497 */
1498static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1499{
1500 struct kprobe *ap, *list_p;
1501
1502 lockdep_assert_held(&kprobe_mutex);
1503
1504 ap = get_kprobe(p->addr);
1505 if (unlikely(!ap))
1506 return NULL;
1507
1508 if (p != ap) {
1509 list_for_each_entry(list_p, &ap->list, list)
1510 if (list_p == p)
1511 /* kprobe p is a valid probe */
1512 goto valid;
1513 return NULL;
1514 }
1515valid:
1516 return ap;
1517}
1518
1519/*
1520 * Warn and return error if the kprobe is being re-registered since
1521 * there must be a software bug.
1522 */
1523static inline int warn_kprobe_rereg(struct kprobe *p)
1524{
1525 int ret = 0;
1526
1527 mutex_lock(&kprobe_mutex);
1528 if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1529 ret = -EINVAL;
1530 mutex_unlock(&kprobe_mutex);
1531
1532 return ret;
1533}
1534
1535static int check_ftrace_location(struct kprobe *p)
1536{
1537 unsigned long addr = (unsigned long)p->addr;
1538
1539 if (ftrace_location(addr) == addr) {
1540#ifdef CONFIG_KPROBES_ON_FTRACE
1541 p->flags |= KPROBE_FLAG_FTRACE;
1542#else
1543 return -EINVAL;
1544#endif
1545 }
1546 return 0;
1547}
1548
1549static bool is_cfi_preamble_symbol(unsigned long addr)
1550{
1551 char symbuf[KSYM_NAME_LEN];
1552
1553 if (lookup_symbol_name(addr, symbuf))
1554 return false;
1555
1556 return str_has_prefix(symbuf, "__cfi_") ||
1557 str_has_prefix(symbuf, "__pfx_");
1558}
1559
1560static int check_kprobe_address_safe(struct kprobe *p,
1561 struct module **probed_mod)
1562{
1563 int ret;
1564
1565 ret = check_ftrace_location(p);
1566 if (ret)
1567 return ret;
1568 jump_label_lock();
1569 preempt_disable();
1570
1571 /* Ensure the address is in a text area, and find a module if exists. */
1572 *probed_mod = NULL;
1573 if (!core_kernel_text((unsigned long) p->addr)) {
1574 *probed_mod = __module_text_address((unsigned long) p->addr);
1575 if (!(*probed_mod)) {
1576 ret = -EINVAL;
1577 goto out;
1578 }
1579 }
1580 /* Ensure it is not in reserved area. */
1581 if (in_gate_area_no_mm((unsigned long) p->addr) ||
1582 within_kprobe_blacklist((unsigned long) p->addr) ||
1583 jump_label_text_reserved(p->addr, p->addr) ||
1584 static_call_text_reserved(p->addr, p->addr) ||
1585 find_bug((unsigned long)p->addr) ||
1586 is_cfi_preamble_symbol((unsigned long)p->addr)) {
1587 ret = -EINVAL;
1588 goto out;
1589 }
1590
1591 /* Get module refcount and reject __init functions for loaded modules. */
1592 if (IS_ENABLED(CONFIG_MODULES) && *probed_mod) {
1593 /*
1594 * We must hold a refcount of the probed module while updating
1595 * its code to prohibit unexpected unloading.
1596 */
1597 if (unlikely(!try_module_get(*probed_mod))) {
1598 ret = -ENOENT;
1599 goto out;
1600 }
1601
1602 /*
1603 * If the module freed '.init.text', we couldn't insert
1604 * kprobes in there.
1605 */
1606 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1607 !module_is_coming(*probed_mod)) {
1608 module_put(*probed_mod);
1609 *probed_mod = NULL;
1610 ret = -ENOENT;
1611 }
1612 }
1613
1614out:
1615 preempt_enable();
1616 jump_label_unlock();
1617
1618 return ret;
1619}
1620
1621int register_kprobe(struct kprobe *p)
1622{
1623 int ret;
1624 struct kprobe *old_p;
1625 struct module *probed_mod;
1626 kprobe_opcode_t *addr;
1627 bool on_func_entry;
1628
1629 /* Adjust probe address from symbol */
1630 addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1631 if (IS_ERR(addr))
1632 return PTR_ERR(addr);
1633 p->addr = addr;
1634
1635 ret = warn_kprobe_rereg(p);
1636 if (ret)
1637 return ret;
1638
1639 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1640 p->flags &= KPROBE_FLAG_DISABLED;
1641 p->nmissed = 0;
1642 INIT_LIST_HEAD(&p->list);
1643
1644 ret = check_kprobe_address_safe(p, &probed_mod);
1645 if (ret)
1646 return ret;
1647
1648 mutex_lock(&kprobe_mutex);
1649
1650 if (on_func_entry)
1651 p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
1652
1653 old_p = get_kprobe(p->addr);
1654 if (old_p) {
1655 /* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1656 ret = register_aggr_kprobe(old_p, p);
1657 goto out;
1658 }
1659
1660 cpus_read_lock();
1661 /* Prevent text modification */
1662 mutex_lock(&text_mutex);
1663 ret = prepare_kprobe(p);
1664 mutex_unlock(&text_mutex);
1665 cpus_read_unlock();
1666 if (ret)
1667 goto out;
1668
1669 INIT_HLIST_NODE(&p->hlist);
1670 hlist_add_head_rcu(&p->hlist,
1671 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1672
1673 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1674 ret = arm_kprobe(p);
1675 if (ret) {
1676 hlist_del_rcu(&p->hlist);
1677 synchronize_rcu();
1678 goto out;
1679 }
1680 }
1681
1682 /* Try to optimize kprobe */
1683 try_to_optimize_kprobe(p);
1684out:
1685 mutex_unlock(&kprobe_mutex);
1686
1687 if (probed_mod)
1688 module_put(probed_mod);
1689
1690 return ret;
1691}
1692EXPORT_SYMBOL_GPL(register_kprobe);
1693
1694/* Check if all probes on the 'ap' are disabled. */
1695static bool aggr_kprobe_disabled(struct kprobe *ap)
1696{
1697 struct kprobe *kp;
1698
1699 lockdep_assert_held(&kprobe_mutex);
1700
1701 list_for_each_entry(kp, &ap->list, list)
1702 if (!kprobe_disabled(kp))
1703 /*
1704 * Since there is an active probe on the list,
1705 * we can't disable this 'ap'.
1706 */
1707 return false;
1708
1709 return true;
1710}
1711
1712static struct kprobe *__disable_kprobe(struct kprobe *p)
1713{
1714 struct kprobe *orig_p;
1715 int ret;
1716
1717 lockdep_assert_held(&kprobe_mutex);
1718
1719 /* Get an original kprobe for return */
1720 orig_p = __get_valid_kprobe(p);
1721 if (unlikely(orig_p == NULL))
1722 return ERR_PTR(-EINVAL);
1723
1724 if (kprobe_disabled(p))
1725 return orig_p;
1726
1727 /* Disable probe if it is a child probe */
1728 if (p != orig_p)
1729 p->flags |= KPROBE_FLAG_DISABLED;
1730
1731 /* Try to disarm and disable this/parent probe */
1732 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1733 /*
1734 * Don't be lazy here. Even if 'kprobes_all_disarmed'
1735 * is false, 'orig_p' might not have been armed yet.
1736 * Note arm_all_kprobes() __tries__ to arm all kprobes
1737 * on the best effort basis.
1738 */
1739 if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1740 ret = disarm_kprobe(orig_p, true);
1741 if (ret) {
1742 p->flags &= ~KPROBE_FLAG_DISABLED;
1743 return ERR_PTR(ret);
1744 }
1745 }
1746 orig_p->flags |= KPROBE_FLAG_DISABLED;
1747 }
1748
1749 return orig_p;
1750}
1751
1752/*
1753 * Unregister a kprobe without a scheduler synchronization.
1754 */
1755static int __unregister_kprobe_top(struct kprobe *p)
1756{
1757 struct kprobe *ap, *list_p;
1758
1759 /* Disable kprobe. This will disarm it if needed. */
1760 ap = __disable_kprobe(p);
1761 if (IS_ERR(ap))
1762 return PTR_ERR(ap);
1763
1764 if (ap == p)
1765 /*
1766 * This probe is an independent(and non-optimized) kprobe
1767 * (not an aggrprobe). Remove from the hash list.
1768 */
1769 goto disarmed;
1770
1771 /* Following process expects this probe is an aggrprobe */
1772 WARN_ON(!kprobe_aggrprobe(ap));
1773
1774 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1775 /*
1776 * !disarmed could be happen if the probe is under delayed
1777 * unoptimizing.
1778 */
1779 goto disarmed;
1780 else {
1781 /* If disabling probe has special handlers, update aggrprobe */
1782 if (p->post_handler && !kprobe_gone(p)) {
1783 list_for_each_entry(list_p, &ap->list, list) {
1784 if ((list_p != p) && (list_p->post_handler))
1785 goto noclean;
1786 }
1787 /*
1788 * For the kprobe-on-ftrace case, we keep the
1789 * post_handler setting to identify this aggrprobe
1790 * armed with kprobe_ipmodify_ops.
1791 */
1792 if (!kprobe_ftrace(ap))
1793 ap->post_handler = NULL;
1794 }
1795noclean:
1796 /*
1797 * Remove from the aggrprobe: this path will do nothing in
1798 * __unregister_kprobe_bottom().
1799 */
1800 list_del_rcu(&p->list);
1801 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1802 /*
1803 * Try to optimize this probe again, because post
1804 * handler may have been changed.
1805 */
1806 optimize_kprobe(ap);
1807 }
1808 return 0;
1809
1810disarmed:
1811 hlist_del_rcu(&ap->hlist);
1812 return 0;
1813}
1814
1815static void __unregister_kprobe_bottom(struct kprobe *p)
1816{
1817 struct kprobe *ap;
1818
1819 if (list_empty(&p->list))
1820 /* This is an independent kprobe */
1821 arch_remove_kprobe(p);
1822 else if (list_is_singular(&p->list)) {
1823 /* This is the last child of an aggrprobe */
1824 ap = list_entry(p->list.next, struct kprobe, list);
1825 list_del(&p->list);
1826 free_aggr_kprobe(ap);
1827 }
1828 /* Otherwise, do nothing. */
1829}
1830
1831int register_kprobes(struct kprobe **kps, int num)
1832{
1833 int i, ret = 0;
1834
1835 if (num <= 0)
1836 return -EINVAL;
1837 for (i = 0; i < num; i++) {
1838 ret = register_kprobe(kps[i]);
1839 if (ret < 0) {
1840 if (i > 0)
1841 unregister_kprobes(kps, i);
1842 break;
1843 }
1844 }
1845 return ret;
1846}
1847EXPORT_SYMBOL_GPL(register_kprobes);
1848
1849void unregister_kprobe(struct kprobe *p)
1850{
1851 unregister_kprobes(&p, 1);
1852}
1853EXPORT_SYMBOL_GPL(unregister_kprobe);
1854
1855void unregister_kprobes(struct kprobe **kps, int num)
1856{
1857 int i;
1858
1859 if (num <= 0)
1860 return;
1861 mutex_lock(&kprobe_mutex);
1862 for (i = 0; i < num; i++)
1863 if (__unregister_kprobe_top(kps[i]) < 0)
1864 kps[i]->addr = NULL;
1865 mutex_unlock(&kprobe_mutex);
1866
1867 synchronize_rcu();
1868 for (i = 0; i < num; i++)
1869 if (kps[i]->addr)
1870 __unregister_kprobe_bottom(kps[i]);
1871}
1872EXPORT_SYMBOL_GPL(unregister_kprobes);
1873
1874int __weak kprobe_exceptions_notify(struct notifier_block *self,
1875 unsigned long val, void *data)
1876{
1877 return NOTIFY_DONE;
1878}
1879NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1880
1881static struct notifier_block kprobe_exceptions_nb = {
1882 .notifier_call = kprobe_exceptions_notify,
1883 .priority = 0x7fffffff /* we need to be notified first */
1884};
1885
1886#ifdef CONFIG_KRETPROBES
1887
1888#if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1889
1890/* callbacks for objpool of kretprobe instances */
1891static int kretprobe_init_inst(void *nod, void *context)
1892{
1893 struct kretprobe_instance *ri = nod;
1894
1895 ri->rph = context;
1896 return 0;
1897}
1898static int kretprobe_fini_pool(struct objpool_head *head, void *context)
1899{
1900 kfree(context);
1901 return 0;
1902}
1903
1904static void free_rp_inst_rcu(struct rcu_head *head)
1905{
1906 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1907 struct kretprobe_holder *rph = ri->rph;
1908
1909 objpool_drop(ri, &rph->pool);
1910}
1911NOKPROBE_SYMBOL(free_rp_inst_rcu);
1912
1913static void recycle_rp_inst(struct kretprobe_instance *ri)
1914{
1915 struct kretprobe *rp = get_kretprobe(ri);
1916
1917 if (likely(rp))
1918 objpool_push(ri, &rp->rph->pool);
1919 else
1920 call_rcu(&ri->rcu, free_rp_inst_rcu);
1921}
1922NOKPROBE_SYMBOL(recycle_rp_inst);
1923
1924/*
1925 * This function is called from delayed_put_task_struct() when a task is
1926 * dead and cleaned up to recycle any kretprobe instances associated with
1927 * this task. These left over instances represent probed functions that
1928 * have been called but will never return.
1929 */
1930void kprobe_flush_task(struct task_struct *tk)
1931{
1932 struct kretprobe_instance *ri;
1933 struct llist_node *node;
1934
1935 /* Early boot, not yet initialized. */
1936 if (unlikely(!kprobes_initialized))
1937 return;
1938
1939 kprobe_busy_begin();
1940
1941 node = __llist_del_all(&tk->kretprobe_instances);
1942 while (node) {
1943 ri = container_of(node, struct kretprobe_instance, llist);
1944 node = node->next;
1945
1946 recycle_rp_inst(ri);
1947 }
1948
1949 kprobe_busy_end();
1950}
1951NOKPROBE_SYMBOL(kprobe_flush_task);
1952
1953static inline void free_rp_inst(struct kretprobe *rp)
1954{
1955 struct kretprobe_holder *rph = rp->rph;
1956
1957 if (!rph)
1958 return;
1959 rp->rph = NULL;
1960 objpool_fini(&rph->pool);
1961}
1962
1963/* This assumes the 'tsk' is the current task or the is not running. */
1964static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1965 struct llist_node **cur)
1966{
1967 struct kretprobe_instance *ri = NULL;
1968 struct llist_node *node = *cur;
1969
1970 if (!node)
1971 node = tsk->kretprobe_instances.first;
1972 else
1973 node = node->next;
1974
1975 while (node) {
1976 ri = container_of(node, struct kretprobe_instance, llist);
1977 if (ri->ret_addr != kretprobe_trampoline_addr()) {
1978 *cur = node;
1979 return ri->ret_addr;
1980 }
1981 node = node->next;
1982 }
1983 return NULL;
1984}
1985NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1986
1987/**
1988 * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1989 * @tsk: Target task
1990 * @fp: A frame pointer
1991 * @cur: a storage of the loop cursor llist_node pointer for next call
1992 *
1993 * Find the correct return address modified by a kretprobe on @tsk in unsigned
1994 * long type. If it finds the return address, this returns that address value,
1995 * or this returns 0.
1996 * The @tsk must be 'current' or a task which is not running. @fp is a hint
1997 * to get the currect return address - which is compared with the
1998 * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1999 * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
2000 * first call, but '@cur' itself must NOT NULL.
2001 */
2002unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
2003 struct llist_node **cur)
2004{
2005 struct kretprobe_instance *ri;
2006 kprobe_opcode_t *ret;
2007
2008 if (WARN_ON_ONCE(!cur))
2009 return 0;
2010
2011 do {
2012 ret = __kretprobe_find_ret_addr(tsk, cur);
2013 if (!ret)
2014 break;
2015 ri = container_of(*cur, struct kretprobe_instance, llist);
2016 } while (ri->fp != fp);
2017
2018 return (unsigned long)ret;
2019}
2020NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
2021
2022void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
2023 kprobe_opcode_t *correct_ret_addr)
2024{
2025 /*
2026 * Do nothing by default. Please fill this to update the fake return
2027 * address on the stack with the correct one on each arch if possible.
2028 */
2029}
2030
2031unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
2032 void *frame_pointer)
2033{
2034 struct kretprobe_instance *ri = NULL;
2035 struct llist_node *first, *node = NULL;
2036 kprobe_opcode_t *correct_ret_addr;
2037 struct kretprobe *rp;
2038
2039 /* Find correct address and all nodes for this frame. */
2040 correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2041 if (!correct_ret_addr) {
2042 pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2043 BUG_ON(1);
2044 }
2045
2046 /*
2047 * Set the return address as the instruction pointer, because if the
2048 * user handler calls stack_trace_save_regs() with this 'regs',
2049 * the stack trace will start from the instruction pointer.
2050 */
2051 instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2052
2053 /* Run the user handler of the nodes. */
2054 first = current->kretprobe_instances.first;
2055 while (first) {
2056 ri = container_of(first, struct kretprobe_instance, llist);
2057
2058 if (WARN_ON_ONCE(ri->fp != frame_pointer))
2059 break;
2060
2061 rp = get_kretprobe(ri);
2062 if (rp && rp->handler) {
2063 struct kprobe *prev = kprobe_running();
2064
2065 __this_cpu_write(current_kprobe, &rp->kp);
2066 ri->ret_addr = correct_ret_addr;
2067 rp->handler(ri, regs);
2068 __this_cpu_write(current_kprobe, prev);
2069 }
2070 if (first == node)
2071 break;
2072
2073 first = first->next;
2074 }
2075
2076 arch_kretprobe_fixup_return(regs, correct_ret_addr);
2077
2078 /* Unlink all nodes for this frame. */
2079 first = current->kretprobe_instances.first;
2080 current->kretprobe_instances.first = node->next;
2081 node->next = NULL;
2082
2083 /* Recycle free instances. */
2084 while (first) {
2085 ri = container_of(first, struct kretprobe_instance, llist);
2086 first = first->next;
2087
2088 recycle_rp_inst(ri);
2089 }
2090
2091 return (unsigned long)correct_ret_addr;
2092}
2093NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2094
2095/*
2096 * This kprobe pre_handler is registered with every kretprobe. When probe
2097 * hits it will set up the return probe.
2098 */
2099static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2100{
2101 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2102 struct kretprobe_holder *rph = rp->rph;
2103 struct kretprobe_instance *ri;
2104
2105 ri = objpool_pop(&rph->pool);
2106 if (!ri) {
2107 rp->nmissed++;
2108 return 0;
2109 }
2110
2111 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2112 objpool_push(ri, &rph->pool);
2113 return 0;
2114 }
2115
2116 arch_prepare_kretprobe(ri, regs);
2117
2118 __llist_add(&ri->llist, ¤t->kretprobe_instances);
2119
2120 return 0;
2121}
2122NOKPROBE_SYMBOL(pre_handler_kretprobe);
2123#else /* CONFIG_KRETPROBE_ON_RETHOOK */
2124/*
2125 * This kprobe pre_handler is registered with every kretprobe. When probe
2126 * hits it will set up the return probe.
2127 */
2128static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2129{
2130 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2131 struct kretprobe_instance *ri;
2132 struct rethook_node *rhn;
2133
2134 rhn = rethook_try_get(rp->rh);
2135 if (!rhn) {
2136 rp->nmissed++;
2137 return 0;
2138 }
2139
2140 ri = container_of(rhn, struct kretprobe_instance, node);
2141
2142 if (rp->entry_handler && rp->entry_handler(ri, regs))
2143 rethook_recycle(rhn);
2144 else
2145 rethook_hook(rhn, regs, kprobe_ftrace(p));
2146
2147 return 0;
2148}
2149NOKPROBE_SYMBOL(pre_handler_kretprobe);
2150
2151static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2152 unsigned long ret_addr,
2153 struct pt_regs *regs)
2154{
2155 struct kretprobe *rp = (struct kretprobe *)data;
2156 struct kretprobe_instance *ri;
2157 struct kprobe_ctlblk *kcb;
2158
2159 /* The data must NOT be null. This means rethook data structure is broken. */
2160 if (WARN_ON_ONCE(!data) || !rp->handler)
2161 return;
2162
2163 __this_cpu_write(current_kprobe, &rp->kp);
2164 kcb = get_kprobe_ctlblk();
2165 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2166
2167 ri = container_of(rh, struct kretprobe_instance, node);
2168 rp->handler(ri, regs);
2169
2170 __this_cpu_write(current_kprobe, NULL);
2171}
2172NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2173
2174#endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2175
2176/**
2177 * kprobe_on_func_entry() -- check whether given address is function entry
2178 * @addr: Target address
2179 * @sym: Target symbol name
2180 * @offset: The offset from the symbol or the address
2181 *
2182 * This checks whether the given @addr+@offset or @sym+@offset is on the
2183 * function entry address or not.
2184 * This returns 0 if it is the function entry, or -EINVAL if it is not.
2185 * And also it returns -ENOENT if it fails the symbol or address lookup.
2186 * Caller must pass @addr or @sym (either one must be NULL), or this
2187 * returns -EINVAL.
2188 */
2189int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2190{
2191 bool on_func_entry;
2192 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2193
2194 if (IS_ERR(kp_addr))
2195 return PTR_ERR(kp_addr);
2196
2197 if (!on_func_entry)
2198 return -EINVAL;
2199
2200 return 0;
2201}
2202
2203int register_kretprobe(struct kretprobe *rp)
2204{
2205 int ret;
2206 int i;
2207 void *addr;
2208
2209 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2210 if (ret)
2211 return ret;
2212
2213 /* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2214 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2215 return -EINVAL;
2216
2217 if (kretprobe_blacklist_size) {
2218 addr = kprobe_addr(&rp->kp);
2219 if (IS_ERR(addr))
2220 return PTR_ERR(addr);
2221
2222 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2223 if (kretprobe_blacklist[i].addr == addr)
2224 return -EINVAL;
2225 }
2226 }
2227
2228 if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2229 return -E2BIG;
2230
2231 rp->kp.pre_handler = pre_handler_kretprobe;
2232 rp->kp.post_handler = NULL;
2233
2234 /* Pre-allocate memory for max kretprobe instances */
2235 if (rp->maxactive <= 0)
2236 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2237
2238#ifdef CONFIG_KRETPROBE_ON_RETHOOK
2239 rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler,
2240 sizeof(struct kretprobe_instance) +
2241 rp->data_size, rp->maxactive);
2242 if (IS_ERR(rp->rh))
2243 return PTR_ERR(rp->rh);
2244
2245 rp->nmissed = 0;
2246 /* Establish function entry probe point */
2247 ret = register_kprobe(&rp->kp);
2248 if (ret != 0) {
2249 rethook_free(rp->rh);
2250 rp->rh = NULL;
2251 }
2252#else /* !CONFIG_KRETPROBE_ON_RETHOOK */
2253 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2254 if (!rp->rph)
2255 return -ENOMEM;
2256
2257 if (objpool_init(&rp->rph->pool, rp->maxactive, rp->data_size +
2258 sizeof(struct kretprobe_instance), GFP_KERNEL,
2259 rp->rph, kretprobe_init_inst, kretprobe_fini_pool)) {
2260 kfree(rp->rph);
2261 rp->rph = NULL;
2262 return -ENOMEM;
2263 }
2264 rcu_assign_pointer(rp->rph->rp, rp);
2265 rp->nmissed = 0;
2266 /* Establish function entry probe point */
2267 ret = register_kprobe(&rp->kp);
2268 if (ret != 0)
2269 free_rp_inst(rp);
2270#endif
2271 return ret;
2272}
2273EXPORT_SYMBOL_GPL(register_kretprobe);
2274
2275int register_kretprobes(struct kretprobe **rps, int num)
2276{
2277 int ret = 0, i;
2278
2279 if (num <= 0)
2280 return -EINVAL;
2281 for (i = 0; i < num; i++) {
2282 ret = register_kretprobe(rps[i]);
2283 if (ret < 0) {
2284 if (i > 0)
2285 unregister_kretprobes(rps, i);
2286 break;
2287 }
2288 }
2289 return ret;
2290}
2291EXPORT_SYMBOL_GPL(register_kretprobes);
2292
2293void unregister_kretprobe(struct kretprobe *rp)
2294{
2295 unregister_kretprobes(&rp, 1);
2296}
2297EXPORT_SYMBOL_GPL(unregister_kretprobe);
2298
2299void unregister_kretprobes(struct kretprobe **rps, int num)
2300{
2301 int i;
2302
2303 if (num <= 0)
2304 return;
2305 mutex_lock(&kprobe_mutex);
2306 for (i = 0; i < num; i++) {
2307 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2308 rps[i]->kp.addr = NULL;
2309#ifdef CONFIG_KRETPROBE_ON_RETHOOK
2310 rethook_free(rps[i]->rh);
2311#else
2312 rcu_assign_pointer(rps[i]->rph->rp, NULL);
2313#endif
2314 }
2315 mutex_unlock(&kprobe_mutex);
2316
2317 synchronize_rcu();
2318 for (i = 0; i < num; i++) {
2319 if (rps[i]->kp.addr) {
2320 __unregister_kprobe_bottom(&rps[i]->kp);
2321#ifndef CONFIG_KRETPROBE_ON_RETHOOK
2322 free_rp_inst(rps[i]);
2323#endif
2324 }
2325 }
2326}
2327EXPORT_SYMBOL_GPL(unregister_kretprobes);
2328
2329#else /* CONFIG_KRETPROBES */
2330int register_kretprobe(struct kretprobe *rp)
2331{
2332 return -EOPNOTSUPP;
2333}
2334EXPORT_SYMBOL_GPL(register_kretprobe);
2335
2336int register_kretprobes(struct kretprobe **rps, int num)
2337{
2338 return -EOPNOTSUPP;
2339}
2340EXPORT_SYMBOL_GPL(register_kretprobes);
2341
2342void unregister_kretprobe(struct kretprobe *rp)
2343{
2344}
2345EXPORT_SYMBOL_GPL(unregister_kretprobe);
2346
2347void unregister_kretprobes(struct kretprobe **rps, int num)
2348{
2349}
2350EXPORT_SYMBOL_GPL(unregister_kretprobes);
2351
2352static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2353{
2354 return 0;
2355}
2356NOKPROBE_SYMBOL(pre_handler_kretprobe);
2357
2358#endif /* CONFIG_KRETPROBES */
2359
2360/* Set the kprobe gone and remove its instruction buffer. */
2361static void kill_kprobe(struct kprobe *p)
2362{
2363 struct kprobe *kp;
2364
2365 lockdep_assert_held(&kprobe_mutex);
2366
2367 /*
2368 * The module is going away. We should disarm the kprobe which
2369 * is using ftrace, because ftrace framework is still available at
2370 * 'MODULE_STATE_GOING' notification.
2371 */
2372 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2373 disarm_kprobe_ftrace(p);
2374
2375 p->flags |= KPROBE_FLAG_GONE;
2376 if (kprobe_aggrprobe(p)) {
2377 /*
2378 * If this is an aggr_kprobe, we have to list all the
2379 * chained probes and mark them GONE.
2380 */
2381 list_for_each_entry(kp, &p->list, list)
2382 kp->flags |= KPROBE_FLAG_GONE;
2383 p->post_handler = NULL;
2384 kill_optimized_kprobe(p);
2385 }
2386 /*
2387 * Here, we can remove insn_slot safely, because no thread calls
2388 * the original probed function (which will be freed soon) any more.
2389 */
2390 arch_remove_kprobe(p);
2391}
2392
2393/* Disable one kprobe */
2394int disable_kprobe(struct kprobe *kp)
2395{
2396 int ret = 0;
2397 struct kprobe *p;
2398
2399 mutex_lock(&kprobe_mutex);
2400
2401 /* Disable this kprobe */
2402 p = __disable_kprobe(kp);
2403 if (IS_ERR(p))
2404 ret = PTR_ERR(p);
2405
2406 mutex_unlock(&kprobe_mutex);
2407 return ret;
2408}
2409EXPORT_SYMBOL_GPL(disable_kprobe);
2410
2411/* Enable one kprobe */
2412int enable_kprobe(struct kprobe *kp)
2413{
2414 int ret = 0;
2415 struct kprobe *p;
2416
2417 mutex_lock(&kprobe_mutex);
2418
2419 /* Check whether specified probe is valid. */
2420 p = __get_valid_kprobe(kp);
2421 if (unlikely(p == NULL)) {
2422 ret = -EINVAL;
2423 goto out;
2424 }
2425
2426 if (kprobe_gone(kp)) {
2427 /* This kprobe has gone, we couldn't enable it. */
2428 ret = -EINVAL;
2429 goto out;
2430 }
2431
2432 if (p != kp)
2433 kp->flags &= ~KPROBE_FLAG_DISABLED;
2434
2435 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2436 p->flags &= ~KPROBE_FLAG_DISABLED;
2437 ret = arm_kprobe(p);
2438 if (ret) {
2439 p->flags |= KPROBE_FLAG_DISABLED;
2440 if (p != kp)
2441 kp->flags |= KPROBE_FLAG_DISABLED;
2442 }
2443 }
2444out:
2445 mutex_unlock(&kprobe_mutex);
2446 return ret;
2447}
2448EXPORT_SYMBOL_GPL(enable_kprobe);
2449
2450/* Caller must NOT call this in usual path. This is only for critical case */
2451void dump_kprobe(struct kprobe *kp)
2452{
2453 pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2454 kp->symbol_name, kp->offset, kp->addr);
2455}
2456NOKPROBE_SYMBOL(dump_kprobe);
2457
2458int kprobe_add_ksym_blacklist(unsigned long entry)
2459{
2460 struct kprobe_blacklist_entry *ent;
2461 unsigned long offset = 0, size = 0;
2462
2463 if (!kernel_text_address(entry) ||
2464 !kallsyms_lookup_size_offset(entry, &size, &offset))
2465 return -EINVAL;
2466
2467 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2468 if (!ent)
2469 return -ENOMEM;
2470 ent->start_addr = entry;
2471 ent->end_addr = entry + size;
2472 INIT_LIST_HEAD(&ent->list);
2473 list_add_tail(&ent->list, &kprobe_blacklist);
2474
2475 return (int)size;
2476}
2477
2478/* Add all symbols in given area into kprobe blacklist */
2479int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2480{
2481 unsigned long entry;
2482 int ret = 0;
2483
2484 for (entry = start; entry < end; entry += ret) {
2485 ret = kprobe_add_ksym_blacklist(entry);
2486 if (ret < 0)
2487 return ret;
2488 if (ret == 0) /* In case of alias symbol */
2489 ret = 1;
2490 }
2491 return 0;
2492}
2493
2494int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2495 char *type, char *sym)
2496{
2497 return -ERANGE;
2498}
2499
2500int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2501 char *sym)
2502{
2503#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2504 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2505 return 0;
2506#ifdef CONFIG_OPTPROBES
2507 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2508 return 0;
2509#endif
2510#endif
2511 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2512 return 0;
2513 return -ERANGE;
2514}
2515
2516int __init __weak arch_populate_kprobe_blacklist(void)
2517{
2518 return 0;
2519}
2520
2521/*
2522 * Lookup and populate the kprobe_blacklist.
2523 *
2524 * Unlike the kretprobe blacklist, we'll need to determine
2525 * the range of addresses that belong to the said functions,
2526 * since a kprobe need not necessarily be at the beginning
2527 * of a function.
2528 */
2529static int __init populate_kprobe_blacklist(unsigned long *start,
2530 unsigned long *end)
2531{
2532 unsigned long entry;
2533 unsigned long *iter;
2534 int ret;
2535
2536 for (iter = start; iter < end; iter++) {
2537 entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2538 ret = kprobe_add_ksym_blacklist(entry);
2539 if (ret == -EINVAL)
2540 continue;
2541 if (ret < 0)
2542 return ret;
2543 }
2544
2545 /* Symbols in '__kprobes_text' are blacklisted */
2546 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2547 (unsigned long)__kprobes_text_end);
2548 if (ret)
2549 return ret;
2550
2551 /* Symbols in 'noinstr' section are blacklisted */
2552 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2553 (unsigned long)__noinstr_text_end);
2554
2555 return ret ? : arch_populate_kprobe_blacklist();
2556}
2557
2558#ifdef CONFIG_MODULES
2559/* Remove all symbols in given area from kprobe blacklist */
2560static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2561{
2562 struct kprobe_blacklist_entry *ent, *n;
2563
2564 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2565 if (ent->start_addr < start || ent->start_addr >= end)
2566 continue;
2567 list_del(&ent->list);
2568 kfree(ent);
2569 }
2570}
2571
2572static void kprobe_remove_ksym_blacklist(unsigned long entry)
2573{
2574 kprobe_remove_area_blacklist(entry, entry + 1);
2575}
2576
2577static void add_module_kprobe_blacklist(struct module *mod)
2578{
2579 unsigned long start, end;
2580 int i;
2581
2582 if (mod->kprobe_blacklist) {
2583 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2584 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2585 }
2586
2587 start = (unsigned long)mod->kprobes_text_start;
2588 if (start) {
2589 end = start + mod->kprobes_text_size;
2590 kprobe_add_area_blacklist(start, end);
2591 }
2592
2593 start = (unsigned long)mod->noinstr_text_start;
2594 if (start) {
2595 end = start + mod->noinstr_text_size;
2596 kprobe_add_area_blacklist(start, end);
2597 }
2598}
2599
2600static void remove_module_kprobe_blacklist(struct module *mod)
2601{
2602 unsigned long start, end;
2603 int i;
2604
2605 if (mod->kprobe_blacklist) {
2606 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2607 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2608 }
2609
2610 start = (unsigned long)mod->kprobes_text_start;
2611 if (start) {
2612 end = start + mod->kprobes_text_size;
2613 kprobe_remove_area_blacklist(start, end);
2614 }
2615
2616 start = (unsigned long)mod->noinstr_text_start;
2617 if (start) {
2618 end = start + mod->noinstr_text_size;
2619 kprobe_remove_area_blacklist(start, end);
2620 }
2621}
2622
2623/* Module notifier call back, checking kprobes on the module */
2624static int kprobes_module_callback(struct notifier_block *nb,
2625 unsigned long val, void *data)
2626{
2627 struct module *mod = data;
2628 struct hlist_head *head;
2629 struct kprobe *p;
2630 unsigned int i;
2631 int checkcore = (val == MODULE_STATE_GOING);
2632
2633 if (val == MODULE_STATE_COMING) {
2634 mutex_lock(&kprobe_mutex);
2635 add_module_kprobe_blacklist(mod);
2636 mutex_unlock(&kprobe_mutex);
2637 }
2638 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2639 return NOTIFY_DONE;
2640
2641 /*
2642 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2643 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2644 * notified, only '.init.text' section would be freed. We need to
2645 * disable kprobes which have been inserted in the sections.
2646 */
2647 mutex_lock(&kprobe_mutex);
2648 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2649 head = &kprobe_table[i];
2650 hlist_for_each_entry(p, head, hlist)
2651 if (within_module_init((unsigned long)p->addr, mod) ||
2652 (checkcore &&
2653 within_module_core((unsigned long)p->addr, mod))) {
2654 /*
2655 * The vaddr this probe is installed will soon
2656 * be vfreed buy not synced to disk. Hence,
2657 * disarming the breakpoint isn't needed.
2658 *
2659 * Note, this will also move any optimized probes
2660 * that are pending to be removed from their
2661 * corresponding lists to the 'freeing_list' and
2662 * will not be touched by the delayed
2663 * kprobe_optimizer() work handler.
2664 */
2665 kill_kprobe(p);
2666 }
2667 }
2668 if (val == MODULE_STATE_GOING)
2669 remove_module_kprobe_blacklist(mod);
2670 mutex_unlock(&kprobe_mutex);
2671 return NOTIFY_DONE;
2672}
2673
2674static struct notifier_block kprobe_module_nb = {
2675 .notifier_call = kprobes_module_callback,
2676 .priority = 0
2677};
2678
2679static int kprobe_register_module_notifier(void)
2680{
2681 return register_module_notifier(&kprobe_module_nb);
2682}
2683#else
2684static int kprobe_register_module_notifier(void)
2685{
2686 return 0;
2687}
2688#endif /* CONFIG_MODULES */
2689
2690void kprobe_free_init_mem(void)
2691{
2692 void *start = (void *)(&__init_begin);
2693 void *end = (void *)(&__init_end);
2694 struct hlist_head *head;
2695 struct kprobe *p;
2696 int i;
2697
2698 mutex_lock(&kprobe_mutex);
2699
2700 /* Kill all kprobes on initmem because the target code has been freed. */
2701 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2702 head = &kprobe_table[i];
2703 hlist_for_each_entry(p, head, hlist) {
2704 if (start <= (void *)p->addr && (void *)p->addr < end)
2705 kill_kprobe(p);
2706 }
2707 }
2708
2709 mutex_unlock(&kprobe_mutex);
2710}
2711
2712static int __init init_kprobes(void)
2713{
2714 int i, err;
2715
2716 /* FIXME allocate the probe table, currently defined statically */
2717 /* initialize all list heads */
2718 for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2719 INIT_HLIST_HEAD(&kprobe_table[i]);
2720
2721 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2722 __stop_kprobe_blacklist);
2723 if (err)
2724 pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2725
2726 if (kretprobe_blacklist_size) {
2727 /* lookup the function address from its name */
2728 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2729 kretprobe_blacklist[i].addr =
2730 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2731 if (!kretprobe_blacklist[i].addr)
2732 pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2733 kretprobe_blacklist[i].name);
2734 }
2735 }
2736
2737 /* By default, kprobes are armed */
2738 kprobes_all_disarmed = false;
2739
2740#if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2741 /* Init 'kprobe_optinsn_slots' for allocation */
2742 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2743#endif
2744
2745 err = arch_init_kprobes();
2746 if (!err)
2747 err = register_die_notifier(&kprobe_exceptions_nb);
2748 if (!err)
2749 err = kprobe_register_module_notifier();
2750
2751 kprobes_initialized = (err == 0);
2752 kprobe_sysctls_init();
2753 return err;
2754}
2755early_initcall(init_kprobes);
2756
2757#if defined(CONFIG_OPTPROBES)
2758static int __init init_optprobes(void)
2759{
2760 /*
2761 * Enable kprobe optimization - this kicks the optimizer which
2762 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2763 * not spawned in early initcall. So delay the optimization.
2764 */
2765 optimize_all_kprobes();
2766
2767 return 0;
2768}
2769subsys_initcall(init_optprobes);
2770#endif
2771
2772#ifdef CONFIG_DEBUG_FS
2773static void report_probe(struct seq_file *pi, struct kprobe *p,
2774 const char *sym, int offset, char *modname, struct kprobe *pp)
2775{
2776 char *kprobe_type;
2777 void *addr = p->addr;
2778
2779 if (p->pre_handler == pre_handler_kretprobe)
2780 kprobe_type = "r";
2781 else
2782 kprobe_type = "k";
2783
2784 if (!kallsyms_show_value(pi->file->f_cred))
2785 addr = NULL;
2786
2787 if (sym)
2788 seq_printf(pi, "%px %s %s+0x%x %s ",
2789 addr, kprobe_type, sym, offset,
2790 (modname ? modname : " "));
2791 else /* try to use %pS */
2792 seq_printf(pi, "%px %s %pS ",
2793 addr, kprobe_type, p->addr);
2794
2795 if (!pp)
2796 pp = p;
2797 seq_printf(pi, "%s%s%s%s\n",
2798 (kprobe_gone(p) ? "[GONE]" : ""),
2799 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2800 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2801 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2802}
2803
2804static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2805{
2806 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2807}
2808
2809static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2810{
2811 (*pos)++;
2812 if (*pos >= KPROBE_TABLE_SIZE)
2813 return NULL;
2814 return pos;
2815}
2816
2817static void kprobe_seq_stop(struct seq_file *f, void *v)
2818{
2819 /* Nothing to do */
2820}
2821
2822static int show_kprobe_addr(struct seq_file *pi, void *v)
2823{
2824 struct hlist_head *head;
2825 struct kprobe *p, *kp;
2826 const char *sym;
2827 unsigned int i = *(loff_t *) v;
2828 unsigned long offset = 0;
2829 char *modname, namebuf[KSYM_NAME_LEN];
2830
2831 head = &kprobe_table[i];
2832 preempt_disable();
2833 hlist_for_each_entry_rcu(p, head, hlist) {
2834 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2835 &offset, &modname, namebuf);
2836 if (kprobe_aggrprobe(p)) {
2837 list_for_each_entry_rcu(kp, &p->list, list)
2838 report_probe(pi, kp, sym, offset, modname, p);
2839 } else
2840 report_probe(pi, p, sym, offset, modname, NULL);
2841 }
2842 preempt_enable();
2843 return 0;
2844}
2845
2846static const struct seq_operations kprobes_sops = {
2847 .start = kprobe_seq_start,
2848 .next = kprobe_seq_next,
2849 .stop = kprobe_seq_stop,
2850 .show = show_kprobe_addr
2851};
2852
2853DEFINE_SEQ_ATTRIBUTE(kprobes);
2854
2855/* kprobes/blacklist -- shows which functions can not be probed */
2856static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2857{
2858 mutex_lock(&kprobe_mutex);
2859 return seq_list_start(&kprobe_blacklist, *pos);
2860}
2861
2862static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2863{
2864 return seq_list_next(v, &kprobe_blacklist, pos);
2865}
2866
2867static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2868{
2869 struct kprobe_blacklist_entry *ent =
2870 list_entry(v, struct kprobe_blacklist_entry, list);
2871
2872 /*
2873 * If '/proc/kallsyms' is not showing kernel address, we won't
2874 * show them here either.
2875 */
2876 if (!kallsyms_show_value(m->file->f_cred))
2877 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2878 (void *)ent->start_addr);
2879 else
2880 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2881 (void *)ent->end_addr, (void *)ent->start_addr);
2882 return 0;
2883}
2884
2885static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2886{
2887 mutex_unlock(&kprobe_mutex);
2888}
2889
2890static const struct seq_operations kprobe_blacklist_sops = {
2891 .start = kprobe_blacklist_seq_start,
2892 .next = kprobe_blacklist_seq_next,
2893 .stop = kprobe_blacklist_seq_stop,
2894 .show = kprobe_blacklist_seq_show,
2895};
2896DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2897
2898static int arm_all_kprobes(void)
2899{
2900 struct hlist_head *head;
2901 struct kprobe *p;
2902 unsigned int i, total = 0, errors = 0;
2903 int err, ret = 0;
2904
2905 mutex_lock(&kprobe_mutex);
2906
2907 /* If kprobes are armed, just return */
2908 if (!kprobes_all_disarmed)
2909 goto already_enabled;
2910
2911 /*
2912 * optimize_kprobe() called by arm_kprobe() checks
2913 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2914 * arm_kprobe.
2915 */
2916 kprobes_all_disarmed = false;
2917 /* Arming kprobes doesn't optimize kprobe itself */
2918 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2919 head = &kprobe_table[i];
2920 /* Arm all kprobes on a best-effort basis */
2921 hlist_for_each_entry(p, head, hlist) {
2922 if (!kprobe_disabled(p)) {
2923 err = arm_kprobe(p);
2924 if (err) {
2925 errors++;
2926 ret = err;
2927 }
2928 total++;
2929 }
2930 }
2931 }
2932
2933 if (errors)
2934 pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2935 errors, total);
2936 else
2937 pr_info("Kprobes globally enabled\n");
2938
2939already_enabled:
2940 mutex_unlock(&kprobe_mutex);
2941 return ret;
2942}
2943
2944static int disarm_all_kprobes(void)
2945{
2946 struct hlist_head *head;
2947 struct kprobe *p;
2948 unsigned int i, total = 0, errors = 0;
2949 int err, ret = 0;
2950
2951 mutex_lock(&kprobe_mutex);
2952
2953 /* If kprobes are already disarmed, just return */
2954 if (kprobes_all_disarmed) {
2955 mutex_unlock(&kprobe_mutex);
2956 return 0;
2957 }
2958
2959 kprobes_all_disarmed = true;
2960
2961 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2962 head = &kprobe_table[i];
2963 /* Disarm all kprobes on a best-effort basis */
2964 hlist_for_each_entry(p, head, hlist) {
2965 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2966 err = disarm_kprobe(p, false);
2967 if (err) {
2968 errors++;
2969 ret = err;
2970 }
2971 total++;
2972 }
2973 }
2974 }
2975
2976 if (errors)
2977 pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2978 errors, total);
2979 else
2980 pr_info("Kprobes globally disabled\n");
2981
2982 mutex_unlock(&kprobe_mutex);
2983
2984 /* Wait for disarming all kprobes by optimizer */
2985 wait_for_kprobe_optimizer();
2986
2987 return ret;
2988}
2989
2990/*
2991 * XXX: The debugfs bool file interface doesn't allow for callbacks
2992 * when the bool state is switched. We can reuse that facility when
2993 * available
2994 */
2995static ssize_t read_enabled_file_bool(struct file *file,
2996 char __user *user_buf, size_t count, loff_t *ppos)
2997{
2998 char buf[3];
2999
3000 if (!kprobes_all_disarmed)
3001 buf[0] = '1';
3002 else
3003 buf[0] = '0';
3004 buf[1] = '\n';
3005 buf[2] = 0x00;
3006 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
3007}
3008
3009static ssize_t write_enabled_file_bool(struct file *file,
3010 const char __user *user_buf, size_t count, loff_t *ppos)
3011{
3012 bool enable;
3013 int ret;
3014
3015 ret = kstrtobool_from_user(user_buf, count, &enable);
3016 if (ret)
3017 return ret;
3018
3019 ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
3020 if (ret)
3021 return ret;
3022
3023 return count;
3024}
3025
3026static const struct file_operations fops_kp = {
3027 .read = read_enabled_file_bool,
3028 .write = write_enabled_file_bool,
3029 .llseek = default_llseek,
3030};
3031
3032static int __init debugfs_kprobe_init(void)
3033{
3034 struct dentry *dir;
3035
3036 dir = debugfs_create_dir("kprobes", NULL);
3037
3038 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
3039
3040 debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
3041
3042 debugfs_create_file("blacklist", 0400, dir, NULL,
3043 &kprobe_blacklist_fops);
3044
3045 return 0;
3046}
3047
3048late_initcall(debugfs_kprobe_init);
3049#endif /* CONFIG_DEBUG_FS */